Science.gov

Sample records for multifunctional particles magnetic

  1. Exploring multifunctional potential of commercial ferrofluids by magnetic particle hyperthermia

    NASA Astrophysics Data System (ADS)

    Sakellari, Despoina; Mathioudaki, Stella; Kalpaxidou, Zoi; Simeonidis, Konstantinos; Angelakeris, Makis

    2015-04-01

    In this work we examine a selection of commercially available magnetic iron oxide nanoparticles as candidates for magnetic particle hyperthermia applications combining their primary modality with additional heat triggered actions. Contrary to lab-made magnetic nanoparticles, commercial ferrofluids may be rapidly pushed through the medical approval processes since their applicability has already been addressed successfully (i.e., formulation, reproducibility, toxicity and quality assurance) in conjunction with the strong companies‧ drive in the fast delivery of the new therapy to the patient. Four samples are under study with variable hydrodynamic diameters from two companies (Micromod and Chemicell) consisting of iron-oxide magnetic nanoparticles. The tunable magnetic heating characteristics of the ferrofluids were correlated with particle, field and colloidal solution features. Our work revealed a size-dependent magnetic heating efficiency together with fast thermal response, features that are crucial for adequate thermal efficiency combined with minimum treatment duration and show the potential of such materials as multifunctional theranostic agents.

  2. Multifunctionality in molecular magnetism.

    PubMed

    Pinkowicz, Dawid; Czarnecki, Bernard; Reczyński, Mateusz; Arczyński, Mirosław

    2015-01-01

    Molecular magnetism draws from the fundamental ideas of structural chemistry and combines them with experimental physics resulting in one of the highest profile current topics, namely molecular materials that exhibit multifunctionality. Recent advances in the design of new generations of multifunctional molecular magnets that retain the functions of the building blocks and exhibit non-trivial magnetic properties at higher temperatures provide promising evidence that they may be useful for the future construction of nanoscale devices. This article is not a complete review but is rather an introduction into thefascinating world of multifunctional solids with magnetism as the leitmotif. We provide a subjective selection and discussion of the most inspiring examples of multifunctional molecular magnets: magnetic sponges, guest-responsive magnets, molecular magnets with ionic conductivity, photomagnets and non-centrosymmetric and chiral magnets.

  3. Multifunctional particles: Magnetic nanocrystals and gold nanorods coated with fluorescent dye-doped silica shells

    SciTech Connect

    Heitsch, Andrew T.; Smith, Danielle K.; Patel, Reken N.; Ress, David; Korgel, Brian A.

    2008-07-15

    Multifunctional colloidal core-shell nanoparticles of magnetic nanocrystals (of iron oxide or FePt) or gold nanorods encapsulated in silica shells doped with the fluorescent dye, Tris(2,2'-bipyridyl)dichlororuthenium(II) hexahydrate (Rubpy) were synthesized. The as-prepared magnetic nanocrystals are initially hydrophobic and were coated with silica using a microemulsion approach, while the as-prepared gold nanorods are hydrophilic and were coated with silica using a Stoeber type of process. Each approach yielded monodisperse nanoparticles with uniform fluorescent dye-doped silica shells. These colloidal heterostructures have the potential to be used as dual-purpose tags-exhibiting a fluorescent signal that could be combined with either dark-field optical contrast (in the case of the gold nanorods), or enhanced contrast in magnetic resonance images (in the case of magnetic nanocrystal cores). The optical and magnetic properties of the fluorescent silica-coated gold nanorods and magnetic nanocrystals are reported. - Graphical abstract: Colloidal gold nanorods and iron platinum and iron oxide nanocrystals were encapsulated with fluorescent dye-doped silica shells using a generic coating strategy. These heterostructures are promising contrast agents for dual-mode medical imaging. Their optical and magnetic properties were studied and are reported here.

  4. Multifunctional Particles: Magnetic Nanocrystals and Gold Nanorods Coated with Fluorescent Dye-Doped Silica Shells

    PubMed Central

    Heitsch, Andrew T.; Smith, Danielle K.; Patel, Reken E.; Ress, David; Korgel, Brian A.

    2008-01-01

    Multifunctional colloidal core-shell nanoparticles of magnetic nanocrystals (of iron oxide or FePt) or gold nanorods encapsulated in silica shells doped with the fluorescent dye, Tris(2,2′-bipyridyl)dichlororuthenium(II) hexahydrate (Rubpy) were synthesized. The as-prepared magnetic nanocrystals are initially hydrophobic and were coated with silica using a microemulsion approach, while the as-prepared gold nanorods are hydrophilic and were coated with silica using a Stöber-type of process. Each approach yielded monodisperse nanoparticles with uniform fluorescent dye-doped silica shells. These colloidal heterostructures have the potential to be used as dual-purpose tags—exhibiting a fluorescent signal that could be combined with either dark-field optical contrast (in the case of the gold nanorods), or enhanced contrast in magnetic resonance images (in the case of magnetic nanocrystal cores). The optical and magnetic properties of the fluorescent silica-coated gold nanorods and magnetic nanocrystals are reported. PMID:19578476

  5. Multifunctional "smart" particles engineered from live immunocytes: toward capture and release of cancer cells.

    PubMed

    Huang, Chao; Yang, Gao; Ha, Qing; Meng, Jinxin; Wang, Shutao

    2015-01-14

    Multifunctional "smart" particles with magnetic, topographic, cell-targeting, and stimulus-responsive properties are obtained using a "live template" strategy. These particles exhibit improved efficiency in capture of target cancer cells by introducing synergistic topographic interactions, and enable the release of captured cells with high viability via reduction of disulfide bonds. Diverse multifunctional particles can be designed using the "live template" strategy.

  6. Multifunctional magnetic quantum dots for cancer theranostics.

    PubMed

    Singh, Surinder P

    2011-02-01

    The development of an innovative platform for cancer theranostics that will be capable of noninvasive imaging and treatment of cancerous tumors using biocompatible and multifunctional Fe3O4-ZnO core-shell magnetic quantum dots (M-QDs) is being explored. This multi-functional approach will facilitate deep tumor targeting using a combination of a specific cancer marker and an external magnetic field will simultaneously provide therapy that may evolve as a new paradigm in cancer theranostics.

  7. Magnetically Attached Multifunction Maintenance Rover

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Joffe, Benjamin

    2005-01-01

    A versatile mobile telerobot, denoted the magnetically attached multifunction maintenance rover (MAGMER), has been proposed for use in the inspection and maintenance of the surfaces of ships, tanks containing petrochemicals, and other large ferromagnetic structures. As its name suggests, this robot would utilize magnetic attraction to adhere to a structure. As it moved along the surface of the structure, the MAGMER would perform tasks that could include close-up visual inspection by use of video cameras, various sensors, and/or removal of paint by water-jet blasting, laser heating, or induction heating. The water-jet nozzles would be mounted coaxially within compressed-air-powered venturi nozzles that would collect the paint debris dislodged by the jets. The MAGMER would be deployed, powered, and controlled from a truck, to which it would be connected by hoses for water, compressed air, and collection of debris and by cables for electric power and communication (see Figure 1). The operation of the MAGMER on a typical large structure would necessitate the use of long cables and hoses, which can be heavy. To reduce the load of the hoses and cables on the MAGMER and thereby ensure its ability to adhere to vertical and overhanging surfaces, the hoses and cables would be paid out through telescopic booms that would be parts of a MAGMER support system. The MAGMER would move by use of four motorized, steerable wheels, each of which would be mounted in an assembly that would include permanent magnets and four pole pieces (see Figure 2). The wheels would protrude from between the pole pieces by only about 3 mm, so that the gap between the pole pieces and the ferromagnetic surface would be just large enough to permit motion along the surface but not so large as to reduce the magnetic attraction excessively. In addition to the wheel assemblies, the MAGMER would include magnetic adherence enhancement fixtures, which would comprise arrays of permanent magnets and pole pieces

  8. Magnetic particles

    NASA Technical Reports Server (NTRS)

    Chang, Manchium (Inventor); Colvin, Michael S. (Inventor)

    1989-01-01

    Magnetic polymer particles are formed by swelling porous, polymer particles and impregnating the particles with an aqueous solution of precursor magnetic metal salt such as an equimolar mixture of ferrous chloride and ferric chloride. On addition of a basic reagent such as dilute sodium hydroxide, the metal salts are converted to crystals of magnetite which are uniformly contained througout the pores of the polymer particle. The magnetite content can be increased and neutral buoyancy achieved by repetition of the impregnaton and neutralization steps to adjust the magnetite content to a desired level.

  9. Magnetic particles

    NASA Technical Reports Server (NTRS)

    Chang, Manchium (Inventor); Colvin, Michael S. (Inventor); Rembaum, Alan (Inventor); Richards, Gil F. (Inventor)

    1987-01-01

    Metal oxide containing polymers and particularly styrene, acrylic or protein polymers containing fine, magnetic iron oxide particles are formed by combining a NO.sub.2 -substituted polymer with an acid such as hydrochloric acid in the presence of metal, particularly iron particles. The iron is oxidized to fine, black Fe.sub.3 O.sub.4 particles which deposit selectively on the polymer particles. Nitrated polymers are formed by reacting functionally substituted, nitrated organic compounds such as trinitrobenzene sulfonate or dinitrofluoro benzene with a functionally coreactive polymer such as an amine modified acrylic polymer or a protein. Other transition metals such as cobalt can also be incorporated into polymers using this method.

  10. Multifunctional fluorescent magnetic nanoparticles for lung cancer stem cells research.

    PubMed

    Zhou, Xuan; Chen, Lisha; Wang, Anxin; Ma, Yufei; Zhang, Hailu; Zhu, Yimin

    2015-10-01

    In this paper, a multifunctional peptide-fluorescent-magnetic nanocomposites (Fe₃O₄@PEI@Cy5.5@PEG@HCBP-1 NPs) was synthesized via a layer-by-layer approach for potential application to cancer diagnoses. The multifunctional nanocomposites have great dispersibility and homogeneous particle sizes in aqueous solution. Meanwhile, it has perfect hemocompatibility and satisfying cytocompatibility in a relatively high concentration. Data from in vitro cytotoxicity assay indicated that the nanocomposites could recognize the lung cancer stem cells (CSCs) specifically and enrich the HCBP-1 positive CSCs from H460 tumor xenografts effectively. Additionally, the results of in vivo live fluorescent imaging and magnetic resonance imaging (MRI) showed that the nanocomposites could identify lung CSCs in tumor xenografts. These results suggested that the nanocomposites could be used as a potential cancer diagnostic agent through modifying diverse fluorescence dyes and targeting ligands on its surface.

  11. Multifunctional Magnetic Nanowires for Biomagnetic Interfacing Concepts

    DTIC Science & Technology

    2006-07-14

    89) Prescribed by ANSI Std. Z39-18 298-102 2 1. Statement of Objectives. The integration of biology and the physical sciences at the nanoscale...Magnetic Cell Separations One of the most important applications of magnetic particles in biology is magnetic separation. In this process magnetic particles...gene therapy. Although viral vectors such as adenovirus, lentil virus, influenza virus, and adeno-associated virus are efficient in transfecting cells

  12. Multifunctional clickable and protein-repellent magnetic silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Estupiñán, Diego; Bannwarth, Markus B.; Mylon, Steven E.; Landfester, Katharina; Muñoz-Espí, Rafael; Crespy, Daniel

    2016-01-01

    Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing.Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the

  13. Novel Fabrication Strategies for Multifunctional Hydrogel Particles

    NASA Astrophysics Data System (ADS)

    Lewis, Chrisitna L.

    2011-12-01

    Three fabrication strategies for poly (ethylene glycol) (PEG) -based microparticles and their utility for exploiting the advantages of viral nanotemplates and DNA oligonucleotides are presented in this dissertation: 1. Nucleic Acid Hybridization Assembly of Viral Nanotemplates on Microparticles A flow lithography technique known as stop-flow lithography (SFL) was used to fabricate microparticles with discrete regions for sample identification and patterned assembly of functionalized tobacco mosaic virus (TMV) nanotemplates. TMV nanotemplates were programmed with linker DNA, complementary to the probe DNA in the assembly region of the microparticles. The hybridization-based assembly yielded specific, programmable, and spatially selective assembly of TMV nanotemplates on encoded hydrogel microparticles and demonstrates a novel high throughput route to create multiplexed and multifunctional viral-synthetic hybrid microentities. 2. Microparticles Containing Functionalized Viral Nanotemplates Functionalized viral assemblies were uniformly distributed throughout hydrogel microparticles by direct embedding with a microfluidic flow-focusing device and UV photopolymerization. Fluorescence and confocal microscopy images showed uniform distribution of the TMV nanotemplates. Microparticles containing TMV-templated palladium (Pd) nanoparticles exhibited catalytic activity for the dichromate reduction reaction. The results reveal that microparticles provide a stable and simple-to-handle carrier for TMV nanotemplates and address a critical challenge of 3D assembly of functionalized viral hybrid nanomaterials. 3. DNA-Conjugated Microparticles via Replica Molding (RM) DNA-conjugated microparticles were fabricated using a soft-lithographic batch processing-based technique, known as RM. A humidity controlled environment was found to minimize the negative effects of rapid evaporation and ensure uniformity across batch fabricated microparticles. It was also found that PEG

  14. Multifunctional clickable and protein-repellent magnetic silica nanoparticles.

    PubMed

    Estupiñán, Diego; Bannwarth, Markus B; Mylon, Steven E; Landfester, Katharina; Muñoz-Espí, Rafael; Crespy, Daniel

    2016-02-07

    Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing.

  15. Multi-functional particle assemblies in polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Jiao, Yang

    Self-assembly into ordered and equilibrium configurations underlie the microphase separation of block copolymers, protein folding and anisotropic aggregation of functionalized nanoparticles. In this project, we explored the assembly of polymer-grafted magnetic nanoparticles in solution and bulk states to combine various properties, such as ionic conductivity, mechanical reinforcement and responsiveness to external flows, within the same sample. The multi-functionality of iron oxide nanoparticles in polymer media is achieved using bottom-up approaches. Starting from the particle core synthesis, many layers of functionalities are added on magnetite (Fe3O4) nanoparticles by i) grafting polystyrene chains at different densities, lengths and elasticity; by ii) functionalizing particles with ionomers; and by iii) attaching charged diblock copolymers onto particles. In these three complex systems, particle nanostructures are investigated to explain the role of interactions between particle-particle, polymer-particle and polymer-polymer. We found that polystyrene-grafted Fe3O4 nanoparticles can form strings, spherical clusters and dispersed structures in polymer matrices by tuning the polymer graft density and grafted chain length. This structural transition has been explained through chain interactions and short-range dipolar interactions. We showed that chain conformation (radius of gyration) interestingly is not influenced within different dispersion states. Small-angle x-ray and neutron scattering results reveal that matrix chains do not govern the formation of strings, but have a significant impact on the size and internal structure of aggregated particles. Our findings showed that spherical aggregates of nanoparticles with low polymer graft densities are similar to interpenetrating networks in which free matrix chains bridge the fractals of particles and control the cluster density. Further, the mechanical properties of these different composite structures under

  16. Multifunctional encoded particles for high-throughput biomolecule analysis.

    PubMed

    Pregibon, Daniel C; Toner, Mehmet; Doyle, Patrick S

    2007-03-09

    High-throughput screening for genetic analysis, combinatorial chemistry, and clinical diagnostics benefits from multiplexing, which allows for the simultaneous assay of several analytes but necessitates an encoding scheme for molecular identification. Current approaches for multiplexed analysis involve complicated or expensive processes for encoding, functionalizing, or decoding active substrates (particles or surfaces) and often yield a very limited number of analyte-specific codes. We present a method based on continuous-flow lithography that combines particle synthesis and encoding and probe incorporation into a single process to generate multifunctional particles bearing over a million unique codes. By using such particles, we demonstrate a multiplexed, single-fluorescence detection of DNA oligomers with encoded particle libraries that can be scanned rapidly in a flow-through microfluidic channel. Furthermore, we demonstrate with high specificity the same multiplexed detection using individual multiprobe particles.

  17. Microfluidic generation of multifunctional quantum dot barcode particles.

    PubMed

    Zhao, Yuanjin; Shum, Ho Cheung; Chen, Haosheng; Adams, Laura L A; Gu, Zhongze; Weitz, David A

    2011-06-15

    We develop a new strategy to prepare quantum dot (QD) barcode particles by polymerizing double-emulsion droplets prepared in capillary microfluidic devices. The resultant barcode particles are composed of stable QD-tagged core particles surrounded by hydrogel shells. These particles exhibit uniform spectral characteristics and excellent coding capability, as confirmed by photoluminescence analyses. By using double-emulsion droplets with two inner droplets of distinct phases as templates, we have also fabricated anisotropic magnetic barcode particles with two separate cores or with a Janus core. These particles enable optical encoding and magnetic separation, thus making them excellent functional barcode particles in biomedical applications.

  18. Fabrication of Novel Magnetic Nanoparticles of Multifunctionality for Water Decontamination.

    PubMed

    Zhang, Xiaolin; Qian, Jieshu; Pan, Bingcai

    2016-01-19

    Efficient and powerful water purifiers are in increasing need because we are facing a more and more serious problem of water pollution. Here, we demonstrate the design of versatile magnetic nanoadsorbents (M-QAC) that exhibit excellent disinfection and adsorption performances at the same time. The M-QAC is constructed by a Fe3O4 core surrounded by a polyethylenimine-derived corona. When dispersed in water, the M-QAC particles are able to interact simultaneously with multiple contaminants, including pathogens and heavy metallic cations and anions, in minutes. Subsequently, the M-QACs along with those contaminants can be easily removed and recollected by using a magnet. Meanwhile, the mechanisms of disinfection are investigated by using TEM and SEM, and the adsorption mechanisms are analyzed by XPS. In a practical application, M-QACs are applied to polluted river water 8000-fold greater in mass, producing clean water with the concentrations of all major pollutants below the drinking water standard of China. The adsorption ability of M-QAC could be regenerated for continuous use in a facile manner. With more virtues, such as low-cost fabrication and easy scaling up, the M-QAC have been shown to be a very promising multifunctional water purifier with rational design and to have great potential for real water purification applications.

  19. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications.

    PubMed

    Gao, Jinhao; Gu, Hongwei; Xu, Bing

    2009-08-18

    The combination of nanotechnology and molecular biology has developed into an emerging research area: nanobiotechnology. Magnetic nanoparticles are well-established nanomaterials that offer controlled size, ability to be manipulated externally, and enhancement of contrast in magnetic resonance imaging (MRI). As a result, these nanoparticles could have many applications in biology and medicine, including protein purification, drug delivery, and medical imaging. Because of the potential benefits of multimodal functionality in biomedical applications, researchers would like to design and fabricate multifunctional magnetic nanoparticles. Currently, there are two strategies to fabricate magnetic nanoparticle-based multifunctional nanostructures. The first, molecular functionalization, involves attaching antibodies, proteins, and dyes to the magnetic nanoparticles. The other method integrates the magnetic nanoparticles with other functional nanocomponents, such as quantum dots (QDs) or metallic nanoparticles. Because they can exhibit several features synergistically and deliver more than one function simultaneously, such multifunctional magnetic nanoparticles could have unique advantages in biomedical applications. In this Account, we review examples of the design and biomedical application of multifunctional magnetic nanoparticles. After their conjugation with proper ligands, antibodies, or proteins, the biofunctional magnetic nanoparticles exhibit highly selective binding. These results indicate that such nanoparticles could be applied to biological medical problems such as protein purification, bacterial detection, and toxin decorporation. The hybrid nanostructures, which combine magnetic nanoparticles with other nanocomponents, exhibit paramagnetism alongside features such as fluorescence or enhanced optical contrast. Such structures could provide a platform for enhanced medical imaging and controlled drug delivery. We expect that the combination of unique structural

  20. Multifunctional Magnetic-fluorescent Nanocomposites for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Corr, Serena A.; Rakovich, Yury P.; Gun'ko, Yurii K.

    2008-03-01

    Nanotechnology is a fast-growing area, involving the fabrication and use of nano-sized materials and devices. Various nanocomposite materials play a number of important roles in modern science and technology. Magnetic and fluorescent inorganic nanoparticles are of particular importance due to their broad range of potential applications. It is expected that the combination of magnetic and fluorescent properties in one nanocomposite would enable the engineering of unique multifunctional nanoscale devices, which could be manipulated using external magnetic fields. The aim of this review is to present an overview of bimodal “two-in-one” magnetic-fluorescent nanocomposite materials which combine both magnetic and fluorescent properties in one entity, in particular those with potential applications in biotechnology and nanomedicine. There is a great necessity for the development of these multifunctional nanocomposites, but there are some difficulties and challenges to overcome in their fabrication such as quenching of the fluorescent entity by the magnetic core. Fluorescent-magnetic nanocomposites include a variety of materials including silica-based, dye-functionalised magnetic nanoparticles and quantum dots-magnetic nanoparticle composites. The classification and main synthesis strategies, along with approaches for the fabrication of fluorescent-magnetic nanocomposites, are considered. The current and potential biomedical uses, including biological imaging, cell tracking, magnetic bioseparation, nanomedicine and bio- and chemo-sensoring, of magnetic-fluorescent nanocomposites are also discussed.

  1. Multifunctional fluorescent and magnetic nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Selvan, Subramanian T.

    2012-03-01

    Hybrid multifunctional nanoparticles (NPs) are emerging as useful probes for magnetic based targeting, delivery, cell separation, magnetic resonance imaging (MRI), and fluorescence-based bio-labeling applications. Assessing from the literature, the development of multifunctional NPs for multimodality imaging is still in its infancy state. This report focuses on our recent work on quantum dots (QDs), magnetic NPs (MNPs) and bi-functional NPs (composed of either QDs or rare-earth NPs, and magnetic NPs - iron oxide or gadolinium oxide) for multimodality imaging based biomedical applications. The combination of MRI and fluorescence would ally each other in improving the sensitivity and resolution, resulting in improved and early diagnosis of the disease. The challenges in this area are discussed.

  2. Multifunctional biocompatible coatings on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Bychkova, A. V.; Sorokina, O. N.; Rosenfeld, M. A.; Kovarski, A. L.

    2012-11-01

    Methods for coating formation on magnetic nanoparticles used in biology and medicine are considered. Key requirements to the coatings are formulated, namely, biocompatibility, stability, the possibility of attachment of pharmaceutical agents, and the absence of toxicity. The behaviour of nanoparticle/coating nanosystems in the body including penetration through cellular membranes and the excretion rates and routes is analyzed. Parameters characterizing the magnetic properties of these systems and their magnetic controllability are described. Factors limiting the applications of magnetically controlled nanosystems for targeted drug delivery are discussed. The bibliography includes 405 references.

  3. Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Hung; Juang, Ruey-Shin

    2011-10-01

    Nanotechnology offers tremendous potential for future medical diagnosis and therapy. Various types of nanoparticles have been extensively studied for numerous biochemical and biomedical applications. Magnetic nanoparticles are well-established nanomaterials that offer controlled size, ability to be manipulated by an external magnetic field, and enhancement of contrast in magnetic resonance imaging. As a result, these nanoparticles could have many applications including bacterial detection, protein purification, enzyme immobilization, contamination decorporation, drug delivery, hyperthermia, etc. All these biochemical and biomedical applications require that these nanoparticles should satisfy some prerequisites including high magnetization, good stability, biocompatibility, and biodegradability. Because of the potential benefits of multimodal functionality in biomedical applications, in this account highlights some general strategies to generate magnetic nanoparticle-based multifunctional nanostructures. After these magnetic nanoparticles are conjugated with proper ligands (e.g., nitrilotriacetate), polymers (e.g., polyacrylic acid, chitosan, temperature- and pH-sensitive polymers), antibodies, enzymes, and inorganic metals (e.g., gold), such biofunctional magnetic nanoparticles exhibit many advantages in biomedical applications. In addition, the multifunctional magnetic nanoparticles have been widely applied in biochemical fields including enzyme immobilization and protein purification.

  4. Multiple emulsions as soft templates for the synthesis of multifunctional silicone porous particles.

    PubMed

    Vilanova, Neus; Kolen'ko, Yury V; Solans, Conxita; Rodríguez-Abreu, Carlos

    2015-01-01

    Multiple emulsion templating is a versatile strategy for the synthesis of porous particles. The present work addresses the synthesis of multifunctional poly(dimethylsiloxane) porous particles using multiple water-in-oil-in-water emulsions as soft templates with an oil phase constituted by a crosslinkable poly(dimethylsiloxane) (PDMS) oil. Herewith, the impact of the viscosity of PDMS oil (i.e., molecular weight) on the properties of both the emulsion templates and the resulting particles was evaluated. The viscosity of PDMS oil has a strong effect on the size and polydispersity of the emulsion templates as well as on the mechanical properties of the derived particles. The elastic modulus can be tuned by mixing PDMS oils of different viscosities to form bimodal crosslinked networks. Iron oxide nanoparticles can be readily incorporated into the emulsion templates to provide additional functionalities to the silicone particles, such as magnetic separation or magnetic hyperthermia. The synthesized composite magnetic particles were found to be useful as recoverable absorbent materials (e.g., for oil spills) by taking advantage of their high buoyancy and high hydrophobicity.

  5. A facile method to synthesize magnetic polymer nanospheres with multifunctional groups

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojuan; Jiang, Wei; Ye, Yuanfeng; Feng, Zhiqiang; Sun, Zhendong; Li, Fengsheng; Hao, Lingyun; Chu, Jianjun

    2011-06-01

    Magnetic poly(styrene methyl methacrylate)/Fe 3O 4 nanospheres with ester groups were prepared by a modified one-step mini-emulsion polymerization in the presence of Fe 3O 4 ferrofluids. The effects of monomer dose, surfactant content, ferrofluid concentration and initiator content on the particle characteristics such as the size, morphology and magnetic properties were investigated by Fourier-transform infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis and vibrating sample magnetometer. The results indicated that magnetic nanospheres were superparamagnetic with high saturation magnetization of 51.0 emu/g and corresponding magnetite content of 61.5 wt%. Subsequently, magnetic nanospheres with carboxyl and amino groups were also obtained by hydrolysis and ammonolysis reaction. These magnetic nanospheres with multifunctional groups have biomedical applications.

  6. Multifunctional magnetic rotator for micro and nanorheological studies

    NASA Astrophysics Data System (ADS)

    Tokarev, Alexander; Aprelev, Alexey; Zakharov, Mikhail N.; Korneva, Guzeliya; Gogotsi, Yury; Kornev, Konstantin G.

    2012-06-01

    We report on the development of a multifunctional magnetic rotator that has been built and used during the last five years by two groups from Clemson and Drexel Universities studying the rheological properties of microdroplets. This magnetic rotator allows one to generate rotating magnetic fields in a broad frequency band, from hertz to tens kilohertz. We illustrate its flexibility and robustness by conducting the rheological studies of simple and polymeric fluids at the nano and microscale. First we reproduce a temperature-dependent viscosity of a synthetic oil used as a viscosity standard. Magnetic rotational spectroscopy with suspended nickel nanorods was used in these studies. As a second example, we converted the magnetic rotator into a pump with precise controlled flow modulation. Using multiwalled carbon nanotubes, we were able to estimate the shear modulus of sickle hemoglobin polymer. We believe that this multifunctional magnetic system will be useful not only for micro and nanorheological studies, but it will find much broader applications requiring remote controlled manipulation of micro and nanoobjects.

  7. Multifunctional magnetic rotator for micro and nanorheological studies

    PubMed Central

    Tokarev, Alexander; Aprelev, Alexey; Zakharov, Mikhail N.; Korneva, Guzeliya; Gogotsi, Yury; Kornev, Konstantin G.

    2012-01-01

    We report on the development of a multifunctional magnetic rotator that has been built and used during the last five years by two groups from Clemson and Drexel Universities studying the rheological properties of microdroplets. This magnetic rotator allows one to generate rotating magnetic fields in a broad frequency band, from hertz to tens kilohertz. We illustrate its flexibility and robustness by conducting the rheological studies of simple and polymeric fluids at the nano and microscale. First we reproduce a temperature-dependent viscosity of a synthetic oil used as a viscosity standard. Magnetic rotational spectroscopy with suspended nickel nanorods was used in these studies. As a second example, we converted the magnetic rotator into a pump with precise controlled flow modulation. Using multiwalled carbon nanotubes, we were able to estimate the shear modulus of sickle hemoglobin polymer. We believe that this multifunctional magnetic system will be useful not only for micro and nanorheological studies, but it will find much broader applications requiring remote controlled manipulation of micro and nanoobjects. PMID:22755665

  8. Multifunctional magnetic-optical nanoparticle probes for simultaneous detection, separation, and thermal ablation of multiple pathogens.

    PubMed

    Wang, Chungang; Irudayaraj, Joseph

    2010-01-01

    Multifunctional nanoparticles possessing magnetization and near-infrared (NIR) absorption have warranted interest due to their significant applications in magnetic resonance imaging, diagnosis, bioseparation, target delivery, and NIR photothermal ablation. Herein, the site-selective assembly of magnetic nanoparticles onto the ends or ends and sides of gold nanorods with different aspect ratios (ARs) to create multifunctional nanorods decorated with varying numbers of magnetic particles is described for the first time. The resulting hybrid nanoparticles are designated as Fe(3)O(4)-Au(rod)-Fe(3)O(4) nanodumbbells and Fe(3)O(4)-Au(rod) necklacelike constructs with tunable optical and magnetic properties, respectively. These hybrid nanomaterials can be used for multiplex detection and separation because of their tunable magnetic and plasmonic functionality. More specifically, Fe(3)O(4)-Au(rod) necklacelike probes of different ARs are utilized for simultaneous optical detection based on their plasmon properties, magnetic separation, and photokilling of multiple pathogens from a single sample at one time. The combined functionalities of the synthesized probes will open up many exciting opportunities in dual imaging for targeted delivery and photothermal therapy.

  9. Preparation and characterization of multifunctional magnetic mesoporous calcium silicate materials

    PubMed Central

    Zhang, Jianhua; Zhu, Yufang; Li, Jie; Zhu, Min; Tao, Cuilian; Hanagata, Nobutaka

    2013-01-01

    We have prepared multifunctional magnetic mesoporous Fe–CaSiO3 materials using triblock copolymer (P123) as a structure-directing agent. The effects of Fe substitution on the mesoporous structure, in vitro bioactivity, magnetic heating ability and drug delivery property of mesoporous CaSiO3 materials were investigated. Mesoporous Fe–CaSiO3 materials had similar mesoporous channels (5–6 nm) with different Fe substitution. When 5 and 10% Fe were substituted for Ca in mesoporous CaSiO3 materials, mesoporous Fe–CaSiO3 materials still showed good apatite-formation ability and had no cytotoxic effect on osteoblast-like MC3T3-E1 cells evaluated by the elution cell culture assay. On the other hand, mesoporous Fe–CaSiO3 materials could generate heat to raise the temperature of the surrounding environment in an alternating magnetic field due to their superparamagnetic property. When we use gentamicin (GS) as a model drug, mesoporous Fe–CaSiO3 materials release GS in a sustained manner. Therefore, magnetic mesoporous Fe–CaSiO3 materials would be a promising multifunctional platform with bone regeneration, local drug delivery and magnetic hyperthermia. PMID:27877616

  10. Preparation and characterization of multifunctional magnetic mesoporous calcium silicate materials.

    PubMed

    Zhang, Jianhua; Zhu, Yufang; Li, Jie; Zhu, Min; Tao, Cuilian; Hanagata, Nobutaka

    2013-10-01

    We have prepared multifunctional magnetic mesoporous Fe-CaSiO3 materials using triblock copolymer (P123) as a structure-directing agent. The effects of Fe substitution on the mesoporous structure, in vitro bioactivity, magnetic heating ability and drug delivery property of mesoporous CaSiO3 materials were investigated. Mesoporous Fe-CaSiO3 materials had similar mesoporous channels (5-6 nm) with different Fe substitution. When 5 and 10% Fe were substituted for Ca in mesoporous CaSiO3 materials, mesoporous Fe-CaSiO3 materials still showed good apatite-formation ability and had no cytotoxic effect on osteoblast-like MC3T3-E1 cells evaluated by the elution cell culture assay. On the other hand, mesoporous Fe-CaSiO3 materials could generate heat to raise the temperature of the surrounding environment in an alternating magnetic field due to their superparamagnetic property. When we use gentamicin (GS) as a model drug, mesoporous Fe-CaSiO3 materials release GS in a sustained manner. Therefore, magnetic mesoporous Fe-CaSiO3 materials would be a promising multifunctional platform with bone regeneration, local drug delivery and magnetic hyperthermia.

  11. Preparation and characterization of multifunctional magnetic mesoporous calcium silicate materials

    NASA Astrophysics Data System (ADS)

    Zhang, Jianhua; Zhu, Yufang; Li, Jie; Zhu, Min; Tao, Cuilian; Hanagata, Nobutaka

    2013-10-01

    We have prepared multifunctional magnetic mesoporous Fe-CaSiO3 materials using triblock copolymer (P123) as a structure-directing agent. The effects of Fe substitution on the mesoporous structure, in vitro bioactivity, magnetic heating ability and drug delivery property of mesoporous CaSiO3 materials were investigated. Mesoporous Fe-CaSiO3 materials had similar mesoporous channels (5-6 nm) with different Fe substitution. When 5 and 10% Fe were substituted for Ca in mesoporous CaSiO3 materials, mesoporous Fe-CaSiO3 materials still showed good apatite-formation ability and had no cytotoxic effect on osteoblast-like MC3T3-E1 cells evaluated by the elution cell culture assay. On the other hand, mesoporous Fe-CaSiO3 materials could generate heat to raise the temperature of the surrounding environment in an alternating magnetic field due to their superparamagnetic property. When we use gentamicin (GS) as a model drug, mesoporous Fe-CaSiO3 materials release GS in a sustained manner. Therefore, magnetic mesoporous Fe-CaSiO3 materials would be a promising multifunctional platform with bone regeneration, local drug delivery and magnetic hyperthermia.

  12. Magnetic flocculation of paramagnetic particles

    SciTech Connect

    Tsouris, C.; Scott, T.C.

    1994-09-01

    An experimental apparatus has been assembled for the flocculation study of paramagnetic particles under the influence of a strong magnetic field. A magnetic field of strength up to 6 T is generated by a cryogenic magnet operating near liquid helium temperatures. Experimental information is obtained from fluctuation and intensity measurements of light passing through a particle suspension located in a uniform magnetic field. Particle flocculation is described by a Brownian flocculation model in which hydrodynamic, van der Waals, double-layer, and magnetic forces are incorporated for the estimation of the particle flocculation rate. A population-balance model is employed in conjunction with the flocculation model to predict the evolution of the particle size and composition or magnetic susceptibility with time. The effects of magnetic-field strength, magnetic susceptibility of the particles, particle size, and zeta potential are investigated. Results show that particle size and magnetic susceptibility each play an important role in the selective flocculation of particles of different properties.

  13. Pyramids: a platform for designing multifunctional plasmonic particles.

    PubMed

    Lee, Jeunghoon; Hasan, Warefta; Stender, Christopher L; Odom, Teri W

    2008-12-01

    This Account explores nanofabricated pyramids, a new class of nanoparticles with tunable optical properties at visible and near-infrared wavelengths. This system is ideally suited for designing multifunctional plasmonic materials for use in diagnostics, imaging, sensing, and therapeutics. The nanofabrication scheme that we developed (called PEEL) for these asymmetric metal particles is extremely versatile and offers several advantages over synthetic methodologies. The PEEL approach yields pyramids with variable sizes, thicknesses, and multimetal compositions, as well as blunt or ultrasharp tips or no tips. In addition, we have prepared pyramids with site-specific chemical and biological functionality on different portions of the pyramids. This is an important design feature for biological applications, as suggested by the generation of amphiphilic gold pyramids functionalized with alkanethiols on the hydrophobic portions and DNA on the hydrophilic portions. The optical characteristics of these pyramids depend on particle orientation, wavevector direction, and polarization direction and can be tuned. Using the multipolar surface plasmon resonances of large (>250 nm) pyramids, imaging and spectral identification of pyramid orientation in condensed media was possible. We were also able to direct pyramids to assemble into one- and two-dimensional arrays with interesting optical properties. Furthermore, modification of the PEEL fabrication scheme allowed the production of multimaterial pyramidal structures with complex attributes, highlighting the power of this platform for exacting nanometer-scale control over particle structure and composition.

  14. A multifunctional magnetic material under pressure.

    PubMed

    Rodríguez-Velamazán, J Alberto; Fabelo, Oscar; Beavers, Christine M; Natividad, Eva; Evangelisti, Marco; Roubeau, Olivier

    2014-06-23

    Fe(II)(Metz)6](Fe(III)Br4)2 (Metz = 1-methyltetrazole) is one of the rare systems combining spin-crossover and long-range magnetic ordering. A joint neutron and X-ray diffraction and magnetometry study allows determining its collinear antiferromagnetic structure, and shows an increase of the Néel temperature from 2.4 K at ambient pressure, to 3.9 K at 0.95 GPa. Applied pressure also enables a full high-spin to low-spin switch at ambient temperature.

  15. Narrowband magnetic particle imaging.

    PubMed

    Goodwill, Patrick W; Scott, Greig C; Stang, Pascal P; Conolly, Steven M

    2009-08-01

    The magnetic particle imaging (MPI) method directly images the magnetization of super-paramagnetic iron oxide (SPIO) nanoparticles, which are contrast agents commonly used in magnetic resonance imaging (MRI). MPI, as originally envisioned, requires a high-bandwidth receiver coil and preamplifier, which are difficult to optimally noise match. This paper introduces Narrowband MPI, which dramatically reduces bandwidth requirements and increases the signal-to-noise ratio for a fixed specific absorption rate. We employ a two-tone excitation (called intermodulation) that can be tailored for a high-Q, narrowband receiver coil. We then demonstrate a new MPI instrument capable of full 3-D tomographic imaging of SPIO particles by imaging acrylic and tissue phantoms.

  16. Multifunctional Upconversion-Magnetic Hybrid Nanostructured Materials: Synthesis and Bioapplications

    PubMed Central

    Li, Xiaomin; Zhao, Dongyuan; Zhang, Fan

    2013-01-01

    The combination of nanotechnology and biology has developed into an emerging research area: nano-biotechnology. Upconversion nanoparticles (UCNPs) have attracted a great deal of attention in bioapplications due to their high chemical stability, low toxicity, and high signal-to-noise ratio. Magnetic nanoparticles (MNPs) are also well-established nanomaterials that offer controlled size, ability to be manipulated externally, and enhancement of contrast in magnetic resonance imaging (MRI). As a result, these nanoparticles could have many applications in biology and medicine, including protein purification, drug delivery, and medical imaging. Because of the potential benefits of multimodal functionality in biomedical applications, researchers would like to design and fabricate multifunctional upconversion-magnetic hybrid nanostructured materials. The hybrid nanostructures, which combine UCNPs with MNPs, exhibit upconversion fluorescence alongside superparamagnetism property. Such structures could provide a platform for enhanced bioimaging and controlled drug delivery. We expect that the combination of unique structural characteristics and integrated functions of multifunctional upconversion-magnetic nanoparticles will attract increasing research interest and could lead to new opportunities in nano-bioapplications. PMID:23650477

  17. Magnetic Particle Process Improvement

    SciTech Connect

    Hubert, R.R.

    2002-08-13

    The magnetic particle testing process is performed to find linear, surface and near surface discontinuities in ferromagnetic test materials. A wet fluorescent method is used at Honeywell Federal Manufacturing & Technologies (FM&T). This method employs a liquid carrier mixed with iron oxide particles in suspension, and the particles used in the method are coated with a fluorescent dye to make them visible under a black light. The process in its current state employs the use of a tank of liquid solution of a mineral oil carrier with iron oxide particles in suspension. The change to the use of an aerosol delivery system with the same material reduces the amount of waste involved in the process while preserving the sensitivity of the testing, shortens the flowtime for the test, and saves labor and material costs.

  18. Multifunctional graphene sensors for magnetic and hydrogen detection.

    PubMed

    Huang, Le; Zhang, Zhiyong; Li, Zishen; Chen, Bingyan; Ma, Xiaomeng; Dong, Lijun; Peng, Lian-Mao

    2015-05-13

    Multifunctional graphene magnetic/hydrogen sensors are constructed for the first time through a simple microfabrication process. The as-fabricated graphene sensor may act as excellent Hall magnetic detector, demonstrating small linearity error within 2% and high magnetic resolution up to 7 mG/Hz(0.5). Meanwhile the same graphene sensor is also demonstrated as high-performance hydrogen sensor with high gas response, excellent linearity, and great repeatability and selectivity. In particular, the graphene sensor exhibits high hydrogen response up to 32.5% when exposed to 1000 ppm hydrogen, outperforming most graphene-based hydrogen sensors. In addition the hydrogen-sensing mechanism of Pd-decorated graphene is systematically explored through investigating its transfer characteristics during gas detection. Our work demonstrates that graphene is a terrific material for multifunctional sensing, which may in principle reduce the complexity of manufacturing process, lower the number of sensors required in the sensing systems, and potentially derive new and more powerful functions.

  19. Encapsulation of particle ensembles in graphene nanosacks as a new route to multifunctional materials.

    PubMed

    Chen, Yantao; Guo, Fei; Qiu, Yang; Hu, Hiroe; Kulaots, Indrek; Walsh, Edward; Hurt, Robert H

    2013-05-28

    Hybrid nanoparticles with multiple functions are of great interest in biomedical diagnostics, therapies, and theranostics but typically require complex multistep chemical synthesis. Here we demonstrate a general physical method to create multifunctional hybrid materials through aerosol-phase graphene encapsulation of ensembles of simple unifunctional nanoparticles. We first develop a general theory of the aerosol encapsulation process based on colloidal interactions within drying microdroplets. We demonstrate that a wide range of cargo particle types can be encapsulated, and that high pH is a favorable operating regime that promotes colloidal stability and limits nanoparticle dissolution. The cargo-filled graphene nanosacks are then shown to be open structures that rapidly release soluble salt cargoes when reintroduced into water, but can be partially sealed by addition of a polymeric filler to achieve slow release profiles of interest in controlled release or theranostic applications. Finally, we demonstrate an example of multifunctional material by fabricating graphene/Au/Fe3O4 hybrids that are magnetically responsive and show excellent contrast enhancement as multimodal bioimaging probes in both magnetic resonance imaging and X-ray computed tomography in full-scale clinical instruments.

  20. Magnetic and optical properties of multifunctional core-shell radioluminescence nanoparticles

    PubMed Central

    Chen, Hongyu; Colvin, Daniel C.; Qi, Bin; Moore, Thomas; He, Jian; Mefford, O. Thompson; Alexis, Frank; Gore, John C.; Anker, Jeffrey N.

    2014-01-01

    When X-rays irradiate radioluminescence nanoparticles, they generate visible and near infrared light that can penetrate through centimeters of tissue. X-ray luminescence tomography (XLT) maps the location of these radioluminescent contrast agents at high resolution by scanning a narrow X-ray beam through the tissue sample and collecting the luminescence at every position. Adding magnetic functionality to these radioluminescent particles would enable them to be guided, oriented, and heated using external magnetic fields, while their location and spectrum could be imaged with XLT and complementary magnetic resonance imaging. In this work, multifunctional monodispersed magnetic radioluminescent nanoparticles were developed as potential drug delivery carriers and radioluminescence imaging agents. The particles consisted of a spindle-shaped magnetic γ-Fe2O3 core and a radioluminescent europium-doped gadolinium oxide shell. Particles with solid iron oxide cores displayed saturation magnetizations consistent with their ~13% core volume, however, the iron oxide quenched their luminescence. In order to increase the luminescence, we partially etched the iron oxide core in oxalic acid while preserving the radioluminescent shell. The core size was controlled by the etching time which in turn affected the particles’ luminescence and magnetic properties. Particles with intermediate core sizes displayed both strong magnetophoresis and luminescence properties. They also served as MRI contrast agents with relaxivities of up to 58 mM−1s−1 (r2) and 120 mM−1s−1 (r2*). These particles offer promising multimodal MRI/fluorescence/X-ray luminescence contrast agents. Our core-shell synthesis technique offers a flexible method to control particle size, shape, and composition for a wide range of biological applications of magnetic/luminescent nanoparticles. PMID:24520183

  1. Multifunctional superparamagnetic nanoshells: combining two-photon luminescence imaging, surface-enhanced Raman scattering and magnetic separation.

    PubMed

    Jin, Xiulong; Li, Haiyan; Wang, Shanshan; Kong, Ni; Xu, Hong; Fu, Qihua; Gu, Hongchen; Ye, Jian

    2014-11-06

    With the increasing need for multi-purpose analysis in the biomedical field, traditional single diagnosis methods cannot meet the requirements. Therefore new multifunctional technologies and materials for the integration of sample collection, sensing and imaging are in great demand. Core-shell nanoparticles offer a unique platform to combine multifunctions in a single particle. In this work, we have constructed a novel type of core-shell superparamagnetic nanoshell (Fe₃O₄@SiO₂@Au), composed of a Fe₃O₄ cluster core, a thin Au shell and a SiO₂ layer in between. The obtained multifunctional nanoparticles combine the magnetic properties and plasmonic optical properties effectively, which were well investigated by a number of experimental characterization methods and theoretical simulations. We have demonstrated that Fe₃O₄@SiO₂@Au nanoparticles can be utilized for two-photon luminescence (TPL) imaging, near-infrared surface-enhanced Raman scattering (NIR SERS) and cell collection by magnetic separation. The TPL intensity could be further greatly enhanced through the plasmon coupling effect in the self-assembled nanoparticle chains, which were triggered by an external magnetic field. In addition, Fe₃O₄@SiO₂@Au nanoparticles may have great potential applications such as enhanced magnetic resonance imaging (MRI) and photo-thermotherapy. Successful combination of multifunctions including magnetic response, biosensing and bioimaging in single nanoparticles allows further manipulation, real-time tracking, and intracellular molecule analysis of live cells at a single-cell level.

  2. Optimized Photodynamic Therapy with Multifunctional Cobalt Magnetic Nanoparticles

    PubMed Central

    Choi, Kyong-Hoon; Nam, Ki Chang; Kim, Un-Ho; Cho, Guangsup; Jung, Jin-Seung; Park, Bong Joo

    2017-01-01

    Photodynamic therapy (PDT) has been adopted as a minimally invasive approach for the localized treatment of superficial tumors, representing an improvement in the care of cancer patients. To improve the efficacy of PDT, it is important to first select an optimized nanocarrier and determine the influence of light parameters on the photosensitizing agent. In particular, much more knowledge concerning the importance of fluence and exposure time is required to gain a better understanding of the photodynamic efficacy. In the present study, we synthesized novel folic acid-(FA) and hematoporphyrin (HP)-conjugated multifunctional magnetic nanoparticles (CoFe2O4-HPs-FAs), which were characterized as effective anticancer reagents for PDT, and evaluated the influence of incubation time and light exposure time on the photodynamic anticancer activities of CoFe2O4-HPs-FAs in prostate cancer cells (PC-3 cells). The results indicated that the same fluence at different exposure times resulted in changes in the anticancer activities on PC-3 cells as well as in reactive oxygen species formation. In addition, an increase of the fluence showed an improvement for cell photo-inactivation. Therefore, we have established optimized conditions for new multifunctional magnetic nanoparticles with direct application for improving PDT for cancer patients. PMID:28604596

  3. Multifunctional nanocrystals

    DOEpatents

    Klimov, Victor I.; Hollingsworth, Jennifer A.; Crooker, Scott A.; Kim, Hyungrak

    2010-06-22

    Multifunctional nanocomposites are provided including a core of either a magnetic material or an inorganic semiconductor, and, a shell of either a magnetic material or an inorganic semiconductor, wherein the core and the shell are of differing materials, such multifunctional nanocomposites having multifunctional properties including magnetic properties from the magnetic material and optical properties from the inorganic semiconductor material. Various applications of such multifunctional nanocomposites are also provided.

  4. Multifunctional nanocrystals

    DOEpatents

    Klimov, Victor I.; Hollingsworth, Jennifer A.; Crooker, Scott A.; Kim, Hyungrak

    2007-08-28

    Multifunctional nanocomposites are provided including a core of either a magnetic material or an inorganic semiconductor, and, a shell of either a magnetic material or an inorganic semiconductor, wherein the core and the shell are of differing materials, such multifunctional nanocomposites having multifunctional properties including magnetic properties from the magnetic material and optical properties from the inorganic semiconductor material. Various applications of such multifunctional nanocomposites are also provided.

  5. Photocatalytic/Magnetic Composite Particles

    NASA Technical Reports Server (NTRS)

    Wu, Chang-Yu; Goswami, Yogi; Garretson, Charles; Andino, Jean; Mazyck, David

    2007-01-01

    Photocatalytic/magnetic composite particles have been invented as improved means of exploiting established methods of photocatalysis for removal of chemical and biological pollutants from air and water. The photocatalytic components of the composite particles are formulated for high levels of photocatalytic activity, while the magnetic components make it possible to control the movements of the particles through the application of magnetic fields. The combination of photocatalytic and magnetic properties can be exploited in designing improved air- and water treatment reactors.

  6. Nuclear-Targeted Multifunctional Magnetic Nanoparticles for Photothermal Therapy.

    PubMed

    Peng, Haibao; Tang, Jing; Zheng, Rui; Guo, Guannan; Dong, Angang; Wang, Yajun; Yang, Wuli

    2017-01-27

    The pursuit of multifunctional, innovative, more efficient, and safer cancer treatment has gained increasing interest in the research of preclinical nanoparticle-mediated photothermal therapy (PTT). Cell nucleus is recognized as the ideal target for cancer treatment because it plays a central role in genetic information and the transcription machinery reside. In this work, an efficient nuclear-targeted PTT strategy is proposed using transferrin and TAT peptide (TAT: YGRKKRRQRRR) conjugated monodisperse magnetic nanoparticles, which can be readily functionalized and stabilized for potential diagnostic and therapeutic applications. The monodisperse magnetic nanoparticles exhibit high photothermal conversion efficiency (≈37%) and considerable photothermal stability. They also show a high magnetization value and transverse relaxivity (207.1 mm(-1) s(-1) ), which could be applied for magnetic resonance imaging. The monodisperse magnetic nanoparticles conjugated with TAT peptides can efficiently target the nucleus and achieve the imaging-guided function, efficient cancer cells killing ability. Therefore, this work may present a practicable strategy to develop subcellular organelle targeted PTT agents for simultaneous cancer targeting, imaging, and therapy.

  7. Development of Multifunctional Magnetic Nanoparticles for Genetic Engineering and Tracking of Neural Stem Cells.

    PubMed

    Adams, Christopher; Israel, Liron Limor; Ostrovsky, Stella; Taylor, Arthur; Poptani, Harish; Lellouche, Jean-Paul; Chari, Divya

    2016-04-06

    Genetic modification of cell transplant populations and cell tracking ability are key underpinnings for effective cell therapies. Current strategies to achieve these goals utilize methods which are unsuitable for clinical translation because of related safety issues, and multiple protocol steps adding to cost and complexity. Multifunctional magnetic nanoparticles (MNPs) offering dual mode gene delivery and imaging contrast capacity offer a valuable tool in this context. Despite their key benefits, there is a critical lack of neurocompatible and multifunctional particles described for use with transplant populations for neurological applications. Here, a systematic screen of MNPs (using a core shown to cause contrast in magnetic resonance imaging (MRI)) bearing various surface chemistries (polyethylenimine (PEI) and oxidized PEI and hybrids of oxidized PEI/alginic acid, PEI/chitosan and PEI/polyamidoamine) is performed to test their ability to genetically engineer neural stem cells (NSCs; a cell population of high clinical relevance for central nervous system disorders). It is demonstrated that gene delivery to NSCs can be safely achieved using two of the developed formulations (PEI and oxPEI/alginic acid) when used in conjunction with oscillating magnetofection technology. After transfection, intracellular particles can be detected by histological procedures with labeled cells displaying contrast in MRI (for real time cell tracking).

  8. Stimuli-responsive magnetic nanomicelles as multifunctional heat and cargo delivery vehicles.

    PubMed

    Kim, Dong-Hyun; Vitol, Elina A; Liu, Jing; Balasubramanian, Shankar; Gosztola, David J; Cohen, Ezra E; Novosad, Valentyn; Rozhkova, Elena A

    2013-06-18

    Hybrid nanoarchitectures are among the most promising nanotechnology-enabled materials for biomedical applications. Interfacing of nanoparticles with active materials gives rise to the structures with unique multiple functionality. Superparamagnetic iron oxide nanoparticles particles SPION are widely employed in the biology and in developing of advanced medical technologies. Polymeric micelles offer the advantage of multifunctional carriers which can serve as delivery vehicles carrying nanoparticles, hydrophobic chemotherapeutics and other functional materials and molecules. Stimuli-responsive polymers are especially attractive since their properties can be modulated in a controlled manner. Here we report on multifunctional thermo-responsive poly(N-isopropylacrylamide-co-acrylamide)-block-poly(ε-caprolactone) random block copolymer micelles as magnetic hyperthermia-mediated payload release and imaging agents. The combination of copolymers, nanoparticles and doxorubicin drug was tailored the way that the loaded micelles were cable to respond to magnetic heating at physiologically-relevant temperatures. A surface functionalization of the micelles with the integrin β4 antibody and consequent interfacing of the resulting nanobio hybrid with squamous head and neck carcinoma cells which is known to specifically over-express the A9 antigen resulted in concentration of the micelles on the surface of cells. No inherent cytotoxicity was detected for the magnetic micelles without external stimuli application. Furthermore, SPION-loaded micelles demonstrate significant MRI contrast enhancement abilities.

  9. Powder particles assembly using electron beam for creation of multi-functional materials

    SciTech Connect

    Shinya, Norio; Egashira, Mitsuru; Fudouzi, Hiroshi

    1994-12-31

    Concepts and key technologies for assembling powder particles into multi-functional materials have been investigated. As each powder particle has at least one function, it may be possible to integrate the functions of particles into a multiple and systematized function by assembling several kinds of powder particles. Some preliminary experiments for the powder particles assembly were carried out. Main results are as follows: (1) Powder particles of Au(400{micro}m) and SiO{sub 2}(5{micro}m) were electrified positively and negatively, respectively. The SiO{sub 2} particles attached to the Au particles and covered almost their surfaces by mixing of both powder particles. This ordered mixture of the particles were expected to be applied to development of the multi-functional materials. (2) Powder particles of Au(400{micro}m) were coated with a conducting polymer, polypyrrole. The coated particles showed non-linear current-voltage behaviors by Schottky barrier at metal/conducting polymer contacts. This suggests that a new type of varistor can be developed using the coated particles. (3) Electrified patterns were drawn on CaTiO{sub 3} substrates using electron beam scanning. SiO{sub 2} powder particles, which were scattered over the electrified patterns, formed to the figures of patterns. It was thought that these techniques make it possible to assemble powder particles into devices and multi-functional materials.

  10. Magnetic nanoparticles: A multifunctional vehicle for modern theranostics.

    PubMed

    Angelakeris, M

    2017-06-01

    Magnetic nanoparticles provide a unique multifunctional vehicle for modern theranostics since they can be remotely and non-invasively employed as imaging probes, carrier vectors and smart actuators. Additionally, special delivery schemes beyond the typical drug delivery such as heat or mechanical stress may be magnetically triggered to promote certain cellular pathways. To start with, we need magnetic nanoparticles with several well-defined and reproducible structural, physical, and chemical features, while bio-magnetic nanoparticle design imposes several additional constraints. Except for the intrinsic requirement for high quality of magnetic properties in order to obtain the maximum efficiency with the minimum dose, the surface manipulation of the nanoparticles is a key aspect not only for transferring them from the growth medium to the biological environment but also to bind functional molecules that will undertake specific targeting, drug delivery, cell-specific monitoring and designated treatment without sparing biocompatibility and sustainability in-vivo. The ability of magnetic nanoparticles to interact with matter at the nanoscale not only provides the possibility to ascertain the molecular constituents of a disease, but also the way in which the totality of a biological function may be affected as well. The capacity to incorporate an array of structural and chemical functionalities onto the same nanoscale architecture also enables more accurate, sensitive and precise screening together with cure of diseases with significant pathological heterogeneity such as cancer. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Alternating Magnetic Field Controlled, Multifunctional Nano-Reservoirs: Intracellular Uptake and Improved Biocompatibility

    NASA Astrophysics Data System (ADS)

    Ghosh, Santaneel; Ghoshmitra, Somesree; Cai, Tong; Diercks, David R.; Mills, Nathaniel C.; Hynds, Dianna L.

    2010-01-01

    Biocompatible magnetic nanoparticles hold great therapeutic potential, but conventional particles can be toxic. Here, we report the synthesis and alternating magnetic field dependent actuation of a remotely controllable, multifunctional nano-scale system and its marked biocompatibility with mammalian cells. Monodisperse, magnetic nanospheres based on thermo-sensitive polymer network poly(ethylene glycol) ethyl ether methacrylate- co-poly(ethylene glycol) methyl ether methacrylate were synthesized using free radical polymerization. Synthesized nanospheres have oscillating magnetic field induced thermo-reversible behavior; exhibiting desirable characteristics comparable to the widely used poly- N-isopropylacrylamide-based systems in shrinkage plus a broader volumetric transition range. Remote heating and model drug release were characterized for different field strengths. Nanospheres containing nanoparticles up to an iron concentration of 6 mM were readily taken up by neuron-like PC12 pheochromocytoma cells and had reduced toxicity compared to other surface modified magnetic nanocarriers. Furthermore, nanosphere exposure did not inhibit the extension of cellular processes (neurite outgrowth) even at high iron concentrations (6 mM), indicating minimal negative effects in cellular systems. Excellent intracellular uptake and enhanced biocompatibility coupled with the lack of deleterious effects on neurite outgrowth and prior Food and Drug Administration (FDA) approval of PEG-based carriers suggest increased therapeutic potential of this system for manipulating axon regeneration following nervous system injury.

  12. A multi-functional apparatus for α and β spectroscopy utilizing a permanent ring-magnet β spectrometer

    NASA Astrophysics Data System (ADS)

    Becchetti, F. D.; Febbraro, M.; Riggins, J.; Torres-Isea, R. O.

    2016-11-01

    A multi-functional teaching apparatus has been developed for α and β spectroscopy utilizing a solid-state detector and associated electronics. The possible experiments include conventional measurements to determine α and β decay energies, half lives, characteristic energy loss of nuclear particles in matter, and limits on the β-neutrino mass set from endpoints in β-decay spectra. In addition, the relativistic mass increase of β particles is verified using a high-efficiency, axially symmetric permanent ring-magnet β spectrometer. The basic apparatus also can be adapted for experiments in Rutherford scattering and other nuclear measurements.

  13. Multifunctional superparamagnetic nanoshells: combining two-photon luminescence imaging, surface-enhanced Raman scattering and magnetic separation

    NASA Astrophysics Data System (ADS)

    Jin, Xiulong; Li, Haiyan; Wang, Shanshan; Kong, Ni; Xu, Hong; Fu, Qihua; Gu, Hongchen; Ye, Jian

    2014-11-01

    With the increasing need for multi-purpose analysis in the biomedical field, traditional single diagnosis methods cannot meet the requirements. Therefore new multifunctional technologies and materials for the integration of sample collection, sensing and imaging are in great demand. Core-shell nanoparticles offer a unique platform to combine multifunctions in a single particle. In this work, we have constructed a novel type of core-shell superparamagnetic nanoshell (Fe3O4@SiO2@Au), composed of a Fe3O4 cluster core, a thin Au shell and a SiO2 layer in between. The obtained multifunctional nanoparticles combine the magnetic properties and plasmonic optical properties effectively, which were well investigated by a number of experimental characterization methods and theoretical simulations. We have demonstrated that Fe3O4@SiO2@Au nanoparticles can be utilized for two-photon luminescence (TPL) imaging, near-infrared surface-enhanced Raman scattering (NIR SERS) and cell collection by magnetic separation. The TPL intensity could be further greatly enhanced through the plasmon coupling effect in the self-assembled nanoparticle chains, which were triggered by an external magnetic field. In addition, Fe3O4@SiO2@Au nanoparticles may have great potential applications such as enhanced magnetic resonance imaging (MRI) and photo-thermotherapy. Successful combination of multifunctions including magnetic response, biosensing and bioimaging in single nanoparticles allows further manipulation, real-time tracking, and intracellular molecule analysis of live cells at a single-cell level.With the increasing need for multi-purpose analysis in the biomedical field, traditional single diagnosis methods cannot meet the requirements. Therefore new multifunctional technologies and materials for the integration of sample collection, sensing and imaging are in great demand. Core-shell nanoparticles offer a unique platform to combine multifunctions in a single particle. In this work, we have

  14. Plasmonic/Magnetic Multifunctional nanoplatform for Cancer Theranostics

    PubMed Central

    Ravichandran, M.; Oza, Goldie; Velumani, S.; Ramirez, Jose Tapia; Garcia-Sierra, Francisco; Andrade, Norma Barragan; Vera, A.; Leija, L.; Garza-Navarro, Marco A.

    2016-01-01

    A multifunctional magneto-plasmonic CoFe2O4@Au core-shell nanoparticle was developed by iterative-seeding based method. This nanocargo consists of a cobalt ferrite kernel as a core (Nk) and multiple layers of gold as a functionalizable active stratum, (named as Nk@A after fifth iteration). Nk@A helps in augmenting the physiological stability and enhancing surface plasmon resonance (SPR) property. The targeted delivery of Doxorubicin using Nk@A as a nanopayload is demonstrated in this report. The drug release profile followed first order rate kinetics optimally at pH 5.4, which is considered as an endosomal pH of cells. The cellular MR imaging showed that Nk@A is an efficient T2 contrast agent for both L6 (r2-118.08 mM−1s−1) and Hep2 (r2-217.24 mM−1s−1) cells. Microwave based magnetic hyperthermia studies exhibited an augmentation in the temperature due to the transformation of radiation energy into heat at 2.45 GHz. There was an enhancement in cancer cell cytotoxicity when hyperthermia combined with chemotherapy. Hence, this single nanoplatform can deliver 3-pronged theranostic applications viz., targeted drug-delivery, T2 MR imaging and hyperthermia. PMID:27721391

  15. Multi-function magnetic jack control drive mechanism

    DOEpatents

    Bollinger, L.R.; Crawford, D.C.

    1983-10-06

    A multi-function magnetic jack control drive mechanism for controlling a nuclear reactor is provided. The mechanism includes an elongate pressure housing in which a plurality of closely spaced drive rods are located. Each drive rod is connected to a rod which is insertable in the reactor core. An electromechanical stationary latch device is provided which is actuatable to hold each drive rod stationary with respect to the pressure housing. An electromechanical movable latch device is also provided for each one of the drive rods. Each movable latch device is provided with a base and is actuatable to hold a respective drive rod stationary with respect to the base. An electromechanical lift device is further provided for each base which is actuatable for moving a respective base longitudinally along the pressure housing. In this manner, one or more drive rods can be moved in the pressure housing by sequentially and repetitively operating the electromechanical devices. Preferably, each latch device includes a pair of opposed latches which grip teeth located on the respective drive rod. Two, three, or four drive rods can be located symmetrically about the longitudinal axis of the pressure housing.

  16. Multi-function magnetic jack control drive mechanism

    DOEpatents

    Bollinger, Lawrence R.; Crawford, Donald C.

    1986-01-01

    A multi-function magnetic jack control drive mechanism for controlling a nuclear reactor is provided. The mechanism includes an elongate pressure housing in which a plurality of closely spaced drive rods are located. Each drive rod is connected to a rod which is insertable in the reactor core. An electromechanical stationary latch device is provided which is actuatable to hold each drive rod stationary with respect to the pressure housing. An electromechanical movable latch device is also provided for each one of the drive rods. Each movable latch device is provided with a base and is actuatable to hold a respective drive rod stationary with respect to the base. An electromechanical lift device is further provided for each base which is actuatable for moving a respective base longitudinally along the pressure housing. In this manner, one or more drive rods can be moved in the pressure housing by sequentially and repetitively operating the electromechanical devices. Preferably, each latch device includes a pair of opposed latches which grip teeth located on the respective drive rod. Two, three, or four drive rods can be located symmetrically about the longitudinal axis of the pressure housing.

  17. Plasmonic/Magnetic Multifunctional nanoplatform for Cancer Theranostics.

    PubMed

    Ravichandran, M; Oza, Goldie; Velumani, S; Ramirez, Jose Tapia; Garcia-Sierra, Francisco; Andrade, Norma Barragan; Vera, A; Leija, L; Garza-Navarro, Marco A

    2016-10-10

    A multifunctional magneto-plasmonic CoFe2O4@Au core-shell nanoparticle was developed by iterative-seeding based method. This nanocargo consists of a cobalt ferrite kernel as a core (Nk) and multiple layers of gold as a functionalizable active stratum, (named as Nk@A after fifth iteration). Nk@A helps in augmenting the physiological stability and enhancing surface plasmon resonance (SPR) property. The targeted delivery of Doxorubicin using Nk@A as a nanopayload is demonstrated in this report. The drug release profile followed first order rate kinetics optimally at pH 5.4, which is considered as an endosomal pH of cells. The cellular MR imaging showed that Nk@A is an efficient T2 contrast agent for both L6 (r2-118.08 mM(-1)s(-1)) and Hep2 (r2-217.24 mM(-1)s(-1)) cells. Microwave based magnetic hyperthermia studies exhibited an augmentation in the temperature due to the transformation of radiation energy into heat at 2.45 GHz. There was an enhancement in cancer cell cytotoxicity when hyperthermia combined with chemotherapy. Hence, this single nanoplatform can deliver 3-pronged theranostic applications viz., targeted drug-delivery, T2 MR imaging and hyperthermia.

  18. Direct synthesis of multifunctional heterostructured magnetic nanoparticles in gas phase

    NASA Astrophysics Data System (ADS)

    Xu, Yunhao

    Most applications of the nanotechnology require the nanoscale objects to have a controllable size, narrow size distribution, and to be in an assembled form if possible. An approach to go beyond the current performance of these nanoscale objects is to combine and couple different properties into one single object, making them multifunctional. To achieve these goals, we developed a bottom-up approach engaging a sputtering-gas-condensation technique to deposit nanoparticles with controlled size, size distribution, crystallographic phase and heterostructures. This technique is compatible to micro/nanoelectronic materials and devices fabrication processes. Three-dimensional assembly of nanoparticle-crystals is demonstrated by using the technique. A model is developed to explain the detailed nucleation, growth, phase separation processes based on the classic nucleation as well as kinetic processes. To combine and couple different properties into a single nanoparticle, a new method is developed to generate different heterostructures at single-particle level directly in gas phase. Sharp and clean interfaces were formed between the different components in the single nanoparticle. The control of the diffusion in nanoscale objects opens a door for the synthesis of heterostructures with high quality interfaces and desirable phases. The model-material systems of ferromagnetic metals and alloys (Fe, Co, and FeCo), noble metals (Ag and Au) and semiconductor element (Si) were demonstrated in the work, which have great potential in biomedical, spintronics and photonics applications. Other fields such as renewable energy devices can also benefit by adopting this novel approach in different material systems.

  19. Multifunctional magnetic nanoparticles modified with polyethylenimine and folic acid for biomedical theranostics.

    PubMed

    Yoo, Hyunhee; Moon, Seung-Kwan; Hwang, Taewon; Kim, Yong Seok; Kim, Joo-Hwan; Choi, Sung-Wook; Kim, Jung Hyun

    2013-05-21

    This paper describes the preparation of magnetic nanoparticles modified with polyethylenimine (PEI)-folic acid (PF) conjugate and their potential biomedical applications. Magnetic nanoparticles modified with (3-(2-aminoethylamino)propyltrimethoxysilane) (AEAPS) were first prepared using a ligand exchange method to provide biocompatibility and hydrophilicity, and further conjugated with PF to carry gene and enhance specific uptake into cancer cells. We demonstrated the feasibility of the multifunctional magnetic nanoparticles as contrast agents in magnetic resonance imaging (MRI) and as gene carriers for gene delivery. In vitro results revealed that the cytotoxicity of the multifunctional magnetic nanoparticles was lower compared to that of pristine magnetic nanoparticles. Furthermore, we demonstrated the specific uptake of the magnetic nanoparticles modified with PF to KB cells using WI-38 cells as comparison by confocal microscopy. The PF-modified magnetic nanoparticles can potentially be employed as theranostic nanoplatforms for targeted gene delivery to cancer cells and simultaneous magnetic resonance imaging.

  20. Multifunctional inverse opal particles for drug delivery and monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Cheng, Yao; Wang, Huan; Ye, Baofen; Shang, Luoran; Zhao, Yuanjin; Gu, Zhongze

    2015-06-01

    Particle-based delivery systems have a demonstrated value for drug discovery and development. Here, we report a new type of particle-based delivery system that has controllable release and is self-monitoring. The particles were composed of poly(N-isopropylacrylamide) (pNIPAM) hydrogel with an inverse opal structure. The presence of macropores in the particles provides channels for active drug loading and release from the materials.Particle-based delivery systems have a demonstrated value for drug discovery and development. Here, we report a new type of particle-based delivery system that has controllable release and is self-monitoring. The particles were composed of poly(N-isopropylacrylamide) (pNIPAM) hydrogel with an inverse opal structure. The presence of macropores in the particles provides channels for active drug loading and release from the materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02324f

  1. Magnetic Particle Technology

    ERIC Educational Resources Information Center

    Oliveira, Luiz C.A.; A. Rios, Rachel V.R.; Fabris, Jose D.; Lago, Rachel M.; Sapag, Karim

    2004-01-01

    An exciting laboratory environment is activated by the preparation and novel use of magnetic materials to decontaminate water through adsorption and magnetic removal of metals and organics. This uncomplicated technique is also adaptable to the possible application of adsorbents to numerous other environmental substances.

