A multigroup radiation diffusion test problem: Comparison of code results with analytic solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shestakov, A I; Harte, J A; Bolstad, J H
2006-12-21
We consider a 1D, slab-symmetric test problem for the multigroup radiation diffusion and matter energy balance equations. The test simulates diffusion of energy from a hot central region. Opacities vary with the cube of the frequency and radiation emission is given by a Wien spectrum. We compare results from two LLNL codes, Raptor and Lasnex, with tabular data that define the analytic solution.
CRASH: A BLOCK-ADAPTIVE-MESH CODE FOR RADIATIVE SHOCK HYDRODYNAMICS-IMPLEMENTATION AND VERIFICATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van der Holst, B.; Toth, G.; Sokolov, I. V.
We describe the Center for Radiative Shock Hydrodynamics (CRASH) code, a block-adaptive-mesh code for multi-material radiation hydrodynamics. The implementation solves the radiation diffusion model with a gray or multi-group method and uses a flux-limited diffusion approximation to recover the free-streaming limit. Electrons and ions are allowed to have different temperatures and we include flux-limited electron heat conduction. The radiation hydrodynamic equations are solved in the Eulerian frame by means of a conservative finite-volume discretization in either one-, two-, or three-dimensional slab geometry or in two-dimensional cylindrical symmetry. An operator-split method is used to solve these equations in three substeps: (1)more » an explicit step of a shock-capturing hydrodynamic solver; (2) a linear advection of the radiation in frequency-logarithm space; and (3) an implicit solution of the stiff radiation diffusion, heat conduction, and energy exchange. We present a suite of verification test problems to demonstrate the accuracy and performance of the algorithms. The applications are for astrophysics and laboratory astrophysics. The CRASH code is an extension of the Block-Adaptive Tree Solarwind Roe Upwind Scheme (BATS-R-US) code with a new radiation transfer and heat conduction library and equation-of-state and multi-group opacity solvers. Both CRASH and BATS-R-US are part of the publicly available Space Weather Modeling Framework.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swesty, F. Douglas; Myra, Eric S.
It is now generally agreed that multidimensional, multigroup, neutrino-radiation hydrodynamics (RHD) is an indispensable element of any realistic model of stellar-core collapse, core-collapse supernovae, and proto-neutron star instabilities. We have developed a new, two-dimensional, multigroup algorithm that can model neutrino-RHD flows in core-collapse supernovae. Our algorithm uses an approach similar to the ZEUS family of algorithms, originally developed by Stone and Norman. However, this completely new implementation extends that previous work in three significant ways: first, we incorporate multispecies, multigroup RHD in a flux-limited-diffusion approximation. Our approach is capable of modeling pair-coupled neutrino-RHD, and includes effects of Pauli blocking inmore » the collision integrals. Blocking gives rise to nonlinearities in the discretized radiation-transport equations, which we evolve implicitly in time. We employ parallelized Newton-Krylov methods to obtain a solution of these nonlinear, implicit equations. Our second major extension to the ZEUS algorithm is the inclusion of an electron conservation equation that describes the evolution of electron-number density in the hydrodynamic flow. This permits calculating deleptonization of a stellar core. Our third extension modifies the hydrodynamics algorithm to accommodate realistic, complex equations of state, including those having nonconvex behavior. In this paper, we present a description of our complete algorithm, giving sufficient details to allow others to implement, reproduce, and extend our work. Finite-differencing details are presented in appendices. We also discuss implementation of this algorithm on state-of-the-art, parallel-computing architectures. Finally, we present results of verification tests that demonstrate the numerical accuracy of this algorithm on diverse hydrodynamic, gravitational, radiation-transport, and RHD sample problems. We believe our methods to be of general use in a variety of model settings where radiation transport or RHD is important. Extension of this work to three spatial dimensions is straightforward.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schunert, Sebastian; Wang, Yaqi; Gleicher, Frederick
This paper presents a flexible nonlinear diffusion acceleration (NDA) method that discretizes both the S N transport equation and the diffusion equation using the discontinuous finite element method (DFEM). The method is flexible in that the diffusion equation can be discretized on a coarser mesh with the only restriction that it is nested within the transport mesh and the FEM shape function orders of the two equations can be different. The consistency of the transport and diffusion solutions at convergence is defined by using a projection operator mapping the transport into the diffusion FEM space. The diffusion weak form ismore » based on the modified incomplete interior penalty (MIP) diffusion DFEM discretization that is extended by volumetric drift, interior face, and boundary closure terms. In contrast to commonly used coarse mesh finite difference (CMFD) methods, the presented NDA method uses a full FEM discretized diffusion equation for acceleration. Suitable projection and prolongation operators arise naturally from the FEM framework. Via Fourier analysis and numerical experiments for a one-group, fixed source problem the following properties of the NDA method are established for structured quadrilateral meshes: (1) the presented method is unconditionally stable and effective in the presence of mild material heterogeneities if the same mesh and identical shape functions either of the bilinear or biquadratic type are used, (2) the NDA method remains unconditionally stable in the presence of strong heterogeneities, (3) the NDA method with bilinear elements extends the range of effectiveness and stability by a factor of two when compared to CMFD if a coarser diffusion mesh is selected. In addition, the method is tested for solving the C5G7 multigroup, eigenvalue problem using coarse and fine mesh acceleration. Finally, while NDA does not offer an advantage over CMFD for fine mesh acceleration, it reduces the iteration count required for convergence by almost a factor of two in the case of coarse mesh acceleration.« less
Schunert, Sebastian; Wang, Yaqi; Gleicher, Frederick; ...
2017-02-21
This paper presents a flexible nonlinear diffusion acceleration (NDA) method that discretizes both the S N transport equation and the diffusion equation using the discontinuous finite element method (DFEM). The method is flexible in that the diffusion equation can be discretized on a coarser mesh with the only restriction that it is nested within the transport mesh and the FEM shape function orders of the two equations can be different. The consistency of the transport and diffusion solutions at convergence is defined by using a projection operator mapping the transport into the diffusion FEM space. The diffusion weak form ismore » based on the modified incomplete interior penalty (MIP) diffusion DFEM discretization that is extended by volumetric drift, interior face, and boundary closure terms. In contrast to commonly used coarse mesh finite difference (CMFD) methods, the presented NDA method uses a full FEM discretized diffusion equation for acceleration. Suitable projection and prolongation operators arise naturally from the FEM framework. Via Fourier analysis and numerical experiments for a one-group, fixed source problem the following properties of the NDA method are established for structured quadrilateral meshes: (1) the presented method is unconditionally stable and effective in the presence of mild material heterogeneities if the same mesh and identical shape functions either of the bilinear or biquadratic type are used, (2) the NDA method remains unconditionally stable in the presence of strong heterogeneities, (3) the NDA method with bilinear elements extends the range of effectiveness and stability by a factor of two when compared to CMFD if a coarser diffusion mesh is selected. In addition, the method is tested for solving the C5G7 multigroup, eigenvalue problem using coarse and fine mesh acceleration. Finally, while NDA does not offer an advantage over CMFD for fine mesh acceleration, it reduces the iteration count required for convergence by almost a factor of two in the case of coarse mesh acceleration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavanagh, D.L.; Antchagno, M.J.; Egawa, E.K.
1960-12-31
Operating instructions are presented for DMM, a Remington Rand 1103A program using one-space-dimensional multigroup diffusion theory to calculate the reactivity or critical conditions and flux distribution of a multiregion reactor. Complete descriptions of the routines and problem input and output specifications are also included. (D.L.C.)
An Improved Neutron Transport Algorithm for Space Radiation
NASA Technical Reports Server (NTRS)
Heinbockel, John H.; Clowdsley, Martha S.; Wilson, John W.
2000-01-01
A low-energy neutron transport algorithm for use in space radiation protection is developed. The algorithm is based upon a multigroup analysis of the straight-ahead Boltzmann equation by using a mean value theorem for integrals. This analysis is accomplished by solving a realistic but simplified neutron transport test problem. The test problem is analyzed by using numerical and analytical procedures to obtain an accurate solution within specified error bounds. Results from the test problem are then used for determining mean values associated with rescattering terms that are associated with a multigroup solution of the straight-ahead Boltzmann equation. The algorithm is then coupled to the Langley HZETRN code through the evaporation source term. Evaluation of the neutron fluence generated by the solar particle event of February 23, 1956, for a water and an aluminum-water shield-target configuration is then compared with LAHET and MCNPX Monte Carlo code calculations for the same shield-target configuration. The algorithm developed showed a great improvement in results over the unmodified HZETRN solution. In addition, a two-directional solution of the evaporation source showed even further improvement of the fluence near the front of the water target where diffusion from the front surface is important.
Parallel computation of multigroup reactivity coefficient using iterative method
NASA Astrophysics Data System (ADS)
Susmikanti, Mike; Dewayatna, Winter
2013-09-01
One of the research activities to support the commercial radioisotope production program is a safety research target irradiation FPM (Fission Product Molybdenum). FPM targets form a tube made of stainless steel in which the nuclear degrees of superimposed high-enriched uranium. FPM irradiation tube is intended to obtain fission. The fission material widely used in the form of kits in the world of nuclear medicine. Irradiation FPM tube reactor core would interfere with performance. One of the disorders comes from changes in flux or reactivity. It is necessary to study a method for calculating safety terrace ongoing configuration changes during the life of the reactor, making the code faster became an absolute necessity. Neutron safety margin for the research reactor can be reused without modification to the calculation of the reactivity of the reactor, so that is an advantage of using perturbation method. The criticality and flux in multigroup diffusion model was calculate at various irradiation positions in some uranium content. This model has a complex computation. Several parallel algorithms with iterative method have been developed for the sparse and big matrix solution. The Black-Red Gauss Seidel Iteration and the power iteration parallel method can be used to solve multigroup diffusion equation system and calculated the criticality and reactivity coeficient. This research was developed code for reactivity calculation which used one of safety analysis with parallel processing. It can be done more quickly and efficiently by utilizing the parallel processing in the multicore computer. This code was applied for the safety limits calculation of irradiated targets FPM with increment Uranium.
A new multigroup method for cross-sections that vary rapidly in energy
Haut, Terry Scot; Ahrens, Cory D.; Jonko, Alexandra; ...
2016-11-04
Here, we present a numerical method for solving the time-independent thermal radiative transfer (TRT) equation or the neutron transport (NT) equation when the opacity (cross-section) varies rapidly in frequency (energy) on the microscale ε; ε corresponds to the characteristic spacing between absorption lines or resonances, and is much smaller than the macroscopic frequency (energy) variation of interest. The approach is based on a rigorous homogenization of the TRT/NT equation in the frequency (energy) variable. Discretization of the homogenized TRT/NT equation results in a multigroup-type system, and can therefore be solved by standard methods.
NASA Astrophysics Data System (ADS)
Susmikanti, Mike; Dewayatna, Winter; Sulistyo, Yos
2014-09-01
One of the research activities in support of commercial radioisotope production program is a safety research on target FPM (Fission Product Molybdenum) irradiation. FPM targets form a tube made of stainless steel which contains nuclear-grade high-enrichment uranium. The FPM irradiation tube is intended to obtain fission products. Fission materials such as Mo99 used widely the form of kits in the medical world. The neutronics problem is solved using first-order perturbation theory derived from the diffusion equation for four groups. In contrast, Mo isotopes have longer half-lives, about 3 days (66 hours), so the delivery of radioisotopes to consumer centers and storage is possible though still limited. The production of this isotope potentially gives significant economic value. The criticality and flux in multigroup diffusion model was calculated for various irradiation positions and uranium contents. This model involves complex computation, with large and sparse matrix system. Several parallel algorithms have been developed for the sparse and large matrix solution. In this paper, a successive over-relaxation (SOR) algorithm was implemented for the calculation of reactivity coefficients which can be done in parallel. Previous works performed reactivity calculations serially with Gauss-Seidel iteratives. The parallel method can be used to solve multigroup diffusion equation system and calculate the criticality and reactivity coefficients. In this research a computer code was developed to exploit parallel processing to perform reactivity calculations which were to be used in safety analysis. The parallel processing in the multicore computer system allows the calculation to be performed more quickly. This code was applied for the safety limits calculation of irradiated FPM targets containing highly enriched uranium. The results of calculations neutron show that for uranium contents of 1.7676 g and 6.1866 g (× 106 cm-1) in a tube, their delta reactivities are the still within safety limits; however, for 7.9542 g and 8.838 g (× 106 cm-1) the limits were exceeded.
Familial Correlates of Overt and Relational Aggression between Young Adolescent Siblings
ERIC Educational Resources Information Center
Yu, Jeong Jin; Gamble, Wendy C.
2008-01-01
Multi-group confirmatory factor analysis and multi-group structural equation modeling were used to test correlates of overt and relational aggression between young adolescent siblings across four groups (i.e., male/male, male/female, female/male, and female/female sibling pairs), using 433 predominately European American families. Similar patterns…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.
1975-10-01
The computer code block VENTURE, designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P$sub 1$) in up to three- dimensional geometry is described. A variety of types of problems may be solved: the usual eigenvalue problem, a direct criticality search on the buckling, on a reciprocal velocity absorber (prompt mode), or on nuclide concentrations, or an indirect criticality search on nuclide concentrations, or on dimensions. First- order perturbation analysis capability is available at the macroscopic cross section level. (auth)
AMPX: a modular code system for generating coupled multigroup neutron-gamma libraries from ENDF/B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, N.M.; Lucius, J.L.; Petrie, L.M.
1976-03-01
AMPX is a modular system for producing coupled multigroup neutron-gamma cross section sets. Basic neutron and gamma cross-section data for AMPX are obtained from ENDF/B libraries. Most commonly used operations required to generate and collapse multigroup cross-section sets are provided in the system. AMPX is flexibly dimensioned; neutron group structures, and gamma group structures, and expansion orders to represent anisotropic processes are all arbitrary and limited only by available computer core and budget. The basic processes provided will (1) generate multigroup neutron cross sections; (2) generate multigroup gamma cross sections; (3) generate gamma yields for gamma-producing neutron interactions; (4) combinemore » neutron cross sections, gamma cross sections, and gamma yields into final ''coupled sets''; (5) perform one-dimensional discrete ordinates transport or diffusion theory calculations for neutrons and gammas and, on option, collapse the cross sections to a broad-group structure, using the one-dimensional results as weighting functions; (6) plot cross sections, on option, to facilitate the ''evaluation'' of a particular multigroup set of data; (7) update and maintain multigroup cross section libraries in such a manner as to make it not only easy to combine new data with previously processed data but also to do it in a single pass on the computer; and (8) output multigroup cross sections in convenient formats for other codes. (auth)« less
Methodes d'optimisation des parametres 2D du reflecteur dans un reacteur a eau pressurisee
NASA Astrophysics Data System (ADS)
Clerc, Thomas
With a third of the reactors in activity, the Pressurized Water Reactor (PWR) is today the most used reactor design in the world. This technology equips all the 19 EDF power plants. PWRs fit into the category of thermal reactors, because it is mainly the thermal neutrons that contribute to the fission reaction. The pressurized light water is both used as the moderator of the reaction and as the coolant. The active part of the core is composed of uranium, slightly enriched in uranium 235. The reflector is a region surrounding the active core, and containing mostly water and stainless steel. The purpose of the reflector is to protect the vessel from radiations, and also to slow down the neutrons and reflect them into the core. Given that the neutrons participate to the reaction of fission, the study of their behavior within the core is capital to understand the general functioning of how the reactor works. The neutrons behavior is ruled by the transport equation, which is very complex to solve numerically, and requires very long calculation. This is the reason why the core codes that will be used in this study solve simplified equations to approach the neutrons behavior in the core, in an acceptable calculation time. In particular, we will focus our study on the diffusion equation and approximated transport equations, such as SPN or S N equations. The physical properties of the reflector are radically different from those of the fissile core, and this structural change causes important tilt in the neutron flux at the core/reflector interface. This is why it is very important to accurately design the reflector, in order to precisely recover the neutrons behavior over the whole core. Existing reflector calculation techniques are based on the Lefebvre-Lebigot method. This method is only valid if the energy continuum of the neutrons is discretized in two energy groups, and if the diffusion equation is used. The method leads to the calculation of a homogeneous reflector. The aim of this study is to create a computational scheme able to compute the parameters of heterogeneous, multi-group reflectors, with both diffusion and SPN/SN operators. For this purpose, two computational schemes are designed to perform such a reflector calculation. The strategy used in both schemes is to minimize the discrepancies between a power distribution computed with a core code and a reference distribution, which will be obtained with an APOLLO2 calculation based on the method Method Of Characteristics (MOC). In both computational schemes, the optimization parameters, also called control variables, are the diffusion coefficients in each zone of the reflector, for diffusion calculations, and the P-1 corrected macroscopic total cross-sections in each zone of the reflector, for SPN/SN calculations (or correction factors on these parameters). After a first validation of our computational schemes, the results are computed, always by optimizing the fast diffusion coefficient for each zone of the reflector. All the tools of the data assimilation have been used to reflect the different behavior of the solvers in the different parts of the core. Moreover, the reflector is refined in six separated zones, corresponding to the physical structure of the reflector. There will be then six control variables for the optimization algorithms. [special characters omitted]. Our computational schemes are then able to compute heterogeneous, 2-group or multi-group reflectors, using diffusion or SPN/SN operators. The optimization performed reduces the discrepancies distribution between the power computed with the core codes and the reference power. However, there are two main limitations to this study: first the homogeneous modeling of the reflector assemblies doesn't allow to properly describe its physical structure near the core/reflector interface. Moreover, the fissile assemblies are modeled in infinite medium, and this model reaches its limit at the core/reflector interface. These two problems should be tackled in future studies. (Abstract shortened by UMI.).
Asymptotic, multigroup flux reconstruction and consistent discontinuity factors
Trahan, Travis J.; Larsen, Edward W.
