Science.gov

Sample records for multigrid solution method

  1. The block adaptive multigrid method applied to the solution of the Euler equations

    NASA Technical Reports Server (NTRS)

    Pantelelis, Nikos

    1993-01-01

    In the present study, a scheme capable of solving very fast and robust complex nonlinear systems of equations is presented. The Block Adaptive Multigrid (BAM) solution method offers multigrid acceleration and adaptive grid refinement based on the prediction of the solution error. The proposed solution method was used with an implicit upwind Euler solver for the solution of complex transonic flows around airfoils. Very fast results were obtained (18-fold acceleration of the solution) using one fourth of the volumes of a global grid with the same solution accuracy for two test cases.

  2. Stability analysis of multigrid acceleration methods for the solution of partial differential equations

    NASA Technical Reports Server (NTRS)

    Fay, John F.

    1990-01-01

    A calculation is made of the stability of various relaxation schemes for the numerical solution of partial differential equations. A multigrid acceleration method is introduced, and its effects on stability are explored. A detailed stability analysis of a simple case is carried out and verified by numerical experiment. It is shown that the use of multigrids can speed convergence by several orders of magnitude without adversely affecting stability.

  3. A highly parallel multigrid-like method for the solution of the Euler equations

    NASA Technical Reports Server (NTRS)

    Tuminaro, Ray S.

    1989-01-01

    We consider a highly parallel multigrid-like method for the solution of the two dimensional steady Euler equations. The new method, introduced as filtering multigrid, is similar to a standard multigrid scheme in that convergence on the finest grid is accelerated by iterations on coarser grids. In the filtering method, however, additional fine grid subproblems are processed concurrently with coarse grid computations to further accelerate convergence. These additional problems are obtained by splitting the residual into a smooth and an oscillatory component. The smooth component is then used to form a coarse grid problem (similar to standard multigrid) while the oscillatory component is used for a fine grid subproblem. The primary advantage in the filtering approach is that fewer iterations are required and that most of the additional work per iteration can be performed in parallel with the standard coarse grid computations. We generalize the filtering algorithm to a version suitable for nonlinear problems. We emphasize that this generalization is conceptually straight-forward and relatively easy to implement. In particular, no explicit linearization (e.g., formation of Jacobians) needs to be performed (similar to the FAS multigrid approach). We illustrate the nonlinear version by applying it to the Euler equations, and presenting numerical results. Finally, a performance evaluation is made based on execution time models and convergence information obtained from numerical experiments.

  4. Introduction to multigrid methods

    NASA Technical Reports Server (NTRS)

    Wesseling, P.

    1995-01-01

    These notes were written for an introductory course on the application of multigrid methods to elliptic and hyperbolic partial differential equations for engineers, physicists and applied mathematicians. The use of more advanced mathematical tools, such as functional analysis, is avoided. The course is intended to be accessible to a wide audience of users of computational methods. We restrict ourselves to finite volume and finite difference discretization. The basic principles are given. Smoothing methods and Fourier smoothing analysis are reviewed. The fundamental multigrid algorithm is studied. The smoothing and coarse grid approximation properties are discussed. Multigrid schedules and structured programming of multigrid algorithms are treated. Robustness and efficiency are considered.

  5. Multigrid Methods

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Developments in numerical solution of certain types of partial differential equations by rapidly converging sequences of operations on supporting grids that range from very fine to very coarse are presented.

  6. Spectral multigrid methods for the solution of homogeneous turbulence problems

    NASA Technical Reports Server (NTRS)

    Erlebacher, G.; Zang, T. A.; Hussaini, M. Y.

    1987-01-01

    New three-dimensional spectral multigrid algorithms are analyzed and implemented to solve the variable coefficient Helmholtz equation. Periodicity is assumed in all three directions which leads to a Fourier collocation representation. Convergence rates are theoretically predicted and confirmed through numerical tests. Residual averaging results in a spectral radius of 0.2 for the variable coefficient Poisson equation. In general, non-stationary Richardson must be used for the Helmholtz equation. The algorithms developed are applied to the large-eddy simulation of incompressible isotropic turbulence.

  7. Iterative and multigrid methods in the finite element solution of incompressible and turbulent fluid flow

    NASA Astrophysics Data System (ADS)

    Lavery, N.; Taylor, C.

    1999-07-01

    Multigrid and iterative methods are used to reduce the solution time of the matrix equations which arise from the finite element (FE) discretisation of the time-independent equations of motion of the incompressible fluid in turbulent motion. Incompressible flow is solved by using the method of reduce interpolation for the pressure to satisfy the Brezzi-Babuska condition. The k-l model is used to complete the turbulence closure problem. The non-symmetric iterative matrix methods examined are the methods of least squares conjugate gradient (LSCG), biconjugate gradient (BCG), conjugate gradient squared (CGS), and the biconjugate gradient squared stabilised (BCGSTAB). The multigrid algorithm applied is based on the FAS algorithm of Brandt, and uses two and three levels of grids with a V-cycling schedule. These methods are all compared to the non-symmetric frontal solver. Copyright

  8. An automatic multigrid method for the solution of sparse linear systems

    NASA Technical Reports Server (NTRS)

    Shapira, Yair; Israeli, Moshe; Sidi, Avram

    1993-01-01

    An automatic version of the multigrid method for the solution of linear systems arising from the discretization of elliptic PDE's is presented. This version is based on the structure of the algebraic system solely, and does not use the original partial differential operator. Numerical experiments show that for the Poisson equation the rate of convergence of our method is equal to that of classical multigrid methods. Moreover, the method is robust in the sense that its high rate of convergence is conserved for other classes of problems: non-symmetric, hyperbolic (even with closed characteristics) and problems on non-uniform grids. No double discretization or special treatment of sub-domains (e.g. boundaries) is needed. When supplemented with a vector extrapolation method, high rates of convergence are achieved also for anisotropic and discontinuous problems and also for indefinite Helmholtz equations. A new double discretization strategy is proposed for finite and spectral element schemes and is found better than known strategies.

  9. On the solution of evolution equations based on multigrid and explicit iterative methods

    NASA Astrophysics Data System (ADS)

    Zhukov, V. T.; Novikova, N. D.; Feodoritova, O. B.

    2015-08-01

    Two schemes for solving initial-boundary value problems for three-dimensional parabolic equations are studied. One is implicit and is solved using the multigrid method, while the other is explicit iterative and is based on optimal properties of the Chebyshev polynomials. In the explicit iterative scheme, the number of iteration steps and the iteration parameters are chosen as based on the approximation and stability conditions, rather than on the optimization of iteration convergence to the solution of the implicit scheme. The features of the multigrid scheme include the implementation of the intergrid transfer operators for the case of discontinuous coefficients in the equation and the adaptation of the smoothing procedure to the spectrum of the difference operators. The results produced by these schemes as applied to model problems with anisotropic discontinuous coefficients are compared.

  10. Multigrid methods in structural mechanics

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Bigelow, C. A.; Taasan, S.; Hussaini, M. Y.

    1986-01-01

    Although the application of multigrid methods to the equations of elasticity has been suggested, few such applications have been reported in the literature. In the present work, multigrid techniques are applied to the finite element analysis of a simply supported Bernoulli-Euler beam, and various aspects of the multigrid algorithm are studied and explained in detail. In this study, six grid levels were used to model half the beam. With linear prolongation and sequential ordering, the multigrid algorithm yielded results which were of machine accuracy with work equivalent to 200 standard Gauss-Seidel iterations on the fine grid. Also with linear prolongation and sequential ordering, the V(1,n) cycle with n greater than 2 yielded better convergence rates than the V(n,1) cycle. The restriction and prolongation operators were derived based on energy principles. Conserving energy during the inter-grid transfers required that the prolongation operator be the transpose of the restriction operator, and led to improved convergence rates. With energy-conserving prolongation and sequential ordering, the multigrid algorithm yielded results of machine accuracy with a work equivalent to 45 Gauss-Seidel iterations on the fine grid. The red-black ordering of relaxations yielded solutions of machine accuracy in a single V(1,1) cycle, which required work equivalent to about 4 iterations on the finest grid level.

  11. The Multigrid-Mask Numerical Method for Solution of Incompressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Ku, Hwar-Ching; Popel, Aleksander S.

    1996-01-01

    A multigrid-mask method for solution of incompressible Navier-Stokes equations in primitive variable form has been developed. The main objective is to apply this method in conjunction with the pseudospectral element method solving flow past multiple objects. There are two key steps involved in calculating flow past multiple objects. The first step utilizes only Cartesian grid points. This homogeneous or mask method step permits flow into the interior rectangular elements contained in objects, but with the restriction that the velocity for those Cartesian elements within and on the surface of an object should be small or zero. This step easily produces an approximate flow field on Cartesian grid points covering the entire flow field. The second or heterogeneous step corrects the approximate flow field to account for the actual shape of the objects by solving the flow field based on the local coordinates surrounding each object and adapted to it. The noise occurring in data communication between the global (low frequency) coordinates and the local (high frequency) coordinates is eliminated by the multigrid method when the Schwarz Alternating Procedure (SAP) is implemented. Two dimensional flow past circular and elliptic cylinders will be presented to demonstrate the versatility of the proposed method. An interesting phenomenon is found that when the second elliptic cylinder is placed in the wake of the first elliptic cylinder a traction force results in a negative drag coefficient.

  12. Multigrid method for stability problems

    NASA Technical Reports Server (NTRS)

    Ta'asan, Shlomo

    1988-01-01

    The problem of calculating the stability of steady state solutions of differential equations is addressed. Leading eigenvalues of large matrices that arise from discretization are calculated, and an efficient multigrid method for solving these problems is presented. The resulting grid functions are used as initial approximations for appropriate eigenvalue problems. The method employs local relaxation on all levels together with a global change on the coarsest level only, which is designed to separate the different eigenfunctions as well as to update their corresponding eigenvalues. Coarsening is done using the FAS formulation in a nonstandard way in which the right-hand side of the coarse grid equations involves unknown parameters to be solved on the coarse grid. This leads to a new multigrid method for calculating the eigenvalues of symmetric problems. Numerical experiments with a model problem are presented which demonstrate the effectiveness of the method.

  13. Multigrid contact detection method

    NASA Astrophysics Data System (ADS)

    He, Kejing; Dong, Shoubin; Zhou, Zhaoyao

    2007-03-01

    Contact detection is a general problem of many physical simulations. This work presents a O(N) multigrid method for general contact detection problems (MGCD). The multigrid idea is integrated with contact detection problems. Both the time complexity and memory consumption of the MGCD are O(N) . Unlike other methods, whose efficiencies are influenced strongly by the object size distribution, the performance of MGCD is insensitive to the object size distribution. We compare the MGCD with the no binary search (NBS) method and the multilevel boxing method in three dimensions for both time complexity and memory consumption. For objects with similar size, the MGCD is as good as the NBS method, both of which outperform the multilevel boxing method regarding memory consumption. For objects with diverse size, the MGCD outperform both the NBS method and the multilevel boxing method. We use the MGCD to solve the contact detection problem for a granular simulation system based on the discrete element method. From this granular simulation, we get the density property of monosize packing and binary packing with size ratio equal to 10. The packing density for monosize particles is 0.636. For binary packing with size ratio equal to 10, when the number of small particles is 300 times as the number of big particles, the maximal packing density 0.824 is achieved.

  14. Development of a pressure based multigrid solution method for complex fluid flows

    NASA Technical Reports Server (NTRS)

    Shyy, Wei

    1991-01-01

    In order to reduce the computational difficulty associated with a single grid (SG) solution procedure, the multigrid (MG) technique was identified as a useful means for improving the convergence rate of iterative methods. A full MG full approximation storage (FMG/FAS) algorithm is used to solve the incompressible recirculating flow problems in complex geometries. The algorithm is implemented in conjunction with a pressure correction staggered grid type of technique using the curvilinear coordinates. In order to show the performance of the method, two flow configurations, one a square cavity and the other a channel, are used as test problems. Comparisons are made between the iterations, equivalent work units, and CPU time. Besides showing that the MG method can yield substantial speed-up with wide variations in Reynolds number, grid distributions, and geometry, issues such as the convergence characteristics of different grid levels, the choice of convection schemes, and the effectiveness of the basic iteration smoothers are studied. An adaptive grid scheme is also combined with the MG procedure to explore the effects of grid resolution on the MG convergence rate as well as the numerical accuracy.

  15. Multigrid solvers and multigrid preconditioners for the solution of variational data assimilation problems

    NASA Astrophysics Data System (ADS)

    Debreu, Laurent; Neveu, Emilie; Simon, Ehouarn; Le Dimet, Francois Xavier; Vidard, Arthur

    2014-05-01

    In order to lower the computational cost of the variational data assimilation process, we investigate the use of multigrid methods to solve the associated optimal control system. On a linear advection equation, we study the impact of the regularization term on the optimal control and the impact of discretization errors on the efficiency of the coarse grid correction step. We show that even if the optimal control problem leads to the solution of an elliptic system, numerical errors introduced by the discretization can alter the success of the multigrid methods. The view of the multigrid iteration as a preconditioner for a Krylov optimization method leads to a more robust algorithm. A scale dependent weighting of the multigrid preconditioner and the usual background error covariance matrix based preconditioner is proposed and brings significant improvements. [1] Laurent Debreu, Emilie Neveu, Ehouarn Simon, François-Xavier Le Dimet and Arthur Vidard, 2014: Multigrid solvers and multigrid preconditioners for the solution of variational data assimilation problems, submitted to QJRMS, http://hal.inria.fr/hal-00874643 [2] Emilie Neveu, Laurent Debreu and François-Xavier Le Dimet, 2011: Multigrid methods and data assimilation - Convergence study and first experiments on non-linear equations, ARIMA, 14, 63-80, http://intranet.inria.fr/international/arima/014/014005.html

  16. A multiple-block multigrid method for the solution of the three-dimensional Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Atkins, Harold

    1991-01-01

    A multiple block multigrid method for the solution of the three dimensional Euler and Navier-Stokes equations is presented. The basic flow solver is a cell vertex method which employs central difference spatial approximations and Runge-Kutta time stepping. The use of local time stepping, implicit residual smoothing, multigrid techniques and variable coefficient numerical dissipation results in an efficient and robust scheme is discussed. The multiblock strategy places the block loop within the Runge-Kutta Loop such that accuracy and convergence are not affected by block boundaries. This has been verified by comparing the results of one and two block calculations in which the two block grid is generated by splitting the one block grid. Results are presented for both Euler and Navier-Stokes computations of wing/fuselage combinations.

  17. Multigrid method for stability problems

    NASA Technical Reports Server (NTRS)

    Taasan, Shlomo

    1988-01-01

    The problem of calculating the stability of steady state solutions of differential equations is treated. Leading eigenvalues (i.e., having maximal real part) of large matrices that arise from discretization are to be calculated. An efficient multigrid method for solving these problems is presented. The method begins by obtaining an initial approximation for the dominant subspace on a coarse level using a damped Jacobi relaxation. This proceeds until enough accuracy for the dominant subspace has been obtained. The resulting grid functions are then used as an initial approximation for appropriate eigenvalue problems. These problems are being solved first on coarse levels, followed by refinement until a desired accuracy for the eigenvalues has been achieved. The method employs local relaxation on all levels together with a global change on the coarsest level only, which is designed to separate the different eigenfunctions as well as to update their corresponding eigenvalues. Coarsening is done using the FAS formulation in a non-standard way in which the right hand side of the coarse grid equations involves unknown parameters to be solved for on the coarse grid. This in particular leads to a new multigrid method for calculating the eigenvalues of symmetric problems. Numerical experiments with a model problem demonstrate the effectiveness of the method proposed. Using an FMG algorithm a solution to the level of discretization errors is obtained in just a few work units (less than 10), where a work unit is the work involved in one Jacobi relization on the finest level.

  18. Multigrid methods for isogeometric discretization

    PubMed Central

    Gahalaut, K.P.S.; Kraus, J.K.; Tomar, S.K.

    2013-01-01

    We present (geometric) multigrid methods for isogeometric discretization of scalar second order elliptic problems. The smoothing property of the relaxation method, and the approximation property of the intergrid transfer operators are analyzed. These properties, when used in the framework of classical multigrid theory, imply uniform convergence of two-grid and multigrid methods. Supporting numerical results are provided for the smoothing property, the approximation property, convergence factor and iterations count for V-, W- and F-cycles, and the linear dependence of V-cycle convergence on the smoothing steps. For two dimensions, numerical results include the problems with variable coefficients, simple multi-patch geometry, a quarter annulus, and the dependence of convergence behavior on refinement levels ℓ, whereas for three dimensions, only the constant coefficient problem in a unit cube is considered. The numerical results are complete up to polynomial order p=4, and for C0 and Cp-1 smoothness. PMID:24511168

  19. Multigrid Methods for EHL Problems

    NASA Technical Reports Server (NTRS)

    Nurgat, Elyas; Berzins, Martin

    1996-01-01

    In many bearings and contacts, forces are transmitted through thin continuous fluid films which separate two contacting elements. Objects in contact are normally subjected to friction and wear which can be reduced effectively by using lubricants. If the lubricant film is sufficiently thin to prevent the opposing solids from coming into contact and carries the entire load, then we have hydrodynamic lubrication, where the lubricant film is determined by the motion and geometry of the solids. However, for loaded contacts of low geometrical conformity, such as gears, rolling contact bearings and cams, this is not the case due to high pressures and this is referred to as Elasto-Hydrodynamic Lubrication (EHL) In EHL, elastic deformation of the contacting elements and the increase in fluid viscosity with pressure are very significant and cannot be ignored. Since the deformation results in changing the geometry of the lubricating film, which in turn determines the pressure distribution, an EHL mathematical model must simultaneously satisfy the complex elasticity (integral) and the Reynolds lubrication (differential) equations. The nonlinear and coupled nature of the two equations makes numerical calculations computationally intensive. This is especially true for highly loaded problems found in practice. One novel feature of these problems is that the solution may exhibit sharp pressure spikes in the outlet region. To this date both finite element and finite difference methods have been used to solve EHL problems with perhaps greater emphasis on the use of the finite difference approach. In both cases, a major computational difficulty is ensuring convergence of the nonlinear equations solver to a steady state solution. Two successful methods for achieving this are direct iteration and multigrid methods. Direct iteration methods (e.g Gauss Seidel) have long been used in conjunction with finite difference discretizations on regular meshes. Perhaps one of the best examples of

  20. Higher-order differencing method with a multigrid approach for the solution of the incompressible flow equations at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Tzanos, Constantine P.

    1992-10-01

    A higher-order differencing scheme (Tzanos, 1990) is used in conjunction with a multigrid approach to obtain accurate solutions of the Navier-Stokes convection-diffusion equations at high Re numbers. Flow in a square cavity with a moving lid is used as a test problem. a multigrid approach based on the additive correction method (Settari and Aziz) and an iterative incomplete lower and upper solver demonstrated good performance for the whole range of Re number under consideration (from 1000 to 10,000) and for both uniform and nonuniform grids. It is concluded that the combination of the higher-order differencing scheme with a multigrid approach proved to be an effective technique for giving accurate solutions of the Navier-Stokes equations at high Re numbers.

  1. Numerical Evaluation of P-Multigrid Method for the Solution of Discontinuous Galerkin Discretizations of Diffusive Equations

    NASA Technical Reports Server (NTRS)

    Atkins, H. L.; Helenbrook, B. T.

    2005-01-01

    This paper describes numerical experiments with P-multigrid to corroborate analysis, validate the present implementation, and to examine issues that arise in the implementations of the various combinations of relaxation schemes, discretizations and P-multigrid methods. The two approaches to implement P-multigrid presented here are equivalent for most high-order discretization methods such as spectral element, SUPG, and discontinuous Galerkin applied to advection; however it is discovered that the approach that mimics the common geometric multigrid implementation is less robust, and frequently unstable when applied to discontinuous Galerkin discretizations of di usion. Gauss-Seidel relaxation converges 40% faster than block Jacobi, as predicted by analysis; however, the implementation of Gauss-Seidel is considerably more expensive that one would expect because gradients in most neighboring elements must be updated. A compromise quasi Gauss-Seidel relaxation method that evaluates the gradient in each element twice per iteration converges at rates similar to those predicted for true Gauss-Seidel.

  2. Convergence acceleration of the Proteus computer code with multigrid methods

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.; Ibraheem, S. O.

    1995-01-01

    This report presents the results of a study to implement convergence acceleration techniques based on the multigrid concept in the two-dimensional and three-dimensional versions of the Proteus computer code. The first section presents a review of the relevant literature on the implementation of the multigrid methods in computer codes for compressible flow analysis. The next two sections present detailed stability analysis of numerical schemes for solving the Euler and Navier-Stokes equations, based on conventional von Neumann analysis and the bi-grid analysis, respectively. The next section presents details of the computational method used in the Proteus computer code. Finally, the multigrid implementation and applications to several two-dimensional and three-dimensional test problems are presented. The results of the present study show that the multigrid method always leads to a reduction in the number of iterations (or time steps) required for convergence. However, there is an overhead associated with the use of multigrid acceleration. The overhead is higher in 2-D problems than in 3-D problems, thus overall multigrid savings in CPU time are in general better in the latter. Savings of about 40-50 percent are typical in 3-D problems, but they are about 20-30 percent in large 2-D problems. The present multigrid method is applicable to steady-state problems and is therefore ineffective in problems with inherently unstable solutions.

  3. The multigrid preconditioned conjugate gradient method

    NASA Technical Reports Server (NTRS)

    Tatebe, Osamu

    1993-01-01

    A multigrid preconditioned conjugate gradient method (MGCG method), which uses the multigrid method as a preconditioner of the PCG method, is proposed. The multigrid method has inherent high parallelism and improves convergence of long wavelength components, which is important in iterative methods. By using this method as a preconditioner of the PCG method, an efficient method with high parallelism and fast convergence is obtained. First, it is considered a necessary condition of the multigrid preconditioner in order to satisfy requirements of a preconditioner of the PCG method. Next numerical experiments show a behavior of the MGCG method and that the MGCG method is superior to both the ICCG method and the multigrid method in point of fast convergence and high parallelism. This fast convergence is understood in terms of the eigenvalue analysis of the preconditioned matrix. From this observation of the multigrid preconditioner, it is realized that the MGCG method converges in very few iterations and the multigrid preconditioner is a desirable preconditioner of the conjugate gradient method.

  4. The Mixed Finite Element Multigrid Method for Stokes Equations

    PubMed Central

    Muzhinji, K.; Shateyi, S.; Motsa, S. S.

    2015-01-01

    The stable finite element discretization of the Stokes problem produces a symmetric indefinite system of linear algebraic equations. A variety of iterative solvers have been proposed for such systems in an attempt to construct efficient, fast, and robust solution techniques. This paper investigates one of such iterative solvers, the geometric multigrid solver, to find the approximate solution of the indefinite systems. The main ingredient of the multigrid method is the choice of an appropriate smoothing strategy. This study considers the application of different smoothers and compares their effects in the overall performance of the multigrid solver. We study the multigrid method with the following smoothers: distributed Gauss Seidel, inexact Uzawa, preconditioned MINRES, and Braess-Sarazin type smoothers. A comparative study of the smoothers shows that the Braess-Sarazin smoothers enhance good performance of the multigrid method. We study the problem in a two-dimensional domain using stable Hood-Taylor Q 2-Q 1 pair of finite rectangular elements. We also give the main theoretical convergence results. We present the numerical results to demonstrate the efficiency and robustness of the multigrid method and confirm the theoretical results. PMID:25945361

  5. Multigrid Methods for Fully Implicit Oil Reservoir Simulation

    NASA Technical Reports Server (NTRS)

    Molenaar, J.

    1996-01-01

    In this paper we consider the simultaneous flow of oil and water in reservoir rock. This displacement process is modeled by two basic equations: the material balance or continuity equations and the equation of motion (Darcy's law). For the numerical solution of this system of nonlinear partial differential equations there are two approaches: the fully implicit or simultaneous solution method and the sequential solution method. In the sequential solution method the system of partial differential equations is manipulated to give an elliptic pressure equation and a hyperbolic (or parabolic) saturation equation. In the IMPES approach the pressure equation is first solved, using values for the saturation from the previous time level. Next the saturations are updated by some explicit time stepping method; this implies that the method is only conditionally stable. For the numerical solution of the linear, elliptic pressure equation multigrid methods have become an accepted technique. On the other hand, the fully implicit method is unconditionally stable, but it has the disadvantage that in every time step a large system of nonlinear algebraic equations has to be solved. The most time-consuming part of any fully implicit reservoir simulator is the solution of this large system of equations. Usually this is done by Newton's method. The resulting systems of linear equations are then either solved by a direct method or by some conjugate gradient type method. In this paper we consider the possibility of applying multigrid methods for the iterative solution of the systems of nonlinear equations. There are two ways of using multigrid for this job: either we use a nonlinear multigrid method or we use a linear multigrid method to deal with the linear systems that arise in Newton's method. So far only a few authors have reported on the use of multigrid methods for fully implicit simulations. Two-level FAS algorithm is presented for the black-oil equations, and linear multigrid for

  6. Multigrid Methods for Aerodynamic Problems in Complex Geometries

    NASA Technical Reports Server (NTRS)

    Caughey, David A.

    1995-01-01

    Work has been directed at the development of efficient multigrid methods for the solution of aerodynamic problems involving complex geometries, including the development of computational methods for the solution of both inviscid and viscous transonic flow problems. The emphasis is on problems of complex, three-dimensional geometry. The methods developed are based upon finite-volume approximations to both the Euler and the Reynolds-Averaged Navier-Stokes equations. The methods are developed for use on multi-block grids using diagonalized implicit multigrid methods to achieve computational efficiency. The work is focused upon aerodynamic problems involving complex geometries, including advanced engine inlets.

  7. Application of multigrid methods to the solution of liquid crystal equations on a SIMD computer

    NASA Technical Reports Server (NTRS)

    Farrell, Paul A.; Ruttan, Arden; Zeller, Reinhardt R.

    1993-01-01

    We will describe a finite difference code for computing the equilibrium configurations of the order-parameter tensor field for nematic liquid crystals in rectangular regions by minimization of the Landau-de Gennes Free Energy functional. The implementation of the free energy functional described here includes magnetic fields, quadratic gradient terms, and scalar bulk terms through the fourth order. Boundary conditions include the effects of strong surface anchoring. The target architectures for our implementation are SIMD machines, with interconnection networks which can be configured as 2 or 3 dimensional grids, such as the Wavetracer DTC. We also discuss the relative efficiency of a number of iterative methods for the solution of the linear systems arising from this discretization on such architectures.

  8. Multigrid solution of internal flows using unstructured solution adaptive meshes

    NASA Technical Reports Server (NTRS)

    Smith, Wayne A.; Blake, Kenneth R.

    1992-01-01

    This is the final report of the NASA Lewis SBIR Phase 2 Contract Number NAS3-25785, Multigrid Solution of Internal Flows Using Unstructured Solution Adaptive Meshes. The objective of this project, as described in the Statement of Work, is to develop and deliver to NASA a general three-dimensional Navier-Stokes code using unstructured solution-adaptive meshes for accuracy and multigrid techniques for convergence acceleration. The code will primarily be applied, but not necessarily limited, to high speed internal flows in turbomachinery.

  9. Multigrid solution strategies for adaptive meshing problems

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    1995-01-01

    This paper discusses the issues which arise when combining multigrid strategies with adaptive meshing techniques for solving steady-state problems on unstructured meshes. A basic strategy is described, and demonstrated by solving several inviscid and viscous flow cases. Potential inefficiencies in this basic strategy are exposed, and various alternate approaches are discussed, some of which are demonstrated with an example. Although each particular approach exhibits certain advantages, all methods have particular drawbacks, and the formulation of a completely optimal strategy is considered to be an open problem.

  10. Layout optimization with algebraic multigrid methods

    NASA Technical Reports Server (NTRS)

    Regler, Hans; Ruede, Ulrich

    1993-01-01

    Finding the optimal position for the individual cells (also called functional modules) on the chip surface is an important and difficult step in the design of integrated circuits. This paper deals with the problem of relative placement, that is the minimization of a quadratic functional with a large, sparse, positive definite system matrix. The basic optimization problem must be augmented by constraints to inhibit solutions where cells overlap. Besides classical iterative methods, based on conjugate gradients (CG), we show that algebraic multigrid methods (AMG) provide an interesting alternative. For moderately sized examples with about 10000 cells, AMG is already competitive with CG and is expected to be superior for larger problems. Besides the classical 'multiplicative' AMG algorithm where the levels are visited sequentially, we propose an 'additive' variant of AMG where levels may be treated in parallel and that is suitable as a preconditioner in the CG algorithm.

  11. Multigrid method for the equilibrium equations of elasticity using a compact scheme

    NASA Technical Reports Server (NTRS)

    Taasan, S.

    1986-01-01

    A compact difference scheme is derived for treating the equilibrium equations of elasticity. The scheme is inconsistent and unstable. A multigrid method which takes into account these properties is described. The solution of the discrete equations, up to the level of discretization errors, is obtained by this method in just two multigrid cycles.

  12. Spectral multigrid methods for elliptic equations 2

    NASA Technical Reports Server (NTRS)

    Zang, T. A.; Wong, Y. S.; Hussaini, M. Y.

    1983-01-01

    A detailed description of spectral multigrid methods is provided. This includes the interpolation and coarse-grid operators for both periodic and Dirichlet problems. The spectral methods for periodic problems use Fourier series and those for Dirichlet problems are based upon Chebyshev polynomials. An improved preconditioning for Dirichlet problems is given. Numerical examples and practical advice are included.

  13. A multigrid nonoscillatory method for computing high speed flows

    NASA Technical Reports Server (NTRS)

    Li, C. P.; Shieh, T. H.

    1993-01-01

    A multigrid method using different smoothers has been developed to solve the Euler equations discretized by a nonoscillatory scheme up to fourth order accuracy. The best smoothing property is provided by a five-stage Runge-Kutta technique with optimized coefficients, yet the most efficient smoother is a backward Euler technique in factored and diagonalized form. The singlegrid solution for a hypersonic, viscous conic flow is in excellent agreement with the solution obtained by the third order MUSCL and Roe's method. Mach 8 inviscid flow computations for a complete entry probe have shown that the accuracy is at least as good as the symmetric TVD scheme of Yee and Harten. The implicit multigrid method is four times more efficient than the explicit multigrid technique and 3.5 times faster than the single-grid implicit technique. For a Mach 8.7 inviscid flow over a blunt delta wing at 30 deg incidence, the CPU reduction factor from the three-level multigrid computation is 2.2 on a grid of 37 x 41 x 73 nodes.

  14. Multigrid methods for bifurcation problems: The self adjoint case

    NASA Technical Reports Server (NTRS)

    Taasan, Shlomo

    1987-01-01

    This paper deals with multigrid methods for computational problems that arise in the theory of bifurcation and is restricted to the self adjoint case. The basic problem is to solve for arcs of solutions, a task that is done successfully with an arc length continuation method. Other important issues are, for example, detecting and locating singular points as part of the continuation process, switching branches at bifurcation points, etc. Multigrid methods have been applied to continuation problems. These methods work well at regular points and at limit points, while they may encounter difficulties in the vicinity of bifurcation points. A new continuation method that is very efficient also near bifurcation points is presented here. The other issues mentioned above are also treated very efficiently with appropriate multigrid algorithms. For example, it is shown that limit points and bifurcation points can be solved for directly by a multigrid algorithm. Moreover, the algorithms presented here solve the corresponding problems in just a few work units (about 10 or less), where a work unit is the work involved in one local relaxation on the finest grid.

  15. Multigrid Methods in Electronic Structure Calculations

    NASA Astrophysics Data System (ADS)

    Briggs, Emil

    1996-03-01

    Multigrid techniques have become the method of choice for a broad range of computational problems. Their use in electronic structure calculations introduces a new set of issues when compared to traditional plane wave approaches. We have developed a set of techniques that address these issues and permit multigrid algorithms to be applied to the electronic structure problem in an efficient manner. In our approach the Kohn-Sham equations are discretized on a real-space mesh using a compact representation of the Hamiltonian. The resulting equations are solved directly on the mesh using multigrid iterations. This produces rapid convergence rates even for ill-conditioned systems with large length and/or energy scales. The method has been applied to both periodic and non-periodic systems containing over 400 atoms and the results are in very good agreement with both theory and experiment. Example applications include a vacancy in diamond, an isolated C60 molecule, and a 64-atom cell of GaN with the Ga d-electrons in valence which required a 250 Ry cutoff. A particular strength of a real-space multigrid approach is its ready adaptability to massively parallel computer architectures. The compact representation of the Hamiltonian is especially well suited to such machines. Tests on the Cray-T3D have shown nearly linear scaling of the execution time up to the maximum number of processors (512). The MPP implementation has been used for studies of a large Amyloid Beta Peptide (C_146O_45N_42H_210) found in the brains of Alzheimers disease patients. Further applications of the multigrid method will also be described. (in collaboration D. J. Sullivan and J. Bernholc)

  16. Geometric multigrid for an implicit-time immersed boundary method

    SciTech Connect

    Guy, Robert D.; Philip, Bobby; Griffith, Boyce E.

    2014-10-12

    The immersed boundary (IB) method is an approach to fluid-structure interaction that uses Lagrangian variables to describe the deformations and resulting forces of the structure and Eulerian variables to describe the motion and forces of the fluid. Explicit time stepping schemes for the IB method require solvers only for Eulerian equations, for which fast Cartesian grid solution methods are available. Such methods are relatively straightforward to develop and are widely used in practice but often require very small time steps to maintain stability. Implicit-time IB methods permit the stable use of large time steps, but efficient implementations of such methodsmore » require significantly more complex solvers that effectively treat both Lagrangian and Eulerian variables simultaneously. Moreover, several different approaches to solving the coupled Lagrangian-Eulerian equations have been proposed, but a complete understanding of this problem is still emerging. This paper presents a geometric multigrid method for an implicit-time discretization of the IB equations. This multigrid scheme uses a generalization of box relaxation that is shown to handle problems in which the physical stiffness of the structure is very large. Numerical examples are provided to illustrate the effectiveness and efficiency of the algorithms described herein. Finally, these tests show that using multigrid as a preconditioner for a Krylov method yields improvements in both robustness and efficiency as compared to using multigrid as a solver. They also demonstrate that with a time step 100–1000 times larger than that permitted by an explicit IB method, the multigrid-preconditioned implicit IB method is approximately 50–200 times more efficient than the explicit method.« less

  17. Application of multi-grid methods for solving the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.

    1989-01-01

    This paper presents the application of a class of multi-grid methods to the solution of the Navier-Stokes equations for two-dimensional laminar flow problems. The methods consists of combining the full approximation scheme-full multi-grid technique (FAS-FMG) with point-, line- or plane-relaxation routines for solving the Navier-Stokes equations in primitive variables. The performance of the multi-grid methods is compared to those of several single-grid methods. The results show that much faster convergence can be procured through the use of the multi-grid approach than through the various suggestions for improving single-grid methods. The importance of the choice of relaxation scheme for the multi-grid method is illustrated.

  18. Application of multi-grid methods for solving the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.

    1989-01-01

    The application of a class of multi-grid methods to the solution of the Navier-Stokes equations for two-dimensional laminar flow problems is discussed. The methods consist of combining the full approximation scheme-full multi-grid technique (FAS-FMG) with point-, line-, or plane-relaxation routines for solving the Navier-Stokes equations in primitive variables. The performance of the multi-grid methods is compared to that of several single-grid methods. The results show that much faster convergence can be procured through the use of the multi-grid approach than through the various suggestions for improving single-grid methods. The importance of the choice of relaxation scheme for the multi-grid method is illustrated.

  19. Multigrid Methods for the Computation of Propagators in Gauge Fields

    NASA Astrophysics Data System (ADS)

    Kalkreuter, Thomas

    Multigrid methods were invented for the solution of discretized partial differential equations in order to overcome the slowness of traditional algorithms by updates on various length scales. In the present work generalizations of multigrid methods for propagators in gauge fields are investigated. Gauge fields are incorporated in algorithms in a covariant way. The kernel C of the restriction operator which averages from one grid to the next coarser grid is defined by projection on the ground-state of a local Hamiltonian. The idea behind this definition is that the appropriate notion of smoothness depends on the dynamics. The ground-state projection choice of C can be used in arbitrary dimension and for arbitrary gauge group. We discuss proper averaging operations for bosons and for staggered fermions. The kernels C can also be used in multigrid Monte Carlo simulations, and for the definition of block spins and blocked gauge fields in Monte Carlo renormalization group studies. Actual numerical computations are performed in four-dimensional SU(2) gauge fields. We prove that our proposals for block spins are “good”, using renormalization group arguments. A central result is that the multigrid method works in arbitrarily disordered gauge fields, in principle. It is proved that computations of propagators in gauge fields without critical slowing down are possible when one uses an ideal interpolation kernel. Unfortunately, the idealized algorithm is not practical, but it was important to answer questions of principle. Practical methods are able to outperform the conjugate gradient algorithm in case of bosons. The case of staggered fermions is harder. Multigrid methods give considerable speed-ups compared to conventional relaxation algorithms, but on lattices up to 184 conjugate gradient is superior.

  20. Parameter estimation problems for distributed systems using a multigrid method

    NASA Technical Reports Server (NTRS)

    Ta'asan, Shlomo; Dutt, Pravir

    1990-01-01

    The problem of estimating spatially varying coefficients of partial differential equations is considered from observation of the solution and of the right hand side of the equation. It is assumed that the observations are distributed in the domain and that enough observations are given. A method of discretization and an efficient multigrid method for solving the resulting discrete systems are described. Numerical results are presented for estimation of coefficients in an elliptic and a parabolic partial differential equation.

  1. Multigrid solutions to quasi-elliptic schemes

    NASA Technical Reports Server (NTRS)

    Brandt, A.; Taasan, S.

    1985-01-01

    Quasi-elliptic schemes arise from central differencing or finite element discretization of elliptic systems with odd order derivatives on non-staggered grids. They are somewhat unstable and less accurate then corresponding staggered-grid schemes. When usual multigrid solvers are applied to them, the asymptotic algebraic convergence is necessarily slow. Nevertheless, it is shown by mode analyses and numerical experiments that the usual FMG algorithm is very efficient in solving quasi-elliptic equations to the level of truncation errors. Also, a new type of multigrid algorithm is presented, mode analyzed and tested, for which even the asymptotic algebraic convergence is fast. The essence of that algorithm is applicable to other kinds of problems, including highly indefinite ones.

  2. Multigrid solutions to quasi-elliptic schemes

    NASA Technical Reports Server (NTRS)

    Brandt, A.; Taasan, S.

    1985-01-01

    Quasi-elliptic schemes arise from central differencing or finite element discretization of elliptic systems with odd order derivatives on non-staggered grids. They are somewhat unstable and less accurate than corresponding staggered-grid schemes. When usual multigrid solvers are applied to them, the asymptotic algebraic convergence is necessarily slow. Nevertheless, it is shown by mode analyses and numerical experiments that the usual FMG algorithm is very efficient in solving quasi-elliptic equations to the level of truncation errors. Also, a new type of multigrid algorithm is presented, mode analyzed and tested, for which even the asymptotic algebraic convergence is fast. The essence of that algorithm is applicable to other kinds of problems, including highly indefinite ones.

  3. Multigrid techniques for the solution of the passive scalar advection-diffusion equation

    NASA Technical Reports Server (NTRS)

    Phillips, R. E.; Schmidt, F. W.

    1985-01-01

    The solution of elliptic passive scalar advection-diffusion equations is required in the analysis of many turbulent flow and convective heat transfer problems. The accuracy of the solution may be affected by the presence of regions containing large gradients of the dependent variables. The multigrid concept of local grid refinement is a method for improving the accuracy of the calculations in these problems. In combination with the multilevel acceleration techniques, an accurate and efficient computational procedure is developed. In addition, a robust implementation of the QUICK finite-difference scheme is described. Calculations of a test problem are presented to quantitatively demonstrate the advantages of the multilevel-multigrid method.

  4. Multigrid methods with space–time concurrency

    DOE PAGES

    Falgout, R. D.; Friedhoff, S.; Kolev, Tz. V.; ...

    2017-10-06

    Here, we consider the comparison of multigrid methods for parabolic partial differential equations that allow space–time concurrency. With current trends in computer architectures leading towards systems with more, but not faster, processors, space–time concurrency is crucial for speeding up time-integration simulations. In contrast, traditional time-integration techniques impose serious limitations on parallel performance due to the sequential nature of the time-stepping approach, allowing spatial concurrency only. This paper considers the three basic options of multigrid algorithms on space–time grids that allow parallelism in space and time: coarsening in space and time, semicoarsening in the spatial dimensions, and semicoarsening in the temporalmore » dimension. We develop parallel software and performance models to study the three methods at scales of up to 16K cores and introduce an extension of one of them for handling multistep time integration. We then discuss advantages and disadvantages of the different approaches and their benefit compared to traditional space-parallel algorithms with sequential time stepping on modern architectures.« less

  5. Multigrid methods with space–time concurrency

    SciTech Connect

    Falgout, R. D.; Friedhoff, S.; Kolev, Tz. V.

    Here, we consider the comparison of multigrid methods for parabolic partial differential equations that allow space–time concurrency. With current trends in computer architectures leading towards systems with more, but not faster, processors, space–time concurrency is crucial for speeding up time-integration simulations. In contrast, traditional time-integration techniques impose serious limitations on parallel performance due to the sequential nature of the time-stepping approach, allowing spatial concurrency only. This paper considers the three basic options of multigrid algorithms on space–time grids that allow parallelism in space and time: coarsening in space and time, semicoarsening in the spatial dimensions, and semicoarsening in the temporalmore » dimension. We develop parallel software and performance models to study the three methods at scales of up to 16K cores and introduce an extension of one of them for handling multistep time integration. We then discuss advantages and disadvantages of the different approaches and their benefit compared to traditional space-parallel algorithms with sequential time stepping on modern architectures.« less

  6. Lecture Notes on Multigrid Methods

    SciTech Connect

    Vassilevski, P S

    The Lecture Notes are primarily based on a sequence of lectures given by the author while been a Fulbright scholar at 'St. Kliment Ohridski' University of Sofia, Sofia, Bulgaria during the winter semester of 2009-2010 academic year. The notes are somewhat expanded version of the actual one semester class he taught there. The material covered is slightly modified and adapted version of similar topics covered in the author's monograph 'Multilevel Block-Factorization Preconditioners' published in 2008 by Springer. The author tried to keep the notes as self-contained as possible. That is why the lecture notes begin with some basic introductory matrix-vectormore » linear algebra, numerical PDEs (finite element) facts emphasizing the relations between functions in finite dimensional spaces and their coefficient vectors and respective norms. Then, some additional facts on the implementation of finite elements based on relation tables using the popular compressed sparse row (CSR) format are given. Also, typical condition number estimates of stiffness and mass matrices, the global matrix assembly from local element matrices are given as well. Finally, some basic introductory facts about stationary iterative methods, such as Gauss-Seidel and its symmetrized version are presented. The introductory material ends up with the smoothing property of the classical iterative methods and the main definition of two-grid iterative methods. From here on, the second part of the notes begins which deals with the various aspects of the principal TG and the numerous versions of the MG cycles. At the end, in part III, we briefly introduce algebraic versions of MG referred to as AMG, focusing on classes of AMG specialized for finite element matrices.« less

  7. Convergence acceleration of the Proteus computer code with multigrid methods

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.; Ibraheem, S. O.

    1992-01-01

    Presented here is the first part of a study to implement convergence acceleration techniques based on the multigrid concept in the Proteus computer code. A review is given of previous studies on the implementation of multigrid methods in computer codes for compressible flow analysis. Also presented is a detailed stability analysis of upwind and central-difference based numerical schemes for solving the Euler and Navier-Stokes equations. Results are given of a convergence study of the Proteus code on computational grids of different sizes. The results presented here form the foundation for the implementation of multigrid methods in the Proteus code.

  8. Black box multigrid

    NASA Technical Reports Server (NTRS)

    Dendy, J. E., Jr.

    1981-01-01

    The black box multigrid (BOXMG) code, which only needs specification of the matrix problem for application in the multigrid method was investigated. It is contended that a major problem with the multigrid method is that each new grid configuration requires a major programming effort to develop a code that specifically handles that grid configuration. The SOR and ICCG methods only specify the matrix problem, no matter what the grid configuration. It is concluded that the BOXMG does everything else necessary to set up the auxiliary coarser problems to achieve a multigrid solution.

  9. New Multigrid Method Including Elimination Algolithm Based on High-Order Vector Finite Elements in Three Dimensional Magnetostatic Field Analysis

    NASA Astrophysics Data System (ADS)

    Hano, Mitsuo; Hotta, Masashi

    A new multigrid method based on high-order vector finite elements is proposed in this paper. Low level discretizations in this method are obtained by using low-order vector finite elements for the same mesh. Gauss-Seidel method is used as a smoother, and a linear equation of lowest level is solved by ICCG method. But it is often found that multigrid solutions do not converge into ICCG solutions. An elimination algolithm of constant term using a null space of the coefficient matrix is also described. In three dimensional magnetostatic field analysis, convergence time and number of iteration of this multigrid method are discussed with the convectional ICCG method.

  10. A Critical Study of Agglomerated Multigrid Methods for Diffusion

    NASA Technical Reports Server (NTRS)

    Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.

    2011-01-01

    Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods but its convergence deteriorates on finer grids. Multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also grid-dependent. In contrast, grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Convergence rates of multigrid cycles are verified with quantitative analysis methods in which parts of the two-grid cycle are replaced by their idealized counterparts.

  11. Fast preconditioned multigrid solution of the Euler and Navier-Stokes equations for steady, compressible flows

    NASA Astrophysics Data System (ADS)

    Caughey, David A.; Jameson, Antony

    2003-10-01

    New versions of implicit algorithms are developed for the efficient solution of the Euler and Navier-Stokes equations of compressible flow. The methods are based on a preconditioned, lower-upper (LU) implementation of a non-linear, symmetric Gauss-Seidel (SGS) algorithm for use as a smoothing algorithm in a multigrid method. Previously, this method had been implemented for flows in quasi-one-dimensional ducts and for two-dimensional flows past airfoils on boundary-conforming O-type grids for a variety of symmetric limited positive (SLIP) spatial approximations, including the scalar dissipation and convective upwind split pressure (CUSP) schemes. Here results are presented for both inviscid and viscous (laminar) flows past airfoils on boundary-conforming C-type grids. The method is significantly faster than earlier explicit or implicit methods for inviscid problems, allowing solution of these problems to the level of truncation error in three to five multigrid cycles. Viscous solutions still require as many as twenty multigrid cycles.

  12. Multidimensional radiative transfer with multilevel atoms. II. The non-linear multigrid method.

    NASA Astrophysics Data System (ADS)

    Fabiani Bendicho, P.; Trujillo Bueno, J.; Auer, L.

    1997-08-01

    A new iterative method for solving non-LTE multilevel radiative transfer (RT) problems in 1D, 2D or 3D geometries is presented. The scheme obtains the self-consistent solution of the kinetic and RT equations at the cost of only a few (<10) formal solutions of the RT equation. It combines, for the first time, non-linear multigrid iteration (Brandt, 1977, Math. Comp. 31, 333; Hackbush, 1985, Multi-Grid Methods and Applications, springer-Verlag, Berlin), an efficient multilevel RT scheme based on Gauss-Seidel iterations (cf. Trujillo Bueno & Fabiani Bendicho, 1995ApJ...455..646T), and accurate short-characteristics formal solution techniques. By combining a valid stopping criterion with a nested-grid strategy a converged solution with the desired true error is automatically guaranteed. Contrary to the current operator splitting methods the very high convergence speed of the new RT method does not deteriorate when the grid spatial resolution is increased. With this non-linear multigrid method non-LTE problems discretized on N grid points are solved in O(N) operations. The nested multigrid RT method presented here is, thus, particularly attractive in complicated multilevel transfer problems where small grid-sizes are required. The properties of the method are analyzed both analytically and with illustrative multilevel calculations for Ca II in 1D and 2D schematic model atmospheres.

  13. A Critical Study of Agglomerated Multigrid Methods for Diffusion

    NASA Technical Reports Server (NTRS)

    Thomas, James L.; Nishikawa, Hiroaki; Diskin, Boris

    2009-01-01

    Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and highly stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods but its convergence deteriorates on finer grids. Multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also grid-dependent. In contrast, grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Actual cycle results are verified using quantitative analysis methods in which parts of the cycle are replaced by their idealized counterparts.

  14. An overlapped grid method for multigrid, finite volume/difference flow solvers: MaGGiE

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Lessard, Victor R.

    1990-01-01

    The objective is to develop a domain decomposition method via overlapping/embedding the component grids, which is to be used by upwind, multi-grid, finite volume solution algorithms. A computer code, given the name MaGGiE (Multi-Geometry Grid Embedder) is developed to meet this objective. MaGGiE takes independently generated component grids as input, and automatically constructs the composite mesh and interpolation data, which can be used by the finite volume solution methods with or without multigrid convergence acceleration. Six demonstrative examples showing various aspects of the overlap technique are presented and discussed. These cases are used for developing the procedure for overlapping grids of different topologies, and to evaluate the grid connection and interpolation data for finite volume calculations on a composite mesh. Time fluxes are transferred between mesh interfaces using a trilinear interpolation procedure. Conservation losses are minimal at the interfaces using this method. The multi-grid solution algorithm, using the coaser grid connections, improves the convergence time history as compared to the solution on composite mesh without multi-gridding.

  15. Seventh Copper Mountain Conference on Multigrid Methods. Part 2

    NASA Technical Reports Server (NTRS)

    Melson, N. Duane (Editor); Manteuffel, Tom A. (Editor); McCormick, Steve F. (Editor); Douglas, Craig C. (Editor)

    1996-01-01

    The Seventh Copper Mountain Conference on Multigrid Methods was held on April 2-7, 1995 at Copper Mountain, Colorado. This book is a collection of many of the papers presented at the conference and so represents the conference proceedings. NASA Langley graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The vibrancy and diversity in this field are amply expressed in these important papers, and the collection clearly shows the continuing rapid growth of the use of multigrid acceleration techniques.

  16. On several aspects and applications of the multigrid method for solving partial differential equations

    NASA Technical Reports Server (NTRS)

    Dinar, N.

    1978-01-01

    Several aspects of multigrid methods are briefly described. The main subjects include the development of very efficient multigrid algorithms for systems of elliptic equations (Cauchy-Riemann, Stokes, Navier-Stokes), as well as the development of control and prediction tools (based on local mode Fourier analysis), used to analyze, check and improve these algorithms. Preliminary research on multigrid algorithms for time dependent parabolic equations is also described. Improvements in existing multigrid processes and algorithms for elliptic equations were studied.

  17. A multigrid method for steady Euler equations on unstructured adaptive grids

    NASA Technical Reports Server (NTRS)

    Riemslagh, Kris; Dick, Erik

    1993-01-01

    A flux-difference splitting type algorithm is formulated for the steady Euler equations on unstructured grids. The polynomial flux-difference splitting technique is used. A vertex-centered finite volume method is employed on a triangular mesh. The multigrid method is in defect-correction form. A relaxation procedure with a first order accurate inner iteration and a second-order correction performed only on the finest grid, is used. A multi-stage Jacobi relaxation method is employed as a smoother. Since the grid is unstructured a Jacobi type is chosen. The multi-staging is necessary to provide sufficient smoothing properties. The domain is discretized using a Delaunay triangular mesh generator. Three grids with more or less uniform distribution of nodes but with different resolution are generated by successive refinement of the coarsest grid. Nodes of coarser grids appear in the finer grids. The multigrid method is started on these grids. As soon as the residual drops below a threshold value, an adaptive refinement is started. The solution on the adaptively refined grid is accelerated by a multigrid procedure. The coarser multigrid grids are generated by successive coarsening through point removement. The adaption cycle is repeated a few times. Results are given for the transonic flow over a NACA-0012 airfoil.

  18. A new extrapolation cascadic multigrid method for three dimensional elliptic boundary value problems

    NASA Astrophysics Data System (ADS)

    Pan, Kejia; He, Dongdong; Hu, Hongling; Ren, Zhengyong

    2017-09-01

    In this paper, we develop a new extrapolation cascadic multigrid method, which makes it possible to solve three dimensional elliptic boundary value problems with over 100 million unknowns on a desktop computer in half a minute. First, by combining Richardson extrapolation and quadratic finite element (FE) interpolation for the numerical solutions on two-level of grids (current and previous grids), we provide a quite good initial guess for the iterative solution on the next finer grid, which is a third-order approximation to the FE solution. And the resulting large linear system from the FE discretization is then solved by the Jacobi-preconditioned conjugate gradient (JCG) method with the obtained initial guess. Additionally, instead of performing a fixed number of iterations as used in existing cascadic multigrid methods, a relative residual tolerance is introduced in the JCG solver, which enables us to obtain conveniently the numerical solution with the desired accuracy. Moreover, a simple method based on the midpoint extrapolation formula is proposed to achieve higher-order accuracy on the finest grid cheaply and directly. Test results from four examples including two smooth problems with both constant and variable coefficients, an H3-regular problem as well as an anisotropic problem are reported to show that the proposed method has much better efficiency compared to the classical V-cycle and W-cycle multigrid methods. Finally, we present the reason why our method is highly efficient for solving these elliptic problems.

  19. Multigrid and Krylov Subspace Methods for the Discrete Stokes Equations

    NASA Technical Reports Server (NTRS)

    Elman, Howard C.

    1996-01-01

    Discretization of the Stokes equations produces a symmetric indefinite system of linear equations. For stable discretizations, a variety of numerical methods have been proposed that have rates of convergence independent of the mesh size used in the discretization. In this paper, we compare the performance of four such methods: variants of the Uzawa, preconditioned conjugate gradient, preconditioned conjugate residual, and multigrid methods, for solving several two-dimensional model problems. The results indicate that where it is applicable, multigrid with smoothing based on incomplete factorization is more efficient than the other methods, but typically by no more than a factor of two. The conjugate residual method has the advantage of being both independent of iteration parameters and widely applicable.

  20. On multigrid methods for the Navier-Stokes Computer

    NASA Technical Reports Server (NTRS)

    Nosenchuck, D. M.; Krist, S. E.; Zang, T. A.

    1988-01-01

    The overall architecture of the multipurpose parallel-processing Navier-Stokes Computer (NSC) being developed by Princeton and NASA Langley (Nosenchuck et al., 1986) is described and illustrated with extensive diagrams, and the NSC implementation of an elementary multigrid algorithm for simulating isotropic turbulence (based on solution of the incompressible time-dependent Navier-Stokes equations with constant viscosity) is characterized in detail. The present NSC design concept calls for 64 nodes, each with the performance of a class VI supercomputer, linked together by a fiber-optic hypercube network and joined to a front-end computer by a global bus. In this configuration, the NSC would have a storage capacity of over 32 Gword and a peak speed of over 40 Gflops. The multigrid Navier-Stokes code discussed would give sustained operation rates of about 25 Gflops.

  1. Multigrid methods for numerical simulation of laminar diffusion flames

    NASA Technical Reports Server (NTRS)

    Liu, C.; Liu, Z.; Mccormick, S.

    1993-01-01

    This paper documents the result of a computational study of multigrid methods for numerical simulation of 2D diffusion flames. The focus is on a simplified combustion model, which is assumed to be a single step, infinitely fast and irreversible chemical reaction with five species (C3H8, O2, N2, CO2 and H2O). A fully-implicit second-order hybrid scheme is developed on a staggered grid, which is stretched in the streamwise coordinate direction. A full approximation multigrid scheme (FAS) based on line distributive relaxation is developed as a fast solver for the algebraic equations arising at each time step. Convergence of the process for the simplified model problem is more than two-orders of magnitude faster than other iterative methods, and the computational results show good grid convergence, with second-order accuracy, as well as qualitatively agreement with the results of other researchers.

  2. Monolithic multigrid methods for two-dimensional resistive magnetohydrodynamics

    DOE PAGES

    Adler, James H.; Benson, Thomas R.; Cyr, Eric C.; ...

