Multigroup diffusion preconditioners for multiplying fixed-source transport problems
NASA Astrophysics Data System (ADS)
Roberts, Jeremy A.; Forget, Benoit
2014-10-01
Several preconditioners based on multigroup diffusion are developed for application to multiplying fixed-source transport problems using the discrete ordinates method. By starting from standard, one-group, diffusion synthetic acceleration (DSA), a multigroup diffusion preconditioner is constructed that shares the same fine mesh as the transport problem. As a cheaper but effective alternative, a two-grid, coarse-mesh, multigroup diffusion preconditioner is examined, for which a variety of homogenization schemes are studied to generate the coarse mesh operator. Finally, a transport-corrected diffusion preconditioner based on application of the Newton-Shulz algorithm is developed. The results of several numerical studies indicate the coarse-mesh, diffusion preconditioners work very well. In particular, a coarse-mesh, transport-corrected, diffusion preconditioner reduced the computational time of multigroup GMRES by up to a factor of 17 and outperformed best-case Gauss-Seidel results by over an order of magnitude for all problems studied.
A multigroup radiation diffusion test problem: Comparison of code results with analytic solution
Shestakov, A I; Harte, J A; Bolstad, J H; Offner, S R
2006-12-21
We consider a 1D, slab-symmetric test problem for the multigroup radiation diffusion and matter energy balance equations. The test simulates diffusion of energy from a hot central region. Opacities vary with the cube of the frequency and radiation emission is given by a Wien spectrum. We compare results from two LLNL codes, Raptor and Lasnex, with tabular data that define the analytic solution.
Multigroup radiation hydrodynamics with flux-limited diffusion and adaptive mesh refinement
NASA Astrophysics Data System (ADS)
González, M.; Vaytet, N.; Commerçon, B.; Masson, J.
2015-06-01
Context. Radiative transfer plays a crucial role in the star formation process. Because of the high computational cost, radiation-hydrodynamics simulations performed up to now have mainly been carried out in the grey approximation. In recent years, multifrequency radiation-hydrodynamics models have started to be developed in an attempt to better account for the large variations in opacities as a function of frequency. Aims: We wish to develop an efficient multigroup algorithm for the adaptive mesh refinement code RAMSES which is suited to heavy proto-stellar collapse calculations. Methods: Because of the prohibitive timestep constraints of an explicit radiative transfer method, we constructed a time-implicit solver based on a stabilized bi-conjugate gradient algorithm, and implemented it in RAMSES under the flux-limited diffusion approximation. Results: We present a series of tests that demonstrate the high performance of our scheme in dealing with frequency-dependent radiation-hydrodynamic flows. We also present a preliminary simulation of a 3D proto-stellar collapse using 20 frequency groups. Differences between grey and multigroup results are briefly discussed, and the large amount of information this new method brings us is also illustrated. Conclusions: We have implemented a multigroup flux-limited diffusion algorithm in the RAMSES code. The method performed well against standard radiation-hydrodynamics tests, and was also shown to be ripe for exploitation in the computational star formation context.
1,2,3-D Diffusion Depletion Multi-Group
Milgram, Mike
1992-04-20
CITATION is designed to solve problems using the finite difference representation of neutron diffusion theory, treating up to three space dimensions with arbitrary group to group scattering. X-y-z, theta-r-z, hexagonal z, and triagonal z geometries may be treated. Depletion problems may be solved and fuel managed for multi-cycle analysis. Extensive first order perturbation results may be obtained given microscopic data and nuclide concentrations. Statics problems may be solved and perturbation results obtained with microscopic data.
Modelling neutron transport in planetary media via analytical multigroup diffusion theory
NASA Astrophysics Data System (ADS)
Panfili, P.; Luciani, A.; Furfaro, R.; Ganapol, B. D.; Mostacci, D.
A novel analytical solution to the 1D, steady-state, multi-slab, multi-group diffusion equation is proposed as a mean to compute the energy-dependent galactic cosmic ray-induced neutron fluxes established in planetary media. More specifically, the proposed algorithm is implemented to allow fast and highly accurate determination of low-energy cosmic ray neutrons inside the Earth's surface and atmosphere. Two sets of experimental measurements have been considered to validate our model. In both cases, a good agreement between the calculated and observed neutron fluxes is achieved. Subsequently, neutron diffusion calculations have been performed for various Earth-based scenarios comprising (a) two-slab (air-soil) configuration and (b) three-slab (air-soil-ice) configuration to investigate the functional relationship between soil composition and neutron spatial distribution.
VENTURE/PC manual: A multidimensional multigroup neutron diffusion code system
Shapiro, A.; Huria, H.C.; Cho, K.W. )
1991-12-01
VENTURE/PC is a recompilation of part of the Oak Ridge BOLD VENTURE code system, which will operate on an IBM PC or compatible computer. Neutron diffusion theory solutions are obtained for multidimensional, multigroup problems. This manual contains information associated with operating the code system. The purpose of the various modules used in the code system, and the input for these modules are discussed. The PC code structure is also given. Version 2 included several enhancements not given in the original version of the code. In particular, flux iterations can be done in core rather than by reading and writing to disk, for problems which allow sufficient memory for such in-core iterations. This speeds up the iteration process. Version 3 does not include any of the special processors used in the previous versions. These special processors utilized formatted input for various elements of the code system. All such input data is now entered through the Input Processor, which produces standard interface files for the various modules in the code system. In addition, a Standard Interface File Handbook is included in the documentation which is distributed with the code, to assist in developing the input for the Input Processor.
VENTURE/PC manual: A multidimensional multigroup neutron diffusion code system. Version 3
Shapiro, A.; Huria, H.C.; Cho, K.W.
1991-12-01
VENTURE/PC is a recompilation of part of the Oak Ridge BOLD VENTURE code system, which will operate on an IBM PC or compatible computer. Neutron diffusion theory solutions are obtained for multidimensional, multigroup problems. This manual contains information associated with operating the code system. The purpose of the various modules used in the code system, and the input for these modules are discussed. The PC code structure is also given. Version 2 included several enhancements not given in the original version of the code. In particular, flux iterations can be done in core rather than by reading and writing to disk, for problems which allow sufficient memory for such in-core iterations. This speeds up the iteration process. Version 3 does not include any of the special processors used in the previous versions. These special processors utilized formatted input for various elements of the code system. All such input data is now entered through the Input Processor, which produces standard interface files for the various modules in the code system. In addition, a Standard Interface File Handbook is included in the documentation which is distributed with the code, to assist in developing the input for the Input Processor.
Wang, Y.
2013-07-01
Nonlinear diffusion acceleration (NDA) can improve the performance of a neutron transport solver significantly especially for the multigroup eigenvalue problems. The high-order transport equation and the transport-corrected low-order diffusion equation form a nonlinear system in NDA, which can be solved via a Picard iteration. The consistency of the correction of the low-order equation is important to ensure the stabilization and effectiveness of the iteration. It also makes the low-order equation preserve the scalar flux of the high-order equation. In this paper, the consistent correction for a particular discretization scheme, self-adjoint angular flux (SAAF) formulation with discrete ordinates method (S{sub N}) and continuous finite element method (CFEM) is proposed for the multigroup neutron transport equation. Equations with the anisotropic scatterings and a void treatment are included. The Picard iteration with this scheme has been implemented and tested with RattleS{sub N}ake, a MOOSE-based application at INL. Convergence results are presented. (authors)
Shestakov, A I; Offner, S R
2007-03-02
We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorporated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with adaptive mesh refinement (AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest. The physics modules are time-advanced using operator splitting. On each level, separate 'level-solve' packages advance the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alternates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient continuation ({Psi}tc). We analyze the magnitude of the {Psi}tc parameter to ensure positivity of the resulting linear system, diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement. For diffusive processes such as MGD, the refined level uses Dirichet boundary data at the coarse-fine interface and the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve (SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system of G equations, where G is the number of groups. We adapt the 'partial temperature' scheme for the SS; hence, we reuse the infrastructure developed for scalar equations. Results are presented. We consider a multigroup test problem with a known analytic solution. We demonstrate utility of {Psi}tc by running with increasingly larger timesteps. Lastly, we simulate the sudden release of energy Y inside an Al sphere (r = 15 cm) suspended in air at STP. For Y = 11 kT, we find that gray radiation diffusion and MGD produce similar results. However, if Y = 1 MT, the two packages yield different results. Our large Y simulation contradicts a long-standing theory and demonstrates
Shestakov, A I; Offner, S R
2006-09-21
We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorporated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with adaptive mesh refinement (AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest. The physics modules are time-advanced using operator splitting. On each level, separate 'level-solve' packages advance the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alternates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient continuation ({Psi}tc). We analyze the magnitude of the {Psi}tc parameter to ensure positivity of the resulting linear system, diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement. For diffusive processes such as MGD, the refined level uses Dirichet boundary data at the coarse-fine interface and the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve (SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system of G equations, where G is the number of groups. We adapt the 'partial temperature' scheme for the SS; hence, we reuse the infrastructure developed for scalar equations. Results are presented. We consider a multigroup test problem with a known analytic solution. We demonstrate utility of {Psi}tc by running with increasingly larger timesteps. Lastly, we simulate the sudden release of energy Y inside an Al sphere (r = 15 cm) suspended in air at STP. For Y = 11 kT, we find that gray radiation diffusion and MGD produce similar results. However, if Y = 1 MT, the two packages yield different results. Our large Y simulation contradicts a long-standing theory and demonstrates
ERIC Educational Resources Information Center
Rupp, Andre A.
2005-01-01
This article presents a novel exploratory multigroup approach that quantifies relative group differences within an item response theory framework using tools from functional data analysis. Specifically, examinee groups are formed using different clustering methodologies based on background and attitudinal variable profiles. Item parameters for the…
Jones, Kelvyn; Johnston, Ron; Manley, David; Owen, Dewi; Charlton, Chris
2015-12-01
We develop and apply a multilevel modeling approach that is simultaneously capable of assessing multigroup and multiscale segregation in the presence of substantial stochastic variation that accompanies ethnicity rates based on small absolute counts. Bayesian MCMC estimation of a log-normal Poisson model allows the calculation of the variance estimates of the degree of segregation in a single overall model, and credible intervals are obtained to provide a measure of uncertainty around those estimates. The procedure partitions the variance at different levels and implicitly models the dependency (or autocorrelation) at each spatial scale below the topmost one. Substantively, we apply the model to 2011 census data for London, one of the world's most ethnically diverse cities. We find that the degree of segregation depends both on scale and group.
The Suppression of Energy Discretization Errors in Multigroup Transport Calculations
Larsen, Edward
2013-06-17
The Objective of this project is to develop, implement, and test new deterministric methods to solve, as efficiently as possible, multigroup neutron transport problems having an extremely large number of groups. Our approach was to (i) use the standard CMFD method to "coarsen" the space-angle grid, yielding a multigroup diffusion equation, and (ii) use a new multigrid-in-space-and-energy technique to efficiently solve the multigroup diffusion problem. The overall strategy of (i) how to coarsen the spatial an energy grids, and (ii) how to navigate through the various grids, has the goal of minimizing the overall computational effort. This approach yields not only the fine-grid solution, but also coarse-group flux-weighted cross sections that can be used for other related problems.
A conservative multi-group approach to the Boltzmann equations for reactive gas mixtures
NASA Astrophysics Data System (ADS)
Bisi, M.; Rossani, A.; Spiga, G.
2015-11-01
Starting from a simple kinetic model for a quaternary mixture of gases undergoing a bimolecular chemical reaction, multi-group integro-differential equations are derived for the particle distribution functions of all species. The procedure takes advantage of a suitable probabilistic formulation, based on the underlying collision frequencies and transition probabilities, of the relevant reactive kinetic equations of Boltzmann type. Owing to an appropriate choice of a sufficiently large number of weight functions, it is shown that the proposed multi-group equations are able to fulfil exactly, at any order of approximation, the correct conservation laws that must be inherited from the original kinetic equations, where speed was a continuous variable. Future developments are also discussed.
CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. III. MULTIGROUP RADIATION HYDRODYNAMICS
Zhang, W.; Almgren, A.; Bell, J.; Howell, L.; Burrows, A.; Dolence, J.
2013-01-15
We present a formulation for multigroup radiation hydrodynamics that is correct to order O(v/c) using the comoving-frame approach and the flux-limited diffusion approximation. We describe a numerical algorithm for solving the system, implemented in the compressible astrophysics code, CASTRO. CASTRO uses a Eulerian grid with block-structured adaptive mesh refinement based on a nested hierarchy of logically rectangular variable-sized grids with simultaneous refinement in both space and time. In our multigroup radiation solver, the system is split into three parts: one part that couples the radiation and fluid in a hyperbolic subsystem, another part that advects the radiation in frequency space, and a parabolic part that evolves radiation diffusion and source-sink terms. The hyperbolic subsystem and the frequency space advection are solved explicitly with high-order Godunov schemes, whereas the parabolic part is solved implicitly with a first-order backward Euler method. Our multigroup radiation solver works for both neutrino and photon radiation.
MCNP: Multigroup/adjoint capabilities
Wagner, J.C.; Redmond, E.L. II; Palmtag, S.P.; Hendricks, J.S.
1994-04-01
This report discusses various aspects related to the use and validity of the general purpose Monte Carlo code MCNP for multigroup/adjoint calculations. The increased desire to perform comparisons between Monte Carlo and deterministic codes, along with the ever-present desire to increase the efficiency of large MCNP calculations has produced a greater user demand for the multigroup/adjoint capabilities. To more fully utilize these capabilities, we review the applications of the Monte Carlo multigroup/adjoint method, describe how to generate multigroup cross sections for MCNP with the auxiliary CRSRD code, describe how to use the multigroup/adjoint capability in MCNP, and provide examples and results indicating the effectiveness and validity of the MCNP multigroup/adjoint treatment. This information should assist users in taking advantage of the MCNP multigroup/adjoint capabilities.
NASA Astrophysics Data System (ADS)
Brodrick, Jonathan; Ridgers, Christopher; Dudson, Ben; Kingham, Robert; Marinak, Marty; Patel, Mehul; Umansky, Maxim; Chankin, Alex; Omotani, John
2016-10-01
Nonlocal heat transport, occurring when temperature gradients become steep on the scale of the electron mean free path (mfp), has proven critical in accurately predicting ignition-scale hohlraum energetics. A popular approach, and modern alternative to flux limiters, is the `SNB' model. This is implemented in both the HYDRA code used for simulating National Ignition Facility experiments and the CHIC code developed at the CELIA laboratory. We have performed extensive comparisons of the SNB heat flow predictions with two VFP codes, IMPACT and KIPP and found that calibrating the mfp to achieve agreement for a linear problem also improves nonlinear accuracy. Furthermore, we identify that using distinct electron-ion and electron-electron mfp's instead of a geometrically averaged one improves predictive capability when there are strong ionisation (Z) gradients. This work is funded by EPSRC Grant EP/K504178/1.
Procedure to Generate the MPACT Multigroup Library
Kim, Kang Seog
2015-12-17
The CASL neutronics simulator MPACT is under development for the neutronics and T-H coupled simulation for the light water reactor. The objective of this document is focused on reviewing the current procedure to generate the MPACT multigroup library. Detailed methodologies and procedures are included in this document for further discussion to improve the MPACT multigroup library.
A decision theoretical approach for diffusion promotion
NASA Astrophysics Data System (ADS)
Ding, Fei; Liu, Yun
2009-09-01
In order to maximize cost efficiency from scarce marketing resources, marketers are facing the problem of which group of consumers to target for promotions. We propose to use a decision theoretical approach to model this strategic situation. According to one promotion model that we develop, marketers balance between probabilities of successful persuasion and the expected profits on a diffusion scale, before making their decisions. In the other promotion model, the cost for identifying influence information is considered, and marketers are allowed to ignore individual heterogeneity. We apply the proposed approach to two threshold influence models, evaluate the utility of each promotion action, and provide discussions about the best strategy. Our results show that efforts for targeting influentials or easily influenced people might be redundant under some conditions.
A Diffusion Approach to Study Leadership Reform
ERIC Educational Resources Information Center
Adams, Curt M.; Jean-Marie, Gaetane
2011-01-01
Purpose: This study aims to draw on elements of diffusion theory to understand leadership reform. Many diffusion studies examine the spread of an innovation across social units but the objective is to examine diffusion of a collective leadership model within school units. Specifically, the strength of reform diffusion is tested to account for…
Application de la methode des sous-groupes au calcul Monte-Carlo multigroupe
NASA Astrophysics Data System (ADS)
Martin, Nicolas
effects of the scattering reaction consistent with the subgroup method. In this study, we generalize the Discrete Angle Technique, already proposed for homogeneous, multigroup cross sections, to isotopic cross sections on the form of probability tables. In this technique, the angular density is discretized into probability tables. Similarly to the cross-section case, a moment approach is used to compute the probability tables for the scattering cosine. (4) The introduction of a leakage model based on the B1 fundamental mode approximation. Unlike deterministic lattice packages, most Monte Carlo-based lattice physics codes do not include leakage models. However the generation of homogenized and condensed group constants (cross sections, diffusion coefficients) require the critical flux. This project has involved the development of a program into the DRAGON framework, written in Fortran 2003 and wrapped with a driver in C, the GANLIB 5. Choosing Fortran 2003 has permitted the use of some modern features, such as the definition of objects and methods, data encapsulation and polymorphism. The validation of the proposed code has been performed by comparison with other numerical methods: (1) The continuous-energy Monte Carlo method of the SERPENT code. (2) The Collision Probability (CP) method and the discrete ordinates (SN) method of the DRAGON lattice code. (3) The multigroup Monte Carlo code MORET, coupled with the DRAGON code. Benchmarks used in this work are representative of some industrial configurations encountered in reactor and criticality-safety calculations: (1)Pressurized Water Reactors (PWR) cells and assemblies. (2) Canada-Deuterium Uranium Reactors (CANDU-6) clusters. (3) Critical experiments from the ICSBEP handbook (International Criticality Safety Benchmark Evaluation Program).
Asymptotic, multigroup flux reconstruction and consistent discontinuity factors
Trahan, Travis J.; Larsen, Edward W.
2015-05-12
Recent theoretical work has led to an asymptotically derived expression for reconstructing the neutron flux from lattice functions and multigroup diffusion solutions. The leading-order asymptotic term is the standard expression for flux reconstruction, i.e., it is the product of a shape function, obtained through a lattice calculation, and the multigroup diffusion solution. The first-order asymptotic correction term is significant only where the gradient of the diffusion solution is not small. Inclusion of this first-order correction term can significantly improve the accuracy of the reconstructed flux. One may define discontinuity factors (DFs) to make certain angular moments of the reconstructed flux continuous across interfaces between assemblies in 1-D. Indeed, the standard assembly discontinuity factors make the zeroth moment (scalar flux) of the reconstructed flux continuous. The inclusion of the correction term in the flux reconstruction provides an additional degree of freedom that can be used to make two angular moments of the reconstructed flux continuous across interfaces by using current DFs in addition to flux DFs. Thus, numerical results demonstrate that using flux and current DFs together can be more accurate than using only flux DFs, and that making the second angular moment continuous can be more accurate than making the zeroth moment continuous.
Asymptotic, multigroup flux reconstruction and consistent discontinuity factors
Trahan, Travis J.; Larsen, Edward W.
2015-05-12
Recent theoretical work has led to an asymptotically derived expression for reconstructing the neutron flux from lattice functions and multigroup diffusion solutions. The leading-order asymptotic term is the standard expression for flux reconstruction, i.e., it is the product of a shape function, obtained through a lattice calculation, and the multigroup diffusion solution. The first-order asymptotic correction term is significant only where the gradient of the diffusion solution is not small. Inclusion of this first-order correction term can significantly improve the accuracy of the reconstructed flux. One may define discontinuity factors (DFs) to make certain angular moments of the reconstructed fluxmore » continuous across interfaces between assemblies in 1-D. Indeed, the standard assembly discontinuity factors make the zeroth moment (scalar flux) of the reconstructed flux continuous. The inclusion of the correction term in the flux reconstruction provides an additional degree of freedom that can be used to make two angular moments of the reconstructed flux continuous across interfaces by using current DFs in addition to flux DFs. Thus, numerical results demonstrate that using flux and current DFs together can be more accurate than using only flux DFs, and that making the second angular moment continuous can be more accurate than making the zeroth moment continuous.« less
An approach towards a perfect thermal diffuser
Vemuri, Krishna P.; Bandaru, Prabhakar R.
2016-01-01
A method for the most efficient removal of heat, through an anisotropic composite, is proposed. It is shown that a rational placement of constituent materials, in the radial and the azimuthal directions, at a given point in the composite yields a uniform temperature distribution in spherical diffusers. Such arrangement is accompanied by a very significant reduction of the source temperature, in principle, to infinitesimally above the ambient temperature and forms the basis for the design of a perfect thermal diffuser with maximal heat dissipation. Orders of magnitude enhanced performance, compared to that obtained through the use of a diffuser constituted from a single material with isotropic thermal conductivity has been observed and the analytical principles underlying the design were validated through extensive computational simulations. PMID:27404569
Testing Measurement Invariance in the Target Rotated Multigroup Exploratory Factor Model
ERIC Educational Resources Information Center
Dolan, Conor V.; Oort, Frans J.; Stoel, Reinoud D.; Wicherts, Jelte M.
2009-01-01
We propose a method to investigate measurement invariance in the multigroup exploratory factor model, subject to target rotation. We consider both oblique and orthogonal target rotation. This method has clear advantages over other approaches, such as the use of congruence measures. We demonstrate that the model can be implemented readily in the…
Parallel computation of multigroup reactivity coefficient using iterative method
NASA Astrophysics Data System (ADS)
Susmikanti, Mike; Dewayatna, Winter
2013-09-01
One of the research activities to support the commercial radioisotope production program is a safety research target irradiation FPM (Fission Product Molybdenum). FPM targets form a tube made of stainless steel in which the nuclear degrees of superimposed high-enriched uranium. FPM irradiation tube is intended to obtain fission. The fission material widely used in the form of kits in the world of nuclear medicine. Irradiation FPM tube reactor core would interfere with performance. One of the disorders comes from changes in flux or reactivity. It is necessary to study a method for calculating safety terrace ongoing configuration changes during the life of the reactor, making the code faster became an absolute necessity. Neutron safety margin for the research reactor can be reused without modification to the calculation of the reactivity of the reactor, so that is an advantage of using perturbation method. The criticality and flux in multigroup diffusion model was calculate at various irradiation positions in some uranium content. This model has a complex computation. Several parallel algorithms with iterative method have been developed for the sparse and big matrix solution. The Black-Red Gauss Seidel Iteration and the power iteration parallel method can be used to solve multigroup diffusion equation system and calculated the criticality and reactivity coeficient. This research was developed code for reactivity calculation which used one of safety analysis with parallel processing. It can be done more quickly and efficiently by utilizing the parallel processing in the multicore computer. This code was applied for the safety limits calculation of irradiated targets FPM with increment Uranium.
Multidimensional Simulations of Core Collapse Supernovae Using Multigroup Neutrino Transport
NASA Astrophysics Data System (ADS)
Calder, Alan Clark
We couple two-dimensional hydrodynamics to realistic one-dimensional multigroup flux-limited diffusion neutrino transport to investigate the role of two types of convection in core collapse supernovae. The types are protoneutron star convection and neutrino-driven convection. Initial conditions, time-dependent boundary conditions, and neutrino distributions for computing neutrino heating, cooling, and deleptonization rates are obtained from one-dimensional simulations that implement multigroup flux-limited diffusion and one-dimensional hydrodynamics. We find that in the presence of neutrino transport, protoneutron star convection velocities are too small relative to bulk inflow velocities to result in any significant convective transport of entropy and leptons. This is evident in our two-dimensional entropy snapshots, which in this case appear spherically symmetric. The peak angle-averaged radial and angular convection velocities are orders of magnitude smaller than they are in the corresponding 'hydrodynamics only' models. A simple analytical model that supports our numerical results is given. We also investigate neutrino-driven convection in core collapse supernovae and its ramifications for the explosion mechanism. We begin with an 'optimistic' 15 M⊙ precollapse model, which is representative of the class of stars with compact iron cores. We find that neutrino-driven convection develops, but our simulations fail to produce explosions. Failure of this 'optimistic' 15 M⊙ Newtonian model leads us to conclude that it is unlikely, at least in our approximation, that neutrino-driven convection will lead to explosions for more massive stars with fatter iron cores or in cases in which general relativity is included.
Parallel computation of multigroup reactivity coefficient using iterative method
Susmikanti, Mike; Dewayatna, Winter
2013-09-09
One of the research activities to support the commercial radioisotope production program is a safety research target irradiation FPM (Fission Product Molybdenum). FPM targets form a tube made of stainless steel in which the nuclear degrees of superimposed high-enriched uranium. FPM irradiation tube is intended to obtain fission. The fission material widely used in the form of kits in the world of nuclear medicine. Irradiation FPM tube reactor core would interfere with performance. One of the disorders comes from changes in flux or reactivity. It is necessary to study a method for calculating safety terrace ongoing configuration changes during the life of the reactor, making the code faster became an absolute necessity. Neutron safety margin for the research reactor can be reused without modification to the calculation of the reactivity of the reactor, so that is an advantage of using perturbation method. The criticality and flux in multigroup diffusion model was calculate at various irradiation positions in some uranium content. This model has a complex computation. Several parallel algorithms with iterative method have been developed for the sparse and big matrix solution. The Black-Red Gauss Seidel Iteration and the power iteration parallel method can be used to solve multigroup diffusion equation system and calculated the criticality and reactivity coeficient. This research was developed code for reactivity calculation which used one of safety analysis with parallel processing. It can be done more quickly and efficiently by utilizing the parallel processing in the multicore computer. This code was applied for the safety limits calculation of irradiated targets FPM with increment Uranium.
EXTENSION OF THE 1D FOUR-GROUP ANALYTIC NODAL METHOD TO FULL MULTIGROUP
B. D. Ganapol; D. W. Nigg
2008-09-01
In the mid 80’s, a four-group/two-region, entirely analytical 1D nodal benchmark appeared. It was readily acknowledged that this special case was as far as one could go in terms of group number and still achieve an analytical solution. In this work, we show that by decomposing the solution to the multigroup diffusion equation into homogeneous and particular solutions, extension to any number of groups is a relatively straightforward exercise using the mathematics of linear algebra.
Reflector modelling of small high leakage cores making use of multi-group nodal equivalence theory
Theron, S. A.; Reitsma, F.
2012-07-01
This research focuses on modelling reflectors in typical material testing reactors (MTRs). Equivalence theory is used to homogenise and collapse detailed transport solutions to generate equivalent nodal parameters and albedo boundary conditions for reflectors, for subsequent use in full core nodal diffusion codes. This approach to reflector modelling has been shown to be accurate for two-group large commercial light water reactor (LWR) analysis, but has not been investigated for MTRs. MTRs are smaller, with much larger leakage, environment sensitivity and multi-group spectrum dependencies than LWRs. This study aims to determine if this approach to reflector modelling is an accurate and plausible homogenisation technique for the modelling of small MTR cores. The successful implementation will result in simplified core models, better accuracy and improved efficiency of computer simulations. Codes used in this study include SCALE 6.1, OSCAR-4 and EQUIVA (the last two codes are developed and used at Necsa). The results show a five times reduction in calculational time for the proposed reduced reactor model compared to the traditional explicit model. The calculated equivalent parameters however show some sensitivity to the environment used to generate them. Differences in the results compared to the current explicit model, require more careful investigation including comparisons with a reference result, before its implementation can be recommended. (authors)
Multigroup calculations using VIM: A user's guide to ISOVIM
Blomquist, R.N.
1992-09-01
Monte Carlo calculations have long been used to benchmark more a mate approximate solution methods for reactor physics problems. The power of VIM (ref 1) lies partly in the detailed geometrical representations incorporating the (generally) curved surfaces of combinatorial geometry, and partly in the fine energy detail of pointwise cross sections which are independent of the neutron spectrum. When differences arise between Monte Carlo and deterministic calculations, the question arises, is the error in the multigroup cross sections, in the treatment of transport effects, or in the mesh-based treatment of space in the deterministic calculation The answers may not be obvious, but may be identified by combining the exact geometry capability of VIM with the multigroup formalism. We can now run VIM in a multigroup mode by producing special VIM Material files which contain point-wise data describing multigroup data with histograms. This forces VIM to solve the multigroup problem with only three small code modifications. P[sub N] scattering is simulated with the usual tabulated angular distributions with 20 equally-sized scattering angle cosine meshes. This document describes the VIM multigroup capability, the procedures for generating multigroup cross sections for VIM, and their use. The multigroup cross section generating code, ISOVIM, is described, and benchmark testing is documented.
A Note on Multigroup Comparisons Using SAS PROC CALIS
ERIC Educational Resources Information Center
Jones-Farmer, L. Allison; Pitts, Jennifer P.; Rainer, R. Kelly
2008-01-01
Although SAS PROC CALIS is not designed to perform multigroup comparisons, it is believed that SAS can be "tricked" into doing so for groups of equal size. At present, there are no comprehensive examples of the steps involved in performing a multigroup comparison in SAS. The purpose of this article is to illustrate these steps. We demonstrate…
Multigroup neutron dose calculations for proton therapy
Kelsey Iv, Charles T; Prinja, Anil K
2009-01-01
We have developed tools for the preparation of coupled multigroup proton/neutron cross section libraries. Our method is to use NJOY to process evaluated nuclear data files for incident particles below 150 MeV and MCNPX to produce data for higher energies. We modified the XSEX3 program of the MCNPX code system to produce Legendre expansions of scattering matrices generated by sampling the physics models that are comparable to the output of the GROUPR routine of NJOY. Our code combines the low and high energy scattering data with user input stopping powers and energy deposition cross sections that we also calculated using MCNPX. Our code also calculates momentum transfer coefficients for the library and optionally applies an energy straggling model to the scattering cross sections and stopping powers. The motivation was initially for deterministic solution of space radiation shielding calculations using Attila, but noting that proton therapy treatment planning may neglect secondary neutron dose assessments because of difficulty and expense, we have also investigated the feasibility of multi group methods for this application. We have shown that multigroup MCNPX solutions for secondary neutron dose compare well with continuous energy solutions and are obtainable with less than half computational cost. This efficiency comparison neglects the cost of preparing the library data, but this becomes negligible when distributed over many multi group calculations. Our deterministic calculations illustrate recognized obstacles that may have to be overcome before discrete ordinates methods can be efficient alternatives for proton therapy neutron dose calculations.
Multigroup Free-atom Doppler-broadening Approximation. Theory
Gray, Mark Girard
2015-11-06
Multigroup cross sections at a one target temperature can be Doppler-broadened to multigroup cross sections at a higher target temperature by matrix multiplication if the group structure suf- ficiently resolves the original temperature continuous energy cross section. Matrix elements are the higher temperature group weighted averages of the integral over the lower temperature group boundaries of the free-atom Doppler-broadening kernel. The results match theory for constant and 1/v multigroup cross sections at 618 lanl group structure resolution.
Mapping Diffusion in a Living Cell via the Phasor Approach
Ranjit, Suman; Lanzano, Luca; Gratton, Enrico
2014-01-01
Diffusion of a fluorescent protein within a cell has been measured using either fluctuation-based techniques (fluorescence correlation spectroscopy (FCS) or raster-scan image correlation spectroscopy) or particle tracking. However, none of these methods enables us to measure the diffusion of the fluorescent particle at each pixel of the image. Measurement using conventional single-point FCS at every individual pixel results in continuous long exposure of the cell to the laser and eventual bleaching of the sample. To overcome this limitation, we have developed what we believe to be a new method of scanning with simultaneous construction of a fluorescent image of the cell. In this believed new method of modified raster scanning, as it acquires the image, the laser scans each individual line multiple times before moving to the next line. This continues until the entire area is scanned. This is different from the original raster-scan image correlation spectroscopy approach, where data are acquired by scanning each frame once and then scanning the image multiple times. The total time of data acquisition needed for this method is much shorter than the time required for traditional FCS analysis at each pixel. However, at a single pixel, the acquired intensity time sequence is short; requiring nonconventional analysis of the correlation function to extract information about the diffusion. These correlation data have been analyzed using the phasor approach, a fit-free method that was originally developed for analysis of FLIM images. Analysis using this method results in an estimation of the average diffusion coefficient of the fluorescent species at each pixel of an image, and thus, a detailed diffusion map of the cell can be created. PMID:25517145
Mapping diffusion in a living cell via the phasor approach.
Ranjit, Suman; Lanzano, Luca; Gratton, Enrico
2014-12-16
Diffusion of a fluorescent protein within a cell has been measured using either fluctuation-based techniques (fluorescence correlation spectroscopy (FCS) or raster-scan image correlation spectroscopy) or particle tracking. However, none of these methods enables us to measure the diffusion of the fluorescent particle at each pixel of the image. Measurement using conventional single-point FCS at every individual pixel results in continuous long exposure of the cell to the laser and eventual bleaching of the sample. To overcome this limitation, we have developed what we believe to be a new method of scanning with simultaneous construction of a fluorescent image of the cell. In this believed new method of modified raster scanning, as it acquires the image, the laser scans each individual line multiple times before moving to the next line. This continues until the entire area is scanned. This is different from the original raster-scan image correlation spectroscopy approach, where data are acquired by scanning each frame once and then scanning the image multiple times. The total time of data acquisition needed for this method is much shorter than the time required for traditional FCS analysis at each pixel. However, at a single pixel, the acquired intensity time sequence is short; requiring nonconventional analysis of the correlation function to extract information about the diffusion. These correlation data have been analyzed using the phasor approach, a fit-free method that was originally developed for analysis of FLIM images. Analysis using this method results in an estimation of the average diffusion coefficient of the fluorescent species at each pixel of an image, and thus, a detailed diffusion map of the cell can be created.
Travelling Wave Solutions in Multigroup Age-Structured Epidemic Models
NASA Astrophysics Data System (ADS)
Ducrot, Arnaut; Magal, Pierre; Ruan, Shigui
2010-01-01
Age-structured epidemic models have been used to describe either the age of individuals or the age of infection of certain diseases and to determine how these characteristics affect the outcomes and consequences of epidemiological processes. Most results on age-structured epidemic models focus on the existence, uniqueness, and convergence to disease equilibria of solutions. In this paper we investigate the existence of travelling wave solutions in a deterministic age-structured model describing the circulation of a disease within a population of multigroups. Individuals of each group are able to move with a random walk which is modelled by the classical Fickian diffusion and are classified into two subclasses, susceptible and infective. A susceptible individual in a given group can be crisscross infected by direct contact with infective individuals of possibly any group. This process of transmission can depend upon the age of the disease of infected individuals. The goal of this paper is to provide sufficient conditions that ensure the existence of travelling wave solutions for the age-structured epidemic model. The case of two population groups is numerically investigated which applies to the crisscross transmission of feline immunodeficiency virus (FIV) and some sexual transmission diseases.
A Multigroup Method for the Calculation of Neutron Fluence with a Source Term
NASA Technical Reports Server (NTRS)
Heinbockel, J. H.; Clowdsley, M. S.
1998-01-01
Current research on the Grant involves the development of a multigroup method for the calculation of low energy evaporation neutron fluences associated with the Boltzmann equation. This research will enable one to predict radiation exposure under a variety of circumstances. Knowledge of radiation exposure in a free-space environment is a necessity for space travel, high altitude space planes and satellite design. This is because certain radiation environments can cause damage to biological and electronic systems involving both short term and long term effects. By having apriori knowledge of the environment one can use prediction techniques to estimate radiation damage to such systems. Appropriate shielding can be designed to protect both humans and electronic systems that are exposed to a known radiation environment. This is the goal of the current research efforts involving the multi-group method and the Green's function approach.
Focal Cortical Dysplasia (FCD) lesion analysis with complex diffusion approach.
Rajan, Jeny; Kannan, K; Kesavadas, C; Thomas, Bejoy
2009-10-01
Identification of Focal Cortical Dysplasia (FCD) can be difficult due to the subtle MRI changes. Though sequences like FLAIR (fluid attenuated inversion recovery) can detect a large majority of these lesions, there are smaller lesions without signal changes that can easily go unnoticed by the naked eye. The aim of this study is to improve the visibility of focal cortical dysplasia lesions in the T1 weighted brain MRI images. In the proposed method, we used a complex diffusion based approach for calculating the FCD affected areas. Based on the diffused image and thickness map, a complex map is created. From this complex map; FCD areas can be easily identified. MRI brains of 48 subjects selected by neuroradiologists were given to computer scientists who developed the complex map for identifying the cortical dysplasia. The scientists were blinded to the MRI interpretation result of the neuroradiologist. The FCD could be identified in all the patients in whom surgery was done, however three patients had false positive lesions. More lesions were identified in patients in whom surgery was not performed and lesions were seen in few of the controls. These were considered as false positive. This computer aided detection technique using complex diffusion approach can help detect focal cortical dysplasia in patients with epilepsy.
Signal analysis approach to ultrasonic evaluation of diffusion bond quality
Chinn, D; Thomas, G
1999-06-08
Solid state bonds like the diffusion bond are attractive techniques for joining dissimilar materials since they are not prone to the defects that occur with fusion welding. Ultrasonic methods can detect the presence of totally unbonded regions but have difficulty sensing poor bonded areas where the substrates are in intimate contact. Standard ultrasonic imaging is based on amplitude changes in the signal reflected from the bond interface. Unfortunately amplitude alone is not sensitive to bond quality. We demonstrated that there is additional information in the ultrasonic signal that correlates with bond quality. In our approach we interrogated a set of dissimilar diffusion bonded samples with broad band ultrasonic signals. The signals were digitally processed and the characteristics of the signals that corresponded to bond quality were determined. These characteristics or features were processed with pattern recognition algorithms to produce predictions of bond quality. The predicted bond quality was then compared with the destructive measurement to assess the classification capability of the ultrasonic technique
Consistent Multigroup Theory Enabling Accurate Course-Group Simulation of Gen IV Reactors
Rahnema, Farzad; Haghighat, Alireza; Ougouag, Abderrafi
2013-11-29
The objective of this proposal is the development of a consistent multi-group theory that accurately accounts for the energy-angle coupling associated with collapsed-group cross sections. This will allow for coarse-group transport and diffusion theory calculations that exhibit continuous energy accuracy and implicitly treat cross- section resonances. This is of particular importance when considering the highly heterogeneous and optically thin reactor designs within the Next Generation Nuclear Plant (NGNP) framework. In such reactors, ignoring the influence of anisotropy in the angular flux on the collapsed cross section, especially at the interface between core and reflector near which control rods are located, results in inaccurate estimates of the rod worth, a serious safety concern. The scope of this project will include the development and verification of a new multi-group theory enabling high-fidelity transport and diffusion calculations in coarse groups, as well as a methodology for the implementation of this method in existing codes. This will allow for a higher accuracy solution of reactor problems while using fewer groups and will reduce the computational expense. The proposed research represents a fundamental advancement in the understanding and improvement of multi- group theory for reactor analysis.
NASA Astrophysics Data System (ADS)
Cai, Li; Pénéliau, Yannick; Diop, Cheikh M.; Malvagi, Fausto
2014-06-01
In this paper, we discuss some improvements we recently implemented in the Monte-Carlo code TRIPOLI-4® associated with the homogenization and collapsing of subassemblies cross sections. The improvement offered us another approach to get critical multigroup cross sections with Monte-Carlo method. The new calculation method in TRIPOLI-4® tries to ensure the neutronic balances, the multiplicative factors and the critical flux spectra for some realistic geometries. We make it by at first improving the treatment of the energy transfer probability, the neutron excess weight and the neutron fission spectrum. This step is necessary for infinite geometries. The second step which will be enlarged in this paper is aimed at better dealing with the multigroup anisotropy distribution law for finite geometries. Usually, Monte-Carlo homogenized multi-group cross sections are validated within a core calculation by a deterministic code. Here, the validation of multigroup constants will also be carried out by Monte-Carlo core calculation code. Different subassemblies are tested with the new collapsing method, especially for the fast neutron reactors subassemblies.
Stochastic Functional Data Analysis: A Diffusion Model-based Approach
Zhu, Bin; Song, Peter X.-K.; Taylor, Jeremy M.G.
2011-01-01
Summary This paper presents a new modeling strategy in functional data analysis. We consider the problem of estimating an unknown smooth function given functional data with noise. The unknown function is treated as the realization of a stochastic process, which is incorporated into a diffusion model. The method of smoothing spline estimation is connected to a special case of this approach. The resulting models offer great flexibility to capture the dynamic features of functional data, and allow straightforward and meaningful interpretation. The likelihood of the models is derived with Euler approximation and data augmentation. A unified Bayesian inference method is carried out via a Markov Chain Monte Carlo algorithm including a simulation smoother. The proposed models and methods are illustrated on some prostate specific antigen data, where we also show how the models can be used for forecasting. PMID:21418053
Coupled multigroup cross sections for hydrogen interactions in plasmas
NASA Astrophysics Data System (ADS)
Wienke, B. R.; Morel, J. E.; Cayton, T. E.; Howell, R. B.
1985-10-01
Using analytical fits to the experimental cross sections for H 3 H 2, and H 2+ interactions in plasmas, developed by Gryzinski, Riviere, Jones, and Freeman, we obtain coupled multigroup cross sections and rate coefficients for hydrogen transport applications. Multigroup cross sections and rate coefficients, for specified energy group boundaries, plasma particle and temperature profiles, and cylindrical plasma confinement radius, are generated against a spatially dependent, local Maxwellian scattering background. Cross sections are formatted for direct use in production multigroup S n, Monte Carlo, or specific transport applications. Ten coupled hydrogen reactions are included and resulting cross sections for ionization, scattering, and production can be coupled or decoupled. Reactions treated include H, H 2 ionization by electrons and protons, H, H 2 charge exchange, and H 2, H 2+ dissociative mechanisms. We detail the formalism used to compute effective cross sections and rates and give practicle results for two fusion reactors.
Parkinson's disease prediction using diffusion-based atlas approach
NASA Astrophysics Data System (ADS)
Teodorescu, Roxana O.; Racoceanu, Daniel; Smit, Nicolas; Cretu, Vladimir I.; Tan, Eng K.; Chan, Ling L.
2010-03-01
We study Parkinson's disease (PD) using an automatic specialized diffusion-based atlas. A total of 47 subjects, among who 22 patients diagnosed clinically with PD and 25 control cases, underwent DTI imaging. The EPIs have lower resolution but provide essential anisotropy information for the fiber tracking process. The two volumes of interest (VOI) represented by the Substantia Nigra and the Putamen are detected on the EPI and FA respectively. We use the VOIs for the geometry-based registration. We fuse the anatomical detail detected on FA image for the putamen volume with the EPI. After 3D fibers growing on the two volumes, we compute the fiber density (FD) and the fiber volume (FV). Furthermore, we compare patients based on the extracted fibers and evaluate them according to Hohen&Yahr (H&Y) scale. This paper introduces the method used for automatic volume detection and evaluates the fiber growing method on these volumes. Our approach is important from the clinical standpoint, providing a new tool for the neurologists to evaluate and predict PD evolution. From the technical point of view, the fusion approach deals with the tensor based information (EPI) and the extraction of the anatomical detail (FA and EPI).
Coupled diffusion in lipid bilayers upon close approach
Pronk, Sander; Lindahl, Erik; Kasson, Peter M.
2014-12-23
Biomembrane interfaces create regions of slowed water dynamics in their vicinity. When two lipid bilayers come together, this effect is further accentuated, and the associated slowdown can affect the dynamics of larger-scale processes such as membrane fusion. We have used molecular dynamics simulations to examine how lipid and water dynamics are affected as two lipid bilayers approach each other. These two interacting fluid systems, lipid and water, both slow and become coupled when the lipid membranes are separated by a thin water layer. We show in particular that the water dynamics become glassy, and diffusion of lipids in the apposed leaflets becomes coupled across the water layer, while the “outer” leaflets remain unaffected. This dynamic coupling between bilayers appears mediated by lipid–water–lipid hydrogen bonding, as it occurs at bilayer separations where water–lipid hydrogen bonds become more common than water–water hydrogen bonds. We further show that such coupling occurs in simulations of vesicle–vesicle fusion prior to the fusion event itself. As a result, such altered dynamics at membrane–membrane interfaces may both stabilize the interfacial contact and slow fusion stalk formation within the interface region.
Coupled diffusion in lipid bilayers upon close approach
Pronk, Sander; Lindahl, Erik; Kasson, Peter M.
2014-12-23
Biomembrane interfaces create regions of slowed water dynamics in their vicinity. When two lipid bilayers come together, this effect is further accentuated, and the associated slowdown can affect the dynamics of larger-scale processes such as membrane fusion. We have used molecular dynamics simulations to examine how lipid and water dynamics are affected as two lipid bilayers approach each other. These two interacting fluid systems, lipid and water, both slow and become coupled when the lipid membranes are separated by a thin water layer. We show in particular that the water dynamics become glassy, and diffusion of lipids in the apposedmore » leaflets becomes coupled across the water layer, while the “outer” leaflets remain unaffected. This dynamic coupling between bilayers appears mediated by lipid–water–lipid hydrogen bonding, as it occurs at bilayer separations where water–lipid hydrogen bonds become more common than water–water hydrogen bonds. We further show that such coupling occurs in simulations of vesicle–vesicle fusion prior to the fusion event itself. As a result, such altered dynamics at membrane–membrane interfaces may both stabilize the interfacial contact and slow fusion stalk formation within the interface region.« less
The Problem of Convergence and Commitment in Multigroup Evaluation Planning.
ERIC Educational Resources Information Center
Hausken, Chester A.
This paper outlines a model for multigroup evaluation planning in a rural-education setting wherein the commitment to the structure necessary to evaluate a program is needed on the part of a research and development laboratory, the state departments of education, county supervisors, and the rural schools. To bridge the gap between basic research,…
RZ calculations for self shielded multigroup cross sections
Li, M.; Sanchez, R.; Zmijarevic, I.; Stankovski, Z.
2006-07-01
A collision probability method has been implemented for RZ geometries. The method accounts for white albedo, specular and translation boundary condition on the top and bottom surfaces of the geometry and for a white albedo condition on the outer radial surface. We have applied the RZ CP method to the calculation of multigroup self shielded cross sections for Gadolinia absorbers in BWRs. (authors)
Smith, L.A.; Gallmeier, F.X.; Gehin, J.C.
1995-05-01
The FOEHN critical experiment was analyzed to validate the use of multigroup cross sections and Oak Ridge National Laboratory neutronics computer codes in the design of the Advanced Neutron Source. The ANSL-V 99-group master cross section library was used for all the calculations. Three different critical configurations were evaluated using the multigroup KENO Monte Carlo transport code, the multigroup DORT discrete ordinates transport code, and the multigroup diffusion theory code VENTURE. The simple configuration consists of only the fuel and control elements with the heavy water reflector. The intermediate configuration includes boron endplates at the upper and lower edges of the fuel element. The complex configuration includes both the boron endplates and components in the reflector. Cross sections were processed using modules from the AMPX system. Both 99-group and 20-group cross sections were created and used in two-dimensional models of the FOEHN experiment. KENO calculations were performed using both 99-group and 20-group cross sections. The DORT and VENTURE calculations were performed using 20-group cross sections. Because the simple and intermediate configurations are azimuthally symmetric, these configurations can be explicitly modeled in R-Z geometry. Since the reflector components cannot be modeled explicitly using the current versions of these codes, three reflector component homogenization schemes were developed and evaluated for the complex configuration. Power density distributions were calculated with KENO using 99-group cross sections and with DORT and VENTURE using 20-group cross sections. The average differences between the measured values and the values calculated with the different computer codes range from 2.45 to 5.74%. The maximum differences between the measured and calculated thermal flux values for the simple and intermediate configurations are {approx} 13%, while the average differences are < 8%.
Dearing, James W; Maibach, Edward W; Buller, David B
2006-10-01
Approaches from diffusion of innovations and social marketing are used here to propose efficient means to promote and enhance the dissemination of evidence-based physical activity programs. While both approaches have traditionally been conceptualized as top-down, center-to-periphery, centralized efforts at social change, their operational methods have usually differed. The operational methods of diffusion theory have a strong relational emphasis, while the operational methods of social marketing have a strong transactional emphasis. Here, we argue for a convergence of diffusion of innovation and social marketing principles to stimulate the efficient dissemination of proven-effective programs. In general terms, we are encouraging a focus on societal sectors as a logical and efficient means for enhancing the impact of dissemination efforts. This requires an understanding of complex organizations and the functional roles played by different individuals in such organizations. In specific terms, ten principles are provided for working effectively within societal sectors and enhancing user involvement in the processes of adoption and implementation.
Langevin equation approach to diffusion magnetic resonance imaging.
Cooke, Jennie M; Kalmykov, Yuri P; Coffey, William T; Kerskens, Christian M
2009-12-01
The normal phase diffusion problem in magnetic resonance imaging (MRI) is treated by means of the Langevin equation for the phase variable using only the properties of the characteristic function of Gaussian random variables. The calculation may be simply extended to anomalous diffusion using a fractional generalization of the Langevin equation proposed by Lutz [E. Lutz, Phys. Rev. E 64, 051106 (2001)] pertaining to the fractional Brownian motion of a free particle coupled to a fractal heat bath. The results compare favorably with diffusion-weighted experiments acquired in human neuronal tissue using a 3 T MRI scanner.
Conservative Diffusions: a Constructive Approach to Nelson's Stochastic Mechanics.
NASA Astrophysics Data System (ADS)
Carlen, Eric Anders
In Nelson's stochastic mechanics, quantum phenomena are described in terms of diffusions instead of wave functions; this thesis is a study of that description. We emphasize that we are concerned here with the possibility of describing, as opposed to explaining, quantum phenomena in terms of diffusions. In this direction, the following questions arise: "Do the diffusions of stochastic mechanics--which are formally given by stochastic differential equations with extremely singular coefficients--really exist?" Given that they exist, one can ask, "Do these diffusions have physically reasonable sample path behavior, and can we use information about sample paths to study the behavior of physical systems?" These are the questions we treat in this thesis. In Chapter I we review stochastic mechanics and diffusion theory, using the Guerra-Morato variational principle to establish the connection with the Schroedinger equation. This chapter is largely expository; however, there are some novel features and proofs. In Chapter II we settle the first of the questions raised above. Using PDE methods, we construct the diffusions of stochastic mechanics. Our result is sufficiently general to be of independent mathematical interest. In Chapter III we treat potential scattering in stochastic mechanics and discuss direct probabilistic methods of studying quantum scattering problems. Our results provide a solid "Yes" in answer to the second question raised above.
Geospatial Data Fusion and Multigroup Decision Support for Surface Water Quality Management
NASA Astrophysics Data System (ADS)
Sun, A. Y.; Osidele, O.; Green, R. T.; Xie, H.
2010-12-01
Social networking and social media have gained significant popularity and brought fundamental changes to many facets of our everyday life. With the ever-increasing adoption of GPS-enabled gadgets and technology, location-based content is likely to play a central role in social networking sites. While location-based content is not new to the geoscience community, where geographic information systems (GIS) are extensively used, the delivery of useful geospatial data to targeted user groups for decision support is new. Decision makers and modelers ought to make more effective use of the new web-based tools to expand the scope of environmental awareness education, public outreach, and stakeholder interaction. Environmental decision processes are often rife with uncertainty and controversy, requiring integration of multiple sources of information and compromises between diverse interests. Fusing of multisource, multiscale environmental data for multigroup decision support is a challenging task. Toward this goal, a multigroup decision support platform should strive to achieve transparency, impartiality, and timely synthesis of information. The latter criterion often constitutes a major technical bottleneck to traditional GIS-based media, featuring large file or image sizes and requiring special processing before web deployment. Many tools and design patterns have appeared in recent years to ease the situation somewhat. In this project, we explore the use of Web 2.0 technologies for “pushing” location-based content to multigroups involved in surface water quality management and decision making. In particular, our granular bottom-up approach facilitates effective delivery of information to most relevant user groups. Our location-based content includes in-situ and remotely sensed data disseminated by NASA and other national and local agencies. Our project is demonstrated for managing the total maximum daily load (TMDL) program in the Arroyo Colorado coastal river basin
Diffusion processes in tumors: A nuclear medicine approach
NASA Astrophysics Data System (ADS)
Amaya, Helman
2016-07-01
The number of counts used in nuclear medicine imaging techniques, only provides physical information about the desintegration of the nucleus present in the the radiotracer molecules that were uptaken in a particular anatomical region, but that information is not a real metabolic information. For this reason a mathematical method was used to find a correlation between number of counts and 18F-FDG mass concentration. This correlation allows a better interpretation of the results obtained in the study of diffusive processes in an agar phantom, and based on it, an image from the PETCETIX DICOM sample image set from OsiriX-viewer software was processed. PET-CT gradient magnitude and Laplacian images could show direct information on diffusive processes for radiopharmaceuticals that enter into the cells by simple diffusion. In the case of the radiopharmaceutical 18F-FDG is necessary to include pharmacokinetic models, to make a correct interpretation of the gradient magnitude and Laplacian of counts images.
Current approaches to the management of early active diffuse scleroderma skin disease.
Nihtyanova, Svetlana I; Denton, Christopher P
2008-02-01
Skin sclerosis is a clinical hallmark of systemic sclerosis (SSc) and provides a means to classify and evaluate patients. In the diffuse cutaneous subset, skin involvement is often extensive and warrants direct therapy. Currently, broad spectrum immunosuppressive strategies are used, but more targeted specific approaches are now emerging. This article reviews the evidence for efficacy of current treatment approaches and future developments for managing skin disease in early diffuse cutaneous SSc.
Beyond the mixing-length theory - A turbulent diffusivity approach
NASA Astrophysics Data System (ADS)
Unno, W.
The use of single mode theory and Xiong's (1979, 1981) theory is considered for approximating the dynamics of convection. In the largest eddy limit, the simulation of turbulent convection is reduced to Xiong's nonlocal mixing-length theory, with application to the construction of stellar convection zones. The spectral theory is valid for large wave numbers and provides correct estimates for the eddy diffusivities. Using nonlinear convection theory, the single mode simulation with an effective Reynolds number of about 10 is shown to correctly simulate the dynamics of large scale flow. It is noted that the single mode simulation also has application to the study of the hydrodynamical properties of steller convection zones.
Disentangling micro from mesostructure by diffusion MRI: A Bayesian approach.
Reisert, Marco; Kellner, Elias; Dhital, Bibek; Hennig, Jürgen; Kiselev, Valerij G
2017-02-15
Diffusion-sensitized magnetic resonance imaging probes the cellular structure of the human brain, but the primary microstructural information gets lost in averaging over higher-level, mesoscopic tissue organization such as different orientations of neuronal fibers. While such averaging is inevitable due to the limited imaging resolution, we propose a method for disentangling the microscopic cell properties from the effects of mesoscopic structure. We further avoid the classical fitting paradigm and use supervised machine learning in terms of a Bayesian estimator to estimate the microstructural properties. The method finds detectable parameters of a given microstructural model and calculates them within seconds, which makes it suitable for a broad range of neuroscientific applications.
The partially averaged field approach to cosmic ray diffusion
NASA Technical Reports Server (NTRS)
Jones, F. C.; Birmingham, T. J.; Kaiser, T. B.
1976-01-01
The kinetic equation for particles interacting with turbulent fluctuations is derived by a new nonlinear technique which successfully corrects the difficulties associated with quasilinear theory. In this new method the effects of the fluctuations are evaluated along particle orbits which themselves include the effects of a statistically averaged subset of the possible configurations of the turbulence. The new method is illustrated by calculating the pitch angle diffusion coefficient D sub Mu Mu for particles interacting with slab model magnetic turbulence, i.e., magnetic fluctuations linearly polarized transverse to a mean magnetic field. Results are compared with those of quasilinear theory and also with those of Monte Carlo calculations. The major effect of the nonlinear treatment in this illustration is the determination of D sub Mu Mu in the vicinity of 90 deg pitch angles where quasilinear theory breaks down. The spatial diffusion coefficient parallel to a mean magnetic field is evaluated using D sub Mu Mu as calculated by this technique. It is argued that the partially averaged field method is not limited to small amplitude fluctuating fields and is hence not a perturbation theory.
Joining of Silicon Carbide Through the Diffusion Bonding Approach
NASA Technical Reports Server (NTRS)
Halbig, Michael .; Singh, Mrityunjay
2009-01-01
In order for ceramics to be fully utilized as components for high-temperature and structural applications, joining and integration methods are needed. Such methods will allow for the fabrication the complex shapes and also allow for insertion of the ceramic component into a system that may have different adjacent materials. Monolithic silicon carbide (SiC) is a ceramic material of focus due to its high temperature strength and stability. Titanium foils were used as an interlayer to form diffusion bonds between chemical vapor deposited (CVD) SiC ceramics with the aid of hot pressing. The influence of such variables as interlayer thickness and processing time were investigated to see which conditions contributed to bonds that were well adhered and crack free. Optical microscopy, scanning electron microscopy, and electron microprobe analysis were used to characterize the bonds and to identify the reaction formed phases.
Multigroup Free-atom Doppler-broadening Approximation. Experiment
Gray, Mark Girard
2015-11-06
The multigroup energy Doppler-broadening approximation agrees with continuous energy Dopplerbroadening generally to within ten percent for the total cross sections of ^{1}H,^{ 56}Fe, and ^{235}U at 250 lanl. Although this is probably not good enough for broadening from room temperature through the entire temperature range in production use, it is better than any interpolation scheme between temperatures proposed to date, and may be good enough for extrapolation from high temperatures. The method deserves further study since additional improvements are possible.
Status of multigroup cross-section data for shielding applications
Roussin, R.W.; Maskewitz, B.F.; Trubey, D.K.
1983-01-01
Multigroup cross-section libraries for shielding applications in formats for direct use in discrete ordinates or Monte Carlo codes have long been a part of the Data Library Collection (DLC) of the Radiation Shielding Information Center (RSIC). In recent years libraries in more flexible and comprehensive formats, which allow the user to derive his own problem-dependent sets, have been added to the collection. The current status of both types is described, as well as projections for adding data libraries based on ENDF/B-V.
MUXS: a code to generate multigroup cross sections for sputtering calculations
Hoffman, T.J.; Robinson, M.T.; Dodds, H.L. Jr.
1982-10-01
This report documents MUXS, a computer code to generate multigroup cross sections for charged particle transport problems. Cross sections generated by MUXS can be used in many multigroup transport codes, with minor modifications to these codes, to calculate sputtering yields, reflection coefficients, penetration distances, etc.
Multigroup calculations using VIM: A user`s guide to ISOVIM
Blomquist, R.N.
1992-09-01
Monte Carlo calculations have long been used to benchmark more a mate approximate solution methods for reactor physics problems. The power of VIM (ref 1) lies partly in the detailed geometrical representations incorporating the (generally) curved surfaces of combinatorial geometry, and partly in the fine energy detail of pointwise cross sections which are independent of the neutron spectrum. When differences arise between Monte Carlo and deterministic calculations, the question arises, is the error in the multigroup cross sections, in the treatment of transport effects, or in the mesh-based treatment of space in the deterministic calculation? The answers may not be obvious, but may be identified by combining the exact geometry capability of VIM with the multigroup formalism. We can now run VIM in a multigroup mode by producing special VIM Material files which contain point-wise data describing multigroup data with histograms. This forces VIM to solve the multigroup problem with only three small code modifications. P{sub N} scattering is simulated with the usual tabulated angular distributions with 20 equally-sized scattering angle cosine meshes. This document describes the VIM multigroup capability, the procedures for generating multigroup cross sections for VIM, and their use. The multigroup cross section generating code, ISOVIM, is described, and benchmark testing is documented.
A new multigroup method for cross-sections that vary rapidly in energy
NASA Astrophysics Data System (ADS)
Haut, T. S.; Ahrens, C.; Jonko, A.; Lowrie, R.; Till, A.
2017-01-01
We present a numerical method for solving the time-independent thermal radiative transfer (TRT) equation or the neutron transport (NT) equation when the opacity (cross-section) varies rapidly in frequency (energy) on the microscale ε; ε corresponds to the characteristic spacing between absorption lines or resonances, and is much smaller than the macroscopic frequency (energy) variation of interest. The approach is based on a rigorous homogenization of the TRT/NT equation in the frequency (energy) variable. Discretization of the homogenized TRT/NT equation results in a multigroup-type system, and can therefore be solved by standard methods. We demonstrate the accuracy and efficiency of the approach on three model problems. First we consider the Elsasser band model with constant temperature and a line spacing ε =10-4 . Second, we consider a neutron transport application for fast neutrons incident on iron, where the characteristic resonance spacing ε necessitates ≈ 16 , 000 energy discretization parameters if Planck-weighted cross sections are used. Third, we consider an atmospheric TRT problem for an opacity corresponding to water vapor over a frequency range 1000-2000 cm-1, where we take 12 homogeneous layers between 1-15 km, and temperature/pressure values in each layer from the standard US atmosphere. For all three problems, we demonstrate that we can achieve between 0.1 and 1 percent relative error in the solution, and with several orders of magnitude fewer parameters than a standard multigroup formulation using Planck-weighted (source-weighted) opacities for a comparable accuracy.
Multigroup Equivalence Analysis for High-Dimensional Expression Data
Yang, Celeste; Bartolucci, Alfred A.; Cui, Xiangqin
2015-01-01
Hypothesis tests of equivalence are typically known for their application in bioequivalence studies and acceptance sampling. Their application to gene expression data, in particular high-dimensional gene expression data, has only recently been studied. In this paper, we examine how two multigroup equivalence tests, the F-test and the range test, perform when applied to microarray expression data. We adapted these tests to a well-known equivalence criterion, the difference ratio. Our simulation results showed that both tests can achieve moderate power while controlling the type I error at nominal level for typical expression microarray studies with the benefit of easy-to-interpret equivalence limits. For the range of parameters simulated in this paper, the F-test is more powerful than the range test. However, for comparing three groups, their powers are similar. Finally, the two multigroup tests were applied to a prostate cancer microarray dataset to identify genes whose expression follows a prespecified trajectory across five prostate cancer stages. PMID:26628859
Multigroup Equivalence Analysis for High-Dimensional Expression Data.