  2. Magnetic Particle Technology

    ERIC Educational Resources Information Center

    Oliveira, Luiz C.A.; A. Rios, Rachel V.R.; Fabris, Jose D.; Lago, Rachel M.; Sapag, Karim

    2004-01-01

    An exciting laboratory environment is activated by the preparation and novel use of magnetic materials to decontaminate water through adsorption and magnetic removal of metals and organics. This uncomplicated technique is also adaptable to the possible application of adsorbents to numerous other environmental substances.

  3. Biomimetic Multi-Functional Superamphiphobic FOTS-TiO2 Particles beyond Lotus Leaf.

    PubMed

    Chen, Liwei; Guo, Zhiguang; Liu, Weimin

    2016-10-12

    It is widely known that natural examples like lotus leaves can only repel room-temperature water but cannot repel hot water and oils. Even though superamphiphobic surfaces composed of re-entrant "mushroom-like" or "T-shaped" structures are promising, they are generally regarded as substrate-dependent and difficult to fabricate, and hence, their practical use on various materials has been limited. Here, we synthesize a flower-like superamphiphobic FOTS-TiO2 powder by solvothermal process and self-assembly functionalization. These structured and functionalized submicron particles can repel the liquids with surface tension as low as 23.8 mN·m(-1) (n-decane), which is the lowest among powder samples. With respect to the biomimetic aspect, the surface morphology of FOTS-TiO2 particle is similar to the hierarchical micro/nano-structures of the lotus leaf surface, but it is beyond the lotus leaf for superoleophobic capacity. The difference in the oleophobicity is suggested to be the interplay of quasi-spherical re-entrant structure and perfluorined modification. Because of superior superamphiphobicity of the powder, a facile yet versatile strategy is developed, adhesive-assisted sieve deposition fabrication (AASDF), for preparing superamphiphobic coatings on various substrates. The investigation results pertaining to the water/oil proofing, mechanical durability, self-cleaning, and antifouling performances prove that the FOTS-TiO2 coating is robust and multifunctional, which will enable more opportunities for practical applications. Apart from these general applications, we find that the superamphiphobic FOTS-TiO2 powders when coated on sponge as anti-icing surface have good ice delay and icephobic performances. Furthermore, they can be used to prepare magnetic Fe3O4&FOTS-TiO2 composite particles through liquid marbles, implying significant scientific value.

  4. Superconducting Magnets for Particle Accelerators

    DOE PAGES

    Bottura, Luca; Gourlay, Stephen A.; Yamamoto, Akira; ...

    2015-11-10

    In this study, we summarize the evolution and contributions of superconducting magnets to particle accelerators as chronicled over the last 50 years of Particle Accelerator Conferences (PAC, NA-PAC and IPAC). We begin with an historical overview based primarily on PAC Proceedings augmented with references to key milestones in the development of superconducting magnets for particle accelerators. We then provide some illustrative examples of applications that have occurred over the past 50 years, focusing on those that have either been realized in practice or provided technical development for other projects, with discussion of possible future applications.

  5. Superconducting Magnets for Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Bottura, Luca; Gourlay, Stephen A.; Yamamoto, Akira; Zlobin, Alexander V.

    2016-04-01

    In this paper we summarize the evolution and contributions of superconducting magnets to particle accelerators as chronicled over the last 50 years of Particle Accelerator Conferences (PAC, NA-PAC and IPAC). We begin with an historical overview based primarily on PAC Proceedings augmented with references to key milestones in the development of superconducting magnets for particle accelerators. We then provide some illustrative examples of applications that have occurred over the past 50 years, focusing on those that have either been realized in practice or provided technical development for other projects, with discussion of possible future applications.

  6. Magnetic guidance of charged particles

    NASA Astrophysics Data System (ADS)

    Dubbers, Dirk

    2015-09-01

    Many experiments and devices in physics use static magnetic fields to guide charged particles from a source onto a detector, and we ask the innocent question: What is the distribution of particle intensity over the detector surface? One should think that the solution to this seemingly simple problem is well known. We show that, even for uniform guide fields, this is not the case, and we present analytical point spread functions (PSF) for magnetic transport that deviate strongly from previous results. The "magnetic" PSF shows unexpected singularities, which were recently also observed experimentally, and which make detector response very sensitive to minute changes of position, field amplitude, or particle energy. In the field of low-energy particle physics, these singularities may become a source of error in modern high precision experiments, or may be used for instrument tests.

  7. Particles trajectories in magnetic filaments

    SciTech Connect

    Bret, A.

    2015-07-15

    The motion of a particle in a spatially harmonic magnetic field is a basic problem involved, for example, in the mechanism of formation of a collisionless shock. In such settings, it is generally reasoned that particles entering a Weibel generated turbulence are trapped inside it, provided their Larmor radius in the peak field is smaller than the field coherence length. The goal of this work is to put this heuristic conclusion on firm ground by studying, both analytically and numerically, such motion. A toy model is analyzed, consisting of a relativistic particle entering a region of space occupied by a spatially harmonic field. The particle penetrates the magnetic structure in a direction aligned with the magnetic filaments. Although the conclusions are not trivial, the main result is confirmed.

  8. Color-tunable fluorescent-magnetic core/shell multifunctional nanocrystals.

    PubMed

    Tian, Zhi-Quan; Zhang, Zhi-Ling; Gao, Jinhao; Huang, Bi-Hai; Xie, Hai-Yan; Xie, Min; Abruña, Héctor D; Pang, Dai-Wen

    2009-07-21

    We have developed a convenient strategy for preparing color-tunable fluorescent-magnetic core/shell multifunctional nanocrystals, which exhibit excellent photoluminescence (PL) properties (fluorescing tunably from 550 nm to 630 nm by modifying the shell thickness) and ferromagnetic material properties (a magnetization of 4.4 emu g(-1) and a coercivity of 95 Oe).

  9. Heparinized magnetic mesoporous silica nanoparticles as multifunctional growth factor delivery carriers

    NASA Astrophysics Data System (ADS)

    Wu, Qiang; Liu, Chaoqun; Fan, Luna; Shi, Jiahua; Liu, Zhiqiang; Li, Ruifang; Sun, Liwei

    2012-12-01

    Well-defined magnetic mesoporous silica nanoparticles (MMSNs) with a core/shell structure were prepared via a one pot synthesis. Sphere-like magnetite aggregates were obtained as cores of the final nanoparticles by assembly in the presence of polyvinyl pyrrolidone and cetyltrimethylammonium bromide. The nanoparticles have the property of superparamagnetism with a saturation magnetization value of 20.3 emu g-1. In addition, the combination of heparin and fluorescence-labeled MMSNs endows the resultant particles (denoted as MFMSNs-HP) with magnetism and fluorescence properties, excellent dispersity in the buffer solutions and cell culture media, anticoagulant activity in the blood stream, and the controlled release of basic fibroblast growth factor (bFGF). Furthermore, the bFGF cell viability assays indicate that MFMSNs-HP has nearly no toxicity to human umbilical vein endothelial cells (HUVEC) up to a concentration of 200 μg ml-1, and the proliferation activity of bFGF incorporated into MFMSNs-HP could be retained for at least 6 days. All of these suggest that MFMSNs-HP may serve as a multifunctional carrier for the delivery of growth factors.

  10. Preparation of magnetic mesoporous silica nanoparticles as a multifunctional platform for potential drug delivery and hyperthermia

    PubMed Central

    Yu, Xia; Zhu, Yufang

    2016-01-01

    Abstract We report the preparation of magnetic mesoporous silica (MMS) nanoparticles with the potential multifunctionality of drug delivery and magnetic hyperthermia. Carbon-encapsulated magnetic colloidal nanoparticles (MCN@C) were used to coat mesoporous silica shells for the formation of the core-shell structured MMS nanoparticles (MCN@C/mSiO2), and the rattle-type structured MMS nanoparticles (MCN/mSiO2) were obtained after the removal of the carbon layers from MCN@C/mSiO2 nanoparticles. The morphology, structure, magnetic hyperthermia ability, drug release behavior, in vitro cytotoxicity and cellular uptake of MMS nanoparticles were investigated. The results revealed that the MCN@C/mSiO2 and MCN/mSiO2 nanoparticles had spherical morphology and average particle sizes of 390 and 320 nm, respectively. The MCN@C/mSiO2 nanoparticles exhibited higher magnetic hyperthermia ability compared to the MCN/mSiO2 nanoparticles, but the MCN/mSiO2 nanoparticles had higher drug loading capacity. Both MCN@C/mSiO2 and MCN/mSiO2 nanoparticles had similar drug release behavior with pH-controlled release and temperature-accelerated release. Furthermore, the MCN@C/mSiO2 and MCN/mSiO2 nanoparticles showed low cytotoxicity and could be internalized into HeLa cells. Therefore, the MCN@C/mSiO2 and MCN/mSiO2 nanoparticles would be promising for the combination of drug delivery and magnetic hyperthermia treatment in cancer therapy. PMID:27877873

  11. Anisotropic magnetic particles in a magnetic field

    PubMed Central

    Martchenko, Ilya; Mihut, Adriana M.; Bialik, Erik; Hirt, Ann M.; Rufier, Chantal; Menzel, Andreas; Dietsch, Hervé; Linse, Per

    2016-01-01

    We characterize the structural properties of magnetic ellipsoidal hematite colloids with an aspect ratio ρ ≈ 2.3 using a combination of small-angle X-ray scattering and computer simulations. The evolution of the phase diagram with packing fraction φ and the strength of an applied magnetic field B is described, and the coupling between orientational order of magnetic ellipsoids and the bulk magnetic behavior of their suspension addressed. We establish quantitative structural criteria for the different phase and arrest transitions and map distinct isotropic, polarized non-nematic, and nematic phases over an extended range in the φ–B coordinates. We show that upon a rotational arrest of the ellipsoids around φ = 0.59, the bulk magnetic behavior of their suspension switches from superparamagnetic to ordered weakly ferromagnetic. If densely packed and arrested, these magnetic particles thus provide persisting remanent magnetization of the suspension. By exploring structural and magnetic properties together, we extend the often used colloid-atom analogy to the case of magnetic spins. PMID:27722439

  12. Two dimensional magnetic particle spectrometry

    NASA Astrophysics Data System (ADS)

    Graeser, M.; von Gladiss, A.; Weber, M.; Buzug, T. M.

    2017-05-01

    Magnetic particle spectrometry (MPS) is an excellent and straight forward method to determine the response of magnetic nanoparticles to an oscillating magnetic field. Such fields are applied in magnetic particle imaging (MPI). However, state of the art MPS devices lack the ability to excite particles in multidimensional field sequences that are present in MPI devices. Especially the particle behavior caused by Lissajous sequences cannot be measured with only one excitation direction. This work presents a new kind of MPS which features two excitation directions to overcome this limitation. Both field coils can drive AC as well as DC currents and are thereby able to emulate the field sequences for arbitrary spatial positions inside an MPI device. Since the DC currents can be switched very fast, the device can be used as system calibration unit and acquire system matrices in very short time. These are crucial for MPI image reconstruction. As the signal-to-noise-ratio provided by the MPS is approximately 1000 times higher than that of actual imaging devices, the time space analysis of particle signals is more precise and easier done. Four system matrices are presented in this paper which have been measured with the realized multidimensional MPS. Additionally, a time space comparison of the particle signal for Lissajous, radial and spiral trajectories is given.

  13. Two dimensional magnetic particle spectrometry.

    PubMed

    Graeser, M; von Gladiss, A; Weber, M; Buzug, T M

    2017-05-07

    Magnetic particle spectrometry (MPS) is an excellent and straight forward method to determine the response of magnetic nanoparticles to an oscillating magnetic field. Such fields are applied in magnetic particle imaging (MPI). However, state of the art MPS devices lack the ability to excite particles in multidimensional field sequences that are present in MPI devices. Especially the particle behavior caused by Lissajous sequences cannot be measured with only one excitation direction. This work presents a new kind of MPS which features two excitation directions to overcome this limitation. Both field coils can drive AC as well as DC currents and are thereby able to emulate the field sequences for arbitrary spatial positions inside an MPI device. Since the DC currents can be switched very fast, the device can be used as system calibration unit and acquire system matrices in very short time. These are crucial for MPI image reconstruction. As the signal-to-noise-ratio provided by the MPS is approximately 1000 times higher than that of actual imaging devices, the time space analysis of particle signals is more precise and easier done. Four system matrices are presented in this paper which have been measured with the realized multidimensional MPS. Additionally, a time space comparison of the particle signal for Lissajous, radial and spiral trajectories is given.

  14. Graphene Quantum Dots-Capped Magnetic Mesoporous Silica Nanoparticles as a Multifunctional Platform for Controlled Drug Delivery, Magnetic Hyperthermia, and Photothermal Therapy.

    PubMed

    Yao, Xianxian; Niu, Xingxing; Ma, Kexin; Huang, Ping; Grothe, Julia; Kaskel, Stefan; Zhu, Yufang

    2017-01-01

    A multifunctional platform is reported for synergistic therapy with controlled drug release, magnetic hyperthermia, and photothermal therapy, which is composed of graphene quantum dots (GQDs) as caps and local photothermal generators and magnetic mesoporous silica nanoparticles (MMSN) as drug carriers and magnetic thermoseeds. The structure, drug release behavior, magnetic hyperthermia capacity, photothermal effect, and synergistic therapeutic efficiency of the MMSN/GQDs nanoparticles are investigated. The results show that monodisperse MMSN/GQDs nanoparticles with the particle size of 100 nm can load doxorubicin (DOX) and trigger DOX release by low pH environment. Furthermore, the MMSN/GQDs nanoparticles can efficiently generate heat to the hyperthermia temperature under an alternating magnetic field or by near infrared irradiation. More importantly, breast cancer 4T1 cells as a model cellular system, the results indicate that compared with chemotherapy, magnetic hyperthermia or photothermal therapy alone, the combined chemo-magnetic hyperthermia therapy or chemo-photothermal therapy with the DOX-loaded MMSN/GQDs nanosystem exhibits a significant synergistic effect, resulting in a higher efficacy to kill cancer cells. Therefore, the MMSN/GQDs multifunctional platform has great potential in cancer therapy for enhancing the therapeutic efficiency.

  15. Photoresponsive coumarin-tethered multifunctional magnetic nanoparticles for release of anticancer drug.

    PubMed

    Karthik, S; Puvvada, Nagaprasad; Kumar, B N Prashanth; Rajput, Shashi; Pathak, Amita; Mandal, Mahitosh; Singh, N D Pradeep

    2013-06-12

    Recently, photoresponsive nanoparticles have received significant attention because of their ability to provide spatial and temporal control over the drug release. In the present work, we report for the first time photoresponsive multifunctional magnetic nanoparticles (MNPs) fabricated using coumarin-based phototrigger and Fe/Si MNPs for controlled delivery of anticancer drug chlorambucil. Further, newly fabricated photoresponsive multifunctional MNPs were also explored for cell luminescence imaging. In vitro biological studies revealed that coumarin tethered Fe/Si MNPs of ~9 nm size efficiently delivered the anticancer drug chlorambucil into cancer cells and thereby improving the drug action to kill the cancer cells upon irradiation. Such multifunctional MNPs with strong fluorescence, good biocompatibility and efficient photocontrolled drug release ability will be of great benefit in the construction of light-activated multifunctional nano drug delivery systems.

  16. Synthesis, characterization, and cytotoxicity in human erythrocytes of multifunctional, magnetic, and luminescent nanocrystalline rare earth fluorides.

    PubMed

    Grzyb, Tomasz; Mrówczyńska, Lucyna; Szczeszak, Agata; Śniadecki, Zbigniew; Runowski, Marcin; Idzikowski, Bogdan; Lis, Stefan

    Multifunctional nanoparticles exhibiting red or green luminescence properties and magnetism were synthesized and thoroughly analyzed. The hydrothermal method was used for the synthesis of Eu(3+)- or Tb(3+)-doped GdF3-, NaGdF4-, and BaGdF5-based nanocrystalline materials. The X-ray diffraction patterns of the samples confirmed the desired compositions of the materials. Transmission electron microscope images revealed the different morphologies of the products, including the nanocrystal sizes, which varied from 12 nm in the case of BaGdF5-based nanoparticles to larger structures with dimensions exceeding 300 nm. All of the samples presented luminescence under ultraviolet irradiation, as well as when the samples were in the form of water colloids. The highest luminescence was observed for BaGdF5-based materials. The obtained nanoparticles exhibited paramagnetism along with probable evidence of superparamagnetic behavior at low temperatures. The particles' magnetic characteristics were also preserved for samples in the form of a suspension in distilled water. The cytotoxicity studies against the human erythrocytes indicated that the synthesized nanoparticles are non-toxic because they did not cause the red blood cells shape changes nor did they alter their membrane structure and permeabilization.

  17. Synthesis, characterization, and cytotoxicity in human erythrocytes of multifunctional, magnetic, and luminescent nanocrystalline rare earth fluorides

    NASA Astrophysics Data System (ADS)

    Grzyb, Tomasz; Mrówczyńska, Lucyna; Szczeszak, Agata; Śniadecki, Zbigniew; Runowski, Marcin; Idzikowski, Bogdan; Lis, Stefan

    2015-10-01

    Multifunctional nanoparticles exhibiting red or green luminescence properties and magnetism were synthesized and thoroughly analyzed. The hydrothermal method was used for the synthesis of Eu3+- or Tb3+-doped GdF3-, NaGdF4-, and BaGdF5-based nanocrystalline materials. The X-ray diffraction patterns of the samples confirmed the desired compositions of the materials. Transmission electron microscope images revealed the different morphologies of the products, including the nanocrystal sizes, which varied from 12 nm in the case of BaGdF5-based nanoparticles to larger structures with dimensions exceeding 300 nm. All of the samples presented luminescence under ultraviolet irradiation, as well as when the samples were in the form of water colloids. The highest luminescence was observed for BaGdF5-based materials. The obtained nanoparticles exhibited paramagnetism along with probable evidence of superparamagnetic behavior at low temperatures. The particles' magnetic characteristics were also preserved for samples in the form of a suspension in distilled water. The cytotoxicity studies against the human erythrocytes indicated that the synthesized nanoparticles are non-toxic because they did not cause the red blood cells shape changes nor did they alter their membrane structure and permeabilization.

  18. Contactless magnetic manipulation of magnetic particles in a fluid

    NASA Astrophysics Data System (ADS)

    Tokura, S.; Hara, M.; Kawaguchi, N.; Amemiya, N.

    2016-08-01

    The objective of this study was to demonstrate contactless magnetic manipulation of a magnetic particle along a designated orbit among other magnetic particles suspended in a fluid at rest or in motion, and also to understand the behaviors of those surrounding particles during the contactless magnetic manipulation. In addition, the possibility of breaking up chains of clustered magnetic particles under such conditions was also studied. We first describe contactless magnetic manipulation of magnetic particles by feedback control in which the feedback signal was the measured coordinates of the tracked particle. By the feedback control monitoring the location of the tracked particle using a high-speed image analyzer, the reach of the dipole magnetic field created by the magnetized magnetic particles could be kept relatively small. As a result, the tracked magnetic particle could be dragged along the designated orbit by magnetic force. Second, we describe the breaking up of chains of clustered magnetic particles using an alternating magnetic force. The results showed that chain-clustered magnetic particles that had been aggregated under the condition of contactless magnetic manipulation could be broken up reproducibly by an alternating magnetic field. These results constitute useful information for advancements in the handling of magnetic micro- or nanoparticles.

  19. Multifunctional magnetic silica nanotubes for MR imaging and targeted drug delivery.

    PubMed

    Huang, Liang; Ao, Lijiao; Wang, Wei; Hu, Dehong; Sheng, Zonghai; Su, Wu

    2015-03-04

    A multifunctional drug delivery vehicle consisting of a tubular shaped silica host, a compact superparamagnetic iron oxide nanoparticle layer and a hyaluronic acid surface coating was developed as a theranostic platform, for in vivo MR imaging and magnetically guided/cancer targeted drug delivery.

  20. Traveling wave magnetic particle imaging.

    PubMed

    Vogel, Patrick; Ruckert, Martin A; Klauer, Peter; Kullmann, Walter H; Jakob, Peter M; Behr, Volker C

    2014-02-01

    Most 3-D magnetic particle imaging (MPI) scanners currently use permanent magnets to create the strong gradient field required for high resolution MPI. However, using permanent magnets limits the field of view (FOV) due to the large amount of energy required to move the field free point (FFP) from the center of the scanner. To address this issue, an alternative approach called "Traveling Wave MPI" is here presented. This approach employs a novel gradient system, the dynamic linear gradient array, to cover a large FOV while dynamically creating a strong magnetic gradient. The proposed design also enables the use of a so-called line-scanning mode, which simplifies the FFP trajectory to a linear path through the 3-D volume. This results in simplified mathematics, which facilitates the image reconstruction.

  1. Design and physicochemical characterization of advanced spray-dried tacrolimus multifunctional particles for inhalation

    PubMed Central

    Wu, Xiao; Hayes, Don; Zwischenberger, Joseph B; Kuhn, Robert J; Mansour, Heidi M

    2013-01-01

    The aim of this study was to design, develop, and optimize respirable tacrolimus microparticles and nanoparticles and multifunctional tacrolimus lung surfactant mimic particles for targeted dry powder inhalation delivery as a pulmonary nanomedicine. Particles were rationally designed and produced at different pump rates by advanced spray-drying particle engineering design from organic solution in closed mode. In addition, multifunctional tacrolimus lung surfactant mimic dry powder particles were prepared by co-dissolving tacrolimus and lung surfactant mimic phospholipids in methanol, followed by advanced co-spray-drying particle engineering design technology in closed mode. The lung surfactant mimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-[phosphor-rac-1-glycerol]. Laser diffraction particle sizing indicated that the particle size distributions were suitable for pulmonary delivery, whereas scanning electron microscopy imaging indicated that these particles had both optimal particle morphology and surface morphology. Increasing the pump rate percent of tacrolimus solution resulted in a larger particle size. X-ray powder diffraction patterns and differential scanning calorimetry thermograms indicated that spray drying produced particles with higher amounts of amorphous phase. X-ray powder diffraction and differential scanning calorimetry also confirmed the preservation of the phospholipid bilayer structure in the solid state for all engineered respirable particles. Furthermore, it was observed in hot-stage micrographs that raw tacrolimus displayed a liquid crystal transition following the main phase transition, which is consistent with its interfacial properties. Water vapor uptake and lyotropic phase transitions in the solid state at varying levels of relative humidity were determined by gravimetric vapor sorption technique. Water content in the various powders was very low and well within the levels necessary

  2. Effective particle magnetic moment of multi-core particles

    NASA Astrophysics Data System (ADS)

    Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian; Wetterskog, Erik; Svedlindh, Peter; Lak, Aidin; Ludwig, Frank; van IJzendoorn, Leo J.; Westphal, Fritz; Grüttner, Cordula; Gehrke, Nicole; Gustafsson, Stefan; Olsson, Eva; Johansson, Christer

    2015-04-01

    In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems - BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm - and one single-core particle system - SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm.

  3. Investigations on the magnetization behavior of magnetic composite particles

    NASA Astrophysics Data System (ADS)

    Eichholz, Christian; Knoll, Johannes; Lerche, Dietmar; Nirschl, Hermann

    2014-11-01

    In life sciences the application of surface functionalized magnetic composite particles is establishing in diagnostics and in downstream processing of modern biotechnology. These magnetic composite particles consist of non-magnetic material, e.g. polystyrene, which serves as a matrix for the second magnetic component, usually colloidal magnetite. Because of the multitude of magnetic cores these magnetic beads show a complex magnetization behavior which cannot be described with the available approaches for homogeneous magnetic material. Therefore, in this work a new model for the magnetization behavior of magnetic composite particles is developed. By introducing an effective magnetization and considering an overall demagnetization factor the deviation of the demagnetization of homogeneously magnetized particles is taken into account. Calculated and experimental results show a good agreement which allows for the verification of the adapted model of particle magnetization. Besides, a newly developed magnetic analyzing centrifuge is used for the characterization of magnetic composite particle systems. The experimental results, also used for the model verification, give both, information about the magnetic properties and the interaction behavior of particle systems. By adding further components to the particle solution, such as salts or proteins, industrial relevant systems can be reconstructed. The analyzing tool can be used to adapt industrial processes without time-consuming preliminary tests with large samples in the process equipments.

  4. Bacteria capture, lysate clearance, and plasmid DNA extraction using pH-sensitive multifunctional magnetic nanoparticles.

    PubMed

    Shan, Zhi; Wu, Qi; Wang, Xianxiang; Zhou, Zhongwu; Oakes, Ken D; Zhang, Xu; Huang, Qianming; Yang, Wanshen

    2010-03-01

    A multifunctional magnetic nanoparticle (MNP)-assisted bioseparation method was developed to isolate plasmid DNA (pDNA) from Escherichia coli culture. Using the pH-sensitive carboxyl-modified magnetic nanoparticles, both cell capture and the subsequent removal of genomic DNA/protein complex after lysis can be achieved simply by magnetic separation. Furthermore, the yield and purity of pDNA extracted by MNPs are comparable to those obtained using organic solvents or commercial kits. This time- and cost-effective protocol does not require centrifugation or precipitation steps and has the potential for automated DNA extraction, especially within miniaturized lab chip applications. Copyright 2009 Elsevier Inc. All rights reserved.

  5. Multifunctional wood materials with magnetic, superhydrophobic and anti-ultraviolet properties

    NASA Astrophysics Data System (ADS)

    Gan, Wentao; Gao, Likun; Sun, Qingfeng; Jin, Chunde; Lu, Yun; Li, Jian

    2015-03-01

    Multifunctional wood materials with magnetic, superhydrophobic and anti-ultraviolet properties were obtained successfully by precipitated CoFe2O4 nanoparticles on the wood surface and then treated with a layer of octadecyltrichlorosilane (OTS). The as-fabricated wood composites exhibited excellent magnetic property and the water contact angle of the OTS-modified magnetic wood surface reached as high as 150°, revealed the superhydrophobic property. Moreover, accelerated aging tests suggested that the treated wood composites also have an excellent anti-ultraviolet property.

  6. A Multifunctional Biomaterial with NIR Long Persistent Phosphorescence, Photothermal Response and Magnetism.

    PubMed

    Wu, Yiling; Li, Yang; Qin, Xixi; Qiu, Jianrong

    2016-09-20

    There are many reports on long persistent phosphors (LPPs) applied in bioimaging. However, there are few reports on LPPs applied in photothermal therapy (PTT), and an integrated system with multiple functions of diagnosis and therapy. In this work, we fabricate effective multifunctional phosphors Zn3 Ga2 SnO8 : Cr(3+) , Nd(3+) , Gd(3+) with NIR persistent phosphorescence, photothermal response and magnetism. Such featured materials can act as NIR optical biolabels and magnetic resonance imaging (MRI) contrast agents for tracking the early cancer cells, but also as photothermal therapeutic agent for killing the cancer cells. This new multifunctional biomaterial is expected to open a new possibility of setting up an advanced imaging-guided therapy system featuring a high resolution for bioimaging and low side effects for the photothermal ablation of tumors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Multifunctional hybrid nanocarrier: magnetic CNTs ensheathed with mesoporous silica for drug delivery and imaging system.

    PubMed

    Singh, Rajendra K; Patel, Kapil D; Kim, Jung-Ju; Kim, Tae-Hyun; Kim, Joong-Hyun; Shin, Ueon Sang; Lee, Eun-Jung; Knowles, Jonathan C; Kim, Hae-Won

    2014-02-26

    Here we communicate the development of a novel multifunctional hybrid nanomaterial, magnetic carbon nanotubes (CNTs) ensheathed with mesoporous silica, for the simultaneous applications of drug delivery and imaging. Magnetic nanoparticles (MNPs) were first decorated onto the multiwalled CNTs, which was then layered with mesoporous silica (mSiO2) to facilitate the loading of bioactive molecules to a large quantity while exerting magnetic properties. The hybrid nanomaterial showed a high mesoporosity due to the surface-layered mSiO2, and excellent magnetic properties, including magnetic resonance imaging in vitro and in vivo. The mesoporous and magnetic hybrid nanocarriers showed high loading capacity for therapeutic molecules including drug gentamicin and protein cytochrome C. In particular, genetic molecule siRNA was effectively loaded and then released over a period of days to a week. Furthermore, the hybrid nanocarriers exhibited a high cell uptake rate through magnetism, while eliciting favorable biological efficacy within the cells. This novel hybrid multifunctional nanocarrier may be potentially applicable as drug delivery and imaging systems.

  8. Engineering multifunctional magnetic-quantum dot barcodes by flow focusing.

    PubMed

    Giri, Supratim; Li, Dawei; Chan, Warren C W

    2011-04-14

    A simple one-step flow focusing method was used to embed both magnetic nanoparticles and quantum dots in microbeads in controlled ratios to generate a large library of molecular barcodes for biological applications.

  9. Multifunctional nanoplatform for enhanced photodynamic cancer therapy and magnetic resonance imaging.

    PubMed

    Hao, Yongwei; Zhang, Bingxiang; Zheng, Cuixia; Niu, Mengya; Guo, Haochen; Zhang, Hongling; Chang, Junbiao; Zhang, Zhenzhong; Wang, Lei; Zhang, Yun

    2017-03-01

    Co-delivery of photosensitizers and synergistic agents by one single nanoplatform is interesting for enhancing photodynamic therapy (PDT) of cancer. Here, a multifunctional nanoplatform for enhanced photodynamic therapy and magnetic resonance imaging of cancer was constructed. The poly (lactide-co-glycolide) (PLGA) nanoparticles (NPs) loaded with hematoporphyrin monomethyl ether (HMME) were coated with multifunctional manganese dioxide (MnO2) shells, which were designed as PLGA/HMME@MnO2 NPs. Once the NPs were effectively taken up by tumor cells, the intracellular H2O2 was catalysed by the MnO2 shells to generate O2. Meanwhile, the higher glutathione (GSH) promoted the degradation of MnO2 into Mn(2+) ions with the ability of magnetic resonance (MR) imaging. After the degradation of outer layer, the release of photosensitizer was promoted. Under irradiation, the released HMME produced cytotoxic reactive oxygen species (ROS) to damage the tumor cells when the O2 was generated in the hypoxic tumor site. Furthermore, the decreased GSH level further inhibited the consumption of the produced ROS, which greatly enhanced the PDT efficacy. Therefore, this study suggested that this multifunctional system has the potential for enhanced photodynamic therapy and magnetic resonance imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Dual-Enzyme-Loaded Multifunctional Hybrid Nanogel System for Pathological Responsive Ultrasound Imaging and T2-Weighted Magnetic Resonance Imaging.

    PubMed

    Wang, Xia; Niu, Dechao; Li, Pei; Wu, Qing; Bo, Xiaowan; Liu, Boji; Bao, Song; Su, Teng; Xu, Huixiong; Wang, Qigang

    2015-06-23

    A dual-enzyme-loaded multifunctional hybrid nanogel probe (SPIO@GCS/acryl/biotin-CAT/SOD-gel, or SGC) has been developed for dual-modality pathological responsive ultrasound (US) imaging and enhanced T2-weighted magnetic resonance (MR) imaging. This probe is composed of functionalized superparamagnetic iron oxide particles, a dual enzyme species (catalase and superoxide dismutase), and a polysaccharide cationic polymer glycol chitosan gel. The dual-modality US/MR imaging capabilities of the hybrid nanogel for responsive US imaging and enhanced T2-weighted MR imaging have been evaluated both in vitro and in vivo. These results show that the hybrid nanogel SGC can exhibit efficient dual-enzyme biocatalysis with pathological species for responsive US imaging. SGC also demonstrates increased accumulation in acidic environments for enhanced T2-weighted MR imaging. Further research on these nanogel systems may lead to the development of more efficient US/MR contrast agents.

  11. Multifunctional magnetic nanoparticles for targeted imaging and therapy

    PubMed Central

    McCarthy, Jason R.; Weissleder, Ralph

    2008-01-01

    Magnetic nanoparticles have become important tools for the imaging of prevalent diseases, such as cancer, atherosclerosis, diabetes, and others. While first generation nanoparticles were fairly nonspecific, newer generations have been targeted to specific cell types and molecular targets via affinity ligands. Commonly, these ligands emerge from phage or small molecule screens, or are based on antibodies or aptamers. Secondary reporters and combined therapeutic molecules have further opened potential clinical applications of these materials. This review summarizes some of the recent biomedical applications of these newer magnetic nanomaterials. PMID:18508157

  12. Highly Oxidized Multifunctional Organic Compounds Observed in Tropospheric Particles: A Field and Laboratory Study.

    PubMed

    Mutzel, Anke; Poulain, Laurent; Berndt, Torsten; Iinuma, Yoshiteru; Rodigast, Maria; Böge, Olaf; Richters, Stefanie; Spindler, Gerald; Sipilä, Mikko; Jokinen, Tuija; Kulmala, Markku; Herrmann, Hartmut

    2015-07-07

    Very recent studies have reported the existence of highly oxidized multifunctional organic compounds (HOMs) with O/C ratios greater than 0.7. Because of their low vapor pressure, these compounds are often referred as extremely low-volatile organic compounds (ELVOCs), and thus, they are able to contribute significantly to organic mass in tropospheric particles. While HOMs have been successfully detected in the gas phase, their fate after uptake into particles remains unclear to date. Hence, the present study was designed to detect HOMs and related oxidation products in the particle phase and, thus, to shed light on their fate after phase transfer. To this end, aerosol chamber investigations of α-pinene ozonolysis were conducted under near environmental precursor concentrations (2.4 ppb) in a continuous flow reactor. The chemical characterization shows three classes of particle constituents: (1) intact HOMs that contain a carbonyl group, (2) particle-phase decomposition products, and (3) highly oxidized organosulfates (suggested to be addressed as HOOS). Besides chamber studies, HOM formation was also investigated during a measurement campaign conducted in summer 2013 at the TROPOS research station Melpitz. During this field campaign, gas-phase HOM formation was found to be correlated with an increase in the oxidation state of the organic aerosol.

  13. Multifunctional magnetic and fluorescent core-shell nanoparticles for bioimaging.

    PubMed

    Lu, Yanjiao; He, Bicheng; Shen, Jie; Li, Jie; Yang, Wantai; Yin, Meizhen

    2015-02-07

    Novel magnetic and fluorescent core-shell nanoparticles have been fabricated, which exhibit superparamagnetic behavior and emit strong near-infrared fluorescence. The nanoparticles are highly biocompatible and can be internalized into cells with nucleic accumulation via strong interaction with nucleic acids, implying potential applications in the biomedical field.

  14. Trajektoriendichte bei Magnetic Particle Imaging

    NASA Astrophysics Data System (ADS)

    Knopp, Tobias; Sattel, Timo; Biederer, Sven; Weizenecker, Jürgen; Gleich, Bernhard; Borgert, Jörn; Buzug, Thorsten M.

    Magnetic Particle Imaging ist ein neues bilgebendes Verfahren zur Darstellung der räumlichen Verteilung von magnetisierbaren Nanopartikeln. In einer Simulationsstudie wurde zuletzt das Auflösungsvermögen und die Sensitivität dieser Methode untersucht. Die Abtast-trajektorie wurde dabei so gewählt, dass der Messbereich deutlich überabgetastet wurde. In dieser Arbeit wird in einer Simulationsstudie untersucht, welchen Einfluss die Dichte der Trajektorie auf die Bildqualität der rekonstruierten Bilder hat. Es wird gezeigt, dass die Auflösung in den rekonstruierten Bildern durch die Feldstärke des angelegten Magnetfeldes und die Trajektoriendichte beschränkt ist. Die Trajektorie kann bei konstanter Feldstärke bis zu einem gewissen Grad ausgedünnt werden. Der Simulation liegt dabei ein Model zu Grunde, welches das Signal entsprechend der Langevin-Theorie des Paramagnetismus approximiert.

  15. Fluorescent, Magnetic Multifunctional Carbon Dots for Selective Separation, Identification, and Eradication of Drug-Resistant Superbugs.

    PubMed

    Pramanik, Avijit; Jones, Stacy; Pedraza, Francisco; Vangara, Aruna; Sweet, Carrie; Williams, Mariah S; Ruppa-Kasani, Vikram; Risher, Sean Edward; Sardar, Dhiraj; Ray, Paresh Chandra

    2017-02-28

    The emergence of drug-resistant superbugs remains a major burden to society. As the mortality rate caused by sepsis due to superbugs is more than 40%, accurate identification of blood infections during the early stage will have a huge significance in the clinical setting. Here, we report the synthesis of red/blue fluorescent carbon dot (CD)-attached magnetic nanoparticle-based multicolor multifunctional CD-based nanosystems, which can be used for selective separation and identification of superbugs from infected blood samples. The reported data show that multifunctional fluorescent magneto-CD nanoparticles are capable of isolating Methicillin-resistant Staphylococcus aureus (MRSA) and Salmonella DT104 superbug from whole blood samples, followed by accurate identification via multicolor fluorescence imaging. As multidrug-resistant (MDR) superbugs are resistant to antibiotics available in the market, this article also reports the design of antimicrobial peptide-conjugated multicolor fluorescent magneto-CDs for effective separation, accurate identification, and complete disinfection of MDR superbugs from infected blood. The reported data demonstrate that by combining pardaxin antimicrobial peptides, magnetic nanoparticles, and multicolor fluorescent CDs into a single system, multifunctional CDs represent a novel material for efficient separation, differentiation, and eradication of superbugs. This material shows great promise for use in clinical settings.

  16. Fluorescent, Magnetic Multifunctional Carbon Dots for Selective Separation, Identification, and Eradication of Drug-Resistant Superbugs

    PubMed Central

    2017-01-01

    The emergence of drug-resistant superbugs remains a major burden to society. As the mortality rate caused by sepsis due to superbugs is more than 40%, accurate identification of blood infections during the early stage will have a huge significance in the clinical setting. Here, we report the synthesis of red/blue fluorescent carbon dot (CD)-attached magnetic nanoparticle-based multicolor multifunctional CD-based nanosystems, which can be used for selective separation and identification of superbugs from infected blood samples. The reported data show that multifunctional fluorescent magneto-CD nanoparticles are capable of isolating Methicillin-resistant Staphylococcus aureus (MRSA) and Salmonella DT104 superbug from whole blood samples, followed by accurate identification via multicolor fluorescence imaging. As multidrug-resistant (MDR) superbugs are resistant to antibiotics available in the market, this article also reports the design of antimicrobial peptide-conjugated multicolor fluorescent magneto-CDs for effective separation, accurate identification, and complete disinfection of MDR superbugs from infected blood. The reported data demonstrate that by combining pardaxin antimicrobial peptides, magnetic nanoparticles, and multicolor fluorescent CDs into a single system, multifunctional CDs represent a novel material for efficient separation, differentiation, and eradication of superbugs. This material shows great promise for use in clinical settings. PMID:28261690

  17. Synthesis and characterization of monodisperse, mesoporous, and magnetic sub-micron particles doped with a near-infrared fluorescent dye

    SciTech Connect

    Le Guevel, Xavier; Nooney, Robert; McDonagh, Colette; MacCraith, Brian D.

    2011-06-15

    Recently, multifunctional silica nanoparticles have been investigated extensively for their potential use in biomedical applications. We have prepared sub-micron monodisperse and stable multifunctional mesoporous silica particles with a high level of magnetization and fluorescence in the near infrared region using an one-pot synthesis technique. Commercial magnetite nanocrystals and a conjugated-NIR-dye were incorporated inside the particles during the silica condensation reaction. The particles were then coated with polyethyleneglycol to stop aggregation. X-ray diffraction, N{sub 2} adsorption analysis, TEM, fluorescence and absorbance measurements were used to structurally characterize the particles. These mesoporous silica spheres have a large surface area (1978 m{sup 2}/g) with 3.40 nm pore diameter and a high fluorescence in the near infrared region at {lambda}=700 nm. To explore the potential of these particles for drug delivery applications, the pore accessibility to hydrophobic drugs was simulated by successfully trapping a hydrophobic ruthenium dye complex inside the particle with an estimated concentration of 3 wt%. Fluorescence imaging confirmed the presence of both NIR dye and the post-grafted ruthenium dye complex inside the particles. These particles moved at approximately 150 {mu}m/s under the influence of a magnetic field, hence demonstrating the multifunctionality and potential for biomedical applications in targeting and imaging. - Graphical Abstract: Hydrophobic fluorescent Ruthenium complex has been loaded into the mesopores as a surrogate drug to simulate drug delivery and to enhance the multifunctionality of the magnetic NIR emitting particles. Highlights: > Monodisperse magnetic mesoporous silica particles emitting in the near infrared region are obtained in one-pot synthesis. > We prove the capacity of such particles to uptake hydrophobic dye to mimic drug loading. > Loaded fluorescent particles can be moved under a magnetic field in a

  18. Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy.

    PubMed

    Cheng, Liang; Yang, Kai; Li, Yonggang; Zeng, Xiao; Shao, Mingwang; Lee, Shuit-Tong; Liu, Zhuang

    2012-03-01

    Theranostics, the combination of diagnostics and therapies, has become a new concept in the battles with various major diseases such as cancer. Herein, we develop multifunctional nanoparticles (MFNPs) with highly integrated functionalities including upconversion luminescence, superparamagnetism, and strong optical absorption in the near-infrared (NIR) region with high photostability. In vivo dual modal optical/magnetic resonance imaging of mice uncovers that by placing a magnet nearby the tumor, MFNPs tend to migrate toward the tumor after intravenous injection and show high tumor accumulation, which is ~8 folds higher than that without magnetic targeting. NIR laser irradiation is then applied to the tumors grown on MFNP-injected mice under magnetic tumor-targeting, obtaining an outstanding photothermal therapeutic efficacy with 100% of tumor elimination in a murine breast cancer model. We present here a strategy for multimodal imaging-guided, magnetically targeted physical cancer therapy and highlight the promise of using multifunctional nanostructures for cancer theranostics. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Note: On-chip multifunctional fluorescent-magnetic Janus helical microswimmers.

    PubMed

    Hwang, G; Decanini, D; Leroy, L; Haghiri-Gosnet, A M

    2016-03-01

    Microswimmers integrated into microfluidic devices that are capable of self-illumination through fluorescence could revolutionize many aspects of technology, especially for biological applications. Few illumination and propulsion techniques of helical microswimmers inside microfluidic channels have been demonstrated. This paper presents the fabrication, detachment, and magnetic propulsions of multifunctional fluorescent-magnetic helical microswimmers integrated inside microfluidics. The fabrication process is based on two-photon laser lithography to pattern 3-D nanostructures from fluorescent photoresist coupled with conventional microfabrication techniques for magnetic thin film deposition by shadowing. After direct integration inside a microfluidic device, injected gas bubble allows gentle detachment of the integrated helical microswimmers whose magnetic propulsion can then be directly applied inside the microfluidic channel using external electromagnetic coil setup. With their small scale, fluorescence, excellent resistance to liquid/gas surface tension, and robust propulsion capability inside the microfluidic channel, the microswimmers can be used as high-resolution and large-range mobile micromanipulators inside microfluidic channels.

  20. Note: On-chip multifunctional fluorescent-magnetic Janus helical microswimmers

    NASA Astrophysics Data System (ADS)

    Hwang, G.; Decanini, D.; Leroy, L.; Haghiri-Gosnet, A. M.

    2016-03-01

    Microswimmers integrated into microfluidic devices that are capable of self-illumination through fluorescence could revolutionize many aspects of technology, especially for biological applications. Few illumination and propulsion techniques of helical microswimmers inside microfluidic channels have been demonstrated. This paper presents the fabrication, detachment, and magnetic propulsions of multifunctional fluorescent-magnetic helical microswimmers integrated inside microfluidics. The fabrication process is based on two-photon laser lithography to pattern 3-D nanostructures from fluorescent photoresist coupled with conventional microfabrication techniques for magnetic thin film deposition by shadowing. After direct integration inside a microfluidic device, injected gas bubble allows gentle detachment of the integrated helical microswimmers whose magnetic propulsion can then be directly applied inside the microfluidic channel using external electromagnetic coil setup. With their small scale, fluorescence, excellent resistance to liquid/gas surface tension, and robust propulsion capability inside the microfluidic channel, the microswimmers can be used as high-resolution and large-range mobile micromanipulators inside microfluidic channels.

  1. Note: On-chip multifunctional fluorescent-magnetic Janus helical microswimmers

    SciTech Connect

    Hwang, G. Decanini, D.; Leroy, L.; Haghiri-Gosnet, A. M.

    2016-03-15

    Microswimmers integrated into microfluidic devices that are capable of self-illumination through fluorescence could revolutionize many aspects of technology, especially for biological applications. Few illumination and propulsion techniques of helical microswimmers inside microfluidic channels have been demonstrated. This paper presents the fabrication, detachment, and magnetic propulsions of multifunctional fluorescent-magnetic helical microswimmers integrated inside microfluidics. The fabrication process is based on two-photon laser lithography to pattern 3-D nanostructures from fluorescent photoresist coupled with conventional microfabrication techniques for magnetic thin film deposition by shadowing. After direct integration inside a microfluidic device, injected gas bubble allows gentle detachment of the integrated helical microswimmers whose magnetic propulsion can then be directly applied inside the microfluidic channel using external electromagnetic coil setup. With their small scale, fluorescence, excellent resistance to liquid/gas surface tension, and robust propulsion capability inside the microfluidic channel, the microswimmers can be used as high-resolution and large-range mobile micromanipulators inside microfluidic channels.

  2. Screen of multifunctional monoclonal antibodies against hepatitis B core virus-like particles.

    PubMed

    Sun, Chang; Ding, Fei-Xiang; Wang, Fang; He, Xiao-Wen; He, Ying; Li, Zhao-Shen; Sun, Shu-Han

    2009-06-01

    HBc-VLP can be used in an epitope presentation system to carry foreign epitopes and mimic live virus in order to study viral particle uptake, virion-mediated activation and antigen presentation by dendritic cells. In this study, a multifunctional mAb was produced using a novel research strategy. A truncated HBc-VLP bone vector with a special conformation was used as an immunogen and the target hybridoma cell lines were screened by a series of tests; including ELISA, Western blot, and cellular immunofluorescence based on the epitope presentation system. The screened monoclonal antibody was used to identify the HBc-VLP vector, a fusion HBc-VLP vaccine, and intracellular HBV capsids. The new strategy facilitated acquisition of the desired mAbs and will serve as a reference for other VLP-related research.

  3. A study of multistage/multifunction column for fine particle separation

    SciTech Connect

    Chiang, Shiao-Hung

    1996-07-01

    The overall objective of the research program is to explore the potential application of a new invention involving a multistage column equipped with vortex-inducing loop-flow contactors (hereafter referred to as the multistage column) for fine coal cleaning process. The research work will identify the design parameters and their effects on the performance of the separation process. The results of this study will provide an engineering basis for further development of this technology in coal cleaning and in the general areas of fluid/particle separation. In the last quarter, we investigated the fine coal beneficiation behaviors in the multistage column and the conventional column. In this quarter, we have initiated the wastewater treatment tests program to verify the multifunction features of the multistage column. We also performed data analysis of the bubble sizes using a model based on the unified proportionality equation. 7 refs., 10 figs., 7 tabs.

  4. Oxamato-based coordination polymers: recent advances in multifunctional magnetic materials.

    PubMed

    Grancha, Thais; Ferrando-Soria, Jesús; Castellano, María; Julve, Miguel; Pasán, Jorge; Armentano, Donatella; Pardo, Emilio

    2014-07-21

    The design and synthesis of novel examples of multifunctional magnetic materials based on the so-called coordination polymers (CPs) have become very attractive for chemists and physicists due to their potential applications in nanoscience and nanotechnology. However, their preparation is still an experimental challenge, which requires a deep knowledge of coordination chemistry and large skills in organic chemistry. The recent advances in this field using a molecular-programmed approach based on rational self-assembly methods which fully exploit the versatility of the coordination chemistry of the barely explored and evergreen family of N-substituted aromatic oligo(oxamato) ligands are presented in this feature article. These exploratory studies have revealed a wide variety of interesting multifunctional magnetic materials such as optically-active chiral and luminescent magnets or dynamic porous magnets as candidates for chemical sensing. Our feeling, however, is that we have only scratched the surface of the topic and that there are many more exciting brand-new molecule-based materials waiting to be discovered.

  5. Hollow-core photonic crystal fiber based multifunctional optical system for trapping, position sensing, and detection of fluorescent particles.

    PubMed

    Shinoj, V K; Murukeshan, V M

    2012-05-15

    We demonstrate a novel multifunctional optical system that is capable of trapping, imaging, position sensing, and fluorescence detection of micrometer-sized fluorescent test particles using hollow-core photonic crystal fiber (HC-PCF). This multifunctional optical system for trapping, position sensing, and fluorescent detection is designed such that a near-IR laser light is used to create an optical trap across a liquid-filled HC-PCF, and a 473 nm laser is employed as a source for fluorescence excitation. This proposed system and the obtained results are expected to significantly enable an efficient integrated trapping platform employing HC-PCF for diagnostic biomedical applications.

  6. Bat head contains soft magnetic particles: evidence from magnetism.

    PubMed

    Tian, Lanxiang; Lin, Wei; Zhang, Shuyi; Pan, Yongxin

    2010-10-01

    Recent behavioral observations have indicated that bats can sense the Earth's magnetic field. To unravel the magnetoreception mechanism, the present study has utilized magnetic measurements on three migratory species (Miniopterus fuliginosus, Chaerephon plicata, and Nyctalus plancyi) and three non-migratory species (Hipposideros armiger, Myotis ricketti, and Rhinolophus ferrumequinum). Room temperature isothermal remanent magnetization acquisition and alternating-field demagnetization showed that the bats' heads contain soft magnetic particles. Statistical analyses indicated that the saturation isothermal remanent magnetization of brains (SIRM(1T_brain)) of migratory species is higher than those of non-migratory species. Furthermore, the SIRM(1T_brain) of migratory bats is greater than their SIRM(1T_skull). Low-temperature magnetic measurements suggested that the magnetic particles are likely magnetite (Fe3O4). This new evidence supports the assumption that some bats use magnetite particles for sensing and orientation in the Earth's magnetic field.

  7. Magnetic Reconnection: A Powerful Cosmic Particle Accelerator

    NASA Astrophysics Data System (ADS)

    Guo, Fan

    2015-11-01

    Astrophysical magnetic reconnection sites have long been expected to be sources of high-energy particles. Recent observations of high-energy gamma-ray flares from the Crab nebula and hard X-ray emission from solar flares have motivated us to better understand magnetic reconnection and its associated particle acceleration in plasma conditions where the magnetic energy is dominant. We will present fully kinetic particle-in-cell simulations of anti-parallel magnetic reconnection in the highly magnetized regime (the magnetization parameter sigma >> 1 or plasma beta << 1). The magnetic energy is converted efficiently into kinetic energy of nonthermal relativistic particles in a power-law spectrum. For a sufficiently large system and strong magnetic field, the power-law index approaches ``-1''. The dominant acceleration mechanism is a first-order Fermi process accomplished through the curvature drift motion of particles in magnetic flux tubes along the electric field induced by fast plasma flows. We will show simulations in three dimensions and with open boundary conditions. We will present an analytical model for the formation of power-law distribution and show the nonthermal distribution may be a common feature of magnetically dominated reconnection. Collaborators: Hui Li, William Daughton, Yi-Hsin Liu, Xiaocan Li

  8. First order magneto-structural phase transition and associated multi-functional properties in magnetic solids.

    PubMed

    Roy, Sindhunil Barman

    2013-05-08

    We show that the first order magneto-structural phase transitions observed in various classes of magnetic solids are often accompanied by useful multi-functional properties, namely giant magneto-resistance, magneto-caloric effect and magneto-striction. We highlight various characteristic features associated with a disorder influenced first order phase transition namely supercooling, superheating, phase-coexistence and metastability, in several magnetic materials and discuss how a proper understanding of the transition process can help in fine tuning of the accompanied functional properties. Magneto-elastic coupling is a key element in this first order phase transition, and methods need to be explored for maximizing the contributions from both the lattice and the magnetic degree of freedom while simultaneously minimizing the thermomagnetic hysteresis loss. An analogy is also drawn with the first order phase transition observed in dielectric materials and vortex matter of type-II superconductors.

  9. Multifunctional nanocomposite based on halloysite nanotubes for efficient luminescent bioimaging and magnetic resonance imaging

    PubMed Central

    Zhou, Tao; Jia, Lei; Luo, Yi-Feng; Xu, Jun; Chen, Ru-Hua; Ge, Zhi-Jun; Ma, Tie-Liang; Chen, Hong; Zhu, Tao-Feng

    2016-01-01

    A novel multifunctional halloysite nanotube (HNT)-based Fe3O4@HNT-polyethyleneimine-Tip-Eu(dibenzoylmethane)3 nanocomposite (Fe-HNT-Eu NC) with both photoluminescent and magnetic properties was fabricated by a simple one-step hydrothermal process combined with the coupling grafting method, which exhibited high suspension stability and excellent photophysical behavior. The as-prepared multifunctional Fe-HNT-Eu NC was characterized using various techniques. The results of cell viability assay, cell morphological observation, and in vivo toxicity assay indicated that the NC exhibited excellent biocompatibility over the studied concentration range, suggesting that the obtained Fe-HNT-Eu NC was a suitable material for bioimaging and biological applications in human hepatic adenocarcinoma cells. Furthermore, the biocompatible Fe-HNT-Eu NC displayed superparamagnetic behavior with high saturation magnetization and also functioned as a magnetic resonance imaging (MRI) contrast agent in vitro and in vivo. The results of the MRI tests indicated that the Fe-HNT-Eu NC can significantly decrease the T2 signal intensity values of the normal liver tissue and thus make the boundary between the normal liver and transplanted cancer more distinct, thus effectively improving the diagnosis effect of cancers. PMID:27698562

  10. Multifunctional Single-Phase Photocatalysts: Extended Near Infrared Photoactivity and Reliable Magnetic Recyclability

    PubMed Central

    Li, Xiaoning; Zhu, Zhu; Li, Feng; Huang, Yan; Hu, Xiang; Huang, Haoliang; Peng, Ranran; Zhai, XiaoFang; Fu, Zhengping; Lu, Yalin

    2015-01-01

    A practical photocatalyst should be able to integrate together various functions including the extended solar conversion, a feasible and economic recyclability, and above the room temperature operation potential, et al., in order to fulfill the spreading application needs in nowadays. In this report, a multifunctional single-phase photocatalyst which possesses a high photoactivity extended into the near infrared region, an easy magnetic recyclability and the high temperature stability was developed by doping Co into a new layer-structured Bi7Fe3Ti3O21 material. Light absorption and photocatalytic activity of the resulted Bi7Fe3-xCoxTi3O21 photocatalyst were extended to the long wavelength as far as 800 nm. Its strong ferromagnetism above the room temperature enables the nanopowders fully recyclable in viscous solutions simply with a magnet bar in an experimental demonstration. Furthermore, such photoactivity and magnetic recyclability were heavily tested under high-temperature and high-viscosity conditions, which was intended to simulate the actual industrial environments. This work brings the bright light to a full availability of a new multifunctional photocatalyst, via integrating the much enhanced ferromagnetic, ferroelectric, optoelectronic properties, most importantly, into a single-phase structure. PMID:26503907

  11. Multifunctional magnetic reduced graphene oxide dendrites: synthesis, characterization and their applications.

    PubMed

    Roy, Ekta; Patra, Santanu; Kumar, Deepak; Madhuri, Rashmi; Sharma, Prashant K

    2015-06-15

    In this paper, for the first time, we have reported the novel synthesis of reduced graphene oxide (r-GO) dendrite kind of nanomaterial. The proposed r-GO dendrite possesses multifunctional properties in various fields of sensing and separation. The dendrite was synthesized by chemical reaction in different steps. Initially, the r-GO sheet was conjugated with silane group modified magnetic nanoparticle, resulting in nanoparticle decorated r-GO. The above r-GO sheet was further reacted with a new r-GO sheet, resulting in the formation of r-GO dendrite type of structure. Multifunctional behavior of this r-GO dendrite structure was studied by different methods. First, magnetic properties were studied by vibrating sample magnetometer (VSM) and it was found that dendrite structure shows good magnetic susceptibility (180.2 emu/g). The proposed r-GO dendrite also shows a very good antibacterial behavior for Escherichia coli and excellent electrochemical behavior towards ferrocyanide probe molecule. Along with these, it also acts as a substrate for the synthesis of molecularly imprinted polymer for europium metal ion, a lanthanide. The proposed imprinted sensor shows a very high selectivity and sensitivity for europium metal ion (limit of detection= 0.019 μg L(-1)) in aqueous as well as real samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Magnetic particle dispersion in polymer solution

    NASA Astrophysics Data System (ADS)

    Jeon, Kwang Seoung

    Magnetic particle dispersions were prepared in order to observe the effect of particle surface properties, concentration and functional group of binder, milling time, and solvent on dispersion properties. Rheology and transverse susceptibility measurements were used to characterize the dispersion quality of the magnetic paints macroscopically and microscopically, respectively. In this study, by applying the acid-base concept, methods to optimize magnetic dispersions were established. Initially, interaction between acid-base sites on particles and binder was investigated by poisoning the sites with chemicals, then quantifying each type of adsorption (hydrogen and chemical adsorption) using thermogravimetric analysis. With this fundamental information, effects of typical dispersion parameters were investigated. The acid base interaction between binder solution and particles was related to the magnetic and rheological properties of magnetic inks. The results have significant implications for high density particulate media where dispersion will become increasingly important.

  13. Particle size, magnetic field, and blood velocity effects on particle retention in magnetic drug targeting.

    PubMed

    Cherry, Erica M; Maxim, Peter G; Eaton, John K

    2010-01-01

    A physics-based model of a general magnetic drug targeting (MDT) system was developed with the goal of realizing the practical limitations of MDT when electromagnets are the source of the magnetic field. The simulation tracks magnetic particles subject to gravity, drag force, magnetic force, and hydrodynamic lift in specified flow fields and external magnetic field distributions. A model problem was analyzed to determine the effect of drug particle size, blood flow velocity, and magnetic field gradient strength on efficiency in holding particles stationary in a laminar Poiseuille flow modeling blood flow in a medium-sized artery. It was found that particle retention rate increased with increasing particle diameter and magnetic field gradient strength and decreased with increasing bulk flow velocity. The results suggest that MDT systems with electromagnets are unsuitable for use in small arteries because it is difficult to control particles smaller than about 20 microm in diameter.

  14. Magnetic particle imaging for aerosol-based magnetic targeting

    NASA Astrophysics Data System (ADS)

    Banura, Natsuo; Murase, Kenya

    2017-08-01

    Magnetic targeting is a strategy for improving the efficacy of therapeutic agents and minimizing the unwanted side effects by attaching the therapeutic agents to magnetic nanoparticles (MNPs) and concentrating them to the targeted region such as solid tumors and regions of infection using external magnetic fields. This study was undertaken to investigate the usefulness of magnetic particle imaging (MPI) for monitoring the effect of aerosol-based magnetic targeting by phantom experiments using a simple flow model and nebulized MNPs. Our results suggest that MPI is useful for monitoring the effect of aerosol-based magnetic targeting.

  15. Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing

    PubMed Central

    2016-01-01

    We present large-scale reproducible fabrication of multifunctional ultrasharp metallic structures on planar substrates with capabilities including magnetic field nanofocusing and plasmonic sensing. Objects with sharp tips such as wedges and pyramids made with noble metals have been extensively used for enhancing local electric fields via the lightning-rod effect or plasmonic nanofocusing. However, analogous nanofocusing of magnetic fields using sharp tips made with magnetic materials has not been widely realized. Reproducible fabrication of sharp tips with magnetic as well as noble metal layers on planar substrates can enable straightforward application of their material and shape-derived functionalities. We use a template-stripping method to produce plasmonic-shell-coated nickel wedge and pyramid arrays at the wafer-scale with tip radius of curvature close to 10 nm. We further explore the magnetic nanofocusing capabilities of these ultrasharp substrates, deriving analytical formulas and comparing the results with computer simulations. These structures exhibit nanoscale spatial control over the trapping of magnetic microbeads and nanoparticles in solution. Additionally, enhanced optical sensing of analytes by these plasmonic-shell-coated substrates is demonstrated using surface-enhanced Raman spectroscopy. These methods can guide the design and fabrication of novel devices with applications including nanoparticle manipulation, biosensing, and magnetoplasmonics. PMID:26837912

  16. Green synthetic, multifunctional hybrid micelles with shell embedded magnetic nanoparticles for theranostic applications.

    PubMed

    Li, Yongyong; Ma, Junping; Zhu, Haiyan; Gao, Xiaolong; Dong, Haiqing; Shi, Donglu

    2013-08-14

    The objective of this study is to design and develop a green-synthetic, multifunctional hybrid micelles with shell embedded magnetic nanoparticles for theranostic applications. The hybrid micelles were engineered based on complex micelles self-assembled from amphiphilic block copolymers Pluronic F127 and peptide-amphiphile (PA) pal-AAAAHHHD. The reason to choose PA is due to its amphiphilic character and the coordination capability for Fe(3+) and Fe(2+). The PA incorporation allows the in situ growth of the magnetic iron oxide nanoparticles onto the complex micelles, to yield the nanostructures with shell embedded magnetic nanoparticles at an ambient condition without any organic solvents. The anticancer drug doxorubicin (DOX) can be efficiently loaded into the hybrid micelles. Interestingly, the magnetic nanoparticles anchored on the shell were found to significantly retard the DOX release behavior of the drug loaded hybrid micelles. It was proposed that a cross-linking effect of the shell by magnetic nanoparticles is a key to underlie the above intriguing phenomenon, which could enhance the stability and control the drug diffusion of the hybrid micelles. Importantly, in vitro and in vivo magnetic resonance imaging (MRI) revealed the potential of these hybrid micelles to be served as a T2-weighted MR imaging contrast enhancer for clinical diagnosis.

  17. Multifunctional magnetic-responsive hydrogels to engineer tendon-to-bone interface.

    PubMed

    Silva, Elsa D; Babo, Pedro S; Costa-Almeida, Raquel; Domingues, Rui M A; Mendes, Bárbara B; Paz, Elvira; Freitas, Paulo; Rodrigues, Márcia T; Granja, Pedro L; Gomes, Manuela E

    2017-06-11

    Photocrosslinkable magnetic hydrogels are attracting great interest for tissue engineering strategies due to their versatility and multifunctionality, including their remote controllability ex vivo, thus enabling engineering complex tissue interfaces. This study reports the development of a photocrosslinkable magnetic responsive hydrogel made of methacrylated chondroitin sulfate (MA-CS) enriched with platelet lysate (PL) with tunable features, envisioning their application in tendon-to-bone interface. MA-CS coated iron-based magnetic nanoparticles were incorporated to provide magnetic responsiveness to the hydrogel. Osteogenically differentiated adipose-derived stem cells and/or tendon-derived cells were encapsulated within the hydrogel, proliferating and expressing bone- and tendon-related markers. External magnetic field (EMF) application modulated the swelling, degradation and release of PL-derived growth factors, and impacted both cell morphology and the expression and synthesis of tendon- and bone-like matrix with a more evident effect in co-cultures. Overall, the developed magnetic responsive hydrogel represents a potential cell carrier system for interfacial tissue engineering with EMF-controlled properties. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Multifunctional magnetic nanostructured hardystonite scaffold for hyperthermia, drug delivery and tissue engineering applications.

    PubMed

    Farzin, Ali; Fathi, Mohammadhossein; Emadi, Rahmatollah

    2017-01-01

    Hyperthermia and local drug delivery have been proposed as potential therapeutic approaches for killing cancer cells. The development of bioactive materials such as Hardystonite (HT) with magnetic and drug delivery properties can potentially meet this target. This new class of magnetic bioceramic can replace the widely used magnetic iron oxide nanoparticles, whose long-term biocompatibility is not clear. Magnetic HT can be potentially employed to develop new ceramic scaffolds for bone surgery and anticancer therapies. With this in mind, a synthesis procedure was developed to prepare multifunctional bioactive scaffold for tissue engineering, hyperthermia and drug delivery applications. To this end, iron (Fe(3+))-containing HT scaffolds were prepared. The effect of Fe on biological, magnetic and drug delivery properties of HT scaffolds were investigated. The results showed that obtained Fe-HT is bioactive and magnetic with no magnetite or maghemite as secondary phases. The Fe-HT scaffolds obtained also possessed high specific surface areas and demonstrated sustained drug delivery. These results potentially open new aspects for biomaterials aimed at regeneration of large-bone defects caused by malignant bone tumors through a combination of hyperthermia, local drug delivery and osteoconductivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing.

    PubMed

    Kumar, Shailabh; Johnson, Timothy W; Wood, Christopher K; Qu, Tao; Wittenberg, Nathan J; Otto, Lauren M; Shaver, Jonah; Long, Nicholas J; Victora, Randall H; Edel, Joshua B; Oh, Sang-Hyun

    2016-04-13

    We present large-scale reproducible fabrication of multifunctional ultrasharp metallic structures on planar substrates with capabilities including magnetic field nanofocusing and plasmonic sensing. Objects with sharp tips such as wedges and pyramids made with noble metals have been extensively used for enhancing local electric fields via the lightning-rod effect or plasmonic nanofocusing. However, analogous nanofocusing of magnetic fields using sharp tips made with magnetic materials has not been widely realized. Reproducible fabrication of sharp tips with magnetic as well as noble metal layers on planar substrates can enable straightforward application of their material and shape-derived functionalities. We use a template-stripping method to produce plasmonic-shell-coated nickel wedge and pyramid arrays at the wafer-scale with tip radius of curvature close to 10 nm. We further explore the magnetic nanofocusing capabilities of these ultrasharp substrates, deriving analytical formulas and comparing the results with computer simulations. These structures exhibit nanoscale spatial control over the trapping of magnetic microbeads and nanoparticles in solution. Additionally, enhanced optical sensing of analytes by these plasmonic-shell-coated substrates is demonstrated using surface-enhanced Raman spectroscopy. These methods can guide the design and fabrication of novel devices with applications including nanoparticle manipulation, biosensing, and magnetoplasmonics.

  20. Multifunctional magnetic-hollow gold nanospheres for bimodal cancer cell imaging and photothermal therapy.

    PubMed

    Bai, Ling-Yu; Yang, Xiao-Quan; An, Jie; Zhang, Lin; Zhao, Kai; Qin, Meng-Yao; Fang, Bi-Yun; Li, Cheng; Xuan, Yang; Zhang, Xiao-Shuai; Zhao, Yuan-Di; Ma, Zhi-Ya

    2015-08-07

    Multifunctional nanocomposites combining imaging and therapeutic functions have great potential for cancer diagnosis and therapy. In this work, we developed a novel theranostic agent based on hollow gold nanospheres (HGNs) and superparamagnetic iron oxide nanoparticles (SPIO). Taking advantage of the excellent magnetic properties of SPIO and strong near-infrared (NIR) absorption property of HGNs, such nanocomposites were applied to targeted magnetic resonance imaging (MRI) and photoacoustic imaging (PAI) of cancer cells. In vitro results demonstrated they displayed significant contrast enhancement for T2-weighted MRI and strong PAI signal enhancement. Simultaneously, the nanocomposites exhibited a high photothermal effect under the irradiation of the near-infrared laser and can be used as efficient photothermal therapy (PTT) agents for selective killing of cancer cells. All these results indicated that such nanocomposites combined with MRI-PAI and PTT functionality can have great potential for effective cancer diagnosis and therapy.

  1. Multifunctional magnetic-hollow gold nanospheres for bimodal cancer cell imaging and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Bai, Ling-Yu; Yang, Xiao-Quan; An, Jie; Zhang, Lin; Zhao, Kai; Qin, Meng-Yao; Fang, Bi-Yun; Li, Cheng; Xuan, Yang; Zhang, Xiao-Shuai; Zhao, Yuan-Di; Ma, Zhi-Ya

    2015-08-01

    Multifunctional nanocomposites combining imaging and therapeutic functions have great potential for cancer diagnosis and therapy. In this work, we developed a novel theranostic agent based on hollow gold nanospheres (HGNs) and superparamagnetic iron oxide nanoparticles (SPIO). Taking advantage of the excellent magnetic properties of SPIO and strong near-infrared (NIR) absorption property of HGNs, such nanocomposites were applied to targeted magnetic resonance imaging (MRI) and photoacoustic imaging (PAI) of cancer cells. In vitro results demonstrated they displayed significant contrast enhancement for T2-weighted MRI and strong PAI signal enhancement. Simultaneously, the nanocomposites exhibited a high photothermal effect under the irradiation of the near-infrared laser and can be used as efficient photothermal therapy (PTT) agents for selective killing of cancer cells. All these results indicated that such nanocomposites combined with MRI-PAI and PTT functionality can have great potential for effective cancer diagnosis and therapy.

  2. Water-Dispersible, Multifunctional, Magnetic, Luminescent Silica-Encapsulated Composite Nanotubes

    SciTech Connect

    Sutter, E.; Wong, S.; Zhou, H.; Chen, J.; Sutter, E.; Feygenson, M.; Aronson, M.C.