    2016-01-06

    Magnetohydrodynamic (MHD) representations are used to model a wide range of plasma physics applications and are characterized by a nonlinear system of partial differential equations that strongly couples a charged fluid with the evolution of electromagnetic fields. The resulting linear systems that arise from discretization and linearization of the nonlinear problem are generally difficult to solve. In this paper, we investigate multigrid preconditioners for this system. We consider two well-known multigrid relaxation methods for incompressible fluid dynamics: Braess--Sarazin relaxation and Vanka relaxation. We first extend these to the context of steady-state one-fluid viscoresistive MHD. Then we compare the two relaxationmore » procedures within a multigrid-preconditioned GMRES method employed within Newton's method. To isolate the effects of the different relaxation methods, we use structured grids, inf-sup stable finite elements, and geometric interpolation. Furthermore, we present convergence and timing results for a two-dimensional, steady-state test problem.« less

  3. The Sixth Copper Mountain Conference on Multigrid Methods, part 2

    NASA Technical Reports Server (NTRS)

    Melson, N. Duane (Editor); Mccormick, Steve F. (Editor); Manteuffel, Thomas A. (Editor)

    1993-01-01

    The Sixth Copper Mountain Conference on Multigrid Methods was held on April 4-9, 1993, at Copper Mountain, Colorado. This book is a collection of many of the papers presented at the conference and so represents the conference proceedings. NASA Langley graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection clearly shows its rapid trend to further diversity and depth.

  4. The Sixth Copper Mountain Conference on Multigrid Methods, part 1

    NASA Technical Reports Server (NTRS)

    Melson, N. Duane (Editor); Manteuffel, T. A. (Editor); Mccormick, S. F. (Editor)

    1993-01-01

    The Sixth Copper Mountain Conference on Multigrid Methods was held on 4-9 Apr. 1993, at Copper Mountain, CO. This book is a collection of many of the papers presented at the conference and as such represents the conference proceedings. NASA LaRC graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection clearly shows its rapid trend to further diversity and depth.

  5. Seventh Copper Mountain Conference on Multigrid Methods. Part 1

    NASA Technical Reports Server (NTRS)

    Melson, N. Duane; Manteuffel, Tom A.; McCormick, Steve F.; Douglas, Craig C.

    1996-01-01

    The Seventh Copper Mountain Conference on Multigrid Methods was held on 2-7 Apr. 1995 at Copper Mountain, Colorado. This book is a collection of many of the papers presented at the conference and so represents the conference proceedings. NASA Langley graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection shows its rapid trend to further diversity and depth.

  6. Application of multi-grid method on the simulation of incremental forging processes

    NASA Astrophysics Data System (ADS)

    Ramadan, Mohamad; Khaled, Mahmoud; Fourment, Lionel

    2016-10-01

    Numerical simulation becomes essential in manufacturing large part by incremental forging processes. It is a splendid tool allowing to show physical phenomena however behind the scenes, an expensive bill should be paid, that is the computational time. That is why many techniques are developed to decrease the computational time of numerical simulation. Multi-Grid method is a numerical procedure that permits to reduce computational time of numerical calculation by performing the resolution of the system of equations on several mesh of decreasing size which allows to smooth faster the low frequency of the solution as well as its high frequency. In this paper a Multi-Grid method is applied to cogging process in the software Forge 3. The study is carried out using increasing number of degrees of freedom. The results shows that calculation time is divide by two for a mesh of 39,000 nodes. The method is promising especially if coupled with Multi-Mesh method.

  7. The solution of the Elrod algorithm for a dynamically loaded journal bearing using multigrid techniques

    NASA Technical Reports Server (NTRS)

    Woods, Claudia M.; Brewe, David E.

    1988-01-01

    A numerical solution to a theoretical model of vapor cavitation in a dynamically loaded journal bearing is developed utilizing a multigrid iteration technique. The method is compared with a noniterative approach in terms of computational time and accuracy. The computational model is based on the Elrod algorithm, a control volume approach to the Reynolds equation which mimics the Jakobsson-Floberg and Olsson cavitation theory. Besides accounting for a moving cavitation boundary and conservation of mass at the boundary, it also conserves mass within the cavitated region via a smeared mass or striated flow extending to both surfaces in the film gap. The mixed nature of the equations (parabolic in the full film zone and hyperbolic in the cavitated zone) coupled with the dynamic aspects of the problem create interesting difficulties for the present solution approach. Emphasis is placed on the methods found to eliminate solution instabilities. Excellent results are obtained for both accuracy and reduction of computational time.

  8. The solution of the Elrod algorithm for a dynamically loaded journal bearing using multigrid techniques

    NASA Technical Reports Server (NTRS)

    Woods, C. M.; Brewe, D. E.

    1989-01-01

    A numerical solution to a theoretical model of vapor cavitation in a dynamically loaded journal bearing is developed utilizing a multigrid iteration technique. The method is compared with a noniterative approach in terms of computational time and accuracy. The computational model is based on the Elrod algorithm, a control volume approach to the Reynolds equation which mimics the Jakobsson-Floberg and Olsson cavitation theory. Besides accounting for a moving cavitation boundary and conservation of mass at the boundary, it also conserves mass within the cavitated region via a smeared mass or striated flow extending to both surfaces in the film gap. The mixed nature of the equations (parabolic in the full film zone and hyperbolic in the cavitated zone) coupled with the dynamic aspects of the problem create interesting difficulties for the present solution approach. Emphasis is placed on the methods found to eliminate solution instabilities. Excellent results are obtained for both accuracy and reduction of computational time.

  9. High order multi-grid methods to solve the Poisson equation

    NASA Technical Reports Server (NTRS)

    Schaffer, S.

    1981-01-01

    High order multigrid methods based on finite difference discretization of the model problem are examined. The following methods are described: (1) a fixed high order FMG-FAS multigrid algorithm; (2) the high order methods; and (3) results are presented on four problems using each method with the same underlying fixed FMG-FAS algorithm.

  10. Multigrid method based on the transformation-free HOC scheme on nonuniform grids for 2D convection diffusion problems

    NASA Astrophysics Data System (ADS)

    Ge, Yongbin; Cao, Fujun

    2011-05-01

    In this paper, a multigrid method based on the high order compact (HOC) difference scheme on nonuniform grids, which has been proposed by Kalita et al. [J.C. Kalita, A.K. Dass, D.C. Dalal, A transformation-free HOC scheme for steady convection-diffusion on non-uniform grids, Int. J. Numer. Methods Fluids 44 (2004) 33-53], is proposed to solve the two-dimensional (2D) convection diffusion equation. The HOC scheme is not involved in any grid transformation to map the nonuniform grids to uniform grids, consequently, the multigrid method is brand-new for solving the discrete system arising from the difference equation on nonuniform grids. The corresponding multigrid projection and interpolation operators are constructed by the area ratio. Some boundary layer and local singularity problems are used to demonstrate the superiority of the present method. Numerical results show that the multigrid method with the HOC scheme on nonuniform grids almost gets as equally efficient convergence rate as on uniform grids and the computed solution on nonuniform grids retains fourth order accuracy while on uniform grids just gets very poor solution for very steep boundary layer or high local singularity problems. The present method is also applied to solve the 2D incompressible Navier-Stokes equations using the stream function-vorticity formulation and the numerical solutions of the lid-driven cavity flow problem are obtained and compared with solutions available in the literature.

  11. Algebraic multigrid methods applied to problems in computational structural mechanics

    NASA Technical Reports Server (NTRS)

    Mccormick, Steve; Ruge, John

    1989-01-01

    The development of algebraic multigrid (AMG) methods and their application to certain problems in structural mechanics are described with emphasis on two- and three-dimensional linear elasticity equations and the 'jacket problems' (three-dimensional beam structures). Various possible extensions of AMG are also described. The basic idea of AMG is to develop the discretization sequence based on the target matrix and not the differential equation. Therefore, the matrix is analyzed for certain dependencies that permit the proper construction of coarser matrices and attendant transfer operators. In this manner, AMG appears to be adaptable to structural analysis applications.

  12. Multigrid methods for a semilinear PDE in the theory of pseudoplastic fluids

    NASA Technical Reports Server (NTRS)

    Henson, Van Emden; Shaker, A. W.

    1993-01-01

    We show that by certain transformations the boundary layer equations for the class of non-Newtonian fluids named pseudoplastic can be generalized in the form the vector differential operator(u) + p(x)u(exp -lambda) = 0, where x is a member of the set Omega and Omega is a subset of R(exp n), n is greater than or equal to 1 under the classical conditions for steady flow over a semi-infinite flat plate. We provide a survey of the existence, uniqueness, and analyticity of the solutions for this problem. We also establish numerical solutions in one- and two-dimensional regions using multigrid methods.

  13. Multigrid solution of the Navier-Stokes equations on highly stretched grids with defect correction

    NASA Technical Reports Server (NTRS)

    Sockol, Peter M.

    1993-01-01

    Relaxation-based multigrid solvers for the steady incompressible Navier-Stokes equations are examined to determine their computational speed and robustness. Four relaxation methods with a common discretization have been used as smoothers in a single tailored multigrid procedure. The equations are discretized on a staggered grid with first order upwind used for convection in the relaxation process on all grids and defect correction to second order central on the fine grid introduced once per multigrid cycle. A fixed W(1,1) cycle with full weighting of residuals is used in the FAS multigrid process. The resulting solvers have been applied to three 2D flow problems, over a range of Reynolds numbers, on both uniform and highly stretched grids. In all cases the L(sub 2) norm of the velocity changes is reduced to 10(exp -6) in a few 10's of fine grid sweeps. The results from this study are used to draw conclusions on the strengths and weaknesses of the individual relaxation schemes as well as those of the overall multigrid procedure when used as a solver on highly stretched grids.

  14. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    SciTech Connect

    McCormick, Stephen F.

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/.

  15. On a multigrid method for the coupled Stokes and porous media flow problem

    NASA Astrophysics Data System (ADS)

    Luo, P.; Rodrigo, C.; Gaspar, F. J.; Oosterlee, C. W.

    2017-07-01

    The multigrid solution of coupled porous media and Stokes flow problems is considered. The Darcy equation as the saturated porous medium model is coupled to the Stokes equations by means of appropriate interface conditions. We focus on an efficient multigrid solution technique for the coupled problem, which is discretized by finite volumes on staggered grids, giving rise to a saddle point linear system. Special treatment is required regarding the discretization at the interface. An Uzawa smoother is employed in multigrid, which is a decoupled procedure based on symmetric Gauss-Seidel smoothing for velocity components and a simple Richardson iteration for the pressure field. Since a relaxation parameter is part of a Richardson iteration, Local Fourier Analysis (LFA) is applied to determine the optimal parameters. Highly satisfactory multigrid convergence is reported, and, moreover, the algorithm performs well for small values of the hydraulic conductivity and fluid viscosity, that are relevant for applications.

  16. Adaptive multigrid domain decomposition solutions for viscous interacting flows

    NASA Technical Reports Server (NTRS)

    Rubin, Stanley G.; Srinivasan, Kumar

    1992-01-01

    Several viscous incompressible flows with strong pressure interaction and/or axial flow reversal are considered with an adaptive multigrid domain decomposition procedure. Specific examples include the triple deck structure surrounding the trailing edge of a flat plate, the flow recirculation in a trough geometry, and the flow in a rearward facing step channel. For the latter case, there are multiple recirculation zones, of different character, for laminar and turbulent flow conditions. A pressure-based form of flux-vector splitting is applied to the Navier-Stokes equations, which are represented by an implicit lowest-order reduced Navier-Stokes (RNS) system and a purely diffusive, higher-order, deferred-corrector. A trapezoidal or box-like form of discretization insures that all mass conservation properties are satisfied at interfacial and outflow boundaries, even for this primitive-variable, non-staggered grid computation.

  17. 3D Parallel Multigrid Methods for Real-Time Fluid Simulation

    NASA Astrophysics Data System (ADS)

    Wan, Feifei; Yin, Yong; Zhang, Suiyu

    2018-03-01

    The multigrid method is widely used in fluid simulation because of its strong convergence. In addition to operating accuracy, operational efficiency is also an important factor to consider in order to enable real-time fluid simulation in computer graphics. For this problem, we compared the performance of the Algebraic Multigrid and the Geometric Multigrid in the V-Cycle and Full-Cycle schemes respectively, and analyze the convergence and speed of different methods. All the calculations are done on the parallel computing of GPU in this paper. Finally, we experiment with the 3D-grid for each scale, and give the exact experimental results.

  18. Three-dimensional forward modeling of DC resistivity using the aggregation-based algebraic multigrid method

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Deng, Ju-Zhi; Yin, Min; Yin, Chang-Chun; Tang, Wen-Wu

    2017-03-01

    To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondary potential field with mixed boundary conditions by using a seven-point finite-difference method to obtain a large sparse system of linear equations. Then, we introduce the theory behind the pairwise aggregation algorithms for AGMG and use the conjugate-gradient method with the V-cycle AGMG preconditioner (AGMG-CG) to solve the linear equations. We use typical geoelectrical models to test the proposed AGMG-CG method and compare the results with analytical solutions and the 3DDCXH algorithm for 3D DC modeling (3DDCXH). In addition, we apply the AGMG-CG method to different grid sizes and geoelectrical models and compare it to different iterative methods, such as ILU-BICGSTAB, ILU-GCR, and SSOR-CG. The AGMG-CG method yields nearly linearly decreasing errors, whereas the number of iterations increases slowly with increasing grid size. The AGMG-CG method is precise and converges fast, and thus can improve the computational efficiency in forward modeling of three-dimensional DC resistivity.

  19. Geometric multigrid to accelerate the solution of the quasi-static electric field problem by tetrahedral finite elements.

    PubMed

    Hollaus, K; Weiss, B; Magele, Ch; Hutten, H

    2004-02-01

    The acceleration of the solution of the quasi-static electric field problem considering anisotropic complex conductivity simulated by tetrahedral finite elements of first order is investigated by geometric multigrid.

  20. Scalability and Performance of Data-Parallel Pressure-Based Multigrid Methods for Viscous Flows

    NASA Astrophysics Data System (ADS)

    Blosch, Edwin L.; Shyy, Wei

    1996-05-01

    A full-approximation storage multigrid method for solving the steady-state 2-dincompressible Navier-Stokes equations on staggered grids has been implemented in Fortran on the CM-5,using the array aliasing feature in CM-Fortran to avoid declaring fine-grid-sized arrays on all levels while still allowing a variable number of grid levels. Thus, the storage cost scales with the number of unknowns,allowing us to consider significantly larger problems than would otherwise be possible. Timings over a range of problem sizes and numbers of processors, up to 4096 × 4096 on 512 nodes, show that the smoothing procedure, a pressure-correction technique, is scalable and that the restriction and prolongation steps are nearly so. The performance obtained for the multigrid method is 333 Mflops out of the theoretical peak 4 Gflops on a 32-node CM-5. In comparison, a single-grid computation obtained 420 Mflops. The decrease is due to the inefficiency of the smoothing iterations on the coarse grid levels. W cycles cost much more and are much less efficient than V cycles, due to the increased contribution from the coarse grids. The convergence rate characteristics of the pressure-correction multigrid method are investigated in a Re = 5000 lid-driven cavity flow and a Re = 300 symmetric backward-facing step flow, using either a defect-correction scheme or a second-order upwind scheme. A heuristic technique relating the convergence tolerances for the coarse grids to the truncation error of the discretization has been found effective and robust. With second-order upwinding on all grid levels, a 5-level 320× 80 step flow solution was obtained in 20 V cycles, which corresponds to a smoothing rate of 0.7, and required 25 s on a 32-node CM-5. Overall, the convergence rates obtained in the present work are comparable to the most competitive findings reported in the literature.

  1. A Conforming Multigrid Method for the Pure Traction Problem of Linear Elasticity: Mixed Formulation

    NASA Technical Reports Server (NTRS)

    Lee, Chang-Ock

    1996-01-01

    A multigrid method using conforming P-1 finite element is developed for the two-dimensional pure traction boundary value problem of linear elasticity. The convergence is uniform even as the material becomes nearly incompressible. A heuristic argument for acceleration of the multigrid method is discussed as well. Numerical results with and without this acceleration as well as performance estimates on a parallel computer are included.

  2. Recent Development of Multigrid Algorithms for Mixed and Noncomforming Methods for Second Order Elliptical Problems

    NASA Technical Reports Server (NTRS)

    Chen, Zhangxin; Ewing, Richard E.

    1996-01-01

    Multigrid algorithms for nonconforming and mixed finite element methods for second order elliptic problems on triangular and rectangular finite elements are considered. The construction of several coarse-to-fine intergrid transfer operators for nonconforming multigrid algorithms is discussed. The equivalence between the nonconforming and mixed finite element methods with and without projection of the coefficient of the differential problems into finite element spaces is described.

  3. Scalable smoothing strategies for a geometric multigrid method for the immersed boundary equations

    SciTech Connect

    Bhalla, Amneet Pal Singh; Knepley, Matthew G.; Adams, Mark F.

    2016-12-20

    The immersed boundary (IB) method is a widely used approach to simulating fluid-structure interaction (FSI). Although explicit versions of the IB method can suffer from severe time step size restrictions, these methods remain popular because of their simplicity and generality. In prior work (Guy et al., Adv Comput Math, 2015), some of us developed a geometric multigrid preconditioner for a stable semi-implicit IB method under Stokes flow conditions; however, this solver methodology used a Vanka-type smoother that presented limited opportunities for parallelization. This work extends this Stokes-IB solver methodology by developing smoothing techniques that are suitable for parallel implementation. Specifically,more » we demonstrate that an additive version of the Vanka smoother can yield an effective multigrid preconditioner for the Stokes-IB equations, and we introduce an efficient Schur complement-based smoother that is also shown to be effective for the Stokes-IB equations. We investigate the performance of these solvers for a broad range of material stiffnesses, both for Stokes flows and flows at nonzero Reynolds numbers, and for thick and thin structural models. We show here that linear solver performance degrades with increasing Reynolds number and material stiffness, especially for thin interface cases. Nonetheless, the proposed approaches promise to yield effective solution algorithms, especially at lower Reynolds numbers and at modest-to-high elastic stiffnesses.« less

  4. Is the Multigrid Method Fault Tolerant? The Two-Grid Case

    SciTech Connect

    Ainsworth, Mark; Glusa, Christian

    2016-06-30

    The predicted reduced resiliency of next-generation high performance computers means that it will become necessary to take into account the effects of randomly occurring faults on numerical methods. Further, in the event of a hard fault occurring, a decision has to be made as to what remedial action should be taken in order to resume the execution of the algorithm. The action that is chosen can have a dramatic effect on the performance and characteristics of the scheme. Ideally, the resulting algorithm should be subjected to the same kind of mathematical analysis that was applied to the original, deterministic variant.more » The purpose of this work is to provide an analysis of the behaviour of the multigrid algorithm in the presence of faults. Multigrid is arguably the method of choice for the solution of large-scale linear algebra problems arising from discretization of partial differential equations and it is of considerable importance to anticipate its behaviour on an exascale machine. The analysis of resilience of algorithms is in its infancy and the current work is perhaps the first to provide a mathematical model for faults and analyse the behaviour of a state-of-the-art algorithm under the model. It is shown that the Two Grid Method fails to be resilient to faults. Attention is then turned to identifying the minimal necessary remedial action required to restore the rate of convergence to that enjoyed by the ideal fault-free method.« less

  5. Phonon Calculations Using the Real-Space Multigrid Method (RMG)

    NASA Astrophysics Data System (ADS)

    Zhang, Jiayong; Lu, Wenchang; Briggs, Emil; Cheng, Yongqiang; Ramirez-Cuesta, A. J.; Bernholc, Jerry

    RMG, a DFT-based open-source package using the real-space multigrid method, has proven to work effectively on large scale systems with thousands of atoms. Our recent work has shown its practicability for high accuracy phonon calculations employing the frozen phonon method. In this method, a primary unit cell with a small lattice constant is enlarged to a supercell that is sufficiently large to obtain the force constants matrix by finite displacements of atoms in the supercell. An open-source package PhonoPy is used to determine the necessary displacements by taking symmetry into account. A python script coupling RMG and PhonoPy enables us to perform high-throughput calculations of phonon properties. We have applied this method to many systems, such as silicon, silica glass, ZIF-8, etc. Results from RMG are compared to the experimental spectra measured using the VISION inelastic neutron scattering spectrometer at the Spallation Neutron Source at ORNL, as well as results from other DFT codes. The computing resources were made available through the VirtuES (Virtual Experiments in Spectroscopy) project, funded by Laboratory Directed Research and Development program (LDRD project No. 7739)

  6. Multigrid Solution of the Navier-Stokes Equations at Low Speeds with Large Temperature Variations

    NASA Technical Reports Server (NTRS)

    Sockol, Peter M.

    2002-01-01

    Multigrid methods for the Navier-Stokes equations at low speeds and large temperature variations are investigated. The compressible equations with time-derivative preconditioning and preconditioned flux-difference splitting of the inviscid terms are used. Three implicit smoothers have been incorporated into a common multigrid procedure. Both full coarsening and semi-coarsening with directional fine-grid defect correction have been studied. The resulting methods have been tested on four 2D laminar problems over a range of Reynolds numbers on both uniform and highly stretched grids. Two of the three methods show efficient and robust performance over the entire range of conditions. In addition none of the methods have any difficulty with the large temperature variations.

  7. Development and Application of Agglomerated Multigrid Methods for Complex Geometries

    NASA Technical Reports Server (NTRS)

    Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.

    2010-01-01

    We report progress in the development of agglomerated multigrid techniques for fully un- structured grids in three dimensions, building upon two previous studies focused on efficiently solving a model diffusion equation. We demonstrate a robust fully-coarsened agglomerated multigrid technique for 3D complex geometries, incorporating the following key developments: consistent and stable coarse-grid discretizations, a hierarchical agglomeration scheme, and line-agglomeration/relaxation using prismatic-cell discretizations in the highly-stretched grid regions. A signi cant speed-up in computer time is demonstrated for a model diffusion problem, the Euler equations, and the Reynolds-averaged Navier-Stokes equations for 3D realistic complex geometries.

  8. Multigrid one shot methods for optimal control problems: Infinite dimensional control

    NASA Technical Reports Server (NTRS)

    Arian, Eyal; Taasan, Shlomo

    1994-01-01

    The multigrid one shot method for optimal control problems, governed by elliptic systems, is introduced for the infinite dimensional control space. ln this case, the control variable is a function whose discrete representation involves_an increasing number of variables with grid refinement. The minimization algorithm uses Lagrange multipliers to calculate sensitivity gradients. A preconditioned gradient descent algorithm is accelerated by a set of coarse grids. It optimizes for different scales in the representation of the control variable on different discretization levels. An analysis which reduces the problem to the boundary is introduced. It is used to approximate the two level asymptotic convergence rate, to determine the amplitude of the minimization steps, and the choice of a high pass filter to be used when necessary. The effectiveness of the method is demonstrated on a series of test problems. The new method enables the solutions of optimal control problems at the same cost of solving the corresponding analysis problems just a few times.

  9. A cell-vertex multigrid method for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Radespiel, R.

    1989-01-01

    A cell-vertex scheme for the Navier-Stokes equations, which is based on central difference approximations and Runge-Kutta time stepping, is described. Using local time stepping, implicit residual smoothing, a multigrid method, and carefully controlled artificial dissipative terms, very good convergence rates are obtained for a wide range of two- and three-dimensional flows over airfoils and wings. The accuracy of the code is examined by grid refinement studies and comparison with experimental data. For an accurate prediction of turbulent flows with strong separations, a modified version of the nonequilibrium turbulence model of Johnson and King is introduced, which is well suited for an implementation into three-dimensional Navier-Stokes codes. It is shown that the solutions for three-dimensional flows with strong separations can be dramatically improved, when a nonequilibrium model of turbulence is used.

  10. Multigrid Algorithms for the Solution of Linear Complementarity Problems Arising from Free Boundary Problems.

    DTIC Science & Technology

    1980-10-01

    faster than previous algorithms. Indeed, with only minor modifications, the standard multigrid programs solve the LCP with essentially the same efficiency... Lemna 2.2. Let Uk be the solution of the LCP (2.3), and let uk > 0 be an approximate solu- tion obtained after one or more Gk projected sweeps. Let...in Figure 3.2, Ivu IIG decreased from .293 10 to .110 10 with the expenditure of (99.039-94.400) = 4.639 work units. While minor variations do arise, a

  11. A positivity-preserving, implicit defect-correction multigrid method for turbulent combustion

    NASA Astrophysics Data System (ADS)

    Wasserman, M.; Mor-Yossef, Y.; Greenberg, J. B.

    2016-07-01

    A novel, robust multigrid method for the simulation of turbulent and chemically reacting flows is developed. A survey of previous attempts at implementing multigrid for the problems at hand indicated extensive use of artificial stabilization to overcome numerical instability arising from non-linearity of turbulence and chemistry model source-terms, small-scale physics of combustion, and loss of positivity. These issues are addressed in the current work. The highly stiff Reynolds-averaged Navier-Stokes (RANS) equations, coupled with turbulence and finite-rate chemical kinetics models, are integrated in time using the unconditionally positive-convergent (UPC) implicit method. The scheme is successfully extended in this work for use with chemical kinetics models, in a fully-coupled multigrid (FC-MG) framework. To tackle the degraded performance of multigrid methods for chemically reacting flows, two major modifications are introduced with respect to the basic, Full Approximation Storage (FAS) approach. First, a novel prolongation operator that is based on logarithmic variables is proposed to prevent loss of positivity due to coarse-grid corrections. Together with the extended UPC implicit scheme, the positivity-preserving prolongation operator guarantees unconditional positivity of turbulence quantities and species mass fractions throughout the multigrid cycle. Second, to improve the coarse-grid-correction obtained in localized regions of high chemical activity, a modified defect correction procedure is devised, and successfully applied for the first time to simulate turbulent, combusting flows. The proposed modifications to the standard multigrid algorithm create a well-rounded and robust numerical method that provides accelerated convergence, while unconditionally preserving the positivity of model equation variables. Numerical simulations of various flows involving premixed combustion demonstrate that the proposed MG method increases the efficiency by a factor of

  12. Scalability and performance of data-parallel pressure-based multigrid methods for viscous flows

    SciTech Connect

    Blosch, E.L.; Shyy, W.

    1996-05-01

    A full-approximation storage multigrid method for solving the steady-state 2-d incompressible Navier-Stokes equations on staggered grids has been implemented in Fortran on the CM-5, using the array aliasing feature in CM-Fortran to avoid declaring fine-grid-sized arrays on all levels while still allowing a variable number of grid levels. Thus, the storage cost scales with the number of unknowns, allowing us to consider significantly larger problems than would otherwise be possible. Timings over a range of problem sizes and numbers of processors, up to 4096 x 4096 on 512 nodes, show that the smoothing procedure, a pressure-correction technique, is scalable andmore » that the restriction and prolongation steps are nearly so. The performance obtained for the multigrid method is 333 Mflops out of the theoretical peak 4 Gflops on a 32-node CM-5. In comparison, a single-grid computation obtained 420 Mflops. The decrease is due to the inefficiency of the smoothing iterations on the coarse grid levels. W cycles cost much more and are much less efficient than V cycles, due to the increased contribution from the coarse grids. The convergence rate characteristics of the pressure-correction multigrid method are investigated in a Re = 5000 lid-driven cavity flow and a Re = 300 symmetric backward-facing step flow, using either a defect-correction scheme or a second-order upwind scheme. A heuristic technique relating the convergence tolerances for the course grids to the truncation error of the discretization has been found effective and robust. With second-order upwinding on all grid levels, a 5-level 320 x 80 step flow solution was obtained in 20 V cycles, which corresponds to a smoothing rate of 0.7, and required 25 s on a 32-node CM-5. Overall, the convergence rates obtained in the present work are comparable to the most competitive findings reported in the literature. 62 refs., 13 figs.« less

  13. Development of an efficient multigrid method for the NEM form of the multigroup neutron diffusion equation

    NASA Astrophysics Data System (ADS)

    Al-Chalabi, Rifat M. Khalil

    1997-09-01

    Development of an improvement to the computational efficiency of the existing nested iterative solution strategy of the Nodal Exapansion Method (NEM) nodal based neutron diffusion code NESTLE is presented. The improvement in the solution strategy is the result of developing a multilevel acceleration scheme that does not suffer from the numerical stalling associated with a number of iterative solution methods. The acceleration scheme is based on the multigrid method, which is specifically adapted for incorporation into the NEM nonlinear iterative strategy. This scheme optimizes the computational interplay between the spatial discretization and the NEM nonlinear iterative solution process through the use of the multigrid method. The combination of the NEM nodal method, calculation of the homogenized, neutron nodal balance coefficients (i.e. restriction operator), efficient underlying smoothing algorithm (power method of NESTLE), and the finer mesh reconstruction algorithm (i.e. prolongation operator), all operating on a sequence of coarser spatial nodes, constitutes the multilevel acceleration scheme employed in this research. Two implementations of the multigrid method into the NESTLE code were examined; the Imbedded NEM Strategy and the Imbedded CMFD Strategy. The main difference in implementation between the two methods is that in the Imbedded NEM Strategy, the NEM solution is required at every MG level. Numerical tests have shown that the Imbedded NEM Strategy suffers from divergence at coarse- grid levels, hence all the results for the different benchmarks presented here were obtained using the Imbedded CMFD Strategy. The novelties in the developed MG method are as follows: the formulation of the restriction and prolongation operators, and the selection of the relaxation method. The restriction operator utilizes a variation of the reactor physics, consistent homogenization technique. The prolongation operator is based upon a variant of the pin power

  14. Numerical Simulations of STOVL Hot Gas Ingestion in Ground Proximity Using a Multigrid Solution Procedure

    NASA Technical Reports Server (NTRS)

    Wang, Gang

    2003-01-01

    A multi grid solution procedure for the numerical simulation of turbulent flows in complex geometries has been developed. A Full Multigrid-Full Approximation Scheme (FMG-FAS) is incorporated into the continuity and momentum equations, while the scalars are decoupled from the multi grid V-cycle. A standard kappa-Epsilon turbulence model with wall functions has been used to close the governing equations. The numerical solution is accomplished by solving for the Cartesian velocity components either with a traditional grid staggering arrangement or with a multiple velocity grid staggering arrangement. The two solution methodologies are evaluated for relative computational efficiency. The solution procedure with traditional staggering arrangement is subsequently applied to calculate the flow and temperature fields around a model Short Take-off and Vertical Landing (STOVL) aircraft hovering in ground proximity.

  15. Multigrid finite element method in stress analysis of three-dimensional elastic bodies of heterogeneous structure

    NASA Astrophysics Data System (ADS)

    Matveev, A. D.

    2016-11-01

    To calculate the three-dimensional elastic body of heterogeneous structure under static loading, a method of multigrid finite element is provided, when implemented on the basis of algorithms of finite element method (FEM), using homogeneous and composite threedimensional multigrid finite elements (MFE). Peculiarities and differences of MFE from the currently available finite elements (FE) are to develop composite MFE (without increasing their dimensions), arbitrarily small basic partition of composite solids consisting of single-grid homogeneous FE of the first order can be used, i.e. in fact, to use micro approach in finite element form. These small partitions allow one to take into account in MFE, i.e. in the basic discrete models of composite solids, complex heterogeneous and microscopically inhomogeneous structure, shape, the complex nature of the loading and fixation and describe arbitrarily closely the stress and stain state by the equations of three-dimensional elastic theory without any additional simplifying hypotheses. When building the m grid FE, m of nested grids is used. The fine grid is generated by a basic partition of MFE, the other m —1 large grids are applied to reduce MFE dimensionality, when m is increased, MFE dimensionality becomes smaller. The procedures of developing MFE of rectangular parallelepiped, irregular shape, plate and beam types are given. MFE generate the small dimensional discrete models and numerical solutions with a high accuracy. An example of calculating the laminated plate, using three-dimensional 3-grid FE and the reference discrete model is given, with that having 2.2 milliards of FEM nodal unknowns.

  16. Multigrid Methods: Proceedings of the Copper Mountain Conference on Multigrid Methods (3rd) Held in Copper Mountain, Colorado on April 5-10, 1987

    DTIC Science & Technology

    1988-08-01

    Time Series 53. J. Barros-Neto and R. A. Artino, Hypoelliptic Boundary-Value Problems 54. R. L. Sternberg, A. J. Kalinowski, and J. S. Papadakis... Systems 95. C E. AuL Rings of Continuous Functions 96. R. Chuaqui, Analysis , Geometry, and Probability 97. L. Fuchs and L. Sace, Modules Over...Local Refinements for a Class of Nonshared Memory Systems 449 Hermann Mierendorif Analysis of a Multigrid Method for the Euler Equations of Gas Dynamics

  17. New Nonlinear Multigrid Analysis

    NASA Technical Reports Server (NTRS)

    Xie, Dexuan

    1996-01-01

    The nonlinear multigrid is an efficient algorithm for solving the system of nonlinear equations arising from the numerical discretization of nonlinear elliptic boundary problems. In this paper, we present a new nonlinear multigrid analysis as an extension of the linear multigrid theory presented by Bramble. In particular, we prove the convergence of the nonlinear V-cycle method for a class of mildly nonlinear second order elliptic boundary value problems which do not have full elliptic regularity.

  18. Finite volume multigrid method of the planar contraction flow of a viscoelastic fluid

    NASA Astrophysics Data System (ADS)

    Moatssime, H. Al; Esselaoui, D.; Hakim, A.; Raghay, S.

    2001-08-01

    This paper reports on a numerical algorithm for the steady flow of viscoelastic fluid. The conservative and constitutive equations are solved using the finite volume method (FVM) with a hybrid scheme for the velocities and first-order upwind approximation for the viscoelastic stress. A non-uniform staggered grid system is used. The iterative SIMPLE algorithm is employed to relax the coupled momentum and continuity equations. The non-linear algebraic equations over the flow domain are solved iteratively by the symmetrical coupled Gauss-Seidel (SCGS) method. In both, the full approximation storage (FAS) multigrid algorithm is used. An Oldroyd-B fluid model was selected for the calculation. Results are reported for planar 4:1 abrupt contraction at various Weissenberg numbers. The solutions are found to be stable and smooth. The solutions show that at high Weissenberg number the domain must be long enough. The convergence of the method has been verified with grid refinement. All the calculations have been performed on a PC equipped with a Pentium III processor at 550 MHz. Copyright

  19. Multigrid methods for differential equations with highly oscillatory coefficients

    NASA Technical Reports Server (NTRS)

    Engquist, Bjorn; Luo, Erding

    1993-01-01

    New coarse grid multigrid operators for problems with highly oscillatory coefficients are developed. These types of operators are necessary when the characters of the differential equations on coarser grids or longer wavelengths are different from that on the fine grid. Elliptic problems for composite materials and different classes of hyperbolic problems are practical examples. The new coarse grid operators can be constructed directly based on the homogenized differential operators or hierarchically computed from the finest grid. Convergence analysis based on the homogenization theory is given for elliptic problems with periodic coefficients and some hyperbolic problems. These are classes of equations for which there exists a fairly complete theory for the interaction between shorter and longer wavelengths in the problems. Numerical examples are presented.

  20. Multigrid solution of compressible turbulent flow on unstructured meshes using a two-equation model

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Matinelli, L.

    1994-01-01

    The steady state solution of the system of equations consisting of the full Navier-Stokes equations and two turbulence equations has been obtained using a multigrid strategy of unstructured meshes. The flow equations and turbulence equations are solved in a loosely coupled manner. The flow equations are advanced in time using a multistage Runge-Kutta time-stepping scheme with a stability-bound local time step, while turbulence equations are advanced in a point-implicit scheme with a time step which guarantees stability and positivity. Low-Reynolds-number modifications to the original two-equation model are incorporated in a manner which results in well-behaved equations for arbitrarily small wall distances. A variety of aerodynamic flows are solved, initializing all quantities with uniform freestream values. Rapid and uniform convergence rates for the flow and turbulence equations are observed.

  1. Multigrid schemes for viscous hypersonic flows

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Radespiel, R.

    1993-01-01

    Several multigrid schemes are considered for the numerical computation of viscous hypersonic flows. For each scheme, the basic solution algorithm employs upwind spatial discretization with explicit multistage time stepping. Two-level versions of the various multigrid algorithms are applied to the two-dimensional advection equation, and Fourier analysis is used to determine their damping properties. The capabilities of the multigrid methods are assessed by solving two different hypersonic flow problems. Some new multigrid schemes, based on semicoarsening strategies, are shown to be quite effective in relieving the stiffness caused by the high-aspect-ratio cells required to resolve high Reynolds number flows. These schemes exhibit good convergence rates for Reynolds numbers up to 200 x 10(exp 6).

  2. Formulation of boundary conditions for the multigrid acceleration of the Euler and Navier Stokes equations

    NASA Technical Reports Server (NTRS)

    Jentink, Thomas Neil; Usab, William J., Jr.

    1990-01-01

    An explicit, Multigrid algorithm was written to solve the Euler and Navier-Stokes equations with special consideration given to the coarse mesh boundary conditions. These are formulated in a manner consistent with the interior solution, utilizing forcing terms to prevent coarse-mesh truncation error from affecting the fine-mesh solution. A 4-Stage Hybrid Runge-Kutta Scheme is used to advance the solution in time, and Multigrid convergence is further enhanced by using local time-stepping and implicit residual smoothing. Details of the algorithm are presented along with a description of Jameson's standard Multigrid method and a new approach to formulating the Multigrid equations.

  3. General relaxation schemes in multigrid algorithms for higher order singularity methods

    NASA Technical Reports Server (NTRS)

    Oskam, B.; Fray, J. M. J.

    1981-01-01

    Relaxation schemes based on approximate and incomplete factorization technique (AF) are described. The AF schemes allow construction of a fast multigrid method for solving integral equations of the second and first kind. The smoothing factors for integral equations of the first kind, and comparison with similar results from the second kind of equations are a novel item. Application of the MD algorithm shows convergence to the level of truncation error of a second order accurate panel method.

  4. Second order finite-difference ghost-point multigrid methods for elliptic problems with discontinuous coefficients on an arbitrary interface

    NASA Astrophysics Data System (ADS)

    Coco, Armando; Russo, Giovanni

    2018-05-01

    In this paper we propose a second-order accurate numerical method to solve elliptic problems with discontinuous coefficients (with general non-homogeneous jumps in the solution and its gradient) in 2D and 3D. The method consists of a finite-difference method on a Cartesian grid in which complex geometries (boundaries and interfaces) are embedded, and is second order accurate in the solution and the gradient itself. In order to avoid the drop in accuracy caused by the discontinuity of the coefficients across the interface, two numerical values are assigned on grid points that are close to the interface: a real value, that represents the numerical solution on that grid point, and a ghost value, that represents the numerical solution extrapolated from the other side of the interface, obtained by enforcing the assigned non-homogeneous jump conditions on the solution and its flux. The method is also extended to the case of matrix coefficient. The linear system arising from the discretization is solved by an efficient multigrid approach. Unlike the 1D case, grid points are not necessarily aligned with the normal derivative and therefore suitable stencils must be chosen to discretize interface conditions in order to achieve second order accuracy in the solution and its gradient. A proper treatment of the interface conditions will allow the multigrid to attain the optimal convergence factor, comparable with the one obtained by Local Fourier Analysis for rectangular domains. The method is robust enough to handle large jump in the coefficients: order of accuracy, monotonicity of the errors and good convergence factor are maintained by the scheme.

  5. Multi-grid finite element method used for enhancing the reconstruction accuracy in Cerenkov luminescence tomography

    NASA Astrophysics Data System (ADS)

    Guo, Hongbo; He, Xiaowei; Liu, Muhan; Zhang, Zeyu; Hu, Zhenhua; Tian, Jie

    2017-03-01

    Cerenkov luminescence tomography (CLT), as a promising optical molecular imaging modality, can be applied to cancer diagnostic and therapeutic. Most researches about CLT reconstruction are based on the finite element method (FEM) framework. However, the quality of FEM mesh grid is still a vital factor to restrict the accuracy of the CLT reconstruction result. In this paper, we proposed a multi-grid finite element method framework, which was able to improve the accuracy of reconstruction. Meanwhile, the multilevel scheme adaptive algebraic reconstruction technique (MLS-AART) based on a modified iterative algorithm was applied to improve the reconstruction accuracy. In numerical simulation experiments, the feasibility of our proposed method were evaluated. Results showed that the multi-grid strategy could obtain 3D spatial information of Cerenkov source more accurately compared with the traditional single-grid FEM.

  6. Analysis of multigrid methods on massively parallel computers: Architectural implications

    NASA Technical Reports Server (NTRS)

    Matheson, Lesley R.; Tarjan, Robert E.

    1993-01-01

    We study the potential performance of multigrid algorithms running on massively parallel computers with the intent of discovering whether presently envisioned machines will provide an efficient platform for such algorithms. We consider the domain parallel version of the standard V cycle algorithm on model problems, discretized using finite difference techniques in two and three dimensions on block structured grids of size 10(exp 6) and 10(exp 9), respectively. Our models of parallel computation were developed to reflect the computing characteristics of the current generation of massively parallel multicomputers. These models are based on an interconnection network of 256 to 16,384 message passing, 'workstation size' processors executing in an SPMD mode. The first model accomplishes interprocessor communications through a multistage permutation network. The communication cost is a logarithmic function which is similar to the costs in a variety of different topologies. The second model allows single stage communication costs only. Both models were designed with information provided by machine developers and utilize implementation derived parameters. With the medium grain parallelism of the current generation and the high fixed cost of an interprocessor communication, our analysis suggests an efficient implementation requires the machine to support the efficient transmission of long messages, (up to 1000 words) or the high initiation cost of a communication must be significantly reduced through an alternative optimization technique. Furthermore, with variable length message capability, our analysis suggests the low diameter multistage networks provide little or no advantage over a simple single stage communications network.

  7. On multigrid solution of the implicit equations of hydrodynamics. Experiments for the compressible Euler equations in general coordinates

    NASA Astrophysics Data System (ADS)

    Kifonidis, K.; Müller, E.

    2012-08-01

    Aims: We describe and study a family of new multigrid iterative solvers for the multidimensional, implicitly discretized equations of hydrodynamics. Schemes of this class are free of the Courant-Friedrichs-Lewy condition. They are intended for simulations in which widely differing wave propagation timescales are present. A preferred solver in this class is identified. Applications to some simple stiff test problems that are governed by the compressible Euler equations, are presented to evaluate the convergence behavior, and the stability properties of this solver. Algorithmic areas are determined where further work is required to make the method sufficiently efficient and robust for future application to difficult astrophysical flow problems. Methods: The basic equations are formulated and discretized on non-orthogonal, structured curvilinear meshes. Roe's approximate Riemann solver and a second-order accurate reconstruction scheme are used for spatial discretization. Implicit Runge-Kutta (ESDIRK) schemes are employed for temporal discretization. The resulting discrete equations are solved with a full-coarsening, non-linear multigrid method. Smoothing is performed with multistage-implicit smoothers. These are applied here to the time-dependent equations by means of dual time stepping. Results: For steady-state problems, our results show that the efficiency of the present approach is comparable to the best implicit solvers for conservative discretizations of the compressible Euler equations that can be found in the literature. The use of red-black as opposed to symmetric Gauss-Seidel iteration in the multistage-smoother is found to have only a minor impact on multigrid convergence. This should enable scalable parallelization without having to seriously compromise the method's algorithmic efficiency. For time-dependent test problems, our results reveal that the multigrid convergence rate degrades with increasing Courant numbers (i.e. time step sizes). Beyond a

  8. On Efficient Multigrid Methods for Materials Processing Flows with Small Particles

    NASA Technical Reports Server (NTRS)

    Thomas, James (Technical Monitor); Diskin, Boris; Harik, VasylMichael

    2004-01-01

    Multiscale modeling of materials requires simulations of multiple levels of structural hierarchy. The computational efficiency of numerical methods becomes a critical factor for simulating large physical systems with highly desperate length scales. Multigrid methods are known for their superior efficiency in representing/resolving different levels of physical details. The efficiency is achieved by employing interactively different discretizations on different scales (grids). To assist optimization of manufacturing conditions for materials processing with numerous particles (e.g., dispersion of particles, controlling flow viscosity and clusters), a new multigrid algorithm has been developed for a case of multiscale modeling of flows with small particles that have various length scales. The optimal efficiency of the algorithm is crucial for accurate predictions of the effect of processing conditions (e.g., pressure and velocity gradients) on the local flow fields that control the formation of various microstructures or clusters.

  9. A new multigrid formulation for high order finite difference methods on summation-by-parts form

    NASA Astrophysics Data System (ADS)

    Ruggiu, Andrea A.; Weinerfelt, Per; Nordström, Jan

    2018-04-01

    Multigrid schemes for high order finite difference methods on summation-by-parts form are studied by comparing the effect of different interpolation operators. By using the standard linear prolongation and restriction operators, the Galerkin condition leads to inaccurate coarse grid discretizations. In this paper, an alternative class of interpolation operators that bypass this issue and preserve the summation-by-parts property on each grid level is considered. Clear improvements of the convergence rate for relevant model problems are achieved.

  10. Multigrid techniques for unstructured meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1995-01-01

    An overview of current multigrid techniques for unstructured meshes is given. The basic principles of the multigrid approach are first outlined. Application of these principles to unstructured mesh problems is then described, illustrating various different approaches, and giving examples of practical applications. Advanced multigrid topics, such as the use of algebraic multigrid methods, and the combination of multigrid techniques with adaptive meshing strategies are dealt with in subsequent sections. These represent current areas of research, and the unresolved issues are discussed. The presentation is organized in an educational manner, for readers familiar with computational fluid dynamics, wishing to learn more about current unstructured mesh techniques.

  11. DL_MG: A Parallel Multigrid Poisson and Poisson-Boltzmann Solver for Electronic Structure Calculations in Vacuum and Solution.

    PubMed

    Womack, James C; Anton, Lucian; Dziedzic, Jacek; Hasnip, Phil J; Probert, Matt I J; Skylaris, Chris-Kriton

    2018-03-13

    The solution of the Poisson equation is a crucial step in electronic structure calculations, yielding the electrostatic potential-a key component of the quantum mechanical Hamiltonian. In recent decades, theoretical advances and increases in computer performance have made it possible to simulate the electronic structure of extended systems in complex environments. This requires the solution of more complicated variants of the Poisson equation, featuring nonhomogeneous dielectric permittivities, ionic concentrations with nonlinear dependencies, and diverse boundary conditions. The analytic solutions generally used to solve the Poisson equation in vacuum (or with homogeneous permittivity) are not applicable in these circumstances, and numerical methods must be used. In this work, we present DL_MG, a flexible, scalable, and accurate solver library, developed specifically to tackle the challenges of solving the Poisson equation in modern large-scale electronic structure calculations on parallel computers. Our solver is based on the multigrid approach and uses an iterative high-order defect correction method to improve the accuracy of solutions. Using two chemically relevant model systems, we tested the accuracy and computational performance of DL_MG when solving the generalized Poisson and Poisson-Boltzmann equations, demonstrating excellent agreement with analytic solutions and efficient scaling to ∼10 9 unknowns and 100s of CPU cores. We also applied DL_MG in actual large-scale electronic structure calculations, using the ONETEP linear-scaling electronic structure package to study a 2615 atom protein-ligand complex with routinely available computational resources. In these calculations, the overall execution time with DL_MG was not significantly greater than the time required for calculations using a conventional FFT-based solver.

  12. Angular Multigrid Preconditioner for Krylov-Based Solution Techniques Applied to the Sn Equations with Highly Forward-Peaked Scattering

    NASA Astrophysics Data System (ADS)

    Turcksin, Bruno; Ragusa, Jean C.; Morel, Jim E.

    2012-01-01

    It is well known that the diffusion synthetic acceleration (DSA) methods for the Sn equations become ineffective in the Fokker-Planck forward-peaked scattering limit. In response to this deficiency, Morel and Manteuffel (1991) developed an angular multigrid method for the 1-D Sn equations. This method is very effective, costing roughly twice as much as DSA per source iteration, and yielding a maximum spectral radius of approximately 0.6 in the Fokker-Planck limit. Pautz, Adams, and Morel (PAM) (1999) later generalized the angular multigrid to 2-D, but it was found that the method was unstable with sufficiently forward-peaked mappings between the angular grids. The method was stabilized via a filtering technique based on diffusion operators, but this filtering also degraded the effectiveness of the overall scheme. The spectral radius was not bounded away from unity in the Fokker-Planck limit, although the method remained more effective than DSA. The purpose of this article is to recast the multidimensional PAM angular multigrid method without the filtering as an Sn preconditioner and use it in conjunction with the Generalized Minimal RESidual (GMRES) Krylov method. The approach ensures stability and our computational results demonstrate that it is also significantly more efficient than an analogous DSA-preconditioned Krylov method.

  13. The use of multigrid techniques in the solution of the Elrod algorithm for a dynamically loaded journal bearing. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Woods, Claudia M.

    1988-01-01

    A numerical solution to a theoretical model of vapor cavitation in a dynamically loaded journal bearing is developed, utilizing a multigrid iterative technique. The code is compared with a presently existing direct solution in terms of computational time and accuracy. The model is based on the Elrod algorithm, a control volume approach to the Reynolds equation which mimics the Jakobssen-Floberg and Olsson cavitation theory. Besides accounting for a moving cavitation boundary and conservation of mass at the boundary, it also conserves mass within the cavitated region via liquid striations. The mixed nature of the equations (elliptic in the full film zone and nonelliptic in the cavitated zone) coupled with the dynamic aspects of the problem create interesting difficulties for the present solution approach. Emphasis is placed on the methods found to eliminate solution instabilities. Excellent results are obtained for both accuracy and reduction of computational time.

  14. A comparison of locally adaptive multigrid methods: LDC, FAC and FIC

    NASA Technical Reports Server (NTRS)

    Khadra, Khodor; Angot, Philippe; Caltagirone, Jean-Paul

    1993-01-01

    This study is devoted to a comparative analysis of three 'Adaptive ZOOM' (ZOom Overlapping Multi-level) methods based on similar concepts of hierarchical multigrid local refinement: LDC (Local Defect Correction), FAC (Fast Adaptive Composite), and FIC (Flux Interface Correction)--which we proposed recently. These methods are tested on two examples of a bidimensional elliptic problem. We compare, for V-cycle procedures, the asymptotic evolution of the global error evaluated by discrete norms, the corresponding local errors, and the convergence rates of these algorithms.

  15. Multigrid for Staggered Lattice Fermions

    SciTech Connect

    Brower, Richard C.; Clark, M. A.; Strelchenko, Alexei

    Critical slowing down in Krylov methods for the Dirac operator presents a major obstacle to further advances in lattice field theory as it approaches the continuum solution. Here we formulate a multi-grid algorithm for the Kogut-Susskind (or staggered) fermion discretization which has proven difficult relative to Wilson multigrid due to its first-order anti-Hermitian structure. The solution is to introduce a novel spectral transformation by the K\\"ahler-Dirac spin structure prior to the Galerkin projection. We present numerical results for the two-dimensional, two-flavor Schwinger model, however, the general formalism is agnostic to dimension and is directly applicable to four-dimensional lattice QCD.

  16. Multigrid calculation of three-dimensional turbomachinery flows

    NASA Technical Reports Server (NTRS)

    Caughey, David A.

    1989-01-01

    Research was performed in the general area of computational aerodynamics, with particular emphasis on the development of efficient techniques for the solution of the Euler and Navier-Stokes equations for transonic flows through the complex blade passages associated with turbomachines. In particular, multigrid methods were developed, using both explicit and implicit time-stepping schemes as smoothing algorithms. The specific accomplishments of the research have included: (1) the development of an explicit multigrid method to solve the Euler equations for three-dimensional turbomachinery flows based upon the multigrid implementation of Jameson's explicit Runge-Kutta scheme (Jameson 1983); (2) the development of an implicit multigrid scheme for the three-dimensional Euler equations based upon lower-upper factorization; (3) the development of a multigrid scheme using a diagonalized alternating direction implicit (ADI) algorithm; (4) the extension of the diagonalized ADI multigrid method to solve the Euler equations of inviscid flow for three-dimensional turbomachinery flows; and also (5) the extension of the diagonalized ADI multigrid scheme to solve the Reynolds-averaged Navier-Stokes equations for two-dimensional turbomachinery flows.

  17. Multigrid preconditioned conjugate-gradient method for large-scale wave-front reconstruction.

    PubMed

    Gilles, Luc; Vogel, Curtis R; Ellerbroek, Brent L

    2002-09-01

    We introduce a multigrid preconditioned conjugate-gradient (MGCG) iterative scheme for computing open-loop wave-front reconstructors for extreme adaptive optics systems. We present numerical simulations for a 17-m class telescope with n = 48756 sensor measurement grid points within the aperture, which indicate that our MGCG method has a rapid convergence rate for a wide range of subaperture average slope measurement signal-to-noise ratios. The total computational cost is of order n log n. Hence our scheme provides for fast wave-front simulation and control in large-scale adaptive optics systems.

  18. Monolithic multigrid method for the coupled Stokes flow and deformable porous medium system

    NASA Astrophysics Data System (ADS)

    Luo, P.; Rodrigo, C.; Gaspar, F. J.; Oosterlee, C. W.

    2018-01-01

    The interaction between fluid flow and a deformable porous medium is a complicated multi-physics problem, which can be described by a coupled model based on the Stokes and poroelastic equations. A monolithic multigrid method together with either a coupled Vanka smoother or a decoupled Uzawa smoother is employed as an efficient numerical technique for the linear discrete system obtained by finite volumes on staggered grids. A specialty in our modeling approach is that at the interface of the fluid and poroelastic medium, two unknowns from the different subsystems are defined at the same grid point. We propose a special discretization at and near the points on the interface, which combines the approximation of the governing equations and the considered interface conditions. In the decoupled Uzawa smoother, Local Fourier Analysis (LFA) helps us to select optimal values of the relaxation parameter appearing. To implement the monolithic multigrid method, grid partitioning is used to deal with the interface updates when communication is required between two subdomains. Numerical experiments show that the proposed numerical method has an excellent convergence rate. The efficiency and robustness of the method are confirmed in numerical experiments with typically small realistic values of the physical coefficients.

  19. Numerical boundary condition procedures and multigrid methods; Proceedings of the Symposium, NASA Ames Research Center, Moffett Field, CA, October 19-22, 1981

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Papers presented in this volume provide an overview of recent work on numerical boundary condition procedures and multigrid methods. The topics discussed include implicit boundary conditions for the solution of the parabolized Navier-Stokes equations for supersonic flows; far field boundary conditions for compressible flows; and influence of boundary approximations and conditions on finite-difference solutions. Papers are also presented on fully implicit shock tracking and on the stability of two-dimensional hyperbolic initial boundary value problems for explicit and implicit schemes.

  20. Multigrid methods for flow transition in three-dimensional boundary layers with surface roughness

    NASA Technical Reports Server (NTRS)

    Liu, Chaoqun; Liu, Zhining; Mccormick, Steve

    1993-01-01

    The efficient multilevel adaptive method has been successfully applied to perform direct numerical simulations (DNS) of flow transition in 3-D channels and 3-D boundary layers with 2-D and 3-D isolated and distributed roughness in a curvilinear coordinate system. A fourth-order finite difference technique on stretched and staggered grids, a fully-implicit time marching scheme, a semi-coarsening multigrid method associated with line distributive relaxation scheme, and an improved outflow boundary-condition treatment, which needs only a very short buffer domain to damp all order-one wave reflections, are developed. These approaches make the multigrid DNS code very accurate and efficient. This allows us not only to be able to do spatial DNS for the 3-D channel and flat plate at low computational costs, but also to do spatial DNS for transition in the 3-D boundary layer with 3-D single and multiple roughness elements, which would have extremely high computational costs with conventional methods. Numerical results show good agreement with the linear stability theory, the secondary instability theory, and a number of laboratory experiments. The contribution of isolated and distributed roughness to transition is analyzed.

  1. A fast and robust computational method for the ionization cross sections of the driven Schrödinger equation using an O (N) multigrid-based scheme

    NASA Astrophysics Data System (ADS)

    Cools, S.; Vanroose, W.

    2016-03-01

    This paper improves the convergence and robustness of a multigrid-based solver for the cross sections of the driven Schrödinger equation. Adding a Coupled Channel Correction Step (CCCS) after each multigrid (MG) V-cycle efficiently removes the errors that remain after the V-cycle sweep. The combined iterative solution scheme (MG-CCCS) is shown to feature significantly improved convergence rates over the classical MG method at energies where bound states dominate the solution, resulting in a fast and scalable solution method for the complex-valued Schrödinger break-up problem for any energy regime. The proposed solver displays optimal scaling; a solution is found in a time that is linear in the number of unknowns. The method is validated on a 2D Temkin-Poet model problem, and convergence results both as a solver and preconditioner are provided to support the O (N) scalability of the method. This paper extends the applicability of the complex contour approach for far field map computation (Cools et al. (2014) [10]).