2015-05-12
Recent theoretical work has led to an asymptotically derived expression for reconstructing the neutron flux from lattice functions and multigroup diffusion solutions. The leading-order asymptotic term is the standard expression for flux reconstruction, i.e., it is the product of a shape function, obtained through a lattice calculation, and the multigroup diffusion solution. The first-order asymptotic correction term is significant only where the gradient of the diffusion solution is not small. Inclusion of this first-order correction term can significantly improve the accuracy of the reconstructed flux. One may define discontinuity factors (DFs) to make certain angular moments of the reconstructed fluxmore » continuous across interfaces between assemblies in 1-D. Indeed, the standard assembly discontinuity factors make the zeroth moment (scalar flux) of the reconstructed flux continuous. The inclusion of the correction term in the flux reconstruction provides an additional degree of freedom that can be used to make two angular moments of the reconstructed flux continuous across interfaces by using current DFs in addition to flux DFs. Thus, numerical results demonstrate that using flux and current DFs together can be more accurate than using only flux DFs, and that making the second angular moment continuous can be more accurate than making the zeroth moment continuous.« less
3D unstructured-mesh radiation transport codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morel, J.
1997-12-31
Three unstructured-mesh radiation transport codes are currently being developed at Los Alamos National Laboratory. The first code is ATTILA, which uses an unstructured tetrahedral mesh in conjunction with standard Sn (discrete-ordinates) angular discretization, standard multigroup energy discretization, and linear-discontinuous spatial differencing. ATTILA solves the standard first-order form of the transport equation using source iteration in conjunction with diffusion-synthetic acceleration of the within-group source iterations. DANTE is designed to run primarily on workstations. The second code is DANTE, which uses a hybrid finite-element mesh consisting of arbitrary combinations of hexahedra, wedges, pyramids, and tetrahedra. DANTE solves several second-order self-adjoint forms of the transport equation including the even-parity equation, the odd-parity equation, and a new equation called the self-adjoint angular flux equation. DANTE also offers three angular discretization options:more » $$S{_}n$$ (discrete-ordinates), $$P{_}n$$ (spherical harmonics), and $$SP{_}n$$ (simplified spherical harmonics). DANTE is designed to run primarily on massively parallel message-passing machines, such as the ASCI-Blue machines at LANL and LLNL. The third code is PERICLES, which uses the same hybrid finite-element mesh as DANTE, but solves the standard first-order form of the transport equation rather than a second-order self-adjoint form. DANTE uses a standard $$S{_}n$$ discretization in angle in conjunction with trilinear-discontinuous spatial differencing, and diffusion-synthetic acceleration of the within-group source iterations. PERICLES was initially designed to run on workstations, but a version for massively parallel message-passing machines will be built. The three codes will be described in detail and computational results will be presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, N. A.; Forget, B.
2012-07-01
The Discrete Generalized Multigroup (DGM) method uses discrete Legendre orthogonal polynomials to expand the energy dependence of the multigroup neutron transport equation. This allows a solution on a fine energy mesh to be approximated for a cost comparable to a solution on a coarse energy mesh. The DGM method is applied to an ultra-fine energy mesh (14,767 groups) to avoid using self-shielding methodologies without introducing the cost usually associated with such energy discretization. Results show DGM to converge to the reference ultra-fine solution after a small number of recondensation steps for multiple infinite medium compositions. (authors)
Potential of pin-by-pin SPN calculations as an industrial reference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fliscounakis, M.; Girardi, E.; Courau, T.
2012-07-01
This paper aims at analysing the potential of pin-by-pin SP{sub n} calculations to compute the neutronic flux in PWR cores as an alternative to the diffusion approximation. As far as pin-by-pin calculations are concerned, a SPH equivalence is used to preserve the reactions rates. The use of SPH equivalence is a common practice in core diffusion calculations. In this paper, a methodology to generalize the equivalence procedure in the SP{sub n} equations context is presented. In order to verify and validate the equivalence procedure, SP{sub n} calculations are compared to 2D transport reference results obtained with the APOLL02 code. Themore » validation cases consist in 3x3 analytical assembly color sets involving burn-up heterogeneities, UOX/MOX interfaces, and control rods. Considering various energy discretizations (up to 26 groups) and flux development orders (up to 7) for the SP{sub n} equations, results show that 26-group SP{sub 3} calculations are very close to the transport reference (with pin production rates discrepancies < 1%). This proves the high interest of pin-by-pin SP{sub n} calculations as an industrial reference when relying on 26 energy groups combined with SP{sub 3} flux development order. Additionally, the SP{sub n} results are compared to diffusion pin-by-pin calculations, in order to evaluate the potential benefit of using a SP{sub n} solver as an alternative to diffusion. Discrepancies on pin-production rates are less than 1.6% for 6-group SP{sub 3} calculations against 3.2% for 2-group diffusion calculations. This shows that SP{sub n} solvers may be considered as an alternative to multigroup diffusion. (authors)« less
A hybrid multigroup neutron-pattern model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pogosbekyan, L.R.; Lysov, D.A.
In this paper, we use the general approach to construct a multigroup hybrid model for the neutron pattern. The equations are given together with a reasonably economic and simple iterative method of solving them. The algorithm can be used to calculate the pattern and the functionals as well as to correct the constants from the experimental data and to adapt the support over the constants to the engineering programs by reference to precision ones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plelnevaux, C.
The computer program DIFF, in Fortran for the IBM 7090, for calculating the neutron diffusion coefficients and attenuation areas (L/sup 2/) necessary for multigroup diffusion calculations for reactor shielding is described. Diffusion coefficients and values of the inverse attenuation length are given for a six group calculation for several interesting shielding materials. (D.C.W.)
Mixed Legendre moments and discrete scattering cross sections for anisotropy representation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calloo, A.; Vidal, J. F.; Le Tellier, R.
2012-07-01
This paper deals with the resolution of the integro-differential form of the Boltzmann transport equation for neutron transport in nuclear reactors. In multigroup theory, deterministic codes use transfer cross sections which are expanded on Legendre polynomials. This modelling leads to negative values of the transfer cross section for certain scattering angles, and hence, the multigroup scattering source term is wrongly computed. The first part compares the convergence of 'Legendre-expanded' cross sections with respect to the order used with the method of characteristics (MOC) for Pressurised Water Reactor (PWR) type cells. Furthermore, the cross section is developed using piecewise-constant functions, whichmore » better models the multigroup transfer cross section and prevents the occurrence of any negative value for it. The second part focuses on the method of solving the transport equation with the above-mentioned piecewise-constant cross sections for lattice calculations for PWR cells. This expansion thereby constitutes a 'reference' method to compare the conventional Legendre expansion to, and to determine its pertinence when applied to reactor physics calculations. (authors)« less
A new multigroup method for cross-sections that vary rapidly in energy
NASA Astrophysics Data System (ADS)
Haut, T. S.; Ahrens, C.; Jonko, A.; Lowrie, R.; Till, A.
2017-01-01
We present a numerical method for solving the time-independent thermal radiative transfer (TRT) equation or the neutron transport (NT) equation when the opacity (cross-section) varies rapidly in frequency (energy) on the microscale ε; ε corresponds to the characteristic spacing between absorption lines or resonances, and is much smaller than the macroscopic frequency (energy) variation of interest. The approach is based on a rigorous homogenization of the TRT/NT equation in the frequency (energy) variable. Discretization of the homogenized TRT/NT equation results in a multigroup-type system, and can therefore be solved by standard methods. We demonstrate the accuracy and efficiency of the approach on three model problems. First we consider the Elsasser band model with constant temperature and a line spacing ε =10-4 . Second, we consider a neutron transport application for fast neutrons incident on iron, where the characteristic resonance spacing ε necessitates ≈ 16 , 000 energy discretization parameters if Planck-weighted cross sections are used. Third, we consider an atmospheric TRT problem for an opacity corresponding to water vapor over a frequency range 1000-2000 cm-1, where we take 12 homogeneous layers between 1-15 km, and temperature/pressure values in each layer from the standard US atmosphere. For all three problems, we demonstrate that we can achieve between 0.1 and 1 percent relative error in the solution, and with several orders of magnitude fewer parameters than a standard multigroup formulation using Planck-weighted (source-weighted) opacities for a comparable accuracy.
Using Structural Equation Modeling To Fit Models Incorporating Principal Components.
ERIC Educational Resources Information Center
Dolan, Conor; Bechger, Timo; Molenaar, Peter
1999-01-01
Considers models incorporating principal components from the perspectives of structural-equation modeling. These models include the following: (1) the principal-component analysis of patterned matrices; (2) multiple analysis of variance based on principal components; and (3) multigroup principal-components analysis. Discusses fitting these models…
Year End Progress Report on Rattlesnake Improvements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yaqi; DeHart, Mark David; Gleicher, Frederick Nathan
Rattlesnake is a MOOSE-based radiation transport application developed at INL to support modern multi-physics simulations. At the beginning of the last year, Rattlesnake was able to perform steady-state, transient and eigenvalue calculations for the multigroup radiation transport equations. Various discretization schemes, including continuous finite element method (FEM) with discrete ordinates method (SN) and spherical harmonics expansion method (PN) for the self-adjoint angular flux (SAAF) formulation, continuous FEM (CFEM) with SN for the least square (LS) formulation, diffusion approximation with CFEM and discontinuous FEM (DFEM), have been implemented. A separate toolkit, YAKXS, for multigroup cross section management was developed to supportmore » Rattlesnake calculations with feedback both from changes in the field variables, such as fuel temperature, coolant density, and etc., and in isotope inventory. The framework for doing nonlinear diffusion acceleration (NDA) within Rattlesnake has been set up, and both NDA calculations with SAAF-SN-CFEM scheme and Monte Carlo with OpenMC have been performed. It was also used for coupling BISON and RELAP-7 for the full-core multiphysics simulations. Within the last fiscal year, significant improvements have been made in Rattlesnake. Rattlesnake development was migrated into our internal GITLAB development environment at the end of year 2014. Since then total 369 merge requests has been accepted into Rattlesnake. It is noted that the MOOSE framework that Rattlesnake is based on is under continuous developments. Improvements made in MOOSE can improve the Rattlesnake. It is acknowledged that MOOSE developers spent efforts on patching Rattlesnake for the improvements made on the framework side. This report will not cover the code restructuring for better readability and modularity and documentation improvements, which we have spent tremendous effort on. It only details some of improvements in the following sections.« less
An Examination of Statistical Power in Multigroup Dynamic Structural Equation Models
ERIC Educational Resources Information Center
Prindle, John J.; McArdle, John J.
2012-01-01
This study used statistical simulation to calculate differential statistical power in dynamic structural equation models with groups (as in McArdle & Prindle, 2008). Patterns of between-group differences were simulated to provide insight into how model parameters influence power approximations. Chi-square and root mean square error of…
ANALYSIS OF THE MOMENTS METHOD EXPERIMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kloster, R.L.
1959-09-01
Monte Cario calculations show the effects of a plane water-air boundary on both fast neutron and gamma dose rates. Multigroup diffusion theory calculation for a reactor source shows the effects of a plane water-air boundary on thermal neutron dose rate. The results of Monte Cario and multigroup calculations are compared with experimental values. The predicted boundary effect for fast neutrons of 7.3% agrees within 16% with the measured effect of 6.3%. The gamma detector did not measure a boundary effect because it lacked sensitivity at low energies. However, the effect predicted for gamma rays of 5 to 10% is asmore » large as that for neutrons. An estimate of the boundary effect for thermal neutrons from a PoBe source is obtained from the results of muitigroup diffusion theory calcuiations for a reactor source. The calculated boundary effect agrees within 13% with the measured values. (auth)« less
Analyzing average and conditional effects with multigroup multilevel structural equation models
Mayer, Axel; Nagengast, Benjamin; Fletcher, John; Steyer, Rolf
2014-01-01
Conventionally, multilevel analysis of covariance (ML-ANCOVA) has been the recommended approach for analyzing treatment effects in quasi-experimental multilevel designs with treatment application at the cluster-level. In this paper, we introduce the generalized ML-ANCOVA with linear effect functions that identifies average and conditional treatment effects in the presence of treatment-covariate interactions. We show how the generalized ML-ANCOVA model can be estimated with multigroup multilevel structural equation models that offer considerable advantages compared to traditional ML-ANCOVA. The proposed model takes into account measurement error in the covariates, sampling error in contextual covariates, treatment-covariate interactions, and stochastic predictors. We illustrate the implementation of ML-ANCOVA with an example from educational effectiveness research where we estimate average and conditional effects of early transition to secondary schooling on reading comprehension. PMID:24795668
ERIC Educational Resources Information Center
Ursavas, Omer Faruk; Reisoglu, Ilknur
2017-01-01
Purpose: The purpose of this paper is to explore the validity of extended technology acceptance model (TAM) in explaining pre-service teachers' Edmodo acceptance and the variation of variables related to TAM among pre-service teachers having different cognitive styles. Design/methodology/approach: Structural equation modeling approach was used to…
COMPLETE DETERMINATION OF POLARIZATION FOR A HIGH-ENERGY DEUTERON BEAM (thesis)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Button, J
1959-05-01
please delete the no. 17076<>13:017077The P/sub 1/ multigroup code was written for the IBM-704 in order to determine the accuracy of the few- group diffusion scheme with various imposed conditions and also to provide an alternate computational method when this scheme fails to be sufficiently accurate. The code solves for the spatially dependent multigroup flux, taking into account such nuclear phenomena is slowing down of neutrons resulting from elastic and inelastic scattering, the removal of neutrons resulting from epithermal capture and fission resonances, and the regeneration of fist neutrons resulting from fissioning which may occur in any of as manymore » as 80 fast multigroups or in the one thermal group. The code will accept as input a physical description of the reactor (that is: slab, cylindrical, or spherical geometry, number of points and regions, composition description group dependent boundary condition, transverse buckling, and mesh sizes) and a prepared library of nuclear properties of all the isotopes in each composition. The code will produce as output multigroup fluxes, currents, and isotopic slowing-down densities, in addition to pointwise and regionwise few-group macroscopic cross sections. (auth)« less
Ryu, Ehri; Cheong, Jeewon
2017-01-01
In this article, we evaluated the performance of statistical methods in single-group and multi-group analysis approaches for testing group difference in indirect effects and for testing simple indirect effects in each group. We also investigated whether the performance of the methods in the single-group approach was affected when the assumption of equal variance was not satisfied. The assumption was critical for the performance of the two methods in the single-group analysis: the method using a product term for testing the group difference in a single path coefficient, and the Wald test for testing the group difference in the indirect effect. Bootstrap confidence intervals in the single-group approach and all methods in the multi-group approach were not affected by the violation of the assumption. We compared the performance of the methods and provided recommendations. PMID:28553248
A Multigroup Method for the Calculation of Neutron Fluence with a Source Term
NASA Technical Reports Server (NTRS)
Heinbockel, J. H.; Clowdsley, M. S.
1998-01-01
Current research on the Grant involves the development of a multigroup method for the calculation of low energy evaporation neutron fluences associated with the Boltzmann equation. This research will enable one to predict radiation exposure under a variety of circumstances. Knowledge of radiation exposure in a free-space environment is a necessity for space travel, high altitude space planes and satellite design. This is because certain radiation environments can cause damage to biological and electronic systems involving both short term and long term effects. By having apriori knowledge of the environment one can use prediction techniques to estimate radiation damage to such systems. Appropriate shielding can be designed to protect both humans and electronic systems that are exposed to a known radiation environment. This is the goal of the current research efforts involving the multi-group method and the Green's function approach.
Methodes iteratives paralleles: Applications en neutronique et en mecanique des fluides
NASA Astrophysics Data System (ADS)
Qaddouri, Abdessamad
Dans cette these, le calcul parallele est applique successivement a la neutronique et a la mecanique des fluides. Dans chacune de ces deux applications, des methodes iteratives sont utilisees pour resoudre le systeme d'equations algebriques resultant de la discretisation des equations du probleme physique. Dans le probleme de neutronique, le calcul des matrices des probabilites de collision (PC) ainsi qu'un schema iteratif multigroupe utilisant une methode inverse de puissance sont parallelises. Dans le probleme de mecanique des fluides, un code d'elements finis utilisant un algorithme iteratif du type GMRES preconditionne est parallelise. Cette these est presentee sous forme de six articles suivis d'une conclusion. Les cinq premiers articles traitent des applications en neutronique, articles qui representent l'evolution de notre travail dans ce domaine. Cette evolution passe par un calcul parallele des matrices des PC et un algorithme multigroupe parallele teste sur un probleme unidimensionnel (article 1), puis par deux algorithmes paralleles l'un mutiregion l'autre multigroupe, testes sur des problemes bidimensionnels (articles 2--3). Ces deux premieres etapes sont suivies par l'application de deux techniques d'acceleration, le rebalancement neutronique et la minimisation du residu aux deux algorithmes paralleles (article 4). Finalement, on a mis en oeuvre l'algorithme multigroupe et le calcul parallele des matrices des PC sur un code de production DRAGON ou les tests sont plus realistes et peuvent etre tridimensionnels (article 5). Le sixieme article (article 6), consacre a l'application a la mecanique des fluides, traite la parallelisation d'un code d'elements finis FES ou le partitionneur de graphe METIS et la librairie PSPARSLIB sont utilises.
Verdam, Mathilde G E; Oort, Frans J; van der Linden, Yvette M; Sprangers, Mirjam A G
2015-03-01
Missing data due to attrition present a challenge for the assessment and interpretation of change and response shift in HRQL outcomes. The objective was to handle such missingness and to assess response shift and 'true change' with the use of an attrition-based multigroup structural equation modeling (SEM) approach. Functional limitations and health impairments were measured in 1,157 cancer patients, who were treated with palliative radiotherapy for painful bone metastases, before [time (T) 0], every week after treatment (T1 through T12), and then monthly for up to 2 years (T13 through T24). To handle missing data due to attrition, the SEM procedure was extended to a multigroup approach, in which we distinguished three groups: short survival (3-5 measurements), medium survival (6-12 measurements), and long survival (>12 measurements). Attrition after third, sixth, and 13th measurement occasions was 11, 24, and 41 %, respectively. Results show that patterns of change in functional limitations and health impairments differ between patients with short, medium, or long survival. Moreover, three response-shift effects were detected: recalibration of 'pain' and 'sickness' and reprioritization of 'physical functioning.' If response-shift effects would not have been taken into account, functional limitations and health impairments would generally be underestimated across measurements. The multigroup SEM approach enables the analysis of data from patients with different patterns of missing data due to attrition. This approach does not only allow for detection of response shift and assessment of true change across measurements, but also allow for detection of differences in response shift and true change across groups of patients with different attrition rates.