Yang, Celeste; Bartolucci, Alfred A; Cui, Xiangqin
2015-01-01
Hypothesis tests of equivalence are typically known for their application in bioequivalence studies and acceptance sampling. Their application to gene expression data, in particular high-dimensional gene expression data, has only recently been studied. In this paper, we examine how two multigroup equivalence tests, the F-test and the range test, perform when applied to microarray expression data. We adapted these tests to a well-known equivalence criterion, the difference ratio. Our simulation results showed that both tests can achieve moderate power while controlling the type I error at nominal level for typical expression microarray studies with the benefit of easy-to-interpret equivalence limits. For the range of parameters simulated in this paper, the F-test is more powerful than the range test. However, for comparing three groups, their powers are similar. Finally, the two multigroup tests were applied to a prostate cancer microarray dataset to identify genes whose expression follows a prespecified trajectory across five prostate cancer stages.
A compressed-sensing approach for super-resolution reconstruction of diffusion MRI
Ning, Lipeng; Setsompop, Kawin; Michailovich, Oleg; Makris, Nikos; Westin, Carl-Fredrik; Rathi, Yogesh
2015-01-01
We present an innovative framework for reconstructing high-spatial-resolution diffusion magnetic resonance imaging (dMRI) from multiple low-resolution (LR) images. Our approach combines the twin concepts of compressed sensing (CS) and classical super-resolution to reduce acquisition time while increasing spatial resolution. We use sub-pixel-shifted LR images with down-sampled and non-overlapping diffusion directions to reduce acquisition time. The diffusion signal in the high resolution (HR) image is represented in a sparsifying basis of spherical ridgelets to model complex fiber orientations with reduced number of measurements. The HR image is obtained as the solution of a convex optimization problem which can be solved using the proposed algorithm based on the alternating direction method of multipliers (ADMM). We qualitatively and quantitatively evaluate the performance of our method on two sets of in-vivo human brain data and show its effectiveness in accurately recovering very high resolution diffusion images. PMID:26221667
A minimally diffusive interface function steepening approach for compressible multiphase flows
NASA Astrophysics Data System (ADS)
Regele, Jonathan
2015-11-01
Interface capturing methods for contacts and shocks are commonly used in compressible multiphase flows. Artificial diffusion is inherently necessary to stabilize jump discontinuities across shocks and contacts. Contacts suffer from diffusion more severely than shock waves because their characteristics are not convergent like shocks. Interface steepening procedures are commonly used to counteract numerical diffusion necessary to maintain a sharp interface function. In this work, a modification to the sharpening approach used in Shukla, Pantano, and Freund [J. Comp. Phys, 229, 2010] is developed that minimizes the artificial diffusion across the interface while maintaining a monotonic interface function. The method requires fewer iterations for convergence and provides a steeper interface function. Examples in one and two dimensions demonstrate the method's performance.
A diffuse interface approach to phase transformation via virtual melting
NASA Astrophysics Data System (ADS)
Momeni, Kasra
This work represents development of the first phase field models and detailed study solid-solid transformations via intermediate melting within nanometer size interface. Such phase transformations can occur in different materials, including HMX energetic crystals, PbTiO3 nanowires, complex pharmaceutical substances, electronic and geological materials, as well as colloidal, and superhard materials. A thermodynamically consistent phase field model for three phases is developed using two polar order parameters. It includes the effect of energy and width of solid-solid and solid-melt interfaces, interaction between two solid-melt interfaces, temperature, mechanics, and interface stresses. The derived thermodynamic potential satisfies all the equilibrium and stability conditions for homogeneous phases. The HMX energetic crystal is used as the model material and numerical simulations are performed using COMSOL and Cystorm high performance computing facility. Depending on parameters, the intermediate melt may appear and disappear by continuous or discontinuous barrierless disordering or via critical nucleus due to thermal fluctuations. The intermediate melt may appear during heating and persist during cooling at temperatures well below what it follows from sharp-interface approach. For some parameters when intermediate melt is expected, it does not form, producing an intermediate melt free gap. Elastic energy promotes barrierless intermediate melt formation in terms of an increasing degree of disordering, interface velocity, and width of intermediate melt. Drastic reduction (by a factor of 16) of the energy of the critical nuclei of the intermediate melt within the solid-solid interface caused by mechanics is captured. Interfacial stresses surprisingly increase nucleation temperature for the intermediate melt. Interfacial stresses alter the kinetics of phase transformation, resulting in formation of new interfacial phases and drifting of a thermally activated spontaneous
A theoretical validation of the B-matrix spatial distribution approach to diffusion tensor imaging.
Borkowski, Karol; Kłodowski, Krzysztof; Figiel, Henryk; Krzyżak, Artur Tadeusz
2017-02-01
The recently presented B-matrix Spatial Distribution (BSD) approach is a calibration technique which derives the actual distribution of the B-matrix in space. It is claimed that taking into account the spatial variability of the B-matrix improves the accuracy of diffusion tensor imaging (DTI). The purpose of this study is to verify this approach theoretically through computer simulations. Assuming three different spatial distributions of the B-matrix, diffusion weighted signals were calculated for the six orientations of a model anisotropic phantom. Subsequently two variants of the BSD calibration were performed for each of the three cases; one with the assumption of high uniformity of the model phantom (uBSD-DTI) and the other taking into account imperfections in phantom structure (BSD-DTI). Several cases of varying degrees of phantom uniformity were analyzed and the distributions of the B-matrix obtained were used for the calculation of the diffusion tensor of a model isotropic phantom. The results were compared with standard diffusion tensor calculation. The simulations confirmed the improvement of accuracy in the determination of the diffusion tensor after the calibration. BSD-DTI improves accuracy independent of both the degree of uniformity of the phantom and the inhomogeneity of the B-matrix. In cases of a relatively good uniformity of the phantom and minor distortions in the spatial distribution of the B-matrix, the uBSD-DTI approach is sufficient.
ERIC Educational Resources Information Center
Dorfman, Lorraine T.; Murty, Susan A.
2005-01-01
This article describes a gerontological enrichment model for institutionalizing and sustaining curricular change utilizing Rogers' (1995, 2003) diffusion of innovations approach to organizational change. The goal of the project, funded by the John A. Hartford Foundation, is to transform the social work curriculum at a major state university so…
Diffusion in Homogeneous and in Inhomogeneous Media: A New Unified Approach.
Mercier Franco, Luís Fernando; Castier, Marcelo; Economou, Ioannis G
2016-11-08
We propose a new method to calculate the diffusion coefficient within molecular dynamics simulations for either homogeneous or inhomogeneous fluids. We formulate such method by solving analytically the Smoluchowski equation for a linear potential of mean force within a thin layer with absorbing boundary conditions. The bulk, or homogeneous, fluid diffusion emerges as a particular case in this approach. We apply this method to bulk liquid water at atmospheric pressure and different temperatures using the SPC/E water force field. We show that our method gives results as accurate as the traditional Einstein-Smoluchowski method, avoiding the fitting procedure required in the traditional method. We also apply this method for molten sodium chloride showing its applicability for multicomponent systems. The water vapor-liquid interface is studied as an example of an inhomogeneous system. We calculate all the components of the diffusion tensor at the interface. We observe the same anisotropy between the perpendicular and the parallel components at the interface as it has been noted in the literature. We also calculate the perpendicular self-diffusion coefficient of methane near the calcite surface showing that this coefficient is much lower than the parallel diffusion coefficients. We believe that this new unified approach is a very promising technique for both bulk and confined media.
Some Approaches to Modeling Diffuse Flow at Mid-Ocean Ridges
NASA Astrophysics Data System (ADS)
Farough, A.; Lowell, R. P.; Craft, K.; Germanovich, L. N.
2011-12-01
To obtain a sound understanding of subsurface temperatures and the extent of the subsurface biosphere in young oceanic crust, one must understand the mechanisms of diffuse flow at oceanic spreading centers. Mathematical modeling of diffuse flow at oceanic spreading centers has received relatively little attention compared to high-temperature black smoker discharge, in part because the temperature and fluid flow data required to constrain the models are scarce. We review a number of different approaches to modelling diffuse flow: (1) The simplest method considers 1-D steady-state uniform upflow from below subject to a heat transfer boundary condition at the surface, which represents the effects of mixing of hydrothermal fluid with seawater. These models, in which the heat transfer coefficient and the velocity of the ascending fluid are constrained by observed diffuse flow vent temperature and heat flux, typically result in a steep temperature gradient near the seafloor and subsurface biological activity may be limited to the upper few cm of the crust. (2) A related method uses data on the partitioning of heat flux between focused and diffuse flow and chemical data from the focused and diffuse flow components in a two-limb single pass modeling approach to determine the fraction of high-temperature fluid that is incorporated in the diffuse flow. Using data available from EPR 950', the Main Endeavour Field, and ASHES vent field at Axial Volcano on the Juan de Fuca Ridge in conjunction with Mg as a passive tracer, we find that the mixing ratio of high temperature in diffuse flow is <10%. The high-temperature contribution to the diffuse heat flux remains large, however, and high-temperature vent fluid ultimately contributes ~ 90% of the total heat output from the vent field. In these models mixing between high-temperature fluid and seawater may occur over a considerable depth, and the subsurface biosphere may be ~ 100 m deep beneath diffuse flow sites. (3) Finally, in
On the Karlin-Kimura approaches to the Wright-Fisher diffusion with fluctuating selection
NASA Astrophysics Data System (ADS)
Huillet, Thierry
2011-02-01
The goal of this work is a comparative study of two Wright-Fisher-like diffusion processes on the interval, one due to Karlin and the other one due to Kimura. Each model accounts for the evolution of one two-locus colony undergoing random mating, under the additional action of selection in a random environment. In other words, we study the effect of disorder on the usual Wright-Fisher model with fixed (nonrandom) selection. There is a drastic qualitative difference between the two models and between the random and nonrandom selection hypotheses. We first present a series of elementary stochastic models and tools that are needed to conduct this study in the context of diffusion process theory, including Kolmogorov backward and forward equations, scale and speed functions, classification of boundaries, and Doob transformation of sample paths using additive functionals. In this spirit, we briefly revisit the neutral Wright-Fisher diffusion and the Wright-Fisher diffusion with nonrandom selection. With these tools at hand, we first deal with the Karlin approach to the Wright-Fisher diffusion model with randomized selection differentials. The specificity of this model is that in the large population case, the boundaries of the state space are natural and hence inaccessible, and so quasi-absorbing only. We supply some limiting properties pertaining to times of hitting of points close to the boundaries. Next, we study the Kimura approach to the Wright-Fisher model with randomized selection, which may be viewed as a modification of the Karlin model, using an appropriate Doob transform which we describe. This model also has natural boundaries, but they turn out to be much more attracting and sticky than in Karlin's version. This leads to a faster approach to the quasi-absorbing states, to a larger time needed to move from the vicinity of one boundary to the other and to a local critical behavior of the branching diffusion obtained after the relevant Doob transformation.
Munayer, Salim J; Horenczyk, Gabriel
2014-10-01
Grounded in a contextual approach to acculturation of minorities, this study examines changes in acculturation orientations among Palestinian Christian Arab adolescents in Israel following the "lost decade of Arab-Jewish coexistence." Multi-group acculturation orientations among 237 respondents were assessed vis-à-vis two majorities--Muslim Arabs and Israeli Jews--and compared to 1998 data. Separation was the strongest endorsed orientation towards both majority groups. Comparisons with the 1998 data also show a weakening of the Integration attitude towards Israeli Jews, and also distancing from Muslim Arabs. For the examination of the "Westernisation" hypothesis, multi-dimensional scaling (MDS) analyses of perceptions of Self and group values clearly showed that, after 10 years, Palestinian Christian Arabs perceive Israeli Jewish culture as less close to Western culture, and that Self and the Christian Arab group have become much closer, suggesting an increasing identification of Palestinian Christian Arab adolescents with their ethnoreligious culture. We discuss the value of a multi-group, multi-method, and multi-wave approach to the examination of the role of the political context in acculturation processes.
Cantisano, Gabriela Topa; Domínguez, J Francisco Morales; García, J Luis Caeiro
2007-05-01
This study focuses on the mediator role of social comparison in the relationship between perceived breach of psychological contract and burnout. A previous model showing the hypothesized effects of perceived breach on burnout, both direct and mediated, is proposed. The final model reached an optimal fit to the data and was confirmed through multigroup analysis using a sample of Spanish teachers (N = 401) belonging to preprimary, primary, and secondary schools. Multigroup analyses showed that the model fit all groups adequately.
Diffusion in mesoporous materials and polymers swelling: a transient calorimetric approach.
Nedelec, Jean-Marie; Grolier, Jean Pierre E; Baba, Mohamed
2008-09-01
The diffusion of water and benzene has been followed by DSC using the thermoporosimetry (TPM) approach. The diffusion of water has been observed during the drying of a water impregnated mesoporous silica gel at 40 degrees C under dry air. It was found that the confinement affects the evaporation rate of water. The diffusion of benzene has been observed during the drying and the swelling of a cross linked PDMS sample. The mesh size distributions (MSD) of the elastomer, during swelling and drying, have been calculated at various times using the TPM formalism. Extrapolating the mean mesh size of the polymeric network, it was found that the dry polymer has an average mesh of about 2.5 nm.
Snodin, A. P.; Ruffolo, D.; Matthaeus, W. H. E-mail: david.ruf@mahidol.ac.th
2013-01-01
The turbulent random walk of magnetic field lines plays an important role in the transport of plasmas and energetic particles in a wide variety of astrophysical situations, but most theoretical work has concentrated on determination of the asymptotic field line diffusion coefficient. Here we consider the evolution with distance of the field line random walk using a general ordinary differential equation (ODE), which for most cases of interest in astrophysics describes a transition from free streaming to asymptotic diffusion. By challenging theories of asymptotic diffusion to also describe the evolution, one gains insight on how accurately they describe the random walk process. Previous theoretical work has effectively involved closure of the ODE, often by assuming Corrsin's hypothesis and a Gaussian displacement distribution. Approaches that use quasilinear theory and prescribe the mean squared displacement ({Delta}x {sup 2}) according to free streaming (random ballistic decorrelation, RBD) or asymptotic diffusion (diffusive decorrelation, DD) can match computer simulation results, but only over specific parameter ranges, with no obvious 'marker' of the range of validity. Here we make use of a unified description in which the ODE determines ({Delta}x {sup 2}) self-consistently, providing a natural transition between the assumptions of RBD and DD. We find that the minimum kurtosis of the displacement distribution provides a good indicator of whether the self-consistent ODE is applicable, i.e., inaccuracy of the self-consistent ODE is associated with non-Gaussian displacement distributions.
Diffuse globally, compute locally: a cyclist approach to modeling long time robot locomotion
NASA Astrophysics Data System (ADS)
Zhang, Tingnan; Goldman, Daniel; Cvitanović, Predrag
2015-03-01
To advance autonomous robots we are interested to develop a statistical/dynamical description of diffusive self-propulsion on heterogeneous terrain. We consider a minimal model for such diffusion, the 2-dimensional Lorentz gas, which abstracts the motion of a light, point-like particle bouncing within a large number of heavy scatters (e.g. small robots in a boulder field). We present a precise computation (based on exact periodic orbit theory formula for the diffusion constant) for a periodic triangular Lorentz gas with finite horizon. We formulate a new approach to tiling the plane in terms of three elementary tiling generators which, for the first time, enables use of periodic orbits computed in the fundamental domain (that is, 1 / 12 of the hexagonal elementary cell whose translations tile the entire plane). Compared with previous literature, our fundamental domain value of the diffusion constant converges quickly for inter-disk separation/disk radius > 0 . 2 , with the cycle expansion truncated to only a few hundred periodic orbits of up to 5 billiard wall bounces. For small inter-disk separations, with periodic orbits up to 6 bounces, our diffusion constants are close (< 10 %) to direct numerical simulation estimates and the recent literature probabilistic estimates.
Radiation Transport for Explosive Outflows: A Multigroup Hybrid Monte Carlo Method
NASA Astrophysics Data System (ADS)
Wollaeger, Ryan T.; van Rossum, Daniel R.; Graziani, Carlo; Couch, Sean M.; Jordan, George C., IV; Lamb, Donald Q.; Moses, Gregory A.
2013-12-01
We explore Implicit Monte Carlo (IMC) and discrete diffusion Monte Carlo (DDMC) for radiation transport in high-velocity outflows with structured opacity. The IMC method is a stochastic computational technique for nonlinear radiation transport. IMC is partially implicit in time and may suffer in efficiency when tracking MC particles through optically thick materials. DDMC accelerates IMC in diffusive domains. Abdikamalov extended IMC and DDMC to multigroup, velocity-dependent transport with the intent of modeling neutrino dynamics in core-collapse supernovae. Densmore has also formulated a multifrequency extension to the originally gray DDMC method. We rigorously formulate IMC and DDMC over a high-velocity Lagrangian grid for possible application to photon transport in the post-explosion phase of Type Ia supernovae. This formulation includes an analysis that yields an additional factor in the standard IMC-to-DDMC spatial interface condition. To our knowledge the new boundary condition is distinct from others presented in prior DDMC literature. The method is suitable for a variety of opacity distributions and may be applied to semi-relativistic radiation transport in simple fluids and geometries. Additionally, we test the code, called SuperNu, using an analytic solution having static material, as well as with a manufactured solution for moving material with structured opacities. Finally, we demonstrate with a simple source and 10 group logarithmic wavelength grid that IMC-DDMC performs better than pure IMC in terms of accuracy and speed when there are large disparities between the magnitudes of opacities in adjacent groups. We also present and test our implementation of the new boundary condition.
NASA Astrophysics Data System (ADS)
Díez, C. J.; Cabellos, O.; Martínez, J. S.
2015-01-01
Several approaches have been developed in last decades to tackle nuclear data uncertainty propagation problems of burn-up calculations. One approach proposed was the Hybrid Method, where uncertainties in nuclear data are propagated only on the depletion part of a burn-up problem. Because only depletion is addressed, only one-group cross sections are necessary, and hence, their collapsed one-group uncertainties. This approach has been applied successfully in several advanced reactor systems like EFIT (ADS-like reactor) or ESFR (Sodium fast reactor) to assess uncertainties on the isotopic composition. However, a comparison with using multi-group energy structures was not carried out, and has to be performed in order to analyse the limitations of using one-group uncertainties.
Díez, C.J.; Cabellos, O.; Martínez, J.S.
2015-01-15
Several approaches have been developed in last decades to tackle nuclear data uncertainty propagation problems of burn-up calculations. One approach proposed was the Hybrid Method, where uncertainties in nuclear data are propagated only on the depletion part of a burn-up problem. Because only depletion is addressed, only one-group cross sections are necessary, and hence, their collapsed one-group uncertainties. This approach has been applied successfully in several advanced reactor systems like EFIT (ADS-like reactor) or ESFR (Sodium fast reactor) to assess uncertainties on the isotopic composition. However, a comparison with using multi-group energy structures was not carried out, and has to be performed in order to analyse the limitations of using one-group uncertainties.
Simplified approach for calculating moments of action for linear reaction-diffusion equations.
Ellery, Adam J; Simpson, Matthew J; McCue, Scott W; Baker, Ruth E
2013-11-01
The mean action time is the mean of a probability density function that can be interpreted as a critical time, which is a finite estimate of the time taken for the transient solution of a reaction-diffusion equation to effectively reach steady state. For high-variance distributions, the mean action time underapproximates the critical time since it neglects to account for the spread about the mean. We can improve our estimate of the critical time by calculating the higher moments of the probability density function, called the moments of action, which provide additional information regarding the spread about the mean. Existing methods for calculating the nth moment of action require the solution of n nonhomogeneous boundary value problems which can be difficult and tedious to solve exactly. Here we present a simplified approach using Laplace transforms which allows us to calculate the nth moment of action without solving this family of boundary value problems and also without solving for the transient solution of the underlying reaction-diffusion problem. We demonstrate the generality of our method by calculating exact expressions for the moments of action for three problems from the biophysics literature. While the first problem we consider can be solved using existing methods, the second problem, which is readily solved using our approach, is intractable using previous techniques. The third problem illustrates how the Laplace transform approach can be used to study coupled linear reaction-diffusion equations.
Álvarez, Gonzalo A.; Shemesh, Noam; Frydman, Lucio
2014-02-28
Dynamical decoupling, a generalization of the original NMR spin-echo sequence, is becoming increasingly relevant as a tool for reducing decoherence in quantum systems. Such sequences apply non-equidistant refocusing pulses for optimizing the coupling between systems, and environmental fluctuations characterized by a given noise spectrum. One such sequence, dubbed Selective Dynamical Recoupling (SDR) [P. E. S. Smith, G. Bensky, G. A. Álvarez, G. Kurizki, and L. Frydman, Proc. Natl. Acad. Sci. 109, 5958 (2012)], allows one to coherently reintroduce diffusion decoherence effects driven by fluctuations arising from restricted molecular diffusion [G. A. Álvarez, N. Shemesh, and L. Frydman, Phys. Rev. Lett. 111, 080404 (2013)]. The fully-refocused, constant-time, and constant-number-of-pulses nature of SDR also allows one to filter out “intrinsic” T{sub 1} and T{sub 2} weightings, as well as pulse errors acting as additional sources of decoherence. This article explores such features when the fluctuations are now driven by unrestricted molecular diffusion. In particular, we show that diffusion-driven SDR can be exploited to investigate the decoherence arising from the frequency fluctuations imposed by internal gradients. As a result, SDR presents a unique way of probing and characterizing these internal magnetic fields, given an a priori known free diffusion coefficient. This has important implications in studies of structured systems, including porous media and live tissues, where the internal gradients may serve as fingerprints for the system's composition or structure. The principles of this method, along with full analytical solutions for the unrestricted diffusion-driven modulation of the SDR signal, are presented. The potential of this approach is demonstrated with the generation of a novel source of MRI contrast, based on the background gradients active in an ex vivo mouse brain. Additional features and limitations of this new method are discussed.
NASA Astrophysics Data System (ADS)
Álvarez, Gonzalo A.; Shemesh, Noam; Frydman, Lucio
2014-02-01
Dynamical decoupling, a generalization of the original NMR spin-echo sequence, is becoming increasingly relevant as a tool for reducing decoherence in quantum systems. Such sequences apply non-equidistant refocusing pulses for optimizing the coupling between systems, and environmental fluctuations characterized by a given noise spectrum. One such sequence, dubbed Selective Dynamical Recoupling (SDR) [P. E. S. Smith, G. Bensky, G. A. Álvarez, G. Kurizki, and L. Frydman, Proc. Natl. Acad. Sci. 109, 5958 (2012)], allows one to coherently reintroduce diffusion decoherence effects driven by fluctuations arising from restricted molecular diffusion [G. A. Álvarez, N. Shemesh, and L. Frydman, Phys. Rev. Lett. 111, 080404 (2013)]. The fully-refocused, constant-time, and constant-number-of-pulses nature of SDR also allows one to filter out "intrinsic" T1 and T2 weightings, as well as pulse errors acting as additional sources of decoherence. This article explores such features when the fluctuations are now driven by unrestricted molecular diffusion. In particular, we show that diffusion-driven SDR can be exploited to investigate the decoherence arising from the frequency fluctuations imposed by internal gradients. As a result, SDR presents a unique way of probing and characterizing these internal magnetic fields, given an a priori known free diffusion coefficient. This has important implications in studies of structured systems, including porous media and live tissues, where the internal gradients may serve as fingerprints for the system's composition or structure. The principles of this method, along with full analytical solutions for the unrestricted diffusion-driven modulation of the SDR signal, are presented. The potential of this approach is demonstrated with the generation of a novel source of MRI contrast, based on the background gradients active in an ex vivo mouse brain. Additional features and limitations of this new method are discussed.
An approach to numerical quantification of room shape and its function in diffuse sound field model.
Šumarac-Pavlović, Dragana; Mijić, Miomir
2016-10-01
This paper deals with an approach to the numerical quantification of room shape and its possible role in diffuse field modeling. The normalized shape factor of the room is introduced as a function of the room volume and the room interior surface. It was shown that in real rooms the value of normalized shape factor ranges from about 0.57 to 0.9. Some simple transformations of well-known formulas by introducing the room shape factor are also discussed. Such approach seems appropriate in architectural acoustics courses as a straightforward way to explain the factors influencing the acoustic response in a room.
Maximum entropy Eddington factors in flux-limited neutrino diffusion
NASA Astrophysics Data System (ADS)
Cernohorsky, Jan; Vandenhorn, L. J.; Cooperstein, J.
A neutrino transport scheme for use in dense stellar environments and collapsing stars is constructed. The maximum entropy principle is used to establish the general form of the angular neutrino distribution functions. The two Lagrange multipliers introduced by this procedure are determined by using the Flux-limited Diffusion Theory (FDT) of Levermore and Pomraning. The anisotropic scattering contribution is taken into account. Its inclusion leads to a modification of the Levermore-Pomraning approach. The transition from a multigroup to an energy integrated transport scheme for FDT is investigated. The link to the two fluid model of Cooperstein et al is made. This extended two fluid model parametrizes the thermal and chemical disequilibrium between matter and neutrinos. The variable Eddington factors are now self-consistently determined through a local dimensionless quantity, rather than by macroscopic geometrical prescription.
Water diffusion through a membrane protein channel: a first passage time approach.
van Hijkoop, Vincent J; Dammers, Anton J; Malek, Kourosh; Coppens, Marc-Olivier
2007-08-28
Water diffusion through OmpF, a porin in the outer membrane of Escherichia coli, is studied by molecular dynamics simulation. A first passage time approach allows characterizing the diffusive properties of a well-defined region of this channel. A carbon nanotube, which is considerably more homogeneous, serves as a model to validate the methodology. Here we find, in addition to the expected regular behavior, a gradient of the diffusion coefficient at the channel ends, witness of the transition from confinement in the channel to bulk behavior in the connected reservoirs. Moreover, we observe the effect of a kinetic boundary layer, which is the counterpart of the initial ballistic regime in a mean square displacement analysis. The overall diffusive behavior of water in OmpF shows remarkable similarity with that in a homogeneous channel. However, a small fraction of the water molecules appears to be trapped by the protein wall for considerable lengths of time. The distribution of trapping times exhibits a broad power law distribution psi(tau) approximately tau (-2.4), up to tau=10 ns, a bound set by the length of the simulation run. We discuss the effect of this distribution on the dynamic properties of water in OmpF in terms of incomplete sampling of phase space.
Environmental stress cracking in gamma-irradiated polycarbonate - A diffusion approach
NASA Astrophysics Data System (ADS)
Silva, Pietro Paolo J. C. de O.; Araújo, Patricia L. B.; da Silveira, Leopoldo B. B.; Araújo, Elmo S.
2017-01-01
Polycarbonate (PC) is an engineering polymer which presents interesting properties. This material has been also used in medical devices, which is frequently exposed to gamma radiosterilization and to chemical agents. This may produce significant changes in polymer structure, leading to failure in service. The present work brings about a new approach on environmental stress cracking (ESC) processes elucidation in 100 kGy gamma-irradiated PC, by evaluating the diffusion process of methanol or 2-propanol in test specimens and determining the diffusion parameters on solvent-irradiated polymer systems. A comparison of diffusion parameters for both solvents indicated that methanol has a considerable ESC action on PC, with diffusion parameter of 7.5×10-14±1% m2 s-1 for non-irradiated PC and 7.8×10-14±2.8% m2 s-1 for PC irradiated at 100 kGy. In contrast, 2-propanol did not act as an ESC agent, as it did promote neither swelling nor cracks in the test specimens. These results were confirmed by visual analysis and optical microscopy. Unexpectedly, structural damages evidenced in tensile strength tests suggested that 2-propanol is as aggressive as methanol chemical for PC. Moreover, although some manufacturers indicate the use of 2-propanol as a cleaning product for PC artifacts, such use should be avoided in parts under mechanical stress.
Multigroup Radiation-Hydrodynamics with a High-Order, Low-Order Method
Wollaber, Allan Benton; Park, HyeongKae; Lowrie, Robert Byron; ...
2016-12-09
Recent efforts at Los Alamos National Laboratory to develop a moment-based, scale-bridging [or high-order (HO)–low-order (LO)] algorithm for solving large varieties of the transport (kinetic) systems have shown promising results. A part of our ongoing effort is incorporating this methodology into the framework of the Eulerian Applications Project to achieve algorithmic acceleration of radiationhydrodynamics simulations in production software. By starting from the thermal radiative transfer equations with a simple material-motion correction, we derive a discretely consistent energy balance equation (LO equation). We demonstrate that the corresponding LO system for the Monte Carlo HO solver is closely related to the originalmore » LO system without material-motion corrections. We test the implementation on a radiative shock problem and show consistency between the energy densities and temperatures in the HO and LO solutions as well as agreement with the semianalytic solution. We also test the approach on a more challenging two-dimensional problem and demonstrate accuracy enhancements and algorithmic speedups. This paper extends a recent conference paper by including multigroup effects.« less
Multigroup Radiation-Hydrodynamics with a High-Order, Low-Order Method
Wollaber, Allan Benton; Park, HyeongKae; Lowrie, Robert Byron; Rauenzahn, Rick M.; Cleveland, Mathew Allen
2016-12-09
Recent efforts at Los Alamos National Laboratory to develop a moment-based, scale-bridging [or high-order (HO)–low-order (LO)] algorithm for solving large varieties of the transport (kinetic) systems have shown promising results. A part of our ongoing effort is incorporating this methodology into the framework of the Eulerian Applications Project to achieve algorithmic acceleration of radiationhydrodynamics simulations in production software. By starting from the thermal radiative transfer equations with a simple material-motion correction, we derive a discretely consistent energy balance equation (LO equation). We demonstrate that the corresponding LO system for the Monte Carlo HO solver is closely related to the original LO system without material-motion corrections. We test the implementation on a radiative shock problem and show consistency between the energy densities and temperatures in the HO and LO solutions as well as agreement with the semianalytic solution. We also test the approach on a more challenging two-dimensional problem and demonstrate accuracy enhancements and algorithmic speedups. This paper extends a recent conference paper by including multigroup effects.
Development of a new two-dimensional Cartesian geometry nodal multigroup discrete-ordinates method
Pevey, R.E.
1982-07-01
The purpose of this work is the development and testing of a new family of methods for calculating the spatial dependence of the neutron density in nuclear systems described in two-dimensional Cartesian geometry. The energy and angular dependence of the neutron density is approximated using the multigroup and discrete ordinates techniques, respectively. The resulting FORTRAN computer code is designed to handle an arbitrary number of spatial, energy, and angle subdivisions. Any degree of scattering anisotropy can be handled by the code for either external source or fission systems. The basic approach is to (1) approximate the spatial variation of the neutron source across each spatial subdivision as an expansion in terms of a user-supplied set of exponential basis functions; (2) solve analytically for the resulting neutron density inside each region; and (3) approximate this density in the basis function space in order to calculate the next iteration flux-dependent source terms. In the general case the calculation is iterative due to neutron sources which depend on the neutron density itself, such as scattering interactions.
NASA Astrophysics Data System (ADS)
Berrada, K.
2016-11-01
In this paper, we study the Fisher information for a quantum system consisting of two identical qubits, each of them locally interacting with a bosonic reservoir in the same environment for non-Markovian open, dissipative quantum system. Based on the influx of the information, we propose an information-theoretical approach for characterizing the time-dependent memory effect of environment and diffusion function under the effect of the physical parameters. More precisely, an interesting monotonic relation between the time derivative of quantum Fisher information (QFI) and diffusion function behavior is observed during the time evolution. The phenomenon is that the QFI, namely the precision of estimation, changes dramatically with the environment structure. The dependence of the physical parameters shows that the increasing in the temperature will damage the amount of the QFI with respect of the ratio between the reservoir cutoff frequency and the system oscillation frequency.
Unified semiclassical approach to electronic transport from diffusive to ballistic regimes
NASA Astrophysics Data System (ADS)
Geng, Hao; Deng, Wei-Yin; Ren, Yue-Jiao; Sheng, Li; Xing, Ding-Yu
2016-09-01
We show that by integrating out the electric field and incorporating proper boundary conditions, a Boltzmann equation can describe electron transport properties, continuously from the diffusive to ballistic regimes. General analytical formulas of the conductance in D = 1,2,3 dimensions are obtained, which recover the Boltzmann-Drude formula and Landauer-Büttiker formula in the diffusive and ballistic limits, respectively. This intuitive and efficient approach can be applied to investigate the interplay of system size and impurity scattering in various charge and spin transport phenomena, when the quantum interference effect is not important. Project supported by the National Basic Research Program of China (Grant Nos. 2015CB921202 and 2014CB921103) and the National Natural Science Foundation of China (Grant No. 11225420).
A Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin for Diffusion
NASA Technical Reports Server (NTRS)
Huynh, H. T.
2009-01-01
We introduce a new approach to high-order accuracy for the numerical solution of diffusion problems by solving the equations in differential form using a reconstruction technique. The approach has the advantages of simplicity and economy. It results in several new high-order methods including a simplified version of discontinuous Galerkin (DG). It also leads to new definitions of common value and common gradient quantities at each interface shared by the two adjacent cells. In addition, the new approach clarifies the relations among the various choices of new and existing common quantities. Fourier stability and accuracy analyses are carried out for the resulting schemes. Extensions to the case of quadrilateral meshes are obtained via tensor products. For the two-point boundary value problem (steady state), it is shown that these schemes, which include most popular DG methods, yield exact common interface quantities as well as exact cell average solutions for nearly all cases.
A new approach to the problem of bulk-mediated surface diffusion
Berezhkovskii, Alexander M.; Dagdug, Leonardo; Bezrukov, Sergey M.
2015-01-01
This paper is devoted to bulk-mediated surface diffusion of a particle which can diffuse both on a flat surface and in the bulk layer above the surface. It is assumed that the particle is on the surface initially (at t = 0) and at time t, while in between it may escape from the surface and come back any number of times. We propose a new approach to the problem, which reduces its solution to that of a two-state problem of the particle transitions between the surface and the bulk layer, focusing on the cumulative residence times spent by the particle in the two states. These times are random variables, the sum of which is equal to the total observation time t. The advantage of the proposed approach is that it allows for a simple exact analytical solution for the double Laplace transform of the conditional probability density of the cumulative residence time spent on the surface by the particle observed for time t. This solution is used to find the Laplace transform of the particle mean square displacement and to analyze the peculiarities of its time behavior over the entire range of time. We also establish a relation between the double Laplace transform of the conditional probability density and the Fourier-Laplace transform of the particle propagator over the surface. The proposed approach treats the cases of both finite and infinite bulk layer thicknesses (where bulk-mediated surface diffusion is normal and anomalous at asymptotically long times, respectively) on equal footing. PMID:26328814
A Dynamic Density Functional Theory Approach to Diffusion in White Dwarfs and Neutron Star Envelopes
NASA Astrophysics Data System (ADS)
Diaw, A.; Murillo, M. S.
2016-09-01
We develop a multicomponent hydrodynamic model based on moments of the Born-Bogolyubov-Green-Kirkwood-Yvon hierarchy equations for physical conditions relevant to astrophysical plasmas. These equations incorporate strong correlations through a density functional theory closure, while transport enters through a relaxation approximation. This approach enables the introduction of Coulomb coupling correction terms into the standard Burgers equations. The diffusive currents for these strongly coupled plasmas is self-consistently derived. The settling of impurities and its impact on cooling can be greatly affected by strong Coulomb coupling, which we show can be quantified using the direct correlation function.
Modeling evaporation from spent nuclear fuel storage pools: A diffusion approach
NASA Astrophysics Data System (ADS)
Hugo, Bruce Robert
Accurate prediction of evaporative losses from light water reactor nuclear power plant (NPP) spent fuel storage pools (SFPs) is important for activities ranging from sizing of water makeup systems during NPP design to predicting the time available to supply emergency makeup water following severe accidents. Existing correlations for predicting evaporation from water surfaces are only optimized for conditions typical of swimming pools. This new approach modeling evaporation as a diffusion process has yielded an evaporation rate model that provided a better fit of published high temperature evaporation data and measurements from two SFPs than other published evaporation correlations. Insights from treating evaporation as a diffusion process include correcting for the effects of air flow and solutes on evaporation rate. An accurate modeling of the effects of air flow on evaporation rate is required to explain the observed temperature data from the Fukushima Daiichi Unit 4 SFP during the 2011 loss of cooling event; the diffusion model of evaporation provides a significantly better fit to this data than existing evaporation models.
A practical approach for quantifying acoustic emission signals using diffuse field measurements
NASA Astrophysics Data System (ADS)
Scholey, Jonathan J.; Wilcox, Paul D.
2009-03-01
Acoustic Emission (AE) testing is capable of detecting a wide range of defects using a relatively sparse sensor array and as a result is a candidate structural health monitoring technology. The widespread application of the technology is restricted by a lack of predictive modelling capability and quantitative source characteristic information. Most AE tests are conducted on small coupons where source characteristics are estimated using the early arriving part of the AE signal. The early arriving part of an AE signal, and therefore the source characteristics, are dependent on the source location, source orientation and specimen geometry making them unsuitable for use in predictive models. The work in this paper is concerned with making source characterisation measurements based on the diffuse field of an AE signal. A practical approach for calibrating the diffuse field amplitude is proposed and is demonstrated on AE signals from electrochemically accelerated corrosion of a 316L stainless steel plate. The diffuse field amplitude of several AE events is calculated and reported as an equivalent absolute force. The low signal to noise ratio and high attenuation of elastic wave energy are found to reduce the accuracy of the results.
Two-phase flow in complex geometries: A diffuse domain approach
Aland, S.; Voigt, A.
2011-01-01
We present a new method for simulating two-phase flows in complex geometries, taking into account contact lines separating immiscible incompressible components. We combine the diffuse domain method for solving PDEs in complex geometries with the diffuse-interface (phase-field) method for simulating multiphase flows. In this approach, the complex geometry is described implicitly by introducing a new phase-field variable, which is a smooth approximation of the characteristic function of the complex domain. The fluid and component concentration equations are reformulated and solved in larger regular domain with the boundary conditions being implicitly modeled using source terms. The method is straightforward to implement using standard software packages; we use adaptive finite elements here. We present numerical examples demonstrating the effectiveness of the algorithm. We simulate multiphase flow in a driven cavity on an extended domain and find very good agreement with results obtained by solving the equations and boundary conditions in the original domain. We then consider successively more complex geometries and simulate a droplet sliding down a rippled ramp in 2D and 3D, a droplet flowing through a Y-junction in a microfluidic network and finally chaotic mixing in a droplet flowing through a winding, serpentine channel. The latter example actually incorporates two different diffuse domains: one describes the evolving droplet where mixing occurs while the other describes the channel. PMID:21918638
NASA Astrophysics Data System (ADS)
Ilas, Germina
In the first part, an accurate and fast computational method is presented as an alternative to the Monte Carlo or deterministic transport theory codes currently used to determine the subcriticality of spent fuel storage lattices. The method is capable of analyzing storage configurations with simple or complex lattice cell geometry. It is developed based on two-group nodal diffusion theory, with the nodal cross sections and discontinuity factors determined from continuous-energy Monte Carlo simulations of each unique node (spent fuel assembly type). Three different approaches are developed to estimate the node-averaged diffusion coefficient. The applicability and the accuracy of the nodal method are assessed in two-dimensional geometry through several benchmark configurations typical at Savannah River Site. It is shown that the multiplication constant of the analyzed configurations is within 1% of the MCNP results. In the second part, the high-order cross section homogenization method, recently developed by McKinley and Rahnema, is implemented in the context of two-group nodal diffusion theory. The method corrects the generalized equivalence theory homogenization parameters for the effect of the core environment. The reconstructed fine-mesh (fuel pin) flux and power distributions are a natural byproduct of this method. The method was not tested for multigroup problems, where it was assumed that the multigroup flux expansion in terms of the perturbation parameter is a convergent series. Here the applicability of the method to two-group problems is studied, and it is shown that the perturbation expansion series converges for the multigroup case. A two-group nodal diffusion code with a bilinear intra-nodal flux shape is developed for the implementation of the high-order homogenization method in the context of the generalized equivalence theory. The method is tested by using as a benchmark a core configuration typical of a BWR in slab geometry, which has large
Ghrayeb, S. Z.; Ouisloumen, M.; Ougouag, A. M.; Ivanov, K. N.
2012-07-01
A multi-group formulation for the exact neutron elastic scattering kernel is developed. This formulation is intended for implementation into a lattice physics code. The correct accounting for the crystal lattice effects influences the estimated values for the probability of neutron absorption and scattering, which in turn affect the estimation of core reactivity and burnup characteristics. A computer program has been written to test the formulation for various nuclides. Results of the multi-group code have been verified against the correct analytic scattering kernel. In both cases neutrons were started at various energies and temperatures and the corresponding scattering kernels were tallied. (authors)
Total light approach of time-domain fluorescence diffuse optical tomography.
Marjono, Andhi; Yano, Akira; Okawa, Shinpei; Gao, Feng; Yamada, Yukio
2008-09-15
In this study, time-domain fluorescence diffuse optical tomography in biological tissue is numerically investigated using a total light approach. Total light is a summation of excitation light and zero-lifetime emission light divided by quantum yield. The zero-lifetime emission light is an emitted fluorescence light calculated by assuming that the fluorescence lifetime is zero. The zero-lifetime emission light is calculated by deconvolving the actually measured emission light with a lifetime function, an exponential function for fluorescence decay. The object for numerical simulation is a 2-D 10 mm-radius circle with the optical properties simulating biological tissues for near infrared light, and contains regions with fluorophore. The inverse problem of fluorescence diffuse optical tomography is solved using time-resolved simulated measurement data of the excitation and total lights for reconstructing the bsorption coefficient and fluorophore concentration simultaneously. The mean time of flight is used as the featured data-type extracted from the time-resolved data. The reconstructed images of fluorophore concentration show good quantitativeness and spatial reproducibility. By use of the total light approach, computation is performed much faster than the conventional ones.
A Systematic Solution Approach for Neutron Transport Problems in Diffuse Regimes
NASA Technical Reports Server (NTRS)
Manteuffel, T. A.; Ressel, K. J.
1996-01-01
A systematic solution approach for the neutron transport equation, based on a least-squares finite-element discretization, is presented. This approach includes the theory for the existence and uniqueness of the analytical as well as of the discrete solution, bounds for the discretization error, and guidance for the development of an efficient multigrid solver for the resulting discrete problem. To guarantee the accuracy of the discrete solution for diffusive regimes, a scaling transformation is applied to the transport operator prior to the discretization. The key result is the proof of the V-ellipticity and continuity of the scaled least-squares bilinear form with constants that are independent of the total cross section and the absorption cross section. For a variety of least-squares finite-element discretizations this leads to error bounds that remain valid in diffusive regimes. Moreover, for problems in slab geometry a full multigrid solver is presented with V(1, 1)-cycle convergence rates approximately equal to 0.1, independent of the size of the total cross section and the absorption cross section.
Diffusion of a Sustainable Farming Technique in Sri Lanka: An Agent-Based Modeling Approach
NASA Astrophysics Data System (ADS)
Jacobi, J. H.; Gilligan, J. M.; Carrico, A. R.; Truelove, H. B.; Hornberger, G.
2012-12-01
We live in a changing world - anthropogenic climate change is disrupting historic climate patterns and social structures are shifting as large scale population growth and massive migrations place unprecedented strain on natural and social resources. Agriculture in many countries is affected by these changes in the social and natural environments. In Sri Lanka, rice farmers in the Mahaweli River watershed have seen increases in temperature and decreases in precipitation. In addition, a government led resettlement project has altered the demographics and social practices in villages throughout the watershed. These changes have the potential to impact rice yields in a country where self-sufficiency in rice production is a point of national pride. Studies of the climate can elucidate physical effects on rice production, while research on social behaviors can illuminate the influence of community dynamics on agricultural practices. Only an integrated approach, however, can capture the combined and interactive impacts of these global changes on Sri Lankan agricultural. As part of an interdisciplinary team, we present an agent-based modeling (ABM) approach to studying the effects of physical and social changes on farmers in Sri Lanka. In our research, the diffusion of a sustainable farming technique, the system of rice intensification (SRI), throughout a farming community is modeled to identify factors that either inhibit or promote the spread of a more sustainable approach to rice farming. Inputs into the ABM are both physical and social and include temperature, precipitation, the Palmer Drought Severity Index (PDSI), community trust, and social networks. Outputs from the ABM demonstrate the importance of meteorology and social structure on the diffusion of SRI throughout a farming community.
Bag-of-features approach for improvement of lung tissue classification in diffuse lung disease
NASA Astrophysics Data System (ADS)
Kato, Noriji; Fukui, Motofumi; Isozaki, Takashi
2009-02-01
Many automated techniques have been proposed to classify diffuse lung disease patterns. Most of the techniques utilize texture analysis approaches with second and higher order statistics, and show successful classification result among various lung tissue patterns. However, the approaches do not work well for the patterns with inhomogeneous texture distribution within a region of interest (ROI), such as reticular and honeycombing patterns, because the statistics can only capture averaged feature over the ROI. In this work, we have introduced the bag-of-features approach to overcome this difficulty. In the approach, texture images are represented as histograms or distributions of a few basic primitives, which are obtained by clustering local image features. The intensity descriptor and the Scale Invariant Feature Transformation (SIFT) descriptor are utilized to extract the local features, which have significant discriminatory power due to their specificity to a particular image class. In contrast, the drawback of the local features is lack of invariance under translation and rotation. We improved the invariance by sampling many local regions so that the distribution of the local features is unchanged. We evaluated the performance of our system in the classification task with 5 image classes (ground glass, reticular, honeycombing, emphysema, and normal) using 1109 ROIs from 211 patients. Our system achieved high classification accuracy of 92.8%, which is superior to that of the conventional system with the gray level co-occurrence matrix (GLCM) feature especially for inhomogeneous texture patterns.
Variational methods in steady state diffusion problems
Lee, C.E.; Fan, W.C.P.; Bratton, R.L.
1983-01-01
Classical variational techniques are used to obtain accurate solutions to the multigroup multiregion one dimensional steady state neutron diffusion equation. Analytic solutions are constructed for benchmark verification. Functionals with cubic trial functions and conservational lagrangian constraints are exhibited and compared with nonconservational functionals with respect to neutron balance and to relative flux and current at interfaces. Excellent agreement of the conservational functionals using cubic trial functions is obtained in comparison with analytic solutions.
ERIC Educational Resources Information Center
Hessen, David J.; Dolan, Conor V.; Wicherts, Jelte M.
2006-01-01
An alternative formulation of the multigroup common factor model with minimal uniqueness constraints is considered. This alternative formulation is based on a simple identification constraint that is related to the standard maximum likelihood constraint used in single-group common factor analysis. It is argued that the alternative formulation…
Testing for Two-Way Interactions in the Multigroup Common Factor Model
ERIC Educational Resources Information Center
van Smeden, Maarten; Hessen, David J.
2013-01-01
In this article, a 2-way multigroup common factor model (MG-CFM) is presented. The MG-CFM can be used to estimate interaction effects between 2 grouping variables on 1 or more hypothesized latent variables. For testing the significance of such interactions, a likelihood ratio test is presented. In a simulation study, the robustness of the…
A staggered approach for the coupling of Cahn-Hilliard type diffusion and finite strain elasticity
NASA Astrophysics Data System (ADS)
Areias, P.; Samaniego, E.; Rabczuk, T.
2016-02-01
We develop an algorithm and computational implementation for simulation of problems that combine Cahn-Hilliard type diffusion with finite strain elasticity. We have in mind applications such as the electro-chemo-mechanics of lithium ion (Li-ion) batteries. We concentrate on basic computational aspects. A staggered algorithm is proposed for the coupled multi-field model. For the diffusion problem, the fourth order differential equation is replaced by a system of second order equations to deal with the issue of the regularity required for the approximation spaces. Low order finite elements are used for discretization in space of the involved fields (displacement, concentration, nonlocal concentration). Three (both 2D and 3D) extensively worked numerical examples show the capabilities of our approach for the representation of (i) phase separation, (ii) the effect of concentration in deformation and stress, (iii) the effect of strain in concentration, and (iv) lithiation. We analyze convergence with respect to spatial and time discretization and found that very good results are achievable using both a staggered scheme and approximated strain interpolation.
Computing the blood brain barrier (BBB) diffusion coefficient: A molecular dynamics approach
NASA Astrophysics Data System (ADS)
Shamloo, Amir; Pedram, Maysam Z.; Heidari, Hossein; Alasty, Aria
2016-07-01
Various physical and biological aspects of the Blood Brain Barrier (BBB) structure still remain unfolded. Therefore, among the several mechanisms of drug delivery, only a few have succeeded in breaching this barrier, one of which is the use of Magnetic Nanoparticles (MNPs). However, a quantitative characterization of the BBB permeability is desirable to find an optimal magnetic force-field. In the present study, a molecular model of the BBB is introduced that precisely represents the interactions between MNPs and the membranes of Endothelial Cells (ECs) that form the BBB. Steered Molecular Dynamics (SMD) simulations of the BBB crossing phenomenon have been carried out. Mathematical modeling of the BBB as an input-output system has been considered from a system dynamics modeling viewpoint, enabling us to analyze the BBB behavior based on a robust model. From this model, the force profile required to overcome the barrier has been extracted for a single NP from the SMD simulations at a range of velocities. Using this data a transfer function model has been obtained and the diffusion coefficient is evaluated. This study is a novel approach to bridge the gap between nanoscale models and microscale models of the BBB. The characteristic diffusion coefficient has the nano-scale molecular effects inherent, furthermore reducing the computational costs of a nano-scale simulation model and enabling much more complex studies to be conducted.
Symbolic Computational Approach to the Marangoni Convection Problem With Soret Diffusion
NASA Technical Reports Server (NTRS)
Skarda, J. Raymond
1998-01-01
A recently reported solution for stationary stability of a thermosolutal system with Soret diffusion is re-derived and examined using a symbolic computational package. Symbolic computational languages are well suited for such an analysis and facilitate a pragmatic approach that is adaptable to similar problems. Linearization of the equations, normal mode analysis, and extraction of the final solution are performed in a Mathematica notebook format. An exact solution is obtained for stationary stability in the limit of zero gravity. A closed form expression is also obtained for the location of asymptotes in relevant parameter, (Sm(sub c), Mac(sub c)), space. The stationary stability behavior is conveniently examined within the symbolic language environment. An abbreviated version of the Mathematica notebook is given in the Appendix.
Zhang, Hao; Sheng, Yin; Zeng, Zhigang
2017-03-15
This paper investigates the synchronization issue of coupled reaction-diffusion neural networks with directed topology via an adaptive approach. Due to the complexity of the network structure and the presence of space variables, it is difficult to design proper adaptive strategies on coupling weights to accomplish the synchronous goal. Under the assumptions of two kinds of special network structures, that is, directed spanning path and directed spanning tree, some novel edge-based adaptive laws, which utilized the local information of node dynamics fully are designed on the coupling weights for reaching synchronization. By constructing appropriate energy function, and utilizing some analytical techniques, several sufficient conditions are given. Finally, some simulation examples are given to verify the effectiveness of the obtained theoretical results.
Shulga, Dmytro; Morozov, Oleksii; Hunziker, Patrick
2016-12-19
Optical Diffusion Tomography (ODT) is a modern non-invasive medical imaging modality which requires mathematical modelling of near-infrared light propagation in tissue. Solving the ODT forward problem equation accurately and efficiently is crucial. Typically, the forward problem is represented by a Diffusion PDE and is solved using the Finite Element Method (FEM) on a mesh, which is often unstructured. Tensor B-spline signal processing has the attractive features of excellent interpolation and approximation properties, multiscale properties, fast algorithms and does not require meshing. This paper introduces Tensor B-spline methodology with arbitrary spline degree tailored to solve the ODT forward problem in an accurate and efficient manner. We show that our Tensor B-spline formulation induces efficient and highly parallelizable computational algorithms. Exploitation of B-spline properties for integration over irregular domains proved valuable. The Tensor B-spline solver was tested on standard problems and on synthetic medical data and compared to FEM, including state-ofthe art ODT forward solvers. Results show that 1) a significantly higher accuracy can be achieved with the same number of nodes, 2) fewer nodes are required to achieve a prespecified accuracy, 3) the algorithm converges in significantly fewer iterations to a given error. These findings support the value of Tensor Bspline methodology for high-performance ODT implementations. This may translate into advances in ODT imaging for biomedical research and clinical application.
ERIC Educational Resources Information Center
Macek, Victor C.
The nine Reactor Statics Modules are designed to introduce students to the use of numerical methods and digital computers for calculation of neutron flux distributions in space and energy which are needed to calculate criticality, power distribution, and fuel burnup for both slow neutron and fast neutron fission reactors. The last module, RS-9,…
NASA Astrophysics Data System (ADS)
Martelloni, Gianluca; Bagnoli, Franco
2016-04-01
intense or long rain that percolates into the soil causing an increasing of the pore water pressure. In literature two type of models exist for attempting to forecast the landslides triggering: statistical or empirical modeling based on rainfall thresholds derived from the analysis of temporal series of daily rain [34] and geotechnical modeling, i.e., slope stability models that take into account water infiltration by rainfall considering classical Richardson equations [35-39]. Regarding the propagation of landslides, the models follow Eulerian (e.g., finite element methods, [40]) or Lagrangian approach (e.g., particle or molecular dynamics methods [41-46]). In a preliminary work [44], the possibility of the integration between fractional-based infiltration modeling and molecular dynamics approach, to model both the triggering and propagation, has been investigated in order to characterize the granular material varying the order of fractional derivative taking into account the equation -∂δ ∂2θ(z,t) ∂tδθ(z,t)=D ∂z2 , (6) where θ(z,t) represents the water content depending on time t and soil depth z [47], while the parameter δ, with 0.5 ≤ δ < 1, represents the fractional derivative order to consider anomalous sub-diffusion [48]; when δ = 1 we have classical derivative, i.e., normal diffusion, and when δ > 1 super-diffusion [32]. To sum up, in [44], a three-dimensional model is developed, the water content is expressed in term of pore pressure (interpreted as a scalar field acting on the particles), whose increasing induces the shear strength reduction. The latter is taking into account by means of Mohr-Coulomb criterion that represents a failure criterion based on limit equilibrium theory [49, 50]. Moreover, the fluctuations depending on positions, in term of pore pressure, are also considered. Concerning the interaction between particles, a Lennard-Jones potential is taking into account and other active forces as gravity, dynamic friction and viscosity
Teigen, Knut Erik; Li, Xiangrong; Lowengrub, John; Wang, Fan; Voigt, Axel
2010-01-01
A method is presented to solve two-phase problems involving a material quantity on an interface. The interface can be advected, stretched, and change topology, and material can be adsorbed to or desorbed from it. The method is based on the use of a diffuse interface framework, which allows a simple implementation using standard finite-difference or finite-element techniques. Here, finite-difference methods on a block-structured adaptive grid are used, and the resulting equations are solved using a non-linear multigrid method. Interfacial flow with soluble surfactants is used as an example of the application of the method, and several test cases are presented demonstrating its accuracy and convergence. PMID:21373370
NASA Astrophysics Data System (ADS)
Han, Yeji
2016-02-01
Whole-body diffusion-weighted imaging (DWI) is a useful tool in oncology, which enables fast screening of disseminated tumors, lymph nodes or abscesses in the body. Multistation magnetic resonance imaging (MRI) or continuously moving table (CMT) MRI can be performed to overcome the limited field of view (FOV) of the magnet bore in whole-body DWI. Although CMT-MRI is regarded as a more advanced form of whole-body MRI, it cannot be widely used because most of the available MR systems are not equipped with the required hardware/software to perform CMT. Thus, optimizing the multistation approach for whole-body DWI, which is more widely available and easier to perform with the existing MR systems, is worthwhile. To improve the quality of DW images acquired with the multistation approach, we used different combinations of the built-in body RF coil and the phased-array surface RF coils for reception of the signals in whole-body DWI in this work. If different coils are selectively used in the extended FOV and appropriate reconstruction algorithms are exploited, the screening ability of whole-body DWI can be improved while minimizing the patient's discomfort and the artifacts due to physiological motions.
Diffuse lung disease of infancy: a pattern-based, algorithmic approach to histological diagnosis.
Armes, Jane E; Mifsud, William; Ashworth, Michael
2015-02-01
Diffuse lung disease (DLD) of infancy has multiple aetiologies and the spectrum of disease is substantially different from that seen in older children and adults. In many cases, a specific diagnosis renders a dire prognosis for the infant, with profound management implications. Two recently published series of DLD of infancy, collated from the archives of specialist centres, indicate that the majority of their cases were referred, implying that the majority of biopsies taken for DLD of infancy are first received by less experienced pathologists. The current literature describing DLD of infancy takes a predominantly aetiological approach to classification. We present an algorithmic, histological, pattern-based approach to diagnosis of DLD of infancy, which, with the aid of appropriate multidisciplinary input, including clinical and radiological expertise and ancillary diagnostic studies, may lead to an accurate and useful interim report, with timely exclusion of inappropriate diagnoses. Subsequent referral to a specialist centre for confirmatory diagnosis will be dependent on the individual case and the decision of the multidisciplinary team.
Tumor growth in complex, evolving microenvironmental geometries: A diffuse domain approach
Chen, Ying; Lowengrub, John S.
2014-01-01
We develop a mathematical model of tumor growth in complex, dynamic microenvironments with active, deformable membranes. Using a diffuse domain approach, the complex domain is captured implicitly using an auxiliary function and the governing equations are appropriately modified, extended and solved in a larger, regular domain. The diffuse domain method enables us to develop an efficient numerical implementation that does not depend on the space dimension or the microenvironmental geometry. We model homotypic cell-cell adhesion and heterotypic cell-basement membrane (BM) adhesion with the latter being implemented via a membrane energy that models cell-BM interactions. We incorporate simple models of elastic forces and the degradation of the BM and ECM by tumor-secreted matrix degrading enzymes. We investigate tumor progression and BM response as a function of cell-BM adhesion and the stiffness of the BM. We find tumor sizes tend to be positively correlated with cell-BM adhesion since increasing cell-BM adhesion results in thinner, more elongated tumors. Prior to invasion of the tumor into the stroma, we find a negative correlation between tumor size and BM stiffness as the elastic restoring forces tend to inhibit tumor growth. In order to model tumor invasion of the stroma, we find it necessary to downregulate cell-BM adhesiveness, which is consistent with experimental observations. A stiff BM promotes invasiveness because at early stages the opening in the BM created by MDE degradation from tumor cells tends to be narrower when the BM is stiffer. This requires invading cells to squeeze through the narrow opening and thus promotes fragmentation that then leads to enhanced growth and invasion. In three dimensions, the opening in the BM was found to increase in size even when the BM is stiff because of pressure induced by growing tumor clusters. A larger opening in the BM can increase the potential for further invasiveness by increasing the possibility that additional
NASA Astrophysics Data System (ADS)
Schwinger, Sabrina; Dohmen, Ralf; Schertl, Hans-Peter
2016-10-01
Carbonaceous chondrites are affected to different degrees by thermal and aqueous metamorphism on their parent bodies. However, the degree of alteration has been categorized mainly by relative scales and achieving quantitative information about metamorphic temperature by conventional mineral thermometry is problematic for low petrologic types. We have developed a general approach to estimate the metamorphic peak temperature experienced by type 3 chondrites from diffusion zoning in minerals, and have applied this approach to olivine in type I and type II chondrules of CO3 chondrites. To obtain metamorphic temperatures from diffusion zoning, we have combined diffusion modeling with thermal modeling of the meteorite parent body. The integrated diffusion coefficient over time (Γ) was identified as a useful parameter to quantify the extent of chemical change by diffusion occurring in a mineral during a given thermal history. Knowing the temperature dependence of the diffusion coefficient, Γ values can be calculated for each thermal history and be compared to the Γ values obtained from diffusion modeling. For thermal histories realistic for the parent body, Γ depends primarily on the metamorphic peak temperature, so that Γ values determined from diffusion profiles in meteorite minerals can be directly related to the metamorphic peak temperature. This general approach is relatively insensitive to uncertainties in the input parameters for the thermal model. We found that chemical zoning in type I and type II chondrule olivine of the CO chondrites Kainsaz and Lancé was largely influenced by solid state diffusion, which is evident from the observed correlation of zoning anisotropy with the crystallographic orientation. Chemical zoning in type II chondrule olivine is mainly igneous for CO chondrites of petrologic types up to at least 3.2 (Kainsaz) and was influenced only minor by diffusion during parent body metamorphism. Fe-Mg zoning in type II chondrule olivine and
Evidence-based approaches to dissemination and diffusion of physical activity interventions.
Owen, Neville; Glanz, Karen; Sallis, James F; Kelder, Steven H
2006-10-01
With the increasing availability of effective, evidence-based physical activity interventions, widespread diffusion is needed. We examine conceptual foundations for research on dissemination and diffusion of physical activity interventions; describe two school-based program examples; review examples of dissemination and diffusion research on other health behaviors; and examine policies that may accelerate the diffusion process. Lack of dissemination and diffusion evaluation research and policy advocacy is one of the factors limiting the impact of evidence-based physical activity interventions on public health. There is the need to collaborate with policy experts from other fields to improve the interdisciplinary science base for dissemination and diffusion. The promise of widespread adoption of evidence-based physical activity interventions to improve public health is sufficient to justify devotion of substantial resources to the relevant research on dissemination and diffusion.