  2. Progress with multigrid schemes for hypersonic flow problems

    NASA Technical Reports Server (NTRS)

    Radespiel, R.; Swanson, R. C.

    1991-01-01

    Several multigrid schemes are considered for the numerical computation of viscous hypersonic flows. For each scheme, the basic solution algorithm uses upwind spatial discretization with explicit multistage time stepping. Two level versions of the various multigrid algorithms are applied to the two dimensional advection equation, and Fourier analysis is used to determine their damping properties. The capabilities of the multigrid methods are assessed by solving three different hypersonic flow problems. Some new multigrid schemes based on semicoarsening strategies are shown to be quite effective in relieving the stiffness caused by the high aspect ratio cells required to resolve high Reynolds number flows. These schemes exhibit good convergence rates for Reynolds numbers up to 200 x 10(exp 6) and Mach numbers up to 25.

  3. Unweighted least squares phase unwrapping by means of multigrid techniques

    NASA Astrophysics Data System (ADS)

    Pritt, Mark D.

    1995-11-01

    We present a multigrid algorithm for unweighted least squares phase unwrapping. This algorithm applies Gauss-Seidel relaxation schemes to solve the Poisson equation on smaller, coarser grids and transfers the intermediate results to the finer grids. This approach forms the basis of our multigrid algorithm for weighted least squares phase unwrapping, which is described in a separate paper. The key idea of our multigrid approach is to maintain the partial derivatives of the phase data in separate arrays and to correct these derivatives at the boundaries of the coarser grids. This maintains the boundary conditions necessary for rapid convergence to the correct solution. Although the multigrid algorithm is an iterative algorithm, we demonstrate that it is nearly as fast as the direct Fourier-based method. We also describe how to parallelize the algorithm for execution on a distributed-memory parallel processor computer or a network-cluster of workstations.

  4. On some theoretical and practical aspects of multigrid methods. [to solve finite element systems from elliptic equations

    NASA Technical Reports Server (NTRS)

    Nicolaides, R. A.

    1979-01-01

    A description and explanation of a simple multigrid algorithm for solving finite element systems is given. Numerical results for an implementation are reported for a number of elliptic equations, including cases with singular coefficients and indefinite equations. The method shows the high efficiency, essentially independent of the grid spacing, predicted by the theory.

  5. Multigrid Method for Modeling Multi-Dimensional Combustion with Detailed Chemistry

    NASA Technical Reports Server (NTRS)

    Zheng, Xiaoqing; Liu, Chaoqun; Liao, Changming; Liu, Zhining; McCormick, Steve

    1996-01-01

    A highly accurate and efficient numerical method is developed for modeling 3-D reacting flows with detailed chemistry. A contravariant velocity-based governing system is developed for general curvilinear coordinates to maintain simplicity of the continuity equation and compactness of the discretization stencil. A fully-implicit backward Euler technique and a third-order monotone upwind-biased scheme on a staggered grid are used for the respective temporal and spatial terms. An efficient semi-coarsening multigrid method based on line-distributive relaxation is used as the flow solver. The species equations are solved in a fully coupled way and the chemical reaction source terms are treated implicitly. Example results are shown for a 3-D gas turbine combustor with strong swirling inflows.

  6. Evaluation of a Multigrid Scheme for the Incompressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.

    2004-01-01

    A fast multigrid solver for the steady, incompressible Navier-Stokes equations is presented. The multigrid solver is based upon a factorizable discrete scheme for the velocity-pressure form of the Navier-Stokes equations. This scheme correctly distinguishes between the advection-diffusion and elliptic parts of the operator, allowing efficient smoothers to be constructed. To evaluate the multigrid algorithm, solutions are computed for flow over a flat plate, parabola, and a Karman-Trefftz airfoil. Both nonlifting and lifting airfoil flows are considered, with a Reynolds number range of 200 to 800. Convergence and accuracy of the algorithm are discussed. Using Gauss-Seidel line relaxation in alternating directions, multigrid convergence behavior approaching that of O(N) methods is achieved. The computational efficiency of the numerical scheme is compared with that of Runge-Kutta and implicit upwind based multigrid methods.

  7. Multigrid techniques for nonlinear eigenvalue probems: Solutions of a nonlinear Schroedinger eigenvalue problem in 2D and 3D

    NASA Technical Reports Server (NTRS)

    Costiner, Sorin; Taasan, Shlomo

    1994-01-01

    This paper presents multigrid (MG) techniques for nonlinear eigenvalue problems (EP) and emphasizes an MG algorithm for a nonlinear Schrodinger EP. The algorithm overcomes the mentioned difficulties combining the following techniques: an MG projection coupled with backrotations for separation of solutions and treatment of difficulties related to clusters of close and equal eigenvalues; MG subspace continuation techniques for treatment of the nonlinearity; an MG simultaneous treatment of the eigenvectors at the same time with the nonlinearity and with the global constraints. The simultaneous MG techniques reduce the large number of self consistent iterations to only a few or one MG simultaneous iteration and keep the solutions in a right neighborhood where the algorithm converges fast.

  8. Advantages of multigrid methods for certifying the accuracy of PDE modeling

    NASA Technical Reports Server (NTRS)

    Forester, C. K.

    1981-01-01

    Numerical techniques for assessing and certifying the accuracy of the modeling of partial differential equations (PDE) to the user's specifications are analyzed. Examples of the certification process with conventional techniques are summarized for the three dimensional steady state full potential and the two dimensional steady Navier-Stokes equations using fixed grid methods (FG). The advantages of the Full Approximation Storage (FAS) scheme of the multigrid technique of A. Brandt compared with the conventional certification process of modeling PDE are illustrated in one dimension with the transformed potential equation. Inferences are drawn for how MG will improve the certification process of the numerical modeling of two and three dimensional PDE systems. Elements of the error assessment process that are common to FG and MG are analyzed.

  9. Numerical study of a multigrid method with four smoothing methods for the incompressible Navier-Stokes equations in general coordinates

    NASA Technical Reports Server (NTRS)

    Zeng, S.; Wesseling, P.

    1993-01-01

    The performance of a linear multigrid method using four smoothing methods, called SCGS (Symmetrical Coupled GauBeta-Seidel), CLGS (Collective Line GauBeta-Seidel), SILU (Scalar ILU), and CILU (Collective ILU), is investigated for the incompressible Navier-Stokes equations in general coordinates, in association with Galerkin coarse grid approximation. Robustness and efficiency are measured and compared by application to test problems. The numerical results show that CILU is the most robust, SILU the least, with CLGS and SCGS in between. CLGS is the best in efficiency, SCGS and CILU follow, and SILU is the worst.

  10. Comparison of three explicit multigrid methods for the Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.; Turkel, Eli; Schaffer, Steve

    1987-01-01

    Three explicit multigrid methods, Ni's method, Jameson's finite-volume method, and a finite-difference method based on Brandt's work, are described and compared for two model problems. All three methods use an explicit multistage Runge-Kutta scheme on the fine grid, and this scheme is also described. Convergence histories for inviscid flow over a bump in a channel for the fine-grid scheme alone show that convergence rate is proportional to Courant number and that implicit residual smoothing can significantly accelerate the scheme. Ni's method was slightly slower than the implicitly-smoothed scheme alone. Brandt's and Jameson's methods are shown to be equivalent in form but differ in their node versus cell-centered implementations. They are about 8.5 times faster than Ni's method in terms of CPU time. Results for an oblique shock/boundary layer interaction problem verify the accuracy of the finite-difference code. All methods slowed considerably on the stretched viscous grid but Brandt's method was still 2.1 times faster than Ni's method.

  11. A matrix-free implicit unstructured multigrid finite volume method for simulating structural dynamics and fluid structure interaction

    NASA Astrophysics Data System (ADS)

    Lv, X.; Zhao, Y.; Huang, X. Y.; Xia, G. H.; Su, X. H.

    2007-07-01

    A new three-dimensional (3D) matrix-free implicit unstructured multigrid finite volume (FV) solver for structural dynamics is presented in this paper. The solver is first validated using classical 2D and 3D cantilever problems. It is shown that very accurate predictions of the fundamental natural frequencies of the problems can be obtained by the solver with fast convergence rates. This method has been integrated into our existing FV compressible solver [X. Lv, Y. Zhao, et al., An efficient parallel/unstructured-multigrid preconditioned implicit method for simulating 3d unsteady compressible flows with moving objects, Journal of Computational Physics 215(2) (2006) 661-690] based on the immersed membrane method (IMM) [X. Lv, Y. Zhao, et al., as mentioned above]. Results for the interaction between the fluid and an immersed fixed-free cantilever are also presented to demonstrate the potential of this integrated fluid-structure interaction approach.

  12. Application of an Upwind High Resolution Finite-Differencing Scheme and Multigrid Method in Steady-State Incompressible Flow Simulations

    NASA Technical Reports Server (NTRS)

    Yang, Cheng I.; Guo, Yan-Hu; Liu, C.- H.

    1996-01-01

    The analysis and design of a submarine propulsor requires the ability to predict the characteristics of both laminar and turbulent flows to a higher degree of accuracy. This report presents results of certain benchmark computations based on an upwind, high-resolution, finite-differencing Navier-Stokes solver. The purpose of the computations is to evaluate the ability, the accuracy and the performance of the solver in the simulation of detailed features of viscous flows. Features of interest include flow separation and reattachment, surface pressure and skin friction distributions. Those features are particularly relevant to the propulsor analysis. Test cases with a wide range of Reynolds numbers are selected; therefore, the effects of the convective and the diffusive terms of the solver can be evaluated separately. Test cases include flows over bluff bodies, such as circular cylinders and spheres, at various low Reynolds numbers, flows over a flat plate with and without turbulence effects, and turbulent flows over axisymmetric bodies with and without propulsor effects. Finally, to enhance the iterative solution procedure, a full approximation scheme V-cycle multigrid method is implemented. Preliminary results indicate that the method significantly reduces the computational effort.

  13. New multigrid approach for three-dimensional unstructured, adaptive grids

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Vijayan; Kallinderis, Y.

    1994-01-01

    A new multigrid method with adaptive unstructured grids is presented. The three-dimensional Euler equations are solved on tetrahedral grids that are adaptively refined or coarsened locally. The multigrid method is employed to propagate the fine grid corrections more rapidly by redistributing the changes-in-time of the solution from the fine grid to the coarser grids to accelerate convergence. A new approach is employed that uses the parent cells of the fine grid cells in an adapted mesh to generate successively coaser levels of multigrid. This obviates the need for the generation of a sequence of independent, nonoverlapping grids as well as the relatively complicated operations that need to be performed to interpolate the solution and the residuals between the independent grids. The solver is an explicit, vertex-based, finite volume scheme that employs edge-based data structures and operations. Spatial discretization is of central-differencing type combined with a special upwind-like smoothing operators. Application cases include adaptive solutions obtained with multigrid acceleration for supersonic and subsonic flow over a bump in a channel, as well as transonic flow around the ONERA M6 wing. Two levels of multigrid resulted in reduction in the number of iterations by a factor of 5.

  14. Multigrid solution of compressible turbulent flow on unstructured meshes using a two-equation model

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Martinelli, L.

    1991-01-01

    The system of equations consisting of the full Navier-Stokes equations and two turbulence equations was solved for in the steady state using a multigrid strategy on unstructured meshes. The flow equations and turbulence equations are solved in a loosely coupled manner. The flow equations are advanced in time using a multistage Runge-Kutta time stepping scheme with a stability bound local time step, while the turbulence equations are advanced in a point-implicit scheme with a time step which guarantees stability and positively. Low Reynolds number modifications to the original two equation model are incorporated in a manner which results in well behaved equations for arbitrarily small wall distances. A variety of aerodynamic flows are solved for, initializing all quantities with uniform freestream values, and resulting in rapid and uniform convergence rates for the flow and turbulence equations.

  15. Multigrid Techniques for Highly Indefinite Equations

    NASA Technical Reports Server (NTRS)

    Shapira, Yair

    1996-01-01

    A multigrid method for the solution of finite difference approximations of elliptic PDE's is introduced. A parallelizable version of it, suitable for two and multi level analysis, is also defined, and serves as a theoretical tool for deriving a suitable implementation for the main version. For indefinite Helmholtz equations, this analysis provides a suitable mesh size for the coarsest grid used. Numerical experiments show that the method is applicable to diffusion equations with discontinuous coefficients and highly indefinite Helmholtz equations.

  16. Distributed Relaxation Multigrid and Defect Correction Applied to the Compressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Thomas, J. L.; Diskin, B.; Brandt, A.

    1999-01-01

    The distributed-relaxation multigrid and defect- correction methods are applied to the two- dimensional compressible Navier-Stokes equations. The formulation is intended for high Reynolds number applications and several applications are made at a laminar Reynolds number of 10,000. A staggered- grid arrangement of variables is used; the coupled pressure and internal energy equations are solved together with multigrid, requiring a block 2x2 matrix solution. Textbook multigrid efficiencies are attained for incompressible and slightly compressible simulations of the boundary layer on a flat plate. Textbook efficiencies are obtained for compressible simulations up to Mach numbers of 0.7 for a viscous wake simulation.

  17. An Optimal Order Nonnested Mixed Multigrid Method for Generalized Stokes Problems

    NASA Technical Reports Server (NTRS)

    Deng, Qingping

    1996-01-01

    A multigrid algorithm is developed and analyzed for generalized Stokes problems discretized by various nonnested mixed finite elements within a unified framework. It is abstractly proved by an element-independent analysis that the multigrid algorithm converges with an optimal order if there exists a 'good' prolongation operator. A technique to construct a 'good' prolongation operator for nonnested multilevel finite element spaces is proposed. Its basic idea is to introduce a sequence of auxiliary nested multilevel finite element spaces and define a prolongation operator as a composite operator of two single grid level operators. This makes not only the construction of a prolongation operator much easier (the final explicit forms of such prolongation operators are fairly simple), but the verification of the approximate properties for prolongation operators is also simplified. Finally, as an application, the framework and technique is applied to seven typical nonnested mixed finite elements.

  18. An upwind multigrid method for solving viscous flows on unstructured triangular meshes. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Bonhaus, Daryl Lawrence

    1993-01-01

    A multigrid algorithm is combined with an upwind scheme for solving the two dimensional Reynolds averaged Navier-Stokes equations on triangular meshes resulting in an efficient, accurate code for solving complex flows around multiple bodies. The relaxation scheme uses a backward-Euler time difference and relaxes the resulting linear system using a red-black procedure. Roe's flux-splitting scheme is used to discretize convective and pressure terms, while a central difference is used for the diffusive terms. The multigrid scheme is demonstrated for several flows around single and multi-element airfoils, including inviscid, laminar, and turbulent flows. The results show an appreciable speed up of the scheme for inviscid and laminar flows, and dramatic increases in efficiency for turbulent cases, especially those on increasingly refined grids.

  19. Eigensystem analysis of classical relaxation techniques with applications to multigrid analysis

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard; Maksymiuk, Catherine

    1987-01-01

    Classical relaxation techniques are related to numerical methods for solution of ordinary differential equations. Eigensystems for Point-Jacobi, Gauss-Seidel, and SOR methods are presented. Solution techniques such as eigenvector annihilation, eigensystem mixing, and multigrid methods are examined with regard to the eigenstructure.

  20. Multigrid treatment of implicit continuum diffusion

    NASA Astrophysics Data System (ADS)

    Francisquez, Manaure; Zhu, Ben; Rogers, Barrett

    2017-10-01

    Implicit treatment of diffusive terms of various differential orders common in continuum mechanics modeling, such as computational fluid dynamics, is investigated with spectral and multigrid algorithms in non-periodic 2D domains. In doubly periodic time dependent problems these terms can be efficiently and implicitly handled by spectral methods, but in non-periodic systems solved with distributed memory parallel computing and 2D domain decomposition, this efficiency is lost for large numbers of processors. We built and present here a multigrid algorithm for these types of problems which outperforms a spectral solution that employs the highly optimized FFTW library. This multigrid algorithm is not only suitable for high performance computing but may also be able to efficiently treat implicit diffusion of arbitrary order by introducing auxiliary equations of lower order. We test these solvers for fourth and sixth order diffusion with idealized harmonic test functions as well as a turbulent 2D magnetohydrodynamic simulation. It is also shown that an anisotropic operator without cross-terms can improve model accuracy and speed, and we examine the impact that the various diffusion operators have on the energy, the enstrophy, and the qualitative aspect of a simulation. This work was supported by DOE-SC-0010508. This research used resources of the National Energy Research Scientific Computing Center (NERSC).

  1. Anatomically accurate high resolution modeling of human whole heart electromechanics: A strongly scalable algebraic multigrid solver method for nonlinear deformation

    NASA Astrophysics Data System (ADS)

    Augustin, Christoph M.; Neic, Aurel; Liebmann, Manfred; Prassl, Anton J.; Niederer, Steven A.; Haase, Gundolf; Plank, Gernot

    2016-01-01

    Electromechanical (EM) models of the heart have been used successfully to study fundamental mechanisms underlying a heart beat in health and disease. However, in all modeling studies reported so far numerous simplifications were made in terms of representing biophysical details of cellular function and its heterogeneity, gross anatomy and tissue microstructure, as well as the bidirectional coupling between electrophysiology (EP) and tissue distension. One limiting factor is the employed spatial discretization methods which are not sufficiently flexible to accommodate complex geometries or resolve heterogeneities, but, even more importantly, the limited efficiency of the prevailing solver techniques which is not sufficiently scalable to deal with the incurring increase in degrees of freedom (DOF) when modeling cardiac electromechanics at high spatio-temporal resolution. This study reports on the development of a novel methodology for solving the nonlinear equation of finite elasticity using human whole organ models of cardiac electromechanics, discretized at a high para-cellular resolution. Three patient-specific, anatomically accurate, whole heart EM models were reconstructed from magnetic resonance (MR) scans at resolutions of 220 μm, 440 μm and 880 μm, yielding meshes of approximately 184.6, 24.4 and 3.7 million tetrahedral elements and 95.9, 13.2 and 2.1 million displacement DOF, respectively. The same mesh was used for discretizing the governing equations of both electrophysiology (EP) and nonlinear elasticity. A novel algebraic multigrid (AMG) preconditioner for an iterative Krylov solver was developed to deal with the resulting computational load. The AMG preconditioner was designed under the primary objective of achieving favorable strong scaling characteristics for both setup and solution runtimes, as this is key for exploiting current high performance computing hardware. Benchmark results using the 220 μm, 440 μm and 880 μm meshes demonstrate

  2. Anatomically accurate high resolution modeling of human whole heart electromechanics: A strongly scalable algebraic multigrid solver method for nonlinear deformation

    PubMed Central

    Augustin, Christoph M.; Neic, Aurel; Liebmann, Manfred; Prassl, Anton J.; Niederer, Steven A.; Haase, Gundolf; Plank, Gernot

    2016-01-01

    Electromechanical (EM) models of the heart have been used successfully to study fundamental mechanisms underlying a heart beat in health and disease. However, in all modeling studies reported so far numerous simplifications were made in terms of representing biophysical details of cellular function and its heterogeneity, gross anatomy and tissue microstructure, as well as the bidirectional coupling between electrophysiology (EP) and tissue distension. One limiting factor is the employed spatial discretization methods which are not sufficiently flexible to accommodate complex geometries or resolve heterogeneities, but, even more importantly, the limited efficiency of the prevailing solver techniques which are not sufficiently scalable to deal with the incurring increase in degrees of freedom (DOF) when modeling cardiac electromechanics at high spatio-temporal resolution. This study reports on the development of a novel methodology for solving the nonlinear equation of finite elasticity using human whole organ models of cardiac electromechanics, discretized at a high para-cellular resolution. Three patient-specific, anatomically accurate, whole heart EM models were reconstructed from magnetic resonance (MR) scans at resolutions of 220 μm, 440 μm and 880 μm, yielding meshes of approximately 184.6, 24.4 and 3.7 million tetrahedral elements and 95.9, 13.2 and 2.1 million displacement DOF, respectively. The same mesh was used for discretizing the governing equations of both electrophysiology (EP) and nonlinear elasticity. A novel algebraic multigrid (AMG) preconditioner for an iterative Krylov solver was developed to deal with the resulting computational load. The AMG preconditioner was designed under the primary objective of achieving favorable strong scaling characteristics for both setup and solution runtimes, as this is key for exploiting current high performance computing hardware. Benchmark results using the 220 μm, 440 μm and 880 μm meshes demonstrate

  3. Full Multigrid Flow Solver

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Thomas, James L.; Biedron, Robert T.; Diskin, Boris

    2005-01-01

    FMG3D (full multigrid 3 dimensions) is a pilot computer program that solves equations of fluid flow using a finite difference representation on a structured grid. Infrastructure exists for three dimensions but the current implementation treats only two dimensions. Written in Fortran 90, FMG3D takes advantage of the recursive subroutine feature, dynamic memory allocation, and structured-programming constructs of that language. FMG3D supports multi-block grids with three types of block-to-block interfaces: periodic, C-zero, and C-infinity. For all three types, grid points must match at interfaces. For periodic and C-infinity types, derivatives of grid metrics must be continuous at interfaces. The available equation sets are as follows: scalar elliptic equations, scalar convection equations, and the pressure-Poisson formulation of the Navier-Stokes equations for an incompressible fluid. All the equation sets are implemented with nonzero forcing functions to enable the use of user-specified solutions to assist in verification and validation. The equations are solved with a full multigrid scheme using a full approximation scheme to converge the solution on each succeeding grid level. Restriction to the next coarser mesh uses direct injection for variables and full weighting for residual quantities; prolongation of the coarse grid correction from the coarse mesh to the fine mesh uses bilinear interpolation; and prolongation of the coarse grid solution uses bicubic interpolation.

  4. Iterative load-balancing method with multigrid level relaxation for particle simulation with short-range interactions

    NASA Astrophysics Data System (ADS)

    Furuichi, Mikito; Nishiura, Daisuke

    2017-10-01

    We developed dynamic load-balancing algorithms for Particle Simulation Methods (PSM) involving short-range interactions, such as Smoothed Particle Hydrodynamics (SPH), Moving Particle Semi-implicit method (MPS), and Discrete Element method (DEM). These are needed to handle billions of particles modeled in large distributed-memory computer systems. Our method utilizes flexible orthogonal domain decomposition, allowing the sub-domain boundaries in the column to be different for each row. The imbalances in the execution time between parallel logical processes are treated as a nonlinear residual. Load-balancing is achieved by minimizing the residual within the framework of an iterative nonlinear solver, combined with a multigrid technique in the local smoother. Our iterative method is suitable for adjusting the sub-domain frequently by monitoring the performance of each computational process because it is computationally cheaper in terms of communication and memory costs than non-iterative methods. Numerical tests demonstrated the ability of our approach to handle workload imbalances arising from a non-uniform particle distribution, differences in particle types, or heterogeneous computer architecture which was difficult with previously proposed methods. We analyzed the parallel efficiency and scalability of our method using Earth simulator and K-computer supercomputer systems.

  5. Multigrid accelerated simulations for Twisted Mass fermions

    NASA Astrophysics Data System (ADS)

    Bacchio, Simone; Alexandrou, Constantia; Finkerath, Jacob

    2018-03-01

    Simulations at physical quark masses are affected by the critical slowing down of the solvers. Multigrid preconditioning has proved to deal effectively with this problem. Multigrid accelerated simulations at the physical value of the pion mass are being performed to generate Nf = 2 and Nf = 2 + 1 + 1 gauge ensembles using twisted mass fermions. The adaptive aggregation-based domain decomposition multigrid solver, referred to as DD-αAMG method, is employed for these simulations. Our simulation strategy consists of an hybrid approach of different solvers, involving the Conjugate Gradient (CG), multi-mass-shift CG and DD-αAMG solvers. We present an analysis of the multigrid performance during the simulations discussing the stability of the method. This significant speeds up the Hybrid Monte Carlo simulation by more than a factor 4 at physical pion mass compared to the usage of the CG solver.

  6. Application Of Multi-grid Method On China Seas' Temperature Forecast

    NASA Astrophysics Data System (ADS)

    Li, W.; Xie, Y.; He, Z.; Liu, K.; Han, G.; Ma, J.; Li, D.

    2006-12-01

    Correlation scales have been used in traditional scheme of 3-dimensional variational (3D-Var) data assimilation to estimate the background error covariance for the numerical forecast and reanalysis of atmosphere and ocean for decades. However there are still some drawbacks of this scheme. First, the correlation scales are difficult to be determined accurately. Second, the positive definition of the first-guess error covariance matrix cannot be guaranteed unless the correlation scales are sufficiently small. Xie et al. (2005) indicated that a traditional 3D-Var only corrects some certain wavelength errors and its accuracy depends on the accuracy of the first-guess covariance. And in general, short wavelength error can not be well corrected until long one is corrected and then inaccurate first-guess covariance may mistakenly take long wave error as short wave ones and result in erroneous analysis. For the purpose of quickly minimizing the errors of long and short waves successively, a new 3D-Var data assimilation scheme, called multi-grid data assimilation scheme, is proposed in this paper. By assimilating the shipboard SST and temperature profiles data into a numerical model of China Seas, we applied this scheme in two-month data assimilation and forecast experiment which ended in a favorable result. Comparing with the traditional scheme of 3D-Var, the new scheme has higher forecast accuracy and a lower forecast Root-Mean-Square (RMS) error. Furthermore, this scheme was applied to assimilate the SST of shipboard, AVHRR Pathfinder Version 5.0 SST and temperature profiles at the same time, and a ten-month forecast experiment on sea temperature of China Seas was carried out, in which a successful forecast result was obtained. Particularly, the new scheme is demonstrated a great numerical efficiency in these analyses.

  7. Robust Multigrid Smoothers for Three Dimensional Elliptic Equations with Strong Anisotropies

    NASA Technical Reports Server (NTRS)

    Llorente, Ignacio M.; Melson, N. Duane

    1998-01-01

    We discuss the behavior of several plane relaxation methods as multigrid smoothers for the solution of a discrete anisotropic elliptic model problem on cell-centered grids. The methods compared are plane Jacobi with damping, plane Jacobi with partial damping, plane Gauss-Seidel, plane zebra Gauss-Seidel, and line Gauss-Seidel. Based on numerical experiments and local mode analysis, we compare the smoothing factor of the different methods in the presence of strong anisotropies. A four-color Gauss-Seidel method is found to have the best numerical and architectural properties of the methods considered in the present work. Although alternating direction plane relaxation schemes are simpler and more robust than other approaches, they are not currently used in industrial and production codes because they require the solution of a two-dimensional problem for each plane in each direction. We verify the theoretical predictions of Thole and Trottenberg that an exact solution of each plane is not necessary and that a single two-dimensional multigrid cycle gives the same result as an exact solution, in much less execution time. Parallelization of the two-dimensional multigrid cycles, the kernel of the three-dimensional implicit solver, is also discussed. Alternating-plane smoothers are found to be highly efficient multigrid smoothers for anisotropic elliptic problems.

  8. Efficient relaxed-Jacobi smoothers for multigrid on parallel computers

    NASA Astrophysics Data System (ADS)

    Yang, Xiang; Mittal, Rajat

    2017-03-01

    In this Technical Note, we present a family of Jacobi-based multigrid smoothers suitable for the solution of discretized elliptic equations. These smoothers are based on the idea of scheduled-relaxation Jacobi proposed recently by Yang & Mittal (2014) [18] and employ two or three successive relaxed Jacobi iterations with relaxation factors derived so as to maximize the smoothing property of these iterations. The performance of these new smoothers measured in terms of convergence acceleration and computational workload, is assessed for multi-domain implementations typical of parallelized solvers, and compared to the lexicographic point Gauss-Seidel smoother. The tests include the geometric multigrid method on structured grids as well as the algebraic grid method on unstructured grids. The tests demonstrate that unlike Gauss-Seidel, the convergence of these Jacobi-based smoothers is unaffected by domain decomposition, and furthermore, they outperform the lexicographic Gauss-Seidel by factors that increase with domain partition count.

  9. Multigrid for hypersonic viscous two- and three-dimensional flows

    NASA Technical Reports Server (NTRS)

    Turkel, E.; Swanson, R. C.; Vatsa, V. N.; White, J. A.

    1991-01-01

    The use of a multigrid method with central differencing to solve the Navier-Stokes equations for hypersonic flows is considered. The time dependent form of the equations is integrated with an explicit Runge-Kutta scheme accelerated by local time stepping and implicit residual smoothing. Variable coefficients are developed for the implicit process that removes the diffusion limit on the time step, producing significant improvement in convergence. A numerical dissipation formulation that provides good shock capturing capability for hypersonic flows is presented. This formulation is shown to be a crucial aspect of the multigrid method. Solutions are given for two-dimensional viscous flow over a NACA 0012 airfoil and three-dimensional flow over a blunt biconic.

  10. Segmented Domain Decomposition Multigrid For 3-D Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Celestina, M. L.; Adamczyk, J. J.; Rubin, S. G.

    2001-01-01

    A Segmented Domain Decomposition Multigrid (SDDMG) procedure was developed for three-dimensional viscous flow problems as they apply to turbomachinery flows. The procedure divides the computational domain into a coarse mesh comprised of uniformly spaced cells. To resolve smaller length scales such as the viscous layer near a surface, segments of the coarse mesh are subdivided into a finer mesh. This is repeated until adequate resolution of the smallest relevant length scale is obtained. Multigrid is used to communicate information between the different grid levels. To test the procedure, simulation results will be presented for a compressor and turbine cascade. These simulations are intended to show the ability of the present method to generate grid independent solutions. Comparisons with data will also be presented. These comparisons will further demonstrate the usefulness of the present work for they allow an estimate of the accuracy of the flow modeling equations independent of error attributed to numerical discretization.

  11. Vectorized multigrid Poisson solver for the CDC CYBER 205

    NASA Technical Reports Server (NTRS)

    Barkai, D.; Brandt, M. A.

    1984-01-01

    The full multigrid (FMG) method is applied to the two dimensional Poisson equation with Dirichlet boundary conditions. This has been chosen as a relatively simple test case for examining the efficiency of fully vectorizing of the multigrid method. Data structure and programming considerations and techniques are discussed, accompanied by performance details.

  12. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    SciTech Connect

    Adams, Mark F.; Samtaney, Ravi, E-mail: samtaney@pppl.go; Brandt, Achi

    2010-09-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations - so-called 'textbook' multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field,more » which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.« less

  13. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    SciTech Connect

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2010-09-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called ‘‘textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss–Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field,more » which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.« less

  14. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    SciTech Connect

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2013-12-14

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called “textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field,more » which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.« less

  15. Multigrid Approach to Incompressible Viscous Cavity Flows

    NASA Technical Reports Server (NTRS)

    Wood, William A.

    1996-01-01

    Two-dimensional incompressible viscous driven-cavity flows are computed for Reynolds numbers on the range 100-20,000 using a loosely coupled, implicit, second-order centrally-different scheme. Mesh sequencing and three-level V-cycle multigrid error smoothing are incorporated into the symmetric Gauss-Seidel time-integration algorithm. Parametrics on the numerical parameters are performed, achieving reductions in solution times by more than 60 percent with the full multigrid approach. Details of the circulation patterns are investigated in cavities of 2-to-1, 1-to-1, and 1-to-2 depth to width ratios.

  16. Simultaneous multigrid techniques for nonlinear eigenvalue problems: Solutions of the nonlinear Schrödinger-Poisson eigenvalue problem in two and three dimensions

    NASA Astrophysics Data System (ADS)

    Costiner, Sorin; Ta'asan, Shlomo

    1995-07-01

    Algorithms for nonlinear eigenvalue problems (EP's) often require solving self-consistently a large number of EP's. Convergence difficulties may occur if the solution is not sought in an appropriate region, if global constraints have to be satisfied, or if close or equal eigenvalues are present. Multigrid (MG) algorithms for nonlinear problems and for EP's obtained from discretizations of partial differential EP have often been shown to be more efficient than single level algorithms. This paper presents MG techniques and a MG algorithm for nonlinear Schrödinger Poisson EP's. The algorithm overcomes the above mentioned difficulties combining the following techniques: a MG simultaneous treatment of the eigenvectors and nonlinearity, and with the global constrains; MG stable subspace continuation techniques for the treatment of nonlinearity; and a MG projection coupled with backrotations for separation of solutions. These techniques keep the solutions in an appropriate region, where the algorithm converges fast, and reduce the large number of self-consistent iterations to only a few or one MG simultaneous iteration. The MG projection makes it possible to efficiently overcome difficulties related to clusters of close and equal eigenvalues. Computational examples for the nonlinear Schrödinger-Poisson EP in two and three dimensions, presenting special computational difficulties that are due to the nonlinearity and to the equal and closely clustered eigenvalues are demonstrated. For these cases, the algorithm requires O(qN) operations for the calculation of q eigenvectors of size N and for the corresponding eigenvalues. One MG simultaneous cycle per fine level was performed. The total computational cost is equivalent to only a few Gauss-Seidel relaxations per eigenvector. An asymptotic convergence rate of 0.15 per MG cycle is attained.

  17. Agglomeration Multigrid for an Unstructured-Grid Flow Solver

    NASA Technical Reports Server (NTRS)

    Frink, Neal; Pandya, Mohagna J.

    2004-01-01

    An agglomeration multigrid scheme has been implemented into the sequential version of the NASA code USM3Dns, tetrahedral cell-centered finite volume Euler/Navier-Stokes flow solver. Efficiency and robustness of the multigrid-enhanced flow solver have been assessed for three configurations assuming an inviscid flow and one configuration assuming a viscous fully turbulent flow. The inviscid studies include a transonic flow over the ONERA M6 wing and a generic business jet with flow-through nacelles and a low subsonic flow over a high-lift trapezoidal wing. The viscous case includes a fully turbulent flow over the RAE 2822 rectangular wing. The multigrid solutions converged with 12%-33% of the Central Processing Unit (CPU) time required by the solutions obtained without multigrid. For all of the inviscid cases, multigrid in conjunction with an explicit time-stepping scheme performed the best with regard to the run time memory and CPU time requirements. However, for the viscous case multigrid had to be used with an implicit backward Euler time-stepping scheme that increased the run time memory requirement by 22% as compared to the run made without multigrid.

  18. 3D magnetospheric parallel hybrid multi-grid method applied to planet–plasma interactions

    SciTech Connect

    Leclercq, L., E-mail: ludivine.leclercq@latmos.ipsl.fr; Modolo, R., E-mail: ronan.modolo@latmos.ipsl.fr; Leblanc, F.

    2016-03-15

    We present a new method to exploit multiple refinement levels within a 3D parallel hybrid model, developed to study planet–plasma interactions. This model is based on the hybrid formalism: ions are kinetically treated whereas electrons are considered as a inertia-less fluid. Generally, ions are represented by numerical particles whose size equals the volume of the cells. Particles that leave a coarse grid subsequently entering a refined region are split into particles whose volume corresponds to the volume of the refined cells. The number of refined particles created from a coarse particle depends on the grid refinement rate. In order tomore » conserve velocity distribution functions and to avoid calculations of average velocities, particles are not coalesced. Moreover, to ensure the constancy of particles' shape function sizes, the hybrid method is adapted to allow refined particles to move within a coarse region. Another innovation of this approach is the method developed to compute grid moments at interfaces between two refinement levels. Indeed, the hybrid method is adapted to accurately account for the special grid structure at the interfaces, avoiding any overlapping grid considerations. Some fundamental test runs were performed to validate our approach (e.g. quiet plasma flow, Alfven wave propagation). Lastly, we also show a planetary application of the model, simulating the interaction between Jupiter's moon Ganymede and the Jovian plasma.« less

  19. An extended algebraic variational multiscale-multigrid-multifractal method (XAVM4) for large-eddy simulation of turbulent two-phase flow

    NASA Astrophysics Data System (ADS)

    Rasthofer, U.; Wall, W. A.; Gravemeier, V.

    2018-04-01

    A novel and comprehensive computational method, referred to as the eXtended Algebraic Variational Multiscale-Multigrid-Multifractal Method (XAVM4), is proposed for large-eddy simulation of the particularly challenging problem of turbulent two-phase flow. The XAVM4 involves multifractal subgrid-scale modeling as well as a Nitsche-type extended finite element method as an approach for two-phase flow. The application of an advanced structural subgrid-scale modeling approach in conjunction with a sharp representation of the discontinuities at the interface between two bulk fluids promise high-fidelity large-eddy simulation of turbulent two-phase flow. The high potential of the XAVM4 is demonstrated for large-eddy simulation of turbulent two-phase bubbly channel flow, that is, turbulent channel flow carrying a single large bubble of the size of the channel half-width in this particular application.

  20. Textbook Multigrid Efficiency for Leading Edge Stagnation

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Mineck, Raymond E.

    2004-01-01

    A multigrid solver is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work which is a small (less than 10) multiple of the operation count in evaluating the discrete residuals. TME in solving the incompressible inviscid fluid equations is demonstrated for leading-edge stagnation flows. The contributions of this paper include (1) a special formulation of the boundary conditions near stagnation allowing convergence of the Newton iterations on coarse grids, (2) the boundary relaxation technique to facilitate relaxation and residual restriction near the boundaries, (3) a modified relaxation scheme to prevent initial error amplification, and (4) new general analysis techniques for multigrid solvers. Convergence of algebraic errors below the level of discretization errors is attained by a full multigrid (FMG) solver with one full approximation scheme (FAS) cycle per grid. Asymptotic convergence rates of the FAS cycles for the full system of flow equations are very fast, approaching those for scalar elliptic equations.

  1. Textbook Multigrid Efficiency for Leading Edge Stagnation

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Mineck, Raymond E.

    2004-01-01

    A multigrid solver is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work which is a small (less than 10) multiple of the operation count in evaluating the discrete residuals. TME in solving the incompressible inviscid fluid equations is demonstrated for leading- edge stagnation flows. The contributions of this paper include (1) a special formulation of the boundary conditions near stagnation allowing convergence of the Newton iterations on coarse grids, (2) the boundary relaxation technique to facilitate relaxation and residual restriction near the boundaries, (3) a modified relaxation scheme to prevent initial error amplification, and (4) new general analysis techniques for multigrid solvers. Convergence of algebraic errors below the level of discretization errors is attained by a full multigrid (FMG) solver with one full approximation scheme (F.4S) cycle per grid. Asymptotic convergence rates of the F.4S cycles for the full system of flow equations are very fast, approaching those for scalar elliptic equations.

  2. Spectral element multigrid. Part 2: Theoretical justification

    NASA Technical Reports Server (NTRS)

    Maday, Yvon; Munoz, Rafael

    1988-01-01

    A multigrid algorithm is analyzed which is used for solving iteratively the algebraic system resulting from tha approximation of a second order problem by spectral or spectral element methods. The analysis, performed here in the one dimensional case, justifies the good smoothing properties of the Jacobi preconditioner that was presented in Part 1 of this paper.

  3. Recent Advances in Agglomerated Multigrid

    NASA Technical Reports Server (NTRS)

    Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.; Hammond, Dana P.

    2013-01-01

    We report recent advancements of the agglomerated multigrid methodology for complex flow simulations on fully unstructured grids. An agglomerated multigrid solver is applied to a wide range of test problems from simple two-dimensional geometries to realistic three- dimensional configurations. The solver is evaluated against a single-grid solver and, in some cases, against a structured-grid multigrid solver. Grid and solver issues are identified and overcome, leading to significant improvements over single-grid solvers.

  4. On the connection between multigrid and cyclic reduction

    NASA Technical Reports Server (NTRS)

    Merriam, M. L.

    1984-01-01

    A technique is shown whereby it is possible to relate a particular multigrid process to cyclic reduction using purely mathematical arguments. This technique suggest methods for solving Poisson's equation in 1-, 2-, or 3-dimensions with Dirichlet or Neumann boundary conditions. In one dimension the method is exact and, in fact, reduces to cyclic reduction. This provides a valuable reference point for understanding multigrid techniques. The particular multigrid process analyzed is referred to here as Approximate Cyclic Reduction (ACR) and is one of a class known as Multigrid Reduction methods in the literature. It involves one approximation with a known error term. It is possible to relate the error term in this approximation with certain eigenvector components of the error. These are sharply reduced in amplitude by classical relaxation techniques. The approximation can thus be made a very good one.

  5. Conduct of the International Multigrid Conference

    NASA Technical Reports Server (NTRS)

    Mccormick, S.

    1984-01-01

    The 1983 International Multigrid Conference was held at Colorado's Copper Mountain Ski Resort, April 5-8. It was organized jointly by the Institute for Computational Studies at Colorado State University, U.S.A., and the Gasellschaft fur Mathematik und Datenverarbeitung Bonn, F.R. Germany, and was sponsored by the Air Force Office of Sponsored Research and National Aeronautics and Space Administration Headquarters. The conference was attended by 80 scientists, divided by institution almost equally into private industry, research laboratories, and academia. Fifteen attendees came from countries other than the U.S.A. In addition to the fruitful discussions, the most significant factor of the conference was of course the lectures. The lecturers include most of the leaders in the field of multigrid research. The program offered a nice integrated blend of theory, numerical studies, basic research, and applications. Some of the new areas of research that have surfaced since the Koln-Porz conference include: the algebraic multigrid approach; multigrid treatment of Euler equations for inviscid fluid flow problems; 3-D problems; and the application of MG methods on vector and parallel computers.

  6. Applications of multigrid software in the atmospheric sciences

    NASA Technical Reports Server (NTRS)

    Adams, J.; Garcia, R.; Gross, B.; Hack, J.; Haidvogel, D.; Pizzo, V.

    1992-01-01

    Elliptic partial differential equations from different areas in the atmospheric sciences are efficiently and easily solved utilizing the multigrid software package named MUDPACK. It is demonstrated that the multigrid method is more efficient than other commonly employed techniques, such as Gaussian elimination and fixed-grid relaxation. The efficiency relative to other techniques, both in terms of storage requirement and computational time, increases quickly with grid size.

  7. Updated users' guide for TAWFIVE with multigrid

    NASA Technical Reports Server (NTRS)

    Melson, N. Duane; Streett, Craig L.

    1989-01-01

    A program for the Transonic Analysis of a Wing and Fuselage with Interacted Viscous Effects (TAWFIVE) was improved by the incorporation of multigrid and a method to specify lift coefficient rather than angle-of-attack. A finite volume full potential multigrid method is used to model the outer inviscid flow field. First order viscous effects are modeled by a 3-D integral boundary layer method. Both turbulent and laminar boundary layers are treated. Wake thickness effects are modeled using a 2-D strip method. A brief discussion of the engineering aspects of the program is given. The input, output, and use of the program are covered in detail. Sample results are given showing the effects of boundary layer corrections and the capability of the lift specification method.

  8. Numerical solution of a coupled pair of elliptic equations from solid state electronics

    NASA Technical Reports Server (NTRS)

    Phillips, T. N.

    1983-01-01

    Iterative methods are considered for the solution of a coupled pair of second order elliptic partial differential equations which arise in the field of solid state electronics. A finite difference scheme is used which retains the conservative form of the differential equations. Numerical solutions are obtained in two ways, by multigrid and dynamic alternating direction implicit methods. Numerical results are presented which show the multigrid method to be an efficient way of solving this problem.

  9. Finite volume method and multigrid acceleration in modelling of rapid crack propagation in full-scale pipe test

    NASA Astrophysics Data System (ADS)

    Ivankovic, A.; Muzaferija, S.; Demirdzic, I.

    1997-07-01

    Rapid Crack Propagation (RCP) along pressurised plastic pipes is by far the most dangerous pipe failure mode. Despite the economic benefits offered by increasing pipe size and operating pressure, both strategies increase the risk and the potential consequences of RCP. It is therefore extremely important to account for RCP in establishing the safe operational conditions. Combined experimental-numerical study is the only reliable approach of addressing the problem, and extensive research is undertaken by various fracture groups (e.g. Southwest Research Institute - USA, Imperial College - UK). This paper presents numerical results from finite volume modelling of full-scale test on medium density polyethylene gas pressurised pipes. The crack speed and pressure profile are prescribed in the analysis. Both steady-state and transient RCPs are considered, and the comparison between the two shown. The steady-state results are efficiently achieved employing a full multigrid acceleration technique, where sets of progressively finer grids are used in V-cycles. Also, the effect of inelastic behaviour of polyethylene on RCP results is demonstrated.

  10. An algebraic multigrid method for Q2-Q1 mixed discretizations of the Navier-Stokes equations

    SciTech Connect

    Prokopenko, Andrey; Tuminaro, Raymond S.

    Algebraic multigrid (AMG) preconditioners are considered for discretized systems of partial differential equations (PDEs) where unknowns associated with different physical quantities are not necessarily co-located at mesh points. Speci cally, we investigate a Q 2-Q 1 mixed finite element discretization of the incompressible Navier-Stokes equations where the number of velocity nodes is much greater than the number of pressure nodes. Consequently, some velocity degrees-of-freedom (dofs) are defined at spatial locations where there are no corresponding pressure dofs. Thus, AMG approaches lever- aging this co-located structure are not applicable. This paper instead proposes an automatic AMG coarsening that mimics certain pressure/velocitymore » dof relationships of the Q 2-Q 1 discretization. The main idea is to first automatically define coarse pressures in a somewhat standard AMG fashion and then to carefully (but automatically) choose coarse velocity unknowns so that the spatial location relationship between pressure and velocity dofs resembles that on the nest grid. To define coefficients within the inter-grid transfers, an energy minimization AMG (EMIN-AMG) is utilized. EMIN-AMG is not tied to specific coarsening schemes and grid transfer sparsity patterns, and so it is applicable to the proposed coarsening. Numerical results highlighting solver performance are given on Stokes and incompressible Navier-Stokes problems.« less

  11. An algebraic multigrid method for Q2-Q1 mixed discretizations of the Navier-Stokes equations

    DOE PAGES

    Prokopenko, Andrey; Tuminaro, Raymond S.

    2016-07-01

    Algebraic multigrid (AMG) preconditioners are considered for discretized systems of partial differential equations (PDEs) where unknowns associated with different physical quantities are not necessarily co-located at mesh points. Speci cally, we investigate a Q 2-Q 1 mixed finite element discretization of the incompressible Navier-Stokes equations where the number of velocity nodes is much greater than the number of pressure nodes. Consequently, some velocity degrees-of-freedom (dofs) are defined at spatial locations where there are no corresponding pressure dofs. Thus, AMG approaches lever- aging this co-located structure are not applicable. This paper instead proposes an automatic AMG coarsening that mimics certain pressure/velocitymore » dof relationships of the Q 2-Q 1 discretization. The main idea is to first automatically define coarse pressures in a somewhat standard AMG fashion and then to carefully (but automatically) choose coarse velocity unknowns so that the spatial location relationship between pressure and velocity dofs resembles that on the nest grid. To define coefficients within the inter-grid transfers, an energy minimization AMG (EMIN-AMG) is utilized. EMIN-AMG is not tied to specific coarsening schemes and grid transfer sparsity patterns, and so it is applicable to the proposed coarsening. Numerical results highlighting solver performance are given on Stokes and incompressible Navier-Stokes problems.« less

  12. A Cell-Centered Multigrid Algorithm for All Grid Sizes

    NASA Technical Reports Server (NTRS)

    Gjesdal, Thor

    1996-01-01

    Multigrid methods are optimal; that is, their rate of convergence is independent of the number of grid points, because they use a nested sequence of coarse grids to represent different scales of the solution. This nesting does, however, usually lead to certain restrictions of the permissible size of the discretised problem. In cases where the modeler is free to specify the whole problem, such constraints are of little importance because they can be taken into consideration from the outset. We consider the situation in which there are other competing constraints on the resolution. These restrictions may stem from the physical problem (e.g., if the discretised operator contains experimental data measured on a fixed grid) or from the need to avoid limitations set by the hardware. In this paper we discuss a modification to the cell-centered multigrid algorithm, so that it can be used br problems with any resolution. We discuss in particular a coarsening strategy and choice of intergrid transfer operators that can handle grids with both an even or odd number of cells. The method is described and applied to linear equations obtained by discretization of two- and three-dimensional second-order elliptic PDEs.

  13. Application of p-Multigrid to Discontinuous Galerkin Formulations of the Poisson Equation

    NASA Technical Reports Server (NTRS)

    Helenbrook, B. T.; Atkins, H. L.

    2006-01-01

    We investigate p-multigrid as a solution method for several different discontinuous Galerkin (DG) formulations of the Poisson equation. Different combinations of relaxation schemes and basis sets have been combined with the DG formulations to find the best performing combination. The damping factors of the schemes have been determined using Fourier analysis for both one and two-dimensional problems. One important finding is that when using DG formulations, the standard approach of forming the coarse p matrices separately for each level of multigrid is often unstable. To ensure stability the coarse p matrices must be constructed from the fine grid matrices using algebraic multigrid techniques. Of the relaxation schemes, we find that the combination of Jacobi relaxation with the spectral element basis is fairly effective. The results using this combination are p sensitive in both one and two dimensions, but reasonable convergence rates can still be achieved for moderate values of p and isotropic meshes. A competitive alternative is a block Gauss-Seidel relaxation. This actually out performs a more expensive line relaxation when the mesh is isotropic. When the mesh becomes highly anisotropic, the implicit line method and the Gauss-Seidel implicit line method are the only effective schemes. Adding the Gauss-Seidel terms to the implicit line method gives a significant improvement over the line relaxation method.

  14. Block-accelerated aggregation multigrid for Markov chains with application to PageRank problems

    NASA Astrophysics Data System (ADS)

    Shen, Zhao-Li; Huang, Ting-Zhu; Carpentieri, Bruno; Wen, Chun; Gu, Xian-Ming

    2018-06-01

    Recently, the adaptive algebraic aggregation multigrid method has been proposed for computing stationary distributions of Markov chains. This method updates aggregates on every iterative cycle to keep high accuracies of coarse-level corrections. Accordingly, its fast convergence rate is well guaranteed, but often a large proportion of time is cost by aggregation processes. In this paper, we show that the aggregates on each level in this method can be utilized to transfer the probability equation of that level into a block linear system. Then we propose a Block-Jacobi relaxation that deals with the block system on each level to smooth error. Some theoretical analysis of this technique is presented, meanwhile it is also adapted to solve PageRank problems. The purpose of this technique is to accelerate the adaptive aggregation multigrid method and its variants for solving Markov chains and PageRank problems. It also attempts to shed some light on new solutions for making aggregation processes more cost-effective for aggregation multigrid methods. Numerical experiments are presented to illustrate the effectiveness of this technique.

  15. A multigrid solver for the semiconductor equations

    NASA Technical Reports Server (NTRS)

    Bachmann, Bernhard

    1993-01-01

    We present a multigrid solver for the exponential fitting method. The solver is applied to the current continuity equations of semiconductor device simulation in two dimensions. The exponential fitting method is based on a mixed finite element discretization using the lowest-order Raviart-Thomas triangular element. This discretization method yields a good approximation of front layers and guarantees current conservation. The corresponding stiffness matrix is an M-matrix. 'Standard' multigrid solvers, however, cannot be applied to the resulting system, as this is dominated by an unsymmetric part, which is due to the presence of strong convection in part of the domain. To overcome this difficulty, we explore the connection between Raviart-Thomas mixed methods and the nonconforming Crouzeix-Raviart finite element discretization. In this way we can construct nonstandard prolongation and restriction operators using easily computable weighted L(exp 2)-projections based on suitable quadrature rules and the upwind effects of the discretization. The resulting multigrid algorithm shows very good results, even for real-world problems and for locally refined grids.

  16. A three dimensional multigrid multiblock multistage time stepping scheme for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Elmiligui, Alaa; Cannizzaro, Frank; Melson, N. D.

    1991-01-01

    A general multiblock method for the solution of the three-dimensional, unsteady, compressible, thin-layer Navier-Stokes equations has been developed. The convective and pressure terms are spatially discretized using Roe's flux differencing technique while the viscous terms are centrally differenced. An explicit Runge-Kutta method is used to advance the solution in time. Local time stepping, adaptive implicit residual smoothing, and the Full Approximation Storage (FAS) multigrid scheme are added to the explicit time stepping scheme to accelerate convergence to steady state. Results for three-dimensional test cases are presented and discussed.

  17. Multigrid approaches to non-linear diffusion problems on unstructured meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The efficiency of three multigrid methods for solving highly non-linear diffusion problems on two-dimensional unstructured meshes is examined. The three multigrid methods differ mainly in the manner in which the nonlinearities of the governing equations are handled. These comprise a non-linear full approximation storage (FAS) multigrid method which is used to solve the non-linear equations directly, a linear multigrid method which is used to solve the linear system arising from a Newton linearization of the non-linear system, and a hybrid scheme which is based on a non-linear FAS multigrid scheme, but employs a linear solver on each level as a smoother. Results indicate that all methods are equally effective at converging the non-linear residual in a given number of grid sweeps, but that the linear solver is more efficient in cpu time due to the lower cost of linear versus non-linear grid sweeps.

  18. A mass-conservative adaptive FAS multigrid solver for cell-centered finite difference methods on block-structured, locally-cartesian grids

    NASA Astrophysics Data System (ADS)

    Feng, Wenqiang; Guo, Zhenlin; Lowengrub, John S.; Wise, Steven M.

    2018-01-01

    We present a mass-conservative full approximation storage (FAS) multigrid solver for cell-centered finite difference methods on block-structured, locally cartesian grids. The algorithm is essentially a standard adaptive FAS (AFAS) scheme, but with a simple modification that comes in the form of a mass-conservative correction to the coarse-level force. This correction is facilitated by the creation of a zombie variable, analogous to a ghost variable, but defined on the coarse grid and lying under the fine grid refinement patch. We show that a number of different types of fine-level ghost cell interpolation strategies could be used in our framework, including low-order linear interpolation. In our approach, the smoother, prolongation, and restriction operations need never be aware of the mass conservation conditions at the coarse-fine interface. To maintain global mass conservation, we need only modify the usual FAS algorithm by correcting the coarse-level force function at points adjacent to the coarse-fine interface. We demonstrate through simulations that the solver converges geometrically, at a rate that is h-independent, and we show the generality of the solver, applying it to several nonlinear, time-dependent, and multi-dimensional problems. In several tests, we show that second-order asymptotic (h → 0) convergence is observed for the discretizations, provided that (1) at least linear interpolation of the ghost variables is employed, and (2) the mass conservation corrections are applied to the coarse-level force term.

  19. Parallel multigrid smoothing: polynomial versus Gauss-Seidel

    NASA Astrophysics Data System (ADS)

    Adams, Mark; Brezina, Marian; Hu, Jonathan; Tuminaro, Ray

    2003-07-01

    Gauss-Seidel is often the smoother of choice within multigrid applications. In the context of unstructured meshes, however, maintaining good parallel efficiency is difficult with multiplicative iterative methods such as Gauss-Seidel. This leads us to consider alternative smoothers. We discuss the computational advantages of polynomial smoothers within parallel multigrid algorithms for positive definite symmetric systems. Two particular polynomials are considered: Chebyshev and a multilevel specific polynomial. The advantages of polynomial smoothing over traditional smoothers such as Gauss-Seidel are illustrated on several applications: Poisson's equation, thin-body elasticity, and eddy current approximations to Maxwell's equations. While parallelizing the Gauss-Seidel method typically involves a compromise between a scalable convergence rate and maintaining high flop rates, polynomial smoothers achieve parallel scalable multigrid convergence rates without sacrificing flop rates. We show that, although parallel computers are the main motivation, polynomial smoothers are often surprisingly competitive with Gauss-Seidel smoothers on serial machines.

  20. Textbook Multigrid Efficiency for the Steady Euler Equations

    NASA Technical Reports Server (NTRS)

    Roberts, Thomas W.; Sidilkover, David; Swanson, R. C.

    2004-01-01

    A fast multigrid solver for the steady incompressible Euler equations is presented. Unlike time-marching schemes, this approach uses relaxation of the steady equations. Application of this method results in a discretization that correctly distinguishes between the advection and elliptic parts of the operator, allowing efficient smoothers to be constructed. Solvers for both unstructured triangular grids and structured quadrilateral grids have been written. Computations for channel flow and flow over a nonlifting airfoil have computed. Using Gauss-Seidel relaxation ordered in the flow direction, textbook multigrid convergence rates of nearly one order-of-magnitude residual reduction per multigrid cycle are achieved, independent of the grid spacing. This approach also may be applied to the compressible Euler equations and the incompressible Navier-Stokes equations.

  1. Segmental Refinement: A Multigrid Technique for Data Locality

    DOE PAGES

    Adams, Mark F.; Brown, Jed; Knepley, Matt; ...