Multigroup Radiation-Hydrodynamics with a High-Order, Low-Order Method
Wollaber, Allan Benton; Park, HyeongKae; Lowrie, Robert Byron; ...
2016-12-09
Recent efforts at Los Alamos National Laboratory to develop a moment-based, scale-bridging [or high-order (HO)–low-order (LO)] algorithm for solving large varieties of the transport (kinetic) systems have shown promising results. A part of our ongoing effort is incorporating this methodology into the framework of the Eulerian Applications Project to achieve algorithmic acceleration of radiationhydrodynamics simulations in production software. By starting from the thermal radiative transfer equations with a simple material-motion correction, we derive a discretely consistent energy balance equation (LO equation). We demonstrate that the corresponding LO system for the Monte Carlo HO solver is closely related to the originalmore » LO system without material-motion corrections. We test the implementation on a radiative shock problem and show consistency between the energy densities and temperatures in the HO and LO solutions as well as agreement with the semianalytic solution. We also test the approach on a more challenging two-dimensional problem and demonstrate accuracy enhancements and algorithmic speedups. This paper extends a recent conference paper by including multigroup effects.« less
A stable 1D multigroup high-order low-order method
Yee, Ben Chung; Wollaber, Allan Benton; Haut, Terry Scot; ...
2016-07-13
The high-order low-order (HOLO) method is a recently developed moment-based acceleration scheme for solving time-dependent thermal radiative transfer problems, and has been shown to exhibit orders of magnitude speedups over traditional time-stepping schemes. However, a linear stability analysis by Haut et al. (2015 Haut, T. S., Lowrie, R. B., Park, H., Rauenzahn, R. M., Wollaber, A. B. (2015). A linear stability analysis of the multigroup High-Order Low-Order (HOLO) method. In Proceedings of the Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method; Nashville, TN, April 19–23, 2015. American Nuclear Society.)more » revealed that the current formulation of the multigroup HOLO method was unstable in certain parameter regions. Since then, we have replaced the intensity-weighted opacity in the first angular moment equation of the low-order (LO) system with the Rosseland opacity. Furthermore, this results in a modified HOLO method (HOLO-R) that is significantly more stable.« less
Monte Carol-based validation of neutronic methodology for EBR-II analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liaw, J.R.; Finck, P.J.
1993-01-01
The continuous-energy Monte Carlo code VIM (Ref. 1) has been validated extensively over the years against fast critical experiments and other neutronic analysis codes. A high degree of confidence in VIM for predicting reactor physics parameters has been firmly established. This paper presents a numerical validation of two conventional multigroup neutronic analysis codes, DIF3D (Ref. 4) and VARIANT (Ref. 5), against VIM for two Experimental Breeder Reactor II (EBR-II) core loadings in detailed three-dimensional hexagonal-z geometry. The DIF3D code is based on nodal diffusion theory, and it is used in calculations for day-today reactor operations, whereas the VARIANT code ismore » based on nodal transport theory and is used with increasing frequency for specific applications. Both DIF3D and VARIANT rely on multigroup cross sections generated from ENDF/B-V by the ETOE-2/MC[sup 2]-II/SDX (Ref. 6) code package. Hence, this study also validates the multigroup cross-section processing methodology against the continuous-energy approach used in VIM.« less
An improved random walk algorithm for the implicit Monte Carlo method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keady, Kendra P., E-mail: keadyk@lanl.gov; Cleveland, Mathew A.
In this work, we introduce a modified Implicit Monte Carlo (IMC) Random Walk (RW) algorithm, which increases simulation efficiency for multigroup radiative transfer problems with strongly frequency-dependent opacities. To date, the RW method has only been implemented in “fully-gray” form; that is, the multigroup IMC opacities are group-collapsed over the full frequency domain of the problem to obtain a gray diffusion problem for RW. This formulation works well for problems with large spatial cells and/or opacities that are weakly dependent on frequency; however, the efficiency of the RW method degrades when the spatial cells are thin or the opacities aremore » a strong function of frequency. To address this inefficiency, we introduce a RW frequency group cutoff in each spatial cell, which divides the frequency domain into optically thick and optically thin components. In the modified algorithm, opacities for the RW diffusion problem are obtained by group-collapsing IMC opacities below the frequency group cutoff. Particles with frequencies above the cutoff are transported via standard IMC, while particles below the cutoff are eligible for RW. This greatly increases the total number of RW steps taken per IMC time-step, which in turn improves the efficiency of the simulation. We refer to this new method as Partially-Gray Random Walk (PGRW). We present numerical results for several multigroup radiative transfer problems, which show that the PGRW method is significantly more efficient than standard RW for several problems of interest. In general, PGRW decreases runtimes by a factor of ∼2–4 compared to standard RW, and a factor of ∼3–6 compared to standard IMC. While PGRW is slower than frequency-dependent Discrete Diffusion Monte Carlo (DDMC), it is also easier to adapt to unstructured meshes and can be used in spatial cells where DDMC is not applicable. This suggests that it may be optimal to employ both DDMC and PGRW in a single simulation.« less
Predictors of Satisfaction in Geographically Close and Long-Distance Relationships
ERIC Educational Resources Information Center
Lee, Ji-yeon; Pistole, M. Carole
2012-01-01
In this study, the authors examined geographically close (GCRs) and long-distance (LDRs) romantic relationship satisfaction as explained by insecure attachment, self-disclosure, gossip, and idealization. After college student participants (N = 536) completed a Web survey, structural equation modeling (SEM) multigroup analysis revealed that the GCR…
Treatment Effects for Adolescent Struggling Readers: An Application of Moderated Mediation
ERIC Educational Resources Information Center
Roberts, Greg; Fletcher, Jack M.; Stuebing, Karla K.; Barth, Amy E.; Vaughn, Sharon
2013-01-01
This study used multigroup structural equations to evaluate the possibility that a theory-driven, evidence-based, yearlong reading program for sixth-grade struggling readers moderates the interrelationships among elements of the simple model of reading (i.e., listening comprehension, word reading, and reading comprehension; Hoover & Gough,…
Toward a Model of Strategies and Summary Writing Performance
ERIC Educational Resources Information Center
Yang, Hui-Chun
2014-01-01
This study explores the construct of a summarization test task by means of single-group and multigroup structural equation modeling (SEM). It examines the interrelationships between strategy use and performance, drawing on data from 298 Taiwanese undergraduates' summary essays and their self-reported strategy use. Single-group SEM analyses…
A comparison of acceleration methods for solving the neutron transport k-eigenvalue problem
NASA Astrophysics Data System (ADS)
Willert, Jeffrey; Park, H.; Knoll, D. A.
2014-10-01
Over the past several years a number of papers have been written describing modern techniques for numerically computing the dominant eigenvalue of the neutron transport criticality problem. These methods fall into two distinct categories. The first category of methods rewrite the multi-group k-eigenvalue problem as a nonlinear system of equations and solve the resulting system using either a Jacobian-Free Newton-Krylov (JFNK) method or Nonlinear Krylov Acceleration (NKA), a variant of Anderson Acceleration. These methods are generally successful in significantly reducing the number of transport sweeps required to compute the dominant eigenvalue. The second category of methods utilize Moment-Based Acceleration (or High-Order/Low-Order (HOLO) Acceleration). These methods solve a sequence of modified diffusion eigenvalue problems whose solutions converge to the solution of the original transport eigenvalue problem. This second class of methods is, in our experience, always superior to the first, as most of the computational work is eliminated by the acceleration from the LO diffusion system. In this paper, we review each of these methods. Our computational results support our claim that the choice of which nonlinear solver to use, JFNK or NKA, should be secondary. The primary computational savings result from the implementation of a HOLO algorithm. We display computational results for a series of challenging multi-dimensional test problems.
Progress Towards a Rad-Hydro Code for Modern Computing Architectures LA-UR-10-02825
NASA Astrophysics Data System (ADS)
Wohlbier, J. G.; Lowrie, R. B.; Bergen, B.; Calef, M.
2010-11-01
We are entering an era of high performance computing where data movement is the overwhelming bottleneck to scalable performance, as opposed to the speed of floating-point operations per processor. All multi-core hardware paradigms, whether heterogeneous or homogeneous, be it the Cell processor, GPGPU, or multi-core x86, share this common trait. In multi-physics applications such as inertial confinement fusion or astrophysics, one may be solving multi-material hydrodynamics with tabular equation of state data lookups, radiation transport, nuclear reactions, and charged particle transport in a single time cycle. The algorithms are intensely data dependent, e.g., EOS, opacity, nuclear data, and multi-core hardware memory restrictions are forcing code developers to rethink code and algorithm design. For the past two years LANL has been funding a small effort referred to as Multi-Physics on Multi-Core to explore ideas for code design as pertaining to inertial confinement fusion and astrophysics applications. The near term goals of this project are to have a multi-material radiation hydrodynamics capability, with tabular equation of state lookups, on cartesian and curvilinear block structured meshes. In the longer term we plan to add fully implicit multi-group radiation diffusion and material heat conduction, and block structured AMR. We will report on our progress to date.
Cultural Validation of the Maslach Burnout Inventory for Korean Students
ERIC Educational Resources Information Center
Shin, Hyojung; Puig, Ana; Lee, Jayoung; Lee, Ji Hee; Lee, Sang Min
2011-01-01
The purpose of this study was to examine the factorial validity of the MBI-SS in Korean students. Specifically, we investigated whether the original three-factor structure of the MBI-SS was appropriate for use with Korean students. In addition, by running multi-group structural equation model analyses with factorial invariance tests simultaneously…
Exploring Student, Family, and School Predictors of Self-Determination Using NLTS2 Data
ERIC Educational Resources Information Center
Shogren, Karrie A.; Garnier Villarreal, Mauricio; Dowsett, Chantelle; Little, Todd D.
2016-01-01
This study conducted secondary analysis of data from the National Longitudinal Transition Study-2 (NLTS2) to examine the degree to which student, family, and school constructs predicted self-determination outcomes. Multi-group structural equation modeling was used to examine predictive relationships between 5 students, 4 family, and 7 school…
Exploring Student, Family, and School Predictors of Self-Determination Using NLTS2 Data
ERIC Educational Resources Information Center
Shogren, Karrie A.; Garnier Villarreal, Mauricio; Dowsett, Chantelle; Little, Todd D.
2016-01-01
This study conducted secondary analysis of data from the National Longitudinal Transition Study-2 (NLTS2) to examine the degree to which student, family, and school constructs predicted self-determination outcomes. Multi-group structural equation modeling was used to examine predictive relationships between 5 student, 4 family, and 7 school…
Systems of Goals, Attitudes, and Self-Related Beliefs in Second-Language-Learning Motivation
ERIC Educational Resources Information Center
Kormos, Judit; Kiddle, Thom; Csizer, Kata
2011-01-01
In the present study, we surveyed the English language-learning motivations of 518 secondary school students, university students, and young adult learners in the capital of Chile, Santiago. We applied multi-group structural-equation modeling to analyze how language-learning goals, attitudes, self-related beliefs, and parental encouragement…
Happy Spouses, Happy Parents? Family Relationships among Finnish and Dutch Dual Earners
ERIC Educational Resources Information Center
Malinen, Kaisa; Kinnunen, Ulla; Tolvanen, Asko; Ronka, Anna; Wierda-Boer, Hilde; Gerris, Jan
2010-01-01
In this study links between spousal and parent-child relationships among Finnish (n = 157 couples) and Dutch (n = 276 couples) dual earners with young children were examined using paired questionnaire data. Variable-oriented analyses (structural equation modeling with a multigroup procedure) supported the spillover hypothesis, as higher levels of…
ERIC Educational Resources Information Center
Macek, Victor C.
The nine Reactor Statics Modules are designed to introduce students to the use of numerical methods and digital computers for calculation of neutron flux distributions in space and energy which are needed to calculate criticality, power distribution, and fuel burnup for both slow neutron and fast neutron fission reactors. The last module, RS-9,…
VENTURE/PC manual: A multidimensional multigroup neutron diffusion code system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapiro, A.; Huria, H.C.; Cho, K.W.
1991-12-01
VENTURE/PC is a recompilation of part of the Oak Ridge BOLD VENTURE code system, which will operate on an IBM PC or compatible computer. Neutron diffusion theory solutions are obtained for multidimensional, multigroup problems. This manual contains information associated with operating the code system. The purpose of the various modules used in the code system, and the input for these modules are discussed. The PC code structure is also given. Version 2 included several enhancements not given in the original version of the code. In particular, flux iterations can be done in core rather than by reading and writing tomore » disk, for problems which allow sufficient memory for such in-core iterations. This speeds up the iteration process. Version 3 does not include any of the special processors used in the previous versions. These special processors utilized formatted input for various elements of the code system. All such input data is now entered through the Input Processor, which produces standard interface files for the various modules in the code system. In addition, a Standard Interface File Handbook is included in the documentation which is distributed with the code, to assist in developing the input for the Input Processor.« less
ERIC Educational Resources Information Center
Shapka, Jennifer D.; Onditi, Hezron Z.; Collie, Rebecca J.; Lapidot-Lefler, Noam
2018-01-01
This study explored cyberbullying and cybervictimization (CBCV), for adolescents aged 11-15 from Tanzania (N = 426) and Canada (N = 592). Measurement invariance and model invariance was found for CBCV. In addition, multigroup structural equation modeling was used to explore several variables: age, gender, average hours online each day, accessing…
ERIC Educational Resources Information Center
Kahraman, Nilufer; Brown, Crystal B.
2015-01-01
Psychometric models based on structural equation modeling framework are commonly used in many multiple-choice test settings to assess measurement invariance of test items across examinee subpopulations. The premise of the current article is that they may also be useful in the context of performance assessment tests to test measurement invariance…
ERIC Educational Resources Information Center
Byrne, Barbara M.; van de Vijver, Fons J. R.
2010-01-01
A critical assumption in cross-cultural comparative research is that the instrument measures the same construct(s) in exactly the same way across all groups (i.e., the instrument is measurement and structurally equivalent). Structural equation modeling (SEM) procedures are commonly used in testing these assumptions of multigroup equivalence.…
Monte Carlo Transport for Electron Thermal Transport
NASA Astrophysics Data System (ADS)
Chenhall, Jeffrey; Cao, Duc; Moses, Gregory
2015-11-01
The iSNB (implicit Schurtz Nicolai Busquet multigroup electron thermal transport method of Cao et al. is adapted into a Monte Carlo transport method in order to better model the effects of non-local behavior. The end goal is a hybrid transport-diffusion method that combines Monte Carlo Transport with a discrete diffusion Monte Carlo (DDMC). The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the method will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.
ERIC Educational Resources Information Center
Keith, Timothy Z.; Reynolds, Matthew R.; Roberts, Lisa G.; Winter, Amanda L.; Austin, Cynthia A.
2011-01-01
Sex differences in the latent general and broad cognitive abilities underlying the Differential Ability Scales, Second Edition were investigated for children and youth ages 5 through 17. Multi-group mean and covariance structural equation modeling was used to investigate sex differences in latent cognitive abilities as well as changes in these…
A Cross-Cultural Test of the Work-Family Interface in 48 Countries
ERIC Educational Resources Information Center
Jeffrey Hill, E.; Yang, Chongming; Hawkins, Alan J.; Ferris, Maria
2004-01-01
This study tests a cross-cultural model of the work-family interface. Using multigroup structural equation modeling with IBM survey responses from 48 countries (N= 25,380), results show that the same work-family interface model that fits the data globally also fits the data in a four-group model composed of culturally related groups of countries,…
Using kaizen to improve employee well-being: Results from two organizational intervention studies.
von Thiele Schwarz, Ulrica; Nielsen, Karina M; Stenfors-Hayes, Terese; Hasson, Henna
2017-08-01
Participatory intervention approaches that are embedded in existing organizational structures may improve the efficiency and effectiveness of organizational interventions, but concrete tools are lacking. In the present article, we use a realist evaluation approach to explore the role of kaizen, a lean tool for participatory continuous improvement, in improving employee well-being in two cluster-randomized, controlled participatory intervention studies. Case 1 is from the Danish Postal Service, where kaizen boards were used to implement action plans. The results of multi-group structural equation modeling showed that kaizen served as a mechanism that increased the level of awareness of and capacity to manage psychosocial issues, which, in turn, predicted increased job satisfaction and mental health. Case 2 is from a regional hospital in Sweden that integrated occupational health processes with a pre-existing kaizen system. Multi-group structural equation modeling revealed that, in the intervention group, kaizen work predicted better integration of organizational and employee objectives after 12 months, which, in turn, predicted increased job satisfaction and decreased discomfort at 24 months. The findings suggest that participatory and structured problem-solving approaches that are familiar and visual to employees can facilitate organizational interventions.