McDowell, Richard W; Nash, David; George, Anja; Wang, Q J; Duncan, Ruth
2009-01-01
Quantifying and managing diffuse P losses from small catchments or at the farm scale requires detailed knowledge of farming practices and their interaction with catchment processes. However, detailed knowledge may not be available and hence modeling is required. This paper demonstrates two approaches to developing tools that assist P losses from New Zealand or Australian dairy farms. The first is largely empirical and separates sources of P within a paddock into soil, fertilizer, dung, and treading impacts (including damage to grazed pasture). This information is combined with expert knowledge of hydrological processes and potential point sources (e.g., stream crossings) to create a deterministic model that can be used to evaluate the most cost and labor efficient method of mitigating P losses. For instance, in one example, 45% of annual P lost was attributed to the application of superphosphate just before a runoff event for which a mitigation strategy could be to use a less water soluble P fertilizer. The second approach uses a combination of interviews, expert knowledge and relationships to develop a Bayesian Network that describes P exports. The knowledge integration process helped stakeholders develop a comprehensive understanding of the problem. The Network, presented in the form of a "cause and effect", diagram provided a simple, visual representation of current knowledge that could be easily applied to individual circumstances and isolate factors having the greatest influence on P loss. Both approaches demonstrate that modeling P losses and mitigation strategies does not have to cover every process or permutation and that a degree of uncertainty can be handled to create a working model of P losses at a farm or small catchment scale.
Fogtmann, Mads; Seshamani, Sharmishtaa; Kroenke, Christopher; Xi Cheng; Chapman, Teresa; Wilm, Jakob; Rousseau, Francois; Studholme, Colin
2014-02-01
This paper presents an approach to 3-D diffusion tensor image (DTI) reconstruction from multi-slice diffusion weighted (DW) magnetic resonance imaging acquisitions of the moving fetal brain. Motion scatters the slice measurements in the spatial and spherical diffusion domain with respect to the underlying anatomy. Previous image registration techniques have been described to estimate the between slice fetal head motion, allowing the reconstruction of 3D a diffusion estimate on a regular grid using interpolation. We propose Approach to Unified Diffusion Sensitive Slice Alignment and Reconstruction (AUDiSSAR) that explicitly formulates a process for diffusion direction sensitive DW-slice-to-DTI-volume alignment. This also incorporates image resolution modeling to iteratively deconvolve the effects of the imaging point spread function using the multiple views provided by thick slices acquired in different anatomical planes. The algorithm is implemented using a multi-resolution iterative scheme and multiple real and synthetic data are used to evaluate the performance of the technique. An accuracy experiment using synthetically created motion data of an adult head and an experiment using synthetic motion added to sedated fetal monkey dataset show a significant improvement in motion-trajectory estimation compared to current state-of-the-art approaches. The performance of the method is then evaluated on challenging but clinically typical in utero fetal scans of four different human cases, showing improved rendition of cortical anatomy and extraction of white matter tracts. While the experimental work focuses on DTI reconstruction (second-order tensor model), the proposed reconstruction framework can employ any 5-D diffusion volume model that can be represented by the spatial parameterizations of an orientation distribution function.
Fogtmann, Mads; Seshamani, Sharmishtaa; Kroenke, Christopher; Cheng, Xi; Chapman, Teresa; Wilm, Jakob; Rousseau, François
2014-01-01
This paper presents an approach to 3-D diffusion tensor image (DTI) reconstruction from multi-slice diffusion weighted (DW) magnetic resonance imaging acquisitions of the moving fetal brain. Motion scatters the slice measurements in the spatial and spherical diffusion domain with respect to the underlying anatomy. Previous image registration techniques have been described to estimate the between slice fetal head motion, allowing the reconstruction of 3-D a diffusion estimate on a regular grid using interpolation. We propose Approach to Unified Diffusion Sensitive Slice Alignment and Reconstruction (AUDiSSAR) that explicitly formulates a process for diffusion direction sensitive DW-slice-to-DTI-volume alignment. This also incorporates image resolution modeling to iteratively deconvolve the effects of the imaging point spread function using the multiple views provided by thick slices acquired in different anatomical planes. The algorithm is implemented using a multi-resolution iterative scheme and multiple real and synthetic data are used to evaluate the performance of the technique. An accuracy experiment using synthetically created motion data of an adult head and a experiment using synthetic motion added to sedated fetal monkey dataset show a significant improvement in motion-trajectory estimation compared to a state-of-the-art approaches. The performance of the method is then evaluated on challenging but clinically typical in utero fetal scans of four different human cases, showing improved rendition of cortical anatomy and extraction of white matter tracts. While the experimental work focuses on DTI reconstruction (second-order tensor model), the proposed reconstruction framework can employ any 5-D diffusion volume model that can be represented by the spatial parameterizations of an orientation distribution function. PMID:24108711
Neutrino diffusion in the pasta phase matter within the Thomas-Fermi approach
NASA Astrophysics Data System (ADS)
Furtado, U. J.; Avancini, S. S.; Marinelli, J. R.; Martarello, W.; Providência, C.
2016-09-01
The behaviour and properties of neutrinos in non-uniform nuclear matter, surrounded by electrons and other neutrinos are studied in the protoneutron star early stage characterized by trapped neutrinos. The nuclear matter itself is modelled by a relativistic mean-field approach, and models with both constant couplings and density-dependent couplings are considered. The so-called nuclear pasta phases at sub-saturation densities, described using the Thomas-Fermi approximation and solved in a Wigner-Seitz cell, are included in the calculation. We obtain the neutrino total cross section and mean free path, taking into account scattering and absorption processes and we compare the final results obtained with different parametrizations. The solution for this problem is important for the understanding of neutrino diffusion in a newly born neutron star after a supernovae explosion. It is shown that the pasta phase will increase the neutrino mean free path by as much as an order of magnitude, therefore contributing for shorter emission time-scales.
NASA-Lewis experiences with multigroup cross sections and shielding calculations
NASA Technical Reports Server (NTRS)
Lahti, G. P.
1972-01-01
The nuclear reactor shield analysis procedures employed at NASA-Lewis are described. Emphasis is placed on the generation, use, and testing of multigroup cross section data. Although coupled neutron and gamma ray cross section sets are useful in two dimensional Sn transport calculations, much insight has been gained from examination of uncoupled calculations. These have led to experimental and analytic studies of areas deemed to be of first order importance to reactor shield calculations. A discussion is given of problems encountered in using multigroup cross sections in the resolved resonance energy range. The addition to ENDF files of calculated and/or measured neutron-energy-dependent capture gamma ray spectra for shielding calculations is questioned for the resonance region. Anomalies inherent in two dimensional Sn transport calculations which may overwhelm any cross section discrepancies are illustrated.
NASA Astrophysics Data System (ADS)
Olson, Gordon L.
2017-03-01
Gray and multigroup radiation is transported through 3D media consisting of spheres randomly placed in a uniform background. Comparisons are made between using constant radii spheres and three different distributions of sphere radii. Because of the computational cost of 3D calculations, only the lowest angle order, n=1, is tested. If the mean chord length is held constant, using different radii distributions makes little difference. This is true for both gray and multigroup solutions. 3D transport solutions are compared to 2D and 1D solutions with the same mean chord lengths. 2D disk and 3D sphere media give solutions that are nearly identical while 1D slab solutions are fundamentally different.
Greene, N.M.; Arwood, J.W.; Wright, R.Q.; Parks, C.V.
1994-08-01
The 238-group LAW Library is a new multigroup neutron cross-section library based on ENDF/B-V data, with five sets of data taken from ENDF/B-VI ({sup 14}N{sub 7}, {sup 15}N{sub 7}, {sup 16}O{sub 8}, {sup 154Eu}{sub 63}, and {sup 155}Eu{sub 63}). These five nuclides are included because the new evaluations are thought to be superior to those in Version 5. The LAW Library contains data for over 300 materials and will be distributed by the Radiation Shielding Information Center, located at Oak Ridge National Laboratory. It was generated for use in neutronics calculations required in radioactive waste analyses, although it has equal utility in any study requiring multigroup neutron cross sections.
Olson, Gordon Lee
2016-12-06
Here, gray and multigroup radiation is transported through 3D media consisting of spheres randomly placed in a uniform background. Comparisons are made between using constant radii spheres and three different distributions of sphere radii. Because of the computational cost of 3D calculations, only the lowest angle order, n=1, is tested. If the mean chord length is held constant, using different radii distributions makes little difference. This is true for both gray and multigroup solutions. 3D transport solutions are compared to 2D and 1D solutions with the same mean chord lengths. 2D disk and 3D sphere media give solutions that aremore » nearly identical while 1D slab solutions are fundamentally different.« less
Olson, Gordon Lee
2016-12-06
Here, gray and multigroup radiation is transported through 3D media consisting of spheres randomly placed in a uniform background. Comparisons are made between using constant radii spheres and three different distributions of sphere radii. Because of the computational cost of 3D calculations, only the lowest angle order, n=1, is tested. If the mean chord length is held constant, using different radii distributions makes little difference. This is true for both gray and multigroup solutions. 3D transport solutions are compared to 2D and 1D solutions with the same mean chord lengths. 2D disk and 3D sphere media give solutions that are nearly identical while 1D slab solutions are fundamentally different.
Morgera, Elisa
2015-01-01
No systematic study discusses the evolution of fair and equitable benefit‐sharing across various areas of international law (environment, human rights, oceans), as well as at different levels of regulation (regional and national laws and guidelines, private law contracts, transboundary codes of conduct, customary laws of indigenous peoples and local communities). This article explores the usefulness of an interdisciplinary approach to the study of norm diffusion for understanding how and why fair and equitable benefit‐sharing is articulated in different sites. The article discusses mechanisms, actors and frames in norm diffusion, drawing on literature from sociology, international relations and law. The article uncovers underlying similarities in scholarship on norm diffusion across the disciplines considered. It also reflects on the value of an interdisciplinary approach that encourages legal scholars to consider the implications of power structures in the diffusion of law, while the nuances of legal knowledge may lead other social scientists to revisit accepted findings on norm diffusion. These findings appear particularly useful for informing an assessment of the potential of fair and equitable benefit‐sharing to promote the conservation and sustainable use of natural resources in a fair and equitable manner in the face of power asymmetries. PMID:28018594
Parks, Louisa; Morgera, Elisa
2015-11-01
No systematic study discusses the evolution of fair and equitable benefit-sharing across various areas of international law (environment, human rights, oceans), as well as at different levels of regulation (regional and national laws and guidelines, private law contracts, transboundary codes of conduct, customary laws of indigenous peoples and local communities). This article explores the usefulness of an interdisciplinary approach to the study of norm diffusion for understanding how and why fair and equitable benefit-sharing is articulated in different sites. The article discusses mechanisms, actors and frames in norm diffusion, drawing on literature from sociology, international relations and law. The article uncovers underlying similarities in scholarship on norm diffusion across the disciplines considered. It also reflects on the value of an interdisciplinary approach that encourages legal scholars to consider the implications of power structures in the diffusion of law, while the nuances of legal knowledge may lead other social scientists to revisit accepted findings on norm diffusion. These findings appear particularly useful for informing an assessment of the potential of fair and equitable benefit-sharing to promote the conservation and sustainable use of natural resources in a fair and equitable manner in the face of power asymmetries.
NASA Astrophysics Data System (ADS)
Ansari, Rafat R.; Suh, Kwang I.; Sebag, J.
2006-02-01
PURPOSE: Pharmacologic vitreolysis is a new approach to improve vitreo-retinal surgery. Ultimately, the development of drugs to liquefy and detach vitreous from retina should prevent disease by mitigating the contribution of vitreous to retinopathy and eliminate the need for surgery. However, the mechanism of action of pharmacologic vitreolysis remains unclear. The technique of Dynamic light scattering (DLS) was used to evaluate the effects of microplasmin by following the diffusion coefficients of spherical polystyrene nano-particles injected with microplasmin into the vitreous. METHODS: Diffusion coefficients in dissected (n=9) porcine eyes were measured in vitro. DLS was performed on all specimens at 37°C as often as every 10 minutes for up to 6 hours following injections of human recombinant microplasmin at doses ranging from 0.125 mg to 0.8 mg, with 20 nm diameter tracer nanospheres. RESULTS: DLS findings in untreated porcine vitreous were similar to the previously described findings in bovine and human vitreous, demonstrating a fast (early) component, resulting from the flexible hyaluronan molecules, and a slow (late) component, resulting form the stiff collagen molecules. Microplasmin increased porcine vitreous diffusion coefficients. A new approach was developed to use DLS measurements of vitreous diffusion coefficients to evaluate the effects of microplasmin in intact eyes. CONCLUSIONS: Pharmacologic vitreolysis with human recombinant microplasmin increases vitreous diffusion coefficients in vitro. The results of these studies indicate that this new approach using DLS to measure vitreous diffusion coefficients can be used to study the effects of pharmacologic vitreolysis using microplasmin and other agents in intact eyes and ultimately in vivo.
Ding, Jingtao; Xi, Beidou; Gao, Rutai; He, Liansheng; Liu, Hongliang; Dai, Xuanli; Yu, Yijun
2014-06-15
Nitrate (NO3(-)) pollution is a severe problem in aquatic systems in Taihu Lake Basin in China. A dual isotope approach (δ(15)NNO3(-) and δ(18)ONO3(-)) was applied to identify diffused NO3(-) inputs in a stream in an agricultural field at the basin in 2013. The site-specific isotopic characteristics of five NO3(-) sources (atmospheric deposition, AD; NO3(-) derived from soil organic matter nitrification, NS; NO3(-) derived from chemical fertilizer nitrification, NF; groundwater, GW; and manure and sewage, M&S) were identified. NO3(-) concentrations in the stream during the rainy season [mean±standard deviation (SD)=2.5±0.4mg/L] were lower than those during the dry season (mean±SD=4.0±0.5mg/L), whereas the δ(18)ONO3(-) values during the rainy season (mean±SD=+12.3±3.6‰) were higher than those during the dry season (mean±SD=+0.9±1.9‰). Both chemical and isotopic characteristics indicated that mixing with atmospheric NO3(-) resulted in the high δ(18)O values during the rainy season, whereas NS and M&S were the dominant NO3(-) sources during the dry season. A Bayesian model was used to determine the contribution of each NO3(-) source to total stream NO3(-). Results showed that reduced N nitrification in soil zones (including soil organic matter and fertilizer) was the main NO3(-) source throughout the year. M&S contributed more NO3(-) during the dry season (22.4%) than during the rainy season (17.8%). AD generated substantial amounts of NO3(-) in May (18.4%), June (29.8%), and July (24.5%). With the assessment of temporal variation of diffused NO3(-) sources in agricultural field, improved agricultural management practices can be implemented to protect the water resource and avoid further water quality deterioration in Taihu Lake Basin.
Storylines of research in diffusion of innovation: a meta-narrative approach to systematic review.
Greenhalgh, Trisha; Robert, Glenn; Macfarlane, Fraser; Bate, Paul; Kyriakidou, Olympia; Peacock, Richard
2005-07-01
Producing literature reviews of complex evidence for policymaking questions is a challenging methodological area. There are several established and emerging approaches to such reviews, but unanswered questions remain, especially around how to begin to make sense of large data sets drawn from heterogeneous sources. Drawing on Kuhn's notion of scientific paradigms, we developed a new method-meta-narrative review-for sorting and interpreting the 1024 sources identified in our exploratory searches. We took as our initial unit of analysis the unfolding 'storyline' of a research tradition over time. We mapped these storylines by using both electronic and manual tracking to trace the influence of seminal theoretical and empirical work on subsequent research within a tradition. We then drew variously on the different storylines to build up a rich picture of our field of study. We identified 13 key meta-narratives from literatures as disparate as rural sociology, clinical epidemiology, marketing and organisational studies. Researchers in different traditions had conceptualised, explained and investigated diffusion of innovations differently and had used different criteria for judging the quality of empirical work. Moreover, they told very different over-arching stories of the progress of their research. Within each tradition, accounts of research depicted human characters emplotted in a story of (in the early stages) pioneering endeavour and (later) systematic puzzle-solving, variously embellished with scientific dramas, surprises and 'twists in the plot'. By first separating out, and then drawing together, these different meta-narratives, we produced a synthesis that embraced the many complexities and ambiguities of 'diffusion of innovations' in an organisational setting. We were able to make sense of seemingly contradictory data by systematically exposing and exploring tensions between research paradigms as set out in their over-arching storylines. In some traditions
Comparison of Monte Carlo methods for criticality benchmarks: Pointwise compared to multigroup
Choi, J.S.; Alesso, P.H.; Pearson, J.S. )
1989-01-01
Transport codes use multigroup cross sections where neutrons are divided into broad energy groups, and the monoenergetic equation is solved for each group with a group-averaged cross section. Monte Carlo codes differ in that they allow the use of the most basic pointwise cross-section data directly in a calculation. Most of the first Monte Carlo codes were not able to utilize this feature, however, because of the memory limitations of early computers and the lack of pointwise cross-section data. Consequently, codes written in 1970s, such as KENO-IV and MORSE-C, were adapted to use multigroup cross-section sets similar to those used in the S{sub n} transport codes. With advances in computer memory capacities and the availability of pointwise cross-section sets, new Monte Carlo codes employing pointwise cross-section libraries, such as the Los Alamos National Laboratory code MCNP and the Lawrence Livermore National Laboratory (LLNL) code COG were developed for criticality, as well as radiation transport calculations. To compare pointwise and multigroup Monte Carlo methods for criticality benchmark calculations, this paper presents and evaluated the results from the KENO-IV, MORSE-C, MCNP, and COG codes. The critical experiments selected for benchmarking include LLNL fast metal systems and low-enriched uranium moderated and reflected systems.
NASA Astrophysics Data System (ADS)
Rothfischer, Ramona; Grosenick, Dirk; Macdonald, Rainer
2015-07-01
We discuss the determination of optical properties of thick scattering media from measurements of time-resolved transmittance by diffusion theory using Monte Carlo simulations as a gold standard to model photon migration. Our theoretical and experimental investigations reveal differences between calculated distributions of times of flight (DTOFs) of photons from both models which result in an overestimation of the absorption and the reduced scattering coefficient by diffusion theory which becomes larger for small scattering coefficients. By introducing a temporal shift in the DTOFs obtained with the diffusion model as additional fit parameter, the deviation in the absorption coefficient can be compensated almost completely. If the scattering medium is additionally covered by transparent layers (e.g. glass plates) the deviation between the DTOFs from both models is even larger which mainly effects the determination of the reduced scattering coefficient by diffusion theory. A temporal shift improves the accuracy of the optical properties derived by diffusion theory in this case as well.
Rodriguez, Luis; Cárdenas-García, Jaime F; Vera, César Costa
2014-06-15
A frequency-resolved thermal lensing (TL) approach to measure thermal diffusivity properties of both diluted liquid solutions and silver nanoparticle colloidal suspensions is demonstrated. The experiment is based on a classical two-color pump-probe TL configuration, which is adapted to measure the induced TL signal as a function of the chopping frequency of the pump beam. Because of the thermal diffusivity lengths in the samples, the TL signal decreases exponentially with the increment of the frequency. The exponential decay factor can be associated with the thermal diffusivity of the medium. Measurements are performed on diluted liquid solutions and silver nanoparticles suspended in a PVP solution. A suitable fitting to a theoretical model based on the Fresnel diffraction approximation of the experimental data is obtained. This work demonstrates the feasibility of using this approach for the thermal characterization of nanoparticles in liquid solutions. Thermal diffusivity as low as 0.094×10(-7) m2 s(-1) can be estimated by using this approach.
A new approach to quantifying internal diffusion resistances and CO2 isotope exchange in leaves
NASA Astrophysics Data System (ADS)
West, Jason; Ogée, Jérôme; Burlett, Régis; Gimeno, Teresa; Genty, Bernard; Jones, Samuel; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa
2016-04-01
The oxygen isotopic composition (δ18O) of atmospheric CO2 can constrain the global CO2 budget at a range of scales, offering the potential to partition net CO2 exchanges into their component gross fluxes and provide insights to linkages between C and water cycles. However, there are significant limitations to utilizing the δ18O of CO2 to constrain C budgets because of uncertainties associated with the isotopic exchange of CO2 with terrestrial water pools. Leaf water in particular represents a critical pool with ongoing debates about its enrichment in heavy isotopes during transpiration and the hydration of CO2 and its oxygen isotope exchange with this pool. Isotopic heterogeneity of the leaf water, the spatial distribution and activity of carbonic anhydrase (CA) within leaves, and resistance to diffusion of CO2 from the substomatal cavity to chloroplasts are all key components with important uncertainties. Better constraints on these would significantly improve our ability to understand and model the global C budget as well as yield insights to fundamental aspects of leaf physiology. We report results using a new measurement system that permits the simultaneous measurement of the 13C and 18O composition of CO2 and the 18O isotopic composition of leaf transpiration. As this new approach permits rapid alteration of the isotopic composition of gases interacting with the leaf, key model parameters can be derived directly and simultaneously. Hence, our approach dos not rely on separate measurements shifted in time from the gas exchange measurements or that may not quantify the relevant scale of heterogeneity (e.g., CA enzyme assays or bulk leaf water extraction and analysis). In particular, this new method explicitly distinguishes the leaf mesophyll resistance to CO2 transport relevant for photosynthesis from the resistance required for interpreting the δ18O of CO2 and allows us to derive other relevant parameters directly. This new measurement system and modeling
A novel approach to modelling water transport and drug diffusion through the stratum corneum
2010-01-01
Background The potential of using skin as an alternative path for systemically administering active drugs has attracted considerable interest, since the creation of novel drugs capable of diffusing through the skin would provide a great step towards easily applicable -and more humane- therapeutic solutions. However, for drugs to be able to diffuse, they necessarily have to cross a permeability barrier: the stratum corneum (SC), the uppermost set of skin layers. The precise mechanism by which drugs penetrate the skin is generally thought to be diffusion of molecules through this set of layers following a "tortuous pathway" around corneocytes, i.e. impermeable dead cells. Results In this work, we simulate water transport and drug diffusion using a three-dimensional porous media model. Our numerical simulations show that diffusion takes place through the SC regardless of the direction and magnitude of the fluid pressure gradient, while the magnitude of the concentrations calculated are consistent with experimental studies. Conclusions Our results support the possibility for designing arbitrary drugs capable of diffusing through the skin, the time-delivery of which is solely restricted by their diffusion and solubility properties. PMID:20716360
NASA Astrophysics Data System (ADS)
Koo, Peter K.; Mochrie, Simon G. J.
2016-11-01
The stochastic motions of a diffusing particle contain information concerning the particle's interactions with binding partners and with its local environment. However, an accurate determination of the underlying diffusive properties, beyond normal diffusion, has remained challenging when analyzing particle trajectories on an individual basis. Here, we introduce the maximum-likelihood estimator (MLE) for confined diffusion and fractional Brownian motion. We demonstrate that this MLE yields improved estimation over traditional mean-square displacement analyses. We also introduce a model selection scheme (that we call mleBIC) that classifies individual trajectories to a given diffusion mode. We demonstrate the statistical limitations of classification via mleBIC using simulated data. To overcome these limitations, we introduce a version of perturbation expectation-maximization (pEMv2), which simultaneously analyzes a collection of particle trajectories to uncover the system of interactions that give rise to unique normal and/or non-normal diffusive states within the population. We test and evaluate the performance of pEMv2 on various sets of simulated particle trajectories, which transition among several modes of normal and non-normal diffusion, highlighting the key considerations for employing this analysis methodology.
Flame Design: A Novel Approach Developed to Produce Clean, Efficient Diffusion Flames
NASA Technical Reports Server (NTRS)
Axelbaum, Richard L.; Urban, David L.; Sunderland, Peter B.; Chao, Beei-Huan
2000-01-01
Soot formation and flame extinction are vital concerns in the combustion of fossil fuels. In particular, soot is responsible for pollutant emissions, and extinction can cause inefficient or unstable burning. Normal-gravity experiments have demonstrated that flames can be designed to improve both characteristics by redirecting some or all of the nitrogen from the oxidizer into the fuel. Such nitrogen exchange can produce permanently blue flames, which are soot free under all possible flame conditions. Furthermore, this approach can lead to stronger, extinction-resistant flames. Past investigations of nitrogen exchange were unable to identify the physical mechanisms responsible for its benefits because these mechanisms cannot be isolated when normal-gravity flames are studied. In contrast, the Diffusion Flame Extinction and Soot Inception (DESI) experiment considers spherical flames, where nearly perfect spherical symmetry affords new levels of control. Because of buoyancy, spherical flames cannot be created in Earth s gravity. DESI was conceived by principal investigator Professor R.L. Axelbaum of Washington University in St. Louis. Tests to date have utilized the 2.2-Second Drop Tower at the NASA Glenn Research Center at Lewis Field. The experiment is slated for testing aboard the International Space Station in a few years. Two mechanisms have been proposed to explain the connection between nitrogen exchange and permanently blue flames. These are the structure (chemical effects) and hydrodynamics (flow direction and speed). In normal-gravity flames, the structure and hydrodynamics are coupled, since nitrogen exchange simultaneously modifies both. Spherical microgravity flames, on the other hand, allow independent control of these factors. Specifically, structure can be modified via nitrogen exchange, and flow direction can be reversed by swapping the ambient and burner-feed gases. In DESI, these variations can be accomplished without changing the theoretical flame
A 3D Tissue-Printing Approach for Validation of Diffusion Tensor Imaging in Skeletal Muscle.
Berry, David B; You, Shangting; Warner, John; Frank, Lawrence R; Chen, Shaochen; Ward, Samuel R
2017-03-24
The ability to noninvasively assess skeletal muscle microstructure, which predicts function and disease, would be of significant clinical value. One method that holds this promise is diffusion tensor magnetic resonance imaging (DT-MRI), which is sensitive to the microscopic diffusion of water within tissues and has become ubiquitous in neuroimaging as a way of assessing neuronal structure and damage. However, its application to the assessment of changes in muscle microstructure associated with injury, pathology, or age remains poorly defined, because it is difficult to precisely control muscle microstructural features in vivo. However, recent advances in additive manufacturing technologies allow precision-engineered diffusion phantoms with histology informed skeletal muscle geometry to be manufactured. Therefore, the goal of this study was to develop skeletal muscle phantoms at relevant size scales to relate microstructural features to MRI-based diffusion measurements. A digital light projection based rapid 3D printing method was used to fabricate polyethylene glycol diacrylate based diffusion phantoms with (1) idealized muscle geometry (no geometry; fiber sizes of 30, 50, or 70 μm or fiber size of 50 μm with 40% of walls randomly deleted) or (2) histology-based geometry (normal and after 30-days of denervation) containing 20% or 50% phosphate-buffered saline (PBS). Mean absolute percent error (8%) of the printed phantoms indicated high conformity to templates when "fibers" were >50 μm. A multiple spin-echo echo planar imaging diffusion sequence, capable of acquiring diffusion weighted data at several echo times, was used in an attempt to combine relaxometry and diffusion techniques with the goal of separating intracellular and extracellular diffusion signals. When fiber size increased (30-70 μm) in the 20% PBS phantom, fractional anisotropy (FA) decreased (0.32-0.26) and mean diffusivity (MD) increased (0.44 × 10(-3) mm(2)/s-0.70 × 10(-3) mm
NASA Astrophysics Data System (ADS)
Candoré, Jean Charles; Bodnar, J. L.; Detalle, Vincent; Remy, B.; Grossel, Philippe
2010-03-01
In this paper we present, in an experimental way, the possibilities of front face photothermal radiometry to measure, in situ, the longitudinal thermal diffusivity of mural paintings. First, we present the principle of the method of measurement. Then, we present the experimental device implemented for the study. Finally, we show, using the experimental study of a plaster sample, the photothermal method allows in a particular case, a good approximation of the parameter longitudinal thermal diffusivity.
Stochastic approach to diffusion inside the chaotic layer of a resonance.
Mestre, Martín F; Bazzani, Armando; Cincotta, Pablo M; Giordano, Claudia M
2014-01-01
We model chaotic diffusion in a symplectic four-dimensional (4D) map by using the result of a theorem that was developed for stochastically perturbed integrable Hamiltonian systems. We explicitly consider a map defined by a free rotator (FR) coupled to a standard map (SM). We focus on the diffusion process in the action I of the FR, obtaining a seminumerical method to compute the diffusion coefficient. We study two cases corresponding to a thick and a thin chaotic layer in the SM phase space and we discuss a related conjecture stated in the past. In the first case, the numerically computed probability density function for the action I is well interpolated by the solution of a Fokker-Planck (FP) equation, whereas it presents a nonconstant time shift with respect to the concomitant FP solution in the second case suggesting the presence of an anomalous diffusion time scale. The explicit calculation of a diffusion coefficient for a 4D symplectic map can be useful to understand the slow diffusion observed in celestial mechanics and accelerator physics.
Du, Gang; Jiang, Zhibin; Diao, Xiaodi; Yao, Yang
2012-04-01
Although the clinical pathway (CP) predefines predictable standardized care process for a particular diagnosis or procedure, many variances may still unavoidably occur. Some key index parameters have strong relationship with variances handling measures of CP. In real world, these problems are highly nonlinear in nature so that it's hard to develop a comprehensive mathematic model. In this paper, a rule extraction approach based on combing hybrid genetic double multi-group cooperative particle swarm optimization algorithm (PSO) and discrete PSO algorithm (named HGDMCPSO/DPSO) is developed to discovery the previously unknown and potentially complicated nonlinear relationship between key parameters and variances handling measures of CP. Then these extracted rules can provide abnormal variances handling warning for medical professionals. Three numerical experiments on Iris of UCI data sets, Wisconsin breast cancer data sets and CP variances data sets of osteosarcoma preoperative chemotherapy are used to validate the proposed method. When compared with the previous researches, the proposed rule extraction algorithm can obtain the high prediction accuracy, less computing time, more stability and easily comprehended by users, thus it is an effective knowledge extraction tool for CP variances handling.
Tominaga, Nozomu; Shibata, Sanshiro; Blinnikov, Sergei I. E-mail: sshibata@post.kek.jp
2015-08-15
We develop a time-dependent, multi-group, multi-dimensional relativistic radiative transfer code, which is required to numerically investigate radiation from relativistic fluids that are involved in, e.g., gamma-ray bursts and active galactic nuclei. The code is based on the spherical harmonic discrete ordinate method (SHDOM) which evaluates a source function including anisotropic scattering in spherical harmonics and implicitly solves the static radiative transfer equation with ray tracing in discrete ordinates. We implement treatments of time dependence, multi-frequency bins, Lorentz transformation, and elastic Thomson and inelastic Compton scattering to the publicly available SHDOM code. Our code adopts a mixed-frame approach; the source function is evaluated in the comoving frame, whereas the radiative transfer equation is solved in the laboratory frame. This implementation is validated using various test problems and comparisons with the results from a relativistic Monte Carlo code. These validations confirm that the code correctly calculates the intensity and its evolution in the computational domain. The code enables us to obtain an Eddington tensor that relates the first and third moments of intensity (energy density and radiation pressure) and is frequently used as a closure relation in radiation hydrodynamics calculations.
Marí, Antonio; Morla, Arnaud; Melero, Mireia; Schiavone, Rocio; Rodríguez, Jesus
2014-12-01
Diffuse sclerosing osteomyelitis of the mandible is now considered a local manifestation of SAPHO syndrome. This rare condition is thought to be of auto-inflammatory origin. The myriad of treatments shown in the literature, are basically empirical and reflect its unknown origin. We present a clinical case of refractory DSO treated with an anti-TNF drug (etanercept) with complete clinical remission. We advise against radical surgery and an interdisciplinary approach is recommended. A systematic literature review was also conducted.
NASA Astrophysics Data System (ADS)
Sanghi, T.; Aluru, N. R.
2013-03-01
In this work, we combine our earlier proposed empirical potential based quasi-continuum theory, (EQT) [A. V. Raghunathan, J. H. Park, and N. R. Aluru, J. Chem. Phys. 127, 174701 (2007), 10.1063/1.2793070], which is a coarse-grained multiscale framework to predict the static structure of confined fluids, with a phenomenological Langevin equation to simulate the dynamics of confined fluids in thermal equilibrium. An attractive feature of this approach is that all the input parameters to the Langevin equation (mean force profile of the confined fluid and the static friction coefficient) can be determined using the outputs of the EQT and the self-diffusivity data of the corresponding bulk fluid. The potential of mean force profile, which is a direct output from EQT is used to compute the mean force profile of the confined fluid. The density profile, which is also a direct output from EQT, along with the self-diffusivity data of the bulk fluid is used to determine the static friction coefficient of the confined fluid. We use this approach to compute the mean square displacement and survival probabilities of some important fluids such as carbon-dioxide, water, and Lennard-Jones argon confined inside slit pores. The predictions from the model are compared with those obtained using molecular dynamics simulations. This approach of combining EQT with a phenomenological Langevin equation provides a mathematically simple and computationally efficient means to study the impact of structural inhomogeneity on the self-diffusion dynamics of confined fluids.
Limkumnerd, Surachate
2014-03-01
Interest in thin-film fabrication for industrial applications have driven both theoretical and computational aspects of modeling its growth. One of the earliest attempts toward understanding the morphological structure of a film's surface is through a class of solid-on-solid limited-mobility growth models such as the Family, Wolf-Villain, or Das Sarma-Tamborenea models, which have produced fascinating surface roughening behaviors. These models, however, restrict the motion of an incidence atom to be within the neighborhood of its landing site, which renders them inept for simulating long-distance surface diffusion such as that observed in thin-film growth using a molecular-beam epitaxy technique. Naive extension of these models by repeatedly applying the local diffusion rules for each hop to simulate large diffusion length can be computationally very costly when certain statistical aspects are demanded. We present a graph-theoretic approach to simulating a long-range diffusion-attachment growth model. Using the Markovian assumption and given a local diffusion bias, we derive the transition probabilities for a random walker to traverse from one lattice site to the others after a large, possibly infinite, number of steps. Only computation with linear-time complexity is required for the surface morphology calculation without other probabilistic measures. The formalism is applied, as illustrations, to simulate surface growth on a two-dimensional flat substrate and around a screw dislocation under the modified Wolf-Villain diffusion rule. A rectangular spiral ridge is observed in the latter case with a smooth front feature similar to that obtained from simulations using the well-known multiple registration technique. An algorithm for computing the inverse of a class of substochastic matrices is derived as a corollary.
NASA Astrophysics Data System (ADS)
Limkumnerd, Surachate
2014-03-01
Interest in thin-film fabrication for industrial applications have driven both theoretical and computational aspects of modeling its growth. One of the earliest attempts toward understanding the morphological structure of a film's surface is through a class of solid-on-solid limited-mobility growth models such as the Family, Wolf-Villain, or Das Sarma-Tamborenea models, which have produced fascinating surface roughening behaviors. These models, however, restrict the motion of an incidence atom to be within the neighborhood of its landing site, which renders them inept for simulating long-distance surface diffusion such as that observed in thin-film growth using a molecular-beam epitaxy technique. Naive extension of these models by repeatedly applying the local diffusion rules for each hop to simulate large diffusion length can be computationally very costly when certain statistical aspects are demanded. We present a graph-theoretic approach to simulating a long-range diffusion-attachment growth model. Using the Markovian assumption and given a local diffusion bias, we derive the transition probabilities for a random walker to traverse from one lattice site to the others after a large, possibly infinite, number of steps. Only computation with linear-time complexity is required for the surface morphology calculation without other probabilistic measures. The formalism is applied, as illustrations, to simulate surface growth on a two-dimensional flat substrate and around a screw dislocation under the modified Wolf-Villain diffusion rule. A rectangular spiral ridge is observed in the latter case with a smooth front feature similar to that obtained from simulations using the well-known multiple registration technique. An algorithm for computing the inverse of a class of substochastic matrices is derived as a corollary.
Optimal diffusion MRI acquisition for fiber orientation density estimation: an analytic approach.
White, Nathan S; Dale, Anders M
2009-11-01
An important challenge in the design of diffusion MRI experiments is how to optimize statistical efficiency, i.e., the accuracy with which parameters can be estimated from the diffusion data in a given amount of imaging time. In model-based spherical deconvolution analysis, the quantity of interest is the fiber orientation density (FOD). Here, we demonstrate how the spherical harmonics (SH) can be used to form an explicit analytic expression for the efficiency of the minimum variance (maximally efficient) linear unbiased estimator of the FOD. Using this expression, we calculate optimal b-values for maximum FOD estimation efficiency with SH expansion orders of L = 2, 4, 6, and 8 to be approximately b = 1,500, 3,000, 4,600, and 6,200 s/mm(2), respectively. However, the arrangement of diffusion directions and scanner-specific hardware limitations also play a role in determining the realizable efficiency of the FOD estimator that can be achieved in practice. We show how some commonly used methods for selecting diffusion directions are sometimes inefficient, and propose a new method for selecting diffusion directions in MRI based on maximizing the statistical efficiency. We further demonstrate how scanner-specific hardware limitations generally lead to optimal b-values that are slightly lower than the ideal b-values. In summary, the analytic expression for the statistical efficiency of the unbiased FOD estimator provides important insight into the fundamental tradeoff between angular resolution, b-value, and FOD estimation accuracy.
Burnecki, Krzysztof; Kepten, Eldad; Garini, Yuval; Sikora, Grzegorz; Weron, Aleksander
2015-01-01
Accurately characterizing the anomalous diffusion of a tracer particle has become a central issue in biophysics. However, measurement errors raise difficulty in the characterization of single trajectories, which is usually performed through the time-averaged mean square displacement (TAMSD). In this paper, we study a fractionally integrated moving average (FIMA) process as an appropriate model for anomalous diffusion data with measurement errors. We compare FIMA and traditional TAMSD estimators for the anomalous diffusion exponent. The ability of the FIMA framework to characterize dynamics in a wide range of anomalous exponents and noise levels through the simulation of a toy model (fractional Brownian motion disturbed by Gaussian white noise) is discussed. Comparison to the TAMSD technique, shows that FIMA estimation is superior in many scenarios. This is expected to enable new measurement regimes for single particle tracking (SPT) experiments even in the presence of high measurement errors. PMID:26065707
An economic approach to reducing water pollution: point and diffuse sources.
O'Shea, Lucy
2002-01-23
A review of economic policy towards pollution control is presented which shows that appropriate measures will depend on whether the pollution is of a point or a diffuse nature. Regulation of the former is comparatively straightforward, with command and control and market instruments the tools of pollution control. The advantages and disadvantages of each measure are outlined. However, the inability to monitor emissions at source, precludes the application of point source measures in the case of diffuse source pollution. Instead, methods are required which overcome the need for direct monitoring. Several suggestions that propose ways of achieving this have been put forward and these are described. It is concluded that appropriate measures depend on the particular features of the problem and it is not possible to offer a blanket solution to either point sources or diffuse pollution.
Carbon diffusion in bulk hcp zirconium: A multi-scale approach
NASA Astrophysics Data System (ADS)
Xu, Y.; Roques, J.; Domain, C.; Simoni, E.
2016-05-01
In the framework of the geological repository of the used fuel claddings of pressurized water reactor, carbon behavior in bulk zirconium is studied by periodic Density Functional Theory calculations. The C interstitial sites were investigated and it was found that there are two possible carbon interstitial sites: a distorted basal tetragonal site and an octahedral site. There are four types of possible atomic jumps between them. After calculating the migration energies, the attempt frequencies and the jump probabilities for each possible migration path, kinetic Monte Carlo (KMC) simulations were performed to simulate carbon diffusion at the macroscopic scale. The results show that carbon diffusion in pure Zr bulk is extremely limited at the storage temperature (50 °C). Since there are defects in Zr bulk, in a second step, the effect of atomic vacancy was studied and it was proved that vacancies cannot increase carbon diffusion.
Ye, Chuyang; Murano, Emi; Stone, Maureen; Prince, Jerry L
2015-10-01
The tongue is a critical organ for a variety of functions, including swallowing, respiration, and speech. It contains intrinsic and extrinsic muscles that play an important role in changing its shape and position. Diffusion tensor imaging (DTI) has been used to reconstruct tongue muscle fiber tracts. However, previous studies have been unable to reconstruct the crossing fibers that occur where the tongue muscles interdigitate, which is a large percentage of the tongue volume. To resolve crossing fibers, multi-tensor models on DTI and more advanced imaging modalities, such as high angular resolution diffusion imaging (HARDI) and diffusion spectrum imaging (DSI), have been proposed. However, because of the involuntary nature of swallowing, there is insufficient time to acquire a sufficient number of diffusion gradient directions to resolve crossing fibers while the in vivo tongue is in a fixed position. In this work, we address the challenge of distinguishing interdigitated tongue muscles from limited diffusion magnetic resonance imaging by using a multi-tensor model with a fixed tensor basis and incorporating prior directional knowledge. The prior directional knowledge provides information on likely fiber directions at each voxel, and is computed with anatomical knowledge of tongue muscles. The fiber directions are estimated within a maximum a posteriori (MAP) framework, and the resulting objective function is solved using a noise-aware weighted ℓ1-norm minimization algorithm. Experiments were performed on a digital crossing phantom and in vivo tongue diffusion data including three control subjects and four patients with glossectomies. On the digital phantom, effects of parameters, noise, and prior direction accuracy were studied, and parameter settings for real data were determined. The results on the in vivo data demonstrate that the proposed method is able to resolve interdigitated tongue muscles with limited gradient directions. The distributions of the
NASA Astrophysics Data System (ADS)
Kan, Jia-Qian; Zhang, Hai-Feng
2017-03-01
In this paper, we study the interplay between the epidemic spreading and the diffusion of awareness in multiplex networks. In the model, an infectious disease can spread in one network representing the paths of epidemic spreading (contact network), leading to the diffusion of awareness in the other network (information network), and then the diffusion of awareness will cause individuals to take social distances, which in turn affects the epidemic spreading. As for the diffusion of awareness, we assume that, on the one hand, individuals can be informed by other aware neighbors in information network, on the other hand, the susceptible individuals can be self-awareness induced by the infected neighbors in the contact networks (local information) or mass media (global information). Through Markov chain approach and numerical computations, we find that the density of infected individuals and the epidemic threshold can be affected by the structures of the two networks and the effective transmission rate of the awareness. However, we prove that though the introduction of the self-awareness can lower the density of infection, which cannot increase the epidemic threshold no matter of the local information or global information. Our finding is remarkably different to many previous results on single-layer network: local information based behavioral response can alter the epidemic threshold. Furthermore, our results indicate that the nodes with more neighbors (hub nodes) in information networks are easier to be informed, as a result, their risk of infection in contact networks can be effectively reduced.
Joffe, I V; Lesnoy, V V
2016-01-01
The results of treatment of 33 patients, suffering diffuse peritonitis, with postoperatively applied tactics of the programmed surgical sanation of abdominal cavity were analyzed. Indications for relaparotomy were established, based on the estimation scale for the enteral insufficiency severity. The patients death and the complications causes were analyzed, depending on terms and rates of relaparotomy conduction.
Embracing Learners' Ideas about Diffusion and Osmosis: A Coupled-Inquiry Approach
ERIC Educational Resources Information Center
Sweeney, Ryan M.; Martin-Hansen, Lisa; Verma, Geeta; Dunkhase, John
2009-01-01
Learning about osmosis and diffusion is often a challenging task for middle school students. Here the authors present a lesson that was converted from a "cookbook" lab (McLaughlin and Thompson 2007) into a more inquiry-oriented lab that uses inquiry teaching strategies and hands-on investigations to teach middle-grade students about osmosis and…
New Methodologies for Generation of Multigroup Cross Sections for Shielding Applications
NASA Astrophysics Data System (ADS)
Arzu Alpan, F.; Haghighat, Alireza
2003-06-01
Coupled neutron and gamma multigroup (broad-group) libraries used for Light Water Reactor shielding and dosimetry commonly include 47-neutron and 20-gamma groups. These libraries are derived from the 199-neutron, 42-gamma fine-group VITAMIN-B6 library. In this paper, we introduce modifications to the generation procedure of the broad-group libraries. Among these modifications, we show that the fine-group structure and collapsing technique have the largest impact. We demonstrate that a more refined fine-group library and the bi-linear adjoint weighting collapsing technique can improve the accuracy of transport calculation results.
Supernova Shock Breakout Light Curves and Spectra from CASTRO Multigroup Radiation Simulations
NASA Astrophysics Data System (ADS)
Lovegrove, Elizabeth; Woosley, S. E.
2014-01-01
We present preliminary results from a study of supernova shock breakout with the new multigroup radiation transport version of the CASTRO simulation code. Shock breakout occurs when the outgoing shockwave of a supernova explosion reaches the surface of the progenitor star and produces a bright flash. The breakout flash's spectral temperature, duration, and luminosity carry information about the progenitor star that may otherwise be very difficult to recover. To aid in detection and understanding of this phenomenon, we present integrated light curves and spectra of breakouts from a range of progenitors and explosions, including very low energy supernovae and pair-instability supernovae.
Asymptotic behavior of stochastic multi-group epidemic models with distributed delays
NASA Astrophysics Data System (ADS)
Liu, Qun; Jiang, Daqing; Shi, Ningzhong; Hayat, Tasawar; Alsaedi, Ahmed
2017-02-01
In this paper, we introduce stochasticity into multi-group epidemic models with distributed delays and general kernel functions. The stochasticity in the model is a standard technique in stochastic population modeling. When the perturbations are small, by using the method of stochastic Lyapunov functions, we carry out a detailed analysis on the asymptotic behavior of the stochastic model regarding of the basic reproduction number R0. If R0 ≤ 1, the solution of the stochastic system oscillates around the disease-free equilibrium E0, while if R0 > 1, the solution of the stochastic model fluctuates around the endemic equilibrium E∗. Moreover, we also establish sufficient conditions of these results.
Geiser, Christian; Griffin, Daniel; Shiffman, Saul
2016-01-01
Sometimes, researchers are interested in whether an intervention, experimental manipulation, or other treatment causes changes in intra-individual state variability. The authors show how multigroup-multiphase latent state-trait (MG-MP-LST) models can be used to examine treatment effects with regard to both mean differences and differences in state variability. The approach is illustrated based on a randomized controlled trial in which N = 338 smokers were randomly assigned to nicotine replacement therapy (NRT) vs. placebo prior to quitting smoking. We found that post quitting, smokers in both the NRT and placebo group had significantly reduced intra-individual affect state variability with respect to the affect items calm and content relative to the pre-quitting phase. This reduction in state variability did not differ between the NRT and placebo groups, indicating that quitting smoking may lead to a stabilization of individuals' affect states regardless of whether or not individuals receive NRT.
NASA Technical Reports Server (NTRS)
Srivastava, R.; Rosner, D. E.
1979-01-01
A rational approach to the correlation of boundary layer mass transport rates, applicable to many commonly encountered laminar flow conditions with thermal diffusion and/or variable properties, is outlined. The correlation scheme builds upon already available constant property blowing/suction solutions by introducing appropriate correction factors to account for the additional ('pseudo' blowing and source) effects identified with variable properties and thermal diffusion. Applications of the scheme to the particular laminar boundary layer mass transfer problems considered herein (alkali and transition metal compound vapor transport) indicates satisfactory accuracy up to effective blowing factors equivalent to about one third of the 'blow off' value. As a useful by-product of the variable property correlation, we extend the heat-mass transfer analogy, for a wide range of Lewis numbers, to include variable property effects.
NASA Astrophysics Data System (ADS)
Wellens, Thomas; Jalabert, Rodolfo A.
2016-10-01
We develop a self-consistent theory describing the spin and spatial electron diffusion in the impurity band of doped semiconductors under the effect of a weak spin-orbit coupling. The resulting low-temperature spin-relaxation time and diffusion coefficient are calculated within different schemes of the self-consistent framework. The simplest of these schemes qualitatively reproduces previous phenomenological developments, while more elaborate calculations provide corrections that approach the values obtained in numerical simulations. The results are universal for zinc-blende semiconductors with electron conductance in the impurity band, and thus they are able to account for the measured spin-relaxation times of materials with very different physical parameters. From a general point of view, our theory opens a new perspective for describing the hopping dynamics in random quantum networks.
2016-01-01
We propose and develop a general approach based on reaction-diffusion equations for modelling a species dynamics in a realistic two-dimensional (2D) landscape crossed by linear one-dimensional (1D) corridors, such as roads, hedgerows or rivers. Our approach is based on a hybrid “2D/1D model”, i.e, a system of 2D and 1D reaction-diffusion equations with homogeneous coefficients, in which each equation describes the population dynamics in a given 2D or 1D element of the landscape. Using the example of the range expansion of the tiger mosquito Aedes albopictus in France and its main highways as 1D corridors, we show that the model can be fitted to realistic observation data. We develop a mechanistic-statistical approach, based on the coupling between a model of population dynamics and a probabilistic model of the observation process. This allows us to bridge the gap between the data (3 levels of infestation, at the scale of a French department) and the output of the model (population densities at each point of the landscape), and to estimate the model parameter values using a maximum-likelihood approach. Using classical model comparison criteria, we obtain a better fit and a better predictive power with the 2D/1D model than with a standard homogeneous reaction-diffusion model. This shows the potential importance of taking into account the effect of the corridors (highways in the present case) on species dynamics. With regard to the particular case of A. albopictus, the conclusion that highways played an important role in species range expansion in mainland France is consistent with recent findings from the literature. PMID:26986201
NASA Astrophysics Data System (ADS)
Yochelis, Arik; Bar-On, Tomer; Gov, Nir S.
2016-04-01
Unconventional myosins belong to a class of molecular motors that walk processively inside cellular protrusions towards the tips, on top of actin filament. Surprisingly, in addition, they also form retrograde moving self-organized aggregates. The qualitative properties of these aggregates are recapitulated by a mass conserving reaction-diffusion-advection model and admit two distinct families of modes: traveling waves and pulse trains. Unlike the traveling waves that are generated by a linear instability, pulses are nonlinear structures that propagate on top of linearly stable uniform backgrounds. Asymptotic analysis of isolated pulses via a simplified reaction-diffusion-advection variant on large periodic domains, allows to draw qualitative trends for pulse properties, such as the amplitude, width, and propagation speed. The results agree well with numerical integrations and are related to available empirical observations.
2010-05-01
to Professor Chris Arney and LTC Donovan Phillips for providing valuable feedback on this project. vii MODELING OF DIFFUSION THROUGH A...only does the study of networks afford the U.S. Army greater information sharing abilities, it could also give a better understanding of enemy...These models are named for the conditions by which a node changes state. The first model gives each node its own threshold which must be reached before
POZylation: a new approach to enhance nanoparticle diffusion through mucosal barriers
NASA Astrophysics Data System (ADS)
Mansfield, Edward D. H.; Sillence, Katy; Hole, Patrick; Williams, Adrian C.; Khutoryanskiy, Vitaliy V.
2015-08-01
The increasing use of nanoparticles in the pharmaceutical industry is generating concomitant interest in developing nanomaterials that can rapidly penetrate into, and permeate through, biological membranes to facilitate drug delivery and improve the bioavailability of active pharmaceutical ingredients. Here, we demonstrate that the permeation of thiolated silica nanoparticles through porcine gastric mucosa can be significantly enhanced by their functionalization with either 5 kDa poly(2-ethyl-2-oxazoline) or poly(ethylene glycol). Nanoparticle diffusion was assessed using two independent techniques; Nanoparticle Tracking Analysis, and fluorescence microscopy. Our results show that poly(2-ethyl-2-oxazoline) and poly(ethylene glycol) have comparable abilities to enhance diffusion of silica nanoparticles in mucin dispersions and through the gastric mucosa. These findings provide a new strategy in the design of nanomedicines, by surface modification or nanoparticle core construction, for enhanced transmucosal drug delivery.The increasing use of nanoparticles in the pharmaceutical industry is generating concomitant interest in developing nanomaterials that can rapidly penetrate into, and permeate through, biological membranes to facilitate drug delivery and improve the bioavailability of active pharmaceutical ingredients. Here, we demonstrate that the permeation of thiolated silica nanoparticles through porcine gastric mucosa can be significantly enhanced by their functionalization with either 5 kDa poly(2-ethyl-2-oxazoline) or poly(ethylene glycol). Nanoparticle diffusion was assessed using two independent techniques; Nanoparticle Tracking Analysis, and fluorescence microscopy. Our results show that poly(2-ethyl-2-oxazoline) and poly(ethylene glycol) have comparable abilities to enhance diffusion of silica nanoparticles in mucin dispersions and through the gastric mucosa. These findings provide a new strategy in the design of nanomedicines, by surface modification or
Generalized monotone method and numerical approach for coupled reaction diffusion systems
NASA Astrophysics Data System (ADS)
Sowmya, M.; Vatsala, Aghalaya S.
2017-01-01
Study of coupled reaction diffusion systems are very useful in various branches of science and engineering. In this paper, we provide a methodology to construct the solution for the coupled reaction diffusion systems, with initial and boundary conditions, where the forcing function is the sum of an increasing and decreasing function. It is known that the generalized monotone method coupled with coupled lower and upper solutions yield monotone sequences which converges uniformly and monotonically to coupled minimal and maximal solutions. In addition, the interval of existence is guaranteed by the lower and upper solutions, which are relatively easy to compute. Using the lower and upper solutions as the initial approximation, we develop a method to compute the sequence of coupled lower and upper solutions on the interval or on the desired interval of existence. Further, if the uniqueness conditions are satisfied, the coupled minimal and maximal solutions converge to the unique solution of the reaction diffusion systems. We will provide some numerical results as an application of our numerical methodology.
Kuha, Jouni; Moustaki, Irini
2015-12-01
In studies of multiple groups of respondents, such as cross-national surveys and cross-cultural assessments in psychological or educational testing, an important methodological consideration is the comparability or "equivalence" of measurement across the groups. Ideally full equivalence would hold, but very often it does not. If nonequivalence of measurement is ignored when it is present, substantively interesting comparisons between the groups may become distorted. We consider this question in multigroup latent variable modeling of multiple-item scales, specifically latent trait models for categorical items. We use numerical sensitivity analyses to examine the nature and magnitude of the distortions in different circumstances, and the factors that affect them. The results suggest that estimates of multigroup latent variable models can be sensitive to assumptions about measurement, in that nonequivalence of measurement does not need to be extreme before ignoring it may substantially affect cross-group comparisons. We also discuss the implications of such findings on the analysis of large comparative studies.
Schnettler, Berta; Miranda, Horacio; Miranda-Zapata, Edgardo; Salinas-Oñate, Natalia; Grunert, Klaus G; Lobos, Germán; Sepúlveda, José; Orellana, Ligia; Hueche, Clementina; Bonilla, Héctor
2017-06-01
This study examined longitudinal measurement invariance in the Satisfaction with Food-related Life (SWFL) scale using follow-up data from university students. We examined this measure of the SWFL in different groups of students, separated by various characteristics. Through non-probabilistic longitudinal sampling, 114 university students (65.8% female, mean age: 22.5) completed the SWFL questionnaire three times, over intervals of approximately one year. Confirmatory factor analysis was used to examine longitudinal measurement invariance. Two types of analysis were conducted: first, a longitudinal invariance by time, and second, a multigroup longitudinal invariance by sex, age, socio-economic status and place of residence during the study period. Results showed that the 3-item version of the SWFL exhibited strong longitudinal invariance (equal factor loadings and equal indicator intercepts). Longitudinal multigroup invariance analysis also showed that the 3-item version of the SWFL displays strong invariance by socio-economic status and place of residence during the study period over time. Nevertheless, it was only possible to demonstrate equivalence of the longitudinal factor structure among students of both sexes, and among those older and younger than 22 years. Generally, these findings suggest that the SWFL scale has satisfactory psychometric properties for longitudinal measurement invariance in university students with similar characteristics as the students that participated in this research. It is also possible to suggest that satisfaction with food-related life is associated with sex and age.
A stable 1D multigroup high-order low-order method
Yee, Ben Chung; Wollaber, Allan Benton; Haut, Terry Scot; ...
2016-07-13
The high-order low-order (HOLO) method is a recently developed moment-based acceleration scheme for solving time-dependent thermal radiative transfer problems, and has been shown to exhibit orders of magnitude speedups over traditional time-stepping schemes. However, a linear stability analysis by Haut et al. (2015 Haut, T. S., Lowrie, R. B., Park, H., Rauenzahn, R. M., Wollaber, A. B. (2015). A linear stability analysis of the multigroup High-Order Low-Order (HOLO) method. In Proceedings of the Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method; Nashville, TN, April 19–23, 2015. American Nuclear Society.)more » revealed that the current formulation of the multigroup HOLO method was unstable in certain parameter regions. Since then, we have replaced the intensity-weighted opacity in the first angular moment equation of the low-order (LO) system with the Rosseland opacity. Furthermore, this results in a modified HOLO method (HOLO-R) that is significantly more stable.« less
A stable 1D multigroup high-order low-order method
Yee, Ben Chung; Wollaber, Allan Benton; Haut, Terry Scot; Park, HyeongKae
2016-07-13
The high-order low-order (HOLO) method is a recently developed moment-based acceleration scheme for solving time-dependent thermal radiative transfer problems, and has been shown to exhibit orders of magnitude speedups over traditional time-stepping schemes. However, a linear stability analysis by Haut et al. (2015 Haut, T. S., Lowrie, R. B., Park, H., Rauenzahn, R. M., Wollaber, A. B. (2015). A linear stability analysis of the multigroup High-Order Low-Order (HOLO) method. In Proceedings of the Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method; Nashville, TN, April 19–23, 2015. American Nuclear Society.) revealed that the current formulation of the multigroup HOLO method was unstable in certain parameter regions. Since then, we have replaced the intensity-weighted opacity in the first angular moment equation of the low-order (LO) system with the Rosseland opacity. Furthermore, this results in a modified HOLO method (HOLO-R) that is significantly more stable.
Diffusion of Carbon Dioxide in Cordierite-like Structures: a FTIR Imaging Approach
NASA Astrophysics Data System (ADS)
Radica, F.; Bellatreccia, F.; Della Ventura, G.; Freda, C.; Cinque, G.; Cestelli Guidi, M.
2013-12-01
In the last decades microporous and mesoporous minerals have been recognized to be very important materials from both a geological and a technological viewpoint. In this context, cordierite plays a key role since it represents the only case of a widespread microporous mineral able to trap significant amounts of molecular H2O and CO2 [1] under extreme geological conditions, spanning from the amphibolite facies to ultra-high temperature metamorphism to crustal anatexis [2]. The analysis of volatiles in cordierite can be a very useful tool to define the composition of coexisting fluids during its formation, thus a deeper knowledge of their diffusion mechanism through the structure is crucial in petrologic studies. However, it may have significant implications on technological issues such as the design of new strategies for the permanent sequestration of atmospheric CO2. The incorporation of CO2 into cordierite has been studied by several authors [1, 3], who pointed out the extreme difficulty to reach the sample saturation and homogenization, implying that in experimental studies knowledge of the actual distribution of the volatile molecules in the run samples is crucial to derive any scientific conclusion. In this work, we addressed this problem using FTIR imaging. Our experiments were carried out in tandem on natural cordierite and synthetic CO2-free beryl, a mineral which is isostructural with cordierite. All samples were treated in CO2-saturated atmosphere at different pressure, temperature and time conditions using a non end-load piston-cylinder apparatus at INGV. The run products were oriented using a spindle stage, cut and doubly polished, and analyzed using polarized micro-FTIR spectroscopy at INFN-LNF in order to study the distribution across the sample and quantify the CO2 content. Preliminary data show that both pressure and time play a major role on the diffusion of gaseous CO2 in both cordierite and beryl, whereas the effect of temperature is less
Koay, Cheng Guan; Hurley, Samuel A.; Meyerand, M. Elizabeth
2011-01-01
Purpose: Diffusion MRI measurements are typically acquired sequentially with unit gradient directions that are distributed uniformly on the unit sphere. The ordering of the gradient directions has significant effect on the quality of dMRI-derived quantities. Even though several methods have been proposed to generate optimal orderings of gradient directions, these methods are not widely used in clinical studies because of the two major problems. The first problem is that the existing methods for generating highly uniform and antipodally symmetric gradient directions are inefficient. The second problem is that the existing methods for generating optimal orderings of gradient directions are also highly inefficient. In this work, the authors propose two extremely efficient and deterministic methods to solve these two problems. Methods: The method for generating nearly uniform point set on the unit sphere (with antipodal symmetry) is based upon the notion that the spacing between two consecutive points on the same latitude should be equal to the spacing between two consecutive latitudes. The method for generating optimal ordering of diffusion gradient directions is based on the idea that each subset of incremental sample size, which is derived from the prescribed and full set of gradient directions, must be as uniform as possible in terms of the modified electrostatic energy designed for antipodally symmetric point set. Results: The proposed method outperformed the state-of-the-art method in terms of computational efficiency by about six orders of magnitude. Conclusions: Two extremely efficient and deterministic methods have been developed for solving the problem of optimal ordering of diffusion gradient directions. The proposed strategy is also applicable to optimal view-ordering in three-dimensional radial MRI. PMID:21928652
Hybrid approaches for multiple-species stochastic reaction–diffusion models
Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K.; Byrne, Helen
2015-10-15
Reaction–diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction–diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model. - Highlights: • A novel hybrid stochastic/deterministic reaction–diffusion simulation method is given. • Can massively speed up stochastic simulations while preserving stochastic effects. • Can handle multiple reacting species. • Can handle moving boundaries.
NASA Astrophysics Data System (ADS)
Bajla, Ivan
1998-02-01
The major goal of this survey is to provide the reader with the motivation of image filtering and segmentation in diagnostic imaging, with the brief overview of the state-of- the-art of nonlinear filters based on the geometry-driven diffusion (GDD), and with a possible generalization of the GDD-filtering towards the complex problem of image segmentation, stated as minimization of particular energy functionals. An example of the application of the GDD- filtering to the task of 3D visualization of MRI data of the brain is illustrated and discussed in the paper.