    2016-08-04

    In this paper, we investigate a domain decomposed multigrid technique, termed segmental refinement, for solving general nonlinear elliptic boundary value problems. We extend the method first proposed in 1994 by analytically and experimentally investigating its complexity. We confirm that communication of traditional parallel multigrid is eliminated on fine grids, with modest amounts of extra work and storage, while maintaining the asymptotic exactness of full multigrid. We observe an accuracy dependence on the segmental refinement subdomain size, which was not considered in the original analysis. Finally, we present a communication complexity analysis that quantifies the communication costs ameliorated by segmental refinementmore » and report performance results with up to 64K cores on a Cray XC30.« less

  2. Investigation of upwind, multigrid, multiblock numerical schemes for three dimensional flows. Volume 1: Runge-Kutta methods for a thin layer Navier-Stokes solver

    NASA Technical Reports Server (NTRS)

    Cannizzaro, Frank E.; Ash, Robert L.

    1992-01-01

    A state-of-the-art computer code has been developed that incorporates a modified Runge-Kutta time integration scheme, upwind numerical techniques, multigrid acceleration, and multi-block capabilities (RUMM). A three-dimensional thin-layer formulation of the Navier-Stokes equations is employed. For turbulent flow cases, the Baldwin-Lomax algebraic turbulence model is used. Two different upwind techniques are available: van Leer's flux-vector splitting and Roe's flux-difference splitting. Full approximation multi-grid plus implicit residual and corrector smoothing were implemented to enhance the rate of convergence. Multi-block capabilities were developed to provide geometric flexibility. This feature allows the developed computer code to accommodate any grid topology or grid configuration with multiple topologies. The results shown in this dissertation were chosen to validate the computer code and display its geometric flexibility, which is provided by the multi-block structure.

  3. Solving Upwind-Biased Discretizations. 2; Multigrid Solver Using Semicoarsening

    NASA Technical Reports Server (NTRS)

    Diskin, Boris

    1999-01-01

    This paper studies a novel multigrid approach to the solution for a second order upwind biased discretization of the convection equation in two dimensions. This approach is based on semi-coarsening and well balanced explicit correction terms added to coarse-grid operators to maintain on coarse-grid the same cross-characteristic interaction as on the target (fine) grid. Colored relaxation schemes are used on all the levels allowing a very efficient parallel implementation. The results of the numerical tests can be summarized as follows: 1) The residual asymptotic convergence rate of the proposed V(0, 2) multigrid cycle is about 3 per cycle. This convergence rate far surpasses the theoretical limit (4/3) predicted for standard multigrid algorithms using full coarsening. The reported efficiency does not deteriorate with increasing the cycle, depth (number of levels) and/or refining the target-grid mesh spacing. 2) The full multi-grid algorithm (FMG) with two V(0, 2) cycles on the target grid and just one V(0, 2) cycle on all the coarse grids always provides an approximate solution with the algebraic error less than the discretization error. Estimates of the total work in the FMG algorithm are ranged between 18 and 30 minimal work units (depending on the target (discretizatioin). Thus, the overall efficiency of the FMG solver closely approaches (if does not achieve) the goal of the textbook multigrid efficiency. 3) A novel approach to deriving a discrete solution approximating the true continuous solution with a relative accuracy given in advance is developed. An adaptive multigrid algorithm (AMA) using comparison of the solutions on two successive target grids to estimate the accuracy of the current target-grid solution is defined. A desired relative accuracy is accepted as an input parameter. The final target grid on which this accuracy can be achieved is chosen automatically in the solution process. the actual relative accuracy of the discrete solution approximation

  4. Computationally efficient finite-difference modal method for the solution of Maxwell's equations.

    PubMed

    Semenikhin, Igor; Zanuccoli, Mauro

    2013-12-01

    In this work, a new implementation of the finite-difference (FD) modal method (FDMM) based on an iterative approach to calculate the eigenvalues and corresponding eigenfunctions of the Helmholtz equation is presented. Two relevant enhancements that significantly increase the speed and accuracy of the method are introduced. First of all, the solution of the complete eigenvalue problem is avoided in favor of finding only the meaningful part of eigenmodes by using iterative methods. Second, a multigrid algorithm and Richardson extrapolation are implemented. Simultaneous use of these techniques leads to an enhancement in terms of accuracy, which allows a simple method such as the FDMM with a typical three-point difference scheme to be significantly competitive with an analytical modal method.

  5. Iterative spectral methods and spectral solutions to compressible flows

    NASA Technical Reports Server (NTRS)

    Hussaini, M. Y.; Zang, T. A.

    1982-01-01

    A spectral multigrid scheme is described which can solve pseudospectral discretizations of self-adjoint elliptic problems in O(N log N) operations. An iterative technique for efficiently implementing semi-implicit time-stepping for pseudospectral discretizations of Navier-Stokes equations is discussed. This approach can handle variable coefficient terms in an effective manner. Pseudospectral solutions of compressible flow problems are presented. These include one dimensional problems and two dimensional Euler solutions. Results are given both for shock-capturing approaches and for shock-fitting ones.

  6. Analysis Tools for CFD Multigrid Solvers

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Thomas, James L.; Diskin, Boris

    2004-01-01

    Analysis tools are needed to guide the development and evaluate the performance of multigrid solvers for the fluid flow equations. Classical analysis tools, such as local mode analysis, often fail to accurately predict performance. Two-grid analysis tools, herein referred to as Idealized Coarse Grid and Idealized Relaxation iterations, have been developed and evaluated within a pilot multigrid solver. These new tools are applicable to general systems of equations and/or discretizations and point to problem areas within an existing multigrid solver. Idealized Relaxation and Idealized Coarse Grid are applied in developing textbook-efficient multigrid solvers for incompressible stagnation flow problems.

  7. Operator induced multigrid algorithms using semirefinement

    NASA Technical Reports Server (NTRS)

    Decker, Naomi; Vanrosendale, John

    1989-01-01

    A variant of multigrid, based on zebra relaxation, and a new family of restriction/prolongation operators is described. Using zebra relaxation in combination with an operator-induced prolongation leads to fast convergence, since the coarse grid can correct all error components. The resulting algorithms are not only fast, but are also robust, in the sense that the convergence rate is insensitive to the mesh aspect ratio. This is true even though line relaxation is performed in only one direction. Multigrid becomes a direct method if an operator-induced prolongation is used, together with the induced coarse grid operators. Unfortunately, this approach leads to stencils which double in size on each coarser grid. The use of an implicit three point restriction can be used to factor these large stencils, in order to retain the usual five or nine point stencils, while still achieving fast convergence. This algorithm achieves a V-cycle convergence rate of 0.03 on Poisson's equation, using 1.5 zebra sweeps per level, while the convergence rate improves to 0.003 if optimal nine point stencils are used. Numerical results for two and three dimensional model problems are presented, together with a two level analysis explaining these results.

  8. Unified gas-kinetic scheme with multigrid convergence for rarefied flow study

    NASA Astrophysics Data System (ADS)

    Zhu, Yajun; Zhong, Chengwen; Xu, Kun

    2017-09-01

    The unified gas kinetic scheme (UGKS) is based on direct modeling of gas dynamics on the mesh size and time step scales. With the modeling of particle transport and collision in a time-dependent flux function in a finite volume framework, the UGKS can connect the flow physics smoothly from the kinetic particle transport to the hydrodynamic wave propagation. In comparison with the direct simulation Monte Carlo (DSMC) method, the current equation-based UGKS can implement implicit techniques in the updates of macroscopic conservative variables and microscopic distribution functions. The implicit UGKS significantly increases the convergence speed for steady flow computations, especially in the highly rarefied and near continuum regimes. In order to further improve the computational efficiency, for the first time, a geometric multigrid technique is introduced into the implicit UGKS, where the prediction step for the equilibrium state and the evolution step for the distribution function are both treated with multigrid acceleration. More specifically, a full approximate nonlinear system is employed in the prediction step for fast evaluation of the equilibrium state, and a correction linear equation is solved in the evolution step for the update of the gas distribution function. As a result, convergent speed has been greatly improved in all flow regimes from rarefied to the continuum ones. The multigrid implicit UGKS (MIUGKS) is used in the non-equilibrium flow study, which includes microflow, such as lid-driven cavity flow and the flow passing through a finite-length flat plate, and high speed one, such as supersonic flow over a square cylinder. The MIUGKS shows 5-9 times efficiency increase over the previous implicit scheme. For the low speed microflow, the efficiency of MIUGKS is several orders of magnitude higher than the DSMC. Even for the hypersonic flow at Mach number 5 and Knudsen number 0.1, the MIUGKS is still more than 100 times faster than the DSMC method for

  9. Uniform convergence of multigrid V-cycle iterations for indefinite and nonsymmetric problems

    NASA Technical Reports Server (NTRS)

    Bramble, James H.; Kwak, Do Y.; Pasciak, Joseph E.

    1993-01-01

    In this paper, we present an analysis of a multigrid method for nonsymmetric and/or indefinite elliptic problems. In this multigrid method various types of smoothers may be used. One type of smoother which we consider is defined in terms of an associated symmetric problem and includes point and line, Jacobi, and Gauss-Seidel iterations. We also study smoothers based entirely on the original operator. One is based on the normal form, that is, the product of the operator and its transpose. Other smoothers studied include point and line, Jacobi, and Gauss-Seidel. We show that the uniform estimates for symmetric positive definite problems carry over to these algorithms. More precisely, the multigrid iteration for the nonsymmetric and/or indefinite problem is shown to converge at a uniform rate provided that the coarsest grid in the multilevel iteration is sufficiently fine (but not depending on the number of multigrid levels).

  10. Textbook Multigrid Efficiency for Computational Fluid Dynamics Simulations

    NASA Technical Reports Server (NTRS)

    Brandt, Achi; Thomas, James L.; Diskin, Boris

    2001-01-01

    Considerable progress over the past thirty years has been made in the development of large-scale computational fluid dynamics (CFD) solvers for the Euler and Navier-Stokes equations. Computations are used routinely to design the cruise shapes of transport aircraft through complex-geometry simulations involving the solution of 25-100 million equations; in this arena the number of wind-tunnel tests for a new design has been substantially reduced. However, simulations of the entire flight envelope of the vehicle, including maximum lift, buffet onset, flutter, and control effectiveness have not been as successful in eliminating the reliance on wind-tunnel testing. These simulations involve unsteady flows with more separation and stronger shock waves than at cruise. The main reasons limiting further inroads of CFD into the design process are: (1) the reliability of turbulence models; and (2) the time and expense of the numerical simulation. Because of the prohibitive resolution requirements of direct simulations at high Reynolds numbers, transition and turbulence modeling is expected to remain an issue for the near term. The focus of this paper addresses the latter problem by attempting to attain optimal efficiencies in solving the governing equations. Typically current CFD codes based on the use of multigrid acceleration techniques and multistage Runge-Kutta time-stepping schemes are able to converge lift and drag values for cruise configurations within approximately 1000 residual evaluations. An optimally convergent method is defined as having textbook multigrid efficiency (TME), meaning the solutions to the governing system of equations are attained in a computational work which is a small (less than 10) multiple of the operation count in the discretized system of equations (residual equations). In this paper, a distributed relaxation approach to achieving TME for Reynolds-averaged Navier-Stokes (RNAS) equations are discussed along with the foundations that form the

  11. Reducing Communication in Algebraic Multigrid Using Additive Variants

    SciTech Connect

    Vassilevski, Panayot S.; Yang, Ulrike Meier

    Algebraic multigrid (AMG) has proven to be an effective scalable solver on many high performance computers. However, its increasing communication complexity on coarser levels has shown to seriously impact its performance on computers with high communication cost. Moreover, additive AMG variants provide not only increased parallelism as well as decreased numbers of messages per cycle but also generally exhibit slower convergence. Here we present various new additive variants with convergence rates that are significantly improved compared to the classical additive algebraic multigrid method and investigate their potential for decreased communication, and improved communication-computation overlap, features that are essential for goodmore » performance on future exascale architectures.« less

  12. Reducing Communication in Algebraic Multigrid Using Additive Variants

    DOE PAGES

    Vassilevski, Panayot S.; Yang, Ulrike Meier

    2014-02-12

    Algebraic multigrid (AMG) has proven to be an effective scalable solver on many high performance computers. However, its increasing communication complexity on coarser levels has shown to seriously impact its performance on computers with high communication cost. Moreover, additive AMG variants provide not only increased parallelism as well as decreased numbers of messages per cycle but also generally exhibit slower convergence. Here we present various new additive variants with convergence rates that are significantly improved compared to the classical additive algebraic multigrid method and investigate their potential for decreased communication, and improved communication-computation overlap, features that are essential for goodmore » performance on future exascale architectures.« less

  13. A dynamically adaptive multigrid algorithm for the incompressible Navier-Stokes equations: Validation and model problems

    NASA Technical Reports Server (NTRS)

    Thompson, C. P.; Leaf, G. K.; Vanrosendale, J.

    1991-01-01

    An algorithm is described for the solution of the laminar, incompressible Navier-Stokes equations. The basic algorithm is a multigrid based on a robust, box-based smoothing step. Its most important feature is the incorporation of automatic, dynamic mesh refinement. This algorithm supports generalized simple domains. The program is based on a standard staggered-grid formulation of the Navier-Stokes equations for robustness and efficiency. Special grid transfer operators were introduced at grid interfaces in the multigrid algorithm to ensure discrete mass conservation. Results are presented for three models: the driven-cavity, a backward-facing step, and a sudden expansion/contraction.

  14. Time-marching multi-grid seismic tomography

    NASA Astrophysics Data System (ADS)

    Tong, P.; Yang, D.; Liu, Q.

    2016-12-01

    From the classic ray-based traveltime tomography to the state-of-the-art full waveform inversion, because of the nonlinearity of seismic inverse problems, a good starting model is essential for preventing the convergence of the objective function toward local minima. With a focus on building high-accuracy starting models, we propose the so-called time-marching multi-grid seismic tomography method in this study. The new seismic tomography scheme consists of a temporal time-marching approach and a spatial multi-grid strategy. We first divide the recording period of seismic data into a series of time windows. Sequentially, the subsurface properties in each time window are iteratively updated starting from the final model of the previous time window. There are at least two advantages of the time-marching approach: (1) the information included in the seismic data of previous time windows has been explored to build the starting models of later time windows; (2) seismic data of later time windows could provide extra information to refine the subsurface images. Within each time window, we use a multi-grid method to decompose the scale of the inverse problem. Specifically, the unknowns of the inverse problem are sampled on a coarse mesh to capture the macro-scale structure of the subsurface at the beginning. Because of the low dimensionality, it is much easier to reach the global minimum on a coarse mesh. After that, finer meshes are introduced to recover the micro-scale properties. That is to say, the subsurface model is iteratively updated on multi-grid in every time window. We expect that high-accuracy starting models should be generated for the second and later time windows. We will test this time-marching multi-grid method by using our newly developed eikonal-based traveltime tomography software package tomoQuake. Real application results in the 2016 Kumamoto earthquake (Mw 7.0) region in Japan will be demonstrated.

  15. A Note on Multigrid Theory for Non-nested Grids and/or Quadrature

    NASA Technical Reports Server (NTRS)

    Douglas, C. C.; Douglas, J., Jr.; Fyfe, D. E.

    1996-01-01

    We provide a unified theory for multilevel and multigrid methods when the usual assumptions are not present. For example, we do not assume that the solution spaces or the grids are nested. Further, we do not assume that there is an algebraic relationship between the linear algebra problems on different levels. What we provide is a computationally useful theory for adaptively changing levels. Theory is provided for multilevel correction schemes, nested iteration schemes, and one way (i.e., coarse to fine grid with no correction iterations) schemes. We include examples showing the applicability of this theory: finite element examples using quadrature in the matrix assembly and finite volume examples with non-nested grids. Our theory applies directly to other discretizations as well.

  16. Three dimensional unstructured multigrid for the Euler equations

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1991-01-01

    The three dimensional Euler equations are solved on unstructured tetrahedral meshes using a multigrid strategy. The driving algorithm consists of an explicit vertex-based finite element scheme, which employs an edge-based data structure to assemble the residuals. The multigrid approach employs a sequence of independently generated coarse and fine meshes to accelerate the convergence to steady-state of the fine grid solution. Variables, residuals and corrections are passed back and forth between the various grids of the sequence using linear interpolation. The addresses and weights for interpolation are determined in a preprocessing stage using linear interpolation. The addresses and weights for interpolation are determined in a preprocessing stage using an efficient graph traversal algorithm. The preprocessing operation is shown to require a negligible fraction of the CPU time required by the overall solution procedure, while gains in overall solution efficiencies greater than an order of magnitude are demonstrated on meshes containing up to 350,000 vertices. Solutions using globally regenerated fine meshes as well as adaptively refined meshes are given.

  17. A matrix dependent/algebraic multigrid approach for extruded meshes with applications to ice sheet modeling

    DOE PAGES

    Tuminaro, Raymond S.; Perego, Mauro; Tezaur, Irina Kalashnikova; ...

    2016-10-06

    A multigrid method is proposed that combines ideas from matrix dependent multigrid for structured grids and algebraic multigrid for unstructured grids. It targets problems where a three-dimensional mesh can be viewed as an extrusion of a two-dimensional, unstructured mesh in a third dimension. Our motivation comes from the modeling of thin structures via finite elements and, more specifically, the modeling of ice sheets. Extruded meshes are relatively common for thin structures and often give rise to anisotropic problems when the thin direction mesh spacing is much smaller than the broad direction mesh spacing. Within our approach, the first few multigridmore » hierarchy levels are obtained by applying matrix dependent multigrid to semicoarsen in a structured thin direction fashion. After sufficient structured coarsening, the resulting mesh contains only a single layer corresponding to a two-dimensional, unstructured mesh. Algebraic multigrid can then be employed in a standard manner to create further coarse levels, as the anisotropic phenomena is no longer present in the single layer problem. The overall approach remains fully algebraic, with the minor exception that some additional information is needed to determine the extruded direction. Furthermore, this facilitates integration of the solver with a variety of different extruded mesh applications.« less

  18. Implementation and Optimization of miniGMG - a Compact Geometric Multigrid Benchmark

    SciTech Connect

    Williams, Samuel; Kalamkar, Dhiraj; Singh, Amik

    2012-12-01

    Multigrid methods are widely used to accelerate the convergence of iterative solvers for linear systems used in a number of different application areas. In this report, we describe miniGMG, our compact geometric multigrid benchmark designed to proxy the multigrid solves found in AMR applications. We explore optimization techniques for geometric multigrid on existing and emerging multicore systems including the Opteron-based Cray XE6, Intel Sandy Bridge and Nehalem-based Infiniband clusters, as well as manycore-based architectures including NVIDIA's Fermi and Kepler GPUs and Intel's Knights Corner (KNC) co-processor. This report examines a variety of novel techniques including communication-aggregation, threaded wavefront-based DRAM communication-avoiding,more » dynamic threading decisions, SIMDization, and fusion of operators. We quantify performance through each phase of the V-cycle for both single-node and distributed-memory experiments and provide detailed analysis for each class of optimization. Results show our optimizations yield significant speedups across a variety of subdomain sizes while simultaneously demonstrating the potential of multi- and manycore processors to dramatically accelerate single-node performance. However, our analysis also indicates that improvements in networks and communication will be essential to reap the potential of manycore processors in large-scale multigrid calculations.« less

  19. Conjugate gradient coupled with multigrid for an indefinite problem

    NASA Technical Reports Server (NTRS)

    Gozani, J.; Nachshon, A.; Turkel, E.

    1984-01-01

    An iterative algorithm for the Helmholtz equation is presented. This scheme was based on the preconditioned conjugate gradient method for the normal equations. The preconditioning is one cycle of a multigrid method for the discrete Laplacian. The smoothing algorithm is red-black Gauss-Seidel and is constructed so it is a symmetric operator. The total number of iterations needed by the algorithm is independent of h. By varying the number of grids, the number of iterations depends only weakly on k when k(3)h(2) is constant. Comparisons with a SSOR preconditioner are presented.

  20. A multigrid LU-SSOR scheme for approximate Newton iteration applied to the Euler equations

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Jameson, Antony

    1986-01-01

    A new efficient relaxation scheme in conjunction with a multigrid method is developed for the Euler equations. The LU SSOR scheme is based on a central difference scheme and does not need flux splitting for Newton iteration. Application to transonic flow shows that the new method surpasses the performance of the LU implicit scheme.

  1. Reprint of Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method

    NASA Astrophysics Data System (ADS)

    D'Ambra, Pasqua; Tartaglione, Gaetano

    2015-04-01

    Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.

  2. Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method

    NASA Astrophysics Data System (ADS)

    D'Ambra, Pasqua; Tartaglione, Gaetano

    2015-03-01

    Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.

  3. METHOD AND APPARATUS FOR CALCINING SALT SOLUTIONS

    DOEpatents

    Lawroski, S.; Jonke, A.A.; Taecker, R.G.

    1961-10-31

    A method is given for converting uranyl nitrate solution into solid UO/ sub 3/, The solution is sprayed horizontally into a fluidized bed of UO/sub 3/ particles at 310 to 350 deg C by a nozzle of the coaxial air jet type at about 26 psig, Under these conditions the desired conversion takes place, and caking in the bed is avoided.

  4. Fast GPU-based computation of spatial multigrid multiframe LMEM for PET.

    PubMed

    Nassiri, Moulay Ali; Carrier, Jean-François; Després, Philippe

    2015-09-01

    Significant efforts were invested during the last decade to accelerate PET list-mode reconstructions, notably with GPU devices. However, the computation time per event is still relatively long, and the list-mode efficiency on the GPU is well below the histogram-mode efficiency. Since list-mode data are not arranged in any regular pattern, costly accesses to the GPU global memory can hardly be optimized and geometrical symmetries cannot be used. To overcome obstacles that limit the acceleration of reconstruction from list-mode on the GPU, a multigrid and multiframe approach of an expectation-maximization algorithm was developed. The reconstruction process is started during data acquisition, and calculations are executed concurrently on the GPU and the CPU, while the system matrix is computed on-the-fly. A new convergence criterion also was introduced, which is computationally more efficient on the GPU. The implementation was tested on a Tesla C2050 GPU device for a Gemini GXL PET system geometry. The results show that the proposed algorithm (multigrid and multiframe list-mode expectation-maximization, MGMF-LMEM) converges to the same solution as the LMEM algorithm more than three times faster. The execution time of the MGMF-LMEM algorithm was 1.1 s per million of events on the Tesla C2050 hardware used, for a reconstructed space of 188 x 188 x 57 voxels of 2 x 2 x 3.15 mm3. For 17- and 22-mm simulated hot lesions, the MGMF-LMEM algorithm led on the first iteration to contrast recovery coefficients (CRC) of more than 75 % of the maximum CRC while achieving a minimum in the relative mean square error. Therefore, the MGMF-LMEM algorithm can be used as a one-pass method to perform real-time reconstructions for low-count acquisitions, as in list-mode gated studies. The computation time for one iteration and 60 millions of events was approximately 66 s.

  5. Numerical solution methods for viscoelastic orthotropic materials

    NASA Technical Reports Server (NTRS)

    Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.

    1988-01-01

    Numerical solution methods for viscoelastic orthotropic materials, specifically fiber reinforced composite materials, are examined. The methods include classical lamination theory using time increments, direction solution of the Volterra Integral, Zienkiewicz's linear Prony series method, and a new method called Nonlinear Differential Equation Method (NDEM) which uses a nonlinear Prony series. The criteria used for comparison of the various methods include the stability of the solution technique, time step size stability, computer solution time length, and computer memory storage. The Volterra Integral allowed the implementation of higher order solution techniques but had difficulties solving singular and weakly singular compliance function. The Zienkiewicz solution technique, which requires the viscoelastic response to be modeled by a Prony series, works well for linear viscoelastic isotropic materials and small time steps. The new method, NDEM, uses a modified Prony series which allows nonlinear stress effects to be included and can be used with orthotropic nonlinear viscoelastic materials. The NDEM technique is shown to be accurate and stable for both linear and nonlinear conditions with minimal computer time.

  6. Multigrid calculation of internal flows in complex geometries

    NASA Technical Reports Server (NTRS)

    Smith, K. M.; Vanka, S. P.

    1992-01-01

    The development, validation, and application of a general purpose multigrid solution algorithm and computer program for the computation of elliptic flows in complex geometries is presented. This computer program combines several desirable features including a curvilinear coordinate system, collocated arrangement of the variables, and Full Multi-Grid/Full Approximation Scheme (FMG/FAS). Provisions are made for the inclusion of embedded obstacles and baffles inside the flow domain. The momentum and continuity equations are solved in a decoupled manner and a pressure corrective equation is used to update the pressures such that the fluxes at the cell faces satisfy local mass continuity. Despite the computational overhead required in the restriction and prolongation phases of the multigrid cycling, the superior convergence results in reduced overall CPU time. The numerical scheme and selected results of several validation flows are presented. Finally, the procedure is applied to study the flowfield in a side-inlet dump combustor and twin jet impingement from a simulated aircraft fuselage.

  7. NONLINEAR MULTIGRID SOLVER EXPLOITING AMGe COARSE SPACES WITH APPROXIMATION PROPERTIES

    SciTech Connect

    Christensen, Max La Cour; Villa, Umberto E.; Engsig-Karup, Allan P.

    The paper introduces a nonlinear multigrid solver for mixed nite element discretizations based on the Full Approximation Scheme (FAS) and element-based Algebraic Multigrid (AMGe). The main motivation to use FAS for unstruc- tured problems is the guaranteed approximation property of the AMGe coarse spaces that were developed recently at Lawrence Livermore National Laboratory. These give the ability to derive stable and accurate coarse nonlinear discretization problems. The previous attempts (including ones with the original AMGe method, [5, 11]), were less successful due to lack of such good approximation properties of the coarse spaces. With coarse spaces with approximation properties, ourmore » FAS approach on un- structured meshes should be as powerful/successful as FAS on geometrically re ned meshes. For comparison, Newton's method and Picard iterations with an inner state-of-the-art linear solver is compared to FAS on a nonlinear saddle point problem with applications to porous media ow. It is demonstrated that FAS is faster than Newton's method and Picard iterations for the experiments considered here. Due to the guaranteed approximation properties of our AMGe, the coarse spaces are very accurate, providing a solver with the potential for mesh-independent convergence on general unstructured meshes.« less

  8. A Multigrid NLS-4DVar Data Assimilation Scheme with Advanced Research WRF (ARW)

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Tian, X.

    2017-12-01

    The motions of the atmosphere have multiscale properties in space and/or time, and the background error covariance matrix (Β) should thus contain error information at different correlation scales. To obtain an optimal analysis, the multigrid three-dimensional variational data assimilation scheme is used widely when sequentially correcting errors from large to small scales. However, introduction of the multigrid technique into four-dimensional variational data assimilation is not easy, due to its strong dependence on the adjoint model, which has extremely high computational costs in data coding, maintenance, and updating. In this study, the multigrid technique was introduced into the nonlinear least-squares four-dimensional variational assimilation (NLS-4DVar) method, which is an advanced four-dimensional ensemble-variational method that can be applied without invoking the adjoint models. The multigrid NLS-4DVar (MG-NLS-4DVar) scheme uses the number of grid points to control the scale, with doubling of this number when moving from a coarse to a finer grid. Furthermore, the MG-NLS-4DVar scheme not only retains the advantages of NLS-4DVar, but also sufficiently corrects multiscale errors to achieve a highly accurate analysis. The effectiveness and efficiency of the proposed MG-NLS-4DVar scheme were evaluated by several groups of observing system simulation experiments using the Advanced Research Weather Research and Forecasting Model. MG-NLS-4DVar outperformed NLS-4DVar, with a lower computational cost.

  9. Fidelity of the Integrated Force Method Solution

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale; Halford, Gary; Coroneos, Rula; Patnaik, Surya

    2002-01-01

    The theory of strain compatibility of the solid mechanics discipline was incomplete since St. Venant's 'strain formulation' in 1876. We have addressed the compatibility condition both in the continuum and the discrete system. This has lead to the formulation of the Integrated Force Method. A dual Integrated Force Method with displacement as the primal variable has also been formulated. A modest finite element code (IFM/Analyzers) based on the IFM theory has been developed. For a set of standard test problems the IFM results were compared with the stiffness method solutions and the MSC/Nastran code. For the problems IFM outperformed the existing methods. Superior IFM performance is attributed to simultaneous compliance of equilibrium equation and compatibility condition. MSC/Nastran organization expressed reluctance to accept the high fidelity IFM solutions. This report discusses the solutions to the examples. No inaccuracy was detected in the IFM solutions. A stiffness method code with a small programming effort can be improved to reap the many IFM benefits when implemented with the IFMD elements. Dr. Halford conducted a peer-review on the Integrated Force Method. Reviewers' response is included.

  10. Advanced Multigrid Solvers for Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Brandt, Achi

    1999-01-01

    The main objective of this project has been to support the development of multigrid techniques in computational fluid dynamics that can achieve "textbook multigrid efficiency" (TME), which is several orders of magnitude faster than current industrial CFD solvers. Toward that goal we have assembled a detailed table which lists every foreseen kind of computational difficulty for achieving it, together with the possible ways for resolving the difficulty, their current state of development, and references. We have developed several codes to test and demonstrate, in the framework of simple model problems, several approaches for overcoming the most important of the listed difficulties that had not been resolved before. In particular, TME has been demonstrated for incompressible flows on one hand, and for near-sonic flows on the other hand. General approaches were advanced for the relaxation of stagnation points and boundary conditions under various situations. Also, new algebraic multigrid techniques were formed for treating unstructured grid formulations. More details on all these are given below.

  11. Algebraic multigrid preconditioners for two-phase flow in porous media with phase transitions [Algebraic multigrid preconditioners for multiphase flow in porous media with phase transitions

    SciTech Connect

    Bui, Quan M.; Wang, Lu; Osei-Kuffuor, Daniel

    Multiphase flow is a critical process in a wide range of applications, including oil and gas recovery, carbon sequestration, and contaminant remediation. Numerical simulation of multiphase flow requires solving of a large, sparse linear system resulting from the discretization of the partial differential equations modeling the flow. In the case of multiphase multicomponent flow with miscible effect, this is a very challenging task. The problem becomes even more difficult if phase transitions are taken into account. A new approach to handle phase transitions is to formulate the system as a nonlinear complementarity problem (NCP). Unlike in the primary variable switchingmore » technique, the set of primary variables in this approach is fixed even when there is phase transition. Not only does this improve the robustness of the nonlinear solver, it opens up the possibility to use multigrid methods to solve the resulting linear system. The disadvantage of the complementarity approach, however, is that when a phase disappears, the linear system has the structure of a saddle point problem and becomes indefinite, and current algebraic multigrid (AMG) algorithms cannot be applied directly. In this study, we explore the effectiveness of a new multilevel strategy, based on the multigrid reduction technique, to deal with problems of this type. We demonstrate the effectiveness of the method through numerical results for the case of two-phase, two-component flow with phase appearance/disappearance. In conclusion, we also show that the strategy is efficient and scales optimally with problem size.« less

  12. Algebraic multigrid preconditioners for two-phase flow in porous media with phase transitions [Algebraic multigrid preconditioners for multiphase flow in porous media with phase transitions

    DOE PAGES

    Bui, Quan M.; Wang, Lu; Osei-Kuffuor, Daniel

    2018-02-06

    Multiphase flow is a critical process in a wide range of applications, including oil and gas recovery, carbon sequestration, and contaminant remediation. Numerical simulation of multiphase flow requires solving of a large, sparse linear system resulting from the discretization of the partial differential equations modeling the flow. In the case of multiphase multicomponent flow with miscible effect, this is a very challenging task. The problem becomes even more difficult if phase transitions are taken into account. A new approach to handle phase transitions is to formulate the system as a nonlinear complementarity problem (NCP). Unlike in the primary variable switchingmore » technique, the set of primary variables in this approach is fixed even when there is phase transition. Not only does this improve the robustness of the nonlinear solver, it opens up the possibility to use multigrid methods to solve the resulting linear system. The disadvantage of the complementarity approach, however, is that when a phase disappears, the linear system has the structure of a saddle point problem and becomes indefinite, and current algebraic multigrid (AMG) algorithms cannot be applied directly. In this study, we explore the effectiveness of a new multilevel strategy, based on the multigrid reduction technique, to deal with problems of this type. We demonstrate the effectiveness of the method through numerical results for the case of two-phase, two-component flow with phase appearance/disappearance. In conclusion, we also show that the strategy is efficient and scales optimally with problem size.« less

  13. A Pseudo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    White, J. A.; Morrison, J. H.

    1999-01-01

    A multi-grid, flux-difference-split, finite-volume code, VULCAN, is presented for solving the elliptic and parabolized form of the equations governing three-dimensional, turbulent, calorically perfect and non-equilibrium chemically reacting flows. The space marching algorithms developed to improve convergence rate and or reduce computational cost are emphasized. The algorithms presented are extensions to the class of implicit pseudo-time iterative, upwind space-marching schemes. A full approximate storage, full multi-grid scheme is also described which is used to accelerate the convergence of a Gauss-Seidel relaxation method. The multi-grid algorithm is shown to significantly improve convergence on high aspect ratio grids.

  14. Comparison of an algebraic multigrid algorithm to two iterative solvers used for modeling ground water flow and transport

    USGS Publications Warehouse

    Detwiler, R.L.; Mehl, S.; Rajaram, H.; Cheung, W.W.

    2002-01-01

    Numerical solution of large-scale ground water flow and transport problems is often constrained by the convergence behavior of the iterative solvers used to solve the resulting systems of equations. We demonstrate the ability of an algebraic multigrid algorithm (AMG) to efficiently solve the large, sparse systems of equations that result from computational models of ground water flow and transport in large and complex domains. Unlike geometric multigrid methods, this algorithm is applicable to problems in complex flow geometries, such as those encountered in pore-scale modeling of two-phase flow and transport. We integrated AMG into MODFLOW 2000 to compare two- and three-dimensional flow simulations using AMG to simulations using PCG2, a preconditioned conjugate gradient solver that uses the modified incomplete Cholesky preconditioner and is included with MODFLOW 2000. CPU times required for convergence with AMG were up to 140 times faster than those for PCG2. The cost of this increased speed was up to a nine-fold increase in required random access memory (RAM) for the three-dimensional problems and up to a four-fold increase in required RAM for the two-dimensional problems. We also compared two-dimensional numerical simulations of steady-state transport using AMG and the generalized minimum residual method with an incomplete LU-decomposition preconditioner. For these transport simulations, AMG yielded increased speeds of up to 17 times with only a 20% increase in required RAM. The ability of AMG to solve flow and transport problems in large, complex flow systems and its ready availability make it an ideal solver for use in both field-scale and pore-scale modeling.

  15. Multigrid calculation of three-dimensional viscous cascade flows

    NASA Technical Reports Server (NTRS)

    Arnone, A.; Liou, M.-S.; Povinelli, L. A.

    1991-01-01

    A 3-D code for viscous cascade flow prediction was developed. The space discretization uses a cell-centered scheme with eigenvalue scaling to weigh the artificial dissipation terms. Computational efficiency of a four stage Runge-Kutta scheme is enhanced by using variable coefficients, implicit residual smoothing, and a full multigrid method. The Baldwin-Lomax eddy viscosity model is used for turbulence closure. A zonal, nonperiodic grid is used to minimize mesh distortion in and downstream of the throat region. Applications are presented for an annular vane with and without end wall contouring, and for a large scale linear cascade. The calculation is validated by comparing with experiments and by studying grid dependency.

  16. Multigrid calculation of three-dimensional viscous cascade flows

    NASA Technical Reports Server (NTRS)

    Arnone, A.; Liou, M.-S.; Povinelli, L. A.

    1991-01-01

    A three-dimensional code for viscous cascade flow prediction has been developed. The space discretization uses a cell-centered scheme with eigenvalue scaling to weigh the artificial dissipation terms. Computational efficiency of a four-stage Runge-Kutta scheme is enhanced by using variable coefficients, implicit residual smoothing, and a full-multigrid method. The Baldwin-Lomax eddy-viscosity model is used for turbulence closure. A zonal, nonperiodic grid is used to minimize mesh distortion in and downstream of the throat region. Applications are presented for an annular vane with and without end wall contouring, and for a large-scale linear cascade. The calculation is validated by comparing with experiments and by studying grid dependency.

  17. Performance of fully-coupled algebraic multigrid preconditioners for large-scale VMS resistive MHD

    SciTech Connect

    Lin, P. T.; Shadid, J. N.; Hu, J. J.

    Here, we explore the current performance and scaling of a fully-implicit stabilized unstructured finite element (FE) variational multiscale (VMS) capability for large-scale simulations of 3D incompressible resistive magnetohydrodynamics (MHD). The large-scale linear systems that are generated by a Newton nonlinear solver approach are iteratively solved by preconditioned Krylov subspace methods. The efficiency of this approach is critically dependent on the scalability and performance of the algebraic multigrid preconditioner. Our study considers the performance of the numerical methods as recently implemented in the second-generation Trilinos implementation that is 64-bit compliant and is not limited by the 32-bit global identifiers of themore » original Epetra-based Trilinos. The study presents representative results for a Poisson problem on 1.6 million cores of an IBM Blue Gene/Q platform to demonstrate very large-scale parallel execution. Additionally, results for a more challenging steady-state MHD generator and a transient solution of a benchmark MHD turbulence calculation for the full resistive MHD system are also presented. These results are obtained on up to 131,000 cores of a Cray XC40 and one million cores of a BG/Q system.« less

  18. Performance of fully-coupled algebraic multigrid preconditioners for large-scale VMS resistive MHD

    DOE PAGES

    Lin, P. T.; Shadid, J. N.; Hu, J. J.; ...

    2017-11-06

    Here, we explore the current performance and scaling of a fully-implicit stabilized unstructured finite element (FE) variational multiscale (VMS) capability for large-scale simulations of 3D incompressible resistive magnetohydrodynamics (MHD). The large-scale linear systems that are generated by a Newton nonlinear solver approach are iteratively solved by preconditioned Krylov subspace methods. The efficiency of this approach is critically dependent on the scalability and performance of the algebraic multigrid preconditioner. Our study considers the performance of the numerical methods as recently implemented in the second-generation Trilinos implementation that is 64-bit compliant and is not limited by the 32-bit global identifiers of themore » original Epetra-based Trilinos. The study presents representative results for a Poisson problem on 1.6 million cores of an IBM Blue Gene/Q platform to demonstrate very large-scale parallel execution. Additionally, results for a more challenging steady-state MHD generator and a transient solution of a benchmark MHD turbulence calculation for the full resistive MHD system are also presented. These results are obtained on up to 131,000 cores of a Cray XC40 and one million cores of a BG/Q system.« less

  19. Multigrid Acceleration of Time-Accurate DNS of Compressible Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Broeze, Jan; Geurts, Bernard; Kuerten, Hans; Streng, Martin

    1996-01-01

    An efficient scheme for the direct numerical simulation of 3D transitional and developed turbulent flow is presented. Explicit and implicit time integration schemes for the compressible Navier-Stokes equations are compared. The nonlinear system resulting from the implicit time discretization is solved with an iterative method and accelerated by the application of a multigrid technique. Since we use central spatial discretizations and no artificial dissipation is added to the equations, the smoothing method is less effective than in the more traditional use of multigrid in steady-state calculations. Therefore, a special prolongation method is needed in order to obtain an effective multigrid method. This simulation scheme was studied in detail for compressible flow over a flat plate. In the laminar regime and in the first stages of turbulent flow the implicit method provides a speed-up of a factor 2 relative to the explicit method on a relatively coarse grid. At increased resolution this speed-up is enhanced correspondingly.

  20. Chemical deposition methods using supercritical fluid solutions

    DOEpatents

    Sievers, Robert E.; Hansen, Brian N.

    1990-01-01

    A method for depositing a film of a desired material on a substrate comprises dissolving at least one reagent in a supercritical fluid comprising at least one solvent. Either the reagent is capable of reacting with or is a precursor of a compound capable of reacting with the solvent to form the desired product, or at least one additional reagent is included in the supercritical solution and is capable of reacting with or is a precursor of a compound capable of reacting with the first reagent or with a compound derived from the first reagent to form the desired material. The supercritical solution is expanded to produce a vapor or aerosol and a chemical reaction is induced in the vapor or aerosol so that a film of the desired material resulting from the chemical reaction is deposited on the substrate surface. In an alternate embodiment, the supercritical solution containing at least one reagent is expanded to produce a vapor or aerosol which is then mixed with a gas containing at least one additional reagent. A chemical reaction is induced in the resulting mixture so that a film of the desired material is deposited.

  1. Solution Methods for Certain Evolution Equations

    NASA Astrophysics Data System (ADS)

    Vega-Guzman, Jose Manuel

    Solution methods for certain linear and nonlinear evolution equations are presented in this dissertation. Emphasis is placed mainly on the analytical treatment of nonautonomous differential equations, which are challenging to solve despite the existent numerical and symbolic computational software programs available. Ideas from the transformation theory are adopted allowing one to solve the problems under consideration from a non-traditional perspective. First, the Cauchy initial value problem is considered for a class of nonautonomous and inhomogeneous linear diffusion-type equation on the entire real line. Explicit transformations are used to reduce the equations under study to their corresponding standard forms emphasizing on natural relations with certain Riccati(and/or Ermakov)-type systems. These relations give solvability results for the Cauchy problem of the parabolic equation considered. The superposition principle allows to solve formally this problem from an unconventional point of view. An eigenfunction expansion approach is also considered for this general evolution equation. Examples considered to corroborate the efficacy of the proposed solution methods include the Fokker-Planck equation, the Black-Scholes model and the one-factor Gaussian Hull-White model. The results obtained in the first part are used to solve the Cauchy initial value problem for certain inhomogeneous Burgers-type equation. The connection between linear (the Diffusion-type) and nonlinear (Burgers-type) parabolic equations is stress in order to establish a strong commutative relation. Traveling wave solutions of a nonautonomous Burgers equation are also investigated. Finally, it is constructed explicitly the minimum-uncertainty squeezed states for quantum harmonic oscillators. They are derived by the action of corresponding maximal kinematical invariance group on the standard ground state solution. It is shown that the product of the variances attains the required minimum value

  2. Algebraic multigrid domain and range decomposition (AMG-DD / AMG-RD)*

    DOE PAGES

    Bank, R.; Falgout, R. D.; Jones, T.; ...

    2015-10-29

    In modern large-scale supercomputing applications, algebraic multigrid (AMG) is a leading choice for solving matrix equations. However, the high cost of communication relative to that of computation is a concern for the scalability of traditional implementations of AMG on emerging architectures. This paper introduces two new algebraic multilevel algorithms, algebraic multigrid domain decomposition (AMG-DD) and algebraic multigrid range decomposition (AMG-RD), that replace traditional AMG V-cycles with a fully overlapping domain decomposition approach. While the methods introduced here are similar in spirit to the geometric methods developed by Brandt and Diskin [Multigrid solvers on decomposed domains, in Domain Decomposition Methods inmore » Science and Engineering, Contemp. Math. 157, AMS, Providence, RI, 1994, pp. 135--155], Mitchell [Electron. Trans. Numer. Anal., 6 (1997), pp. 224--233], and Bank and Holst [SIAM J. Sci. Comput., 22 (2000), pp. 1411--1443], they differ primarily in that they are purely algebraic: AMG-RD and AMG-DD trade communication for computation by forming global composite “grids” based only on the matrix, not the geometry. (As is the usual AMG convention, “grids” here should be taken only in the algebraic sense, regardless of whether or not it corresponds to any geometry.) Another important distinguishing feature of AMG-RD and AMG-DD is their novel residual communication process that enables effective parallel computation on composite grids, avoiding the all-to-all communication costs of the geometric methods. The main purpose of this paper is to study the potential of these two algebraic methods as possible alternatives to existing AMG approaches for future parallel machines. As a result, this paper develops some theoretical properties of these methods and reports on serial numerical tests of their convergence properties over a spectrum of problem parameters.« less

  3. Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations

    NASA Astrophysics Data System (ADS)

    Moghaderi, Hamid; Dehghan, Mehdi; Donatelli, Marco; Mazza, Mariarosa

    2017-12-01

    Fractional diffusion equations (FDEs) are a mathematical tool used for describing some special diffusion phenomena arising in many different applications like porous media and computational finance. In this paper, we focus on a two-dimensional space-FDE problem discretized by means of a second order finite difference scheme obtained as combination of the Crank-Nicolson scheme and the so-called weighted and shifted Grünwald formula. By fully exploiting the Toeplitz-like structure of the resulting linear system, we provide a detailed spectral analysis of the coefficient matrix at each time step, both in the case of constant and variable diffusion coefficients. Such a spectral analysis has a very crucial role, since it can be used for designing fast and robust iterative solvers. In particular, we employ the obtained spectral information to define a Galerkin multigrid method based on the classical linear interpolation as grid transfer operator and damped-Jacobi as smoother, and to prove the linear convergence rate of the corresponding two-grid method. The theoretical analysis suggests that the proposed grid transfer operator is strong enough for working also with the V-cycle method and the geometric multigrid. On this basis, we introduce two computationally favourable variants of the proposed multigrid method and we use them as preconditioners for Krylov methods. Several numerical results confirm that the resulting preconditioning strategies still keep a linear convergence rate.

  4. P1 Nonconforming Finite Element Method for the Solution of Radiation Transport Problems

    NASA Technical Reports Server (NTRS)

    Kang, Kab S.

    2002-01-01

    The simulation of radiation transport in the optically thick flux-limited diffusion regime has been identified as one of the most time-consuming tasks within large simulation codes. Due to multimaterial complex geometry, the radiation transport system must often be solved on unstructured grids. In this paper, we investigate the behavior and the benefits of the unstructured P(sub 1) nonconforming finite element method, which has proven to be flexible and effective on related transport problems, in solving unsteady implicit nonlinear radiation diffusion problems using Newton and Picard linearization methods. Key words. nonconforrning finite elements, radiation transport, inexact Newton linearization, multigrid preconditioning

  5. Comparative Performance Analysis of Coarse Solvers for Algebraic Multigrid on Multicore and Manycore Architectures

    SciTech Connect

    Druinsky, Alex; Ghysels, Pieter; Li, Xiaoye S.

    In this paper, we study the performance of a two-level algebraic-multigrid algorithm, with a focus on the impact of the coarse-grid solver on performance. We consider two algorithms for solving the coarse-space systems: the preconditioned conjugate gradient method and a new robust HSS-embedded low-rank sparse-factorization algorithm. Our test data comes from the SPE Comparative Solution Project for oil-reservoir simulations. We contrast the performance of our code on one 12-core socket of a Cray XC30 machine with performance on a 60-core Intel Xeon Phi coprocessor. To obtain top performance, we optimized the code to take full advantage of fine-grained parallelism andmore » made it thread-friendly for high thread count. We also developed a bounds-and-bottlenecks performance model of the solver which we used to guide us through the optimization effort, and also carried out performance tuning in the solver’s large parameter space. Finally, as a result, significant speedups were obtained on both machines.« less

  6. Development of an explicit multiblock/multigrid flow solver for viscous flows in complex geometries

    NASA Technical Reports Server (NTRS)

    Steinthorsson, E.; Liou, M. S.; Povinelli, L. A.

    1993-01-01

    A new computer program is being developed for doing accurate simulations of compressible viscous flows in complex geometries. The code employs the full compressible Navier-Stokes equations. The eddy viscosity model of Baldwin and Lomax is used to model the effects of turbulence on the flow. A cell centered finite volume discretization is used for all terms in the governing equations. The Advection Upwind Splitting Method (AUSM) is used to compute the inviscid fluxes, while central differencing is used for the diffusive fluxes. A four-stage Runge-Kutta time integration scheme is used to march solutions to steady state, while convergence is enhanced by a multigrid scheme, local time-stepping, and implicit residual smoothing. To enable simulations of flows in complex geometries, the code uses composite structured grid systems where all grid lines are continuous at block boundaries (multiblock grids). Example results shown are a flow in a linear cascade, a flow around a circular pin extending between the main walls in a high aspect-ratio channel, and a flow of air in a radial turbine coolant passage.

  7. Development of an explicit multiblock/multigrid flow solver for viscous flows in complex geometries

    NASA Technical Reports Server (NTRS)

    Steinthorsson, E.; Liou, M.-S.; Povinelli, L. A.

    1993-01-01

    A new computer program is being developed for doing accurate simulations of compressible viscous flows in complex geometries. The code employs the full compressible Navier-Stokes equations. The eddy viscosity model of Baldwin and Lomax is used to model the effects of turbulence on the flow. A cell centered finite volume discretization is used for all terms in the governing equations. The Advection Upwind Splitting Method (AUSM) is used to compute the inviscid fluxes, while central differencing is used for the diffusive fluxes. A four-stage Runge-Kutta time integration scheme is used to march solutions to steady state, while convergence is enhanced by a multigrid scheme, local time-stepping and implicit residual smoothing. To enable simulations of flows in complex geometries, the code uses composite structured grid systems where all grid lines are continuous at block boundaries (multiblock grids). Example results are shown a flow in a linear cascade, a flow around a circular pin extending between the main walls in a high aspect-ratio channel, and a flow of air in a radial turbine coolant passage.

  8. Multigrid Relaxation of a Factorizable, Conservative Discretization of the Compressible Flow Equations

    NASA Technical Reports Server (NTRS)

    Roberts, Thomas W.; Sidilkover, David; Thomas, J. L.

    2000-01-01

    The second-order factorizable discretization of the compressible Euler equations developed by Sidilkover is extended to conservation form on general curvilinear body-fitted grids. The discrete equations are solved by symmetric collective Gauss-Seidel relaxation and FAS multigrid. Solutions for flow in a channel with Mach numbers ranging from 0.0001 to a supercritical Mach number are shown, demonstrating uniform convergence rates and no loss of accuracy in the incompressible limit. A solution for the flow around the leading edge of a semi-infinite parabolic body demonstrates that the scheme maintains rapid convergence for a flow containing a stagnation point.

  9. Three-dimensional multigrid algorithms for the flux-split Euler equations

    NASA Technical Reports Server (NTRS)

    Anderson, W. Kyle; Thomas, James L.; Whitfield, David L.

    1988-01-01

    The Full Approximation Scheme (FAS) multigrid method is applied to several implicit flux-split algorithms for solving the three-dimensional Euler equations in a body fitted coordinate system. Each of the splitting algorithms uses a variation of approximate factorization and is implemented in a finite volume formulation. The algorithms are all vectorizable with little or no scalar computation required. The flux vectors are split into upwind components using both the splittings of Steger-Warming and Van Leer. The stability and smoothing rate of each of the schemes are examined using a Fourier analysis of the complete system of equations. Results are presented for three-dimensional subsonic, transonic, and supersonic flows which demonstrate substantially improved convergence rates with the multigrid algorithm. The influence of using both a V-cycle and a W-cycle on the convergence is examined.

  10. A NetCDF version of the two-dimensional energy balance model based on the full multigrid algorithm

    NASA Astrophysics Data System (ADS)

    Zhuang, Kelin; North, Gerald R.; Stevens, Mark J.

    A NetCDF version of the two-dimensional energy balance model based on the full multigrid method in Fortran is introduced for both pedagogical and research purposes. Based on the land-sea-ice distribution, orbital elements, greenhouse gases concentration, and albedo, the code calculates the global seasonal surface temperature. A step-by-step guide with examples is provided for practice.

  11. Algebraic multigrid preconditioners for two-phase flow in porous media with phase transitions

    NASA Astrophysics Data System (ADS)

    Bui, Quan M.; Wang, Lu; Osei-Kuffuor, Daniel

    2018-04-01

    Multiphase flow is a critical process in a wide range of applications, including oil and gas recovery, carbon sequestration, and contaminant remediation. Numerical simulation of multiphase flow requires solving of a large, sparse linear system resulting from the discretization of the partial differential equations modeling the flow. In the case of multiphase multicomponent flow with miscible effect, this is a very challenging task. The problem becomes even more difficult if phase transitions are taken into account. A new approach to handle phase transitions is to formulate the system as a nonlinear complementarity problem (NCP). Unlike in the primary variable switching technique, the set of primary variables in this approach is fixed even when there is phase transition. Not only does this improve the robustness of the nonlinear solver, it opens up the possibility to use multigrid methods to solve the resulting linear system. The disadvantage of the complementarity approach, however, is that when a phase disappears, the linear system has the structure of a saddle point problem and becomes indefinite, and current algebraic multigrid (AMG) algorithms cannot be applied directly. In this study, we explore the effectiveness of a new multilevel strategy, based on the multigrid reduction technique, to deal with problems of this type. We demonstrate the effectiveness of the method through numerical results for the case of two-phase, two-component flow with phase appearance/disappearance. We also show that the strategy is efficient and scales optimally with problem size.

  12. A stopping criterion for the iterative solution of partial differential equations

    NASA Astrophysics Data System (ADS)

    Rao, Kaustubh; Malan, Paul; Perot, J. Blair

    2018-01-01

    A stopping criterion for iterative solution methods is presented that accurately estimates the solution error using low computational overhead. The proposed criterion uses information from prior solution changes to estimate the error. When the solution changes are noisy or stagnating it reverts to a less accurate but more robust, low-cost singular value estimate to approximate the error given the residual. This estimator can also be applied to iterative linear matrix solvers such as Krylov subspace or multigrid methods. Examples of the stopping criterion's ability to accurately estimate the non-linear and linear solution error are provided for a number of different test cases in incompressible fluid dynamics.

  13. Solution of plane cascade flow using improved surface singularity methods

    NASA Technical Reports Server (NTRS)

    Mcfarland, E. R.

    1981-01-01

    A solution method has been developed for calculating compressible inviscid flow through a linear cascade of arbitrary blade shapes. The method uses advanced surface singularity formulations which were adapted from those found in current external flow analyses. The resulting solution technique provides a fast flexible calculation for flows through turbomachinery blade rows. The solution method and some examples of the method's capabilities are presented.

  14. Multigrid-based reconstruction algorithm for quantitative photoacoustic tomography

    PubMed Central

    Li, Shengfu; Montcel, Bruno; Yuan, Zhen; Liu, Wanyu; Vray, Didier

    2015-01-01

    This paper proposes a multigrid inversion framework for quantitative photoacoustic tomography reconstruction. The forward model of optical fluence distribution and the inverse problem are solved at multiple resolutions. A fixed-point iteration scheme is formulated for each resolution and used as a cost function. The simulated and experimental results for quantitative photoacoustic tomography reconstruction show that the proposed multigrid inversion can dramatically reduce the required number of iterations for the optimization process without loss of reliability in the results. PMID:26203371

  15. METHOD FOR DECONTAMINATION OF REACTOR SOLUTIONS

    DOEpatents

    Maraman, W.J.; Baxman, H.R.; Baker, R.D.

    1959-05-01

    A process for U recovery from phosphate fuel solutions is described. To fuel solution drawn from the reactor is added Fe(NO/sub 3/)/sub 3/ which destroys the U complex and forms ferric phosphate complex. The UO/sub 2/(NO/sub 3/)/sub 2/ formed is extracted into TBP-kerosene in a countercurrent column. The TBP contalning UO/sub 2/(NO/sub 3/)/sub 2/ is further purified by an aqueous Al(NO/ sub 3/)/sub 3/ scrub solution. The pregnant solution then goes to an H/sub 3/PO/ sub 4/ stripping and kerosene washing column. The H/sub 3/PO/sub 4/--uranyl phosphate solution is separated at the bottom and boiled to remove HNO/sub 3/ then diluted to fuel solution make-up strength. (T.R.H.)

  16. On Bi-Grid Local Mode Analysis of Solution Techniques for 3-D Euler and Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Ibraheem, S. O.; Demuren, A. O.

    1994-01-01

    A procedure is presented for utilizing a bi-grid stability analysis as a practical tool for predicting multigrid performance in a range of numerical methods for solving Euler and Navier-Stokes equations. Model problems based on the convection, diffusion and Burger's equation are used to illustrate the superiority of the bi-grid analysis as a predictive tool for multigrid performance in comparison to the smoothing factor derived from conventional von Neumann analysis. For the Euler equations, bi-grid analysis is presented for three upwind difference based factorizations, namely Spatial, Eigenvalue and Combination splits, and two central difference based factorizations, namely LU and ADI methods. In the former, both the Steger-Warming and van Leer flux-vector splitting methods are considered. For the Navier-Stokes equations, only the Beam-Warming (ADI) central difference scheme is considered. In each case, estimates of multigrid convergence rates from the bi-grid analysis are compared to smoothing factors obtained from single-grid stability analysis. Effects of grid aspect ratio and flow skewness are examined. Both predictions are compared with practical multigrid convergence rates for 2-D Euler and Navier-Stokes solutions based on the Beam-Warming central scheme.