    2010-02-05

    A multifunctional one-dimensional nanostructure incorporating both CdSe quantum dots (QDs) and Fe{sub 3}O{sub 4} nanoparticles (NPs) within a SiO{sub 2}-nanotube matrix is successfully synthesized based on the self-assembly of preformed functional NPs, allowing for control over the size and amount of NPs contained within the composite nanostructures. This specific nanostructure is distinctive because both the favorable photoluminescent and magnetic properties of QD and NP building blocks are incorporated and retained within the final silica-based composite, thus rendering it susceptible to both magnetic guidance and optical tracking. Moreover, the resulting hydrophilic nanocomposites are found to easily enter into the interiors of HeLa cells without damage, thereby highlighting their capability not only as fluorescent probes but also as possible drug-delivery vehicles of interest in nanobiotechnology.

  3. Dynamics of magnetic nano-particle assembly

    NASA Astrophysics Data System (ADS)

    Kondratyev, V. N.

    2010-11-01

    Ferromagnetically coupled nano-particle assembly is analyzed accounting for inter- and intra- particle electronic structures within the randomly jumping interacting moments model including quantum fluctuations due to the discrete levels and disorder. At the magnetic jump anomalies caused by quantization the magnetic state equation and phase diagram are found to indicate an existence of spinodal regions and critical points. Arrays of magnetized nano-particles with multiple magnetic response anomalies are predicted to display some specific features. In a case of weak coupling such arrays exhibit the well-separated instability regions surrounding the anomaly positions. With increasing coupling we observe further structure modification, plausibly, of bifurcation type. At strong coupling the dynamical instability region become wide while the stable regime arises as a narrow islands at small disorders. It is shown that exploring correlations of magnetic noise amplitudes represents convenient analytical tool for quantitative definition, description and study of supermagnetism, as well as self-organized criticality.

  4. Particles size distribution in diluted magnetic fluids

    NASA Astrophysics Data System (ADS)

    Yerin, Constantine V.

    2017-06-01

    Changes in particles and aggregates size distribution in diluted kerosene based magnetic fluids is studied by dynamic light scattering method. It has been found that immediately after dilution in magnetic fluids the system of aggregates with sizes ranging from 100 to 250-1000 nm is formed. In 50-100 h after dilution large aggregates are peptized and in the sample stationary particles and aggregates size distribution is fixed.

  5. Magnetic tweezers for manipulation of magnetic particles in single cells

    NASA Astrophysics Data System (ADS)

    Ebrahimian, H.; Giesguth, M.; Dietz, K.-J.; Reiss, G.; Herth, S.

    2014-02-01

    Magnetic tweezers gain increasing interest for applications in biology. Here, a setup of magnetic tweezers is introduced using micropatterned conducting lines on transparent glass slides. Magnetic particles of 1 μm diameter were injected in barley cell vacuoles using a microinject system under microscopic control. Time dependent tracking of the particles after application of a magnetic field was used to determine the viscosity of vacuolar sap in vivo relative to water and isolated vacuolar fluid. The viscosity of vacuolar sap in cells was about 2-fold higher than that of extracted vacuolar fluid and 5 times higher than that of water.

  6. Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy.

    PubMed

    Mashhadi Malekzadeh, Asemeh; Ramazani, Ali; Tabatabaei Rezaei, Seyed Jamal; Niknejad, Hassan

    2017-03-15

    Magnetic drug targeting is a drug delivery strategy that can be used to improve the therapeutic efficiency on tumor cells and reduce the side effects on normal cells and tissues. The aim in this study is designing a novel multifunctional drug delivery system based on superparamagnetic nanoparticles for cancer therapy. Magnetic nanoparticles were synthesized by coprecipitation of iron oxide followed by coating with poly citric acid (PCA) dendritic macromolecules via bulk polymerization strategy. It was further surface-functionalized with poly(ethylene glycol) (PEG) and then to achieve tumor cell targeting property, folic acid was further incorporated to the surface of prepared carriers via a facile coupling reaction between the hydroxyl end group of the PEG and the carboxyl group of folic acid. The so prepared nanocarriers (Fe3O4@PCA-PEG-FA) were characterized by X-ray diffraction, TEM, TGA, FT-IR, DLS and VSM techniques. The room temperature VSM measurements showed that magnetic particles were superparamagnetic. Transmission electron microscopy and dynamic light scattering were also performed which revealed that size of nanocarriers was lying in the range of 10-49nm. Quercetin loading and release profiles of prepared nanocarriers showed that up to 83% of loaded drug was released in 250h. Fluorescent microscopy showed that the cellular uptake by folate receptor-overexpressing HeLa cells of the quercetin-loaded Fe3O4@PCA-PEG-FA nanoparticles was higher than that of non-folate conjugated nanoparticles. Thus, folate conjugation significantly increased nanoparticle cytotoxicity. Also, T2-weighted MRI images of Fe3O4@PCA-PEG-FA nanoparticles showed that the magnetic resonance signal is enhanced significantly with increasing nanoparticle concentration in water and they also served as MRI contrast agents with relaxivities of 3.4mM(-1)s(-1) (r1) and 99.8mM(-1)s(-1) (r2). The results indicate that this multifunctional nanocarrier is a significant breakthrough in developing a

  7. Synthesis of magnetic and upconversion nanocapsules as multifunctional drug delivery system

    SciTech Connect

    Huang, Shanshan; Chen, Yinyin; Liu, Bei; He, Fei; Ma, Ping’an; Deng, Xiaoran; Cheng, Ziyong Lin, Jun

    2015-09-15

    Multifunctional hollow nanocapsules with magnetic and upconversion luminescence properties were synthesized. Hollow Fe{sub 3}O{sub 4}@SiO{sub 2} was firstly prepared by using rodlike β-FeOOH as the template followed by silica coating, calcinations and reduction. Then Fe{sub 3}O{sub 4}@SiO{sub 2}@α-NaYF{sub 4}:Yb{sup 3+},Er{sup 3+} nanocapsules (FeSiUCNP) were synthesized by the hydrothermal transformation of the Y(Yb{sup 3+}, Er{sup 3+})(OH)CO{sub 3} (YOC) deposited onto the surface of nanocapsules through a urea-assisted homogeneous precipitation method. The hollow nanocapsules with porous structure provide space and entrance for the drug molecules. Due to the outside shell of α-NaYF{sub 4}:Yb{sup 3+}, Er{sup 3+}, the nanomaterial shows upconverting red emission upon 980 nm NIR-light excitation. Moreover, the nanocomposites with hollow magnetite core exhibit a high relaxivity with r{sub 2} value of 183 mM{sup −1} s{sup −1}, which reveal the potential as T{sub 2}-weighted contrast agents for magnetic resonance imaging (MRI). The as-prepared nanocapsules can be performed as anti-cancer drug carriers for investigation of drug loading/release properties, which demonstrated a sustained drug release pattern and a comparable cytotoxicity with free doxorubicin (DOX). The multifunctional nanocapsules incorporated upconverting luminescence, T{sub 2}-weighted MRI imaging and drug targeting delivery modalities have great potential for theranostic applications in cancer treatment. - Graphical abstract: Multifunctional hollow nanocapsules with upconverting luminescence, T{sub 2}-weighted MRI imaging and drug targeting delivery modalities were synthesized for cancer treatment. - Highlights: • Multifunctional porous Fe{sub 3}O{sub 4}@SiO{sub 2}@α-NaYF{sub 4}:Yb{sup 3+},Er{sup 3+} nanocapsules were synthesized. • The nanocapsules show upconverting red emission upon 980 nm NIR-light excitation. • The nanocapsules exihibit potential as T{sub 2}-weighted contrast agents

  8. Fundamentals and applications of magnetic particle imaging.

    PubMed

    Borgert, Jörn; Schmidt, Joachim D; Schmale, Ingo; Rahmer, Jürgen; Bontus, Claas; Gleich, Bernhard; David, Bernd; Eckart, Rainer; Woywode, Oliver; Weizenecker, Jürgen; Schnorr, Jörg; Taupitz, Matthias; Haegele, Julian; Vogt, Florian M; Barkhausen, Jörg

    2012-01-01

    Magnetic particle imaging (MPI) is a new medical imaging technique which performs a direct measurement of magnetic nanoparticles, also known as superparamagnetic iron oxide. MPI can acquire quantitative images of the local distribution of the magnetic material with high spatial and temporal resolution. Its sensitivity is well above that of other methods used for the detection and quantification of magnetic materials, for example, magnetic resonance imaging. On the basis of an intravenous injection of magnetic particles, MPI has the potential to play an important role in medical application areas such as cardiovascular, oncology, and also in exploratory fields such as cell labeling and tracking. Here, we present an introduction to the basic function principle of MPI, together with an estimation of the spatial resolution and the detection limit. Furthermore, the above-mentioned medical applications are discussed with respect to an applicability of MPI.

  9. Biosensing Using Magnetic Particle Detection Techniques.

    PubMed

    Chen, Yi-Ting; Kolhatkar, Arati G; Zenasni, Oussama; Xu, Shoujun; Lee, T Randall

    2017-10-10

    Magnetic particles are widely used as signal labels in a variety of biological sensing applications, such as molecular detection and related strategies that rely on ligand-receptor binding. In this review, we explore the fundamental concepts involved in designing magnetic particles for biosensing applications and the techniques used to detect them. First, we briefly describe the magnetic properties that are important for bio-sensing applications and highlight the associated key parameters (such as the starting materials, size, functionalization methods, and bio-conjugation strategies). Subsequently, we focus on magnetic sensing applications that utilize several types of magnetic detection techniques: spintronic sensors, nuclear magnetic resonance (NMR) sensors, superconducting quantum interference devices (SQUIDs), sensors based on the atomic magnetometer (AM), and others. From the studies reported, we note that the size of the MPs is one of the most important factors in choosing a sensing technique.

  10. Probing fine magnetic particles with neutron scattering

    SciTech Connect

    Pynn, R.

    1991-12-31

    Because thermal neutrons are scattered both by nuclei and by unpaired electrons, they provide an ideal probe for studying the atomic and magnetic structures of fine-grained magnetic materials, including nanocrystalline solids, thin epitaxial layers, and colloidal suspensions of magnetic particles, known as ferrofluids. Diffraction, surface reflection, and small angle neutron scattering (SANS) are the techniques used. With the exception of surface reflection, these methods are described in this article. The combination of SANS with refractive-index matching and neutron polarisation analysis is particularly powerful because it allows the magnetic and atomic structures to be determined independently. This technique has been used to study both dilute and concentrated ferrofluid suspensions of relatively monodisperse cobalt particles, subjected to a series of applied magnetic fields. The size of the cobalt particle core and the surrounding surfactant layer were determined. The measured interparticle structure factor agrees well with a recent theory that allows correlations in binary mixtures of magnetic particles to be calculated in the case of complete magnetic alignment. When one of the species in such a binary mixture is a nonmagnetic, cyclindrical macromolecule, application of a magnetic field leads to some degree of alignment of the nonmagnetic species. This result has been demonstrated with tobacco mosaic virus suspended in a water-based ferrofluid.

  11. Probing fine magnetic particles with neutron scattering

    SciTech Connect

    Pynn, R.

    1991-01-01

    Because thermal neutrons are scattered both by nuclei and by unpaired electrons, they provide an ideal probe for studying the atomic and magnetic structures of fine-grained magnetic materials, including nanocrystalline solids, thin epitaxial layers, and colloidal suspensions of magnetic particles, known as ferrofluids. Diffraction, surface reflection, and small angle neutron scattering (SANS) are the techniques used. With the exception of surface reflection, these methods are described in this article. The combination of SANS with refractive-index matching and neutron polarisation analysis is particularly powerful because it allows the magnetic and atomic structures to be determined independently. This technique has been used to study both dilute and concentrated ferrofluid suspensions of relatively monodisperse cobalt particles, subjected to a series of applied magnetic fields. The size of the cobalt particle core and the surrounding surfactant layer were determined. The measured interparticle structure factor agrees well with a recent theory that allows correlations in binary mixtures of magnetic particles to be calculated in the case of complete magnetic alignment. When one of the species in such a binary mixture is a nonmagnetic, cyclindrical macromolecule, application of a magnetic field leads to some degree of alignment of the nonmagnetic species. This result has been demonstrated with tobacco mosaic virus suspended in a water-based ferrofluid.

  12. Self-assembly of smallest magnetic particles

    PubMed Central

    Mehdizadeh Taheri, Sara; Michaelis, Maria; Friedrich, Thomas; Förster, Beate; Drechsler, Markus; Römer, Florian M.; Bösecke, Peter; Narayanan, Theyencheri; Weber, Birgit; Rehberg, Ingo; Rosenfeldt, Sabine; Förster, Stephan

    2015-01-01

    The assembly of tiny magnetic particles in external magnetic fields is important for many applications ranging from data storage to medical technologies. The development of ever smaller magnetic structures is restricted by a size limit, where the particles are just barely magnetic. For such particles we report the discovery of a kind of solution assembly hitherto unobserved, to our knowledge. The fact that the assembly occurs in solution is very relevant for applications, where magnetic nanoparticles are either solution-processed or are used in liquid biological environments. Induced by an external magnetic field, nanocubes spontaneously assemble into 1D chains, 2D monolayer sheets, and large 3D cuboids with almost perfect internal ordering. The self-assembly of the nanocubes can be elucidated considering the dipole–dipole interaction of small superparamagnetic particles. Complex 3D geometrical arrangements of the nanodipoles are obtained under the assumption that the orientation of magnetization is freely adjustable within the superlattice and tends to minimize the binding energy. On that basis the magnetic moment of the cuboids can be explained. PMID:26554000

  13. A multi-functional testing instrument for heat assisted magnetic recording media

    SciTech Connect

    Yang, H. Z. Chen, Y. J.; Leong, S. H.; An, C. W.; Ye, K. D.; Hu, J. F.; Yin, M. J.

    2014-05-07

    With recent developments in heat assisted magnetic recording (HAMR), characterization of HAMR media is becoming very important. We present a multi-functional instrument for testing HAMR media, which integrates HAMR writing, reading, and a micro-magneto-optic Kerr effect (μ-MOKE) testing function. A potential application of the present instrument is to make temperature dependent magnetic property measurement using a pump-probe configuration. In the measurement, the media is heated up by a heating (intense) beam while a testing (weak) beam is overlapped with the heating beam for MOKE measurement. By heating the media with different heating beam power, magnetic measurements by MOKE at different temperatures can be performed. Compared to traditional existing tools such as the vibrating sample magnetometer, the present instrument provides localized and efficient heating at the measurement spot. The integration of HAMR writing and μ-MOKE system can also facilitate a localized full investigation of the magnetic media by potential correlation of HAMR head independent write/read performance to localized magnetic properties.

  14. Magnetic and upconverted luminescent properties of multifunctional lanthanide doped cubic KGdF4nanocrystals

    NASA Astrophysics Data System (ADS)

    Yang, L. W.; Zhang, Y. Y.; Li, J. J.; Li, Y.; Zhong, J. X.; Chu, Paul K.

    2010-12-01

    Lanthanide (Ln3+) doped KGdF4 (Ln = Yb3+, Er3+, Ho3+, Tm3+) nanocrystals with a mean diameter of approximately 12 nm were synthesized by a hydrothermal method using oleic acid as a stabilizing agent at 180 °C. The nanocrystals crystallize in the cubic phase as α-NaGdF4. When excited by a 980 nm laser, these Ln3+ doped nanocrystals exhibit multicolor up-conversion (UC) emissions in red, yellow, blue and white. The calculated color coordinates demonstrate that white UC emission (CIE-X = 0.352, CIE-Y = 0.347) can be obtained by varying the dopant concentrations in the Yb3+/Ho3+/Tm3+ triply-doped nanocrystals to yield different RGB emission intensities. The measured field dependence of magnetization (M-H curves) of the KGdF4nanocrystals shows their paramagnetic characteristics that can be ascribed to the non-interacting localized nature of the magnetic moment of Gd3+ ions. Moreover, low temperature thermal treatment can enhance UC properties, magnetization and magnetic mass susceptibility of Ln3+ doped KGdF4nanocrystals. The multifunctional Ln3+ doped KGdF4nanocrystals have potential applications in color displays, bioseparation, and optical-magnetic dual modal nanoprobes in biomedical imaging.

  15. Magnetic-control multifunctional acoustic metasurface for reflected wave manipulation at deep subwavelength scale.

    PubMed

    Chen, Xing; Liu, Peng; Hou, Zewei; Pei, Yongmao

    2017-08-22

    Acoustic metasurfaces, exhibiting superior performance with subwavelength thickness, are ideal alternatives for functionalities such as wavefront modulation and acoustic energy trapping, etc. However, most of the reported acoustic metasurfaces were passive. Here a magnetically tuned mechanism is reported for membrane-type acoustic metamaterials. Harnessing the geometric nonlinearity of membrane structures, the transmission spectrum is both theoretically and experimentally tuned over broadband by an external static magnetic force. Simultaneously, the phase profiles can be readily tailored by the magnetic stimulus. Further, a magnetic-control multifunctional metasurface is proposed for low-frequency wave manipulation. By switching the magnetic force distribution, multi extraordinary phenomena, such as acoustic wave redirecting, focusing, bending, etc., are realized without changing the physical structure. Besides, it is demonstrated the proposed metasurface, at deep subwavelength scale (~1/85λ), supports anomalous reflected wave manipulation over a wide band. These results open up new degrees of freedom to steer acoustic wave and pave a way for designing active acoustic devices.

  16. Magnetic iron particles with high magnetization useful for immunoassay

    NASA Astrophysics Data System (ADS)

    Tokoro, Hisato; Nakabayashi, Takashi; Fujii, Shigeo; Zhao, Hong; Häfeli, Urs O.

    2009-05-01

    TiO 2-encapsulated metallic Fe particles (Ti-O/Fe) were synthesized through a solid phase reaction. The Ti-O/Fe particles were non-toxic to tumor cells in a cell viability assay. After silica coating using a sol-gel method, streptavidin was covalently bound onto the Ti-O/Fe particles. Thus produced HMMI particles showed higher magnetization (114 Am 2/kg) and a larger specific surface area (15 m 2/g) than conventional streptavidin-immobilized magnetite particles. The high magnetization allowed for rapid magnetic separation, while the additional large specific surface area improved the detection of the adiponectin antigen both in terms of extended detection range and higher assay speed.

  17. Nonthermal Particle Acceleration in Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Guo, Fan; Li, Hui; Zhang, Haocheng; Daughton, William; Liu, Yi-Hsin; Lloyd-Ronning, Nicole

    2017-08-01

    Magnetic reconnection is a leading mechanism for dissipating magnetic energy and accelerating nonthermal particles in Poynting-flux-dominated flows. In this study, we investigate nonthermal particle acceleration during magnetic reconnection in a magnetically dominated plasma using fully kinetic simulations. We have studied the magnetically dominated regime by varying σe = 103-105 and mass ratios. The results demonstrate that reconnection quickly establishes power-law energy distributions for both electrons and ions within several (2-3) light-crossing times. For the cases with periodic boundary conditions, the power-law index is 1 < p < 2 for both electrons and ions. We study particle acceleration in magnetic reconnection via large-scale 3D kinetic simulations to examine several effects that may be important, including pre-existing fluctuations, kink and secondary tearing instabilities, and open boundary conditions. The results show that particle acceleration in reconnection layers is surprisingly robust despite the development of 3D turbulence and instabilities. The main acceleration mechanism is a Fermi-like acceleration through the drift motions of charged particles. We discuss the implication of this study in the context of Poynting-flux dominated jets and pulsar winds, especially the applications for explaining nonthermal high-energy emissions.

  18. Chaotic magnetic fields: Particle motion and energization

    SciTech Connect

    Dasgupta, Brahmananda; Ram, Abhay K.; Li, Gang; Li, Xiaocan

    2014-02-11

    Magnetic field line equations correspond to a Hamiltonian dynamical system, so the features of a Hamiltonian systems can easily be adopted for discussing some essential features of magnetic field lines. The integrability of the magnetic field line equations are discussed by various authors and it can be shown that these equations are, in general, not integrable. We demonstrate several examples of realistic chaotic magnetic fields, produced by asymmetric current configurations. Particular examples of chaotic force-free field and non force-free fields are shown. We have studied, for the first time, the motion of a charged particle in chaotic magnetic fields. It is found that the motion of a charged particle in a chaotic magnetic field is not necessarily chaotic. We also showed that charged particles moving in a time-dependent chaotic magnetic field are energized. Such energization processes could play a dominant role in particle energization in several astrophysical environments including solar corona, solar flares and cosmic ray propagation in space.

  19. Multifunctional magneto-metasurface for terahertz one-way transmission and magnetic field sensing.

    PubMed

    Chen, Sai; Fan, Fei; He, Xiaotong; Chen, Meng; Chang, Shengjiang

    2015-11-01

    A magneto-metasurface is demonstrated for one-way transmission of terahertz (THz) waves and magnetic field sensing. Due to the magneto-optical effect and the asymmetric structure of the transmission system, magnetoplasmon mode splitting for forward and backward THz waves and one-way transmission has been observed in this magneto-metasurface. Significantly, the resonance of the magneto-metasurface has been found that can remain at 0.750 THz at a temperature of 218 K, performing as a stable isolator with an isolation of larger than 30 dB within a magnetic field disturbance from 0.23 to 0.35 T. Also, since the resonance of the magneto-metasurface can be tuned by the different external magnetic fields at a temperature that is higher or lower than 218 K, the magneto-metasurface can work as a highly sensitive magnetic field sensor. The sensitivity of this device reaches S=513.05  GHz·T(-1) when T=230  K. This multifunctional magneto-metasurface has broad potential in THz application systems.

  20. The Rocketdyne Multifunction Tester. Part 2: Operation of a Radial Magnetic Bearing as an Excitation Source

    NASA Technical Reports Server (NTRS)

    Hawkins, L. A.; Murphy, Brian T.; Lang, K. W.

    1991-01-01

    The operation of the magnetic bearing used as an excitation source in the Rocketdyne Multifunction Tester is described. The tester is scheduled for operation during the summer of 1990. The magnetic bearing can be used in two control modes: (1) open loop mode, in which the magnetic bearing operates as a force actuator; and (2) closed loop mode, in which the magnetic bearing provides shaft support. Either control mode can be used to excite the shaft; however, response of the shaft in the two control modes is different due to the alteration of the eigenvalues by closed loop mode operation. A rotordynamic model is developed to predict the frequency response of the tester due to excitation in either control mode. Closed loop mode excitation is shown to be similar to the excitation produced by a rotating eccentricity in a conventional bearing. Predicted frequency response of the tester in the two control modes is compared, and the maximum response is shown to be the same for the two control modes when synchronous unbalance loading is not considered. The analysis shows that the response of this tester is adequate for the extraction of rotordynamic stiffness, damping, and inertia coefficients over a wide range of test article stiffnesses.

  1. Magnetic microswimmers: Controlling particle approach through magnetic and hydrodynamic interaction

    NASA Astrophysics Data System (ADS)

    Meshkati, Farshad; Cheang, U. Kei; Kim, Minjun; Fu, Henry

    2015-11-01

    We investigate magnetic microswimmers actuated by a rotating magnetic field that may be useful for drug delivery, micro-surgery, or diagnostics in human body. For modular swimmers, assembly and disassembly requires understanding the interactions between the swimmer and other modules in the fluid. Here, we discuss possible mechanisms for a frequency-dependent attraction/repulsion between a three-bead, achiral swimmer and other magnetic particles, which represent modular assembly elements. We first investigate the hydrodynamic interaction between a swimmer and nearby particle by studying the Lagrangian trajectories in the vicinity of the swimmer. Then we show that the magnetic forces can be attractive or repulsive depending on the spatial arrangement of the swimmer and particle, with a magnitude that decreases with increasing frequency. Combining magnetic and hydrodynamic effects allows us to understand the overall behavior of magnetic particles near the swimmer. Interestingly, we find that the frequency of rotation can be used to control when the particle can closely approach the swimmer, with potential application to assembly.

  2. Multifunctional Nanocomposite with Magnetism, Thermosensitivity and Surface Enhanced Raman Scattering Effect.

    PubMed

    Wang, Chaonan; Wang, Yuanyuan; Jin, Yonglong; Xu, Tian; Yuan, Li; Fang, Jinghuai

    2015-09-01

    Multifunctional Fe3O4 @poly(N-isopropylacrylamide-co-acrylamide), Au (Fe3O4 @PNIPAM-AAM, Au) composite with magnetism, themosensitivity, surface enhanced Raman scattering (SERS) effect and drug delivery ability was successfully prepared. Transmittance measurements at 350 nm confirm the composite has a lower critical solution temperature (LCST) about 41 degrees C. Due to the network structure of PNIPAM-AAM, the composite is also an ideal drug carrier. An encapsulation efficiency of 90 wt% was demonstrated by using Ampicillin as a model drug. The drug release process was closely related with the environmental temperature, which was dramatically accelerated at temperature above LCST, and a much greater release amount was achieved. The Raman enhancement effect of such versatile composite was evaluated by using crystal violet (CV) as a probe molecule, which verified the composite is an effective SERS substrate.

  3. Dust particle dynamics in magnetized plasma sheath

    SciTech Connect

    Davoudabadi, M.; Mashayek, F.

    2005-07-15

    In this paper, the structure of a plasma sheath in the presence of an oblique magnetic field is investigated, and dynamics of a dust particle embedded in the sheath is elaborated. To simulate the sheath, a weakly collisional two-fluid model is implemented. For various magnitudes and directions of the magnetic field and chamber pressures, different plasma parameters including the electron and ion densities, ion flow velocity, and electric potential are calculated. A complete set of forces acting on the dust particle originating from the electric field in the sheath, the static magnetic field, gravity, and ion and neutral drags is taken into account. Through the trapping potential energy, the particle stable and unstable equilibria are studied while the particle is stationary inside the sheath. Other features such as the possibility of the dust levitation and trapping in the sheath, and the effect of the Lorentz force on the charged dust particle motion are also examined. An interesting feature is captured for the variation of the particle charge as a function of the magnetic field magnitude.

  4. Magnetic particle mixing with magnetic micro-convection for microfluidics

    NASA Astrophysics Data System (ADS)

    Kitenbergs, Guntars; E¯rglis, Kaspars; Perzynski, Régine; Cěbers, Andrejs

    2015-04-01

    In this paper we discuss the magnetic micro-convection phenomenon as a tool for mixing enhancement in microfluidics systems in cases when one of the miscible fluids is a magnetic particle colloid. A system of a water-based magnetic fluid and water is investigated experimentally under homogeneous magnetic field in a Hele-Shaw cell. Subsequent image analysis both qualitatively and quantitatively reveals the high enhancement of mixing efficiency provided by this method. The mixing efficiency dependence on the magnetic field and the physical limits is discussed. A suitable model for a continuous-flow microfluidics setup for mixing with magnetic micro-convection is also proposed and justified with an experiment. In addition, possible applications in improving the speed of ferrohydrodynamic sorting and magnetic label or selected tracer mixing in lab on a chip systems are noted.

  5. Triple Therapy of HER2(+) Cancer Using Radiolabeled Multifunctional Iron Oxide Nanoparticles and Alternating Magnetic Field.

    PubMed

    Zolata, Hamidreza; Afarideh, Hossein; Davani, Fereydoun Abbasi

    2016-11-01

    By using radio-labeled multifunctional superparamagnetic iron oxide nanoparticles (SPIONs) and an alternating magnetic field (AMF), we carried out targeted hyperthermia, drug delivery, radio-immunotherapy (RIT), and controlled chemotherapy of cancer tumors. We synthesized and characterized Indium-111-labeled, Trastuzumab and Doxorubicin (DOX)-conjugated APTES-PEG-coated SPIONs in our previous work. Then, we evaluated their capability in SPECT/MRI (single photon emission computed tomography/magnetic resonance imaging) dual modal molecular imaging, targeting, and controlled release. In this research, AMF was introduced to evaluate therapeutic effects of magnetic hyperthermia on radionuclide-chemo therapy of HER2(+) cells and tumor (HER2(+))-bearing mice. In vitro and in vivo experiments using synthesized complex were repeated under an AMF (f: 100 KHz, H: 280 Gs). Instead of an intra-tumor injection in most hyperthermia experiments, SPIONs were injected to the tail vein, based on our delivery strategies. For magnetic delivery, we held a permanent Nd-B-Fe magnet near the tumor region. The results showed that simultaneous magnetic hyperthermia enhanced SKBR3 cancer cells, killing by 24%, 28%, 33%, and 80% at 48 hours post-treatment for treated cells with (1) bare SPIONs; (2) antibody-conjugated, DOX-free, surface-modified SPIONs; (3) (111)In-labeled, antibody-conjugated surface-modified SPIONs; and (4) (111)In-labeled, antibody- and DOX-conjugated surface-modified SPIONs, respectively. Moreover, tumor volume inhibitory rate was 85% after a 28 day period of treatment. By using this method, multimodal imaging-guided, targeted hyperthermia, RIT, and controlled chemotherapy could be achievable in the near future.

  6. Permanent magnet system to guide superparamagnetic particles

    NASA Astrophysics Data System (ADS)

    Baun, Olga; Blümler, Peter

    2017-10-01

    A new concept of using permanent magnet systems for guiding superparamagnetic nano-particles on arbitrary trajectories over a large volume is proposed. The basic idea is to use one magnet system which provides a strong, homogeneous, dipolar magnetic field to magnetize and orient the particles, and a second constantly graded, quadrupolar field, superimposed on the first, to generate a force on the oriented particles. In this configuration the motion of the particles is driven predominantly by the component of the gradient field which is parallel to the direction of the homogeneous field. As a result, particles are guided with constant force and in a single direction over the entire volume. The direction is simply adjusted by varying the angle between quadrupole and dipole. Since a single gradient is impossible due to Gauß' law, the other gradient component of the quadrupole determines the angular deviation of the force. However, the latter can be neglected if the homogeneous field is stronger than the local contribution of the quadrupole field. A possible realization of this idea is a coaxial arrangement of two Halbach cylinders. A dipole to evenly magnetize and orient the particles, and a quadrupole to generate the force. The local force was calculated analytically for this particular geometry and the directional limits were analyzed and discussed. A simple prototype was constructed to demonstrate the principle in two dimensions on several nano-particles of different size, which were moved along a rough square by manual adjustment of the force angle. The observed velocities of superparamagnetic particles in this prototype were always several orders of magnitude higher than the theoretically expected value. This discrepancy is attributed to the observed formation of long particle chains as a result of their polarization by the homogeneous field. The magnetic moment of such a chain is then the combination of that of its constituents, while its hydrodynamic radius

  7. Interplanetary Magnetic Field Guiding Relativistic Particles

    NASA Technical Reports Server (NTRS)

    Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.

    2011-01-01

    The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.

  8. Trajectory analysis for magnetic particle imaging.

    PubMed

    Knopp, T; Biederer, S; Sattel, T; Weizenecker, J; Gleich, B; Borgert, J; Buzug, T M

    2009-01-21

    Recently a new imaging technique called magnetic particle imaging was proposed. The method uses the nonlinear response of magnetic nanoparticles when a time varying magnetic field is applied. Spatial encoding is achieved by moving a field-free point through an object of interest while the field strength in the vicinity of the point is high. A resolution in the submillimeter range is provided even for fast data acquisition sequences. In this paper, a simulation study is performed on different trajectories moving the field-free point through the field of view. The purpose is to provide mandatory information for the design of a magnetic particle imaging scanner. Trajectories are compared with respect to density, speed and image quality when applied in data acquisition. Since simulation of the involved physics is a time demanding task, moreover, an efficient implementation is presented utilizing caching techniques.

  9. Flow-controlled magnetic particle manipulation

    SciTech Connect

    Grate, Jay W; Bruckner-Lea, Cynthia J; Holman, David A

    2011-02-22

    Inventive methods and apparatus are useful for collecting magnetic materials in one or more magnetic fields and resuspending the particles into a dispersion medium, and optionally repeating collection/resuspension one or more times in the same or a different medium, by controlling the direction and rate of fluid flow through a fluid flow path. The methods provide for contacting derivatized particles with test samples and reagents, removal of excess reagent, washing of magnetic material, and resuspension for analysis, among other uses. The methods are applicable to a wide variety of chemical and biological materials that are susceptible to magnetic labeling, including, for example, cells, viruses, oligonucleotides, proteins, hormones, receptor-ligand complexes, environmental contaminants and the like.

  10. Fuzzy, copper-based multi-functional composite particles serving simultaneous catalytic and signal-enhancing roles

    NASA Astrophysics Data System (ADS)

    Li, Xiangming; Hu, Yingmo; An, Qi; Luan, Xinglong; Zhang, Qian; Zhang, Yihe

    2016-04-01

    Multifunctional plasmonic particles serving simultaneously as catalysts and label-free reporting agents are highly pursued due to their great potential in enhancing reaction operational efficiencies. Copper is an abundant and economic resource, and it possesses practical applicability in industries, but no dual-functional copper-based catalytic and self-reporting particles have been reported so far. This study proposes a facile strategy to prepare high-performance dual-functional copper-based composite particles that catalyze reactions and simultaneously serve as a SERS (surface enhanced Raman spectra) active, label-free reporting agent. Polyelectrolyte-modified reduced graphene oxide particles are used as the reactive precursors in the fabrication method. Upon adding Cu(NO3)2 solutions into the precursor dispersions, composite particles comprised by copper/copper oxide core and polyelectrolyte-graphene shell were facilely obtained under sonication. The as-prepared composite particles efficiently catalyzed the conversion of 4-nitrophenol to 4-aminophenol and simultaneously acted as the SERS-active substrate to give enhanced Raman spectra of the produced 4-aminophenol. Taking advantage of the assembling capabilities of polyelectrolyte shells, the composite particles could be further assembled onto a planar substrate to catalyze organic reactions, facilitating their application in various conditions. We expect this report to promote the fabrication and application of copper-based multifunctional particles.Multifunctional plasmonic particles serving simultaneously as catalysts and label-free reporting agents are highly pursued due to their great potential in enhancing reaction operational efficiencies. Copper is an abundant and economic resource, and it possesses practical applicability in industries, but no dual-functional copper-based catalytic and self-reporting particles have been reported so far. This study proposes a facile strategy to prepare high

  11. A multicomponent recognition and separation system established via fluorescent, magnetic, dualencoded multifunctional bioprobes.

    PubMed

    Hu, Jun; Xie, Min; Wen, Cong-Ying; Zhang, Zhi-Ling; Xie, Hai-Yan; Liu, An-An; Chen, Yong-Yong; Zhou, Shi-Ming; Pang, Dai-Wen

    2011-02-01

    Accurate and rapid recognition and separation of multiple types of biological targets such as molecules, cells, bacteria or viruses from complex sample mixtures is of great importance for a wide range of diagnostic and therapeutic strategies. To achieve this goal, a set of fluorescent, magnetic, dual-encoded multifunctional bioprobes has been constructed by co-embedding different-sized quantum dots and varying amounts of γ-Fe(2)O(3) magnetic nanoparticles into swollen poly(styrene/acrylamide) copolymer nanospheres. The dual-encoded bioprobes, which possessed different photoluminescent property and magnetic susceptibility, were proven to be capable of simultaneously recognizing and separating multiple components from a complex sample when three kinds of lectins were used as the targets. The lectins were separated with high efficiency and kept their bioactivity during the process. Compared to the conventional batchwise separation, this method does not require a large number of sequential reaction steps, which is economical of time and can be very reagent-saving. By combining the multiplexing capability of quantum dots with the superparamagnetic properties of iron oxide nanoparticles, this dual-encoded technique is expected to open new opportunities in high-throughput and multiplex bioassays, such as cell sorting, proteomical and genomical applications, drug screening etc.

  12. Multifunctional Core@Shell Magnetic Nanoprobes for Enhancing Targeted Magnetic Resonance Imaging and Fluorescent Labeling in Vitro and in Vivo.

    PubMed

    Zhang, Qian; Yin, Ting; Gao, Guo; Shapter, Joseph G; Lai, Weien; Huang, Peng; Qi, Wen; Song, Jie; Cui, Daxiang

    2017-05-31

    Core@shell magnetic nanoparticles (core@shell MNPs) are attracting widespread attention due to their enhancement properties for potential applications in hyperthermia treatment, magnetic resonance imaging (MRI), diagnostics, and so forth. Herein, we developed a facile thermal decomposition method for controllable synthesis of a superparamagnetic, monodispersed core@shell structure (Co@Mn = CoFe2O4@MnFe2O4) with uniform size distribution (σ < 5%, dc ≈ 15 nm). The CoFe2O4 core could enhance magnetic anisotropy, and the MnFe2O4 shell could improve the magnetization value. The Co@Mn MNPs were transferred into aqueous solution with an amphiphilic polymer (labeled 2% TAMRA) and functionalized with PEG2k and target molecules (folic acid, FA) to fabricate multifunctional PMATAMRA-Co@Mn-PEG2k-FA nanoprobes. The obtained PMATAMRA-Co@Mn-PEG2k-FA nanoprobes exhibit good biocompatibility, high T2 relaxation values, and long-term fluorescence stability (at least 6 months). Our results demonstrate that the synthesized PMATAMRA-Co@Mn-PEG2k-FA nanoprobes can effectively enhance the targeted MRI and fluorescent labeling in vitro and in vivo. The research outcomes will contribute to the rational design of new nanoprobes and provide a promising pathway to promote core@shell nanoprobes for further clinical contrast MRI and photodynamic therapy in the near future.

  13. Manipulations of vibrating micro magnetic particle chains

    NASA Astrophysics Data System (ADS)

    Li, Yan-Hom; Sheu, Shih-Tsung; Pai, Jay-Min; Chen, Ching-Yao

    2012-04-01

    We investigate the motion of a micro-chain consisting of several magnetic particles. The chain is firstly formed by a uniform directional field, and then manipulated by a vibrating field. We demonstrate where the chain appears to display distinct behaviors, from rigid body vibrations, bending distortions to breaking failures, by increasing either the chain's length or vibrating amplitude. In addition, the vibrating chain can be successfully driven forward, mimicking a micro-swimmer by connecting particles of different sizes.

  14. Directed Magnetic Particle Transport above Artificial Magnetic Domains Due to Dynamic Magnetic Potential Energy Landscape Transformation.

    PubMed

    Holzinger, Dennis; Koch, Iris; Burgard, Stefan; Ehresmann, Arno

    2015-07-28

    An approach for a remotely controllable transport of magnetic micro- and/or nanoparticles above a topographically flat exchange-bias (EB) thin film system, magnetically patterned into parallel stripe domains, is presented where the particle manipulation is achieved by sub-mT external magnetic field pulses. Superparamagnetic core-shell particles are moved stepwise by the dynamic transformation of the particles' magnetic potential energy landscape due to the external magnetic field pulses without affecting the magnetic state of the thin film system. The magnetic particle velocity is adjustable in the range of 1-100 μm/s by the design of the substrate's magnetic field landscape (MFL), the particle-substrate distance, and the magnitude of the applied external magnetic field pulses. The agglomeration of magnetic particles is avoided by the intrinsic magnetostatic repulsion of particles due to the parallel alignment of the particles' magnetic moments perpendicular to the transport direction and parallel to the surface normal of the substrate during the particle motion. The transport mechanism is modeled by a quantitative theory based on the precise knowledge of the sample's MFL and the particle-substrate distance.

  15. Multi-functional liposomes showing radiofrequency-triggered release and magnetic resonance imaging for tumor multi-mechanism therapy

    NASA Astrophysics Data System (ADS)

    Du, Bin; Han, Shuping; Li, Hongyan; Zhao, Feifei; Su, Xiangjie; Cao, Xiaohui; Zhang, Zhenzhong

    2015-03-01

    Recently, nanoplatforms with multiple functions, such as tumor-targeting drug carriers, MRI, optical imaging, thermal therapy etc., have become popular in the field of cancer research. The present study reports a novel multi-functional liposome for cancer theranostics. A dual targeted drug delivery with radiofrequency-triggered drug release and imaging based on the magnetic field influence was used advantageously for tumor multi-mechanism therapy. In this system, the surface of fullerene (C60) was decorated with iron oxide nanoparticles, and PEGylation formed a hybrid nanosystem (C60-Fe3O4-PEG2000). Thermosensitive liposomes (dipalmitoylphosphatidylcholine, DPPC) with DSPE-PEG2000-folate wrapped up the hybrid nanosystem and docetaxel (DTX), which were designed to combine features of biological and physical (magnetic) drug targeting for fullerene radiofrequency-triggered drug release. The magnetic liposomes not only served as powerful tumor diagnostic magnetic resonance imaging (MRI) contrast agents, but also as powerful agents for photothermal ablation of tumors. Furthermore, a remarkable thermal therapy combined chemotherapy multi-functional liposome nanoplatform converted radiofrequency energy into thermal energy to release drugs from thermosensitive liposomes, which was also observed during both in vitro and in vivo treatment. The multi-functional liposomes also could selectively kill cancer cells in highly localized regions via their excellent active tumor targeting and magnetic targeted abilities.

  16. Polydopamine-Coated Magnetic Composite Particles with an Enhanced Photothermal Effect.

    PubMed

    Zheng, Rui; Wang, Sheng; Tian, Ye; Jiang, Xinguo; Fu, Deliang; Shen, Shun; Yang, Wuli

    2015-07-29

    Recently, photothermal therapy (PTT) that utilizes photothermal conversion (PTC) agents to ablate cancer under near-infrared (NIR) irradiation has attracted a growing amount of attention because of its excellent therapeutic efficacy and improved target selectivity. Therefore, exploring novel PTC agents with an outstanding photothermal effect is a current research focus. Herein, we reported a polydopamine-coated magnetic composite particle with an enhanced PTC effect, which was synthesized simply through coating polydopamine (PDA) on the surface of magnetic Fe3O4 particles. Compared with magnetic Fe3O4 particles and PDA nanospheres, the core-shell nanomaterials exhibited an increased NIR absorption, and thus, an enhanced photothermal effect was obtained. We demonstrated the in vitro and in vivo effects of the photothermal therapy using our composite particles and their ability as a contrast agent in the T2-weighted magnetic resonance imaging. These results indicated that the multifunctional composite particles with enhanced photothermal effect are superior to magnetic Fe3O4 particles and PDA nanospheres alone.

  17. Particle Deconfinement in a Bent Magnetic Mirror

    SciTech Connect

    Renaud Gueroult and Nathaniel J. Fisch

    2012-09-06

    Coils misalignment in a magnetic mirror can produce additional particle transport. The magnetic field non axi-symmetry is responsible for radial and longitudinal drifts in a way much similar to the neo-classical transport in a tandem mirror cell distorted by end plugs. Accordingly, a regime exhibiting large radial displacements - similar to the resonant regime in tandem mirrors - can be obtained by confining ions azimuthally, for example by means of a properly tuned radial electric field. Because of the mass dependence of the magnetic field non-homogeneity drift velocities, the azimuthal trapping is mass specific, allowing in principle the filtering of a specific species based on its mass.

  18. Multifunctional mesoporous nanocomposites with magnetic, optical, and sensing features: synthesis, characterization, and their oxygen-sensing performance.

    PubMed

    Wang, Yanyan; Li, Bin; Zhang, Liming; Song, Hang

    2013-01-29

    In this paper, the fabrication, characterization, and application in oxygen sensing are reported for a novel multifunctional nanomaterial of [Ru(bpy)(2)phen-MMS] (bpy, 2,2'-bipyridyl; phen, phenathrolin) which was simply prepared by covalently grafting the ruthenium(II) polypyridyl compounds into the channels of magnetic mesoporous silica nanocomposites (MMS). Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, N(2) adsorption-desorption, a superconducting quantum interference device, UV-vis spectroscopy, and photoluminescence spectra were used to characterize the samples. The well-designed multifunctional nanocomposites show superparamagnetic behavior and ordered mesoporous characteristics and exhibit a strong red-orange metal-to-ligand charge transfer emission. In addition, the obtained nanocomposites give high performance in oxygen sensing with high sensitivity (I(0)/I(100) = 5.2), good Stern-Volmer characteristics (R(2) = 0.9995), and short response/recovery times (t↓ = 6 s and t↑ = 12 s). The magnetic, mesoporous, luminescent, and oxygen-sensing properties of this multifunctional nanostructure make it hold great promise as a novel multifunctional oxygen-sensing system for chemical/biosensor.

  19. Magnetic properties of nano-composite particles

    NASA Astrophysics Data System (ADS)

    Xu, Xia

    Chemical synthesis routes for hollow spherical BaFe12O 19, hollow mesoporous spherical BaFe12O19, worm-shape BaFe12O19 and FeCo particles were developed. These structured particles have great potentials for the applications including magnetic recording medium, catalyst support, and energy storage. Magnetically exchange coupled hard/soft SrFe12O19/FeCo and MnBi/FeCo composites were synthesized through a newly proposed process of magnetic self-assembly. These exchange coupled composites can be potentially used as rare-earth free permanent magnets. Hollow spherical BaFe12O19 particles (shell thickness ˜5 nm) were synthesized from eth-ylene glycol assisted spray pyrolysis. Hollow mesoporous spherical BaFe12O19 particles (shell thickness ˜100 nm) were synthesized from ethanol assisted spray pyrolysis, followed by alkaline ethylene glycol etching at 185 °C. An alpha-Fe2O3 and BaCO3 nanoparticle mixture was synthesized with reverse microemulsion, followed by annealing at 900 °C for 2 hours to get worm-shape BaFe 12O19 particles, which consisted of 3-7 stacked hexagonal plates. FeCo nanoparticles were synthesized by reducing FeCl2 and CoCl2 in diphenyl ether with n-butyllithium at 200 °C in an inert gas environment. The surfactant of oleic acid was used in the synthesis to make particles well dispersed in nonpolar solvents (such as hexane). SrFe12O19/FeCo core/shell particles were prepared through a magnetic self-assembly process. The as-synthesized soft FeCo nanoparticles were magnetically attracted by hard SrFe12O19 parti-cles, forming a SrFe12O19/FeCo core/shell structure. The magnetic self-assembly mechanism was confirmed by applying alternating-current demagnetization to the core/shell particles, which re-sulted in a separation of SrFe 12O19 and FeCo particles. MnBi/FeCo composites were synthesized, and the exchange coupling between MnBi and FeCo phases was demonstrated by smooth magnetic hysteresis loop of MnBi/FeCo composites. The thermal stability of Mn

  20. Novel measurement method for magnetic particles.

    PubMed

    Mäkiranta, J; Verho, J; Lekkala, J; Matintupa, N

    2006-01-01

    This paper represents a novel magnetic nanoparticle measurement method for applications in clinical diagnostics. Planar microcoils and impedance bridge measurement are used to measure the amount of the particles. Macro size coils made on PCB are used to test and verify the measurement method and measurement electronics. Experimental tests and simulative results will be used for a future microscale sensing system.

  1. Facile preparation of multifunctional uniform magnetic microspheres for T1-T2 dual modal magnetic resonance and optical imaging.

    PubMed

    Zhang, Li; Liang, Shuang; Liu, Ruiqing; Yuan, Tianmeng; Zhang, Shulai; Xu, Zushun; Xu, Haibo

    2016-08-01

    Molecular imaging is of significant importance for early detection and diagnosis of cancer. Herein, a novel core-shell magnetic microsphere for dual modal magnetic resonance imaging (MRI) and optical imaging was produced by one-pot emulsifier-free emulsion polymerization, which could provide high resolution rate of histologic structure information and realize high sensitive detection at the same time. The synthesized magnetic microspheres composed of cores containing oleic acid (OA) and sodium undecylenate (NaUA) modified Fe3O4 nanoparticles and styrene (St), Glycidyl methacrylate (GMA), and polymerizable lanthanide complexes (Gd(AA)3Phen and Eu(AA)3Phen) polymerized on the surface for outer shells. Fluorescence spectra show characteristic emission peaks from Eu(3+) at 590nm and 615nm and vivid red fluorescence luminescence can be observed by 2-photon confocal scanning laser microscopy (CLSM). In vitro cytotoxicity tests based on the MTT assay demonstrate good cytocompatibility, the composites have longitudinal relaxivity value (r1) of 8.39mM(-1)s(-1) and also have transverse relaxivity value (r2) of 71.18mM(-1)s(-1) at clinical 3.0 T MR scanner. In vitro and in vivo MRI studies exhibit high signal enhancement on both T1- and T2-weighted MR images. These fascinating multifunctional properties suggest that the polymer microspheres have large clinical potential as multi-modal MRI/optical probes. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  2. Synthesis of Self-Assembled Multifunctional Nanocomposite Catalysts with Highly Stabilized Reactivity and Magnetic Recyclability

    PubMed Central

    Yu, Xu; Cheng, Gong; Zheng, Si-Yang

    2016-01-01

    In this paper, a multifunctional Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite catalyst with highly stabilized reactivity and magnetic recyclability was synthesized by a self-assembled method. The magnetic Fe3O4 nanoparticles were coated with a thin layer of the SiO2 to obtain a negatively charged surface. Then positively charged poly(ethyleneimine) polymer (PEI) was self-assembled onto the Fe3O4@SiO2 by electrostatic interaction. Next, negatively charged glutathione capped gold nanoparticles (GSH-AuNPs) were electrostatically self-assembled onto the Fe3O4@SiO2@PEI. After that, silver was grown on the surface of the nanocomposite due to the reduction of the dopamine in the alkaline solution. An about 5 nm thick layer of polydopamine (PDA) was observed to form the Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was carefully characterized by the SEM, TEM, FT-IR, XRD and so on. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite shows a high saturation magnetization (Ms) of 48.9 emu/g, which allows it to be attracted rapidly to a magnet. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was used to catalyze the reduction of p-nitrophenol (4-NP) to p-aminophenol (4-AP) as a model system. The reaction kinetic constant k was measured to be about 0.56 min−1 (R2 = 0.974). Furthermore, the as-prepared catalyst can be easily recovered and reused for 8 times, which didn’t show much decrease of the catalytic capability. PMID:27147586

  3. Synthesis of Self-Assembled Multifunctional Nanocomposite Catalysts with Highly Stabilized Reactivity and Magnetic Recyclability.

    PubMed

    Yu, Xu; Cheng, Gong; Zheng, Si-Yang

    2016-05-05

    In this paper, a multifunctional Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite catalyst with highly stabilized reactivity and magnetic recyclability was synthesized by a self-assembled method. The magnetic Fe3O4 nanoparticles were coated with a thin layer of the SiO2 to obtain a negatively charged surface. Then positively charged poly(ethyleneimine) polymer (PEI) was self-assembled onto the Fe3O4@SiO2 by electrostatic interaction. Next, negatively charged glutathione capped gold nanoparticles (GSH-AuNPs) were electrostatically self-assembled onto the Fe3O4@SiO2@PEI. After that, silver was grown on the surface of the nanocomposite due to the reduction of the dopamine in the alkaline solution. An about 5 nm thick layer of polydopamine (PDA) was observed to form the Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was carefully characterized by the SEM, TEM, FT-IR, XRD and so on. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite shows a high saturation magnetization (Ms) of 48.9 emu/g, which allows it to be attracted rapidly to a magnet. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was used to catalyze the reduction of p-nitrophenol (4-NP) to p-aminophenol (4-AP) as a model system. The reaction kinetic constant k was measured to be about 0.56 min(-1) (R(2) = 0.974). Furthermore, the as-prepared catalyst can be easily recovered and reused for 8 times, which didn't show much decrease of the catalytic capability.

  4. Synthesis of Self-Assembled Multifunctional Nanocomposite Catalysts with Highly Stabilized Reactivity and Magnetic Recyclability

    NASA Astrophysics Data System (ADS)

    Yu, Xu; Cheng, Gong; Zheng, Si-Yang

    2016-05-01

    In this paper, a multifunctional Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite catalyst with highly stabilized reactivity and magnetic recyclability was synthesized by a self-assembled method. The magnetic Fe3O4 nanoparticles were coated with a thin layer of the SiO2 to obtain a negatively charged surface. Then positively charged poly(ethyleneimine) polymer (PEI) was self-assembled onto the Fe3O4@SiO2 by electrostatic interaction. Next, negatively charged glutathione capped gold nanoparticles (GSH-AuNPs) were electrostatically self-assembled onto the Fe3O4@SiO2@PEI. After that, silver was grown on the surface of the nanocomposite due to the reduction of the dopamine in the alkaline solution. An about 5 nm thick layer of polydopamine (PDA) was observed to form the Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was carefully characterized by the SEM, TEM, FT-IR, XRD and so on. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite shows a high saturation magnetization (Ms) of 48.9 emu/g, which allows it to be attracted rapidly to a magnet. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was used to catalyze the reduction of p-nitrophenol (4-NP) to p-aminophenol (4-AP) as a model system. The reaction kinetic constant k was measured to be about 0.56 min‑1 (R2 = 0.974). Furthermore, the as-prepared catalyst can be easily recovered and reused for 8 times, which didn’t show much decrease of the catalytic capability.

  5. Highly selective isolation and purification of heme proteins in biological samples using multifunctional magnetic nanospheres.

    PubMed

    Liu, Yating; Li, Yan; Wei, Yun

    2014-12-01

    Magnetic particles with suitable surface modification are capable of binding proteins selectively, and magnetic separations have advantages of rapidity, convenience, and high selectivity. In this paper, new magnetic nanoparticles modified with imidazolium ionic liquid (Fe3O4 @SiO2 @ILs) were successfully fabricated. N-Methylimidazolium was immobilized onto silica-coated magnetic nanoparticles via γ-chloropropyl modification as a magnetic nanoadsorbent for heme protein separation. The particle size was about 90 nm without significant aggregation during the preparation process. Hemoglobin as one of heme proteins used in this experiment was compared with other nonheme proteins. It has been found that the magnetic nanoparticles can be used for more rapid, efficient, and specific adsorption of hemoglobin with a binding capacity as high as 5.78 mg/mg. In comparison with other adsorption materials of proteins in the previous reports, Fe3 O4 @SiO2 @ILs magnetic nanoparticles exhibit the excellent performance in isolation of heme proteins with higher binding capacity and selectivity. In addition, a short separation time makes the functionalized nanoparticles suitable for purifying unstable proteins, as well as having other potential applications in a variety of biomedical fields.

  6. Stochastic magnetization dynamics in single domain particles

    NASA Astrophysics Data System (ADS)

    Giordano, Stefano; Dusch, Yannick; Tiercelin, Nicolas; Pernod, Philippe; Preobrazhensky, Vladimir

    2013-06-01

    Magnetic particles are largely utilized in several applications ranging from magnetorheological fluids to bioscience and from nanothechnology to memories or logic devices. The behavior of each single particle at finite temperature (under thermal stochastic fluctuations) plays a central role in determining the response of the whole physical system taken into consideration. Here, the magnetization evolution is studied through the Landau-Lifshitz-Gilbert formalism and the non-equilibrium statistical mechanics is introduced with the Langevin and Fokker-Planck methodologies. As result of the combination of such techniques we analyse the stochastic magnetization dynamics and we numerically determine the convergence time, measuring the velocity of attainment of thermodynamic equilibrium, as function of the system temperature.

  7. Magnetic particle-mediated magnetoreception

    PubMed Central

    Shaw, Jeremy; Boyd, Alastair; House, Michael; Woodward, Robert; Mathes, Falko; Cowin, Gary; Saunders, Martin; Baer, Boris

    2015-01-01

    Behavioural studies underpin the weight of experimental evidence for the existence of a magnetic sense in animals. In contrast, studies aimed at understanding the mechanistic basis of magnetoreception by determining the anatomical location, structure and function of sensory cells have been inconclusive. In this review, studies attempting to demonstrate the existence of a magnetoreceptor based on the principles of the magnetite hypothesis are examined. Specific attention is given to the range of techniques, and main animal model systems that have been used in the search for magnetite particulates. Anatomical location/cell rarity and composition are identified as two key obstacles that must be addressed in order to make progress in locating and characterizing a magnetite-based magnetoreceptor cell. Avenues for further study are suggested, including the need for novel experimental, correlative, multimodal and multidisciplinary approaches. The aim of this review is to inspire new efforts towards understanding the cellular basis of magnetoreception in animals, which will in turn inform a new era of behavioural research based on first principles. PMID:26333810

  8. Apparatus and method for handling magnetic particles in a fluid

    DOEpatents

    Holman, David A.; Grate, Jay W.; Bruckner-Lea, Cynthia J.

    2000-01-01

    The present invention is an apparatus and method for handling magnetic particles suspended in a fluid, relying upon the known features of a magnetic flux conductor that is permeable thereby permitting the magnetic particles and fluid to flow therethrough; and a controllable magnetic field for the handling. The present invention is an improvement wherein the magnetic flux conductor is a monolithic porous foam.

  9. Dicopper(II) metallacyclophanes as multifunctional magnetic devices: a joint experimental and computational study.

    PubMed

    Castellano, María; Ruiz-García, Rafael; Cano, Joan; Ferrando-Soria, Jesús; Pardo, Emilio; Fortea-Pérez, Francisco R; Stiriba, Salah-Eddine; Julve, Miguel; Lloret, Francesc

    2015-03-17

    Metallosupramolecular complexes constitute an important advance in the emerging fields of molecular spintronics and quantum computation and a useful platform in the development of active components of spintronic circuits and quantum computers for applications in information processing and storage. The external control of chemical reactivity (electro- and photochemical) and physical properties (electronic and magnetic) in metallosupramolecular complexes is a current challenge in supramolecular coordination chemistry, which lies at the interface of several other supramolecular disciplines, including electro-, photo-, and magnetochemistry. The specific control of current flow or spin delocalization through a molecular assembly in response to one or many input signals leads to the concept of developing a molecule-based spintronics that can be viewed as a potential alternative to the classical molecule-based electronics. A great variety of factors can influence over these electronically or magnetically coupled, metallosupramolecular complexes in a reversible manner, electronic or photonic external stimuli being the most promising ones. The response ability of the metal centers and/or the organic bridging ligands to the application of an electric field or light irradiation, together with the geometrical features that allow the precise positioning in space of substituent groups, make these metal-organic systems particularly suitable to build highly integrated molecular spintronic circuits. In this Account, we describe the chemistry and physics of dinuclear copper(II) metallacyclophanes with oxamato-containing dinucleating ligands featuring redox- and photoactive aromatic spacers. Our recent works on dicopper(II) metallacyclophanes and earlier ones on related organic cyclophanes are now compared in a critical manner. Special focus is placed on the ligand design as well as in the combination of experimental and computational methods to demonstrate the multifunctionality

  10. Modeling the role of highly oxidized multifunctional organic molecules for the growth of new particles over the boreal forest region

    NASA Astrophysics Data System (ADS)

    Öström, Emilie; Putian, Zhou; Schurgers, Guy; Mishurov, Mikhail; Kivekäs, Niku; Lihavainen, Heikki; Ehn, Mikael; Rissanen, Matti P.; Kurtén, Theo; Boy, Michael; Swietlicki, Erik; Roldin, Pontus

    2017-07-01

    In this study, the processes behind observed new particle formation (NPF) events and subsequent organic-dominated particle growth at the Pallas Atmosphere-Ecosystem Supersite in Northern Finland are explored with the one-dimensional column trajectory model ADCHEM. The modeled sub-micron particle mass is up to ˜ 75 % composed of SOA formed from highly oxidized multifunctional organic molecules (HOMs) with low or extremely low volatility. In the model the newly formed particles with an initial diameter of 1.5 nm reach a diameter of 7 nm about 2 h earlier than what is typically observed at the station. This is an indication that the model tends to overestimate the initial particle growth. In contrast, the modeled particle growth to CCN size ranges ( > 50 nm in diameter) seems to be underestimated because the increase in the concentration of particles above 50 nm in diameter typically occurs several hours later compared to the observations. Due to the high fraction of HOMs in the modeled particles, the oxygen-to-carbon (O : C) atomic ratio of the SOA is nearly 1. This unusually high O : C and the discrepancy between the modeled and observed particle growth might be explained by the fact that the model does not consider any particle-phase reactions involving semi-volatile organic compounds with relatively low O : C. In the model simulations where condensation of low-volatility and extremely low-volatility HOMs explain most of the SOA formation, the phase state of the SOA (assumed either liquid or amorphous solid) has an insignificant impact on the evolution of the particle number size distributions. However, the modeled particle growth rates are sensitive to the method used to estimate the vapor pressures of the HOMs. Future studies should evaluate how heterogeneous reactions involving semi-volatility HOMs and other less-oxidized organic compounds can influence the SOA composition- and size-dependent particle growth.

  11. Core-shell monodisperse spherical mSiO2/Gd2O3:Eu3+@mSiO2 particles as potential multifunctional theranostic agents

    NASA Astrophysics Data System (ADS)

    Eurov, Daniil A.; Kurdyukov, Dmitry A.; Kirilenko, Demid A.; Kukushkina, Julia A.; Nashchekin, Alexei V.; Smirnov, Alexander N.; Golubev, Valery G.

    2015-02-01

    Core-shell nanoparticles with diameters in the range 100-500 nm have been synthesized as monodisperse spherical mesoporous (pore diameter 3 nm) silica particles with size deviation of less than 4 %, filled with gadolinium and europium oxides and coated with a mesoporous silica shell. It is shown that the melt technique developed for filling with gadolinium and europium oxides provides a nearly maximum filling of mesopores in a single-run impregnation, with gadolinium and europium uniformly distributed within the particles and forming no bulk oxides on their surface. The coating with a shell does not impair the monodispersity and causes no coagulation. The coating technique enables controlled variation of the shell thickness within the range 5-100 % relative to the core diameter. The thus produced nanoparticles are easily dispersed in water, have large specific surface area (300 m2 g-1) and pore volume (0.3 cm3 g-1), and are bright solid phosphor with superior stability in aqueous media. The core-shell structured particles can be potentially used for cancer treatment as a therapeutic agent (gadolinium neutron-capture therapy and drug delivery system) and, simultaneously, as a multimodal diagnostic tool (fluorescence and magnetic resonance imaging), thereby serving as a multifunctional theranostic agent.

  12. Biodegradable Magnetic Particles for Cellular MRI

    NASA Astrophysics Data System (ADS)

    Nkansah, Michael Kwasi

    Cell transplantation has the potential to treat numerous diseases and injuries. While magnetic particle-enabled, MRI-based cell tracking has proven useful for visualizing the location of cell transplants in vivo, current formulations of particles are either too weak to enable single cell detection or have non-degradable polymer matrices that preclude clinical translation. Furthermore, the off-label use of commercial agents like Feridex®, Bangs beads and ferumoxytol for cell tracking significantly stunts progress in the field, rendering it needlessly susceptible to market externalities. The recent phasing out of Feridex from the market, for example, heightens the need for a dedicated agent specifically designed for MRI-based cell tracking. To this end, we engineered clinically viable, biodegradable particles of iron oxide made using poly(lactide-co-glycolide) (PLGA) and demonstrated their utility in two MRI-based cell tracking paradigms in vivo. Both micro- and nanoparticles (2.1±1.1 μm and 105±37 nm in size) were highly magnetic (56.7-83.7 wt% magnetite), and possessed excellent relaxometry (r2* relaxivities as high as 614.1 s-1mM-1 and 659.1 s -1mM-1 at 4.7 T respectively). Magnetic PLGA micropartides enabled the in vivo monitoring of neural progenitor cell migration to the olfactory bulb in rat brains over 2 weeks at 11.7 T with ˜2-fold greater contrast-to-noise ratio and ˜4-fold better sensitivity at detecting migrated cells in the olfactory bulb than Bangs beads. Highly magnetic PLGA nanoparticles enabled MRI detection (at 11.7 T) of up to 10 rat mesenchymal cells transplanted into rat brain at 100-μm resolution. Highly magnetic PLGA particles were also shown to degrade by 80% in mice liver over 12 weeks in vivo. Moreover, no adverse effects were observed on cellular viability and function in vitro after labeling a wide range of cells. Magnetically labeled rat mesenchymal and neural stem cells retained their ability to differentiate into multiple

  13. Homogeneous Biosensing Based on Magnetic Particle Labels

    PubMed Central

    Schrittwieser, Stefan; Pelaz, Beatriz; Parak, Wolfgang J.; Lentijo-Mozo, Sergio; Soulantica, Katerina; Dieckhoff, Jan; Ludwig, Frank; Guenther, Annegret; Tschöpe, Andreas; Schotter, Joerg

    2016-01-01

    The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation. PMID:27275824

  14. Measurement of the magnetic field coefficients of particle accelerator magnets

    SciTech Connect

    Herrera, J.; Ganetis, G.; Hogue, R.; Rogers, E.; Wanderer, P.; Willen, E.

    1989-01-01

    An important aspect in the development of magnets to be used in particle accelerators is the measurement of the magnetic field in the beam aperture. In general it is necessary to measure the harmonic multipoles in the dipole, quadrupole, and sextupole magnets for a series of stationary currents (plateaus). This is the case for the Superconducting Super Collider (SSC) which will be ramped to high field over a long period (/approximately/1000 sec.) and then remain on the flat top for the duration of the particle collision phase. In contrast to this mode of operation, the Booster ring being constructed for the Brookhaven AGS, will have a fast ramp rate of approximately 10 Hz. The multipole fields for these Booster magnets must therefore be determined ''on the ramp.'' In this way the effect of eddy currents will be taken into account. The measurement system which we will describe in this paper is an outgrowth of that used for the SSC dipoles. It has the capability of measuring the field multipoles on both a plateau or during a fast ramp. In addition, the same basic coil assembly is used to obtain the magnetic multipoles in dipole, quadrupole, and sextupole magnets. 2 refs., 3 figs., 1 tab.

  15. Mechanical and dynamic characteristics of encapsulated microbubbles coupled by magnetic nanoparticles as multifunctional imaging and drug delivery agents.

    PubMed

    Guo, Gepu; Lu, Lu; Yin, Leilei; Tu, Juan; Guo, Xiasheng; Wu, Junru; Xu, Di; Zhang, Dong

    2014-11-21

    Development of magnetic encapsulated microbubble agents that can integrate multiple diagnostic and therapeutic functions is a key focus in both biomedical engineering and nanotechnology and one which will have far-reaching impact on medical diagnosis and therapies. However, properly designing multifunctional agents that can satisfy particular diagnostic/therapeutic requirements has been recognized as rather challenging, because there is a lack of comprehensive understanding of how the integration of magnetic nanoparticles to microbubble encapsulating shells affects their mechanical properties and dynamic performance in ultrasound imaging and drug delivery. Here, a multifunctional imaging contrast and in-situ gene/drug delivery agent was synthesized by coupling super paramagnetic iron oxide nanoparticles (SPIOs) into albumin-shelled microbubbles. Systematical studies were performed to investigate the SPIO-concentration-dependence of microbubble mechanical properties, acoustic scattering response, inertial cavitation activity and ultrasound-facilitated gene transfection effect. These demonstrated that, with the increasing SPIO concentration, the microbubble mean diameter and shell stiffness increased and ultrasound scattering response and inertial cavitation activity could be significantly enhanced. However, an optimized ultrasound-facilitated vascular endothelial growth factor transfection outcome would be achieved by adopting magnetic albumin-shelled microbubbles with an appropriate SPIO concentration of 114.7 µg ml(-1). The current results would provide helpful guidance for future development of multifunctional agents and further optimization of their diagnostic/therapeutic performance in clinic.

  16. Mechanical and dynamic characteristics of encapsulated microbubbles coupled by magnetic nanoparticles as multifunctional imaging and drug delivery agents

    NASA Astrophysics Data System (ADS)

    Guo, Gepu; Lu, Lu; Yin, Leilei; Tu, Juan; Guo, Xiasheng; Wu, Junru; Xu, Di; Zhang, Dong

    2014-11-01

    Development of magnetic encapsulated microbubble agents that can integrate multiple diagnostic and therapeutic functions is a key focus in both biomedical engineering and nanotechnology and one which will have far-reaching impact on medical diagnosis and therapies. However, properly designing multifunctional agents that can satisfy particular diagnostic/therapeutic requirements has been recognized as rather challenging, because there is a lack of comprehensive understanding of how the integration of magnetic nanoparticles to microbubble encapsulating shells affects their mechanical properties and dynamic performance in ultrasound imaging and drug delivery. Here, a multifunctional imaging contrast and in-situ gene/drug delivery agent was synthesized by coupling super paramagnetic iron oxide nanoparticles (SPIOs) into albumin-shelled microbubbles. Systematical studies were performed to investigate the SPIO-concentration-dependence of microbubble mechanical properties, acoustic scattering response, inertial cavitation activity and ultrasound-facilitated gene transfection effect. These demonstrated that, with the increasing SPIO concentration, the microbubble mean diameter and shell stiffness increased and ultrasound scattering response and inertial cavitation activity could be significantly enhanced. However, an optimized ultrasound-facilitated vascular endothelial growth factor transfection outcome would be achieved by adopting magnetic albumin-shelled microbubbles with an appropriate SPIO concentration of 114.7 µg ml-1. The current results would provide helpful guidance for future development of multifunctional agents and further optimization of their diagnostic/therapeutic performance in clinic.

  17. Magnetic particle imaging of blood coagulation

    SciTech Connect

    Murase, Kenya Song, Ruixiao; Hiratsuka, Samu

    2014-06-23

    We investigated the feasibility of visualizing blood coagulation using a system for magnetic particle imaging (MPI). A magnetic field-free line is generated using two opposing neodymium magnets and transverse images are reconstructed from the third-harmonic signals received by a gradiometer coil, using the maximum likelihood-expectation maximization algorithm. Our MPI system was used to image the blood coagulation induced by adding CaCl{sub 2} to whole sheep blood mixed with magnetic nanoparticles (MNPs). The “MPI value” was defined as the pixel value of the transverse image reconstructed from the third-harmonic signals. MPI values were significantly smaller for coagulated blood samples than those without coagulation. We confirmed the rationale of these results by calculating the third-harmonic signals for the measured viscosities of samples, with an assumption that the magnetization and particle size distribution of MNPs obey the Langevin equation and log-normal distribution, respectively. We concluded that MPI can be useful for visualizing blood coagulation.