NASA Astrophysics Data System (ADS)
Wang, Xiaojun; Lai, Weidong
2011-08-01
In this paper, a combined method have been put forward for one ASTER detected image with the wavelet filter to attenuate the noise and the anisotropic diffusion PDE(Partial Differential Equation) for further recovering image contrast. The model is verified in different noising background, since the remote sensing image usually contains salt and pepper, Gaussian as well as speckle noise. Considered the features that noise existing in wavelet domain, the wavelet filter with Bayesian estimation threshold is applied for recovering image contrast from the blurring background. The proposed PDE are performing an anisotropic diffusion in the orthogonal direction, thus preserving the edges during further denoising process. Simulation indicates that the combined algorithm can more effectively recover the blurred image from speckle and Gauss noise background than the only wavelet denoising method, while the denoising effect is also distinct when the pepper-salt noise has low intensity. The combined algorithm proposed in this article can be integrated in remote sensing image analyzing to obtain higher accuracy for environmental interpretation and pattern recognition.
ERIC Educational Resources Information Center
Molenaar, Dylan; Dolan, Conor V.; Wicherts, Jelle M.
2009-01-01
Research into sex differences in general intelligence, g, has resulted in two opposite views. In the first view, a g-difference is nonexistent, while in the second view, g is associated with a male advantage. Past research using Multi-Group Covariance and Mean Structure Analysis (MG-CMSA) found no sex difference in g. This failure raised the…
Smith, L.A.; Gehin, J.C.; Worley, B.A.; Renier, J.P.
1994-04-01
The FOEHN critical experiments were analyzed to validate the use of multigroup cross sections in the design of the Advanced Neutron Source. Eleven critical configurations were evaluated using the KENO, DORT, and VENTURE neutronics codes. Eigenvalue and power density profiles were computed and show very good agreement with measured values.
ERIC Educational Resources Information Center
Brown, Gavin T. L.; Harris, Lois R.; O'Quin, Chrissie; Lane, Kenneth E.
2017-01-01
Multi-group confirmatory factor analysis (MGCFA) allows researchers to determine whether a research inventory elicits similar response patterns across samples. If statistical equivalence in responding is found, then scale score comparisons become possible and samples can be said to be from the same population. This paper illustrates the use of…
Zhu, Changfang; Palmer, Gregory M.; Breslin, Tara M.; Harter, Josephine; Ramanujam, Nirmala
2009-01-01
We explore the use of Monte-Carlo-model-based approaches for the analysis of fluorescence and diffuse reflectance spectra measured ex vivo from breast tissues. These models are used to extract the absorption, scattering, and fluorescence properties of malignant and nonmalignant tissues and to diagnose breast cancer based on these intrinsic tissue properties. Absorption and scattering properties, including β-carotene concentration, total hemoglobin concentration, hemoglobin saturation, and the mean reduced scattering coefficient are derived from diffuse reflectance spectra using a previously developed Monte Carlo model of diffuse reflectance. A Monte Carlo model of fluorescence described in an earlier manuscript was employed to retrieve the intrinsic fluorescence spectra. The intrinsic fluorescence spectra were decomposed into several contributing components, which we attribute to endogenous fluorophores that may present in breast tissues including collagen, NADH, and retinol/vitamin A. The model-based approaches removes any dependency on the instrument and probe geometry. The relative fluorescence contributions of individual fluorescing components, as well as β-carotene concentration, hemoglobin saturation, and the mean reduced scattering coefficient display statistically significant differences between malignant and adipose breast tissues. The hemoglobin saturation and the reduced scattering coefficient display statistically significant differences between malignant and fibrous/benign breast tissues. A linear support vector machine classification using (1) fluorescence properties alone, (2) absorption and scattering properties alone, and (3) the combination of all tissue properties achieves comparable classification accuracies of 81 to 84% in sensitivity and 75 to 89% in specificity for discriminating malignant from nonmalignant breast tissues, suggesting each set of tissue properties are diagnostically useful for the discrimination of breast malignancy. PMID
NASA Astrophysics Data System (ADS)
Bilal, S.; Rehman, Khalil Ur; Malik, M. Y.; Hussain, Arif; Awais, M.
The current communication is carried to contemplate the unique and novel characteristics of nanofluids by constructing formulation of Prandtl fluid model. The fascinating aspects of thermo diffusion effects are also accounted in this communication. Mathematical modelling is performed by employing boundary layer approach. Afterwards, similarity variables are selected to convert dimensional non-linear system into dimensionless expressions. The solution of governing dimensionless problem is executed by shooting method (SM). Graphical evaluation is displayed to depict the intrinsic behavior of embedded parameters on dimensionless velocity, temperature, solutal concentration and nanoparticle concentration profiles. Furthermore, the numerical variation for skin friction coefficient, local Nusselt number, Sherwood number and nano Sherwood number is scrutinized through tables. The assurance of current analysis is affirmed by developing comparison with previous findings available in literature, which sets a benchmark for implementation of computational approach. It is inferred from the computation that concentration profile increases whereas Sherwood number decreases for progressive values of Dufour solutal number.
MPI version of NJOY and its application to multigroup cross-section generation
Alpan, A.; Haghighat, A.
1999-07-01
Multigroup cross-section libraries are needed in performing neutronics calculations. These libraries are referred to as broad-group libraries. The number of energy groups and group structure are highly dependent on the application and/or user's objectives. For example, for shielding calculations, broad-group libraries such as SAILOR and BUGLE with 47-neutron and 20-gamma energy groups are used. The common procedure to obtain a broad-group library is a three-step process: (1) processing pointwise ENDF (PENDF) format cross sections; (2) generating fine-group cross sections; and (3) collapsing fine-group cross sections to broad-group. The NJOY code is used to prepare fine-group cross sections by processing pointwise ENDF data. The code has several modules, each one performing a specific task. For instance, the module RECONR performs linearization and reconstruction of the cross sections, and the module GROUPR generates multigroup self-shielded cross sections. After fine-group, i.e., groupwise ENDF (GENDF), cross sections are produced, cross sections are self-shielded, and a one-dimensional transport calculation is performed to obtain flux spectra at specific regions in the model. These fluxes are then used as weighting functions to collapse the fine-group cross sections to obtain a broad-group cross-section library. The third step described is commonly performed by the AMPX code system. SMILER converts NJOY GENDF filed to AMPX master libraries, AJAX collects the master libraries. BONAMI performs self-shielding calculations, NITAWL converts the AMPX master library to a working library, XSDRNPM performs one-dimensional transport calculations, and MALOCS collapses fine-group cross sections to broad-group. Finally, ALPO is used to generate ANISN format libraries. In this three-step procedure, generally NJOY requires the largest amount of CPU time. This time varies depending on the user's specified parameters for each module, such as reconstruction tolerances, temperatures
Mitchell, Shannon K; Kelly, Kevin J; Potgieter, François E; Moon, Martha W
2009-02-01
Researchers conducted focus groups in the Eastern Cape Province of South Africa concerning AIDS and treatment options. Constituent groups included adults aged 25-45, HIV/AIDS caregivers, HIV-positive adults, nurses, rural elders, teenagers, and traditional healers. This pilot work aimed to gather early evidence on perceptions about the government's rollout of antiretroviral treatment (ART), identify potential barriers to success, and inform a subsequent pilot survey. Diffusion of innovations theory was used to interpret the data and helped identify potential obstacles to the ART rollout. AIDS stigma and a weakened healthcare system were negatively impacting the program. There was a lack of accurate knowledge about HIV/AIDS and antiretroviral treatment, with wide disparities among groups. Many people were not convinced that antiretroviral treatment is superior to other treatments, and a few people were afraid it was poisonous. There was no evidence that people were aware of the long-term difficulties of adherence to the regimen.
A diffusion-based approach to obtaining the borders of urban areas
NASA Astrophysics Data System (ADS)
Henrique Comin, Cesar; Nascimento Silva, Filipi; da Fontoura Costa, Luciano
2016-05-01
The access to an ever increasing amount of information in the modern world gave rise to the development of many quantitative indicators about urban regions in the globe. Therefore, there is a growing need for a precise definition of how to delimit urban regions, so as to allow proper respective characterization and modeling. Here we present a straightforward methodology to automatically detect urban region borders around a single seed point. The method is based on a diffusion process having street crossings and terminations as source points. We exemplify the potential of the methodology by characterizing the geometry and topology of 21 urban regions obtained from 8 distinct countries. The geometry is studied by employing the lacunarity measurement, which is associated to the regularity of holes contained in a pattern. The topology is analyzed by associating the betweenness centrality of the streets with their respective class, such as motorway or residential, obtained from a database.
Multigrid approaches to non-linear diffusion problems on unstructured meshes
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
The efficiency of three multigrid methods for solving highly non-linear diffusion problems on two-dimensional unstructured meshes is examined. The three multigrid methods differ mainly in the manner in which the nonlinearities of the governing equations are handled. These comprise a non-linear full approximation storage (FAS) multigrid method which is used to solve the non-linear equations directly, a linear multigrid method which is used to solve the linear system arising from a Newton linearization of the non-linear system, and a hybrid scheme which is based on a non-linear FAS multigrid scheme, but employs a linear solver on each level as a smoother. Results indicate that all methods are equally effective at converging the non-linear residual in a given number of grid sweeps, but that the linear solver is more efficient in cpu time due to the lower cost of linear versus non-linear grid sweeps.
NASA Astrophysics Data System (ADS)
Kuzovkov, V. N.
2011-12-01
The goal of this paper is twofold. First, based on the interpretation of a quantum tight-binding model in terms of a classical Hamiltonian map, we consider the Anderson localization (AL) problem as the Fermi-Pasta-Ulam (FPU) effect in a modified dynamical system containing both stable and unstable (inverted) modes. Delocalized states in the AL are analogous to the stable quasi-periodic motion in FPU, whereas localized states are analogous to thermalization, respectively. The second aim is to use the classical Hamilton map for a simplified derivation of exact equations for the localization operator H(z). The latter was presented earlier (Kuzovkov et al 2002 J. Phys.: Condens. Matter 14 13777) treating the AL as a generalized diffusion in a dynamical system. We demonstrate that counter-intuitive results of our studies of the AL are similar to the FPU counter-intuitivity.
NASA Astrophysics Data System (ADS)
Sabio, E.; Zamora, F.; González-García, C. M.; Ledesma, B.; Álvarez-Murillo, A.; Román, S.
2016-12-01
In this work, the adsorption kinetics of p-nitrophenol (PNP) onto several commercial activated carbons (ACs) with different textural and geometrical characteristics was studied. For this aim, a homogeneous diffusion solid model (HDSM) was used, which does take the adsorbent shape into account. The HDSM was solved by means of the finite element method (FEM) using the commercial software COMSOL. The different kinetic patterns observed in the experiments carried out can be described by the developed model, which shows that the sharp drop of adsorption rate observed in some samples is caused by the formation of a concentration wave. The model allows one to visualize the changes in concentration taking place in both liquid and solid phases, which enables us to link the kinetic behaviour with the main features of the carbon samples.
Sabio, E; Zamora, F; González-García, C M; Ledesma, B; Álvarez-Murillo, A; Román, S
2016-12-01
In this work, the adsorption kinetics of p-nitrophenol (PNP) onto several commercial activated carbons (ACs) with different textural and geometrical characteristics was studied. For this aim, a homogeneous diffusion solid model (HDSM) was used, which does take the adsorbent shape into account. The HDSM was solved by means of the finite element method (FEM) using the commercial software COMSOL. The different kinetic patterns observed in the experiments carried out can be described by the developed model, which shows that the sharp drop of adsorption rate observed in some samples is caused by the formation of a concentration wave. The model allows one to visualize the changes in concentration taking place in both liquid and solid phases, which enables us to link the kinetic behaviour with the main features of the carbon samples.
NASA Astrophysics Data System (ADS)
Kemner, K. M.; Boyanov, M.; Flynn, T. M.; O'Loughlin, E. J.; Antonopoulos, D. A.; Kelly, S.; Skinner, K.; Mishra, B.; Brooks, S. C.; Watson, D. B.; Wu, W. M.
2015-12-01
FeIII- and SO42--reducing microorganisms and the mineral phases they produce have profound implications for many processes in aquatic and terrestrial systems. In addition, many of these microbially-catalysed geochemical transformations are highly dependent upon introduction of reactants via advective and diffusive hydrological transport. We have characterized microbial communities from a set of static microcosms to test the effect of ethanol diffusion and sulfate concentration on UVI-contaminated sediment. The spatial distribution, valence states, and speciation of both U and Fe were monitored in situ throughout the experiment by synchrotron x-ray absorption spectroscopy, in parallel with solution measurements of pH and the concentrations of sulfate, ethanol, and organic acids. After reaction initiation, a ~1-cm thick layer of sediment near the sediment-water (S-W) interface became visibly dark. Fe XANES spectra of the layer were consistent with the formation of FeS. Over the 4 year duration of the experiment, U LIII-edge XANES indicated reduction of U, first in the dark layer and then throughout the sediment. Next, the microcosms were disassembled and samples were taken from the overlying water and different sediment regions. We extracted DNA and characterized the microbial community by sequencing 16S rRNA gene amplicons with the Illumina MiSeq platform and found that the community evolved from its originally homogeneous composition, becoming significantly spatially heterogeneous. We have also developed an x-ray accessible column to probe elemental transformations as they occur along the flow path in a porous medium with the purpose of refining reactive transport models (RTMs) that describe coupled physical and biogeochemical processes in environmental systems. The elemental distribution dynamics and the RTMs of the redox driven processes within them will be presented.
Hybrid approaches for multiple-species stochastic reaction–diffusion models
Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K.; Byrne, Helen
2015-01-01
Reaction–diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction–diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model. PMID:26478601
Hybrid approaches for multiple-species stochastic reaction-diffusion models.
Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K; Byrne, Helen
2015-10-15
Reaction-diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction-diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model.
Hybrid approaches for multiple-species stochastic reaction-diffusion models
NASA Astrophysics Data System (ADS)
Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K.; Byrne, Helen
2015-10-01
Reaction-diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction-diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model.
Calderon, Christopher P
2016-05-01
Single particle tracking (SPT) can aid in understanding a variety of complex spatiotemporal processes. However, quantifying diffusivity and confinement forces from individual live cell trajectories is complicated by inter- and intratrajectory kinetic heterogeneity, thermal fluctuations, and (experimentally resolvable) statistical temporal dependence inherent to the underlying molecule's time correlated confined dynamics experienced in the cell. The problem is further complicated by experimental artifacts such as localization uncertainty and motion blur. The latter is caused by the tagged molecule emitting photons at different spatial positions during the exposure time of a single frame. The aforementioned experimental artifacts induce spurious time correlations in measured SPT time series that obscure the information of interest (e.g., confinement forces and diffusivity). We develop a maximum likelihood estimation (MLE) technique that decouples the above noise sources and systematically treats temporal correlation via time series methods. This ultimately permits a reliable algorithm for extracting diffusivity and effective forces in confined or unconfined environments. We illustrate how our approach avoids complications inherent to mean square displacement or autocorrelation techniques. Our algorithm modifies the established Kalman filter (which does not handle motion blur artifacts) to provide a likelihood based time series estimation procedure. The result extends A. J. Berglund's motion blur model [Phys. Rev. E 82, 011917 (2010)PLEEE81539-375510.1103/PhysRevE.82.011917] to handle confined dynamics. The approach can also systematically utilize (possibly time dependent) localization uncertainty estimates afforded by image analysis if available. This technique, which explicitly treats confinement and motion blur within a time domain MLE framework, uses an exact likelihood (time domain methods facilitate analyzing nonstationary signals). Our estimator is demonstrated
NASA Astrophysics Data System (ADS)
Calderon, Christopher P.
2016-05-01
Single particle tracking (SPT) can aid in understanding a variety of complex spatiotemporal processes. However, quantifying diffusivity and confinement forces from individual live cell trajectories is complicated by inter- and intratrajectory kinetic heterogeneity, thermal fluctuations, and (experimentally resolvable) statistical temporal dependence inherent to the underlying molecule's time correlated confined dynamics experienced in the cell. The problem is further complicated by experimental artifacts such as localization uncertainty and motion blur. The latter is caused by the tagged molecule emitting photons at different spatial positions during the exposure time of a single frame. The aforementioned experimental artifacts induce spurious time correlations in measured SPT time series that obscure the information of interest (e.g., confinement forces and diffusivity). We develop a maximum likelihood estimation (MLE) technique that decouples the above noise sources and systematically treats temporal correlation via time series methods. This ultimately permits a reliable algorithm for extracting diffusivity and effective forces in confined or unconfined environments. We illustrate how our approach avoids complications inherent to mean square displacement or autocorrelation techniques. Our algorithm modifies the established Kalman filter (which does not handle motion blur artifacts) to provide a likelihood based time series estimation procedure. The result extends A. J. Berglund's motion blur model [Phys. Rev. E 82, 011917 (2010), 10.1103/PhysRevE.82.011917] to handle confined dynamics. The approach can also systematically utilize (possibly time dependent) localization uncertainty estimates afforded by image analysis if available. This technique, which explicitly treats confinement and motion blur within a time domain MLE framework, uses an exact likelihood (time domain methods facilitate analyzing nonstationary signals). Our estimator is demonstrated to be
Release of the mtmg01ex NDI Neutron Multigroup Data Library
Gray, Mark Girard
2013-02-04
We have released the multi-temperature neutron multigroup transport library mtmg01ex, consisting of 181 isotope tables from mtmg01 and 18 element tables calculated from the isotope tables, all at 15 temperatures. These data, based primarily on the evaluations that produced the lanl2006 library, include gamma production and americium branching data. They were subjected to our standard production library testing. Because there are still known problems with and unanswered questions about multi-temperature data, including data size and load time issues, we do not recommend this data for general use; however, its quality is good enough for production release, and we request user help in addressing the remaining problems.
Structural optical design of the complex multi-group zoom systems by means of matrix optics.
Kryszczyński, T; Mikucki, J
2013-08-26
New matrix formulas for structural optical design have been obtained from analysis of derivative of the system matrix in respect to construction parameters and movements of components. Functional parameters of the optical system become elements of the matrix, presenting working conditions of the optical system. Developed methodology of structural design multi-group zoom systems with unlimited number of components and with mechanical-electronic compensation is presented. Any optical system, such as the objective lens, reproduction system, or telescopic system, can be analyzed with this methodology. Kinematics of components pertaining to a full tract of the zoom system is determined for a discrete number of positions. Three examples of the structural design of complex zoom systems with five-components and high zooming ratio are provided.
A multigroup item response theory analysis of the psychopathy checklist--revised.
Bolt, Daniel M; Hare, Robert D; Vitale, Jennifer E; Newman, Joseph P
2004-06-01
Item response theory was used to investigate the functioning of the Psychopathy Checklist-Revised (PCL-R; R. D. Hare, 1991, 2003) in several offender populations. With male criminal offenders (N=3,847) as a reference group, differential item functioning analyses were performed for 3 comparison groups: female criminal offenders (N=1,219), male forensic psychiatric patients (N=1,246), and male criminal offenders scored from file reviews (N=2,626). Results are discussed in the context of the 2-factor, 4-facet model for the PCL-R (R. D. Hare, 2003; J. Parker, G. Sitarenios, & R. D. Hare, 2003). Application of a multigroup graded response model to all 4 groups suggests scalar equivalence may hold at least approximately for each population, although the PCL-R provided slightly greater information about the latent trait of psychopathy for male criminal offenders scored from the standard procedure.
NASA Astrophysics Data System (ADS)
Chen, Ching-Yao; Yan, Pei-Yu
2015-08-01
Miscible and immiscible injection flows in heterogeneous porous media, for which the permeability is characterized by a log Gaussian distribution, are simulated by a robust diffuse-interface formulation. The robust numerical method enables direct qualitative and quantitative comparisons regarding pattern formations in various fluid miscibility conditions. For miscible injections, the typical size of fingering structures depends strongly on the correlation length and forms tapered fingers with sharper tips. On the other hand, the typical size of immiscible fingers is affected less significantly by the permeability heterogeneity, and wide spreading tips are retained in the fingering patterns. Prominence of fingering instability is quantitatively evaluated by the channeling width and the interfacial length. The channeling width shows strong and monotonic dependences on the heterogeneous variance. On the contrary, maximum channeling width occurs at intermediate correlation length due to local resonant effect between the faster penetrating fingers and permeability heterogeneity. On the other hand, effects of the correlation length and the permeability variance on the interfacial lengths are generally consistent. Longer interfacial length is perturbed by smaller correlation length or higher variance. Interesting invariant evolutions of interfacial lengths are revealed regardless of the permeability variance in sufficiently large correlation length under all miscibility conditions. In addition, the regime of slower growth of interfacial length at later times experimentally observed in homogeneous miscible injection is verified in heterogeneous porous media as well.
Basafa, Ehsan; Armand, Mehran
2014-07-18
A potential effective treatment for prevention of osteoporotic hip fractures is augmentation of the mechanical properties of the femur by injecting it with agents such as (PMMA) bone cement - femoroplasty. The operation, however, is only in research stage and can benefit substantially from computer planning and optimization. We report the results of computational planning and optimization of the procedure for biomechanical evaluation. An evolutionary optimization method was used to optimally place the cement in finite element (FE) models of seven osteoporotic bone specimens. The optimization, with some inter-specimen variations, suggested that areas close to the cortex in the superior and inferior of the neck and supero-lateral aspect of the greater trochanter will benefit from augmentation. We then used a particle-based model for bone cement diffusion simulation to match the optimized pattern, taking into account the limitations of the actual surgery, including limited volume of injection to prevent thermal necrosis. Simulations showed that the yield load can be significantly increased by more than 30%, using only 9 ml of bone cement. This increase is comparable to previous literature reports where gross filling of the bone was employed instead, using more than 40 ml of cement. These findings, along with the differences in the optimized plans between specimens, emphasize the need for subject-specific models for effective planning of femoral augmentation.
Basafa, Ehsan; Armand, Mehran
2014-01-01
A potential effective treatment for prevention of osteoporotic hip fractures is augmentation of the mechanical properties of the femur by injecting it with agents such as (PMMA) bone cement – femoroplasty. The operation, however, is only in research stage and can benefit substantially from computer planning and optimization. We report the results of computational planning and optimization of the procedure for biomechanical evaluation. An evolutionary optimization method was used to optimally place the cement in finite element (FE) models of seven osteoporotic bone specimens. The optimization, with some inter-specimen variations, suggested that areas close to the cortex in the superior and inferior of the neck and supero-lateral aspect of the greater trochanter will benefit from augmentation. We then used a particle-based model for bone cement diffusion simulation to match the optimized pattern, taking into account the limitations of the actual surgery, including limited volume of injection to prevent thermal necrosis. Simulations showed that the yield load can be significantly increased by more than 30%, using only 9ml of bone cement. This increase is comparable to previous literature reports where gross filling of the bone was employed instead, using more than 40ml of cement. These findings, along with the differences in the optimized plans between specimens, emphasize the need for subject-specific models for effective planning of femoral augmentation. PMID:24856887
Heathwaite, A L; Dils, R M; Liu, S; Carvalho, L; Brazier, R E; Pope, L; Hughes, M; Phillips, G; May, L
2005-05-15
Implementation of the European Union Water Framework Directive requires an assessment of the pressures from human activity, which, combined with information on the sensitivity of the receiving waterbody to the pressures, will identify those water bodies at risk of failing to meet the Directive's environmental objectives. Part of the process of undertaking the risk assessment for lakes is an assessment of diffuse agricultural phosphorus (P) pressures. Three approaches of increasing sophistication were developed for this purpose: a basic 'risk screening' approach (tier 1) applicable to all lakes in Great Britain (GB) and based on export coefficients for different land cover classes and animal types; the Pressure Delivery Risk Screening Matrix approach (tier 2) that differentiated between pressures in surface water and groundwater river basins; and the Phosphorus Indicators Tool (PIT), a simple model of locational risk and P delivery potential (tier 3). Application of the three approaches to a range of lake catchments in England demonstrated that a tiered risk assessment approach was appropriate which was tailored to the quality of the available data. A step-wise procedure was developed whereby if the tier 1 and 2 approaches showed a catchment to be at high risk of failing to meet the Directive's environmental objectives with regard to P, it was justifiable to undertake a more detailed assessment using the tier 3 approach. The tier 1 approach was applied to all lakes in GB greater than 1 ha in size on the assumption that the boundary between the good/moderate status classes under the Water Framework Directive guidelines represented a doubling of the total P (TP) reference conditions. The initial outputs suggested that 51% of lakes in GB are predicted to not meet the TP targets identified for high or good status and must, therefore, be considered at risk. There were regional differences in numbers of lakes at risk. Scotland appeared to have the fewest sites at risk (18
NASA Astrophysics Data System (ADS)
Huang, Wenzhang
2016-02-01
In this paper we further extend a recently developed method to investigate the existence of traveling waves solutions and their minimum wave speed for non-monotone reaction-diffusion systems. Our approach consists of two steps. First we develop a geometrical shooting argument, with the aid of the theorem of homotopy invariance on the fundamental group, to obtain the positive semi-traveling wave solutions for a large class of reaction-diffusion systems, including the models of predator-prey interaction (for both predator-independent/dependent functional responses), the models of combustion, Belousov-Zhabotinskii reaction, SI-type of disease transmission, and the model of biological flow reactor in chemostat. Next, we apply the results obtained from the first step to some models, such as the Beddinton-DeAngelis model and the model of biolocal flow reactor, to show the convergence of these semi-traveling wave solutions to an interior equilibrium point by the construction of a Lyapunov-type function, or the convergence of semi-traveling waves to another boundary equilibrium point by the further analysis of the asymptotical behavior of semi-traveling wave solutions.
NASA Astrophysics Data System (ADS)
Gussakovsky, Eugene
2009-02-01
Diffuse reflectance was applied to the biomedical studies (muscles, cardiac tissues etc.) in a form of either a direct pseudo-optical spectrum or its second derivative. The first derivative adopts advantages of both direct spectrum (high signal-to-noise ratio) and its second derivative (simplifying the consideration of light scattering contribution, S). In contrast to spectrophotometry of solutions, diffuse reflectance application to the analysis of turbid medium chromophores leads to non-trivial problems of contribution of light scattering, the choice of reference, and light pathlength. Under certain conditions, the first approximation of the Taylor series of S results in the known linear dependence of S on wavelength in the 650-1050 nm wavelength range. Then the light scattering contribution to the first derivative becomes a wavelength-independent offset. In contrast to the second derivative, the information on light scattering inside the tissue is not lost. Effect of reference on the measured spectra becomes negligible. Application of the first derivative allowed (i) determination of NIR light pathlength in muscle tissue, and (ii) quantification of hemoglobin + myoglobin absolute concentration (in mM) in cardiac tissue during open-heart surgery. The first derivative approach may in general be applied to any chromophores in turbid (biological) media.
Molinaro, Valeria; Pensotti, Valeria; Marabelli, Monica; Feroce, Irene; Barile, Monica; Pozzi, Simonetta; Laghi, Luigi; Serrano, Davide; Bernard, Loris; Bonanni, Bernardo; Ranzani, Guglielmina Nadia
2014-05-01
Germline inactivation of the E-cadherin gene (CDH1) is associated with hereditary diffuse gastric cancer (HDGC), a rare autosomal dominant syndrome predisposing to both diffuse gastric cancer (DGC) and lobular breast cancer (LBC). We searched for CDH1 germline defects in 32 HDGC Italian probands selected according to international consensus criteria and in 5 selected relatives. We used a series of molecular methods, including: DNA sequencing, multiplex ligation-dependent probe amplification, single-nucleotide primer extension, bisulfite sequencing, reverse-transcription PCR, and bioinformatics tools. We identified pathogenic mutations in 6 out of 32 probands (19%): one truncating and two missense mutations, one large deletion, one allelic expression imbalance and one splicing defect. Three out of six CDH1 constitutive alterations were novel. Our data support the need for a multimethod approach for CDH1 genetic testing, demonstrating that both DNA and RNA analyses are required to increase the detection rate of pathogenic mutations, thus reducing the number of patients without a clear molecular diagnosis. On the whole, our results indicate that not only DGC patients, but also subjects with personal or family history of LBC might benefit from CDH1 genetic testing. Moreover, our findings support the notion that prophylactic gastrectomy should be offered to asymptomatic CDH1 mutation carriers; indeed, while endoscopic analysis with histological examination of random gastric biopsies can miss cancer foci, gastrectomy performed in these subjects always revealed foci of cancer cells.
NASA Astrophysics Data System (ADS)
Xia, Shaoyan; Huang, Yong; Tan, Xiaodi
2016-03-01
Partial differential equation (PDE)-based nonlinear diffusion processes have been widely used for image denoising. In the traditional nonlinear anisotropic diffusion denoising techniques, behavior of the diffusion depends highly on the gradient of image. However, it is difficult to get a good effect if we use these methods to reduce noise in optical coherence tomography images. Because background has the gradient that is very similar to regions of interest, so background noise will be mistaken for edge information and cannot be reduced. Therefore, nonlinear complex diffusion approaches using texture feature(NCDTF) for noise reduction in phase-resolved optical coherence tomography is proposed here, which uses texture feature in OCT images and structural OCT images to remove noise in phase-resolved OCT. Taking into account the fact that texture between background and signal region is different, which can be linked with diffusion coefficient of nonlinear complex diffusion model, we use NCDTF method to reduce noises of structure and phase images first. Then, we utilize OCT structure images to filter phase image in OCT. Finally, to validate our method, parameters such as image SNR, contrast-to-noise ratio (CNR), equivalent number of looks (ENL), and edge preservation were compared between our approach and median filter, Gaussian filter, wavelet filter, nonlinear complex diffusion filter (NCDF). Preliminary results demonstrate that NCDTF method is more effective than others in keeping edges and denoising for phase-resolved OCT.
A novel diffusion-tensor MRI approach for skeletal muscle fascicle length measurements.
Oudeman, Jos; Mazzoli, Valentina; Marra, Marco A; Nicolay, Klaas; Maas, Mario; Verdonschot, Nico; Sprengers, Andre M; Nederveen, Aart J; Strijkers, Gustav J; Froeling, Martijn
2016-12-01
Musculoskeletal (dys-)function relies for a large part on muscle architecture which can be obtained using Diffusion-Tensor MRI (DT-MRI) and fiber tractography. However, reconstructed tracts often continue along the tendon or aponeurosis when using conventional methods, thus overestimating fascicle lengths. In this study, we propose a new method for semiautomatic segmentation of tendinous tissue using tract density (TD). We investigated the feasibility and repeatability of this method to quantify the mean fascicle length per muscle. Additionally, we examined whether the method facilitates measuring changes in fascicle length of lower leg muscles with different foot positions. Five healthy subjects underwent two DT-MRI scans of the right lower leg, with the foot in 15° dorsiflexion, neutral, and 30° plantarflexion positions. Repeatability of fascicle length measurements was assessed using Bland-Altman analysis. Changes in fascicle lengths between the foot positions were tested using a repeated multivariate analysis of variance (MANOVA). Bland-Altman analysis showed good agreement between repeated measurements. The coefficients of variation in neutral position were 8.3, 16.7, 11.2, and 10.4% for soleus (SOL), fibularis longus (FL), extensor digitorum longus (EDL), and tibialis anterior (TA), respectively. The plantarflexors (SOL and FL) showed significant increase in fascicle length from plantarflexion to dorsiflexion, whereas the dorsiflexors (EDL and TA) exhibited a significant decrease. The use of a tract density for semiautomatic segmentation of tendinous structures provides more accurate estimates of the mean fascicle length than traditional fiber tractography methods. The method shows moderate to good repeatability and allows for quantification of changes in fascicle lengths due to passive stretch.
A new computational approach for modeling diffusion tractography in the brain
Garimella, Harsha T.; Kraft, Reuben H.
2017-01-01
Computational models provide additional tools for studying the brain, however, many techniques are currently disconnected from each other. There is a need for new computational approaches that span the range of physics operating in the brain. In this review paper, we offer some new perspectives on how the embedded element method can fill this gap and has the potential to connect a myriad of modeling genre. The embedded element method is a mesh superposition technique used within finite element analysis. This method allows for the incorporation of axonal fiber tracts to be explicitly represented. Here, we explore the use of the approach beyond its original goal of predicting axonal strain in brain injury. We explore the potential application of the embedded element method in areas of electrophysiology, neurodegeneration, neuropharmacology and mechanobiology. We conclude that this method has the potential to provide us with an integrated computational framework that can assist in developing improved diagnostic tools and regeneration technologies. PMID:28250733
A new computational approach for modeling diffusion tractography in the brain.
Garimella, Harsha T; Kraft, Reuben H
2017-01-01
Computational models provide additional tools for studying the brain, however, many techniques are currently disconnected from each other. There is a need for new computational approaches that span the range of physics operating in the brain. In this review paper, we offer some new perspectives on how the embedded element method can fill this gap and has the potential to connect a myriad of modeling genre. The embedded element method is a mesh superposition technique used within finite element analysis. This method allows for the incorporation of axonal fiber tracts to be explicitly represented. Here, we explore the use of the approach beyond its original goal of predicting axonal strain in brain injury. We explore the potential application of the embedded element method in areas of electrophysiology, neurodegeneration, neuropharmacology and mechanobiology. We conclude that this method has the potential to provide us with an integrated computational framework that can assist in developing improved diagnostic tools and regeneration technologies.
Roldan-Valadez, Ernesto; Rios, Camilo; Cortez-Conradis, David; Favila, Rafael; Moreno-Jimenez, Sergio
2014-01-01
Background Histological behavior of glioblastoma multiforme suggests it would benefit more from a global rather than regional evaluation. A global (whole-brain) calculation of diffusion tensor imaging (DTI) derived tensor metrics offers a valid method to detect the integrity of white matter structures without missing infiltrated brain areas not seen in conventional sequences. In this study we calculated a predictive model of brain infiltration in patients with glioblastoma using global tensor metrics. Methods Retrospective, case and control study; 11 global DTI-derived tensor metrics were calculated in 27 patients with glioblastoma multiforme and 34 controls: mean diffusivity, fractional anisotropy, pure isotropic diffusion, pure anisotropic diffusion, the total magnitude of the diffusion tensor, linear tensor, planar tensor, spherical tensor, relative anisotropy, axial diffusivity and radial diffusivity. The multivariate discriminant analysis of these variables (including age) with a diagnostic test evaluation was performed. Results The simultaneous analysis of 732 measures from 12 continuous variables in 61 subjects revealed one discriminant model that significantly differentiated normal brains and brains with glioblastoma: Wilks’ λ = 0.324, χ2 (3) = 38.907, p < .001. The overall predictive accuracy was 92.7%. Conclusions We present a phase II study introducing a novel global approach using DTI-derived biomarkers of brain impairment. The final predictive model selected only three metrics: axial diffusivity, spherical tensor and linear tensor. These metrics might be clinically applied for diagnosis, follow-up, and the study of other neurological diseases. PMID:24991202
NASA Astrophysics Data System (ADS)
Senegačnik, Jure; Tavčar, Gregor; Katrašnik, Tomaž
2015-03-01
The paper presents a computationally efficient method for solving the time dependent diffusion equation in a granule of the Li-ion battery's granular solid electrode. The method, called Discrete Temporal Convolution method (DTC), is based on a discrete temporal convolution of the analytical solution of the step function boundary value problem. This approach enables modelling concentration distribution in the granular particles for arbitrary time dependent exchange fluxes that do not need to be known a priori. It is demonstrated in the paper that the proposed method features faster computational times than finite volume/difference methods and Padé approximation at the same accuracy of the results. It is also demonstrated that all three addressed methods feature higher accuracy compared to the quasi-steady polynomial approaches when applied to simulate the current densities variations typical for mobile/automotive applications. The proposed approach can thus be considered as one of the key innovative methods enabling real-time capability of the multi particle electrochemical battery models featuring spatial and temporal resolved particle concentration profiles.
Greene, N.M.; Ford, W.E. III; Petrie, L.M.; Arwood, J.W.
1992-10-01
AMPX-77 is a modular system of computer programs that pertain to nuclear analyses, with a primary emphasis on tasks associated with the production and use of multigroup cross sections. AH basic cross-section data are to be input in the formats used by the Evaluated Nuclear Data Files (ENDF/B), and output can be obtained in a variety of formats, including its own internal and very general formats, along with a variety of other useful formats used by major transport, diffusion theory, and Monte Carlo codes. Processing is provided for both neutron and gamma-my data. The present release contains codes all written in the FORTRAN-77 dialect of FORTRAN and wig process ENDF/B-V and earlier evaluations, though major modules are being upgraded in order to process ENDF/B-VI and will be released when a complete collection of usable routines is available.
1978-11-01
applying a known neutron - flux history to multigroup cross sections taken from ENDF/B. In the present application to essentially instantaneous fission we have...AFWL-TR-78-4 AFWL-TR- (2EYEL 78-4 EXPERIMENTAL SERIES PARAMETERS FOR THE DECAY OF MULTIGROUP BETA AND GAMMA SSPECTRA FROM 0.1 TO 1000 SECONDS AFTER A...1.) November 1978 t LLJ - Final Report Approved for public release; distribution unlimited. -D DC B AIR FORCE WEAPONS LABORATORY Air Force Systems
Homma, Yuko; Zumbo, Bruno D.; Saewyc, Elizabeth M.; Wong, Sabrina T.
2016-01-01
We examined the psychometric properties of scores on a 6-item version of the Multigroup Ethnic Identity Measure (MEIM) among East Asian adolescents in Canada. A series of confirmatory factor analysis (CFA) was conducted for 4,190 East Asians who completed a provincial survey of students in grades 7 to 12. The MEIM measured highly correlated dimensions of ethnic identity (exploration and commitment). Further, multi-group CFA indicated that the scale measured the same constructs on the same metric across three age groups and across four groups with varying degrees of exposure to Canadian and East Asian cultures. The findings suggest the short version of the MEIM can be used to compare levels of ethnic identity across different age or acculturation groups. PMID:27833471
Tseng, Y.J.; Huang, S.-C.; Chu, W.C.
2005-04-01
A least-squares error minimization approach was adopted to assess ferric ion diffusion coefficient of Fricke-agarose gels. Ferric ion diffusion process was modeled as a Gaussian-shaped degradation kernel operating on an initial concentration distribution. Diffusion coefficient was iteratively determined by minimizing the error function defined as the difference between the theoretically calculated and the experimentally measured dose distributions. A rapid MR image-based differential gel dosimetry technique that time resolves the evolution of the ferric ion diffusion process minimizes smearing of the dose distribution. Our results showed that for a Fricke-agarose gel contained 1 mM ammonium ferrous sulfate, 1% agarose, 1 mM sodium chloride, and 50 mM sulfuric acid, its ferric ion diffusion coefficient is (1.59{+-}0.28)x10{sup -2} cm{sup 2} h{sup -1} at room temperature. This value falls within the 1.00-2.00x10{sup -2} cm{sup 2} h{sup -1} range previously reported under varying gelling ingredients and concentrations. This method allows a quick, nondestructive evaluation of the ferric ion diffusion coefficient that can be used in conjunction with the in situ gel dosimetry experiment to provide a practical diffusion characterization of the dosimeter gel.
NASA Astrophysics Data System (ADS)
Mohaghegh, Fazlolah; Udaykumar, H. S.
2015-11-01
The aim of this study is to find a proper method for the simulation of blood as a particulate flow. Since the blood cell density is almost the same as plasma, the high added mass effect necessitates implementation of a strongly coupled FSI method in the numerical simulation. Therefore, three different FSI approaches are compared, two Smoothed Profile Methods (SPM) with one and two projection steps as diffuse interface approaches and the Sharp Interface Method (SIM). Stable FSI computations can be achieved by using sub-iterations within each time step, i.e. by updating the fluid and structure and their boundary conditions at each time step multiple times to reach a desired tolerance as the convergence criteria. Various cases were used to benchmark the methods, including particles motion in a channel and particles sedimentation. The results show that the number of sub-iterations plays a key role in the efficiency. While use of SPM with two projection steps has the most expensive sub-iteration process, it has the best efficiency as it requires the lowest number of sub-iterations within each time step. Moreover, the method is more stable than SIM and the SPM with one projection. SIM is faster than SPM with one projection and it has better stability. PhD Candidate-Department of Mechanical Engineering.
Duffau, Hugues; Taillandier, Luc
2015-01-01
Diffuse low-grade glioma grows, migrates along white matter tracts, and progresses to high-grade glioma. Rather than a “wait and see” policy, an aggressive attitude is now recommended, with early surgery as the first therapy. Intraoperative mapping, with maximal resection according to functional boundaries, is associated with a longer overall survival (OS) while minimizing morbidity. However, most studies have investigated the role of only one specific treatment (surgery, radiotherapy, chemotherapy) without taking a global view of managing the cumulative time while preserving quality of life (QoL) versus time to anaplastic transformation. Our aim is to switch towards a more holistic concept based upon the anticipation of a personalized and long-term multistage therapeutic approach, with online adaptation of the strategy over the years using feedback from clinical, radiological, and histomolecular monitoring. This dynamic strategy challenges the traditional approach by proposing earlier therapy, by repeating treatments, and by reversing the classical order of therapies (eg, neoadjuvant chemotherapy when maximal resection is impossible, no early radiotherapy) to improve OS and QoL. New individualized management strategies should deal with the interactions between the course of this chronic disease, reaction brain remapping, and oncofunctional modulation elicited by serial treatments. This philosophy supports a personalized, functional, and preventive neuro-oncology. PMID:25087230
MACFARLANE, ROBERT E.
1996-12-19
Version 03 The NJOY nuclear data processing system is a comprehensive computer code system for producing pointwise and multigroup cross sections and related quantities from ENDF/B evaluated nuclear data in the ENDF format, including the latest US library, ENDF/B-VI. The NJOY code works with neutrons, photons, and charged particles and produces libraries for a wide variety of particle transport and reactor analysis codes.
Sloan, D.P.
1983-05-01
Morel (1981) has developed multigroup Legendre cross sections suitable for input to standard discrete ordinates transport codes for performing charged-particle Fokker-Planck calculations in one-dimensional slab and spherical geometries. Since the Monte Carlo neutron transport code, MORSE, uses the same multigroup cross section data that discrete ordinates codes use, it was natural to consider whether Fokker-Planck calculations could be performed with MORSE. In order to extend the unique three-dimensional forward or adjoint capability of MORSE to Fokker-Planck calculations, the MORSE code was modified to correctly treat the delta-function scattering of the energy operator, and a new set of physically acceptable cross sections was derived to model the angular operator. Morel (1979) has also developed multigroup Legendre cross sections suitable for input to standard discrete ordinates codes for performing electron Boltzmann calculations. These electron cross sections may be treated in MORSE with the same methods developed to treat the Fokker-Planck cross sections. The large magnitude of the elastic scattering cross section, however, severely increases the computation or run time. It is well-known that approximate elastic cross sections are easily obtained by applying the extended transport (or delta function) correction to the Legendre coefficients of the exact cross section. An exact method for performing the extended transport cross section correction produces cross sections which are physically acceptable. Sample calculations using electron cross sections have demonstrated this new technique to be very effective in decreasing the large magnitude of the cross sections.
Özarslan, Evren; Westin, Carl-Fredrik; Mareci, Thomas H.
2016-01-01
The influence of Gaussian diffusion on the magnetic resonance signal is determined by the apparent diffusion coefficient (ADC) and tensor (ADT) of the diffusing fluid as well as the gradient waveform applied to sensitize the signal to diffusion. Estimations of ADC and ADT from diffusion-weighted acquisitions necessitate computations of, respectively, the b-value and b-matrix associated with the employed pulse sequence. We establish the relationship between these quantities and the gradient waveform by expressing the problem as a path integral and explicitly evaluating it. Further, we show that these important quantities can be conveniently computed for any gradient waveform using a simple algorithm that requires a few lines of code. With this representation, our technique complements the multiple correlation function (MCF) method commonly used to compute the effects of restricted diffusion, and provides a consistent and convenient framework for studies that aim to infer the microstructural features of the specimen. PMID:27182208
Olson, Gordon L.
2015-09-24
One-dimensional models for the transport of radiation through binary stochastic media do not work in multi-dimensions. In addition, authors have attempted to modify or extend the 1D models to work in multidimensions without success. Analytic one-dimensional models are successful in 1D only when assuming greatly simplified physics. State of the art theories for stochastic media radiation transport do not address multi-dimensions and temperature-dependent physics coefficients. Here, the concept of effective opacities and effective heat capacities is found to well represent the ensemble averaged transport solutions in cases with gray or multigroup temperature-dependent opacities and constant or temperature-dependent heat capacities. Inmore » every case analyzed here, effective physics coefficients fit the transport solutions over a useful range of parameter space. The transport equation is solved with the spherical harmonics method with angle orders of n=1 and 5. Although the details depend on what order of solution is used, the general results are similar, independent of angular order.« less
Validation of the Resilience Scale for Adolescents (READ) in Ireland: a multi-group analysis.
Kelly, Yvonne; Fitzgerald, Amanda; Dooley, Barbara
2016-04-29
Resilience is a process reflecting positive adaptation in the face of adversity. The Resilience Scale for Adolescence (READ) incorporates intrapersonal and interpersonal protective factors mapping onto the three salient domains of resilience, including individual, family and external environment. This study investigated the validity and reliability of the READ by means of factor analysis, multi-group analysis, inter-correlations and internal consistency measures. Participants were 6085 young people in Ireland aged 12-18 years. Participants completed the My World Survey - Second Level (MWS-SL), assessing risk and protective factors of mental health. Confirmatory factor analysis validated the original five-factor structure of the READ including Personal Competence, Social Competence, Structured Style, Family Cohesion, and Social Resources, χ(2) (340) = 6146.02, p < 0.001, RMSEA = 0.056 (90% CI = 0.054-0.057), CFI = 0.97; GFI = 0.93. Measurement invariance indicated that the five-factor structure was similar across gender, school cycle and distress levels. Construct validity was evident, by correlating the five factors of the READ with various social, psychological and behavioural variables. The findings suggest that the READ is a valid measure to assess resilience factors among adolescents in Ireland, demonstrating its applicability in a different cultural context and with a wider age range of adolescents. Copyright © 2016 John Wiley & Sons, Ltd.
Olson, Gordon L.
2015-09-24
One-dimensional models for the transport of radiation through binary stochastic media do not work in multi-dimensions. In addition, authors have attempted to modify or extend the 1D models to work in multidimensions without success. Analytic one-dimensional models are successful in 1D only when assuming greatly simplified physics. State of the art theories for stochastic media radiation transport do not address multi-dimensions and temperature-dependent physics coefficients. Here, the concept of effective opacities and effective heat capacities is found to well represent the ensemble averaged transport solutions in cases with gray or multigroup temperature-dependent opacities and constant or temperature-dependent heat capacities. In every case analyzed here, effective physics coefficients fit the transport solutions over a useful range of parameter space. The transport equation is solved with the spherical harmonics method with angle orders of n=1 and 5. Although the details depend on what order of solution is used, the general results are similar, independent of angular order.
Kim, Kang Seog; Williams, Mark L
2012-01-01
SCALE 6 computes problem-dependent multigroup (MG) cross sections through a combination of the conventional Bondarenko shielding-factor method and a deterministic pointwise (PW) transport calculation of the fine-structure spectra in the resolved resonance and thermal energy ranges. The PW calculation is performed by the CENTRM code using a 1-D cylindrical Wigner-Seitz model with the white boundary condition instead of the real rectangular cell shape to represent a lattice unit cell. The pointwise fluxes computed by CENTRM are not exact because a 1-D model is used for the transport calculation, which introduces discrepancies in the MG self-shielded cross sections, resulting in some deviation in the eigenvalue. In order to solve this problem, the method of characteristics (MOC) has been applied to enable the CENTRM PW transport calculation for a 2-D square pin cell. The computation results show that the new BONAMI/CENTRM-MOC procedure produces very precise self-shielded cross sections compared to MCNP reaction rates.
Stability analysis of multi-group deterministic and stochastic epidemic models with vaccination rate
NASA Astrophysics Data System (ADS)
Wang, Zhi-Gang; Gao, Rui-Mei; Fan, Xiao-Ming; Han, Qi-Xing
2014-09-01
We discuss in this paper a deterministic multi-group MSIR epidemic model with a vaccination rate, the basic reproduction number ℛ0, a key parameter in epidemiology, is a threshold which determines the persistence or extinction of the disease. By using Lyapunov function techniques, we show if ℛ0 is greater than 1 and the deterministic model obeys some conditions, then the disease will prevail, the infective persists and the endemic state is asymptotically stable in a feasible region. If ℛ0 is less than or equal to 1, then the infective disappear so the disease dies out. In addition, stochastic noises around the endemic equilibrium will be added to the deterministic MSIR model in order that the deterministic model is extended to a system of stochastic ordinary differential equations. In the stochastic version, we carry out a detailed analysis on the asymptotic behavior of the stochastic model. In addition, regarding the value of ℛ0, when the stochastic system obeys some conditions and ℛ0 is greater than 1, we deduce the stochastic system is stochastically asymptotically stable. Finally, the deterministic and stochastic model dynamics are illustrated through computer simulations.
Multi-Group Reductions of LTE Air Plasma Radiative Transfer in Cylindrical Geometries
NASA Technical Reports Server (NTRS)
Scoggins, James; Magin, Thierry Edouard Bertran; Wray, Alan; Mansour, Nagi N.
2013-01-01
Air plasma radiation in Local Thermodynamic Equilibrium (LTE) within cylindrical geometries is studied with an application towards modeling the radiative transfer inside arc-constrictors, a central component of constricted-arc arc jets. A detailed database of spectral absorption coefficients for LTE air is formulated using the NEQAIR code developed at NASA Ames Research Center. The database stores calculated absorption coefficients for 1,051,755 wavelengths between 0.04 µm and 200 µm over a wide temperature (500K to 15 000K) and pressure (0.1 atm to 10.0 atm) range. The multi-group method for spectral reduction is studied by generating a range of reductions including pure binning and banding reductions from the detailed absorption coefficient database. The accuracy of each reduction is compared to line-by-line calculations for cylindrical temperature profiles resembling typical profiles found in arc-constrictors. It is found that a reduction of only 1000 groups is sufficient to accurately model the LTE air radiation over a large temperature and pressure range. In addition to the reduction comparison, the cylindrical-slab formulation is compared with the finite-volume method for the numerical integration of the radiative flux inside cylinders with varying length. It is determined that cylindrical-slabs can be used to accurately model most arc-constrictors due to their high length to radius ratios.
MENDF71x. Multigroup Neutron Cross Section Data Tables Based upon ENDF/B-VII.1
Conlin, Jeremy Lloyd; Parsons, Donald Kent; Gardiner, Steven J.; Gray, Mark Girard; Lee, Mary Beth; White, Morgan Curtis
2015-12-17
A new multi-group neutron cross section library has been released along with the release of NDI version 2.0.20. The library is named MENDF71x and is based upon the evaluations released in ENDF/B-VII.1 which was made publicly available in December 2011. ENDF/B-VII.1 consists of 423 evaluations of which ten are excited states evaluations and 413 are ground state evaluations. MENDF71x was created by processing the 423 evaluations into 618-group, downscatter only NDI data tables. The ENDF/B evaluation files were processed using NJOY version 99.393 with the exception of ^{35}Cl and ^{233}U. Those two isotopes had unique properties that required that we process the evaluation using NJOY version 2012. The MENDF71x library was only processed to room temperature, i.e., 293.6 K. In the future, we plan on producing a multi-temperature library based on ENDF/B-VII.1 and compatible with MENDF71x.
Choi, Yoon Jung; Yu, Hon J.; Li, Yifan
2017-01-01
Purpose. This study investigated the impact of the different region of interest (ROI) approaches on measurement of apparent diffusion coefficient (ADC) values in the breast firbroglandular tissue (FT). Methods. Breast MR images of 38 women diagnosed with unilateral breast cancer were studied. Percent density (PD) and ADC were measured from the contralateral normal breast. Four different ROIs were used for ADC measurement. The measured PD and ADC were correlated. Results. Among the four ROIs, the manually placed small ROI on FT gave the highest mean ADC (ADC = 1839 ± 343 [×10−6 mm2/s]), while measurement from the whole breast gave the lowest mean ADC (ADC = 933 ± 383 [×10−6 mm2/s]). The ADC measured from the whole breast was highly correlated with PD with r = 0.95. In slice-to-slice comparison, the central slices with more FT had higher ADC values than the peripheral slices did, presumably due to less partial volume effect from fat. Conclusions. Our results indicated that the measured ADC heavily depends on the composition of breast tissue contained in the ROI used for the ADC measurements. Women with low breast density showing lower ADC values were most likely due to the partial volume effect of fatty tissues. PMID:28349054
NASA Astrophysics Data System (ADS)
Chuang, Yao-Li; Cristini, Vittorio; Chen, Ying; Li, Xiangrong; Frieboes, Hermann; Lowengrub, John
2012-02-01
Understanding the spatiotemporal evolution of tumor growth is essential for developing effective strategies to treat cancers. Various studies have suggested that spatial heterogeneity during tumors growth is a key factor associated with subsequent tumor invasion and the effectiveness of chemotherapy. Spatial heterogeneity may arise due to morphological instability of the tumors and the complex tissue structure surrounding the tumors. In previous works, we have used a Cahn-Hilliard tumor growth model to study the morphological instability for tumors in non-resisting tissues. However, most tumors are surrounded by complex tissue structures and confined in the capsules of some organs or between certain basement membranes. The capsules and basement membranes may be distorted by interacting with the evolving tumors, affecting the morphological instability. Here we adopt a novel diffuse domain approach to adapt our previous Cahn-Hilliard model for tumor growth in such complex evolving environments. As an example, we apply the model to simulate the evolution of lymphoma in a lymph node, incorporating also the tumor-induced angiogenesis.
Nichols, Brandon S; Rajaram, Narasimhan; Tunnell, James W
2012-05-01
Diffuse optical spectroscopy (DOS) provides a powerful tool for fast and noninvasive disease diagnosis. The ability to leverage DOS to accurately quantify tissue optical parameters hinges on the model used to estimate light-tissue interaction. We describe the accuracy of a lookup table (LUT)-based inverse model for measuring optical properties under different conditions relevant to biological tissue. The LUT is a matrix of reflectance values acquired experimentally from calibration standards of varying scattering and absorption properties. Because it is based on experimental values, the LUT inherently accounts for system response and probe geometry. We tested our approach in tissue phantoms containing multiple absorbers, different sizes of scatterers, and varying oxygen saturation of hemoglobin. The LUT-based model was able to extract scattering and absorption properties under most conditions with errors of less than 5 percent. We demonstrate the validity of the lookup table over a range of source-detector separations from 0.25 to 1.48 mm. Finally, we describe the rapid fabrication of a lookup table using only six calibration standards. This optimized LUT was able to extract scattering and absorption properties with average RMS errors of 2.5 and 4 percent, respectively.
Leemans, A; Sijbers, J; De Backer, S; Vandervliet, E; Parizel, P
2006-06-01
In this paper an automatic multiscale feature-based rigid-body coregistration technique for diffusion tensor imaging (DTI) based on the local curvature kappa and torsion tau of the white matter (WM) fiber pathways is presented. As a similarity measure, the mean squared difference (MSD) of corresponding fiber pathways in (kappa, tau)-space is chosen. After the MSD is minimized along the arc length of the curve, principal component analysis is applied to calculate the transformation parameters. In addition, a scale-space representation of the space curves is incorporated, resulting in a multiscale robust coregistration technique. This fully automatic technique inherently allows one to apply region of interest (ROI) coregistration, and is adequate for performing both global and local transformations. Simulations were performed on synthetic DT data to evaluate the coregistration accuracy and precision. An in vivo coregistration example is presented and compared with a voxel-based coregistration approach, demonstrating the feasibility and advantages of the proposed technique to align DT data of the human brain.
NASA Technical Reports Server (NTRS)
Asenov, Asen; Brown, A. R.; Slavcheva, G.; Davies, J. H.
2000-01-01
When MOSFETs are scaled to deep submicron dimensions the discreteness and randomness of the dopant charges in the channel region introduces significant fluctuations in the device characteristics. This effect, predicted 20 year ago, has been confirmed experimentally and in simulation studies. The impact of the fluctuations on the functionality, yield, and reliability of the corresponding systems shifts the paradigm of the numerical device simulation. It becomes insufficient to simulate only one device representing one macroscopical design in a continuous charge approximation. An ensemble of macroscopically identical but microscopically different devices has to be characterized by simulation of statistically significant samples. The aims of the numerical simulations shift from predicting the characteristics of a single device with continuous doping towards estimating the mean values and the standard deviations of basic design parameters such as threshold voltage, subthreshold slope, transconductance, drive current, etc. for the whole ensemble of 'atomistically' different devices in the system. It has to be pointed out that even the mean values obtained from 'atomistic' simulations are not identical to the values obtained from continuous doping simulations. In this paper we present a hierarchical approach to the 'atomistic' simulation of aggressively scaled decanano MOSFETs. A full scale 3D drift-diffusion'atomostic' simulation approach is first described and used for verification of the more economical, but also more restricted, options. To reduce the processor time and memory requirements at high drain voltage we have developed a self-consistent option based on a thin slab solution of the current continuity equation only in the channel region. This is coupled to the Poisson's equation solution in the whole simulation domain in the Gummel iteration cycles. The accuracy of this approach is investigated in comparison with the full self-consistent solution. At low drain
NASA Astrophysics Data System (ADS)
Lin, Guoxing
2016-11-01
Anomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) techniques have been increasingly used to study anomalous diffusion in nuclear magnetic resonance and magnetic resonance imaging. However, the interpretation of PFG anomalous diffusion is complicated. Moreover, the exact signal attenuation expression including the finite gradient pulse width effect has not been obtained based on fractional derivatives for PFG anomalous diffusion. In this paper, a new method, a Mainardi-Luchko-Pagnini (MLP) phase distribution approximation, is proposed to describe PFG fractional diffusion. MLP phase distribution is a non-Gaussian phase distribution. From the fractional derivative model, both the probability density function (PDF) of a spin in real space and the PDF of the spin's accumulating phase shift in virtual phase space are MLP distributions. The MLP phase distribution leads to a Mittag-Leffler function based PFG signal attenuation, which differs significantly from the exponential attenuation for normal diffusion and from the stretched exponential attenuation for fractional diffusion based on the fractal derivative model. A complete signal attenuation expression Eα(-Dfbα,β * ) including the finite gradient pulse width effect was obtained and it can handle all three types of PFG fractional diffusions. The result was also extended in a straightforward way to give a signal attenuation expression of fractional diffusion in PFG intramolecular multiple quantum coherence experiments, which has an nβ dependence upon the order of coherence which is different from the familiar n2 dependence in normal diffusion. The results obtained in this study are in agreement with the results from the literature. The results in this paper provide a set of new, convenient approximation formalisms to interpret complex PFG fractional diffusion experiments.
Lin, Guoxing
2016-11-21
Anomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) techniques have been increasingly used to study anomalous diffusion in nuclear magnetic resonance and magnetic resonance imaging. However, the interpretation of PFG anomalous diffusion is complicated. Moreover, the exact signal attenuation expression including the finite gradient pulse width effect has not been obtained based on fractional derivatives for PFG anomalous diffusion. In this paper, a new method, a Mainardi-Luchko-Pagnini (MLP) phase distribution approximation, is proposed to describe PFG fractional diffusion. MLP phase distribution is a non-Gaussian phase distribution. From the fractional derivative model, both the probability density function (PDF) of a spin in real space and the PDF of the spin's accumulating phase shift in virtual phase space are MLP distributions. The MLP phase distribution leads to a Mittag-Leffler function based PFG signal attenuation, which differs significantly from the exponential attenuation for normal diffusion and from the stretched exponential attenuation for fractional diffusion based on the fractal derivative model. A complete signal attenuation expression Eα(-Dfbα,β(*)) including the finite gradient pulse width effect was obtained and it can handle all three types of PFG fractional diffusions. The result was also extended in a straightforward way to give a signal attenuation expression of fractional diffusion in PFG intramolecular multiple quantum coherence experiments, which has an n(β) dependence upon the order of coherence which is different from the familiar n(2) dependence in normal diffusion. The results obtained in this study are in agreement with the results from the literature. The results in this paper provide a set of new, convenient approximation formalisms to interpret complex PFG fractional diffusion experiments.
Shin, Hyun Kyung; Choi, Bongsik; Talkner, Peter; Lee, Eok Kyun
2014-12-07
Based on the generalized Langevin equation for the momentum of a Brownian particle a generalized asymptotic Einstein relation is derived. It agrees with the well-known Einstein relation in the case of normal diffusion but continues to hold for sub- and super-diffusive spreading of the Brownian particle's mean square displacement. The generalized asymptotic Einstein relation is used to analyze data obtained from molecular dynamics simulations of a two-dimensional soft disk fluid. We mainly concentrated on medium densities for which we found super-diffusive behavior of a tagged fluid particle. At higher densities a range of normal diffusion can be identified. The motion presumably changes to sub-diffusion for even higher densities.
Savoye, Sébastien; Page, Jacques; Puente, Céline; Imbert, Christophe; Coelho, Daniel
2010-05-15
The diffusion of tritiated water and anionic species was studied in an unsaturated core of Callovo-Oxfordian claystone, which is a potential host-rock for disposal of high-level radioactive wastes. The diffusion parameters in such conditions were determined using modified through-diffusion cells in which the suction is generated by the osmosis process. This specific device leads to values of saturation degree ranging from 81% to 100%. The results show that the diffusion through unsaturated samples is clearly slower than that in fully saturated samples, with steady-state fluxes decreasing by a factor up to 7 for tritium and up to 50 for anionic species. While tritium porosity values follow volumetric water contents (from 21 to 16%), the porosity accessible to anionic species significantly decreases (from 7.5 to 0.7%). Such diffusive behaviors have been modeled by means of a modified Archie's law, taking into account a critical water saturation below which no tracer can percolate. These results indicate that the largest pores, which are initially affected by dehydration, would play an important role on the connectivity of the porous medium. This would especially affect anionic species diffusion behavior because they are constrained to diffuse into the largest pores first.