  17. Multigrid optimal mass transport for image registration and morphing

    NASA Astrophysics Data System (ADS)

    Rehman, Tauseef ur; Tannenbaum, Allen

    2007-02-01

    In this paper we present a computationally efficient Optimal Mass Transport algorithm. This method is based on the Monge-Kantorovich theory and is used for computing elastic registration and warping maps in image registration and morphing applications. This is a parameter free method which utilizes all of the grayscale data in an image pair in a symmetric fashion. No landmarks need to be specified for correspondence. In our work, we demonstrate significant improvement in computation time when our algorithm is applied as compared to the originally proposed method by Haker et al [1]. The original algorithm was based on a gradient descent method for removing the curl from an initial mass preserving map regarded as 2D vector field. This involves inverting the Laplacian in each iteration which is now computed using full multigrid technique resulting in an improvement in computational time by a factor of two. Greater improvement is achieved by decimating the curl in a multi-resolutional framework. The algorithm was applied to 2D short axis cardiac MRI images and brain MRI images for testing and comparison.

  18. Numerical methods in laminar and turbulent flow; Proceedings of the 7th International Conference, Stanford Univ., CA, July 15-19, 1991. Vol. 7, pts. 1 & 2

    NASA Technical Reports Server (NTRS)

    Taylor, C. (Editor); Chin, J. H. (Editor); Homsy, G. M. (Editor)

    1991-01-01

    Consideration is given to the impulse response of a laminar boundary layer and receptivity; numerical transition to turbulence in plane Poiseuille flow; large eddy simulation of turbulent wake flow; a viscous model and loss calculation of a multisplitter cascade; vortex initiation during dynamic stall of an airfoil; a numerical analysis of isothermal flow in a combustion chamber; and compressible flow calculations with a two-equation turbulence model and unstructured grids. Attention is also given to a 2D calculation of a buoyant flow around a burning sphere, a fast multigrid method for 3D turbulent incompressible flows, a streaming flow induced by an oscillating cascade of circular cylinders, an algebraic multigrid scheme for solving the Navier-Stokes equations on unstructured meshes; and nonlinear coupled multigrid solutions to thermal problems employing different nodal grid arrangements and convective transport approximations.

  19. Electrical Resistivity Tomography using a finite element based BFGS algorithm with algebraic multigrid preconditioning

    NASA Astrophysics Data System (ADS)

    Codd, A. L.; Gross, L.

    2018-03-01

    We present a new inversion method for Electrical Resistivity Tomography which, in contrast to established approaches, minimizes the cost function prior to finite element discretization for the unknown electric conductivity and electric potential. Minimization is performed with the Broyden-Fletcher-Goldfarb-Shanno method (BFGS) in an appropriate function space. BFGS is self-preconditioning and avoids construction of the dense Hessian which is the major obstacle to solving large 3-D problems using parallel computers. In addition to the forward problem predicting the measurement from the injected current, the so-called adjoint problem also needs to be solved. For this problem a virtual current is injected through the measurement electrodes and an adjoint electric potential is obtained. The magnitude of the injected virtual current is equal to the misfit at the measurement electrodes. This new approach has the advantage that the solution process of the optimization problem remains independent to the meshes used for discretization and allows for mesh adaptation during inversion. Computation time is reduced by using superposition of pole loads for the forward and adjoint problems. A smoothed aggregation algebraic multigrid (AMG) preconditioned conjugate gradient is applied to construct the potentials for a given electric conductivity estimate and for constructing a first level BFGS preconditioner. Through the additional reuse of AMG operators and coarse grid solvers inversion time for large 3-D problems can be reduced further. We apply our new inversion method to synthetic survey data created by the resistivity profile representing the characteristics of subsurface fluid injection. We further test it on data obtained from a 2-D surface electrode survey on Heron Island, a small tropical island off the east coast of central Queensland, Australia.

  20. UXDs-Driven Transferring Method from TRIZ Solution to Domain Solution

    NASA Astrophysics Data System (ADS)

    Ma, Lihui; Cao, Guozhong; Chang, Yunxia; Wei, Zihui; Ma, Kai

    The translation process from TRIZ solutions to domain solutions is an analogy-based process. TRIZ solutions, such as 40 inventive principles and the related cases, are medium-solutions for domain problems. Unexpected discoveries (UXDs) are the key factors to trigger designers to generate new ideas for domain solutions. The Algorithm of UXD resolving based on Means-Ends Analysis(MEA) is studied and an UXDs-driven transferring method from TRIZ solution to domain solution is formed. A case study shows the application of the process.

  1. METHOD OF INHIBITING CORROSION IN URANYL SULFATE SOLUTIONS

    DOEpatents

    Bohlmann, E.G.; Griess, J.C. Jr.

    1960-08-23

    A method is given for treating a uranyl sulfate solution to inhibit the corrosiveness of the solution and elevate the phase separation temperature of the solution. Lithium sulfate is added to the solution in an amount ranging from 0.25 to 1.3 times the uranyl sulfate concentration. The corrosiveness of the solution with respect to stainless steel is substantially decreased by this means. This treatment also serves to raise the phase separation temperature of the solution (above 250 deg C), at which time the uranyl sulfate solution separates into two liquid phases of unequal uranium concentration and thus becomes unsuitable as nuclear reactor fuel.

  2. Method for preparing salt solutions having desired properties

    DOEpatents

    Ally, Moonis R.; Braunstein, Jerry

    1994-01-01

    The specification discloses a method for preparing salt solutions which exhibit desired thermodynamic properties. The method enables prediction of the value of the thermodynamic properties for single and multiple salt solutions over a wide range of conditions from activity data and constants which are independent of concentration and temperature. A particular application of the invention is in the control of salt solutions in a process to provide a salt solution which exhibits the desired properties.

  3. Lq -Lp optimization for multigrid fluorescence tomography of small animals using simplified spherical harmonics

    NASA Astrophysics Data System (ADS)

    Edjlali, Ehsan; Bérubé-Lauzière, Yves

    2018-01-01

    We present the first Lq -Lp optimization scheme for fluorescence tomographic imaging. This is then applied to small animal imaging. Fluorescence tomography is an ill-posed, and in full generality, a nonlinear problem that seeks to image the 3D concentration distribution of a fluorescent agent inside a biological tissue. Standard candidates for regularization to deal with the ill-posedness of the image reconstruction problem include L1 and L2 regularization. In this work, a general Lq -Lp regularization framework (Lq discrepancy function - Lp regularization term) is introduced for fluorescence tomographic imaging. A method to calculate the gradient for this general framework is developed which allows evaluating the performance of different cost functions/regularization schemes in solving the fluorescence tomographic problem. The simplified spherical harmonics approximation is used to accurately model light propagation inside the tissue. Furthermore, a multigrid mesh is utilized to decrease the dimension of the inverse problem and reduce the computational cost of the solution. The inverse problem is solved iteratively using an lm-BFGS quasi-Newton optimization method. The simulations are performed under different scenarios of noisy measurements. These are carried out on the Digimouse numerical mouse model with the kidney being the target organ. The evaluation of the reconstructed images is performed both qualitatively and quantitatively using several metrics including QR, RMSE, CNR, and TVE under rigorous conditions. The best reconstruction results under different scenarios are obtained with an L1.5 -L1 scheme with premature termination of the optimization process. This is in contrast to approaches commonly found in the literature relying on L2 -L2 schemes.

  4. A simplified analysis of the multigrid V-cycle as a fast elliptic solver

    NASA Technical Reports Server (NTRS)

    Decker, Naomi H.; Taasan, Shlomo

    1988-01-01

    For special model problems, Fourier analysis gives exact convergence rates for the two-grid multigrid cycle and, for more general problems, provides estimates of the two-grid convergence rates via local mode analysis. A method is presented for obtaining mutigrid convergence rate estimates for cycles involving more than two grids (using essentially the same analysis as for the two-grid cycle). For the simple cast of the V-cycle used as a fast Laplace solver on the unit square, the k-grid convergence rate bounds obtained by this method are sharper than the bounds predicted by the variational theory. Both theoretical justification and experimental evidence are presented.

  5. Transonic Drag Prediction Using an Unstructured Multigrid Solver

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Levy, David W.

    2001-01-01

    This paper summarizes the results obtained with the NSU-3D unstructured multigrid solver for the AIAA Drag Prediction Workshop held in Anaheim, CA, June 2001. The test case for the workshop consists of a wing-body configuration at transonic flow conditions. Flow analyses for a complete test matrix of lift coefficient values and Mach numbers at a constant Reynolds number are performed, thus producing a set of drag polars and drag rise curves which are compared with experimental data. Results were obtained independently by both authors using an identical baseline grid and different refined grids. Most cases were run in parallel on commodity cluster-type machines while the largest cases were run on an SGI Origin machine using 128 processors. The objective of this paper is to study the accuracy of the subject unstructured grid solver for predicting drag in the transonic cruise regime, to assess the efficiency of the method in terms of convergence, cpu time, and memory, and to determine the effects of grid resolution on this predictive ability and its computational efficiency. A good predictive ability is demonstrated over a wide range of conditions, although accuracy was found to degrade for cases at higher Mach numbers and lift values where increasing amounts of flow separation occur. The ability to rapidly compute large numbers of cases at varying flow conditions using an unstructured solver on inexpensive clusters of commodity computers is also demonstrated.

  6. A multiblock multigrid three-dimensional Euler equation solver

    NASA Technical Reports Server (NTRS)

    Cannizzaro, Frank E.; Elmiligui, Alaa; Melson, N. Duane; Vonlavante, E.

    1990-01-01

    Current aerodynamic designs are often quite complex (geometrically). Flexible computational tools are needed for the analysis of a wide range of configurations with both internal and external flows. In the past, geometrically dissimilar configurations required different analysis codes with different grid topologies in each. The duplicity of codes can be avoided with the use of a general multiblock formulation which can handle any grid topology. Rather than hard wiring the grid topology into the program, it is instead dictated by input to the program. In this work, the compressible Euler equations, written in a body-fitted finite-volume formulation, are solved using a pseudo-time-marching approach. Two upwind methods (van Leer's flux-vector-splitting and Roe's flux-differencing) were investigated. Two types of explicit solvers (a two-step predictor-corrector and a modified multistage Runge-Kutta) were used with multigrid acceleration to enhance convergence. A multiblock strategy is used to allow greater geometric flexibility. A report on simple explicit upwind schemes for solving compressible flows is included.

  7. Method for removing metals from a cleaning solution

    DOEpatents

    Deacon, Lewis E.

    2002-01-01

    A method for removing accumulated metals from a cleaning solution is provided. After removal of the metals, the cleaning solution can be discharged or recycled. The process manipulates the pH levels of the solution as a means of precipitating solids. Preferably a dual phase separation at two different pH levels is utilized.

  8. Method for chemically analyzing a solution by acoustic means

    DOEpatents

    Beller, Laurence S.

    1997-01-01

    A method and apparatus for determining a type of solution and the concention of that solution by acoustic means. Generally stated, the method consists of: immersing a sound focusing transducer within a first liquid filled container; locating a separately contained specimen solution at a sound focal point within the first container; locating a sound probe adjacent to the specimen, generating a variable intensity sound signal from the transducer; measuring fundamental and multiple harmonic sound signal amplitudes; and then comparing a plot of a specimen sound response with a known solution sound response, thereby determining the solution type and concentration.

  9. Method for chemically analyzing a solution by acoustic means

    DOEpatents

    Beller, L.S.

    1997-04-22

    A method and apparatus are disclosed for determining a type of solution and the concentration of that solution by acoustic means. Generally stated, the method consists of: immersing a sound focusing transducer within a first liquid filled container; locating a separately contained specimen solution at a sound focal point within the first container; locating a sound probe adjacent to the specimen, generating a variable intensity sound signal from the transducer; measuring fundamental and multiple harmonic sound signal amplitudes; and then comparing a plot of a specimen sound response with a known solution sound response, thereby determining the solution type and concentration. 10 figs.

  10. Method for liquid chromatographic extraction of strontium from acid solutions

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1992-01-01

    A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.

  11. An Upwind Multigrid Algorithm for Calculating Flows on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Bonhaus, Daryl L.

    1993-01-01

    An algorithm is described that calculates inviscid, laminar, and turbulent flows on triangular meshes with an upwind discretization. A brief description of the base solver and the multigrid implementation is given, followed by results that consist mainly of convergence rates for inviscid and viscous flows over a NACA four-digit airfoil section. The results show that multigrid does accelerate convergence when the same relaxation parameters that yield good single-grid performance are used; however, larger gains in performance can be realized by doing less work in the relaxation scheme.

  12. Efficient solution of the simplified P N equations

    DOE PAGES

    Hamilton, Steven P.; Evans, Thomas M.

    2014-12-23

    We show new solver strategies for the multigroup SPN equations for nuclear reactor analysis. By forming the complete matrix over space, moments, and energy a robust set of solution strategies may be applied. Moreover, power iteration, shifted power iteration, Rayleigh quotient iteration, Arnoldi's method, and a generalized Davidson method, each using algebraic and physics-based multigrid preconditioners, have been compared on C5G7 MOX test problem as well as an operational PWR model. These results show that the most ecient approach is the generalized Davidson method, that is 30-40 times faster than traditional power iteration and 6-10 times faster than Arnoldi's method.

  13. Determination of solute descriptors by chromatographic methods.

    PubMed

    Poole, Colin F; Atapattu, Sanka N; Poole, Salwa K; Bell, Andrea K

    2009-10-12

    The solvation parameter model is now well established as a useful tool for obtaining quantitative structure-property relationships for chemical, biomedical and environmental processes. The model correlates a free-energy related property of a system to six free-energy derived descriptors describing molecular properties. These molecular descriptors are defined as L (gas-liquid partition coefficient on hexadecane at 298K), V (McGowan's characteristic volume), E (excess molar refraction), S (dipolarity/polarizability), A (hydrogen-bond acidity), and B (hydrogen-bond basicity). McGowan's characteristic volume is trivially calculated from structure and the excess molar refraction can be calculated for liquids from their refractive index and easily estimated for solids. The remaining four descriptors are derived by experiment using (largely) two-phase partitioning, chromatography, and solubility measurements. In this article, the use of gas chromatography, reversed-phase liquid chromatography, micellar electrokinetic chromatography, and two-phase partitioning for determining solute descriptors is described. A large database of experimental retention factors and partition coefficients is constructed after first applying selection tools to remove unreliable experimental values and an optimized collection of varied compounds with descriptor values suitable for calibrating chromatographic systems is presented. These optimized descriptors are demonstrated to be robust and more suitable than other groups of descriptors characterizing the separation properties of chromatographic systems.

  14. Inattentive Drivers: Making the Solution Method the Model

    ERIC Educational Resources Information Center

    McCartney, Mark

    2003-01-01

    A simple car following model based on the solution of coupled ordinary differential equations is considered. The model is solved using Euler's method and this method of solution is itself interpreted as a mathematical model for car following. Examples of possible classroom use are given. (Contains 6 figures.)

  15. Students' Use of "Look Back" Strategies in Multiple Solution Methods

    ERIC Educational Resources Information Center

    Lee, Shin-Yi

    2016-01-01

    The purpose of this study was to investigate the relationship between both 9th-grade and 1st-year undergraduate students' use of "look back" strategies and problem solving performance in multiple solution methods, the difference in their use of look back strategies and problem solving performance in multiple solution methods, and the…

  16. Solution of Thermoelectricity Problems Energy Method

    NASA Astrophysics Data System (ADS)

    Niyazbek, Muheyat; Nogaybaeva, M. O.; Talp, Kuenssaule; Kudaikulov, A. A.

    2018-06-01

    On the basis of the fundamental laws of conservation of energy in conjunction with local quadratic spline functions was developed a universal computing algorithm, a method and associated software, which allows to investigate the Thermophysical insulated rod, with limited length, influenced by local heat flow, heat transfer and temperature

  17. Multigrid Computations of 3-D Incompressible Internal and External Viscous Rotating Flows

    NASA Technical Reports Server (NTRS)

    Sheng, Chunhua; Taylor, Lafayette K.; Chen, Jen-Ping; Jiang, Min-Yee; Whitfield, David L.

    1996-01-01

    This report presents multigrid methods for solving the 3-D incompressible viscous rotating flows in a NASA low-speed centrifugal compressor and a marine propeller 4119. Numerical formulations are given in both the rotating reference frame and the absolute frame. Comparisons are made for the accuracy, efficiency, and robustness between the steady-state scheme and the time-accurate scheme for simulating viscous rotating flows for complex internal and external flow applications. Prospects for further increase in efficiency and accuracy of unsteady time-accurate computations are discussed.

  18. Final Report for "Implimentation and Evaluation of Multigrid Linear Solvers into Extended Magnetohydrodynamic Codes for Petascale Computing"

    SciTech Connect

    Srinath Vadlamani; Scott Kruger; Travis Austin

    Extended magnetohydrodynamic (MHD) codes are used to model the large, slow-growing instabilities that are projected to limit the performance of International Thermonuclear Experimental Reactor (ITER). The multiscale nature of the extended MHD equations requires an implicit approach. The current linear solvers needed for the implicit algorithm scale poorly because the resultant matrices are so ill-conditioned. A new solver is needed, especially one that scales to the petascale. The most successful scalable parallel processor solvers to date are multigrid solvers. Applying multigrid techniques to a set of equations whose fundamental modes are dispersive waves is a promising solution to CEMM problems.more » For the Phase 1, we implemented multigrid preconditioners from the HYPRE project of the Center for Applied Scientific Computing at LLNL via PETSc of the DOE SciDAC TOPS for the real matrix systems of the extended MHD code NIMROD which is a one of the primary modeling codes of the OFES-funded Center for Extended Magnetohydrodynamic Modeling (CEMM) SciDAC. We implemented the multigrid solvers on the fusion test problem that allows for real matrix systems with success, and in the process learned about the details of NIMROD data structures and the difficulties of inverting NIMROD operators. The further success of this project will allow for efficient usage of future petascale computers at the National Leadership Facilities: Oak Ridge National Laboratory, Argonne National Laboratory, and National Energy Research Scientific Computing Center. The project will be a collaborative effort between computational plasma physicists and applied mathematicians at Tech-X Corporation, applied mathematicians Front Range Scientific Computations, Inc. (who are collaborators on the HYPRE project), and other computational plasma physicists involved with the CEMM project.« less

  19. Fast multigrid-based computation of the induced electric field for transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; Hirata, Akimasa

    2012-12-01

    In transcranial magnetic stimulation (TMS), the distribution of the induced electric field, and the affected brain areas, depends on the position of the stimulation coil and the individual geometry of the head and brain. The distribution of the induced electric field in realistic anatomies can be modelled using computational methods. However, existing computational methods for accurately determining the induced electric field in realistic anatomical models have suffered from long computation times, typically in the range of tens of minutes or longer. This paper presents a matrix-free implementation of the finite-element method with a geometric multigrid method that can potentially reduce the computation time to several seconds or less even when using an ordinary computer. The performance of the method is studied by computing the induced electric field in two anatomically realistic models. An idealized two-loop coil is used as the stimulating coil. Multiple computational grid resolutions ranging from 2 to 0.25 mm are used. The results show that, for macroscopic modelling of the electric field in an anatomically realistic model, computational grid resolutions of 1 mm or 2 mm appear to provide good numerical accuracy compared to higher resolutions. The multigrid iteration typically converges in less than ten iterations independent of the grid resolution. Even without parallelization, each iteration takes about 1.0 s or 0.1 s for the 1 and 2 mm resolutions, respectively. This suggests that calculating the electric field with sufficient accuracy in real time is feasible.

  20. The Effects of Dissipation and Coarse Grid Resolution for Multigrid in Flow Problems

    NASA Technical Reports Server (NTRS)

    Eliasson, Peter; Engquist, Bjoern

    1996-01-01

    The objective of this paper is to investigate the effects of the numerical dissipation and the resolution of the solution on coarser grids for multigrid with the Euler equation approximations. The convergence is accomplished by multi-stage explicit time-stepping to steady state accelerated by FAS multigrid. A theoretical investigation is carried out for linear hyperbolic equations in one and two dimensions. The spectra reveals that for stability and hence robustness of spatial discretizations with a small amount of numerical dissipation the grid transfer operators have to be accurate enough and the smoother of low temporal accuracy. Numerical results give grid independent convergence in one dimension. For two-dimensional problems with a small amount of numerical dissipation, however, only a few grid levels contribute to an increased speed of convergence. This is explained by the small numerical dissipation leading to dispersion. Increasing the mesh density and hence making the problem over resolved increases the number of mesh levels contributing to an increased speed of convergence. If the steady state equations are elliptic, all grid levels contribute to the convergence regardless of the mesh density.

  1. Multigrid Strategies for Viscous Flow Solvers on Anisotropic Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Movriplis, Dimitri J.

    1998-01-01

    Unstructured multigrid techniques for relieving the stiffness associated with high-Reynolds number viscous flow simulations on extremely stretched grids are investigated. One approach consists of employing a semi-coarsening or directional-coarsening technique, based on the directions of strong coupling within the mesh, in order to construct more optimal coarse grid levels. An alternate approach is developed which employs directional implicit smoothing with regular fully coarsened multigrid levels. The directional implicit smoothing is obtained by constructing implicit lines in the unstructured mesh based on the directions of strong coupling. Both approaches yield large increases in convergence rates over the traditional explicit full-coarsening multigrid algorithm. However, maximum benefits are achieved by combining the two approaches in a coupled manner into a single algorithm. An order of magnitude increase in convergence rate over the traditional explicit full-coarsening algorithm is demonstrated, and convergence rates for high-Reynolds number viscous flows which are independent of the grid aspect ratio are obtained. Further acceleration is provided by incorporating low-Mach-number preconditioning techniques, and a Newton-GMRES strategy which employs the multigrid scheme as a preconditioner. The compounding effects of these various techniques on speed of convergence is documented through several example test cases.

  2. Method for solvent extraction with near-equal density solutions

    DOEpatents

    Birdwell, Joseph F.; Randolph, John D.; Singh, S. Paul

    2001-01-01

    Disclosed is a modified centrifugal contactor for separating solutions of near equal density. The modified contactor has a pressure differential establishing means that allows the application of a pressure differential across fluid in the rotor of the contactor. The pressure differential is such that it causes the boundary between solutions of near-equal density to shift, thereby facilitating separation of the phases. Also disclosed is a method of separating solutions of near-equal density.

  3. A multi-level solution algorithm for steady-state Markov chains

    NASA Technical Reports Server (NTRS)

    Horton, Graham; Leutenegger, Scott T.

    1993-01-01

    A new iterative algorithm, the multi-level algorithm, for the numerical solution of steady state Markov chains is presented. The method utilizes a set of recursively coarsened representations of the original system to achieve accelerated convergence. It is motivated by multigrid methods, which are widely used for fast solution of partial differential equations. Initial results of numerical experiments are reported, showing significant reductions in computation time, often an order of magnitude or more, relative to the Gauss-Seidel and optimal SOR algorithms for a variety of test problems. The multi-level method is compared and contrasted with the iterative aggregation-disaggregation algorithm of Takahashi.

  4. A new solution method for wheel/rail rolling contact.

    PubMed

    Yang, Jian; Song, Hua; Fu, Lihua; Wang, Meng; Li, Wei

    2016-01-01

    To solve the problem of wheel/rail rolling contact of nonlinear steady-state curving, a three-dimensional transient finite element (FE) model is developed by the explicit software ANSYS/LS-DYNA. To improve the solving speed and efficiency, an explicit-explicit order solution method is put forward based on analysis of the features of implicit and explicit algorithm. The solution method was first applied to calculate the pre-loading of wheel/rail rolling contact with explicit algorithm, and then the results became the initial conditions in solving the dynamic process of wheel/rail rolling contact with explicit algorithm as well. Simultaneously, the common implicit-explicit order solution method is used to solve the FE model. Results show that the explicit-explicit order solution method has faster operation speed and higher efficiency than the implicit-explicit order solution method while the solution accuracy is almost the same. Hence, the explicit-explicit order solution method is more suitable for the wheel/rail rolling contact model with large scale and high nonlinearity.

  5. FAS multigrid calculations of three dimensional flow using non-staggered grids

    NASA Technical Reports Server (NTRS)

    Matovic, D.; Pollard, A.; Becker, H. A.; Grandmaison, E. W.

    1993-01-01

    Grid staggering is a well known remedy for the problem of velocity/pressure coupling in incompressible flow calculations. Numerous inconveniences occur, however, when staggered grids are implemented, particularly when a general-purpose code, capable of handling irregular three-dimensional domains, is sought. In several non-staggered grid numerical procedures proposed in the literature, the velocity/pressure coupling is achieved by either pressure or velocity (momentum) averaging. This approach is not convenient for simultaneous (block) solvers that are preferred when using multigrid methods. A new method is introduced in this paper that is based upon non-staggered grid formulation with a set of virtual cell face velocities used for pressure/velocity coupling. Instead of pressure or velocity averaging, a momentum balance at the cell face is used as a link between the momentum and mass balance constraints. The numerical stencil is limited to 9 nodes (in 2D) or 27 nodes (in 3D), both during the smoothing and inter-grid transfer, which is a convenient feature when a block point solver is applied. The results for a lid-driven cavity and a cube in a lid-driven cavity are presented and compared to staggered grid calculations using the same multigrid algorithm. The method is shown to be stable and produce a smooth (wiggle-free) pressure field.

  6. Exact solution of some linear matrix equations using algebraic methods

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1977-01-01

    A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.

  7. Method of producing solution-derived metal oxide thin films

    DOEpatents

    Boyle, Timothy J.; Ingersoll, David

    2000-01-01

    A method of preparing metal oxide thin films by a solution method. A .beta.-metal .beta.-diketonate or carboxylate compound, where the metal is selected from groups 8, 9, 10, 11, and 12 of the Periodic Table, is solubilized in a strong Lewis base to form a homogeneous solution. This precursor solution forms within minutes and can be deposited on a substrate in a single layer or a multiple layers to form a metal oxide thin film. The substrate with the deposited thin film is heated to change the film from an amorphous phase to a ceramic metal oxide and cooled.

  8. Newton-like methods for Navier-Stokes solution

    NASA Astrophysics Data System (ADS)

    Qin, N.; Xu, X.; Richards, B. E.

    1992-12-01

    The paper reports on Newton-like methods called SFDN-alpha-GMRES and SQN-alpha-GMRES methods that have been devised and proven as powerful schemes for large nonlinear problems typical of viscous compressible Navier-Stokes solutions. They can be applied using a partially converged solution from a conventional explicit or approximate implicit method. Developments have included the efficient parallelization of the schemes on a distributed memory parallel computer. The methods are illustrated using a RISC workstation and a transputer parallel system respectively to solve a hypersonic vortical flow.

  9. Higher-order ice-sheet modelling accelerated by multigrid on graphics cards

    NASA Astrophysics Data System (ADS)

    Brædstrup, Christian; Egholm, David

    2013-04-01

    Higher-order ice flow modelling is a very computer intensive process owing primarily to the nonlinear influence of the horizontal stress coupling. When applied for simulating long-term glacial landscape evolution, the ice-sheet models must consider very long time series, while both high temporal and spatial resolution is needed to resolve small effects. The use of higher-order and full stokes models have therefore seen very limited usage in this field. However, recent advances in graphics card (GPU) technology for high performance computing have proven extremely efficient in accelerating many large-scale scientific computations. The general purpose GPU (GPGPU) technology is cheap, has a low power consumption and fits into a normal desktop computer. It could therefore provide a powerful tool for many glaciologists working on ice flow models. Our current research focuses on utilising the GPU as a tool in ice-sheet and glacier modelling. To this extent we have implemented the Integrated Second-Order Shallow Ice Approximation (iSOSIA) equations on the device using the finite difference method. To accelerate the computations, the GPU solver uses a non-linear Red-Black Gauss-Seidel iterator coupled with a Full Approximation Scheme (FAS) multigrid setup to further aid convergence. The GPU finite difference implementation provides the inherent parallelization that scales from hundreds to several thousands of cores on newer cards. We demonstrate the efficiency of the GPU multigrid solver using benchmark experiments.

  10. High order spectral volume and spectral difference methods on unstructured grids

    NASA Astrophysics Data System (ADS)

    Kannan, Ravishekar

    The spectral volume (SV) and the spectral difference (SD) methods were developed by Wang and Liu and their collaborators for conservation laws on unstructured grids. They were introduced to achieve high-order accuracy in an efficient manner. Recently, these methods were extended to three-dimensional systems and to the Navier Stokes equations. The simplicity and robustness of these methods have made them competitive against other higher order methods such as the discontinuous Galerkin and residual distribution methods. Although explicit TVD Runge-Kutta schemes for the temporal advancement are easy to implement, they suffer from small time step limited by the Courant-Friedrichs-Lewy (CFL) condition. When the polynomial order is high or when the grid is stretched due to complex geometries or boundary layers, the convergence rate of explicit schemes slows down rapidly. Solution strategies to remedy this problem include implicit methods and multigrid methods. A novel implicit lower-upper symmetric Gauss-Seidel (LU-SGS) relaxation method is employed as an iterative smoother. It is compared to the explicit TVD Runge-Kutta smoothers. For some p-multigrid calculations, combining implicit and explicit smoothers for different p-levels is also studied. The multigrid method considered is nonlinear and uses Full Approximation Scheme (FAS). An overall speed-up factor of up to 150 is obtained using a three-level p-multigrid LU-SGS approach in comparison with the single level explicit method for the Euler equations for the 3rd order SD method. A study of viscous flux formulations was carried out for the SV method. Three formulations were used to discretize the viscous fluxes: local discontinuous Galerkin (LDG), a penalty method and the 2nd method of Bassi and Rebay. Fourier analysis revealed some interesting advantages for the penalty method. These were implemented in the Navier Stokes solver. An implicit and p-multigrid method was also implemented for the above. An overall speed

  11. Solution-grown crystals for neutron radiation detectors, and methods of solution growth

    DOEpatents

    Zaitseva, Natalia P; Hull, Giulia; Cherepy, Nerine J; Payne, Stephen A; Stoeffl, Wolfgang

    2012-06-26

    A method according to one embodiment includes growing an organic crystal from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source. A system according to one embodiment includes an organic crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source; and a photodetector for detecting the signal response of the organic crystal. A method according to another embodiment includes growing an organic crystal from solution, the organic crystal being large enough to exhibit a detectable signal response signature for neutrons from a radioactive source. An organic crystal according to another embodiment includes an organic crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source, wherein the organic crystal has a length of greater than about 1 mm in one dimension.

  12. Method for removing organic liquids from aqueous solutions and mixtures

    DOEpatents

    Hrubesh, Lawrence W.; Coronado, Paul R.; Dow, Jerome P.

    2004-03-23

    A method for removing organic liquids from aqueous solutions and mixtures. The method employs any porous material preferably in granular form and having small pores and a large specific surface area, that is hydrophobic so that liquid water does not readily wet its surface. In this method, organics, especially organic solvents that mix with and are more volatile than water, are separated from aqueous solution by preferentially evaporating across the liquid/solid boundary formed at the surfaces of the hydrophobic porous materials. Also, organic solvents that are immiscible with water, preferentially wet the surfaces of the hydrophobic material and are drawn within the porous materials by capillary action.

  13. Solution-adaptive finite element method in computational fracture mechanics

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Bass, J. M.; Spradley, L. W.

    1993-01-01

    Some recent results obtained using solution-adaptive finite element method in linear elastic two-dimensional fracture mechanics problems are presented. The focus is on the basic issue of adaptive finite element method for validating the applications of new methodology to fracture mechanics problems by computing demonstration problems and comparing the stress intensity factors to analytical results.

  14. Method for producing microcomposite powders using a soap solution

    DOEpatents

    Maginnis, Michael A.; Robinson, David A.

    1996-01-01

    A method for producing microcomposite powders for use in superconducting and non-superconducting applications. A particular method to produce microcomposite powders for use in superconducting applications includes the steps of: (a) preparing a solution including ammonium soap; (b) dissolving a preselected amount of a soluble metallic such as silver nitrate in the solution including ammonium soap to form a first solution; (c) adding a primary phase material such as a single phase YBC superconducting material in particle form to the first solution; (d) preparing a second solution formed from a mixture of a weak acid and an alkyl-mono-ether; (e) adding the second solution to the first solution to form a resultant mixture; (f) allowing the resultant mixture to set until the resultant mixture begins to cloud and thicken into a gel precipitating around individual particles of the primary phase material; (g) thereafter drying the resultant mixture to form a YBC superconducting material/silver nitrate precursor powder; and (h) calcining the YBC superconducting material/silver nitrate precursor powder to convert the silver nitrate to silver and thereby form a YBC/silver microcomposite powder wherein the silver is substantially uniformly dispersed in the matrix of the YBC material.

  15. The Development of a Factorizable Multigrid Algorithm for Subsonic and Transonic Flow

    NASA Technical Reports Server (NTRS)

    Roberts, Thomas W.

    2001-01-01

    The factorizable discretization of Sidilkover for the compressible Euler equations previously demonstrated for channel flows has been extended to external flows.The dissipation of the original scheme has been modified to maintain stability for moderately stretched grids. The discrete equations are solved by symmetric collective Gauss-Seidel relaxation and FAS multigrid. Unlike the earlier work ordering the grid vertices in the flow direction has been found to be unnecessary. Solutions for essential incompressible flow (Mach 0.01) and supercritical flows have obtained for a Karman-Trefftz airfoil with it conformally mapped grid,as well as a NACA 0012 on an algebraically generated grid. The current work demonstrates nearly 0(n) convergence for subsonic and slightly transonic flows.

  16. Coarsening strategies for unstructured multigrid techniques with application to anisotropic problems

    NASA Technical Reports Server (NTRS)

    Morano, E.; Mavriplis, D. J.; Venkatakrishnan, V.

    1995-01-01

    Over the years, multigrid has been demonstrated as an efficient technique for solving inviscid flow problems. However, for viscous flows, convergence rates often degrade. This is generally due to the required use of stretched meshes (i.e., the aspect-ratio AR = delta y/delta x is much less than 1) in order to capture the boundary layer near the body. Usual techniques for generating a sequence of grids that produce proper convergence rates on isotopic meshes are not adequate for stretched meshes. This work focuses on the solution of Laplace's equation, discretized through a Galerkin finite-element formulation on unstructured stretched triangular meshes. A coarsening strategy is proposed and results are discussed.

  17. Coarsening Strategies for Unstructured Multigrid Techniques with Application to Anisotropic Problems

    NASA Technical Reports Server (NTRS)

    Morano, E.; Mavriplis, D. J.; Venkatakrishnan, V.

    1996-01-01

    Over the years, multigrid has been demonstrated as an efficient technique for solving inviscid flow problems. However, for viscous flows, convergence rates often degrade. This is generally due to the required use of stretched meshes (i.e. the aspect-ratio AR = (delta)y/(delta)x much less than 1) in order to capture the boundary layer near the body. Usual techniques for generating a sequence of grids that produce proper convergence rates on isotropic meshes are not adequate for stretched meshes. This work focuses on the solution of Laplace's equation, discretized through a Galerkin finite-element formulation on unstructured stretched triangular meshes. A coarsening strategy is proposed and results are discussed.

  18. A solution quality assessment method for swarm intelligence optimization algorithms.

    PubMed

    Zhang, Zhaojun; Wang, Gai-Ge; Zou, Kuansheng; Zhang, Jianhua

    2014-01-01

    Nowadays, swarm intelligence optimization has become an important optimization tool and wildly used in many fields of application. In contrast to many successful applications, the theoretical foundation is rather weak. Therefore, there are still many problems to be solved. One problem is how to quantify the performance of algorithm in finite time, that is, how to evaluate the solution quality got by algorithm for practical problems. It greatly limits the application in practical problems. A solution quality assessment method for intelligent optimization is proposed in this paper. It is an experimental analysis method based on the analysis of search space and characteristic of algorithm itself. Instead of "value performance," the "ordinal performance" is used as evaluation criteria in this method. The feasible solutions were clustered according to distance to divide solution samples into several parts. Then, solution space and "good enough" set can be decomposed based on the clustering results. Last, using relative knowledge of statistics, the evaluation result can be got. To validate the proposed method, some intelligent algorithms such as ant colony optimization (ACO), particle swarm optimization (PSO), and artificial fish swarm algorithm (AFS) were taken to solve traveling salesman problem. Computational results indicate the feasibility of proposed method.

  19. Multigrid time-accurate integration of Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Arnone, Andrea; Liou, Meng-Sing; Povinelli, Louis A.

    1993-01-01

    Efficient acceleration techniques typical of explicit steady-state solvers are extended to time-accurate calculations. Stability restrictions are greatly reduced by means of a fully implicit time discretization. A four-stage Runge-Kutta scheme with local time stepping, residual smoothing, and multigridding is used instead of traditional time-expensive factorizations. Some applications to natural and forced unsteady viscous flows show the capability of the procedure.

  20. Parallel Element Agglomeration Algebraic Multigrid and Upscaling Library

    SciTech Connect

    Barker, Andrew T.; Benson, Thomas R.; Lee, Chak Shing

    ParELAG is a parallel C++ library for numerical upscaling of finite element discretizations and element-based algebraic multigrid solvers. It provides optimal complexity algorithms to build multilevel hierarchies and solvers that can be used for solving a wide class of partial differential equations (elliptic, hyperbolic, saddle point problems) on general unstructured meshes. Additionally, a novel multilevel solver for saddle point problems with divergence constraint is implemented.

  1. Transport of reacting solutes subject to a moving dissolution boundary: Numerical methods and solutions

    USGS Publications Warehouse

    Willis, Catherine; Rubin, Jacob

    1987-01-01

    A moving boundary problem which arises during transport with precipitation-dissolution reactions is solved by three different numerical methods. Two of these methods (one explicit and one implicit) are based on an integral formulation of mass balance and lead to an approximation of a weak solution. These methods are compared to a front-tracking scheme. Although the two approaches are conceptually different, the numerical solutions showed good agreement. As the ratio of dispersion to convection decreases, the methods based on the integral formulation become computationally more efficient. Specific reactions were modeled to examine the dependence of the system on the physical and chemical parameters. Although the water flow rate does not explicitly appear in the equation for the velocity of the moving boundary, the speed of the boundary depends more on the flux rate than on the dispersion coefficient. The discontinuity in the gradient of the solute concentration profile at the boundary increases with convection and with the initial concentration of the mineral. Our implicit method is extended to allow participation of the solutes in complexation reactions as well as the precipitation-dissolution reaction. This extension is easily made and does not change the basic method.

  2. Alkaline solution absorption of carbon dioxide method and apparatus

    DOEpatents

    Hobbs, D.T.

    1991-01-01

    Disclosed is a method for measuring the concentration of hydroxides (or pH) in alkaline solutions, using the tendency of hydroxides to adsorb CO{sub 2}. The method comprises passing CO{sub 2} over the surface of an alkaline solution in a remote tank before and after measurements of the CO{sub 2} concentration. Comparison of the measurements yields the adsorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to adsorption fraction. A schematic is given of a process system according to a preferred embodiment of the invention. 2 figs.

  3. Application of fast Fourier transforms to the direct solution of a class of two-dimensional separable elliptic equations on the sphere

    NASA Technical Reports Server (NTRS)

    Moorthi, Shrinivas; Higgins, R. W.

    1993-01-01

    An efficient, direct, second-order solver for the discrete solution of a class of two-dimensional separable elliptic equations on the sphere (which generally arise in implicit and semi-implicit atmospheric models) is presented. The method involves a Fourier transformation in longitude and a direct solution of the resulting coupled second-order finite-difference equations in latitude. The solver is made efficient by vectorizing over longitudinal wave-number and by using a vectorized fast Fourier transform routine. It is evaluated using a prescribed solution method and compared with a multigrid solver and the standard direct solver from FISHPAK.

  4. The Effect of Multigrid Parameters in a 3D Heat Diffusion Equation

    NASA Astrophysics Data System (ADS)

    Oliveira, F. De; Franco, S. R.; Pinto, M. A. Villela

    2018-02-01

    The aim of this paper is to reduce the necessary CPU time to solve the three-dimensional heat diffusion equation using Dirichlet boundary conditions. The finite difference method (FDM) is used to discretize the differential equations with a second-order accuracy central difference scheme (CDS). The algebraic equations systems are solved using the lexicographical and red-black Gauss-Seidel methods, associated with the geometric multigrid method with a correction scheme (CS) and V-cycle. Comparisons are made between two types of restriction: injection and full weighting. The used prolongation process is the trilinear interpolation. This work is concerned with the study of the influence of the smoothing value (v), number of mesh levels (L) and number of unknowns (N) on the CPU time, as well as the analysis of algorithm complexity.

  5. Large-Scale Parallel Viscous Flow Computations using an Unstructured Multigrid Algorithm

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    1999-01-01

    The development and testing of a parallel unstructured agglomeration multigrid algorithm for steady-state aerodynamic flows is discussed. The agglomeration multigrid strategy uses a graph algorithm to construct the coarse multigrid levels from the given fine grid, similar to an algebraic multigrid approach, but operates directly on the non-linear system using the FAS (Full Approximation Scheme) approach. The scalability and convergence rate of the multigrid algorithm are examined on the SGI Origin 2000 and the Cray T3E. An argument is given which indicates that the asymptotic scalability of the multigrid algorithm should be similar to that of its underlying single grid smoothing scheme. For medium size problems involving several million grid points, near perfect scalability is obtained for the single grid algorithm, while only a slight drop-off in parallel efficiency is observed for the multigrid V- and W-cycles, using up to 128 processors on the SGI Origin 2000, and up to 512 processors on the Cray T3E. For a large problem using 25 million grid points, good scalability is observed for the multigrid algorithm using up to 1450 processors on a Cray T3E, even when the coarsest grid level contains fewer points than the total number of processors.

  6. Method for improved decomposition of metal nitrate solutions

    DOEpatents

    Haas, P.A.; Stines, W.B.

    1981-01-21

    A method for co-conversion of aqueous solutions of one or more heavy metal nitrates is described, wherein thermal decomposition within a temperature range of about 300 to 800/sup 0/C is carried out in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal.

  7. Method for improved decomposition of metal nitrate solutions

    DOEpatents

    Haas, Paul A.; Stines, William B.

    1983-10-11

    A method for co-conversion of aqueous solutions of one or more heavy metal nitrates wherein thermal decomposition within a temperature range of about 300.degree. to 800.degree. C. is carried out in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal.

  8. Method for incorporating radioactive phosphoric acid solutions in concrete

    DOEpatents

    Wolf, G.A.; Smith, J.W.; Ihle, N.C.

    1982-07-08

    A method for incorporating radioactive phosphoric acid solutions in concrete is described wherein the phosphoric acid is reacted with Ca(OH)/sub 2/ to form a precipitate of hydroxyapatite and the hydroxyapatite is mixed with Portland cement to form concrete.

  9. Method for incorporating radioactive phosphoric acid solutions in concrete

    DOEpatents

    Wolf, Gary A [Kennewick, WA; Smith, Jeffrey W [Lancaster, OH; Ihle, Nathan C [Walla Walla, WA

    1984-01-01

    A method for incorporating radioactive phosphoric acid solutions in concrete is described wherein the phosphoric acid is reacted with Ca(OH).sub.2 to form a precipitate of hydroxyapatite and the hydroxyapatite is mixed with portland cement to form concrete.

  10. Airfoil Design and Optimization by the One-Shot Method

    NASA Technical Reports Server (NTRS)

    Kuruvila, G.; Taasan, Shlomo; Salas, M. D.

    1995-01-01

    An efficient numerical approach for the design of optimal aerodynamic shapes is presented in this paper. The objective of any optimization problem is to find the optimum of a cost function subject to a certain state equation (governing equation of the flow field) and certain side constraints. As in classical optimal control methods, the present approach introduces a costate variable (Lagrange multiplier) to evaluate the gradient of the cost function. High efficiency in reaching the optimum solution is achieved by using a multigrid technique and updating the shape in a hierarchical manner such that smooth (low-frequency) changes are done separately from high-frequency changes. Thus, the design variables are changed on a grid where their changes produce nonsmooth (high-frequency) perturbations that can be damped efficiently by the multigrid. The cost of solving the optimization problem is approximately two to three times the cost of the equivalent analysis problem.

  11. Airfoil optimization by the one-shot method

    NASA Technical Reports Server (NTRS)

    Kuruvila, G.; Taasan, Shlomo; Salas, M. D.

    1994-01-01

    An efficient numerical approach for the design of optimal aerodynamic shapes is presented in this paper. The objective of any optimization problem is to find the optimum of a cost function subject to a certain state equation (Governing equation of the flow field) and certain side constraints. As in classical optimal control methods, the present approach introduces a costate variable (Language multiplier) to evaluate the gradient of the cost function. High efficiency in reaching the optimum solution is achieved by using a multigrid technique and updating the shape in a hierarchical manner such that smooth (low-frequency) changes are done separately from high-frequency changes. Thus, the design variables are changed on a grid where their changes produce nonsmooth (high-frequency) perturbations that can be damped efficiently by the multigrid. The cost of solving the optimization problem is approximately two to three times the cost of the equivalent analysis problem.

  12. Analytical solutions for solute transport in groundwater and riverine flow using Green's Function Method and pertinent coordinate transformation method

    NASA Astrophysics Data System (ADS)

    Sanskrityayn, Abhishek; Suk, Heejun; Kumar, Naveen

    2017-04-01

    In this study, analytical solutions of one-dimensional pollutant transport originating from instantaneous and continuous point sources were developed in groundwater and riverine flow using both Green's Function Method (GFM) and pertinent coordinate transformation method. Dispersion coefficient and flow velocity are considered spatially and temporally dependent. The spatial dependence of the velocity is linear, non-homogeneous and that of dispersion coefficient is square of that of velocity, while the temporal dependence is considered linear, exponentially and asymptotically decelerating and accelerating. Our proposed analytical solutions are derived for three different situations depending on variations of dispersion coefficient and velocity, respectively which can represent real physical processes occurring in groundwater and riverine systems. First case refers to steady solute transport situation in steady flow in which dispersion coefficient and velocity are only spatially dependent. The second case represents transient solute transport in steady flow in which dispersion coefficient is spatially and temporally dependent while the velocity is spatially dependent. Finally, the third case indicates transient solute transport in unsteady flow in which both dispersion coefficient and velocity are spatially and temporally dependent. The present paper demonstrates the concentration distribution behavior from a point source in realistically occurring flow domains of hydrological systems including groundwater and riverine water in which the dispersivity of pollutant's mass is affected by heterogeneity of the medium as well as by other factors like velocity fluctuations, while velocity is influenced by water table slope and recharge rate. Such capabilities give the proposed method's superiority about application of various hydrological problems to be solved over other previously existing analytical solutions. Especially, to author's knowledge, any other solution doesn

  13. Solution-grown crystals for neutron radiation detectors, and methods of solution growth

    DOEpatents

    Zaitseva, Natalia; Carman, M Leslie; Payne, Steve

    2014-10-28

    An organic crystal according to one embodiment includes an organic crystal comprising diphenylacetylene and stilbene or a stilbene derivative, the crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source. A system according to one embodiment includes an organic crystal comprising diphenylacetylene and stilbene or a stilbene derivative, the crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source; and a photodetector for detecting the signal response of the organic crystal. Methods of making such crystals are also provided.

  14. Layer-oriented multigrid wavefront reconstruction algorithms for multi-conjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Gilles, Luc; Ellerbroek, Brent L.; Vogel, Curtis R.

    2003-02-01

    Multi-conjugate adaptive optics (MCAO) systems with 104-105 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of AO degrees of freedom. In this paper, we develop an iterative sparse matrix implementation of minimum variance wavefront reconstruction for telescope diameters up to 32m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method, using a multigrid preconditioner incorporating a layer-oriented (block) symmetric Gauss-Seidel iterative smoothing operator. We present open-loop numerical simulation results to illustrate algorithm convergence.

  15. Unsteady Analysis of Separated Aerodynamic Flows Using an Unstructured Multigrid Algorithm

    NASA Technical Reports Server (NTRS)

    Pelaez, Juan; Mavriplis, Dimitri J.; Kandil, Osama

    2001-01-01

    An implicit method for the computation of unsteady flows on unstructured grids is presented. The resulting nonlinear system of equations is solved at each time step using an agglomeration multigrid procedure. The method allows for arbitrarily large time steps and is efficient in terms of computational effort and storage. Validation of the code using a one-equation turbulence model is performed for the well-known case of flow over a cylinder. A Detached Eddy Simulation model is also implemented and its performance compared to the one equation Spalart-Allmaras Reynolds Averaged Navier-Stokes (RANS) turbulence model. Validation cases using DES and RANS include flow over a sphere and flow over a NACA 0012 wing including massive stall regimes. The project was driven by the ultimate goal of computing separated flows of aerodynamic interest, such as massive stall or flows over complex non-streamlined geometries.

  16. Algebraic methods for the solution of some linear matrix equations

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1979-01-01

    The characterization of polynomials whose zeros lie in certain algebraic domains (and the unification of the ideas of Hermite and Lyapunov) is the basis for developing finite algorithms for the solution of linear matrix equations. Particular attention is given to equations PA + A'P = Q (the Lyapunov equation) and P - A'PA = Q the (discrete Lyapunov equation). The Lyapunov equation appears in several areas of control theory such as stability theory, optimal control (evaluation of quadratic integrals), stochastic control (evaluation of covariance matrices) and in the solution of the algebraic Riccati equation using Newton's method.

  17. Methods for treating a liquid using draw solutions

    SciTech Connect

    Wilson, Aaron D; Orme, Christopher J.

    Draw solutions comprising at least one N-cyclicalkyl-cycloalkylamine and a secondary solvent. The N-cyclicalkyl-cycloalkylamine comprises the chemical structure: ##STR00001## wherein n is 0, 1, or 2, n' is 0, 1, or 2, and each of R.sup.1-R.sup.6 is independently selected from the group consisting of an alkyl group, an alkoxy group, an acetyl group, an aryl group, a hydrogen group, a hydroxyl group, and a phosphorus-containing group. Methods of treating a liquid using the draw solution are also disclosed.

  18. Exact solution of some linear matrix equations using algebraic methods

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1979-01-01

    Algebraic methods are used to construct the exact solution P of the linear matrix equation PA + BP = - C, where A, B, and C are matrices with real entries. The emphasis of this equation is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The paper is divided into six sections which include the proof of the basic lemma, the Liapunov equation, and the computer implementation for the rational, integer and modular algorithms. Two numerical examples are given and the entire calculation process is depicted.

  19. Preconditioned conjugate residual methods for the solution of spectral equations

    NASA Technical Reports Server (NTRS)

    Wong, Y. S.; Zang, T. A.; Hussaini, M. Y.

    1986-01-01

    Conjugate residual methods for the solution of spectral equations are described. An inexact finite-difference operator is introduced as a preconditioner in the iterative procedures. Application of these techniques is limited to problems for which the symmetric part of the coefficient matrix is positive definite. Although the spectral equation is a very ill-conditioned and full matrix problem, the computational effort of the present iterative methods for solving such a system is comparable to that for the sparse matrix equations obtained from the application of either finite-difference or finite-element methods to the same problems. Numerical experiments are shown for a self-adjoint elliptic partial differential equation with Dirichlet boundary conditions, and comparison with other solution procedures for spectral equations is presented.

  20. Integrated Force Method Solution to Indeterminate Structural Mechanics Problems

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.; Halford, Gary R.

    2004-01-01

    Strength of materials problems have been classified into determinate and indeterminate problems. Determinate analysis primarily based on the equilibrium concept is well understood. Solutions of indeterminate problems required additional compatibility conditions, and its comprehension was not exclusive. A solution to indeterminate problem is generated by manipulating the equilibrium concept, either by rewriting in the displacement variables or through the cutting and closing gap technique of the redundant force method. Compatibility improvisation has made analysis cumbersome. The authors have researched and understood the compatibility theory. Solutions can be generated with equal emphasis on the equilibrium and compatibility concepts. This technique is called the Integrated Force Method (IFM). Forces are the primary unknowns of IFM. Displacements are back-calculated from forces. IFM equations are manipulated to obtain the Dual Integrated Force Method (IFMD). Displacement is the primary variable of IFMD and force is back-calculated. The subject is introduced through response variables: force, deformation, displacement; and underlying concepts: equilibrium equation, force deformation relation, deformation displacement relation, and compatibility condition. Mechanical load, temperature variation, and support settling are equally emphasized. The basic theory is discussed. A set of examples illustrate the new concepts. IFM and IFMD based finite element methods are introduced for simple problems.

  1. Efficient Iterative Methods Applied to the Solution of Transonic Flows

    NASA Astrophysics Data System (ADS)

    Wissink, Andrew M.; Lyrintzis, Anastasios S.; Chronopoulos, Anthony T.

    1996-02-01

    We investigate the use of an inexact Newton's method to solve the potential equations in the transonic regime. As a test case, we solve the two-dimensional steady transonic small disturbance equation. Approximate factorization/ADI techniques have traditionally been employed for implicit solutions of this nonlinear equation. Instead, we apply Newton's method using an exact analytical determination of the Jacobian with preconditioned conjugate gradient-like iterative solvers for solution of the linear systems in each Newton iteration. Two iterative solvers are tested; a block s-step version of the classical Orthomin(k) algorithm called orthogonal s-step Orthomin (OSOmin) and the well-known GMRES method. The preconditioner is a vectorizable and parallelizable version of incomplete LU (ILU) factorization. Efficiency of the Newton-Iterative method on vector and parallel computer architectures is the main issue addressed. In vectorized tests on a single processor of the Cray C-90, the performance of Newton-OSOmin is superior to Newton-GMRES and a more traditional monotone AF/ADI method (MAF) for a variety of transonic Mach numbers and mesh sizes. Newton-GMRES is superior to MAF for some cases. The parallel performance of the Newton method is also found to be very good on multiple processors of the Cray C-90 and on the massively parallel thinking machine CM-5, where very fast execution rates (up to 9 Gflops) are found for large problems.

  2. Rapidly converging multigrid reconstruction of cone-beam tomographic data

    NASA Astrophysics Data System (ADS)

    Myers, Glenn R.; Kingston, Andrew M.; Latham, Shane J.; Recur, Benoit; Li, Thomas; Turner, Michael L.; Beeching, Levi; Sheppard, Adrian P.

    2016-10-01

    In the context of large-angle cone-beam tomography (CBCT), we present a practical iterative reconstruction (IR) scheme designed for rapid convergence as required for large datasets. The robustness of the reconstruction is provided by the "space-filling" source trajectory along which the experimental data is collected. The speed of convergence is achieved by leveraging the highly isotropic nature of this trajectory to design an approximate deconvolution filter that serves as a pre-conditioner in a multi-grid scheme. We demonstrate this IR scheme for CBCT and compare convergence to that of more traditional techniques.

  3. Separation analysis, a tool for analyzing multigrid algorithms

    NASA Technical Reports Server (NTRS)

    Costiner, Sorin; Taasan, Shlomo

    1995-01-01

    The separation of vectors by multigrid (MG) algorithms is applied to the study of convergence and to the prediction of the performance of MG algorithms. The separation operator for a two level cycle algorithm is derived. It is used to analyze the efficiency of the cycle when mixing of eigenvectors occurs. In particular cases the separation analysis reduces to Fourier type analysis. The separation operator of a two level cycle for a Schridubger eigenvalue problem, is derived and analyzed in a Fourier basis. Separation analysis gives information on how to choose performance relaxations and inter-level transfers. Separation analysis is a tool for analyzing and designing algorithms, and for optimizing their performance.

  4. Determining and representing width of soil boundaries using electrical conductivity and MultiGrid

    NASA Astrophysics Data System (ADS)

    Greve, Mogens Humlekrog; Greve, Mette Balslev

    2004-07-01

    In classical soil mapping, map unit boundaries are considered crisp even though all experienced survey personnel are aware of the fact, that soil boundaries really are transition zones of varying width. However, classification of transition zone width on site is difficult in a practical survey. The objective of this study is to present a method for determining soil boundary width and a way of representing continuous soil boundaries in GIS. A survey was performed using the non-contact conductivity meter EM38 from Geonics Inc., which measures the bulk Soil Electromagnetic Conductivity (SEC). The EM38 provides an opportunity to classify the width of transition zones in an unbiased manner. By calculating the spatial rate of change in the interpolated EM38 map across the crisp map unit delineations from a classical soil mapping, a measure of transition zone width can be extracted. The map unit delineations are represented as transition zones in a GIS through a concept of multiple grid layers, a MultiGrid. Each layer corresponds to a soil type and the values in a layer represent the percentage of that soil type in each cell. As a test, the subsoil texture was mapped at the Vindum field in Denmark using both the classical mapping method with crisp representation of the boundaries and the new map with MultiGrid and continuous boundaries. These maps were then compared to an independent reference map of subsoil texture. The improvement of the prediction of subsoil texture, using continuous boundaries instead of crisp, was in the case of the Vindum field, 15%.