  18. Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy

    PubMed Central

    He, Yingna; Zhang, Linhua; Zhu, Dunwan; Song, Cunxian

    2014-01-01

    Tumor-targeting multifunctional liposomes simultaneously loaded with magnetic iron oxide nanoparticles (MIONs) as a magnetic resonance imaging (MRI) contrast agent and anticancer drug, mitoxantrone (Mit), were developed for targeted cancer therapy and ultrasensitive MRI. The gonadorelin-functionalized MION/Mit-loaded liposome (Mit-GML) showed significantly increased uptake in luteinizing hormone–releasing hormone (LHRH) receptor overexpressing MCF-7 (Michigan Cancer Foundation-7) breast cancer cells over a gonadorelin-free MION/Mit-loaded liposome (Mit-ML) control, as well as in an LHRH receptor low-expressing Sloan-Kettering HER2 3+ Ovarian Cancer (SK-OV-3) cell control, thereby leading to high cytotoxicity against the MCF-7 human breast tumor cell line. The Mit-GML formulation was more effective and less toxic than equimolar doses of free Mit or Mit-ML in the treatment of LHRH receptors overexpressing MCF-7 breast cancer xenografts in mice. Furthermore, the Mit-GML demonstrated much higher T2 enhancement than did Mit-ML controls in vivo. Collectively, the study indicates that the integrated diagnostic and therapeutic design of Mit-GML nanomedicine potentially allows for the image-guided, target-specific treatment of cancer. PMID:25187709

  19. Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy.

    PubMed

    He, Yingna; Zhang, Linhua; Zhu, Dunwan; Song, Cunxian

    2014-01-01

    Tumor-targeting multifunctional liposomes simultaneously loaded with magnetic iron oxide nanoparticles (MIONs) as a magnetic resonance imaging (MRI) contrast agent and anticancer drug, mitoxantrone (Mit), were developed for targeted cancer therapy and ultrasensitive MRI. The gonadorelin-functionalized MION/Mit-loaded liposome (Mit-GML) showed significantly increased uptake in luteinizing hormone-releasing hormone (LHRH) receptor overexpressing MCF-7 (Michigan Cancer Foundation-7) breast cancer cells over a gonadorelin-free MION/Mit-loaded liposome (Mit-ML) control, as well as in an LHRH receptor low-expressing Sloan-Kettering HER2 3+ Ovarian Cancer (SK-OV-3) cell control, thereby leading to high cytotoxicity against the MCF-7 human breast tumor cell line. The Mit-GML formulation was more effective and less toxic than equimolar doses of free Mit or Mit-ML in the treatment of LHRH receptors overexpressing MCF-7 breast cancer xenografts in mice. Furthermore, the Mit-GML demonstrated much higher T2 enhancement than did Mit-ML controls in vivo. Collectively, the study indicates that the integrated diagnostic and therapeutic design of Mit-GML nanomedicine potentially allows for the image-guided, target-specific treatment of cancer.

  20. Multifunctional two-photon active silica-coated Au@MnO Janus particles for selective dual functionalization and imaging.

    PubMed

    Schick, Isabel; Lorenz, Steffen; Gehrig, Dominik; Schilmann, Anna-Maria; Bauer, Heiko; Panthöfer, Martin; Fischer, Karl; Strand, Dennis; Laquai, Frédéric; Tremel, Wolfgang

    2014-02-12

    Monodisperse multifunctional and nontoxic Au@MnO Janus particles with different sizes and morphologies were prepared by a seed-mediated nucleation and growth technique with precise control over domain sizes, surface functionalization, and dye labeling. The metal oxide domain could be coated selectively with a thin silica layer, leaving the metal domain untouched. In particular, size and morphology of the individual (metal and metal oxide) domains could be controlled by adjustment of the synthetic parameters. The SiO2 coating of the oxide domain allows biomolecule conjugation (e.g., antibodies, proteins) in a single step for converting the photoluminescent and superparamagnetic Janus nanoparticles into multifunctional efficient vehicles for theranostics. The Au@MnO@SiO2 Janus particles were characterized using high-resolution transmission electron microscopy (HR-)TEM, powder X-ray diffraction (PXRD), optical (UV-vis) spectroscopy, confocal laser fluorescence scanning microscopy (CLSM), and dynamic light scattering (DLS). The functionalized nanoparticles were stable in buffer solution or serum, showing no indication of aggregation. Biocompatibility and potential biomedical applications of the Au@MnO@SiO2 Janus particles were assayed by a cell viability analysis by coincubating the Au@MnO@SiO2 Janus particles with Caki 1 and HeLa cells. Time-resolved fluorescence spectroscopy in combination with CLSM revealed the silica-coated Au@MnO@SiO2 Janus particles to be highly two-photon active; no indication for an electronic interaction between the dye molecules incorporated in the silica shell surrounding the MnO domains and the attached Au domains was found; fluorescence quenching was observed when dye molecules were bound directly to the Au domains.

  1. Batch extracting process using magnetic particle held solvents

    DOEpatents

    Nunez, L.; Vandergrift, G.F.

    1995-11-21

    A process is described for selectively removing metal values which may include catalytic values from a mixture containing same, wherein a magnetic particle is contacted with a liquid solvent which selectively dissolves the metal values to absorb the liquid solvent onto the magnetic particle. Thereafter the solvent-containing magnetic particles are contacted with a mixture containing the heavy metal values to transfer metal values into the solvent carried by the magnetic particles, and then magnetically separating the magnetic particles. Ion exchange resins may be used for selective solvents. 5 figs.

  2. Magnetic interaction of Janus magnetic particles suspended in a viscous fluid.

    PubMed

    Seong, Yujin; Kang, Tae Gon; Hulsen, Martien A; den Toonder, Jaap M J; Anderson, Patrick D

    2016-02-01

    We studied the magnetic interaction between circular Janus magnetic particles suspended in a Newtonian fluid under the influence of an externally applied uniform magnetic field. The particles are equally compartmentalized into paramagnetic and nonmagnetic sides. A direct numerical scheme is employed to solve the magnetic particulate flow in the Stokes flow regime. Upon applying the magnetic field, contrary to isotropic paramagnetic particles, a single Janus particle can rotate due to the magnetic torque created by the magnetic anisotropy of the particle. In a two-particle problem, the orientation of each particle is found to be an additional factor that affects the critical angle separating the nature of magnetic interaction. Using multiparticle problems, we show that the orientation of the particles has a significant influence on the dynamics of the particles, the fluid flow induced by the actuated particles, and the final conformation of the particles. Straight and staggered chain structures observed experimentally can be reproduced numerically in a multiple particle problem.

  3. Magnetic behavior of core shell particles

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Rong; Wang, Cheng-Chien; Chen, I.-Han

    2006-09-01

    We have prepared composite magnetic core-shell particles using the process of soap-free emulsion polymerization and the co-precipitation method. The shell of the synthesized composite sphere is cobalt ferrite (CoFe 2O 4) nanoparticles and the core consists of poly(styrene-co-methacrylic acid) polymer. The mean crystallite sizes of the coated CoFe 2O 4 nanoparticles were controlled in the range of 2.4-6.7 nm by the concentration of [NH 4+] and heated temperature. The magnetic properties of the core-shell spherical particles can go from superparamagnetic to ferromagnetic behavior depending on the crystalline sizes of CoFe 2O 4.

  4. Effect of humic acid on ciprofloxacin removal by magnetic multifunctional resins.

    PubMed

    Wang, Wei; Cheng, Jiade; Jin, Jing; Zhou, Qing; Ma, Yan; Zhao, Qingqing; Li, Aimin

    2016-07-28

    Background organic matter significantly influences the removal of emerging contaminants in natural water. In this work, the adsorption of ciprofloxacin (CPX) onto a series of magnetic multifunctional resins (GMA10-GMA90) in the presence and absence of humic acid (HA) was conducted to demonstrate the effect of HA. Both hydrophobic and ion exchange interactions contributed to CPX adsorption. Negative charge-assisted hydrogen bonds also participated in the adsorption process, resulting in the high adsorption amount of anionic CPX onto the negatively charged GMA30 under basic solutions. HA could impact CPX adsorption not only as a competitive adsorbate but also as an additional adsorbent. At pH 5.6, the additional adsorption sites provided by adsorbed HA molecules on the resins dominated and thus facilitated the adsorption process. While at pH 10, HA inhibited the adsorption of CPX by directly competing for ion exchange sites and coexisting with CPX in the solution. The ratio of the amount of CPX adsorbed by dissolved HA to that by the resin reached as high as 1.61 for GMA90. The adsorbed HA molecules onto the resins could provide additional adsorption sites for CPX as proven by the enhanced CPX adsorption in HA-preloading systems at pH 5.6.

  5. Effect of humic acid on ciprofloxacin removal by magnetic multifunctional resins

    PubMed Central

    Wang, Wei; Cheng, Jiade; Jin, Jing; Zhou, Qing; Ma, Yan; Zhao, Qingqing; Li, Aimin

    2016-01-01

    Background organic matter significantly influences the removal of emerging contaminants in natural water. In this work, the adsorption of ciprofloxacin (CPX) onto a series of magnetic multifunctional resins (GMA10-GMA90) in the presence and absence of humic acid (HA) was conducted to demonstrate the effect of HA. Both hydrophobic and ion exchange interactions contributed to CPX adsorption. Negative charge-assisted hydrogen bonds also participated in the adsorption process, resulting in the high adsorption amount of anionic CPX onto the negatively charged GMA30 under basic solutions. HA could impact CPX adsorption not only as a competitive adsorbate but also as an additional adsorbent. At pH 5.6, the additional adsorption sites provided by adsorbed HA molecules on the resins dominated and thus facilitated the adsorption process. While at pH 10, HA inhibited the adsorption of CPX by directly competing for ion exchange sites and coexisting with CPX in the solution. The ratio of the amount of CPX adsorbed by dissolved HA to that by the resin reached as high as 1.61 for GMA90. The adsorbed HA molecules onto the resins could provide additional adsorption sites for CPX as proven by the enhanced CPX adsorption in HA-preloading systems at pH 5.6. PMID:27464502

  6. Effect of humic acid on ciprofloxacin removal by magnetic multifunctional resins

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Cheng, Jiade; Jin, Jing; Zhou, Qing; Ma, Yan; Zhao, Qingqing; Li, Aimin

    2016-07-01

    Background organic matter significantly influences the removal of emerging contaminants in natural water. In this work, the adsorption of ciprofloxacin (CPX) onto a series of magnetic multifunctional resins (GMA10-GMA90) in the presence and absence of humic acid (HA) was conducted to demonstrate the effect of HA. Both hydrophobic and ion exchange interactions contributed to CPX adsorption. Negative charge-assisted hydrogen bonds also participated in the adsorption process, resulting in the high adsorption amount of anionic CPX onto the negatively charged GMA30 under basic solutions. HA could impact CPX adsorption not only as a competitive adsorbate but also as an additional adsorbent. At pH 5.6, the additional adsorption sites provided by adsorbed HA molecules on the resins dominated and thus facilitated the adsorption process. While at pH 10, HA inhibited the adsorption of CPX by directly competing for ion exchange sites and coexisting with CPX in the solution. The ratio of the amount of CPX adsorbed by dissolved HA to that by the resin reached as high as 1.61 for GMA90. The adsorbed HA molecules onto the resins could provide additional adsorption sites for CPX as proven by the enhanced CPX adsorption in HA-preloading systems at pH 5.6.

  7. Two novel multi-functional magnetic adsorbents for effective removal of hydrophilic and hydrophobic nitroaromatic compounds.

    PubMed

    Wang, Wei; Ma, Yan; Li, Aimin; Zhou, Qing; Zhou, Weiwei; Jin, Jing

    2015-08-30

    Two novel multi-functional magnetic resins named GMA30-1 and GMA30-2 were fabricated and investigated for the removal of 4-nitrotoluene-2-sulfonic acid (NTS) and 2-nitrotoluene (o-MNT). Strong base resin (GMA30-1) and weak base resin (GMA30-2) possess large surface area of 718m(2)/g and 559m(2)/g, and anion exchange capacity of 1.49mmol/g and 1.81mmol/g, respectively. The adsorption isotherms of o-MNT onto two resins were both well described by Langmuir equation. While the adsorption isotherms of NTS could be separated into two segments at a certain initial concentration and each segment followed different trends. At lower concentrations, the adsorption of NTS was driven by Van der Waal's force, exhibiting an exothermic process. With the increase of concentrations, the electrostatic force dominated and the enthalpy change (ΔH) turned to positive, indicating an endothermic process. In binary systems, the decrease in the uptake of NTS was slighter than that of o-MNT because of the additional anion exchange interaction. The adsorption capacity of NTS decreased as pH increased while the adsorption of o-MNT was not significantly affected by pH. Chloride ions reduced the adsorption of NTS by competitive effect. The desorption efficiency of NTS and o-MNT was close to 100% for 10 cycles. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Magnetic Particle Testing, RQA/M1-5330.16.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    As one in the series of classroom training handbooks, prepared by the U.S. space program, instructional material is presented in this volume concerning familiarization and orientation on magnetic particle testing. The subject is divided under the following headings: Introduction, Principles of Magnetic Particle Testing, Magnetic Particle Test…

  9. Bacterial Magnetosome: A Novel Biogenetic Magnetic Targeted Drug Carrier with Potential Multifunctions

    PubMed Central

    Sun, Jianbo; Li, Ying; Liang, Xing-Jie; Wang, Paul C.

    2012-01-01

    Bacterial magnetosomes (BMs) synthesized by magnetotactic bacteria have recently drawn great interest due to their unique features. BMs are used experimentally as carriers for antibodies, enzymes, ligands, nucleic acids, and chemotherapeutic drugs. In addition to the common attractive properties of magnetic carriers, BMs also show superiority as targeting nanoscale drug carriers, which is hardly matched by artificial magnetic particles. We are presenting the potential applications of BMs as drug carriers by introducing the drug-loading methods and strategies and the recent research progress of BMs which has contributed to the application of BMs as drug carriers. PMID:22448162

  10. Synthesis of Fe3O4@Y2O3:Eu3+ core-shell multifunctional nanoparticles and their magnetic and luminescence properties

    NASA Astrophysics Data System (ADS)

    Gowd, Genekehal Siddaramana; Patra, Manoj Kumar; Mathew, Manoth; Shukla, Anuj; Songara, Sandhya; Vadera, Sampat Raj; Kumar, Narendra

    2013-07-01

    A simple wet chemical route has been employed to synthesize multifunctional core-shell nanoparticles of Fe3O4@Y2O3:Eu3+ showing an interesting combination of magnetic and luminescent properties having potential for medical applications. The core-shell nanoparticles were synthesized in a two-step process wherein first step, the Fe3O4 nanoparticles were synthesized and subsequently they are coated with Y2O3:Eu3+. XRD and magnetization curves were successfully used to retrieve the particle size of Fe3O4 nanoparticles. Particle size (˜10 nm) extracted from XRD and magnetization curves have been found to be consistent with the measured size from AFM and TEM. Further, the XRD analysis reveals formation of pure cubic phases of magnetite as well as of Y2O3:Eu3+. It has been shown here that through simple chemistry it is possible to change the thickness of Y2O3:Eu3+ shell. From SEM and TEM studies, the size of core shell nanoparticles seen as ˜30 nm. In addition to bright red (612 nm) emission, these materials also show superparamagnetic behavior at room temperature. Emission intensity has been found to significantly increase with increase in annealing temperature. The synthesized materials have extensive for applications in the area of drug delivery and bio-imaging.

  11. Magnetically-responsive, multifunctional drug delivery nanoparticles for elastic matrix regenerative repair.

    PubMed

    Sivaraman, Balakrishnan; Swaminathan, Ganesh; Moore, Lee; Fox, Jonathan; Seshadri, Dhruv; Dahal, Shataakshi; Stoilov, Ivan; Zborowski, Maciej; Mecham, Robert; Ramamurthi, Anand

    2017-04-01

    Arresting or regressing growth of abdominal aortic aneurysms (AAAs), localized expansions of the abdominal aorta are contingent on inhibiting chronically overexpressed matrix metalloproteases (MMPs)-2 and -9 that disrupt elastic matrix within the aortic wall, concurrent with providing a stimulus to augmenting inherently poor auto-regeneration of these matrix structures. In a recent study we demonstrated that localized, controlled and sustained delivery of doxycycline (DOX; a tetracycline-based antibiotic) from poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs), enhances elastic matrix deposition and MMP-inhibition at a fraction of the therapeutically effective oral dose. The surface functionalization of these NPs with cationic amphiphiles, which enhances their arterial uptake, was also shown to have pro-matrix regenerative and anti-MMP effects independent of the DOX. Based on the hypothesis that the incorporation of superparamagnetic iron oxide NPs (SPIONs) within these PLGA NPs would enhance their targetability to the AAA site under an applied external magnetic field, we sought to evaluate the functional effects of NPs co-encapsulating DOX and SPIONs (DOX-SPION NPs) on elastic matrix regeneration and MMP synthesis/activity in vitro within aneurysmal smooth muscle cell (EaRASMC) cultures. The DOX-SPION NPs were mobile under an applied external magnetic field, while enhancing elastic matrix deposition 1.5-2-fold and significantly inhibiting MMP-2 synthesis and MMP-2 and -9 activities, compared to NP-untreated control cultures. These results illustrate that the multifunctional benefits of NPs are maintained following SPION co-incorporation. Additionally, preliminary studies carried out demonstrated enhanced targetability of SPION-loaded NPs within proteolytically-disrupted porcine carotid arteries ex vivo, under the influence of an applied external magnetic field. Thus, this dual-agent loaded NP system proffers a potential non-surgical option for treating small

  12. Particle deconfinement in a bent magnetic mirror

    SciTech Connect

    Gueroult, Renaud; Fisch, Nathaniel J.

    2012-11-06

    Here, coils misalignment in a magnetic mirror can produce additional particle transport. The magnetic field non axi-symmetry is responsible for radial and longitudinal drifts in a way much similar to the neo-classical transport in a tandem mirror cell distorted by end plugs. Accordingly, a regime exhibiting large radial displacements––similar to the resonant regime in tandem mirrors––can be obtained by confining ions azimuthally, for example by means of a properly tuned radial electric field. Because of the mass dependence of the magnetic field non-homogeneity drift velocities, the azimuthal trapping is mass specific, allowing, in principle, the filtering of a specific species based on its mass.

  13. Particle deconfinement in a bent magnetic mirror

    DOE PAGES

    Gueroult, Renaud; Fisch, Nathaniel J.

    2012-11-06

    Here, coils misalignment in a magnetic mirror can produce additional particle transport. The magnetic field non axi-symmetry is responsible for radial and longitudinal drifts in a way much similar to the neo-classical transport in a tandem mirror cell distorted by end plugs. Accordingly, a regime exhibiting large radial displacements––similar to the resonant regime in tandem mirrors––can be obtained by confining ions azimuthally, for example by means of a properly tuned radial electric field. Because of the mass dependence of the magnetic field non-homogeneity drift velocities, the azimuthal trapping is mass specific, allowing, in principle, the filtering of a specific speciesmore » based on its mass.« less

  14. Tracer design for magnetic particle imaging (invited)

    PubMed Central

    Ferguson, R. Matthew; Khandhar, Amit P.; Krishnan, Kannan M.

    2012-01-01

    Magnetic particle imaging (MPI) uses safe iron oxide nanoparticle tracers to offer fundamentally new capabilities for medical imaging, in applications as vascular imaging and ultra-sensitive cancer therapeutics. MPI is perhaps the first medical imaging platform to intrinsically exploit nanoscale material properties. MPI tracers contain magnetic nanoparticles whose tunable, size-dependent magnetic properties can be optimized by selecting a particular particle size and narrow size-distribution. In this paper we present experimental MPI measurements acquired using a homemade MPI magnetometer: a zero-dimensional MPI imaging system designed to characterize tracer performance by measuring the derivative of the time-varying tracer magnetization, M’(H(t)), at a driving frequency of 25 kHz. We show that MPI performance is optimized by selecting phase-pure magnetite tracers of a particular size and narrow size distribution; in this work, tracers with 20 nm median diameter, log-normal distribution shape parameter, σv, equal to 0.26, and hydrodynamic diameter equal to 30 nm showed the best performance. Furthermore, these optimized MPI tracers show 4 × greater signal intensity (measured at the third harmonic) and 20% better spatial resolution compared with commercial nanoparticles developed for MRI. PMID:22434939

  15. Torsion Profiling of Proteins Using Magnetic Particles

    PubMed Central

    van Reenen, A.; Gutiérrez-Mejía, F.; van IJzendoorn, L.J.; Prins, M.W.J.

    2013-01-01

    We report a method to profile the torsional spring properties of proteins as a function of the angle of rotation. The torque is applied by superparamagnetic particles and has been calibrated while taking account of the magnetization dynamics of the particles. We record and compare the torsional profiles of single Protein G-Immunoglobulin G (IgG) and IgG-IgG complexes, sandwiched between a substrate and a superparamagnetic particle, for torques in the range between 0.5 × 103 and 5 × 103 pN·nm. Both molecular systems show torsional stiffening for increasing rotation angle, but the elastic and inelastic torsion stiffnesses are remarkably different. We interpret the results in terms of the structural properties of the molecules. The torsion profiling technique opens new dimensions for research on biomolecular characterization and for research on bio-nanomechanical structure-function relationships. PMID:23473490

  16. Method of using triaxial magnetic fields for making particle structures

    DOEpatents

    Martin, James E.; Anderson, Robert A.; Williamson, Rodney L.

    2005-01-18

    A method of producing three-dimensional particle structures with enhanced magnetic susceptibility in three dimensions by applying a triaxial energetic field to a magnetic particle suspension and subsequently stabilizing said particle structure. Combinations of direct current and alternating current fields in three dimensions produce particle gel structures, honeycomb structures, and foam-like structures.

  17. Magnetic and geometric anisotropy in particle-crosslinked ferrohydrogels.

    PubMed

    Roeder, Lisa; Bender, Philipp; Kundt, Matthias; Tschöpe, Andreas; Schmidt, Annette M

    2015-01-14

    Particle-crosslinked polymer composites and gels have recently been shown to possess novel or improved properties due to a covalent particle-matrix interaction. We employ spindle-like hematite particles as exclusive crosslinkers in poly(acrylamide) gels, and exploit their extraordinary magnetic properties for the realization of ferrohydrogels with a perpendicular orientation of the preferred magnetic and geometric axes of the particles. The angle-dependent magnetic properties of uniaxially oriented gels are investigated and interpreted with respect to particle-matrix interactions. The impact of the particle orientation on the resulting angle-dependent magnetic performance reveals the presence of two different contributions to the magnetization: a hysteretic component ascribed to immobilized particles, and a pseudo-superparamagnetic, non-hysteretic component due to residual particle mobility. Furthermore, a plastic reorientation of magnetic particles in the matrix when subjected to a transversal field component is observed.

  18. EDITORIAL: Cluster issue on fine particle magnetism

    NASA Astrophysics Data System (ADS)

    Fiorani, D.

    2008-07-01

    This Cluster issue of Journal of Physics D: Applied Physics arises from the 6th International Conference on Fine Particle Magnetism (ICFPM) held in Rome during 9-12 October 2007 at the headquarters of the National Research Council (NCR). It contains a collection of papers based on both invited and contributed presentations at the meeting. The ICFPM Conferences have previously been held in Rome, Italy (1991), Bangor, UK (1996), Barcelona, Spain (1999), Pittsburgh, USA (2002) and London, UK (2004). The aim of this series of Conferences is to bring together the experts in the field of nanoparticle magnetism at a single forum to discuss recent developments in both theoretical and experimental aspects, and technological applications. The Conference programme included sessions on: new materials, novel synthesis and processing techniques, with special emphasis on self-organized magnetic arrays; theory and modelling; surface and interface properties; transport properties; spin dynamics; magnetization reversal mechanisms; magnetic recording media and permanent magnets; biomedical applications and advanced investigation techniques. I would like to thank the European Physical Society and the Innovative Magnetic and Superconducting Materials and Devices Project of the Materials and Devices Department and the Institute of Structure of Matter (ISM) of CNR for their support. Thanks are also due to the members of the Programme Committee, to the local Organizing Committee, chaired by Elisabetta Agostinelli and to all the Conference participants. I am also indebted to the many scientists who contributed to assuring the high-quality of this Cluster by donating their time to reviewing the manuscripts contained herein. Finally, I'd like to dedicate this issue to the memories of Jean Louis Dormann, a great expert in nanoparticle magnetism, who was one of the promoters and first organizers of this series of Conferences, and of Grazia Ianni, the Conference secretary, who died before her

  19. Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy.

    PubMed

    Yallapu, Murali M; Othman, Shadi F; Curtis, Evan T; Gupta, Brij K; Jaggi, Meena; Chauhan, Subhash C

    2011-03-01

    We have developed a multi-layer approach for the synthesis of water-dispersible superparamagnetic iron oxide nanoparticles for hyperthermia, magnetic resonance imaging (MRI) and drug delivery applications. In this approach, iron oxide core nanoparticles were obtained by precipitation of iron salts in the presence of ammonia and provided β-cyclodextrin and pluronic polymer (F127) coatings. This formulation (F127250) was highly water dispersible which allowed encapsulation of the anti-cancer drug(s) in β-cyclodextrin and pluronic polymer for sustained drug release. The F127250 formulation has exhibited superior hyperthermia effects over time under alternating magnetic field compared to pure magnetic nanoparticles (MNP) and β-cyclodextrin coated nanoparticles (CD200). Additionally, the improved MRI characteristics were also observed for the F127250 formulation in agar gel and in cisplatin resistant ovarian cancer cells (A12780CP) compared to MNP and CD200 formulations. Furthermore, the drug-loaded formulation of F127250 exhibited many folds of imaging contrast properties. Due to the internalization capacity of the F127250 formulation, its curcumin-loaded formulation (F127250-CUR) exhibited almost equivalent inhibition effects on A2780CP (ovarian), MDA-MB-231 (breast), and PC-3 (prostate) cancer cells even though curcumin release was only 40%. The improved therapeutic effects were verified by examining molecular effects using Western blotting and transmission electron microscopic (TEM) studies. F127250-CUR also exhibited haemocompatibility, suggesting a nanochemo-therapeutic agent for cancer therapy. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Multi-functional Magnetic Nanoparticles for Magnetic Resonance Imaging and Cancer Therapy

    PubMed Central

    Yallapu, Murali M.; Othman, Shadi F.; Curtis, Evan T.; Gupta, Brij K.; Jaggi, Meena; Chauhan, Subhash C.

    2010-01-01

    We have developed a multi-layer approach for the synthesis of water-dispersible superparamagnetic iron oxide nanoparticles for hyperthermia, magnetic resonance imaging (MRI) and drug delivery applications. In this approach, iron oxide core nanoparticles were obtained by precipitation of iron salts in the presence of ammonia and provided β-cyclodextrin and pluronic polymer (F127) coatings. This formulation (F127250) was highly water dispersible which allowed encapsulation of the anti-cancer drug(s) in β-cyclodextrin and pluronic polymer for sustained drug release. The F127250 formulation has exhibited superior hyperthermia effects over time under alternating magnetic field compared to pure magnetic nanoparticles (MNP) and β-cyclodextrin coated nanoparticles (CD200). Additionally, the improved MRI characteristics were also observed for the F127250 formulation in agar gel and in cisplatin resistant ovarian cancer cells (A12780CP) compared to MNP and CD200 formulations. Furthermore, the drug loaded formulation of F127250 exhibited many folds of imaging contrast properties. Due to the internalization capacity of the F127250 formulation, its curcumin loaded formulation (F127250-CUR) exhibited almost equivalent inhibition effects on A2780CP (ovarian), MDA-MB-231 (breast), and PC3 (prostate) cancer cells even though curcumin release was only 40%. The improved therapeutic effects were verified by examining molecular effects using Western blotting and transmission electron microscopic (TEM) studies. F127250-CUR also exhibited haemocompatibility, suggesting a nanochemo-therapuetic agent for cancer therapy. PMID:21167595

  1. Magnetic Particle Recovery of Serial Numbers

    SciTech Connect

    D. Utrata; M.J. Johnson

    2003-10-01

    One method used by crime labs to recover obliterated serial numbers in steel firearms (ferrous samples) is the magnetic particle technique. The use of this method is predicated on the detection of metal deformation present under stamped serial numbers after the visible stamp has been removed. Equipment specialized for this detection is not used in these attempts; a portable magnetic yoke used typically for flaw detection on large weldments or structures, along with dry visible magnetic powders, have been the tools of criminologists working in this area. Crime labs have reported low success rates using these tools [1, 2]. This is not surprising when one considers that little formal development has apparently evolved for use in such investigations since the publication of seminal work in this area some time ago [3]. The aim of this project is to investigate specific aspects of magnetic particle inspection for serial number recovery. This includes attempts to understand the magnetic characteristics of different steels that affect their performance in the test, such as varying results for carbon steels and alloy steels after different thermal and forming treatments. Also investigated are the effects of the nature of the sample magnetization (AC, rectified DC, and true DC) and the use of various detection media, such as visible powders and fluorescent sprays, on test outcome. Additionally, some aspects of surface preparation of firearm samples prior to number recovery were included in this work. The scope of this report includes a brief overview of the magnetic particle inspection method in general and its applications to forensic serial number recovery. This is followed by a description of how such investigations were simulated on lab samples, including a look at how the microstructure of a given steel will affect its performance in the test. Investigations into the serial number recovery in a series of ferromagnetic firearms (both steel and certain stainless steels

  2. Regenerable adsorbents for removal of arsenic from contaminated waters and synthesis and characterization of multifunctional magnetic nanoparticles for environmental and biomedical applications

    NASA Astrophysics Data System (ADS)

    Verdugo Gonzalez, Brenda

    . Docetaxel was loaded on these multifunctional nanoparticles and released studies were performed at 37°C. The presence of magnetite, colloidal gold and gold nanoshells in the PLGA nanoparticles was revealed by the coloration acquired by the polymeric nanoparticles. The release of drug from the polymeric nanoparticles showed a biphasic behavior with an initial burst followed by a prolonged slow release. There was no effect of the presence of magnetic or metallic particles on docetaxel release.

  3. Associated Particle Tagging (APT) in Magnetic Spectrometers

    SciTech Connect

    Jordan, David V.; Baciak, James E.; Stave, Sean C.; Chichester, David; Dale, Daniel; Kim, Yujong; Harmon, Frank

    2012-10-16

    Summary In Brief The Associated Particle Tagging (APT) project, a collaboration of Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL) and the Idaho State University (ISU)/Idaho Accelerator Center (IAC), has completed an exploratory study to assess the role of magnetic spectrometers as the linchpin technology in next-generation tagged-neutron and tagged-photon active interrogation (AI). The computational study considered two principle concepts: (1) the application of a solenoidal alpha-particle spectrometer to a next-generation, large-emittance neutron generator for use in the associated particle imaging technique, and (2) the application of tagged photon beams to the detection of fissile material via active interrogation. In both cases, a magnetic spectrometer momentum-analyzes charged particles (in the neutron case, alpha particles accompanying neutron generation in the D-T reaction; in the tagged photon case, post-bremsstrahlung electrons) to define kinematic properties of the relevant neutral interrogation probe particle (i.e. neutron or photon). The main conclusions of the study can be briefly summarized as follows: Neutron generator: • For the solenoidal spectrometer concept, magnetic field strengths of order 1 Tesla or greater are required to keep the transverse size of the spectrometer smaller than 1 meter. The notional magnetic spectrometer design evaluated in this feasibility study uses a 5-T magnetic field and a borehole radius of 18 cm. • The design shows a potential for 4.5 Sr tagged neutron solid angle, a factor of 4.5 larger than achievable with current API neutron-generator designs. • The potential angular resolution for such a tagged neutron beam can be less than 0.5o for modest Si-detector position resolution (3 mm). Further improvement in angular resolution can be made by using Si-detectors with better position resolution. • The report documents several features of a notional generator design incorporating the

  4. Test particles in a magnetized conformastatic spacetime

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Piñeres, Antonio C.; Capistrano, Abraão J. S.; Quevedo, Hernando

    2016-06-01

    A class of exact conformastatic solutions of the Einstein-Maxwell field equations is presented in which the gravitational and electromagnetic potentials are completely determined by a harmonic function. We derive the equations of motion for neutral and charged particles in a spacetime background characterized by this class of solutions. As an example, we focus on the analysis of a particular harmonic function, which generates a singularity-free and asymptotically flat spacetime that describes the gravitational field of a punctual mass endowed with a magnetic field. In this particular case, we investigate the main physical properties of equatorial circular orbits. We show that due to the electromagnetic interaction, it is possible to have charged test particles which stay at rest with respect to a static observer located at infinity. Additionally, we obtain an analytic expression for the perihelion advance of test particles and the corresponding explicit value in the case of a punctual magnetic mass. We show that the analytical expressions obtained from our analysis are sufficient for being confronted with observations in order to establish whether such objects can exist in nature.

  5. High-Resolution Magnetic Force Microscope Images of a Magnetic Particle Chain Extracted from Magnetic Bacteria AMB-1

    NASA Astrophysics Data System (ADS)

    Suzuki, Hitoshi; Tanaka, Tsuyoshi; Sasaki, Tomohito; Nakamura, Noriyuki; Matsunaga, Tadashi; Mashiko, Shinro

    1998-11-01

    Bacterial magnetic particles were observed by an atomic force microscope (AFM) and a magnetic force microscope (MFM). The chain of magnetic particles was extracted from the bacteria with little disturbance to their alignment by a new preparation method.Magnetic bacteria cells were broken using an NaOH/ethanol solution. Cell debris was washed away in order to leave the magnetic particle chains, which were held on the glass surface by a magnet.In both AFM and MFM images, individual magnetic particles could be clearly observed.The MFM image showed that the particles aligned their magnetized axes along the chain.

  6. Turbulent particle transport in magnetized fusion plasma

    NASA Astrophysics Data System (ADS)

    Bourdelle, C.

    2005-05-01

    Understanding the mechanisms responsible for particle transport is of the utmost importance for magnetized fusion plasmas. A peaked density profile is attractive to improve the fusion rate, which is proportional to the square of the density, and to self-generate a large fraction of non-inductive current required for continuous operation. Experiments in various tokamak devices (ASDEX Upgrade, DIII-D, JET, TCV, TEXT, TFTR) indicate the existence of a turbulent particle pinch. Recently, such a turbulent pinch has been unambiguously identified in Tore Supra very long discharges, in the absence of both collisional particle pinch and central particle source, for more than 4 min (Hoang et al 2003 Phys. Rev. Lett. 90 155002). This turbulent pinch is predicted by a quasilinear theory of particle transport (Weiland J et al 1989 Nucl. Fusion 29 1810), and confirmed by non-linear turbulence simulations (Garbet et al 2003 Phys. Rev. Lett. 91 035001) and general considerations based on the conservation of motion invariants (Baker et al 2004 Phys. Plasmas 11 992). Experimentally, the particle pinch is found to be sensitive to the magnetic field gradient in many cases (Hoang et al 2004 Phys. Rev. Lett. 93 135003, Zabolotsky et al 2003 Plasma Phys. Control. Fusion 45 735, Weisen et al 2004 Plasma Phys. Control. Fusion 46 751, Baker et al 2000 Nucl. Fusion 40 1003), to the temperature profile (Hoang et al 2004 Phys. Rev. Lett. 93 135003, Angioni et al 2004 Nucl. Fusion 44 827) and also to the collisionality that changes the nature of the microturbulence (Angioni et al 2003 Phys. Rev. Lett. 90 205003, Garzotti et al 2003 Nucl. Fusion 43 1829, Weisen et al 2004 31st EPS Conf. on Plasma Phys. (London) vol 28G (ECA) P-1.146, Lopes Cardozo N J 1995 Plasma Phys. Control. Fusion 37 799). The consistency of some of the observed dependences with the theoretical predictions gives us a clearer understanding of the particle pinch in tokamaks, allowing us to predict more accurately the density

  7. Review of progress in magnetic particle inspection

    NASA Astrophysics Data System (ADS)

    Eisenmann, David J.; Enyart, Darrel; Lo, Chester; Brasche, Lisa

    2014-02-01

    Magnetic particle inspection (MPI) has been widely utilized for decades, and sees considerable use in the aerospace industry with a majority of the steel parts being inspected with MPI at some point in the lifecycle. Typical aircraft locations inspected are landing gear, engine components, attachment hardware, and doors. In spite of its numerous applications the method remains poorly understood, and there are many aspects of that method which would benefit from in-depth study. This shortcoming is due to the fact that MPI combines the complicated nature of electromagnetics, metallurgical material effects, fluid-particle motion dynamics, and physiological human factors into a single inspection. To promote understanding of the intricate method issues that affect sensitivity, or to assist with the revision of industry specifications and standards, research studies will be prioritized through the guidance of a panel of industry experts, using an approach which has worked successfully in the past to guide fluorescent penetrant inspection (FPI) research efforts.

  8. Acceleration of superparamagnetic particles with magnetic fields

    NASA Astrophysics Data System (ADS)

    Stange, R.; Lenk, F.; Bley, T.; Boschke, E.

    2017-04-01

    High magnetic capture efficiency in the context of Biomagnetic Separation (BMS) using superparamagnetic particles (SMPs) requires efficient mixing and high relative velocities between cellular and other targets and SMPs. For this purpose, batch processes or microfluidic systems are commonly used. Here, we analyze the characteristics of an in-house developed batch process experimental setup, the Electromagnetic Sample Mixer (ESM) described earlier. This device uses three electromagnets to increase the relative velocity between SMPs and targets. We carry out simulations of the magnetic field in the ESM and in a simpler paradigmatic setup, and thus were able to calculate the force field acting on the SMPs and to simulate their relative velocities and fluid dynamics due to SMP movement. In this way we were able to show that alternate charging of the magnets induces a double circular stream of SMPs in the ESM, resulting in high relative velocities of SMPs to the targets. Consequently, due to the conservation of momentum, the fluid experiences an acceleration induced by the SMPs. We validated our simulations by microscopic observation of the SMPs in the magnetic field, using a homemade apparatus designed to accommodate a long working-distance lens. By comparing the results of modeling this paradigmatic setup with the experimental observations, we determined that the velocities of the SMPs corresponded to the results of our simulations.

  9. A Multi-Functional Particle Spectrometer to be Demonstrated on Delfi-C3 Successor Nano Satellite

    NASA Astrophysics Data System (ADS)

    Lampridis, D.; Maddox, E.; Moon, S.; Kraft, S.; Elstak, J.; Rotteveel, J.

    2008-08-01

    In this article, a highly miniaturised Multi-functional Particle Spectrometer (MPS) is proposed for the monitoring of the space environment. The spectrometer separates protons, electrons, ions and gamma-rays, which affect systems differently, over a large energy range (0.1- 400 MeV). The proposed base line design consists of a combination of a solid state pixel tracker and a scintillation detector. Instrument control and data processing are performed with state-of-the-art electronics. Apart from its original focus in planetary exploration missions, the MPS has also been proposed and accepted to be demonstrated on the Delft University Delfi-C3 successor satellite (Delfi-n3Xt) in 2010. We present the design, mission goals and accommodation constraints on such a small satellite.

  10. Magnetic-fluorescent-targeting multifunctional aptasensorfor highly sensitive and one-step rapid detection of ochratoxin A.

    PubMed

    Wang, Chengquan; Qian, Jing; Wang, Kan; Wang, Kun; Liu, Qian; Dong, Xiaoya; Wang, Chengke; Huang, Xingyi

    2015-06-15

    A multifunctional aptasensor for highly sensitive and one-step rapid detection of ochratoxin A (OTA), has been developed using aptamer-conjugated magnetic beads (MBs) as the recognition and concentration element and a heavy CdTe quantum dots (QDs) as the label. Initially, the thiolated aptamer was conjugated on the Fe3O4@Au MBs through Au-S covalent binding. Subsequently, multiple CdTe QDs were loaded both in and on a versatile SiO2 nanocarrier to produce a large amplification factor of hybrid fluorescent nanoparticles (HFNPs) labeled complementary DNA (cDNA). The magnetic-fluorescent-targeting multifunctional aptasensor was thus fabricated by immobilizing the HFNPs onto MBs' surface through the hybrid reaction between the aptamer and cDNA. This aptasensor can be produced at large scale in a single run, and then can be conveniently used for rapid detection of OTA through a one-step incubation procedure. The presence of OTA would trigger aptamer-OTA binding, resulting in the partial release of the HFNPs into bulk solution. After a simple magnetic separation, the supernatant liquid of the above solution contained a great number of CdTe QDs produced an intense fluorescence emission. Under the optimal conditions, the fluorescence intensity of the released HFNPs was proportional to the concentration of OTA in a wide range of 15 pg mL(-1) -100 ng mL(-1) with a detection limit of 5.4 pg mL(-1) (S/N=3). This multifunctional aptasensor represents a promising path toward routine quality control of food safety, and also creates the opportunity to develop aptasensors for other targets using this strategy.

  11. Magnetic-particle-sensing based diagnostic protocols and applications.

    PubMed

    Takamura, Tsukasa; Ko, Pil Ju; Sharma, Jaiyam; Yukino, Ryoji; Ishizawa, Shunji; Sandhu, Adarsh

    2015-06-04

    Magnetic particle-labeled biomaterial detection has attracted much attention in recent years for a number of reasons; easy manipulation by external magnetic fields, easy functionalization of the surface, and large surface-to-volume ratio, to name but a few. In this review, we report on our recent investigations into the detection of nano-sized magnetic particles. First, the detection by Hall magnetic sensor with lock-in amplifier and alternative magnetic field is summarized. Then, our approach to detect sub-200 nm diameter target magnetic particles via relatively large micoro-sized "columnar particles" by optical microscopy is described. Subsequently, we summarize magnetic particle detection based on optical techniques; one method is based on the scattering of the magnetically-assembled nano-sized magnetic bead chain in rotating magnetic fields and the other one is based on the reflection of magnetic target particles and porous silicon. Finally, we report recent works with reference to more familiar industrial products (such as smartphone-based medical diagnosis systems and magnetic removal of unspecific-binded nano-sized particles, or "magnetic washing").

  12. Synthesis and Characterization of Multifunctional Chitosan-MnFe2O4 Nanoparticles for Magnetic Hyperthermia and Drug Delivery

    PubMed Central

    Kim, Dong-Hyun; Nikles, David E.; Brazel, Christopher S.

    2010-01-01

    Multifunctional nanoparticles composed of MnFe2O4 were encapsulated in chitosan for investigation of system to combine magnetically-triggered drug delivery and localized hyperthermia for cancer treatment with the previously published capacity of MnFe2O4 to be used as an efficient MRI contrast agent for cancer diagnosis. This paper focuses on the synthesis and characterization of magnetic MnFe2O4 nanoparticles, their dispersion in water and their incorporation in chitosan, which serves as a drug carrier. The surface of the MnFe2O4 nanoparticles was modified with meso-2,3-di-mercaptosuccinic acid (DMSA) to develop stable aqueous dispersions. The nanoparticles were coated with chitosan, and the magnetic properties, heat generation and hydrodynamic size of chitosan-coated MnFe2O4 were evaluated for various linker concentrations and in a range of pH conditions.

  13. Synthesis of multifunctional Ag@Au@phenol formaldehyde resin particles loaded with folic acids for photothermal therapy.

    PubMed

    Yang, Ping; Xu, Qi-Zhi; Jin, Sheng-Yu; Lu, Yang; Zhao, Yang; Yu, Shu-Hong

    2012-07-23

    Multifunctional Ag@Au@ phenol formaldehyde resin (PFR) particles loaded with folic acids (FA) have been designed for killing tumor cells through photothermy conversion under the irradiation of near-infrared (NIR) light. Possessing the virtue of good fluorescence, low toxicity, and good targeting, the nanocomposite consists of an Ag core, an Au layer, a PFR shell, and folic acids on the PFR shell. The Ag@PFR core-shell structure can be prepared with a simple hydrothermal method after preheating. We then filled the PFR shell with a layer of Au by heating and modified the shell with polyelectrolyte to change its surface charge state. To capture tumor cells actively, FA molecules were attached onto the surface of the Ag@Au@PFR particles in the presence of 1-ethyl-3-(3-dimethly aminopropyl) carbodiimide (EDAC) and N-hydroxysuccinimide (NHS). Owing to the excellent property of Au NPs and Ag NPs as photothermal conversion agents, the Ag@Au@ PFR@FA particles can be utilized to kill tumor cells when exposed to NIR light.

  14. Energetic Particles Events inside Magnetic Clouds

    NASA Astrophysics Data System (ADS)

    Medina, Jose; Hidalgo, Miguel Angel; Blanco, Juan Jose; Rodriguez-Pacheco, Javier

    The effect of the magnetic topology of the Magnetic Clouds (MCs) over the energetic particle event (EPe) fluxes (0.5-100 MeV) have been simulated. In the data corresponding to the ion and electron fluxes, a depression after a strong maximum is observed when a EPe passes through a MC. Using our cross-section circular and elliptical MC models (Journal of Geophysical Research 107(1), doi:10.1029/2001JA900100 (2002) and Solar Physics 207(1), 187-198 (2002)) we have tried to explain that effect, understanding the importance of the topology of the MC. In sight of the results of the preliminary analysis we conclude that the magnitude of the magnetic field seems not to play a significant role but the helicoidal topology associated with topology of the MCs. This work has been supported by the Spanish Comisín Internacional de o Ciencia y Tecnoloǵ (CICYT), grant ESP2005-07290-C02-01 and ESP2006-08459. This work ıa is performed inside COST Action 724.

  15. Magnetic-Particle-Sensing Based Diagnostic Protocols and Applications

    PubMed Central

    Takamura, Tsukasa; Ko, Pil Ju; Sharma, Jaiyam; Yukino, Ryoji; Ishizawa, Shunji; Sandhu, Adarsh

    2015-01-01

    Magnetic particle-labeled biomaterial detection has attracted much attention in recent years for a number of reasons; easy manipulation by external magnetic fields, easy functionalization of the surface, and large surface-to-volume ratio, to name but a few. In this review, we report on our recent investigations into the detection of nano-sized magnetic particles. First, the detection by Hall magnetic sensor with lock-in amplifier and alternative magnetic field is summarized. Then, our approach to detect sub-200 nm diameter target magnetic particles via relatively large micoro-sized “columnar particles” by optical microscopy is described. Subsequently, we summarize magnetic particle detection based on optical techniques; one method is based on the scattering of the magnetically-assembled nano-sized magnetic bead chain in rotating magnetic fields and the other one is based on the reflection of magnetic target particles and porous silicon. Finally, we report recent works with reference to more familiar industrial products (such as smartphone-based medical diagnosis systems and magnetic removal of unspecific-binded nano-sized particles, or “magnetic washing”). PMID:26053747

  16. Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles.

    PubMed

    Zhan, Sihui; Yang, Yang; Shen, Zhiqiang; Shan, Junjun; Li, Yi; Yang, Shanshan; Zhu, Dandan

    2014-06-15

    A novel amine-functionalized magnetic Fe3O4-SiO2-NH2 nanoparticle was prepared by layer-by-layer method and used for rapid removal of both pathogenic bacteria and viruses from water. The nanoparticles were characterized by TEM, EDS, XRD, XPS, FT-IR, BET surface analysis, magnetic property tests and zeta-potential measurements, respectively, which demonstrated its well-defined core-shell structures and strong magnetic responsivity. Pathogenic bacteria and viruses are often needed to be removed conveniently because of a lot of co-existing conditions. The amine-modified nanoparticles we prepared were attractive for capturing a wide range of pathogens including not only bacteriophage f2 and virus (Poliovirus-1), but also various bacteria such as S. aureus, E. coli O157:H7, P. aeruginosa, Salmonella, and B. subtilis. Using as-prepared amine-functionalized MNPs as absorbent, the nonspecific removal efficiency of E. coli O157:H7 or virus was more than 97.39%, while it is only 29.8% with Fe3O4-SiO2 particles. From joint removal test of bacteria and virus, there are over 95.03% harmful E. coli O157:H7 that can be removed from mixed solution with polyclonal anti-E. coli O157:H7 antibody modified nanoparticles. Moreover, the synergy effective mechanism has also been suggested. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. HER2 Targeted Breast Cancer Therapy with Switchable "Off/On" Multifunctional "Smart" Magnetic Polymer Core-Shell Nanocomposites.

    PubMed

    Vivek, Raju; Thangam, Ramar; Kumar, Selvaraj Rajesh; Rejeeth, Chandrababu; Kumar, Gopal Senthil; Sivasubramanian, Srinivasan; Vincent, Savariar; Gopi, Dhanaraj; Kannan, Soundarapandian

    2016-01-27

    Multifunctional magnetic polymer nanocombinations are gaining importance in cancer nanotheranostics due to their safety and their potential in delivering targeted functions. Herein, we report a novel multifunctional core-shell magnetic polymer therapeutic nanocomposites (NCs) exhibiting pH dependent "Off-On" release of drug against breast cancer cells. The NCs are intact in blood circulation ("Off" state), i.e., at physiological pH, whereas activated ("On" state) at intracellular acidic pH environment of the targeted breast cancer cells. The NCs are prepared by coating the cannonball (iron nanocore) with hydrophobic nanopockets of pH-responsive poly(d,l-lactic-co-glycolic acid) (PLGA) polymer nanoshell that allows efficient loading of therapeutics. Further, the nanocore-polymer shell is stabilized by poly(vinylpyrrolidone) (PVP) and functionalized with a targeting HER2 ligand. The prepared Her-Fe3O4@PLGA-PVP nanocomposites facilitate packing of anticancer drug (Tamoxifen) without premature release in the bloodstream, recognizing the target cells through binding of Herceptin antibody to HER2, a cell surface receptor expressed by breast cancer cells to promote HER2 receptor mediated endocytosis and finally releasing the drug at the intracellular site of tumor cells ("On" state) to induce apoptosis. The therapeutic efficiency of hemo/cytocompatible NCs drug delivery system (DDS) in terms of targeted delivery and sustained release of therapeutic agent against breast cancer cells was substantiated by in vitro and in vivo studies. The multifunctional properties of Her-Tam-Fe3O4@PLGA-PVP NCs may open up new avenues in cancer therapy through overcoming the limitations of conventional cancer therapy.

  18. Microstripes for transport and separation of magnetic particles

    PubMed Central

    Donolato, Marco; Dalslet, Bjarke Thomas; Hansen, Mikkel Fougt

    2012-01-01

    We present a simple technique for creating an on-chip magnetic particle conveyor based on exchange-biased permalloy microstripes. The particle transportation relies on an array of stripes with a spacing smaller than their width in conjunction with a periodic sequence of four different externally applied magnetic fields. We demonstrate the controlled transportation of a large population of particles over several millimeters of distance as well as the spatial separation of two populations of magnetic particles with different magnetophoretic mobilities. The technique can be used for the controlled selective manipulation and separation of magnetically labelled species. PMID:22655020

  19. NONLINEAR EFFECTS IN PARTICLE TRANSPORT IN STOCHASTIC MAGNETIC FIELDS

    SciTech Connect

    Vlad, M.; Spineanu, F.; Croitoru, A.

    2015-12-10

    Collisional particle transport in stochastic magnetic fields is studied using a semi-analytical method. The aim is to determine the influence of the nonlinear effects that occur in the magnetic field line random walk on particle transport. We show that particle transport coefficients can be strongly influenced by the magnetic line trapping. The conditions that correspond to these nonlinear regimes are determined. We also analyze the effects produced by the space variation of the large-scale magnetic field. We show that an average drift is generated by the gradient of the magnetic field, which strongly increases and reverses its orientation in the nonlinear regime.

  20. Using triaxial magnetic fields to create optimal particle composites.

    SciTech Connect

    Martin, James Ellis

    2004-05-01

    The properties of a particle composite can be controlled by organizing the particles into assemblies. The properties of the composite will depend on the structure of the particle assemblies, and for any give property there is some optimal structure. Through simulation and experiment we show that the application of heterodyned triaxial magnetic or electric fields generates structures that optimize the magnetic and dielectric properties of particle composites. We suggest that optimizing these properties optimizes other properties, such as transport properties, and we give as one example of this optimization the magnetostriction of magnetic particle composites formed in a silicone elastomer.

  1. Multifunctional Nanocarpets for Cancer Theranostics: Remotely Controlled Graphene Nanoheaters for Thermo-Chemosensitisation and Magnetic Resonance Imaging

    PubMed Central

    Ramachandra Kurup Sasikala, Arathyram; Thomas, Reju George; Unnithan, Afeesh Rajan; Saravanakumar, Balasubramaniam; Jeong, Yong Yeon; Park, Chan Hee; Kim, Cheol Sang

    2016-01-01

    A new paradigm in cancer theranostics is enabled by safe multifunctional nanoplatform that can be applied for therapeutic functions together with imaging capabilities. Herein, we develop a multifunctional nanocomposite consisting of Graphene Oxide–Iron Oxide -Doxorubicin (GO-IO-DOX) as a theranostic cancer platform. The smart magnetic nanoplatform acts both as a hyperthermic agent that delivers heat when an alternating magnetic field is applied and a chemotherapeutic agent in a cancer environment by providing a pH-dependent drug release to administer a synergistic anticancer treatment with an enhanced T2 contrast for MRI. The novel GO-IO-DOX nanocomposites were tested in vitro and were observed to exhibit an enhanced tumoricidal effect through both hyperthermia and cancer cell-specific DOX release along with an excellent MRI performance, enabling a versatile theranostic platform for cancer. Moreover the localized antitumor effects of GO-IO-DOX increased substantially as a result of the drug sensitization through repeated application of hyperthermia. PMID:26841709

  2. Multifunctional Nanocarpets for Cancer Theranostics: Remotely Controlled Graphene Nanoheaters for Thermo-Chemosensitisation and Magnetic Resonance Imaging.

    PubMed

    Ramachandra Kurup Sasikala, Arathyram; Thomas, Reju George; Unnithan, Afeesh Rajan; Saravanakumar, Balasubramaniam; Jeong, Yong Yeon; Park, Chan Hee; Kim, Cheol Sang

    2016-02-04

    A new paradigm in cancer theranostics is enabled by safe multifunctional nanoplatform that can be applied for therapeutic functions together with imaging capabilities. Herein, we develop a multifunctional nanocomposite consisting of Graphene Oxide-Iron Oxide -Doxorubicin (GO-IO-DOX) as a theranostic cancer platform. The smart magnetic nanoplatform acts both as a hyperthermic agent that delivers heat when an alternating magnetic field is applied and a chemotherapeutic agent in a cancer environment by providing a pH-dependent drug release to administer a synergistic anticancer treatment with an enhanced T2 contrast for MRI. The novel GO-IO-DOX nanocomposites were tested in vitro and were observed to exhibit an enhanced tumoricidal effect through both hyperthermia and cancer cell-specific DOX release along with an excellent MRI performance, enabling a versatile theranostic platform for cancer. Moreover the localized antitumor effects of GO-IO-DOX increased substantially as a result of the drug sensitization through repeated application of hyperthermia.

  3. Multifunctional Nanocarpets for Cancer Theranostics: Remotely Controlled Graphene Nanoheaters for Thermo-Chemosensitisation and Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Ramachandra Kurup Sasikala, Arathyram; Thomas, Reju George; Unnithan, Afeesh Rajan; Saravanakumar, Balasubramaniam; Jeong, Yong Yeon; Park, Chan Hee; Kim, Cheol Sang

    2016-02-01

    A new paradigm in cancer theranostics is enabled by safe multifunctional nanoplatform that can be applied for therapeutic functions together with imaging capabilities. Herein, we develop a multifunctional nanocomposite consisting of Graphene Oxide–Iron Oxide -Doxorubicin (GO-IO-DOX) as a theranostic cancer platform. The smart magnetic nanoplatform acts both as a hyperthermic agent that delivers heat when an alternating magnetic field is applied and a chemotherapeutic agent in a cancer environment by providing a pH-dependent drug release to administer a synergistic anticancer treatment with an enhanced T2 contrast for MRI. The novel GO-IO-DOX nanocomposites were tested in vitro and were observed to exhibit an enhanced tumoricidal effect through both hyperthermia and cancer cell-specific DOX release along with an excellent MRI performance, enabling a versatile theranostic platform for cancer. Moreover the localized antitumor effects of GO-IO-DOX increased substantially as a result of the drug sensitization through repeated application of hyperthermia.

  4. Multidimensional x-space magnetic particle imaging.

    PubMed

    Goodwill, Patrick W; Conolly, Steven M

    2011-09-01

    Magnetic particle imaging (MPI) is a promising new medical imaging tracer modality with potential applications in human angiography, cancer imaging, in vivo cell tracking, and inflammation imaging. Here we demonstrate both theoretically and experimentally that multidimensional MPI is a linear shift-invariant imaging system with an analytic point spread function. We also introduce a fast image reconstruction method that obtains the intrinsic MPI image with high signal-to-noise ratio via a simple gridding operation in x-space. We also demonstrate a method to reconstruct large field-of-view (FOV) images using partial FOV scanning, despite the loss of first harmonic image information due to direct feedthrough contamination. We conclude with the first experimental test of multidimensional x-space MPI.

  5. Multidimensional X-Space Magnetic Particle Imaging

    PubMed Central

    Conolly, Steven M.

    2012-01-01

    Magnetic particle imaging (MPI) is a promising new medical imaging tracer modality with potential applications in human angiography, cancer imaging, in vivo cell tracking, and inflammation imaging. Here we demonstrate both theoretically and experimentally that multidimensional MPI is a linear shift-in-variant imaging system with an analytic point spread function. We also introduce a fast image reconstruction method that obtains the intrinsic MPI image with high signal-to-noise ratio via a simple gridding operation in x-space. We also demonstrate a method to reconstruct large field-of-view (FOV) images using partial FOV scanning, despite the loss of first harmonic image information due to direct feedthrough contamination. We conclude with the first experimental test of multidimensional x-space MPI. PMID:21402508

  6. Fluorescent-magnetic Janus particles prepared via seed emulsion polymerization.

    PubMed

    Kaewsaneha, Chariya; Bitar, Ahmad; Tangboriboonrat, Pramuan; Polpanich, Duangporn; Elaissari, Abdelhamid

    2014-06-15

    Anisotropic polymeric colloidal or Janus particles possessing simultaneous magnetic and fluorescent properties were successfully prepared via the swelling-diffusion or the in situ emulsion polymerization method. In the swelling-diffusion process, magnetic emulsions (an organic ferrofluid dispersed in aqueous medium) were synthesized and used for seeds of submicron magnetic Janus particles. After swelling the anisotropic particles obtained by 1-pyrene-carboxaldehyde fluorescent dye dissolved in tetrahydrofuran, well-defined fluorescent-magnetic Janus particles were produced. In the in situ emulsion polymerization, styrene monomer mixed with fluorescent dye monomers, i.e., 1-pyrenylmethyl methacrylate (PyMMA) or fluorescein dimethacrylate (FDMA), and an oil-soluble initiator (2,2'-azobis(2-isobutyronitrile)) were emulsified in the presence of magnetic seed emulsions. The confocal microscopic images showed the fluorescent-magnetic Janus particles with high fluorescent intensity when a fluorescent crosslinker monomer FDMA was employed.

  7. Projection x-space magnetic particle imaging.

    PubMed

    Goodwill, Patrick W; Konkle, Justin J; Zheng, Bo; Saritas, Emine U; Conolly, Steven M

    2012-05-01

    Projection magnetic particle imaging (MPI) can improve imaging speed by over 100-fold over traditional 3-D MPI. In this work, we derive the 2-D x-space signal equation, 2-D image equation, and introduce the concept of signal fading and resolution loss for a projection MPI imager. We then describe the design and construction of an x-space projection MPI scanner with a field gradient of 2.35 T/m across a 10 cm magnet free bore. The system has an expected resolution of 3.5 × 8.0 mm using Resovist tracer, and an experimental resolution of 3.8 × 8.4 mm resolution. The system images 2.5 cm × 5.0 cm partial field-of views (FOVs) at 10 frames/s, and acquires a full field-of-view of 10 cm × 5.0 cm in 4 s. We conclude by imaging a resolution phantom, a complex "Cal" phantom, mice injected with Resovist tracer, and experimentally confirm the theoretically predicted x-space spatial resolution.

  8. Projection X-Space Magnetic Particle Imaging

    PubMed Central

    Konkle, Justin J.; Zheng, Bo; Saritas, Emine U.; Conolly, Steven M.

    2012-01-01

    Projection magnetic particle imaging (MPI) can improve imaging speed by over 100-fold over traditional 3-D MPI. In this work, we derive the 2-D x-space signal equation, 2-D image equation, and introduce the concept of signal fading and resolution loss for a projection MPI imager. We then describe the design and construction of an x-space projection MPI scanner with a field gradient of 2.35 T/m across a 10 cm magnet free bore. The system has an expected resolution of 3.5 × 8.0 mm using Resovist tracer, and an experimental resolution of 3.8 × 8.4 mm resolution. The system images 2.5 cm × 5.0 cm partial field-of views (FOVs) at 10 frames/s, and acquires a full field-of-view of 10 cm × 5.0 cm in 4 s. We conclude by imaging a resolution phantom, a complex “Cal” phantom, mice injected with Resovist tracer, and experimentally confirm the theoretically predicted x-space spatial resolution. PMID:22552332

  9. Particle interactions of polyvinylpyrrolidone-coated iron oxide particles as magnetic drug delivery agents

    NASA Astrophysics Data System (ADS)

    İşçi, Sevim; İşçi, Yavuz; Bekaroğlu, Maide Gökçe

    2017-08-01

    Iron oxide particles have been recently researched for the potential applications of targeted drug delivery due to their magnetic properties. The surfaces of the iron oxide particles must be modified to reduce the toxicity and to load the drug to the particles. Biopolymers are good surface modifiers of colloidal particles such as iron oxide particles. The degree of surface coverage of the colloidal iron oxide particles affects the stability, toxicity, magnetic properties and drug loading efficiency. In this study, the interactions of iron oxide (Fe3O4) particles and PVP were determined according to the colloidal properties. The proper concentration of PVP for the whole coverage of the iron oxide particles was found for the possible magnetic drug delivery applications by controlling the colloidal properties of the dispersions. The magnetic properties and toxicity of the fully covered bioiron oxide was also determined for possible applications.

  10. Magnetic particle motions within living cells. Physical theory and techniques.

    PubMed Central

    Valberg, P A; Butler, J P

    1987-01-01

    Body tissues are not ferromagnetic, but ferromagnetic particles can be present as contaminants or as probes in the lungs and in other organs. The magnetic domains of these particles can be aligned by momentary application of an external magnetic field; the magnitude and time course of the resultant remanent field depend on the quantity of magnetic material and the degree of particle motion. The interpretation of magnetometric data requires an understanding of particle magnetization, agglomeration, random motion, and both rotation and translation in response to magnetic fields. We present physical principles relevant to magnetometry and suggest models for intracellular particle motion driven by thermal, elastic, or cellular forces. The design principles of instrumentation for magnetizing intracellular particles and for detecting weak remanent magnetic fields are described. Such magnetic measurements can be used for noninvasive studies of particle clearance from the body or of particle motion within body tissues and cells. Assumptions inherent to this experimental approach and possible sources of artifact are considered and evaluated. PMID:3676435

  11. Robust Fe3O4/SiO2-Pt/Au/Pd magnetic nanocatalysts with multifunctional hyperbranched polyglycerol amplifiers.

    PubMed

    Zhou, Li; Gao, Chao; Xu, Weijian

    2010-07-06

    Here we report a facile approach to prepare multicarboxylic hyperbranched polyglycerol (HPG)-grafted SiO(2)-coated iron oxide (Fe(3)O(4)/SiO(2)) magnetic hybrid support. This support combined the both features of Fe(3)O(4) and HPG, facile magnetic separation, and favorable molecular structure with numerous functional groups. With the use of the grafted-HPGs as templates, various noble metal nanocatalysts such as Pt, Au, and Pd were directly grown on the surfaces of magnetic support with ultrasmall and nearly monodisperse sizes (e.g., the average sizes of Pt, Au, and Pd are 4.8 +/- 0.5, 6.0 +/- 0.6, and 4.0 +/- 0.4 nm, respectively) and high coverage densities. Because of the amplification effect of HPG, high loading capacities of the nanocatalysts, around 0.296, 0.243, and 0.268 mmol/g for Pt, Au, and Pd, respectively, were achieved. Representative catalytic reactions including reduction of 4-nitrophenol, alcohol oxidation, and Heck reaction demonstrated the high catalytic activity of the noble metal nanocatalysts. Because of the stabilization of HPG templates, the nanocatalysts can be readily recycled by a magnet and reused for the next reactions with high efficiencies. The robust multifunctional magnetic hybrids will find important applications in catalysis and other fields such as drug delivery and bioseparations.

  12. Multifunctional plasmonic shell-magnetic core nanoparticles for targeted diagnostics, isolation, and photothermal destruction of tumor cells.

    PubMed

    Fan, Zhen; Shelton, Melanie; Singh, Anant Kumar; Senapati, Dulal; Khan, Sadia Afrin; Ray, Paresh Chandra

    2012-02-28

    Cancer is the greatest challenge in human healthcare today. Cancer causes 7.6 million deaths and economic losses of around 1 trillion dollars every year. Early diagnosis and effective treatment of cancer are crucial for saving lives. Driven by these needs, we report the development of a multifunctional plasmonic shell-magnetic core nanotechnology-driven approach for the targeted diagnosis, isolation, and photothermal destruction of cancer cells. Experimental data show that aptamer-conjugated plasmonic/magnetic nanoparticles can be used for targeted imaging and magnetic separation of a particular kind of cell from a mixture of different cancer cells. A targeted photothermal experiment using 670 nm light at 2.5 W/cm(2) for 10 min resulted selective irreparable cellular damage to most of the cancer cells. We also showed that the aptamer-conjugated magnetic/plasmonic nanoparticle-based photothermal destruction of cancer cells is highly selective. We discuss the possible mechanism and operating principle for the targeted imaging, separation, and photothermal destruction using magnetic/plasmonic nanotechnology.

  13. Magnetic particle-scanning for ultrasensitive immunodetection on-chip.

    PubMed

    Cornaglia, Matteo; Trouillon, Raphaël; Tekin, H Cumhur; Lehnert, Thomas; Gijs, Martin A M

    2014-08-19

    We describe the concept of magnetic particle-scanning for on-chip detection of biomolecules: a magnetic particle, carrying a low number of antigens (Ag's) (down to a single molecule), is transported by hydrodynamic forces and is subjected to successive stochastic reorientations in an engineered magnetic energy landscape. The latter consists of a pattern of substrate-bound small magnetic particles that are functionalized with antibodies (Ab's). Subsequationuent counting of the captured Ag-carrying particles provides the detection signal. The magnetic particle-scanning principle is investigated in a custom-built magneto-microfluidic chip and theoretically described by a random walk-based model, in which the trajectory of the contact point between an Ag-carrying particle and the small magnetic particle pattern is described by stochastic moves over the surface of the mobile particle, until this point coincides with the position of an Ag, resulting in the binding of the particle. This model explains the particular behavior of previously reported experimental dose-response curves obtained for two different ligand-receptor systems (biotin/streptavidin and TNF-α) over a wide range of concentrations. Our model shows that magnetic particle-scanning results in a very high probability of immunocomplex formation for very low Ag concentrations, leading to an extremely low limit of detection, down to the single molecule-per-particle level. When compared to other types of magnetic particle-based surface coverage assays, our strategy was found to offer a wider dynamic range (>8 orders of magnitude), as the system does not saturate for concentrations as high as 10(11) Ag molecules in a 5 μL drop. Furthermore, by emphasizing the importance of maximizing the encounter probability between the Ag and the Ab to improve sensitivity, our model also contributes to explaining the behavior of other particle-based heterogeneous immunoassays.

  14. Magnetic field models from energetic particle data at Neptune

    NASA Technical Reports Server (NTRS)

    Selesnick, R. S.

    1992-01-01

    The locations of features in the Voyager 2 energetic particle data from Neptune are combined with uncertainties in the multipole expansion of the planetary magnetic field to derive new magnetic field models that are consistent both with various interpretations of the particle features and with the magnetic field data. While assumptions as to the origin of the features must be made, they do not provide sufficient constraints to obtain significant new information on any of the unknown multipole coefficients. However, the magnetic L shell positions of the particle features, which are interpreted primarily as absorption signatures of Neptune's satellites, can, in general, be brought into agreement with expected values.

  15. Motion of particles near a magnetized tidal charged black hole

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Kousar, Lubna

    2017-07-01

    This paper is devoted to study the effects of tidal charge on the motion of both neutral as well as charged particles around a magnetized tidal charged black hole. We analyze the innermost stable circular orbits and conditions for escape velocity. In order to discuss stability of orbits, we explore Lyapunov exponent and effective force on the particle. The center of mass energy of the interacting particles is studied in the presence/absence of external magnetic field. We conclude that the external magnetic field as well as tidal charge has a great influence on the particle's motion.

  16. Numerical investigation of the dynamics of Janus magnetic particles in a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Kim, Hui Eun; Kim, Kyoungbeom; Ma, Tae Yeong; Kang, Tae Gon

    2017-02-01

    We investigated the rotational dynamics of Janus magnetic particles suspended in a viscous liquid, in the presence of an externally applied rotating magnetic field. A previously developed two-dimensional direct simulation method, based on the finite element method and a fictitious domain method, is employed to solve the magnetic particulate flow. As for the magnetic problem, the two Maxwell equations are converted to a differential equation using the magnetic potential. The magnetic forces acting on the particles are treated by a Maxwell stress tensor formulation, enabling us to consider the magnetic interactions among the particles without any approximation. The dynamics of a single particle in the rotating field is studied to elucidate the effect of the Mason number and the magnetic susceptibility on the particle motions. Then, we extended our interest to a two-particle problem, focusing on the effect of the initial configuration of the particles on the particle motions. In three-particle interaction problems, the particle dynamics and the fluid flow induced by the particle motions are significantly affected by the particle configuration and the orientation of each particle.