Optimization of multi-group cross sections for fast reactor analysis
Chin, M. R.; Manalo, K. L.; Edgar, C. A.; Paul, J. N.; Molinar, M. P.; Redd, E. M.; Yi, C.; Sjoden, G. E.
2013-07-01
The selection of the number of broad energy groups, collapsed broad energy group boundaries, and their associated evaluation into collapsed macroscopic cross sections from a general 238-group ENDF/B-VII library dramatically impacted the k eigenvalue for fast reactor analysis. An analysis was undertaken to assess the minimum number of energy groups that would preserve problem physics; this involved studies using the 3D deterministic transport parallel code PENTRAN, the 2D deterministic transport code SCALE6.1, the Monte Carlo based MCNP5 code, and the YGROUP cross section collapsing tool on a spatially discretized MOX fuel pin comprised of 21% PUO{sub 2}-UO{sub 2} with sodium coolant. The various cases resulted in a few hundred pcm difference between cross section libraries that included the 238 multi-group reference, and cross sections rendered using various reaction and adjoint weighted cross sections rendered by the YGROUP tool, and a reference continuous energy MCNP case. Particular emphasis was placed on the higher energies characteristic of fission neutrons in a fast spectrum; adjoint computations were performed to determine the average per-group adjoint fission importance for the MOX fuel pin. This study concluded that at least 10 energy groups for neutron transport calculations are required to accurately predict the eigenvalue for a fast reactor system to within 250 pcm of the 238 group case. In addition, the cross section collapsing/weighting schemes within YGROUP that provided a collapsed library rendering eigenvalues closest to the reference were the contribution collapsed, reaction rate weighted scheme. A brief analysis on homogenization of the MOX fuel pin is also provided, although more work is in progress in this area. (authors)
Reliability generalization of the Multigroup Ethnic Identity Measure-Revised (MEIM-R).
Herrington, Hayley M; Smith, Timothy B; Feinauer, Erika; Griner, Derek
2016-10-01
[Correction Notice: An Erratum for this article was reported in Vol 63(5) of Journal of Counseling Psychology (see record 2016-33161-001). The name of author Erika Feinauer was misspelled as Erika Feinhauer. All versions of this article have been corrected.] Individuals' strength of ethnic identity has been linked with multiple positive indicators, including academic achievement and overall psychological well-being. The measure researchers use most often to assess ethnic identity, the Multigroup Ethnic Identity Measure (MEIM), underwent substantial revision in 2007. To inform scholars investigating ethnic identity, we performed a reliability generalization analysis on data from the revised version (MEIM-R) and compared it with data from the original MEIM. Random-effects weighted models evaluated internal consistency coefficients (Cronbach's alpha). Reliability coefficients for the MEIM-R averaged α = .88 across 37 samples, a statistically significant increase over the average of α = .84 for the MEIM across 75 studies. Reliability coefficients for the MEIM-R did not differ across study and participant characteristics such as sample gender and ethnic composition. However, consistently lower reliability coefficients averaging α = .81 were found among participants with low levels of education, suggesting that greater attention to data reliability is warranted when evaluating the ethnic identity of individuals such as middle-school students. Future research will be needed to ascertain whether data with other measures of aspects of personal identity (e.g., racial identity, gender identity) also differ as a function of participant level of education and associated cognitive or maturation processes. (PsycINFO Database Record
Symmetry breaking in the opinion dynamics of a multi-group project organization
NASA Astrophysics Data System (ADS)
Zhu, Zhen-Tao; Zhou, Jing; Li, Ping; Chen, Xing-Guang
2012-10-01
A bounded confidence model of opinion dynamics in multi-group projects is presented in which each group's opinion evolution is driven by two types of forces: (i) the group's cohesive force which tends to restore the opinion back towards the initial status because of its company culture; and (ii) nonlinear coupling forces with other groups which attempt to bring opinions closer due to collaboration willingness. Bifurcation analysis for the case of a two-group project shows a cusp catastrophe phenomenon and three distinctive evolutionary regimes, i.e., a deadlock regime, a convergence regime, and a bifurcation regime in opinion dynamics. The critical value of initial discord between the two groups is derived to discriminate which regime the opinion evolution belongs to. In the case of a three-group project with a symmetric social network, both bifurcation analysis and simulation results demonstrate that if each pair has a high initial discord, instead of symmetrically converging to consensus with the increase of coupling scale as expected by Gabbay's result (Physica A 378 (2007) p. 125 Fig. 5), project organization (PO) may be split into two distinct clusters because of the symmetry breaking phenomenon caused by pitchfork bifurcations, which urges that apart from divergence in participants' interests, nonlinear interaction can also make conflict inevitable in the PO. The effects of two asymmetric level parameters are tested in order to explore the ways of inducing dominant opinion in the whole PO. It is found that the strong influence imposed by a leader group with firm faith on the flexible and open minded follower groups can promote the formation of a positive dominant opinion in the PO.
Brown, Susan D; Unger Hu, Kirsten A; Mevi, Ashley A; Hedderson, Monique M; Shan, Jun; Quesenberry, Charles P; Ferrara, Assiamira
2014-01-01
The Multigroup Ethnic Identity Measure-Revised (MEIM-R), a brief instrument assessing affiliation with one's ethnic group, is a promising advance in the ethnic identity literature. However, equivalency of its measurement properties across specific racial and ethnic groups should be confirmed before using it in diverse samples. We examined (a) the psychometric properties of the MEIM-R, including factor structure, measurement invariance, and internal consistency reliability, and (b) levels of and differences in ethnic identity across multiple racial and ethnic groups and subgroups. Asian (n = 630), Black/African American (n = 58), Hispanic (n = 240), multiethnic (n = 160), and White (n = 375) women completed the MEIM-R as part of the "Gestational diabetes' Effect on Moms" diabetes prevention trial in the Kaiser Permanente Northern California health care setting (N = 1,463; M age = 32.5 years, SD = 4.9). Multiple-groups confirmatory factor analyses provided provisional evidence of measurement invariance, i.e., an equal, correlated 2-factor structure, equal factor loadings, and equal item intercepts across racial and ethnic groups. Latent factor means for the 2 MEIM-R subscales, exploration and commitment, differed across groups; effect sizes ranging from small to large generally supported the notion of ethnic identity as more salient among people of color. Pending replication, good psychometric properties in this large and diverse sample of women support the future use of the MEIM-R. Preliminary evidence of measurement invariance suggests that the MEIM-R could be used to measure and compare ethnic identity across multiple racial and ethnic groups.
NASA Astrophysics Data System (ADS)
Wagner, Thorsten; Kroll, Alexandra; Wiemann, Martin; Lipinski, Hans-Gerd
2016-04-01
Darkfield and confocal laser scanning microscopy both allow for a simultaneous observation of live cells and single nanoparticles. Accordingly, a characterization of nanoparticle uptake and intracellular mobility appears possible within living cells. Single particle tracking makes it possible to characterize the particle and the surrounding cell. In case of free diffusion, the mean squared displacement for each trajectory of a nanoparticle can be measured which allows computing the corresponding diffusion coefficient and, if desired, converting it into the hydrodynamic diameter using the Stokes-Einstein equation and the viscosity of the fluid. However, within the more complex system of a cell's cytoplasm unrestrained diffusion is scarce and several other types of movements may occur. Thus, confined or anomalous diffusion (e.g. diffusion in porous media), active transport, and combinations thereof were described by several authors. To distinguish between these types of particle movement we developed an appropriate classification method, and simulated three types of particle motion in a 2D plane using a Monte Carlo approach: (1) normal diffusion, using random direction and step-length, (2) subdiffusion, using confinements like a reflective boundary with defined radius or reflective objects in the closer vicinity, and (3) superdiffusion, using a directed flow added to the normal diffusion. To simulate subdiffusion we devised a new method based on tracks of different length combined with equally probable obstacle interaction. Next we estimated the fractal dimension, elongation and the ratio of long-time / short-time diffusion coefficients. These features were used to train a random forests classification algorithm. The accuracy for simulated trajectories with 180 steps was 97% (95%-CI: 0.9481-0.9884). The balanced accuracy was 94%, 99% and 98% for normal-, sub- and superdiffusion, respectively. Nanoparticle tracking analysis was used with 100 nm polystyrene particles
In, Myung-Ho; Posnansky, Oleg; Speck, Oliver
2017-03-01
High-resolution diffusion-weighted imaging (DWI) has great potential to provide unique information about tissue microstructure in-vivo. Although single-shot echo-planar imaging (EPI) is a most popular tool for DWI, its application for high-resolution DWI is limited due to T2* blurring and susceptibility- and eddy-current-induced geometric distortions, especially at ultra-high field (UHF) such as 7T. In this study, we adapt a hybrid spin-warp and echo-planar encoding strategy inspired by point spread function (PSF) mapping and optimize it for high-resolution and distortion-free diffusion imaging applications. More specifically, a 2D navigator echo is added into the original sequence for shot-to-shot motion-induced phase error estimation and correction. The spatial encoding is shared between the PSF and the EPI phase encoding dimension allowing short echo trains to preserve the diffusion and navigator signals efficiently at UHF, where T2 decay is relatively fast. In addition, variable k-space spacing was applied in the PSF dimension and combined with parallel imaging in the EPI-PE dimension to further accelerate the PSF acquisition. The results demonstrate that this method can yield isotropic submillimeter resolution without T2* blurring and geometric distortions at 7T and enables a clear and detailed delineation of human brain structures in-vivo with the diffusion contrasts. In addition, results of the proposed approach for high-resolution diffusion imaging at 3T are presented.
Ford, W.E. III; Arwood, J.W.; Greene, N.M.; Petrie, L.M.; Primm, R.T. III; Waddell, M.W.; Webster, C.C.; Westfall, R.M.; Wright, R.Q.
1987-01-01
Multigroup P3 neutron, P0-P3 secondary gamma ray production (SGRP), and P6 gamma ray interaction (GRI) cross section libraries have been generated to support design work on the Advanced Neutron Source (ANS) reactor. The libraries, designated ANSL-V (Advanced Neutron Source Cross-Section Libraries), are data bases in a format suitable for subsequent generation of problem dependent cross sections. The ANSL-V libraries are available on magnetic tape from the Radiation Shielding Information Center at Oak Ridge National Laboratory.
Menezes, W. A.; Filho, H. A.; Barros, R. C.
2013-07-01
A generalization of the spectral Green's function (SGF) method is developed for multigroup, fixed-source, slab-geometry discrete ordinates (S{sub N}) problems with anisotropic scattering. The offered SGF method with the one-node block inversion (NBI) iterative scheme converges numerical solutions that are completely free from spatial truncation errors for multigroup slab-geometry S{sub N} problems with scattering anisotropy of order L, provided L < N. As a coarse-mesh numerical method, the SGF method generates numerical solutions that generally do not give detailed information on the problem solution profile, as the grid points can be located considerably away from each other. Therefore, presented here is a technique for the spatial reconstruction of the coarse-mesh solution generated by the multigroup SGF method. Numerical results are given to illustrate the method's accuracy. (authors)
Raiteri, Paolo; Gale, Julian D; Bussi, Giovanni
2011-08-24
A new reactive force field to describe proton diffusion within the solid oxide fuel cell material BaZrO(3) has been derived. Using a quantum mechanical potential energy surface, the parameters of an interatomic potential model to describe hydroxyl groups within both pure and yttrium-doped BaZrO(3) have been determined. Reactivity is then incorporated through the use of the empirical valence bond model. Molecular dynamics simulations (EVB-MD) have been performed to explore the diffusion of hydrogen using a stochastic thermostat and barostat whose equations are extended to the isostress-isothermal ensemble. In the low concentration limit, the presence of yttrium is found not to significantly influence the diffusivity of hydrogen, despite the proton having a longer residence time at oxygen adjacent to the dopant. This lack of influence is due to the fact that trapping occurs infrequently, even when the proton diffuses through octahedra adjacent to the dopant. The activation energy for diffusion is found to be 0.42 eV, in good agreement with experimental values, though the prefactor is slightly underestimated.
Penington, Catherine J; Hughes, Barry D; Landman, Kerry A
2011-10-01
A discrete agent-based model on a periodic lattice of arbitrary dimension is considered. Agents move to nearest-neighbor sites by a motility mechanism accounting for general interactions, which may include volume exclusion. The partial differential equation describing the average occupancy of the agent population is derived systematically. A diffusion equation arises for all types of interactions and is nonlinear except for the simplest interactions. In addition, multiple species of interacting subpopulations give rise to an advection-diffusion equation for each subpopulation. This work extends and generalizes previous specific results, providing a construction method for determining the transport coefficients in terms of a single conditional transition probability, which depends on the occupancy of sites in an influence region. These coefficients characterize the diffusion of agents in a crowded environment in biological and physical processes.
a New ENDF/B-VII.0 Based Multigroup Cross-Section Library for Reactor Dosimetry
NASA Astrophysics Data System (ADS)
Alpan, F. A.; Anderson, S. L.
2009-08-01
The latest of the ENDF/B libraries, ENDF/B-VII.0 was released in December 2006. In this paper, the ENDF/B-VII.O evaluations were used in generating a new coupled neutron/gamma multigroup library having the same group structure of VITAMIN-B6, i.e., the 199-neutron, 42-gamma group library. The new library was generated utilizing NJOY99.259 for pre-processing and the AMPX modules for post-processing of cross sections. An ENDF/B-VI.3 based VITAMIN-B6-like library was also generated. The fine-group libraries and the ENDF/B-VI.3 based 47-neutron, 20-gamma group BUGLE-96 library were used with the discrete ordinates code DORT to obtain a three-dimensional synthesized flux distribution from r, r-θ, and r-z models for a standard Westinghouse 3-loop design reactor. Reaction rates were calculated for ex-vessel neutron dosimetry containing 63Cu(n,α)60Co, 46Ti(n,p)46Sc, 54Fe(n,P)54Mn, 58Ni(n,P)58Co, 238U(n,f)137Cs, 237Np(n,f)137Cs, and 59Co(n,γ)60Co (bare and cadmium covered) reactions. Results were compared to measurements. In comparing the 199-neutron, 42-gamma group ENDF/B-VI.3 and ENDF/B-VII.O libraries, it was observed that the ENDF/B-VI.3 based library results were in better agreement with measurements. There is a maximum difference of 7% (for the 63Cu(n,α)60Co reaction rate calculation) between ENDF/B-VI.3 and ENDF/B-VII.O. Differences between ENDF/B-VI.3 and ENDF/B-VII.O libraries are due to 16O, 1H, 90Zr, 91Zr, 92Zr, 238U, and 239Pu evaluations. Both ENDF/B-VI.3 and ENDF/B-VII.O library calculated reaction rates are within 20% of measurement and meet the criterion specified in the U. S. Nuclear Regulatory Commission Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence."
Jin, Shaobo; Yang-Wallentin, Fan; Christoffersson, Anders
2015-05-15
A multi-group factor model is suitable for data originating from different strata. However, it often requires a relatively large sample size to avoid numerical issues such as non-convergence and non-positive definite covariance matrices. An alternative is to pool data from different groups in which a single-group factor model is fitted to the pooled data using maximum likelihood. In this paper, properties of pseudo-maximum likelihood (PML) estimators for pooled data are studied. The pooled data are assumed to be normally distributed from a single group. The resulting asymptotic efficiency of the PML estimators of factor loadings is compared with that of the multi-group maximum likelihood estimators. The effect of pooling is investigated through a two-group factor model. The variances of factor loadings for the pooled data are underestimated under the normal theory when error variances in the smaller group are larger. Underestimation is due to dependence between the pooled factors and pooled error terms. Small-sample properties of the PML estimators are also investigated using a Monte Carlo study.
A New Method for the Calculation of Diffusion Coefficients with Monte Carlo
NASA Astrophysics Data System (ADS)
Dorval, Eric
2014-06-01
This paper presents a new Monte Carlo-based method for the calculation of diffusion coefficients. One distinctive feature of this method is that it does not resort to the computation of transport cross sections directly, although their functional form is retained. Instead, a special type of tally derived from a deterministic estimate of Fick's Law is used for tallying the total cross section, which is then combined with a set of other standard Monte Carlo tallies. Some properties of this method are presented by means of numerical examples for a multi-group 1-D implementation. Calculated diffusion coefficients are in general good agreement with values obtained by other methods.
ERIC Educational Resources Information Center
Artun, Huseyin; Costu, Bayram
2013-01-01
The aim of this study was to explore a group of prospective primary teachers' conceptual understanding of diffusion and osmosis as they implemented a 5E constructivist model and related materials in a science methods course. Fifty prospective primary teachers' ideas were elicited using a pre- and post-test and delayed post-test survey consisting…
Multi-Group Analysis of Nuclear Reactors in Three Space Dimensions
1960-04-20
conditions. For each energy group, g, the program computes 0 , the neutron flux , by a numerical approximation to the age-diffusion equation. When 0...program computes • , the neutron flux , by a numerical approximation to the age-diffusion equation. When (p has been calculated for all groups, the...average flux for each of the different composition regions of the mesh for each group, and e. The number of fissions per source neutron (f), and the
1990-11-20
Version 00 REX2-87 is a computer code developed for the calculation of self-shielded multigroup average cross sections, and self-shielding factors for total, elastic, fission and capture processes from an ENDF/B formatted nuclear data file in which the tabulated cross sections follow linear interpolation throughout.
Colmenares, Pedro J; López, Floralba; Olivares-Rivas, Wilmer
2009-12-01
We carried out a molecular-dynamics (MD) study of the self-diffusion tensor of a Lennard-Jones-type fluid, confined in a slit pore with attractive walls. We developed Bayesian equations, which modify the virtual layer sampling method proposed by Liu, Harder, and Berne (LHB) [P. Liu, E. Harder, and B. J. Berne, J. Phys. Chem. B 108, 6595 (2004)]. Additionally, we obtained an analytical solution for the corresponding nonhomogeneous Langevin equation. The expressions found for the mean-squared displacement in the layers contain naturally a modification due to the mean force in the transverse component in terms of the anisotropic diffusion constants and mean exit time. Instead of running a time consuming dual MD-Langevin simulation dynamics, as proposed by LHB, our expression was used to fit the MD data in the entire survival time interval not only for the parallel but also for the perpendicular direction. The only fitting parameter was the diffusion constant in each layer.
NASA Astrophysics Data System (ADS)
Ge, J.; Everett, M. E.; Weiss, C. J.
2012-12-01
A 2.5D finite difference (FD) frequency-domain modeling algorithm based on the theory of fractional diffusion of electromagnetic (EM) fields generated by a loop source lying above a fractured geological medium is addressed in this paper. The presence of fractures in the subsurface, usually containing highly conductive pore fluids, gives rise to spatially hierarchical flow paths of induced EM eddy currents. The diffusion of EM eddy currents in such formations is anomalous, generalizing the classical Gaussian process described by the conventional Maxwell equations. Based on the continuous time random walk (CTRW) theory, the diffusion of EM eddy currents in a rough medium is governed by the fractional Maxwell equations. Here, we model the EM response of a 2D subsurface containing fractured zones, with a 3D loop source, which results the so-called 2.5D model geometry. The governing equation in the frequency domain is converted using Fourier transform into k domain along the strike direction (along which the model conductivity doesn't vary). The resulting equation system is solved by the multifrontal massively parallel solver (MUMPS). The data obtained is then converted back to spatial domain and the time domain. We find excellent agreement between the FD and analytic solutions for a rough halfspace model. Then FD solutions are calculated for a 2D fault zone model with variable conductivity and roughness. We compare the results with responses from several classical models and explore the relationship between the roughness and the spatial density of the fracture distribution.
A joint compressed-sensing and super-resolution approach for very high-resolution diffusion imaging
Ning, Lipeng; Setsompop, Kawin; Michailovich, Oleg; Makris, Nikos; Shenton, Martha E.; Westin, Carl-Fredrik; Rathi, Yogesh
2015-01-01
Diffusion MRI (dMRI) can provide invaluable information about the structure of different tissue types in the brain. Standard dMRI acquisitions facilitate a proper analysis (e.g. tracing) of medium-to-large white matter bundles. However, smaller fiber bundles connecting very small cortical or sub-cortical regions cannot be traced accurately in images with large voxel sizes. Yet, the ability to trace such fiber bundles is critical for several applications such as deep brain stimulation and neurosurgery. In this work, we propose a novel acquisition and reconstruction scheme for obtaining high spatial resolution dMRI images using multiple low resolution (LR) images, which is effective in reducing acquisition time while improving the signal-to-noise ratio (SNR). The proposed method called compressed-sensing super resolution reconstruction (CS-SRR), uses multiple overlapping thick-slice dMRI volumes that are under-sampled in q-space to reconstruct diffusion signal with complex orientations. The proposed method combines the twin concepts of compressed sensing and super-resolution to model the diffusion signal (at a given b-value) in a basis of spherical ridgelets with total-variation (TV) regularization to account for signal correlation in neighboring voxels. A computationally efficient algorithm based on the alternating direction method of multipliers (ADMM) is introduced for solving the CS-SRR problem. The performance of the proposed method is quantitatively evaluated on several in-vivo human data sets including a true SRR scenario. Our experimental results demonstrate that the proposed method can be used for reconstructing sub-millimeter super resolution dMRI data with very good data fidelity in clinically feasible acquisition time. PMID:26505296
Dembo, Richard; Briones-Robinson, Rhissa; Ungaro, Rocio; Karas, Lora; Gulledge, Laura; Greenbaum, Paul E.; Schmeidler, James; Winters, Ken C.; Belenko, Steven
2011-01-01
Baseline data collected in two brief intervention projects (BI-Court and Truancy Project) were used to assess similarities and differences in subgroups of at-risk youth. Classifications of these subgroups were based on their psychosocial characteristics (e.g., substance use). Multi-group latent class analysis (LCA) identified two BI-Court subgroups of youth, and three Truant subgroups. These classes can be viewed as differing along two dimensions, substance use involvement and emotional/behavioral issues. Equality tests of means across the latent classes for BI-Court and Truancy Project youths found significant differences that were consistent with their problem group classification. These findings highlight the importance of quality assessments and allocating appropriate services based on problem profiles of at-risk youth. PMID:21966055
Gunnink, R
1990-04-03
Nondestructive measurements of x-ray and gamma-ray emissions can be used to analyze a sample for plutonium. This report describes the methods and algorithms we have developed for analyzing gamma-ray spectra obtained by using a germanium detector system to accurately determine the relative abundances of various actinide isotopes in a sample. Our methodology requires no calibrations and can be used to measure virtually any size and type of plutonium sample. Measurement times can be as short as a few minutes; measurements are frequently accurate to within 1%. Our methods have been programmed into a computerized analysis code called MGA (Multi-Group Analysis). Our current versions can be run on personal computers (IBM type) and on the DEC VAX microcomputer. Spectral analysis times are usually far less than a minute. 28 refs., 26 figs., 1 tab.
Aragon, Stephen J; Gesell, Sabina B
2003-01-01
This investigation tested the patient-centered Primary Provider Theory of Patient Satisfaction across gender in national random samples of emergency patients. Using multigroup structural equation modeling, the results supported the model's robustness. Physician service, waiting time, and nursing satisfaction explained 48%, 41%, and 11% of overall satisfaction plus 92% and 93% of female and male satisfaction, respectively. Unit increases in physician service satisfaction increased waiting time, nursing, and overall satisfaction by 0.991, 0.844, and 1.031 units, respectively. Unit increases in waiting time satisfaction increased nursing and overall satisfaction by 0.417 and 0.685 units, respectively. A unit increase in nursing satisfaction increased overall service satisfaction by 0.221 units. The investigation offers an alternative paradigm for measuring and achieving emergency department satisfaction, hierarchically related to patient expectations, where the primary provider has the greatest clinical utility to patients, followed by waiting for the primary provider, and then by nursing service.
MACFARLANE, ROBERT E.
1995-06-01
Version 04 The NJOY nuclear data processing system is a comprehensive computer code package for producing pointwise and multigroup neutron and photon cross sections from ENDF/B evaluated nuclear data. This is the last NJOY-91 series. It uses the same module structure as the earlier versions and its graphics options depend on DISSPLA. This new release, designated NJOY91.119, includes bug fixes, improvements in several modules, and some new capabilities. Information on the changes is included in the README file. A new test problem was added to test some ENDF-6 features, including Reich-Moore resonance reconstruction, energy-angle matrices in GROUPR, and energy-angle distributions in ACER. The 91.119 release is basically configured for UNIX.
Roussin, R.; Menapace, E.
1994-10-01
Subgroup 7 of the NEA NSC WP-IEC simulated interest in processing data from various international and regional evaluated cross-section libraries into the 174n, 42g VITAMIN-J multigroup energy for the purpose of intercomparison. Cooperation and participation came from numerous installations around the world. Most processing was done with the NJOY system, but some independent contributions were provided. At the WP-IEC meeting in June 1993, many contributions to the effort were described and the exercise proved to be useful from several aspects. It was decided to expand the role of the temporary subgroup into a long term subgroup to look at both format and processing problems. A summary of the progress of Subgroup 7 is provided and the objective and scope of the new entity, Subgroup B, is reported.
Bächle, Josua; Berghold, Martin; Landgraf, Stephan; Grampp, Günter
2017-02-24
We introduce a binary system of two ionic liquids 1-ethyl-3-methyl-imidazolium and tri-octyl-methyl-ammonium bis-trifluoromethylsulfonyl-imide (emim and oma NTf2) with varying molar fractions. It allows to keep the dynamic viscosity constant over a theoretical range of almost 60 K which means that any activated process can be studied independent of the temperature dependence of viscosity itself. We proved this principle upon reinvestigated electron self-exchange kinetics of tetrathiafulvalene by CW-ESR line broadening experiments. From this we could additionally confirm that this process is in fact totally diffusion controlled.
Devpura, Suneetha; Pattamadilok, Bensachee; Syed, Zain U; Vemulapalli, Pranita; Henderson, Marsha; Rehse, Steven J; Hamzavi, Iltefat; Lim, Henry W; Naik, Ratna
2011-06-01
Quantification of skin changes due to acanthosis nigricans (AN), a disorder common among insulin-resistant diabetic and obese individuals, was investigated using two optical techniques: diffuse reflectance spectroscopy (DRS) and colorimetry. Measurements were obtained from AN lesions on the neck and two control sites of eight AN patients. A principal component/discriminant function analysis successfully differentiated between AN lesion and normal skin with 87.7% sensitivity and 94.8% specificity in DRS measurements and 97.2% sensitivity and 96.4% specificity in colorimetry measurements.
2016-10-01
Reports an error in "Reliability Generalization of the Multigroup Ethnic Identity Measure-Revised (MEIM-R)" by Hayley M. Herrington, Timothy B. Smith, Erika Feinauer and Derek Griner (Journal of Counseling Psychology, Advanced Online Publication, Mar 17, 2016, np). The name of author Erika Feinauer was misspelled as Erika Feinhauer. All versions of this article have been corrected. (The following abstract of the original article appeared in record 2016-13160-001.) Individuals' strength of ethnic identity has been linked with multiple positive indicators, including academic achievement and overall psychological well-being. The measure researchers use most often to assess ethnic identity, the Multigroup Ethnic Identity Measure (MEIM), underwent substantial revision in 2007. To inform scholars investigating ethnic identity, we performed a reliability generalization analysis on data from the revised version (MEIM-R) and compared it with data from the original MEIM. Random-effects weighted models evaluated internal consistency coefficients (Cronbach's alpha). Reliability coefficients for the MEIM-R averaged α = .88 across 37 samples, a statistically significant increase over the average of α = .84 for the MEIM across 75 studies. Reliability coefficients for the MEIM-R did not differ across study and participant characteristics such as sample gender and ethnic composition. However, consistently lower reliability coefficients averaging α = .81 were found among participants with low levels of education, suggesting that greater attention to data reliability is warranted when evaluating the ethnic identity of individuals such as middle-school students. Future research will be needed to ascertain whether data with other measures of aspects of personal identity (e.g., racial identity, gender identity) also differ as a function of participant level of education and associated cognitive or maturation processes. (PsycINFO Database Record
NASA Astrophysics Data System (ADS)
Mazaheri, Alireza; Nishikawa, Hiroaki
2016-09-01
We propose arbitrary high-order discontinuous Galerkin (DG) schemes that are designed based on a first-order hyperbolic advection-diffusion formulation of the target governing equations. We present, in details, the efficient construction of the proposed high-order schemes (called DG-H), and show that these schemes have the same number of global degrees-of-freedom as comparable conventional high-order DG schemes, produce the same or higher order of accuracy solutions and solution gradients, are exact for exact polynomial functions, and do not need a second-derivative diffusion operator. We demonstrate that the constructed high-order schemes give excellent quality solution and solution gradients on irregular triangular elements. We also construct a Weighted Essentially Non-Oscillatory (WENO) limiter for the proposed DG-H schemes and apply it to discontinuous problems. We also make some accuracy comparisons with conventional DG and interior penalty schemes. A relative qualitative cost analysis is also reported, which indicates that the high-order schemes produce orders of magnitude more accurate results than the low-order schemes for a given CPU time. Furthermore, we show that the proposed DG-H schemes are nearly as efficient as the DG and Interior-Penalty (IP) schemes as these schemes produce results that are relatively at the same error level for approximately a similar CPU time.
Tijink, Marlon S L; Wester, Maarten; Sun, Junfen; Saris, Anno; Bolhuis-Versteeg, Lydia A M; Saiful, Saiful; Joles, Jaap A; Borneman, Zandrie; Wessling, Matthias; Stamatialis, Dimitris F
2012-07-01
Hemodialysis is a commonly used blood purification technique in patients requiring kidney replacement therapy. Sorbents could increase uremic retention solute removal efficiency but, because of poor biocompatibility, their use is often limited to the treatment of patients with acute poisoning. This paper proposes a novel membrane concept for combining diffusion and adsorption of uremic retention solutes in one step: the so-called mixed-matrix membrane (MMM). In this concept, adsorptive particles are incorporated in a macro-porous membrane layer whereas an extra particle-free membrane layer is introduced on the blood-contacting side of the membrane to improve hemocompatibility and prevent particle release. These dual-layer mixed-matrix membranes have high clean-water permeance and high creatinine adsorption from creatinine model solutions. In human plasma, the removal of creatinine and of the protein-bound solute para-aminohippuric acid (PAH) by single and dual-layer membranes is in agreement with the removal achieved by the activated carbon particles alone, showing that under these experimental conditions the accessibility of the particles in the MMM is excellent. This study proves that the combination of diffusion and adsorption in a single step is possible and paves the way for the development of more efficient blood purification devices, excellently combining the advantages of both techniques.
Matsushita, Taku; Matsui, Yoshihiko; Ikekame, Shohei; Sakuma, Miki; Shirasaki, Nobutaka
2017-04-06
Mechanisms underlying trichloramine removal with activated carbon treatment were proven by batch experiments and theoretical analysis with diffusion-reaction models. The observed values of trichloramine and free chlorine were explained only by the model in which (1) both trichloramine and free chlorine were involved as reactants, (2) the removals of reactants were affected both by the intraparticle diffusion and by the reaction with activated carbon, and (3) trichloramine decomposition was governed by two distinct reductive reactions. One reductive reaction was expressed as a first-order reaction: the reductive reaction of trichloramine with the basal plane of PAC, which consists of graphene sheets. The other reaction was expressed as a second-order reaction: the reductive reaction of trichloramine with active functional groups located on the edge of the basal plane. Free chlorine competitively reacted with both the basal plane and the active functional groups. The fact that the model prediction succeeded even in experiments with different activated carbon doses, with different initial trichloramine concentrations, and with different sizes of activated carbon particles clearly proved that the mechanisms described in the model were reasonable for explaining trichloramine removal with activated carbon treatment.
Greiner, R; Herr, A; Brodie, J; Haynes, D
2005-01-01
This paper presents a multi-criteria based tool for assessing the relative impact of diffuse-source pollution to the Great Barrier Reef (GBR) from the river basins draining into the GBR lagoon. The assessment integrates biophysical and ecological data of water quality and pollutant concentrations with socio-economic information pertaining to non-point source pollution and (potential) pollutant impact. The tool generates scores for each river basin against four criteria, thus profiling the basins and enabling prioritization of management alternatives between and within basins. The results support policy development for pollution control through community participation, scientific data integration and expert knowledge contributed by people from across the catchment. The results specifically provided support for the Reef Water Quality Protection Plan, released in October 2003. The aim of the plan is to provide a framework for reducing discharge of sediment, nutrient and other diffuse-source loads and (potential) impact of that discharge and for prioritising management actions both between and within river basins.
NASA Astrophysics Data System (ADS)
Bleibel, Johannes; Domínguez, Alvaro; Oettel, Martin
2016-06-01
We build on an existing approximation scheme to the Smoluchowski equation in order to derive a dynamic density functional theory (DDFT) including two-body hydrodynamic interactions. A generalized diffusion equation and a wavenumber-dependent diffusion coefficient D(k) are derived by linearization in the density fluctuations. The result is applied to a colloidal monolayer at a fluid interface, having bulk-like hydrodynamic interactions and/or interacting via long-ranged capillary forces. In these cases, D(k) shows characteristic singularities as k\\to 0 . The consequences of these singularities are studied by means of analytical perturbation theory, numerical solution of DDFT and simulations for an explicit example: the capillary collapse of a finite, disk-like distribution of particles. There is in general a good agreement between DDFT and simulations if the initial density distributions for the theoretical prediction correspond to the actual initial configurations of simulations, rather than to an average over them. Otherwise, discrepancies arise that are discussed in detail.
Teruel, Jose R; Goa, Pål E; Sjøbakk, Torill E; Østlie, Agnes; Fjøsne, Hans E; Bathen, Tone F
2016-11-01
Purpose To evaluate the relative change of the apparent diffusion coefficient (ADC) at low- and medium-b-value regimens as a surrogate marker of microcirculation, to study its correlation with dynamic contrast agent-enhanced (DCE) magnetic resonance (MR) imaging-derived parameters, and to assess its potential for differentiation between malignant and benign breast tumors. Materials and Methods Ethics approval and informed consent were obtained. From May 2013 to June 2015, 61 patients diagnosed with either malignant or benign breast tumors were prospectively recruited. All patients were scanned with a 3-T MR imager, including diffusion-weighted imaging (DWI) and DCE MR imaging. Parametric analysis of DWI and DCE MR imaging was performed, including a proposed marker, relative enhanced diffusivity (RED). Spearman correlation was calculated between DCE MR imaging and DWI parameters, and the potential of the different DWI-derived parameters for differentiation between malignant and benign breast tumors was analyzed by dividing the sample into equally sized training and test sets. Optimal cut-off values were determined with receiver operating characteristic curve analysis in the training set, which were then used to evaluate the independent test set. Results RED had a Spearman rank correlation of 0.61 with the initial area under the curve calculated from DCE MR imaging. Furthermore, RED differentiated cancers from benign tumors with an overall accuracy of 90% (27 of 30) on the test set with 88.2% (15 of 17) sensitivity and 92.3% (12 of 13) specificity. Conclusion This study presents promising results introducing a simplified approach to assess results from a DWI protocol sensitive to the intravoxel incoherent motion effect by using only three b values. This approach could potentially aid in the differentiation, characterization, and monitoring of breast pathologies. (©) RSNA, 2016 Online supplemental material is available for this article.
Han, Songfeng; Proctor, Ashley R.; Vella, Joseph B.; Benoit, Danielle S. W.; Choe, Regine
2016-01-01
Longitudinal blood flow during murine bone graft healing was monitored non-invasively using diffuse correlation tomography. The system utilized spatially dense data from a scanning set-up, non-linear reconstruction, and micro-CT anatomical information. Weekly in vivo measurements were performed. Blood flow changes in autografts, which heal successfully, were localized to graft regions and consistent across mice. Poor healing allografts showed heterogeneous blood flow elevation and high inter-subject variabilities. Allografts with tissue-engineered periosteum showed responses intermediate to both autografts and allografts, consistent with healing observed. These findings suggest that spatiotemporal blood flow changes can be utilized to differentiate the degree of bone graft healing. PMID:27699097
Zhao Xinyu; Jing Jun; Corn, Brittany; Yu Ting
2011-09-15
Non-Markovian dynamics is studied for two interacting qubits strongly coupled to a dissipative bosonic environment. We derive a non-Markovian quantum-state-diffusion (QSD) equation for the coupled two-qubit system without any approximations, and in particular, without the Markov approximation. As an application and illustration of our derived time-local QSD equation, we investigate the temporal behavior of quantum coherence dynamics. In particular, we find a strongly non-Markovian regime where entanglement generation is significantly modulated by the environmental memory. Additionally, we study residual entanglement in the steady state by analyzing the steady-state solution of the QSD equation. Finally, we discuss an approximate QSD equation.
Moon, Seyoung; Kim, Donghyun; Sim, Eunji
2008-01-20
We employ a Monte Carlo (MC) algorithm to investigate the decoherence of diffuse photons in turbid media. For the MC simulation of coherent photons, the degree of coherence, defined as a random variable for a photon packet, is associated with a decoherence function that depends on the scattering angle and is updated as a photon interacts with a medium via scattering. Using a slab model, the effects of medium scattering properties were studied, which reveals that a linear random variable model for the degree of coherence is in better agreement with experimental results than a sinusoidal model and that decoherence is quick for the initial few scattering events followed by a slow and gradual decrease of coherence.
NASA Astrophysics Data System (ADS)
González, Ramón E. R.; de Figueirêdo, Pedro Hugo; Coutinho, Sérgio
2013-10-01
We study a cellular automata model to test the timing of antiretroviral therapy strategies for the dynamics of infection with human immunodeficiency virus (HIV). We focus on the role of virus diffusion when its population is included in previous cellular automata model that describes the dynamics of the lymphocytes cells population during infection. This inclusion allows us to consider the spread of infection by the virus-cell interaction, beyond that which occurs by cell-cell contagion. The results show an acceleration of the infectious process in the absence of treatment, but show better efficiency in reducing the risk of the onset of AIDS when combined antiretroviral therapies are used even with drugs of low effectiveness. Comparison of results with clinical data supports the conclusions of this study.
NASA Astrophysics Data System (ADS)
Anand, S.; Mayya, Y. S.
2011-08-01
Coagulation and condensation/evaporation combined with atmospheric dispersion are the main processes responsible for the evolution of aerosol particle size distributions and number concentrations emitted from localized sources. A crucial question is: what fraction of freshly emitted particles survive intra-coagulation effect to persist in the atmosphere and become available for further interaction with background aerosols?. The difficulty in estimating this quantity, designated as the number survival fraction, arises due chiefly to the joint action of atmospheric diffusion with nonlinear coagulation effects which are computationally intensive to handle. We provide a simplified approach to evaluate this quantity in the context of instantaneous (puff) and continuous (plume) releases based on a reduction of the respective coagulation-diffusion equations under the assumption of a constant coagulation kernel ( K). The condensation/evaporation processes, being number conserving, are not included in the study. The approach consists of constructing moment equations for the evolution of number concentration and variance of the spatial extension of puff or plume in terms of either time or downstream distance. The puff model, applicable to instantaneous releases is solved within a 3-D, spherically symmetric framework, under an additional assumption of a constant diffusion coefficient ( D) which renders itself amenable to a closed form solution that provides a benchmark for developing the solution to the plume model. The latter case, corresponding to continuous releases, is discussed within a 2-D framework under the assumptions of constant advection velocity ( U) and space dependent diffusion coefficient expressed in terms of turbulent energy dissipation rate ( ɛ). The study brings out the special effect of the coagulation-induced flattening of the spatial concentration profiles because of which particle sizes will be larger at the centre of a Gaussian puff. For a puff of
NASA Technical Reports Server (NTRS)
Smith, Andrew; LaVerde, Bruce; Fulcher, Clay; Hunt, Ron
2012-01-01
An approach for predicting the vibration, strain, and force responses of a flight-like vehicle panel assembly to acoustic pressures is presented. Important validation for the approach is provided by comparison to ground test measurements in a reverberant chamber. The test article and the corresponding analytical model were assembled in several configurations to demonstrate the suitability of the approach for response predictions when the vehicle panel is integrated with equipment. Critical choices in the analysis necessary for convergence of the predicted and measured responses are illustrated through sensitivity studies. The methodology includes representation of spatial correlation of the pressure field over the panel surface. Therefore, it is possible to demonstrate the effects of hydrodynamic coincidence in the response. The sensitivity to pressure patch density clearly illustrates the onset of coincidence effects on the panel response predictions.
NASA Astrophysics Data System (ADS)
Fukuyama, Hidenao
Recent advances of magnetic resonance imaging have been described, especially stressed on the diffusion sequences. We have recently applied the diffusion sequence to functional brain imaging, and found the appropriate results. In addition to the neurosciences fields, diffusion weighted images have improved the accuracies of clinical diagnosis depending upon magnetic resonance images in stroke as well as inflammations.
Modeling growth and dissemination of lymphoma in a co-evolving lymph node: a diffuse-domain approach
NASA Astrophysics Data System (ADS)
Chuang, Yao-Li; Cristini, Vittorio; Chen, Ying; Li, Xiangrong; Frieboes, Hermann; Lowengrub, John
2013-03-01
While partial differential equation models of tumor growth have successfully described various spatiotemporal phenomena observed for in-vitro tumor spheroid experiments, one challenge towards taking these models to further study in-vivo tumors is that instead of relatively static tissue culture with regular boundary conditions, in-vivo tumors are often confined in organ tissues that co-evolve with the tumor growth. Here we adopt a recently developed diffuse-domain method to account for the co-evolving domain boundaries, adapting our previous in-vitro tumor model for the development of lymphoma encapsulated in a lymph node, which may swell or shrink due to proliferation and dissemination of lymphoma cells and treatment by chemotherapy. We use the model to study the induced spatial heterogeneity, which may arise as an emerging phenomenon in experimental observations and model analysis. Spatial heterogeneity is believed to lead to tumor infiltration patterns and reduce the efficacy of chemotherapy, leaving residuals that cause cancer relapse after the treatment. Understanding the spatiotemporal evolution of in-vivo tumors can be an essential step towards more effective strategies of curing cancer. Supported by NIH-PSOC grant 1U54CA143907-01.
NASA Astrophysics Data System (ADS)
Artun, Hüseyin; Coştu, Bayram
2013-02-01
The aim of this study was to explore a group of prospective primary teachers' conceptual understanding of diffusion and osmosis as they implemented a 5E constructivist model and related materials in a science methods course. Fifty prospective primary teachers' ideas were elicited using a pre- and post-test and delayed post-test survey consisting of ten two-tier questions of which an explanatory part was integral. Individual interviews were conducted with six prospective teachers at the end of the implementation of the unit using four questions. Test scores were analyzed quantitatively and qualitatively. Post-instructional interviews were analyzed qualitatively. Statistical analysis using one-way ANOVA of student test scores pointed to statistically significant differences between pre- and post- and delayed post-test ( p < 0.05). A qualitative analysis of the prospective teachers' explanations in the two-tier questions revealed changes in their ideas overtime. Both quantitative and qualitative analyses suggest that the teaching activities promoted students' conceptual understanding. No statistically significant differences were found between post-test and delayed post-test scores, suggesting that the teaching activities based on 5E model enabled students to retain their new conceptual understanding.
Wendland, F; Kunkel, R; Bogena, H; Gömann, H; Kreins, P
2007-01-01
An integrated model system has been developed to estimate the impact of nitrogen reduction measures on the nitrogen load in groundwater and in river catchment areas. The focus lies on an area-wide, regionally differentiated, consistent link-up between the indicator "nitrogen balance surplus" and nitrogen charges into surface waters. As a starting point of the analysis actual nitrogen surpluses in the soil were quantified using the agro-economic RAUMIS-model, which considers the most important N-inputs to the soil and N-removals from the soil through crop harvest. The most important pathways for diffuse nitrogen inputs into river systems are modelled with the water balance model GROWA. Additionally, the time-dependent nitrogen degradation along the nitrogen pathways in soil and groundwater are modelled using the WEKU-model. The two selected river basins in Germany cover a variety of landscape units with different hydrological, hydrogeological and socio-economic characteristics. The results indicate a wide range of annual nitrogen surpluses for the rural areas between than 10 kg N ha(-1) x a(-1) and 200 kg N ha(-1) x a(-1) or more, depending on the type and intensity of farming. The level of nitrogen inputs into the surface waters is reduced because of degradation processes during transport in soil and groundwater. Policy impact analyses for a nitrogen tax and a limitation of the livestock density stress the importance of regionally adjusted measures.
NASA Astrophysics Data System (ADS)
Wu, Jun; Chen, Yi-Xue; Wang, Wei-Jin; Yin, Wen; Liang, Tian-Jiao; Jia, Xue-Jun
2012-03-01
ENDF/B-VII.0, which was released by the USA Cross Section Evaluation Working Group (CSEWG) in December 2006, was demonstrated to perform much better than previous ENDF evaluations over a broad range of benchmark experiments. A high-energy (up to 150 MeV) multi-group library set named HEST1.0 with 253-neutron and 48-photon groups has been developed based on ENDF/B-VII.0 using the NJOY code. This paper provides a summary of the procedure to produce the library set and a detailed description of the verification of the multi-group library set by several shielding benchmark devices, in particular for high-energy neutron data. In addition, the first application of HEST1.0 to the shielding design of the China Spallation Neutron Source (CSNS) is demonstrated.
Yang, W. S.; Lee, C. H.
2008-05-16
Under the fast reactor simulation program launched in April 2007, development of an advanced multigroup cross section generation code was initiated in July 2007, in conjunction with the development of the high-fidelity deterministic neutron transport code UNIC. The general objectives are to simplify the existing multi-step schemes and to improve the resolved and unresolved resonance treatments. Based on the review results of current methods and the fact that they have been applied successfully to fast critical experiment analyses and fast reactor designs for last three decades, the methodologies of the ETOE-2/MC{sup 2}-2/SDX code system were selected as the starting set of methodologies for multigroup cross section generation for fast reactor analysis. As the first step for coupling with the UNIC code and use in a parallel computing environment, the MC{sup 2}-2 code was updated by modernizing the memory structure and replacing old data management package subroutines and functions with FORTRAN 90 based routines. Various modifications were also made in the ETOE-2 and MC{sup 2}-2 codes to process the ENDF/B-VII.0 data properly. Using the updated ETOE-2/MC{sup 2}-2 code system, the ENDF/B-VII.0 data was successfully processed for major heavy and intermediate nuclides employed in sodium-cooled fast reactors. Initial verification tests of the MC{sup 2}-2 libraries generated from ENDF/B-VII.0 data were performed by inter-comparison of twenty-one group infinite dilute total cross sections obtained from MC{sup 2}-2, VIM, and NJOY. For almost all nuclides considered, MC{sup 2}-2 cross sections agreed very well with those from VIM and NJOY. Preliminary validation tests of the ENDF/B-VII.0 libraries of MC{sup 2}-2 were also performed using a set of sixteen fast critical benchmark problems. The deterministic results based on MC{sup 2}-2/TWODANT calculations were in good agreement with MCNP solutions within {approx}0.25% {Delta}{rho}, except a few small LANL fast assemblies
NASA Astrophysics Data System (ADS)
Mihalache, Constance; Buscarnera, Giuseppe
2013-04-01
Granular materials are susceptible to a wide variety of failure and deformation mechanisms, especially because of their interaction with the pore fluids and the surrounding environment. An adequate modeling of their mechanical response is therefore essential for understanding a number of geological processes, such as the onset of rapid landslides, hillslope denudation and sediment transport, or even the mechanics of fault gauges. Depending on the type of material, the groundwater conditions and the surrounding kinematic constraints, both diffuse and localized mechanisms are possible, and these may occur under either drained or undrained conditions. In the geomechanics literature, failure modes are usually explained and modeled with the tools of continuum mechanics, such as the mathematical theory of plasticity. Due to the complexity of granular material behavior, however, most classical models for frictional strength are unable to capture the variety of instability mechanisms observed for such class of geomaterials (e.g., liquefaction, shear banding, etc.). Sophisticated strain-hardening plasticity models are therefore required for numerical modeling purposes, thus making the evaluation of critical failure conditions less straightforward than in perfect plasticity theories. Here we propose a mathematical strategy that can be adapted to any elastoplastic model and allows the onset of failure in elastoplastic geomaterials to be expressed in a more general manner. More specifically, our theory expresses the failure conditions as a function of local kinematics and solid-fluid interactions. The stability criterion used in this study is based on the so-called stability modulus, a scalar index of failure that was formulated by linking the physical concept controllability to the mathematical notion of plastic admissibility upon an incremental loading path [Buscarnera et al, 2011]. In this contribution, different loading constraints are considered, accounting for the
NASA Astrophysics Data System (ADS)
Kösters, Anne; Karlsson, Anders; Oevermann, Michael; D'Errico, Gianluca; Lucchini, Tommaso
2015-01-01
The flame stabilisation process in turbulent non-premixed flames is not fully understood and several models have been developed to describe the turbulence-chemistry interaction. This work compares the performance of the multiple Representative Interactive Flamelet (mRIF) model, the Volume Reactor Fraction Model (VRFM), and the Well-Stirred reactor (WS) model in describing such flames. The predicted ignition delay and flame lift-off length of n-heptane sprays are compared to experimental results published within the Engine Combustion Network (ECN). All of the models predict the trend of ignition delay reasonably well. At a low gas pressure (42 bar) the ignition delay is overpredicted compared to the experimental data, but the difference between the models is not significant. However, the predicted lift-off lengths differ. At high pressure (87 bar) the difference between the models is small. All models slightly underpredict the lift-off length compared to the experimental data. At low gas pressure (42 bar) the mRIF model gives the best results. The VRFM and WS models predict excessively short lift-off lengths, but the VRFM model gives better results than the WS model. The flame structures of the models are also compared. The WS model and the VRFM model yield a well defined flame stabilisation point whereas the mRIF model does not. The flame of the mRIF model is more diffuse and the model is not able to predict flame propagation. All models were able to predict the experimental trends in lift-off and ignition delay, but certain differences between them are demonstrated.
Hérivaux, Cécile; Orban, Philippe; Brouyère, Serge
2013-10-15
In Europe, 30% of groundwater bodies are considered to be at risk of not achieving the Water Framework Directive (WFD) 'good status' objective by 2015, and 45% are in doubt of doing so. Diffuse agricultural pollution is one of the main pressures affecting groundwater bodies. To tackle this problem, the WFD requires Member States to design and implement cost-effective programs of measures to achieve the 'good status' objective by 2027 at the latest. Hitherto, action plans have mainly consisted of promoting the adoption of Agri-Environmental Schemes (AES). This raises a number of questions concerning the effectiveness of such schemes for improving groundwater status, and the economic implications of their implementation. We propose a hydro-economic model that combines a hydrogeological model to simulate groundwater quality evolution with agronomic and economic components to assess the expected costs, effectiveness, and benefits of AES implementation. This hydro-economic model can be used to identify cost-effective AES combinations at groundwater-body scale and to show the benefits to be expected from the resulting improvement in groundwater quality. The model is applied here to a rural area encompassing the Hesbaye aquifer, a large chalk aquifer which supplies about 230,000 inhabitants in the city of Liege (Belgium) and is severely contaminated by agricultural nitrates. We show that the time frame within which improvements in the Hesbaye groundwater quality can be expected may be much longer than that required by the WFD. Current WFD programs based on AES may be inappropriate for achieving the 'good status' objective in the most productive agricultural areas, in particular because these schemes are insufficiently attractive. Achieving 'good status' by 2027 would demand a substantial change in the design of AES, involving costs that may not be offset by benefits in the case of chalk aquifers with long renewal times.
Friedberg, Jonathan W
2015-01-01
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non Hodgkin lymphoma in the Western world, and is potentially curable with standard R-CHOP chemoimmunotherapy. Historically, clinical risk assessments provided prognostic information, but did not define treatment approach. We are now in an era where the heterogeneity of DLBCL is defined genetically and molecularly, and rational subset-specific therapeutic targets are guiding clinical trials. Primary mediastinal DLBCL is a unique clinicopathologic entity, and alternatives to R-CHOP may confer superior outcome. Rearrangement of the myc oncogene occurs in ~10% of patients with DLBCL, and confers a very poor prognosis with standard R-CHOP, particularly when there is concomitant rearrangement of bcl-2, a condition referred to as "double-hit" DLBCL. A larger subset of DLBCL demonstrates overexpression of both myc and bcl-2 by immunohistochemistry. Cell of origin, determined by gene expression analysis, immunohistochemistry algorithms, or a novel Lymph2Cx platform, provides prognostic information, and guides therapeutic decisions in both relapsed and de novo disease. This article will define specific subsets of DLBCL and provide subtype-specific treatment options, including novel approaches under investigation. Understanding these key features of the pathology report, and limitations of these assays defining subsets of DLBCL, allows for an evolving precision medicine approach to this disease.
Dimensions of Cultural Differences: Pancultural, ETIC/EMIC, and Ecological Approaches
ERIC Educational Resources Information Center
Stankov, Lazar; Lee, Jihyun
2009-01-01
We investigated the factorial structure of four major domains in social psychology (personality traits, social attitudes, values, and social norms) with an emphasis on cross-cultural differences. Three distinctive approaches--pancultural, multigroup, and multilevel--were applied to the data based on 22 measures that were collected from 2029…
NASA Astrophysics Data System (ADS)
Liu, Ruixia; Lead, Jamie R.; Zhang, Hao
2013-05-01
Cross flow ultrafiltration (CFUF) and diffusive gradients in thin films (DGT) with open pore gel (OP) and restricted pore gel (RP) were used to measure trace metal speciation in selected UK freshwaters. The proportions of metals present in particulate forms (>1 μm) varied widely between 40-85% Pb, 60-80% Al, 7-56% Mn, 10-49% Cu, 0-55% Zn, 20-38% Cr, 20-30% Fe, 6-25% Co, 5-22% Cd and <7% Ni. In the colloidal fraction (2 kDa-1 μm) values varied between 53-91% Pb, 33-55% Al, 21-55% Cu, 20-44% Fe, 34-36% Cr, 20-40% Cd, 7-28% Co and Ni, 2-32% Zn and <8% Mn. Wide variations were also observed in the ultrafiltered fraction (<2 kDa). These results indicated that colloids indeed influenced the occurrence and transport of Al, Fe, Cr, Co, Ni, Cu, Zn, Cr and Pb metals in rivers, while inorganic or organic colloids did not exert an important control on Mn transport in the selected freshwaters. Of total species, total labile metal measured by DGT-OP accounted for 1.4-50% for Al, Fe, Co, Ni, Cu, Cd and Pb in all selected waters. Of these metals total labile Pb concentration was the lowest with value less than 1.4% although this value slightly increased after deducting particulate fractions. In some waters, a majority of total Mn, Zn and Cr is DGT labile, in which the DGT labile Mn fraction accounted for 98-118% of the total dissolved phase. In most cases, the inorganic labile concentration measured by DGT-RP was lower than the total labile metal concentration. By the combination of CFUF and DGT techniques, the concentrations of total labile and inorganic labile metal species in CFUF-derived truly dissolved phase were measured in four water samples. 100% of ultrafiltered Mn species was found to be total DGT labile. The proportions of total labile metal species were lower than those of ultrafiltered fraction for Al, Fe, Co, Ni, Cu, Cd and Pb in all selected waters, and Cr and Zn in some cases, indicating a large amount of natural complexing ligands with smaller size for the
NASA Technical Reports Server (NTRS)
Yang, T.-T.; Nelson, C. D.
1979-01-01
Contoured wall diffusers are designed by using an inverse method. The prescribed wall velocity distribution(s) was taken from the high lift airfoil designed by A. A. Griffith in 1938; therefore, such diffusers are named Griffith diffusers. First the formulation of the inverse problem and the method of solution are outlined. Then the typical contour of a two-dimensional diffuser and velocity distributions across the flow channel at various stations are presented. For a Griffith diffuser to operate as it is designed, boundary layer suction is necessary. Discussion of the percentage of through-flow required to be removed for the purpose of boundary layer control is given. Finally, reference is made to the latest version of a computer program for a two-dimensional diffuser requiring only area ratio, nondimensional length and suction percentage as inputs.
NASA Astrophysics Data System (ADS)
Mazzitello, Karina I.; Candia, Julián
2012-12-01
In every country, public and private agencies allocate extensive funding to collect large-scale statistical data, which in turn are studied and analyzed in order to determine local, regional, national, and international policies regarding all aspects relevant to the welfare of society. One important aspect of that process is the visualization of statistical data with embedded geographical information, which most often relies on archaic methods such as maps colored according to graded scales. In this work, we apply nonstandard visualization techniques based on physical principles. We illustrate the method with recent statistics on homicide rates in Brazil and their correlation to other publicly available data. This physics-based approach provides a novel tool that can be used by interdisciplinary teams investigating statistics and model projections in a variety of fields such as economics and gross domestic product research, public health and epidemiology, sociodemographics, political science, business and marketing, and many others.
Chang, Chong
2016-08-09
We present a simple approach for determining ion, electron, and radiation temperatures of heterogeneous plasma-photon mixtures, in which temperatures depend on both material type and morphology of the mixture. The solution technique is composed of solving ion, electron, and radiation energy equations for both mixed and pure phases of each material in zones containing random mixture and solving pure material energy equations in subdivided zones using interface reconstruction. Application of interface reconstruction is determined by the material configuration in the surrounding zones. In subdivided zones, subzonal inter-material energy exchanges are calculated by heat fluxes across the material interfaces. Inter-material energy exchange in zones with random mixtures is modeled using the length scale and contact surface area models. In those zones, inter-zonal heat flux in each material is determined using the volume fractions.
Ghrayeb, Shadi Z.; Ougouag, Abderrafi M.; Ouisloumen, Mohamed; Ivanov, Kostadin N.
2014-01-01
A multi-group formulation for the exact neutron elastic scattering kernel is developed. It incorporates the neutron up-scattering effects, stemming from lattice atoms thermal motion and accounts for it within the resulting effective nuclear cross-section data. The effects pertain essentially to resonant scattering off of heavy nuclei. The formulation, implemented into a standalone code, produces effective nuclear scattering data that are then supplied directly into the DRAGON lattice physics code where the effects on Doppler Reactivity and neutron flux are demonstrated. The correct accounting for the crystal lattice effects influences the estimated values for the probability of neutron absorption and scattering, which in turn affect the estimation of core reactivity and burnup characteristics. The results show an increase in values of Doppler temperature feedback coefficients up to -10% for UOX and MOX LWR fuels compared to the corresponding values derived using the traditional asymptotic elastic scattering kernel. This paper also summarizes the results done on this topic to date.
de Jong, Martijn G; Pieters, Rik; Stremersch, Stefan
2012-09-01
Answers to sensitive questions are prone to social desirability bias. If not properly addressed, the validity of the research can be suspect. This article presents multigroup item randomized response theory (MIRRT) to measure self-reported sensitive topics across cultures. The method was specifically developed to reduce social desirability bias by making an a priori change in the design of the survey. The change involves the use of a randomization device (e.g., a die) that preserves participants' privacy at the item level. In cases where multiple items measure a higher level theoretical construct, the researcher could still make inferences at the individual level. The method can correct for under- and overreporting, even if both occur in a sample of individuals or across nations. We present and illustrate MIRRT in a nontechnical manner, provide WinBugs software code so that researchers can directly implement it, and present 2 cross-national studies in which it was applied. The first study compared nonstudent samples from 2 countries (total n = 927) on permissive sexual attitudes and risky sexual behavior and related these to individual-level characteristics such as the Big Five personality traits. The second study compared nonstudent samples from 17 countries (total n = 6,195) on risky sexual behavior and related these to individual-level characteristics, such as gender and age, and to country-level characteristics, such as sex ratio.
Westbrook, T'pring R; Harden, Brenda Jones
2010-07-01
The present study examined the impact of proximal (maternal depression, family structure) and distal (exposure to violence) risk factors on parenting characteristics (warmth, control), which were in turn hypothesized to affect child social-emotional functioning. Using the Family and Child Experiences Study (FACES) 2000 cohort, findings revealed that study variables were significant predictors of child social-emotional functioning. Despite limited significant pathways in the structural equation models, the cumulative effect of the variables resulted in models accounting for 21%-37% of the outcome. Multigroup analysis revealed that although the amount of variance explained varied, the model held across subgroups. Findings support theories such as the family stress model that suggest that family risk factors negatively influencing children's development through influencing parenting behaviors. Findings also support considering both warmth and control as key parenting dimensions. It may be impractical for practitioners to address the myriad of potential risks encountered by low-income families, but parents can be equipped with mental health services, parent education, and other assistance to help them maintain positive parenting practices in the face of challenges.
NAGAYA, YASANOBU
2008-02-29
Version 00 (1) Problems to be solved: MVP/GMVP II can solve eigenvalue and fixed-source problems. The multigroup code GMVP can solve forward and adjoint problems for neutron, photon and neutron-photon coupled transport. The continuous-energy code MVP can solve only the forward problems. Both codes can also perform time-dependent calculations. (2) Geometry description: MVP/GMVP employs combinatorial geometry to describe the calculation geometry. It describes spatial regions by the combination of the 3-dimensional objects (BODIes). Currently, the following objects (BODIes) can be used. - BODIes with linear surfaces : half space, parallelepiped, right parallelepiped, wedge, right hexagonal prism - BODIes with quadratic surface and linear surfaces : cylinder, sphere, truncated right cone, truncated elliptic cone, ellipsoid by rotation, general ellipsoid - Arbitrary quadratic surface and torus The rectangular and hexagonal lattice geometry can be used to describe the repeated geometry. Furthermore, the statistical geometry model is available to treat coated fuel particles or pebbles for high temperature reactors. (3) Particle sources: The various forms of energy-, angle-, space- and time-dependent distribution functions can be specified. See Abstract for more detail.