Using kaizen to improve employee well-being: Results from two organizational intervention studies
von Thiele Schwarz, Ulrica; Nielsen, Karina M; Stenfors-Hayes, Terese; Hasson, Henna
2016-01-01
Participatory intervention approaches that are embedded in existing organizational structures may improve the efficiency and effectiveness of organizational interventions, but concrete tools are lacking. In the present article, we use a realist evaluation approach to explore the role of kaizen, a lean tool for participatory continuous improvement, in improving employee well-being in two cluster-randomized, controlled participatory intervention studies. Case 1 is from the Danish Postal Service, where kaizen boards were used to implement action plans. The results of multi-group structural equation modeling showed that kaizen served as a mechanism that increased the level of awareness of and capacity to manage psychosocial issues, which, in turn, predicted increased job satisfaction and mental health. Case 2 is from a regional hospital in Sweden that integrated occupational health processes with a pre-existing kaizen system. Multi-group structural equation modeling revealed that, in the intervention group, kaizen work predicted better integration of organizational and employee objectives after 12 months, which, in turn, predicted increased job satisfaction and decreased discomfort at 24 months. The findings suggest that participatory and structured problem-solving approaches that are familiar and visual to employees can facilitate organizational interventions. PMID:28736455
VENTURE/PC manual: A multidimensional multigroup neutron diffusion code system. Version 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapiro, A.; Huria, H.C.; Cho, K.W.
1991-12-01
VENTURE/PC is a recompilation of part of the Oak Ridge BOLD VENTURE code system, which will operate on an IBM PC or compatible computer. Neutron diffusion theory solutions are obtained for multidimensional, multigroup problems. This manual contains information associated with operating the code system. The purpose of the various modules used in the code system, and the input for these modules are discussed. The PC code structure is also given. Version 2 included several enhancements not given in the original version of the code. In particular, flux iterations can be done in core rather than by reading and writing tomore » disk, for problems which allow sufficient memory for such in-core iterations. This speeds up the iteration process. Version 3 does not include any of the special processors used in the previous versions. These special processors utilized formatted input for various elements of the code system. All such input data is now entered through the Input Processor, which produces standard interface files for the various modules in the code system. In addition, a Standard Interface File Handbook is included in the documentation which is distributed with the code, to assist in developing the input for the Input Processor.« less
ERIC Educational Resources Information Center
Lippke, Sonia; Nigg, Claudio R.; Maddock, Jay E.
2007-01-01
This is the first study to test whether the stages of change of the transtheoretical model are qualitatively different through exploring discontinuity patterns in theory of planned behavior (TPB) variables using latent multigroup structural equation modeling (MSEM) with AMOS. Discontinuity patterns in terms of latent means and prediction patterns…
ERIC Educational Resources Information Center
Boyd, Michelle J.; Zaff, Jonathan F.; Phelps, Erin; Weiner, Michelle B.; Lerner, Richard M.
2011-01-01
Using data from the 4-H Study of Positive Youth Development, a longitudinal study involving U.S. adolescents, multi-group structural equation modeling (SEM) was used to evaluate whether news media use is predictive of a set of civic indicators (civic duty, civic efficacy, neighborhood social connection, and civic participation) for youth in Grades…
Resonance treatment using pin-based pointwise energy slowing-down method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Sooyoung, E-mail: csy0321@unist.ac.kr; Lee, Changho, E-mail: clee@anl.gov; Lee, Deokjung, E-mail: deokjung@unist.ac.kr
A new resonance self-shielding method using a pointwise energy solution has been developed to overcome the drawbacks of the equivalence theory. The equivalence theory uses a crude resonance scattering source approximation, and assumes a spatially constant scattering source distribution inside a fuel pellet. These two assumptions cause a significant error, in that they overestimate the multi-group effective cross sections, especially for {sup 238}U. The new resonance self-shielding method solves pointwise energy slowing-down equations with a sub-divided fuel rod. The method adopts a shadowing effect correction factor and fictitious moderator material to model a realistic pointwise energy solution. The slowing-down solutionmore » is used to generate the multi-group cross section. With various light water reactor problems, it was demonstrated that the new resonance self-shielding method significantly improved accuracy in the reactor parameter calculation with no compromise in computation time, compared to the equivalence theory.« less
Measurement invariance via multigroup SEM: Issues and solutions with chi-square-difference tests.
Yuan, Ke-Hai; Chan, Wai
2016-09-01
Multigroup structural equation modeling (SEM) plays a key role in studying measurement invariance and in group comparison. When population covariance matrices are deemed not equal across groups, the next step to substantiate measurement invariance is to see whether the sample covariance matrices in all the groups can be adequately fitted by the same factor model, called configural invariance. After configural invariance is established, cross-group equalities of factor loadings, error variances, and factor variances-covariances are then examined in sequence. With mean structures, cross-group equalities of intercepts and factor means are also examined. The established rule is that if the statistic at the current model is not significant at the level of .05, one then moves on to testing the next more restricted model using a chi-square-difference statistic. This article argues that such an established rule is unable to control either Type I or Type II errors. Analysis, an example, and Monte Carlo results show why and how chi-square-difference tests are easily misused. The fundamental issue is that chi-square-difference tests are developed under the assumption that the base model is sufficiently close to the population, and a nonsignificant chi-square statistic tells little about how good the model is. To overcome this issue, this article further proposes that null hypothesis testing in multigroup SEM be replaced by equivalence testing, which allows researchers to effectively control the size of misspecification before moving on to testing a more restricted model. R code is also provided to facilitate the applications of equivalence testing for multigroup SEM. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
ERIC Educational Resources Information Center
Park, Sun Hee; Jun, JuSung
2017-01-01
The purpose of this study was to analyze the structural relationships between parent support, career decision self-efficacy, career maturity, and career preparation behavior for elementary school students (5th and 6th grade) in Korea and to examine if there are gender differences. A total of 609 students of 7 elementary schools in Seoul, Korea was…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tominaga, Nozomu; Shibata, Sanshiro; Blinnikov, Sergei I., E-mail: tominaga@konan-u.ac.jp, E-mail: sshibata@post.kek.jp, E-mail: Sergei.Blinnikov@itep.ru
We develop a time-dependent, multi-group, multi-dimensional relativistic radiative transfer code, which is required to numerically investigate radiation from relativistic fluids that are involved in, e.g., gamma-ray bursts and active galactic nuclei. The code is based on the spherical harmonic discrete ordinate method (SHDOM) which evaluates a source function including anisotropic scattering in spherical harmonics and implicitly solves the static radiative transfer equation with ray tracing in discrete ordinates. We implement treatments of time dependence, multi-frequency bins, Lorentz transformation, and elastic Thomson and inelastic Compton scattering to the publicly available SHDOM code. Our code adopts a mixed-frame approach; the source functionmore » is evaluated in the comoving frame, whereas the radiative transfer equation is solved in the laboratory frame. This implementation is validated using various test problems and comparisons with the results from a relativistic Monte Carlo code. These validations confirm that the code correctly calculates the intensity and its evolution in the computational domain. The code enables us to obtain an Eddington tensor that relates the first and third moments of intensity (energy density and radiation pressure) and is frequently used as a closure relation in radiation hydrodynamics calculations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wollaeger, Ryan T.; Van Rossum, Daniel R., E-mail: wollaeger@wisc.edu, E-mail: daan@flash.uchicago.edu
Implicit Monte Carlo (IMC) and Discrete Diffusion Monte Carlo (DDMC) are methods used to stochastically solve the radiative transport and diffusion equations, respectively. These methods combine into a hybrid transport-diffusion method we refer to as IMC-DDMC. We explore a multigroup IMC-DDMC scheme that in DDMC, combines frequency groups with sufficient optical thickness. We term this procedure ''opacity regrouping''. Opacity regrouping has previously been applied to IMC-DDMC calculations for problems in which the dependence of the opacity on frequency is monotonic. We generalize opacity regrouping to non-contiguous groups and implement this in SuperNu, a code designed to do radiation transport inmore » high-velocity outflows with non-monotonic opacities. We find that regrouping of non-contiguous opacity groups generally improves the speed of IMC-DDMC radiation transport. We present an asymptotic analysis that informs the nature of the Doppler shift in DDMC groups and summarize the derivation of the Gentile-Fleck factor for modified IMC-DDMC. We test SuperNu using numerical experiments including a quasi-manufactured analytic solution, a simple 10 group problem, and the W7 problem for Type Ia supernovae. We find that opacity regrouping is necessary to make our IMC-DDMC implementation feasible for the W7 problem and possibly Type Ia supernova simulations in general. We compare the bolometric light curves and spectra produced by the SuperNu and PHOENIX radiation transport codes for the W7 problem. The overall shape of the bolometric light curves are in good agreement, as are the spectra and their evolution with time. However, for the numerical specifications we considered, we find that the peak luminosity of the light curve calculated using SuperNu is ∼10% less than that calculated using PHOENIX.« less
Radiation Transport for Explosive Outflows: Opacity Regrouping
NASA Astrophysics Data System (ADS)
Wollaeger, Ryan T.; van Rossum, Daniel R.
2014-10-01
Implicit Monte Carlo (IMC) and Discrete Diffusion Monte Carlo (DDMC) are methods used to stochastically solve the radiative transport and diffusion equations, respectively. These methods combine into a hybrid transport-diffusion method we refer to as IMC-DDMC. We explore a multigroup IMC-DDMC scheme that in DDMC, combines frequency groups with sufficient optical thickness. We term this procedure "opacity regrouping." Opacity regrouping has previously been applied to IMC-DDMC calculations for problems in which the dependence of the opacity on frequency is monotonic. We generalize opacity regrouping to non-contiguous groups and implement this in SuperNu, a code designed to do radiation transport in high-velocity outflows with non-monotonic opacities. We find that regrouping of non-contiguous opacity groups generally improves the speed of IMC-DDMC radiation transport. We present an asymptotic analysis that informs the nature of the Doppler shift in DDMC groups and summarize the derivation of the Gentile-Fleck factor for modified IMC-DDMC. We test SuperNu using numerical experiments including a quasi-manufactured analytic solution, a simple 10 group problem, and the W7 problem for Type Ia supernovae. We find that opacity regrouping is necessary to make our IMC-DDMC implementation feasible for the W7 problem and possibly Type Ia supernova simulations in general. We compare the bolometric light curves and spectra produced by the SuperNu and PHOENIX radiation transport codes for the W7 problem. The overall shape of the bolometric light curves are in good agreement, as are the spectra and their evolution with time. However, for the numerical specifications we considered, we find that the peak luminosity of the light curve calculated using SuperNu is ~10% less than that calculated using PHOENIX.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, N.M.; Ford, W.E. III; Petrie, L.M.
AMPX-77 is a modular system of computer programs that pertain to nuclear analyses, with a primary emphasis on tasks associated with the production and use of multigroup cross sections. AH basic cross-section data are to be input in the formats used by the Evaluated Nuclear Data Files (ENDF/B), and output can be obtained in a variety of formats, including its own internal and very general formats, along with a variety of other useful formats used by major transport, diffusion theory, and Monte Carlo codes. Processing is provided for both neutron and gamma-my data. The present release contains codes all writtenmore » in the FORTRAN-77 dialect of FORTRAN and wig process ENDF/B-V and earlier evaluations, though major modules are being upgraded in order to process ENDF/B-VI and will be released when a complete collection of usable routines is available.« less
Fractional Diffusion Equations and Anomalous Diffusion
NASA Astrophysics Data System (ADS)
Evangelista, Luiz Roberto; Kaminski Lenzi, Ervin
2018-01-01
Preface; 1. Mathematical preliminaries; 2. A survey of the fractional calculus; 3. From normal to anomalous diffusion; 4. Fractional diffusion equations: elementary applications; 5. Fractional diffusion equations: surface effects; 6. Fractional nonlinear diffusion equation; 7. Anomalous diffusion: anisotropic case; 8. Fractional Schrödinger equations; 9. Anomalous diffusion and impedance spectroscopy; 10. The Poisson–Nernst–Planck anomalous (PNPA) models; References; Index.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, C.-L.; Lee, C.-C., E-mail: chieh.no27@gmail.com
2016-01-15
We consider solvability of the generalized reaction–diffusion equation with both space- and time-dependent diffusion and reaction terms by means of the similarity method. By introducing the similarity variable, the reaction–diffusion equation is reduced to an ordinary differential equation. Matching the resulting ordinary differential equation with known exactly solvable equations, one can obtain corresponding exactly solvable reaction–diffusion systems. Several representative examples of exactly solvable reaction–diffusion equations are presented.
Hybrid transport and diffusion modeling using electron thermal transport Monte Carlo SNB in DRACO
NASA Astrophysics Data System (ADS)
Chenhall, Jeffrey; Moses, Gregory
2017-10-01
The iSNB (implicit Schurtz Nicolai Busquet) multigroup diffusion electron thermal transport method is adapted into an Electron Thermal Transport Monte Carlo (ETTMC) transport method to better model angular and long mean free path non-local effects. Previously, the ETTMC model had been implemented in the 2D DRACO multiphysics code and found to produce consistent results with the iSNB method. Current work is focused on a hybridization of the computationally slower but higher fidelity ETTMC transport method with the computationally faster iSNB diffusion method in order to maximize computational efficiency. Furthermore, effects on the energy distribution of the heat flux divergence are studied. Work to date on the hybrid method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.
Efficient solution of the simplified P N equations
Hamilton, Steven P.; Evans, Thomas M.
2014-12-23
We show new solver strategies for the multigroup SPN equations for nuclear reactor analysis. By forming the complete matrix over space, moments, and energy a robust set of solution strategies may be applied. Moreover, power iteration, shifted power iteration, Rayleigh quotient iteration, Arnoldi's method, and a generalized Davidson method, each using algebraic and physics-based multigrid preconditioners, have been compared on C5G7 MOX test problem as well as an operational PWR model. These results show that the most ecient approach is the generalized Davidson method, that is 30-40 times faster than traditional power iteration and 6-10 times faster than Arnoldi's method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavenoky, A.
1973-01-01
From national topical meeting on mathematical models and computational techniques for analysis of nuclear systems; Ann Arbor, Michigan, USA (8 Apr 1973). In mathematical models and computational techniques for analysis of nuclear systems. APOLLO calculates the space-and-energy-dependent flux for a one dimensional medium, in the multigroup approximation of the transport equation. For a one dimensional medium, refined collision probabilities have been developed for the resolution of the integral form of the transport equation; these collision probabilities increase accuracy and save computing time. The interaction between a few cells can also be treated by the multicell option of APOLLO. The diffusionmore » coefficient and the material buckling can be computed in the various B and P approximations with a linearly anisotropic scattering law, even in the thermal range of the spectrum. Eventually this coefficient is corrected for streaming by use of Benoist's theory. The self-shielding of the heavy isotopes is treated by a new and accurate technique which preserves the reaction rates of the fundamental fine structure flux. APOLLO can perform a depletion calculation for one cell, a group of cells or a complete reactor. The results of an APOLLO calculation are the space-and-energy-dependent flux, the material buckling or any reaction rate; these results can also be macroscopic cross sections used as input data for a 2D or 3D depletion and diffusion code in reactor geometry. 10 references. (auth)« less
MPACT Theory Manual, Version 2.2.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Downar, Thomas; Collins, Benjamin S.; Gehin, Jess C.
2016-06-09
This theory manual describes the three-dimensional (3-D) whole-core, pin-resolved transport calculation methodology employed in the MPACT code. To provide sub-pin level power distributions with sufficient accuracy, MPACT employs the method of characteristics (MOC) solutions in the framework of a 3-D coarse mesh finite difference (CMFD) formulation. MPACT provides a 3D MOC solution, but also a 2D/1D solution in which the 2D planar solution is provided by MOC and the axial coupling is resolved by one-dimensional (1-D) lower order (diffusion or P3) solutions. In Chapter 2 of the manual, the MOC methodology is described for calculating the regional angular and scalarmore » fluxes from the Boltzmann transport equation. In Chapter 3, the 2D/1D methodology is described, together with the description of the CMFD iteration process involving dynamic homogenization and solution of the multigroup CMFD linear system. A description of the MPACT depletion algorithm is given in Chapter 4, followed by a discussion of the subgroup and ESSM resonance processing methods in Chapter 5. The final Chapter 6 describes a simplified thermal hydraulics model in MPACT.« less
Thermal neutron streaming effects and WIMS analysis of the Penn State subcritical graphite pile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.; Zediak, C.S.; Jester, W.A.
1997-12-01
This analysis was performed on the Pennsylvania State University (PSU) subcritical reactor to find more accurate values for such nuclear parameters as the thermal fuel utilization factor, thermal diffusion length in the graphite, migration area, k{sub eff}, etc. The analysis involved using the Winfrith Integrated Multigroup Scheme (WIMS) code as well as various hand calculations to find and compare those parameters. The data found in this analysis will be used by future students in the Penn State laboratory courses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, Ben Chung; Wollaber, Allan Benton; Haut, Terry Scot
The high-order low-order (HOLO) method is a recently developed moment-based acceleration scheme for solving time-dependent thermal radiative transfer problems, and has been shown to exhibit orders of magnitude speedups over traditional time-stepping schemes. However, a linear stability analysis by Haut et al. (2015 Haut, T. S., Lowrie, R. B., Park, H., Rauenzahn, R. M., Wollaber, A. B. (2015). A linear stability analysis of the multigroup High-Order Low-Order (HOLO) method. In Proceedings of the Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method; Nashville, TN, April 19–23, 2015. American Nuclear Society.)more » revealed that the current formulation of the multigroup HOLO method was unstable in certain parameter regions. Since then, we have replaced the intensity-weighted opacity in the first angular moment equation of the low-order (LO) system with the Rosseland opacity. Furthermore, this results in a modified HOLO method (HOLO-R) that is significantly more stable.« less
Multi-group Fokker-Planck proton transport in MCNP{trademark}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, K.J.
1997-11-01
MCNP has been enhanced to perform proton transport using a multigroup Fokker Planck (MGFP) algorithm with primary emphasis on proton radiography simulations. The new method solves the Fokker Planck approximation to the Boltzmann transport equation for the small angle multiple scattering portion of proton transport. Energy loss is accounted for by applying a group averaged stopping power over each transport step. Large angle scatter and non-inelastic events are treated as extinction. Comparisons with the more rigorous LAHET code show agreement to a few per cent for the total transmitted currents. The angular distributions through copper and low Z compounds showmore » good agreement between LAHET and MGFP with the MGFP method being slightly less forward peaked and without the large angle tails apparent in the LAHET simulation. Suitability of this method for proton radiography simulations is shown for a simple problem of a hole in a copper slab. LAHET and MGFP calculations of position, angle and energy through more complex objects are presented.« less
NASA Technical Reports Server (NTRS)
Stamnes, K.; Lie-Svendsen, O.; Rees, M. H.