  17. Shock induced magnetic effects in fine particle iron dispersions

    NASA Technical Reports Server (NTRS)

    Wasilewski, P. J.

    1979-01-01

    Magnetic effects associated with shock induced transformation of fcc antiferromagnetic iron precipitates in polycrystalline copper disks at levels up to 5 GPa in weak magnetic fields (H not greater than 0.5 Oe) were investigated. The demagnetization and anisotropy associated with second order transition, the effects of plastic deformation in imparting magnetic anisotropy and magnetic hardening, and the influence of post shock thermal transients on magnetization associated with recovery, recrystallization and grain growth were studied. It was found that on the microsecond time scale of the shock induced first order transformation, the field sense is recorded in the transformed iron particles. For a given particle size the degree of transformation of fcc iron depends on the level of the shock. For a given shock level the resultant magnetic properties depend on the particle size distribution, with maximum effects noted in specimens with 400 to 600 A particles.

  18. In situ assembly of monodisperse, multifunctional silica microspheres embedded with magnetic and fluorescent nanoparticles and their application in adsorption of methylene blue.

    PubMed

    Shi, Jianhui; Ren, Xiaozhen; Tong, Lizhu; Chen, Xiaodong; Yang, Xuwei; Yang, Hua

    2013-11-14

    Many efforts have been devoted towards the fabrication of multifunctional (mesoporous, magnetic and fluorescent) nanocomposites due to their growing applications as adsorbents, catalysts, and biomedical application, etc. Novel, flower-structured multifunctional Fe3O4/YVO4:Eu(3+)@SiO2 microspheres were successfully synthesized through a simple self-assembled process. The as-obtained products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption, photoluminescence (PL) spectroscopy and using a vibrating sample magnetometer (VSM). The results reveal that the novel composites exhibit typical mesoporous structure, narrow size distribution, good monodispersity, excellent luminescent properties and superparamagnetic features. The effects of magnetic field on the luminescent intensity of multifunctional composites have been discussed in our manuscript. Furthermore, the adsorption experiments indicate that the resulting multifunctional composites are powerful adsorbents for the removal of methylene blue from water with a maximum adsorption efficiency of 98%. It is envisioned that multifunctional composites with high surface area are of particular interest for adsorption of pollutants, separation, and water purification.

  19. Full particle orbit effects in regular and stochastic magnetic fields

    SciTech Connect

    Ogawa, Shun; Cambon, Benjamin P.; Leoncini, Xavier; Vittot, Michel; Del-Castillo-Negrete, Diego B; Dif-Pradalier, Guilhem; Garbet, Xavier

    2016-07-18

    Here we present a numerical study of charged particle motion in a time-independent magnetic field in cylindrical geometry. The magnetic field model consists of an unperturbed reversed-shear (non-monotonic q-profile) helical part and a perturbation consisting of a superposition of modes. Contrary to most of the previous studies, the particle trajectories are computed by directly solving the full Lorentz force equations of motion in a six-dimensional phase space using a sixth-order, implicit, symplectic Gauss-Legendre method. The level of stochasticity in the particle orbits is diagnosed using averaged, effective Poincare sections. It is shown that when only one mode is present, the particle orbits can be stochastic even though the magnetic field line orbits are not stochastic (i.e., fully integrable). The lack of integrability of the particle orbits in this case is related to separatrix crossing and the breakdown of the global conservation of the magnetic moment. Some perturbation consisting of two modes creates resonance overlapping, leading to Hamiltonian chaos in magnetic field lines. Then, the particle orbits exhibit a nontrivial dynamics depending on their energy and pitch angle. It is shown that the regions where the particle motion is stochastic decrease as the energy increases. The non-monotonicity of the q-profile implies the existence of magnetic ITBs (internal transport barriers) which correspond to shearless flux surfaces located in the vicinity of the q-profile minimum. It is shown that depending on the energy, these magnetic ITBs might or might not confine particles. That is, magnetic ITBs act as an energy-dependent particle confinement filter. Magnetic field lines in reversed-shear configurations exhibit topological bifurcations (from homoclinic to heteroclinic) due to separatrix reconnection. Finally, we show that a similar but more complex scenario appears in the case of particle orbits that depend in a non-trivial way on the energy and pitch angle

  20. Full particle orbit effects in regular and stochastic magnetic fields

    DOE PAGES

    Ogawa, Shun; Cambon, Benjamin P.; Leoncini, Xavier; ...

    2016-07-18

    Here we present a numerical study of charged particle motion in a time-independent magnetic field in cylindrical geometry. The magnetic field model consists of an unperturbed reversed-shear (non-monotonic q-profile) helical part and a perturbation consisting of a superposition of modes. Contrary to most of the previous studies, the particle trajectories are computed by directly solving the full Lorentz force equations of motion in a six-dimensional phase space using a sixth-order, implicit, symplectic Gauss-Legendre method. The level of stochasticity in the particle orbits is diagnosed using averaged, effective Poincare sections. It is shown that when only one mode is present, themore » particle orbits can be stochastic even though the magnetic field line orbits are not stochastic (i.e., fully integrable). The lack of integrability of the particle orbits in this case is related to separatrix crossing and the breakdown of the global conservation of the magnetic moment. Some perturbation consisting of two modes creates resonance overlapping, leading to Hamiltonian chaos in magnetic field lines. Then, the particle orbits exhibit a nontrivial dynamics depending on their energy and pitch angle. It is shown that the regions where the particle motion is stochastic decrease as the energy increases. The non-monotonicity of the q-profile implies the existence of magnetic ITBs (internal transport barriers) which correspond to shearless flux surfaces located in the vicinity of the q-profile minimum. It is shown that depending on the energy, these magnetic ITBs might or might not confine particles. That is, magnetic ITBs act as an energy-dependent particle confinement filter. Magnetic field lines in reversed-shear configurations exhibit topological bifurcations (from homoclinic to heteroclinic) due to separatrix reconnection. Finally, we show that a similar but more complex scenario appears in the case of particle orbits that depend in a non-trivial way on the energy and

  1. Full particle orbit effects in regular and stochastic magnetic fields

    SciTech Connect

    Ogawa, Shun; Cambon, Benjamin P.; Leoncini, Xavier; Vittot, Michel; Del-Castillo-Negrete, Diego B; Dif-Pradalier, Guilhem; Garbet, Xavier

    2016-07-18

    Here we present a numerical study of charged particle motion in a time-independent magnetic field in cylindrical geometry. The magnetic field model consists of an unperturbed reversed-shear (non-monotonic q-profile) helical part and a perturbation consisting of a superposition of modes. Contrary to most of the previous studies, the particle trajectories are computed by directly solving the full Lorentz force equations of motion in a six-dimensional phase space using a sixth-order, implicit, symplectic Gauss-Legendre method. The level of stochasticity in the particle orbits is diagnosed using averaged, effective Poincare sections. It is shown that when only one mode is present, the particle orbits can be stochastic even though the magnetic field line orbits are not stochastic (i.e., fully integrable). The lack of integrability of the particle orbits in this case is related to separatrix crossing and the breakdown of the global conservation of the magnetic moment. Some perturbation consisting of two modes creates resonance overlapping, leading to Hamiltonian chaos in magnetic field lines. Then, the particle orbits exhibit a nontrivial dynamics depending on their energy and pitch angle. It is shown that the regions where the particle motion is stochastic decrease as the energy increases. The non-monotonicity of the q-profile implies the existence of magnetic ITBs (internal transport barriers) which correspond to shearless flux surfaces located in the vicinity of the q-profile minimum. It is shown that depending on the energy, these magnetic ITBs might or might not confine particles. That is, magnetic ITBs act as an energy-dependent particle confinement filter. Magnetic field lines in reversed-shear configurations exhibit topological bifurcations (from homoclinic to heteroclinic) due to separatrix reconnection. Finally, we show that a similar but more complex scenario appears in the case of particle orbits that depend in a non-trivial way on the energy and pitch angle

  2. Full particle orbit effects in regular and stochastic magnetic fields

    SciTech Connect

    Ogawa, Shun; Cambon, Benjamin; Leoncini, Xavier; Vittot, Michel; Castillo-Negrete, Diego del; Dif-Pradalier, Guilhem; Garbet, Xavier

    2016-07-15

    We present a numerical study of charged particle motion in a time-independent magnetic field in cylindrical geometry. The magnetic field model consists of an unperturbed reversed-shear (non-monotonic q-profile) helical part and a perturbation consisting of a superposition of modes. Contrary to most of the previous studies, the particle trajectories are computed by directly solving the full Lorentz force equations of motion in a six-dimensional phase space using a sixth-order, implicit, symplectic Gauss-Legendre method. The level of stochasticity in the particle orbits is diagnosed using averaged, effective Poincare sections. It is shown that when only one mode is present, the particle orbits can be stochastic even though the magnetic field line orbits are not stochastic (i.e., fully integrable). The lack of integrability of the particle orbits in this case is related to separatrix crossing and the breakdown of the global conservation of the magnetic moment. Some perturbation consisting of two modes creates resonance overlapping, leading to Hamiltonian chaos in magnetic field lines. Then, the particle orbits exhibit a nontrivial dynamics depending on their energy and pitch angle. It is shown that the regions where the particle motion is stochastic decrease as the energy increases. The non-monotonicity of the q-profile implies the existence of magnetic ITBs (internal transport barriers) which correspond to shearless flux surfaces located in the vicinity of the q-profile minimum. It is shown that depending on the energy, these magnetic ITBs might or might not confine particles. That is, magnetic ITBs act as an energy-dependent particle confinement filter. Magnetic field lines in reversed-shear configurations exhibit topological bifurcations (from homoclinic to heteroclinic) due to separatrix reconnection. We show that a similar but more complex scenario appears in the case of particle orbits that depend in a non-trivial way on the energy and pitch angle of the

  3. Full particle orbit effects in regular and stochastic magnetic fields

    NASA Astrophysics Data System (ADS)

    Ogawa, Shun; Cambon, Benjamin; Leoncini, Xavier; Vittot, Michel; del Castillo-Negrete, Diego; Dif-Pradalier, Guilhem; Garbet, Xavier

    2016-07-01

    We present a numerical study of charged particle motion in a time-independent magnetic field in cylindrical geometry. The magnetic field model consists of an unperturbed reversed-shear (non-monotonic q-profile) helical part and a perturbation consisting of a superposition of modes. Contrary to most of the previous studies, the particle trajectories are computed by directly solving the full Lorentz force equations of motion in a six-dimensional phase space using a sixth-order, implicit, symplectic Gauss-Legendre method. The level of stochasticity in the particle orbits is diagnosed using averaged, effective Poincare sections. It is shown that when only one mode is present, the particle orbits can be stochastic even though the magnetic field line orbits are not stochastic (i.e., fully integrable). The lack of integrability of the particle orbits in this case is related to separatrix crossing and the breakdown of the global conservation of the magnetic moment. Some perturbation consisting of two modes creates resonance overlapping, leading to Hamiltonian chaos in magnetic field lines. Then, the particle orbits exhibit a nontrivial dynamics depending on their energy and pitch angle. It is shown that the regions where the particle motion is stochastic decrease as the energy increases. The non-monotonicity of the q-profile implies the existence of magnetic ITBs (internal transport barriers) which correspond to shearless flux surfaces located in the vicinity of the q-profile minimum. It is shown that depending on the energy, these magnetic ITBs might or might not confine particles. That is, magnetic ITBs act as an energy-dependent particle confinement filter. Magnetic field lines in reversed-shear configurations exhibit topological bifurcations (from homoclinic to heteroclinic) due to separatrix reconnection. We show that a similar but more complex scenario appears in the case of particle orbits that depend in a non-trivial way on the energy and pitch angle of the

  4. Enhanced multifunctional paint for detection of radiation

    DOEpatents

    Farmer, Joseph C.; Moses, Edward Ira; Rubenchik, Alexander M.

    2017-03-07

    An enhanced multifunctional paint apparatus, systems, and methods for detecting radiation on a surface include providing scintillation particles; providing an enhance neutron absorptive material; providing a binder; combining the scintillation particles, the enhance neutron absorptive material, and the binder creating a multifunctional paint; applying the multifunctional paint to the surface; and monitoring the surface for detecting radiation.

  5. Prospective of ultradispersic magnetic particles in biological experiments in microgravity

    NASA Astrophysics Data System (ADS)

    Nechitailo, Galina S.; Kuznetsov, Anatoli; Malashin, S.

    All organisms on Earth use gravity for their lifecycles. Microgravity disturbs the lifecycles significantly: orientation ability is damaged, thermo and mass exchange processes are changed, adaptation mechanisms are destroyed. A recovering the normal life cycle of organism in future long-term mission requires an artificial gravity which is complicate and not realistic with present technologies. We propose to use a magnetic properties of the biological objects for recovering of the gravity-dependent biological processes in organism during space flight. Based on result of magnetic properties investigation in gravity-sensitive plant cells, we have prepared and carried out the experiments on space station MIR. For the experiments, Magnitogravistat device was designed and installed on the station. The aim of the experiment was to replace a gravity factor of plant with a magnetic factor. The magnetic effect is based on the fact, that a magnetic particle of V volume is under the force F=ΔæVHgradH in the magnetic gradient gradH, where Δæ is the difference between the magnetic susceptibility of particle and media. When the particles are placed into the cell, the cell can be managed by the magnetic field. In laboratory experiment the iron-carbon particles of 1-2 um with nanostructurised surface and high adsorption properties have been used. The particles can be suspended in water and adsorbed chemicals including cell metabolites. In strong magnetic field, the particles can be agglomerated and the liquid substrate can be replaced. The local magnetic field near the particles can influence on cell processes. The magnetic field causes a cell differentiation and can influence on cell proliferation. A new space experiment with magnetic particles is planned to get a knowledge on cell influence and to improve a cell metabolism.

  6. Multifunctional Fe3O4-TiO2 nanocomposites for magnetic resonance imaging and potential photodynamic therapy.

    PubMed

    Zeng, Leyong; Ren, Wenzhi; Xiang, Lingchao; Zheng, Jianjun; Chen, Bin; Wu, Aiguo

    2013-03-07

    Multifunctional Fe(3)O(4)-TiO(2) nanocomposites with Janus structure for magnetic resonance imaging (MRI) and potential photodynamic therapy (PDT) were synthesized, in which Fe(3)O(4) was used as a MRI contrast agent and TiO(2) as an inorganic photosensitizer for PDT. Their morphology, structure, and MRI and PDT performance were characterized, respectively. Moreover, the location of Fe(3)O(4)-TiO(2) nanocomposites in MCF-7 cells was also investigated by the staining of Prussian blue and alizarin red, respectively. The results showed that the as-prepared Fe(3)O(4)-TiO(2) nanocomposites had good T(2)-weighted MRI performance, and the MCF-7 cells incubated with nanocomposites could be killed under the irradiation of UV light. Compared with traditional organic photosensitizers, TiO(2) inorganic photosensitizers could have more stable PDT performance due to their nanoscale size and anti-photodegradable stability. Therefore, the as-prepared Fe(3)O(4)-TiO(2) nanocomposites could have potential applications as a new kind of multifunctional agent for both MRI and PDT.

  7. Nonconservative electric and magnetic optical forces on submicron dielectric particles

    SciTech Connect

    Gomez-Medina, Raquel; Nieto-Vesperinas, Manuel; Saenz, Juan Jose

    2011-03-15

    We present a study of the total force on a small lossless dielectric particle, which presents both an electric and magnetic response, in a optical vortex wave field. We show that the force is a simple combination of conservative and nonconservative steady forces that can rectify the flow of magnetodielectric particles. In a vortex lattice the electric-magnetic dipolar interaction can spin the particles either in or out of the whirl sites leading to trapping or diffusion. Specifically, we analyze force effects on submicron silicon spheres in the near infrared, proving that the results previously discussed for hypothetical magnetodielectric particles can be observed for these Si particles.

  8. A magnetic field at the center of a spherical particle

    SciTech Connect

    Belov, N.N.; Zhuravlev, M.V.; Molodchenko, V.L.

    1995-06-01

    Formulas for calculating the magnetic field at the center of a spherical particle are derived. The optical field inside a cadmium particle is numerically calculated as a function of the diffraction parameter for the neodymium laser radiation wavelength. The particular case of a particle with a diameter multiple of the wavelength is considered. 7 refs., 1 fig.

  9. Quantifying the motion of magnetic particles in excised tissue: Effect of particle properties and applied magnetic field

    NASA Astrophysics Data System (ADS)

    Kulkarni, Sandip; Ramaswamy, Bharath; Horton, Emily; Gangapuram, Sruthi; Nacev, Alek; Depireux, Didier; Shimoji, Mika; Shapiro, Benjamin

    2015-11-01

    This article presents a method to investigate how magnetic particle characteristics affect their motion inside tissues under the influence of an applied magnetic field. Particles are placed on top of freshly excised tissue samples, a calibrated magnetic field is applied by a magnet underneath each tissue sample, and we image and quantify particle penetration depth by quantitative metrics to assess how particle sizes, their surface coatings, and tissue resistance affect particle motion. Using this method, we tested available fluorescent particles from Chemicell of four sizes (100 nm, 300 nm, 500 nm, and 1 μm diameter) with four different coatings (starch, chitosan, lipid, and PEG/P) and quantified their motion through freshly excised rat liver, kidney, and brain tissues. In broad terms, we found that the applied magnetic field moved chitosan particles most effectively through all three tissue types (as compared to starch, lipid, and PEG/P coated particles). However, the relationship between particle properties and their resulting motion was found to be complex. Hence, it will likely require substantial further study to elucidate the nuances of transport mechanisms and to select and engineer optimal particle properties to enable the most effective transport through various tissue types under applied magnetic fields.

  10. QUANTIFYING THE MOTION OF MAGNETIC PARTICLES IN EXCISED TISSUE: EFFECT OF PARTICLE PROPERTIES AND APPLIED MAGNETIC FIELD

    PubMed Central

    Kulkarni, Sandip; Ramaswamy, Bharath; Horton, Emily; Gangapuram, Sruthi; Nacev, Alek; Depireux, Didier; Shimoji, Mika; Shapiro, Benjamin

    2015-01-01

    This article presents a method to investigate how magnetic particle characteristics affect their motion inside tissues under the influence of an applied magnetic field. Particles are placed on top of freshly excised tissue samples, a calibrated magnetic field is applied by a magnet underneath each tissue sample, and we image and quantify particle penetration depth by quantitative metrics to assess how particle sizes, their surface coatings, and tissue resistance affect particle motion. Using this method, we tested available fluorescent particles from Chemicell of four sizes (100 nm, 300 nm, 500 nm, and 1 µm diameter) with four different coatings (starch, chitosan, lipid, PEG/P) and quantified their motion through freshly excised rat liver, kidney, and brain tissues. In broad terms, we found that the applied magnetic field moved chitosan particles most effectively through all three tissue types (as compared to starch, lipid, and PEG/P coated particles). However, the relationship between particle properties and their resulting motion was found to be complex. Hence, it will likely require substantial further study to elucidate the nuances of transport mechanisms and to select and engineer optimal particle properties to enable the most effective transport through various tissue types under applied magnetic fields. PMID:26120240

  11. QUANTIFYING THE MOTION OF MAGNETIC PARTICLES IN EXCISED TISSUE: EFFECT OF PARTICLE PROPERTIES AND APPLIED MAGNETIC FIELD.

    PubMed

    Kulkarni, Sandip; Ramaswamy, Bharath; Horton, Emily; Gangapuram, Sruthi; Nacev, Alek; Depireux, Didier; Shimoji, Mika; Shapiro, Benjamin

    2015-11-01

    This article presents a method to investigate how magnetic particle characteristics affect their motion inside tissues under the influence of an applied magnetic field. Particles are placed on top of freshly excised tissue samples, a calibrated magnetic field is applied by a magnet underneath each tissue sample, and we image and quantify particle penetration depth by quantitative metrics to assess how particle sizes, their surface coatings, and tissue resistance affect particle motion. Using this method, we tested available fluorescent particles from Chemicell of four sizes (100 nm, 300 nm, 500 nm, and 1 µm diameter) with four different coatings (starch, chitosan, lipid, PEG/P) and quantified their motion through freshly excised rat liver, kidney, and brain tissues. In broad terms, we found that the applied magnetic field moved chitosan particles most effectively through all three tissue types (as compared to starch, lipid, and PEG/P coated particles). However, the relationship between particle properties and their resulting motion was found to be complex. Hence, it will likely require substantial further study to elucidate the nuances of transport mechanisms and to select and engineer optimal particle properties to enable the most effective transport through various tissue types under applied magnetic fields.

  12. Iron free permanent magnet systems for charged particle beam optics

    SciTech Connect

    Lund, S.M.; Halbach, K.

    1995-09-03

    The strength and astounding simplicity of certain permanent magnet materials allow a wide variety of simple, compact configurations of high field strength and quality multipole magnets. Here we analyze the important class of iron-free permanent magnet systems for charged particle beam optics. The theory of conventional segmented multipole magnets formed from uniformly magnetized block magnets placed in regular arrays about a circular magnet aperture is reviewed. Practical multipole configurations resulting are presented that are capable of high and intermediate aperture field strengths. A new class of elliptical aperture magnets is presented within a model with continuously varying magnetization angle. Segmented versions of these magnets promise practical high field dipole and quadrupole magnets with an increased range of applicability.

  13. Magnetic field effect on flow parameters of blood along with magnetic particles in a cylindrical tube

    NASA Astrophysics Data System (ADS)

    Sharma, Shashi; Singh, Uaday; Katiyar, V. K.

    2015-03-01

    In this paper, the effect of external uniform magnetic field on flow parameters of both blood and magnetic particles is reported through a mathematical model using magnetohydrodynamics (MHD) approach. The fluid is acted upon by a varying pressure gradient and an external uniform magnetic field is applied perpendicular to the cylindrical tube. The governing nonlinear partial differential equations were solved numerically and found that flow parameters are affected by the influence of magnetic field. Further, artificial blood (75% water+25% Glycerol) along with iron oxide magnetic particles were prepared and transported into a glass tube with help of a peristaltic pump. The velocity of artificial blood along with magnetic particles was experimentally measured at different magnetic fields ranging from 100 to 600 mT. The model results show that the velocity of blood and magnetic particles is appreciably reduced under the influence of magnetic field, which is supported by our experimental results.

  14. A magnetometer for estimating the magnetic moment of magnetic micro-particles.

    PubMed

    Punyabrahma, P; Jayanth, G R

    2017-01-01

    Magnetic micro-particles find a variety of applications as actuators at the micrometer and nanometer length scales. While the actuation gain is directly proportional to their magnetic moment, there are relatively few technologies available to estimate the magnetic moment of individual magnetic particles. This paper proposes a magnetometer for direct measurement of the magnetic moment of ferromagnetic micro-particles. The magnetometer comprises a novel micro-scale force sensor capable of interacting with magnetic particles and deflecting in response to the force of interaction. It also comprises a high-resolution measurement system, a source of magnetizing field, and a nanopositioner. The principle of operation of the magnetometer is discussed and is shown to enable the determination of the magnetic moment even of the buried magnetic particles, and those of irregular geometry. Subsequently, the force sensor, the measurement system, and the magnetic field sources are designed, fabricated, and calibrated. Finally, the magnetometer is employed to measure the magnetic moments of both fixed and untethered permanent magnetic particles and also of a fixed soft ferromagnetic particle. In all cases, the estimated magnetic moment is shown to agree with the theoretical estimate with an average error of about 16%.

  15. A magnetometer for estimating the magnetic moment of magnetic micro-particles

    NASA Astrophysics Data System (ADS)

    Punyabrahma, P.; Jayanth, G. R.

    2017-01-01

    Magnetic micro-particles find a variety of applications as actuators at the micrometer and nanometer length scales. While the actuation gain is directly proportional to their magnetic moment, there are relatively few technologies available to estimate the magnetic moment of individual magnetic particles. This paper proposes a magnetometer for direct measurement of the magnetic moment of ferromagnetic micro-particles. The magnetometer comprises a novel micro-scale force sensor capable of interacting with magnetic particles and deflecting in response to the force of interaction. It also comprises a high-resolution measurement system, a source of magnetizing field, and a nanopositioner. The principle of operation of the magnetometer is discussed and is shown to enable the determination of the magnetic moment even of the buried magnetic particles, and those of irregular geometry. Subsequently, the force sensor, the measurement system, and the magnetic field sources are designed, fabricated, and calibrated. Finally, the magnetometer is employed to measure the magnetic moments of both fixed and untethered permanent magnetic particles and also of a fixed soft ferromagnetic particle. In all cases, the estimated magnetic moment is shown to agree with the theoretical estimate with an average error of about 16%.

  16. Configurations and control of magnetic fields for manipulating magnetic particles in microfluidic applications: magnet systems and manipulation mechanisms.

    PubMed

    Cao, Quanliang; Han, Xiaotao; Li, Liang

    2014-08-07

    The use of a magnetic field for manipulating the motion of magnetic particles in microchannels has attracted increasing attention in microfluidic applications. Generation of a flexible and controllable magnetic field plays a crucial role in making better use of the particle manipulation technology. Recent advances in the development of magnet systems and magnetic field control methods have shown that it has great potential for effective and accurate manipulation of particles in microfluidic systems. Starting with the analysis of magnetic forces acting on the particles, this review gives the configurations and evaluations of three main types of magnet system proposed in microfluidic applications. The interaction mechanisms of magnetic particles with magnetic fields are also discussed.

  17. Magnetic manipulation of particles and cells in ferrofluid flow through straight microchannels using two magnets

    NASA Astrophysics Data System (ADS)

    Zeng, Jian

    Microfluidic devices have been increasingly used in the past two decades for particle and cell manipulations in many chemical and biomedical applications. A variety of force fields have been demonstrated to control particle and cell transport in these devices including electric, magnetic, acoustic, and optical forces etc. Among these particle handling techniques, the magnetic approach provides clear advantages over others such as low cost, noninvasive, and free of fluid heating issues. However, the current knowledge of magnetic control of particle transport is still very limited, especially lacking is the handling of diamagnetic particle. This thesis is focused on the magnetic manipulation of diamagnetic particles and cells in ferrofluid flow through the use of a pair of permanent magnets. By varying the configuration of the two magnets, diverse operations of particles and cells is implemented in a straight microchannel that can potentially be integrated into lab-on-a-chip devices for various applications. First, an approach for embedding two, symmetrically positioned, repulsive permanent magnets about a straight rectangular microchannel in a PDMS-based microfluidic device is developed for particle focusing. Focusing particles and cells into a tight stream is often required in order for continuous detection, counting, and sorting. The closest distance between the magnets is limited only by the size of the magnets involved in the fabrication process. The device is used to implement and investigate the three-dimensional magnetic focusing of polystyrene particles in ferrofluid microflow with both top-view and side-view visualizations. The effects of flow speed and particle size on the particle focusing effectiveness are studied. This device is also applied to magnetically focus yeast cells in ferrofluid, which proves to be biocompatible as verified by cell viability test. In addition, an analytical model is developed and found to be able to predict the experimentally

  18. Magnetic moment conservation and particles acceleration in turbulence

    NASA Astrophysics Data System (ADS)

    Dalena, S.; Greco, A.; Matthaeus, W. H.

    2010-12-01

    The present work concerns the study of particle magnetic moment conservation in the presence of turbulent magnetic fields. As we know from the particle orbit theory, for slow temporal and spatial magnetic field variations(i.e. if their characteristic length and time are greater than the particle orbit diameter and the time spent by a particle to execute one orbit, respectively), the magnetic moment, defined as μ = (v^2⊥ /B) (averaged over the particle gyroperiod) is an adiabatic invariant and remains constant during particle motion. But in presence of a well developed magnetic turbulence μ can undergo rapid variations and might not be constant anymore. Of course, this fact could influence particle acceleration and could have a considerable implications in many astrophysical problems, such as coronal heating. In order to reproduce and extend some of the results obtained by Karimabadi et al. 1992, we study the interaction between ions and a single or a couple of electromagnetic waves. We varied both the wave frequency and the cosine of pitch angle at which particles are injected, in order to observe in this very simple case which is the limit for magnetic moment conservation. We also will reconsider the results of Dmitruk and Matthaeus (2006) regarding particle acceleration in turbulence, taking into account statistics of the magnetic moment (see also Lehe et al., 2010). Later we will add more waves to obtain a complete turbulent spectrum. The final aim of this research work is the understanding the behavior of particles magnetic moment during magnetic reconnection phenomena. H. Karimabadi, D. Krauss-Varban and T. Teresawa, JGR, 97, 13853, 1992. P. Dmitruk and W. H. Matthaeus, JGR, 11, A12110, 2006. R. Lehe, I. J. Parrish and E. Quataert, Astrophys. J. 707, 404, 2009.

  19. Steady State Chaotic Magnetic Fields and Particle Dynamics Cross-field Transport of Particles in Chaotic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Dasgupta, B.; Ram, A.

    2009-12-01

    The observed propagation of cosmic rays in the interplanetary space cannot be explained unless there is diffusion of the energetic particles across the interplanetary magnetic field. The cross-field diffusion of cosmic rays is assumed to be due to the chaotic nature of the interplanetary/intergalactic magnetic fields. Among the classic works on this subject have been those of Parker [1] and Jokipii [2]. Parker considered the passage of cosmic ray particles and energetic solar particles in a large scale magnetic field containing small scale irregularities. In the context of cosmic ray propagation, Jokipii considered a small fluctuating component, added on to a uniform magnetic field, to study the spatial transport of particles. We consider asymmetric, steady-state magnetic fields, in three spatial dimensions, generated by currents flowing in circular loops and straight lines [3]. We find that under very special circumstances can one generate large scale coherent magnetic fields. In general, even simple asymmetric current configurations generate spatially chaotic magnetic fields in three-dimensions. The motion of charged particles in these chaotic magnetic fields is quite coherent. This is a surprising result as one generally assumes that spatially chaotic magnetic fields will give rise to chaotic particle motion. So chaotic magnetic fields by themselves do not lead to cross-field transport. However, if we consider a current system, e.g., a current loop, embedded in a uniform magnetic field then a particle can undergo cross-field transport. For cross-field diffusion of charged particles it is necessary that the magnetic field lines be three dimensional. [1] E.N. Parker, Planet. Space Sci. 13, 9, (1965) [2] J.R. Jokipii, Astrophys. J. 146, 480, (1966). [3] A.K. Ram and B. Dasgupta, in 35th EPS Conference on Plasma Phys. Hersonissos, ECA Vol.32D, O-4.059 (2008); and Eos Trans. AGU 88 (52), Fall Meet. Suppl. Abstract NG21B-0522 (2007).

  20. Repetitive heterocoagulation of oppositely charged particles for enhancement of magnetic nanoparticle loading into monodisperse silica particles.

    PubMed

    Matsumoto, Hideki; Nagao, Daisuke; Konno, Mikio

    2010-03-16

    Oppositely charged particles were repetitively heterocoagulated to fabricate highly monodisperse magnetic silica particles with high loading of magnetic nanoparticles. Positively charged magnetic nanoparticles prepared by surface modification with N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (TSA) were used to heterocoagulate with silica particles under basic conditions to give rise to negative silica surface charge and prevent the oxidation of the magnetic nanoparticles. The resultant particles of silica core homogeneously coated with the magnetic nanoparticles were further coated with thin silica layer with sodium silicate in order to enhance colloidal stability and avoid desorption of the magnetic nanoparticles from the silica cores. Five repetitions of the heterocoagulation and the silica coating could increase saturation magnetization of the magnetic silica particles to 27.7 emu/g, keeping the coefficient of variation of particle sizes (C(V)) less than 6.5%. Highly homogeneous loading of the magnetic component was confirmed by measuring Fe-to-Si atomic ratios of individual particles with energy dispersive X-ray spectroscopy.

  1. Multifunctional pH-sensitive magnetic nanoparticles for simultaneous imaging, sensing and targeted intracellular anticancer drug delivery.

    PubMed

    Banerjee, Shashwat S; Chen, Dong-Hwang

    2008-12-17

    A novel multifunctional magnetic nanocarrier was fabricated for synchronous cancer therapy and sensing. The nanocarrier, programed to display a response to environmental stimuli (pH value), was synthesized by coupling doxorubicin (DOX) to adipic dihydrazide-grafted gum arabic modified magnetic nanoparticles (ADH-GAMNP) via the hydrolytically degradable pH-sensitive hydrazone bond. The resultant nanocarrier, DOX-ADH-GAMNP, had a mean diameter of 13.8 nm and the amount of DOX coupled was about 6.52 mg g(-1). Also, it exhibited pH triggered release of DOX in an acidic environment (pH 5.0) but was relatively stable at physiological pH (pH 7.4). Furthermore, both GAMNP and DOX were found to possess fluorescence properties when excited in the near-infrared region due to the two-photon absorption mechanism. The coupling of DOX to GAMNP resulted in a reversible self-quenching of fluorescence through the fluorescence resonant energy transfer (FRET) between the donor GAMNP and acceptor DOX. The release of DOX from DOX-ADH-GAMNP when exposed to acidic media indicated the recovery of fluorescence from both GAMNP and DOX. The change in the fluorescence intensity of DOX-ADH-GAMNP on the release of DOX can act as a potential sensor to sense the delivery of the drug. The analysis of zeta potential and plasmon absorbance in different pH conditions also confirmed the pH sensitivity of the product. This multifunctional nanocarrier is a significant breakthrough in developing a drug delivery vehicle that combines drug targeting as well as sensing and therapy at the same time.

  2. Multifunctional pH-sensitive magnetic nanoparticles for simultaneous imaging, sensing and targeted intracellular anticancer drug delivery

    NASA Astrophysics Data System (ADS)

    Banerjee, Shashwat S.; Chen, Dong-Hwang

    2008-12-01

    A novel multifunctional magnetic nanocarrier was fabricated for synchronous cancer therapy and sensing. The nanocarrier, programed to display a response to environmental stimuli (pH value), was synthesized by coupling doxorubicin (DOX) to adipic dihydrazide-grafted gum arabic modified magnetic nanoparticles (ADH-GAMNP) via the hydrolytically degradable pH-sensitive hydrazone bond. The resultant nanocarrier, DOX-ADH-GAMNP, had a mean diameter of 13.8 nm and the amount of DOX coupled was about 6.52 mg g-1. Also, it exhibited pH triggered release of DOX in an acidic environment (pH 5.0) but was relatively stable at physiological pH (pH 7.4). Furthermore, both GAMNP and DOX were found to possess fluorescence properties when excited in the near-infrared region due to the two-photon absorption mechanism. The coupling of DOX to GAMNP resulted in a reversible self-quenching of fluorescence through the fluorescence resonant energy transfer (FRET) between the donor GAMNP and acceptor DOX. The release of DOX from DOX-ADH-GAMNP when exposed to acidic media indicated the recovery of fluorescence from both GAMNP and DOX. The change in the fluorescence intensity of DOX-ADH-GAMNP on the release of DOX can act as a potential sensor to sense the delivery of the drug. The analysis of zeta potential and plasmon absorbance in different pH conditions also confirmed the pH sensitivity of the product. This multifunctional nanocarrier is a significant breakthrough in developing a drug delivery vehicle that combines drug targeting as well as sensing and therapy at the same time.

  3. A statistical simulation of magnetic particle alignment in sediments

    NASA Astrophysics Data System (ADS)

    Heslop, David; Roberts, Andrew P.; Hawkins, Rhys

    2014-05-01

    Sedimentary magnetizations are fundamental to palaeomagnetism, but the mechanisms that control remanence acquisition remain poorly constrained. Observed sedimentary natural remanent magnetizations are often orders of magnitude smaller than the saturation remanent magnetization of the same sediment, which indicates inefficient remanence acquisition. We present a statistical model, based on the von Mises-Fisher distribution, in which magnetic particle reorientations towards an ambient field are considered, without representing the physics of the magnetization acquisition process. The results provide insights into the nature of sedimentary magnetizations. Specifically, an assemblage of randomly oriented magnetic particles can acquire a high-fidelity palaeomagnetic signal with only small rotations (in some cases <1°) of particles towards the ambient field direction. This demonstrates that the action of a geomagnetic torque on individual magnetic mineral particle orientation may be minor, and that a weak directional bias on an assemblage of particles could be responsible for the typically observed inefficiency of sedimentary remanence acquisition. Additionally, we demonstrate that weak fields produce sedimentary magnetizations with larger directional uncertainties. For natural sediments, however, these uncertainties appear to be small enough to allow reliable recording of directional geomagnetic field behaviour during periods with weak fields, such as palaeomagnetic reversals and excursions.

  4. Nanostructured magnetic particles with polystyrene and their magnetorheological applications.

    PubMed

    Fang, Fei Fei; Choi, Hyoung Jin

    2011-03-01

    Magnetorheological (MR) fluids are known to be colloidal suspensions of magnetic particles in a non-magnetic fluid, and exposure to a magnetic field transforms the fluid into a plastic-like solid in milliseconds. To improve the stability against sedimentation and uniform dispersion, two different MR candidates, soft magnetic carbonyl iron (CI) microspheres and magnetite (Fe3O4) particles were modified with polystyrene to be applied for MR fluids in this study. After modification, their unique morphology, crystalline structure and magnetic properties were examined in addition to MR performance and sedimentation characteristics. It was found that this embedded morphology not only effectively prevents direct contact of the magnetic species thus improving particle dispersion but also leads to obvious change in their density, compared with the traditional polymer coating method with a core-shell structure.

  5. Measurement of magnetic fluctuation-induced particle flux (invited).

    PubMed

    Ding, W X; Brower, D L; Yates, T Y

    2008-10-01

    Magnetic field fluctuation-induced particle transport has been directly measured in the high-temperature core of the MST reversed field pinch plasma. Measurement of radial particle transport is achieved by combining various interferometry techniques, including Faraday rotation, conventional interferometry, and differential interferometry. It is observed that electron convective particle flux and its divergence exhibit a significant increase during a sawtooth crash. In this paper, we describe the basic techniques employed to determine the particle flux.

  6. Structure and magnetic properties of Zn-Ti-substituted Ba-ferrite particles for magnetic recording

    NASA Astrophysics Data System (ADS)

    Wang, C. S.; Wei, F. L.; Lu, M.; Han, D. H.; Yang, Z.

    1998-03-01

    The formation process of Zn-Ti-doped Ba-ferrite particles was investigated by the X-ray diffraction technique, transmission electron microscope and magnetic measurements. The effects of heating temperature Th and the Zn-Ti substitution x on the microstructure and magnetic properties of BaFe 12-2 xZn xTi x O 19 particles with x=0.10-0.80 were studied. The temperature dependence of magnetic properties of these particles was measured.

  7. The electric properties of low-magnetic-loss magnetic composites containing Zn-Ni-Fe particles

    NASA Astrophysics Data System (ADS)

    Hidaka, Nobuhiro; Ishitsuka, Masayuki; Shirakata, Yasushi; Teramoto, Akinobu; Ohmi, Tadahiro

    2009-10-01

    Recently, magnetic composites consisting of magnetic particles dispersed in a polymer matrix have been widely discussed for miniaturizing high-frequency electronic components such as antennae. Previously, we investigated the influence of the manufacturing process on the homogeneous dispersion of magnetic particles in the polymer and on the magnetic properties of the magnetic composites. In order to miniaturize electronic components, it is crucial to be able to independently control the permeability and permittivity in magnetic composites. This paper investigates the anisotropy and frequency dependence of the dielectric properties of magnetic composites fabricated from 20 vol% Zn5Ni75Fe20 flaked particles. The permittivity of magnetic composites fabricated from Zn5Ni75Fe20 flaked particles is anisotropic: at 1 GHz, the relative permittivities parallel and perpendicular to the plane of the specimens are 27.2 and 16.9, respectively. The permittivity varied little between frequencies of 50 MHz and 10 GHz.

  8. Magnetofluidic concentration and separation of non-magnetic particles using two magnet arrays

    PubMed Central

    Hejazian, Majid

    2016-01-01

    The present paper reports the use of diluted ferrofluid and two arrays of permanent magnets for the size-selective concentration of non-magnetic particles. The micro magnetofluidic device consists of a straight channels sandwiched between two arrays of permanent magnets. The permanent magnets create multiple capture zones with minimum magnetic field strength along the channel. The complex interaction between magnetic forces and hydrodynamic force allows the device to operate in different regimes suitable for concentration of non-magnetic particles with small difference in size. Our experimental results show that non-magnetic particles with diameters of 3.1 μm and 4.8 μm can be discriminated and separated with this method. The results from this study could be used as a guide for the design of size-sensitive separation devices for particle and cell based on negative magnetophoresis. PMID:27478527

  9. Multifunctional L1(0) -Mn(1.5)Ga films with ultrahigh coercivity, giant perpendicular magnetocrystalline anisotropy and large magnetic energy product.

    PubMed

    Zhu, Lijun; Nie, Shuaihua; Meng, Kangkang; Pan, Dong; Zhao, Jianhua; Zheng, Houzhi

    2012-08-28

    A new kind of multifunctional L1(0) -Mn(1.5)Ga film is demonstrated for the first time. These MBE-grown epitaxial films exhibit pronounced magnetic properties at room temperature, including ultrahigh perpendicular coercivity up to 42.8 kOe, giant perpendicular magnetic anisotropy with a maximum of 21.7 Merg/cm(3) and large magnetic energy products up to 2.60 MGOe, which allow various applications in ultrahigh density recording, spintronics, and permanent magnets.

  10. PB@Au Core-Satellite Multifunctional Nanotheranostics for Magnetic Resonance and Computed Tomography Imaging in Vivo and Synergetic Photothermal and Radiosensitive Therapy.

    PubMed

    Dou, Yan; Li, Xue; Yang, Weitao; Guo, Yanyan; Wu, Menglin; Liu, Yajuan; Li, Xiaodong; Zhang, Xuening; Chang, Jin

    2017-01-18

    To integrate multiple diagnostic and therapeutic strategies on a single particle through simple and effective methods is still challenging for nanotheranostics. Herein, we develop multifunctional nanotheranostic PB@Au core-satellite nanoparticles (CSNPs) based on Prussian blue nanoparticles (PBNPs) and gold nanoparticles (AuNPs), which are two kinds of intrinsic theranostic nanomaterials, for magnetic resonance (MR)-computed tomography (CT) imaging and synergistic photothermal and radiosensitive therapy (PTT-RT). PBNPs as cores enable T1- and T2-weighted MR contrast and strong photothermal effect, while AuNPs as satellites offer CT enhancement and radiosensitization. As revealed by both MR and CT imaging, CSNPs realized efficient tumor localization by passively targeted accumulation after intravenous injection. In vivo studies showed that CSNPs resulted in synergistic PTT-RT action to achieve almost entirely suppression of tumor growth without observable recurrence. Moreover, no obvious systemic toxicity of mice confirmed good biocompatibility of CSNPs. These results raise new possibilities for clinical nanotheranostics with multimodal diagnostic and therapeutic coalescent design.

  11. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle.

    PubMed

    Hergeth, Sonja P; Schneider, Robert

    2015-11-01

    The linker histone H1 family members are a key component of chromatin and bind to the nucleosomal core particle around the DNA entry and exit sites. H1 can stabilize both nucleosome structure and higher-order chromatin architecture. In general, H1 molecules consist of a central globular domain with more flexible tail regions at both their N- and C-terminal ends. The existence of multiple H1 subtypes and a large variety of posttranslational modifications brings about a considerable degree of complexity and makes studying this protein family challenging. Here, we review recent progress in understanding the function of linker histones and their subtypes beyond their role as merely structural chromatin components. We summarize current findings on the role of H1 in heterochromatin formation, transcriptional regulation and embryogenesis with a focus on H1 subtypes and their specific modifications.

  12. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle

    PubMed Central

    Hergeth, Sonja P; Schneider, Robert

    2015-01-01

    The linker histone H1 family members are a key component of chromatin and bind to the nucleosomal core particle around the DNA entry and exit sites. H1 can stabilize both nucleosome structure and higher-order chromatin architecture. In general, H1 molecules consist of a central globular domain with more flexible tail regions at both their N- and C-terminal ends. The existence of multiple H1 subtypes and a large variety of posttranslational modifications brings about a considerable degree of complexity and makes studying this protein family challenging. Here, we review recent progress in understanding the function of linker histones and their subtypes beyond their role as merely structural chromatin components. We summarize current findings on the role of H1 in heterochromatin formation, transcriptional regulation and embryogenesis with a focus on H1 subtypes and their specific modifications. PMID:26474902

  13. Ferrimagnetic nanocrystal assemblies as versatile magnetic particle hyperthermia mediators.

    PubMed

    Sakellari, D; Brintakis, K; Kostopoulou, A; Myrovali, E; Simeonidis, K; Lappas, A; Angelakeris, M

    2016-01-01

    Colloidal nanocrystal assemblies (nanoclusters), consisting of 13 nm iron oxide nanocrystals, were synthesized in various sizes (45-98 nm), and were investigated as heating mediators for magnetic particle hyperthermia. The colloidal nanocrystal clusters show enhanced heating efficiency in comparison with their constituent primary iron oxide nanocrystals due to collective magnetic features. The fine tuning of intra-cluster magnetic interactions results to the domination of the hysteresis losses mechanism over the relaxation loss heating contributions and eventually to a versatile magnetic particle hyperthermia mediator. Copyright © 2015. Published by Elsevier B.V.

  14. Test particle acceleration in turbulent reconnecting magnetic fields

    NASA Technical Reports Server (NTRS)

    Ambrosiano, John; Matthaeus, William H.; Goldstein, Melvyn L.; Plante, Daniel

    1988-01-01

    The effect of turbulence on particle acceleration in a MHD field was investigated by computing test particle trajectories in turbulent MHD reconnecting fields, including reconnection simulations at different magnetic Reynolds numbers. The dynamics of individual particles were investigated making it possible to examine the acceleration mechanism in great detail. It was found that turbulence influences the acceleration in two ways. It enhances the reconnection electric field while producing a stochastic electric field that gives rise to momentum diffusion; and it produces magnetic 'bubbles' and other irregularities that can temporarily trap test particles in the strong reconnection electric field for times comparable to the magnetofluid characteristic time.

  15. Test particle acceleration in turbulent reconnecting magnetic fields

    NASA Technical Reports Server (NTRS)

    Ambrosiano, John; Matthaeus, William H.; Goldstein, Melvyn L.; Plante, Daniel

    1988-01-01

    The effect of turbulence on particle acceleration in a MHD field was investigated by computing test particle trajectories in turbulent MHD reconnecting fields, including reconnection simulations at different magnetic Reynolds numbers. The dynamics of individual particles were investigated making it possible to examine the acceleration mechanism in great detail. It was found that turbulence influences the acceleration in two ways. It enhances the reconnection electric field while producing a stochastic electric field that gives rise to momentum diffusion; and it produces magnetic 'bubbles' and other irregularities that can temporarily trap test particles in the strong reconnection electric field for times comparable to the magnetofluid characteristic time.

  16. Preparation of magnetic polymer particles with nanoparticles of Fe(0).

    PubMed

    Buendía, S; Cabañas, G; Alvarez-Lucio, G; Montiel-Sánchez, H; Navarro-Clemente, M E; Corea, M

    2011-02-01

    Iron nanoparticles (Fe(0)), were encapsulated into polymethyl methacrylate (PMMA), by means of emulsion polymerization techniques in a semicontinuous process. The final average diameter of the composite particle was calculated until three times of average particle of iron particles and were stabilized with a non-ionic surfactant. They were then characterized by scanning electron microscopy and dynamic light scattering. Their magnetic properties were determined by parallel field vibrating-sample magnetometry method. The results indicated that the magnetic properties are a function of polymer concentration in the nanocomposite particle.

  17. Rational Design and Development of Reactive Multifunctional Micellar Composite Nano-particles for Destruction of Bio-agents

    DTIC Science & Technology

    2015-02-01

    Figure 2. A scheme of multifunctional porous silicon (PSi)-Titania ( TiO2 ) or PSi-silver (Ag) heterojunctions for destruction of bio-agents. Finally...reactive and multifunctional porous silicon (PSi)-Titania ( TiO2 ) or PSi-silver (Ag) heterojunctions were developed. There materials have efficient...silicon (PSi)-Titania ( TiO2 ) or PSi-silver (Ag) heterojunctions were synthesized. In the composite nanoparticles, Titania and/or silver nanodots dispersed

  18. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    SciTech Connect

    Li, Yi; Xu, Ben; Hu, Shenyang Y.; Li, Yulan; Li, Qiulin; Liu, Wei

    2015-09-25

    Hysteresis loops and Magnetic Barkhausen Noise in a single crystal α-iron containing a nonmagnetic particle were simulated based on the Laudau-Lifshitz-Gilbert equation. The analyses of domain morphologies and hysteresis loops show that reversal magnetization process is control by nucleation of reversed domains at nonmagnetic particle when the particle size reaches a particle value. In such a situation, the value of nucleation field is determined by the size of nonmagnetic particles, and moreover, coercive field and Magnetic Barkhausen Noise signal are strongly affected by the nucleation field of reversed domains.

  19. Evaluation of magnetic heating of asymmetric magnetite particles

    NASA Astrophysics Data System (ADS)

    Yao, Xin; Sabyrov, Kairat; Klein, Todd; Lee Penn, R.; Wiedmann, Timothy S.

    2015-05-01

    Characterization and theoretical description of relatively large (>100 nm), asymmetric magnetic particles remain of interest particularly for applications to the mechanical damage of cells. In this work, we have examined the properties of three types of magnetite, Fe3O4, particles that were prepared by hydrogen reduction of hematite, α-Fe2O3. Transmission electron microscopy was used to measure the size and aspect ratio (AR), which were 1.8, 3.4 and 6.6, and all displayed magnetic hysteresis with corresponding saturation magnetization values of 65, 47, and 26 emu/g, respectively. With application of an alternating magnetic field to low concentrations, the temperature increased linearly with time, and the specific loss power (SLP) increased with increasing aspect ratio with values of 11.8, 24, and 26.8 W/g. The SLP increased linearly with the square of the applied magnetic field at low concentrations, but deviations were noted for high concentrations of the 2.4 and 6.6 AR particles. SLP was also dependent on frequency, but the functional relationship was not reliably determined. In consideration of the possible heating mechanisms, none provided a satisfactorily explanation for all types of particles. While these particles are not satisfactory for magnetic hyperthermia, they may have promise for causing cell death by magnetically inducing the particles to physically rotate or vibrate.

  20. Particle acceleration near X-type magnetic neutral lines

    NASA Technical Reports Server (NTRS)

    Deeg, Hans-Jorg; Borovsky, Joseph E.; Duric, Nebojsa

    1991-01-01

    The behavior of charged particles near X-type magnetic neutral lines is investigated. The magnetic field is taken to be hyperbolic and time stationary, with a uniform electric field perpendicular to the magnetic field. The general properties of the orbits of noninteracting particles in that field geometry are examined. Approximate analytic solutions to the orbit equations are derived by considering a magnetic-insulation picture where there is a hole in the magnetic insulation around the neutral line. Scaling laws for the dependence of the energy gain on strengths of the magnetic and electric fields are derived. The kinetic-energy distribution function for accelerated particles is derived for particles flowing past the neutral line. These analytic derivations are supported by computer simulations, in which the relativistic equations of motion for single test particles are numerically solved and the orbits and kinetic-energy gains of the particles are obtained. A number of simulations were performed and one parameter at a time was varied. Applications of the results to magnetic-neutral-line regions in space physics and astrophysics are possible.

  1. Multifunctional Au-Fe3O4@MOF core-shell nanocomposite catalysts with controllable reactivity and magnetic recyclability

    NASA Astrophysics Data System (ADS)

    Ke, Fei; Wang, Luhuan; Zhu, Junfa

    2014-12-01

    The recovery and reuse of expensive catalysts are important in both heterogeneous and homogeneous catalysis due to economic and environmental reasons. This work reports a novel multifunctional magnetic core-shell gold catalyst which can be easily prepared and shows remarkable catalytic properties in the reduction of 4-nitrophenol. The novel Au-Fe3O4@metal-organic framework (MOF) catalyst consists of a superparamagnetic Au-Fe3O4 core and a porous MOF shell with controllable thickness. Small Au nanoparticles (NPs) of 3-5 nm are mainly sandwiched between the Fe3O4 core and the porous MOF shell. Catalytic studies show that the core-shell structured Au-Fe3O4@MOF catalyst has a much higher catalytic activity than other reported Au-based catalysts toward the reduction of 4-nitrophenol. Moreover, this catalyst can be easily recycled due to the presence of the superparamagnetic core. Therefore, compared to conventional catalysts used in the reduction of 4-nitrophenol, this porous MOF-based magnetic catalyst is green, cheap and promising for industrial applications.The recovery and reuse of expensive catalysts are important in both heterogeneous and homogeneous catalysis due to economic and environmental reasons. This work reports a novel multifunctional magnetic core-shell gold catalyst which can be easily prepared and shows remarkable catalytic properties in the reduction of 4-nitrophenol. The novel Au-Fe3O4@metal-organic framework (MOF) catalyst consists of a superparamagnetic Au-Fe3O4 core and a porous MOF shell with controllable thickness. Small Au nanoparticles (NPs) of 3-5 nm are mainly sandwiched between the Fe3O4 core and the porous MOF shell. Catalytic studies show that the core-shell structured Au-Fe3O4@MOF catalyst has a much higher catalytic activity than other reported Au-based catalysts toward the reduction of 4-nitrophenol. Moreover, this catalyst can be easily recycled due to the presence of the superparamagnetic core. Therefore, compared to conventional

  2. Incoherent magnetization reversal in 30-nm Ni particles

    NASA Astrophysics Data System (ADS)

    Ross, C. A.; Chantrell, R.; Hwang, M.; Farhoud, M.; Savas, T. A.; Hao, Y.; Smith, Henry I.; Ross, F. M.; Redjdal, M.; Humphrey, F. B.

    2000-12-01

    The magnetic properties of a 100-nm-period large-area array of regular, 30-nm polycrystalline nickel particles have been studied. The particles are found to reverse incoherently, and their hysteresis behavior has been compared with a computational model over a range of temperatures. Excellent agreement with the model is obtained, indicating that switching of the particles is dominated by the reversal of approximately 10-nm-diameter volumes within each particle. These switching volumes are identified with the columnar grains in the polycrystalline nickel, showing that the microstructure determines the magnetic behavior of the particles. This explains the anisotropy distribution and the onset of superparamagnetism in the sample. Incoherent reversal occurs even though the particles are only 1.5 times the exchange length in nickel, a size at which nearly uniform rotation is expected to occur if the particles were homogeneous.

  3. Particle acceleration and transport in a chaotic magnetic field

    NASA Astrophysics Data System (ADS)

    Li, X.; Li, G.; Dasgupta, B.

    2012-12-01

    Time-dependent chaotic magnetic field can arise from a simple asymmetric current wire-loop system (CWLS). Such simple CWLSs exist, for example, in solar flares. Indeed one can use an ensemble of such systems to model solar active region magnetic field [1,2]. Here we use test particle simulation to investigate particle transport and energization in such a time-dependent chaotic magnetic field, and through induction, a chaotic electric field. We first construct an ensemble of simple systems based on the estimated size and field strength of solar active region. By following the trajectories of single charged particles, we will examine how particle energy is changed. Diffusion coefficients in both real space and momentum space can be calculated as well as the average trapped time of the particles within chaotic field region. Particle energy spectrum as a function of time will be examined. [1] Dasgupta, B. and Abhay K. Ram, (2007) Chaotic magnetic fields due to asymmetric current configurations -application to cross field diffusion of particles in cosmic rays, (Presented at the 49th Annual Meeting of the DPP, APS, Abstract # BP8.00102) [2] G. Li, B. Dasgupta, G. Webb, and A. K. Ram, (2009) Particle Motion and Energization in a Chaotic Magnetic Field, AIP Conf. Proc. 1183, pp. 201-211; doi: http://dx.doi.org/10.1063/1.3266777

  4. Reversible assembly of magnetized particles: Application to water-borne pathogen enumeration

    NASA Astrophysics Data System (ADS)

    Ramadan, Qasem

    2009-12-01

    Reversible assembly of magnetized particles and cells has been proposed and implemented. The approach is based on magnetized particles or magnetically labeled cell immobilization in an array of individual particle/cell for optical counting. The device has been tested for few types of magnetic particles and one water-borne pathogen: Giardia Lamblia. An individual particle immobilization efficiency of 92% was achieved.

  5. 1993 Evaluation of steel ring standards for magnetic particle inspection

    SciTech Connect

    Bates, B.; Hagemaier, D.; Petty, J.; Armstrong, C.

    1996-10-01

    The Ketos ring standard manufactured from AISI Type 01 (.90 carbon) tool steel has become part of certain US magnetic particle standards such as MIL-STD-1949. The rings are used to verify system performance and for sensitivity evaluation for magnetic particle materials. Some controversy exists concerning the use of the steel ring as a reference standard for the following reasons: inconsistencies in hole detectability have been noted between various rings caused by differences in magnetic permeability as a result of variations in annealing; the use of magnetic particle indication evaluation for ring standard certification is subject to variations in particle concentration, sensitivity, and visual subjectivity; and the proposed introduction of new materials in the manufacture of ring standards. This report describes an evaluation of rings manufactured of different materials and different annealed states. A suggested method for qualifying a newly manufactured ring as a certified reference standard is also described.

  6. Optimization of magnetic switches for single particle and cell transport

    SciTech Connect

    Abedini-Nassab, Roozbeh; Yellen, Benjamin B.; Murdoch, David M.; Kim, CheolGi

    2014-06-28

    The ability to manipulate an ensemble of single particles and cells is a key aim of lab-on-a-chip research; however, the control mechanisms must be optimized for minimal power consumption to enable future large-scale implementation. Recently, we demonstrated a matter transport platform, which uses overlaid patterns of magnetic films and metallic current lines to control magnetic particles and magnetic-nanoparticle-labeled cells; however, we have made no prior attempts to optimize the device geometry and power consumption. Here, we provide an optimization analysis of particle-switching devices based on stochastic variation in the particle's size and magnetic content. These results are immediately applicable to the design of robust, multiplexed platforms capable of transporting, sorting, and storing single cells in large arrays with low power and high efficiency.

  7. The magnetic stripe card: An innovative tool for magnetic particle bath control

    SciTech Connect

    Chedister, W.C.

    1996-10-01

    An innovative application of an often overlooked magnetic phenomenon can be used to simplify and to readily document the control over a magnetic particle inspection bath. The specialized magnetic encoding of the magnetic stripe on a unique card has been used by Circle Systems. Two companion magnetic stripe cards, Type A and Type B, can each instantly provide a snapshot of a magnetic particle bath. This snapshot allows inspection personnel to determine whether the bath meets operating requirements or it needs replacement or other corrective action.

  8. Brownian dynamics of charged particles in a constant magnetic field

    SciTech Connect

    Hou, L. J.; Piel, A.; Miskovic, Z. L.; Shukla, P. K.

    2009-05-15

    Numerical algorithms are proposed for simulating the Brownian dynamics of charged particles in an external magnetic field, taking into account the Brownian motion of charged particles, damping effect, and the effect of magnetic field self-consistently. Performance of these algorithms is tested in terms of their accuracy and long-time stability by using a three-dimensional Brownian oscillator model with constant magnetic field. Step-by-step recipes for implementing these algorithms are given in detail. It is expected that these algorithms can be directly used to study particle dynamics in various dispersed systems in the presence of a magnetic field, including polymer solutions, colloidal suspensions, and, particularly, complex (dusty) plasmas. The proposed algorithms can also be used as thermostat in the usual molecular dynamics simulation in the presence of magnetic field.

  9. Charged Particle Diffusion in Isotropic Random Static Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Subedi, P.; Sonsrettee, W.; Matthaeus, W. H.; Ruffolo, D. J.; Wan, M.; Montgomery, D.

    2013-12-01

    Study of the transport and diffusion of charged particles in a turbulent magnetic field remains a subject of considerable interest. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here we consider Diffusion of charged particles in fully three dimensional statistically isotropic magnetic field turbulence with no mean field which is pertinent to many astrophysical situations. We classify different regions of particle energy depending upon the ratio of Larmor radius of the charged particle to the characteristic outer length scale of turbulence. We propose three different theoretical models to calculate the diffusion coefficient each applicable to a distinct range of particle energies. The theoretical results are compared with those from computer simulations, showing very good agreement.

  10. Fermionic Particle Production by Varying Electric and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Sogut, Kenan; Yanar, Hilmi; Havare, Ali

    2016-11-01

    Creation of fermionic particles by a time-dependent electric field and a space-dependent magnetic field is studied with the Bogoulibov transformation method. Exact analytic solutions of the Dirac equation are obtained in terms of the Whittaker functions and the particle creation number density depending on the electric and magnetic fields is determined. Supported by the Research Fund of Mersin University in TURKEY with project number: 2016-1-AP4-1425

  11. Synthesis and Manipulation of Biofunctional Magnetic Particles

    DTIC Science & Technology

    2007-06-18

    tensional forces were applied to magnetic microbeads bound to cell surface integrins while simultaneously measuring dynamic changes in bead displacement...forces cells exert on the bound beads. 0 Magnetic-Guided Molecular Self-Assembly. We developed a magnetic method to self-assemble extracellular matrices... Andreev , S. A., Mahadevan, L., Winkleman, A., Reichman, D., Prentiss, M. G., Whitesides, S. and Whitesides, G. M., Proc. Natl. Acad. Sci. U. S. A

  12. Composite of coated magnetic alloy particle

    DOEpatents

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    2000-01-01

    A composite structure and method for manufacturing same, the composite structure being comprised of metal particles and an inorganic bonding media. The method comprises the steps of coating particles of a metal powder with a thin layer of an inorganic bonding media selected from the group of powders consisting of a ceramic, glass, and glass-ceramic. The particles are assembled in a cavity and heat, with or without the addition of pressure, is thereafter applied to the particles until the layer of inorganic bonding media forms a strong bond with the particles and with the layer of inorganic bonding media on adjacent particles. The resulting composite structure is strong and remains cohesive at high temperatures.

  13. Magnetic and electrical properties of Martian particles

    NASA Technical Reports Server (NTRS)

    Olhoeft, G. R.

    1991-01-01

    The only determinations of the magnetic properties of Martian materials come from experiments on the two Viking Landers. The results suggest Martian soil containing 1 to 10 percent of a highly magnetic phase. Though the magnetic phase mineral was not conclusively identified, the predominate interpretation is that the magnetic phase is probably maghemite. The electrical properties of the surface of Mars were only measured remotely by observations with Earth based radar, microwave radiometry, and inference from radio-occultation of Mars orbiting spacecraft. No direct measurements of electrical properties on Martian materials have been performed.

  14. Magnetic resonance imaging by using nano-magnetic particles

    NASA Astrophysics Data System (ADS)

    Shokrollahi, H.; Khorramdin, A.; Isapour, Gh.

    2014-11-01

    Magnetism and magnetic materials play a major role in various biological applications, such as magnetic bioseparation, magnetic resonance imaging (MRI), hyperthermia treatment of cancer and drug delivery. Among these techniques, MRI is a powerful method not only for diagnostic radiology but also for therapeutic medicine that utilizes a magnetic field and radio waves. Recently, this technique has contributed greatly to the promotion of the human quality life. Thus, this paper presents a short review of the physical principles and recent advances of MRI, as well as providing a summary of the synthesis methods and properties of contrast agents, like different core materials and surfactants.

  15. Magnetic properties of hybrid elastomers with magnetically hard fillers: rotation of particles

    NASA Astrophysics Data System (ADS)

    Stepanov, G. V.; Borin, D. Yu; Bakhtiiarov, A. V.; Storozhenko, P. A.

    2017-03-01

    Hybrid magnetic elastomers belonging to the family of magnetorheological elastomers contain magnetically hard components and are of the utmost interest for the development of semiactive and active damping devices as well as actuators and sensors. The processes of magnetizing of such elastomers are accompanied by structural rearrangements inside the material. When magnetized, the elastomer gains its own magnetic moment resulting in changes of its magneto-mechanical properties, which remain permanent, even in the absence of external magnetic fields. Influenced by the magnetic field, magnetized particles move inside the matrix forming chain-like structures. In addition, the magnetically hard particles can rotate to align their magnetic moments with the new direction of the external field. Such an elastomer cannot be demagnetized by the application of a reverse field.

  16. Particle Acceleration Due to Coronal Non-null Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Threlfall, James; Neukirch, Thomas; Parnell, Clare Elizabeth

    2017-03-01

    Various topological features, for example magnetic null points and separators, have been inferred as likely sites of magnetic reconnection and particle acceleration in the solar atmosphere. In fact, magnetic reconnection is not constrained to solely take place at or near such topological features and may also take place in the absence of such features. Studies of particle acceleration using non-topological reconnection experiments embedded in the solar atmosphere are uncommon. We aim to investigate and characterise particle behaviour in a model of magnetic reconnection which causes an arcade of solar coronal magnetic field to twist and form an erupting flux rope, crucially in the absence of any common topological features where reconnection is often thought to occur. We use a numerical scheme that evolves the gyro-averaged orbit equations of single electrons and protons in time and space, and simulate the gyromotion of particles in a fully analytical global field model. We observe and discuss how the magnetic and electric fields of the model and the initial conditions of each orbit may lead to acceleration of protons and electrons up to 2 MeV in energy (depending on model parameters). We describe the morphology of time-dependent acceleration and impact sites for each particle species and compare our findings to those recovered by topologically based studies of three-dimensional (3D) reconnection and particle acceleration. We also broadly compare aspects of our findings to general observational features typically seen during two-ribbon flare events.

  17. Effects of magnetic interactions in antiferromagnetic ferrihydrite particles

    NASA Astrophysics Data System (ADS)

    Berquó, Thelma S.; Erbs, Jasmine J.; Lindquist, Anna; Penn, R. Lee; Banerjee, Subir K.

    2009-04-01

    The effects of magnetic interactions in the magnetic properties of six-line ferrihydrite particles were investigated by studying the behavior of aggregated versus coated particles. Four different coating agents (sugar, alginate, lactate and ascorbate) were employed in order to obtain dispersed particles and prevent particle agglomeration; one sub-sample was allowed to dry with no coating agent. The five sets of ferrihydrite particles were from the same batch and the size was estimated as 3.6 ± 0.4 nm in length. Low temperature magnetization, ac susceptibility and Mössbauer spectroscopy data showed contrasting blocking temperatures for uncoated and coated samples with a decrease of TP from about 50 K to 12 K, respectively. The contributions from magnetic interactions were recognized in magnetic measurements and the effective anisotropy constant for non-interacting ferrihydrite was estimated as (100 ± 10) × 103 J m-3. Overall, employing sugar and alginate as coating agents was more successful in preventing particle aggregation and magnetic interactions. In contrast, ascorbate and lactate were unsuitable due to the chemical reaction between the coating agent and ferrihydrite surface.

  18. Novel detection system for biomolecules using nano-sized bacterial magnetic particles and magnetic force microscopy.

    PubMed

    Amemiya, Yosuke; Tanaka, Tsuyoshi; Yoza, Brandon; Matsunaga, Tadashi

    2005-11-21

    A system for streptavidin detection using biotin conjugated to nano-sized bacterial magnetic particles (BMPs) has been developed. BMPs, isolated from magnetic bacteria, were used as magnetic markers for magnetic force microscopy (MFM) imaging. The magnetic signal was obtained from a single particle using MFM without application of an external magnetic field. The number of biotin conjugated BMPs (biotin-BMPs) bound to streptavidin immobilized on the glass slides increased with streptavidin concentrations up to 100 pg/ml. The minimum streptavidin detection limit using this technique is 1 pg/ml, which is 100 times more sensitive than a conventional fluorescent detection system. This is the first report using single domain nano-sized magnetic particles as magnetic markers for biosensing. This assay system can be used for immunoassay and DNA detection with high sensitivities.

  19. The advantages and challenges of superconducting magnets in particle therapy

    NASA Astrophysics Data System (ADS)

    Gerbershagen, Alexander; Calzolaio, Ciro; Meer, David; Sanfilippo, Stéphane; Schippers, Marco

    2016-08-01

    This paper provides an overview of the current developments in superconducting magnets for applications in proton and ion therapy. It summarizes the benefits and challenges regarding the utilization of these magnets in accelerating systems (e.g. superconducting cyclotrons) and gantries. The paper also provides examples of currently used superconducting particle therapy systems and proposed designs.

  20. Multifunctional reduction-responsive SPIO&DOX-loaded PEGylated polymeric lipid vesicles for magnetic resonance imaging-guided drug delivery

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Yang, Weitao; Du, Hongli; Guo, Fangfang; Wang, Hanjie; Chang, Jin; Gong, Xiaoqun; Zhang, Bingbo

    2016-04-01

    Multifunctional superparamagnetic iron-oxide (SPIO)-based nanoparticles have been emerging as candidate nanosystems for cancer diagnosis and therapy. Here, we report the use of reduction- responsive SPIO/doxorubicin (DOX)-loaded poly(ethylene glycol) monomethyl ether (PEG)ylated polymeric lipid vesicles (SPIO&DOX-PPLVs) as a novel theranostic system for tumor magnetic resonance imaging (MRI) diagnosis and controlled drug delivery. These SPIO&DOX-PPLVs are composed of SPIOs that function as MR contrast agents for tumor enhancement and PPLVs as polymer matrices for encapsulating SPIO and antitumor drugs. The in vitro characterizations show that the SPIO&DOX-PPLVs have nanosized structures (˜80 nm), excellent colloidal stability, good biocompatibility, as well as T 2-weighted MRI capability with a relatively high T 2 relaxivity (r 2 = 213.82 mM-1 s-1). In vitro drug release studies reveal that the release rate of DOX from the SPIO&DOX-PPLVs is accelerated in the reduction environment. An in vitro cellular uptake study and an antitumor study show that the SPIO&DOX-PPLVs have magnetic targeting properties and effective antitumor activity. In vivo studies show the SPIO&DOX-PPLVs have excellent T 2-weighted tumor targeted MRI capability, image-guided drug delivery capability, and high antitumor effects. These results suggest that the SPIO&DOX-PPLVs are promising nanocarriers for MRI diagnosis and cancer therapy applications.