NASA Astrophysics Data System (ADS)
Roberts, Luke F.; Ott, Christian D.; Haas, Roland; O'Connor, Evan P.; Diener, Peter; Schnetter, Erik
2016-11-01
We report on a set of long-term general-relativistic three-dimensional (3D) multi-group (energy-dependent) neutrino radiation-hydrodynamics simulations of core-collapse supernovae. We employ a full 3D two-moment scheme with the local M1 closure, three neutrino species, and 12 energy groups per species. With this, we follow the post-core-bounce evolution of the core of a nonrotating 27 - {M}⊙ progenitor in full unconstrained 3D and in octant symmetry for ≳380 ms. We find the development of an asymmetric runaway explosion in our unconstrained simulation. We test the resolution dependence of our results and, in agreement with previous work, find that low resolution artificially aids explosion and leads to an earlier runaway expansion of the shock. At low resolution, the octant and full 3D dynamics are qualitatively very similar, but at high resolution, only the full 3D simulation exhibits the onset of explosion.
VELM61 and VELM22: Multigroup cross-section libraries for sodium-cooled reactor shield analysis
Fu, C.Y.; Ingersoll, D.T.
1987-04-01
Two coupled neutron and photon multigroup cross-section libraries, derived from ENDF/B-V nuclear data, are described. The energy group structures, 61n/23..gamma.. and 22n/10..gamma.., are subsets of the Vitamin-E 174n/38..gamma.. group structure, and are tailored to the iron and sodium resonances, windows, and capture gamma-ray spectra. Each of the two libraries are available in two formats, the AMPX master format and the ANISN format. Cross sections for all materials in the Vitamin-E library were collapsed using a standard energy weighting function, and in addition, several cross-section sets for each of the major constituents of commercial grade sodium, stainless steel (types 304 and 316), and carbon steel were derived using several problem-dependent weighting functions for averaging the fine groups. Effects of various group structures and weighting functions on the accuracy of the broad group libraries are studied by ANISN analysis of a typical sodium-iron shield configuration.
Roginskaya, Marina; Bernhard, William A; Razskazovskiy, Yuriy
2004-02-19
In this study we report analytical solutions for both time-dependent and steady-state problems of unbiased charge transfer through a regular DNA sequence via a hopping mechanism. The phenomenon is treated as a diffusion of charge in a one-dimensional array of equally spaced and energetically equivalent temporary trapping sites. The solutions take into account the rates of charge hopping (k), side reactions (k(r)), and charge transfer to a terminal charge acceptor (k(t)). A detailed analysis of the time-dependent problem is performed for the diffusion-controlled regime, i.e., under the assumption that k(t) > k, which is also equivalent to the fast relaxation limit of charge trapping. The analysis shows that the kinetics of charge hopping through DNA is always multiexponential, but under certain circumstances it can be asymptotically approximated by a single-exponential term. In that case, the efficiency of charge transfer can be characterized by a single rate constant k(CT) = 1.23kN(-2) + k(r), where N is the DNA length expressed in terms of the number of equidistant trapping sites and k(r) is the rate of competing chemical processes. The absolute yield of charge transfer under steady-state conditions in general is obtained as Y(infinity) = omega [alpha sinh(alphaN) + omega cosh(alphaN)](-1), where alpha = (2k(r)/k)(1/2) and omega = 2k(t)/k. For the diffusion-controlled regime and small N, in particular, it turns into the known "algebraic" dependence Y(infinity) = [1 + (k(r)/k)N(2)](-1). At large N the solution is asymptotically exponential with the parameter alpha mimicking the tunneling parameter beta in agreement with earlier predictions. Similar equations and distance dependencies have also been obtained for the damage ratios at the intermediate and terminal trapping sites in DNA. The nonlinear least-squares fit of one of these equations to experimental yields of guanine oxidation available from the literature returns kinetic parameters that are in reasonable
NASA Astrophysics Data System (ADS)
Camera, S.; Fornasa, M.; Fornengo, N.; Regis, M.
2015-06-01
We recently proposed to cross-correlate the diffuse extragalactic γ-ray background with the gravitational lensing signal of cosmic shear. This represents a novel and promising strategy to search for annihilating or decaying particle dark matter (DM) candidates. In the present work, we demonstrate the potential of a tomographic-spectral approach: measuring the cross-correlation in separate bins of redshift and energy significantly improves the sensitivity to a DM signal. Indeed, the technique proposed here takes advantage of the different scaling of the astrophysical and DM components with redshift and, simultaneously of their different energy spectra and different angular extensions. The sensitivity to a particle DM signal is extremely promising even when the DM-induced emission is quite faint. We first quantify the prospects of detecting DM by cross-correlating the Fermi Large Area Telescope (LAT) diffuse γ-ray background with the cosmic shear expected from the Dark Energy Survey. Under the hypothesis of a significant subhalo boost, such a measurement can deliver a 5σ detection of DM, if the DM particle is lighter than 300 GeV and has a thermal annihilation rate. We then forecast the capability of the European Space Agency Euclid satellite (whose launch is planned for 2020), in combination with an hypothetical future γ-ray detector with slightly improved specifications compared to current telescopes. We predict that the cross-correlation of their data will allow a measurement of the DM mass with an uncertainty of a factor of 1.5-2, even for moderate subhalo boosts, for DM masses up to few hundreds of GeV and thermal annihilation rates.
Camera, S.; Fornasa, M.; Fornengo, N.; Regis, M. E-mail: fornasam@gmail.com E-mail: regis@to.infn.it
2015-06-01
We recently proposed to cross-correlate the diffuse extragalactic γ-ray background with the gravitational lensing signal of cosmic shear. This represents a novel and promising strategy to search for annihilating or decaying particle dark matter (DM) candidates. In the present work, we demonstrate the potential of a tomographic-spectral approach: measuring the cross-correlation in separate bins of redshift and energy significantly improves the sensitivity to a DM signal. Indeed, the technique proposed here takes advantage of the different scaling of the astrophysical and DM components with redshift and, simultaneously of their different energy spectra and different angular extensions. The sensitivity to a particle DM signal is extremely promising even when the DM-induced emission is quite faint. We first quantify the prospects of detecting DM by cross-correlating the Fermi Large Area Telescope (LAT) diffuse γ-ray background with the cosmic shear expected from the Dark Energy Survey. Under the hypothesis of a significant subhalo boost, such a measurement can deliver a 5σ detection of DM, if the DM particle is lighter than 300 GeV and has a thermal annihilation rate. We then forecast the capability of the European Space Agency Euclid satellite (whose launch is planned for 2020), in combination with an hypothetical future γ-ray detector with slightly improved specifications compared to current telescopes. We predict that the cross-correlation of their data will allow a measurement of the DM mass with an uncertainty of a factor of 1.5–2, even for moderate subhalo boosts, for DM masses up to few hundreds of GeV and thermal annihilation rates.
Putranto, Aditya; Chen, Xiao Dong
2017-02-01
During composting, self-heating may occur due to the exothermicities of the chemical and biological reactions. An accurate model for predicting maximum temperature is useful in predicting whether the phenomena would occur and to what extent it would have undergone. Elevated temperatures would lead to undesirable situations such as the release of large amount of toxic gases or sometimes would even lead to spontaneous combustion. In this paper, we report a new model for predicting the profiles of temperature, concentration of oxygen, moisture content and concentration of water vapor during composting. The model, which consists of a set of equations of conservation of heat and mass transfer as well as biological heating term, employs the reaction engineering approach (REA) framework to describe the local evaporation/condensation rate quantitatively. A good agreement between the predicted and experimental data of temperature during composting of sewage sludge is observed. The modeling indicates that the maximum temperature is achieved after some 46weeks of composting. Following this period, the temperature decreases in line with a significant decrease in moisture content and a tremendous increase in concentration of water vapor, indicating the massive cooling effect due to water evaporation. The spatial profiles indicate that the maximum temperature is approximately located at the middle-bottom of the compost piles. Towards the upper surface of the piles, the moisture content and concentration of water vapor decreases due to the moisture transfer to the surrounding. The newly proposed model can be used as reliable simulation tool to explore several geometry configurations and operating conditions for avoiding elevated temperature build-up and self-heating during industrial composting.
NASA Astrophysics Data System (ADS)
Farago, J.; Meyer, H.; Baschnagel, J.; Semenov, A. N.
2012-05-01
A mode-coupling theory (MCT) version (called hMCT thereafter) of a recently presented theory [Farago, Meyer, and Semenov, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.178301 107, 178301 (2011)] is developed to describe the diffusional properties of a tagged polymer in a melt. The hMCT accounts for the effect of viscoelastic hydrodynamic interactions (VHIs), that is, a physical mechanism distinct from the density-based MCT (dMCT) described in the first paper of this series. The two versions of the MCT yield two different contributions to the asymptotic behavior of the center-of-mass velocity autocorrelation function (c.m. VAF). We show that in most cases the VHI mechanism is dominant; for long chains and prediffusive times it yields a negative tail ∝-N-1/2t-3/2 for the c.m. VAF. The case of non-momentum-conserving dynamics (Langevin or Monte Carlo) is discussed as well. It generally displays a distinctive behavior with two successive relaxation stages: first -N-1t-5/4 (as in the dMCT approach), then -N-1/2t-3/2. Both the amplitude and the duration of the first t-5/4 stage crucially depend on the Langevin friction parameter γ. All results are also relevant for the early time regime of entangled melts. These slow relaxations of the c.m. VAF, thus account for the anomalous subdiffusive regime of the c.m. mean square displacement widely observed in numerical and experimental works.
NASA Astrophysics Data System (ADS)
Witherden, F. D.; Farrington, A. M.; Vincent, P. E.
2014-11-01
High-order numerical methods for unstructured grids combine the superior accuracy of high-order spectral or finite difference methods with the geometric flexibility of low-order finite volume or finite element schemes. The Flux Reconstruction (FR) approach unifies various high-order schemes for unstructured grids within a single framework. Additionally, the FR approach exhibits a significant degree of element locality, and is thus able to run efficiently on modern streaming architectures, such as Graphical Processing Units (GPUs). The aforementioned properties of FR mean it offers a promising route to performing affordable, and hence industrially relevant, scale-resolving simulations of hitherto intractable unsteady flows within the vicinity of real-world engineering geometries. In this paper we present PyFR, an open-source Python based framework for solving advection-diffusion type problems on streaming architectures using the FR approach. The framework is designed to solve a range of governing systems on mixed unstructured grids containing various element types. It is also designed to target a range of hardware platforms via use of an in-built domain specific language based on the Mako templating engine. The current release of PyFR is able to solve the compressible Euler and Navier-Stokes equations on grids of quadrilateral and triangular elements in two dimensions, and hexahedral elements in three dimensions, targeting clusters of CPUs, and NVIDIA GPUs. Results are presented for various benchmark flow problems, single-node performance is discussed, and scalability of the code is demonstrated on up to 104 NVIDIA M2090 GPUs. The software is freely available under a 3-Clause New Style BSD license (see www.pyfr.org). Catalogue identifier: AETY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETY_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: New style BSD license No. of lines in
Reboredo, Fernando A.; Kim, Jeongnim
2014-02-21
A statistical method is derived for the calculation of thermodynamic properties of many-body systems at low temperatures. This method is based on the self-healing diffusion Monte Carlo method for complex functions [F. A. Reboredo, J. Chem. Phys. 136, 204101 (2012)] and some ideas of the correlation function Monte Carlo approach [D. M. Ceperley and B. Bernu, J. Chem. Phys. 89, 6316 (1988)]. In order to allow the evolution in imaginary time to describe the density matrix, we remove the fixed-node restriction using complex antisymmetric guiding wave functions. In the process we obtain a parallel algorithm that optimizes a small subspace of the many-body Hilbert space to provide maximum overlap with the subspace spanned by the lowest-energy eigenstates of a many-body Hamiltonian. We show in a model system that the partition function is progressively maximized within this subspace. We show that the subspace spanned by the small basis systematically converges towards the subspace spanned by the lowest energy eigenstates. Possible applications of this method for calculating the thermodynamic properties of many-body systems near the ground state are discussed. The resulting basis can also be used to accelerate the calculation of the ground or excited states with quantum Monte Carlo.
Kim, Jeongnim; Reboredo, Fernando A
2014-01-01
The self-healing diffusion Monte Carlo method for complex functions [F. A. Reboredo J. Chem. Phys. {\\bf 136}, 204101 (2012)] and some ideas of the correlation function Monte Carlo approach [D. M. Ceperley and B. Bernu, J. Chem. Phys. {\\bf 89}, 6316 (1988)] are blended to obtain a method for the calculation of thermodynamic properties of many-body systems at low temperatures. In order to allow the evolution in imaginary time to describe the density matrix, we remove the fixed-node restriction using complex antisymmetric trial wave functions. A statistical method is derived for the calculation of finite temperature properties of many-body systems near the ground state. In the process we also obtain a parallel algorithm that optimizes the many-body basis of a small subspace of the many-body Hilbert space. This small subspace is optimized to have maximum overlap with the one expanded by the lower energy eigenstates of a many-body Hamiltonian. We show in a model system that the Helmholtz free energy is minimized within this subspace as the iteration number increases. We show that the subspace expanded by the small basis systematically converges towards the subspace expanded by the lowest energy eigenstates. Possible applications of this method to calculate the thermodynamic properties of many-body systems near the ground state are discussed. The resulting basis can be also used to accelerate the calculation of the ground or excited states with Quantum Monte Carlo.
Lu, Shih-I
2005-05-15
Ab initio calculations of transition state structure and reaction enthalpy of the F + H2-->HF + H reaction has been carried out by the fixed-node diffusion quantum Monte Carlo method in this study. The Monte Carlo sampling is based on the Ornstein-Uhlenbeck random walks guided by a trial wave function constructed from the floating spherical Gaussian orbitals and spherical Gaussian geminals. The Monte Carlo calculated barrier height of 1.09(16) kcal/mol is consistent with the experimental values, 0.86(10)/1.18(10) kcal/mol, and the calculated value from the multireference-type coupled-cluster (MRCC) calculation with the aug-cc-pVQZ(F)/cc-pVQZ(H) basis set, 1.11 kcal/mol. The Monte Carlo-based calculation also gives a similar value of the reaction enthalpy, -32.00(4) kcal/mol, compared with the experimental value, -32.06(17) kcal/mol, and the calculated value from a MRCC/aug-cc-pVQZ(F)/cc-pVQZ(H) calculation, -31.94 kcal/mol. This study clearly indicates a further application of the random-walk-based approach in the field of quantum chemical calculation.
Helium diffusion in carbonates
NASA Astrophysics Data System (ADS)
Amidon, W. H.; Cherniak, D. J.; Watson, E. B.; Hobbs, D.
2013-12-01
The abundance and large grain size of carbonate minerals make them a potentially attractive target for 4He thermochronology and 3He cosmogenic dating, although the diffusive properties of helium in carbonates remain poorly understood. This work characterizes helium diffusion in calcite and dolomite to better understand the crystal-chemical factors controlling He transport and retentivity. Slabs of cleaved natural calcite and dolomite, and polished sections of calcite cut parallel or normal to c, were implanted with 3He at 3 MeV with a dose of 5x1015/cm2. Implanted carbonates were heated in 1-atm furnaces, and 3He distributions following diffusion anneals were profiled with Nuclear Reaction Analysis using the reaction 3He(d,p)4He. For 3He transport normal to cleavage surfaces in calcite, we obtain the following Arrhenius relation over the temperature range 78-300°C: Dcalcite = 9.0x10-9exp(-55 × 6 kJ mol-1/RT) m2sec-1. Diffusion in calcite exhibits marked anisotropy, with diffusion parallel to c about two orders of magnitude slower than diffusion normal to cleavage faces. He diffusivities for transport normal to the c-axis are similar in value to those normal to cleavage surfaces. Our findings are broadly consistent with helium diffusivities from step-heating measurements of calcite by Copeland et al. (2007); these bulk degassing data may reflect varying effects of diffusional anisotropy. Helium diffusion normal to cleavage surfaces in dolomite is significantly slower than diffusion in calcite, and has a much higher activation energy for diffusion. For dolomite, we obtain the following Arrhenius relation for He diffusion over the temperature range 150-400°C: Ddolomite = 9.0x10-8exp(-92 × 9 kJ mol-1/RT) m2sec-1. The role of crystallographic structure in influencing these differences among diffusivities was evaluated using the maximum aperture approach of Cherniak and Watson (2011), in which crystallographic structures are sectioned along possible diffusion
NASA Technical Reports Server (NTRS)
Nicolet, M. A.
1983-01-01
The choice of the metallic film for the contact to a semiconductor device is discussed. One way to try to stabilize a contact is by interposing a thin film of a material that has low diffusivity for the atoms in question. This thin film application is known as a diffusion barrier. Three types of barriers can be distinguished. The stuffed barrier derives its low atomic diffusivity to impurities that concentrate along the extended defects of a polycrystalline layer. Sacrificial barriers exploit the fact that some (elemental) thin films react in a laterally uniform and reproducible fashion. Sacrificial barriers have the advantage that the point of their failure is predictable. Passive barriers are those most closely approximating an ideal barrier. The most-studied case is that of sputtered TiN films. Stuffed barriers may be viewed as passive barriers whose low diffusivity material extends along the defects of the polycrystalline host.
NASA Technical Reports Server (NTRS)
1981-01-01
A diffuse celestial radiation which is isotropic at least on a course scale were measured from the soft X-ray region to about 150 MeV, at which energy the intensity falls below that of the galactic emission for most galactic latitudes. The spectral shape, the intensity, and the established degree of isotropy of this diffuse radiation already place severe constraints on the possible explanations for this radiation. Among the extragalactic theories, the more promising explanations of the isotropic diffuse emission appear to be radiation from exceptional galaxies from matter antimatter annihilation at the boundaries of superclusters of galaxies of matter and antimatter in baryon symmetric big bang models. Other possible sources for extragalactic diffuse gamma radiation are discussed and include normal galaxies, clusters of galaxies, primordial cosmic rays interacting with intergalactic matter, primordial black holes, and cosmic ray leakage from galaxies.
ERIC Educational Resources Information Center
Darr, Dietrich; Pretzsch, Jurgen
2008-01-01
Purpose: The objective of this paper is to assess the effectiveness of innovation diffusion under group-oriented and individual-oriented extension. Current theoretical notions of innovation diffusion in social networks shall be briefly reviewed, and the concepts of "search" and "innovation" vis-a-vis "transfer" and…
General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures
NASA Astrophysics Data System (ADS)
Liu, Yen; Panesi, Marco; Sahai, Amal; Vinokur, Marcel
2015-04-01
This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model's accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy
General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures.
Liu, Yen; Panesi, Marco; Sahai, Amal; Vinokur, Marcel
2015-04-07
This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model's accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy
General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures
Liu, Yen Vinokur, Marcel; Panesi, Marco; Sahai, Amal
2015-04-07
This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model’s accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy
Ford, W.E. III; Arwood, J.W.; Greene, N.M.; Moses, D.L.; Petrie, L.M.; Primm, R.T. III; Slater, C.O.; Westfall, R.M.; Wright, R.Q.
1990-09-01
Pseudo-problem-independent, multigroup cross-section libraries were generated to support Advanced Neutron Source (ANS) Reactor design studies. The ANS is a proposed reactor which would be fueled with highly enriched uranium and cooled with heavy water. The libraries, designated ANSL-V (Advanced Neutron Source Cross Section Libraries based on ENDF/B-V), are data bases in AMPX master format for subsequent generation of problem-dependent cross-sections for use with codes such as KENO, ANISN, XSDRNPM, VENTURE, DOT, DORT, TORT, and MORSE. Included in ANSL-V are 99-group and 39-group neutron, 39-neutron-group 44-gamma-ray-group secondary gamma-ray production (SGRP), 44-group gamma-ray interaction (GRI), and coupled, 39-neutron group 44-gamma-ray group (CNG) cross-section libraries. The neutron and SGRP libraries were generated primarily from ENDF/B-V data; the GRI library was generated from DLC-99/HUGO data, which is recognized as the ENDF/B-V photon interaction data. Modules from the AMPX and NJOY systems were used to process the multigroup data. Validity of selected data from the fine- and broad-group neutron libraries was satisfactorily tested in performance parameter calculations.
Diffusion methodology: time to innovate?
Meyer, Gary
2004-01-01
Over the past 60 years, thousands of diffusion studies have been conducted in numerous disciplines of study including sociology, education, communication, marketing, and pubic health. With few exceptions, these studies have been driven by a methodological approach that has become institutionalized in diffusion research. This approach is characterized by the collection of quantitative data about one innovation gathered from adopters at a single point in time after widespread diffusion has occurred. This dominant approach is examined here in terms of both its strengths and weaknesses and with regard to its contribution to the collective base of understanding the diffusion of innovations. Alternative methodological approaches are proposed and reviewed with consideration for the means by which they may expand the knowledge base.
NASA Astrophysics Data System (ADS)
Dion, Maxime
Since deterministic codes use a multigroup scheme, self-shielding calculations are required before one can carry out neutron transport calculations. These calculations are used to obtain multigroup cross sections where flux depressions at resonance energies are properly taken into account. For each system where a transport solution is required, self-shielding calculations must be carried out beforehand. Multigroup cross sections in the resonant energy range are therefore system-dependent quantities. This means that a variation on a reactor parameter, an isotopic density for example, will have an impact on the resonant self-shielded cross sections. It is therefore relevant to distinguish between two types of effects resulting from a variation on a given parameter. This parameter can explicitly appear in the transport equation (for example, an isotopic density explicitly appears through the macroscopic cross sections of the corresponding mixture) and perturb the multiplication factor keff (or any other quantity obtained from solving the transport equation). This is called an explicit effect. This parameter variation can also affect self-shielding calculations and perturb resonant multigroup cross sections, which can themselves cause a variation of keff. This is what we refer to as an implicit effect. In general, the keff perturbations resulting from the implicit effect have the opposite sign of those resulting from the explicit effect. When a variation on a parameter leads to a perturbation on another parameter, following a transport calculation for instance, we can compute sensitivity coefficients between those two parameters. In this thesis, we consider the self-shielded cross sections and keff sensitivity coefficients to isotopic densities. More precisely, we develop methods to compute the self-shielded cross sections sensitivity to densities arising from two different self-shielding models, an equivalent dilution model and a subgroup model. Once these
ERIC Educational Resources Information Center
Dou, Remy; Hogan, DaNel; Kossover, Mark; Spuck, Timothy; Young, Sarah
2013-01-01
Diffusion has often been taught in science courses as one of the primary ways by which molecules travel, particularly within organisms. For years, classroom teachers have used the same common demonstrations to illustrate this concept (e.g., placing drops of food coloring in a beaker of water). Most of the time, the main contributor to the motion…
ERIC Educational Resources Information Center
Foy, Barry G.
1977-01-01
Two demonstrations are described. Materials and instructions for demonstrating movement of molecules into cytoplasm using agar blocks, phenolphthalein, and sodium hydroxide are given. A simple method for demonstrating that the rate of diffusion of a gas is inversely proportional to its molecular weight is also presented. (AJ)
Taylor, Clive R
2009-12-01
The 2008 World Health Organization Classification of Tumors of the Haematopoietic and Lymphoid Tissues defines current standards of practice for the diagnosis and classification of malignant lymphomas and related entities. More than 50 different types of lymphomas are described. Faced with such a broad range of different lymphomas, some encountered only rarely, and a rapidly growing armamentarium of 80 or more pertinent immunohistochemical (IHC) "stains," the challenge to the pathologist is to use IHC in an efficient manner to arrive at an assured and timely diagnosis. This review uses deductive reasoning following a decision tree or dendrogram model, combining basic morphologic patterns and common IHC markers to classify node-based malignancies by the World Health Organization schema. The review is divided into 2 parts, the first addressing those lymphomas that produce a follicular or nodular pattern of lymph nodal involvement appeared in the previous issue of AIMM. The second part addresses diffuse proliferations in lymph nodes. Emphasis is given to the more common lymphomas and the more commonly available IHC "stains" for a pragmatic and practical approach that is both broadly feasible and cost-effective. By this method, an assured diagnosis may be reached in the majority of nodal lymphomas, at the same time developing a sufficiency of data to recognize those rare or atypical cases that require referral to a specialized center.
Apparent diffusion profile estimation from high angular resolution diffusion images
NASA Astrophysics Data System (ADS)
Descoteaux, Maxime; Angelino, Elaine; Fitzgibbons, Shaun; Deriche, Rachid
2006-03-01
High angular resolution diffusion imaging (HARDI) has recently been of great interest to characterize non-Gaussian diffusion process. In the white matter of the brain, this occurs when fiber bundles cross, kiss or diverge within the same voxel. One of the important goal is to better describe the apparent diffusion process in these multiple fiber regions, thus overcoming the limitations of classical diffusion tensor imaging (DTI). In this paper, we design the appropriate mathematical tools to describe noisy HARDI data. Using a meaningful modified spherical harmonics basis to capture the physical constraints of the problem, we propose a new regularization algorithm to estimate a smoother and closer diffusivity profile to the true diffusivities without noise. We exploit properties of the spherical harmonics to define a smoothing term based on the Laplace-Beltrami for functions defined on the unit sphere. An additional contribution of the paper is the derivation of the general transformation taking the spherical harmonics coefficients to the high order tensor independent elements. This allows the careful study of the state of the art high order anisotropy measures computed from either spherical harmonics or tensor coefficients. We analyze their ability to characterize the underlying diffusion process. We are able to recover voxels with isotropic, single fiber anisotropic and multiple fiber anisotropic diffusion. We test and validate the approach on diffusion profiles from synthetic data and from a biological rat phantom.
Anderson, Robert C.
1976-06-22
1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.
Benoist, P. ); Carta, M. ); Palmiotti, G. ); Salvatores, M. )
1989-11-01
A method to calculate the effectiveness of the control assembly in a fast neutron reactor is proposed. For each type of heterogeneous assembly (control or follower), a polar parameter, taking into account the assembly absorption and the axial leakage of neutrons inside the assembly, is defined. In a similar way, a bipolar parameter, taking into account the reaction of the assembly to a transverse flux gradient, is also defined. These two parameters, deduced from transport theory, are used to determine the absorption cross section and the diffusion coefficient of an equivalent homogeneous control or follower assembly. These new parameters are introduced in a one-group diffusion code, calculating the reactor as a whole with any number of control and follower assemblies. An approximate generalization to multigroup theory is proposed. Numerical comparisons show that this equivalent diffusion method gives results that are much closer to transport results than those obtained by the classical diffusion theory.
Allingham, Michael J.; Mukherjee, Dibyendu; Lally, Erin B.; Rabbani, Hossein; Mettu, Priyatham S.; Cousins, Scott W.; Farsiu, Sina
2017-01-01
Purpose We use semiautomated segmentation of fluorescein angiography (FA) to determine whether anti-vascular endothelial growth factor (VEGF) treatment for diabetic macular edema (DME) differentially affects microaneurysm (MA)–associated leakage, termed focal leakage, versus non-MA–associated leakage, termed diffuse leakage. Methods We performed a retrospective study of 29 subjects treated with at least three consecutive injections of anti-VEGF agents for DME (mean 4.6 injections; range, 3–10) who underwent Heidelberg FA before and after anti-VEGF therapy. Inclusion criteria were macula center involving DME and at least 3 consecutive anti-VEGF injections. Exclusion criteria were macular edema due to cause besides DME, anti-VEGF within 3 months of initial FA, concurrent treatment for DME besides anti-VEGF, and macular photocoagulation within 1 year. At each time point, total leakage was semiautomatically segmented using a modified version of our previously published software. Microaneurysms were identified by an expert grader and leakage within a 117 μm radius of each MA was classified as focal leakage. Remaining leakage was classified as diffuse leakage. The absolute and percent changes in total, diffuse, and focal leakage were calculated for each subject. Results Mean pretreatment total leakage was 8.2 mm2 and decreased by a mean of 40.1% (P < 0.0001; 95% confidence interval [CI], [−28.6, −52.5]) following treatment. Diffuse leakage decreased by a mean of 45.5% (P < 0.0001; 95% CI, [−31.3, −59.6]) while focal leakage decreased by 17.9% (P = 0.02; 95% CI, [−1.0, −34.8]). The difference in treatment response between focal and diffuse leakage was statistically significant (P = 0.01). Conclusions Anti-VEGF treatment for DME results in decreased diffuse leakage but had relatively little effect on focal leakage as assessed by FA. This suggests that diffuse leakage may be a marker of VEGF-mediated pathobiology. Patients with predominantly focal leakage
Self-diffusion in liquid interfaces.
Herth, Simone; Ye, Feng; Eggersmann, Martin; Gutfleisch, Oliver; Würschum, Roland
2004-03-05
For studying self-diffusion in liquid interfaces, 59Fe tracer diffusion was measured on ultrafine-grained Nd2Fe14B which undergoes an intergranular melting transition for low Nd excess. The diffusion coefficient in the intergranular liquid layers is found to be lower than in bulk melts indicating a hampered atomic mobility due to confinement. Well above the intergranular melting transition, the diffusivity in the liquid interfaces approaches a value characteristic for bulk melts.
Extended source model for diffusive coupling.
González-Ochoa, Héctor O; Flores-Moreno, Roberto; Reyes, Luz M; Femat, Ricardo
2016-01-01
Motivated by the prevailing approach to diffusion coupling phenomena which considers point-like diffusing sources, we derived an analogous expression for the concentration rate of change of diffusively coupled extended containers. The proposed equation, together with expressions based on solutions to the diffusion equation, is intended to be applied to the numerical solution of systems exclusively composed of ordinary differential equations, however is able to account for effects due the finite size of the coupled sources.
Optimal Network Modularity for Information Diffusion
NASA Astrophysics Data System (ADS)
Nematzadeh, Azadeh; Ferrara, Emilio; Flammini, Alessandro; Ahn, Yong-Yeol
2014-08-01
We investigate the impact of community structure on information diffusion with the linear threshold model. Our results demonstrate that modular structure may have counterintuitive effects on information diffusion when social reinforcement is present. We show that strong communities can facilitate global diffusion by enhancing local, intracommunity spreading. Using both analytic approaches and numerical simulations, we demonstrate the existence of an optimal network modularity, where global diffusion requires the minimal number of early adopters.
NASA Astrophysics Data System (ADS)
Mullin, William
2014-05-01
Transverse spin diffusion is a relatively new transport coefficient and a review of its history and physical basis will be presented. In NMR spin diffusion is often measured by spin echo techniques, which involve spin currents perpendicular to the direction of the magnetization, in contrast with the usual longitudinal case where the current is parallel to the magnetization. The first indication that this involved new physics was the Leggett-Rice effect (1970) in which spin waves, new spin-echo behavior, and an altered spin diffusion coefficient were predicted in liquid 3He. This effect gave the possibility of the first measurement of F1a, the parameter of the Landau Fermi-liquid theory mean-field responsible for the effect. In 1982 Lhuillier and Laloe found a transport equation very similar to the Leggett equation, but valid for highly-polarized dilute Boltzmann Bose and Fermi gases, and describing the ``identical spin rotation effect'' (ISRE), the analog of a Landau mean field. Coincidentally Bashkin and Meyerovich had also given equivalent descriptions of transport in polarized Boltzmann gases. That a mean-field effect could exists in dilute Boltzmann gases was theoretically surprising, but was confirmed experimentally. At low polarization the basic transverse diffusion constant D⊥ coincides with the longitudinal value D∥ however Meyerovich first pointed out that they could differ in highly polarized degenerate gases. Indeed detailed calculations (Jeon and Mullin) showed that, while D∥ is proportional to T-2, D⊥ approaches a constant (depending on polarization) at low T. Considerable controversy existed until experimental verification was achieved in 2004. The importance of ISRE again arose in 2008 as the basis of ``anomalous spin-state segregation'' in Duke and JILA experiments. More recently application of the ideas of transverse spin diffusion to strongly interacting Fermi gases has resulted in the observation of the diffusion constants at the quantum
Kramers turnover: From energy diffusion to spatial diffusion using metadynamics
Tiwary, Pratyush; Berne, B. J.
2016-01-01
We consider the rate of transition for a particle between two metastable states coupled to a thermal environment for various magnitudes of the coupling strength using the recently proposed infrequent metadynamics approach [P. Tiwary and M. Parrinello, Phys. Rev. Lett. 111, 230602 (2013)]. We are interested in understanding how this approach for obtaining rate constants performs as the dynamics regime changes from energy diffusion to spatial diffusion. Reassuringly, we find that the approach works remarkably well for various coupling strengths in the strong coupling regime, and to some extent even in the weak coupling regime. PMID:27059558
Peigney, B. E.; Larroche, O.
2014-12-15
In this article, we study the hydrodynamics and burn of the thermonuclear fuel in inertial confinement fusion pellets at the ion kinetic level. The analysis is based on a two-velocity-scale Vlasov-Fokker-Planck kinetic model that is specially tailored to treat fusion products (suprathermal α-particles) in a self-consistent manner with the thermal bulk. The model assumes spherical symmetry in configuration space and axial symmetry in velocity space around the mean flow velocity. A typical hot-spot ignition design is considered. Compared with fluid simulations where a multi-group diffusion scheme is applied to model α transport, the full ion-kinetic approach reveals significant non-local effects on the transport of energetic α-particles. This has a direct impact on hydrodynamic spatial profiles during combustion: the hot spot reactivity is reduced, while the inner dense fuel layers are pre-heated by the escaping α-suprathermal particles, which are transported farther out of the hot spot. We show how the kinetic transport enhancement of fusion products leads to a significant reduction of the fusion yield.
Mekkaoui, Choukri; Reese, Timothy G.; Jackowski, Marcel P.; Bhat, Himanshu
2015-01-01
Diffusion MRI provides unique information on the structure, organization, and integrity of the myocardium without the need for exogenous contrast agents. Diffusion MRI in the heart, however, has proven technically challenging because of the intrinsic non‐rigid deformation during the cardiac cycle, displacement of the myocardium due to respiratory motion, signal inhomogeneity within the thorax, and short transverse relaxation times. Recently developed accelerated diffusion‐weighted MR acquisition sequences combined with advanced post‐processing techniques have improved the accuracy and efficiency of diffusion MRI in the myocardium. In this review, we describe the solutions and approaches that have been developed to enable diffusion MRI of the heart in vivo, including a dual‐gated stimulated echo approach, a velocity‐ (M 1) or an acceleration‐ (M 2) compensated pulsed gradient spin echo approach, and the use of principal component analysis filtering. The structure of the myocardium and the application of these techniques in ischemic heart disease are also briefly reviewed. The advent of clinical MR systems with stronger gradients will likely facilitate the translation of cardiac diffusion MRI into clinical use. The addition of diffusion MRI to the well‐established set of cardiovascular imaging techniques should lead to new and complementary approaches for the diagnosis and evaluation of patients with heart disease. © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:26484848
Chakawa, Ayanda; Butler, Robert C; Shapiro, Steven K
2015-10-01
The purpose of this study was to examine the psychometric properties of the Multigroup Ethnic Identity Measure-Revised (MEIM-R), focusing on a sample drawn from a geographic region in the United States that has not been included in previously published research on the MEIM-R. Data were obtained from a community-based sample of 105 African American (AA) and 91 European American (EA) adults located in the state of Alabama. The MEIM-R was best represented by two constructs-exploration and commitment. AA adults reported higher levels of racial/ethnic identity exploration and commitment than EA adults. Differential item functioning was found among 1 of the exploration items. The current study provides additional support for the structural validity of the MEIM-R. Further research on the invariance of responses to the MEIM-R across a variety of sociodemographic factors is still necessary.
Stieger, Stefan; Kandler, Christian; Tran, Ulrich S; Pietschnig, Jakob; Voracek, Martin
2017-03-01
In today's world, researchers frequently utilize indirect measures of implicit (i.e., automatic, spontaneous) evaluations. The results of several studies have supported the usefulness of these measures in predicting behavior, as compared to utilizing direct measures of explicit (i.e., purposeful, deliberate) evaluations. A current, under-debate issue concerns the origin of these implicit evaluations. The present genetically sensitive multi-group study analyzed data from 223 twin pairs and 222 biological core families to estimate possible genetic and environmental sources of individual differences in implicit and explicit self-esteem and affect. The results show that implicit self-esteem and affect maintain a substantial genetic basis, but demonstrate little influence from the shared environment by siblings (e.g., shared familial socialization in childhood). A bivariate analysis found that implicit and explicit evaluations of the same construct share a common genetic core which aligns with the motivation and opportunity as determinants (MODE) model.
Levenson, L.
1963-09-01
A high-vacuum diffusion pump is described, featuring a novel housing geometry for enhancing pumping speed. An upright, cylindrical lower housing portion is surmounted by a concentric, upright, cylindrical upper housing portion of substantially larger diameter; an uppermost nozzle, disposed concentrically within the upper portion, is adapted to eject downwardly a conical sheet of liquid outwardly to impinge upon the uppermost extremity of the interior wall of the lower portion. Preferably this nozzle is mounted upon a pedestal rising coaxially from within the lower portion and projecting up into said upper portion. (AEC)
Gifford, Kent A; Wareing, Todd A; Failla, Gregory; Horton, John L; Eifel, Patricia J; Mourtada, Firas
2009-12-03
A patient dose distribution was calculated by a 3D multi-group S N particle transport code for intracavitary brachytherapy of the cervix uteri and compared to previously published Monte Carlo results. A Cs-137 LDR intracavitary brachytherapy CT data set was chosen from our clinical database. MCNPX version 2.5.c, was used to calculate the dose distribution. A 3D multi-group S N particle transport code, Attila version 6.1.1 was used to simulate the same patient. Each patient applicator was built in SolidWorks, a mechanical design package, and then assembled with a coordinate transformation and rotation for the patient. The SolidWorks exported applicator geometry was imported into Attila for calculation. Dose matrices were overlaid on the patient CT data set. Dose volume histograms and point doses were compared. The MCNPX calculation required 14.8 hours, whereas the Attila calculation required 22.2 minutes on a 1.8 GHz AMD Opteron CPU. Agreement between Attila and MCNPX dose calculations at the ICRU 38 points was within +/- 3%. Calculated doses to the 2 cc and 5 cc volumes of highest dose differed by not more than +/- 1.1% between the two codes. Dose and DVH overlays agreed well qualitatively. Attila can calculate dose accurately and efficiently for this Cs-137 CT-based patient geometry. Our data showed that a three-group cross-section set is adequate for Cs-137 computations. Future work is aimed at implementing an optimized version of Attila for radiotherapy calculations.
Vlaskin, Vladimir A; Barrows, Charles J; Erickson, Christian S; Gamelin, Daniel R
2013-09-25
A diffusion-based synthesis of doped colloidal semiconductor nanocrystals is demonstrated. This approach involves thermodynamically controlled addition of both impurity cations and host anions to preformed seed nanocrystals under equilibrium conditions, rather than kinetically controlled doping during growth. This chemistry allows thermodynamic crystal compositions to be prepared without sacrificing other kinetically trapped properties such as shape, size, or crystallographic phase. This doping chemistry thus shares some similarities with cation-exchange reactions, but proceeds without the loss of host cations and excels at the introduction of relatively unreactive impurity ions that have not been previously accessible using cation exchange. Specifically, we demonstrate the preparation of Cd(1-x)Mn(x)Se (0 ≤ x ≤ ∼0.2) nanocrystals with narrow size distribution, unprecedentedly high Mn(2+) content, and very large magneto-optical effects by diffusion of Mn(2+) into seed CdSe nanocrystals grown by hot injection. Controlling the solution and lattice chemical potentials of Cd(2+) and Mn(2+) allows Mn(2+) diffusion into the internal volumes of the CdSe nanocrystals with negligible Ostwald ripening, while retaining the crystallographic phase (wurtzite or zinc blende), shape anisotropy, and ensemble size uniformity of the seed nanocrystals. Experimental results for diffusion doping of other nanocrystals with other cations are also presented that indicate this method may be generalized, providing access to a variety of new doped semiconductor nanostructures not previously attainable by kinetic routes or cation exchange.
Review of enhanced vapor diffusion in porous media
Webb, S.W.; Ho, C.K.
1998-08-01
Vapor diffusion in porous media in the presence of its own liquid has often been treated similar to gas diffusion. The gas diffusion rate in porous media is much lower than in free space due to the presence of the porous medium and any liquid present. However, enhanced vapor diffusion has also been postulated such that the diffusion rate may approach free-space values. Existing data and models for enhanced vapor diffusion, including those in TOUGH2, are reviewed in this paper.
Diffusion in jammed particle packs
NASA Astrophysics Data System (ADS)
Bolintineanu, Dan S.; Silbert, Leonardo E.; Grest, Gary S.; Lechman, Jeremy B.
2015-03-01
Diffusive transport in jammed particle packs is of interest for a number of applications, as well as being a potential indicator of structural properties near the jamming point. To this end, we report stochastic simulations of equilibrium diffusion through monodisperse sphere packs near the jamming point in the limit of a perfectly insulating surrounding medium. The time dependence of various diffusion properties is resolved over several orders of magnitude. Two time regimes of expected Fickian diffusion are observed, separated by an intermediate regime of anomalous diffusion. This intermediate regime grows as the particle volume fraction approaches the critical jamming transition. The diffusion behavior is fully controlled by the extent of the contacts between neighboring particles, which in turn depend on proximity to the jamming point. In particular, the mean first passage time associated with the escape of random walkers between neighboring particles is shown to control both the time to recover Fickian diffusion and the long time diffusivity. Scaling laws are established that relate these quantities to the difference between the actual and critical jamming volume fractions. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE- AC04-94AL85000.
Diffusion and scattering in multifractal clouds
Lovejoy, S.; Schertzer, D.; Waston, B.
1996-04-01
This paper describes investigations of radiative properties of multifractal clouds using two different approaches. In the first, diffusion is considered by examining the scaling properties of one dimensional random walks on media with multifractal diffusivities. The second approach considers the scattering statistics associated with radiative transport.
NASA Technical Reports Server (NTRS)
Karimi, Majid
1993-01-01
Understanding surface diffusion is essential in understanding surface phenomena, such as crystal growth, thin film growth, corrosion, physisorption, and chemisorption. Because of its importance, various experimental and theoretical efforts have been directed to understand this phenomena. The Field Ion Microscope (FIM) has been the major experimental tool for studying surface diffusion. FIM have been employed by various research groups to study surface diffusion of adatoms. Because of limitations of the FIM, such studies are only limited to a few surfaces: nickel, platinum, aluminum, iridium, tungsten, and rhodium. From the theoretical standpoint, various atomistic simulations are performed to study surface diffusion. In most of these calculations the Embedded Atom Method (EAM) along with the molecular static (MS) simulation are utilized. The EAM is a semi-empirical approach for modeling the interatomic interactions. The MS simulation is a technique for minimizing the total energy of a system of particles with respect to the positions of its particles. One of the objectives of this work is to develop the EAM functions for Cu and use them in conjunction with the molecular static (MS) simulation to study diffusion of a Cu atom on a perfect as well as stepped Cu(100) surfaces. This will provide a test of the validity of the EAM functions on Cu(100) surface and near the stepped environments. In particular, we construct a terrace-ledge-kink (TLK) model and calculate the migration energies of an atom on a terrace, near a ledge site, near a kink site, and going over a descending step. We have also calculated formation energies of an atom on the bare surface, a vacancy in the surface, a stepped surface, and a stepped-kink surface. Our results are compared with the available experimental and theoretical results.
Nonlocal electrical diffusion equation
NASA Astrophysics Data System (ADS)
Gómez-Aguilar, J. F.; Escobar-Jiménez, R. F.; Olivares-Peregrino, V. H.; Benavides-Cruz, M.; Calderón-Ramón, C.
2016-07-01
In this paper, we present an analysis and modeling of the electrical diffusion equation using the fractional calculus approach. This alternative representation for the current density is expressed in terms of the Caputo derivatives, the order for the space domain is 0<β≤1 and for the time domain is 0<γ≤2. We present solutions for the full fractional equation involving space and time fractional derivatives using numerical methods based on Fourier variable separation. The case with spatial fractional derivatives leads to Levy flight type phenomena, while the time fractional equation is related to sub- or super diffusion. We show that the mathematical concept of fractional derivatives can be useful to understand the behavior of semiconductors, the design of solar panels, electrochemical phenomena and the description of anomalous complex processes.
Takeda, M.; Hiratsuka, T.; Ito, K.; Finsterle, S.
2011-02-01
Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an
Estève, Williams; Lhuillier, Francine; Ravera, Christel; Grzebyck, Michel; Langlois, Eddy
2013-01-01
Exposure to organic vapors in the workplace is a source of occupational risk. Admissible exposure levels are tightly regulated and must be closely monitored. However, the complexity and slowness of the existing complete protocols to determine diffusive uptake rates through passive sampling have limited the use of this tool despite obvious advantages. In this study, we experimentally validate two simplified protocols to determine diffusive uptake rates with passive sampling. The proposed 2(6-3) and 2(6-2) fractional factorial designs were validated for toluene sampling using a (Gas Adsorbent Badge for Individual Exposure) GABIE-activated charcoal sampler in a controlled atmosphere. The uptake rate for this sampler had been determined previously using a full protocol. The uptake rates for all three protocols were similar, indicating that the proposed new designs can be substituted for classical full protocols. After validation of our protocols, uptake rates for new substances used as fuel additives (methyl and ethyl tert-butyl ethers, MTBE and ETBE) were determined on the same sampler using the 2(6-2) design. In these experiments, temperature appears to have a non-negligible influence on the uptake rates measured for these compounds. With some precautions of usage (ambient temperature below a determined limit temperature or at least exposure time ≥4 h) and storage (storage temperature = 4°C) of the sampler, the experimental diffusive uptake rates determined by this method can be used with good confidence. Field experiments confirmed the experimental results, showing good agreement between active and passive sampling using the experimentally determined uptake rates.
NASA Astrophysics Data System (ADS)
Schunert, Sebastian; Wang, Yaqi; Gleicher, Frederick; Ortensi, Javier; Baker, Benjamin; Laboure, Vincent; Wang, Congjian; DeHart, Mark; Martineau, Richard
2017-06-01
This work presents a flexible nonlinear diffusion acceleration (NDA) method that discretizes both the SN transport equation and the diffusion equation using the discontinuous finite element method (DFEM). The method is flexible in that the diffusion equation can be discretized on a coarser mesh with the only restriction that it is nested within the transport mesh and the FEM shape function orders of the two equations can be different. The consistency of the transport and diffusion solutions at convergence is defined by using a projection operator mapping the transport into the diffusion FEM space. The diffusion weak form is based on the modified incomplete interior penalty (MIP) diffusion DFEM discretization that is extended by volumetric drift, interior face, and boundary closure terms. In contrast to commonly used coarse mesh finite difference (CMFD) methods, the presented NDA method uses a full FEM discretized diffusion equation for acceleration. Suitable projection and prolongation operators arise naturally from the FEM framework. Via Fourier analysis and numerical experiments for a one-group, fixed source problem the following properties of the NDA method are established for structured quadrilateral meshes: (1) the presented method is unconditionally stable and effective in the presence of mild material heterogeneities if the same mesh and identical shape functions either of the bilinear or biquadratic type are used, (2) the NDA method remains unconditionally stable in the presence of strong heterogeneities, (3) the NDA method with bilinear elements extends the range of effectiveness and stability by a factor of two when compared to CMFD if a coarser diffusion mesh is selected. In addition, the method is tested for solving the C5G7 multigroup, eigenvalue problem using coarse and fine mesh acceleration. While NDA does not offer an advantage over CMFD for fine mesh acceleration, it reduces the iteration count required for convergence by almost a factor of two in
NASA Astrophysics Data System (ADS)
Borisov, Vladimir; Klepinina, Mariia; Veniaminov, Andrey; Angervaks, Aleksandr; Shcheulin, Aleksandr; Ryskin, Aleksandr
2016-04-01
Volume holographic gratings, both transmission and reflection-type, may be employed as one-dimensional pho- tonic crystals. More complex two- and three-dimensional holographic photonic-crystalline structures can be recorded using several properly organized beams. As compared to colloidal photonic crystals, their holographic counterparts let minimize distortions caused by multiple inner boundaries of the media. Unfortunately, it's still hard to analyze spectral response of holographic structures. This work presents the results of thick holographic gratings analysis based on spectral-angular selectivity contours approximation. The gratings were recorded in an additively colored fluorite crystal and a glassy polymer doped with phenanthrenequinone (PQ-PMMA). The two materials known as promising candidates for 3D diffraction optics including photonic crystals, employ diffusion-based mechanisms of grating formation. The surfaces of spectral-angular selectivity were obtained in a single scan using a white-light LED, rotable table and a matrix spectrometer. The data expressed as 3D plots make apparent visual estimation of the grating phase/amplitude nature, noninearity of recording, etc., and provide sufficient information for numerical analysis. The grating recorded in the crystal was found to be a mixed phase-amplitude one, with different contributions of refractive index and absorbance modulation at different wavelengths, and demonstrated three diffraction orders corresponding to its three spatial harmonics originating from intrinsically nonlinear diffusion-drift recording mechanism. Contrastingly, the grating in the polymeric medium appeared purely phase and linearly recorded.
Diffusion archeology for diffusion progression history reconstruction.
Sefer, Emre; Kingsford, Carl
2016-11-01
Diffusion through graphs can be used to model many real-world processes, such as the spread of diseases, social network memes, computer viruses, or water contaminants. Often, a real-world diffusion cannot be directly observed while it is occurring - perhaps it is not noticed until some time has passed, continuous monitoring is too costly, or privacy concerns limit data access. This leads to the need to reconstruct how the present state of the diffusion came to be from partial diffusion data. Here, we tackle the problem of reconstructing a diffusion history from one or more snapshots of the diffusion state. This ability can be invaluable to learn when certain computer nodes are infected or which people are the initial disease spreaders to control future diffusions. We formulate this problem over discrete-time SEIRS-type diffusion models in terms of maximum likelihood. We design methods that are based on submodularity and a novel prize-collecting dominating-set vertex cover (PCDSVC) relaxation that can identify likely diffusion steps with some provable performance guarantees. Our methods are the first to be able to reconstruct complete diffusion histories accurately in real and simulated situations. As a special case, they can also identify the initial spreaders better than the existing methods for that problem. Our results for both meme and contaminant diffusion show that the partial diffusion data problem can be overcome with proper modeling and methods, and that hidden temporal characteristics of diffusion can be predicted from limited data.
Parker, Jack C; Kim, Ungtae
2015-11-01
The mono-continuum advection-dispersion equation (mADE) is commonly regarded as unsuitable for application to media that exhibit rapid breakthrough and extended tailing associated with diffusion between high and low permeability regions. This paper demonstrates that the mADE can be successfully used to model such conditions if certain issues are addressed. First, since hydrodynamic dispersion, unlike molecular diffusion, cannot occur upstream of the contaminant source, models must be formulated to prevent "back-dispersion." Second, large variations in aquifer permeability will result in differences between volume-weighted average concentration (resident concentration) and flow-weighted average concentration (flux concentration). Water samples taken from wells may be regarded as flux concentrations, while soil samples may be analyzed to determine resident concentrations. While the mADE is usually derived in terms of resident concentration, it is known that a mADE of the same mathematical form may be written in terms of flux concentration. However, when solving the latter, the mathematical transformation of a flux boundary condition applied to the resident mADE becomes a concentration type boundary condition for the flux mADE. Initial conditions must also be consistent with the form of the mADE that is to be solved. Thus, careful attention must be given to the type of concentration data that is available, whether resident or flux concentrations are to be simulated, and to boundary and initial conditions. We present 3-D analytical solutions for resident and flux concentrations, discuss methods of solving numerical models to obtain resident and flux concentrations, and compare results for hypothetical problems. We also present an upscaling method for computing "effective" dispersivities and other mADE model parameters in terms of physically meaningful parameters in a diffusion-limited mobile-immobile model. Application of the latter to previously published studies of
Li, Jianghong; Weeks, Margaret R.; Borgatti, Stephen P.; Clair, Scott; Dickson-Gomez, Julia
2013-01-01
Project RAP (Risk Avoidance Partnership) trained 112 active drug users to become peer health advocates (PHAs). Six months after baseline survey (Nbl = 522), 91.6% of PHAs and 56.6% of community drug users adopted the RAP innovation of giving peer intervention, and 59.5% of all participants (N6m = 367) were exposed to RAP innovation. Sociometric network analysis shows that adoption of and exposure to RAP innovation was associated with proximity to a PHA or a highly active interventionist (HAI), being directly linked to multiple PHAs/HAIs, and being located in a network sector where multiple PHAs/HAIs were clustered. RAP innovation has diffused into the Hartford drug-using community. PMID:22428816
Perobelli, Sandra; Alessandrini, Franco; Zoccatelli, Giada; Nicolis, Elena; Beltramello, Alberto; Assael, Baroukh M; Cipolli, Marco
2015-01-01
Shwachman-Diamond syndrome is a rare recessive genetic disease caused by mutations in SBDS gene, at chromosome 7q11. Phenotypically, the syndrome is characterized by exocrine pancreatic insufficiency, bone marrow dysfunction, skeletal dysplasia and variable cognitive impairments. Structural brain abnormalities (smaller head circumference and decreased brain volume) have also been reported. No correlation studies between brain abnormalities and neuropsychological features have yet been performed. In this study we investigate neuroanatomical findings, neurofunctional pathways and cognitive functioning of Shwachman-Diamond syndrome subjects compared with healthy controls. To be eligible for inclusion, participants were required to have known SBDS mutations on both alleles, no history of cranial trauma or any standard contraindication to magnetic resonance imaging. Appropriate tests were used to assess cognitive functions. The static images were acquired on a 3 × 0 T magnetic resonance scanner and blood oxygen level-dependent functional magnetic resonance imaging data were collected both during the execution of the Stroop task and at rest. Diffusion tensor imaging was used to assess brain white matter. The Tract-based Spatial Statistics package and probabilistic tractography were used to characterize white matter pathways. Nine participants (5 males), half of all the subjects aged 9-19 years included in the Italian Shwachman-Diamond Syndrome Registry, were evaluated and compared with nine healthy subjects, matched for sex and age. The patients performed less well than norms and controls on cognitive tasks (p = 0.0002). Overall, cortical thickness was greater in the patients, both in the left (+10%) and in the right (+15%) hemisphere, significantly differently increased in the temporal (left and right, p = 0.04), and right parietal (p = 0.03) lobes and in Brodmann area 44 (p = 0.04) of the right frontal lobe. The greatest increases were observed in the left
Bertoncello, Paolo; Ciani, Ilenia; Li, Fei; Unwin, Patrick R
2006-12-05
The use of scanning electrochemical microscopy (SECM) to evaluate the apparent diffusion coefficient, Dapp, of redox-active species in ultrathin Nafion films is described. In this technique, an ultramicroelectrode (UME) tip, positioned close to a film on a macroscopic electrode, is used to oxidize (or reduce) a species in bulk solution, causing the tip-generated oxidant (reductant) to diffuse to the film/solution interface. The oxidation (reduction) of film-confined species regenerates the reductant (oxidant) in solution, leading to feedback to the UME. A numerical model is developed that allows Dapp to be determined. For these studies, ultrathin films of Nafion were prepared using the Langmuir-Schaefer (LS) technique and loaded with an electroactive species, either the ferrocene derivative ferrocenyltrimethylammonium cation, FA+, or tris(2,2'-bipyridyl)ruthenium(II), Ru(bpy)32+. The morphology and the thickness of the Nafion LS films (1.5 +/- 0.2 nm per layer deposited) were evaluated using atomic force microscopy (AFM). For comparison with the SECM measurements, cyclic voltammetry (CV) was employed to evaluate the concentration of electroactive species within the Nafion LS films and to determine Dapp. The latter was found to be essentially invariant with film thickness, but the value for Ru(bpy)32+ was 1 order of magnitude larger than for FA+. CV and SECM measurements yield different values of Dapp, and the underlying reasons are discussed. In general, the Dapp values for these films are considerably smaller than for recast Nafion films, which can be attributed to the compactness of Nafion LS films. Nonetheless, the ultrathin nature of the films leads to fast response times, and we thus expect that these modified electrodes could find applications in sensing, electroanalysis, and electrocatalysis.
NASA Astrophysics Data System (ADS)
Laginha Silva, Patricia; Martins, Flávio A.; Boski, Tomász; Sampath, Dissanayake M. R.
2010-05-01
Fluvial sediment transport creates great challenges for river scientists and engineers. The interaction between the fluid (water) and the solid (dispersed sediment particles) phases is crucial in morphodynamics. The process of sediment transport and the resulting morphological evolution of rivers get more complex with the exposure of the fluvial systems to the natural and variable environment (climatic, geological, ecological and social, etc.). The earlier efforts in mathematical river modelling were almost exclusively built on traditional fluvial hydraulics. The last half century has seen more and more developments and applications of mathematical models for fluvial flow, sediment transport and morphological evolution. The first attempts for a quantitative description and simulation of basin filling in geological time scales started in the late 60´s of the last century (eg. Schwarzacher, 1966; Briggs & Pollack, 1967). However, the quality of this modelling practice has emerged as a crucial issue for concern, which is widely viewed as the key that could unlock the full potential of computational fluvial hydraulics. Most of the models presently used to study fluvial basin filling are of the "diffusion type" (Flemmings and Jordan, 1989). It must be noted that this type of models do not assume that the sediment transport is performed by a physical diffusive process. Rather they are synthetic models based on mass conservation. In the "synthesist" viewpoint (Tipper, 1992; Goldenfeld & Kadanoff, 1999; Werner, 1999 in Paola, 2000) the dynamics of complex systems may occur on many levels (time or space scales) and the dynamics of higher levels may be more or less independent of that at lower levels. In this type of models the low frequency dynamics is controlled by only a few important processes and the high frequency processes are not included. In opposition to this is the "reductionist" viewpoint that states that there is no objective reason to discard high frequency
O'Dell, R.D.; Brinkley, F.W. Jr.; Marr, D.R.
1982-02-01
ONEDANT is designed for the CDC-7600, but the program has been implemented and run on the IBM-370/190 and CRAY-I computers. ONEDANT solves the one-dimensional multigroup transport equation in plane, cylindrical, spherical, and two-angle plane geometries. Both regular and adjoint, inhomogeneous and homogeneous (k/sub eff/ and eigenvalue search) problems subject to vacuum, reflective, periodic, white, albedo, or inhomogeneous boundary flux conditions are solved. General anisotropic scattering is allowed and anisotropic inhomogeneous sources are permitted. ONEDANT numerically solves the one-dimensional, multigroup form of the neutral-particle, steady-state form of the Boltzmann transport equation. The discrete-ordinates approximation is used for treating the angular variation of the particle distribution and the diamond-difference scheme is used for phase space discretization. Negative fluxes are eliminated by a local set-to-zero-and-correct algorithm. A standard inner (within-group) iteration, outer (energy-group-dependent source) iteration technique is used. Both inner and outer iterations are accelerated using the diffusion synthetic acceleration method. (WHK)
National Institute of Standards and Technology Data Gateway
NIST Diffusion Data Center (Web, free access) The NIST Diffusion Data Center is a collection of over 14,100 international papers, theses, and government reports on diffusion published before 1980.
Parallel flow diffusion battery
Yeh, Hsu-Chi; Cheng, Yung-Sung
1984-08-07
A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.
Parallel flow diffusion battery
Yeh, H.C.; Cheng, Y.S.
1984-01-01
A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.
ERIC Educational Resources Information Center
Ursavas, Omer Faruk; Reisoglu, Ilknur
2017-01-01
Purpose: The purpose of this paper is to explore the validity of extended technology acceptance model (TAM) in explaining pre-service teachers' Edmodo acceptance and the variation of variables related to TAM among pre-service teachers having different cognitive styles. Design/methodology/approach: Structural equation modeling approach was used to…
FRACTIONAL PEARSON DIFFUSIONS.
Leonenko, Nikolai N; Meerschaert, Mark M; Sikorskii, Alla
2013-07-15
Pearson diffusions are governed by diffusion equations with polynomial coefficients. Fractional Pearson diffusions are governed by the corresponding time-fractional diffusion equation. They are useful for modeling sub-diffusive phenomena, caused by particle sticking and trapping. This paper provides explicit strong solutions for fractional Pearson diffusions, using spectral methods. It also presents stochastic solutions, using a non-Markovian inverse stable time change.
Leonenko, Nikolai N.; Meerschaert, Mark M.
2013-01-01
Pearson diffusions are governed by diffusion equations with polynomial coefficients. Fractional Pearson diffusions are governed by the corresponding time-fractional diffusion equation. They are useful for modeling sub-diffusive phenomena, caused by particle sticking and trapping. This paper provides explicit strong solutions for fractional Pearson diffusions, using spectral methods. It also presents stochastic solutions, using a non-Markovian inverse stable time change. PMID:23626377
Revealing mesoscopic structural universality with diffusion.
Novikov, Dmitry S; Jensen, Jens H; Helpern, Joseph A; Fieremans, Els
2014-04-08
Measuring molecular diffusion is widely used for characterizing materials and living organisms noninvasively. This characterization relies on relations between macroscopic diffusion metrics and structure at the mesoscopic scale commensurate with the diffusion length. Establishing such relations remains a fundamental challenge, hindering progress in materials science, porous media, and biomedical imaging. Here we show that the dynamical exponent in the time dependence of the diffusion coefficient distinguishes between the universality classes of the mesoscopic structural complexity. Our approach enables the interpretation of diffusion measurements by objectively selecting and modeling the most relevant structural features. As an example, the specific values of the dynamical exponent allow us to identify the relevant mesoscopic structure affecting MRI-measured water diffusion in muscles and in brain, and to elucidate the structural changes behind the decrease of diffusion coefficient in ischemic stroke.