  5. A scalable geometric multigrid solver for nonsymmetric elliptic systems with application to variable-density flows

    NASA Astrophysics Data System (ADS)

    Esmaily, M.; Jofre, L.; Mani, A.; Iaccarino, G.

    2018-03-01

    A geometric multigrid algorithm is introduced for solving nonsymmetric linear systems resulting from the discretization of the variable density Navier-Stokes equations on nonuniform structured rectilinear grids and high-Reynolds number flows. The restriction operation is defined such that the resulting system on the coarser grids is symmetric, thereby allowing for the use of efficient smoother algorithms. To achieve an optimal rate of convergence, the sequence of interpolation and restriction operations are determined through a dynamic procedure. A parallel partitioning strategy is introduced to minimize communication while maintaining the load balance between all processors. To test the proposed algorithm, we consider two cases: 1) homogeneous isotropic turbulence discretized on uniform grids and 2) turbulent duct flow discretized on stretched grids. Testing the algorithm on systems with up to a billion unknowns shows that the cost varies linearly with the number of unknowns. This O (N) behavior confirms the robustness of the proposed multigrid method regarding ill-conditioning of large systems characteristic of multiscale high-Reynolds number turbulent flows. The robustness of our method to density variations is established by considering cases where density varies sharply in space by a factor of up to 104, showing its applicability to two-phase flow problems. Strong and weak scalability studies are carried out, employing up to 30,000 processors, to examine the parallel performance of our implementation. Excellent scalability of our solver is shown for a granularity as low as 104 to 105 unknowns per processor. At its tested peak throughput, it solves approximately 4 billion unknowns per second employing over 16,000 processors with a parallel efficiency higher than 50%.

  6. METHOD FOR PREPARING URANIUM MONOCARBIDE-PLUTONIUM MONOCARBIDE SOLID SOLUTION

    DOEpatents

    Ogard, A.E.; Leary, J.A.; Maraman, W.J.

    1963-03-19

    A method is given for preparing solid solutions of uranium monocarbide- plutonium monocarbide. In this method, the powder form of uranium dioxide, plutonium dioxide, and graphite are mixed in a ratio determined by the equation: xUO/sub 2/ + yPuO/sub 2/ + (2+z)C yields UxPu/sub y/C/sub z/ +2CO, where x + y equ al 1.0 and z is greater than 0.9 but less than 1.0. The resulting mixture is compacted and heated in a vacuum at a temperature of 1850 deg C. (AEC)

  7. A general solution strategy of modified power method for higher mode solutions

    SciTech Connect

    Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung, E-mail: deokjung@unist.ac.kr

    2016-01-15

    A general solution strategy of the modified power iteration method for calculating higher eigenmodes has been developed and applied in continuous energy Monte Carlo simulation. The new approach adopts four features: 1) the eigen decomposition of transfer matrix, 2) weight cancellation for higher modes, 3) population control with higher mode weights, and 4) stabilization technique of statistical fluctuations using multi-cycle accumulations. The numerical tests of neutron transport eigenvalue problems successfully demonstrate that the new strategy can significantly accelerate the fission source convergence with stable convergence behavior while obtaining multiple higher eigenmodes at the same time. The advantages of the newmore » strategy can be summarized as 1) the replacement of the cumbersome solution step of high order polynomial equations required by Booth's original method with the simple matrix eigen decomposition, 2) faster fission source convergence in inactive cycles, 3) more stable behaviors in both inactive and active cycles, and 4) smaller variances in active cycles. Advantages 3 and 4 can be attributed to the lower sensitivity of the new strategy to statistical fluctuations due to the multi-cycle accumulations. The application of the modified power method to continuous energy Monte Carlo simulation and the higher eigenmodes up to 4th order are reported for the first time in this paper. -- Graphical abstract: -- Highlights: •Modified power method is applied to continuous energy Monte Carlo simulation. •Transfer matrix is introduced to generalize the modified power method. •All mode based population control is applied to get the higher eigenmodes. •Statistic fluctuation can be greatly reduced using accumulated tally results. •Fission source convergence is accelerated with higher mode solutions.« less

  8. Validation of the enthalpy method by means of analytical solution

    NASA Astrophysics Data System (ADS)

    Kleiner, Thomas; Rückamp, Martin; Bondzio, Johannes; Humbert, Angelika

    2014-05-01

    Numerical simulations moved in the recent year(s) from describing the cold-temperate transition surface (CTS) towards an enthalpy description, which allows avoiding incorporating a singular surface inside the model (Aschwanden et al., 2012). In Enthalpy methods the CTS is represented as a level set of the enthalpy state variable. This method has several numerical and practical advantages (e.g. representation of the full energy by one scalar field, no restriction to topology and shape of the CTS). The proposed method is rather new in glaciology and to our knowledge not verified and validated against analytical solutions. Unfortunately we are still lacking analytical solutions for sufficiently complex thermo-mechanically coupled polythermal ice flow. However, we present two experiments to test the implementation of the enthalpy equation and corresponding boundary conditions. The first experiment tests particularly the functionality of the boundary condition scheme and the corresponding basal melt rate calculation. Dependent on the different thermal situations that occur at the base, the numerical code may have to switch to another boundary type (from Neuman to Dirichlet or vice versa). The main idea of this set-up is to test the reversibility during transients. A former cold ice body that run through a warmer period with an associated built up of a liquid water layer at the base must be able to return to its initial steady state. Since we impose several assumptions on the experiment design analytical solutions can be formulated for different quantities during distinct stages of the simulation. The second experiment tests the positioning of the internal CTS in a parallel-sided polythermal slab. We compare our simulation results to the analytical solution proposed by Greve and Blatter (2009). Results from three different ice flow-models (COMIce, ISSM, TIMFD3) are presented.

  9. Solution of Grad-Shafranov equation by the method of fundamental solutions

    NASA Astrophysics Data System (ADS)

    Nath, D.; Kalra, M. S.; Kalra

    2014-06-01

    In this paper we have used the Method of Fundamental Solutions (MFS) to solve the Grad-Shafranov (GS) equation for the axisymmetric equilibria of tokamak plasmas with monomial sources. These monomials are the individual terms appearing on the right-hand side of the GS equation if one expands the nonlinear terms into polynomials. Unlike the Boundary Element Method (BEM), the MFS does not involve any singular integrals and is a meshless boundary-alone method. Its basic idea is to create a fictitious boundary around the actual physical boundary of the computational domain. This automatically removes the involvement of singular integrals. The results obtained by the MFS match well with the earlier results obtained using the BEM. The method is also applied to Solov'ev profiles and it is found that the results are in good agreement with analytical results.

  10. Method for removing metal ions from solution with titanate sorbents

    DOEpatents

    Lundquist, Susan H.; White, Lloyd R.

    1999-01-01

    A method for removing metal ions from solution comprises the steps of providing titanate particles by spray-drying a solution or slurry comprising sorbent titanates having a particle size up to 20 micrometers, optionally in the presence of polymer free of cellulose functionality as binder, said sorbent being active towards heavy metals from Periodic Table (CAS version) Groups IA, IIA, IB, IIB, IIIB, and VIII, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size distribution in the range of 1 to 500 micrometers. The particles can be used free flowing in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove metal ions from aqueous or organic liquid.

  11. Efficient iterative methods applied to the solution of transonic flows

    SciTech Connect

    Wissink, A.M.; Lyrintzis, A.S.; Chronopoulos, A.T.

    1996-02-01

    We investigate the use of an inexact Newton`s method to solve the potential equations in the transonic regime. As a test case, we solve the two-dimensional steady transonic small disturbance equation. Approximate factorization/ADI techniques have traditionally been employed for implicit solutions of this nonlinear equation. Instead, we apply Newton`s method using an exact analytical determination of the Jacobian with preconditioned conjugate gradient-like iterative solvers for solution of the linear systems in each Newton iteration. Two iterative solvers are tested; a block s-step version of the classical Orthomin(k) algorithm called orthogonal s-step Orthomin (OSOmin) and the well-known GIVIRES method. The preconditionermore » is a vectorizable and parallelizable version of incomplete LU (ILU) factorization. Efficiency of the Newton-Iterative method on vector and parallel computer architectures is the main issue addressed. In vectorized tests on a single processor of the Cray C-90, the performance of Newton-OSOmin is superior to Newton-GMRES and a more traditional monotone AF/ADI method (MAF) for a variety of transonic Mach numbers and mesh sizes. Newton- GIVIRES is superior to MAF for some cases. The parallel performance of the Newton method is also found to be very good on multiple processors of the Cray C-90 and on the massively parallel thinking machine CM-5, where very fast execution rates (up to 9 Gflops) are found for large problems. 38 refs., 14 figs., 7 tabs.« less

  12. On the Multilevel Solution Algorithm for Markov Chains

    NASA Technical Reports Server (NTRS)

    Horton, Graham

    1997-01-01

    We discuss the recently introduced multilevel algorithm for the steady-state solution of Markov chains. The method is based on an aggregation principle which is well established in the literature and features a multiplicative coarse-level correction. Recursive application of the aggregation principle, which uses an operator-dependent coarsening, yields a multi-level method which has been shown experimentally to give results significantly faster than the typical methods currently in use. When cast as a multigrid-like method, the algorithm is seen to be a Galerkin-Full Approximation Scheme with a solution-dependent prolongation operator. Special properties of this prolongation lead to the cancellation of the computationally intensive terms of the coarse-level equations.

  13. Exact Solution for Capillary Bridges Properties by Shooting Method

    NASA Astrophysics Data System (ADS)

    Qiang-Nian, Li; Jia-Qi, Zhang; Feng-Xi, Zhou

    2017-04-01

    The investigation of liquid bridge force acting between wet particles has great significance in many fields. In this article, the exact solution of capillary force between two unequal-sized spherical particles is investigated. Firstly, The Young-Laplace equation with moving boundary is converted into a set of ordinary differential equations with two fix point boundary using variable substitution technique, in which the gravity effects have been neglected. The geometry of the liquid bridge between two particles is solved by shooting method. After that, the gorge method is applied to calculate the capillary-bridge force that is consists of contributions from the capillary suction and surface tension. Finally, the effect of various parameters including distance between two spheres, radii of spheres, and contact angles on the capillary force are investigated. It is shown that the presented approach is an efficient and accurate algorithm for capillary force between two particles in complex situations.

  14. Efficient Implementation of Multigrid Solvers on Message-Passing Parrallel Systems

    NASA Technical Reports Server (NTRS)

    Lou, John

    1994-01-01

    We discuss our implementation strategies for finite difference multigrid partial differential equation (PDE) solvers on message-passing systems. Our target parallel architecture is Intel parallel computers: the Delta and Paragon system.

  15. Fast solution of elliptic partial differential equations using linear combinations of plane waves.

    PubMed

    Pérez-Jordá, José M

    2016-02-01

    Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations Ax=b, where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O(NlogN) memory and executing an iteration in O(Nlog(2)N) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.

  16. Modeling of frequency-domain scalar wave equation with the average-derivative optimal scheme based on a multigrid-preconditioned iterative solver

    NASA Astrophysics Data System (ADS)

    Cao, Jian; Chen, Jing-Bo; Dai, Meng-Xue

    2018-01-01

    An efficient finite-difference frequency-domain modeling of seismic wave propagation relies on the discrete schemes and appropriate solving methods. The average-derivative optimal scheme for the scalar wave modeling is advantageous in terms of the storage saving for the system of linear equations and the flexibility for arbitrary directional sampling intervals. However, using a LU-decomposition-based direct solver to solve its resulting system of linear equations is very costly for both memory and computational requirements. To address this issue, we consider establishing a multigrid-preconditioned BI-CGSTAB iterative solver fit for the average-derivative optimal scheme. The choice of preconditioning matrix and its corresponding multigrid components is made with the help of Fourier spectral analysis and local mode analysis, respectively, which is important for the convergence. Furthermore, we find that for the computation with unequal directional sampling interval, the anisotropic smoothing in the multigrid precondition may affect the convergence rate of this iterative solver. Successful numerical applications of this iterative solver for the homogenous and heterogeneous models in 2D and 3D are presented where the significant reduction of computer memory and the improvement of computational efficiency are demonstrated by comparison with the direct solver. In the numerical experiments, we also show that the unequal directional sampling interval will weaken the advantage of this multigrid-preconditioned iterative solver in the computing speed or, even worse, could reduce its accuracy in some cases, which implies the need for a reasonable control of directional sampling interval in the discretization.

  17. Solution of plane cascade flow using improved surface singularity methods. [application of panel method to internal aerodynamics

    NASA Technical Reports Server (NTRS)

    Mcfarland, E. R.

    1981-01-01

    A solution method was developed for calculating compressible inviscid flow through a linear cascade of arbitrary blade shapes. The method uses advanced surface singularity formulations which were adapted from those in current external flow analyses. The resulting solution technique provides a fast flexible calculation for flows through turbomachinery blade rows. The solution method and some examples of the method's capabilities are presented.

  18. Solving the Fluid Pressure Poisson Equation Using Multigrid-Evaluation and Improvements.

    PubMed

    Dick, Christian; Rogowsky, Marcus; Westermann, Rudiger

    2016-11-01

    In many numerical simulations of fluids governed by the incompressible Navier-Stokes equations, the pressure Poisson equation needs to be solved to enforce mass conservation. Multigrid solvers show excellent convergence in simple scenarios, yet they can converge slowly in domains where physically separated regions are combined at coarser scales. Moreover, existing multigrid solvers are tailored to specific discretizations of the pressure Poisson equation, and they cannot easily be adapted to other discretizations. In this paper we analyze the convergence properties of existing multigrid solvers for the pressure Poisson equation in different simulation domains, and we show how to further improve the multigrid convergence rate by using a graph-based extension to determine the coarse grid hierarchy. The proposed multigrid solver is generic in that it can be applied to different kinds of discretizations of the pressure Poisson equation, by using solely the specification of the simulation domain and pre-assembled computational stencils. We analyze the proposed solver in combination with finite difference and finite volume discretizations of the pressure Poisson equation. Our evaluations show that, despite the common assumption, multigrid schemes can exploit their potential even in the most complicated simulation scenarios, yet this behavior is obtained at the price of higher memory consumption.

  19. MULTIGRID FOR THE MORTAR FINITE ELEMENT METHOD. (R825207)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  20. Ab initio solution of macromolecular crystal structures without direct methods.

    PubMed

    McCoy, Airlie J; Oeffner, Robert D; Wrobel, Antoni G; Ojala, Juha R M; Tryggvason, Karl; Lohkamp, Bernhard; Read, Randy J

    2017-04-04

    The majority of macromolecular crystal structures are determined using the method of molecular replacement, in which known related structures are rotated and translated to provide an initial atomic model for the new structure. A theoretical understanding of the signal-to-noise ratio in likelihood-based molecular replacement searches has been developed to account for the influence of model quality and completeness, as well as the resolution of the diffraction data. Here we show that, contrary to current belief, molecular replacement need not be restricted to the use of models comprising a substantial fraction of the unknown structure. Instead, likelihood-based methods allow a continuum of applications depending predictably on the quality of the model and the resolution of the data. Unexpectedly, our understanding of the signal-to-noise ratio in molecular replacement leads to the finding that, with data to sufficiently high resolution, fragments as small as single atoms of elements usually found in proteins can yield ab initio solutions of macromolecular structures, including some that elude traditional direct methods.

  1. On matrix diffusion: formulations, solution methods and qualitative effects

    NASA Astrophysics Data System (ADS)

    Carrera, Jesús; Sánchez-Vila, Xavier; Benet, Inmaculada; Medina, Agustín; Galarza, Germán; Guimerà, Jordi

    Matrix diffusion has become widely recognized as an important transport mechanism. Unfortunately, accounting for matrix diffusion complicates solute-transport simulations. This problem has led to simplified formulations, partly motivated by the solution method. As a result, some confusion has been generated about how to properly pose the problem. One of the objectives of this work is to find some unity among existing formulations and solution methods. In doing so, some asymptotic properties of matrix diffusion are derived. Specifically, early-time behavior (short tests) depends only on φm2RmDm / Lm2, whereas late-time behavior (long tracer tests) depends only on φmRm, and not on matrix diffusion coefficient or block size and shape. The latter is always true for mean arrival time. These properties help in: (a) analyzing the qualitative behavior of matrix diffusion; (b) explaining one paradox of solute transport through fractured rocks (the apparent dependence of porosity on travel time); (c) discriminating between matrix diffusion and other problems (such as kinetic sorption or heterogeneity); and (d) describing identifiability problems and ways to overcome them. RésuméLa diffusion matricielle est un phénomène reconnu maintenant comme un mécanisme de transport important. Malheureusement, la prise en compte de la diffusion matricielle complique la simulation du transport de soluté. Ce problème a conduit à des formulations simplifiées, en partie à cause de la méthode de résolution. Il s'en est suivi une certaine confusion sur la façon de poser correctement le problème. L'un des objectifs de ce travail est de trouver une certaine unité parmi les formulations et les méthodes de résolution. C'est ainsi que certaines propriétés asymptotiques de la diffusion matricielle ont été dérivées. En particulier, le comportement à l'origine (expériences de traçage courtes) dépend uniquement du terme φm2RmDm / Lm2, alors que le comportement à long terme

  2. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion.

    PubMed

    Kojima, A; Hanada, M; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.

  3. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion

    SciTech Connect

    Kojima, A., E-mail: kojima.atsushi@jaea.go.jp; Hanada, M.; Tobari, H.

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltagemore » holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.« less

  4. Study of analytical method to seek for exact solutions of variant Boussinesq equations.

    PubMed

    Khan, Kamruzzaman; Akbar, M Ali

    2014-01-01

    In this paper, we have been acquired the soliton solutions of the Variant Boussinesq equations. Primarily, we have used the enhanced (G'/G)-expansion method to find exact solutions of Variant Boussinesq equations. Then, we attain some exact solutions including soliton solutions, hyperbolic and trigonometric function solutions of this equation. 35 K99; 35P05; 35P99.

  5. Method for calcining nuclear waste solutions containing zirconium and halides

    DOEpatents

    Newby, Billie J.

    1979-01-01

    A reduction in the quantity of gelatinous solids which are formed in aqueous zirconium-fluoride nuclear reprocessing waste solutions by calcium nitrate added to suppress halide volatility during calcination of the solution while further suppressing chloride volatility is achieved by increasing the aluminum to fluoride mole ratio in the waste solution prior to adding the calcium nitrate.

  6. Method for regeneration of electroless nickel plating solution

    DOEpatents

    Eisenmann, Erhard T.

    1997-01-01

    An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorous acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution.

  7. Method for regeneration of electroless nickel plating solution

    DOEpatents

    Eisenmann, E.T.

    1997-03-11

    An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorus acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution. 1 fig.

  8. Matrix method for two-dimensional waveguide mode solution

    NASA Astrophysics Data System (ADS)

    Sun, Baoguang; Cai, Congzhong; Venkatesh, Balajee Seshasayee

    2018-05-01

    In this paper, we show that the transfer matrix theory of multilayer optics can be used to solve the modes of any two-dimensional (2D) waveguide for their effective indices and field distributions. A 2D waveguide, even composed of numerous layers, is essentially a multilayer stack and the transmission through the stack can be analysed using the transfer matrix theory. The result is a transfer matrix with four complex value elements, namely A, B, C and D. The effective index of a guided mode satisfies two conditions: (1) evanescent waves exist simultaneously in the first (cladding) layer and last (substrate) layer, and (2) the complex element D vanishes. For a given mode, the field distribution in the waveguide is the result of a 'folded' plane wave. In each layer, there is only propagation and absorption; at each boundary, only reflection and refraction occur, which can be calculated according to the Fresnel equations. As examples, we show that this method can be used to solve modes supported by the multilayer step-index dielectric waveguide, slot waveguide, gradient-index waveguide and various plasmonic waveguides. The results indicate the transfer matrix method is effective for 2D waveguide mode solution in general.

  9. A numerical solution method for acoustic radiation from axisymmetric bodies

    NASA Technical Reports Server (NTRS)

    Caruthers, John E.; Raviprakash, G. K.

    1995-01-01

    A new and very efficient numerical method for solving equations of the Helmholtz type is specialized for problems having axisymmetric geometry. It is then demonstrated by application to the classical problem of acoustic radiation from a vibrating piston set in a stationary infinite plane. The method utilizes 'Green's Function Discretization', to obtain an accurate resolution of the waves using only 2-3 points per wave. Locally valid free space Green's functions, used in the discretization step, are obtained by quadrature. Results are computed for a range of grid spacing/piston radius ratios at a frequency parameter, omega R/c(sub 0), of 2 pi. In this case, the minimum required grid resolution appears to be fixed by the need to resolve a step boundary condition at the piston edge rather than by the length scale imposed by the wave length of the acoustic radiation. It is also demonstrated that a local near-field radiation boundary procedure allows the domain to be truncated very near the radiating source with little effect on the solution.

  10. Method for cleaning solution used in nuclear fuel reprocessing

    DOEpatents

    Tallent, O.K.; Crouse, D.J.; Mailen, J.C.

    1980-12-17

    Nuclear fuel processing solution consisting of tri-n-butyl phosphate and dodecane, with a complex of uranium, plutonium, or zirconium and with a solvent degradation product such as di-n-butyl phosphate therein, is contacted with an aqueous solution of a salt formed from hydrazine and either a dicarboxylic acid or a hydroxycarboxylic acid, thereby removing the aforesaid complex from the processing solution.

  11. Method for cleaning solution used in nuclear fuel reprocessing

    DOEpatents

    Tallent, Othar K.; Crouse, David J.; Mailen, James C.

    1982-01-01

    Nuclear fuel processing solution consisting of tri-n-butyl phosphate and dodecane, with a complex of uranium, plutonium, or zirconium and with a solvent degradation product such as di-n-butyl phosphate therein, is contacted with an aqueous solution of a salt formed from hydrazine and either a dicarboxylic acid or a hydroxycarboxylic acid, thereby removing the aforesaid complex from the processing solution.

  12. Verification of BOUT++ by the method of manufactured solutions

    SciTech Connect

    Dudson, B. D., E-mail: benjamin.dudson@york.ac.uk; Hill, P.; Madsen, J.

    2016-06-15

    BOUT++ is a software package designed for solving plasma fluid models. It has been used to simulate a wide range of plasma phenomena ranging from linear stability analysis to 3D plasma turbulence and is capable of simulating a wide range of drift-reduced plasma fluid and gyro-fluid models. A verification exercise has been performed as part of a EUROfusion Enabling Research project, to rigorously test the correctness of the algorithms implemented in BOUT++, by testing order-of-accuracy convergence rates using the Method of Manufactured Solutions (MMS). We present tests of individual components including time-integration and advection schemes, non-orthogonal toroidal field-aligned coordinate systemsmore » and the shifted metric procedure which is used to handle highly sheared grids. The flux coordinate independent approach to differencing along magnetic field-lines has been implemented in BOUT++ and is here verified using the MMS in a sheared slab configuration. Finally, we show tests of three complete models: 2-field Hasegawa-Wakatani in 2D slab, 3-field reduced magnetohydrodynamics (MHD) in 3D field-aligned toroidal coordinates, and 5-field reduced MHD in slab geometry.« less

  13. Methods for measuring risk-aversion: problems and solutions

    NASA Astrophysics Data System (ADS)

    Thomas, P. J.

    2013-09-01

    Risk-aversion is a fundamental parameter determining how humans act when required to operate in situations of risk. Its general applicability has been discussed in a companion presentation, and this paper examines methods that have been used in the past to measure it and their attendant problems. It needs to be borne in mind that risk-aversion varies with the size of the possible loss, growing strongly as the possible loss becomes comparable with the decision maker's assets. Hence measuring risk-aversion when the potential loss or gain is small will produce values close to the risk-neutral value of zero, irrespective of who the decision maker is. It will also be shown how the generally accepted practice of basing a measurement on the results of a three-term Taylor series will estimate a limiting value, minimum or maximum, rather than the value utilised in the decision. A solution is to match the correct utility function to the results instead.

  14. Improved method for extracting lanthanides and actinides from acid solutions

    DOEpatents

    Horwitz, E.P.; Kalina, D.G.; Kaplan, L.; Mason, G.W.

    1983-07-26

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions uses a new series of neutral bi-functional extractants, the alkyl(phenyl)-N,N-dialkylcarbamoylmethylphosphine oxides. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high-level nuclear reprocessing waste solutions.

  15. Preparation of zein fibers using solution blow spinning method

    USDA-ARS?s Scientific Manuscript database

    Zein fibers were successfully fabricated via solution blow spinning (SBS) using acetic acid as solvent. Surface tension, viscosity and modulus of zein solutions were respectively determined by force tensiometer and rheometer. Increases of these properties were observed with an increase of concentrat...

  16. Multiple Revolution Solutions for the Perturbed Lambert Problem using the Method of Particular Solutions and Picard Iteration

    NASA Astrophysics Data System (ADS)

    Woollands, Robyn M.; Read, Julie L.; Probe, Austin B.; Junkins, John L.

    2017-12-01

    We present a new method for solving the multiple revolution perturbed Lambert problem using the method of particular solutions and modified Chebyshev-Picard iteration. The method of particular solutions differs from the well-known Newton-shooting method in that integration of the state transition matrix (36 additional differential equations) is not required, and instead it makes use of a reference trajectory and a set of n particular solutions. Any numerical integrator can be used for solving two-point boundary problems with the method of particular solutions, however we show that using modified Chebyshev-Picard iteration affords an avenue for increased efficiency that is not available with other step-by-step integrators. We take advantage of the path approximation nature of modified Chebyshev-Picard iteration (nodes iteratively converge to fixed points in space) and utilize a variable fidelity force model for propagating the reference trajectory. Remarkably, we demonstrate that computing the particular solutions with only low fidelity function evaluations greatly increases the efficiency of the algorithm while maintaining machine precision accuracy. Our study reveals that solving the perturbed Lambert's problem using the method of particular solutions with modified Chebyshev-Picard iteration is about an order of magnitude faster compared with the classical shooting method and a tenth-twelfth order Runge-Kutta integrator. It is well known that the solution to Lambert's problem over multiple revolutions is not unique and to ensure that all possible solutions are considered we make use of a reliable preexisting Keplerian Lambert solver to warm start our perturbed algorithm.

  17. Fully anisotropic 3-D EM modelling on a Lebedev grid with a multigrid pre-conditioner

    NASA Astrophysics Data System (ADS)

    Jaysaval, Piyoosh; Shantsev, Daniil V.; de la Kethulle de Ryhove, Sébastien; Bratteland, Tarjei

    2016-12-01

    We present a numerical algorithm for 3-D electromagnetic (EM) simulations in conducting media with general electric anisotropy. The algorithm is based on the finite-difference discretization of frequency-domain Maxwell's equations on a Lebedev grid, in which all components of the electric field are collocated but half a spatial step staggered with respect to the magnetic field components, which also are collocated. This leads to a system of linear equations that is solved using a stabilized biconjugate gradient method with a multigrid preconditioner. We validate the accuracy of the numerical results for layered and 3-D tilted transverse isotropic (TTI) earth models representing typical scenarios used in the marine controlled-source EM method. It is then demonstrated that not taking into account the full anisotropy of the conductivity tensor can lead to misleading inversion results. For synthetic data corresponding to a 3-D model with a TTI anticlinal structure, a standard vertical transverse isotropic (VTI) inversion is not able to image a resistor, while for a 3-D model with a TTI synclinal structure it produces a false resistive anomaly. However, if the VTI forward solver used in the inversion is replaced by the proposed TTI solver with perfect knowledge of the strike and dip of the dipping structures, the resulting resistivity images become consistent with the true models.

  18. Submergible torch for treating waste solutions and method thereof

    DOEpatents

    Mattus, Alfred J.

    1995-01-01

    A submergible torch for removing nitrate and/or nitrite ions from a waste solution containing nitrate and/or nitrite ions comprises: a torch tip, a fuel delivery mechanism, a fuel flow control mechanism, a catalyst, and a combustion chamber. The submergible torch is ignited to form a flame within the combustion chamber of the submergible torch. The torch is submerged in a waste solution containing nitrate and/or nitrite ions in such a manner that the flame is in contact with the waste solution and the catalyst and is maintained submerged for a period of time sufficient to decompose the nitrate and/or nitrite ions present in the waste solution.

  19. Submergible torch for treating waste solutions and method thereof

    DOEpatents

    Mattus, Alfred J.

    1994-01-01

    A submergible torch for removing nitrate and/or nitrite ions from a waste solution containing nitrate and/or nitrite ions comprises: a torch tip, a fuel delivery mechanism, a fuel flow control mechanism, a catalyst, and a combustion chamber. The submergible torch is ignited to form a flame within the combustion chamber of the submergible torch. The torch is submerged in a waste solution containing nitrate and/or nitrite ions in such a manner that the flame is in contact with the waste solution and the catalyst and is maintained submerged for a period of time sufficient to decompose the nitrate and/or nitrite ions present in the waste solution.

  20. Submergible torch for treating waste solutions and method thereof

    DOEpatents

    Mattus, A.J.

    1994-12-06

    A submergible torch is described for removing nitrate and/or nitrite ions from a waste solution containing nitrate and/or nitrite ions comprises: a torch tip, a fuel delivery mechanism, a fuel flow control mechanism, a catalyst, and a combustion chamber. The submergible torch is ignited to form a flame within the combustion chamber of the submergible torch. The torch is submerged in a waste solution containing nitrate and/or nitrite ions in such a manner that the flame is in contact with the waste solution and the catalyst and is maintained submerged for a period of time sufficient to decompose the nitrate and/or nitrite ions present in the waste solution. 2 figures.

  1. Method of precipitating uranium from an aqueous solution and/or sediment

    DOEpatents

    Tokunaga, Tetsu K; Kim, Yongman; Wan, Jiamin

    2013-08-20

    A method for precipitating uranium from an aqueous solution and/or sediment comprising uranium and/or vanadium is presented. The method includes precipitating uranium as a uranyl vanadate through mixing an aqueous solution and/or sediment comprising uranium and/or vanadium and a solution comprising a monovalent or divalent cation to form the corresponding cation uranyl vanadate precipitate. The method also provides a pathway for extraction of uranium and vanadium from an aqueous solution and/or sediment.

  2. The New Method of Tsunami Source Reconstruction With r-Solution Inversion Method

    NASA Astrophysics Data System (ADS)

    Voronina, T. A.; Romanenko, A. A.

    2016-12-01

    Application of the r-solution method to reconstructing the initial tsunami waveform is discussed. This methodology is based on the inversion of remote measurements of water-level data. The wave propagation is considered within the scope of a linear shallow-water theory. The ill-posed inverse problem in question is regularized by means of a least square inversion using the truncated Singular Value Decomposition method. As a result of the numerical process, an r-solution is obtained. The method proposed allows one to control the instability of a numerical solution and to obtain an acceptable result in spite of ill posedness of the problem. Implementation of this methodology to reconstructing of the initial waveform to 2013 Solomon Islands tsunami validates the theoretical conclusion for synthetic data and a model tsunami source: the inversion result strongly depends on data noisiness, the azimuthal and temporal coverage of recording stations with respect to the source area. Furthermore, it is possible to make a preliminary selection of the most informative set of the available recording stations used in the inversion process.

  3. Method for Non-Invasive Determination of Chemical Properties of Aqueous Solutions

    NASA Technical Reports Server (NTRS)

    Jones, Alan (Inventor); Thomas, Nathan A. (Inventor); Todd, Paul W. (Inventor)

    2016-01-01

    A method for non-invasively determining a chemical property of an aqueous solution is provided. The method provides the steps of providing a colored solute having a light absorbance spectrum and transmitting light through the colored solute at two different wavelengths. The method further provides the steps of measuring light absorbance of the colored solute at the two different transmitted light wavelengths, and comparing the light absorbance of the colored solute at the two different wavelengths to determine a chemical property of an aqueous solution.

  4. Modified harmonic balance method for the solution of nonlinear jerk equations

    NASA Astrophysics Data System (ADS)

    Rahman, M. Saifur; Hasan, A. S. M. Z.

    2018-03-01

    In this paper, a second approximate solution of nonlinear jerk equations (third order differential equation) can be obtained by using modified harmonic balance method. The method is simpler and easier to carry out the solution of nonlinear differential equations due to less number of nonlinear equations are required to solve than the classical harmonic balance method. The results obtained from this method are compared with those obtained from the other existing analytical methods that are available in the literature and the numerical method. The solution shows a good agreement with the numerical solution as well as the analytical methods of the available literature.

  5. Solutions of differential equations with regular coefficients by the methods of Richmond and Runge-Kutta

    NASA Technical Reports Server (NTRS)

    Cockrell, C. R.

    1989-01-01

    Numerical solutions of the differential equation which describe the electric field within an inhomogeneous layer of permittivity, upon which a perpendicularly-polarized plane wave is incident, are considered. Richmond's method and the Runge-Kutta method are compared for linear and exponential profiles of permittivities. These two approximate solutions are also compared with the exact solutions.

  6. Fundamental solution of the problem of linear programming and method of its determination

    NASA Technical Reports Server (NTRS)

    Petrunin, S. V.

    1978-01-01

    The idea of a fundamental solution to a problem in linear programming is introduced. A method of determining the fundamental solution and of applying this method to the solution of a problem in linear programming is proposed. Numerical examples are cited.

  7. Directional Agglomeration Multigrid Techniques for High Reynolds Number Viscous Flow Solvers

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A preconditioned directional-implicit agglomeration algorithm is developed for solving two- and three-dimensional viscous flows on highly anisotropic unstructured meshes of mixed-element types. The multigrid smoother consists of a pre-conditioned point- or line-implicit solver which operates on lines constructed in the unstructured mesh using a weighted graph algorithm. Directional coarsening or agglomeration is achieved using a similar weighted graph algorithm. A tight coupling of the line construction and directional agglomeration algorithms enables the use of aggressive coarsening ratios in the multigrid algorithm, which in turn reduces the cost of a multigrid cycle. Convergence rates which are independent of the degree of grid stretching are demonstrated in both two and three dimensions. Further improvement of the three-dimensional convergence rates through a GMRES technique is also demonstrated.

  8. Directional Agglomeration Multigrid Techniques for High-Reynolds Number Viscous Flows

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    1998-01-01

    A preconditioned directional-implicit agglomeration algorithm is developed for solving two- and three-dimensional viscous flows on highly anisotropic unstructured meshes of mixed-element types. The multigrid smoother consists of a pre-conditioned point- or line-implicit solver which operates on lines constructed in the unstructured mesh using a weighted graph algorithm. Directional coarsening or agglomeration is achieved using a similar weighted graph algorithm. A tight coupling of the line construction and directional agglomeration algorithms enables the use of aggressive coarsening ratios in the multigrid algorithm, which in turn reduces the cost of a multigrid cycle. Convergence rates which are independent of the degree of grid stretching are demonstrated in both two and three dimensions. Further improvement of the three-dimensional convergence rates through a GMRES technique is also demonstrated.

  9. Multistage Schemes with Multigrid for Euler and Navier-Strokes Equations: Components and Analysis

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Turkel, Eli

    1997-01-01

    A class of explicit multistage time-stepping schemes with centered spatial differencing and multigrids are considered for the compressible Euler and Navier-Stokes equations. These schemes are the basis for a family of computer programs (flow codes with multigrid (FLOMG) series) currently used to solve a wide range of fluid dynamics problems, including internal and external flows. In this paper, the components of these multistage time-stepping schemes are defined, discussed, and in many cases analyzed to provide additional insight into their behavior. Special emphasis is given to numerical dissipation, stability of Runge-Kutta schemes, and the convergence acceleration techniques of multigrid and implicit residual smoothing. Both the Baldwin and Lomax algebraic equilibrium model and the Johnson and King one-half equation nonequilibrium model are used to establish turbulence closure. Implementation of these models is described.

  10. A fast multigrid-based electromagnetic eigensolver for curved metal boundaries on the Yee mesh

    SciTech Connect

    Bauer, Carl A., E-mail: carl.bauer@colorado.edu; Werner, Gregory R.; Cary, John R.

    For embedded boundary electromagnetics using the Dey–Mittra (Dey and Mittra, 1997) [1] algorithm, a special grad–div matrix constructed in this work allows use of multigrid methods for efficient inversion of Maxwell’s curl–curl matrix. Efficient curl–curl inversions are demonstrated within a shift-and-invert Krylov-subspace eigensolver (open-sourced at ([ofortt]https://github.com/bauerca/maxwell[cfortt])) on the spherical cavity and the 9-cell TESLA superconducting accelerator cavity. The accuracy of the Dey–Mittra algorithm is also examined: frequencies converge with second-order error, and surface fields are found to converge with nearly second-order error. In agreement with previous work (Nieter et al., 2009) [2], neglecting some boundary-cut cell faces (as is requiredmore » in the time domain for numerical stability) reduces frequency convergence to first-order and surface-field convergence to zeroth-order (i.e. surface fields do not converge). Additionally and importantly, neglecting faces can reduce accuracy by an order of magnitude at low resolutions.« less

  11. Optimization of refractive liquid crystal lenses using an efficient multigrid simulation.

    PubMed

    Milton, Harry; Brimicombe, Paul; Morgan, Philip; Gleeson, Helen; Clamp, John

    2012-05-07

    A multigrid computational model has been developed to assess the performance of refractive liquid crystal lenses, which is up to 40 times faster than previous techniques. Using this model, the optimum geometries producing an ideal parabolic voltage distribution were deduced for refractive liquid crystal lenses with diameters from 1 to 9 mm. The ratio of insulation thickness to lens diameter was determined to be 1:2 for small diameter lenses, tending to 1:3 for larger lenses. The model is used to propose a new method of lens operation with lower operating voltages needed to induce specific optical powers. The operating voltages are calculated for the induction of optical powers between + 1.00 D and + 3.00 D in a 3 mm diameter lens, with the speed of the simulation facilitating the optimization of the refractive index profile. We demonstrate that the relationship between additional applied voltage and optical power is approximately linear for optical powers under + 3.00 D. The versatility of the computational simulation has also been demonstrated by modeling of in-plane electrode liquid crystal devices.

  12. Method for extracting lanthanides and actinides from acid solutions

    DOEpatents

    Horwitz, E. Philip; Kalina, Dale G.; Kaplan, Louis; Mason, George W.

    1985-01-01

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions with an organic extractant having the formula: ##STR1## where .phi. is phenyl, R.sup.1 is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R.sup.2 is an alkyl containing from 3 to 6 carbon atoms. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high level nuclear reprocessing waste solutions.

  13. Solution methods for one-dimensional viscoelastic problems

    NASA Technical Reports Server (NTRS)

    Stubstad, John M.; Simitses, George J.

    1987-01-01

    A recently developed differential methodology for solution of one-dimensional nonlinear viscoelastic problems is presented. Using the example of an eccentrically loaded cantilever beam-column, the results from the differential formulation are compared to results generated using a previously published integral solution technique. It is shown that the results obtained from these distinct methodologies exhibit a surprisingly high degree of correlation with one another. A discussion of the various factors affecting the numerical accuracy and rate of convergence of these two procedures is also included. Finally, the influences of some 'higher order' effects, such as straining along the centroidal axis are discussed.

  14. A numerical method for solving systems of linear ordinary differential equations with rapidly oscillating solutions

    NASA Technical Reports Server (NTRS)

    Bernstein, Ira B.; Brookshaw, Leigh; Fox, Peter A.

    1992-01-01

    The present numerical method for accurate and efficient solution of systems of linear equations proceeds by numerically developing a set of basis solutions characterized by slowly varying dependent variables. The solutions thus obtained are shown to have a computational overhead largely independent of the small size of the scale length which characterizes the solutions; in many cases, the technique obviates series solutions near singular points, and its known sources of error can be easily controlled without a substantial increase in computational time.

  15. Study of a Novel Method for the Thermolysis of Solutes in Aqueous Solution Using a Low Temperature Bubble Column Evaporator.

    PubMed

    Shahid, Muhammad; Xue, Xinkai; Fan, Chao; Ninham, Barry W; Pashley, Richard M

    2015-06-25

    An enhanced thermal decomposition of chemical compounds in aqueous solution has been achieved at reduced solution temperatures. The technique exploits hitherto unrecognized properties of a bubble column evaporator (BCE). It offers better heat transfer efficiency than conventional heat transfer equipment. This is obtained via a continuous flow of hot, dry air bubbles of optimal (1-3 mm) size. Optimal bubble size is maintained by using the bubble coalescence inhibition property of some salts. This novel method is illustrated by a study of thermal decomposition of ammonium bicarbonate (NH4HCO3) and potassium persulfate (K2S2O8) in aqueous solutions. The decomposition occurs at significantly lower temperatures than those needed in bulk solution. The process appears to work via the continuous production of hot (e.g., 150 °C) dry air bubbles, which do not heat the solution significantly but produce a transient hot surface layer around each rising bubble. This causes the thermal decomposition of the solute. The decomposition occurs due to the effective collision of the solute with the surface of the hot bubbles. The new process could, for example, be applied to the regeneration of the ammonium bicarbonate draw solution used in forward osmosis.

  16. Computer Facilitated Mathematical Methods in Chemical Engineering--Similarity Solution

    ERIC Educational Resources Information Center

    Subramanian, Venkat R.

    2006-01-01

    High-performance computers coupled with highly efficient numerical schemes and user-friendly software packages have helped instructors to teach numerical solutions and analysis of various nonlinear models more efficiently in the classroom. One of the main objectives of a model is to provide insight about the system of interest. Analytical…

  17. Skill Acquisition: Compilation of Weak-Method Problem Solutions.

    ERIC Educational Resources Information Center

    Anderson, John R.

    According to the ACT theory of skill acquisition, cognitive skills are encoded by a set of productions, which are organized according to a hierarchical goal structure. People solve problems in new domains by applying weak problem-solving procedures to declarative knowledge they have about this domain. From these initial problem solutions,…

  18. Iterative methods for elliptic finite element equations on general meshes

    NASA Technical Reports Server (NTRS)

    Nicolaides, R. A.; Choudhury, Shenaz

    1986-01-01

    Iterative methods for arbitrary mesh discretizations of elliptic partial differential equations are surveyed. The methods discussed are preconditioned conjugate gradients, algebraic multigrid, deflated conjugate gradients, an element-by-element techniques, and domain decomposition. Computational results are included.

  19. Integration of the shallow water equations on the sphere using a vector semi-Lagrangian scheme with a multigrid solver

    NASA Technical Reports Server (NTRS)

    Bates, J. R.; Semazzi, F. H. M.; Higgins, R. W.; Barros, Saulo R. M.

    1990-01-01

    A vector semi-Lagrangian semi-implicit two-time-level finite-difference integration scheme for the shallow water equations on the sphere is presented. A C-grid is used for the spatial differencing. The trajectory-centered discretization of the momentum equation in vector form eliminates pole problems and, at comparable cost, gives greater accuracy than a previous semi-Lagrangian finite-difference scheme which used a rotated spherical coordinate system. In terms of the insensitivity of the results to increasing timestep, the new scheme is as successful as recent spectral semi-Lagrangian schemes. In addition, the use of a multigrid method for solving the elliptic equation for the geopotential allows efficient integration with an operation count which, at high resolution, is of lower order than in the case of the spectral models. The properties of the new scheme should allow finite-difference models to compete with spectral models more effectively than has previously been possible.

  20. Synthesis of GaN:ZnO solid solution by solution combustion method and characterization for photocatalytic application

    NASA Astrophysics Data System (ADS)

    Menon, Sumithra Sivadas; Anitha, R.; Gupta, Bhavana; Baskar, K.; Singh, Shubra

    2016-05-01

    GaN-ZnO solid solution has emerged as a successful and reproducible photocatalyst for overall water splitting by one-step photoexcitation, with a bandgap in visible region. When the solid solution is formed, some of the Zn and O ions are replaced by Ga and N ions respectively and there is a narrowing of bandgap which is hypothesized as due to Zn3d-N2p repulsion. The traditional method of synthesis of GaN-ZnO solid solution is by nitridation of the starting oxides under constant ammonia flow. Here we report a solution combustion technique for the synthesis of the solid solution at a temperature about 500 ° C in a muffle furnace with metal nitrates as precursors and urea as the fuel. The as prepared samples showed change in color with the increased concentration of ZnO in the solution. The structural, microstructural, morphological and optical properties of the samples were realized by Powder X ray diffraction, Scanning electron microscopy, Energy dispersive X ray analysis, Transmission electron microscopy and Photoluminescence. Finally the hydrogen production efficiency of the GaN-ZnO nanopowders by water splitting was found, using methanol as a scavenger. The apparent quantum yield (AQY) of 0.048% is obtained for GaN-ZnO solid solution.

  1. Synthesis of GaN:ZnO solid solution by solution combustion method and characterization for photocatalytic application

    SciTech Connect

    Menon, Sumithra Sivadas; Anitha, R.; Baskar, K.

    2016-05-23

    GaN-ZnO solid solution has emerged as a successful and reproducible photocatalyst for overall water splitting by one-step photoexcitation, with a bandgap in visible region. When the solid solution is formed, some of the Zn and O ions are replaced by Ga and N ions respectively and there is a narrowing of bandgap which is hypothesized as due to Zn3d-N2p repulsion. The traditional method of synthesis of GaN-ZnO solid solution is by nitridation of the starting oxides under constant ammonia flow. Here we report a solution combustion technique for the synthesis of the solid solution at a temperature about 500 °more » C in a muffle furnace with metal nitrates as precursors and urea as the fuel. The as prepared samples showed change in color with the increased concentration of ZnO in the solution. The structural, microstructural, morphological and optical properties of the samples were realized by Powder X ray diffraction, Scanning electron microscopy, Energy dispersive X ray analysis, Transmission electron microscopy and Photoluminescence. Finally the hydrogen production efficiency of the GaN-ZnO nanopowders by water splitting was found, using methanol as a scavenger. The apparent quantum yield (AQY) of 0.048% is obtained for GaN-ZnO solid solution.« less

  2. Projection methods for the numerical solution of Markov chain models

    NASA Technical Reports Server (NTRS)

    Saad, Youcef

    1989-01-01

    Projection methods for computing stationary probability distributions for Markov chain models are presented. A general projection method is a method which seeks an approximation from a subspace of small dimension to the original problem. Thus, the original matrix problem of size N is approximated by one of dimension m, typically much smaller than N. A particularly successful class of methods based on this principle is that of Krylov subspace methods which utilize subspaces of the form span(v,av,...,A(exp m-1)v). These methods are effective in solving linear systems and eigenvalue problems (Lanczos, Arnoldi,...) as well as nonlinear equations. They can be combined with more traditional iterative methods such as successive overrelaxation, symmetric successive overrelaxation, or with incomplete factorization methods to enhance convergence.

  3. CTE method and interaction solutions for the Kadomtsev-Petviashvili equation

    NASA Astrophysics Data System (ADS)

    Ren, Bo

    2017-02-01

    The consistent tanh expansion method is applied to the Kadomtsev-Petviashvili equation. The interaction solutions among one soliton and other types of solitary waves, such as multiple resonant soliton solutions and cnoidal waves, are explicitly given. Some special concrete interaction solutions are discussed both in analytical and graphical ways.

  4. PLUTONIUM-CUPFERRON COMPLEX AND METHOD OF REMOVING PLUTONIUM FROM SOLUTION

    DOEpatents

    Potratz, H.A.

    1959-01-13

    A method is presented for separating plutonium from fission products present in solutions of neutronirradiated uranium. The process consists in treating such acidic solutions with cupferron so that the cupferron reacts with the plutonium present to form an insoluble complex. This plutonium cupferride precipitates and may then be separated from the solution.

  5. Method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions

    DOEpatents

    Horwitz, E. Philip; Delphin, Walter H.

    1979-07-24

    A method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions containing these and other values by contacting the waste solution with an extractant of tricaprylmethylammonium nitrate in an inert hydrocarbon diluent which extracts the palladium and technetium values from the waste solution. The palladium and technetium values are recovered from the extractant and from any other coextracted values with a strong nitric acid strip solution.

  6. Implicit and Multigrid Method for Ideal Multigrid Convergence: Direct Numerical Simulation of Separated Flow Around NACA 0012 Airfoil

    NASA Technical Reports Server (NTRS)

    Liu, Chao-Qun; Shan, H.; Jiang, L.

    1999-01-01

    Numerical investigation of flow separation over a NACA 0012 airfoil at large angles of attack has been carried out. The numerical calculation is performed by solving the full Navier-Stokes equations in generalized curvilinear coordinates. The second-order LU-SGS implicit scheme is applied for time integration. This scheme requires no tridiagonal inversion and is capable of being completely vectorized, provided the corresponding Jacobian matrices are properly selected. A fourth-order centered compact scheme is used for spatial derivatives. In order to reduce numerical oscillation, a sixth-order implicit filter is employed. Non-reflecting boundary conditions are imposed at the far-field and outlet boundaries to avoid possible non-physical wave reflection. Complex flow separation and vortex shedding phenomenon have been observed and discussed.

  7. Methods for Estimating Uncertainty in Factor Analytic Solutions

    EPA Science Inventory

    The EPA PMF (Environmental Protection Agency positive matrix factorization) version 5.0 and the underlying multilinear engine-executable ME-2 contain three methods for estimating uncertainty in factor analytic models: classical bootstrap (BS), displacement of factor elements (DI...

  8. Unidirectional growth of benzil crystal from solution by Sankaranarayanan-Ramasamy method and its characterization

    NASA Astrophysics Data System (ADS)

    Rajalakshmi, M.; Shyju, T. S.; Indirajith, R.; Gopalakrishnan, R.

    2012-02-01

    Good quality <1 0 0> benzil single crystal with a diameter 18 mm and length 75 mm was successfully grown from solution by the unidirectional growth method of Sankaranarayanan-Ramasamy (SR) for the first time in the literature. The seed crystals have been harvested from conventional solution growth technique and subsequently used for unidirectional growth. The grown crystal was subjected to various characterization studies. The results of UV-vis spectral analysis, photoluminescence, etching and microhardness studies were compared with conventional solution grown crystal to that of SR method grown crystal. The quality of SR method grown benzil crystal is better than conventional solution grown crystal.

  9. Vacuum solutions of five dimensional Einstein equations generated by inverse scattering method. II. Production of the black ring solution

    SciTech Connect

    Tomizawa, Shinya; Nozawa, Masato

    2006-06-15

    We study vacuum solutions of five-dimensional Einstein equations generated by the inverse scattering method. We reproduce the black ring solution which was found by Emparan and Reall by taking the Euclidean Levi-Civita metric plus one-dimensional flat space as a seed. This transformation consists of two successive processes; the first step is to perform the three-solitonic transformation of the Euclidean Levi-Civita metric with one-dimensional flat space as a seed. The resulting metric is the Euclidean C-metric with extra one-dimensional flat space. The second is to perform the two-solitonic transformation by taking it as a new seed. Our result may serve asmore » a stepping stone to find new exact solutions in higher dimensions.« less

  10. An implicit semianalytic numerical method for the solution of nonequilibrium chemistry problems

    NASA Technical Reports Server (NTRS)

    Graves, R. A., Jr.; Gnoffo, P. A.; Boughner, R. E.

    1974-01-01

    The first order differential equation form systems of equations. They are solved by a simple and relatively accurate implicit semianalytic technique which is derived from a quadrature solution of the governing equation. This method is mathematically simpler than most implicit methods and has the exponential nature of the problem embedded in the solution.

  11. Student Solution Manual for Essential Mathematical Methods for the Physical Sciences

    NASA Astrophysics Data System (ADS)

    Riley, K. F.; Hobson, M. P.

    2011-02-01

    1. Matrices and vector spaces; 2. Vector calculus; 3. Line, surface and volume integrals; 4. Fourier series; 5. Integral transforms; 6. Higher-order ODEs; 7. Series solutions of ODEs; 8. Eigenfunction methods; 9. Special functions; 10. Partial differential equations; 11. Solution methods for PDEs; 12. Calculus of variations; 13. Integral equations; 14. Complex variables; 15. Applications of complex variables; 16. Probability; 17. Statistics.

  12. New exact solutions for a discrete electrical lattice using the analytical methods

    NASA Astrophysics Data System (ADS)

    Manafian, Jalil; Lakestani, Mehrdad

    2018-03-01

    This paper retrieves soliton solutions to an equation in nonlinear electrical transmission lines using the semi-inverse variational principle method (SIVPM), the \\exp(-Ω(ξ)) -expansion method (EEM) and the improved tan(φ/2) -expansion method (ITEM), with the aid of the symbolic computation package Maple. As a result, the SIVPM, EEM and ITEM methods are successfully employed and some new exact solitary wave solutions are acquired in terms of kink-singular soliton solution, hyperbolic solution, trigonometric solution, dark and bright soliton solutions. All solutions have been verified back into their corresponding equations with the aid of the Maple package program. We depicted the physical explanation of the extracted solutions with the choice of different parameters by plotting some 2D and 3D illustrations. Finally, we show that the used methods are robust and more efficient than other methods. More importantly, the solutions found in this work can have significant applications in telecommunication systems where solitons are used to codify data.

  13. Method for removing trace pollutants from aqueous solutions

    DOEpatents

    Silver, G.L.

    A method of substantially removing a trace metallic contaminant from a liquid containing the same comprises: adding an oxidizing agent to a liquid containing a trace amount of a metallic contaminant of a concentration of up to about 0.1 ppM, and separating the homogeneously precipitated product from the liquid.

  14. Finite difference methods for the solution of unsteady potential flows

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.

    1982-01-01

    Various problems which are confronted in the development of an unsteady finite difference potential code are reviewed mainly in the context of what is done for a typical small disturbance and full potential method. The issues discussed include choice of equations, linearization and conservation, differencing schemes, and algorithm development. A number of applications, including unsteady three dimensional rotor calculations, are demonstrated.

  15. Solution Deposition Methods for Carbon Nanotube Field-Effect Transistors

    DTIC Science & Technology

    2009-06-01

    authorized documents. Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof. Destroy...processed into FETs using standard microelectronics processing techniques. The resulting devices were characterized using a semiconductor parameter...method will help to determine which conditions are useful for producing CNT devices for chemical sensing and electronic applications. 15. SUBJECT TERMS

  16. Computational Methods for Sparse Solution of Linear Inverse Problems

    DTIC Science & Technology

    2009-03-01

    this approach is that the algorithms take advantage of fast matrix–vector multiplications. An implementation is available as pdco and SolveBP in the...M. A. Saunders, “ PDCO : primal-dual interior-point method for con- vex objectives,” Systems Optimization Laboratory, Stanford University, Tech. Rep

  17. Solution mining systems and methods for treating hydrocarbon containing formations

    DOEpatents

    Vinegar, Harold J [Bellaire, TX; de Rouffignac, Eric Pierre [Rijswijk, NL; Schoeling, Lanny Gene [Katy, TX

    2009-07-14

    A method for treating an oil shale formation comprising nahcolite is disclosed. The method includes providing a first fluid to a portion of the formation through at least two injection wells. A second fluid is produced from the portion through at least one injection well until at least two injection wells are interconnected such that fluid can flow between the two injection wells. The second fluid includes at least some nahcolite dissolved in the first fluid. The first fluid is injected through one of the interconnected injection wells. The second fluid is produced from at least one of the interconnected injection wells. Heat is provided from one or more heaters to the formation to heat the formation. Hydrocarbon fluids are produced from the formation.

  18. Finite difference methods for the solution of unsteady potential flows

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.

    1985-01-01

    A brief review is presented of various problems which are confronted in the development of an unsteady finite difference potential code. This review is conducted mainly in the context of what is done for a typical small disturbance and full potential methods. The issues discussed include choice of equation, linearization and conservation, differencing schemes, and algorithm development. A number of applications including unsteady three-dimensional rotor calculation, are demonstrated.

  19. Efficient solution of parabolic equations by Krylov approximation methods

    NASA Technical Reports Server (NTRS)

    Gallopoulos, E.; Saad, Y.