  1. Multifunctional Au-Fe3O4@MOF core-shell nanocomposite catalysts with controllable reactivity and magnetic recyclability.

    PubMed

    Ke, Fei; Wang, Luhuan; Zhu, Junfa

    2015-01-21

    The recovery and reuse of expensive catalysts are important in both heterogeneous and homogeneous catalysis due to economic and environmental reasons. This work reports a novel multifunctional magnetic core-shell gold catalyst which can be easily prepared and shows remarkable catalytic properties in the reduction of 4-nitrophenol. The novel Au-Fe3O4@metal-organic framework (MOF) catalyst consists of a superparamagnetic Au-Fe3O4 core and a porous MOF shell with controllable thickness. Small Au nanoparticles (NPs) of 3-5 nm are mainly sandwiched between the Fe3O4 core and the porous MOF shell. Catalytic studies show that the core-shell structured Au-Fe3O4@MOF catalyst has a much higher catalytic activity than other reported Au-based catalysts toward the reduction of 4-nitrophenol. Moreover, this catalyst can be easily recycled due to the presence of the superparamagnetic core. Therefore, compared to conventional catalysts used in the reduction of 4-nitrophenol, this porous MOF-based magnetic catalyst is green, cheap and promising for industrial applications.

  2. Preparation of magnetic multi-functional molecularly imprinted polymer beads for determining environmental estrogens in water samples.

    PubMed

    Lin, Zhenkun; He, Qiaoya; Wang, Lituo; Wang, Xuedong; Dong, Qiaoxiang; Huang, Changjiang

    2013-05-15

    Magnetic multi-functional molecularly imprinted polymer (mag-MFMIP) beads were prepared for determining environmental estrogens in water samples. This novel material adopted a superparamagnetic microparticle as the supporter and used 17β-estradiol (E2) as the imprinting template, aiming for recognizing many kinds of environmental estrogens simultaneously. Characterization analysis and binding experiments revealed that mag-MFMIP beads had outstanding magnetic property, large adsorption capacity and high competitive selectivity to most of the commonly seen environmental estrogens. When mag-MFMIP beads were used as dispersed solid-phase extraction (SPE) adsorbents in water samples, the recoveries of estriol (E3), bisphenol A (BPA), E2 and ethynylestradiol (EE) were 72.2 - 92.1%, 89.3 - 96.0%, 93.3 - 102% and 89.7 - 95.9%, respectively with relative standard deviation (RSD) lower than 7.0%. These results indicated that mag-MFMIP beads had the potential to be the common adsorbents for many kinds of environmental estrogens, representing a novel application of MIPs in the field of environmental chemistry. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Particle size- and concentration-dependent separation of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Witte, Kerstin; Müller, Knut; Grüttner, Cordula; Westphal, Fritz; Johansson, Christer

    2017-04-01

    Small magnetic nanoparticles with a narrow size distribution are of great interest for several biomedical applications. When the size of the particles decreases, the magnetic moment of the particles decreases. This leads to a significant increase in the separation time by several orders of magnitude. Therefore, in the present study the separation processes of bionized nanoferrites (BNF) with different sizes and concentrations were investigated with the commercial Sepmag Q system. It was found that an increasing initial particle concentration leads to a reduction of the separation time for large nanoparticles due to the higher probability of building chains. Small nanoparticles showed exactly the opposite behavior with rising particle concentration up to 0.1 mg(Fe)/ml. For higher iron concentrations the separation time remains constant and the measured Z-average decreases in the supernatant at same time intervals. At half separation time a high yield with decreasing hydrodynamic diameter of particles can be obtained using higher initial particle concentrations.

  4. Remanent state studies of truncated conical magnetic particles

    SciTech Connect

    Hwang, M.; Redjdal, M.; Humphrey, F. B.; Ross, C. A.

    2001-06-01

    The remanent state of truncated conical particles is investigated as a function of their size, aspect ratio, and anisotropy, using a micromagnetic model based on the Landau{endash}Lifshitz{endash}Gilbert equation. Particles with a base diameter smaller than three times the exchange length show a {open_quotes}flower{close_quotes} state, while larger particles show a {open_quotes}vortex{close_quotes} magnetization state. The critical size for this transition increases with increasing anisotropy. Small flower-state particles show abrupt reorientation from out-of-plane to in-plane magnetization at a critical aspect ratio of 0.9. For vortex-state particles, the axial remanence gradually increases as the aspect ratio increases, and high aspect ratio particles have significant remanence even at larger diameters. {copyright} 2001 American Institute of Physics.

  5. Self-assembly multifunctional nanocomposites with Fe3O4 magnetic core and CdSe/ZnS quantum dots shell.

    PubMed

    Zhang, Ying; Wang, Shao-Ning; Ma, Song; Guan, Jiao-Jiao; Li, Da; Zhang, Xiang-Dong; Zhang, Zhi-Dong

    2008-06-01

    This paper describes a new method for self-assembling multifunctional nanocomposites with a magnetic core of iron oxide Fe(3)O(4) and a shell of CdSe/ZnS quantum dots (QDs). Two sol-gel processes were applied to form the uniform magnetic seeds (Fe(3)O(4)@SiO(2)-SH) and then the thiol coordination was used to bind the CdSe/ZnS QDs to the surface of the seeds. The multifunctional nanocomposites were characterized by means of transmission electron microscopy, X-ray diffraction, energy disperse spectroscopy, fluorescence spectroscopy, infrared spectroscopy, and superconducting quantum interference device (SQUID) magnetometer. The results showed that the magnetic Fe(3)O(4) nanoparticles and the CdSe/ZnS fluorescent QDs were combined together. The nanocomposites were of spherical shape with a mean diameter of 25 nm and exhibited well magnetic response, photostability, chemical activity, and water miscibility. The method put forward here can also be extended to combine systems of other metal oxides and QDs to fabricate core-shell nanocomposites with multifunction for biomedical applications.

  6. Enhanced magnetic particle transport by integration of a magnetic flux guide: Experimental verification of simulated behavior

    NASA Astrophysics Data System (ADS)

    Wirix-Speetjens, Roel; Fyen, Wim; Boeck, Jo De; Borghs, Gustaaf

    2006-04-01

    In the past, magnetic biosensors have shown to be promising alternatives for classical fluorescence-based microarrays, replacing the fluorescent label by a superparamagnetic particle. While on-chip detection of magnetic particles is firmly established, research groups continue to explore the unique ability of manipulating these particles by applying controlled magnetic forces. One of the challenging tasks in designing magnetic force generating structures remains the generation of large forces for a minimal current consumption. Previously, a simple transporting device for single magnetic particles has been demonstrated using a magnetic field that is generated by two tapered current carrying conductors [R. Wirix-Speetjens, W. Fyen, K. Xu, J. De Boeck, and G. Borghs, IEEE Trans. Magn. 41(10), 4128 (2005)]. We also developed a model to accurately predict the motion of a magnetic particle moving in the vicinity of a solid wall. Using this model, we now present a technique that enhances the magnetic force up to a factor of 3 using a magnetic flux guide. The larger magnetic force results in an average speed of the particle which increases with a factor of 3. These simulations show good agreement with experimental results.

  7. A particle astrophysics magnet spectrometer facility for Space Station

    NASA Technical Reports Server (NTRS)

    Ormes, J. F.; Israel, M. H.; Mewaldt, R.; Wiedenbeck, M.

    1987-01-01

    Planning for and design tradeoff studies related to the particle astrophysics magnet spectrometer known as Astromag are presented. This facility is being planned for the Space Station Freedom and address questions regarding the origin and acceleration of cosmic rays, explore the synthesis of elements by making detailed measurements of cosmic ray isotopic composition, and search for evidence of antimatter and other cosmologically significant particles. This work was supported by an international study team which includes particle physicists and cosmic ray physicists.

  8. Proposal to Search for Magnetically Charged Particles with Magnetic Charge 1e

    SciTech Connect

    Sullivan, Michael K.; Fryberger, David

    2015-11-02

    A model for composite elementary Standard Model (SM) particles based upon magnetically bound vorton pairs, we briefly introduce here, predicts the existence of a complete family of magnetically charged particles, as well as their neutral isotopic partners (all counterparts to the SM elementary particles), in which the lowest mass (charged) particle would be an electrically neutral stable lepton, but which carries a magnetic charge equivalent to 1e. This new particle, which we call a magneticon (a counterpart to the electron) would be pair produced at all e+e- colliders at an Ecm above twice its mass. In addition, PP and PPbar colliders should also be able to produce these new particles through the Drell-Yan process. To our knowledge, no monopole search experiment has been sensitive to such a low-charged magnetic monopole above a particle mass of about 5 GeV/c2. Hence, we propose that a search for such a stable particle of magnetic charge 1e should be undertaken. We have taken the ATLAS detector at the LHC as an example in which this search might be done. To this end, we modeled the magnetic fields and muon trigger chambers of this detector. We show results from a simple Monte Carlo simulation program to indicate how these particles might look in the detector and describe how one might search for these new particles in the ATLAS data stream.

  9. Dynamics of magnetic particles suspended in Newtonian fluids under magnetic field

    NASA Astrophysics Data System (ADS)

    Tan, Mingyang; Walker, Travis

    2016-11-01

    Anisotropic structures are commonly found in natural materials. Researchers are committed to developing meta-materials that mimic natural materials by introducing anisotropic filler particles. These materials can exhibit enhanced magnetic, mechanical, optical, and diffusive properties. In this study, a magnetic field is used to align magnetic oblate spheroids. We present an analytic solution based on a single-particle Stokes-flow model that describes the planar alignment of the particle in a rotating magnetic field. The analytic solution covers the full range of the magnetic field frequency agreeing well with our experimental results. Asymptotic solutions are also developed at both the high-frequency and the low-frequency limits of the field. The induced dipole of each particle can create its own magnetic field that can interact with neighboring particles, causing particles to aggregate. Different structures of particles are formed depending on the characteristics of the field, i.e., one-dimensional columns of particles in a constant field and two-dimensional sheets of particles in a rotating field. To simulate the realistic dynamics of the phenomena, we include hydrodynamic interactions between the particles via Stokesian dynamics.

  10. Colloidal self assembly of non-magnetic particles in magnetic nanofluid

    NASA Astrophysics Data System (ADS)

    Jadav, Mudra; Patel, Rajesh

    2015-06-01

    Here we present a technique using magnetic nanofluid to induce bidispersed suspension of nonmagnetic particles to assemble into colloidal chain, triangle, rectangle, ring-flower configurations. By changing the amplitude and direction of the magnetic field, we could tune the structure of nonmagnetic particles in magnetic nanofluid. The structures are assembled using magneto static interactions between effectively nonmagnetic particles dispersed in magnetizable magnetic nanofluid. The assembly of complex structures out of simple colloidal building blocks is of practical interest in photonic crystals and DNA biosensors.

  11. Colloidal self assembly of non-magnetic particles in magnetic nanofluid

    SciTech Connect

    Jadav, Mudra; Patel, Rajesh E-mail: rpat7@yahoo.co

    2015-06-24

    Here we present a technique using magnetic nanofluid to induce bidispersed suspension of nonmagnetic particles to assemble into colloidal chain, triangle, rectangle, ring-flower configurations. By changing the amplitude and direction of the magnetic field, we could tune the structure of nonmagnetic particles in magnetic nanofluid. The structures are assembled using magneto static interactions between effectively nonmagnetic particles dispersed in magnetizable magnetic nanofluid. The assembly of complex structures out of simple colloidal building blocks is of practical interest in photonic crystals and DNA biosensors.

  12. Noncommutative magnetic moment of charged particles

    SciTech Connect

    Adorno, T. C.; Gitman, D. M.; Shabad, A. E.; Vassilevich, D. V.

    2011-10-15

    It has been argued that in noncommutative field theories, the sizes of physical objects cannot be taken smaller than an ''elementary length'' related to noncommutativity parameters. By gauge covariantly extending field equations of noncommutative U(1){sub *} theory to cover the presence of external sources, we find electric and magnetic fields produced by an extended static charge. We find that such a charge, apart from being an ordinary electric monopole, is also a magnetic dipole. By writing off the existing experimental clearance in the value of the lepton magnetic moments for the present effect, we get the bound on noncommutativity at the level of 10{sup 4} TeV.

  13. Magnetic properties of TbFe2 particles prepared by magnetic field assisted ball milling

    NASA Astrophysics Data System (ADS)

    Arout Chelvane, J.; Palit, Mithun; Basumatary, Himalay; Pandian, S.

    2013-10-01

    The alloy of TbFe2 was studied by ball milling with and without the presence of external magnetic field. While the structure and powder morphology of the alloy were investigated using scanning electron microscope and X-ray diffraction, the magnetization was investigated using vibrating sample and superconducting quantum interference device magnetometers. The rate of particle reduction with ball milling is comparatively higher in the presence of external magnetic field than without it. Consequently, owing to a large fraction of particles acquiring near single domain configuration under the field assisted milling condition, the coercivity derived from these particles are as high as 6500 Oe than that of particles obtained without the aid of external magnetic field which is around 3850 Oe. The field cooled low temperature magnetization exhibits a large coercivity and skew in the shape of the magnetization curve due to the large anisotropy.

  14. Magnetic control of particle injection in plasma based accelerators.

    PubMed

    Vieira, J; Martins, S F; Pathak, V B; Fonseca, R A; Mori, W B; Silva, L O

    2011-06-03

    The use of an external transverse magnetic field to trigger and to control electron self-injection in laser- and particle-beam driven wakefield accelerators is examined analytically and through full-scale particle-in-cell simulations. A magnetic field can relax the injection threshold and can be used to control main output beam features such as charge, energy, and transverse dynamics in the ion channel associated with the plasma blowout. It is shown that this mechanism could be studied using state-of-the-art magnetic fields in next generation plasma accelerator experiments.

  15. Rotating magnetic field induced oscillation of magnetic particles for in vivo mechanical destruction of malignant glioma.

    PubMed

    Cheng, Yu; Muroski, Megan E; Petit, Dorothée C M C; Mansell, Rhodri; Vemulkar, Tarun; Morshed, Ramin A; Han, Yu; Balyasnikova, Irina V; Horbinski, Craig M; Huang, Xinlei; Zhang, Lingjiao; Cowburn, Russell P; Lesniak, Maciej S

    2016-02-10

    Magnetic particles that can be precisely controlled under a magnetic field and transduce energy from the applied field open the way for innovative cancer treatment. Although these particles represent an area of active development for drug delivery and magnetic hyperthermia, the in vivo anti-tumor effect under a low-frequency magnetic field using magnetic particles has not yet been demonstrated. To-date, induced cancer cell death via the oscillation of nanoparticles under a low-frequency magnetic field has only been observed in vitro. In this report, we demonstrate the successful use of spin-vortex, disk-shaped permalloy magnetic particles in a low-frequency, rotating magnetic field for the in vitro and in vivo destruction of glioma cells. The internalized nanomagnets align themselves to the plane of the rotating magnetic field, creating a strong mechanical force which damages the cancer cell structure inducing programmed cell death. In vivo, the magnetic field treatment successfully reduces brain tumor size and increases the survival rate of mice bearing intracranial glioma xenografts, without adverse side effects. This study demonstrates a novel approach of controlling magnetic particles for treating malignant glioma that should be applicable to treat a wide range of cancers.

  16. Microfluidic conformal coating of non-spherical magnetic particles

    PubMed Central

    Moon, Byeong-Ui; Hakimi, Navid; Hwang, Dae Kun; Tsai, Scott S. H.

    2014-01-01

    We present the conformal coating of non-spherical magnetic particles in a co-laminar flow microfluidic system. Whereas in the previous reports spherical particles had been coated with thin films that formed spheres around the particles; in this article, we show the coating of non-spherical particles with coating layers that are approximately uniform in thickness. The novelty of our work is that while liquid-liquid interfacial tension tends to minimize the surface area of interfaces—for example, to form spherical droplets that encapsulate spherical particles—in our experiments, the thin film that coats non-spherical particles has a non-minimal interfacial area. We first make bullet-shaped magnetic microparticles using a stop-flow lithography method that was previously demonstrated. We then suspend the bullet-shaped microparticles in an aqueous solution and flow the particle suspension with a co-flow of a non-aqueous mixture. A magnetic field gradient from a permanent magnet pulls the microparticles in the transverse direction to the fluid flow, until the particles reach the interface between the immiscible fluids. We observe that upon crossing the oil-water interface, the microparticles become coated by a thin film of the aqueous fluid. When we increase the two-fluid interfacial tension by reducing surfactant concentration, we observe that the particles become trapped at the interface, and we use this observation to extract an approximate magnetic susceptibility of the manufactured non-spherical microparticles. Finally, using fluorescence imaging, we confirm the uniformity of the thin film coating along the entire curved surface of the bullet-shaped particles. To the best of our knowledge, this is the first demonstration of conformal coating of non-spherical particles using microfluidics. PMID:25332731

  17. Magnetic particle capture for biomagnetic fluid flow in stenosed aortic bifurcation considering particle-fluid coupling

    NASA Astrophysics Data System (ADS)

    Bose, Sayan; Banerjee, Moloy

    2015-07-01

    Magnetic nanoparticles drug carriers continue to attract considerable interest for drug targeting in the treatment of cancer and other pathological conditions. Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the basic principle behind the Magnetic Drug Targeting (MDT). It is essential to couple the ferrohydrodynamic (FHD) and magnetohydrodynamic (MHD) principles when magnetic fields are applied to blood as a biomagnetic fluid. The present study is devoted to study on MDT technique by particle tracking in the presence of a non uniform magnetic field in a stenosed aortic bifurcation. The present numerical model of biomagnetic fluid dynamics (BFD) takes into accounts both magnetization and electrical conductivity of blood. The blood flow in the bifurcation is considered to be incompressible and Newtonian. An Eulerian-Lagrangian technique is adopted to resolve the hemodynamic flow and the motion of the magnetic particles in the flow using ANSYS FLUENT two way particle-fluid coupling. An implantable infinitely long cylindrical current carrying conductor is used to create the requisite magnetic field. Targeted transport of the magnetic particles in a partly occluded vessel differs distinctly from the same in a regular unblocked vessel. Results concerning the velocity and temperature field indicate that the presence of the magnetic field influences the flow field considerably and the disturbances increase as the magnetic field strength increases. The insert position is also varied to observe the variation in flow as well as temperature field. Parametric investigation is conducted and the influence of the particle size (dp), flow Reynolds number (Re) and external magnetic field strength (B0) on the "capture efficiency" (CE) is reported. The difference in CE is also studied for different particle loading condition. According to the results, the magnetic field increased the particle concentration in the target region

  18. Charged-particle motion in multidimensional magnetic-field turbulence

    NASA Technical Reports Server (NTRS)

    Giacalone, J.; Jokipii, J. R.

    1994-01-01

    We present a new analysis of the fundamental physics of charged-particle motion in a turbulent magnetic field using a numerical simulation. The magnetic field fluctuations are taken to be static and to have a power spectrum which is Kolmogorov. The charged particles are treated as test particles. It is shown that when the field turbulence is independent of one coordinate (i.e., k lies in a plane), the motion of these particles across the magnetic field is essentially zero, as required by theory. Consequently, the only motion across the average magnetic field direction that is allowed is that due to field-line random walk. On the other hand, when a fully three-dimensional realization of the turbulence is considered, the particles readily cross the field. Transport coefficients both along and across the ambient magnetic field are computed. This scheme provides a direct computation of the Fokker-Planck coefficients based on the motions of individual particles, and allows for comparison with analytic theory.

  19. Charged-particle motion in multidimensional magnetic-field turbulence

    NASA Technical Reports Server (NTRS)

    Giacalone, J.; Jokipii, J. R.

    1994-01-01

    We present a new analysis of the fundamental physics of charged-particle motion in a turbulent magnetic field using a numerical simulation. The magnetic field fluctuations are taken to be static and to have a power spectrum which is Kolmogorov. The charged particles are treated as test particles. It is shown that when the field turbulence is independent of one coordinate (i.e., k lies in a plane), the motion of these particles across the magnetic field is essentially zero, as required by theory. Consequently, the only motion across the average magnetic field direction that is allowed is that due to field-line random walk. On the other hand, when a fully three-dimensional realization of the turbulence is considered, the particles readily cross the field. Transport coefficients both along and across the ambient magnetic field are computed. This scheme provides a direct computation of the Fokker-Planck coefficients based on the motions of individual particles, and allows for comparison with analytic theory.

  20. Peptide inhibitor modified magnetic particles for pepsin separation.

    PubMed

    Filuszová, Michaela; Kucerová, Zdenka; Tichá, Marie

    2009-06-01

    Synthetic heptapeptide containing D-amino acid residues (Val-D-Leu-Pro-Phe-Phe-Val-D-Leu) was coupled to glyoxal-activated magnetic agarose particles via the free peptide amino group. The peptide-modified magnetic particles were used for the separation of pepsins. Porcine pepsin A and human pepsin A were adsorbed to the magnetic peptide-modified affinity carrier, while the rat pepsin C and human pepsin C did not interact with the immobilized ligand. Conditions of pepsin adsorption to peptide-modified magnetic particles, as well as elution buffers were optimized. Porcine pepsin A did not interact with the immobilized peptide in the presence of pepsin inhibitor pepstatin A, indicating that the enzyme binding site is involved in the studied interaction. The elaborated method represents a rapid and simple technique not only for the separation of pepsins but also, in combination with MS, for the enzyme detection and determination.

  1. Quench antenna for superconducting particle accelerator magnets

    SciTech Connect

    Ogitsu, T.; Devred, A.; Kim, K.

    1993-10-01

    We report on the design, fabrication, and test of an assembly of stationary pickup coils which can be used to localize quench origins. After describing the pickup coils configuration, we develop a simple model of current redistribution which allows interpretation of the measured voltages and determination of the turn of the magnet coil in which the quench started. The technique is illustrated by analyzing the data from a quench of a 5-cm-aperture, 15-m-long SSC dipole magnet prototype.

  2. Biohazard Detoxification Method Utilizing Magnetic Particles

    DTIC Science & Technology

    2007-05-01

    polar and nonpolar carrier liquids. 3.1.2. Supplement II: Synthesis and Characterization of Highly-Magnetic Biodegradable Poly(D,L lactide- co-glycolide...be well dispersed both in polar and nonpolar carrier liquids. Keywords: Magnetic gel; preparation; magnetite; superparamagnetism; FT-IR spectroscopy...temperature and could be well dispersed directly into nonpolar or weakly polar hydrocarbon solvents such as hexane or ethyl acetate. The hydrophobic

  3. Charged Particle Diffusion in Isotropic Random Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Subedi, P.; Sonsrettee, W.; Blasi, P.; Ruffolo, D.; Matthaeus, W. H.; Montgomery, D.; Chuychai, P.; Dmitruk, P.; Wan, M.; Parashar, T. N.; Chhiber, R.

    2017-03-01

    The investigation of the diffusive transport of charged particles in a turbulent magnetic field remains a subject of considerable interest. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here we consider the diffusion of charged particles in fully three-dimensional isotropic turbulent magnetic fields with no mean field, which may be pertinent to many astrophysical situations. We identify different ranges of particle energy depending upon the ratio of Larmor radius to the characteristic outer length scale of turbulence. Two different theoretical models are proposed to calculate the diffusion coefficient, each applicable to a distinct range of particle energies. The theoretical results are compared to those from computer simulations, showing good agreement.

  4. Very high coercivity magnetic stripes produced by particle rotation

    SciTech Connect

    Naylor, R.B.

    1992-12-01

    This paper describes a current research program at Sandia National Laboratories whereby magnetic stripes are produced through the use of a new particle rotation technology. This new process allows the stripes to be produced in bulk and then held in a latent state so that they may be encoded at a later date. Since particle rotation is less dependent on the type of magnetic particle used, very high coercivity particles could provide a way to increase both magnetic tamper-resistance and accidental erasure protection. This research was initially funded by the Department of Energy, Office of Safeguard and Security as a portion of their Science and Technology Base Development, Advanced Security Concepts program. Current program funding is being provided by Sandia National Laboratories as part of their Laboratory Directed Research and Development program.

  5. Magnetized particle motion around non-Schwarzschild black hole immersed in an external uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Rayimbaev, J. R.

    2016-09-01

    The motion of a magnetized particle orbiting around non-Schwarzschild black hole immersed in an external uniform magnetic field is considered. The influence of deformation parameter h to effective potential of the radial motion of the magnetized particle around non-Schwarzschild black hole using Hamilton-Jacobi formalism is studied. We have obtained numerical values of area Δ ρ where magnetized particles can move which is expanding (narrowing) due to the effect of the negative (positive) deformation. Finally, we have studied the collision of two particles (magnetized-neutral, magnetized-magnetized, magnetized-charged) in non-Schwarzschild spacetime and got the center-of-mass energy (E_{c.m}) for the particles. Moreover, we have found the capture radius (r_{cap}) - the distance from the central object to the point where particles collide and fall down to the central compact object. It is shown that non-Schwarzschild black holes could also act as particle accelerators with arbitrarily high center-of-mass energy.

  6. SOLAR ENERGETIC PARTICLE MODULATIONS ASSOCIATED WITH COHERENT MAGNETIC STRUCTURES

    SciTech Connect

    Trenchi, L.; Bruno, R.; D'amicis, R.; Marcucci, M. F.; Telloni, D.; Zurbuchen, T. H.; Weberg, M.

    2013-06-10

    In situ observations of solar energetic particles (SEPs) often show rapid variations of their intensity profile, affecting all energies simultaneously, without time dispersion. A previously proposed interpretation suggests that these modulations are directly related to the presence of magnetic structures with a different magnetic topology. However, no compelling evidence of local changes in magnetic field or in plasma parameters during SEP modulations has been reported. In this paper, we performed a detailed analysis of SEP events and we found several signatures in the local magnetic field and/or plasma parameters associated with SEP modulations. The study of magnetic helicity allowed us to identify magnetic boundaries, associated with variations of plasma parameters, which are thought to represent the borders between adjacent magnetic flux tubes. It is found that SEP dispersionless modulations are generally associated with such magnetic boundaries. Consequently, we support the idea that SEP modulations are observed when the spacecraft passes through magnetic flux tubes, filled or devoid of SEPs, which are alternatively connected and not connected with the flare site. In other cases, we found SEP dropouts associated with large-scale magnetic holes. A possible generation mechanism suggests that these holes are formed in the high solar corona as a consequence of magnetic reconnection. This reconnection process modifies the magnetic field topology, and therefore, these holes can be magnetically isolated from the surrounding plasma and could also explain their association with SEP dropouts.

  7. Synthesis, characterization, and cytotoxicity evaluation of high-magnetization multifunctional nanoclusters

    NASA Astrophysics Data System (ADS)

    Petran, Anca; Radu, Teodora; Nan, Alexandrina; Olteanu, Diana; Filip, Adriana; Clichici, Simona; Baldea, Ioana; Suciu, Maria; Turcu, Rodica

    2017-01-01

    The paper presents the synthesis, characterization, and in vitro cytotoxicity tests of Fe3O4 magnetic nanoclusters coated with ethylenediaminetetraacetic acid disodium salt (EDTA). Electron microscopy analysis (SEM) evidences that magnetite nanoparticles are closely packed into the clusters stabilized with EDTA with well-defined near spherical shapes and sizes in the range 100-200 nm. From XRD measurements, we determined the mean size of the crystallites inside the magnetic cluster about 36 nm. The saturation magnetization determined for the magnetic clusters stabilized with EDTA has high value, about 81.7 emu/g at 300 K. X-ray photoelectron spectroscopy has been used to determine both the elemental and chemical structure of the magnetic cluster surface. In vitro studies have shown that the magnetic clusters at low doses did not induce toxicity on human umbilical vein endothelial cells or lesions of the cell membrane. In contrast, at high doses, the magnetic clusters increased the lipid peroxidation and reduced the leakage of a cytoplasmic enzyme, lactate dehydrogenase (LDH), in parallel with increasing the antioxidant defense.

  8. Endocytotic potential governs magnetic particle loading in dividing neural cells: studying modes of particle inheritance

    PubMed Central

    Tickle, Jacqueline A; Jenkins, Stuart I; Polyak, Boris; Pickard, Mark R; Chari, Divya M

    2016-01-01

    Aim: To achieve high and sustained magnetic particle loading in a proliferative and endocytotically active neural transplant population (astrocytes) through tailored magnetite content in polymeric iron oxide particles. Materials & methods: MPs of varying magnetite content were applied to primary-derived rat cortical astrocytes ± static/oscillating magnetic fields to assess labeling efficiency and safety. Results: Higher magnetite content particles display high but safe accumulation in astrocytes, with longer-term label retention versus lower/no magnetite content particles. Magnetic fields enhanced loading extent. Dynamic live cell imaging of dividing labeled astrocytes demonstrated that particle distribution into daughter cells is predominantly ‘asymmetric’. Conclusion: These findings could inform protocols to achieve efficient MP loading into neural transplant cells, with significant implications for post-transplantation tracking/localization. PMID:26785794

  9. Endocytotic potential governs magnetic particle loading in dividing neural cells: studying modes of particle inheritance.

    PubMed

    Tickle, Jacqueline A; Jenkins, Stuart I; Polyak, Boris; Pickard, Mark R; Chari, Divya M

    2016-02-01

    To achieve high and sustained magnetic particle loading in a proliferative and endocytotically active neural transplant population (astrocytes) through tailored magnetite content in polymeric iron oxide particles. MPs of varying magnetite content were applied to primary-derived rat cortical astrocytes ± static/oscillating magnetic fields to assess labeling efficiency and safety. Higher magnetite content particles display high but safe accumulation in astrocytes, with longer-term label retention versus lower/no magnetite content particles. Magnetic fields enhanced loading extent. Dynamic live cell imaging of dividing labeled astrocytes demonstrated that particle distribution into daughter cells is predominantly 'asymmetric'. These findings could inform protocols to achieve efficient MP loading into neural transplant cells, with significant implications for post-transplantation tracking/localization.

  10. Prospects for Fermi Particle Acceleration at Coronal Magnetic Reconnection Sites

    NASA Astrophysics Data System (ADS)

    Provornikova, E.; Laming, J. M.; Lukin, V.

    2015-12-01

    The mechanism of first order Fermi acceleration of particles interacting with the converging magnetized flows at a reconnection site was introduced recently in an attempt to predict the energy distribution of particles resulting from violent reconnection in galactic microquasars. More careful consideration of this mechanism showed that the spectral index of accelerated particles is related to the total plasma compression within a reconnection region, similar to that in the formulation for diffusive shock acceleration. In the solar context, reconnection regions producing strong compression could be the source of suprathermal "seed particles". A hard spectrum of such suprathermal particles is believed to be necessary to initiate the particle acceleration process at low Mach number coronal mass ejection shocks close to the Sun where the gradual solar energetic particle events originate. As a first step to investigate the efficiency of Fermi acceleration, we explore the degree of plasma compression that can be achieved at reconnection sites in the solar corona. This work presents a set of 2D two-temperature resistive MHD simulations of the dynamics of several magnetic configurations within a range of lower corona plasma parameters. Energy transport processes in the MHD model include anisotropic thermal conduction for electrons and ions and radiative cooling. Magnetic configurations considered are a Harris current sheet, a force-free current sheet, a flux rope sitting above an arcade of magnetic loops, and two merging flux ropes. We demonstrate that only for some magnetic topologies, corresponding in particular to 3D magnetic nulls, the compression ratio, sufficient for first order Fermi acceleration in the reconnection region, can be achieved. These represent the potential sites in the solar corona where a hard seed particle energetic spectrum could be produced.

  11. Multifunctional nanoparticles: analytical prospects.

    PubMed

    de Dios, Alejandro Simón; Díaz-García, Marta Elena

    2010-05-07

    Multifunctional nanoparticles are among the most exciting nanomaterials with promising applications in analytical chemistry. These applications include (bio)sensing, (bio)assays, catalysis and separations. Although most of these applications are based on the magnetic, optical and electrochemical properties of multifunctional nanoparticles, other aspects such as the synergistic effect of the functional groups and the amplification effect associated with the nanoscale dimension have also been observed. Considering not only the nature of the raw material but also the shape, there is a huge variety of nanoparticles. In this review only magnetic, quantum dots, gold nanoparticles, carbon and inorganic nanotubes as well as silica, titania and gadolinium oxide nanoparticles are addressed. This review presents a narrative summary on the use of multifunctional nanoparticles for analytical applications, along with a discussion on some critical challenges existing in the field and possible solutions that have been or are being developed to overcome these challenges.

  12. The magnetic field dependent dynamic properties of magnetorheological elastomers based on hard magnetic particles

    NASA Astrophysics Data System (ADS)

    Wen, Qianqian; Wang, Yu; Gong, Xinglong

    2017-07-01

    In this study, novel magnetorheological elastomers based on hard magnetic particles (H-MREs) were developed and the magnetic field dependent dynamic properties of the H-MREs were further investigated. The storage modulus of H-MREs could not only be increased by increasing magnetic field but also be decreased by the increasing magnetic field of opposite orientation. For the anisotropic H-MREs with 80 wt% NdFeB particles, the field-induced increasing and decreasing modulus was 426 kPa and 118 kPa respectively. Moreover, the dynamic performances of H-MREs significantly depended on the pre-structure magnetic field, magnetizing field and test magnetic field. The H-MREs were initially magnetized and formed the chain-like microstructure by the pre-structure magnetic field. The field-induced increasing and decreasing modulus of H-MREs both raised with increasing of the magnetizing field. When the magnetizing field increased from 400 to 1200 kA m-1, the field induced decreasing modulus of the 80 wt% isotropic H-MREs raised from 3 to 47 kPa. The magnetic field dependent curves of H-MREs’ storage modulus were asymmetric if the magnetizing field was higher than the test magnetic field. Based on the dipolar model of MREs and magnetic properties of hard magnetic material, a reasonable explanation was proposed to understand the H-MREs’ field dependent mechanical behaviors.

  13. MD Simulation of Particle Orientation in Magnetic Inks

    NASA Astrophysics Data System (ADS)

    Visscher; Günal

    1997-03-01

    We have done molecular-dynamics type simulations of particle re-orientation in a magnetic colloid, by a magnetic field during tape and disk manufacture. The model takes into account switching (in a Stoner- Wohlfarth model) as well as particle translation and rotation in response to magnetic, steric, Brownian, and hydrodynamic drag forces and torques. Magnetic interactions are fully included; hysteresis loops with and without magnetic interaction will be displayed, with corresponding Δ M curves. Images of the network structure at various points of the hysteresis loop will be shown. Further information is available at http:// www.mint.ua.edu/colloids/march.html.

  14. Magnetic field flow phenomena in a falling particle receiver

    NASA Astrophysics Data System (ADS)

    Armijo, Kenneth M.; Ho, Clifford; Anderson, Ryan; Christian, Joshua; Babiniec, Sean; Ortega, Jesus

    2016-05-01

    Concentrating solar power (CSP) falling particle receivers are being pursued as a desired means for utilizing low-cost, high-absorptance particulate materials that can withstand high concentration ratios (˜1000 suns), operating temperatures above 700 °C, and inherent storage capabilities which can be used to reduce to levelized cost of electricity (LCOE)1. Although previous falling particle receiver designs have proven outlet temperatures above 800 °C, and thermal efficiencies between 80-90%, performance challenges still exist to operate at higher concentration ratios above 1000 suns and greater solar absorptance levels. To increase absorptance, these receivers will require enhanced particle residence time within a concentrated beam of sunlight. Direct absorption solid particle receivers that can enhance this residence time will have the potential to achieve heat-transfer media temperatures2 over 1000 °C. However, depending on particle size and external forces (e.g., external wind and flow due to convective heat losses), optimized particle flow can be severely affected, which can reduce receiver efficiency. To reduce particle flow destabilization and increase particle residence time on the receiver an imposed magnetic field is proposed based on a collimated design for two different methodologies. These include systems with ferromagnetic and charged particle materials. The approaches will be analytically evaluated based on magnetic field strength, geometry, and particle parameters, such as magnetic moment. A model is developed using the computational fluid dynamics (CFD) code ANSYS FLUENT to analyze these approaches for a ˜2 MWth falling particle receiver at Sandia National Laboratories5,6. Here, assessment will be made with respect to ferromagnetic particles such as iron-oxides, as well as charged particles. These materials will be parametrically assessed (e.g., type, size, dipole moment and geometry) over a range of magnetic permeability, μ values. Modeling

  15. Investigation of the capture of magnetic particles from high-viscosity fluids using permanent magnets

    PubMed Central

    Garraud, A.; Velez, C.; Shah, Y.; Garraud, N.; Kozissnik, B.; Yarmola, E. G.; Allen, K. D.; Dobson, J.; Arnold, D. P.

    2015-01-01

    Goal This paper investigates the practicality of using a small, permanent magnet to capture magnetic particles out of high-viscosity biological fluids, such as synovial fluid. Methods Numerical simulations are used to predict the trajectory of magnetic particles toward the permanent magnet. The simulations are used to determine a “collection volume” with a time-dependent size and shape, which determines the number of particles that can be captured from the fluid in a given amount of time. Results The viscosity of the fluid strongly influences the velocity of the magnetic particles towards the magnet, hence the collection volume after a given time. In regards to the design of the magnet, the overall size is shown to most strongly influence the collection volume in comparison to the magnet shape or aspect ratio. Conclusion Numerical results showed good agreement with in vitro experimental magnetic collection results. Significance In the long-term, this work aims to facilitate optimization of the collection of magnetic particle-biomarker conjugates from high-viscosity biological fluids without the need to remove the fluid from a patient. PMID:26208261

  16. Statistical analysis of magnetically soft particles in magnetorheological elastomers

    NASA Astrophysics Data System (ADS)

    Gundermann, T.; Cremer, P.; Löwen, H.; Menzel, A. M.; Odenbach, S.

    2017-04-01

    The physical properties of magnetorheological elastomers (MRE) are a complex issue and can be influenced and controlled in many ways, e.g. by applying a magnetic field, by external mechanical stimuli, or by an electric potential. In general, the response of MRE materials to these stimuli is crucially dependent on the distribution of the magnetic particles inside the elastomer. Specific knowledge of the interactions between particles or particle clusters is of high relevance for understanding the macroscopic rheological properties and provides an important input for theoretical calculations. In order to gain a better insight into the correlation between the macroscopic effects and microstructure and to generate a database for theoretical analysis, x-ray micro-computed tomography (X-μCT) investigations as a base for a statistical analysis of the particle configurations were carried out. Different MREs with quantities of 2–15 wt% (0.27–2.3 vol%) of iron powder and different allocations of the particles inside the matrix were prepared. The X-μCT results were edited by an image processing software regarding the geometrical properties of the particles with and without the influence of an external magnetic field. Pair correlation functions for the positions of the particles inside the elastomer were calculated to statistically characterize the distributions of the particles in the samples.

  17. Experimental verification of interactions between randomly distributed fine magnetic particles

    NASA Astrophysics Data System (ADS)

    Taketomi, Susamu; Shull, Robert D.

    2003-10-01

    We experimentally examined whether or not a magnetic fluid (MF) is really superparamagnetic by comparing the initial magnetic susceptibilities of the mother MFs with those of their highly diluted solutions (more than 1000 times diluted) in which the dipole-dipole interaction between the particles was negligible. We used three mother MFs, SA 1, SB 1, and SC 1, and their highly diluted solutions, SA 2, SB 2, and SC 2, respectively. The particles' dispersability was best in SA 1 and poorest in SC 1. From the static field experiment, it was found that the mutual interaction between the particles in SB 1, and SC 1 made clusters of particles with magnetically closed flux circuits even at zero field while no interaction was detected in SA 1. The initial complex magnetic susceptibility, χ˜, as a function of temperature, T, under an AC field experiment revealed that the complex susceptibility of both the samples SA 1 and SA 2 showed peaks as a function of T. However, their χ˜ vs. T curves were not similar, leading to the conclusion that the sample SA 1 was not superparamagnetic. Instead, SA 1 was a magnetic spin-glass induced by the weak interaction between the particle spins. The existence of the spin-glass state was also confirmed by the Volgel-Fulcher law dependence of the AC-susceptibility peak temperature, Tp, or the frequency of the AC field.

  18. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-IchiI.; Hededal, C.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (m) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  19. Particle Acceleration, Magnetic Field Generation in Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.

    2005-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  20. Arrangement at the nanoscale: Effect on magnetic particle hyperthermia

    PubMed Central

    Myrovali, E.; Maniotis, N.; Makridis, A.; Terzopoulou, A.; Ntomprougkidis, V.; Simeonidis, K.; Sakellari, D.; Kalogirou, O.; Samaras, T.; Salikhov, R.; Spasova, M.; Farle, M.; Wiedwald, U.; Angelakeris, M.

    2016-01-01

    In this work, we present the arrangement of Fe3O4 magnetic nanoparticles into 3D linear chains and its effect on magnetic particle hyperthermia efficiency. The alignment has been performed under a 40 mT magnetic field in an agarose gel matrix. Two different sizes of magnetite nanoparticles, 10 and 40 nm, have been examined, exhibiting room temperature superparamagnetic and ferromagnetic behavior, in terms of DC magnetic field, respectively. The chain formation is experimentally visualized by scanning electron microscopy images. A molecular Dynamics anisotropic diffusion model that outlines the role of intrinsic particle properties and inter-particle distances on dipolar interactions has been used to simulate the chain formation process. The anisotropic character of the aligned samples is also reflected to ferromagnetic resonance and static magnetometry measurements. Compared to the non-aligned samples, magnetically aligned ones present enhanced heating efficiency increasing specific loss power value by a factor of two. Dipolar interactions are responsible for the chain formation of controllable density and thickness inducing shape anisotropy, which in turn enhances magnetic particle hyperthermia efficiency. PMID:27897195

  1. Particle size dependent rheological property in magnetic fluid

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Pei, Lei; Xuan, Shouhu; Yan, Qifan; Gong, Xinglong

    2016-06-01

    The influence of the particle size on the rheological property of magnetic fluid was studied both by the experimental and computer simulation methods. Firstly, the magnetic fluids were prepared by dispersing Fe3O4 nanospheres with size varied from 40 nm to 100 nm and 200 nm in the solution. Then, the rheological properties were investigated and it was found that the relative magnetorheological effects increased with increasing the particle size. Finally, the molecular dynamic simulation was used to analyze the mechanical characteristics of the magnetic fluid and the chain-like model agreed well with the experimental result. The authentic chain-like structure observed by a microscope agreed with the simulation results. The three particles composed of the similar cluster nanostructure, thus they exhibited similar magnetic property. To this end, the unique assembling microstructures was the origination of the mechanical difference. And it was found that the higher MR (magnetorheological) effects of the large particle based magnetic fluid was originated from the stronger assembling microstructure under the applying magnetic field.

  2. Arrangement at the nanoscale: Effect on magnetic particle hyperthermia

    NASA Astrophysics Data System (ADS)

    Myrovali, E.; Maniotis, N.; Makridis, A.; Terzopoulou, A.; Ntomprougkidis, V.; Simeonidis, K.; Sakellari, D.; Kalogirou, O.; Samaras, T.; Salikhov, R.; Spasova, M.; Farle, M.; Wiedwald, U.; Angelakeris, M.

    2016-11-01

    In this work, we present the arrangement of Fe3O4 magnetic nanoparticles into 3D linear chains and its effect on magnetic particle hyperthermia efficiency. The alignment has been performed under a 40 mT magnetic field in an agarose gel matrix. Two different sizes of magnetite nanoparticles, 10 and 40 nm, have been examined, exhibiting room temperature superparamagnetic and ferromagnetic behavior, in terms of DC magnetic field, respectively. The chain formation is experimentally visualized by scanning electron microscopy images. A molecular Dynamics anisotropic diffusion model that outlines the role of intrinsic particle properties and inter-particle distances on dipolar interactions has been used to simulate the chain formation process. The anisotropic character of the aligned samples is also reflected to ferromagnetic resonance and static magnetometry measurements. Compared to the non-aligned samples, magnetically aligned ones present enhanced heating efficiency increasing specific loss power value by a factor of two. Dipolar interactions are responsible for the chain formation of controllable density and thickness inducing shape anisotropy, which in turn enhances magnetic particle hyperthermia efficiency.

  3. Arrangement at the nanoscale: Effect on magnetic particle hyperthermia.

    PubMed

    Myrovali, E; Maniotis, N; Makridis, A; Terzopoulou, A; Ntomprougkidis, V; Simeonidis, K; Sakellari, D; Kalogirou, O; Samaras, T; Salikhov, R; Spasova, M; Farle, M; Wiedwald, U; Angelakeris, M

    2016-11-29

    In this work, we present the arrangement of Fe3O4 magnetic nanoparticles into 3D linear chains and its effect on magnetic particle hyperthermia efficiency. The alignment has been performed under a 40 mT magnetic field in an agarose gel matrix. Two different sizes of magnetite nanoparticles, 10 and 40 nm, have been examined, exhibiting room temperature superparamagnetic and ferromagnetic behavior, in terms of DC magnetic field, respectively. The chain formation is experimentally visualized by scanning electron microscopy images. A molecular Dynamics anisotropic diffusion model that outlines the role of intrinsic particle properties and inter-particle distances on dipolar interactions has been used to simulate the chain formation process. The anisotropic character of the aligned samples is also reflected to ferromagnetic resonance and static magnetometry measurements. Compared to the non-aligned samples, magnetically aligned ones present enhanced heating efficiency increasing specific loss power value by a factor of two. Dipolar interactions are responsible for the chain formation of controllable density and thickness inducing shape anisotropy, which in turn enhances magnetic particle hyperthermia efficiency.

  4. Rubik-like magnetic nanoassemblies as an efficient drug multifunctional carrier for cancer theranostics.

    PubMed

    Xiong, Fei; Chen, Yuejian; Chen, Jianxiang; Yang, Bingya; Zhang, Yu; Gao, Huile; Hua, Zichun; Gu, Ning

    2013-12-28

    A practical and effective strategy for loading hydrophobic anticancer agents within the inside and outside oleic acid layer of Rubik-like magnetic nanoassemblies (MNAs) is established. In this strategy, four individual oleic acid-capped iron oxide nanocubes and dioleate-modified polyethylene glycol are assembled into cluster with high drug loading capability, high magnetism, as well as rapid and extended release behavior. After loading model drug paclitaxel (PTX), PTX-MNAs show greater antitumor activity both in vitro cell culture and in vivo animal trials compared with the same dose of free PTX (Taxol). With high uptake by tumor cells, MNAs exhibit in tumor imaging by magnetic resonance imaging. These outstanding properties are largely due to the drug delivery systems that take high drug-loading capability and high magnetism into consideration in a nano-dimension for maximizing the nanotheranostic functions and minimizing the toxic side effects. In summary, the Rubik-like magnetic nanoassemblies may have the potential to realize "all-in-one" nanotheranostic strategy to detect, diagnose, treat, and monitor tumors and therapeutic response in further pre-clinical and clinical studies.

  5. Inhibition by Multifunctional Magnetic Nanoparticles Loaded with Alpha-Synuclein RNAi Plasmid in a Parkinson's Disease Model

    PubMed Central

    Niu, Shuiqin; Zhang, Ling-Kun; Zhang, Li; Zhuang, Siyi; Zhan, Xiuyu; Chen, Wu-Ya; Du, Shiwei; Yin, Liang; You, Rong; Li, Chu-Hua; Guan, Yan-Qing

    2017-01-01

    Lewy bodies are considered as the main pathological characteristics of Parkinson's disease (PD). The major component of Lewy bodies is α-synuclein (α-syn). The use of gene therapy that targeting and effectively interfere with the expression of α-syn in neurons has received tremendous attention. In this study, we used magnetic Fe3O4 nanoparticles coated with oleic acid molecules as a nano-carrier. N-isopropylacrylamide derivative (NIPAm-AA) was photo-immobilized onto the oleic acid molecules, and shRNA (short hairpin RNA) was absorbed. The same method was used to absorb nerve growth factor (NGF) to NIPAm-AA to specifically promote neuronal uptake via NGF receptor-mediated endocytosis. Additionally, shRNA plasmid could be released into neurons because of the temperature and pH sensitivity of NIPAm-AA interference with α-syn synthesis. We investigated apoptosis in neurons with abrogated α-syn expression in vitro and in vivo. The results demonstrated that multifunctional superparamagnetic nanoparticles carrying shRNA for α-syn could provide effective repair in a PD model. PMID:28042339

  6. Multifunctional Sn- and Fe-Codoped In2O3 Colloidal Nanocrystals: Plasmonics and Magnetism.

    PubMed

    Tandon, Bharat; Shanker, G Shiva; Nag, Angshuman

    2014-07-03

    We prepared Fe- and Sn-codoped colloidal In2O3 nanocrystals (∼6 nm). Sn doping provides free electrons in the conduction band, originating localized surface plasmon resonance (LSPR) and electrical conductivity. The LSPR band can be tuned between 2000 and >3000 nm, depending on the extent and kind of dopant ions. Fe doping, on the other hand, provides unpaired electrons, resulting in weak ferromagnetism at room temperature. Fe doping shifts the LSPR band of 10% Sn-doped In2O3 nanocrystals to a longer wavelength along with a reduction in intensity, suggesting trapping of charge carriers around the dopant centers, whereas Sn doping increases the magnetization of 10% Fe-doped In2O3 nanocrystals, probably because of the free electron mediated interactions between distant magnetic ions. The combination of plasmonics and magnetism, in addition to electronic conductivity and visible-light transparency, is a unique feature of our colloidal codoped nanocrystals.

  7. Synthesis, structural and magnetic characterization of soft magnetic nanocrystalline ternary FeNiCo particles

    NASA Astrophysics Data System (ADS)

    Toparli, Cigdem; Ebin, Burçak; Gürmen, Sebahattin

    2017-02-01

    The present study focuses on the synthesis, microstructural and magnetic properties of ternary FeNiCo nanoparticles. Nanocrystalline ternary FeNiCo particles were synthesized via hydrogen reduction assisted ultrasonic spray pyrolysis method in single step. The effect of precursor concentration on the morphology and the size of particles was investigated. The syntheses were performed at 800 °C. Structure, morphology and magnetic properties of the as-prepared products were characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) studies. Scherer calculation revealed that crystallite size of the ternary particles ranged between 36 and 60 nm. SEM and TEM investigations showed that the particle size was strongly influenced by the precursor concentration and Fe, Ni, Co elemental composition of individual particles was homogeneous. Finally, the soft magnetic properties of the particles were observed to be a function of their size.

  8. 3D fibre deposition and stereolithography techniques for the design of multifunctional nanocomposite magnetic scaffolds.

    PubMed

    De Santis, Roberto; D'Amora, Ugo; Russo, Teresa; Ronca, Alfredo; Gloria, Antonio; Ambrosio, Luigi

    2015-10-01

    Magnetic nanocomposite scaffolds based on poly(ε-caprolactone) and poly(ethylene glycol) were fabricated by 3D fibre deposition modelling (FDM) and stereolithography techniques. In addition, hybrid coaxial and bilayer magnetic scaffolds were produced by combining such techniques. The aim of the current research was to analyse some structural and functional features of 3D magnetic scaffolds obtained by the 3D fibre deposition technique and by stereolithography as well as features of multimaterial scaffolds in the form of coaxial and bilayer structures obtained by the proper integration of such methods. The compressive mechanical behaviour of these scaffolds was investigated in a wet environment at 37 °C, and the morphological features were analysed through scanning electron microscopy (SEM) and X-ray micro-computed tomography. The capability of a magnetic scaffold to absorb magnetic nanoparticles (MNPs) in water solution was also assessed. confocal laser scanning microscopy was used to assess the in vitro biological behaviour of human mesenchymal stem cells (hMSCs) seeded on 3D structures. Results showed that a wide range of mechanical properties, covering those spanning hard and soft tissues, can be obtained by 3D FDM and stereolithography techniques. 3D virtual reconstruction and SEM showed the precision with which the scaffolds were fabricated, and a good-quality interface between poly(ε-caprolactone) and poly(ethylene glycol) based scaffolds was observed for bilayer and coaxial scaffolds. Magnetised scaffolds are capable of absorbing water solution of MNPs, and a preliminary information on cell adhesion and spreading of hMSCs was obtained without the application of an external magnetic field.

  9. Particle energization in a chaotic force-free magnetic field

    NASA Astrophysics Data System (ADS)

    Li, Xiaocan; Li, Gang; Dasgupta, Brahmananda

    2015-04-01

    A force-free field (FFF) is believed to be a reasonable description of the solar corona and in general a good approximation for low-beta plasma. The equations describing the magnetic field of FFF is similar to the ABC fluid equations which has been demonstrated to be chaotic. This implies that charged particles will experience chaotic magnetic field in the corona. Here, we study particle energization in a time-dependent FFF using a test particle approach. An inductive electric field is introduced by turbulent motions of plasma parcels. We find efficient particle acceleration with power-law like particle energy spectra. The power-law indices depend on the amplitude of plasma parcel velocity field and the spatial scales of the magnetic field fluctuation. The spectra are similar for different particle species. This model provide a possible mechanism for seed population generation for particle acceleration by, e.g., CME-driven shocks. Generalization of our results to certain non-force-free-field (NFFF) is straightforward as the sum of two or multiple FFFs naturally yield NFFF.

  10. First-order particle acceleration in magnetically driven flows

    DOE PAGES

    Beresnyak, Andrey; Li, Hui

    2016-03-02

    In this study, we demonstrate that particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. Some examples of such flows include spontaneous turbulent reconnection and decaying magnetohydrodynamic turbulence, where a magnetic field relaxes to a lower-energy configuration and transfers part of its energy to kinetic motions of the fluid. We show that this energy transfer, which normally causes turbulent cascade and heating of the fluid, also results in a first-order acceleration of non-thermal particles. Since it is generic, this acceleration mechanism is likely to play a role in the production of non-thermal particle distribution inmore » magnetically dominant environments such as the solar chromosphere, pulsar magnetospheres, jets from supermassive black holes, and γ-ray bursts.« less

  11. Rotating magnetic particle microrheometry in biopolymer fluid dynamics: mucus microrheology.

    PubMed

    Besseris, George J; Yeates, Donovan B

    2007-09-14

    The polymer properties of canine mucus were investigated through the method of rotating magnetic particle microrheometry. Mucus is visualized as a physically entangled biopolymer of low polydispersity in a water-based solution. Mucus was modeled according to the constitutive law of a Doi-Edwards fluid. The magnetic-particle equation of rotational motion is analytically solved in the linear viscoelastic limit rendering theoretical flow profiles which are used to fit the experimental trace signals of the particle remanent-magnetic-field decay. The zero-shear-rate viscosity was found to be 18,000 P and the relaxation time at about 42 s. The molecular weight between entanglements for mucins was estimated at 1.7 MDa rendering an estimation of about seven physical cross-links per molecule. Rheological investigations were extended also to diluted and concentrated rations of the normal mucus simulating the conditions found in more physiological extremes.

  12. FIRST-ORDER PARTICLE ACCELERATION IN MAGNETICALLY DRIVEN FLOWS

    SciTech Connect

    Beresnyak, Andrey; Li, Hui

    2016-03-10

    We demonstrate that particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. Some examples of such flows include spontaneous turbulent reconnection and decaying magnetohydrodynamic turbulence, where a magnetic field relaxes to a lower-energy configuration and transfers part of its energy to kinetic motions of the fluid. We show that this energy transfer, which normally causes turbulent cascade and heating of the fluid, also results in a first-order acceleration of non-thermal particles. Since it is generic, this acceleration mechanism is likely to play a role in the production of non-thermal particle distribution in magnetically dominant environments such as the solar chromosphere, pulsar magnetospheres, jets from supermassive black holes, and γ-ray bursts.

  13. First-order particle acceleration in magnetically driven flows

    SciTech Connect

    Beresnyak, Andrey; Li, Hui

    2016-03-02

    In this study, we demonstrate that particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. Some examples of such flows include spontaneous turbulent reconnection and decaying magnetohydrodynamic turbulence, where a magnetic field relaxes to a lower-energy configuration and transfers part of its energy to kinetic motions of the fluid. We show that this energy transfer, which normally causes turbulent cascade and heating of the fluid, also results in a first-order acceleration of non-thermal particles. Since it is generic, this acceleration mechanism is likely to play a role in the production of non-thermal particle distribution in magnetically dominant environments such as the solar chromosphere, pulsar magnetospheres, jets from supermassive black holes, and γ-ray bursts.

  14. Multifunctional iron platinum stealth immunomicelles: targeted detection of human prostate cancer cells using both fluorescence and magnetic resonance imaging

    PubMed Central

    Huber, Dale L.; Monson, Todd C.; Ali, Abdul-Mehdi S.; Bisoffi, Marco; Sillerud, Laurel O.

    2011-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are the most common type of contrast agents used in contrast agent-enhanced magnetic resonance imaging (MRI). Still, there is a great deal of room for improvement, and nanoparticles with increased MRI relaxivities are needed to increase the contrast enhancement in MRI applied to various medical conditions including cancer. We report the synthesis of superparamagnetic iron platinum nanoparticles (SIPPs) and subsequent encapsulation using PEGylated phospholipids to create stealth immunomicelles (DSPE-SIPPs) that can be specifically targeted to human prostate cancer cell lines and detected using both MRI and fluorescence imaging. SIPP cores and DSPE-SIPPs were 8.5 ± 1.6 nm and 42.9 ± 8.2 nm in diameter, respectively, and the SIPPs had a magnetic moment of 120 A m2/kg iron. J591, a monoclonal antibody against prostate specific membrane antigen (PSMA), was conjugated to the DSPE-SIPPs (J591-DSPE-SIPPs), and specific targeting of J591-DSPE-SIPPs to PSMA-expressing human prostate cancer cell lines was demonstrated using fluorescence confocal microscopy. The transverse relaxivity of the DSPE-SIPPs, measured at 4.7 Tesla, was 300.6 ± 8.5 s−1 mM−1, which is 13-fold better than commercially available SPIONs (23.8 ± 6.9 s−1 mM−1) and ~3-fold better than reported relaxivities for Feridex® and Resovist®. Our data suggest that J591-DSPE-SIPPs specifically target human prostate cancer cells in vitro, are superior contrast agents in T2-weighted MRI, and can be detected using fluorescence imaging. To our knowledge, this is the first report on the synthesis of multifunctional SIPP micelles and using SIPPs for the specific detection of prostate cancer. PMID:22121333

  15. Multifunctional iron platinum stealth immunomicelles: targeted detection of human prostate cancer cells using both fluorescence and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Taylor, Robert M.; Huber, Dale L.; Monson, Todd C.; Ali, Abdul-Mehdi S.; Bisoffi, Marco; Sillerud, Laurel O.

    2011-10-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are the most common type of contrast agents used in contrast agent-enhanced magnetic resonance imaging (MRI). Still, there is a great deal of room for improvement, and nanoparticles with increased MRI relaxivities are needed to increase the contrast enhancement in MRI applied to various medical conditions including cancer. We report the synthesis of superparamagnetic iron platinum nanoparticles (SIPPs) and subsequent encapsulation using PEGylated phospholipids to create stealth immunomicelles (DSPE-SIPPs) that can be specifically targeted to human prostate cancer cell lines and detected using both MRI and fluorescence imaging. SIPP cores and DSPE-SIPPs were 8.5 ± 1.6 nm and 42.9 ± 8.2 nm in diameter, respectively, and the SIPPs had a magnetic moment of 120 A m2/kg iron. J591, a monoclonal antibody against prostate specific membrane antigen (PSMA), was conjugated to the DSPE-SIPPs (J591-DSPE-SIPPs), and specific targeting of J591-DSPE-SIPPs to PSMA-expressing human prostate cancer cell lines was demonstrated using fluorescence confocal microscopy. The transverse relaxivity of the DSPE-SIPPs, measured at 4.7 Tesla, was 300.6 ± 8.5 s-1 mM-1, which is 13-fold better than commercially available SPIONs (23.8 ± 6.9 s-1 mM-1) and 3-fold better than reported relaxivities for Feridex® and Resovist®. Our data suggest that J591-DSPE-SIPPs specifically target human prostate cancer cells in vitro, are superior contrast agents in T 2-weighted MRI, and can be detected using fluorescence imaging. To our knowledge, this is the first report on the synthesis of multifunctional SIPP micelles and using SIPPs for the specific detection of prostate cancer.

  16. A particle astrophysics magnet facility: ASTROMAG

    NASA Technical Reports Server (NTRS)

    Ormes, Jonathan F. (Editor); Israel, Martin H. (Editor); Mewaldt, Richard A. (Editor); Wiedenbeck, Mark E. (Editor)

    1988-01-01

    The primary scientific objectives of ASTROMAG are to: examine cosmological models by searching for antimatter and dark matter candidates; study the origin and evolution of matter in the galaxy by direct sampling of galactic matter; and study the origin and acceleration of the relativistic particle plasma in the galaxy and its effects on the dynamics and evolution of the galaxy. These general scientific objectives will be met by ASTROMAG with particle detection instruments designed to make the following observations: search, for anti-nuclei of helium and heavier element; measure the spectra of anti-protons and positrons; measure the isotopic composition of cosmic ray nuclei at energies of several GeV/amu; and measure the energy spectra of cosmic ray nuclei to very high energies.

  17. Effective magnetization of the dust particles in a complex plasma

    NASA Astrophysics Data System (ADS)

    Kählert, Hanno

    2012-10-01

    The large mass and size of the dust particles in a complex plasma has several advantages, including low characteristic frequencies on the order of a few Hz and the ability to record their motion with video cameras. However, these properties pose major difficulties for achieving strong magnetization. While the light electrons and ions can be magnetized by (superconducting) magnets, magnetizing the heavy dust component is extremely challenging. Instead of further increasing the magnetic field strengths or decreasing the particle size, we use the analogy between the Lorentz force and the Coriolis force experienced by particles in a rotating reference frame to create ``effective magnetic fields'' which is a well-established technique in the field of trapped quantum gases [1]. To induce rotation in a complex plasma, we take advantage of the neutral drag force, which allows to transmit the motion of a rotating neutral gas to the dust particles [2]. The equations of motion in the rotating frame agree with those in a stationary gas except for the additional centrifugal and Coriolis forces [3]. Due to the slow rotation frequencies (˜ Hz) and contrary to the situation in a strong magnetic field, only the properties of the heavy dust particles are notably affected. Experiments with a rotating electrode realize the desired velocity profile for the neutral gas and allow us to verify the efficiency of the concept [3].[4pt] This work was performed in collaboration with J. Carstensen, M. Bonitz, H. L"owen, F. Greiner, and A. Piel.[4pt] [1] A. L. Fetter, Rev. Mod. Phys. 81, 647 (2009)[0pt] [2] J. Carstensen, F. Greiner, L.-J. Hou, H. Maurer, and A. Piel, Phys. Plasmas 16, 013702 (2009)[0pt] [3] H. K"ahlert, J. Carstensen, M. Bonitz, H. L"owen, F. Greiner, and A. Piel, submitted for publication, arXiv:1206.5073

  18. Astromag - Particle astrophysics magnet facility for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Jones, W. Vernon

    1989-01-01

    The Astromag (for astrophysics magnet) superconducting magnet facility to be flown aboard the Space Station in the late 1990s is described together with its scientific objectives. The Astromag facility is basically a magnetic spectrometer capable of determining the momentum per unit charge and the sign of the charge of fully ionized cosmic rays. The Astromag's science goals include investigating the origin and the evolution of matter in the Galaxy by direct sampling of Galactic material, examining cosmological models by searching for antimatter and an evidence of dark matter, and studying the origin of extremely energetic particles and their effects on the dynamics and evolution of the Galaxy. The Astromag's instrumentation will include an array of particle detectors (the WIZard instrument), a large spectrometer (LISA), and a stack of passive high-resolution track detectors in the Astromag's magnetic field (the SCIN/MAGIC instrument).

  19. Astromag - Particle astrophysics magnet facility for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Jones, W. Vernon

    1989-01-01

    The Astromag (for astrophysics magnet) superconducting magnet facility to be flown aboard the Space Station in the late 1990s is described together with its scientific objectives. The Astromag facility is basically a magnetic spectrometer capable of determining the momentum per unit charge and the sign of the charge of fully ionized cosmic rays. The Astromag's science goals include investigating the origin and the evolution of matter in the Galaxy by direct sampling of Galactic material, examining cosmological models by searching for antimatter and an evidence of dark matter, and studying the origin of extremely energetic particles and their effects on the dynamics and evolution of the Galaxy. The Astromag's instrumentation will include an array of particle detectors (the WIZard instrument), a large spectrometer (LISA), and a stack of passive high-resolution track detectors in the Astromag's magnetic field (the SCIN/MAGIC instrument).

  20. Improved field free line magnetic particle imaging using saddle coils.

    PubMed

    Erbe, Marlitt; Sattel, Timo F; Buzug, Thorsten M

    2013-12-01

    Magnetic particle imaging (MPI) is a novel tracer-based imaging method detecting the distribution of superparamagnetic iron oxide (SPIO) nanoparticles in vivo in three dimensions and in real time. Conventionally, MPI uses the signal emitted by SPIO tracer material located at a field free point (FFP). To increase the sensitivity of MPI, however, an alternative encoding scheme collecting the particle signal along a field free line (FFL) was proposed. To provide the magnetic fields needed for line imaging in MPI, a very efficient scanner setup regarding electrical power consumption is needed. At the same time, the scanner needs to provide a high magnetic field homogeneity along the FFL as well as parallel to its alignment to prevent the appearance of artifacts, using efficient radon-based reconstruction methods arising for a line encoding scheme. This work presents a dynamic FFL scanner setup for MPI that outperforms all previously presented setups in electrical power consumption as well as magnetic field quality.

  1. Particle energization through time-periodic helical magnetic fields.

    PubMed

    Mitra, Dhrubaditya; Brandenburg, Axel; Dasgupta, Brahmananda; Niklasson, Eyvind; Ram, Abhay

    2014-04-01

    We solve for the motion of charged particles in a helical time-periodic ABC (Arnold-Beltrami-Childress) magnetic field. The magnetic field lines of a stationary ABC field with coefficients A=B=C=1 are chaotic, and we show that the motion of a charged particle in such a field is also chaotic at late times with positive Lyapunov exponent. We further show that in time-periodic ABC fields, the kinetic energy of a charged particle can increase indefinitely with time. At late times the mean kinetic energy grows as a power law in time with an exponent that approaches unity. For an initial distribution of particles, whose kinetic energy is uniformly distributed within some interval, the probability density function of kinetic energy is, at late times, close to a Gaussian but with steeper tails.

  2. Particle acceleration at 3D reconnecting magnetic separators

    NASA Astrophysics Data System (ADS)

    Threlfall, James; Neukirch, Thomas; Parnell, Clare; Stevenson, Julie

    2015-04-01

    We present results of test particle orbit calculations in three different environments which model separator reconnection in three dimensions. The test particle (electron and proton) orbits are calculated using the relativistic guiding centre approximation. We investigate test particle orbits in a time-dependent (analytical) electro-magnetic field configuration [detailed in Threlfall et al. (A&A, in press); arXiv:1410.6465]. These results are also compared with orbits based upon large-scale 3D MHD simulations of both a single reconnecting magnetic separator and an observationally driven 3D model of a solar active region which contains several topological features of interest, including separators. We discuss how the test-particle orbits and the energy gain depend on the initial conditions, and how observations (for example, of solar flares) may be used to constrain model parameters.

  3. Using triaxial magnetic fields to create high susceptibility particle composites.

    PubMed

    Martin, James E; Venturini, Eugene; Gulley, Gerald L; Williamson, Jonathan

    2004-02-01

    We report on the use of triaxial magnetic fields to create a variety of isotropic and anisotropic magnetic particle/polymer composites with significantly enhanced magnetic susceptibilities. A triaxial field is a superposition of three orthogonal ac magnetic fields, each generated by a Helmholtz coil in series resonance with a tunable capacitor bank. Field frequencies are in the range of 150-400 Hz. Because both the field amplitudes and frequencies can be varied, a rich variety of structures can be created. Perhaps the most unusual effects occur when either two or three of the field components are heterodyned to give beat frequencies on the order of 1 Hz. This leads to a striking particle dynamics that evolves into surprising structures during resin gelation. These structures are found to have perhaps the highest susceptibility that a particle composite can have. The susceptibility anisotropy of these composites can be controlled over a wide range by judicious adjustment of the relative field amplitudes. These experimental data are supported by large-scale Brownian dynamics simulations of the complex many-body interactions that occur in triaxial magnetic fields. These simulations show that athermal three-dimensional field heterodyning leads to structures with a susceptibility that is as high as that achieved with thermal annealing. Thus with coherent particle motions we can achieve magnetostatic energies that are quite close to the ground state.

  4. Radial distribution of charged particles in a magnetic field

    NASA Astrophysics Data System (ADS)

    Sjue, S. K. L.; Broussard, L. J.; Makela, M.; McGaughey, P. L.; Young, A. R.; Zeck, B. A.