MODEL OF DIFFUSERS / PERMEATORS FOR HYDROGEN PROCESSING
Hang, T; William Jacobs, W
2007-08-27
Palladium-silver (Pd-Ag) diffusers are mainstays of hydrogen processing. Diffusers separate hydrogen from inert species such as nitrogen, argon or helium. The tubing becomes permeable to hydrogen when heated to more than 250 C and a differential pressure is created across the membrane. The hydrogen diffuses better at higher temperatures. Experimental or experiential results have been the basis for determining or predicting a diffuser's performance. However, the process can be mathematically modeled, and comparison to experimental or other operating data can be utilized to improve the fit of the model. A reliable model-based diffuser system design is the goal which will have impacts on tritium and hydrogen processing. A computer model has been developed to solve the differential equations for diffusion given the operating boundary conditions. The model was compared to operating data for a low pressure diffuser system. The modeling approach and the results are presented in this paper.
Diffusion Background Model for Moving Objects Detection
NASA Astrophysics Data System (ADS)
Vishnyakov, B. V.; Sidyakin, S. V.; Vizilter, Y. V.
2015-05-01
In this paper, we propose a new approach for moving objects detection in video surveillance systems. It is based on construction of the regression diffusion maps for the image sequence. This approach is completely different from the state of the art approaches. We show that the motion analysis method, based on diffusion maps, allows objects that move with different speed or even stop for a short while to be uniformly detected. We show that proposed model is comparable to the most popular modern background models. We also show several ways of speeding up diffusion maps algorithm itself.
2015-01-01
The scope of this study was to evaluate whether the adoption of e-learning in two universities, and in particular, the relationship between the perception of external control and perceived ease of use, is different because of gender differences. The study was carried out with participating students in two different universities, one in Chile and one in Spain. The Technology Acceptance Model was used as a theoretical framework for the study. A multi-group analysis method in partial least squares was employed to relate differences between groups. The four main conclusions of the study are: (1) a version of the Technology Acceptance Model has been successfully used to explain the process of adoption of e-learning at an undergraduate level of study; (2) the finding of a strong and significant relationship between perception of external control and perception of ease of use of the e-learning platform; (3) a significant relationship between perceived enjoyment and perceived ease of use and between results demonstrability and perceived usefulness is found; (4) the study indicates a few statistically significant differences between males and females when adopting an e-learning platform, according to the tested model. PMID:26465895
Ramírez-Correa, Patricio E; Arenas-Gaitán, Jorge; Rondán-Cataluña, F Javier
2015-01-01
The scope of this study was to evaluate whether the adoption of e-learning in two universities, and in particular, the relationship between the perception of external control and perceived ease of use, is different because of gender differences. The study was carried out with participating students in two different universities, one in Chile and one in Spain. The Technology Acceptance Model was used as a theoretical framework for the study. A multi-group analysis method in partial least squares was employed to relate differences between groups. The four main conclusions of the study are: (1) a version of the Technology Acceptance Model has been successfully used to explain the process of adoption of e-learning at an undergraduate level of study; (2) the finding of a strong and significant relationship between perception of external control and perception of ease of use of the e-learning platform; (3) a significant relationship between perceived enjoyment and perceived ease of use and between results demonstrability and perceived usefulness is found; (4) the study indicates a few statistically significant differences between males and females when adopting an e-learning platform, according to the tested model.
NASA Technical Reports Server (NTRS)
Brinberg, Herbert R.; Pinelli, Thomas E.
1993-01-01
This paper discusses the various approaches to measuring the value of information, first defining the meanings of information, economics of information, and value. It concludes that no general model of measuring the value of information is possible and that the usual approaches, such as cost/benefit equations, have very limited applications. It also concludes that in specific contexts with given goals for newly developed products and services or newly acquired information, there is a basis for its objective valuation. The axioms and inputs for such a model are described and directions for further verification and analysis are proposed.
NASA Technical Reports Server (NTRS)
Brinberg, Herbert R.; Pinelli, Thomas E.
1993-01-01
This paper discusses the various approaches to measuring the value of information, first defining the meanings of information, economics of information, and value. It concludes that no general model of measuring the value of information is possible and that the usual approaches, such as cost/benefit equations, have very limited applications. It also concludes that in specific contexts with given goals for newly developed products and services or newly acquired information there is a basis for its objective valuation. The axioms and inputs for such a model are described and directions for further verification and analysis are proposed.
Sheng, Nan; Cai, Wensheng; Shao, Xueguang
2009-07-15
Near-infrared spectroscopy (NIRS) has been proved to be a powerful analytical tool and used in various fields, it is seldom, however, used in the analysis of metal ions in solutions. A method for quantitative determination of metal ions in solution is developed by using resin adsorption and near-infrared diffuse reflectance spectroscopy (NIRDRS). The method makes use of the resin adsorption for gathering the analytes from a dilute solution, and then NIRDRS of the adsorbate is measured. Because both the information of the metal ions and their interaction with the functional group of resin can be reflected in the spectrum, quantitative determination is achieved by using multivariate calibration technique. Taking copper (Cu(2+)), cobalt (Co(2+)) and nickel (Ni(2+)) as the analyzing targets and D401 resin as the adsorbent, partial least squares (PLS) model is built from the NIRDRS of the adsorbates. The results show that the concentrations that can be quantitatively detected are as low as 1.00, 1.98 and 1.00 mg L(-1) for Cu(2+), Co(2+) and Ni(2+), respectively, and the coexistent ions do not influence the determination.
Kumar, Raj; Sharma, Vishal
2017-03-15
The present research is focused on the analysis of writing inks using destructive UV-Vis spectroscopy (dissolution of ink by the solvent) and non-destructive diffuse reflectance UV-Vis-NIR spectroscopy along with Chemometrics. Fifty seven samples of blue ballpoint pen inks were analyzed under optimum conditions to determine the differences in spectral features of inks among same and different manufacturers. Normalization was performed on the spectroscopic data before chemometric analysis. Principal Component Analysis (PCA) and K-mean cluster analysis were used on the data to ascertain whether the blue ballpoint pen inks could be differentiated by their UV-Vis/UV-Vis NIR spectra. The discriminating power is calculated by qualitative analysis by the visual comparison of the spectra (absorbance peaks), produced by the destructive and non-destructive methods. In the latter two methods, the pairwise comparison is made by incorporating the clustering method. It is found that chemometric method provides better discriminating power (98.72% and 99.46%, in destructive and non-destructive, respectively) in comparison to the qualitative analysis (69.67%).
NASA Astrophysics Data System (ADS)
Kumar, Raj; Sharma, Vishal
2017-03-01
The present research is focused on the analysis of writing inks using destructive UV-Vis spectroscopy (dissolution of ink by the solvent) and non-destructive diffuse reflectance UV-Vis-NIR spectroscopy along with Chemometrics. Fifty seven samples of blue ballpoint pen inks were analyzed under optimum conditions to determine the differences in spectral features of inks among same and different manufacturers. Normalization was performed on the spectroscopic data before chemometric analysis. Principal Component Analysis (PCA) and K-mean cluster analysis were used on the data to ascertain whether the blue ballpoint pen inks could be differentiated by their UV-Vis/UV-Vis NIR spectra. The discriminating power is calculated by qualitative analysis by the visual comparison of the spectra (absorbance peaks), produced by the destructive and non-destructive methods. In the latter two methods, the pairwise comparison is made by incorporating the clustering method. It is found that chemometric method provides better discriminating power (98.72% and 99.46%, in destructive and non-destructive, respectively) in comparison to the qualitative analysis (69.67%).
1993-01-13
and Insurance . 56:2 (une 1989) pp. 301-312. Wills, C.R. and C. Oldman. An Examina- tion of Cost/Benefit Approaches to the Evaluation of Library and...Specialist. John M. Houkes, Ed. (West Lafayette, IN: Purdue University, 1965.) Willinger, M. "Risk Aversion and the Value of Information." Iournal of Risk
Neoclassical diffusion in a turbulent plasma
Yushmanov, P. . Inst. Atomnoj Ehnergii Texas Univ., Austin, TX . Inst. for Fusion Studies)
1991-11-01
This work describes a new approach to plasma transport where the toroidal drift motion is considered as a perturbation to the fluctuating velocity. Percolation theory is used to determine the scaling of the diffusion coefficient. Several neoclassical phenomena should persist even when diffusion is enhanced from neoclassical predictions. Numerical simulation results support the theoretical scaling arguments.
Diffusion of Super-Gaussian Profiles
ERIC Educational Resources Information Center
Rosenberg, C.-J.; Anderson, D.; Desaix, M.; Johannisson, P.; Lisak, M.
2007-01-01
The present analysis describes an analytically simple and systematic approximation procedure for modelling the free diffusive spreading of initially super-Gaussian profiles. The approach is based on a self-similar ansatz for the evolution of the diffusion profile, and the parameter functions involved in the modelling are determined by suitable…
NASA Astrophysics Data System (ADS)
Raghib, Michael; Levin, Simon; Kevrekidis, Ioannis
2010-05-01
2. The long-time behavior of the msd of the centroid walk scales linearly with time for naïve groups (diffusion), but shows a sharp transition to quadratic scaling (advection) for informed ones. These observations suggest that the mesoscopic variables of interest are the magnitude of the drift, the diffusion coefficient and the time-scales at which the anomalous and the asymptotic behavior respectively dominate transport, the latter being linked to the time scale at which the group reaches a decision. In order to estimate these summary statistics from the msd, we assumed that the configuration centroid follows an uncoupled Continuous Time Random Walk (CTRW) with smooth jump and waiting time pdf's. The mesoscopic transport equation for this type of random walk corresponds to an Advection-Diffusion Equation with Memory (ADEM). The introduction of the memory, and thus non-Markovian effects, is necessary in order to correctly account for the two time scales present. Although we were not able to calculate the memory directly from the individual-level rules, we show that it can estimated from a single, relatively short, simulation run using a Mittag-Leffler function as template. With this function it is possible to predict accurately the behavior of the msd, as well as the full pdf for the position of the centroid. The resulting ADEM is self-consistent in the sense that transport parameters estimated from the memory via a Kubo relationship coincide with those estimated from the moments of the jump size pdf of the associated CTRW for a large number of group sizes, proportions of informed individuals, and degrees of bias along the preferred direction. We also discuss the phase diagrams for the transport coefficients estimated from this method, where we notice velocity-precision trade-offs, where precision is a measure of the deviation of realized group orientations with respect to the informed direction. We also note that the time scale to collective decision is invariant
Flux-limited neutrino diffusion in static stellar backgrounds
NASA Astrophysics Data System (ADS)
Cernohorsky, Jan
The numerical implementation of multigroup Levermore-Pomraning Flux Limited Neutrino Diffusion Theory (FNDT) is presented. The behavior of this transport scheme is investigated in five static stellar models. In the calculations the feedback of the neutrino flow on the stellar matter is neglected. The evolution of the neutrino energy distribution function is followed in time, starting from an initial Local Thermodynamic Equilibrium (LTE) distribution throughout the star, until a stationary non LTE solution is reached. Spectral and frequency integrated sources, luminosities and distributions are presented. The influence of electron degeneracy on the neutrino transport is highlighted. Energy deposition in regions of the stellar models relevant to the delayed explosion mechanism is rule rather than exception. Absorption of high energy neutrinos w greater than 20 MeV depletes the high energy end of the spectrum at densities ranging down to n(10 to the 9th power) g/cubic cm. In order to simulate spectra seen by an observer at infinity, it is necessary to extend the transport calculation to this density. Emergent neutrino energy distributions are typically nonthermal. Thermal fits can be made only on the high energy tail of the spectrum. The use of fitting parameters in the evaluation of bulk luminosities may overestimate these by factors of several.
Diffuse Gamma Rays Galactic and Extragalactic Diffuse Emission
NASA Technical Reports Server (NTRS)
Moskalenko, Igor V.; Strong, Andrew W.; Reimer, Olaf
2004-01-01
Diffuse gamma rays consist of several components: truly diffuse emission from the interstellar medium, the extragalactic background, whose origin is not firmly established yet, and the contribution from unresolved and faint Galactic point sources. One approach to unravel these components is to study the diffuse emission from the interstellar medium, which traces the interactions of high energy particles with interstellar gas and radiation fields. Because of its origin such emission is potentially able to reveal much about the sources and propagation of cosmic rays. The extragalactic background, if reliably determined, can be used in cosmological and blazar studies. Studying the derived average spectrum of faint Galactic sources may be able to give a clue to the nature of the emitting objects.
NASA Astrophysics Data System (ADS)
Reed, S. E.; Amundson, R.
2007-12-01
Mima mounds are nearly circular soil mounds, found in grassland landscapes. In California, Mima mounds are often associated with vernal pools, seasonal wetlands that harbor rare and endemic plants and animals. The processes that form and maintain the mound-pool complexes have not yet been conclusively identified, even though such information is necessary to understand the effects that land use and climate change may have on the resilience and longevity of these landscapes. One hypothesis for the origin and persistence of Mima mound- vernal pool systems (termed the Fossorial Rodent Hypothesis) proposes that burrowing organisms such as pocket gophers (Rodentia: Geomyidae) maintain and possibly create the mounds by preferentially translocating soils towards mound centers as an adaptive response to high water tables. In order to investigate this hypothesis, the topographic characteristics and aboveground gopher activity of one of the largest remaining Mima mound-vernal pool systems in California were studied. Detailed topographic information for the mound-pool systems was obtained via an airborne-based LIDAR (Light Detection and Ranging) survey of a 25km2 region near Merced, CA. An object-oriented classification scheme, which combined different scale, shape, and spectral parameters, was employed in order to characterize the mounds. Based on the initial classification results, roughly 275,000 mounds were identified, indicating a mound density of 11,000km-2. Within the larger study area, gopher sediment transport was monitored on a 3507m2 site by conducting periodic surveys of sediment mounds created by gopher activity using a Global Positioning System and mass measurements. Downslope erosion rates (off Mima mounds) were estimated using a mass balance model which incorporates a diffusive sediment transport law. The median calculated net downslope erosion rate was 15 cm of soil per 1000 years, while the measured rate of aboveground gopher sediment movement was
ERIC Educational Resources Information Center
Marsh, Herbert W.; Tracey, Danielle K.; Craven, Rhonda G.
2006-01-01
Confirmatory factor analysis of responses by 211 preadolescents (M age = 10.25 years,SD = 1.48) with mild intellectual disabilities (MIDs) to the individually administered Self Description Questionnaire I-Individual Administration (SDQI-IA) counters widely cited claims that these children cannot differentiate multiple self-concept factors. Results…
Fluid diffusion in porous silica
NASA Astrophysics Data System (ADS)
McCann, Lowell I.
, manufactured to create a narrow distribution of pore sizes in each sample, the normalized diffusion coefficient depends upon φ as D/Do~ (/phi - φc)1.5, as φ approaches a critical porosity φ c. Here, D o and D are the diffusion coefficients of the free fluid and the fluid within the porous sample, respectively. This result is compared with predictions of diffusion on a percolating cluster of identical pores as well as with continuum models based on networks with a distribution of pore sizes. While diffusion in these materials might be expected to behave according to a continuum model of porous networks based on the aggregation of spherical particles (the 'Swiss-cheese' model), the behavior seen agrees with the prediction for networks whose smallest bonds have a non-singular distribution of conductances. This experiment is unique in that the materials chosen appear to produce a system that is close enough to the percolation threshold to allow a measurement of the percolation exponents. The diffusion coefficient in these samples is also shown to depend on the average pore radius as D/Do ~ (Rp - Rc)0.49 a result which, while unpredicted, is shown to be consistent with a previous study of fluid diffusion in silica.
Ramos Salas, X; Forhan, M; Sharma, A M
2014-06-01
Misinformation or myths about obesity can lead to weight bias and obesity stigma. Counteracting myths with facts and evidence has been shown to be effective educational tools to increase an individuals' knowledge about a certain condition and to reduce stigma.The purpose of this study was to identify common obesity myths within the healthcare and public domains and to develop evidence-based counterarguments to diffuse them. An online search of grey literature, media and public health information sources was conducted to identify common obesity myths. A list of 10 obesity myths was developed and reviewed by obesity experts and key opinion leaders. Counterarguments were developed using current research evidence and validated by obesity experts. A survey of obesity experts and health professionals was conducted to determine the usability and potential effectiveness of the myth-fact messages to reduce weight bias. A total of 754 individuals responded to the request to complete the survey. Of those who responded, 464 (61.5%) completed the survey. All 10 obesity myths were identified to be deeply pervasive within Canadian healthcare and public domains. Although the myth-fact messages were endorsed, respondents also indicated that they would likely not be sufficient to reduce weight bias. Diffusing deeply pervasive obesity myths will require multilevel approaches.
Molecular dynamics simulations of substitutional diffusion
Zhou, Xiaowang; Jones, Reese E.; Gruber, Jacob
2016-12-18
In atomistic simulations, diffusion energy barriers are usually calculated for each atomic jump path using a nudged elastic band method. Practical materials often involve thousands of distinct atomic jump paths that are not known a priori. Hence, it is often preferred to determine an overall diffusion energy barrier and an overall pre-exponential factor from the Arrhenius equation constructed through molecular dynamics simulations of mean square displacement of the diffusion species at different temperatures. This approach has been well established for interstitial diffusion, but not for substitutional diffusion at the same confidence. Using In 0.1 Ga 0.9 N as an example, we have identified conditions where molecular dynamics simulations can be used to calculate highly converged Arrhenius plots for substitutional alloys. As a result, this may enable many complex diffusion problems to be easily and reliably studied in the future using molecular dynamics, provided that moderate computing resources are available.
Molecular dynamics simulations of substitutional diffusion
Zhou, Xiaowang; Jones, Reese E.; Gruber, Jacob
2016-12-18
In atomistic simulations, diffusion energy barriers are usually calculated for each atomic jump path using a nudged elastic band method. Practical materials often involve thousands of distinct atomic jump paths that are not known a priori. Hence, it is often preferred to determine an overall diffusion energy barrier and an overall pre-exponential factor from the Arrhenius equation constructed through molecular dynamics simulations of mean square displacement of the diffusion species at different temperatures. This approach has been well established for interstitial diffusion, but not for substitutional diffusion at the same confidence. Using In 0.1 Ga 0.9 N as an example,more » we have identified conditions where molecular dynamics simulations can be used to calculate highly converged Arrhenius plots for substitutional alloys. As a result, this may enable many complex diffusion problems to be easily and reliably studied in the future using molecular dynamics, provided that moderate computing resources are available.« less
ERIC Educational Resources Information Center
Kardasz, Sara M.
2013-01-01
This article will summarize and explain the Diffusion of Innovations Theory put forth by Everett M. Rogers (2003). It will then share some of the other research that has been conducted relevant to diffusion, especially those researchers who have looked at the diffusion of instructional technology in higher education. It will consider criticisms of…
Naglieri, Jack A; Taddei, Stefano; Williams, Kevin M
2013-03-01
This study examined Italian and U.S. children's performance on the English and Italian versions, respectively, of the Cognitive Assessment System (CAS; Naglieri & Conway, 2009; Naglieri & Das, 1997), a test based on a neurocognitive theory of intelligence entitled PASS (Planning, Attention, Simultaneous, and Successive; Naglieri & Das, 1997; Naglieri & Otero, 2011). CAS subtest, PASS scales, and Full Scale scores for Italian (N=809) and U.S. (N=1,174) samples, matched by age and gender, were examined. Multigroup confirmatory factor analysis results supported the configural invariance of the CAS factor structure between Italians and Americans for the 5- to 7-year-old (root-mean-square error of approximation [RMSEA]=.038; 90% confidence interval [CI]=.033, .043; comparative fit index [CFI]=.96) and 8- to 18-year-old (RMSEA=.036; 90% CI=.028, .043; CFI=.97) age groups. The Full Scale standard scores (using the U.S. norms) for the Italian (100.9) and U.S. (100.5) samples were nearly identical. The scores between the samples for the PASS scales were very similar, except for the Attention Scale (d=0.26), where the Italian sample's mean score was slightly higher. Negligible mean differences were found for 9 of the 13 subtest scores, 3 showed small d-ratios (2 in favor of the Italian sample), and 1 was large (in favor of the U.S. sample), but some differences in subtest variances were found. These findings suggest that the PASS theory, as measured by CAS, yields similar mean scores and showed factorial invariance for these samples of Italian and American children, who differ on cultural and linguistic characteristics.
Microfabricated diffusion source
Oborny, Michael C.; Frye-Mason, Gregory C.; Manginell, Ronald P.
2008-07-15
A microfabricated diffusion source to provide for a controlled diffusion rate of a vapor comprises a porous reservoir formed in a substrate that can be filled with a liquid, a headspace cavity for evaporation of the vapor therein, a diffusion channel to provide a controlled diffusion of the vapor, and an outlet to release the vapor into a gas stream. The microfabricated diffusion source can provide a calibration standard for a microanalytical system. The microanalytical system with an integral diffusion source can be fabricated with microelectromechanical systems technologies.
Shestakov, A I; Vignes, R M; Stolken, J S
2010-01-05
Starting from the radiation transport equation for homogeneous, refractive lossy media, we derive the corresponding time-dependent multifrequency diffusion equations. Zeroth and first moments of the transport equation couple the energy density, flux and pressure tensor. The system is closed by neglecting the temporal derivative of the flux and replacing the pressure tensor by its diagonal analogue. The system is coupled to a diffusion equation for the matter temperature. We are interested in modeling annealing of silica (SiO{sub 2}). We derive boundary conditions at a planar air-silica interface taking account of reflectivities. The spectral dimension is discretized into a finite number of intervals leading to a system of multigroup diffusion equations. Three simulations are presented. One models cooling of a silica slab, initially at 2500 K, for 10 s. The other two are 1D and 2D simulations of irradiating silica with a CO{sub 2} laser, {lambda} = 10.59 {micro}m. In 2D, we anneal a disk (radius = 0.4, thickness = 0.4 cm) with a laser, Gaussian profile (r{sub 0} = 0.5 mm for 1/e decay).
NASA Astrophysics Data System (ADS)
Chiarello, Gian Luca; Nachtegaal, Maarten; Marchionni, Valentina; Quaroni, Luca; Ferri, Davide
2014-07-01
We describe a novel cell used to combine in situ transmission X-ray absorption spectroscopy (XAS) with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) in a single experiment. The novelty of the cell design compared to current examples is that both radiations are passed through an X-ray and IR transparent window in direct contact with the sample. This innovative geometry also offers a wide surface for IR collection. In order to avoid interference from the crystalline IR transparent materials (e.g., CaF2, MgF2, diamond) a 500 μm carbon filled hole is laser drilled in the center of a CaF2 window. The cell is designed to represent a plug flow reactor, has reduced dead volume in order to allow for fast exchange of gases and is therefore suitable for experiments under fast transients, e.g., according to the concentration modulation approach. High quality time-resolved XAS and DRIFTS data of a 2 wt.% Pt/Al2O3 catalyst are obtained in concentration modulation experiments where CO (or H2) pulses are alternated to O2 pulses at 150 °C. We show that additional information can be obtained on the Pt redox dynamic under working conditions thanks to the improved sensitivity given by the modulation approach followed by Phase Sensitive Detection (PSD) analysis. It is anticipated that the design of the novel cell is likely suitable for a number of other in situ spectroscopic and diffraction methods.
NASA Astrophysics Data System (ADS)
Barbera, Guiseppe; Butera, Federico M.
1992-09-01
In order to develop small islands, not only must a vital agricultural system be maintained, but the range of opportunities for tourism must be increased with respect to both the seaside and the environmental features of the rural landscape. As an alternative to the traditional and economically declining ones, many innovative production processes can be identified, but their success depends on their interaction with the physical, biological, economic and social environment. In order to identify the main nodes and the most critical interactions, so as to increase the probability of success of a new productive process, a methodological approach based on the science of complexity is proposed for the cultivation of capers ( Capparis spinosa L.) on the island of Pantelleria. The methodology encompasses the identification of actors and factors involved. the quantitative evaluation of their interactions with the different stages of the productive process, and a quasiquantitative evaluation of the probability that the particular action will be performed successfully. The study of “traditional,” “modernized,” and “modernized-sustainable” processes, shows that the modernized-sustainable process offers mutually reinforcing opportunities in terms of an integrated development of high-quality agricultural products and the enhancement of environmental features, in conjunction with high-efficiency production techniques, in conjunction with high-efficiency production techniques, in a way that suits the development of Pantelleria. There is a high probability of failure, however, as a result of the large number of critical factors. Nevertheless, the present study indicates which activities will enhance the probability of successful innovation in the production process.
Influence Function Learning in Information Diffusion Networks
Du, Nan; Liang, Yingyu; Balcan, Maria-Florina; Song, Le
2015-01-01
Can we learn the influence of a set of people in a social network from cascades of information diffusion? This question is often addressed by a two-stage approach: first learn a diffusion model, and then calculate the influence based on the learned model. Thus, the success of this approach relies heavily on the correctness of the diffusion model which is hard to verify for real world data. In this paper, we exploit the insight that the influence functions in many diffusion models are coverage functions, and propose a novel parameterization of such functions using a convex combination of random basis functions. Moreover, we propose an efficient maximum likelihood based algorithm to learn such functions directly from cascade data, and hence bypass the need to specify a particular diffusion model in advance. We provide both theoretical and empirical analysis for our approach, showing that the proposed approach can provably learn the influence function with low sample complexity, be robust to the unknown diffusion models, and significantly outperform existing approaches in both synthetic and real world data. PMID:25973445
Diffusion bonding aeroengine components
NASA Astrophysics Data System (ADS)
Fitzpatrick, G. A.; Broughton, T.
1988-10-01
The use of diffusion bonding processes at Rolls-Royce for the manufacture of titanium-alloy aircraft engine components and structures is described. A liquid-phase diffusion bonding process called activated diffusion bonding has been developed for the manufacture of the hollow titanium wide chord fan blade. In addition, solid-state diffusion bonding is being used in the manufacture of hollow vane/blade airfoil constructions mainly in conjunction with superplastic forming and hot forming techniques.
Diffusion of tungsten hexafluoride
NASA Astrophysics Data System (ADS)
Winkelmann, J.
This document is part of Subvolume A `Gases in Gases, Liquids and their Mixtures' of Volume 15 `Diffusion in Gases, Liquids and Electrolytes' of Landolt-Börnstein Group IV `Physical Chemistry'. It is part of the chapter of the chapter `Diffusion in Pure Gases' and contains data on diffusion of tungsten hexafluoride
Reduce Confusion about Diffusion.
ERIC Educational Resources Information Center
Hebrank, Mary R.
1997-01-01
Presents activities that allow students to explore the fundamental but poorly understood concept of diffusion by appealing to their kinesthetic senses first, then challenging their analytical skills as they try to deduce the mathematical principle involved. Presents a computer simulation of diffusion and discusses diffusion's limitations and…
ERIC Educational Resources Information Center
McCutcheon, James R.; Sanders, John R.
A methodology is presented for planning and managing the spread of educational innovations. The first portion of the guide develops a theoretical framework for diffusion which summarizes and capitalizes on the latest marketing and on the latest marketing and diffusion research findings. Major stages in the diffusion paradigm discussed include…
NASA Astrophysics Data System (ADS)
Kutzner, Mickey; Pearson, Bryan
2017-02-01
Diffusion is a truly interdisciplinary topic bridging all areas of STEM education. When biomolecules are not being moved through the body by fluid flow through the circulatory system or by molecular motors, diffusion is the primary mode of transport over short distances. The direction of the diffusive flow of particles is from high concentration toward low concentration.
Handbook on atmospheric diffusion
Hanna, S.R.; Briggs, G.A.; Hosker, R.P. Jr.
1982-01-01
Basic meteorological concepts are covered as well as plume rise, source effects, and diffusion models. Chapters are included on cooling tower plumes and urban diffusion. Suggestions are given for calculating diffusion in special situations, such as for instantaneous releases over complex terrain, over long distances, and during times when chemical reactions or dry or wet deposition are important. (PSB)
Numerical evaluation of lateral diffusion inside diffusive gradients in thin films samplers.
Santner, Jakob; Kreuzeder, Andreas; Schnepf, Andrea; Wenzel, Walter W
2015-05-19
Using numerical simulation of diffusion inside diffusive gradients in thin films (DGT) samplers, we show that the effect of lateral diffusion inside the sampler on the solute flux into the sampler is a nonlinear function of the diffusion layer thickness and the physical sampling window size. In contrast, earlier work concluded that this effect was constant irrespective of parameters of the sampler geometry. The flux increase caused by lateral diffusion inside the sampler was determined to be ∼8.8% for standard samplers, which is considerably lower than the previous estimate of ∼20%. Lateral diffusion is also propagated to the diffusive boundary layer (DBL), where it leads to a slightly stronger decrease in the mass uptake than suggested by the common 1D diffusion model that is applied for evaluating DGT results. We introduce a simple correction procedure for lateral diffusion and demonstrate how the effect of lateral diffusion on diffusion in the DBL can be accounted for. These corrections often result in better estimates of the DBL thickness (δ) and the DGT-measured concentration than earlier approaches and will contribute to more accurate concentration measurements in solute monitoring in waters.
Numerical Evaluation of Lateral Diffusion Inside Diffusive Gradients in Thin Films Samplers
2015-01-01
Using numerical simulation of diffusion inside diffusive gradients in thin films (DGT) samplers, we show that the effect of lateral diffusion inside the sampler on the solute flux into the sampler is a nonlinear function of the diffusion layer thickness and the physical sampling window size. In contrast, earlier work concluded that this effect was constant irrespective of parameters of the sampler geometry. The flux increase caused by lateral diffusion inside the sampler was determined to be ∼8.8% for standard samplers, which is considerably lower than the previous estimate of ∼20%. Lateral diffusion is also propagated to the diffusive boundary layer (DBL), where it leads to a slightly stronger decrease in the mass uptake than suggested by the common 1D diffusion model that is applied for evaluating DGT results. We introduce a simple correction procedure for lateral diffusion and demonstrate how the effect of lateral diffusion on diffusion in the DBL can be accounted for. These corrections often result in better estimates of the DBL thickness (δ) and the DGT-measured concentration than earlier approaches and will contribute to more accurate concentration measurements in solute monitoring in waters. PMID:25877251
Fisher, A. C.; Bailey, D. S.; Kaiser, T. B.; Eder, D. C.; Gunney, B. T. N.; Masters, N. D.; Koniges, A. E.; Anderson, R. W.
2015-02-01
Here, we present a novel method for the solution of the diffusion equation on a composite AMR mesh. This approach is suitable for including diffusion based physics modules to hydrocodes that support ALE and AMR capabilities. To illustrate, we proffer our implementations of diffusion based radiation transport and heat conduction in a hydrocode called ALE-AMR. Numerical experiments conducted with the diffusion solver and associated physics packages yield 2nd order convergence in the L_{2} norm.
A Systems Model for Assessment and Diffusion.
ERIC Educational Resources Information Center
Toomb, Kevin; And Others
The Florida Assessment and Diffusion System (FADS) represents a systematic approach to organizational change, emphasizing the interpersonal communication dimension of the change process. FADS encourages a systems approach to change, but is flexible enough to allow for procedural changes in response to specific user needs. The model assumes a…
Langevin formulation for single-file diffusion
NASA Astrophysics Data System (ADS)
Taloni, Alessandro; Lomholt, Michael A.
2008-11-01
We introduce a stochastic equation for the microscopic motion of a tagged particle in the single-file model. This equation provides a compact representation of several of the system’s properties such as fluctuation-dissipation and linear-response relations, achieved by means of a diffusion noise approach. Most importantly, the proposed Langevin equation reproduces quantitatively the three temporal regimes and the corresponding time scales: ballistic, diffusive, and subdiffusive.
Multidimensional reaction rate theory with anisotropic diffusion.
Berezhkovskii, Alexander M; Szabo, Attila; Greives, Nicholas; Zhou, Huan-Xiang
2014-11-28
An analytical expression is derived for the rate constant that describes diffusive transitions between two deep wells of a multidimensional potential. The expression, in contrast to the Kramers-Langer formula for the rate constant, is valid even when the diffusion is highly anisotropic. Our approach is based on a variational principle for the reactive flux and uses a trial function for the splitting probability or commitor. The theoretical result is validated by Brownian dynamics simulations.
Hereditary Diffuse Infiltrating Retinoblastoma.
Schedler, Katharina J E; Traine, Peter G; Lohmann, Dietmar R; Haritoglou, Christos; Metz, Klaus A; Rodrigues, Eduardo B
2016-01-01
Retinoblastoma is one of the most common childhood cancers. The diffuse infiltrating retinoblastoma is a rare subtype of this neoplasm. The majority of cases of diffuse infiltrating retinoblastoma are unilateral and occur sporadically. Herein we report on a family with three children affected by retinoblastoma, among them one girl with diffuse infiltrating retinoblastoma. This girl was diagnosed at the age of 8 years with a unilateral diffuse infiltrating retinoblastoma. By contrast, the two brothers became clinically apparent in the first 2 years of life with bilateral retinoblastoma. The parents were clinically unremarkable. Genetic analysis of RB1 gene was performed. The girl with diffuse infiltrating RB was found to be heterozygous for an oncogenic mutation in the RB1 gene that was also carried by both brothers and the father of the family. These results show that diffuse infiltrating retinoblastoma can develop on the background of a hereditary predisposition to retinoblastoma.
Garrett, George A.; Shacter, John
1978-01-01
1. A gaseous diffusion system comprising a plurality of diffusers connected in cascade to form a series of stages, each of said diffusers having a porous partition dividing it into a high pressure chamber and a low pressure chamber, and means for combining a portion of the enriched gas from a succeeding stage with a portion of the enriched gas from the low pressure chamber of each stage and feeding it into one extremity of the high pressure chamber thereof.
Isotropic anomalous filtering in Diffusion-Weighted Magnetic Resonance Imaging.
da S Senra Filho, Antonio Carlos; Jinzenji Duque, Juliano; Murta Junior, Luiz Otávio
2013-01-01
Noise is inherent to Diffusion-Weighted Magnetic Resonance Imaging (DWI) and noise reduction methods are necessary. Although process based on classical diffusion is one of the most used approaches for digital image, anomalous diffusion has the potential for image enhancement and it has not been tested for DWI noise reduction. This study evaluates Anomalous Diffusion (AD) filter as DWI enhancement method. The proposed method was applied to magnetic resonance diffusion weighted images (DW-MRI) with different noise levels. Results show better performance for anomalous diffusion when compared to classical diffusion approach. The proposed method has shown potential in DWI enhancement and can be an important process to improve quality in DWI for neuroimage-based diagnosis.
Cheng, Xiaojun; Lockerman, Yitzchak; Genack, Azriel Z
2014-06-01
We follow the trajectories of phase singularities at nulls of intensity in the speckle pattern of waves transmitted through random media as the frequency of the incident radiation is scanned in microwave experiments and numerical simulations. Phase singularities are observed to diffuse with a linear increase of the square displacement 〈R2〉 with frequency shift. The product of the diffusion coefficient of phase singularities in the transmitted speckle pattern and the photon diffusion coefficient through the random medium is proportional to the square of the effective sample length. This provides the photon diffusion coefficient and a method for characterizing the motion of dynamic material systems.
Inpainting using airy diffusion
NASA Astrophysics Data System (ADS)
Lorduy Hernandez, Sara
2015-09-01
One inpainting procedure based on Airy diffusion is proposed, implemented via Maple and applied to some digital images. Airy diffusion is a partial differential equation with spatial derivatives of third order in contrast with the usual diffusion with spatial derivatives of second order. Airy diffusion generates the Airy semigroup in terms of the Airy functions which can be rewritten in terms of Bessel functions. The Airy diffusion can be used to smooth an image with the corresponding noise elimination via convolution. Also the Airy diffusion can be used to erase objects from an image. We build an algorithm using the Maple package ImageTools and such algorithm is tested using some images. Our results using Airy diffusion are compared with the similar results using standard diffusion. We observe that Airy diffusion generates powerful filters for image processing which could be incorporated in the usual packages for image processing such as ImageJ and Photoshop. Also is interesting to consider the possibility to incorporate the Airy filters as applications for smartphones and smart-glasses.
Ultrasonic enhancement of battery diffusion.
Hilton, R; Dornbusch, D; Branson, K; Tekeei, A; Suppes, G J
2014-03-01
It has been demonstrated that sonic energy can be harnessed to enhance convection in Galvanic cells during cyclic voltammetry; however, the practical value of this approach is limited due to the lack of open volumes for convection patterns to develop in most batteries. This study evaluates the ability of ultrasonic waves to enhance diffusion in membrane separators commonly used in sandwich-architecture batteries. Studies include the measuring of open-circuit performance curves to interpret performances in terms of reductions in concentration overpotentials. The use of a 40 kHz sonicator bath can consistently increase the voltage of the battery and reduce overpotential losses up to 30%. This work demonstrates and quantifies battery enhancement due to enhanced diffusion made possible with ultrasonic energy.
Experimental study of vortex diffusers
Shakerin, S.; Miller, P.L.
1995-11-01
This report documents experimental research performed on vortex diffusers used in ventilation and air-conditioning systems. The main objectives of the research were (1) to study the flow characteristics of isothermal jets issuing from vortex diffusers, (2) to compare the vortex diffuser`s performance with that of a conventional diffuser, and (3) to prepare a report that disseminates the results to the designers of ventilation and air-conditioning systems. The researchers considered three diffusers: a conventional round ceiling diffuser and two different styles of vortex diffusers. Overall, the vortex diffusers create slightly more induction of ambient air in comparison to the conventional diffuser.
Tiny Molybdenites Tell Diffusion Tales
NASA Astrophysics Data System (ADS)
Stein, H. J.; Hannah, J. L.
2014-12-01
Diffusion invokes micron-scale exchange during crystal growth and dissolution in magma chambers on short time-scales. Fundamental to interpreting such data are assumptions on magma-fluid dynamics at all scales. Nevertheless, elemental diffusion profiles are used to estimate time scales for magma storage, eruption, and recharge. An underutilized timepiece to evaluate diffusion and 3D mobility of magmatic fluids is high-precision Re-Os dating of molybdenite. With spatially unique molybdenite samples from a young ore system (e.g., 1 Ma) and a double Os spike, analytical errors of 1-3 ka unambiguously separate events in time. Re-Os ages show that hydrous shallow magma chambers locally recharge and expel Cu-Mo-Au-silica as superimposed stockwork vein networks at time scales less than a few thousand years [1]. Re-Os ages provide diffusion rates controlled by a dynamic crystal mush, accumulation and expulsion of metalliferous fluid, and magma reorganization after explosive crystallization events. Importantly, this approach has broad application far from ore deposits. Here, we use Re-Os dating of molybdenite to assess time scales for generating and diffusing metals through the deep crust. To maximize opportunity for chemical diffusion, we use a continental-scale Sveconorwegian mylonite zone for the study area. A geologically constrained suite of molybdenite samples was acquired from quarry exposures. Molybdenite, previously unreported, is extremely scarce. Tiny but telling molybdenites include samples from like occurrences to assure geologic accuracy in Re-Os ages. Ages range from mid-Mesoproterozoic to mid-Neoproterozoic, and correspond to early metamorphic dehydration of a regionally widespread biotite-rich gneiss, localized melting of gneiss to form cm-m-scale K-feldspar ± quartz pods, development of vapor-rich, vuggy mm stringers that serve as volatile collection surfaces in felsic leucosomes, and low-angle (relative to foliation) cross-cutting cm-scale quartz veins
Diffusion in thorium carbide: A first-principles study
NASA Astrophysics Data System (ADS)
Pérez Daroca, D.; Llois, A. M.; Mosca, H. O.
2015-12-01
The prediction of the behavior of Th compounds under irradiation is an important issue for the upcoming Generation-IV nuclear reactors. The study of self-diffusion and hetero-diffusion is a central key to fulfill this goal. As a first approach, we obtained, by means of first-principles methods, migration and activation energies of Th and C atoms self-diffusion and diffusion of He atoms in ThC. We also calculate diffusion coefficients as a function of temperature.
ERIC Educational Resources Information Center
Bringuier, E.
2009-01-01
The paper analyses particle diffusion from a thermodynamic standpoint. The main goal of the paper is to highlight the conceptual connection between particle diffusion, which belongs to non-equilibrium statistical physics, and mechanics, which deals with particle motion, at the level of third-year university courses. We start out from the fact…
Brodsky, Matthew A.; Swope, David M.; Grimes, David
2012-01-01
Background It is generally agreed that diffusion of botulinum toxin occurs, but the extent of the spread and its clinical importance are disputed. Many factors have been suggested to play a role but which have the most clinical relevance is a subject of much discussion. Methods This review discusses the variables affecting diffusion, including protein composition and molecular size as well as injection factors (e.g., volume, dose, injection method). It also discusses data on diffusion from comparative studies in animal models and human clinical trials that illustrate differences between the available botulinum toxin products (onabotulinumtoxinA, abobotulinumtoxinA, incobotulinumtoxinA, and rimabotulinumtoxinB). Results Neither molecular weight nor the presence of complexing proteins appears to affect diffusion; however, injection volume, concentration, and dose all play roles and are modifiable. Both animal and human studies show that botulinum toxin products are not interchangeable, and that some products are associated with greater diffusion and higher rates of diffusion-related adverse events than others. Discussion Each of the botulinum toxins is a unique pharmacologic entity. A working knowledge of the different serotypes is essential to avoid unwanted diffusion-related adverse events. In addition, clinicians should be aware that the factors influencing diffusion may range from properties intrinsic to the drug to accurate muscle selection as well as dilution, volume, and dose injected. PMID:23440162
Investigating Diffusion with Technology
ERIC Educational Resources Information Center
Miller, Jon S.; Windelborn, Augden F.
2013-01-01
The activities described here allow students to explore the concept of diffusion with the use of common equipment such as computers, webcams and analysis software. The procedure includes taking a series of digital pictures of a container of water with a webcam as a dye slowly diffuses. At known time points, measurements of the pixel densities…
NASA Technical Reports Server (NTRS)
Earabino, Gerard J.; Heyl, G. Christopher; Percorini, Thomas J.
1987-01-01
New ideas encounter obstacles on way to becoming products. Report examines process by which new ideas become products, processes, or accepted standards. Sequence of events called "the diffusion of innovation." Focuses on development of material processing in low gravity as case study in diffusion of innovation.
Cosmology with matter diffusion
Calogero, Simone; Velten, Hermano E-mail: velten@cce.ufes.br
2013-11-01
We construct a viable cosmological model based on velocity diffusion of matter particles. In order to ensure the conservation of the total energy-momentum tensor in the presence of diffusion, we include a cosmological scalar field φ which we identify with the dark energy component of the universe. The model is characterized by only one new degree of freedom, the diffusion parameter σ. The standard ΛCDM model can be recovered by setting σ = 0. If diffusion takes place (σ > 0) the dynamics of the matter and of the dark energy fields are coupled. We argue that the existence of a diffusion mechanism in the universe may serve as a theoretical motivation for interacting models. We constrain the background dynamics of the diffusion model with Supernovae, H(z) and BAO data. We also perform a perturbative analysis of this model in order to understand structure formation in the universe. We calculate the impact of diffusion both on the CMB spectrum, with particular attention to the integrated Sachs-Wolfe signal, and on the matter power spectrum P(k). The latter analysis places strong constraints on the magnitude of the diffusion mechanism but does not rule out the model.
Hughto, J.; Schneider, A. S.; Horowitz, C. J.; Berry, D. K.
2011-07-15
Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions ''hop'' in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter {Gamma}=175 to Coulomb parameters up to {Gamma}=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.
Diffusion in Coulomb crystals.
Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K
2011-07-01
Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.
Combustor diffuser interaction program
NASA Technical Reports Server (NTRS)
Srinivasan, Ram; Thorp, Daniel
1986-01-01
Advances in gas turbine engine performance are achieved by using compressor systems with high stage loading and low part count, which result in high exit Mach numbers. The diffuser and combustor systems in such engines should be optimized to reduce system pressure loss and to maximize the engine thrust-to-weight ratio and minimize length. The state-of-the-art combustor-diffuser systems do not meet these requirements. Detailed understanding of the combustor-diffuser flow field interaction is required for designing advanced gas turbine engines. An experimental study of the combustor-diffuser interaction (CDI) is being conducted to obtain data for the evaluation and improvement of analytical models applicable to a wide variety of diffuser designs. The CDI program consists of four technical phases: Literature Search; Baseline Configuration; Parametric Configurations; and Performance Configurations. Phase 2 of the program is in progress.
Endeward, Volker; Gros, Gerolf
2009-03-15
We have developed an experimental approach that allows us to quantify unstirred layers around cells suspended in stirred solutions. This technique is applicable to all types of transport measurements and was applied here to the (18)O technique used to measure CO(2) permeability of red cells (PCO2). We measure PCO2 in well-stirred red cell (RBC) suspensions of various viscosities adjusted by adding different amounts of 60 kDa dextran. Plotting 1/PCO2 vs. viscosity nu gives a linear relation, which can be extrapolated to nu=0. Theoretical hydrodynamics predicts that extracellular unstirred layers vanish at zero viscosity when stirring is maintained, and thus this extrapolation gives us an estimate of the PCO2 free from extracellular unstirred layer artifacts. The extrapolated value is found to be 0.16 cm s(-1) instead of the experimental value in saline of 0.12 cm s(-1) (+30%). This effect corresponds to an unstirred layer thickness of 0.5 microm. In addition, we present a theoretical approach modelling the actual geometrical and physico-chemical conditions of (18)O exchange in our experiments. It confirms the role of an extracellular unstirred layer in the determination of PCO2. Also, it allows us to quantify the contribution of the so-called intracellular unstirred layer, which results from the fact that in these transport measurements--as in all such measurements in general--the intracellular space is not stirred. The apparent thickness of this intracellular unstirred layer is about 1/4-1/3 of the maximal intracellular diffusion distance, and correction for it results in a true PCO2 of the RBC membrane of 0.20 cm s(-1). Thus, the order of magnitude of this is PCO2 unaltered compared to our previous reports. Discussion of the available evidence in the light of these results confirms that CO(2) channels exist in red cell and other membranes, and that PCO2 of red cell membranes in the absence of these channels is quite low.
Diffuse-Interface Methods in Fluid Mechanics
NASA Technical Reports Server (NTRS)
Anderson, D. M.; McFadden, G. B.; Wheeler, A. A.
1997-01-01
The authors review the development of diffuse-interface models of hydrodynamics and their application to a wide variety of interfacial phenomena. The authors discuss the issues involved in formulating diffuse-interface models for single-component and binary fluids. Recent applications and computations using these models are discussed in each case. Further, the authors address issues including sharp-interface analyses that relate these models to the classical free-boundary problem, related computational approaches to describe interfacial phenomena, and related approaches describing fully-miscible fluids.
Image-based color ink diffusion rendering.
Wang, Chung-Ming; Wang, Ren-Jie
2007-01-01
This paper proposes an image-based painterly rendering algorithm for automatically synthesizing an image with color ink diffusion. We suggest a mathematical model with a physical base to simulate the phenomenon of color colloidal ink diffusing into absorbent paper. Our algorithm contains three main parts: a feature extraction phase, a Kubelka-Munk (KM) color mixing phase, and a color ink diffusion synthesis phase. In the feature extraction phase, the information of the reference image is simplified by luminance division and color segmentation. In the color mixing phase, the KM theory is employed to approximate the result when one pigment is painted upon another pigment layer. Then, in the color ink diffusion synthesis phase, the physically-based model that we propose is employed to simulate the result of color ink diffusion in absorbent paper using a texture synthesis technique. Our image-based ink diffusing rendering (IBCIDR) algorithm eliminates the drawback of conventional Chinese ink simulations, which are limited to the black ink domain, and our approach demonstrates that, without using any strokes, a color image can be automatically converted to the diffused ink style with a visually pleasing appearance.
Diffusion MRI and its role in neuropsychology
Mueller, Bryon A; Lim, Kelvin O; Hemmy, Laura; Camchong, Jazmin
2015-01-01
Diffusion Magnetic Resonance Imaging (dMRI) is a popular method used by neuroscientists to uncover unique information about the structural connections within the brain. dMRI is a non-invasive imaging methodology in which image contrast is based on the diffusion of water molecules in tissue. While applicable to many tissues in the body, this review focuses exclusively on the use of dMRI to examine white matter in the brain. In this review, we begin with a definition of diffusion and how diffusion is measured with MRI. Next we introduce the diffusion tensor model, the predominant model used in dMRI. We then describe acquisition issues related to acquisition parameters and scanner hardware and software. Sources of artifacts are then discussed, followed by a brief review of analysis approaches. We provide an overview of the limitations of the traditional diffusion tensor model, and highlight several more sophisticated non-tensor models that better describe the complex architecture of the brain’s white matter. We then touch on reliability and validity issues of diffusion measurements. Finally, we describe examples of ways in which dMRI has been applied to studies of brain disorders and how identified alterations relate to symptomatology and cognition. PMID:26255305
Diffusion MRI and its Role in Neuropsychology.
Mueller, Bryon A; Lim, Kelvin O; Hemmy, Laura; Camchong, Jazmin
2015-09-01
Diffusion Magnetic Resonance Imaging (dMRI) is a popular method used by neuroscientists to uncover unique information about the structural connections within the brain. dMRI is a non-invasive imaging methodology in which image contrast is based on the diffusion of water molecules in tissue. While applicable to many tissues in the body, this review focuses exclusively on the use of dMRI to examine white matter in the brain. In this review, we begin with a definition of diffusion and how diffusion is measured with MRI. Next we introduce the diffusion tensor model, the predominant model used in dMRI. We then describe acquisition issues related to acquisition parameters and scanner hardware and software. Sources of artifacts are then discussed, followed by a brief review of analysis approaches. We provide an overview of the limitations of the traditional diffusion tensor model, and highlight several more sophisticated non-tensor models that better describe the complex architecture of the brain's white matter. We then touch on reliability and validity issues of diffusion measurements. Finally, we describe examples of ways in which dMRI has been applied to studies of brain disorders and how identified alterations relate to symptomatology and cognition.
NASA Astrophysics Data System (ADS)
Cherniak, D. J.
2006-05-01
Diffusion of thorium has been characterized in synthetic monazite under dry conditions. The synthetic monazites (either pure CePO4, NdPO4, or a mixed LREE phosphate containing Ce, Nd, and Sm) were grown via a Na2CO3-MoO3 flux method. The source of diffusant for the experiments were either synthesized ThSiO4 or CaTh(PO4)2 powders. Experiments were performed by placing source and monazite in Pt capsules and annealing capsules in 1 atm furnaces for times ranging from 10 days to a few hours, at temperatures from 1400 to 1550C. The Th distributions in the monazite were profiled by Rutherford Backscattering Spectrometry (RBS). The following Arrhenius relation was obtained for diffusion in monazite: DSm = 7.2x103 exp(-814 kJ mol-1/RT) m2sec-1 The diffusivity of Th was similar for monazites containing a single REE and the mixed LREE phosphates. Th diffusion was also similar for experiments run using the Th silicate and Ca-Th phosphate sources, suggesting that the substitutional mechanism for Th in monazite, i.e, Th+4 + Si+4 for REE+3 + P+5 with the ThSiO4 source, and Th+4 + Ca+2 for 2REE+3 with the CaTh(PO4)2 source, does not significantly affect Th diffusivities, and that Th is likely the rate-limiting species. Th diffusion in monazite is about 4 orders of magnitude slower than Pb diffusion (Cherniak et al., 2004). This contrasts with findings of Gardes et al. (2005) who determined that Pb, Th and REE diffusivities in monazite are similar. Th diffusion in zircon (Cherniak et al., 1997) is about an order of magnitude slower than in monazite, but with similar activation energy for diffusion. The smaller diffusivities in zircon may be a consequence of the larger disparity in size between Th and the Zr site in zircon as compared with Th and the REE site in monazite. Nonetheless, Th is essentially immobile in monazite with respect to exchange by volume diffusion under most geologic conditions; these findings may have implications for containment of high- level actinide
General theory of heat diffusion dynamics
NASA Astrophysics Data System (ADS)
Tröster, A.; Schranz, W.
2002-11-01
A detailed theoretical investigation of the influence of heat diffusion processes on the low-frequency dispersion in macroscopic elastic susceptibilities is presented. In particular, a general solution of the heat diffusion equation is derived for arbitrary boundary conditions and externally imposed periodic and spatially inhomogeneous stress. In contrast to other calculations found in the literature, our results indicate that in elastic experiments on monodomain samples of macroscopic dimensions the isothermal-adiabatic crossover function necessarily reduces to a Debye-like dispersion. Experimentally, this is illustated by measurements of the complex dynamic elastic susceptibilities of KSCN and KMnF3. Our approach also allows to discuss heat diffusion in polydomain crystals and heterogeneous systems, for which one obtains dispersions of a non-Debye type. While explicitly derived in an elastic context, the present theory also applies to heat diffusion in dielectric materials.
Earthquake-explosion discrimination using diffusion maps
NASA Astrophysics Data System (ADS)
Rabin, N.; Bregman, Y.; Lindenbaum, O.; Ben-Horin, Y.; Averbuch, A.
2016-12-01
Discrimination between earthquakes and explosions is an essential component of nuclear test monitoring and it is also important for maintaining the quality of earthquake catalogues. Currently used discrimination methods provide a partial solution to the problem. In this work, we apply advanced machine learning methods and in particular diffusion maps for modelling and discriminating between seismic signals. Diffusion maps enable us to construct a geometric representation that capture the intrinsic structure of the seismograms. The diffusion maps are applied after a pre-processing step, in which seismograms are converted to normalized sonograms. The constructed low-dimensional model is used for automatic earthquake-explosion discrimination of data that are collected in single seismic stations. We demonstrate our approach on a data set comprising seismic events from the Dead Sea area. The diffusion-based algorithm provides correct discrimination rate that is higher than 90 per cent.
The Turbulent Diffusivity of Convective Overshoot
NASA Astrophysics Data System (ADS)
Lecoanet, Daniel; Schwab, Josiah; Quataert, Eliot; Bildsten, Lars; Timmes, Frank; Burns, Keaton; Vasil, Geoffrey; Oishi, Jeffrey; Brown, Benjamin
2016-11-01
There are many natural systems with convectively unstable fluid adjacent to stably stratified fluid; including the Earth's atmosphere, most stars, and perhaps even the Earth's liquid core. The convective motions penetrating into the stable region can enhance mixing, leading to changes in transport within the stable region. This work describes convective overshoot simulations. To study the extra mixing due to overshoot, we evolve a passive tracer field. The horizontal average of the passive tracer quickly approaches a self-similar state. The self-similar state is the solution to a diffusion equation with a spatially dependent turbulent diffusivity. We find the extra mixing due to convection can be accurately modeled as a turbulent diffusivity, and discuss implications of this turbulent diffusivity for the astrophysical problem of mixing in convectively bounded carbon flames.
Communication: Probing anomalous diffusion in frequency space
Stachura, Sławomir; Kneller, Gerald R.
2015-11-21
Anomalous diffusion processes are usually detected by analyzing the time-dependent mean square displacement of the diffusing particles. The latter evolves asymptotically as W(t) ∼ 2D{sub α}t{sup α}, where D{sub α} is the fractional diffusion constant and 0 < α < 2. In this article we show that both D{sub α} and α can also be extracted from the low-frequency Fourier spectrum of the corresponding velocity autocorrelation function. This offers a simple method for the interpretation of quasielastic neutron scattering spectra from complex (bio)molecular systems, in which subdiffusive transport is frequently encountered. The approach is illustrated and validated by analyzing molecular dynamics simulations of molecular diffusion in a lipid POPC bilayer.
Diffusion of active chiral particles
NASA Astrophysics Data System (ADS)
Sevilla, Francisco J.
2016-12-01
The diffusion of chiral active Brownian particles in three-dimensional space is studied analytically, by consideration of the corresponding Fokker-Planck equation for the probability density of finding a particle at position x and moving along the direction v ̂ at time t , and numerically, by the use of Langevin dynamics simulations. The analysis is focused on the marginal probability density of finding a particle at a given location and at a given time (independently of its direction of motion), which is found from an infinite hierarchy of differential-recurrence relations for the coefficients that appear in the multipole expansion of the probability distribution, which contains the whole kinematic information. This approach allows the explicit calculation of the time dependence of the mean-squared displacement and the time dependence of the kurtosis of the marginal probability distribution, quantities from which the effective diffusion coefficient and the "shape" of the positions distribution are examined. Oscillations between two characteristic values were found in the time evolution of the kurtosis, namely, between the value that corresponds to a Gaussian and the one that corresponds to a distribution of spherical shell shape. In the case of an ensemble of particles, each one rotating around a uniformly distributed random axis, evidence is found of the so-called effect "anomalous, yet Brownian, diffusion," for which particles follow a non-Gaussian distribution for the positions yet the mean-squared displacement is a linear function of time.
De Luca, A.; Texier, M.; Burle, N.; Oison, V.; Pichaud, B.; Portavoce, A.; Grosjean, C.
2014-01-07
Two doses (10{sup 13} and 10{sup 15} cm{sup −2}) of tungsten (W) atoms were implanted in different Si(001) wafers in order to study W diffusion in Si. The samples were annealed or oxidized at temperatures between 776 and 960 °C. The diffusion profiles were measured by secondary ion mass spectrometry, and defect formation was studied by transmission electron microscopy and atom probe tomography. W is shown to reduce Si recrystallization after implantation and to exhibit, in the temperature range investigated, a solubility limit close to 0.15%–0.2%, which is higher than the solubility limit of usual metallic impurities in Si. W diffusion exhibits unusual linear diffusion profiles with a maximum concentration always located at the Si surface, slower kinetics than other metals in Si, and promotes vacancy accumulation close to the Si surface, with the formation of hollow cavities in the case of the higher W dose. In addition, Si self-interstitial injection during oxidation is shown to promote W-Si clustering. Taking into account these observations, a diffusion model based on the simultaneous diffusion of interstitial W atoms and W-Si atomic pairs is proposed since usual models used to model diffusion of metallic impurities and dopants in Si cannot reproduce experimental observations.
Fokas method for a multi-domain linear reaction-diffusion equation with discontinuous diffusivity
NASA Astrophysics Data System (ADS)
Asvestas, M.; Sifalakis, A. G.; Papadopoulou, E. P.; Saridakis, Y. G.
2014-03-01
Motivated by proliferation-diffusion mathematical models for studying highly diffusive brain tumors, that also take into account the heterogeneity of the brain tissue, in the present work we consider a multi-domain linear reaction-diffusion equation with a discontinuous diffusion coefficient. For the solution of the problem at hand we implement Fokas transform method by directly following, and extending in this way, our recent work for a white-gray-white matter brain model pertaining to high grade gliomas. Fokas's novel approach for the solution of linear PDE problems, yields novel integral representations of the solution in the complex plane that, for appropriately chosen integration contours, decay exponentially fast and converge uniformly at the boundaries. Combining these method-inherent advantages with simple numerical quadrature rules, we produce an efficient method, with fast decaying error properties, for the solution of the discontinuous reaction-diffusion problem.
NASA Technical Reports Server (NTRS)
Takahashi, Fumiaki; Katta, Viswanath R.
2007-01-01
Diffusion flames are commonly used for industrial burners in furnaces and flares. Oxygen/fuel burners are usually diffusion burners, primarily for safety reasons, to prevent flashback and explosion in a potentially dangerous system. Furthermore, in most fires, condensed materials pyrolyze, vaporize, and burn in air as diffusion flames. As a result of the interaction of a diffusion flame with burner or condensed-fuel surfaces, a quenched space is formed, thus leaving a diffusion flame edge, which plays an important role in flame holding in combustion systems and fire spread through condensed fuels. Despite a long history of jet diffusion flame studies, lifting/blowoff mechanisms have not yet been fully understood, compared to those of premixed flames. In this study, the structure and stability of diffusion flames of gaseous hydrocarbon fuels in coflowing air at normal earth gravity have been investigated experimentally and computationally. Measurements of the critical mean jet velocity (U(sub jc)) of methane, ethane, or propane at lifting or blowoff were made as a function of the coflowing air velocity (U(sub a)) using a tube burner (i.d.: 2.87 mm) (Fig. 1, left). By using a computational fluid dynamics code with 33 species and 112 elementary reaction steps, the internal chemical-kinetic structures of the stabilizing region of methane and propane flames were investigated (Fig. 1, right). A peak reactivity spot, i.e., reaction kernel, is formed in the flame stabilizing region due to back-diffusion of heat and radical species against an oxygen-rich incoming flow, thus holding the trailing diffusion flame. The simulated flame base moved downstream under flow conditions close to the measured stability limit.
NASA Technical Reports Server (NTRS)
Takahashi, Fumiaki; Katta, V. R.
2006-01-01
Diffusion flames are commonly used for industrial burners in furnaces and flares. Oxygen/fuel burners are usually diffusion burners, primarily for safety reasons, to prevent flashback and explosion in a potentially dangerous system. Furthermore, in most fires, condensed materials pyrolyze, vaporize, and burn in air as diffusion flames. As a result of the interaction of a diffusion flame with burner or condensed-fuel surfaces, a quenched space is formed, thus leaving a diffusion flame edge, which plays an important role in flame holding in combustion systems and fire spread through condensed fuels. Despite a long history of jet diffusion flame studies, lifting/blowoff mechanisms have not yet been fully understood, compared to those of premixed flames. In this study, the structure and stability of diffusion flames of gaseous hydrocarbon fuels in coflowing air at normal earth gravity have been investigated experimentally and computationally. Measurements of the critical mean jet velocity (U(sub jc)) of methane, ethane, or propane at lifting or blowoff were made as a function of the coflowing air velocity (U(sub a)) using a tube burner (i.d.: 2.87 mm). By using a computational fluid dynamics code with 33 species and 112 elementary reaction steps, the internal chemical-kinetic structures of the stabilizing region of methane and propane flames were investigated. A peak reactivity spot, i.e., reaction kernel, is formed in the flame stabilizing region due to back-diffusion of heat and radical species against an oxygen-rich incoming flow, thus holding the trailing diffusion flame. The simulated flame base moved downstream under flow conditions close to the measured stability limit.