1991-01-01
The linear Boltzmann equation can be cast in a form mathematically identical to the radiation-transport equation. A multigroup procedure is used to reduce the energy (or velocity) dependence of the transport equation to a series of one-speed problems. Each of these one-speed problems is equivalent to the monochromatic radiative-transfer problem, and existing software is used to solve this problem in slab geometry. The numerical code conserves particles in elastic collisions. Generic examples are provided to illustrate the applicability of this approach. Although this formalism can, in principle, be applied to a variety of test particle or linearized gas dynamics problems, it is particularly well-suited to study the thermalization of suprathermal particles interacting with a background medium when the thermal motion of the background cannot be ignored. Extensions of the formalism to include external forces and spherical geometry are also feasible.
Hybrid diffusion-P3 equation in N-layered turbid media: steady-state domain.
Shi, Zhenzhi; Zhao, Huijuan; Xu, Kexin
2011-10-01
This paper discusses light propagation in N-layered turbid media. The hybrid diffusion-P3 equation is solved for an N-layered finite or infinite turbid medium in the steady-state domain for one point source using the extrapolated boundary condition. The Fourier transform formalism is applied to derive the analytical solutions of the fluence rate in Fourier space. Two inverse Fourier transform methods are developed to calculate the fluence rate in real space. In addition, the solutions of the hybrid diffusion-P3 equation are compared to the solutions of the diffusion equation and the Monte Carlo simulation. For the case of small absorption coefficients, the solutions of the N-layered diffusion equation and hybrid diffusion-P3 equation are almost equivalent and are in agreement with the Monte Carlo simulation. For the case of large absorption coefficients, the model of the hybrid diffusion-P3 equation is more precise than that of the diffusion equation. In conclusion, the model of the hybrid diffusion-P3 equation can replace the diffusion equation for modeling light propagation in the N-layered turbid media for a wide range of absorption coefficients.
MC 2 -3: Multigroup Cross Section Generation Code for Fast Reactor Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Changho; Yang, Won Sik
This paper presents the methods and performance of the MC2 -3 code, which is a multigroup cross-section generation code for fast reactor analysis, developed to improve the resonance self-shielding and spectrum calculation methods of MC2 -2 and to simplify the current multistep schemes generating region-dependent broad-group cross sections. Using the basic neutron data from ENDF/B data files, MC2 -3 solves the consistent P1 multigroup transport equation to determine the fundamental mode spectra for use in generating multigroup neutron cross sections. A homogeneous medium or a heterogeneous slab or cylindrical unit cell problem is solved in ultrafine (2082) or hyperfine (~400more » 000) group levels. In the resolved resonance range, pointwise cross sections are reconstructed with Doppler broadening at specified temperatures. The pointwise cross sections are directly used in the hyperfine group calculation, whereas for the ultrafine group calculation, self-shielded cross sections are prepared by numerical integration of the pointwise cross sections based upon the narrow resonance approximation. For both the hyperfine and ultrafine group calculations, unresolved resonances are self-shielded using the analytic resonance integral method. The ultrafine group calculation can also be performed for a two-dimensional whole-core problem to generate region-dependent broad-group cross sections. Verification tests have been performed using the benchmark problems for various fast critical experiments including Los Alamos National Laboratory critical assemblies; Zero-Power Reactor, Zero-Power Physics Reactor, and Bundesamt für Strahlenschutz experiments; Monju start-up core; and Advanced Burner Test Reactor. Verification and validation results with ENDF/B-VII.0 data indicated that eigenvalues from MC2 -3/DIF3D agreed well with Monte Carlo N-Particle5 MCNP5 or VIM Monte Carlo solutions within 200 pcm and regionwise one-group fluxes were in good agreement with Monte Carlo solutions.« less
Multi-Group Maximum Entropy Model for Translational Non-Equilibrium
NASA Technical Reports Server (NTRS)
Jayaraman, Vegnesh; Liu, Yen; Panesi, Marco
2017-01-01
The aim of the current work is to describe a new model for flows in translational non- equilibrium. Starting from the statistical description of a gas proposed by Boltzmann, the model relies on a domain decomposition technique in velocity space. Using the maximum entropy principle, the logarithm of the distribution function in each velocity sub-domain (group) is expressed with a power series in molecular velocity. New governing equations are obtained using the method of weighted residuals by taking the velocity moments of the Boltzmann equation. The model is applied to a spatially homogeneous Boltzmann equation with a Bhatnagar-Gross-Krook1(BGK) model collision operator and the relaxation of an initial non-equilibrium distribution to a Maxwellian is studied using the model. In addition, numerical results obtained using the model for a 1D shock tube problem are also reported.
Castro-Sánchez, Manuel; Zurita-Ortega, Félix; Chacón-Cuberos, Ramón; López-Gutiérrez, Carlos Javier; Zafra-Santos, Edson
2018-05-01
(1) Background: Psychological factors can strongly affect the athletes’ performance. Therefore, currently the role of the sports psychologist is particularly relevant, being in charge of training the athlete’s psychological factors. This study aims at analysing the connections between motivational climate in sport, anxiety and emotional intelligence depending on the type of sport practised (individual/team) by means of a multigroup structural equations analysis. (2) 372 semi-professional Spanish athletes took part in this investigation, analysing motivational climate (PMCSQ-2), emotional intelligence (SSRI) and levels of anxiety (STAI). A model of multigroup structural equations was carried out which fitted accordingly (χ² = 586.77; df = 6.37; p < 0.001; Comparative Fit Index (CFI) = 0.951; Normed Fit Index (NFI) = 0.938; Incremental Fit Index (IFI) = 0.947; Root Mean Square Error of Approximation (RMSEA) = 0.069). (3) Results: A negative and direct connection has been found between ego oriented climate and task oriented climate, which is stronger and more differentiated in team sports. The most influential indicator in ego oriented climate is intra-group rivalry, exerting greater influence in individual sports. For task-oriented climate the strongest indicator is having an important role in individual sports, while in team sports it is cooperative learning. Emotional intelligence dimensions correlate more strongly in team sports than in individual sports. In addition, there was a negative and indirect relation between task oriented climate and trait-anxiety in both categories of sports. (4) Conclusions: This study shows how the task-oriented motivational climate or certain levels of emotional intelligence can act preventively in the face of anxiety states in athletes. Therefore, the development of these psychological factors could prevent anxiety states and improve performance in athletes.
López-Gutiérrez, Carlos Javier; Zafra-Santos, Edson
2018-01-01
(1) Background: Psychological factors can strongly affect the athletes’ performance. Therefore, currently the role of the sports psychologist is particularly relevant, being in charge of training the athlete’s psychological factors. This study aims at analysing the connections between motivational climate in sport, anxiety and emotional intelligence depending on the type of sport practised (individual/team) by means of a multigroup structural equations analysis. (2) 372 semi-professional Spanish athletes took part in this investigation, analysing motivational climate (PMCSQ-2), emotional intelligence (SSRI) and levels of anxiety (STAI). A model of multigroup structural equations was carried out which fitted accordingly (χ2 = 586.77; df = 6.37; p < 0.001; Comparative Fit Index (CFI) = 0.951; Normed Fit Index (NFI) = 0.938; Incremental Fit Index (IFI) = 0.947; Root Mean Square Error of Approximation (RMSEA) = 0.069). (3) Results: A negative and direct connection has been found between ego oriented climate and task oriented climate, which is stronger and more differentiated in team sports. The most influential indicator in ego oriented climate is intra-group rivalry, exerting greater influence in individual sports. For task-oriented climate the strongest indicator is having an important role in individual sports, while in team sports it is cooperative learning. Emotional intelligence dimensions correlate more strongly in team sports than in individual sports. In addition, there was a negative and indirect relation between task oriented climate and trait-anxiety in both categories of sports. (4) Conclusions: This study shows how the task-oriented motivational climate or certain levels of emotional intelligence can act preventively in the face of anxiety states in athletes. Therefore, the development of these psychological factors could prevent anxiety states and improve performance in athletes. PMID:29724008
Model Comparison for Electron Thermal Transport
NASA Astrophysics Data System (ADS)
Moses, Gregory; Chenhall, Jeffrey; Cao, Duc; Delettrez, Jacques
2015-11-01
Four electron thermal transport models are compared for their ability to accurately and efficiently model non-local behavior in ICF simulations. Goncharov's transport model has accurately predicted shock timing in implosion simulations but is computationally slow and limited to 1D. The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. uses multigroup diffusion to speed up the calculation. Chenhall has expanded upon the iSNB diffusion model to a higher order simplified P3 approximation and a Monte Carlo transport model, to bridge the gap between the iSNB and Goncharov models while maintaining computational efficiency. Comparisons of the above models for several test problems will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.
NASA Astrophysics Data System (ADS)
Ohmori, Shousuke; Yamazaki, Yoshihiro
2016-01-01
Ultradiscrete equations are derived from a set of reaction-diffusion partial differential equations, and cellular automaton rules are obtained on the basis of the ultradiscrete equations. Some rules reproduce the dynamical properties of the original reaction-diffusion equations, namely, bistability and pulse annihilation. Furthermore, other rules bring about soliton-like preservation and periodic pulse generation with a pacemaker, which are not obtained from the original reaction-diffusion equations.
Testing women's propensities to leave their abusive husbands using structural equation modeling.
Choi, Myunghan; Belyea, Michael; Phillips, Linda R; Insel, Kathleen; Min, Sung-Kil
2009-01-01
Many Korean women are just beginning to recognize that what they considered to be normal treatment is actually domestic violence. Many are becoming more intolerant of the abuse and more likely to desire to leave an abusive relationship. The aim of this study was to test, using the framework of sociostructural and psychological-relational power (PRP), a model of Korean women's propensities to leave their abusive husbands. Multigroup structural equation modeling was used to test relationships between variables chosen from the sociostructural power and PRP to explain intolerance to abuse. Married Korean women (n = 184) who self-identified as being abused physically, psychologically, sexually, or financially participated in the study. The multigroup analysis revealed that the relationship of abuse and Hwa-Byung (a culture-bound syndrome that denotes Korean women's anger) with intolerance was supported for women with low education (defined as having an education of high school or less: < or =12 years); also for this group, particularly among the younger women, high power was related to high levels of reported abuse and abuse intolerance. For women in the high-education group (education beyond high school: > or =13 years), high power was related to abuse, Hwa-Byung, and abuse intolerance; age did not influence power. Overall, the multigroup model adequately fitted the sample data (chi2 = 92.057, degree of freedom = 50, p = .000; normal fit index = .926, comparative fix index = .964, root mean square error of approximation = .068, Hoelter's critical number = 152), demonstrating that education is a crucial moderator of Korean women's attitude toward the unacceptability of abuse and propensity to terminate the marriage. This study found support for a model of abuse intolerance using the framework of sociostructural power and PRP, primarily for the low-education group. Hwa-Byung was a mediating factor that contributed to intolerance to abuse in women with low education. This study highlights the importance of understanding the cultural assumptions that guide Korean women's beliefs and behaviors about abuse intolerance, suggesting that effective intervention programs should be specific to age and education, including a focus on resource availability, which could clarify the variations in Korean women's responses to abuse intolerance.
Vieno, Alessio; Santinello, Massimo; Pastore, Massimiliano; Perkins, Douglas D
2007-03-01
Influences of different sources of social support (from parents and friends), school sense of community, and self-efficacy on psychosocial well being (as measured by self-reported life satisfaction and psychological symptoms) in early adolescence were investigated in an integrative model. The model was tested using structural equation modeling. Multi-group comparisons were used to estimate differences between sex and age groups. The survey sample was composed of 7,097 students in Northern Italy (51.4% male) divided into three age cohorts (equivalent to 6th, 8th, and 10th grades with median ages of 11, 13, and 15). Findings obtained using SEM were consistent with self-efficacy and school sense of community mediating effects of social support on psychosocial adjustment. The multi-group comparison indicates a need for more complex developmental models and more research on how changing forms of support interact with each other as their effects also change during this important stage of the life. Implications for primary prevention and cross-cultural comparisons are discussed.
Olson, Gordon L.
2015-09-24
One-dimensional models for the transport of radiation through binary stochastic media do not work in multi-dimensions. In addition, authors have attempted to modify or extend the 1D models to work in multidimensions without success. Analytic one-dimensional models are successful in 1D only when assuming greatly simplified physics. State of the art theories for stochastic media radiation transport do not address multi-dimensions and temperature-dependent physics coefficients. Here, the concept of effective opacities and effective heat capacities is found to well represent the ensemble averaged transport solutions in cases with gray or multigroup temperature-dependent opacities and constant or temperature-dependent heat capacities. Inmore » every case analyzed here, effective physics coefficients fit the transport solutions over a useful range of parameter space. The transport equation is solved with the spherical harmonics method with angle orders of n=1 and 5. Although the details depend on what order of solution is used, the general results are similar, independent of angular order.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, Gordon L.
One-dimensional models for the transport of radiation through binary stochastic media do not work in multi-dimensions. In addition, authors have attempted to modify or extend the 1D models to work in multidimensions without success. Analytic one-dimensional models are successful in 1D only when assuming greatly simplified physics. State of the art theories for stochastic media radiation transport do not address multi-dimensions and temperature-dependent physics coefficients. Here, the concept of effective opacities and effective heat capacities is found to well represent the ensemble averaged transport solutions in cases with gray or multigroup temperature-dependent opacities and constant or temperature-dependent heat capacities. Inmore » every case analyzed here, effective physics coefficients fit the transport solutions over a useful range of parameter space. The transport equation is solved with the spherical harmonics method with angle orders of n=1 and 5. Although the details depend on what order of solution is used, the general results are similar, independent of angular order.« less
Ruffing, Stephanie; Wach, F. -Sophie; Spinath, Frank M.; Brünken, Roland; Karbach, Julia
2015-01-01
Recent research has revealed that learning behavior is associated with academic achievement at the college level, but the impact of specific learning strategies on academic success as well as gender differences therein are still not clear. Therefore, the aim of this study was to investigate gender differences in the incremental contribution of learning strategies over general cognitive ability in the prediction of academic achievement. The relationship between these variables was examined by correlation analyses. A set of t-tests was used to test for gender differences in learning strategies, whereas structural equation modeling as well as multi-group analyses were applied to investigate the incremental contribution of learning strategies for male and female students’ academic performance. The sample consisted of 461 students (mean age = 21.2 years, SD = 3.2). Correlation analyses revealed that general cognitive ability as well as the learning strategies effort, attention, and learning environment were positively correlated with academic achievement. Gender differences were found in the reported application of many learning strategies. Importantly, the prediction of achievement in structural equation modeling revealed that only effort explained incremental variance (10%) over general cognitive ability. Results of multi-group analyses showed no gender differences in this prediction model. This finding provides further knowledge regarding gender differences in learning research and the specific role of learning strategies for academic achievement. The incremental assessment of learning strategy use as well as gender-differences in their predictive value contributes to the understanding and improvement of successful academic development. PMID:26347698
Ruffing, Stephanie; Wach, F-Sophie; Spinath, Frank M; Brünken, Roland; Karbach, Julia
2015-01-01
Recent research has revealed that learning behavior is associated with academic achievement at the college level, but the impact of specific learning strategies on academic success as well as gender differences therein are still not clear. Therefore, the aim of this study was to investigate gender differences in the incremental contribution of learning strategies over general cognitive ability in the prediction of academic achievement. The relationship between these variables was examined by correlation analyses. A set of t-tests was used to test for gender differences in learning strategies, whereas structural equation modeling as well as multi-group analyses were applied to investigate the incremental contribution of learning strategies for male and female students' academic performance. The sample consisted of 461 students (mean age = 21.2 years, SD = 3.2). Correlation analyses revealed that general cognitive ability as well as the learning strategies effort, attention, and learning environment were positively correlated with academic achievement. Gender differences were found in the reported application of many learning strategies. Importantly, the prediction of achievement in structural equation modeling revealed that only effort explained incremental variance (10%) over general cognitive ability. Results of multi-group analyses showed no gender differences in this prediction model. This finding provides further knowledge regarding gender differences in learning research and the specific role of learning strategies for academic achievement. The incremental assessment of learning strategy use as well as gender-differences in their predictive value contributes to the understanding and improvement of successful academic development.
Transformed Fourier and Fick equations for the control of heat and mass diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guenneau, S.; Petiteau, D.; Zerrad, M.
We review recent advances in the control of diffusion processes in thermodynamics and life sciences through geometric transforms in the Fourier and Fick equations, which govern heat and mass diffusion, respectively. We propose to further encompass transport properties in the transformed equations, whereby the temperature is governed by a three-dimensional, time-dependent, anisotropic heterogeneous convection-diffusion equation, which is a parabolic partial differential equation combining the diffusion equation and the advection equation. We perform two dimensional finite element computations for cloaks, concentrators and rotators of a complex shape in the transient regime. We precise that in contrast to invisibility cloaks for waves,more » the temperature (or mass concentration) inside a diffusion cloak crucially depends upon time, its distance from the source, and the diffusivity of the invisibility region. However, heat (or mass) diffusion outside cloaks, concentrators and rotators is unaffected by their presence, whatever their shape or position. Finally, we propose simplified designs of layered cylindrical and spherical diffusion cloaks that might foster experimental efforts in thermal and biochemical metamaterials.« less
Fractional Diffusion Processes: Probability Distributions and Continuous Time Random Walk
NASA Astrophysics Data System (ADS)
Gorenflo, R.; Mainardi, F.