    2015-02-01

    The radial spread of charged particles emitted from a point source in a magnetic field is a potential source of systematic error for any experiment where magnetic fields guide charged particles to detectors with finite size. Assuming uniform probability as a function of the phase along the particle's helical trajectory, an analytic solution for the radial probability distribution function follows which applies to experiments in which particles are generated throughout a volume that spans a sufficient length along the axis of a homogeneous magnetic field. This approach leads to the same result as a different derivation given by Dubbers et al., Nucl. Instrum. Methods Phys. Res., Sect. A 763, 112-119 (2014). But the constant phase approximation does not strictly apply to finite source volumes or fixed positions, which lead to local maxima in the radial distribution of emitted particles at the plane of the detector. A simple method is given to calculate such distributions, then the effect is demonstrated with data from a 207Bi electron-conversion source in the superconducting solenoid magnet spectrometer of the Ultracold Neutron facility at the Los Alamos Neutron Science Center. Implications for neutron beta decay spectroscopy are discussed.

  5. Ellipsoidal Brownian self-driven particles in a magnetic field

    NASA Astrophysics Data System (ADS)

    Fan, Wai-Tong Louis; Pak, On Shun; Sandoval, Mario

    2017-03-01

    We study the two-dimensional Brownian dynamics of an ellipsoidal paramagnetic microswimmer moving at a low Reynolds number and subject to a magnetic field. Its corresponding mean-square displacement, showing the effect of a particles's shape, activity, and magnetic field on the microswimmer's diffusion, is analytically obtained. Comparison between analytical and computational results shows good agreement. In addition, the effect of self-propulsion on the transition time from anisotropic to isotropic diffusion of the ellipse is investigated.

  6. Frequency Mixing Magnetic Detection Scanner for Imaging Magnetic Particles in Planar Samples.

    PubMed

    Hong, Hyobong; Lim, Eul-Gyoon; Jeong, Jae-Chan; Chang, Jiho; Shin, Sung-Woong; Krause, Hans-Joachim

    2016-06-09

    The setup of a planar Frequency Mixing Magnetic Detection (p-FMMD) scanner for performing Magnetic Particles Imaging (MPI) of flat samples is presented. It consists of two magnetic measurement heads on both sides of the sample mounted on the legs of a u-shaped support. The sample is locally exposed to a magnetic excitation field consisting of two distinct frequencies, a stronger component at about 77 kHz and a weaker field at 61 Hz. The nonlinear magnetization characteristics of superparamagnetic particles give rise to the generation of intermodulation products. A selected sum-frequency component of the high and low frequency magnetic field incident on the magnetically nonlinear particles is recorded by a demodulation electronics. In contrast to a conventional MPI scanner, p-FMMD does not require the application of a strong magnetic field to the whole sample because mixing of the two frequencies occurs locally. Thus, the lateral dimensions of the sample are just limited by the scanning range and the supports. However, the sample height determines the spatial resolution. In the current setup it is limited to 2 mm. As examples, we present two 20 mm × 25 mm p-FMMD images acquired from samples with 1 µm diameter maghemite particles in silanol matrix and with 50 nm magnetite particles in aminosilane matrix. The results show that the novel MPI scanner can be applied for analysis of thin biological samples and for medical diagnostic purposes.

  7. Single-Particle Quantum Dynamics in a Magnetic Lattice

    SciTech Connect

    Venturini, Marco

    2001-02-01

    We study the quantum dynamics of a spinless charged-particle propagating through a magnetic lattice in a transport line or storage ring. Starting from the Klein-Gordon equation and by applying the paraxial approximation, we derive a Schroedinger-like equation for the betatron motion. A suitable unitary transformation reduces the problem to that of a simple harmonic oscillator. As a result we are able to find an explicit expression for the particle wavefunction.

  8. Multifunctional Biocompatible Graphene Oxide Quantum Dots Decorated Magnetic Nanoplatform for Efficient Capture and Two-Photon Imaging of Rare Tumor Cells

    PubMed Central

    2016-01-01

    Circulating tumor cells (CTCs) are extremely rare cells in blood containing billions of other cells. The selective capture and identification of rare cells with sufficient sensitivity is a real challenge. Driven by this need, this manuscript reports the development of a multifunctional biocompatible graphene oxide quantum dots (GOQDs) coated, high-luminescence magnetic nanoplatform for the selective separation and diagnosis of Glypican-3 (GPC3)-expressed Hep G2 liver cancer tumor CTCs from infected blood. Experimental data show that an anti-GPC3-antibody-attached multifunctional nanoplatform can be used for selective Hep G2 hepatocellular carcinoma tumor cell separation from infected blood containing 10 tumor cells/mL of blood in a 15 mL sample. Reported data indicate that, because of an extremely high two-photon absorption cross section (40530 GM), an anti-GPC3-antibody-attached GOQDs-coated magnetic nanoplatform can be used as a two-photon luminescence platform for selective and very bright imaging of a Hep G2 tumor cell in a biological transparency window using 960 nm light. Experimental results with nontargeted GPC3(−) and SK-BR-3 breast cancer cells show that multifunctional-nanoplatform-based cell separation, followed by two-photon imaging, is highly selective for Hep G2 hepatocellular carcinoma tumor cells. PMID:25939643

  9. Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy.

    PubMed

    Schleich, Nathalie; Po, Chrystelle; Jacobs, Damien; Ucakar, Bernard; Gallez, Bernard; Danhier, Fabienne; Préat, Véronique

    2014-11-28

    Multifunctional nanoparticles combining therapy and imaging have the potential to improve cancer treatment by allowing personalized therapy. Herein, we aimed to compare in vivo different strategies in terms of targeting capabilities: (1) passive targeting via the EPR effect, (2) active targeting of αvβ3 integrin via RGD grafting, (3) magnetic targeting via a magnet placed on the tumor and (4) the combination of magnetic targeting and active targeting of αvβ3 integrin. For a translational approach, PLGA-based nanoparticles loaded with paclitaxel and superparamagnetic iron oxides were used. Electron Spin Resonance spectroscopy and Magnetic Resonance Imaging (MRI) were used to both quantify and visualize the accumulation of multifunctional nanoparticles into the tumors. We demonstrate that compared to untargeted or single targeted nanoparticles, the combination of both active strategy and magnetic targeting drastically enhanced (i) nanoparticle accumulation into the tumor tissue with an 8-fold increase compared to passive targeting (1.12% and 0.135% of the injected dose, respectively), (ii) contrast in MRI (imaging purpose) and (iii) anti-cancer efficacy with a median survival time of 22 days compared to 13 for the passive targeting (therapeutic purpose). Double targeting of nanoparticles to tumors by different mechanisms could be a promising translational approach for the management of therapeutic treatment and personalized therapy.

  10. Controlling temperature in magnetic hyperthermia with low Curie temperature particles

    NASA Astrophysics Data System (ADS)

    Astefanoaei, Iordana; Dumitru, Ioan; Chiriac, Horia; Stancu, Alexandru

    2014-05-01

    Hyperthermia induced by the heating of magnetic particles (MPs) in alternating magnetic field receives a considerable attention in cancer therapy. An interesting development in the studies dedicated to magnetically based hyperthermia is the possibility to control the temperature using MPs with selective magnetic absorption properties. This paper analyzes the temperature field determined by the heating of MPs having low Curie temperature (a FeCrNbB particulate system) injected within a malignant tissue, subjected to an ac magnetic field. The temperature evolution within healthy and tumor tissues was analyzed by finite element method simulations in a thermo-fluid model. The cooling effect produced by blood flowing in blood vessels was considered. This effect is intensified at the increase of blood velocity. The FeCrNbB particles, having the Curie temperature close to the therapeutic range, transfer the heat more homogeneous in the tumor keeping the temperature within the therapeutic range in whole tumor volume. Having the possibility to automatically control the temperature within a tumor, these particle type opens new research horizons in the magnetic hyperthermia.

  11. Multifunctional Microspheres Encoded with Upconverting Nanocrystals and Magnetic Nanoparticles for Rapid Separation and Immunoassays.

    PubMed

    Zhang, Ying; Dong, Chunhong; Su, Lin; Wang, Hanjie; Gong, Xiaoqun; Wang, Huiquan; Liu, Junqing; Chang, Jin

    2016-01-13

    Immunoassays based on the downconversion target materials (organic dyes or quantum dots) lead to fairly strong spectral interference between the coded signal and reporter signal, which seriously affects the detection accuracy and hampers their applications. In this work, a new kind of upconverting nanocrystals encoded magnetic microspheres (UCNMMs) were designed and prepared successfully to solve the problem mentioned above. The UCNMMs were obtained by incorporating magnetic Fe3O4 nanoparticles and upconverting nanocrystals with polystyrene microspheres. Due to that upconverting nanocrystals (UCNs) and reporter signals are excitated by near-infrared and UV/visible light separately, immunoassays based on UCNMMs do not occur optical spectral interferences. Furthermore, these new functionalized UCNMMs have excellent properties in binding biomolecules and fast separating, which would have large potential applications in multiplexed assays.

  12. Xylanase Immobilized on Novel Multifunctional Hyperbranched Polyglycerol-Grafted Magnetic Nanoparticles: An Efficient and Robust Biocatalyst.

    PubMed

    Landarani-Isfahani, Amir; Taheri-Kafrani, Asghar; Amini, Mina; Mirkhani, Valiollah; Moghadam, Majid; Soozanipour, Asieh; Razmjou, Amir

    2015-08-25

    Although several strategies are now available for immobilization of enzymes to magnetic nanoparticles for bioapplications, little progresses have been reported on the use of dendritic or hyperbranched polymers for the same purpose. Herein, we demonstrated synthesis of magnetic nanoparticles supported hyperbranched polyglycerol (MNP/HPG) and a derivative conjugated with citric acid (MNP/HPG-CA) as unique and convenient nanoplatforms for immobilization of enzymes. Then, an important industrial enzyme, xylanase, was immobilized on the nanocarriers to produce robust biocatalysts. A variety of analytical tools were used to study the morphological, structural, and chemical properties of the biocatalysts. Additionally, the results of biocatalyst systems exhibited the substantial improvement of reactivity, reusability, and stability of xylanase due to this strategy, which might confer them a wider range of applications.

  13. Magnetic-Field-Assisted Assembly of Ordered Multifunctional Ceramic Nanocomposites for Extreme Environments

    DTIC Science & Technology

    2016-04-01

    project was to explore physics, materials and surface chemistry behind the polymer-based route towards creation of magnetic ceramic composites out of...Department of Material Science and Engineering, Clemson University kkornev@clemson.edu In collaboration with Jeffery Owens, Tyndall Air Force Civil...Engineering Center Summary The goal of this project was to explore physics, materials and surface chemistry behind the polymer-based route towards

  14. EDTA functionalized magnetic nanoparticle as a multifunctional adsorbent for Congo red dye from contaminated water

    NASA Astrophysics Data System (ADS)

    Sahoo, Jitendra Kumar; Rath, Juhi; Dash, Priyabrat; Sahoo, Harekrushna

    2017-05-01

    The present work reports the applicability of magnetite iron nanoparticles (Fe3O4) functionalized with ethylenediaminetetraacetic acid (EDTA) as an efficient adsorbent for the removal of Congo red (CR) dye from contaminated water. Magnetic nanoparticles (Fe3O4) are prepared by chemical precipitation method in which Fe2+ and Fe3+ salt from aqueous solution were reacted in presence of ammonia solution. The surface of Fe3O4 nanoparticle was first coated with (3-aminopropyl) triethoxy silane (APTES) by a salinization reaction and then linked with EDTA via reaction between -NH2 and -COOH to form well dispersed surface functionalised biocompatible magnetic nanoparticles. The obtained EDTA functionalized magnetic nanoparticles are characterized in terms of their morphological, XRD, BET surface area analysis, Fourier transform infrared spectroscopy (FT-IR) and Vibrating sample magnetometer (VSM). The adsorption of CR on Fe3O4-APTES-EDTA nanocomposite corresponds well to the Langmuir model and the Freundlich model respectively. The adsorption processes for CR followed the pseudo-second-order model.

  15. Modeling of particles orientation in magnetic field in drying magnetic coatings

    NASA Astrophysics Data System (ADS)

    Potanin, Andrei A.; Reynolds, George; J. Hirko, Ronald

    2000-03-01

    Filament coating is studied as a model of magnetic tape manufacturing. Freshly coated filament is driven through a solenoid magnet which orients particles. After drying the coated filament, its squareness is measured as a function of the magnet position, field and the filament speed during coating. Production and model mixes are tested, which differ in dispersion quality and drying rate. A mean-field model is used to describe orientation of particles in the coating. The model fits experiments with two parameters: particles mobility and a mean-field interaction coefficient. Well dispersed kneaded mix has higher mobility and weaker interactions than non-kneaded mixes. The model well agrees with the data for squareness decay with magnet separation from the mix deposition point, thereby providing a theoretical tool for finding proper magnet position on the production coating lines.

  16. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    SciTech Connect

    Li, Yi; Li, Qiulin; Liu, Wei; Xu, Ben; Hu, Shenyang; Li, Yulan

    2015-07-15

    The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domains on the magnetization reversal behavior and the magnetic properties.

  17. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    SciTech Connect

    Li, Yi; Xu, Ben; Hu, Shenyang; Li, Yulan; Li, Qiulin; Liu, Wei

    2015-07-01

    The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domains on the magnetization reversal behavior and the magnetic properties.

  18. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    DOE PAGES

    Li, Yi; Xu, Ben; Hu, Shenyang; ...

    2015-07-01

    The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domainsmore » on the magnetization reversal behavior and the magnetic properties.« less

  19. Particle trajectories in Weibel magnetic filaments with a flow-aligned magnetic field

    NASA Astrophysics Data System (ADS)

    Bret, Antoine

    2016-08-01

    > . In the absence of an external guiding magnetic field, these filaments can block the incoming flow, initiating the shock formation, if their size is larger than the Larmor radius of the incoming particles in the peak field. Here we show that this result still holds in the presence of an external magnetic field, provided it is not too high. Yet, for 0\\gtrsim Bf/2, the filaments become unable to stop any particle, regardless of its initial velocity.

  20. Physical properties of elongated magnetic particles: magnetization and friction coefficient anisotropies.

    PubMed

    Vereda, Fernando; de Vicente, Juan; Hidalgo-Alvarez, Roque

    2009-06-02

    Anisotropy counts: A brief review of the main physical properties of elongated magnetic particles (EMPs) is presented. The most important characteristic of an EMP is the additional contribution of shape anisotropy to the total anisotropy energy of the particle, when compared to spherical magnetic particles. The electron micrograph shows Ni-ferrite microrods fabricated by the authors.We present an overview of the main physical properties of elongated magnetic particles (EMPs), including some of their more relevant properties in suspension. When compared to a spherical magnetic particle, the most important characteristic of an EMP is an additional contribution of shape anisotropy to the total anisotropy energy of the particle. Increasing aspect ratios also lead to an increase in both the critical single-domain size of a magnetic particle and its resistance to thermally activated spontaneous reversal of the magnetization. For single-domain EMPs, magnetization reversal occurs primarily by one of two modes, coherent rotation or curling, the latter being facilitated by larger aspect ratios. When EMPs are used to prepare colloidal suspensions, other physical properties come into play, such as their anisotropic friction coefficient and the consequent enhanced torque they experience in a shear flow, their tendency to align in the direction of an external field, to form less dense sediments and to entangle into more intricate aggregates. From a more practical point of view, EMPs are discussed in connection with two interesting types of magnetic colloids: magnetorheological fluids and suspensions for magnetic hyperthermia. Advances reported in the literature regarding the use of EMPs in these two systems are included. In the final section, we present a summary of the most relevant methods documented in the literature for the fabrication of EMPs, together with a list of the most common ferromagnetic materials that have been synthesized in the form of EMPs.

  1. Particle transport as a result of Resonant Magnetic Perturbations

    NASA Astrophysics Data System (ADS)

    Mordijck, Saskia

    This thesis makes contributes to field of plasma physics with a particular focus on particle transport as a result of resonant magnetic perturbations (RPMs) in magnetic confinement devices (Tokamaks). RPMs have proven to be a useful technique to suppress edge localized modes (ELMs) that under certain conditions can damage the confinement device. In order to suppress ELMs, these magnetic perturbations are created to be be resonant at the edge of the plasma (i.e., by selecting an n = 3 spectrum and a q95 = 3.6). However, RMPs lead to a changes in the density profile, not only in the pedestal area, but also deeper in the plasma core, limiting plasma performance. As a first contribution in this thesis we carefully investigate density pump-out, and show that it is the result of a change in particle transport (as opposed to a change in neutral fueling). A second contribution of this work is the introduction of a weighted magnetic diffusion coefficient (DOFL) that allows us to make quantitative comparisons between experimental datasets from different Tokamak devices. By comparing DOFL for MAST L-modes and DIII-D H-modes, we find that both machines exhibit a very different density pump-out for similar DOFL values. Since turbulent particle transport is very different for L and H-modes, we investigate, as a third contribution of this work, the influence of RMPs on turbulent particle transport in both MAST and DIII-D. We find that while an increase in turbulent transport on MAST correlates well with density pump-out, no meaningful correlation was found for pedestal density changes in DIII-D. Therefore, as a final contribution in this thesis, we investigate how convective particle transport parallel to the magnetic field alters the density profiles. We compare the increase in convective parallel particle transport and find good agreement with experimental density profiles.

  2. Shape, size, and distribution of magnetic particles in Bjurbole chondrules

    NASA Technical Reports Server (NTRS)

    Nava, David F.

    1994-01-01

    Chondrules from the Bjurbole chondritic meteorite (L4) exhibit saturation remanence magnetization (SIRM) values which vary over three orders of magnitude. REM values (Natural Remanence Magnetization/SIRM) for Allende (C3V) and Chainpur (LL3) are less than 0.01 but in Bjurbole some chondrules were found to have REM values greater than 0.1 with several greater than 0.2. REM values greater than 0.1 are abnormal and cannot be acquired during weak field cooling. If exposure to a strong field (whatever the source) during the chondrules' history is responsible for the high REM values, was such history associated with a different processing which might have resulted in different shape, size, and distribution of metal particles compared to chondrules having REM values of less than 0.01? Furthermore, magnetic hysteresis results show a broad range of magnetic hardness and other intrinsic magnetic properties. These features must be related to (1) size and amount of metal; and (2) properties of, and amount of, tetrataenite in the chondrules (all chondrules thus far subjected to thermomagnetic analysis show the presence of tetrataenite). A scanning electron microscopy (SEM) study is underway to determine the relationship between the shape, size, and distribution of metal particles within individual chondrules and the magnetic properties of these chondrules. Results from the SEM study in conjunction with magnetic property data may also help to discern effects from possible lightning strikes in the nebula prior to incorporation of the chondrules into the parent body.

  3. Oleic acid coated magnetic nano-particles: Synthesis and characterizations

    SciTech Connect

    Panda, Biswajit Goyal, P. S.

    2015-06-24

    Magnetic nano particles of Fe{sub 3}O{sub 4} coated with oleic acid were synthesized using wet chemical route, which involved co-precipitation of Fe{sup 2+} and Fe{sup 3+} ions. The nano particles were characterized using XRD, TEM, FTIR, TGA and VSM. X-ray diffraction studies showed that nano particles consist of single phase Fe{sub 3}O{sub 4} having inverse spinel structure. The particle size obtained from width of Bragg peak is about 12.6 nm. TEM analysis showed that sizes of nano particles are in range of 6 to 17 nm with a dominant population at 12 - 14 nm. FTIR and TGA analysis showed that -COOH group of oleic acid is bound to the surface of Fe{sub 3}O{sub 4} particles and one has to heat the sample to 278° C to remove the attached molecule from the surface. Further it was seen that Fe{sub 3}O{sub 4} particles exhibit super paramagnetism with a magnetization of about 53 emu/ gm.

  4. Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet

    PubMed Central

    Zhou, Yilong; Kumar, Dhileep Thanjavur; Lu, Xinyu; Kale, Akshay; DuBose, John; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun

    2015-01-01

    Trapping and preconcentrating particles and cells for enhanced detection and analysis are often essential in many chemical and biological applications. Existing methods for diamagnetic particle trapping require the placement of one or multiple pairs of magnets nearby the particle flowing channel. The strong attractive or repulsive force between the magnets makes it difficult to align and place them close enough to the channel, which not only complicates the device fabrication but also restricts the particle trapping performance. This work demonstrates for the first time the use of a single permanent magnet to simultaneously trap diamagnetic and magnetic particles in ferrofluid flows through a T-shaped microchannel. The two types of particles are preconcentrated to distinct locations of the T-junction due to the induced negative and positive magnetophoretic motions, respectively. Moreover, they can be sequentially released from their respective trapping spots by simply increasing the ferrofluid flow rate. In addition, a three-dimensional numerical model is developed, which predicts with a reasonable agreement the trajectories of diamagnetic and magnetic particles as well as the buildup of ferrofluid nanoparticles. PMID:26221197

  5. Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet.

    PubMed

    Zhou, Yilong; Kumar, Dhileep Thanjavur; Lu, Xinyu; Kale, Akshay; DuBose, John; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun

    2015-07-01

    Trapping and preconcentrating particles and cells for enhanced detection and analysis are often essential in many chemical and biological applications. Existing methods for diamagnetic particle trapping require the placement of one or multiple pairs of magnets nearby the particle flowing channel. The strong attractive or repulsive force between the magnets makes it difficult to align and place them close enough to the channel, which not only complicates the device fabrication but also restricts the particle trapping performance. This work demonstrates for the first time the use of a single permanent magnet to simultaneously trap diamagnetic and magnetic particles in ferrofluid flows through a T-shaped microchannel. The two types of particles are preconcentrated to distinct locations of the T-junction due to the induced negative and positive magnetophoretic motions, respectively. Moreover, they can be sequentially released from their respective trapping spots by simply increasing the ferrofluid flow rate. In addition, a three-dimensional numerical model is developed, which predicts with a reasonable agreement the trajectories of diamagnetic and magnetic particles as well as the buildup of ferrofluid nanoparticles.

  6. Multifunctional semiconductor micro-Hall devices for magnetic, electric, and photo-detection

    NASA Astrophysics Data System (ADS)

    Gilbertson, A. M.; Sadeghi, Hatef; Panchal, V.; Kazakova, O.; Lambert, C. J.; Solin, S. A.; Cohen, L. F.

    2015-12-01

    We report the real-space voltage response of InSb/AlInSb micro-Hall devices to local photo-excitation, electric, and magnetic fields at room temperature using scanning probe microscopy. We show that the ultrafast generation of localised photocarriers results in conductance perturbations analogous to those produced by local electric fields. Experimental results are in good agreement with tight-binding transport calculations in the diffusive regime. The magnetic, photo, and charge sensitivity of a 2 μm wide probe are evaluated at a 10 μA bias current in the Johnson noise limit (valid at measurement frequencies > 10 kHz) to be, respectively, 500 nT/√Hz; 20 pW/√Hz (λ = 635 nm) comparable to commercial photoconductive detectors; and 0.05 e/√Hz comparable to that of single electron transistors. These results demonstrate the remarkably versatile sensing attributes of simple semiconductor micro-Hall devices that can be applied to a host of imaging and sensing applications.

  7. Multifunctional semiconductor micro-Hall devices for magnetic, electric, and photo-detection

    SciTech Connect

    Gilbertson, A. M.; Cohen, L. F.; Sadeghi, Hatef; Lambert, C. J.; Panchal, V.; Kazakova, O.; Solin, S. A.

    2015-12-07

    We report the real-space voltage response of InSb/AlInSb micro-Hall devices to local photo-excitation, electric, and magnetic fields at room temperature using scanning probe microscopy. We show that the ultrafast generation of localised photocarriers results in conductance perturbations analogous to those produced by local electric fields. Experimental results are in good agreement with tight-binding transport calculations in the diffusive regime. The magnetic, photo, and charge sensitivity of a 2 μm wide probe are evaluated at a 10 μA bias current in the Johnson noise limit (valid at measurement frequencies > 10 kHz) to be, respectively, 500 nT/√Hz; 20 pW/√Hz (λ = 635 nm) comparable to commercial photoconductive detectors; and 0.05 e/√Hz comparable to that of single electron transistors. These results demonstrate the remarkably versatile sensing attributes of simple semiconductor micro-Hall devices that can be applied to a host of imaging and sensing applications.

  8. An x-space magnetic particle imaging scanner.

    PubMed

    Goodwill, Patrick W; Lu, Kuan; Zheng, Bo; Conolly, Steven M

    2012-03-01

    Magnetic particle imaging (MPI) is an imaging modality with great promise for high-contrast, high-sensitivity imaging of iron oxide tracers in animals and humans. In this paper, we present the first x-space MPI hardware and reconstruction software; show experimentally measured signals; detail our reconstruction technique; and present images of resolution and "angiography" phantoms.

  9. Radial distribution of charged particles in a magnetic field

    SciTech Connect

    Sjue, S. K. L. Broussard, L. J.; Makela, M.; McGaughey, P. L.; Young, A. R.; Zeck, B. A.

    2015-02-15

    The radial spread of charged particles emitted from a point source in a magnetic field is a potential source of systematic error for any experiment where magnetic fields guide charged particles to detectors with finite size. Assuming uniform probability as a function of the phase along the particle’s helical trajectory, an analytic solution for the radial probability distribution function follows which applies to experiments in which particles are generated throughout a volume that spans a sufficient length along the axis of a homogeneous magnetic field. This approach leads to the same result as a different derivation given by Dubbers et al., Nucl. Instrum. Methods Phys. Res., Sect. A 763, 112–119 (2014). But the constant phase approximation does not strictly apply to finite source volumes or fixed positions, which lead to local maxima in the radial distribution of emitted particles at the plane of the detector. A simple method is given to calculate such distributions, then the effect is demonstrated with data from a {sup 207}Bi electron-conversion source in the superconducting solenoid magnet spectrometer of the Ultracold Neutron facility at the Los Alamos Neutron Science Center. Implications for neutron beta decay spectroscopy are discussed.

  10. Magnetic targeting of aerosol particles for cancer therapy

    NASA Astrophysics Data System (ADS)

    Ally, Javed; Martin, Benjamin; Behrad Khamesee, Mir; Roa, Wilson; Amirfazli, Alidad

    2005-05-01

    An in vitro model was developed to study and demonstrate the potential and feasibility of magnetically targeted deposition of aerosols for potential applications in lung cancer treatment. Also, a numerical particle tracing model was developed to predict the targeting behavior of the in vitro system; the results from the numerical and experimental studies were in agreement.

  11. Collisional PIC Simulations of Particles in Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Peter, William

    2003-10-01

    Because of the long range of Coloumb forces, collisions with distant particles in plasmas are more important than collisions with near neighbors. In addition, many problems in space physics and magnetic confinement include regions of weak magnetic field where the MHD approximation breaks down. A particle-in-cell code based on the quiet direct simulation Monte-Carlo method(B. J. Albright, W. Daughton, D. Lemons, D. Winske, and M. E. Jones, Physics of Plasmas) 9, 1898 (2002). is being developed to study collisional (e.g., ν ˜ Ω) particle motion in magnetic fields. Primary application is to energetic particle loss in the radiation belts(K. Papadopoulos, COSPAR Meeting, Houston, TX, Oct., 2002.) at a given energy and L-shell. Other applications include trapping in rotating field-reversed configurations(N. Rostoker and A. Qerushi, Physics of Plasmas) 9, 3057 (2002)., and electron behavior in magnetic traps(V. Gorgadze, T. Pasquini, J. S. Wurtele, and J. Fajans, Bull. Am. Phys. Soc.) 47, 127 (2002).. The use of the random time-step method(W. Peter, Bull. Am. Phys. Soc.) 47, 52 (2002). to decrease simulation times by 1-2 orders of magnitude is also being studied.

  12. Magnetic particle imaging: introduction to imaging and hardware realization.

    PubMed

    Buzug, Thorsten M; Bringout, Gael; Erbe, Marlitt; Gräfe, Ksenija; Graeser, Matthias; Grüttner, Mandy; Halkola, Aleksi; Sattel, Timo F; Tenner, Wiebke; Wojtczyk, Hanne; Haegele, Julian; Vogt, Florian M; Barkhausen, Jörg; Lüdtke-Buzug, Kerstin

    2012-12-01

    Magnetic Particle Imaging (MPI) is a recently invented tomographic imaging method that quantitatively measures the spatial distribution of a tracer based on magnetic nanoparticles. The new modality promises a high sensitivity and high spatial as well as temporal resolution. There is a high potential of MPI to improve interventional and image-guided surgical procedures because, today, established medical imaging modalities typically excel in only one or two of these important imaging properties. MPI makes use of the non-linear magnetization characteristics of the magnetic nanoparticles. For this purpose, two magnetic fields are created and superimposed, a static selection field and an oscillatory drive field. If superparamagnetic iron-oxide nanoparticles (SPIOs) are subjected to the oscillatory magnetic field, the particles will react with a non-linear magnetization response, which can be measured with an appropriate pick-up coil arrangement. Due to the non-linearity of the particle magnetization, the received signal consists of the fundamental excitation frequency as well as of harmonics. After separation of the fundamental signal, the nanoparticle concentration can be reconstructed quantitatively based on the harmonics. The spatial coding is realized with the static selection field that produces a field-free point, which is moved through the field of view by the drive fields. This article focuses on the frequency-based image reconstruction approach and the corresponding imaging devices while alternative concepts like x-space MPI and field-free line imaging are described as well. The status quo in hardware realization is summarized in an overview of MPI scanners. Copyright © 2012. Published by Elsevier GmbH.

  13. Apparatus and method for continuous separation of magnetic particles from non-magnetic fluids

    DOEpatents

    Oder, Robin R.; Jamison, Russell E.

    2010-02-09

    A magnetic separator vessel (1) for separating magnetic particles from non-magnetic fluid includes a separation chamber having an interior and exterior wall, a top and bottom portion; a magnet (3) having first and second poles (2) positioned adjacent to the exterior wall, wherein the first pole is substantially diametrically opposed to the second pole; a inlet port (5) is directed into the top portion of the separation chamber, wherein the inlet port (5) is positioned adjacent to one of the first and second poles (2), wherein the inlet port (5) is adapted to transfer a mixture into the separation chamber; an underflow port (6) in communication with the bottom portion, wherein the underflow port (6) is adapted to receive the magnetic particles; and an overflow port (9) in communication with the separation chamber, wherein the overflow port (9) is adapted to receive the non-magnetic fluid.

  14. Probing the magnetic topologies of magnetic clouds by means of solar energetic particles

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Reames, D. V.

    1991-01-01

    Solar energetic particles (SEPs) have been used as probes of magnetic cloud topologies. The rapid access of SEPs to the interiors of many clouds indicates that the cloud field lines extend back to the sun and hence are not plasmoids. The small modulation of galactic cosmic rays associated with clouds also suggests that the magnetic fields of clouds are not closed.

  15. Magnetic particles as affinity matrix for purification of antithrombin

    NASA Astrophysics Data System (ADS)

    Mercês, A. A. D.; Maciel, J. C.; Carvalho Júnior, L. B.

    2015-11-01

    Immobilization of biomolecules onto insoluble supports is an important tool for the fabrication of a diverse range of functional materials. It provides advantages: enhanced stability and easy separation. In this work two different magnetic composites were synthesized (MAG-PANI-HS and mDAC-HS) to human antithrombin purification. The magnetic particles (MAG) were obtained by co-precipitation method of iron salts II and III and subsequently coated with polyaniline (MAG-PANI particles). Dacron (polyethylene terephthalate) suffered a hydrazinolysis reaction to obtain a powder (Dacron hydrazide) which was subsequently magnetized (mDAC particles) also by co-precipitation method. Heparan sulfate (HS) was immobilized to MAG-PANI and mDAC retained respectively 35μg and 38.6μg per of support. The magnetic composite containing HS immobilized (MAG-PANI-HS and mDAC-HS) was incubated with human blood plasma (1mL) and then washed with NaCl gradients. Electrophoresis of proteins present in eluates showed bands of antithrombin (58kDa). A reduction in the antithrombin activity was detected in plasma that were incubated in the composites magnetic with HS immobilized, suggesting that the antithrombin was removed of the human blood plasma and then purified. Therefore, the above results suggest that both preparations: MAG-PANI-HS and mDAC-HS are able to affinity purify antithrombin, an important component of blood coagulation.

  16. Motion of particles of magnetically hard powder in a constant magnetic and strongly nonuniform electromagnetic fields

    SciTech Connect

    Bitkina, N.S.; Vernigorov, Yu.M.; Ignatov, B.P.; Lemeshko, G.F.

    1988-04-01

    The breakup process of floccules in the fluid state under the action of a constant magnetic and of strongly nonuniform electromagnetic fields was described and recorded by comparing the magnetic properties of samples pressed from powders, texturized, and prefluidized. Commercial barium ferrite powder was fluidized in a dielectric mold. A vibration magnetometer measured the magnetic properties. To evaluate the role of the resonance response to magnetic properties, a system of magnetic strings was formed and held in an oscillation regime induced by an alternating field with different frequency. It was found from the results of these formations that the magnetic structure of the sample consists of magnetic strings formed predominantly by separate particles and whose magnetic moments are oriented along the direction of the texturizing field. Results are also given for the fluidization of samarium-cobalt and samarium-cobalt-copper alloy powders.

  17. Multifunctional carboxymethyl cellulose-based magnetic nanovector as a theragnostic system for folate receptor targeted chemotherapy, imaging, and hyperthermia against cancer.

    PubMed

    Sivakumar, Balasubramanian; Aswathy, Ravindran Girija; Nagaoka, Yutaka; Suzuki, Masashi; Fukuda, Takahiro; Yoshida, Yasuhiko; Maekawa, Toru; Sakthikumar, Dasappan Nair

    2013-03-12

    A multifunctional biocompatible nanovector based on magnetic nanoparticle and carboxymethyl cellulose (CMC) was developed. The nanoparticles have been characterized using TEM, SEM, DLS, FT-IR spectra, VSM, and TGA studies. We found that the synthesized carboxymethyl cellulose magnetic nanoparticles (CMC MNPs) were spherical in shape with an average size of 150 nm having low aggregation and superparamagnetic properties. We found that the folate-tagged CMC MNPs were delivered to cancer cells by a folate-receptor-mediated endocytosis mechanism. 5-FU was encapsulated as a model drug for delivering cytotoxicity, and we could demonstrate the sustained release of 5-FU. It was also observed that the FITC-labeled CMC MNPs could effectively enter cells, and the fate of nanoparticles was tracked with Lysotracker. The CMC MNPs could induce significant cell death when an alternating magnetic field was applied. These results indicate that the multifunctional CMC MNPs possess a high drug loading efficiency and high biocompatibility and with low cell cytotoxicity and can be considered to be promising candidates for CMC-based targeted drug delivery, cellular imaging, and magnetic hyperthermia (MHT).

  18. Dust Particle Dynamics in The Presence of Highly Magnetized Plasmas

    NASA Astrophysics Data System (ADS)

    Lynch, Brian; Konopka, Uwe; Thomas, Edward; Merlino, Robert; Rosenberg, Marlene

    2016-10-01

    Complex plasmas are four component plasmas that contain, in addition to the usual electrons, ions, and neutral atoms, macroscopic electrically charged (nanometer to micrometer) sized ``dust'' particles. These macroscopic particles typically obtain a net negative charge due to the higher mobility of electrons compared to that of ions. Because the electrons, ions, and dust particles are charged, their dynamics may be significantly modified by the presence of electric and magnetic fields. Possible consequences of this modification may be the charging rate and the equilibrium charge. For example, in the presence of a strong horizontal magnetic field (B >1 Tesla), it may be possible to observe dust particle gx B deflection and, from that deflection, determine the dust grain charge. In this poster, we present recent data from performing multiple particle dropping experiments to characterize the g x B deflection in the Magnetized Dusty Plasma Experiment (MDPX). This work is supported by funding from the U. S. Department of Energy Grant Number DE - SC0010485 and the NASA/Jet Propulsion Laboratory, JPL-1543114.

  19. Particle Motion and Energization in a Chaotic Magnetic Field

    SciTech Connect

    Li, G.; Dasgupta, B.; Webb, G.; Ram, A. K.

    2009-11-11

    In nature there are many systems where macroscopic and time varying currents exist. For example, in solar flares, currents in the form of filaments and/or loops have been observed. In a simple asymmetric configuration where steady state currents flow through a straight wire and a loop, a somewhat surprising feature is that the resulting magnetic field can become chaotic depending on the relative size of the currents. This implies that studying particle motion in a time-dependent chaotic magnetic field is a fundamental problem in space plasma physics and it has profound implications to astrophysical phenomena as the solar flares. Because these currents are time dependent, they induce electric fields. Consequently, electrons and ions moving in the field can experience alternating acceleration and deceleration, leading to a second order Fermi acceleration. We discuss here charged particle motion in a chaotic magnetic fields and the energization process. Particle trajectories are obtained by following single particle motion using the Lorentz equation by a 4-th order Runge-Kutta scheme. Implications of our results to particle acceleration and heating at a flare site are discussed.

  20. Nonadiabatic behavior of the magnetic moment of a charged particle in a dipole magnetic field

    NASA Technical Reports Server (NTRS)

    Murakami, Sadayoshi; Sato, Tetsuya; Hasegawa, Akira

    1990-01-01

    This paper investigates the dynamic behavior of the magnetic moment of a particle confined in a magnetic dipole field in the presence of a low-frequency electrostatic wave. It is shown that there exist two kinds of resonances (the bounce-E x B drift resonance and the wave-drift resonance) by which the adiabaticity of the magnetic moment is broken. The unstable conditions obtained by theoretical considerations showed good agreement with the numerical results.

  1. Multifunctional inorganic-organic hybrid nanospheres for rapid and selective luminescence detection of TNT in mixed nitroaromatics via magnetic separation.

    PubMed

    Ma, Yingxin; Huang, Sheng; Wang, Leyu

    2013-11-15

    Rapid, sensitive and selective detection of 2,4,6-trinitrotoluene (TNT) in aqueous solution differentiating from other nitroaromatics and independent of complicated instruments is in high demand for public safety and environmental monitoring. Despite of many methods for TNT detection, it is hard to differentiate TNT from 2,4,6-trinitrophenol (TNP) due to their highly similar structures and properties. In this work, via a simple and versatile method, LaF3ːCe(3+)-Tb(3+)and Fe3O4 nanoparticle-codoped multifunctional nanospheres were prepared through self-assembly of the building blocks. The luminescence of these nanocomposites was dramatically quenched via adding nitroaromatics into the aqueous solution. After the magnetic separation, however, the interference of other nitroaromatics including 2,4,6-trinitrophenol (TNP), 2,4-dinitrotoluene (DNT), and nitrobenzene (NB) was effectively overcome due to the removal of these coexisting nitroaromatics from the surface of nanocomposites. Due to the formation of TNT(-)-RCONH3(+), the TNT was attached to the surface of the nanocomposites and was quantitatively detected by the postexposure luminescence quenching. Meanwhile, the luminescence intensity is negatively proportional to the concentration of TNT in the range of 0.01-5.0 μg/mL with the 3σ limit of detection (LOD) of 10.2 ng/mL. Therefore, the as-developed method provides a novel strategy for rapid and selective detection of TNT in the mixture solution of nitroaromatics by postexposure luminescence quenching. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Modelling of microorganisms capture on magnetic carrier particles

    NASA Astrophysics Data System (ADS)

    Rotariu, O.; Strachan, N. J. C.; Bădescu, V.

    2002-11-01

    Immunomagnetic separation (IMS) is a technique used in the detection of pathogenic microorganisms from food and environmental samples. Current IMS methods are insensitive due to the small sample sizes analysed. A stochastic model is described which estimates the time of collision between a small number of pathogenic microorganisms and superparamagnetic carrier microparticles within an aqueous suspension. The IMS system parameters which are varied in the model include: the diameter of the carrier particles, their volume concentration in suspension, the fraction of magnetic phase within the composite material of the particles and the magnetic field intensity and gradient. The data obtained will be used to help design magnetic separation systems to capture pathogenic microorganisms from large volume samples (approx. 250 ml).

  3. The Effect of Relaxation on Magnetic Particle Imaging

    NASA Astrophysics Data System (ADS)

    Wu, Yong; Yao, Zhen; Kafka, Gareth; Farrell, David; Griswold, Mark; Brown, Robert

    2010-03-01

    Magnetic particle imaging[1] is a new tomographic technique that allows fast, inexpensive imaging through the use of ferro-fluid agents leading to submillimeter resolution. Selection fields combined with oscillating driving fields can move unsaturated field-free-points so as to cover the field of view. In previous studies, the average magnetization is assumed to respond instantaneously to changes in the applied field.[1-4] Realistically, however, a finite relaxation time slows the magnetic response. The present simulation demonstrates that, for contrast agents of interest, the choice of an optimal particle size is strongly dependent on this effect. A trade-off thus exists between sensitivity and resolution. [1] B. Gleich and J. Weizenecker, Nature v.435:1214, 2005 [2] J. Weizenecker et al., Phys. Med. Biol., v.54: L1, 2009 [3] J. Rahmer et al., BMC Medical Imaging, 2009 [4] P. W. Goodwill et al., IEEE Trans. on Medical Imaging, v.28:1231, 2009

  4. Bacterial turbulence reduction by passive magnetic particle chains.

    PubMed

    Liu, Kuo-An; I, Lin

    2013-09-01

    We report the experimental observation of the bacterial turbulence reduction in dense E. coli suspensions by increasing the coupling of passive particle additives (paramagnetic particles). Applying an external magnetic field induces magnetic dipoles for particles and causes the formation of vertical chain bundles, which are hard for bacterial flows to tilt and break. The larger effective drag coefficient of chains causes slow horizontal motion of chains, which in turn form obstacles to suppress bacterial flows through the strong correlation in coherent bacterial clusters and intercluster interaction. The interruption of the upward energy flow from individual self-propelling bacteria to the larger scale in the bacterial turbulence with multiscaled coherent flow by the chain bundle leads to more severe suppression in the low frequency (wave number) regimes of the power spectra.

  5. Acceleration of particles in shocked magnetic neutral sheets

    SciTech Connect

    Mullan, D.J.; Perez-Peraza, J.

    1984-01-01

    The mechanism responsible for the long-duration 10-100-GeV particle events observed following solar flares is investigated theoretically. Particle acceleration by a passing MHD shock striking a magnetic neutral sheet like that of a helmet streamer is simulated over a 5-min interval using the two-dimensional MHD code of Steinolfson and Mullan (1980), defining the diffusion region by the gas pressure or by the magnetic Reynolds number. The results of zeroth-order and particle-trajectory approximations are presented in graphs and diagrams and shown to be viable explanations of the observed phenomena. Time delays of 10 min to 2 h and source durations of 10 min to 1 d are estimated. 8 references.

  6. Bacterial turbulence reduction by passive magnetic particle chains

    NASA Astrophysics Data System (ADS)

    Liu, Kuo-An; I, Lin

    2013-09-01

    We report the experimental observation of the bacterial turbulence reduction in dense E. coli suspensions by increasing the coupling of passive particle additives (paramagnetic particles). Applying an external magnetic field induces magnetic dipoles for particles and causes the formation of vertical chain bundles, which are hard for bacterial flows to tilt and break. The larger effective drag coefficient of chains causes slow horizontal motion of chains, which in turn form obstacles to suppress bacterial flows through the strong correlation in coherent bacterial clusters and intercluster interaction. The interruption of the upward energy flow from individual self-propelling bacteria to the larger scale in the bacterial turbulence with multiscaled coherent flow by the chain bundle leads to more severe suppression in the low frequency (wave number) regimes of the power spectra.

  7. Multifunctional microsphere formulation of fluorescent magnetic properties for drug delivery system

    NASA Astrophysics Data System (ADS)

    Kusrini, Eny; Prassanti, Riesna; Nurjaya, Dwi Marta; Gunawan, Cindy

    2017-02-01

    The microsphere formulations of Chit/TPP/Sm/Fe3O4/Rn were prepared by an ionic gelation technique, where Chit=chitosan, TPP=tripolyphosphate, Sm=samarium and Rn=ranitidine. Optimum of microsphere formulation exhibit magnetic and fluorescent properties with adsorption efficiency of ˜92% was obtained for Chit/TPP/Sm/Fe3O4/Rn with ratio 400:500:50:1:20. Fluorescence intensity of microsphere formulations increased with the cumulative amount release of ranitidine, so that the changing of fluorescence intensity at wavelength of 590 nm referring to the Sm3+ ion could be used as indicator in DDS. With the demonstration of sustained release from microsphere formulation, it allows to investigate the applications to other drugs.

  8. Dual-frequency magnetic particle imaging of the Brownian particle contribution

    NASA Astrophysics Data System (ADS)

    Viereck, Thilo; Kuhlmann, Christian; Draack, Sebastian; Schilling, Meinhard; Ludwig, Frank

    2017-04-01

    Magnetic particle imaging (MPI) is an emerging medical imaging modality based on the non-linear response of magnetic nanoparticles to an exciting magnetic field. MPI has been recognized as a fast imaging technique with high spatial resolution in the mm range. For some applications of MPI, especially in the field of functional imaging, the determination of the particle mobility (Brownian rotation) is of great interest, as it enables binding detection in MPI. It also enables quantitative imaging in the presence of Brownian-dominated particles, which is otherwise implausible. Discrimination of different particle responses in MPI is possible via the joint reconstruction approach. In this contribution, we propose a dual-frequency acquisition scheme to enhance sensitivity and contrast in the detection of different particle mobilities compared to a standard single-frequency MPI protocol. The method takes advantage of the fact, that the magnetization response of the tracer is strongly frequency-dependent, i.e. for low excitation frequencies a stronger Brownian contribution is observed.

  9. Particle acceleration, magnetization and radiation in relativistic shocks

    NASA Astrophysics Data System (ADS)

    Derishev, Evgeny V.; Piran, Tsvi

    2016-08-01

    The mechanisms of particle acceleration and radiation, as well as magnetic field build-up and decay in relativistic collisionless shocks, are open questions with important implications to various phenomena in high-energy astrophysics. While the Weibel instability is possibly responsible for magnetic field build-up and diffusive shock acceleration is a model for acceleration, both have problems and current particle-in-cell simulations show that particles are accelerated only under special conditions and the magnetic field decays on a very short length-scale. We present here a novel model for the structure and the emission of highly relativistic collisionless shocks. The model takes into account (and is based on) non-local energy and momentum transport across the shock front via emission and absorption of high-energy photons. This leads to a pre-acceleration of the fluid and pre-amplification of the magnetic fields in the upstream region. Both have drastic implications on the shock structure. The model explains the persistence of the shock-generated magnetic field at large distances from the shock front. The dissipation of this magnetic field results in a continuous particle acceleration within the downstream region. A unique feature of the model is the existence of an `attractor', towards which any shock will evolve. The model is applicable to any relativistic shock, but its distinctive features show up only for sufficiently large compactness. We demonstrate that prompt and afterglow gamma-ray bursts' shocks satisfy the relevant conditions, and we compare their observations with the predictions of the model.

  10. Chaotic motion of charged particles in toroidal magnetic configurations

    SciTech Connect

    Cambon, Benjamin; Leoncini, Xavier; Vittot, Michel; Dumont, Rémi; Garbet, Xavier

    2014-09-01

    We study the motion of a charged particle in a tokamak magnetic field and discuss its chaotic nature. Contrary to most of recent studies, we do not make any assumption on any constant of the motion and solve numerically the cyclotron gyration using Hamiltonian formalism. We take advantage of a symplectic integrator allowing us to make long-time simulations. First considering an idealized magnetic configuration, we add a nongeneric perturbation corresponding to a magnetic ripple, breaking one of the invariant of the motion. Chaotic motion is then observed and opens questions about the link between chaos of magnetic field lines and chaos of particle trajectories. Second, we return to an axisymmetric configuration and tune the safety factor (magnetic configuration) in order to recover chaotic motion. In this last setting with two constants of the motion, the presence of chaos implies that no third global constant exists, we highlight this fact by looking at variations of the first order of the magnetic moment in this chaotic setting. We are facing a mixed phase space with both regular and chaotic regions and point out the difficulties in performing a global reduction such as gyrokinetics.

  11. Calculation of ferromagnetic resonance spectra for chains of magnetic particles

    NASA Astrophysics Data System (ADS)

    Newell, A. J.

    2010-12-01

    Magnetotactic bacteria are a taxonomically diverse group of bacteria that have chains of ferromagnetic crystals inside. These bacteria mostly live in the oxic-anoxic interface (OAI) of aquatic environments. The magnetic chains orient the bacteria parallel to the Earth's magnetic field and help them to maintain their position near the OAI. These chains show the fingerprint of natural selection acting to optimize the magnetic moment per unit iron. This is achieved in a number of ways: the alignment in chains, a narrow size range, crystallographic perfection and chemical purity. Because of these distinctive characteristics, the particles can still be identified after the bacteria have died. Such magnetofossils are useful both as records of bacterial evolution and environmental markers. They can most reliably be identified by microscopy, but that is very labor-intensive. A number of magnetic measurements have been developed to identify magnetofossils quickly and non-invasively. However, the only test that can specifically identify the chain structure is ferromagnetic resonance (FMR), which measures the response to a magnetic field oscillating at microwave frequencies. Although the experimental side of ferromagnetic resonance is well developed, the theoretical models for interpreting them have been limited. A new method is presented for calculating resonance frequencies as well as complete power spectra for chains of interacting magnetic particles. Spectra are calculated and compared with data for magnetotactic bacteria.

  12. A characterisation of the magnetically induced movement of NdFeB-particles in magnetorheological elastomers

    NASA Astrophysics Data System (ADS)

    Schümann, M.; Borin, D. Y.; Huang, S.; Auernhammer, G. K.; Müller, R.; Odenbach, S.

    2017-09-01

    Magnetorheological elastomers are a type of smart hybrid material where elastic properties of a soft elastomer matrix are combined with magnetic properties of magnetic micro particles. This combination leads to a complex interplay of magnetic and elastic phenomena, of which the magnetorheological effect is the best described. In this paper, magnetically hard NdFeB-particles were used to obtain remanent magnetic properties. X-ray microtomography has been utilised to analyse the particle movement induced by magnetic fields. A particle tracking was performed; thus, it was possible to characterise the movement of individual particles. Beyond that, a comprehensive analysis of the orientation of all particles was performed at different states of magnetisation and global particle arrangements. For the first time, this method was successfully applied to a magnetorheological material with a technically relevant amount of magnetic NdFeB-particles. A significant impact of the magnetic field on the rotation and translation of the particles was shown.

  13. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried cyclosporine A multifunctional particles for dry powder inhalation aerosol delivery

    PubMed Central

    Wu, Xiao; Zhang, Weifen; Hayes, Don; Mansour, Heidi M

    2013-01-01

    In this systematic and comprehensive study, inhalation powders of the polypeptide immunosuppressant drug – cyclosporine A – for lung delivery as dry powder inhalers (DPIs) were successfully designed, developed, and optimized. Several spray drying pump rates were rationally chosen. Comprehensive physicochemical characterization and imaging was carried out using scanning electron microscopy, hot-stage microscopy, differential scanning calorimetry, powder X-ray diffraction, Karl Fischer titration, laser size diffraction, and gravimetric vapor sorption. Aerosol dispersion performance was conducted using a next generation impactor with a Food and Drug Administration-approved DPI device. These DPIs displayed excellent aerosol dispersion performance with high values in emitted dose, respirable fraction, and fine particle fraction. In addition, novel multifunctional inhalation aerosol powder formulations of cyclosporine A with lung surfactant-mimic phospholipids were also successfully designed and developed by advanced organic solution cospray drying in closed mode. The lung surfactantmimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-snglycero- 3-(phosphor-rac-1-glycerol). These cyclosporine A lung surfactant-mimic aerosol powder formulations were comprehensively characterized. Powder X-ray diffraction and differential scanning calorimetry confirmed that the phospholipid bilayer structure in the solid state was preserved following advanced organic solution spray drying in closed mode. These novel multifunctional inhalation powders were optimized for DPI delivery with excellent aerosol dispersion performance and high aerosol performance parameters. PMID:23569375

  14. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried cyclosporine A multifunctional particles for dry powder inhalation aerosol delivery.

    PubMed

    Wu, Xiao; Zhang, Weifen; Hayes, Don; Mansour, Heidi M

    2013-01-01

    In this systematic and comprehensive study, inhalation powders of the polypeptide immunosuppressant drug - cyclosporine A - for lung delivery as dry powder inhalers (DPIs) were successfully designed, developed, and optimized. Several spray drying pump rates were rationally chosen. Comprehensive physicochemical characterization and imaging was carried out using scanning electron microscopy, hot-stage microscopy, differential scanning calorimetry, powder X-ray diffraction, Karl Fischer titration, laser size diffraction, and gravimetric vapor sorption. Aerosol dispersion performance was conducted using a next generation impactor with a Food and Drug Administration-approved DPI device. These DPIs displayed excellent aerosol dispersion performance with high values in emitted dose, respirable fraction, and fine particle fraction. In addition, novel multifunctional inhalation aerosol powder formulations of cyclosporine A with lung surfactant-mimic phospholipids were also successfully designed and developed by advanced organic solution cospray drying in closed mode. The lung surfactantmimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-snglycero- 3-(phosphor-rac-1-glycerol). These cyclosporine A lung surfactant-mimic aerosol powder formulations were comprehensively characterized. Powder X-ray diffraction and differential scanning calorimetry confirmed that the phospholipid bilayer structure in the solid state was preserved following advanced organic solution spray drying in closed mode. These novel multifunctional inhalation powders were optimized for DPI delivery with excellent aerosol dispersion performance and high aerosol performance parameters.

  15. Beaming of Particles and Synchrotron Radiation in Relativistic Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Kagan, Daniel; Nakar, Ehud; Piran, Tsvi

    2016-08-01

    Relativistic reconnection has been invoked as a mechanism for particle acceleration in numerous astrophysical systems. According to idealized analytical models, reconnection produces a bulk relativistic outflow emerging from the reconnection sites (X-points). The resulting radiation is therefore highly beamed. Using two-dimensional particle-in-cell simulations, we investigate particle and radiation beaming, finding a very different picture. Instead of having a relativistic average bulk motion with an isotropic electron velocity distribution in its rest frame, we find that the bulk motion of the particles in X-points is similar to their Lorentz factor γ, and the particles are beamed within ˜ 5/γ . On the way from the X-point to the magnetic islands, particles turn in the magnetic field, forming a fan confined to the current sheet. Once they reach the islands they isotropize after completing a full Larmor gyration and their radiation is no longer strongly beamed. The radiation pattern at a given frequency depends on where the corresponding emitting electrons radiate their energy. Lower-energy particles that cool slowly spend most of their time in the islands and their radiation is not highly beamed. Only particles that quickly cool at the edge of the X-points generate a highly beamed fan-like radiation pattern. The radiation emerging from these fast cooling particles is above the burn-off limit (˜100 MeV in the overall rest frame of the reconnecting plasma). This has significant implications for models of gamma-ray bursts and active galactic nuclei that invoke beaming in that frame at much lower energies.

  16. Fractional dynamics of charged particles in magnetic fields

    NASA Astrophysics Data System (ADS)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Alvarado-Méndez, E.; Guerrero-Ramírez, G. V.; Escobar-Jiménez, R. F.

    2016-02-01

    In many physical applications the electrons play a relevant role. For example, when a beam of electrons accelerated to relativistic velocities is used as an active medium to generate Free Electron Lasers (FEL), the electrons are bound to atoms, but move freely in a magnetic field. The relaxation time, longitudinal effects and transverse variations of the optical field are parameters that play an important role in the efficiency of this laser. The electron dynamics in a magnetic field is a means of radiation source for coupling to the electric field. The transverse motion of the electrons leads to either gain or loss energy from or to the field, depending on the position of the particle regarding the phase of the external radiation field. Due to the importance to know with great certainty the displacement of charged particles in a magnetic field, in this work we study the fractional dynamics of charged particles in magnetic fields. Newton’s second law is considered and the order of the fractional differential equation is (0;1]. Based on the Grünwald-Letnikov (GL) definition, the discretization of fractional differential equations is reported to get numerical simulations. Comparison between the numerical solutions obtained on Euler’s numerical method for the classical case and the GL definition in the fractional approach proves the good performance of the numerical scheme applied. Three application examples are shown: constant magnetic field, ramp magnetic field and harmonic magnetic field. In the first example the results obtained show bistability. Dissipative effects are observed in the system and the standard dynamic is recovered when the order of the fractional derivative is 1.

  17. Nucleation of Magnetization Reversal in Individual Nanosized Particles and Wires

    NASA Astrophysics Data System (ADS)

    Wernsdorfer, W.

    1997-03-01

    Low temperatures magnetization measurements of individual ferromagnetic particles and wires are presented. The detector was a Nb micro-bridge-DC-SQUID, elaborated using electron-beam lithography. We studied particles fabricated by electron beam lithography. They had an elliptic contour with axes between 50 and 1000 nm and a thickness between 5 and 50 nm and were made of Ni, Co, Fe (W. Wernsdorfer et al., J. Magn. Magn. Mat., 145, 33 (1995) and 151, 38 (1995), and Phys. Rev. B, 53, 3341 (1996).). Furthermore, we studied Ni and Co wires (cylinders) with diameters ranging from 40 nm to 100 nm and lengths up to 5000 nm (W. Wernsdorfer et al., Phys. Rev. Lett., 77, 1873 (1996)). They were produced by the technique of electrodeposition in nanoporous polycarbonate membranes (J. Meier, B. Doudin and J.-Ph. Ansermet, J. Appl. Phys, 79, 6010 (1996).). We studied nanoparticles and filled carbon nanotubes synthesized by arc-discharge, with dimensions between 10 and 500 nm. These particles are single crystalline and the surface roughness is about two atomic layers (C. Guerret-Pi=E9court, Y. Le Bouar, A. Loiseau and H. Pascard, Nature, 372, 761 (1994).). Finally, we studied single crystalline particles elaborated by colloidal self assemblies (M. P. Pileni et al., submitted.). The angular dependence of the magnetization reversal could be explained approximately by simple classical micromagnetic concepts: uniform rotation and curling. However, our measurement evidenced nucleation and propagation of domain walls except for the smallest particles of about 20 nm. The switching field distributions as a function of temperature and field sweeping rate and the probabilities of switching showed that the magnetization reversal was thermally activated. These measurements allowed us to estimate the "activation volume" which triggered the magnetization reversal. Our measurements showed for the first time that the magnetization reversal of a ferromagnetic nanoparticle of good quality can be

  18. Transverse forces on dust particles in a magnetized sheath with crossed electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Melzer, A.; Puttscher, M.

    2017-05-01

    Recent experimental findings on the transverse forces acting on dust particles in a discharge under moderate magnetic fields [Puttscher and Melzer, Phys. Plasmas (1994-present) 21, 123704 (2014)] are compared to model calculations. Using the sheath model of Pandey et al. [Phys. Plasmas 18, 053703 (2011)], Mehdipour et al. [Phys. Plasmas 17, 123708 (2010)], and Foroutan et al. [Phys. Plasmas 16, 103703 (2009)], first, the plasma parameters of a magnetized sheath are calculated. From that, the horizontal forces on dust particles along or opposite to the E → × B → direction are determined. The experiments show a complex dependence of these forces on gas pressure in the discharge, magnetic field strength, and particle size. From the model, this complex behavior of the dust particles can be recovered with good agreement with the experimental findings.

  19. Quantitative Magnetic Separation of Particles and Cells Using Gradient Magnetic Ratcheting.

    PubMed

    Murray, Coleman; Pao, Edward; Tseng, Peter; Aftab, Shayan; Kulkarni, Rajan; Rettig, Matthew; Di Carlo, Dino

    2016-04-13

    Extraction of rare target cells from biosamples is enabling for life science research. Traditional rare cell separation techniques, such as magnetic activated cell sorting, are robust but perform coarse, qualitative separations based on surface antigen expression. A quantitative magnetic separation technology is reported using high-force magnetic ratcheting over arrays of magnetically soft micropillars with gradient spacing, and the system is used to separate and concentrate magnetic beads based on iron oxide content (IOC) and cells based on surface expression. The system consists of a microchip of permalloy micropillar arrays with increasing lateral pitch and a mechatronic device to generate a cycling magnetic field. Particles with higher IOC separate and equilibrate along the miropillar array at larger pitches. A semi-analytical model is developed that predicts behavior for particles and cells. Using the system, LNCaP cells are separated based on the bound quantity of 1 μm anti-epithelial cell adhesion molecule (EpCAM) particles as a metric for expression. The ratcheting cytometry system is able to resolve a ±13 bound particle differential, successfully distinguishing LNCaP from PC3 populations based on EpCAM expression, correlating with flow cytometry analysis. As a proof-of-concept, EpCAM-labeled cells from patient blood are isolated with 74% purity, demonstrating potential toward a quantitative magnetic separation instrument.

  20. Quantitative Magnetic Separation of Particles and Cells using Gradient Magnetic Ratcheting

    PubMed Central

    Murray, Coleman; Pao, Edward; Tseng, Peter; Aftab, Shayan; Kulkarni, Rajan; Rettig, Matthew; Di Carlo, Dino

    2016-01-01

    Extraction of rare target cells from biosamples is enabling for life science research. Traditional rare cell separation techniques, such as magnetic activated cell sorting (MACS), are robust but perform coarse, qualitative separations based on surface antigen expression. We report a quantitative magnetic separation technology using high-force magnetic ratcheting over arrays of magnetically soft micro-pillars with gradient spacing, and use the system to separate and concentrate magnetic beads based on iron oxide content (IOC) and cells based on surface expression. The system consists of a microchip of permalloy micro-pillar arrays with increasing lateral pitch and a mechatronic device to generate a cycling magnetic-field. Particles with higher IOC separate and equilibrate along the miro-pillar array at larger pitches. We develop a semi-analytical model that predicts behavior for particles and cells. Using the system, LNCaP cells were separated based on the bound quantity of 1μm anti-EpCAM particles as a metric for expression. The ratcheting cytometry system was able to resolve a ±13 bound particle differential, successfully distinguishing LNCaP from PC3 populations based on EpCAM expression, correlating with flow cytometry analysis. As a proof of concept, EpCAM-labeled cells from patient blood were isolated with 74% purity, demonstrating potential towards a quantitative magnetic separation instrument. PMID:26890496

  1. Nonequilibrium magnetic response of anisotropic superparamagnetic nanoparticles and possible artifacts in magnetic particle imaging.

    PubMed

    Mamiya, Hiroaki; Jeyadevan, Balachandran

    2015-01-01

    Magnetic responses of superparamagnetic nanoparticles to high-frequency AC magnetic fields with sufficiently large amplitudes are numerically simulated to exactly clarify the phenomena occurring in magnetic particle imaging. When the magnetic anisotropy energy inevitable in actual nanoparticles is taken into account in considering the magnetic potential, larger nanoparticles exhibit a delayed response to alternations of the magnetic fields. This kind of delay is rather remarkable in the lower-amplitude range of the field, where the assistance by the Zeeman energy to thermally activated magnetization reversal is insufficient. In some cases, a sign inversion of the third-order harmonic response was found to occur at some specific amplitude, despite the lack in DC bias magnetic field strength. Considering the attenuation of the AC magnetic field generated in the human body, it is possible that the phases of the signals from nanoparticles deep inside the body and those near the body surface are completely different. This may lead to artifacts in the reconstructed image. Furthermore, when the magnetic/thermal torque-driven rotation of the anisotropic nanoparticles as well as the magnetic anisotropy energy are taken into account, the simulated results show that, once the easy axes are aligned toward the direction of the DC bias magnetic field, it takes time to randomize them at the field-free point. During this relaxation, the third-order harmonic response depends highly upon the history of the magnetic field. This is because non-linearity of the anhysteretic magnetization curve for the superparamagnetic nanoparticles varies with the orientations of the easy axes. This history dependence may also lead to another artifact in magnetic particle imaging, when the scanning of the field-free point is faster than the Brownian relaxations.

  2. Nonequilibrium Magnetic Response of Anisotropic Superparamagnetic Nanoparticles and Possible Artifacts in Magnetic Particle Imaging

    PubMed Central

    Mamiya, Hiroaki; Jeyadevan, Balachandran

    2015-01-01

    Magnetic responses of superparamagnetic nanoparticles to high-frequency AC magnetic fields with sufficiently large amplitudes are numerically simulated to exactly clarify the phenomena occurring in magnetic particle imaging. When the magnetic anisotropy energy inevitable in actual nanoparticles is taken into account in considering the magnetic potential, larger nanoparticles exhibit a delayed response to alternations of the magnetic fields. This kind of delay is rather remarkable in the lower-amplitude range of the field, where the assistance by the Zeeman energy to thermally activated magnetization reversal is insufficient. In some cases, a sign inversion of the third-order harmonic response was found to occur at some specific amplitude, despite the lack in DC bias magnetic field strength. Considering the attenuation of the AC magnetic field generated in the human body, it is possible that the phases of the signals from nanoparticles deep inside the body and those near the body surface are completely different. This may lead to artifacts in the reconstructed image. Furthermore, when the magnetic/thermal torque-driven rotation of the anisotropic nanoparticles as well as the magnetic anisotropy energy are taken into account, the simulated results show that, once the easy axes are aligned toward the direction of the DC bias magnetic field, it takes time to randomize them at the field-free point. During this relaxation, the third-order harmonic response depends highly upon the history of the magnetic field. This is because non-linearity of the anhysteretic magnetization curve for the superparamagnetic nanoparticles varies with the orientations of the easy axes. This history dependence may also lead to another artifact in magnetic particle imaging, when the scanning of the field-free point is faster than the Brownian relaxations. PMID:25775017

  3. Theory of using magnetic deflections to combine charged particle beams

    SciTech Connect

    Steckbeck, Mackenzie K.; Doyle, Barney Lee

    2014-09-01

    Several radiation effects projects in the Ion Beam Lab (IBL) have recently required two disparate charged particle beams to simultaneously strike a single sample through a single port of the target chamber. Because these beams have vastly different mass–energy products (MEP), the low-MEP beam requires a large angle of deflection toward the sample by a bending electromagnet. A second electromagnet located further upstream provides a means to compensate for the small angle deflection experienced by the high-MEP beam during its path through the bending magnet. This paper derives the equations used to select the magnetic fields required by these two magnets to achieve uniting both beams at the target sample. A simple result was obtained when the separation of the two magnets was equivalent to the distance from the bending magnet to the sample, and the equation is given by: Bs= 1/2(rc/rs) Bc, where Bs and Bc are the magnetic fields in the steering and bending magnet and rc/rs is the ratio of the radii of the bending magnet to that of the steering magnet. This result is not dependent upon the parameters of the high MEP beam, i.e. energy, mass, charge state. Therefore, once the field of the bending magnet is set for the low-MEP beam, and the field in the steering magnet is set as indicted in the equation, the trajectory path of any high-MEP beam will be directed into the sample.

  4. Coordinates for Mapping the Distribution of Magnetically Trapped Particles

    NASA Technical Reports Server (NTRS)

    McIlwain, Carl E.

    1961-01-01

    Dipole representations of the earth's magnetic field have been found to have insufficient accuracy for the study of magnetically trapped particles. A coordinate system consisting of the magnitude of the magnetic field B, and the integral invariant I has been found to adequately organize, measurements made at different geographic locations. It is shown in the present paper, that a parameter L = f(B,I) can be defined which retains most of the desirable properties of I and which has the additional property of organizing measurements along lines of force. Since the parameter L is the analog of a physical distance in a dipole field (the equatorial radius of a magnetic shell), it is usually found to present fewer conceptual difficulties than the integral invariant I.

  5. In Vivo Magnetic Enrichment, Photoacoustic Diagnosis, and Photothermal Purging of Infected Blood Using Multifunctional Gold and Magnetic Nanoparticles

    PubMed Central

    Galanzha, Ekaterina I.; Shashkov, Evgeny; Sarimollaoglu, Mustafa; Beenken, Karen E.; Basnakian, Alexei G.; Shirtliff, Mark E.; Kim, Jin-Woo; Smeltzer, Mark S.; Zharov, Vladimir P.