ISMI: a classification index for high angular resolution diffusion imaging
NASA Astrophysics Data System (ADS)
Röttger, D.; Dudai, D.; Merhof, D.; Müller, S.
2012-02-01
Magnetic resonance diffusion imaging provides a unique insight into the white matter architecture of the brain in vivo. Applications include neurosurgical planning and fundamental neuroscience. Contrary to diffusion tensor imaging (DTI), high angular resolution diffusion imaging (HARDI) is able to characterize complex intra-voxel diffusion distributions and hence provides more accurate information about the true diffusion profile. Anisotropy indices aim to reduce the information of the diffusion probability function to a meaningful scalar representation that classifies the underlying diffusion and thereby the neuronal fiber configuration within a voxel. These indices can be used to answer clinical questions such as the integrity of certain neuronal pathways. Information about the underlying fiber distribution can be beneficial in tractography approaches, reconstructing neuronal pathways using local diffusion orientations. Therefore, an accurate classification of diffusion profiles is of great interest. However, the differentiation between multiple fiber orientations and isotropic diffusion is still a challenging task. In this work, we introduce ISMI, an index which successfully differentiates isotropic diffusion and single and multiple fiber populations. The classifier is based on the orientation distribution function (ODF) resulting from Q-ball imaging. We compare our results with the well-known general fractional anisotropy (GFA) index using a fiber phantom comprising challenging diffusion profiles such as crossing, fanning and kissing fiber configurations and a human brain dataset considering the centrum semiovale. Additionally, we visualize the results directly on the fibers represented by streamtubes using a heat color map.
NASA Astrophysics Data System (ADS)
Demberg, Kerstin; Laun, Frederik Bernd; Windschuh, Johannes; Umathum, Reiner; Bachert, Peter; Kuder, Tristan Anselm
2017-02-01
Diffusion pore imaging is an extension of diffusion-weighted nuclear magnetic resonance imaging enabling the direct measurement of the shape of arbitrarily formed, closed pores by probing diffusion restrictions using the motion of spin-bearing particles. Examples of such pores comprise cells in biological tissue or oil containing cavities in porous rocks. All pores contained in the measurement volume contribute to one reconstructed image, which reduces the problem of vanishing signal at increasing resolution present in conventional magnetic resonance imaging. It has been previously experimentally demonstrated that pore imaging using a combination of a long and a narrow magnetic field gradient pulse is feasible. In this work, an experimental verification is presented showing that pores can be imaged using short gradient pulses only. Experiments were carried out using hyperpolarized xenon gas in well-defined pores. The phase required for pore image reconstruction was retrieved from double diffusion encoded (DDE) measurements, while the magnitude could either be obtained from DDE signals or classical diffusion measurements with single encoding. The occurring image artifacts caused by restrictions of the gradient system, insufficient diffusion time, and by the phase reconstruction approach were investigated. Employing short gradient pulses only is advantageous compared to the initial long-narrow approach due to a more flexible sequence design when omitting the long gradient and due to faster convergence to the diffusion long-time limit, which may enable application to larger pores.
Calculation and application of combined diffusion coefficients in thermal plasmas
NASA Astrophysics Data System (ADS)
Murphy, Anthony B.
2014-03-01
The combined diffusion coefficient method is widely used to treat the mixing and demixing of different plasma gases and vapours in thermal plasmas, such as welding arcs and plasma jets. It greatly simplifies the treatment of diffusion for many gas mixtures without sacrificing accuracy. Here, three subjects that are important in the implementation of the combined diffusion coefficient method are considered. First, it is shown that different expressions for the combined diffusion coefficients, arising from different definitions for the stoichiometric coefficients that assign the electrons to the two gases, are equivalent. Second, an approach is presented for calculating certain partial differential terms in the combined temperature and pressure diffusion coefficients that can cause difficulties. Finally, a method for applying the combined diffusion coefficients in computational models, which typically require diffusion to be expressed in terms of mass fraction gradients, is given.
Mastocytosis, diffuse cutaneous (image)
This is a picture of diffuse, cutaneous mastocytosis. Abnormal collections of cells in the skin (mast cells) produce this rash. Unlike bullous mastocytosis, rubbing will not lead to formation of blisters ( ...
Factorized Diffusion Map Approximation.
Amizadeh, Saeed; Valizadegan, Hamed; Hauskrecht, Milos
2012-01-01
Diffusion maps are among the most powerful Machine Learning tools to analyze and work with complex high-dimensional datasets. Unfortunately, the estimation of these maps from a finite sample is known to suffer from the curse of dimensionality. Motivated by other machine learning models for which the existence of structure in the underlying distribution of data can reduce the complexity of estimation, we study and show how the factorization of the underlying distribution into independent subspaces can help us to estimate diffusion maps more accurately. Building upon this result, we propose and develop an algorithm that can automatically factorize a high dimensional data space in order to minimize the error of estimation of its diffusion map, even in the case when the underlying distribution is not decomposable. Experiments on both the synthetic and real-world datasets demonstrate improved estimation performance of our method over the standard diffusion-map framework.
Novel Diffusivity Measurement Technique
NASA Technical Reports Server (NTRS)
Rashidnia, Nasser
2001-01-01
A common-path interferometer (CPI) system was developed to measure the diffusivity of liquid pairs. The CPI is an optical technique that can be used to measure changes in the gradient of the refraction index of transparent materials. This system uses a shearing interferometer that shares the same optical path from a laser light source to the final imaging plane. Hence, the molecular diffusion coefficient of liquids can be determined using the physical relations between changes in the optical path length and the liquid phase properties. The data obtained with this interferometer were compared with similar results from other techniques and demonstrated that the instrument is superior in measuring the diffusivity of miscible liquids while keeping the system very compact and robust. CPI can also be used for studies in interface dynamics and other diffusion-dominated-process applications.
Factorized Diffusion Map Approximation
Amizadeh, Saeed; Valizadegan, Hamed; Hauskrecht, Milos
2013-01-01
Diffusion maps are among the most powerful Machine Learning tools to analyze and work with complex high-dimensional datasets. Unfortunately, the estimation of these maps from a finite sample is known to suffer from the curse of dimensionality. Motivated by other machine learning models for which the existence of structure in the underlying distribution of data can reduce the complexity of estimation, we study and show how the factorization of the underlying distribution into independent subspaces can help us to estimate diffusion maps more accurately. Building upon this result, we propose and develop an algorithm that can automatically factorize a high dimensional data space in order to minimize the error of estimation of its diffusion map, even in the case when the underlying distribution is not decomposable. Experiments on both the synthetic and real-world datasets demonstrate improved estimation performance of our method over the standard diffusion-map framework. PMID:25309676
Diffusion of eccentric microswimmers.
Debnath, Debajyoti; Ghosh, Pulak K; Li, Yunyun; Marchesoni, Fabio; Li, Baowen
2016-02-21
We model the two-dimensional diffusive dynamics of an eccentric artificial microswimmer in a highly viscous medium. We assume that the swimmer's propulsion results from an effective force applied to a center distinct from its center of mass, both centers resting on a body's axis parallel to its average self-propulsion velocity. Moreover, we allow for angular fluctuations of the velocity about the body's axis. We prove, both analytically and numerically, that the ensuing active diffusion of the swimmer is suppressed to an extent that strongly depends on the model parameters. In particular, the active diffusion constant undergoes a transition from a quadratic to a linear dependence on the self-propulsion speed, with practical consequences on the interpretation of the experimental data. Finally, we extend our model to describe the diffusion of chiral eccentric swimmers.
NASA Astrophysics Data System (ADS)
Li, Jun; Tsukamoto, Hiroshi
2001-10-01
A numerical procedure for hydrodynamic redesign of the conventional vaned diffuser into the low solidity vaned diffuser by means of a real-coded genetic algorithm with Boltzmann, Tournament and Roulette Wheel selection is presented. In the first part, an investigation on the relative efficiency of the different real-coded genetic algorithm is carried out on a typical mathematical test function. The real-coded genetic algorithm with Boltzmann selection shows the best optimization performance compared to the Tournament and Roulette Wheel selection. In the second part, an approach to redesign the vaned diffuser profile is introduced. Goal of the optimum design is to search the highest static pressure recovery coefficient and low solidity vaned diffuser. The result of the low solidity vaned diffuser optimum design confirms that the efficiency and optimization performance of the real-coded Boltzmann selection genetic algorithm outperforms the other selection methods. A comparison between the designed low solidity vaned diffuser and original vaned diffuser shows that the diffuser pump with the redesigned low solidity vaned diffuser has the higher static pressure recovery and improved total hydrodynamic performance. In addition, the smaller outlet diameter of designed vaned diffuser tends to a more compact size of diffuser pump compared to the original diffuser pump. The obtained results also demonstrate the real-coded Boltzmann selection genetic algorithm is a promising optimization algorithm for centrifugal pumps design.
Berringer, R.T.; Myron, D.L.
1980-11-04
A nuclear reactor upper internal guide tube has a flow diffuser integral with its bottom end. The guide tube provides guidance for control rods during their ascent or descent from the reactor core. The flow diffuser serves to divert the upward flow of reactor coolant around the outside of the guide tube thereby limiting the amount of coolant flow and turbulence within the guide tube, thus enhancing the ease of movement of the control rods.
Sollmann, Nico; Wildschuetz, Noémie; Kelm, Anna; Conway, Neal; Moser, Tobias; Bulubas, Lucia; Kirschke, Jan S; Meyer, Bernhard; Krieg, Sandro M
2017-03-31
OBJECTIVE Navigated transcranial magnetic stimulation (nTMS) and diffusion tensor imaging fiber tracking (DTI FT) based on nTMS data are increasingly used for preoperative planning and resection guidance in patients suffering from motor-eloquent brain tumors. The present study explores whether nTMS-based DTI FT can also be used for individual preoperative risk assessment regarding surgery-related motor impairment. METHODS Data derived from preoperative nTMS motor mapping and subsequent nTMS-based tractography in 86 patients were analyzed. All patients suffered from high-grade glioma (HGG), low-grade glioma (LGG), or intracranial metastasis (MET). In this context, nTMS-based DTI FT of the corticospinal tract (CST) was performed at a range of fractional anisotropy (FA) levels based on an individualized FA threshold ([FAT]; tracking with 50%, 75%, and 100% FAT), which was defined as the highest FA value allowing for visualization of fibers (100% FAT). Minimum lesion-to-CST distances were measured, and fiber numbers of the reconstructed CST were assessed. These data were then correlated with the preoperative, postoperative, and follow-up status of motor function and the resting motor threshold (rMT). RESULTS At certain FA levels, a statistically significant difference in lesion-to-CST distances was observed between patients with HGG who had no impairment and those who developed surgery-related transient or permanent motor deficits (75% FAT: p = 0.0149; 100% FAT: p = 0.0233). In this context, no patient with a lesion-to-CST distance ≥ 12 mm suffered from any new surgery-related permanent paresis (50% FAT and 75% FAT). Furthermore, comparatively strong negative correlations were observed between the rMT and lesion-to-CST distances of patients with surgery-related transient paresis (Spearman correlation coefficient [rs]; 50% FAT: rs = -0.8660; 75% FAT: rs = -0.8660) or surgery-related permanent paresis (50% FAT: rs = -0.7656; 75% FAT: rs = -0.6763). CONCLUSIONS This is
Advanced manufacturing: Technology diffusion
Tesar, A.
1995-12-01
In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.
NASA Astrophysics Data System (ADS)
Stenhouse, Iona; O'Neill, Hugh; Lister, Gordon
2010-05-01
Diffusion rates in natural ilmenite of composition Fe0.842+ Fe0.163+Mn0.07Mg0.01Ti 0.92O3 from the Vishnevye Mountains (Urals, Russia) have been measured at 1000° C. Experiments were carried out in a one atmosphere furnace with oxygen fugacity controlled by flow of a CO-CO2 gas mixture, over a period of four hours. The diffusant source was a synthetic ilmenite (FeTiO3) powder doped with trace amounts of Mg, Co, Ni, Zr, Hf, V, Nb, Ta, Al, Cr, Ga and Y. Since, the natural ilmenite crystal contained Mn it was also possible to study diffusion of Mn from the ilmenite crystal. The experiments were analysed using the electron microprobe and scanning laser ablation ICP-MS. Diffusion profiles were measured for Al, Mg, Mn, Co, Ni, Ga, and Y. Diffusion of Cr, Hf, Zr, V, Nb and Ta was too slow to allow diffusion profiles to be accurately measured for the times and temperatures studied so far. The preliminary results show that diffusion in ilmenite is fast, with the diffusivity determined in this study on the order of 10-13 to 10-16 m2s-1. For comparison, Chakraborty (1997) found interdiffusion of Fe and Mg in olivine at 1000° C on the order of 10-17 to 10-18m2s-1 and Dieckmann (1998) found diffusivity of Fe, Mg, Co in magnetite at 1200° C to be on the order of 10-13 to 10-14 m2s-1. The order in which the diffusivity of the elements decreases is Mn > Co > Mg ≥ Ni > Al ≥ Y ≥ Ga, that is to say that Mn diffuses the fastest and Ga the slowest. Overall, this study intends to determine diffusion parameters such as frequency factor, activation energy and activation volume as a function of temperature and oxygen fugacity. This research is taking place in the context of a larger study focusing on the use of the garnet-ilmenite system as a geospeedometer. Examination of the consequences of simultaneous diffusion of multiple elements is a necessity if we are to develop an understanding of the crystal-chemical controls on diffusion (cf Spandler & O'Neill, in press). Chakraborty
NASA Astrophysics Data System (ADS)
Özarslan, Evren; Basser, Peter J.; Shepherd, Timothy M.; Thelwall, Peter E.; Vemuri, Baba C.; Blackband, Stephen J.
2006-12-01
This report introduces a novel method to characterize the diffusion-time dependence of the diffusion-weighted magnetic resonance (MR) signal in biological tissues. The approach utilizes the theory of diffusion in disordered media where two parameters, the random walk dimension and the spectral dimension, describe the evolution of the average propagators obtained from q-space MR experiments. These parameters were estimated, using several schemes, on diffusion MR spectroscopy data obtained from human red blood cell ghosts and nervous tissue autopsy samples. The experiments demonstrated that water diffusion in human tissue is anomalous, where the mean-square displacements vary slower than linearly with diffusion time. These observations are consistent with a fractal microstructure for human tissues. Differences observed between healthy human nervous tissue and glioblastoma samples suggest that the proposed methodology may provide a novel, clinically useful form of diffusion MR contrast.
A Mapping method for mixing with diffusion
NASA Astrophysics Data System (ADS)
Schlick, Conor P.; Christov, Ivan C.; Umbanhowar, Paul B.; Ottino, Julio M.; Lueptow, Richard M.
2012-11-01
We present an accurate and efficient computational method for solving the advection-diffusion equation in time-periodic chaotic flows. The method uses operator splitting which allows advection and diffusion steps to be treated independently. Taking advantage of flow periodicity, the advection step is solved with a mapping method, and diffusion is added discretely after each iteration of the advection map. This approach allows for a ``composite'' mapping matrix to be constructed for an entire period of a chaotic advection-diffusion process, which provides a natural approach to the spectral analysis of mixing. To test the approach, we consider the two-dimensional time-periodic sine flow. When compared to the exact solution for this simple velocity field, the operator splitting method exhibits qualitative agreement (overall concentration structure) for large time steps and is quantitatively accurate (average and maximum error) for small time steps. We extend the operator splitting approach to three-dimensional chaotic flows. Funded by NSF Grant CMMI-1000469. Present affiliation: Princeton University. Supported by NSF Grant DMS-1104047.
Modelling Diffusion of a Personalized Learning Framework
ERIC Educational Resources Information Center
Karmeshu; Raman, Raghu; Nedungadi, Prema
2012-01-01
A new modelling approach for diffusion of personalized learning as an educational process innovation in social group comprising adopter-teachers is proposed. An empirical analysis regarding the perception of 261 adopter-teachers from 18 schools in India about a particular personalized learning framework has been made. Based on this analysis,…
Evolution of diffusion and dissemination theory.
Dearing, James W
2008-01-01
The article provides a review and considers how the diffusion of innovations Research paradigm has changed, and offers suggestions for the further development of this theory of social change. Main emphases of diffusion Research studies are compared over time, with special attention to applications of diffusion theory-based concepts as types of dissemination science. A considerable degree of paradigmatic evolution is observed. The classical diffusion model focused on adopter innovativeness, individuals as the locus of decision, communication channels, and adoption as the primary outcome measures in post hoc observational study designs. The diffusion systems in question were centralized, with fidelity of implementation often assumed. Current dissemination Research and practice is better characterized by tests of interventions that operationalize one or more diffusion theory-based concepts and concepts from other change approaches, involve complex organizations as the units of adoption, and focus on implementation issues. Foment characterizes dissemination and implementation Research, Reflecting both its interdisciplinary Roots and the imperative of spreading evidence-based innovations as a basis for a new paradigm of translational studies of dissemination science.
Diffusion of residual monomer in polymer resins.
Piver, W T
1976-01-01
A simplified mathematical model which made use of Fick's laws of diffusion written in spherical coordinates was developed to describe the rate of diffusion of residual monomers from polymer resins. The properties of the monomer-polymer system which influenced the amount of monomer remaining in the polymer as a function of time were the diffusivity and solubility of the monomer in the polymer, and the particle size of the polymer resin. This model was used to analyze literature data on the diffusion of residual vinyl chloride monomer in polyvinyl chloride resins made by the suspension process. It was concluded that particle size of the resin was a significant parameter which should be taken advantage of in process equipment designed to remove residual monomer from PVC resins. The diffusivity of the monomer in the polymer was a function of the solubility of the monomer in the polymer. Monomer solubility can be determined from Henry's law. It was suggested that this model could be adapted to describe diffusion of monomers from any monomer-polymer system, and would be a useful approach to modeling the transport of nonreactive chemical additives from plastics. PMID:1026410
NASA Astrophysics Data System (ADS)
Horne, Richard B.; Kersten, Tobias; Glauert, Sarah A.; Meredith, Nigel P.; Boscher, Daniel; Sicard, Angelica; Maget, Vincent
2013-04-01
Whistler mode chorus waves play a major role in the loss and acceleration of electrons in the Earth's radiation belts. While high time resolution satellite data show that these waves are highly structured in frequency and time, at present their effects on the electron distribution can only be assessed on a global scale by using quasi-linear diffusion theory. Here we present new quasi-linear diffusion coefficients for upper and lower band chorus waves for use in global radiation belt models. Using data from DE 1 CRRES, Cluster 1, Double Star TC1 and THEMIS, we have constructed a database of wave properties and used this to construct new diffusion coefficients for L* = 1.5 to 10 in steps of 0.5, 10 latitude bins between 0o and 60o ,8 bins in MLT and 5 levels of geomagnetic activity as measured by Kp. We find that the peak frequency of lower band chorus is close to 0.2 fce, which is lower than that used in previous models. The combined upper and lower band chorus diffusion shows structure that should result in an energy dependent pitch angle anisotropy, particularly between 1 keV and 100 keV. The diffusion rates suggest that wave-particle interactions should still be very important outside geostationary orbit, out to at least L* = 8. We find significant energy diffusion near 1 keV near the loss cone, consistent with wave growth. By including the new chorus diffusion matrix into the BAS radiation belt (BRB) model we compare the effects on the evolution of the radiation belts against previous models.
Information diffusion in structured online social networks
NASA Astrophysics Data System (ADS)
Li, Pei; Zhang, Yini; Qiao, Fengcai; Wang, Hui
2015-05-01
Nowadays, due to the word-of-mouth effect, online social networks have been considered to be efficient approaches to conduct viral marketing, which makes it of great importance to understand the diffusion dynamics in online social networks. However, most research on diffusion dynamics in epidemiology and existing social networks cannot be applied directly to characterize online social networks. In this paper, we propose models to characterize the information diffusion in structured online social networks with push-based forwarding mechanism. We introduce the term user influence to characterize the average number of times that messages are browsed which is incurred by a given type user generating a message, and study the diffusion threshold, above which the user influence of generating a message will approach infinity. We conduct simulations and provide the simulation results, which are consistent with the theoretical analysis results perfectly. These results are of use in understanding the diffusion dynamics in online social networks and also critical for advertisers in viral marketing who want to estimate the user influence before posting an advertisement.
Clustering method for estimating principal diffusion directions
Nazem-Zadeh, Mohammad-Reza; Jafari-Khouzani, Kourosh; Davoodi-Bojd, Esmaeil; Jiang, Quan; Soltanian-Zadeh, Hamid
2012-01-01
Diffusion tensor magnetic resonance imaging (DTMRI) is a non-invasive tool for the investigation of white matter structure within the brain. However, the traditional tensor model is unable to characterize anisotropies of orders higher than two in heterogeneous areas containing more than one fiber population. To resolve this issue, high angular resolution diffusion imaging (HARDI) with a large number of diffusion encoding gradients is used along with reconstruction methods such as Q-ball. Using HARDI data, the fiber orientation distribution function (ODF) on the unit sphere is calculated and used to extract the principal diffusion directions (PDDs). Fast and accurate estimation of PDDs is a prerequisite for tracking algorithms that deal with fiber crossings. In this paper, the PDDs are defined as the directions around which the ODF data is concentrated. Estimates of the PDDs based on this definition are less sensitive to noise in comparison with the previous approaches. A clustering approach to estimate the PDDs is proposed which is an extension of fuzzy c-means clustering developed for orientation of points on a sphere. MDL (Minimum description length) principle is proposed to estimate the number of PDDs. Using both simulated and real diffusion data, the proposed method has been evaluated and compared with some previous protocols. Experimental results show that the proposed clustering algorithm is more accurate, more resistant to noise, and faster than some of techniques currently being utilized. PMID:21642005
Diffusion Influenced Adsorption Kinetics.
Miura, Toshiaki; Seki, Kazuhiko
2015-08-27
When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.
Primary diffuse leptomeningeal gliosarcomatosis.
Moon, Ju Hyung; Kim, Se Hoon; Kim, Eui Hyun; Kang, Seok-Gu; Chang, Jong Hee
2015-04-01
Primary diffuse leptomeningeal gliomatosis (PDLG) is a rare condition with a fatal outcome, characterized by diffuse infiltration of the leptomeninges by neoplastic glial cells without evidence of primary tumor in the brain or spinal cord parenchyma. In particular, PDLG histologically diagnosed as gliosarcoma is extremely rare, with only 2 cases reported to date. We report a case of primary diffuse leptomeningeal gliosarcomatosis. A 68-year-old man presented with fever, chilling, headache, and a brief episode of mental deterioration. Initial T1-weighted post-contrast brain magnetic resonance imaging (MRI) showed diffuse leptomeningeal enhancement without a definite intraparenchymal lesion. Based on clinical and imaging findings, antiviral treatment was initiated. Despite the treatment, the patient's neurologic symptoms and mental status progressively deteriorated and follow-up MRI showed rapid progression of the disease. A meningeal biopsy revealed gliosarcoma and was conclusive for the diagnosis of primary diffuse leptomeningeal gliosarcomatosis. We suggest the inclusion of PDLG in the potential differential diagnosis of patients who present with nonspecific neurologic symptoms in the presence of leptomeningeal involvement on MRI.
Multidimensional diffusion MRI
NASA Astrophysics Data System (ADS)
Topgaard, Daniel
2017-02-01
Principles from multidimensional NMR spectroscopy, and in particular solid-state NMR, have recently been transferred to the field of diffusion MRI, offering non-invasive characterization of heterogeneous anisotropic materials, such as the human brain, at an unprecedented level of detail. Here we revisit the basic physics of solid-state NMR and diffusion MRI to pinpoint the origin of the somewhat unexpected analogy between the two fields, and provide an overview of current diffusion MRI acquisition protocols and data analysis methods to quantify the composition of heterogeneous materials in terms of diffusion tensor distributions with size, shape, and orientation dimensions. While the most advanced methods allow estimation of the complete multidimensional distributions, simpler methods focus on various projections onto lower-dimensional spaces as well as determination of means and variances rather than actual distributions. Even the less advanced methods provide simple and intuitive scalar parameters that are directly related to microstructural features that can be observed in optical microscopy images, e.g. average cell eccentricity, variance of cell density, and orientational order - properties that are inextricably entangled in conventional diffusion MRI. Key to disentangling all these microstructural features is MRI signal acquisition combining isotropic and directional dimensions, just as in the field of multidimensional solid-state NMR from which most of the ideas for the new methods are derived.
Diffuser for wellhead isolation tool
Surjaatmadja, J.B.
1981-04-21
An improved diffuser for a wellhead isolation tool which employs a combination of angles in its bore. This improvement reduces the incidence of erosion caused by the flow of fluids through the diffuser, in both the well production tubing adjacent the end of the diffuser and in the diffuser itself.
Reaction-diffusion basis of retroviral infectivity
NASA Astrophysics Data System (ADS)
Sadiq, S. Kashif
2016-11-01
Retrovirus particle (virion) infectivity requires diffusion and clustering of multiple transmembrane envelope proteins (Env3) on the virion exterior, yet is triggered by protease-dependent degradation of a partially occluding, membrane-bound Gag polyprotein lattice on the virion interior. The physical mechanism underlying such coupling is unclear and only indirectly accessible via experiment. Modelling stands to provide insight but the required spatio-temporal range far exceeds current accessibility by all-atom or even coarse-grained molecular dynamics simulations. Nor do such approaches account for chemical reactions, while conversely, reaction kinetics approaches handle neither diffusion nor clustering. Here, a recently developed multiscale approach is considered that applies an ultra-coarse-graining scheme to treat entire proteins at near-single particle resolution, but which also couples chemical reactions with diffusion and interactions. A model is developed of Env3 molecules embedded in a truncated Gag lattice composed of membrane-bound matrix proteins linked to capsid subunits, with freely diffusing protease molecules. Simulations suggest that in the presence of Gag but in the absence of lateral lattice-forming interactions, Env3 diffuses comparably to Gag-absent Env3. Initial immobility of Env3 is conferred through lateral caging by matrix trimers vertically coupled to the underlying hexameric capsid layer. Gag cleavage by protease vertically decouples the matrix and capsid layers, induces both matrix and Env3 diffusion, and permits Env3 clustering. Spreading across the entire membrane surface reduces crowding, in turn, enhancing the effect and promoting infectivity. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.
Nielsen, B.; Lynn, K.G.; Vehanen, A.; Schultz, P.J.
1985-06-01
Positron diffusion in Si(100) and Si(111) has been studied using a variable energy positron beam. The positron diffusion coefficient is found to be D/sub +/ = 2.7 +- 0.3 cm/sup 2//sec using a Makhov-type positron implantation profile, which is demonstrated to fit the data more reliably than the more commonly applied exponential profile. The diffusion related parameter, E/sub 0/, which results from the exponential profile, is found to be 4.2 +- 0.2 keV, significantly longer than previously reported values. A drastic reduction in E/sub 0/ is found after annealing the sample at 1300 K, showing that previously reported low values of E/sub 0/ are probably associated with the thermal history of the sample.
Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.
1980-05-01
Experiments on diffusion of /sup 137/Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of /sup 137/Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000/sup 0/C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ..delta..E of the equation D/epsilon = (D/epsilon)/sub 0/ exp (-..delta..E/RT) are about 4 x 10/sup -2/ cm/sup 2//s and 30 kcal/mole, respectively.
Apparatus for diffusion separation
Nierenberg, William A.; Pontius, Rex B.
1976-08-10
1. The method of testing the separation efficiency of porous permeable membranes which comprises causing a stream of a gaseous mixture to flow into contact with one face of a finely porous permeable membrane under such conditions that a major fraction of the mixture diffuses through the membrane, maintaining a rectangular cross section of the gaseous stream so flowing past said membrane, continuously recirculating the gas that diffuses through said membrane and continuously withdrawing the gas that does not diffuse through said membrane and maintaining the volume of said recirculating gas constant by continuously introducing into said continuously recirculating gas stream a mass of gas equivalent to that which is continuously withdrawn from said gas stream and comparing the concentrations of the light component in the entering gas, the withdrawn gas and the recirculated gas in order to determine the efficiency of said membrane.
[Liver ultrasound: focal lesions and diffuse diseases].
Segura Grau, A; Valero López, I; Díaz Rodríguez, N; Segura Cabral, J M
2016-01-01
Liver ultrasound is frequently used as a first-line technique for the detection and characterization of the most common liver lesions, especially those incidentally found focal liver lesions, and for monitoring of chronic liver diseases. Ultrasound is not only used in the Bmode, but also with Doppler and, more recently, contrast-enhanced ultrasound. It is mainly used in the diagnosis of diffuse liver diseases, such as steatosis or cirrhosis. This article presents a practical approach for diagnosis workup, in which the different characteristics of the main focal liver lesions and diffuse liver diseases are reviewed.
Diffuse neutrino flux from failed supernovae.
Lunardini, Cecilia
2009-06-12
I study the diffuse flux of electron antineutrinos from stellar collapses with direct black hole formation (failed supernovae). This flux is more energetic than that from successful supernovae, and therefore it might contribute substantially to the total diffuse flux above realistic detection thresholds. The total flux might be considerably higher than previously thought, and approach the sensitivity of Super-Kamiokande. For more conservative values of the parameters, the flux from failed supernovae dominates for antineutrino energies above 30-45 MeV, with potential to give an observable spectral distortion at megaton detectors.
Radon Diffusion Measurement in Polyethylene based on Alpha Detection
Rau, Wolfgang
2011-04-27
We present a method to measure the diffusion of Radon in solid materials based on the alpha decay of the radon daughter products. In contrast to usual diffusion measurements which detect the radon that penetrates a thin barrier, we let the radon diffuse into the material and then measure the alpha decays of the radon daughter products in the material. We applied this method to regular and ultra high molecular weight poly ethylene and find diffusion lengths of order of mm as expected. However, the preliminary analysis shows significant differences between two different approaches we have chosen. These differences may be explained by the different experimental conditions.
Diffusion in κ-deformed space and spectral dimension
NASA Astrophysics Data System (ADS)
Anjana, V.
2016-03-01
In this paper, we derive the expression for spectral dimension using a modified diffusion equation in the κ-deformed spacetime. We start with the Beltrami-Laplace operator in the κ-Minkowski spacetime and obtain the deformed diffusion equation. From the solution of this deformed diffusion equation, we calculate the spectral dimension which depends on the deformation parameter “a = 1 κ” and also on an integer “l”, apart from the topological dimension. Using this, we show that, for large diffusion times the spectral dimension approaches the usual topological dimension whereas spectral dimension diverges to + ∞ for l ≥ 0 and -∞ for l < 0 at high energies.
[Microbial diffusion and antibiotherapy].
Vilain, R
1982-01-01
Cleaning leg ulcers depends on tissular and microbial enzymes, the production of which depends on good vascularization. When an aetiological treatment is started, the microbes ensure sufficient cleaning, leading to granulation and epidermization. Antibiotherapy is pointless. Sometimes it can be detrimental, replacing a natural growth with alien strains which cause diffusion. Very exceptionally, a short course of antibiotherapy may be necessary to cope with signs of diffusion, usually signifying a Group A streptococcal infection, with seasonal recrudescence. The Blue Pus Microbe has no special pathological significance. It merely indicates that the case has become chronic.
NASA Astrophysics Data System (ADS)
Ingrin, Jannick; Zhang, Peipei
2016-04-01
Hydrogen mobility in gem quality zircon single crystals from Madagascar was investigated through H-D exchange experiments. Thin slices were annealed in a horizontal furnace flushed with a gas mixture of Ar/D2(10%) under ambient pressure between 900 ° C to 1150 ° C. FTIR analyses were performed on oriented slices before and after each annealing run. H diffusion along [100] and [010] follow the same diffusion law D = D0exp[-E /RT], with log D0 = 2.24 ± 1.57 (in m2/s) and E = 374 ± 39 kJ/mol. H diffusion along [001] follows a slightly more rapid diffusion law, with log D0 = 1.11 ± 0.22 (in m2/s) and E = 334 ± 49 kJ/mol. H diffusion in zircon has much higher activation energy and slower diffusivity than other NAMs below 1150 ° C even iron-poor garnets which are known to be among the slowest (Blanchard and Ingrin, 2004; Kurka et al. 2005). During H-D exchange zircon incorporates also deuterium. This hydration reaction involves uranium reduction as it is shown from the exchange of U5+ and U4+ characteristic bands in the near infrared region during annealing. It is the first time that a hydration reaction U5+ + OH- = U4+ + O2- + 1/2H2, is experimentally reported. The kinetics of deuterium incorporation is slightly slower than hydrogen diffusion, suggesting that the reaction is limited by hydrogen mobility. Hydrogen isotopic memory of zircon is higher than other NAMs. Zircons will be moderately retentive of H signatures at mid-crustal metamorphic temperatures. At 500 ° C, a zircon with a radius of 300 μm would retain its H isotopic signature over more than a million years. However, a zircon is unable to retain this information for geologically significant times under high-grade metamorphism unless the grain size is large enough. Refrences Blanchard, M. and Ingrin, J. (2004) Hydrogen diffusion in Dora Maira pyrope. Physics and Chemistry of Minerals, 31, 593-605. Kurka, A., Blanchard, M. and Ingrin, J. (2005) Kinetics of hydrogen extraction and deuteration in
Multispecies diffusion models: A study of uranyl species diffusion
NASA Astrophysics Data System (ADS)
Liu, Chongxuan; Shang, Jianying; Zachara, John M.
2011-12-01
Rigorous numerical description of multispecies diffusion requires coupling of species, charge, and aqueous and surface complexation reactions that collectively affect diffusive fluxes. The applicability of a fully coupled diffusion model is, however, often constrained by the availability of species self-diffusion coefficients, as well as by computational complication in imposing charge conservation. In this study, several diffusion models with variable complexity in charge and species coupling were formulated and compared to describe reactive multispecies diffusion in groundwater. Diffusion of uranyl [U(VI)] species was used as an example in demonstrating the effectiveness of the models in describing multispecies diffusion. Numerical simulations found that a diffusion model with a single, common diffusion coefficient for all species was sufficient to describe multispecies U(VI) diffusion under a steady state condition of major chemical composition, but not under transient chemical conditions. Simulations revealed that for multispecies U(VI) diffusion under transient chemical conditions, a fully coupled diffusion model could be well approximated by a component-based diffusion model when the diffusion coefficient for each chemical component was properly selected. The component-based diffusion model considers the difference in diffusion coefficients between chemical components, but not between the species within each chemical component. This treatment significantly enhanced computational efficiency at the expense of minor charge conservation. The charge balance in the component-based diffusion model can be enforced, if necessary, by adding a secondary migration term resulting from model simplification. The effect of ion activity coefficient gradients on multispecies diffusion is also discussed. The diffusion models were applied to describe U(VI) diffusive mass transfer in intragranular domains in two sediments collected from U.S. Department of Energy's Hanford 300A
A memory diffusion model for molecular anisotropic diffusion in siliceous β-zeolite.
Ji, Xiangfei; An, Zhuanzhuan; Yang, Xiaofeng
2016-01-01
A memory diffusion model of molecules on β-zeolite is proposed. In the model, molecular diffusion in β-zeolites is treated as jumping from one adsorption site to its neighbors and the jumping probability is a compound probability which includes that provided by the transitional state theory as well as that derived from the information about which direction the target molecule comes from. The proposed approach reveals that the diffusivities along two crystal axes on β-zeolite are correlated. The model is tested by molecular dynamics simulations on diffusion of benzene and other simple molecules in β-zeolites. The results show that the molecules with larger diameters fit the prediction much better and that the "memory effects" are important in all cases.
IMPURITY AND TRACER DIFFUSION STUDIES IN MAGNESIUM AND ITS ALLOYS
Brennan, Sarah; Sohn, Yong Ho; Warren, Andrew; Coffey, Kevin; Klimov, Mikhail; Kulkarni, Nagraj S; Todd, Peter J
2010-01-01
An Integrated Computational Materials Engineering (ICME) approach for optimizing processing routes for Mg-alloys requires reliable thermodynamic and diffusion databases. We are developing an impurity and tracer diffusion database using both stable and unstable isotopes for Mg and its alloys. In this study, Al impurity diffusion in pure polycrystalline Mg (99.9%) was examined using the thin film method. Approximately 500 nm thick Al films were deposited on in-situ RF plasma-cleaned polycrystalline Mg by DC magnetron sputtering from pure Al (99.9%) targets. Specimens were then diffusion annealed at 300, 350 and 400 C in quartz capsules that were evacuated to 10-8 Torr and backfilled with Ar-H2 mixtures. Concentration profile of Al diffusion profiles into single phase Mg was determined by depth-profiling technique using secondary ion mass spectroscopy. The Al impurity diffusion coefficients were determined as a function of temperature
Restoration of rhythmicity in diffusively coupled dynamical networks.
Zou, Wei; Senthilkumar, D V; Nagao, Raphael; Kiss, István Z; Tang, Yang; Koseska, Aneta; Duan, Jinqiao; Kurths, Jürgen
2015-07-15
Oscillatory behaviour is essential for proper functioning of various physical and biological processes. However, diffusive coupling is capable of suppressing intrinsic oscillations due to the manifestation of the phenomena of amplitude and oscillation deaths. Here we present a scheme to revoke these quenching states in diffusively coupled dynamical networks, and demonstrate the approach in experiments with an oscillatory chemical reaction. By introducing a simple feedback factor in the diffusive coupling, we show that the stable (in)homogeneous steady states can be effectively destabilized to restore dynamic behaviours of coupled systems. Even a feeble deviation from the normal diffusive coupling drastically shrinks the death regions in the parameter space. The generality of our method is corroborated in diverse non-linear systems of diffusively coupled paradigmatic models with various death scenarios. Our study provides a general framework to strengthen the robustness of dynamic activity in diffusively coupled dynamical networks.
Improved input parameters for diffusion models of skin absorption.
Hansen, Steffi; Lehr, Claus-Michael; Schaefer, Ulrich F
2013-02-01
To use a diffusion model for predicting skin absorption requires accurate estimates of input parameters on model geometry, affinity and transport characteristics. This review summarizes methods to obtain input parameters for diffusion models of skin absorption focusing on partition and diffusion coefficients. These include experimental methods, extrapolation approaches, and correlations that relate partition and diffusion coefficients to tabulated physico-chemical solute properties. Exhaustive databases on lipid-water and corneocyte protein-water partition coefficients are presented and analyzed to provide improved approximations to estimate lipid-water and corneocyte protein-water partition coefficients. The most commonly used estimates of lipid and corneocyte diffusion coefficients are also reviewed. In order to improve modeling of skin absorption in the future diffusion models should include the vertical stratum corneum heterogeneity, slow equilibration processes, the absorption from complex non-aqueous formulations, and an improved representation of dermal absorption processes. This will require input parameters for which no suitable estimates are yet available.
Water vapor diffusion membranes
NASA Technical Reports Server (NTRS)
Holland, F. F., Jr.; Smith, J. K.
1974-01-01
The program is reported, which was designed to define the membrane technology of the vapor diffusion water recovery process and to test this technology using commercially available or experimental membranes. One membrane was selected, on the basis of the defined technology, and was subjected to a 30-day demonstration trial.
ERIC Educational Resources Information Center
Sack, Jeff
2005-01-01
OsmoBeaker is a CD-ROM designed to enhance the learning of diffusion and osmosis by presenting interactive experimentation to the student. The software provides several computer simulations that take the student through different scenarios with cells, having different concentrations of solutes in them.
Zhang, Duan Z.; Padrino, Juan C.
2017-06-01
The ensemble averaging technique is applied to model mass transport by diffusion in random networks. The system consists of an ensemble of random networks, where each network is made of pockets connected by tortuous channels. Inside a channel, fluid transport is assumed to be governed by the one-dimensional diffusion equation. Mass balance leads to an integro-differential equation for the pocket mass density. The so-called dual-porosity model is found to be equivalent to the leading order approximation of the integration kernel when the diffusion time scale inside the channels is small compared to the macroscopic time scale. As a test problem,more » we consider the one-dimensional mass diffusion in a semi-infinite domain. Because of the required time to establish the linear concentration profile inside a channel, for early times the similarity variable is xt$-$1/4 rather than xt$-$1/2 as in the traditional theory. We found this early time similarity can be explained by random walk theory through the network.« less
Probing dark exciton diffusion using photovoltage
Mullenbach, Tyler K.; Curtin, Ian J.; Zhang, Tao; Holmes, Russell J.
2017-01-01
The migration of weakly and non-luminescent (dark) excitons remains an understudied subset of exciton dynamics in molecular thin films. Inaccessible via photoluminescence, these states are often probed using photocurrent methods that require efficient charge collection. Here we probe exciton harvesting in both luminescent and dark materials using a photovoltage-based technique. Transient photovoltage permits a real-time measurement of the number of charges in an organic photovoltaic cell, while avoiding non-geminate recombination losses. The extracted exciton diffusion lengths are found to be similar to those determined using photocurrent. For the luminescent material boron subphthalocyanine chloride, the photovoltage determined diffusion length is less than that extracted from photoluminescence. This indicates that while photovoltage circumvents non-geminate losses, geminate recombination at the donor–acceptor interface remains the primary recombination pathway. Photovoltage thus offers a general approach for extracting a device-relevant diffusion length, while also providing insight in to the dominant carrier recombination pathways. PMID:28128206
Surface conservation laws at microscopically diffuse interfaces.
Chu, Kevin T; Bazant, Martin Z
2007-11-01
In studies of interfaces with dynamic chemical composition, bulk and interfacial quantities are often coupled via surface conservation laws of excess surface quantities. While this approach is easily justified for microscopically sharp interfaces, its applicability in the context of microscopically diffuse interfaces is less theoretically well-established. Furthermore, surface conservation laws (and interfacial models in general) are often derived phenomenologically rather than systematically. In this article, we first provide a mathematically rigorous justification for surface conservation laws at diffuse interfaces based on an asymptotic analysis of transport processes in the boundary layer and derive general formulae for the surface and normal fluxes that appear in surface conservation laws. Next, we use nonequilibrium thermodynamics to formulate surface conservation laws in terms of chemical potentials and provide a method for systematically deriving the structure of the interfacial layer. Finally, we derive surface conservation laws for a few examples from diffusive and electrochemical transport.
Probing dark exciton diffusion using photovoltage
NASA Astrophysics Data System (ADS)
Mullenbach, Tyler K.; Curtin, Ian J.; Zhang, Tao; Holmes, Russell J.
2017-01-01
The migration of weakly and non-luminescent (dark) excitons remains an understudied subset of exciton dynamics in molecular thin films. Inaccessible via photoluminescence, these states are often probed using photocurrent methods that require efficient charge collection. Here we probe exciton harvesting in both luminescent and dark materials using a photovoltage-based technique. Transient photovoltage permits a real-time measurement of the number of charges in an organic photovoltaic cell, while avoiding non-geminate recombination losses. The extracted exciton diffusion lengths are found to be similar to those determined using photocurrent. For the luminescent material boron subphthalocyanine chloride, the photovoltage determined diffusion length is less than that extracted from photoluminescence. This indicates that while photovoltage circumvents non-geminate losses, geminate recombination at the donor-acceptor interface remains the primary recombination pathway. Photovoltage thus offers a general approach for extracting a device-relevant diffusion length, while also providing insight in to the dominant carrier recombination pathways.
Comparative analysis of isotropic diffusion weighted imaging sequences
NASA Astrophysics Data System (ADS)
Vellmer, Sebastian; Stirnberg, Rüdiger; Edelhoff, Daniel; Suter, Dieter; Stöcker, Tony; Maximov, Ivan I.
2017-02-01
Visualisation of living tissue structure and function is a challenging problem of modern imaging techniques. Diffusion MRI allows one to probe in vivo structures on a micrometer scale. However, conventional diffusion measurements are time-consuming procedures, because they require several measurements with different gradient directions. Considerable time savings are therefore possible by measurement schemes that generate an isotropic diffusion weighting in a single shot. Multiple approaches for generating isotropic diffusion weighting are known and have become very popular as useful tools in clinical research. Thus, there is a strong need for a comprehensive comparison of different isotropic weighting approaches. In the present work we introduce two new sequences based on simple (co)sine modulations and compare their performance to established q-space magic-angle spinning sequences and conventional DTI, using a diffusion phantom assembled from microcapillaries and in vivo experiments at 7 T. The advantages and disadvantages of all compared schemes are demonstrated and discussed.
Permanganate diffusion and reaction in sedimentary rocks.
Huang, Qiuyuan; Dong, Hailiang; Towne, Rachael M; Fischer, Timothy B; Schaefer, Charles E
2014-04-01
In situ chemical oxidation using permanganate has frequently been used to treat chlorinated solvents in fractured bedrock aquifers. However, in systems where matrix back-diffusion is an important process, the ability of the oxidant to migrate and treat target contaminants within the rock matrix will likely determine the overall effectiveness of this remedial approach. In this study, a series of diffusion experiments were performed to measure the permanganate diffusion and reaction in four different types of sedimentary rocks (dark gray mudstone, light gray mudstone, red sandstone, and tan sandstone). Results showed that, within the experimental time frame (~2 months), oxidant migration into the rock was limited to distances less than 500 μm. The observed diffusivities for permanganate into the rock matrices ranged from 5.3 × 10(-13) to 1.3 × 10(-11) cm(2)/s. These values were reasonably predicted by accounting for both the rock oxidant demand and the effective diffusivity of the rock. Various Mn minerals formed as surface coatings from reduction of permanganate coupled with oxidation of total organic carbon (TOC), and the nature of the formed Mn minerals was dependent upon the rock type. Post-treatment tracer testing showed that these Mn mineral coatings had a negligible impact on diffusion through the rock. Overall, our results showed that the extent of permanganate diffusion and reaction depended on rock properties, including porosity, mineralogy, and organic carbon. These results have important implications for our understanding of long-term organic contaminant remediation in sedimentary rocks using permanganate.
Quantal nucleon diffusion: Central collisions of symmetric nuclei
NASA Astrophysics Data System (ADS)
Ayik, S.; Yilmaz, O.; Yilmaz, B.; Umar, A. S.
2016-10-01
The quantal diffusion mechanism of nucleon exchange is studied in the central collisions of several symmetric heavy ions in the framework of the stochastic mean-field (SMF) approach. Since, at bombarding energies below the fusion barrier, dinuclear structure is maintained, it is possible to describe nucleon exchange as a diffusion process familiar from deep-inelastic collisions. Quantal diffusion coefficients, including memory effects, for proton and neutron exchanges are extracted microscopically employing the SMF approach. The quantal calculations of neutron and proton variances are compared with the semiclassical results.
Erbium diffusion in silicon dioxide
Lu Yingwei; Julsgaard, B.; Petersen, M. Christian; Jensen, R. V. Skougaard; Pedersen, T. Garm; Pedersen, K.; Larsen, A. Nylandsted
2010-10-04
Erbium diffusion in silicon dioxide layers prepared by magnetron sputtering, chemical vapor deposition, and thermal growth has been investigated by secondary ion mass spectrometry, and diffusion coefficients have been extracted from simulations based on Fick's second law of diffusion. Erbium diffusion in magnetron sputtered silicon dioxide from buried erbium distributions has in particular been studied, and in this case a simple Arrhenius law can describe the diffusivity with an activation energy of 5.3{+-}0.1 eV. Within a factor of two, the erbium diffusion coefficients at a given temperature are identical for all investigated matrices.
Impurity Diffusion Coefficients of Al and Zn in Mg Determined from Solid-to-Solid Diffusion Couples
Kammerer, Catherine; Kulkarni, Nagraj S; Warmack, Robert J Bruce; Perry, Kelly A; Belova, Irina; Murch, Prof. Graeme; Sohn, Yong Ho
2013-08-01
Increasing use and development of lightweight Mgalloys have led to the desire for more fundamental research in and understanding of Mg-based systems. As property enhancing components, Al and Zn are two of the most important and common alloying elements for Mg-alloys. We have investigated the concentration dependent interdiffusion of Al and Zn in Mg using diffusion couples of pure polycrystalline Mg mated to Mg solid solutions containing either <9 at.% Al or <3 at.% Zn. Concentration profiles were determined by electron micro-probe microanalysis of the diffusion zone. The interdiffusion coefficients were determined by the classical Boltzmann-Matano method within the Mg solid solution. As the concentration of Al or Zn approaches the dilute ends, we employ an analytical approach based on the Hall method to estimate the impurity diffusion coefficients. Results of Al and Zn impurity diffusion in Mg are reported and compared to published impurity diffusion coefficients typically determined by thin film techniques.
Color image diffusion using adaptive bilateral filter.
Xie, Jun; Ann Heng, Pheng
2005-01-01
In this paper, we propose an approach to diffuse color images based on the bilateral filter. Real image data has a level of uncertainty that is manifested in the variability of measures assigned to pixels. This uncertainty is usually interpreted as noise and considered an undesirable component of the image data. Image diffusion can smooth away small-scale structures and noise while retaining important features, thus improving the performances for many image processing algorithms such as image compression, segmentation and recognition. The bilateral filter is noniterative, simple and fast. It has been shown to give similar and possibly better filtering results than iterative approaches. However, the performance of this filter is greatly affected by the choose of the parameters of filtering kernels. In order to remove noise and maintain the significant features on images, we extend the bilateral filter by introducing an adaptive domain spread into the nonlinear diffusion scheme. For color images, we employ the CIE-Lab color system to describe input images and the filtering process is operated using three channels together. Our analysis shows that the proposed method is more suitable for preserving strong edges on noisy images than the original bilateral filter. Empirical results on both nature images and color medical images confirm the novel method's advantages, and show it can diffuse various kinds of color images correctly and efficiently.
NASA Technical Reports Server (NTRS)
Pond, R. B.
1985-01-01
The objective of this program is to measure the diffusion coefficients for molten Pb in Zn in the immiscible liquid-phase region. Diffusion couples of pure Pb and Zn were prepared using a shear cell. These have been placed in graphite crucibles and encapsulated in stainless steel cartridges and are awaiting the next Materials Experiment Assembly (MEA) flight opportunity. In flight, one couple will be soaked for 40 minutes at 440 deg C (just above the monotectic temperature) and the second couple will be soaked for 40 minutes 820 deg C (just above the consolute temperature). After the soak both samples will be rapidly quenched by flowing He to minimize redistribution of the immiscible phases. Post flight compositional analysis will be accomplished using X-ray fluorescence in the scanning electron microscopy.
NASA Technical Reports Server (NTRS)
Kolawa, E.; So, F. C. T.; Nicolet, M-A.
1986-01-01
Amorphous W-Zr and W-N alloys were investigated as diffusion barriers in silicon metallization schemes. Data were presented showing that amorphous W-Zr crystallizes at 900 C, which is 200 C higher than amorphous W-Ni films, and that both films react with metallic overlayers at temperatures far below the crystllization temperature. Also, W-N alloys (crystalline temperature of 600 C) were successfully incorporated as a diffusion barrier in contact structures with both Al and Ag overlayers. The thermal stability of the electrical characteristics of shallow n(+)p junctions significantly improved by incorporating W-N layers in the contact system. One important fact demonstated was the critical influence of the deposition parameters during formation of these carriers.
Cable, J.W.
1987-01-01
The diffuse scattering of neutrons from magnetic materials provides unique and important information regarding the spatial correlations of the atoms and the spins. Such measurements have been extensively applied to magnetically ordered systems, such as the ferromagnetic binary alloys, for which the observed correlations describe the magnetic moment fluctuations associated with local environment effects. With the advent of polarization analysis, these techniques are increasingly being applied to study disordered paramagnetic systems such as the spin-glasses and the diluted magnetic semiconductors. The spin-pair correlations obtained are essential in understanding the exchange interactions of such systems. In this paper, we describe recent neutron diffuse scattering results on the atom-pair and spin-pair correlations in some of these disordered magnetic systems. 56 refs.
Monte Carlo Calculation as an Aid to Teaching Solid-State Diffusion.
ERIC Educational Resources Information Center
Murch, G. E.
1979-01-01
A simple Monte Carlo method is used to simulate an atomistic model of solid-state diffusion. This approach illustrates some of the principles of diffusion and in particular verifies a solution to Fick's second law. The role and calculation of the diffusion correlation factor is also discussed. (Author/BB)
Fractal model of anomalous diffusion.
Gmachowski, Lech
2015-12-01
An equation of motion is derived from fractal analysis of the Brownian particle trajectory in which the asymptotic fractal dimension of the trajectory has a required value. The formula makes it possible to calculate the time dependence of the mean square displacement for both short and long periods when the molecule diffuses anomalously. The anomalous diffusion which occurs after long periods is characterized by two variables, the transport coefficient and the anomalous diffusion exponent. An explicit formula is derived for the transport coefficient, which is related to the diffusion constant, as dependent on the Brownian step time, and the anomalous diffusion exponent. The model makes it possible to deduce anomalous diffusion properties from experimental data obtained even for short time periods and to estimate the transport coefficient in systems for which the diffusion behavior has been investigated. The results were confirmed for both sub and super-diffusion.
Turbo fluid machinery and diffusers
NASA Technical Reports Server (NTRS)
Sakurai, T.
1984-01-01
The general theory behind turbo devices and diffusers is explained. Problems and the state of research on basic equations of flow and experimental and measuring methods are discussed. Conventional centrifugation-type compressor and fan diffusers are considered in detail.
NASA Astrophysics Data System (ADS)
Baring, Matthew
2003-04-01
The process of diffusive acceleration of charged particles in shocked plasmas is widely invoked in astrophysics to account for the ubiquitous presence of signatures of non-thermal relativistic electrons and ions in the universe. This statistical energization mechanism, manifested in turbulent media, was first posited by Enrico Fermi in 1949 to explain the observed cosmic ray population, which exhibits an almost power-law distribution in rigidity. The absence of a momentum scale is a key characteristic of diffusive shock acceleration, and astrophysical systems generally only impose scales at the injection (low energy) and loss (high energy) ends of the particle spectrum. The existence of structure in the cosmic ray spectrum (the "knee") at around 3000 TeV has promoted contentions that there are at least two origins for cosmic rays, a galactic one supplying those up to the knee, and perhaps an extragalactic one that can explain even the ultra-high energy cosmic rays (UHECRs) seen at 1-300 EeV. Accounting for the UHECRs with familiar astrophysical sites of acceleration has historically proven difficult due to the need to assume high magnetic fields in order to reduce the shortest diffusive acceleration timescale, the ion gyroperiod, to meaningful values. Yet active galaxies and gamma-ray bursts remain strong and interesting candidate sources for UHECRs, turning the theoretical focus to relativistic shocks. This review summarizes properties of diffusive shock acceleration that are salient to the issue of UHECR generation. These include spectral indices, anisotropies, acceleration efficencies and timescales, as functions of the shock speed and mean field orientation, and also the degree of field turbulence. Astrophysical sites for UHECR production are also critiqued.
Ramiro-H, Manuel; Cruz-A, Enrique
2016-01-01
Between August 19 and 21, the Feria del Libro de las Ciencias de la Salud (Healthcare Book Fair) took place in the Palacio de Medicina in Mexico City. Archives of Medical Research, Revista Médica del IMSS, and Saber IMSS, three of the main instruments of knowledge diffusion of the Instituto Mexicano del Seguro Social, assisted to this book fair, which was organized by the Facultad de Medicina of UNAM.
Oterkus, Selda; Madenci, Erdogan; Agwai, Abigail
2014-05-15
This study presents the derivation of ordinary state-based peridynamic heat conduction equation based on the Lagrangian formalism. The peridynamic heat conduction parameters are related to those of the classical theory. An explicit time stepping scheme is adopted for numerical solution of various benchmark problems with known solutions. It paves the way for applying the peridynamic theory to other physical fields such as neutronic diffusion and electrical potential distribution.
NASA Astrophysics Data System (ADS)
Sutherland, Bruce; Lee, Brace
2008-11-01
Sour gas flares attempt to dispose of deadly H2S gas through combustion. What does not burn rises as a buoyant plume. But the gas is heavier than air at room temperature, so as the rising gas cools eventually it becomes negatively buoyant and descends back to the ground. Ultimately, our intent is to predict the concentrations of the gas at ground level in realistic atmospheric conditions. As a first step towards this goal we have performed laboratory experiments examining the structure of a steady state plume of hot and salty water that rises buoyantly near the source and descends as a fountain after it has cooled sufficiently. We call this a double-diffusive plume because its evolution is dictated by the different (turbulent) diffusivities of heat and salt. A temperature and conductivity probe measures both the salinity and temperature along the centreline of the plume. The supposed axisymmetric structure of the salinity concentration as it changes with height is determined by light-attenuation methods. To help interpret the results, a theory has been successfully adapted from the work of Bloomfield and Kerr (2000), who developed coupled equations describing the structure of fountains. Introducing a new empirical parameter for the relative rates of turbulent heat and salt diffusion, the predictions are found to agree favourably with experimental results.
Solute diffusion in liquid metals
NASA Technical Reports Server (NTRS)
Bhat, B. N.
1973-01-01
A gas model of diffusion in liquid metals is presented. In this model, ions of liquid metals are assumed to behave like the molecules in a dense gas. Diffusion coefficient of solute is discussed with reference to its mass, ionic size, and pair potential. The model is applied to the case of solute diffusion in liquid silver. An attempt was made to predict diffusion coefficients of solutes with reasonable accuracy.
Dolan, Daniel H.
2014-10-01
The ThermalDiffusion class was created to simulate one-dimensional thermal diffusion across one or more material layers. Each layer is assumed to have constant conductivity K and diffusivity κ . Interface conductance between layers may be specified. Internal heating as a function of position and time is also supported. The ThermalDiffusion class is included in the SMASH package [1] as part of the PDE (Partial Differential Equation) subpackage.
Color Histogram Diffusion for Image Enhancement
NASA Technical Reports Server (NTRS)
Kim, Taemin
2011-01-01
Various color histogram equalization (CHE) methods have been proposed to extend grayscale histogram equalization (GHE) for color images. In this paper a new method called histogram diffusion that extends the GHE method to arbitrary dimensions is proposed. Ranges in a histogram are specified as overlapping bars of uniform heights and variable widths which are proportional to their frequencies. This diagram is called the vistogram. As an alternative approach to GHE, the squared error of the vistogram from the uniform distribution is minimized. Each bar in the vistogram is approximated by a Gaussian function. Gaussian particles in the vistoram diffuse as a nonlinear autonomous system of ordinary differential equations. CHE results of color images showed that the approach is effective.
Non-local means variants for denoising of diffusion-weighted and diffusion tensor MRI.
Wiest-Daesslé, Nicolas; Prima, Sylvain; Coupé, Pierrick; Morrissey, Sean Patrick; Barillot, Christian
2007-01-01
Diffusion tensor imaging (DT-MRI) is very sensitive to corrupting noise due to the non linear relationship between the diffusion-weighted image intensities (DW-MRI) and the resulting diffusion tensor. Denoising is a crucial step to increase the quality of the estimated tensor field. This enhanced quality allows for a better quantification and a better image interpretation. The methods proposed in this paper are based on the Non-Local (NL) means algorithm. This approach uses the natural redundancy of information in images to remove the noise. We introduce three variations of the NL-means algorithms adapted to DW-MRI and to DT-MRI. Experiments were carried out on a set of 12 diffusion-weighted images (DW-MRI) of the same subject. The results show that the intensity based NL-means approaches give better results in the context of DT-MRI than other classical denoising methods, such as Gaussian Smoothing, Anisotropic Diffusion and Total Variation.
Anomalous diffusion process applied to magnetic resonance image enhancement.
Senra Filho, A C da S; Salmon, C E Garrido; Murta Junior, L O
2015-03-21
Diffusion process is widely applied to digital image enhancement both directly introducing diffusion equation as in anisotropic diffusion (AD) filter, and indirectly by convolution as in Gaussian filter. Anomalous diffusion process (ADP), given by a nonlinear relationship in diffusion equation and characterized by an anomalous parameters q, is supposed to be consistent with inhomogeneous media. Although classic diffusion process is widely studied and effective in various image settings, the effectiveness of ADP as an image enhancement is still unknown. In this paper we proposed the anomalous diffusion filters in both isotropic (IAD) and anisotropic (AAD) forms for magnetic resonance imaging (MRI) enhancement. Filters based on discrete implementation of anomalous diffusion were applied to noisy MRI T2w images (brain, chest and abdominal) in order to quantify SNR gains estimating the performance for the proposed anomalous filter when realistic noise is added to those images. Results show that for images containing complex structures, e.g. brain structures, anomalous diffusion presents the highest enhancements when compared to classical diffusion approach. Furthermore, ADP presented a more effective enhancement for images containing Rayleigh and Gaussian noise. Anomalous filters showed an ability to preserve anatomic edges and a SNR improvement of 26% for brain images, compared to classical filter. In addition, AAD and IAD filters showed optimum results for noise distributions that appear on extreme situations on MRI, i.e. in low SNR images with approximate Rayleigh noise distribution, and for high SNR images with Gaussian or non central χ noise distributions. AAD and IAD filter showed the best results for the parametric range 1.2 < q < 1.6, suggesting that the anomalous diffusion regime is more suitable for MRI. This study indicates the proposed anomalous filters as promising approaches in qualitative and quantitative MRI enhancement.