A physical-mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. By the space-time fractional diffusion equation we mean an evolution equation obtained from the standard linear diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative of order alpha in (0,2] and skewness theta (\\verttheta\\vertlemin \\{alpha ,2-alpha \\}), and the first-order time derivative with a Caputo derivative of order beta in (0,1] . The fundamental solution (for the Cauchy problem) of the fractional diffusion equation can be interpreted as a probability density evolving in time of a peculiar self-similar stochastic process. We view it as a generalized diffusion process that we call fractional diffusion process, and present an integral representation of the fundamental solution. A more general approach to anomalous diffusion is however known to be provided by the master equation for a continuous time random walk (CTRW). We show how this equation reduces to our fractional diffusion equation by a properly scaled passage to the limit of compressed waiting times and jump widths. Finally, we describe a method of simulation and display (via graphics) results of a few numerical case studies.
Advanced nodal neutron diffusion method with space-dependent cross sections: ILLICO-VX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajic, H.L.; Ougouag, A.M.
1987-01-01
Advanced transverse integrated nodal methods for neutron diffusion developed since the 1970s require that node- or assembly-homogenized cross sections be known. The underlying structural heterogeneity can be accurately accounted for in homogenization procedures by the use of heterogeneity or discontinuity factors. Other (milder) types of heterogeneity, burnup-induced or due to thermal-hydraulic feedback, can be resolved by explicitly accounting for the spatial variations of material properties. This can be done during the nodal computations via nonlinear iterations. The new method has been implemented in the code ILLICO-VX (ILLICO variable cross-section method). Numerous numerical tests were performed. As expected, the convergence ratemore » of ILLICO-VX is lower than that of ILLICO, requiring approx. 30% more outer iterations per k/sub eff/ computation. The methodology has also been implemented as the NOMAD-VX option of the NOMAD, multicycle, multigroup, two- and three-dimensional nodal diffusion depletion code. The burnup-induced heterogeneities (space dependence of cross sections) are calculated during the burnup steps.« less
Some Properties of the Fractional Equation of Continuity and the Fractional Diffusion Equation
NASA Astrophysics Data System (ADS)
Fukunaga, Masataka
2006-05-01
The fractional equation of continuity (FEC) and the fractional diffusion equation (FDE) show peculiar behaviors that are in the opposite sense to those expected from the equation of continuity and the diffusion equation, respectively. The behaviors are interpreted in terms of the memory effect of the fractional time derivatives included in the equations. Some examples are given by solutions of the FDE.
Solution of a modified fractional diffusion equation
NASA Astrophysics Data System (ADS)
Langlands, T. A. M.
2006-07-01
Recently, a modified fractional diffusion equation has been proposed [I. Sokolov, J. Klafter, From diffusion to anomalous diffusion: a century after Einstein's brownian motion, Chaos 15 (2005) 026103; A.V. Chechkin, R. Gorenflo, I.M. Sokolov, V.Yu. Gonchar, Distributed order time fractional diffusion equation, Frac. Calc. Appl. Anal. 6 (3) (2003) 259279; I.M. Sokolov, A.V. Checkin, J. Klafter, Distributed-order fractional kinetics, Acta. Phys. Pol. B 35 (2004) 1323.] for describing processes that become less anomalous as time progresses by the inclusion of a second fractional time derivative acting on the diffusion term. In this letter we give the solution of the modified equation on an infinite domain. In contrast to the solution of the traditional fractional diffusion equation, the solution of the modified equation requires an infinite series of Fox functions instead of a single Fox function.
Travelling Wave Solutions in Multigroup Age-Structured Epidemic Models
NASA Astrophysics Data System (ADS)
Ducrot, Arnaut; Magal, Pierre; Ruan, Shigui
2010-01-01
Age-structured epidemic models have been used to describe either the age of individuals or the age of infection of certain diseases and to determine how these characteristics affect the outcomes and consequences of epidemiological processes. Most results on age-structured epidemic models focus on the existence, uniqueness, and convergence to disease equilibria of solutions. In this paper we investigate the existence of travelling wave solutions in a deterministic age-structured model describing the circulation of a disease within a population of multigroups. Individuals of each group are able to move with a random walk which is modelled by the classical Fickian diffusion and are classified into two subclasses, susceptible and infective. A susceptible individual in a given group can be crisscross infected by direct contact with infective individuals of possibly any group. This process of transmission can depend upon the age of the disease of infected individuals. The goal of this paper is to provide sufficient conditions that ensure the existence of travelling wave solutions for the age-structured epidemic model. The case of two population groups is numerically investigated which applies to the crisscross transmission of feline immunodeficiency virus (FIV) and some sexual transmission diseases.
Diffusion Coefficients from Molecular Dynamics Simulations in Binary and Ternary Mixtures
NASA Astrophysics Data System (ADS)
Liu, Xin; Schnell, Sondre K.; Simon, Jean-Marc; Krüger, Peter; Bedeaux, Dick; Kjelstrup, Signe; Bardow, André; Vlugt, Thijs J. H.
2013-07-01
Multicomponent diffusion in liquids is ubiquitous in (bio)chemical processes. It has gained considerable and increasing interest as it is often the rate limiting step in a process. In this paper, we review methods for calculating diffusion coefficients from molecular simulation and predictive engineering models. The main achievements of our research during the past years can be summarized as follows: (1) we introduced a consistent method for computing Fick diffusion coefficients using equilibrium molecular dynamics simulations; (2) we developed a multicomponent Darken equation for the description of the concentration dependence of Maxwell-Stefan diffusivities. In the case of infinite dilution, the multicomponent Darken equation provides an expression for [InlineEquation not available: see fulltext.] which can be used to parametrize the generalized Vignes equation; and (3) a predictive model for self-diffusivities was proposed for the parametrization of the multicomponent Darken equation. This equation accurately describes the concentration dependence of self-diffusivities in weakly associating systems. With these methods, a sound framework for the prediction of mutual diffusion in liquids is achieved.
Vlad, Marcel Ovidiu; Ross, John
2002-12-01
We introduce a general method for the systematic derivation of nonlinear reaction-diffusion equations with distributed delays. We study the interactions among different types of moving individuals (atoms, molecules, quasiparticles, biological organisms, etc). The motion of each species is described by the continuous time random walk theory, analyzed in the literature for transport problems, whereas the interactions among the species are described by a set of transformation rates, which are nonlinear functions of the local concentrations of the different types of individuals. We use the time interval between two jumps (the transition time) as an additional state variable and obtain a set of evolution equations, which are local in time. In order to make a connection with the transport models used in the literature, we make transformations which eliminate the transition time and derive a set of nonlocal equations which are nonlinear generalizations of the so-called generalized master equations. The method leads under different specified conditions to various types of nonlocal transport equations including a nonlinear generalization of fractional diffusion equations, hyperbolic reaction-diffusion equations, and delay-differential reaction-diffusion equations. Thus in the analysis of a given problem we can fit to the data the type of reaction-diffusion equation and the corresponding physical and kinetic parameters. The method is illustrated, as a test case, by the study of the neolithic transition. We introduce a set of assumptions which makes it possible to describe the transition from hunting and gathering to agriculture economics by a differential delay reaction-diffusion equation for the population density. We derive a delay evolution equation for the rate of advance of agriculture, which illustrates an application of our analysis.
The role of fractional time-derivative operators on anomalous diffusion
NASA Astrophysics Data System (ADS)
Tateishi, Angel A.; Ribeiro, Haroldo V.; Lenzi, Ervin K.
2017-10-01
The generalized diffusion equations with fractional order derivatives have shown be quite efficient to describe the diffusion in complex systems, with the advantage of producing exact expressions for the underlying diffusive properties. Recently, researchers have proposed different fractional-time operators (namely: the Caputo-Fabrizio and Atangana-Baleanu) which, differently from the well-known Riemann-Liouville operator, are defined by non-singular memory kernels. Here we proposed to use these new operators to generalize the usual diffusion equation. By analyzing the corresponding fractional diffusion equations within the continuous time random walk framework, we obtained waiting time distributions characterized by exponential, stretched exponential, and power-law functions, as well as a crossover between two behaviors. For the mean square displacement, we found crossovers between usual and confined diffusion, and between usual and sub-diffusion. We obtained the exact expressions for the probability distributions, where non-Gaussian and stationary distributions emerged. This former feature is remarkable because the fractional diffusion equation is solved without external forces and subjected to the free diffusion boundary conditions. We have further shown that these new fractional diffusion equations are related to diffusive processes with stochastic resetting, and to fractional diffusion equations with derivatives of distributed order. Thus, our results suggest that these new operators may be a simple and efficient way for incorporating different structural aspects into the system, opening new possibilities for modeling and investigating anomalous diffusive processes.
Instability of turing patterns in reaction-diffusion-ODE systems.
Marciniak-Czochra, Anna; Karch, Grzegorz; Suzuki, Kanako
2017-02-01
The aim of this paper is to contribute to the understanding of the pattern formation phenomenon in reaction-diffusion equations coupled with ordinary differential equations. Such systems of equations arise, for example, from modeling of interactions between cellular processes such as cell growth, differentiation or transformation and diffusing signaling factors. We focus on stability analysis of solutions of a prototype model consisting of a single reaction-diffusion equation coupled to an ordinary differential equation. We show that such systems are very different from classical reaction-diffusion models. They exhibit diffusion-driven instability (turing instability) under a condition of autocatalysis of non-diffusing component. However, the same mechanism which destabilizes constant solutions of such models, destabilizes also all continuous spatially heterogeneous stationary solutions, and consequently, there exist no stable Turing patterns in such reaction-diffusion-ODE systems. We provide a rigorous result on the nonlinear instability, which involves the analysis of a continuous spectrum of a linear operator induced by the lack of diffusion in the destabilizing equation. These results are extended to discontinuous patterns for a class of nonlinearities.
NASA Astrophysics Data System (ADS)
Nelson, Adam
Multi-group scattering moment matrices are critical to the solution of the multi-group form of the neutron transport equation, as they are responsible for describing the change in direction and energy of neutrons. These matrices, however, are difficult to correctly calculate from the measured nuclear data with both deterministic and stochastic methods. Calculating these parameters when using deterministic methods requires a set of assumptions which do not hold true in all conditions. These quantities can be calculated accurately with stochastic methods, however doing so is computationally expensive due to the poor efficiency of tallying scattering moment matrices. This work presents an improved method of obtaining multi-group scattering moment matrices from a Monte Carlo neutron transport code. This improved method of tallying the scattering moment matrices is based on recognizing that all of the outgoing particle information is known a priori and can be taken advantage of to increase the tallying efficiency (therefore reducing the uncertainty) of the stochastically integrated tallies. In this scheme, the complete outgoing probability distribution is tallied, supplying every one of the scattering moment matrices elements with its share of data. In addition to reducing the uncertainty, this method allows for the use of a track-length estimation process potentially offering even further improvement to the tallying efficiency. Unfortunately, to produce the needed distributions, the probability functions themselves must undergo an integration over the outgoing energy and scattering angle dimensions. This integration is too costly to perform during the Monte Carlo simulation itself and therefore must be performed in advance by way of a pre-processing code. The new method increases the information obtained from tally events and therefore has a significantly higher efficiency than the currently used techniques. The improved method has been implemented in a code system containing a new pre-processor code, NDPP, and a Monte Carlo neutron transport code, OpenMC. This method is then tested in a pin cell problem and a larger problem designed to accentuate the importance of scattering moment matrices. These tests show that accuracy was retained while the figure-of-merit for generating scattering moment matrices and fission energy spectra was significantly improved.
Importance of resonance interference effects in multigroup self-shielding calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stachowski, R.E.; Protsik, R.
1995-12-31
The impact of the resonance interference method (RIF) on multigroup neutron cross sections is significant for major isotopes in the fuel, indicating the importance of resonance interference in the computation of gadolinia burnout and plutonium buildup. The self-shielding factor method with the RIF method effectively eliminates shortcomings in multigroup resonance calculations.
Branson: A Mini-App for Studying Parallel IMC, Version 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Alex
This code solves the gray thermal radiative transfer (TRT) equations in parallel using simple opacities and Cartesian meshes. Although Branson solves the TRT equations it is not designed to model radiation transport: Branson contains simple physics and does not have a multigroup treatment, nor can it use physical material data. The opacities have are simple polynomials in temperature there is a limited ability to specify complex geometries and sources. Branson was designed only to capture the computational demands of production IMC codes, especially in large parallel runs. It was also intended to foster collaboration with vendors, universities and other DOEmore » partners. Branson is similar in character to the neutron transport proxy-app Quicksilver from LLNL, which was recently open-sourced.« less
Path length differencing and energy conservation of the S[sub N] Boltzmann/Spencer-Lewis equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippone, W.L.; Monahan, S.P.
It is shown that the S[sub N] Boltzmann/Spencer-Lewis equations conserve energy locally if and only if they satisfy particle balance and diamond differencing is used in path length. In contrast, the spatial differencing schemes have no bearing on the energy balance. Energy is conserved globally if it is conserved locally and the multigroup cross sections are energy conserving. Although the coupled electron-photon cross sections generated by CEPXS conserve particles and charge, they do not precisely conserve energy. It is demonstrated that these cross sections can be adjusted such that particles, charge, and energy are conserved. Finally, since a conventional negativemore » flux fixup destroys energy balance when applied to path legend, a modified fixup scheme that does not is presented.« less
Background-Error Correlation Model Based on the Implicit Solution of a Diffusion Equation
2010-01-01
1 Background- Error Correlation Model Based on the Implicit Solution of a Diffusion Equation Matthew J. Carrier* and Hans Ngodock...4. TITLE AND SUBTITLE Background- Error Correlation Model Based on the Implicit Solution of a Diffusion Equation 5a. CONTRACT NUMBER 5b. GRANT...2001), which sought to model error correlations based on the explicit solution of a generalized diffusion equation. The implicit solution is
Procedure to Generate the MPACT Multigroup Library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kang Seog
The CASL neutronics simulator MPACT is under development for the neutronics and T-H coupled simulation for the light water reactor. The objective of this document is focused on reviewing the current procedure to generate the MPACT multigroup library. Detailed methodologies and procedures are included in this document for further discussion to improve the MPACT multigroup library.
Morales-Vives, Fabia; Dueñas, Jorge Manuel
2018-04-10
In recent years, suicide rates have increased in adolescents and the young population, so these age groups are considered as populations at risk. Considering that suicidal ideation is the first sign of possible future suicide behavior, the objective of this study is to determine the relative importance of psychological maturity, personality, depression and life satisfaction in predicting suicidal ideation in adolescents. Results show that depressive symptoms is the variable that best predicts suicidal ideation, but psychological maturity, life satisfaction and emotional stability are predictors as well (R2 = .51, p < .001). However, the Multigroup Structural Equation Models analyses carried out show that emotional stability has an indirect relationship with suicidal ideation, through its relationship with depressive symptoms, life satisfaction and identity. Two Multigroup Structural Equation Models were proposed to better understand the relationships between these variables for each sex. The results show that the fit of the model that includes the variable Self-reliance is better for boys than for girls (chi-square contributions of 8.175 for girls and 1.978 for boys) unlike the other model (chi-square contributions of 0.288 for girls and 1.650 for boys). These results suggest that the psychological maturity subscale Self-reliance play a role in suicidal ideation in males but not in females. Although there have been no previous studies on the role of psychological maturity as a predictor of suicidal phenomena, the current study suggests that it is a feature to be considered in the prediction of adolescent suicidal ideation.
Diffusion of Charged Species in Liquids
NASA Astrophysics Data System (ADS)
Del Río, J. A.; Whitaker, S.
2016-11-01
In this study the laws of mechanics for multi-component systems are used to develop a theory for the diffusion of ions in the presence of an electrostatic field. The analysis begins with the governing equation for the species velocity and it leads to the governing equation for the species diffusion velocity. Simplification of this latter result provides a momentum equation containing three dominant forces: (a) the gradient of the partial pressure, (b) the electrostatic force, and (c) the diffusive drag force that is a central feature of the Maxwell-Stefan equations. For ideal gas mixtures we derive the classic Nernst-Planck equation. For liquid-phase diffusion we encounter a situation in which the Nernst-Planck contribution to diffusion differs by several orders of magnitude from that obtained for ideal gases.
Diffusion of Charged Species in Liquids.
Del Río, J A; Whitaker, S
2016-11-04
In this study the laws of mechanics for multi-component systems are used to develop a theory for the diffusion of ions in the presence of an electrostatic field. The analysis begins with the governing equation for the species velocity and it leads to the governing equation for the species diffusion velocity. Simplification of this latter result provides a momentum equation containing three dominant forces: (a) the gradient of the partial pressure, (b) the electrostatic force, and (c) the diffusive drag force that is a central feature of the Maxwell-Stefan equations. For ideal gas mixtures we derive the classic Nernst-Planck equation. For liquid-phase diffusion we encounter a situation in which the Nernst-Planck contribution to diffusion differs by several orders of magnitude from that obtained for ideal gases.
Diffusion of Charged Species in Liquids
del Río, J. A.; Whitaker, S.