    1990-01-01

    Numerical techniques for solving parabolic equations by the method of lines is addressed. The main motivation for the proposed approach is the possibility of exploiting a high degree of parallelism in a simple manner. The basic idea of the method is to approximate the action of the evolution operator on a given state vector by means of a projection process onto a Krylov subspace. Thus, the resulting approximation consists of applying an evolution operator of a very small dimension to a known vector which is, in turn, computed accurately by exploiting well-known rational approximations to the exponential. Because the rational approximation is only applied to a small matrix, the only operations required with the original large matrix are matrix-by-vector multiplications, and as a result the algorithm can easily be parallelized and vectorized. Some relevant approximation and stability issues are discussed. We present some numerical experiments with the method and compare its performance with a few explicit and implicit algorithms.

  20. A Robust Locally Preconditioned Semi-Coarsening Multigrid Algorithm for the 2-D Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Cain, Michael D.

    1999-01-01

    The goal of this thesis is to develop an efficient and robust locally preconditioned semi-coarsening multigrid algorithm for the two-dimensional Navier-Stokes equations. This thesis examines the performance of the multigrid algorithm with local preconditioning for an upwind-discretization of the Navier-Stokes equations. A block Jacobi iterative scheme is used because of its high frequency error mode damping ability. At low Mach numbers, the performance of a flux preconditioner is investigated. The flux preconditioner utilizes a new limiting technique based on local information that was developed by Siu. Full-coarsening and-semi-coarsening are examined as well as the multigrid V-cycle and full multigrid. The numerical tests were performed on a NACA 0012 airfoil at a range of Mach numbers. The tests show that semi-coarsening with flux preconditioning is the most efficient and robust combination of coarsening strategy, and iterative scheme - especially at low Mach numbers.

  1. Method for removing trace pollutants from aqueous solutions

    DOEpatents

    Silver, Gary L.

    1986-01-01

    A method of substantially removing a trace metallic contaminant from a liquid containing the same comprises, adding an oxidizing agent to a liquid containing a trace amount of a metallic contaminant of a concentration of up to about 10.sup.-1 ppm, the oxidizing agent being one which oxidizes the contaminant to form an oxidized product which is insoluble in the liquid and precipitates therefrom, and the conditions of the addition being selected to ensure that the precipitation of the oxidized product is homogeneous, and separating the homogeneously precipitated product from the liquid.

  2. A performability solution method for degradable nonrepairable systems

    NASA Technical Reports Server (NTRS)

    Furchtgott, D. G.; Meyer, J. F.

    1984-01-01

    The present performability model-solving algorithm identifies performance with 'reward', representing the state behavior of a system S by a finite-state stochastic process and determining reward by means of reward rates that are associated with the states of the base model. A general method is obtained for determining the probability distribution function of the performance (reward) variable, and therefore the performability, of the corresponding system. This is done for bounded utilization periods, and the result is an integral expression which is either analytically or numerically solvable.

  3. A simple high performance liquid chromatography method for analyzing paraquat in soil solution samples.

    PubMed

    Ouyang, Ying; Mansell, Robert S; Nkedi-Kizza, Peter

    2004-01-01

    A high performance liquid chromatography (HPLC) method with UV detection was developed to analyze paraquat (1,1'-dimethyl-4,4'-dipyridinium dichloride) herbicide content in soil solution samples. The analytical method was compared with the liquid scintillation counting (LSC) method using 14C-paraquat. Agreement obtained between the two methods was reasonable. However, the detection limit for paraquat analysis was 0.5 mg L(-1) by the HPLC method and 0.05 mg L(-1) by the LSC method. The LSC method was, therefore, 10 times more precise than the HPLC method for solution concentrations less than 1 mg L(-1). In spite of the high detection limit, the UC (nonradioactive) HPLC method provides an inexpensive and environmentally safe means for determining paraquat concentration in soil solution compared with the 14C-LSC method.

  4. Method and apparatus for measuring volatile compounds in an aqueous solution

    DOEpatents

    Gilmore, Tyler J [Pasco, WA; Cantrell, Kirk J [West Richland, WA

    2002-07-16

    The present invention is an improvement to the method and apparatus for measuring volatile compounds in an aqueous solution. The apparatus is a chamber with sides and two ends, where the first end is closed. The chamber contains a solution volume of the aqueous solution and a gas that is trapped within the first end of the chamber above the solution volume. The gas defines a head space within the chamber above the solution volume. The chamber may also be a cup with the second end. open and facing down and submerged in the aqueous solution so that the gas defines the head space within the cup above the solution volume. The cup can also be entirely submerged in the aqueous solution. The second end of the. chamber may be closed such that the chamber can be used while resting on a flat surface such as a bench. The improvement is a sparger for mixing the gas with the solution volume. The sparger can be a rotating element such as a propeller on a shaft or a cavitating impeller. The sparger can also be a pump and nozzle where the pump is a liquid pump and the nozzle is a liquid spray nozzle open, to the head space for spraying the solution volume into the head space of gas. The pump could also be a gas pump and the nozzle a gas nozzle submerged in the solution volume for spraying the head space gas into the solution volume.

  5. Newton's method: A link between continuous and discrete solutions of nonlinear problems

    NASA Technical Reports Server (NTRS)

    Thurston, G. A.

    1980-01-01

    Newton's method for nonlinear mechanics problems replaces the governing nonlinear equations by an iterative sequence of linear equations. When the linear equations are linear differential equations, the equations are usually solved by numerical methods. The iterative sequence in Newton's method can exhibit poor convergence properties when the nonlinear problem has multiple solutions for a fixed set of parameters, unless the iterative sequences are aimed at solving for each solution separately. The theory of the linear differential operators is often a better guide for solution strategies in applying Newton's method than the theory of linear algebra associated with the numerical analogs of the differential operators. In fact, the theory for the differential operators can suggest the choice of numerical linear operators. In this paper the method of variation of parameters from the theory of linear ordinary differential equations is examined in detail in the context of Newton's method to demonstrate how it might be used as a guide for numerical solutions.

  6. Method and means for dynamic measurement of rates of adsorption from solutions

    DOEpatents

    Slomka, Bogdan J.; Buttermore, William H.

    1992-05-05

    A method and apparatus for dynamic measurement of rates of absorption from solutions. The method has the advantage of avoiding the use of solvent normally used to establish a baseline. The method involves pre-evacuating the adsorbent contained in an adsorbent cell and thereafter rapidly contacting the adsorbent with analytical solution, all without prior exposure of adsorbent to pure solvent. The result is a sharp characteristic adsorption line.

  7. Method and means for dynamic measurement of rates of adsorption from solutions

    DOEpatents

    Slomka, B.J.; Buttermore, W.H.

    1992-05-05

    A method and apparatus are described for the dynamic measurement of rates of absorption from solutions. The method has the advantage of avoiding the use of solvent normally used to establish a baseline. The method involves pre-evacuating the adsorbent contained in an adsorbent cell and thereafter rapidly contacting the adsorbent with analytical solution, all without prior exposure of adsorbent to pure solvent. The result is a sharp characteristic adsorption line. 5 figs.

  8. Relaxation Revisited: A Fresh Look at Multigrid for Steady Flows

    NASA Technical Reports Server (NTRS)

    Roberts, Thomas W.; Swanson, R. C.; Sidilkover, David

    1997-01-01

    The year 1971 saw the publication of one of the landmark papers in computational aerodynamics, that of Murman and Cole. As with many seminal works, its significance lies not so much in the specific problem that it addressed| small disturbance, plane transonic flow - but in the identification of a general approach to the solution of a technically important and theoretically difficult problem. The key features of Murman and Cole's work were the use of type- dependent differencing to correctly account for the proper domain of dependence of a mixed elliptic/hyperbolic equation, and the introduction of line relaxation to solve the steady flow equation. All subsequent work in transonic potential flows was based on these concepts. Jameson extended Murman and Cole's ideas to the full potential equation with two important contributions. First, he introduced the rotated difference stencil, which generalized the Murman and Cole type-dependent difference operator to general coordinates. Second, he used the interpretation, introduced by Garabedian, of relaxation as an iteration in artificial time to construct stable relaxation schemes, generalizing the original line relaxation method of Reference. The decade of the 1970s saw an explosion of activity in the solution of transonic potential flows, which has been summarized in the review article of Caughey.

  9. A Reduced Basis Method with Exact-Solution Certificates for Symmetric Coercive Equations

    DTIC Science & Technology

    2013-11-06

    the energy associated with the infinite - dimensional weak solution of parametrized symmetric coercive partial differential equations with piecewise...builds bounds with respect to the infinite - dimensional weak solution, aims to entirely remove the issue of the “truth” within the certified reduced basis...framework. We in particular introduce a reduced basis method that provides rigorous upper and lower bounds

  10. High-Resolution Genuinely Multidimensional Solution of Conservation Laws by the Space-Time Conservation Element and Solution Element Method

    NASA Technical Reports Server (NTRS)

    Himansu, Ananda; Chang, Sin-Chung; Yu, Sheng-Tao; Wang, Xiao-Yen; Loh, Ching-Yuen; Jorgenson, Philip C. E.

    1999-01-01

    In this overview paper, we review the basic principles of the method of space-time conservation element and solution element for solving the conservation laws in one and two spatial dimensions. The present method is developed on the basis of local and global flux conservation in a space-time domain, in which space and time are treated in a unified manner. In contrast to the modern upwind schemes, the approach here does not use the Riemann solver and the reconstruction procedure as the building blocks. The drawbacks of the upwind approach, such as the difficulty of rationally extending the 1D scalar approach to systems of equations and particularly to multiple dimensions is here contrasted with the uniformity and ease of generalization of the Conservation Element and Solution Element (CE/SE) 1D scalar schemes to systems of equations and to multiple spatial dimensions. The assured compatibility with the simplest type of unstructured meshes, and the uniquely simple nonreflecting boundary conditions of the present method are also discussed. The present approach has yielded high-resolution shocks, rarefaction waves, acoustic waves, vortices, ZND detonation waves, and shock/acoustic waves/vortices interactions. Moreover, since no directional splitting is employed, numerical resolution of two-dimensional calculations is comparable to that of the one-dimensional calculations. Some sample applications displaying the strengths and broad applicability of the CE/SE method are reviewed.

  11. Architecting the Finite Element Method Pipeline for the GPU.

    PubMed

    Fu, Zhisong; Lewis, T James; Kirby, Robert M; Whitaker, Ross T

    2014-02-01

    The finite element method (FEM) is a widely employed numerical technique for approximating the solution of partial differential equations (PDEs) in various science and engineering applications. Many of these applications benefit from fast execution of the FEM pipeline. One way to accelerate the FEM pipeline is by exploiting advances in modern computational hardware, such as the many-core streaming processors like the graphical processing unit (GPU). In this paper, we present the algorithms and data-structures necessary to move the entire FEM pipeline to the GPU. First we propose an efficient GPU-based algorithm to generate local element information and to assemble the global linear system associated with the FEM discretization of an elliptic PDE. To solve the corresponding linear system efficiently on the GPU, we implement a conjugate gradient method preconditioned with a geometry-informed algebraic multi-grid (AMG) method preconditioner. We propose a new fine-grained parallelism strategy, a corresponding multigrid cycling stage and efficient data mapping to the many-core architecture of GPU. Comparison of our on-GPU assembly versus a traditional serial implementation on the CPU achieves up to an 87 × speedup. Focusing on the linear system solver alone, we achieve a speedup of up to 51 × versus use of a comparable state-of-the-art serial CPU linear system solver. Furthermore, the method compares favorably with other GPU-based, sparse, linear solvers.

  12. Methods of pretreating comminuted cellulosic material with carbonate-containing solutions

    DOEpatents

    Francis, Raymond

    2012-11-06

    Methods of pretreating comminuted cellulosic material with an acidic solution and then a carbonate-containing solution to produce a pretreated cellulosic material are provided. The pretreated material may then be further treated in a pulping process, for example, a soda-anthraquinone pulping process, to produce a cellulose pulp. The pretreatment solutions may be extracted from the pretreated cellulose material and selectively re-used, for example, with acid or alkali addition, for the pretreatment solutions. The resulting cellulose pulp is characterized by having reduced lignin content and increased yield compared to prior art treatment processes.

  13. Photochemical method for generating superoxide radicals (O.sub.2.sup.-) in aqueous solutions

    DOEpatents

    Holroyd, Richard A.; Bielski, Benon H. J.

    1980-01-01

    A photochemical method and apparatus for generating superoxide radicals (ub.2.sup.-) in an aqueous solution by means of a vacuum-ultraviolet lamp of simple design. The lamp is a microwave powered rare gas device that emits far-ultraviolet light. The lamp includes an inner loop of high purity quartz tubing through which flows an oxygen-saturated sodium formate solution. The inner loop is designed so that the solution is subjected to an intense flux of far-ultraviolet light. This causes the solution to photodecompose and form the product radical (O.sub.2.sup.-).

  14. Spectral methods and their implementation to solution of aerodynamic and fluid mechanic problems

    NASA Technical Reports Server (NTRS)

    Streett, C. L.

    1987-01-01

    Fundamental concepts underlying spectral collocation methods, especially pertaining to their use in the solution of partial differential equations, are outlined. Theoretical accuracy results are reviewed and compared with results from test problems. A number of practical aspects of the construction and use of spectral methods are detailed, along with several solution schemes which have found utility in applications of spectral methods to practical problems. Results from a few of the successful applications of spectral methods to problems of aerodynamic and fluid mechanic interest are then outlined, followed by a discussion of the problem areas in spectral methods and the current research under way to overcome these difficulties.

  15. A Parallel Multigrid Solver for Viscous Flows on Anisotropic Structured Grids

    NASA Technical Reports Server (NTRS)

    Prieto, Manuel; Montero, Ruben S.; Llorente, Ignacio M.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    This paper presents an efficient parallel multigrid solver for speeding up the computation of a 3-D model that treats the flow of a viscous fluid over a flat plate. The main interest of this simulation lies in exhibiting some basic difficulties that prevent optimal multigrid efficiencies from being achieved. As the computing platform, we have used Coral, a Beowulf-class system based on Intel Pentium processors and equipped with GigaNet cLAN and switched Fast Ethernet networks. Our study not only examines the scalability of the solver but also includes a performance evaluation of Coral where the investigated solver has been used to compare several of its design choices, namely, the interconnection network (GigaNet versus switched Fast-Ethernet) and the node configuration (dual nodes versus single nodes). As a reference, the performance results have been compared with those obtained with the NAS-MG benchmark.

  16. Three-Dimensional High-Lift Analysis Using a Parallel Unstructured Multigrid Solver

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    1998-01-01

    A directional implicit unstructured agglomeration multigrid solver is ported to shared and distributed memory massively parallel machines using the explicit domain-decomposition and message-passing approach. Because the algorithm operates on local implicit lines in the unstructured mesh, special care is required in partitioning the problem for parallel computing. A weighted partitioning strategy is described which avoids breaking the implicit lines across processor boundaries, while incurring minimal additional communication overhead. Good scalability is demonstrated on a 128 processor SGI Origin 2000 machine and on a 512 processor CRAY T3E machine for reasonably fine grids. The feasibility of performing large-scale unstructured grid calculations with the parallel multigrid algorithm is demonstrated by computing the flow over a partial-span flap wing high-lift geometry on a highly resolved grid of 13.5 million points in approximately 4 hours of wall clock time on the CRAY T3E.

  17. Two Novel Methods and Multi-Mode Periodic Solutions for the Fermi-Pasta-Ulam Model

    NASA Astrophysics Data System (ADS)

    Arioli, Gianni; Koch, Hans; Terracini, Susanna

    2005-04-01

    We introduce two novel methods for studying periodic solutions of the FPU β-model, both numerically and rigorously. One is a variational approach, based on the dual formulation of the problem, and the other involves computer-assisted proofs. These methods are used e.g. to construct a new type of solutions, whose energy is spread among several modes, associated with closely spaced resonances.

  18. Computing multiple periodic solutions of nonlinear vibration problems using the harmonic balance method and Groebner bases

    NASA Astrophysics Data System (ADS)

    Grolet, Aurelien; Thouverez, Fabrice

    2015-02-01

    This paper is devoted to the study of vibration of mechanical systems with geometric nonlinearities. The harmonic balance method is used to derive systems of polynomial equations whose solutions give the frequency component of the possible steady states. Groebner basis methods are used for computing all solutions of polynomial systems. This approach allows to reduce the complete system to an unique polynomial equation in one variable driving all solutions of the problem. In addition, in order to decrease the number of variables, we propose to first work on the undamped system, and recover solution of the damped system using a continuation on the damping parameter. The search for multiple solutions is illustrated on a simple system, where the influence of the retained number of harmonic is studied. Finally, the procedure is applied on a simple cyclic system and we give a representation of the multiple states versus frequency.

  19. The exact solutions and approximate analytic solutions of the (2 + 1)-dimensional KP equation based on symmetry method.

    PubMed

    Gai, Litao; Bilige, Sudao; Jie, Yingmo

    2016-01-01

    In this paper, we successfully obtained the exact solutions and the approximate analytic solutions of the (2 + 1)-dimensional KP equation based on the Lie symmetry, the extended tanh method and the homotopy perturbation method. In first part, we obtained the symmetries of the (2 + 1)-dimensional KP equation based on the Wu-differential characteristic set algorithm and reduced it. In the second part, we constructed the abundant exact travelling wave solutions by using the extended tanh method. These solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions respectively. It should be noted that when the parameters are taken as special values, some solitary wave solutions are derived from the hyperbolic function solutions. Finally, we apply the homotopy perturbation method to obtain the approximate analytic solutions based on four kinds of initial conditions.

  20. Determining osmotic pressure of drug solutions by air humidity in equilibrium method.

    PubMed

    Zhan, Xiancheng; Li, Hui; Yu, Lan; Wei, Guocui; Li, Chengrong

    2014-06-01

    To establish a new osmotic pressure measuring method with a wide measuring range. The osmotic pressure of drug solutions is determined by measuring the relative air humidity in equilibrium with the solution. The freezing point osmometry is used as a control. The data obtained by the proposed method are comparable to those by the control method, and the measuring range of the proposed method is significantly wider than that of the control method. The proposed method is performed in an isothermal and equilibrium state, so it overcomes the defects of the freezing point and dew point osmometries which result from the heterothermal process in the measurement, and therefore is not limited to diluted solutions.

  1. Solution identification and quantitative analysis of fiber-capacitive drop analyzer based on multivariate statistical methods

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Qiu, Zurong; Huo, Xinming; Fan, Yuming; Li, Xinghua

    2017-03-01

    A fiber-capacitive drop analyzer is an instrument which monitors a growing droplet to produce a capacitive opto-tensiotrace (COT). Each COT is an integration of fiber light intensity signals and capacitance signals and can reflect the unique physicochemical property of a liquid. In this study, we propose a solution analytical and concentration quantitative method based on multivariate statistical methods. Eight characteristic values are extracted from each COT. A series of COT characteristic values of training solutions at different concentrations compose a data library of this kind of solution. A two-stage linear discriminant analysis is applied to analyze different solution libraries and establish discriminant functions. Test solutions can be discriminated by these functions. After determining the variety of test solutions, Spearman correlation test and principal components analysis are used to filter and reduce dimensions of eight characteristic values, producing a new representative parameter. A cubic spline interpolation function is built between the parameters and concentrations, based on which we can calculate the concentration of the test solution. Methanol, ethanol, n-propanol, and saline solutions are taken as experimental subjects in this paper. For each solution, nine or ten different concentrations are chosen to be the standard library, and the other two concentrations compose the test group. By using the methods mentioned above, all eight test solutions are correctly identified and the average relative error of quantitative analysis is 1.11%. The method proposed is feasible which enlarges the applicable scope of recognizing liquids based on the COT and improves the concentration quantitative precision, as well.

  2. Multi-Grid detector for neutron spectroscopy: results obtained on time-of-flight spectrometer CNCS

    NASA Astrophysics Data System (ADS)

    Anastasopoulos, M.; Bebb, R.; Berry, K.; Birch, J.; Bryś, T.; Buffet, J.-C.; Clergeau, J.-F.; Deen, P. P.; Ehlers, G.; van Esch, P.; Everett, S. M.; Guerard, B.; Hall-Wilton, R.; Herwig, K.; Hultman, L.; Höglund, C.; Iruretagoiena, I.; Issa, F.; Jensen, J.; Khaplanov, A.; Kirstein, O.; Lopez Higuera, I.; Piscitelli, F.; Robinson, L.; Schmidt, S.; Stefanescu, I.

    2017-04-01

    The Multi-Grid detector technology has evolved from the proof-of-principle and characterisation stages. Here we report on the performance of the Multi-Grid detector, the MG.CNCS prototype, which has been installed and tested at the Cold Neutron Chopper Spectrometer, CNCS at SNS. This has allowed a side-by-side comparison to the performance of 3He detectors on an operational instrument. The demonstrator has an active area of 0.2 m2. It is specifically tailored to the specifications of CNCS. The detector was installed in June 2016 and has operated since then, collecting neutron scattering data in parallel to the He-3 detectors of CNCS. In this paper, we present a comprehensive analysis of this data, in particular on instrument energy resolution, rate capability, background and relative efficiency. Stability, gamma-ray and fast neutron sensitivity have also been investigated. The effect of scattering in the detector components has been measured and provides input to comparison for Monte Carlo simulations. All data is presented in comparison to that measured by the 3He detectors simultaneously, showing that all features recorded by one detector are also recorded by the other. The energy resolution matches closely. We find that the Multi-Grid is able to match the data collected by 3He, and see an indication of a considerable advantage in the count rate capability. Based on these results, we are confident that the Multi-Grid detector will be capable of producing high quality scientific data on chopper spectrometers utilising the unprecedented neutron flux of the ESS.

  3. A Summary of the Space-Time Conservation Element and Solution Element (CESE) Method

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.

    2015-01-01

    The space-time Conservation Element and Solution Element (CESE) method for solving conservation laws is examined for its development motivation and design requirements. The characteristics of the resulting scheme are discussed. The discretization of the Euler equations is presented to show readers how to construct a scheme based on the CESE method. The differences and similarities between the CESE method and other traditional methods are discussed. The strengths and weaknesses of the method are also addressed.

  4. Convergence of Defect-Correction and Multigrid Iterations for Inviscid Flows

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2011-01-01

    Convergence of multigrid and defect-correction iterations is comprehensively studied within different incompressible and compressible inviscid regimes on high-density grids. Good smoothing properties of the defect-correction relaxation have been shown using both a modified Fourier analysis and a more general idealized-coarse-grid analysis. Single-grid defect correction alone has some slowly converging iterations on grids of medium density. The convergence is especially slow for near-sonic flows and for very low compressible Mach numbers. Additionally, the fast asymptotic convergence seen on medium density grids deteriorates on high-density grids. Certain downstream-boundary modes are very slowly damped on high-density grids. Multigrid scheme accelerates convergence of the slow defect-correction iterations to the extent determined by the coarse-grid correction. The two-level asymptotic convergence rates are stable and significantly below one in most of the regions but slow convergence is noted for near-sonic and very low-Mach compressible flows. Multigrid solver has been applied to the NACA 0012 airfoil and to different flow regimes, such as near-tangency and stagnation. Certain convergence difficulties have been encountered within stagnation regions. Nonetheless, for the airfoil flow, with a sharp trailing-edge, residuals were fast converging for a subcritical flow on a sequence of grids. For supercritical flow, residuals converged slower on some intermediate grids than on the finest grid or the two coarsest grids.

  5. Unidirectional growth of benzil crystal from solution by Sankaranarayanan-Ramasamy method and its characterization.

    PubMed

    Rajalakshmi, M; Shyju, T S; Indirajith, R; Gopalakrishnan, R

    2012-02-01

    Good quality <100> benzil single crystal with a diameter 18 mm and length 75 mm was successfully grown from solution by the unidirectional growth method of Sankaranarayanan-Ramasamy (SR) for the first time in the literature. The seed crystals have been harvested from conventional solution growth technique and subsequently used for unidirectional growth. The grown crystal was subjected to various characterization studies. The results of UV-vis spectral analysis, photoluminescence, etching and microhardness studies were compared with conventional solution grown crystal to that of SR method grown crystal. The quality of SR method grown benzil crystal is better than conventional solution grown crystal. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. A method to approximate a closest loadability limit using multiple load flow solutions

    SciTech Connect

    Yorino, Naoto; Harada, Shigemi; Cheng, Haozhong

    A new method is proposed to approximate a closest loadability limit (CLL), or closest saddle node bifurcation point, using a pair of multiple load flow solutions. More strictly, the obtainable points by the method are the stationary points including not only CLL but also farthest and saddle points. An operating solution and a low voltage load flow solution are used to efficiently estimate the node injections at a CLL as well as the left and right eigenvectors corresponding to the zero eigenvalue of the load flow Jacobian. They can be used in monitoring loadability margin, in identification of weak spotsmore » in a power system and in the examination of an optimal control against voltage collapse. Most of the computation time of the proposed method is taken in calculating the load flow solution pair. The remaining computation time is less than that of an ordinary load flow.« less

  7. A coupled Eulerian/Lagrangian method for the solution of three-dimensional vortical flows

    NASA Technical Reports Server (NTRS)

    Felici, Helene Marie

    1992-01-01

    A coupled Eulerian/Lagrangian method is presented for the reduction of numerical diffusion observed in solutions of three-dimensional rotational flows using standard Eulerian finite-volume time-marching procedures. A Lagrangian particle tracking method using particle markers is added to the Eulerian time-marching procedure and provides a correction of the Eulerian solution. In turn, the Eulerian solutions is used to integrate the Lagrangian state-vector along the particles trajectories. The Lagrangian correction technique does not require any a-priori information on the structure or position of the vortical regions. While the Eulerian solution ensures the conservation of mass and sets the pressure field, the particle markers, used as 'accuracy boosters,' take advantage of the accurate convection description of the Lagrangian solution and enhance the vorticity and entropy capturing capabilities of standard Eulerian finite-volume methods. The combined solution procedures is tested in several applications. The convection of a Lamb vortex in a straight channel is used as an unsteady compressible flow preservation test case. The other test cases concern steady incompressible flow calculations and include the preservation of turbulent inlet velocity profile, the swirling flow in a pipe, and the constant stagnation pressure flow and secondary flow calculations in bends. The last application deals with the external flow past a wing with emphasis on the trailing vortex solution. The improvement due to the addition of the Lagrangian correction technique is measured by comparison with analytical solutions when available or with Eulerian solutions on finer grids. The use of the combined Eulerian/Lagrangian scheme results in substantially lower grid resolution requirements than the standard Eulerian scheme for a given solution accuracy.

  8. A direct method of solution for the Fokas-Lenells derivative nonlinear Schrödinger equation: I. Bright soliton solutions

    NASA Astrophysics Data System (ADS)

    Matsuno, Yoshimasa

    2012-06-01

    We develop a direct method of solution for finding the bright N-soliton solution of the Fokas-Lenells derivative nonlinear Schrödinger equation. The construction of the solution is performed by means of a purely algebraic procedure using an elementary theory of determinants and does not rely on the inverse scattering transform method. We present two different expressions of the solution both of which are expressed as a ratio of determinants. We then investigate the properties of the solutions and find several new features. Specifically, we derive the formula for the phase shift caused by the collisions of bright solitons.

  9. Method for the recovery of silver from waste photographic fixer solutions

    DOEpatents

    Posey, F.A.; Palko, A.A.

    The method of the present invention is directed to the recovery of silver from spent photographic fixer solutions and for providing an effluent essentially silver-free that is suitable for discharge into commercial sewage systems. The present method involves the steps of introducing the spent photographic fixer solution into an alkaline hypochlorite solution. The oxidizing conditions of the alkaline hypochlorite solution are maintained during the addition of the fixer solution so that the silver ion complexing agents of thiosulfate and sulfite ions are effectively destroyed. Hydrazine monohydrate is then added to the oxidizing solution to form a reducing solution to effect the formation of a precipitate of silver which can be readily removed by filtration of decanting. Experimental tests indicate that greater than 99.99% of the original silver in the spent photographic fixer can be efficiently removed by practicing the present method. Also, the chemical and biological oxygen demand of the remaining effluent is significantly reduced so as to permit the discharge thereof into sewage systems at levels in compliance with federal and state environmental standards.

  10. Method for the recovery of silver from waste photographic fixer solutions

    DOEpatents

    Posey, Franz A.; Palko, Aloysius A.

    1984-01-01

    The method of the present invention is directed to the recovery of silver from spent photographic fixer solutions and for providing an effluent essentially silver-free that is suitable for discharge into commercial sewage systems. The present method involves the steps of introducing the spent photographic fixer solution into an alkaline hypochlorite solution. The oxidizing conditions of the alkaline hypochlorite solution are maintained during the addition of the fixer solution so that the silver ion complexing agents of thiosulfate and sulfite ions are effectively destroyed. Hydrazine monohydrate is then added to the oxidizing solution to form a reducing solution to effect the formation of a precipitate of silver which can be readily removed by filtration or decanting. Experimental tests indicate that greater than 99.99% of the original silver in the spent photographic fixer can be efficiently removed by practicing the present method. Also, the chemical and biological oxygen demand of the remaining effluent is significantly reduced so as to permit the discharge thereof into sewage systems at levels in compliance with federal and state environmental standards.

  11. Predictive Sampling of Rare Conformational Events in Aqueous Solution: Designing a Generalized Orthogonal Space Tempering Method.

    PubMed

    Lu, Chao; Li, Xubin; Wu, Dongsheng; Zheng, Lianqing; Yang, Wei

    2016-01-12

    In aqueous solution, solute conformational transitions are governed by intimate interplays of the fluctuations of solute-solute, solute-water, and water-water interactions. To promote molecular fluctuations to enhance sampling of essential conformational changes, a common strategy is to construct an expanded Hamiltonian through a series of Hamiltonian perturbations and thereby broaden the distribution of certain interactions of focus. Due to a lack of active sampling of configuration response to Hamiltonian transitions, it is challenging for common expanded Hamiltonian methods to robustly explore solvent mediated rare conformational events. The orthogonal space sampling (OSS) scheme, as exemplified by the orthogonal space random walk and orthogonal space tempering methods, provides a general framework for synchronous acceleration of slow configuration responses. To more effectively sample conformational transitions in aqueous solution, in this work, we devised a generalized orthogonal space tempering (gOST) algorithm. Specifically, in the Hamiltonian perturbation part, a solvent-accessible-surface-area-dependent term is introduced to implicitly perturb near-solute water-water fluctuations; more importantly in the orthogonal space response part, the generalized force order parameter is generalized as a two-dimension order parameter set, in which essential solute-solvent and solute-solute components are separately treated. The gOST algorithm is evaluated through a molecular dynamics simulation study on the explicitly solvated deca-alanine (Ala10) peptide. On the basis of a fully automated sampling protocol, the gOST simulation enabled repetitive folding and unfolding of the solvated peptide within a single continuous trajectory and allowed for detailed constructions of Ala10 folding/unfolding free energy surfaces. The gOST result reveals that solvent cooperative fluctuations play a pivotal role in Ala10 folding/unfolding transitions. In addition, our assessment

  12. Modified Method of Adaptive Artificial Viscosity for Solution of Gas Dynamics Problems on Parallel Computer Systems

    NASA Astrophysics Data System (ADS)

    Popov, Igor; Sukov, Sergey

    2018-02-01

    A modification of the adaptive artificial viscosity (AAV) method is considered. This modification is based on one stage time approximation and is adopted to calculation of gasdynamics problems on unstructured grids with an arbitrary type of grid elements. The proposed numerical method has simplified logic, better performance and parallel efficiency compared to the implementation of the original AAV method. Computer experiments evidence the robustness and convergence of the method to difference solution.

  13. Boundary-integral methods in elasticity and plasticity. [solutions of boundary value problems

    NASA Technical Reports Server (NTRS)

    Mendelson, A.

    1973-01-01

    Recently developed methods that use boundary-integral equations applied to elastic and elastoplastic boundary value problems are reviewed. Direct, indirect, and semidirect methods using potential functions, stress functions, and displacement functions are described. Examples of the use of these methods for torsion problems, plane problems, and three-dimensional problems are given. It is concluded that the boundary-integral methods represent a powerful tool for the solution of elastic and elastoplastic problems.

  14. Numerical solution of sixth-order boundary-value problems using Legendre wavelet collocation method

    NASA Astrophysics Data System (ADS)

    Sohaib, Muhammad; Haq, Sirajul; Mukhtar, Safyan; Khan, Imad

    2018-03-01

    An efficient method is proposed to approximate sixth order boundary value problems. The proposed method is based on Legendre wavelet in which Legendre polynomial is used. The mechanism of the method is to use collocation points that converts the differential equation into a system of algebraic equations. For validation two test problems are discussed. The results obtained from proposed method are quite accurate, also close to exact solution, and other different methods. The proposed method is computationally more effective and leads to more accurate results as compared to other methods from literature.

  15. Multilevel Iterative Methods in Nonlinear Computational Plasma Physics

    NASA Astrophysics Data System (ADS)

    Knoll, D. A.; Finn, J. M.

    1997-11-01

    Many applications in computational plasma physics involve the implicit numerical solution of coupled systems of nonlinear partial differential equations or integro-differential equations. Such problems arise in MHD, systems of Vlasov-Fokker-Planck equations, edge plasma fluid equations. We have been developing matrix-free Newton-Krylov algorithms for such problems and have applied these algorithms to the edge plasma fluid equations [1,2] and to the Vlasov-Fokker-Planck equation [3]. Recently we have found that with increasing grid refinement, the number of Krylov iterations required per Newton iteration has grown unmanageable [4]. This has led us to the study of multigrid methods as a means of preconditioning matrix-free Newton-Krylov methods. In this poster we will give details of the general multigrid preconditioned Newton-Krylov algorithm, as well as algorithm performance details on problems of interest in the areas of magnetohydrodynamics and edge plasma physics. Work supported by US DoE 1. Knoll and McHugh, J. Comput. Phys., 116, pg. 281 (1995) 2. Knoll and McHugh, Comput. Phys. Comm., 88, pg. 141 (1995) 3. Mousseau and Knoll, J. Comput. Phys. (1997) (to appear) 4. Knoll and McHugh, SIAM J. Sci. Comput. 19, (1998) (to appear)

  16. Meromorphic solutions of recurrence relations and DRA method for multicomponent master integrals

    NASA Astrophysics Data System (ADS)

    Lee, Roman N.; Mingulov, Kirill T.

    2018-04-01

    We formulate a method to find the meromorphic solutions of higher-order recurrence relations in the form of the sum over poles with coefficients defined recursively. Several explicit examples of the application of this technique are given. The main advantage of the described approach is that the analytical properties of the solutions are very clear (the position of poles is explicit, the behavior at infinity can be easily determined). These are exactly the properties that are required for the application of the multiloop calculation method based on dimensional recurrence relations and analyticity (the DRA method).

  17. Iterative solution of the inverse Cauchy problem for an elliptic equation by the conjugate gradient method

    NASA Astrophysics Data System (ADS)

    Vasil'ev, V. I.; Kardashevsky, A. M.; Popov, V. V.; Prokopev, G. A.

    2017-10-01

    This article presents results of computational experiment carried out using a finite-difference method for solving the inverse Cauchy problem for a two-dimensional elliptic equation. The computational algorithm involves an iterative determination of the missing boundary condition from the override condition using the conjugate gradient method. The results of calculations are carried out on the examples with exact solutions as well as at specifying an additional condition with random errors are presented. Results showed a high efficiency of the iterative method of conjugate gradients for numerical solution

  18. Approximate Solution Methods for Spectral Radiative Transfer in High Refractive Index Layers

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1994-01-01

    Some ceramic materials for high temperature applications are partially transparent for radiative transfer. The refractive indices of these materials can be substantially greater than one which influences internal radiative emission and reflections. Heat transfer behavior of single and laminated layers has been obtained in the literature by numerical solutions of the radiative transfer equations coupled with heat conduction and heating at the boundaries by convection and radiation. Two-flux and diffusion methods are investigated here to obtain approximate solutions using a simpler formulation than required for exact numerical solutions. Isotropic scattering is included. The two-flux method for a single layer yields excellent results for gray and two band spectral calculations. The diffusion method yields a good approximation for spectral behavior in laminated multiple layers if the overall optical thickness is larger than about ten. A hybrid spectral model is developed using the two-flux method in the optically thin bands, and radiative diffusion in bands that are optically thick.

  19. Methods and Applications for Advancing Distance Education Technologies: International Issues and Solutions

    ERIC Educational Resources Information Center

    Syed, Mahbubur Rahman, Ed.

    2009-01-01

    The emerging field of advanced distance education delivers academic courses across time and distance, allowing educators and students to participate in a convenient learning method. "Methods and Applications for Advancing Distance Education Technologies: International Issues and Solutions" demonstrates communication technologies, intelligent…

  20. Weak periodic solutions of xẍ + 1 = 0 and the Harmonic Balance Method

    NASA Astrophysics Data System (ADS)

    García-Saldaña, J. D.; Gasull, A.

    2017-02-01

    We prove that the differential equation xẍ + 1 = 0 has continuous weak periodic solutions and compute their periods. Then, we use the Harmonic Balance Method until order six to approximate these periods and to illustrate how the accuracy of the method increases with the order. Our computations rely on the Gröbner basis approach.

  1. Numerical solution of 2D-vector tomography problem using the method of approximate inverse

    SciTech Connect

    Svetov, Ivan; Maltseva, Svetlana; Polyakova, Anna

    2016-08-10

    We propose a numerical solution of reconstruction problem of a two-dimensional vector field in a unit disk from the known values of the longitudinal and transverse ray transforms. The algorithm is based on the method of approximate inverse. Numerical simulations confirm that the proposed method yields good results of reconstruction of vector fields.

  2. An induced current method for measuring zeta potential of electrolyte solution-air interface.

    PubMed

    Song, Yongxin; Zhao, Kai; Wang, Junsheng; Wu, Xudong; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing

    2014-02-15

    This paper reports a novel and very simple method for measuring the zeta potential of electrolyte solution-air interface. When a measuring electrode contacts the electrolyte solution-air interface, an electrical current will be generated due to the potential difference between the electrode-air surface and the electrolyte solution-air interface. The amplitude of the measured electric signal is linearly proportional to this potential difference; and depends only on the zeta potential at the electrolyte solution-air interface, regardless of the types and concentrations of the electrolyte. A correlation between the zeta potential and the measured voltage signal is obtained based on the experimental data. Using this equation, the zeta potential of any electrolyte solution-air interface can be evaluated quickly and easily by inserting an electrode through the electrolyte solution-air interface and measuring the electrical signal amplitude. This method was verified by comparing the obtained results of NaCl, MgCl2 and CaCl2 solutions of different pH values and concentrations with the zeta potential data reported in the published journal papers. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Device and method for screening crystallization conditions in solution crystal growth

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1995-01-01

    A device and method for detecting optimum protein crystallization conditions and for growing protein crystals in either 1g or microgravity environments comprising a housing, defining at least one pair of chambers for containing crystallization solutions is presented. The housing further defines an orifice therein for providing fluid communication between the chambers. The orifice is adapted to receive a tube which contains a gelling substance for limiting the rate of diffusive mixing of the crystallization solutions. The solutions are diffusively mixed over a period of time defined by the quantity of gelling substance sufficient to achieve equilibration and to substantially reduce density driven convection disturbances therein. The device further includes endcaps to seal the first and second chambers. One of the endcaps includes a dialysis chamber which contains protein solution in which protein crystals are grown. Once the endcaps are in place, the protein solution is exposed to the crystallization solutions wherein the solubility of the protein solution is reduced at a rate responsive to the rate of diffusive mixing of the crystallization solutions. This allows for a controlled approach to supersaturation and allows for screening of crystal growth conditions at preselected intervals.

  4. Device and Method for Screening Crystallization Conditions in Solution Crystal Growth

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1997-01-01

    A device and method for detecting optimum protein crystallization conditions and for growing protein crystals in either 1 g or microgravity environments comprising a housing defining at least one pair of chambers for containing crystallization solutions. The housing further defines an orifice therein for providing fluid communication between the chambers. The orifice is adapted to receive a tube which contains a gelling substance for limiting the rate of diffusive mixing of the crystallization solutions. The solutions are diffusively mixed over a period of time defined by the quantity of gelling substance sufficient to achieve equilibration and to substantially reduce density driven convection disturbances therein. The device further includes endcaps to seal the first and second chambers. One of the endcaps includes a dialysis chamber which contains protein solution in which protein crystals are grown. Once the endcaps are in place. the protein solution is exposed to the crystallization solutions wherein the solubility of the protein solution is reduced at a rate responsive to the rate of diffusive mixing of the crystallization solutions. This allows for a controlled approach to supersaturation and allows for screening of crystal growth conditions at preselected intervals.

  5. Compositions for, solutions for, and methods of use of siloxane based aromatic trisureas as viscosifiers

    SciTech Connect

    Doherty, Mark Daniel; O'Brien, Michael Joseph; Lee, Jason

    A compound represented by the following formula is provided: ##STR00001## Also provided is a solution including a compound disclosed herein, a volume of dense carbon dioxide (CO.sub.2), and a co-solvent, where the solution has an increased viscosity greater than the viscosity of dense CO.sub.2. Methods of increasing the viscosity of dense CO.sub.2 and natural gas liquids (NGLs) by, for example, dissolving a compound disclosed herein to form a solution, are also provided.

  6. Finding all solutions of nonlinear equations using the dual simplex method

    NASA Astrophysics Data System (ADS)

    Yamamura, Kiyotaka; Fujioka, Tsuyoshi

    2003-03-01

    Recently, an efficient algorithm has been proposed for finding all solutions of systems of nonlinear equations using linear programming. This algorithm is based on a simple test (termed the LP test) for nonexistence of a solution to a system of nonlinear equations using the dual simplex method. In this letter, an improved version of the LP test algorithm is proposed. By numerical examples, it is shown that the proposed algorithm could find all solutions of a system of 300 nonlinear equations in practical computation time.

  7. Nonlocal symmetry and explicit solutions from the CRE method of the Boussinesq equation

    NASA Astrophysics Data System (ADS)

    Zhao, Zhonglong; Han, Bo

    2018-04-01

    In this paper, we analyze the integrability of the Boussinesq equation by using the truncated Painlevé expansion and the CRE method. Based on the truncated Painlevé expansion, the nonlocal symmetry and Bäcklund transformation of this equation are obtained. A prolonged system is introduced to localize the nonlocal symmetry to the local Lie point symmetry. It is proved that the Boussinesq equation is CRE solvable. The two-solitary-wave fusion solutions, single soliton solutions and soliton-cnoidal wave solutions are presented by means of the Bäcklund transformations.

  8. Operational method of solution of linear non-integer ordinary and partial differential equations.

    PubMed

    Zhukovsky, K V

    2016-01-01

    We propose operational method with recourse to generalized forms of orthogonal polynomials for solution of a variety of differential equations of mathematical physics. Operational definitions of generalized families of orthogonal polynomials are used in this context. Integral transforms and the operational exponent together with some special functions are also employed in the solutions. The examples of solution of physical problems, related to such problems as the heat propagation in various models, evolutional processes, Black-Scholes-like equations etc. are demonstrated by the operational technique.

  9. Approximate Solution of Time-Fractional Advection-Dispersion Equation via Fractional Variational Iteration Method

    PubMed Central

    İbiş, Birol

    2014-01-01

    This paper aims to obtain the approximate solution of time-fractional advection-dispersion equation (FADE) involving Jumarie's modification of Riemann-Liouville derivative by the fractional variational iteration method (FVIM). FVIM provides an analytical approximate solution in the form of a convergent series. Some examples are given and the results indicate that the FVIM is of high accuracy, more efficient, and more convenient for solving time FADEs. PMID:24578662

  10. Applications of Space-Filling-Curves to Cartesian Methods for CFD

    NASA Technical Reports Server (NTRS)

    Aftosmis, Michael J.; Berger, Marsha J.; Murman, Scott M.

    2003-01-01

    The proposed paper presents a variety novel uses of Space-Filling-Curves (SFCs) for Cartesian mesh methods in 0. While these techniques will be demonstrated using non-body-fitted Cartesian meshes, most are applicable on general body-fitted meshes -both structured and unstructured. We demonstrate the use of single O(N log N) SFC-based reordering to produce single-pass (O(N)) algorithms for mesh partitioning, multigrid coarsening, and inter-mesh interpolation. The intermesh interpolation operator has many practical applications including warm starts on modified geometry, or as an inter-grid transfer operator on remeshed regions in moving-body simulations. Exploiting the compact construction of these operators, we further show that these algorithms are highly amenable to parallelization. Examples using the SFC-based mesh partitioner show nearly linear speedup to 512 CPUs even when using multigrid as a smoother. Partition statistics are presented showing that the SFC partitions are, on-average, within 10% of ideal even with only around 50,000 cells in each subdomain. The inter-mesh interpolation operator also has linear asymptotic complexity and can be used to map a solution with N unknowns to another mesh with M unknowns with O(max(M,N)) operations. This capability is demonstrated both on moving-body simulations and in mapping solutions to perturbed meshes for finite-difference-based gradient design methods.

  11. Applications of Space-Filling-Curves to Cartesian Methods for CFD

    NASA Technical Reports Server (NTRS)

    Aftosmis, M. J.; Murman, S. M.; Berger, M. J.

    2003-01-01

    This paper presents a variety of novel uses of space-filling-curves (SFCs) for Cartesian mesh methods in CFD. While these techniques will be demonstrated using non-body-fitted Cartesian meshes, many are applicable on general body-fitted meshes-both structured and unstructured. We demonstrate the use of single theta(N log N) SFC-based reordering to produce single-pass (theta(N)) algorithms for mesh partitioning, multigrid coarsening, and inter-mesh interpolation. The intermesh interpolation operator has many practical applications including warm starts on modified geometry, or as an inter-grid transfer operator on remeshed regions in moving-body simulations Exploiting the compact construction of these operators, we further show that these algorithms are highly amenable to parallelization. Examples using the SFC-based mesh partitioner show nearly linear speedup to 640 CPUs even when using multigrid as a smoother. Partition statistics are presented showing that the SFC partitions are, on-average, within 15% of ideal even with only around 50,000 cells in each sub-domain. The inter-mesh interpolation operator also has linear asymptotic complexity and can be used to map a solution with N unknowns to another mesh with M unknowns with theta(M + N) operations. This capability is demonstrated both on moving-body simulations and in mapping solutions to perturbed meshes for control surface deflection or finite-difference-based gradient design methods.

  12. A Spectral Method for Color Quantitation of a Protein Drug Solution.

    PubMed

    Swartz, Trevor E; Yin, Jian; Patapoff, Thomas W; Horst, Travis; Skieresz, Susan M; Leggett, Gordon; Morgan, Charles J; Rahimi, Kimia; Marhoul, Joseph; Kabakoff, Bruce

    2016-01-01

    Color is an important quality attribute for biotherapeutics. In the biotechnology industry, a visual method is most commonly utilized for color characterization of liquid drug protein solutions. The color testing method is used for both batch release and on stability testing for quality control. Using that method, an analyst visually determines the color of the sample by choosing the closest matching European Pharmacopeia reference color solution. The requirement to judge the best match makes it a subjective method. Furthermore, the visual method does not capture data on hue or chroma that would allow for improved product characterization and the ability to detect subtle differences between samples. To overcome these challenges, we describe a quantitative method for color determination that greatly reduces the variability in measuring color and allows for a more precise understanding of color differences. Following color industry standards established by International Commission on Illumination, this method converts a protein solution's visible absorption spectra to L*a*b* color space. Color matching is achieved within the L*a*b* color space, a practice that is already widely used in other industries. The work performed here is to facilitate the adoption and transition for the traditional visual assessment method to a quantitative spectral method. We describe here the algorithm used such that the quantitative spectral method correlates with the currently used visual method. In addition, we provide the L*a*b* values for the European Pharmacopeia reference color solutions required for the quantitative method. We have determined these L*a*b* values by gravimetrically preparing and measuring multiple lots of the reference color solutions. We demonstrate that the visual assessment and the quantitative spectral method are comparable using both low- and high-concentration antibody solutions and solutions with varying turbidity. In the biotechnology industry, a visual

  13. A geometric multigrid preconditioning strategy for DPG system matrices

    DOE PAGES

    Roberts, Nathan V.; Chan, Jesse

    2017-08-23

    Here, the discontinuous Petrov–Galerkin (DPG) methodology of Demkowicz and Gopalakrishnan (2010, 2011) guarantees the optimality of the solution in an energy norm, and provides several features facilitating adaptive schemes. A key question that has not yet been answered in general – though there are some results for Poisson, e.g.– is how best to precondition the DPG system matrix, so that iterative solvers may be used to allow solution of large-scale problems.

  14. An efficient method to compute spurious end point contributions in PO solutions. [Physical Optics

    NASA Technical Reports Server (NTRS)

    Gupta, Inder J.; Burnside, Walter D.; Pistorius, Carl W. I.

    1987-01-01

    A method is given to compute the spurious endpoint contributions in the physical optics solution for electromagnetic scattering from conducting bodies. The method is applicable to general three-dimensional structures. The only information required to use the method is the radius of curvature of the body at the shadow boundary. Thus, the method is very efficient for numerical computations. As an illustration, the method is applied to several bodies of revolution to compute the endpoint contributions for backscattering in the case of axial incidence. It is shown that in high-frequency situations, the endpoint contributions obtained using the method are equal to the true endpoint contributions.

  15. Extension of Nikiforov-Uvarov method for the solution of Heun equation

    SciTech Connect

    Karayer, H., E-mail: hale.karayer@gmail.com; Demirhan, D.; Büyükkılıç, F.

    2015-06-15

    We report an alternative method to solve second order differential equations which have at most four singular points. This method is developed by changing the degrees of the polynomials in the basic equation of Nikiforov-Uvarov (NU) method. This is called extended NU method for this paper. The eigenvalue solutions of Heun equation and confluent Heun equation are obtained via extended NU method. Some quantum mechanical problems such as Coulomb problem on a 3-sphere, two Coulombically repelling electrons on a sphere, and hyperbolic double-well potential are investigated by this method.

  16. Maximum Likelihood and Restricted Likelihood Solutions in Multiple-Method Studies

    PubMed Central

    Rukhin, Andrew L.

    2011-01-01

    A formulation of the problem of combining data from several sources is discussed in terms of random effects models. The unknown measurement precision is assumed not to be the same for all methods. We investigate maximum likelihood solutions in this model. By representing the likelihood equations as simultaneous polynomial equations, the exact form of the Groebner basis for their stationary points is derived when there are two methods. A parametrization of these solutions which allows their comparison is suggested. A numerical method for solving likelihood equations is outlined, and an alternative to the maximum likelihood method, the restricted maximum likelihood, is studied. In the situation when methods variances are considered to be known an upper bound on the between-method variance is obtained. The relationship between likelihood equations and moment-type equations is also discussed. PMID:26989583

  17. Maximum Likelihood and Restricted Likelihood Solutions in Multiple-Method Studies.

    PubMed

    Rukhin, Andrew L

    2011-01-01

    A formulation of the problem of combining data from several sources is discussed in terms of random effects models. The unknown measurement precision is assumed not to be the same for all methods. We investigate maximum likelihood solutions in this model. By representing the likelihood equations as simultaneous polynomial equations, the exact form of the Groebner basis for their stationary points is derived when there are two methods. A parametrization of these solutions which allows their comparison is suggested. A numerical method for solving likelihood equations is outlined, and an alternative to the maximum likelihood method, the restricted maximum likelihood, is studied. In the situation when methods variances are considered to be known an upper bound on the between-method variance is obtained. The relationship between likelihood equations and moment-type equations is also discussed.

  18. Inverse scattering method and soliton double solution family for the general symplectic gravity model

    SciTech Connect

    Gao Yajun

    A previously established Hauser-Ernst-type extended double-complex linear system is slightly modified and used to develop an inverse scattering method for the stationary axisymmetric general symplectic gravity model. The reduction procedures in this inverse scattering method are found to be fairly simple, which makes the inverse scattering method applied fine and effective. As an application, a concrete family of soliton double solutions for the considered theory is obtained.

  19. Inverse solutions for electrical impedance tomography based on conjugate gradients methods

    NASA Astrophysics Data System (ADS)

    Wang, M.

    2002-01-01

    A multistep inverse solution for two-dimensional electric field distribution is developed to deal with the nonlinear inverse problem of electric field distribution in relation to its boundary condition and the problem of divergence due to errors introduced by the ill-conditioned sensitivity matrix and the noise produced by electrode modelling and instruments. This solution is based on a normalized linear approximation method where the change in mutual impedance is derived from the sensitivity theorem and a method of error vector decomposition. This paper presents an algebraic solution of the linear equations at each inverse step, using a generalized conjugate gradients method. Limiting the number of iterations in the generalized conjugate gradients method controls the artificial errors introduced by the assumption of linearity and the ill-conditioned sensitivity matrix. The solution of the nonlinear problem is approached using a multistep inversion. This paper also reviews the mathematical and physical definitions of the sensitivity back-projection algorithm based on the sensitivity theorem. Simulations and discussion based on the multistep algorithm, the sensitivity coefficient back-projection method and the Newton-Raphson method are given. Examples of imaging gas-liquid mixing and a human hand in brine are presented.

  20. New analytical exact solutions of time fractional KdV-KZK equation by Kudryashov methods

    NASA Astrophysics Data System (ADS)

    S Saha, Ray

    2016-04-01

    In this paper, new exact solutions of the time fractional KdV-Khokhlov-Zabolotskaya-Kuznetsov (KdV-KZK) equation are obtained by the classical Kudryashov method and modified Kudryashov method respectively. For this purpose, the modified Riemann-Liouville derivative is used to convert the nonlinear time fractional KdV-KZK equation into the nonlinear ordinary differential equation. In the present analysis, the classical Kudryashov method and modified Kudryashov method are both used successively to compute the analytical solutions of the time fractional KdV-KZK equation. As a result, new exact solutions involving the symmetrical Fibonacci function, hyperbolic function and exponential function are obtained for the first time. The methods under consideration are reliable and efficient, and can be used as an alternative to establish new exact solutions of different types of fractional differential equations arising from mathematical physics. The obtained results are exhibited graphically in order to demonstrate the efficiencies and applicabilities of these proposed methods of solving the nonlinear time fractional KdV-KZK equation.

  1. Comparison of NACA 0012 Laminar Flow Solutions: Structured and Unstructured Grid Methods

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Langer, S.

    2016-01-01

    In this paper we consider the solution of the compressible Navier-Stokes equations for a class of laminar airfoil flows. The principal objective of this paper is to demonstrate that members of this class of laminar flows have steady-state solutions. These laminar airfoil flow cases are often used to evaluate accuracy, stability and convergence of numerical solution algorithms for the Navier-Stokes equations. In recent years, such flows have also been used as test cases for high-order numerical schemes. While generally consistent steady-state solutions have been obtained for these flows using higher order schemes, a number of results have been published with various solutions, including unsteady ones. We demonstrate with two different numerical methods and a range of meshes with a maximum density that exceeds 8 × 106 grid points that steady-state solutions are obtained. Furthermore, numerical evidence is presented that even when solving the equations with an unsteady algorithm, one obtains steady-state solutions.

  2. Direct Coupling Method for Time-Accurate Solution of Incompressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Soh, Woo Y.

    1992-01-01

    A noniterative finite difference numerical method is presented for the solution of the incompressible Navier-Stokes equations with second order accuracy in time and space. Explicit treatment of convection and diffusion terms and implicit treatment of the pressure gradient give a single pressure Poisson equation when the discretized momentum and continuity equations are combined. A pressure boundary condition is not needed on solid boundaries in the staggered mesh system. The solution of the pressure Poisson equation is obtained directly by Gaussian elimination. This method is tested on flow problems in a driven cavity and a curved duct.

  3. Exact solitary wave solution for higher order nonlinear Schrodinger equation using He's variational iteration method

    NASA Astrophysics Data System (ADS)

    Rani, Monika; Bhatti, Harbax S.; Singh, Vikramjeet

    2017-11-01

    In optical communication, the behavior of the ultrashort pulses of optical solitons can be described through nonlinear Schrodinger equation. This partial differential equation is widely used to contemplate a number of physically important phenomena, including optical shock waves, laser and plasma physics, quantum mechanics, elastic media, etc. The exact analytical solution of (1+n)-dimensional higher order nonlinear Schrodinger equation by He's variational iteration method has been presented. Our proposed solutions are very helpful in studying the solitary wave phenomena and ensure rapid convergent series and avoid round off errors. Different examples with graphical representations have been given to justify the capability of the method.

  4. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    DOE PAGES

    Mehmani, Yashar; Schoenherr, Martin; Pasquali, Andrea; ...