    2012-01-01

    Bacterial infections are a primary cause of morbidity and mortality worldwide. Bacteremia is a particular concern owing to the possibility of septic shock and the development of metastatic infections. Treatment of bacteremia is increasingly compromised by the emergence of antibiotic resistant strains, creating an urgent need for alternative therapy. Here, we introduce a method for in vivo photoacoustic (PA) detection and photothermal (PT) eradication of Staphylococcus aureus in tissue and blood. We show that this method could be applicable for label-free diagnosis and treatment of in the bloodstream using intrinsic near-infrared absorption of endogenous carotenoids with nonlinear PA and PT contrast enhancement. To improve sensitivity and specificity for detection of circulating bacteria cells (CBCs), two-color gold and multilayer magnetic nanoparticles with giant amplifications of PA and PT contrasts were functionalized with an antibody cocktail for molecular targeting of S. aureus surface-associated markers such as protein A and lipoprotein. With a murine model, the utility of this approach was demonstrated for ultrasensitive detection of CBCs with threshold sensitivity as low as 0.5 CBCs/mL, in vivo magnetic enrichment of CBCs, PT eradication of CBCs, and real-time monitoring of therapeutic efficacy by CBC counting. Our PA-PT nano-theranostic platform, which integrates in vivo multiplex targeting, magnetic enrichment, signal amplification, multicolor recognition, and feedback control, could be used as a biological tool to gain insights on dissemination pathways of CBCs, infection progression by bacteria re-seeding, and sepsis development and treatment, and could potentially be feasible in humans, especially using bypass schematic. PMID:23049814

  6. Ferrohydrodynamic modeling of magnetic nanoparticle harmonic spectra for magnetic particle imaging

    PubMed Central

    Dhavalikar, Rohan; Maldonado-Camargo, Lorena; Garraud, Nicolas; Rinaldi, Carlos

    2015-01-01

    Magnetic Particle Imaging (MPI) is an emerging imaging technique that uses magnetic nanoparticles as tracers. In order to analyze the quality of nanoparticles developed for MPI, a Magnetic Particle Spectrometer (MPS) is often employed. In this paper, we describe results for predictions of the nanoparticle harmonic spectra obtained in a MPS using three models: the first uses the Langevin function, which does not take into account finite magnetic relaxation; the second model uses the magnetization equation by Shliomis (Sh), which takes into account finite magnetic relaxation using a constant characteristic time scale; and the third model uses the magnetization equation derived by Martsenyuk, Raikher, and Shliomis (MRSh), which takes into account the effect of magnetic field magnitude on the magnetic relaxation time. We make comparisons between these models and with experiments in order to illustrate the effects of field-dependent relaxation in the MPS. The models results suggest that finite relaxation results in a significant drop in signal intensity (magnitude of individual harmonics) and in faster spectral decay. Interestingly, when field dependence of the magnetic relaxation time was taken into account, through the MRSh model, the simulations predict a significant improvement in the performance of the nanoparticles, as compared to the performance predicted by the Sh equation. The comparison between the predictions from models and experimental measurements showed excellent qualitative as well as quantitative agreement up to the 19th harmonic using the Sh and MRSh equations, highlighting the potential of ferrohydrodynamic modeling in MPI. PMID:26576063

  7. Ferrohydrodynamic modeling of magnetic nanoparticle harmonic spectra for magnetic particle imaging

    NASA Astrophysics Data System (ADS)

    Dhavalikar, Rohan; Maldonado-Camargo, Lorena; Garraud, Nicolas; Rinaldi, Carlos

    2015-11-01

    Magnetic Particle Imaging (MPI) is an emerging imaging technique that uses magnetic nanoparticles as tracers. In order to analyze the quality of nanoparticles developed for MPI, a Magnetic Particle Spectrometer (MPS) is often employed. In this paper, we describe results for predictions of the nanoparticle harmonic spectra obtained in a MPS using three models: the first uses the Langevin function, which does not take into account finite magnetic relaxation; the second model uses the magnetization equation by Shliomis (Sh), which takes into account finite magnetic relaxation using a constant characteristic time scale; and the third model uses the magnetization equation derived by Martsenyuk, Raikher, and Shliomis (MRSh), which takes into account the effect of magnetic field magnitude on the magnetic relaxation time. We make comparisons between these models and with experiments in order to illustrate the effects of field-dependent relaxation in the MPS. The models results suggest that finite relaxation results in a significant drop in signal intensity (magnitude of individual harmonics) and in faster spectral decay. Interestingly, when field dependence of the magnetic relaxation time was taken into account, through the MRSh model, the simulations predict a significant improvement in the performance of the nanoparticles, as compared to the performance predicted by the Sh equation. The comparison between the predictions from models and experimental measurements showed excellent qualitative as well as quantitative agreement up to the 19th harmonic using the Sh and MRSh equations, highlighting the potential of ferrohydrodynamic modeling in MPI.

  8. General route to multifunctional uniform yolk/mesoporous silica shell nanocapsules: a platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery.

    PubMed

    Zhang, Lingyu; Wang, Tingting; Yang, Lei; Liu, Cong; Wang, Chungang; Liu, Haiyan; Wang, Y Andrew; Su, Zhongmin

    2012-09-24

    Hollow mesoporous SiO(2) (mSiO(2)) nanostructures with movable nanoparticles (NPs) as cores, so-called yolk-shell nanocapsules (NCs), have attracted great research interest. However, a highly efficient, simple and general way to produce yolk-mSiO(2) shell NCs with tunable functional cores and shell compositions is still a great challenge. A facile, general and reproducible strategy has been developed for fabricating discrete, monodisperse and highly uniform yolk-shell NCs under mild conditions, composed of mSiO(2) shells and diverse functional NP cores with different compositions and shapes. These NPs can be Fe(3)O(4) NPs, gold nanorods (GNRs), and rare-earth upconversion NRs, endowing the yolk-mSiO(2) shell NCs with magnetic, plasmonic, and upconversion fluorescent properties. In addition, multifunctional yolk-shell NCs with tunable interior hollow spaces and mSiO(2) shell thickness can be precisely controlled. More importantly, fluorescent-magnetic-biotargeting multifunctional polyethyleneimine (PEI)-modified fluorescent Fe(3)O(4)@mSiO(2) yolk-shell nanobioprobes as an example for simultaneous targeted fluorescence imaging and magnetically guided drug delivery to liver cancer cells is also demonstrated. This synthetic approach can be easily extended to the fabrication of multifunctional yolk@mSiO(2) shell nanostructures that encapsulate various functional movable NP cores, which construct a potential platform for the simultaneous targeted delivery of drug/gene/DNA/siRNA and bio-imaging. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Transport coefficients and orientational distributions of spheroidal particles with magnetic moment normal to the particle axis (Analysis for an applied magnetic field normal to the shear plane).

    PubMed

    Satoh, Akira; Ozaki, Masataka

    2006-06-15

    We have investigated the influence of the magnetic field strength, shear rate, and rotational Brownian motion on transport coefficients such as viscosity and diffusion coefficient, and also on the orientational distributions of rodlike particles of a dilute colloidal dispersion. The rodlike particle is modeled as a magnetic spheroidal particle which has a magnetic moment normal to the particle axis; such a particle may typically be a hematite particle. In the present study, an external magnetic field is applied in the direction normal to the shear plane of a simple shear flow. The basic equation of the orientational distribution function has been derived from the balance of torques and solved numerically. The results obtained here are summarized as follows. Although the orientational distribution function shows a sharp peak in the shear flow direction for a very strong magnetic field, such a peak is not restricted to the field direction alone, but continues in every direction of the shear plane. This is due to the characteristic particle motion that the particle can rotate around the axis of the magnetic moment in the shear plane, although the magnetic moment nearly points to the magnetic field direction. This particle motion in the shear plane causes negative values of the viscosity due to the magnetic field. The viscosity decreases, attains a minimum value, and then converges to zero as the field strength increases. Additionally, the diffusion coefficient is significantly influenced by such characteristic particle motion in the shear plane for a strong magnetic field.

  10. Exoplanetary Habitability: Radiation, Particles, Plasmas, and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Guedel, Manuel

    2017-05-01

    Exoplanetary environments are made of an intricate mixture of plasmas, radiation, energetic particles, winds, and magnetic fields; these all play crucial roles for the structure and evolution of planetary atmospheres and the formation and possibly protection of planetary habitable environments. Interactions between planetary atmospheric particles and solar-wind ions result in various non-thermal loss mechanisms that are relevant for atmospheric erosion; energetic neutral atoms from charge exchange interactions can even deposit their energy in upper atmospheres and contribute to their heating. We present results from simulations and discuss the effects of magnetospheric obstacles, the resulting atmospheric loss rates and neutral hydrogen clouds detectable through Ly a absorption. We also present estimates for secondary X-ray production as a result of charge exchange interactions. Combined modeling of expanding hydrogen clouds resulting from such interactions are now also used to estimate magnetic moments of exoplanets. We emphasize that the interplay between all these mechanisms, also including radiation-driven thermal escape of atmospheres, changes with stellar evolution; for a full understanding of the state of an observed exoplanetary atmosphere, the long-term evolution of the host star, in particular its rotation and magnetic activity, needs to be studied. In this respect, radio astronomy plays a central role as it sensitively probes these environments and their constituents in time, such as magnetospheres, high-energy particles, stellar magnetic fields and winds, and therefore contributes to our understanding of the emergence of habitable planetary environments.

  11. Reflected Charged Particle Populations around Dipolar Lunar Magnetic Anomalies

    NASA Astrophysics Data System (ADS)

    Deca, Jan; Divin, Andrey

    2016-10-01

    In this work we analyze and compare the reflected particle populations for both a horizontal and a vertical dipole model embedded in the lunar surface, representing the solar wind interaction with two different lunar magnetic anomaly (LMA) structures. Using the 3D full-kinetic electromagnetic code iPic3D, in combination with a test-particle approach to generate particle trajectories, we focus on the ion and electron dynamics. Whereas the vertical model electrostatically reflects ions upward under both near-parallel and near-perpendicular angles with respect to the lunar surface, the horizontal model only has a significant shallow component. Characterizing the electron dynamics, we find that the interplay of the mini-magnetosphere electric and magnetic fields is capable of temporarily trapping low-energy electrons and possibly ejecting them upstream. Our results are in agreement with recent high-resolution observations. Low- to medium-altitude ion and electron observations might be excellent indicators to complement orbital magnetic field measurements and better uncover the underlying magnetic field structure. The latter is of particular importance in defining the correlation between LMAs and lunar swirls, and further testing the solar wind shielding hypothesis for albedo markings due to space weathering. Observing more reflected ions does not necessarily point to the existence of a mini-magnetosphere.

  12. Development of training modules for magnetic particle inspection

    NASA Astrophysics Data System (ADS)

    Kosaka, Daigo; Eisenmann, David J.; Enyart, Darrel; Nakagawa, Norio; Lo, Chester; Orman, David

    2015-03-01

    Magnetic particle inspection (MPI) is a nondestructive evaluation technique used with ferromagnetic materials. Although the application of this method may appear straightforward, MPI combines the complicated nature of electromagnetics, metallurgical material effects, fluid-particle motion dynamics, and physiological human factors into a single inspection. To fully appreciate industry specifications such as ASTM E-1444, users should develop a basic understanding of the many factors that are involved in MPI. We have developed a series of MPI training modules that are aimed at addressing this requirement. The modules not only offer qualitative explanations, but also show quantitative explanations in terms of measurement and numerical simulation data in many instances. There are five modules in all. Module ♯1 shows characteristics of waveforms and magnetizing methods. This allows MPI practitioners to make optimum choice of waveform and magnetizing method. Module ♯2 explains how material properties relate to the magnetic characteristics. Module ♯3 shows the strength of the excitation field or the flux leakage from a crack and how it compares to the detectability of a crack by MPI. Module ♯4 shows how specimen status may influence defect detection. Module ♯5 shows the effects of particle properties on defect detection.

  13. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.

  14. Particle acceleration in laser-driven magnetic reconnection

    DOE PAGES

    Totorica, S. R.; Abel, T.; Fiuza, F.

    2017-04-03

    Particle acceleration induced by magnetic reconnection is thought to be a promising candidate for producing the nonthermal emissions associated with explosive phenomena such as solar flares, pulsar wind nebulae, and jets from active galactic nuclei. Laboratory experiments can play an important role in the study of the detailed microphysics of magnetic reconnection and the dominant particle acceleration mechanisms. We have used two- and three-dimensional particle-in-cell simulations to study particle acceleration in high Lundquist number reconnection regimes associated with laser-driven plasma experiments. For current experimental conditions, we show that nonthermal electrons can be accelerated to energies more than an order ofmore » magnitude larger than the initial thermal energy. The nonthermal electrons gain their energy mainly from the reconnection electric field near the X points, and particle injection into the reconnection layer and escape from the finite system establish a distribution of energies that resembles a power-law spectrum. Energetic electrons can also become trapped inside the plasmoids that form in the current layer and gain additional energy from the electric field arising from the motion of the plasmoid. We compare simulations for finite and infinite periodic systems to demonstrate the importance of particle escape on the shape of the spectrum. Based on our findings, we provide an analytical estimate of the maximum electron energy and threshold condition for observing suprathermal electron acceleration in terms of experimentally tunable parameters. We also discuss experimental signatures, including the angular distribution of the accelerated particles, and construct synthetic detector spectra. Finally, these results open the way for novel experimental studies of particle acceleration induced by reconnection.« less

  15. Particle acceleration in laser-driven magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Totorica, S. R.; Abel, T.; Fiuza, F.

    2017-04-01

    Particle acceleration induced by magnetic reconnection is thought to be a promising candidate for producing the nonthermal emissions associated with explosive phenomena such as solar flares, pulsar wind nebulae, and jets from active galactic nuclei. Laboratory experiments can play an important role in the study of the detailed microphysics of magnetic reconnection and the dominant particle acceleration mechanisms. We have used two- and three-dimensional particle-in-cell simulations to study particle acceleration in high Lundquist number reconnection regimes associated with laser-driven plasma experiments. For current experimental conditions, we show that nonthermal electrons can be accelerated to energies more than an order of magnitude larger than the initial thermal energy. The nonthermal electrons gain their energy mainly from the reconnection electric field near the X points, and particle injection into the reconnection layer and escape from the finite system establish a distribution of energies that resembles a power-law spectrum. Energetic electrons can also become trapped inside the plasmoids that form in the current layer and gain additional energy from the electric field arising from the motion of the plasmoid. We compare simulations for finite and infinite periodic systems to demonstrate the importance of particle escape on the shape of the spectrum. Based on our findings, we provide an analytical estimate of the maximum electron energy and threshold condition for observing suprathermal electron acceleration in terms of experimentally tunable parameters. We also discuss experimental signatures, including the angular distribution of the accelerated particles, and construct synthetic detector spectra. These results open the way for novel experimental studies of particle acceleration induced by reconnection.

  16. Synthesis, photophysical analysis, and in vitro cytotoxicity assessment of the multifunctional (magnetic and luminescent) core@shell nanomaterial based on lanthanide-doped orthovanadates

    NASA Astrophysics Data System (ADS)

    Szczeszak, Agata; Ekner-Grzyb, Anna; Runowski, Marcin; Mrówczyńska, Lucyna; Grzyb, Tomasz; Lis, Stefan

    2015-03-01

    Rare earths orthovanadates (REVO4) doped with luminescent lanthanide ions (Ln3+) play an important role as promising light-emitting materials. Gadolinium orthovanadate exhibits strong absorption of ultraviolet radiation and as a matrix doped with Eu3+ ions is well known for its efficient and intense red emission, induced by energy transfer from the VO4 3- groups to Eu3+ ions. In the presented study, Fe3O4@SiO2@GdVO4:Eu3+ 5 % nanomaterial was investigated. The core@shell structures demonstrate attractive properties, such as higher thermal stability, enhanced water solubility, increased optical response, higher luminescence, longer decay times, and magnetic properties. Silica coating may protect nanocrystals from the surrounding environment. Therefore, such silica-covered nanoparticles (NPs) are successfully utilized in biomedical research. Multifunctional magnetic nanophosphors are very interesting due to their potential biomedical applications such as magnetic resonance imaging, hyperthermic treatment, and drug delivery. Therefore, the aim of our study was to investigate photophysical, chemical, and biological properties of multifunctional REVO4 doped with Ln3+. Moreover, the studied NPs did not affect erythrocyte sedimentation rate, cell membrane permeability, and morphology of human red blood cells.

  17. Multifunctional MWCNTs-NaGdF4:Yb(3+),Er(3+),Eu(3+) hybrid nanocomposites with potential dual-mode luminescence, magnetism and photothermal properties.

    PubMed

    Liu, Wenjia; Liu, Guixia; Dong, Xiangting; Wang, Jinxian; Yu, Wensheng

    2015-09-21

    A novel dual-mode luminescence multifunctional hybrid nanomaterial has been successfully prepared by coating the NaGdF4:Yb(3+),Er(3+),Eu(3+) nanoparticles (NPs) on the surface of MWCNTs. The as-synthesized MWCNTs-NaGdF4:Yb(3+),Er(3+),Eu(3+) nanocomposites (NCs) can simultaneously take advantage of both magnetic and optical properties of NaGdF4:Yb(3+),Er(3+),Eu(3+) NPs and the photothermal conversion property of MWCNTs. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), vibrating sample magnetometry (VSM), UV-Vis absorption, luminescence spectroscopy and fluorescence lifetime measurements. Meanwhile, the photothermal conversion was examined under irradiation with a 980 nm laser. The results show that the MWCNTs-NaGdF4:Yb(3+),Er(3+),Eu(3+) NCs have preferably magnetic, dual-mode (up- and down-conversion) luminescence and photothermal properties. And the NCs have good biocompatibility, low toxicity and up-conversion luminescence for cell imaging. As a consequence, the dual-mode luminescence multifunctional nanomaterials have potential applications in environmental science fields and clinical fields for magnetic resonance imaging, fluorescence imaging, photothermal therapy, bioseparation and targeted drug delivery.

  18. Multifunctional Fe3O4/TaO(x) core/shell nanoparticles for simultaneous magnetic resonance imaging and X-ray computed tomography.

    PubMed

    Lee, Nohyun; Cho, Hye Rim; Oh, Myoung Hwan; Lee, Soo Hong; Kim, Kangmin; Kim, Byung Hyo; Shin, Kwangsoo; Ahn, Tae-Young; Choi, Jin Woo; Kim, Young-Woon; Choi, Seung Hong; Hyeon, Taeghwan

    2012-06-27

    Multimodal imaging is highly desirable for accurate diagnosis because it can provide complementary information from each imaging modality. In this study, a sol-gel reaction of tantalum(V) ethoxide in a microemulsion containing Fe(3)O(4) nanoparticles (NPs) was used to synthesize multifunctional Fe(3)O(4)/TaO(x) core/shell NPs, which were biocompatible and exhibited a prolonged circulation time. When the NPs were intravenously injected, the tumor-associated vessel was observed using computed tomography (CT), and magnetic resonance imaging (MRI) revealed the high and low vascular regions of the tumor.

  19. Fe-based nanoparticles as tunable magnetic particle hyperthermia agents

    NASA Astrophysics Data System (ADS)

    Simeonidis, K.; Martinez-Boubeta, C.; Balcells, Ll.; Monty, C.; Stavropoulos, G.; Mitrakas, M.; Matsakidou, A.; Vourlias, G.; Angelakeris, M.

    2013-09-01

    Magnetic hyperthermia, an alternative anticancer modality, is influenced by the composition, size, magnetic properties, and degree of aggregation of the corresponding nanoparticle heating agents. Here, we attempt to evaluate the AC magnetic field heating response of Fe-based nanoparticles prepared by solar physical vapor deposition, a facile, high-yield methodology. Nanoparticle systems were grown by evaporating targets of Fe and Fe3O4 with different stoichiometry. It is observed that Fe3O4 nanoparticles residing in the magnetic monodomain region exhibit increased heating efficiency together with high specific loss power values above 0.9 kW/g at 765 kHz and 24 kA/m, compared with that of 0.1 kW/g for zero-valent Fe nanoparticles under the same conditions. The enhanced performance of Fe3O4 nanoparticles under the range of field explored (12-24 kA/m) may be attributed to the activation of a magnetic hysteresis loss mechanism when the applied AC field surpasses the particle anisotropy field at H ≥ 0.5HA. This is also illustrated by the smaller coercivity of Fe3O4 nanoparticles compared with that of their Fe counterparts. Therefore, understanding the interconnection between intrinsic parameters (composition, size and magnetic properties), the dosage (concentration, volume) and the intensity and frequency of the AC field can lead to essential design guidelines for in vitro, in vivo, and clinical applications of magnetic nanoparticles for hyperthermia.

  20. Magnetic Particle Detection (MPD) for In-Vitro Dosimetry

    SciTech Connect

    Minard, Kevin R.; Littke, Matthew H.; Wang, Wei; Xiong, Yijia; Teeguarden, Justin G.; Thrall, Brian D.

    2013-05-15

    In-vitro tests intended for evaluating the potential health effects of magnetic nanoparticles generally require an accurate measure of cell dose to promote the consistent use and interpretation of biological response. Here, a simple low-cost inductive sensor is developed for quickly determining the total mass of magnetic nanoparticles that is bound to the plasma membrane and internalized by cultured cells. Sensor operation exploits an oscillating magnetic field (f0 = 250 kHz) together with the nonlinear response of particle magnetization to generate a harmonic signal (f3 = 750 kHz) that varies linearly with particulate mass (R2 > 0.999) and is sufficiently sensitive for detecting ~ 100 ng of carboxyl-coated iron-oxide nanoparticles in under a second. When exploited for measuring receptor-mediated nanoparticle uptake in RAW 264.7 macrophages, results show that achieved dosimetry performance is comparable with relatively expensive analytical techniques that are much more time-consuming and labor-intensive to perform. Described sensing is therefore potentially better suited for low-cost in-vitro assays that require fast and quantitative magnetic particle detection.

  1. Pose control of the chain composed of magnetic particles using external uniform and gradient magnetic fields

    NASA Astrophysics Data System (ADS)

    Zhou, J. F.; Shao, C. L.; Gu, B. Q.

    2016-01-01

    Magnetic particles (MPs) are known to respond to a magnetic field and can be moved by magnetic force, which make them good carriers in bioengineering and pharmaceutical engineering. In this paper, a pose control method for the straight chain composed of MPs is proposed, and the chain with one pose can be moved to another position with another pose using alternately employed uniform and gradient magnetic fields. Based on computer simulations, it is revealed that in the uniform magnetic field, the MPs form a straight chain with the same separation space along the field lines, and once the uniform magnetic field rotates, the chain also rotates with the field. In the gradient magnetic field, the MPs move toward the higher field so that the translation of the chain can be realized. The simulation results indicate that while the uniform magnetic field is rotating, there exists certain hysteresis between the chain and the field, and the chain is not straight anymore. So the uniform magnetic field should rest at the target angle for a period to make the chain fully relax to be straight. For nanoMP, its magnetic moment directly determines the gradient magnetic force which is much smaller than the dipole-dipole force among MPs. Therefore, the translation of the chain is much more time-consuming than rotation. To enlarge the translational velocity, it is suggested to increase the size of MPs or the magnetic field gradient.

  2. Magnetic particle hyperthermia--a promising tumour therapy?

    PubMed

    Dutz, Silvio; Hergt, Rudolf

    2014-11-14

    We present a critical review of the state of the art of magnetic particle hyperthermia (MPH) as a minimal invasive tumour therapy. Magnetic principles of heating mechanisms are discussed with respect to the optimum choice of nanoparticle properties. In particular, the relation between superparamagnetic and ferrimagnetic single domain nanoparticles is clarified in order to choose the appropriate particle size distribution and the role of particle mobility for the relaxation path is discussed. Knowledge of the effect of particle properties for achieving high specific heating power provides necessary guidelines for development of nanoparticles tailored for tumour therapy. Nanoscale heat transfer processes are discussed with respect to the achievable temperature increase in cancer cells. The need to realize a well-controlled temperature distribution in tumour tissue represents the most serious problem of MPH, at present. Visionary concepts of particle administration, in particular by means of antibody targeting, are far from clinical practice, yet. On the basis of current knowledge of treating cancer by thermal damaging, this article elucidates possibilities, prospects, and challenges for establishment of MPH as a standard medical procedure.

  3. Magnetic particle hyperthermia—a promising tumour therapy?

    NASA Astrophysics Data System (ADS)

    Dutz, Silvio; Hergt, Rudolf

    2014-11-01

    We present a critical review of the state of the art of magnetic particle hyperthermia (MPH) as a minimal invasive tumour therapy. Magnetic principles of heating mechanisms are discussed with respect to the optimum choice of nanoparticle properties. In particular, the relation between superparamagnetic and ferrimagnetic single domain nanoparticles is clarified in order to choose the appropriate particle size distribution and the role of particle mobility for the relaxation path is discussed. Knowledge of the effect of particle properties for achieving high specific heating power provides necessary guidelines for development of nanoparticles tailored for tumour therapy. Nanoscale heat transfer processes are discussed with respect to the achievable temperature increase in cancer cells. The need to realize a well-controlled temperature distribution in tumour tissue represents the most serious problem of MPH, at present. Visionary concepts of particle administration, in particular by means of antibody targeting, are far from clinical practice, yet. On the basis of current knowledge of treating cancer by thermal damaging, this article elucidates possibilities, prospects, and challenges for establishment of MPH as a standard medical procedure.

  4. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy

    NASA Astrophysics Data System (ADS)

    Hergt, Rudolf; Dutz, Silvio; Müller, Robert; Zeisberger, Matthias

    2006-09-01

    Loss processes in magnetic nanoparticles are discussed with respect to optimization of the specific loss power (SLP) for application in tumour hyperthermia. Several types of magnetic iron oxide nanoparticles representative for different preparation methods (wet chemical precipitation, grinding, bacterial synthesis, magnetic size fractionation) are the subject of a comparative study of structural and magnetic properties. Since the specific loss power useful for hyperthermia is restricted by serious limitations of the alternating field amplitude and frequency, the effects of the latter are investigated experimentally in detail. The dependence of the SLP on the mean particle size is studied over a broad size range from superparamagnetic up to multidomain particles, and guidelines for achieving large SLP under the constraints valid for the field parameters are derived. Particles with the mean size of 18 nm having a narrow size distribution proved particularly useful. In particular, very high heating power may be delivered by bacterial magnetosomes, the best sample of which showed nearly 1 kW g-1 at 410 kHz and 10 kA m-1. This value may even be exceeded by metallic magnetic particles, as indicated by measurements on cobalt particles.

  5. Inducing Lift on Spherical Particles by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Grugel, Richard N.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Gravity induced sedimentation of suspensions is a serious drawback to many materials and biotechnology processes, a factor that can, in principle, be overcome by utilizing an opposing Lorentz body force. In this work we demonstrate the utility of employing a traveling magnetic field (TMF) to induce a lifting force on particles dispersed in the fluid. Theoretically, a model has been developed to ascertain the net force, induced by TMF, acting on a spherical body as a function of the fluid medium's electrical conductivity and other parameters. Experimentally, the model is compared to optical observations of particle motion in the presence of TMF.

  6. Inducing Lift on Spherical Particles by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Grugel, Richard N.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Gravity induced sedimentation of suspensions is a serious drawback to many materials and biotechnology processes, a factor that can, in principle, be overcome by utilizing an opposing Lorentz body force. In this work we demonstrate the utility of employing a traveling magnetic field (TMF) to induce a lifting force on particles dispersed in the fluid. Theoretically, a model has been developed to ascertain the net force, induced by TMF, acting on a spherical body as a function of the fluid medium's electrical conductivity and other parameters. Experimentally, the model is compared to optical observations of particle motion in the presence of TMF.

  7. Inducing Lift on Spherical Particles by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Grugel, Richard N.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Gravity induced sedimentation of suspensions is a serious drawback to many materials and biotechnology processes, a factor that can, in principle, be overcome by utilizing an opposing Lorentz body force. In this work we demonstrate the utility of employing a traveling magnetic field (TMF) to induce a lifting force on particles dispersed in the fluid. Theoretically, a model has been developed to ascertain the net force, induced by TMF, acting on a spherical body as a function of the fluid medium's electrical conductivity and other parameters. Experimentally, the model is compared to optical observations of particle motion in the presence of TMF.

  8. Structure organization and magnetic properties of microscale ferrogels: The effect of particle magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Ryzhkov, Aleksandr V.; Melenev, Petr V.; Balasoiu, Maria; Raikher, Yuriy L.

    2016-08-01

    The equilibrium structure and magnetic properties of a ferrogel object of small size (microferrogel(MFG)) are investigated by coarse-grained molecular dynamics. As a generic model of a microferrogel (MFG), a sample with a lattice-like mesh is taken. The solid phase of the MFG consists of magnetic (e.g., ferrite) nanoparticles which are mechanically linked to the mesh making some part of its nodes. Unlike previous models, the finite uniaxial magnetic anisotropy of the particles, as it is the case for real ferrogels, is taken into account. For comparison, two types of MFGs are considered: MFG-1, which dwells in virtually non-aggregated state independently of the presence of an external magnetic field, and MFG-2, which displays aggregation yet under zero field. The structure states of the samples are analyzed with the aid of angle-resolved radial distribution functions and cluster counts. The results reveal the crucial role of the matrix elasticity on the structure organization as well as on magnetization of both MFGs. The particle anisotropy, which plays insignificant role in MFG-1 (moderate interparticle magnetodipole interaction), becomes an important factor in MFG-2 (strong interaction). There, the restrictions imposed on the particle angular freedom by the elastic matrix result in notable diminution of the particle chain lengths as well as the magnetization of the sample. The approach proposed enables one to investigate a large variety of MFGs, including those of capsule type and to purposefully choose the combination of their magnetoelastic parameters.

  9. Structure organization and magnetic properties of microscale ferrogels: The effect of particle magnetic anisotropy.

    PubMed

    Ryzhkov, Aleksandr V; Melenev, Petr V; Balasoiu, Maria; Raikher, Yuriy L

    2016-08-21

    The equilibrium structure and magnetic properties of a ferrogel object of small size (microferrogel(MFG)) are investigated by coarse-grained molecular dynamics. As a generic model of a microferrogel (MFG), a sample with a lattice-like mesh is taken. The solid phase of the MFG consists of magnetic (e.g., ferrite) nanoparticles which are mechanically linked to the mesh making some part of its nodes. Unlike previous models, the finite uniaxial magnetic anisotropy of the particles, as it is the case for real ferrogels, is taken into account. For comparison, two types of MFGs are considered: MFG-1, which dwells in virtually non-aggregated state independently of the presence of an external magnetic field, and MFG-2, which displays aggregation yet under zero field. The structure states of the samples are analyzed with the aid of angle-resolved radial distribution functions and cluster counts. The results reveal the crucial role of the matrix elasticity on the structure organization as well as on magnetization of both MFGs. The particle anisotropy, which plays insignificant role in MFG-1 (moderate interparticle magnetodipole interaction), becomes an important factor in MFG-2 (strong interaction). There, the restrictions imposed on the particle angular freedom by the elastic matrix result in notable diminution of the particle chain lengths as well as the magnetization of the sample. The approach proposed enables one to investigate a large variety of MFGs, including those of capsule type and to purposefully choose the combination of their magnetoelastic parameters.

  10. Arnold Diffusion of Charged Particles in ABC Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Luque, Alejandro; Peralta-Salas, Daniel

    2017-06-01

    We prove the existence of diffusing solutions in the motion of a charged particle in the presence of ABC magnetic fields. The equations of motion are modeled by a 3DOF Hamiltonian system depending on two parameters. For small values of these parameters, we obtain a normally hyperbolic invariant manifold and we apply the so-called geometric methods for a priori unstable systems developed by A. Delshams, R. de la Llave and T.M. Seara. We characterize explicitly sufficient conditions for the existence of a transition chain of invariant tori having heteroclinic connections, thus obtaining global instability (Arnold diffusion). We also check the obtained conditions in a computer-assisted proof. ABC magnetic fields are the simplest force-free-type solutions of the magnetohydrodynamics equations with periodic boundary conditions, and can be considered as an elementary model for the motion of plasma-charged particles in a tokamak.

  11. Three-dimensional interplanetary stream magnetism and energetic particle motion

    NASA Technical Reports Server (NTRS)

    Barouch, E.; Burlaga, L. F.

    1976-01-01

    Cosmic rays interact with mesoscale configurations of the interplanetary magnetic field. A technique is presented for calculating such configurations in the inner solar system, which are due to streams and source conditions near the sun, and maps of magnetic field are constructed for some plausible stream and source conditions. One effect of these mesoscale configurations on galactic cosmic rays is shown to be an out-of-the-ecliptic gradient drift sufficient to explain Forbush decreases. The effects on solar energetic particles include small polar drifts due to the field gradients and a possibly large modification of the time-intensity profiles and anisotropy characteristics due to the formation of mirror configurations in space. If a diffusion model is applicable to solar particles, the true diffusion coefficient will be masked by the effects of streams. A conceptual model which incorporates these ideas and those of several other models is presented.

  12. Three-dimensional interplanetary stream magnetism and energetic particle motion

    NASA Technical Reports Server (NTRS)

    Barouch, E.; Burlaga, L. F.

    1976-01-01

    Cosmic rays interact with mesoscale configurations of the interplanetary magnetic field. A technique is presented for calculating such configurations in the inner solar system, which are due to streams and source conditions near the sun, and maps of magnetic field are constructed for some plausible stream and source conditions. One effect of these mesoscale configurations on galactic cosmic rays is shown to be an out-of-the-ecliptic gradient drift sufficient to explain Forbush decreases. The effects on solar energetic particles include small polar drifts due to the field gradients and a possibly large modification of the time-intensity profiles and anisotropy characteristics due to the formation of mirror configurations in space. If a diffusion model is applicable to solar particles, the true diffusion coefficient will be masked by the effects of streams. A conceptual model which incorporates these ideas and those of several other models is presented.

  13. On the energization of charged particles by fast magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Sharma, Rohit; Mitra, Dhrubaditya; Oberoi, Divya

    2017-09-01

    We study the role of turbulence in magnetic reconnection, within the framework of magnetohydrodynamics, using three-dimensional direct numerical simulations. For small turbulent intensity, we find that the reconnection rate obeys Sweet-Parker scaling. For large enough turbulent intensity, reconnection rate departs significantly from Sweet-Parker behaviour, becomes almost a constant as a function of the Lundquist number. We further study energization of test-particles in the same set-up. We find that the speed of the energized particles obeys a Maxwellian distribution, whose variance also obeys Sweet-Parker scaling for small turbulent intensity but depends weakly on the Lundquist number for large turbulent intensity. Furthermore, the variance is found to increase with the strength of the reconnecting magnetic field.

  14. Visual Basic VPython Interface: Charged Particle in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Prayaga, Chandra

    2006-12-01

    A simple Visual Basic (VB) to VPython interface is described and illustrated with the example of a charged particle in a magnetic field. This interface allows data to be passed to Python through a text file read by Python. The first component of the interface is a user-friendly data entry screen designed in VB, in which the user can input values of the charge, mass, initial position and initial velocity of the particle, and the magnetic field. Next, a command button is coded to write these values to a text file. Another command button starts the VPython program, which reads the data from the text file, numerically solves the equation of motion, and provides the 3d graphics animation. Students can use the interface to run the program several times with different data and observe changes in the motion.

  15. Particle diffusion in tokamaks with partially destroyed magnetic surfaces

    SciTech Connect

    Boozer, A.H.; White, R.B.

    1982-02-01

    A Hamiltonian formalism is developed for the drift orbit trajectories of particles in toroidal systems in the presence of stochastic fields. The equations of motion are integrated numerically to investigate the modification of neoclassical diffusion in a Tokamak due to the onset of stochasticity. Quasilinear diffusion is observed for fields with well developed stochasticity. A significant increase in the diffusion coefficient is observed below the stochastic threshold for electrons, whereas ions are typically not affected until the magnetic field has become quite stochastic.

  16. Particle Simulations of Ion Rings for Magnetic Fusion.

    NASA Astrophysics Data System (ADS)

    Lyster, Peter Michael

    1987-09-01

    This thesis contains a numerical study of the dynamics of axis encircling charged particles in ion rings and layers. Part of this work deals with the coalescence of ion rings to form field reversed rings, which may be useful for Compact Torus magnetic fusion reactors. The coalescence of weak ion rings with Compact Toroids is also investigated. This is important because a component of energetic particles may help to maintain the flux or stabilize these configurations against a number of macroscopic magnetohydrodynamic instabilities. Several different types of particle codes are used. RINGA and CIDER are two and one half-dimensional codes in cylindrical axisymmetric geometry. For the RINGA code, a simple Ohm's law is used for modeling a resistive background plasma. For CIDER, the massless electron momentum equation is used for modeling a conductive background plasma. In a resistive plasma, ring coalescence can be achieved if the initial relative translational velocity is not excessive, and if the plasma conductivity is chosen to maximize the dissipation of ring energy. A theoretical and computational study is made of a mechanism by which ring translational energy is transferred to Alfven waves in a conductive plasma. A new collective phenomenon is discussed, whereby the merging of rings is improved if they have stronger initial self fields. A study is made of the coalescence of strong field-reversed ion rings in highly conductive plasmas, in which it is found that magnetic field line reconnection is an important process. Finally, a study of the magnetic compression of ion layers in conductive plasmas is presented. BAGSHAW, a one-dimensional particle code which treats the background plasma in the two fluid approximation, was developed for this purpose. Compression on a timescale which is comparable with the Alfven transit time may create considerable transients in the system. In a one-dimensional system, the plasma return current does not cancel the increase in the

  17. Genetic Engineering of Single-Domain Magnetic Particles

    DTIC Science & Technology

    1990-02-14

    synthesize membrane-bound, nanometer-sized, single- domain magnetic particles known as magnetosomes. Because these bacteria have complex nutritional ...the presence of MNIS. Plasmid analysis indicated that all overlaved ,kith 3 ml soft aizar seeded with strain CL142. The clones carried recombinant...mutants of E. co/i and deoxyribonucleic acid damage in Escher/ chia co/i. MAicrobiol other bacteria. Ann Rev Genet 7:i67 -86 Rev 48:60 -93 Goldberg- 1

  18. Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer.

    PubMed

    Melancon, Marites P; Lu, Wei; Zhong, Meng; Zhou, Min; Liang, Gan; Elliott, Andrew M; Hazle, John D; Myers, Jeffrey N; Li, Chun; Stafford, R Jason

    2011-10-01

    Image-guided thermal ablation of tumors is becoming a more widely accepted minimally invasive alternative to surgery for patients who are not good surgical candidates, such as patients with advanced head and neck cancer. In this study, multifunctional superparamagnetic iron oxide coated with gold nanoshell (SPIO@Au NS) that have both optical and magnetic properties was conjugated with the targeting agent, C225 monoclonal antibody, against epidermal growth factor receptor (EGFR). C225-SPIO@Au NS have an average a diameter of 82 ± 4.4 nm, contain 142 ± 15 antibodies per nanoshell, have an absorption peak in the near infrared (~800 nm), and have transverse relaxivity (r(2)) of 193 and 353 mM(-1) s(-1) versus Feridex™ of 171 and 300 mM(-1) s(-1), using 1.5 T and 7 T MR scanners, respectively. Specific targeting of the synthesized C225-SPIO@Au NS was tested in vitro using A431 cells and oral cancer cells, FaDu, OSC19, and HN5, all of which overexpress EGFR. Selective binding was achieved using C225-SPIO@Au NS but not with the non-targeting PEG-SPIO@Au NS and blocking group (excess of C225 + C225-SPIO@Au NS). In vivo biodistribution on mice bearing A431 tumors also showed selective targeting of C225-SPIO@Au NS compared with the non-targeting and blocking groups. The selective photothermal ablation of the nanoshells shows that without laser treatment there were no cell death and among the groups that were treated with laser at a power of 36 W/cm(2) for 3 min, only the cells treated with C225-SPIO@Au NS had cell killing (p < 0.001). In summary, successful synthesis and characterization of targeted C225-SPIO@Au NS demonstrating both superparamagnetic and optical properties has been achieved. We have shown both in vitro and in vivo that these nanoshells are MR-active and can be selectively heated up for simultaneous imaging and photothermal ablation therapy.

  19. Magnetic particle imaging: current developments and future directions.

    PubMed

    Panagiotopoulos, Nikolaos; Duschka, Robert L; Ahlborg, Mandy; Bringout, Gael; Debbeler, Christina; Graeser, Matthias; Kaethner, Christian; Lüdtke-Buzug, Kerstin; Medimagh, Hanne; Stelzner, Jan; Buzug, Thorsten M; Barkhausen, Jörg; Vogt, Florian M; Haegele, Julian

    2015-01-01

    Magnetic particle imaging (MPI) is a novel imaging method that was first proposed by Gleich and Weizenecker in 2005. Applying static and dynamic magnetic fields, MPI exploits the unique characteristics of superparamagnetic iron oxide nanoparticles (SPIONs). The SPIONs' response allows a three-dimensional visualization of their distribution in space with a superb contrast, a very high temporal and good spatial resolution. Essentially, it is the SPIONs' superparamagnetic characteristics, the fact that they are magnetically saturable, and the harmonic composition of the SPIONs' response that make MPI possible at all. As SPIONs are the essential element of MPI, the development of customized nanoparticles is pursued with the greatest effort by many groups. Their objective is the creation of a SPION or a conglomerate of particles that will feature a much higher MPI performance than nanoparticles currently available commercially. A particle's MPI performance and suitability is characterized by parameters such as the strength of its MPI signal, its biocompatibility, or its pharmacokinetics. Some of the most important adjuster bolts to tune them are the particles' iron core and hydrodynamic diameter, their anisotropy, the composition of the particles' suspension, and their coating. As a three-dimensional, real-time imaging modality that is free of ionizing radiation, MPI appears ideally suited for applications such as vascular imaging and interventions as well as cellular and targeted imaging. A number of different theories and technical approaches on the way to the actual implementation of the basic concept of MPI have been seen in the last few years. Research groups around the world are working on different scanner geometries, from closed bore systems to single-sided scanners, and use reconstruction methods that are either based on actual calibration measurements or on theoretical models. This review aims at giving an overview of current developments and future directions

  20. Magnetic Field Generation and Particle Energization in Relativistic Shear Flows

    NASA Astrophysics Data System (ADS)

    Liang, Edison; Boettcher, Markus; Smith, Ian

    2012-10-01

    We present Particle-in-Cell simulation results of magnetic field generation by relativistic shear flows in collisionless electron-ion (e-ion) and electron-positron (e+e-) plasmas. In the e+e- case, small current filaments are first generated at the shear interface due to streaming instabilities of the interpenetrating particles from boundary perturbations. Such current filaments create transverse magnetic fields which coalesce into larger and larger flux tubes with alternating polarity, eventually forming ordered flux ropes across the entire shear boundary layer. Particles are accelerated across field lines to form power-law tails by semi-coherent electric fields sustained by oblique Langmuir waves. In the e-ion case, a single laminar slab of transverse flux rope is formed at the shear boundary, sustained by thin current sheets on both sides due to different drift velocities of electrons and ions. The magnetic field has a single polarity for the entire boundary layer. Electrons are heated to a fraction of the ion energy, but there is no evidence of power-law tail forming in this case.

  1. Viscous properties of ferrofluids containing both micrometer-size magnetic particles and fine needle-like particles

    NASA Astrophysics Data System (ADS)

    Ido, Yasushi; Nishida, Hitoshi; Iwamoto, Yuhiro; Yokoyama, Hiroki

    2017-06-01

    Ferrofluids containing both micrometer-size spherical magnetic particles and nanometer-size needle-like nonmagnetic hematite particles were newly produced. Average length of long axis of the needle-like nonmagnetic particles was 194 nm and the aspect ratio was 8.3. Shear stress and viscosity were measured using the rheometer with the additional equipment for viscosity measurements in the presence of magnetic field. When the total volume fraction of particles in the fluid is constant (0.30), there is the specific mixing ratio of the particles to increase viscosity of the fluid drastically in the absence of magnetic field due to the percolation phenomenon. The fluid of the specific mixing ratio shows solid-like behavior even in the absence of magnetic field. Mixing the needle-like nonmagnetic particles causes strong yield stress and strong viscous force in the presence of magnetic field.

  2. Particle acceleration and plasma dynamics during magnetic reconnection in the magnetically dominated regime

    DOE PAGES

    Guo, Fan; Liu, Yi -Hsin; Daughton, William; ...

    2015-06-17

    Magnetic reconnection is thought to be the driver for many explosive phenomena in the universe. The energy release and particle acceleration during reconnection have been proposed as a mechanism for producing high-energy emissions and cosmic rays. We carry out two- and three-dimensional (3D) kinetic simulations to investigate relativistic magnetic reconnection and the associated particle acceleration. The simulations focus on electron–positron plasmas starting with a magnetically dominated, force-free current sheet (σ ≡ B2 / (4πnemec2) >> 1). For this limit, we demonstrate that relativistic reconnection is highly efficient at accelerating particles through a first-order Fermi process accomplished by the curvature driftmore » of particles along the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra f α (γ - 1)-p and approaches p = 1 for sufficiently large σ and system size. Eventually most of the available magnetic free energy is converted into nonthermal particle kinetic energy. An analytic model is presented to explain the key results and predict a general condition for the formation of power-law distributions. The development of reconnection in these regimes leads to relativistic inflow and outflow speeds and enhanced reconnection rates relative to nonrelativistic regimes. In the 3D simulation, the interplay between secondary kink and tearing instabilities leads to strong magnetic turbulence, but does not significantly change the energy conversion, reconnection rate, or particle acceleration. This paper suggests that relativistic reconnection sites are strong sources of nonthermal particles, which may have important implications for a variety of high-energy astrophysical problems.« less

  3. Particle Acceleration and Plasma Dynamics during Magnetic Reconnection in the Magnetically Dominated Regime

    NASA Astrophysics Data System (ADS)

    Guo, Fan; Liu, Yi-Hsin; Daughton, William; Li, Hui

    2015-06-01

    Magnetic reconnection is thought to be the driver for many explosive phenomena in the universe. The energy release and particle acceleration during reconnection have been proposed as a mechanism for producing high-energy emissions and cosmic rays. We carry out two- and three-dimensional (3D) kinetic simulations to investigate relativistic magnetic reconnection and the associated particle acceleration. The simulations focus on electron-positron plasmas starting with a magnetically dominated, force-free current sheet (σ \\equiv {B}2/(4π {n}e{m}e{c}2)\\gg 1). For this limit, we demonstrate that relativistic reconnection is highly efficient at accelerating particles through a first-order Fermi process accomplished by the curvature drift of particles along the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra f\\propto {(γ -1)}-p and approaches p = 1 for sufficiently large σ and system size. Eventually most of the available magnetic free energy is converted into nonthermal particle kinetic energy. An analytic model is presented to explain the key results and predict a general condition for the formation of power-law distributions. The development of reconnection in these regimes leads to relativistic inflow and outflow speeds and enhanced reconnection rates relative to nonrelativistic regimes. In the 3D simulation, the interplay between secondary kink and tearing instabilities leads to strong magnetic turbulence, but does not significantly change the energy conversion, reconnection rate, or particle acceleration. This study suggests that relativistic reconnection sites are strong sources of nonthermal particles, which may have important implications for a variety of high-energy astrophysical problems.

  4. Particle acceleration and plasma dynamics during magnetic reconnection in the magnetically dominated regime

    SciTech Connect

    Guo, Fan; Liu, Yi -Hsin; Daughton, William; Li, Hui

    2015-06-17

    Magnetic reconnection is thought to be the driver for many explosive phenomena in the universe. The energy release and particle acceleration during reconnection have been proposed as a mechanism for producing high-energy emissions and cosmic rays. We carry out two- and three-dimensional (3D) kinetic simulations to investigate relativistic magnetic reconnection and the associated particle acceleration. The simulations focus on electron–positron plasmas starting with a magnetically dominated, force-free current sheet (σ ≡ B2 / (4πnemec2) >> 1). For this limit, we demonstrate that relativistic reconnection is highly efficient at accelerating particles through a first-order Fermi process accomplished by the curvature drift of particles along the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra f α (γ - 1)-p and approaches p = 1 for sufficiently large σ and system size. Eventually most of the available magnetic free energy is converted into nonthermal particle kinetic energy. An analytic model is presented to explain the key results and predict a general condition for the formation of power-law distributions. The development of reconnection in these regimes leads to relativistic inflow and outflow speeds and enhanced reconnection rates relative to nonrelativistic regimes. In the 3D simulation, the interplay between secondary kink and tearing instabilities leads to strong magnetic turbulence, but does not significantly change the energy conversion, reconnection rate, or particle acceleration. This paper suggests that relativistic reconnection sites are strong sources of nonthermal particles, which may have important implications for a variety of high-energy astrophysical problems.

  5. Ferromagnetic particles as magnetic resonance imaging temperature sensors

    PubMed Central

    Hankiewicz, J. H.; Celinski, Z.; Stupic, K. F.; Anderson, N. R.; Camley, R. E.

    2016-01-01

    Magnetic resonance imaging is an important technique for identifying different types of tissues in a body or spatial information about composite materials. Because temperature is a fundamental parameter reflecting the biological status of the body and individual tissues, it would be helpful to have temperature maps superimposed on spatial maps. Here we show that small ferromagnetic particles with a strong temperature-dependent magnetization, can be used to produce temperature-dependent images in magnetic resonance imaging with an accuracy of about 1 °C. This technique, when further developed, could be used to identify inflammation or tumours, or to obtain spatial maps of temperature in various medical interventional procedures such as hyperthermia and thermal ablation. This method could also be used to determine temperature profiles inside nonmetallic composite materials. PMID:27503610

  6. Ferromagnetic particles as magnetic resonance imaging temperature sensors

    NASA Astrophysics Data System (ADS)

    Hankiewicz, J. H.; Celinski, Z.; Stupic, K. F.; Anderson, N. R.; Camley, R. E.

    2016-08-01

    Magnetic resonance imaging is an important technique for identifying different types of tissues in a body or spatial information about composite materials. Because temperature is a fundamental parameter reflecting the biological status of the body and individual tissues, it would be helpful to have temperature maps superimposed on spatial maps. Here we show that small ferromagnetic particles with a strong temperature-dependent magnetization, can be used to produce temperature-dependent images in magnetic resonance imaging with an accuracy of about 1 °C. This technique, when further developed, could be used to identify inflammation or tumours, or to obtain spatial maps of temperature in various medical interventional procedures such as hyperthermia and thermal ablation. This method could also be used to determine temperature profiles inside nonmetallic composite materials.

  7. Modeling Single Particle Transport in Stochastic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Hudson, Ben; Fiksel, Gennady; Prager, Stewart

    2001-10-01

    Single particle transport in a stochastic magnetic field is simulated via code ION and RIO. Developed in collaboration with a group in Novosibirsk, Russia, they simulate both single ion and multiple ion trajectories in a stochastic magnetic field. A sharp decrease in the relative diffusion of ions to magnetic field lines is seen in two gyro-radii regimes. One is explainable from the unbroken flux surfaces near the edge of the plasma. The other is thought to be due to a "gyro-averaging" effect that occurs when the gyro-radius exceeds the radial correlation length of the field lines. The simulations indicate a decrease in expected transport, most strongly as a function of gyro-radius, which will be tested experimentally with the MST neutral beam injector.

  8. Method for using magnetic particles in droplet microfluidics

    NASA Technical Reports Server (NTRS)

    Shah, Gaurav Jitendra (Inventor); Kim, Chang-Jin (Inventor)

    2012-01-01

    Methods of utilizing magnetic particles or beads (MBs) in droplet-based (or digital) microfluidics are disclosed. The methods may be used in enrichment or separation processes. A first method employs the droplet meniscus to assist in the magnetic collection and positioning of MBs during droplet microfluidic operations. The sweeping movement of the meniscus lifts the MBs off the solid surface and frees them from various surface forces acting on the MBs. A second method uses chemical additives to reduce the adhesion of MBs to surfaces. Both methods allow the MBs on a solid surface to be effectively moved by magnetic force. Droplets may be driven by various methods or techniques including, for example, electrowetting, electrostatic, electromechanical, electrophoretic, dielectrophoretic, electroosmotic, thermocapillary, surface acoustic, and pressure.

  9. Chaotic dynamics of a magnetic particle at finite temperature

    NASA Astrophysics Data System (ADS)

    Suarez, O. J.; Laroze, D.; Martínez-Mardones, J.; Altbir, D.; Chubykalo-Fesenko, O.

    2017-01-01

    In this work, we study nonlinear aspects of the deterministic spin dynamics of an anisotropic single-domain magnetic particle at finite temperature modeled by the Landau-Lifshitz-Bloch equation. The magnetic field has two components: a constant term and a term involving a harmonic time modulation. The dynamical behavior of the system is characterized with the Lyapunov exponents and by means of bifurcation diagrams and Fourier spectra. In particular, we explore the effects of the magnitude and frequency of the applied magnetic field, finding that the system presents multiple transitions between regular and chaotic states when varying the control parameters. We also address the temperature dependence and evidence that it plays an important role in these transitions, almost suppressing the chaotic behavior close to the Curie temperature. Finally, we find that the system has hyperchaotic states for specific values of field and temperature.

  10. Ferromagnetic particles as magnetic resonance imaging temperature sensors.

    PubMed

    Hankiewicz, J H; Celinski, Z; Stupic, K F; Anderson, N R; Camley, R E

    2016-08-09

    Magnetic resonance imaging is an important technique for identifying different types of tissues in a body or spatial information about composite materials. Because temperature is a fundamental parameter reflecting the biological status of the body and individual tissues, it would be helpful to have temperature maps superimposed on spatial maps. Here we show that small ferromagnetic particles with a strong temperature-dependent magnetization, can be used to produce temperature-dependent images in magnetic resonance imaging with an accuracy of about 1 °C. This technique, when further developed, could be used to identify inflammation or tumours, or to obtain spatial maps of temperature in various medical interventional procedures such as hyperthermia and thermal ablation. This method could also be used to determine temperature profiles inside nonmetallic composite materials.

  11. Application of Magnetic and Luminescent Metal Oxide Particles to Biosensors

    NASA Astrophysics Data System (ADS)

    Nichkova, M.; Dosev, D.; Ma, Z.; Gee, S.; Hammock, B.; Kennedy, I.

    2007-03-01

    Nanotechnology-based platforms for high-throughput, multiplexed detection of proteins and DNA promise to bring substantial advances in molecular medicine, environmental monitoring and security against terrorist attack. It is possible to replace current chip-based microarray technologies with nanoparticle-based technologies by shifting the immobilizing probe DNA or antibody from the surface of a chip to the surface of a nanoparticle. By incorporating magnetic properties and luminescent properties into the same particle, it is possible to manipulate these materials within tailored magnetic fields, and to achieve sensitive read-out by making use of the non-photobleaching properties of the base lanthanide particle. It is possible to synthesize a large range of uniquely encoded particles using a spray pyrolysis technique that has been perfected in our laboratory, with much greater ease than is offered by embedding quantum dots in polymer beads. In particular, we make use of the unique properties of lanthanide phosphors doped into suitable crystal hosts to synthesize particles with a wide range of ratios of different phosphor signals that encode for unique probe oligonucleotides or antibody probes.

  12. SIMULATIONS OF ENERGETIC PARTICLES INTERACTING WITH DYNAMICAL MAGNETIC TURBULENCE

    SciTech Connect

    Hussein, M.; Shalchi, A. E-mail: husseinm@myumanitoba.ca

    2016-02-01

    We explore the transport of energetic particles in interplanetary space by using test-particle simulations. In previous work such simulations have been performed by using either magnetostatic turbulence or undamped propagating plasma waves. In the current paper we simulate for the first time particle transport in dynamical turbulence. To do so we employ two models, namely the damping model of dynamical turbulence and the random sweeping model. We compute parallel and perpendicular diffusion coefficients and compare our numerical findings with solar wind observations. We show that good agreement can be found between simulations and the Palmer consensus range for both dynamical turbulence models if the ratio of turbulent magnetic field and mean field is δB/B{sub 0} = 0.5.

  13. Online reconstruction of 3D magnetic particle imaging data

    NASA Astrophysics Data System (ADS)

    Knopp, T.; Hofmann, M.

    2016-06-01

    Magnetic particle imaging is a quantitative functional imaging technique that allows imaging of the spatial distribution of super-paramagnetic iron oxide particles at high temporal resolution. The raw data acquisition can be performed at frame rates of more than 40 volumes s-1. However, to date image reconstruction is performed in an offline step and thus no direct feedback is available during the experiment. Considering potential interventional applications such direct feedback would be mandatory. In this work, an online reconstruction framework is implemented that allows direct visualization of the particle distribution on the screen of the acquisition computer with a latency of about 2 s. The reconstruction process is adaptive and performs block-averaging in order to optimize the signal quality for a given amount of reconstruction time.

  14. Simulations of Energetic Particles Interacting with Dynamical Magnetic Turbulence

    NASA Astrophysics Data System (ADS)

    Hussein, M.; Shalchi, A.

    2016-02-01

    We explore the transport of energetic particles in interplanetary space by using test-particle simulations. In previous work such simulations have been performed by using either magnetostatic turbulence or undamped propagating plasma waves. In the current paper we simulate for the first time particle transport in dynamical turbulence. To do so we employ two models, namely the damping model of dynamical turbulence and the random sweeping model. We compute parallel and perpendicular diffusion coefficients and compare our numerical findings with solar wind observations. We show that good agreement can be found between simulations and the Palmer consensus range for both dynamical turbulence models if the ratio of turbulent magnetic field and mean field is δB/B0 = 0.5.

  15. Influence of rotating resonant magnetic perturbations on particle confinement

    NASA Astrophysics Data System (ADS)

    Hu, Qiming; Yu, Q.; Wang, Nengchao; Shi, Peng; Yi, Bin; Ding, Yonghua; Rao, Bo; Chen, Zhipeng; Gao, Li; Hu, Xiwei; Jin, Hai; Li, Mao; Li, Jianchao; Yu, Kexun; Zhuang, Ge; the J-TEXT Team

    2014-12-01

    The effect of resonant magnetic perturbations (RMPs) on particle confinement is studied in J-TEXT tokamak by using externally applied rotating RMPs. It is found that RMPs cause improved (degraded) particle confinement when its frequency is higher (lower) than the natural m/n = 2/1 tearing mode frequency, and the amount of change in electron density is proportional to the difference between these two frequencies, where m and n are the poloidal and toroidal mode number, respectively. These results reveal the important role of the relative rotation between RMPs and the electron fluid in affecting the particle confinement. The experimental results are compared to numerical ones based on nonlinear two-fluid equations, and quantitative agreement is found.

  16. Ethanol fermentation in a magnetically fluidized bed reactor with immobilized Saccharomyces cerevisiae in magnetic particles.

    PubMed

    Liu, Chun-Zhao; Wang, Feng; Ou-Yang, Fan

    2009-01-01

    Ethanol fermentation by immobilized Saccharomyces cerevisiae cells in magnetic particles was successfully carried out in a magnetically stabilized fluidized bed reactor (MSFBR). These immobilized magnetic particles solidified in a 2 % CaCl(2) solution were stable and had high ethanol fermentation activity. The performance of ethanol fermentation of glucose in the MSFBR was affected by initial particle loading rate, feed sugar concentration and dilution rate. The ethanol theoretical yield, productivity and concentration reached 95.3%, 26.7 g/L h and 66 g/L, respectively, at a particle loading rate of 41% and a feed dilution rate of 0.4 h(-1) with a glucose concentration of 150 g/L when the magnetic field intensity was kept in the range of 85-120 Oe. In order to use this developed MSFBR system for ethanol production from cheap raw materials, cane molasses was used as the main fermentation substrate for continuous ethanol fermentation with the immobilized S. cerevisiae cells in the reactor system. Molasses gave comparative ethanol productivity in comparison with glucose in the MSFBR, and the higher ethanol production was observed in the MSFBR than in a fluidized bed reactor (FBR) without a magnetic field.

  17. Alignment of SWNTs by protein-ligand interaction of functionalized magnetic particles under low magnetic fields.

    PubMed

    Park, Tae Jung; Park, Jong Pil; Lee, Seok Jae; Jung, Dae-Hwan; Ko, Young Koan; Jung, Hee-Tae; Lee, Sang Yup

    2011-05-01

    Carbon nanotubes (CNTs) have attracted considerable attention for applications using their superior mechanical, thermal and electrical properties. A simple method to controllably align single-walled CNTs (SWNTs) by using magnetic particles embedded with superparamagnetic iron oxide as an accelerator under the magnetic field was developed. The functionalization of SWNTs using biotin, interacted with streptavidin-coupled magnetic particles (micro-to-nano in diameter), and layer-by-layer assembly were performed for the alignment of a particular direction onto the clean silicon and the gold substrate at very low magnetic forces (0.02-0.89 T) at room temperature. The successful alignment of the SWNTs with multi-layer film was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). By changing the orientation and location of the substrates, crossed-networks of SWNTs-magnetic particle complex could easily be fabricated. We suggest that this approach, which consists of a combination of biological interaction among streptavidin-biotin and magnetite particles, should be useful for lateral orientation of individual SWNTs with controllable direction.

  18. Multifunctional magnetic co-delivery system coated with polymer mPEG-PLL-FA for nasopharyngeal cancer targeted therapy and MR imaging.

    PubMed

    Li, Hailiang; Fu, Chaoping; Miao, Xiangwan; Li, Quanming; Zhang, Juan; Yang, Huikang; Liu, Tao; Chen, Xi; Xie, Minqiang

    2017-03-01

    The gene and drug co-delivery system has become one of the primary strategies to overcome cancers. Here, we designed a multifunctional magnetic co-delivery system for nasopharyngeal carcinoma-targeted therapy and MR imaging. Aldehyde sodium alginate (ASA) was used to decorate the oxide iron and load cisplain through coordinate bond to form a core complex. The polymer shell poly(l-lysine)-methoxy-polyethylene glycol-folate was used to coat the core complex through electric interaction to give this nano-medicine a target ability. And this polymer could also give the nano-medicine abilities to adhere and protect DNA, and enhance its solubleness in water. After being transfected with this nano-medicine, the plasmids which contain cancer suppressor gene TFPI2 could enter and express in HNE-1 cells. It caused a higher death and apoptosis rate, inhibited nasopharyngeal carcinoma cells' migration and cloning by the synergic effect together with cisplain. Besides, clear images of this nano-medicine could be got under T2 MR imaging. This magnetic co-delivery system demonstrates a potential as a powerful multifunctional vector for drug delivery and gene vector applications in nasopharyngeal carcinoma.

  19. Methylene blue-containing silica-coated magnetic particles: a potential magnetic carrier for photodynamic therapy.

    PubMed

    Tada, Dayane B; Vono, Lucas L R; Duarte, Evandro L; Itri, Rosangela; Kiyohara, Pedro K; Baptista, Maurício S; Rossi, Liane M

    2007-07-17

    We present the preparation and characterization of methylene blue-containing silica-coated magnetic particles. The entrapment of methylene blue (MB), a photodynamic therapy drug under study in our group, in the silica matrix took place during the growth of a silica layer over a magnetic core composed of magnetite nanoparticles. The resulting material was characterized by transmission electron microscopy (TEM), light scattering, and X-ray diffraction. It is composed of approximately 30 nm silica spheres containing magnetic particles of 11 +/- 2 nm and methylene blue entrapped in the silica matrix. The immobilized drug can generate singlet oxygen, which was detected by its characteristic phosphorescence decay curve in the near-infrared and by a chemical method using 1,3-diphenylisobenzofuran to trap singlet oxygen. The lifetime of singlet oxygen was determined to be 52 micros (in acetonitrile) and 3 micros (in water), with both values being in good agreement with those in the literature. The release of singlet oxygen (etaDelta) was affected by the encapsulation of MB in the silica matrix, which caused a reduction to 6% of the quantum yield of MB free in solution. The magnetization curve confirmed the superparamagnetic behavior with a reduced saturation magnetization in respect to uncoated magnetic nanoparticles, which is consistent with the presence of a diamagnetic component over the magnetite surface. The result is a single particle platform that combines therapy (photosensitizer) and diagnostic (MRI contrast agent) possibilities at the same time, as well as drug targeting.

  20. Microstructure and magnetic properties of magnetic fluids consisting of shifted dipole particles under the influence of an external magnetic field.

    PubMed

    Weeber, Rudolf; Klinkigt, Marco; Kantorovich, Sofia; Holm, Christian

    2013-12-07

    We investigate the structure of a recently proposed magnetic fluid consisting of shifted dipolar (SD) particles in an externally applied magnetic field via computer simulations. For standard dipolar fluids the applied magnetic field usually enhances the dipole-dipole correlations and facilitates chain formation whereas in the present system the effect of an external field can result in a break-up of clusters. We thoroughly investigate the origin of this phenomenon through analyzing first the ground states of the SD-particle systems as a function of an applied field. In a second step we quantify the microstructure of these systems as functions of the shift parameter, the effective interaction parameter, and the applied magnetic field strength. We conclude the paper by showing that with the proper choice of parameters, it is possible to create a system of SD-particles with highly interacting magnetic particles, whose initial susceptibility is below the Langevin susceptibility, and which remains spatially isotropic even in a very strong external magnetic field.

  1. Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Liu, Bei; Li, Chunxia; Ma, Ping'an; Chen, Yinyin; Zhang, Yuanxin; Hou, Zhiyao; Huang, Shanshan; Lin, Jun

    2015-01-01

    A low toxic multifunctional nanoplatform, integrating both mutimodal diagnosis methods and antitumor therapy, is highly desirable to assure its antitumor efficiency. In this work, we show a convenient and adjustable synthesis of multifunctional nanoparticles NaYF4:Yb, Er@mSiO2@Fe3O4-PEG (MFNPs) based on different sizes of up-conversion nanoparticles (UCNPs). With strong up-conversion fluorescence offered by UCNPs, superparamagnetism properties attributed to Fe3O4 nanoparticles and porous structure coming from the mesoporous SiO2 shell, the as-obtained MFNPs can be utilized not only as a contrast agent for dual modal up-conversion luminescence (UCL)/magnetic resonance (MR) bio-imaging, but can also achieve an effective magnetically targeted antitumor chemotherapy both in vitro and in vivo. Furthermore, the UCL intensity of UCNPs and the magnetic properties of Fe3O4 in the MFNPs were carefully balanced. Silica coating and further PEG modifying can improve the hydrophilicity and biocompatibility of the as-synthesized MFNPs, which was confirmed by the in vitro/in vivo biocompatibility and in vivo long-time bio-distributions tests. Those results revealed that the UCNPs based magnetically targeted drug carrier system we synthesized has great promise in the future for multimodal bio-imaging and targeted cancer therapy.A low toxic multifunctional nanoplatform, integrating both mutimodal diagnosis methods and antitumor therapy, is highly desirable to assure its antitumor efficiency. In this work, we show a convenient and adjustable synthesis of multifunctional nanoparticles NaYF4:Yb, Er@mSiO2@Fe3O4-PEG (MFNPs) based on different sizes of up-conversion nanoparticles (UCNPs). With strong up-conversion fluorescence offered by UCNPs, superparamagnetism properties attributed to Fe3O4 nanoparticles and porous structure coming from the mesoporous SiO2 shell, the as-obtained MFNPs can be utilized not only as a contrast agent for dual modal up-conversion luminescence (UCL)/magnetic

  2. Tailoring the magnetic and pharmacokinetic properties of iron oxide magnetic particle imaging tracers

    PubMed Central

    Ferguson, Richard Mathew; Khandhar, Amit P; Arami, Hamed; Hua, Loc; Hovorka, Ondrej; Krishnan, Kannan M.

    2014-01-01

    Magnetic particle imaging (MPI) is an attractive new modality for imaging distributions of iron oxide nanoparticle tracers in vivo. With exceptional contrast, high sensitivity, and good spatial resolution, MPI shows promise for clinical imaging in angiography and oncology. Critically, MPI requires high-quality iron oxide nanoparticle tracers with tailored magnetic and surface properties to achieve its full potential. In this review, we discuss optimizing iron oxide nanoparticles’ physical, magnetic, and pharmacokinetic properties for MPI, highlighting results from our recent work in which we demonstrated tailored, biocompatible iron oxide nanoparticle tracers that provided two times better linear spatial resolution and five times better signal-to-noise ratio than Resovist. PMID:23787461

  3. Hydrodynamic modeling of targeted magnetic-particle delivery in a blood vessel.

    PubMed

    Weng, Huei Chu

    2013-03-01

    Since the flow of a magnetic fluid could easily be influenced by an external magnetic field, its hydrodynamic modeling promises to be useful for magnetically controllable delivery systems. It is desirable to understand the flow fields and characteristics before targeted magnetic particles arrive at their destination. In this study, we perform an analysis for the effects of particles and a magnetic field on biomedical magnetic fluid flow to study the targeted magnetic-particle delivery in a blood vessel. The fully developed solutions of velocity, flow rate, and flow drag are derived analytically and presented for blood with magnetite nanoparticles at body temperature. Results reveal that in the presence of magnetic nanoparticles, a minimum magnetic field gradient (yield gradient) is required to initiate the delivery. A magnetic driving force leads to the increase in velocity and has enhancing effects on flow rate and flow drag. Such a magnetic driving effect can be magnified by increasing the particle volume fraction.

  4. Finite magnetic relaxation in x-space magnetic particle imaging: Comparison of measurements and ferrohydrodynamic models.

    PubMed

    Dhavalikar, R; Hensley, D; Maldonado-Camargo, L; Croft, L R; Ceron, S; Goodwill, P W; Conolly, S M; Rinaldi, C

    2016-08-03

    Magnetic Particle Imaging (MPI) is an emerging tomographic imaging technology that detects magnetic nanoparticle tracers by exploiting their non-linear magnetization properties. In order to predict the behavior of nanoparticles in an imager, it is possible to use a non-imaging MPI relaxometer or spectrometer to characterize the behavior of nanoparticles in a controlled setting. In this paper we explore the use of ferrohydrodynamic magnetization equations for predicting the response of particles in an MPI relaxometer. These include a magnetization equation developed by Shliomis (Sh) which has a constant relaxation time and a magnetization equation which uses a field-dependent relaxation time developed by Martsenyuk, Raikher and Shliomis (MRSh). We compare the predictions from these models with measurements and with the predictions based on the Langevin function that assumes instantaneous magnetization response of the nanoparticles. The results show good qualitative and quantitative agreement between the ferrohydrodynamic models and the measurements without the use of fitting parameters and provide further evidence of the potential of ferrohydrodynamic modeling in MPI.

  5. Composite magnetic particles as carriers for laccase from Trametes versicolor.

    PubMed

    Pich, Andrij; Bhattacharya, Sanchita; Adler, Hans-Juergen P; Wage, Tobias; Taubenberger, Anna; Li, Zheng; van Pee, Karl-Heinz; Böhmer, Ulrike; Bley, Thomas

    2006-04-12

    In this paper we report a study of laccase immobilisation on different kinds of carrier particles. The immobilisation of enzyme on the particle surface wit