2016-01-01
In this study the laws of mechanics for multi-component systems are used to develop a theory for the diffusion of ions in the presence of an electrostatic field. The analysis begins with the governing equation for the species velocity and it leads to the governing equation for the species diffusion velocity. Simplification of this latter result provides a momentum equation containing three dominant forces: (a) the gradient of the partial pressure, (b) the electrostatic force, and (c) the diffusive drag force that is a central feature of the Maxwell-Stefan equations. For ideal gas mixtures we derive the classic Nernst-Planck equation. For liquid-phase diffusion we encounter a situation in which the Nernst-Planck contribution to diffusion differs by several orders of magnitude from that obtained for ideal gases. PMID:27811959
Seroussi, Inbar; Grebenkov, Denis S.; Pasternak, Ofer; Sochen, Nir
2017-01-01
In order to bridge microscopic molecular motion with macroscopic diffusion MR signal in complex structures, we propose a general stochastic model for molecular motion in a magnetic field. The Fokker-Planck equation of this model governs the probability density function describing the diffusion-magnetization propagator. From the propagator we derive a generalized version of the Bloch-Torrey equation and the relation to the random phase approach. This derivation does not require assumptions such as a spatially constant diffusion coefficient, or ad-hoc selection of a propagator. In particular, the boundary conditions that implicitly incorporate the microstructure into the diffusion MR signal can now be included explicitly through a spatially varying diffusion coefficient. While our generalization is reduced to the conventional Bloch-Torrey equation for piecewise constant diffusion coefficients, it also predicts scenarios in which an additional term to the equation is required to fully describe the MR signal. PMID:28242566
Study on monostable and bistable reaction-diffusion equations by iteration of travelling wave maps
NASA Astrophysics Data System (ADS)
Yi, Taishan; Chen, Yuming
2017-12-01
In this paper, based on the iterative properties of travelling wave maps, we develop a new method to obtain spreading speeds and asymptotic propagation for monostable and bistable reaction-diffusion equations. Precisely, for Dirichlet problems of monostable reaction-diffusion equations on the half line, by making links between travelling wave maps and integral operators associated with the Dirichlet diffusion kernel (the latter is NOT invariant under translation), we obtain some iteration properties of the Dirichlet diffusion and some a priori estimates on nontrivial solutions of Dirichlet problems under travelling wave transformation. We then provide the asymptotic behavior of nontrivial solutions in the space-time region for Dirichlet problems. These enable us to develop a unified method to obtain results on heterogeneous steady states, travelling waves, spreading speeds, and asymptotic spreading behavior for Dirichlet problem of monostable reaction-diffusion equations on R+ as well as of monostable/bistable reaction-diffusion equations on R.
Stability analysis of multi-group deterministic and stochastic epidemic models with vaccination rate
NASA Astrophysics Data System (ADS)
Wang, Zhi-Gang; Gao, Rui-Mei; Fan, Xiao-Ming; Han, Qi-Xing
2014-09-01
We discuss in this paper a deterministic multi-group MSIR epidemic model with a vaccination rate, the basic reproduction number ℛ0, a key parameter in epidemiology, is a threshold which determines the persistence or extinction of the disease. By using Lyapunov function techniques, we show if ℛ0 is greater than 1 and the deterministic model obeys some conditions, then the disease will prevail, the infective persists and the endemic state is asymptotically stable in a feasible region. If ℛ0 is less than or equal to 1, then the infective disappear so the disease dies out. In addition, stochastic noises around the endemic equilibrium will be added to the deterministic MSIR model in order that the deterministic model is extended to a system of stochastic ordinary differential equations. In the stochastic version, we carry out a detailed analysis on the asymptotic behavior of the stochastic model. In addition, regarding the value of ℛ0, when the stochastic system obeys some conditions and ℛ0 is greater than 1, we deduce the stochastic system is stochastically asymptotically stable. Finally, the deterministic and stochastic model dynamics are illustrated through computer simulations.
Ramírez-Correa, Patricio E; Arenas-Gaitán, Jorge; Rondán-Cataluña, F Javier
2015-01-01
The scope of this study was to evaluate whether the adoption of e-learning in two universities, and in particular, the relationship between the perception of external control and perceived ease of use, is different because of gender differences. The study was carried out with participating students in two different universities, one in Chile and one in Spain. The Technology Acceptance Model was used as a theoretical framework for the study. A multi-group analysis method in partial least squares was employed to relate differences between groups. The four main conclusions of the study are: (1) a version of the Technology Acceptance Model has been successfully used to explain the process of adoption of e-learning at an undergraduate level of study; (2) the finding of a strong and significant relationship between perception of external control and perception of ease of use of the e-learning platform; (3) a significant relationship between perceived enjoyment and perceived ease of use and between results demonstrability and perceived usefulness is found; (4) the study indicates a few statistically significant differences between males and females when adopting an e-learning platform, according to the tested model.
Prediction of stream volatilization coefficients
Rathbun, Ronald E.
1990-01-01
Equations are developed for predicting the liquid-film and gas-film reference-substance parameters for quantifying volatilization of organic solutes from streams. Molecular weight and molecular-diffusion coefficients of the solute are used as correlating parameters. Equations for predicting molecular-diffusion coefficients of organic solutes in water and air are developed, with molecular weight and molal volume as parameters. Mean absolute errors of prediction for diffusion coefficients in water are 9.97% for the molecular-weight equation, 6.45% for the molal-volume equation. The mean absolute error for the diffusion coefficient in air is 5.79% for the molal-volume equation. Molecular weight is not a satisfactory correlating parameter for diffusion in air because two equations are necessary to describe the values in the data set. The best predictive equation for the liquid-film reference-substance parameter has a mean absolute error of 5.74%, with molal volume as the correlating parameter. The best equation for the gas-film parameter has a mean absolute error of 7.80%, with molecular weight as the correlating parameter.
Causal Diffusion and the Survival of Charge Fluctuations
NASA Astrophysics Data System (ADS)
Abdel-Aziz, Mohamed; Gavin, Sean
2004-10-01
Diffusion may obliterate fluctuation signals of the QCD phase transition in nuclear collisions at SPS and RHIC energies. We propose a hyperbolic diffusion equation to study the dissipation of net charge fluctuations [1]. This equation is needed in a relativistic context, because the classic parabolic diffusion equation violates causality. We find that causality substantially limits the extent to which diffusion can dissipate these fluctuations. [1] M. Abdel-Aziz and S. Gavin, nucl-th/0404058
Neutronic calculation of fast reactors by the EUCLID/V1 integrated code
NASA Astrophysics Data System (ADS)
Koltashev, D. A.; Stakhanova, A. A.
2017-01-01
This article considers neutronic calculation of a fast-neutron lead-cooled reactor BREST-OD-300 by the EUCLID/V1 integrated code. The main goal of development and application of integrated codes is a nuclear power plant safety justification. EUCLID/V1 is integrated code designed for coupled neutronics, thermomechanical and thermohydraulic fast reactor calculations under normal and abnormal operating conditions. EUCLID/V1 code is being developed in the Nuclear Safety Institute of the Russian Academy of Sciences. The integrated code has a modular structure and consists of three main modules: thermohydraulic module HYDRA-IBRAE/LM/V1, thermomechanical module BERKUT and neutronic module DN3D. In addition, the integrated code includes databases with fuel, coolant and structural materials properties. Neutronic module DN3D provides full-scale simulation of neutronic processes in fast reactors. Heat sources distribution, control rods movement, reactivity level changes and other processes can be simulated. Neutron transport equation in multigroup diffusion approximation is solved. This paper contains some calculations implemented as a part of EUCLID/V1 code validation. A fast-neutron lead-cooled reactor BREST-OD-300 transient simulation (fuel assembly floating, decompression of passive feedback system channel) and cross-validation with MCU-FR code results are presented in this paper. The calculations demonstrate EUCLID/V1 code application for BREST-OD-300 simulating and safety justification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wollaber, Allan Benton; Park, HyeongKae; Lowrie, Robert Byron
Recent efforts at Los Alamos National Laboratory to develop a moment-based, scale-bridging [or high-order (HO)–low-order (LO)] algorithm for solving large varieties of the transport (kinetic) systems have shown promising results. A part of our ongoing effort is incorporating this methodology into the framework of the Eulerian Applications Project to achieve algorithmic acceleration of radiationhydrodynamics simulations in production software. By starting from the thermal radiative transfer equations with a simple material-motion correction, we derive a discretely consistent energy balance equation (LO equation). We demonstrate that the corresponding LO system for the Monte Carlo HO solver is closely related to the originalmore » LO system without material-motion corrections. We test the implementation on a radiative shock problem and show consistency between the energy densities and temperatures in the HO and LO solutions as well as agreement with the semianalytic solution. We also test the approach on a more challenging two-dimensional problem and demonstrate accuracy enhancements and algorithmic speedups. This paper extends a recent conference paper by including multigroup effects.« less
Global dynamics of a nonlocal delayed reaction-diffusion equation on a half plane
NASA Astrophysics Data System (ADS)
Hu, Wenjie; Duan, Yueliang
2018-04-01
We consider a delayed reaction-diffusion equation with spatial nonlocality on a half plane that describes population dynamics of a two-stage species living in a semi-infinite environment. A Neumann boundary condition is imposed accounting for an isolated domain. To describe the global dynamics, we first establish some a priori estimate for nontrivial solutions after investigating asymptotic properties of the nonlocal delayed effect and the diffusion operator, which enables us to show the permanence of the equation with respect to the compact open topology. We then employ standard dynamical system arguments to establish the global attractivity of the nontrivial equilibrium. The main results are illustrated by the diffusive Nicholson's blowfly equation and the diffusive Mackey-Glass equation.
FRACTIONAL PEARSON DIFFUSIONS.
Leonenko, Nikolai N; Meerschaert, Mark M; Sikorskii, Alla
2013-07-15
Pearson diffusions are governed by diffusion equations with polynomial coefficients. Fractional Pearson diffusions are governed by the corresponding time-fractional diffusion equation. They are useful for modeling sub-diffusive phenomena, caused by particle sticking and trapping. This paper provides explicit strong solutions for fractional Pearson diffusions, using spectral methods. It also presents stochastic solutions, using a non-Markovian inverse stable time change.
A nonlinear equation for ionic diffusion in a strong binary electrolyte
Ghosal, Sandip; Chen, Zhen
2010-01-01
The problem of the one-dimensional electro-diffusion of ions in a strong binary electrolyte is considered. The mathematical description, known as the Poisson–Nernst–Planck (PNP) system, consists of a diffusion equation for each species augmented by transport owing to a self-consistent electrostatic field determined by the Poisson equation. This description is also relevant to other important problems in physics, such as electron and hole diffusion across semiconductor junctions and the diffusion of ions in plasmas. If concentrations do not vary appreciably over distances of the order of the Debye length, the Poisson equation can be replaced by the condition of local charge neutrality first introduced by Planck. It can then be shown that both species diffuse at the same rate with a common diffusivity that is intermediate between that of the slow and fast species (ambipolar diffusion). Here, we derive a more general theory by exploiting the ratio of the Debye length to a characteristic length scale as a small asymptotic parameter. It is shown that the concentration of either species may be described by a nonlinear partial differential equation that provides a better approximation than the classical linear equation for ambipolar diffusion, but reduces to it in the appropriate limit. PMID:21818176
An Ab Initio and Kinetic Monte Carlo Simulation Study of Lithium Ion Diffusion on Graphene
Zhong, Kehua; Yang, Yanmin; Xu, Guigui; Zhang, Jian-Min; Huang, Zhigao
2017-01-01
The Li+ diffusion coefficients in Li+-adsorbed graphene systems were determined by combining first-principle calculations based on density functional theory with Kinetic Monte Carlo simulations. The calculated results indicate that the interactions between Li ions have a very important influence on lithium diffusion. Based on energy barriers directly obtained from first-principle calculations for single-Li+ and two-Li+ adsorbed systems, a new equation predicting energy barriers with more than two Li ions was deduced. Furthermore, it is found that the temperature dependence of Li+ diffusion coefficients fits well to the Arrhenius equation, rather than meeting the equation from electrochemical impedance spectroscopy applied to estimate experimental diffusion coefficients. Moreover, the calculated results also reveal that Li+ concentration dependence of diffusion coefficients roughly fits to the equation from electrochemical impedance spectroscopy in a low concentration region; however, it seriously deviates from the equation in a high concentration region. So, the equation from electrochemical impedance spectroscopy technique could not be simply used to estimate the Li+ diffusion coefficient for all Li+-adsorbed graphene systems with various Li+ concentrations. Our work suggests that interactions between Li ions, and among Li ion and host atoms will influence the Li+ diffusion, which determines that the Li+ intercalation dependence of Li+ diffusion coefficient should be changed and complex. PMID:28773122
ICF target 2D modeling using Monte Carlo SNB electron thermal transport in DRACO
NASA Astrophysics Data System (ADS)
Chenhall, Jeffrey; Cao, Duc; Moses, Gregory
2016-10-01
The iSNB (implicit Schurtz Nicolai Busquet multigroup diffusion electron thermal transport method is adapted into a Monte Carlo (MC) transport method to better model angular and long mean free path non-local effects. The MC model was first implemented in the 1D LILAC code to verify consistency with the iSNB model. Implementation of the MC SNB model in the 2D DRACO code enables higher fidelity non-local thermal transport modeling in 2D implosions such as polar drive experiments on NIF. The final step is to optimize the MC model by hybridizing it with a MC version of the iSNB diffusion method. The hybrid method will combine the efficiency of a diffusion method in intermediate mean free path regions with the accuracy of a transport method in long mean free path regions allowing for improved computational efficiency while maintaining accuracy. Work to date on the method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.
Gravitational effects on planetary neutron flux spectra
NASA Astrophysics Data System (ADS)
Feldman, W. C.; Drake, D. M.; O'dell, R. D.; Brinkley, F. W.; Anderson, R. C.
1989-01-01
The effects of gravity on the planetary neutron flux spectra for planet Mars, and the lifetime of the neutron, were investigated using a modified one-dimensional diffusion accelerated neutral-particle transport code, coupled with a multigroup cross-section library tailored specifically for Mars. The results showed the presence of a qualitatively new feature in planetary neutron leakage spectra in the form of a component of returning neutrons with kinetic energies less than the gravitational binding energy (0.132 eV for Mars). The net effect is an enhancement in flux at the lowest energies that is largest at and above the outermost layer of planetary matter.
Diffusion equations and the time evolution of foreign exchange rates
NASA Astrophysics Data System (ADS)
Figueiredo, Annibal; de Castro, Marcio T.; da Fonseca, Regina C. B.; Gleria, Iram
2013-10-01
We investigate which type of diffusion equation is most appropriate to describe the time evolution of foreign exchange rates. We modify the geometric diffusion model assuming a non-exponential time evolution and the stochastic term is the sum of a Wiener noise and a jump process. We find the resulting diffusion equation to obey the Kramers-Moyal equation. Analytical solutions are obtained using the characteristic function formalism and compared with empirical data. The analysis focus on the first four central moments considering the returns of foreign exchange rate. It is shown that the proposed model offers a good improvement over the classical geometric diffusion model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Wenjun, E-mail: sun_wenjun@iapcm.ac.cn; Jiang, Song, E-mail: jiang@iapcm.ac.cn; Xu, Kun, E-mail: makxu@ust.hk
This paper presents an extension of previous work (Sun et al., 2015 [22]) of the unified gas kinetic scheme (UGKS) for the gray radiative transfer equations to the frequency-dependent (multi-group) radiative transfer system. Different from the gray radiative transfer equations, where the optical opacity is only a function of local material temperature, the simulation of frequency-dependent radiative transfer is associated with additional difficulties from the frequency-dependent opacity. For the multiple frequency radiation, the opacity depends on both the spatial location and the frequency. For example, the opacity is typically a decreasing function of frequency. At the same spatial region themore » transport physics can be optically thick for the low frequency photons, and optically thin for high frequency ones. Therefore, the optical thickness is not a simple function of space location. In this paper, the UGKS for frequency-dependent radiative system is developed. The UGKS is a finite volume method and the transport physics is modeled according to the ratio of the cell size to the photon's frequency-dependent mean free path. When the cell size is much larger than the photon's mean free path, a diffusion solution for such a frequency radiation will be obtained. On the other hand, when the cell size is much smaller than the photon's mean free path, a free transport mechanism will be recovered. In the regime between the above two limits, with the variation of the ratio between the local cell size and photon's mean free path, the UGKS provides a smooth transition in the physical and frequency space to capture the corresponding transport physics accurately. The seemingly straightforward extension of the UGKS from the gray to multiple frequency radiation system is due to its intrinsic consistent multiple scale transport modeling, but it still involves lots of work to properly discretize the multiple groups in order to design an asymptotic preserving (AP) scheme in all regimes. The current scheme is tested in a few frequency-dependent radiation problems, and the results are compared with the solutions from the well-defined implicit Monte Carlo (IMC) method. The UGKS is much more efficient than IMC, and the computational times of both schemes for all test cases are listed. The UGKS seems to be the first discrete ordinate method (DOM) for the accurate capturing of multiple frequency radiative transport physics from ballistic particle motion to the diffusive wave propagation.« less
The exit-time problem for a Markov jump process
NASA Astrophysics Data System (ADS)
Burch, N.; D'Elia, M.; Lehoucq, R. B.
2014-12-01
The purpose of this paper is to consider the exit-time problem for a finite-range Markov jump process, i.e, the distance the particle can jump is bounded independent of its location. Such jump diffusions are expedient models for anomalous transport exhibiting super-diffusion or nonstandard normal diffusion. We refer to the associated deterministic equation as a volume-constrained nonlocal diffusion equation. The volume constraint is the nonlocal analogue of a boundary condition necessary to demonstrate that the nonlocal diffusion equation is well-posed and is consistent with the jump process. A critical aspect of the analysis is a variational formulation and a recently developed nonlocal vector calculus. This calculus allows us to pose nonlocal backward and forward Kolmogorov equations, the former equation granting the various moments of the exit-time distribution.
NASA Astrophysics Data System (ADS)
Chávez, Yoshua; Chacón-Acosta, Guillermo; Dagdug, Leonardo
2018-05-01
Axial diffusion in channels and tubes of smoothly-varying geometry can be approximately described as one-dimensional diffusion in the entropy potential with a position-dependent effective diffusion coefficient, by means of the modified Fick–Jacobs equation. In this work, we derive analytical expressions for the position-dependent effective diffusivity for two-dimensional asymmetric varying-width channels, and for three-dimensional curved midline tubes, formed by straight walls. To this end, we use a recently developed theoretical framework using the Frenet–Serret moving frame as the coordinate system (2016 J. Chem. Phys. 145 074105). For narrow tubes and channels, an effective one-dimensional description reducing the diffusion equation to a Fick–Jacobs-like equation in general coordinates is used. From this last equation, one can calculate the effective diffusion coefficient applying Neumann boundary conditions.