    2015-09-28

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based onmore » the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This paper provides support for

  5. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    SciTech Connect

    Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.

    2016-09-01

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based onmore » the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This study provides support for

  6. Progress in the Simulation of Steady and Time-Dependent Flows with 3D Parallel Unstructured Cartesian Methods

    NASA Technical Reports Server (NTRS)

    Aftosmis, M. J.; Berger, M. J.; Murman, S. M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The proposed paper will present recent extensions in the development of an efficient Euler solver for adaptively-refined Cartesian meshes with embedded boundaries. The paper will focus on extensions of the basic method to include solution adaptation, time-dependent flow simulation, and arbitrary rigid domain motion. The parallel multilevel method makes use of on-the-fly parallel domain decomposition to achieve extremely good scalability on large numbers of processors, and is coupled with an automatic coarse mesh generation algorithm for efficient processing by a multigrid smoother. Numerical results are presented demonstrating parallel speed-ups of up to 435 on 512 processors. Solution-based adaptation may be keyed off truncation error estimates using tau-extrapolation or a variety of feature detection based refinement parameters. The multigrid method is extended to for time-dependent flows through the use of a dual-time approach. The extension to rigid domain motion uses an Arbitrary Lagrangian-Eulerlarian (ALE) formulation, and results will be presented for a variety of two- and three-dimensional example problems with both simple and complex geometry.

  7. On the nonlinear dynamics of trolling-mode AFM: Analytical solution using multiple time scales method

    NASA Astrophysics Data System (ADS)

    Sajjadi, Mohammadreza; Pishkenari, Hossein Nejat; Vossoughi, Gholamreza

    2018-06-01

    Trolling mode atomic force microscopy (TR-AFM) has resolved many imaging problems by a considerable reduction of the liquid-resonator interaction forces in liquid environments. The present study develops a nonlinear model of the meniscus force exerted to the nanoneedle of TR-AFM and presents an analytical solution to the distributed-parameter model of TR-AFM resonator utilizing multiple time scales (MTS) method. Based on the developed analytical solution, the frequency-response curves of the resonator operation in air and liquid (for different penetration length of the nanoneedle) are obtained. The closed-form analytical solution and the frequency-response curves are validated by the comparison with both the finite element solution of the main partial differential equations and the experimental observations. The effect of excitation angle of the resonator on horizontal oscillation of the probe tip and the effect of different parameters on the frequency-response of the system are investigated.

  8. Solution of the equations for one-dimensional, two-phase, immiscible flow by geometric methods

    NASA Astrophysics Data System (ADS)

    Boronin, Ivan; Shevlyakov, Andrey

    2018-03-01

    Buckley-Leverett equations describe non viscous, immiscible, two-phase filtration, which is often of interest in modelling of oil production. For many parameters and initial conditions, the solutions of these equations exhibit non-smooth behaviour, namely discontinuities in form of shock waves. In this paper we obtain a novel method for the solution of Buckley-Leverett equations, which is based on geometry of differential equations. This method is fast, accurate, stable, and describes non-smooth phenomena. The main idea of the method is that classic discontinuous solutions correspond to the continuous surfaces in the space of jets - the so-called multi-valued solutions (Bocharov et al., Symmetries and conservation laws for differential equations of mathematical physics. American Mathematical Society, Providence, 1998). A mapping of multi-valued solutions from the jet space onto the plane of the independent variables is constructed. This mapping is not one-to-one, and its singular points form a curve on the plane of the independent variables, which is called the caustic. The real shock occurs at the points close to the caustic and is determined by the Rankine-Hugoniot conditions.

  9. Numerical method for the solution of large systems of differential equations of the boundary layer type

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Nachtsheim, P. R.

    1972-01-01

    A numerical method for the solution of large systems of nonlinear differential equations of the boundary-layer type is described. The method is a modification of the technique for satisfying asymptotic boundary conditions. The present method employs inverse interpolation instead of the Newton method to adjust the initial conditions of the related initial-value problem. This eliminates the so-called perturbation equations. The elimination of the perturbation equations not only reduces the user's preliminary work in the application of the method, but also reduces the number of time-consuming initial-value problems to be numerically solved at each iteration. For further ease of application, the solution of the overdetermined system for the unknown initial conditions is obtained automatically by applying Golub's linear least-squares algorithm. The relative ease of application of the proposed numerical method increases directly as the order of the differential-equation system increases. Hence, the method is especially attractive for the solution of large-order systems. After the method is described, it is applied to a fifth-order problem from boundary-layer theory.

  10. One shot methods for optimal control of distributed parameter systems 1: Finite dimensional control

    NASA Technical Reports Server (NTRS)

    Taasan, Shlomo

    1991-01-01

    The efficient numerical treatment of optimal control problems governed by elliptic partial differential equations (PDEs) and systems of elliptic PDEs, where the control is finite dimensional is discussed. Distributed control as well as boundary control cases are discussed. The main characteristic of the new methods is that they are designed to solve the full optimization problem directly, rather than accelerating a descent method by an efficient multigrid solver for the equations involved. The methods use the adjoint state in order to achieve efficient smoother and a robust coarsening strategy. The main idea is the treatment of the control variables on appropriate scales, i.e., control variables that correspond to smooth functions are solved for on coarse grids depending on the smoothness of these functions. Solution of the control problems is achieved with the cost of solving the constraint equations about two to three times (by a multigrid solver). Numerical examples demonstrate the effectiveness of the method proposed in distributed control case, pointwise control and boundary control problems.

  11. Steady and Unsteady Nozzle Simulations Using the Conservation Element and Solution Element Method

    NASA Technical Reports Server (NTRS)

    Friedlander, David Joshua; Wang, Xiao-Yen J.

    2014-01-01

    This paper presents results from computational fluid dynamic (CFD) simulations of a three-stream plug nozzle. Time-accurate, Euler, quasi-1D and 2D-axisymmetric simulations were performed as part of an effort to provide a CFD-based approach to modeling nozzle dynamics. The CFD code used for the simulations is based on the space-time Conservation Element and Solution Element (CESE) method. Steady-state results were validated using the Wind-US code and a code utilizing the MacCormack method while the unsteady results were partially validated via an aeroacoustic benchmark problem. The CESE steady-state flow field solutions showed excellent agreement with solutions derived from the other methods and codes while preliminary unsteady results for the three-stream plug nozzle are also shown. Additionally, a study was performed to explore the sensitivity of gross thrust computations to the control surface definition. The results showed that most of the sensitivity while computing the gross thrust is attributed to the control surface stencil resolution and choice of stencil end points and not to the control surface definition itself.Finally, comparisons between the quasi-1D and 2D-axisymetric solutions were performed in order to gain insight on whether a quasi-1D solution can capture the steady and unsteady nozzle phenomena without the cost of a 2D-axisymmetric simulation. Initial results show that while the quasi-1D solutions are similar to the 2D-axisymmetric solutions, the inability of the quasi-1D simulations to predict two dimensional phenomena limits its accuracy.

  12. Using a derivative-free optimization method for multiple solutions of inverse transport problems

    DOE PAGES

    Armstrong, Jerawan C.; Favorite, Jeffrey A.

    2016-01-14

    Identifying unknown components of an object that emits radiation is an important problem for national and global security. Radiation signatures measured from an object of interest can be used to infer object parameter values that are not known. This problem is called an inverse transport problem. An inverse transport problem may have multiple solutions and the most widely used approach for its solution is an iterative optimization method. This paper proposes a stochastic derivative-free global optimization algorithm to find multiple solutions of inverse transport problems. The algorithm is an extension of a multilevel single linkage (MLSL) method where a meshmore » adaptive direct search (MADS) algorithm is incorporated into the local phase. Furthermore, numerical test cases using uncollided fluxes of discrete gamma-ray lines are presented to show the performance of this new algorithm.« less

  13. Saturated Salt Solution Method: A Useful Cadaver Embalming for Surgical Skills Training

    PubMed Central

    Hayashi, Shogo; Homma, Hiroshi; Naito, Munekazu; Oda, Jun; Nishiyama, Takahisa; Kawamoto, Atsuo; Kawata, Shinichi; Sato, Norio; Fukuhara, Tomomi; Taguchi, Hirokazu; Mashiko, Kazuki; Azuhata, Takeo; Ito, Masayuki; Kawai, Kentaro; Suzuki, Tomoya; Nishizawa, Yuji; Araki, Jun; Matsuno, Naoto; Shirai, Takayuki; Qu, Ning; Hatayama, Naoyuki; Hirai, Shuichi; Fukui, Hidekimi; Ohseto, Kiyoshige; Yukioka, Tetsuo; Itoh, Masahiro

    2014-01-01

    Abstract This article evaluates the suitability of cadavers embalmed by the saturated salt solution (SSS) method for surgical skills training (SST). SST courses using cadavers have been performed to advance a surgeon's techniques without any risk to patients. One important factor for improving SST is the suitability of specimens, which depends on the embalming method. In addition, the infectious risk and cost involved in using cadavers are problems that need to be solved. Six cadavers were embalmed by 3 methods: formalin solution, Thiel solution (TS), and SSS methods. Bacterial and fungal culture tests and measurement of ranges of motion were conducted for each cadaver. Fourteen surgeons evaluated the 3 embalming methods and 9 SST instructors (7 trauma surgeons and 2 orthopedists) operated the cadavers by 21 procedures. In addition, ultrasonography, central venous catheterization, and incision with cauterization followed by autosuture stapling were performed in some cadavers. The SSS method had a sufficient antibiotic effect and produced cadavers with flexible joints and a high tissue quality suitable for SST. The surgeons evaluated the cadavers embalmed by the SSS method to be highly equal to those embalmed by the TS method. Ultrasound images were clear in the cadavers embalmed by both the methods. Central venous catheterization could be performed in a cadaver embalmed by the SSS method and then be affirmed by x-ray. Lungs and intestines could be incised with cauterization and autosuture stapling in the cadavers embalmed by TS and SSS methods. Cadavers embalmed by the SSS method are sufficiently useful for SST. This method is simple, carries a low infectious risk, and is relatively of low cost, enabling a wider use of cadavers for SST. PMID:25501070

  14. Saturated salt solution method: a useful cadaver embalming for surgical skills training.

    PubMed

    Hayashi, Shogo; Homma, Hiroshi; Naito, Munekazu; Oda, Jun; Nishiyama, Takahisa; Kawamoto, Atsuo; Kawata, Shinichi; Sato, Norio; Fukuhara, Tomomi; Taguchi, Hirokazu; Mashiko, Kazuki; Azuhata, Takeo; Ito, Masayuki; Kawai, Kentaro; Suzuki, Tomoya; Nishizawa, Yuji; Araki, Jun; Matsuno, Naoto; Shirai, Takayuki; Qu, Ning; Hatayama, Naoyuki; Hirai, Shuichi; Fukui, Hidekimi; Ohseto, Kiyoshige; Yukioka, Tetsuo; Itoh, Masahiro

    2014-12-01

    This article evaluates the suitability of cadavers embalmed by the saturated salt solution (SSS) method for surgical skills training (SST). SST courses using cadavers have been performed to advance a surgeon's techniques without any risk to patients. One important factor for improving SST is the suitability of specimens, which depends on the embalming method. In addition, the infectious risk and cost involved in using cadavers are problems that need to be solved. Six cadavers were embalmed by 3 methods: formalin solution, Thiel solution (TS), and SSS methods. Bacterial and fungal culture tests and measurement of ranges of motion were conducted for each cadaver. Fourteen surgeons evaluated the 3 embalming methods and 9 SST instructors (7 trauma surgeons and 2 orthopedists) operated the cadavers by 21 procedures. In addition, ultrasonography, central venous catheterization, and incision with cauterization followed by autosuture stapling were performed in some cadavers. The SSS method had a sufficient antibiotic effect and produced cadavers with flexible joints and a high tissue quality suitable for SST. The surgeons evaluated the cadavers embalmed by the SSS method to be highly equal to those embalmed by the TS method. Ultrasound images were clear in the cadavers embalmed by both the methods. Central venous catheterization could be performed in a cadaver embalmed by the SSS method and then be affirmed by x-ray. Lungs and intestines could be incised with cauterization and autosuture stapling in the cadavers embalmed by TS and SSS methods. Cadavers embalmed by the SSS method are sufficiently useful for SST. This method is simple, carries a low infectious risk, and is relatively of low cost, enabling a wider use of cadavers for SST.

  15. A new time domain random walk method for solute transport in 1-D heterogeneous media

    SciTech Connect

    Banton, O.; Delay, F.; Porel, G.

    A new method to simulate solute transport in 1-D heterogeneous media is presented. This time domain random walk method (TDRW), similar in concept to the classical random walk method, calculates the arrival time of a particle cloud at a given location (directly providing the solute breakthrough curve). The main advantage of the method is that the restrictions on the space increments and the time steps which exist with the finite differences and random walk methods are avoided. In a homogeneous zone, the breakthrough curve (BTC) can be calculated directly at a given distance using a few hundred particles or directlymore » at the boundary of the zone. Comparisons with analytical solutions and with the classical random walk method show the reliability of this method. The velocity and dispersivity calculated from the simulated results agree within two percent with the values used as input in the model. For contrasted heterogeneous media, the random walk can generate high numerical dispersion, while the time domain approach does not.« less

  16. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    SciTech Connect

    Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.

    2016-09-01

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include methods that 1) explicitly model the three-dimensional geometry of pore spaces and 2) those that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of class 1, based on direct numerical simulation using computational fluid dynamics (CFD) codes, against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of class 1 based on the immersed-boundary method (IMB),more » lattice Boltzmann method (LBM), smoothed particle hydrodynamics (SPH), as well as a model of class 2 (a pore-network model or PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and nonreactive solute transport, and intercompare the model results with previously reported experimental observations. Experimental observations are limited to measured pore-scale velocities, so solute transport comparisons are made only among the various models. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations).« less

  17. Highly Accurate Beam Torsion Solutions Using the p-Version Finite Element Method

    NASA Technical Reports Server (NTRS)

    Smith, James P.

    1996-01-01

    A new treatment of the classical beam torsion boundary value problem is applied. Using the p-version finite element method with shape functions based on Legendre polynomials, torsion solutions for generic cross-sections comprised of isotropic materials are developed. Element shape functions for quadrilateral and triangular elements are discussed, and numerical examples are provided.

  18. The Method behind the Madness: Acquiring Online Journals and a Solution to Provide Access

    ERIC Educational Resources Information Center

    Skekel, Donna

    2005-01-01

    Libraries are seeking the best possible solution for integrating online journals into their collections. While exploring the different methods and technology available, many libraries still strive to fulfill the original "library mission" proposed by Charles Cutter in his "Rules for a Dictionary Catalog". Providing comprehensive access to…

  19. Protein folding, protein structure and the origin of life: Theoretical methods and solutions of dynamical problems

    NASA Technical Reports Server (NTRS)

    Weaver, D. L.

    1982-01-01

    Theoretical methods and solutions of the dynamics of protein folding, protein aggregation, protein structure, and the origin of life are discussed. The elements of a dynamic model representing the initial stages of protein folding are presented. The calculation and experimental determination of the model parameters are discussed. The use of computer simulation for modeling protein folding is considered.

  20. Solution of second order quasi-linear boundary value problems by a wavelet method

    SciTech Connect

    Zhang, Lei; Zhou, Youhe; Wang, Jizeng, E-mail: jzwang@lzu.edu.cn

    2015-03-10

    A wavelet Galerkin method based on expansions of Coiflet-like scaling function bases is applied to solve second order quasi-linear boundary value problems which represent a class of typical nonlinear differential equations. Two types of typical engineering problems are selected as test examples: one is about nonlinear heat conduction and the other is on bending of elastic beams. Numerical results are obtained by the proposed wavelet method. Through comparing to relevant analytical solutions as well as solutions obtained by other methods, we find that the method shows better efficiency and accuracy than several others, and the rate of convergence can evenmore » reach orders of 5.8.« less

  1. F-Expansion Method and New Exact Solutions of the Schrödinger-KdV Equation

    PubMed Central

    Filiz, Ali; Ekici, Mehmet; Sonmezoglu, Abdullah

    2014-01-01

    F-expansion method is proposed to seek exact solutions of nonlinear evolution equations. With the aid of symbolic computation, we choose the Schrödinger-KdV equation with a source to illustrate the validity and advantages of the proposed method. A number of Jacobi-elliptic function solutions are obtained including the Weierstrass-elliptic function solutions. When the modulus m of Jacobi-elliptic function approaches to 1 and 0, soliton-like solutions and trigonometric-function solutions are also obtained, respectively. The proposed method is a straightforward, short, promising, and powerful method for the nonlinear evolution equations in mathematical physics. PMID:24672327

  2. F-expansion method and new exact solutions of the Schrödinger-KdV equation.

    PubMed

    Filiz, Ali; Ekici, Mehmet; Sonmezoglu, Abdullah

    2014-01-01

    F-expansion method is proposed to seek exact solutions of nonlinear evolution equations. With the aid of symbolic computation, we choose the Schrödinger-KdV equation with a source to illustrate the validity and advantages of the proposed method. A number of Jacobi-elliptic function solutions are obtained including the Weierstrass-elliptic function solutions. When the modulus m of Jacobi-elliptic function approaches to 1 and 0, soliton-like solutions and trigonometric-function solutions are also obtained, respectively. The proposed method is a straightforward, short, promising, and powerful method for the nonlinear evolution equations in mathematical physics.

  3. Exploratory High-Fidelity Aerostructural Optimization Using an Efficient Monolithic Solution Method

    NASA Astrophysics Data System (ADS)

    Zhang, Jenmy Zimi

    This thesis is motivated by the desire to discover fuel efficient aircraft concepts through exploratory design. An optimization methodology based on tightly integrated high-fidelity aerostructural analysis is proposed, which has the flexibility, robustness, and efficiency to contribute to this goal. The present aerostructural optimization methodology uses an integrated geometry parameterization and mesh movement strategy, which was initially proposed for aerodynamic shape optimization. This integrated approach provides the optimizer with a large amount of geometric freedom for conducting exploratory design, while allowing for efficient and robust mesh movement in the presence of substantial shape changes. In extending this approach to aerostructural optimization, this thesis has addressed a number of important challenges. A structural mesh deformation strategy has been introduced to translate consistently the shape changes described by the geometry parameterization to the structural model. A three-field formulation of the discrete steady aerostructural residual couples the mesh movement equations with the three-dimensional Euler equations and a linear structural analysis. Gradients needed for optimization are computed with a three-field coupled adjoint approach. A number of investigations have been conducted to demonstrate the suitability and accuracy of the present methodology for use in aerostructural optimization involving substantial shape changes. Robustness and efficiency in the coupled solution algorithms is crucial to the success of an exploratory optimization. This thesis therefore also focuses on the design of an effective monolithic solution algorithm for the proposed methodology. This involves using a Newton-Krylov method for the aerostructural analysis and a preconditioned Krylov subspace method for the coupled adjoint solution. Several aspects of the monolithic solution method have been investigated. These include appropriate strategies for scaling

  4. Apparatus for and method of producing monodisperse submicron polymer powders from solution

    DOEpatents

    Noid, Donald W.; Otaigbe, Joshua U.; Barnes, Michael D.; Sumpter, Bobby G.; Kung, Chung-Yi

    2002-01-01

    This invention describes a method of producing polymer powders from solution in a compatible solvent using a new device referred to as a microdroplets on demand generator (MODG). The embodiment of this invention is the MODG apparatus and its relevance as a method to extensive application in materials science and technology. Proof of concept is demonstrated using poly(ethylene) glycol polymer microparticles generated with the MODG and captured in a microparticle levitation device.

  5. Solid-gel precursor solutions and methods for the fabrication of polymetallicsiloxane coating films

    DOEpatents

    Sugama, Toshifumi

    1992-01-01

    Solutions and preparation methods necessary for the fabrication of metal oxide cross-linked polysiloxane coating films are disclosed. The films are useful in provide heat resistance against oxidation, wear resistance, thermal insulation, and corrosion resistance of substrates. The sol-gel precursor solution comprises a mixture of a monomeric organoalkoxysilane, a metal alkoxide M(OR).sub.n (wherein M is Ti, Zr, Ge or Al; R is CH.sub.3, C.sub.2 H.sub.5 or C.sub.3 H.sub.7 ; and n is 3 or 4), methanol, water, HCl and NaOH. The invention provides a sol-gel solution, and a method of use thereof, which can be applied and processed at low temperatures (i.e., <1000.degree. C.). The substrate can be coated by immersing it in the above mentioned solution at ambient temperature. The substrate is then withdrawn from the solution. Next, the coated substrate is heated for a time sufficient and at a temperature sufficient to yield a solid coating. The coated substrate is then heated for a time sufficient, and temperature sufficient to produce a polymetallicsiloxane coating.

  6. Solid-gel precursor solutions and methods for the fabrication of polymetallicsiloxane coating films

    DOEpatents

    Sugama, Toshifumi

    1993-01-01

    Solutions and preparation methods necessary for the fabrication of metal oxide cross-linked polysiloxane coating films are disclosed. The films are useful in provide heat resistance against oxidation, wear resistance, thermal insulation, and corrosion resistance of substrates. The sol-gel precursor solution comprises a mixture of a monomeric organoalkoxysilane, a metal alkoxide M(OR).sub.n (wherein M is Ti, Zr, Ge or Al; R is CH.sub.3, C.sub.2 H.sub.5 or C.sub.3 H.sub.7 ; and n is 3 or 4), methanol, water, HCl and NaOH. The invention provides a sol-gel solution, and a method of use thereof, which can be applied and processed at low temperatures (i.e., <1000.degree. C.). The substrate can be coated by immersing it in the above mentioned solution at ambient temperature. The substrate is then withdrawn from the solution. Next, the coated substrate is heated for a time sufficient and at a temperature sufficient to yield a solid coating. The coated substrate is then heated for a time sufficient, and temperature sufficient to produce a polymetallicsiloxane coating.

  7. Solid-gel precursor solutions and methods for the fabrication of polymetallicsiloxane coating films

    DOEpatents

    Toshifumi Sugama.

    1993-04-06

    Solutions and preparation methods necessary for the fabrication of metal oxide cross-linked polysiloxane coating films are disclosed. The films are useful in provide heat resistance against oxidation, wear resistance, thermal insulation, and corrosion resistance of substrates. The sol-gel precursor solution comprises a mixture of a monomeric organoalkoxysilane, a metal alkoxide M(OR)[sub n] (wherein M is Ti, Zr, Ge or Al; R is CH[sub 3], C[sub 2]H[sub 5] or C[sub 3]H[sub 7]; and n is 3 or 4), methanol, water, HCl and NaOH. The invention provides a sol-gel solution, and a method of use thereof, which can be applied and processed at low temperatures (i.e., < 1,000 C.). The substrate can be coated by immersing it in the above mentioned solution at ambient temperature. The substrate is then withdrawn from the solution. Next, the coated substrate is heated for a time sufficient and at a temperature sufficient to yield a solid coating. The coated substrate is then heated for a time sufficient, and temperature sufficient to produce a polymetallicsiloxane coating.

  8. Accurate analytical periodic solution of the elliptical Kepler equation using the Adomian decomposition method

    NASA Astrophysics Data System (ADS)

    Alshaery, Aisha; Ebaid, Abdelhalim

    2017-11-01

    Kepler's equation is one of the fundamental equations in orbital mechanics. It is a transcendental equation in terms of the eccentric anomaly of a planet which orbits the Sun. Determining the position of a planet in its orbit around the Sun at a given time depends upon the solution of Kepler's equation, which we will solve in this paper by the Adomian decomposition method (ADM). Several properties of the periodicity of the obtained approximate solutions have been proved in lemmas. Our calculations demonstrated a rapid convergence of the obtained approximate solutions which are displayed in tables and graphs. Also, it has been shown in this paper that only a few terms of the Adomian decomposition series are sufficient to achieve highly accurate numerical results for any number of revolutions of the Earth around the Sun as a consequence of the periodicity property. Numerically, the four-term approximate solution coincides with the Bessel-Fourier series solution in the literature up to seven decimal places at some values of the time parameter and nine decimal places at other values. Moreover, the absolute error approaches zero using the nine term approximate Adomian solution. In addition, the approximate Adomian solutions for the eccentric anomaly have been used to show the convergence of the approximate radial distances of the Earth from the Sun for any number of revolutions. The minimal distance (perihelion) and maximal distance (aphelion) approach 147 million kilometers and 152.505 million kilometers, respectively, and these coincide with the well known results in astronomical physics. Therefore, the Adomian decomposition method is validated as an effective tool to solve Kepler's equation for elliptical orbits.

  9. Numerical solution of the unsteady diffusion-convection-reaction equation based on improved spectral Galerkin method

    NASA Astrophysics Data System (ADS)

    Zhong, Jiaqi; Zeng, Cheng; Yuan, Yupeng; Zhang, Yuzhe; Zhang, Ye

    2018-04-01

    The aim of this paper is to present an explicit numerical algorithm based on improved spectral Galerkin method for solving the unsteady diffusion-convection-reaction equation. The principal characteristics of this approach give the explicit eigenvalues and eigenvectors based on the time-space separation method and boundary condition analysis. With the help of Fourier series and Galerkin truncation, we can obtain the finite-dimensional ordinary differential equations which facilitate the system analysis and controller design. By comparing with the finite element method, the numerical solutions are demonstrated via two examples. It is shown that the proposed method is effective.

  10. The RKGL method for the numerical solution of initial-value problems

    NASA Astrophysics Data System (ADS)

    Prentice, J. S. C.

    2008-04-01

    We introduce the RKGL method for the numerical solution of initial-value problems of the form y'=f(x,y), y(a)=[alpha]. The method is a straightforward modification of a classical explicit Runge-Kutta (RK) method, into which Gauss-Legendre (GL) quadrature has been incorporated. The idea is to enhance the efficiency of the method by reducing the number of times the derivative f(x,y) needs to be computed. The incorporation of GL quadrature serves to enhance the global order of the method by, relative to the underlying RK method. Indeed, the RKGL method has a global error of the form Ahr+1+Bh2m, where r is the order of the RK method and m is the number of nodes used in the GL component. In this paper we derive this error expression and show that RKGL is consistent, convergent and strongly stable.

  11. Using domain decomposition in the multigrid NAS parallel benchmark on the Fujitsu VPP500

    SciTech Connect

    Wang, J.C.H.; Lung, H.; Katsumata, Y.

    1995-12-01

    In this paper, we demonstrate how domain decomposition can be applied to the multigrid algorithm to convert the code for MPP architectures. We also discuss the performance and scalability of this implementation on the new product line of Fujitsu`s vector parallel computer, VPP500. This computer has Fujitsu`s well-known vector processor as the PE each rated at 1.6 C FLOPS. The high speed crossbar network rated at 800 MB/s provides the inter-PE communication. The results show that the physical domain decomposition is the best way to solve MG problems on VPP500.

  12. On the Performance of an Algebraic MultigridSolver on Multicore Clusters

    SciTech Connect

    Baker, A H; Schulz, M; Yang, U M

    2010-04-29

    Algebraic multigrid (AMG) solvers have proven to be extremely efficient on distributed-memory architectures. However, when executed on modern multicore cluster architectures, we face new challenges that can significantly harm AMG's performance. We discuss our experiences on such an architecture and present a set of techniques that help users to overcome the associated problems, including thread and process pinning and correct memory associations. We have implemented most of the techniques in a MultiCore SUPport library (MCSup), which helps to map OpenMP applications to multicore machines. We present results using both an MPI-only and a hybrid MPI/OpenMP model.

  13. A compatible high-order meshless method for the Stokes equations with applications to suspension flows

    NASA Astrophysics Data System (ADS)

    Trask, Nathaniel; Maxey, Martin; Hu, Xiaozhe

    2018-02-01

    A stable numerical solution of the steady Stokes problem requires compatibility between the choice of velocity and pressure approximation that has traditionally proven problematic for meshless methods. In this work, we present a discretization that couples a staggered scheme for pressure approximation with a divergence-free velocity reconstruction to obtain an adaptive, high-order, finite difference-like discretization that can be efficiently solved with conventional algebraic multigrid techniques. We use analytic benchmarks to demonstrate equal-order convergence for both velocity and pressure when solving problems with curvilinear geometries. In order to study problems in dense suspensions, we couple the solution for the flow to the equations of motion for freely suspended particles in an implicit monolithic scheme. The combination of high-order accuracy with fully-implicit schemes allows the accurate resolution of stiff lubrication forces directly from the solution of the Stokes problem without the need to introduce sub-grid lubrication models.

  14. A hybrid method for solutes in complex solvents: Density functional theory combined with empirical force fields

    NASA Astrophysics Data System (ADS)

    Eichinger, M.; Tavan, P.; Hutter, J.; Parrinello, M.

    1999-06-01

    We present a hybrid method for molecular dynamics simulations of solutes in complex solvents as represented, for example, by substrates within enzymes. The method combines a quantum mechanical (QM) description of the solute with a molecular mechanics (MM) approach for the solvent. The QM fragment of a simulation system is treated by ab initio density functional theory (DFT) based on plane-wave expansions. Long-range Coulomb interactions within the MM fragment and between the QM and the MM fragment are treated by a computationally efficient fast multipole method. For the description of covalent bonds between the two fragments, we introduce the scaled position link atom method (SPLAM), which removes the shortcomings of related procedures. The various aspects of the hybrid method are scrutinized through test calculations on liquid water, the water dimer, ethane and a small molecule related to the retinal Schiff base. In particular, the extent to which vibrational spectra obtained by DFT for the solute can be spoiled by the lower quality force field of the solvent is checked, including cases in which the two fragments are covalently joined. The results demonstrate that our QM/MM hybrid method is especially well suited for the vibrational analysis of molecules in condensed phase.

  15. A fast numerical solution of scattering by a cylinder: Spectral method for the boundary integral equations

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.

    1994-01-01

    It is known that the exact analytic solutions of wave scattering by a circular cylinder, when they exist, are not in a closed form but in infinite series which converges slowly for high frequency waves. In this paper, we present a fast number solution for the scattering problem in which the boundary integral equations, reformulated from the Helmholtz equation, are solved using a Fourier spectral method. It is shown that the special geometry considered here allows the implementation of the spectral method to be simple and very efficient. The present method differs from previous approaches in that the singularities of the integral kernels are removed and dealt with accurately. The proposed method preserves the spectral accuracy and is shown to have an exponential rate of convergence. Aspects of efficient implementation using FFT are discussed. Moreover, the boundary integral equations of combined single and double-layer representation are used in the present paper. This ensures the uniqueness of the numerical solution for the scattering problem at all frequencies. Although a strongly singular kernel is encountered for the Neumann boundary conditions, we show that the hypersingularity can be handled easily in the spectral method. Numerical examples that demonstrate the validity of the method are also presented.

  16. Abundant closed form solutions of the conformable time fractional Sawada-Kotera-Ito equation using (G‧ / G) -expansion method

    NASA Astrophysics Data System (ADS)

    Al-Shawba, Altaf Abdulkarem; Gepreel, K. A.; Abdullah, F. A.; Azmi, A.

    2018-06-01

    In current study, we use the (G‧ / G) -expansion method to construct the closed form solutions of the seventh order time fractional Sawada-Kotera-Ito (TFSKI) equation based on conformable fractional derivative. As a result, trigonometric, hyperbolic and rational functions solutions with arbitrary constants are obtained. When the arbitrary constants are taken some special values, the periodic and soliton solutions are obtained from the travelling wave solutions. The obtained solutions are new and not found elsewhere. The effect of the fractional order on some of these solutions are represented graphically to illustrate the behavior of the exact solutions when the parameter take some special choose.

  17. Validation of a Spectral Method for Quantitative Measurement of Color in Protein Drug Solutions.

    PubMed

    Yin, Jian; Swartz, Trevor E; Zhang, Jian; Patapoff, Thomas W; Chen, Bartolo; Marhoul, Joseph; Shih, Norman; Kabakoff, Bruce; Rahimi, Kimia

    2016-01-01

    A quantitative spectral method has been developed to precisely measure the color of protein solutions. In this method, a spectrophotometer is utilized for capturing the visible absorption spectrum of a protein solution, which can then be converted to color values (L*a*b*) that represent human perception of color in a quantitative three-dimensional space. These quantitative values (L*a*b*) allow for calculating the best match of a sample's color to a European Pharmacopoeia reference color solution. In order to qualify this instrument and assay for use in clinical quality control, a technical assessment was conducted to evaluate the assay suitability and precision. Setting acceptance criteria for this study required development and implementation of a unique statistical method for assessing precision in 3-dimensional space. Different instruments, cuvettes, protein solutions, and analysts were compared in this study. The instrument accuracy, repeatability, and assay precision were determined. The instrument and assay are found suitable for use in assessing color of drug substances and drug products and is comparable to the current European Pharmacopoeia visual assessment method. In the biotechnology industry, a visual assessment is the most commonly used method for color characterization, batch release, and stability testing of liquid protein drug solutions. Using this method, an analyst visually determines the color of the sample by choosing the closest match to a standard color series. This visual method can be subjective because it requires an analyst to make a judgment of the best match of color of the sample to the standard color series, and it does not capture data on hue and chroma that would allow for improved product characterization and the ability to detect subtle differences between samples. To overcome these challenges, we developed a quantitative spectral method for color determination that greatly reduces the variability in measuring color and allows

  18. Groebner Basis Methods for Stationary Solutions of a Low-Dimensional Model for a Shear Flow

    NASA Astrophysics Data System (ADS)

    Pausch, Marina; Grossmann, Florian; Eckhardt, Bruno; Romanovski, Valery G.

    2014-10-01

    We use Groebner basis methods to extract all stationary solutions for the nine-mode shear flow model described in Moehlis et al. (New J Phys 6:56, 2004). Using rational approximations to irrational wave numbers and algebraic manipulation techniques we reduce the problem of determining all stationary states to finding roots of a polynomial of order 30. The coefficients differ by 30 powers of 10, so that algorithms for extended precision are needed to extract the roots reliably. We find that there are eight stationary solutions consisting of two distinct states, each of which appears in four symmetry-related phases. We discuss extensions of these results for other flows.

  19. Determination of the absolute configuration of two estrogenic nonylphenols in solution by chiroptical methods

    NASA Astrophysics Data System (ADS)

    Reinscheid, Uwe M.

    2009-01-01

    The absolute configurations of two estrogenic nonylphenols were determined in solution. Both nonylphenols, NP35 and NP112 could not be crystallized so that only solution methods are able to solve directly the question of absolute configuration. The conclusion based on experimental and calculated optical rotation and VCD data for the nonylphenol NP35 was independently confirmed by another study using a camphanoyl derivative and X-ray analysis of the obtained crystals. In case of NP112, the experimental rotation data are inconclusive. However, the comparison between experimental and calculated VCD data allowed the determination of the absolute configuration.

  20. Systems and methods for laser assisted sample transfer to solution for chemical analysis

    DOEpatents

    Van Berkel, Gary J.; Kertesz, Vilmos; Ovchinnikova, Olga S.

    2014-06-03

    Systems and methods are described for laser ablation of an analyte from a specimen and capturing of the analyte in a dispensed solvent to form a testing solution. A solvent dispensing and extraction system can form a liquid microjunction with the specimen. The solvent dispensing and extraction system can include a surface sampling probe. The laser beam can be directed through the surface sampling probe. The surface sampling probe can also serve as an atomic force microscopy probe. The surface sampling probe can form a seal with the specimen. The testing solution including the analyte can then be analyzed using an analytical instrument or undergo further processing.

  1. Systems and methods for laser assisted sample transfer to solution for chemical analysis

    DOEpatents

    Van Berkel, Gary J.; Kertesz, Vilmos; Ovchinnikova, Olga S.

    2015-09-29

    Systems and methods are described for laser ablation of an analyte from a specimen and capturing of the analyte in a dispensed solvent to form a testing solution. A solvent dispensing and extraction system can form a liquid microjunction with the specimen. The solvent dispensing and extraction system can include a surface sampling probe. The laser beam can be directed through the surface sampling probe. The surface sampling probe can also serve as an atomic force microscopy probe. The surface sampling probe can form a seal with the specimen. The testing solution including the analyte can then be analyzed using an analytical instrument or undergo further processing.

  2. Systems and methods for laser assisted sample transfer to solution for chemical analysis

    DOEpatents

    Van Berkel, Gary J; Kertesz, Vilmos; Ovchinnikova, Olga S

    2013-08-27

    Systems and methods are described for laser ablation of an analyte from a specimen and capturing of the analyte in a dispensed solvent to form a testing solution. A solvent dispensing and extraction system can form a liquid microjunction with the specimen. The solvent dispensing and extraction system can include a surface sampling probe. The laser beam can be directed through the surface sampling probe. The surface sampling probe can also serve as an atomic force microscopy probe. The surface sampling probe can form a seal with the specimen. The testing solution including the analyte can then be analyzed using an analytical instrument or undergo further processing.

  3. Experimental cocrystal screening and solution based scale-up cocrystallization methods.

    PubMed

    Malamatari, Maria; Ross, Steven A; Douroumis, Dennis; Velaga, Sitaram P

    2017-08-01

    Cocrystals are crystalline single phase materials composed of two or more different molecular and/or ionic compounds generally in a stoichiometric ratio which are neither solvates nor simple salts. If one of the components is an active pharmaceutical ingredient (API), the term pharmaceutical cocrystal is often used. There is a growing interest among drug development scientists in exploring cocrystals, as means to address physicochemical, biopharmaceutical and mechanical properties and expand solid form diversity of the API. Conventionally, coformers are selected based on crystal engineering principles, and the equimolar mixtures of API and coformers are subjected to solution-based crystallization that are commonly employed in polymorph and salt screening. However, the availability of new knowledge on cocrystal phase behaviour in solid state and solutions has spurred the development and implementation of more rational experimental cocrystal screening as well as scale-up methods. This review aims to provide overview of commonly employed solid form screening techniques in drug development with an emphasis on cocrystal screening methodologies. The latest developments in understanding and the use of cocrystal phase diagrams in both screening and solution based scale-up methods are also presented. Final section is devoted to reviewing the state of the art research covering solution based scale-up cocrystallization process for different cocrystals besides more recent continuous crystallization methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The Linear Quadratic Gaussian Multistage Game with Nonclassical Information Pattern Using a Direct Solution Method

    NASA Astrophysics Data System (ADS)

    Clemens, Joshua William

    Game theory has application across multiple fields, spanning from economic strategy to optimal control of an aircraft and missile on an intercept trajectory. The idea of game theory is fascinating in that we can actually mathematically model real-world scenarios and determine optimal decision making. It may not always be easy to mathematically model certain real-world scenarios, nonetheless, game theory gives us an appreciation for the complexity involved in decision making. This complexity is especially apparent when the players involved have access to different information upon which to base their decision making (a nonclassical information pattern). Here we will focus on the class of adversarial two-player games (sometimes referred to as pursuit-evasion games) with nonclassical information pattern. We present a two-sided (simultaneous) optimization solution method for the two-player linear quadratic Gaussian (LQG) multistage game. This direct solution method allows for further interpretation of each player's decision making (strategy) as compared to previously used formal solution methods. In addition to the optimal control strategies, we present a saddle point proof and we derive an expression for the optimal performance index value. We provide some numerical results in order to further interpret the optimal control strategies and to highlight real-world application of this game-theoretic optimal solution.

  5. Accurate spectral solutions for the parabolic and elliptic partial differential equations by the ultraspherical tau method

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Abd-Elhameed, W. M.

    2005-09-01

    We present a double ultraspherical spectral methods that allow the efficient approximate solution for the parabolic partial differential equations in a square subject to the most general inhomogeneous mixed boundary conditions. The differential equations with their boundary and initial conditions are reduced to systems of ordinary differential equations for the time-dependent expansion coefficients. These systems are greatly simplified by using tensor matrix algebra, and are solved by using the step-by-step method. Numerical applications of how to use these methods are described. Numerical results obtained compare favorably with those of the analytical solutions. Accurate double ultraspherical spectral approximations for Poisson's and Helmholtz's equations are also noted. Numerical experiments show that spectral approximation based on Chebyshev polynomials of the first kind is not always better than others based on ultraspherical polynomials.

  6. An Exact Dual Adjoint Solution Method for Turbulent Flows on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Lu, James; Park, Michael A.; Darmofal, David L.

    2003-01-01

    An algorithm for solving the discrete adjoint system based on an unstructured-grid discretization of the Navier-Stokes equations is presented. The method is constructed such that an adjoint solution exactly dual to a direct differentiation approach is recovered at each time step, yielding a convergence rate which is asymptotically equivalent to that of the primal system. The new approach is implemented within a three-dimensional unstructured-grid framework and results are presented for inviscid, laminar, and turbulent flows. Improvements to the baseline solution algorithm, such as line-implicit relaxation and a tight coupling of the turbulence model, are also presented. By storing nearest-neighbor terms in the residual computation, the dual scheme is computationally efficient, while requiring twice the memory of the flow solution. The scheme is expected to have a broad impact on computational problems related to design optimization as well as error estimation and grid adaptation efforts.

  7. Verification of low-Mach number combustion codes using the method of manufactured solutions

    NASA Astrophysics Data System (ADS)

    Shunn, Lee; Ham, Frank; Knupp, Patrick; Moin, Parviz

    2007-11-01

    Many computational combustion models rely on tabulated constitutive relations to close the system of equations. As these reactive state-equations are typically multi-dimensional and highly non-linear, their implications on the convergence and accuracy of simulation codes are not well understood. In this presentation, the effects of tabulated state-relationships on the computational performance of low-Mach number combustion codes are explored using the method of manufactured solutions (MMS). Several MMS examples are developed and applied, progressing from simple one-dimensional configurations to problems involving higher dimensionality and solution-complexity. The manufactured solutions are implemented in two multi-physics hydrodynamics codes: CDP developed at Stanford University and FUEGO developed at Sandia National Laboratories. In addition to verifying the order-of-accuracy of the codes, the MMS problems help highlight certain robustness issues in existing variable-density flow-solvers. Strategies to overcome these issues are briefly discussed.

  8. Numerical Methods for Forward and Inverse Problems in Discontinuous Media

    SciTech Connect

    Chartier, Timothy P.

    The research emphasis under this grant's funding is in the area of algebraic multigrid methods. The research has two main branches: 1) exploring interdisciplinary applications in which algebraic multigrid can make an impact and 2) extending the scope of algebraic multigrid methods with algorithmic improvements that are based in strong analysis.The work in interdisciplinary applications falls primarily in the field of biomedical imaging. Work under this grant demonstrated the effectiveness and robustness of multigrid for solving linear systems that result from highly heterogeneous finite element method models of the human head. The results in this work also give promise tomore » medical advances possible with software that may be developed. Research to extend the scope of algebraic multigrid has been focused in several areas. In collaboration with researchers at the University of Colorado, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory, the PI developed an adaptive multigrid with subcycling via complementary grids. This method has very cheap computing costs per iterate and is showing promise as a preconditioner for conjugate gradient. Recent work with Los Alamos National Laboratory concentrates on developing algorithms that take advantage of the recent advances in adaptive multigrid research. The results of the various efforts in this research could ultimately have direct use and impact to researchers for a wide variety of applications, including, astrophysics, neuroscience, contaminant transport in porous media, bi-domain heart modeling, modeling of tumor growth, and flow in heterogeneous porous media. This work has already led to basic advances in computational mathematics and numerical linear algebra and will continue to do so into the future.« less

  9. On some variational acceleration techniques and related methods for local refinement

    NASA Astrophysics Data System (ADS)

    Teigland, Rune

    1998-10-01

    This paper shows that the well-known variational acceleration method described by Wachspress (E. Wachspress, Iterative Solution of Elliptic Systems and Applications to the Neutron Diffusion Equations of Reactor Physics, Prentice-Hall, Englewood Cliffs, NJ, 1966) and later generalized to multilevels (known as the additive correction multigrid method (B.R Huthchinson and G.D. Raithby, Numer. Heat Transf., 9, 511-537 (1986))) is similar to the FAC method of McCormick and Thomas (S.F McCormick and J.W. Thomas, Math. Comput., 46, 439-456 (1986)) and related multilevel methods. The performance of the method is demonstrated for some simple model problems using local refinement and suggestions for improving the performance of the method are given.

  10. Study on a Multi-Frequency Homotopy Analysis Method for Period-Doubling Solutions of Nonlinear Systems

    NASA Astrophysics Data System (ADS)

    Fu, H. X.; Qian, Y. H.

    In this paper, a modification of homotopy analysis method (HAM) is applied to study the two-degree-of-freedom coupled Duffing system. Firstly, the process of calculating the two-degree-of-freedom coupled Duffing system is presented. Secondly, the single periodic solutions and double periodic solutions are obtained by solving the constructed nonlinear algebraic equations. Finally, comparing the periodic solutions obtained by the multi-frequency homotopy analysis method (MFHAM) and the fourth-order Runge-Kutta method, it is found that the approximate solution agrees well with the numerical solution.

  11. Algebraic multigrid preconditioning within parallel finite-element solvers for 3-D electromagnetic modelling problems in geophysics

    NASA Astrophysics Data System (ADS)

    Koldan, Jelena; Puzyrev, Vladimir; de la Puente, Josep; Houzeaux, Guillaume; Cela, José María

    2014-06-01

    We present an elaborate preconditioning scheme for Krylov subspace methods which has been developed to improve the performance and reduce the execution time of parallel node-based finite-element (FE) solvers for 3-D electromagnetic (EM) numerical modelling in exploration geophysics. This new preconditioner is based on algebraic multigrid (AMG) that uses different basic relaxation methods, such as Jacobi, symmetric successive over-relaxation (SSOR) and Gauss-Seidel, as smoothers and the wave front algorithm to create groups, which are used for a coarse-level generation. We have implemented and tested this new preconditioner within our parallel nodal FE solver for 3-D forward problems in EM induction geophysics. We have performed series of experiments for several models with different conductivity structures and characteristics to test the performance of our AMG preconditioning technique when combined with biconjugate gradient stabilized method. The results have shown that, the more challenging the problem is in terms of conductivity contrasts, ratio between the sizes of grid elements and/or frequency, the more benefit is obtained by using this preconditioner. Compared to other preconditioning schemes, such as diagonal, SSOR and truncated approximate inverse, the AMG preconditioner greatly improves the convergence of the iterative solver for all tested models. Also, when it comes to cases in which other preconditioners succeed to converge to a desired precision, AMG is able to considerably reduce the total execution time of the forward-problem code-up to an order of magnitude. Furthermore, the tests have confirmed that our AMG scheme ensures grid-independent rate of convergence, as well as improvement in convergence regardless of how big local mesh refinements are. In addition, AMG is designed to be a black-box preconditioner, which makes it easy to use and combine with different iterative methods. Finally, it has proved to be very practical and efficient in the

  12. A grid generation and flow solution method for the Euler equations on unstructured grids

    NASA Astrophysics Data System (ADS)

    Anderson, W. Kyle

    1994-01-01

    A grid generation and flow solution algorithm for the Euler equations on unstructured grids is presented. The grid generation scheme utilizes Delaunay triangulation and self-generates the field points for the mesh based on cell aspect ratios and allows for clustering near solid surfaces. The flow solution method is an implicit algorithm in which the linear set of equations arising at each time step is solved using a Gauss Seidel procedure which is completely vectorizable. In addition, a study is conducted to examine the number of subiterations required for good convergence of the overall algorithm. Grid generation results are shown in two dimensions for a National Advisory Committee for Aeronautics (NACA) 0012 airfoil as well as a two-element configuration. Flow solution results are shown for two-dimensional flow over the NACA 0012 airfoil and for a two-element configuration in which the solution has been obtained through an adaptation procedure and compared to an exact solution. Preliminary three-dimensional results are also shown in which subsonic flow over a business jet is computed.

  13. Analytical solutions for determining residual stresses in two-dimensional domains using the contour method

    PubMed Central

    Kartal, Mehmet E.

    2013-01-01

    The contour method is one of the most prevalent destructive techniques for residual stress measurement. Up to now, the method has involved the use of the finite-element (FE) method to determine the residual stresses from the experimental measurements. This paper presents analytical solutions, obtained for a semi-infinite strip and a finite rectangle, which can be used to calculate the residual stresses directly from the measured data; thereby, eliminating the need for an FE approach. The technique is then used to determine the residual stresses in a variable-polarity plasma-arc welded plate and the results show good agreement with independent neutron diffraction measurements. PMID:24204187

  14. Boundary conditions for the solution of compressible Navier-Stokes equations by an implicit factored method

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Smith, G. E.; Springer, G. S.; Rimon, Y.

    1983-01-01

    A method is presented for formulating the boundary conditions in implicit finite-difference form needed for obtaining solutions to the compressible Navier-Stokes equations by the Beam and Warming implicit factored method. The usefulness of the method was demonstrated (a) by establishing the boundary conditions applicable to the analysis of the flow inside an axisymmetric piston-cylinder configuration and (b) by calculating velocities and mass fractions inside the cylinder for different geometries and different operating conditions. Stability, selection of time step and grid sizes, and computer time requirements are discussed in reference to the piston-cylinder problem analyzed.

  15. Numerical Solutions of the Mean-Value Theorem: New Methods for Downward Continuation of Potential Fields

    NASA Astrophysics Data System (ADS)

    Zhang, Chong; Lü, Qingtian; Yan, Jiayong; Qi, Guang

    2018-04-01

    Downward continuation can enhance small-scale sources and improve resolution. Nevertheless, the common methods have disadvantages in obtaining optimal results because of divergence and instability. We derive the mean-value theorem for potential fields, which could be the theoretical basis of some data processing and interpretation. Based on numerical solutions of the mean-value theorem, we present the convergent and stable downward continuation methods by using the first-order vertical derivatives and their upward continuation. By applying one of our methods to both the synthetic and real cases, we show that our method is stable, convergent and accurate. Meanwhile, compared with the fast Fourier transform Taylor series method and the integrated second vertical derivative Taylor series method, our process has very little boundary effect and is still stable in noise. We find that the characters of the fading anomalies emerge properly in our downward continuation with respect to the original fields at the lower heights.

  16. New connection method for isolating and disinfecting intraluminal path during peritoneal dialysis solution-exchange procedures.

    PubMed

    Grabowy, R S; Kelley, R; Richter, S G; Bousquet, G G; Carr, K L

    1998-01-01

    Microbiological data have been collected on the performance of a new method of isolating and disinfecting the intraluminal path at the connect/disconnect site of a peritoneal dialysis (PD)-exchange pathway. High-temperature moist-heat (HTMH) disinfection is accomplished by a new device that uses microwave energy to heat the solution contained in the pressure-tight inner lumen of PD connector pairs between the transfer-set connector-clamp and the bag-connector break-away seal. An 85 degrees C (S.D. = 2.4 degrees C, n = 10) rise in solution temperature is seen in 12 seconds, thus yielding temperatures under pressure well over 100 degrees C with starting temperatures of 25 degrees C. Connector pairs were prepared by inoculation of a solution suspension containing at least 10(6) colony-forming units (CFU) of a test micro-organism. Approximately 0.4 mL of solution was contained within the mated connector pair. Using standard D-value determination methods, data were obtained for surviving organisms versus five exposure times and a positive control to obtain a population reduction curve. Four micro-organisms (S. epidermidis, P. aeruginosa, C. albicans, and A. niger) recognized to be among the most prevalent or problematic in causing peritonitis were tested. After microwave heating, the treated solution was aseptically withdrawn from the connector pair using a needle and syringe, plated in growth media, and incubated. Population counts of CFUs after incubation were used to establish survival curves. Results showed a tenfold population reduction in less than 3 seconds for all organisms tested. A 30-second cycle time safely achieves a > 10(8) population-reduction for bacteria and yeast organisms, and a > 10(7) population reduction for fungi. One potential benefit of using this new intraluminal disinfection method is that it may help reduce peritonitis resulting from the even more problematic pathogens such as the gram-negative bacteria and fungal organisms.

  17. Replica exchange with solute tempering: A method for sampling biological systems in explicit water

    NASA Astrophysics Data System (ADS)

    Liu, Pu; Kim, Byungchan; Friesner, Richard A.; Berne, B. J.

    2005-09-01

    An innovative replica exchange (parallel tempering) method called replica exchange with solute tempering (REST) for the efficient sampling of aqueous protein solutions is presented here. The method bypasses the poor scaling with system size of standard replica exchange and thus reduces the number of replicas (parallel processes) that must be used. This reduction is accomplished by deforming the Hamiltonian function for each replica in such a way that the acceptance probability for the exchange of replica configurations does not depend on the number of explicit water molecules in the system. For proof of concept, REST is compared with standard replica exchange for an alanine dipeptide molecule in water. The comparisons confirm that REST greatly reduces the number of CPUs required by regular replica exchange and increases the sampling efficiency. This method reduces the CPU time required for calculating thermodynamic averages and for the ab initio folding of proteins in explicit water. Author contributions: B.J.B. designed research; P.L. and B.K. performed research; P.L. and B.K. analyzed data; and P.L., B.K., R.A.F., and B.J.B. wrote the paper.Abbreviations: REST, replica exchange with solute tempering; REM, replica exchange method; MD, molecular dynamics.*P.L. and B.K. contributed equally to this work.

  18. Construction Method of Analytical Solutions to the Mathematical Physics Boundary Problems for Non-Canonical Domains

    NASA Astrophysics Data System (ADS)

    Mobarakeh, Pouyan Shakeri; Grinchenko, Victor T.

    2015-06-01

    The majority of practical cases of acoustics problems requires solving the boundary problems in non-canonical domains. Therefore construction of analytical solutions of mathematical physics boundary problems for non-canonical domains is both lucrative from the academic viewpoint, and very instrumental for elaboration of efficient algorithms of quantitative estimation of the field characteristics under study. One of the main solving ideologies for such problems is based on the superposition method that allows one to analyze a wide class of specific problems with domains which can be constructed as the union of canonically-shaped subdomains. It is also assumed that an analytical solution (or quasi-solution) can be constructed for each subdomain in one form or another. However, this case implies some difficulties in the construction of calculation algorithms, insofar as the boundary conditions are incompletely defined in the intervals, where the functions appearing in the general solution are orthogonal to each other. We discuss several typical examples of problems with such difficulties, we study their nature and identify the optimal methods to overcome them.

  19. A non-invasive photoacoustic and ultrasonic method for the measurement of glucose solution concentration

    NASA Astrophysics Data System (ADS)

    Zhao, Siwei; Tao, Wei; He, Qiaozhi; Zhao, Hui; Cao, Wenwu

    2017-03-01

    Diabetes mellitus (DM) is a chronic disease affecting nearly 400 million people worldwide. In order to manage the disease, patients need to monitor the blood glucose level by puncturing the finger several times a day, which is uncomfortable and inconvenient. We present here a potential non-invasive monitoring method based on the velocity of ultrasonic waves generated in glucose solution by the photoacoustic principal, which can recognize the glucose concentration down to 20mg/dL. In order to apply this method to warm bodies, we carefully designed the experiment and performed measurements from 30 °C to 50 °C to generate a set of calibration curves, which may be used by engineers to build devices. Most importantly, we have theoretically explained the relationship between the compressibility and the glucose concentration. Our results show that the compressibility of solution decreases with the glucose concentration, which clarified the controversy between theory and experiment results in the literature. The derived formula is generally validity, which can be used to nondestructively measure solution concentration for other types of solutions using photoacoustic principle.

  20. Solutions of interval type-2 fuzzy polynomials using a new ranking method

    NASA Astrophysics Data System (ADS)

    Rahman, Nurhakimah Ab.; Abdullah, Lazim; Ghani, Ahmad Termimi Ab.; Ahmad, Noor'Ani

    2015-10-01

    A few years ago, a ranking method have been introduced in the fuzzy polynomial equations. Concept of the ranking method is proposed to find actual roots of fuzzy polynomials (if exists). Fuzzy polynomials are transformed to system of crisp polynomials, performed by using ranking method based on three parameters namely, Value, Ambiguity and Fuzziness. However, it was found that solutions based on these three parameters are quite inefficient to produce answers. Therefore in this study a new ranking method have been developed with the aim to overcome the inherent weakness. The new ranking method which have four parameters are then applied in the interval type-2 fuzzy polynomials, covering the interval type-2 of fuzzy polynomial equation, dual fuzzy polynomial equations and system of fuzzy polynomials. The efficiency of the new ranking method then numerically considered in the triangular fuzzy numbers and the trapezoidal fuzzy numbers. Finally, the approximate solutions produced from the numerical examples indicate that the new ranking method successfully produced actual roots for the interval type-2 fuzzy polynomials.