NASA Astrophysics Data System (ADS)
Lin, Guoxing
2018-05-01
Anomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) anomalous diffusion is complicated, especially in the anisotropic case where limited research has been reported. A general PFG signal attenuation expression, including the finite gradient pulse (FGPW) effect for free general anisotropic fractional diffusion { 0 < α , β ≤ 2 } based on the fractional derivative, has not been obtained, where α and β are time and space derivative orders. It is essential to derive a general PFG signal attenuation expression including the FGPW effect for PFG anisotropic anomalous diffusion research. In this paper, two recently developed modified-Bloch equations, the fractal differential modified-Bloch equation and the fractional integral modified-Bloch equation, were extended to obtain general PFG signal attenuation expressions for anisotropic anomalous diffusion. Various cases of PFG anisotropic anomalous diffusion were investigated, including coupled and uncoupled anisotropic anomalous diffusion. The continuous-time random walk (CTRW) simulation was also carried out to support the theoretical results. The theory and the CTRW simulation agree with each other. The obtained signal attenuation expressions and the three-dimensional fractional modified-Bloch equations are important for analyzing PFG anisotropic anomalous diffusion in NMR and MRI.
A parallel algorithm for nonlinear convection-diffusion equations
NASA Technical Reports Server (NTRS)
Scroggs, Jeffrey S.
1990-01-01
A parallel algorithm for the efficient solution of nonlinear time-dependent convection-diffusion equations with small parameter on the diffusion term is presented. The method is based on a physically motivated domain decomposition that is dictated by singular perturbation analysis. The analysis is used to determine regions where certain reduced equations may be solved in place of the full equation. The method is suitable for the solution of problems arising in the simulation of fluid dynamics. Experimental results for a nonlinear equation in two-dimensions are presented.
NASA Astrophysics Data System (ADS)
Machida, Manabu
2017-01-01
We consider the radiative transport equation in which the time derivative is replaced by the Caputo derivative. Such fractional-order derivatives are related to anomalous transport and anomalous diffusion. In this paper we describe how the time-fractional radiative transport equation is obtained from continuous-time random walk and see how the equation is related to the time-fractional diffusion equation in the asymptotic limit. Then we solve the equation with Legendre-polynomial expansion.
Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights
NASA Astrophysics Data System (ADS)
Chechkin, A. V.; Gonchar, V. Yu.; Gorenflo, R.; Korabel, N.; Sokolov, I. M.
2008-08-01
Fractional diffusion equations are widely used to describe anomalous diffusion processes where the characteristic displacement scales as a power of time. For processes lacking such scaling the corresponding description may be given by diffusion equations with fractional derivatives of distributed order. Such equations were introduced in A. V. Chechkin, R. Gorenflo, and I. Sokolov [Phys. Rev. E 66, 046129 (2002)] for the description of the processes getting more anomalous in the course of time (decelerating subdiffusion and accelerating superdiffusion). Here we discuss the properties of diffusion equations with fractional derivatives of the distributed order for the description of anomalous relaxation and diffusion phenomena getting less anomalous in the course of time, which we call, respectively, accelerating subdiffusion and decelerating superdiffusion. For the former process, by taking a relatively simple particular example with two fixed anomalous diffusion exponents we show that the proposed equation effectively describes the subdiffusion phenomenon with diffusion exponent varying in time. For the latter process we demonstrate by a particular example how the power-law truncated Lévy stable distribution evolves in time to the distribution with power-law asymptotics and Gaussian shape in the central part. The special case of two different orders is characteristic for the general situation in which the extreme orders dominate the asymptotics.
Symmetry classification of time-fractional diffusion equation
NASA Astrophysics Data System (ADS)
Naeem, I.; Khan, M. D.
2017-01-01
In this article, a new approach is proposed to construct the symmetry groups for a class of fractional differential equations which are expressed in the modified Riemann-Liouville fractional derivative. We perform a complete group classification of a nonlinear fractional diffusion equation which arises in fractals, acoustics, control theory, signal processing and many other applications. Introducing the suitable transformations, the fractional derivatives are converted to integer order derivatives and in consequence the nonlinear fractional diffusion equation transforms to a partial differential equation (PDE). Then the Lie symmetries are computed for resulting PDE and using inverse transformations, we derive the symmetries for fractional diffusion equation. All cases are discussed in detail and results for symmetry properties are compared for different values of α. This study provides a new way of computing symmetries for a class of fractional differential equations.
Heavy-tailed fractional Pearson diffusions.
Leonenko, N N; Papić, I; Sikorskii, A; Šuvak, N
2017-11-01
We define heavy-tailed fractional reciprocal gamma and Fisher-Snedecor diffusions by a non-Markovian time change in the corresponding Pearson diffusions. Pearson diffusions are governed by the backward Kolmogorov equations with space-varying polynomial coefficients and are widely used in applications. The corresponding fractional reciprocal gamma and Fisher-Snedecor diffusions are governed by the fractional backward Kolmogorov equations and have heavy-tailed marginal distributions in the steady state. We derive the explicit expressions for the transition densities of the fractional reciprocal gamma and Fisher-Snedecor diffusions and strong solutions of the associated Cauchy problems for the fractional backward Kolmogorov equation.
Feynman-Kac equations for reaction and diffusion processes
NASA Astrophysics Data System (ADS)
Hou, Ru; Deng, Weihua
2018-04-01
This paper provides a theoretical framework for deriving the forward and backward Feynman-Kac equations for the distribution of functionals of the path of a particle undergoing both diffusion and reaction processes. Once given the diffusion type and reaction rate, a specific forward or backward Feynman-Kac equation can be obtained. The results in this paper include those for normal/anomalous diffusions and reactions with linear/nonlinear rates. Using the derived equations, we apply our findings to compute some physical (experimentally measurable) statistics, including the occupation time in half-space, the first passage time, and the occupation time in half-interval with an absorbing or reflecting boundary, for the physical system with anomalous diffusion and spontaneous evanescence.
Assari, Shervin; Moazen-Zadeh, Ehsan; Caldwell, Cleopatra Howard; Zimmerman, Marc A
2017-01-01
Despite the existing knowledge regarding the negative mental health consequences of perceived racial discrimination, very few researchers have used a longitudinal design with long-term follow-up periods to explore gender differences in this association over time. The current longitudinal study aimed to investigate gender differences in predictive role of an increase in perceived racial discrimination during adolescence for mental health deterioration a decade later when they are transitioning to young adulthood. Current study followed 681 Black youths for 18 years from 1994 (mean age 15) to 2012 (mean age 32). All participants spent their adolescence and transition to young adulthood in an economically disadvantaged urban area in the Midwest of the United States. Independent variable was perceived racial discrimination measured in 1999 and 2002. Outcomes were psychological symptoms (anxiety and depression) measured in 1999 and at end of follow-up (2012). Covariates included sociodemographics (age, family structure, and parental employment) measured in 1994. Gender was used to define groups in a multigroup structural equation model to test moderating effects. Multigroup structural equation modeling showed that among male Black youth, an increase in perceived racial discrimination from age 20 to 23 was predictive for an increase in symptoms of anxiety and depression from age 20 to 32. Among female Black youth, change in perceived racial discrimination did not predict future change in depressive or anxiety symptoms. While racial discrimination is associated with negative mental health consequences for both genders, male and female Black youth differ in regard to long-term effects of an increase in perceived discrimination on deterioration of psychological symptoms. Black males seem to be more susceptible than Black females to the psychological effects of an increase in racial discrimination over time.
Numerical approximations for fractional diffusion equations via a Chebyshev spectral-tau method
NASA Astrophysics Data System (ADS)
Doha, Eid H.; Bhrawy, Ali H.; Ezz-Eldien, Samer S.
2013-10-01
In this paper, a class of fractional diffusion equations with variable coefficients is considered. An accurate and efficient spectral tau technique for solving the fractional diffusion equations numerically is proposed. This method is based upon Chebyshev tau approximation together with Chebyshev operational matrix of Caputo fractional differentiation. Such approach has the advantage of reducing the problem to the solution of a system of algebraic equations, which may then be solved by any standard numerical technique. We apply this general method to solve four specific examples. In each of the examples considered, the numerical results show that the proposed method is of high accuracy and is efficient for solving the time-dependent fractional diffusion equations.
The exit-time problem for a Markov jump process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burch, N.; D'Elia, Marta; Lehoucq, Richard B.
2014-12-15
The purpose of our paper is to consider the exit-time problem for a finite-range Markov jump process, i.e, the distance the particle can jump is bounded independent of its location. Such jump diffusions are expedient models for anomalous transport exhibiting super-diffusion or nonstandard normal diffusion. We refer to the associated deterministic equation as a volume-constrained nonlocal diffusion equation. The volume constraint is the nonlocal analogue of a boundary condition necessary to demonstrate that the nonlocal diffusion equation is well-posed and is consistent with the jump process. A critical aspect of the analysis is a variational formulation and a recently developedmore » nonlocal vector calculus. Furthermore, this calculus allows us to pose nonlocal backward and forward Kolmogorov equations, the former equation granting the various moments of the exit-time distribution.« less
Nonlinear anomalous diffusion equation and fractal dimension: exact generalized Gaussian solution.
Pedron, I T; Mendes, R S; Malacarne, L C; Lenzi, E K
2002-04-01
In this work we incorporate, in a unified way, two anomalous behaviors, the power law and stretched exponential ones, by considering the radial dependence of the N-dimensional nonlinear diffusion equation partial differential rho/ partial differential t=nabla.(Knablarho(nu))-nabla.(muFrho)-alpharho, where K=Dr(-theta), nu, theta, mu, and D are real parameters, F is the external force, and alpha is a time-dependent source. This equation unifies the O'Shaughnessy-Procaccia anomalous diffusion equation on fractals (nu=1) and the spherical anomalous diffusion for porous media (theta=0). An exact spherical symmetric solution of this nonlinear Fokker-Planck equation is obtained, leading to a large class of anomalous behaviors. Stationary solutions for this Fokker-Planck-like equation are also discussed by introducing an effective potential.
NASA Astrophysics Data System (ADS)
Horowitz, Jordan M.
2015-07-01
The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.
Horowitz, Jordan M
2015-07-28
The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.
NASA Astrophysics Data System (ADS)
Frank, T. D.
2008-02-01
We discuss two central claims made in the study by Bassler et al. [K.E. Bassler, G.H. Gunaratne, J.L. McCauley, Physica A 369 (2006) 343]. Bassler et al. claimed that Green functions and Langevin equations cannot be defined for nonlinear diffusion equations. In addition, they claimed that nonlinear diffusion equations are linear partial differential equations disguised as nonlinear ones. We review bottom-up and top-down approaches that have been used in the literature to derive Green functions for nonlinear diffusion equations and, in doing so, show that the first claim needs to be revised. We show that the second claim as well needs to be revised. To this end, we point out similarities and differences between non-autonomous linear Fokker-Planck equations and autonomous nonlinear Fokker-Planck equations. In this context, we raise the question whether Bassler et al.’s approach to financial markets is physically plausible because it necessitates the introduction of external traders and causes. Such external entities can easily be eliminated when taking self-organization principles and concepts of nonextensive thermostatistics into account and modeling financial processes by means of nonlinear Fokker-Planck equations.
Diffusion Influenced Adsorption Kinetics.
Miura, Toshiaki; Seki, Kazuhiko
2015-08-27
When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.
Analytical solutions of the space-time fractional Telegraph and advection-diffusion equations
NASA Astrophysics Data System (ADS)
Tawfik, Ashraf M.; Fichtner, Horst; Schlickeiser, Reinhard; Elhanbaly, A.
2018-02-01
The aim of this paper is to develop a fractional derivative model of energetic particle transport for both uniform and non-uniform large-scale magnetic field by studying the fractional Telegraph equation and the fractional advection-diffusion equation. Analytical solutions of the space-time fractional Telegraph equation and space-time fractional advection-diffusion equation are obtained by use of the Caputo fractional derivative and the Laplace-Fourier technique. The solutions are given in terms of Fox's H function. As an illustration they are applied to the case of solar energetic particles.
Boundary value problems for multi-term fractional differential equations
NASA Astrophysics Data System (ADS)
Daftardar-Gejji, Varsha; Bhalekar, Sachin
2008-09-01
Multi-term fractional diffusion-wave equation along with the homogeneous/non-homogeneous boundary conditions has been solved using the method of separation of variables. It is observed that, unlike in the one term case, solution of multi-term fractional diffusion-wave equation is not necessarily non-negative, and hence does not represent anomalous diffusion of any kind.
NASA Astrophysics Data System (ADS)
Lin, Zeng; Wang, Dongdong
2017-10-01
Due to the nonlocal property of the fractional derivative, the finite element analysis of fractional diffusion equation often leads to a dense and non-symmetric stiffness matrix, in contrast to the conventional finite element formulation with a particularly desirable symmetric and banded stiffness matrix structure for the typical diffusion equation. This work first proposes a finite element formulation that preserves the symmetry and banded stiffness matrix characteristics for the fractional diffusion equation. The key point of the proposed formulation is the symmetric weak form construction through introducing a fractional weight function. It turns out that the stiffness part of the present formulation is identical to its counterpart of the finite element method for the conventional diffusion equation and thus the stiffness matrix formulation becomes trivial. Meanwhile, the fractional derivative effect in the discrete formulation is completely transferred to the force vector, which is obviously much easier and efficient to compute than the dense fractional derivative stiffness matrix. Subsequently, it is further shown that for the general fractional advection-diffusion-reaction equation, the symmetric and banded structure can also be maintained for the diffusion stiffness matrix, although the total stiffness matrix is not symmetric in this case. More importantly, it is demonstrated that under certain conditions this symmetric diffusion stiffness matrix formulation is capable of producing very favorable numerical solutions in comparison with the conventional non-symmetric diffusion stiffness matrix finite element formulation. The effectiveness of the proposed methodology is illustrated through a series of numerical examples.
Diffusion coefficients in organic-water solutions and comparison with Stokes-Einstein predictions
NASA Astrophysics Data System (ADS)
Evoy, E.; Kamal, S.; Bertram, A. K.
2017-12-01
Diffusion coefficients of organic species in particles containing secondary organic material (SOM) are necessary for predicting the growth and reactivity of these particles in the atmosphere. Previously, the Stokes-Einstein equation combined with viscosity measurements have been used to predict these diffusion coefficients. However, the accuracy of the Stokes-Einstein equation for predicting diffusion coefficients in SOM-water particles has not been quantified. To test the Stokes-Einstein equation, diffusion coefficients of fluorescent organic probe molecules were measured in citric acid-water and sorbitol-water solutions. These solutions were used as proxies for SOM-water particles found in the atmosphere. Measurements were performed as a function of water activity, ranging from 0.26-0.86, and as a function of viscosity ranging from 10-3 to 103 Pa s. Diffusion coefficients were measured using fluorescence recovery after photobleaching. The measured diffusion coefficients were compared with predictions made using the Stokes-Einstein equation combined with literature viscosity data. Within the uncertainties of the measurements, the measured diffusion coefficients agreed with the predicted diffusion coefficients, in all cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horowitz, Jordan M., E-mail: jordan.horowitz@umb.edu
The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochasticmore » thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruss, D. E.; Morel, J. E.; Ragusa, J. C.
2013-07-01
Preconditioners based upon sweeps and diffusion-synthetic acceleration have been constructed and applied to the zeroth and first spatial moments of the 1-D S{sub n} transport equation using a strictly non negative nonlinear spatial closure. Linear and nonlinear preconditioners have been analyzed. The effectiveness of various combinations of these preconditioners are compared. In one dimension, nonlinear sweep preconditioning is shown to be superior to linear sweep preconditioning, and DSA preconditioning using nonlinear sweeps in conjunction with a linear diffusion equation is found to be essentially equivalent to nonlinear sweeps in conjunction with a nonlinear diffusion equation. The ability to use amore » linear diffusion equation has important implications for preconditioning the S{sub n} equations with a strictly non negative spatial discretization in multiple dimensions. (authors)« less
2015-01-01
The scope of this study was to evaluate whether the adoption of e-learning in two universities, and in particular, the relationship between the perception of external control and perceived ease of use, is different because of gender differences. The study was carried out with participating students in two different universities, one in Chile and one in Spain. The Technology Acceptance Model was used as a theoretical framework for the study. A multi-group analysis method in partial least squares was employed to relate differences between groups. The four main conclusions of the study are: (1) a version of the Technology Acceptance Model has been successfully used to explain the process of adoption of e-learning at an undergraduate level of study; (2) the finding of a strong and significant relationship between perception of external control and perception of ease of use of the e-learning platform; (3) a significant relationship between perceived enjoyment and perceived ease of use and between results demonstrability and perceived usefulness is found; (4) the study indicates a few statistically significant differences between males and females when adopting an e-learning platform, according to the tested model. PMID:26465895
Electrophysical and optophysical properties of air ionized by a short pulse of fast electrons
NASA Astrophysics Data System (ADS)
Vagin, Iu. P.; Stal', N. L.; Khokhlov, V. D.; Chernoiarskii, A. A.
A method for solving the nonstationary kinetic equation of electron deceleration is developed which is based on the multigroup approximation. The electron distribution function in air ionized by nonstationary sources of primary electrons is determined, and the avalanche formation of secondary electrons is considered. Theoretical and experimental results are presented on the time dependence of the air luminescence intensity in two spectral intervals, one including the 391.4 nm N2(+) band and the other including the 337.1 nm N2 band, for different values of gas pressure under the effect of a short beam of electrons with energies of 100 keV.
Group iterative methods for the solution of two-dimensional time-fractional diffusion equation
NASA Astrophysics Data System (ADS)
Balasim, Alla Tareq; Ali, Norhashidah Hj. Mohd.
2016-06-01
Variety of problems in science and engineering may be described by fractional partial differential equations (FPDE) in relation to space and/or time fractional derivatives. The difference between time fractional diffusion equations and standard diffusion equations lies primarily in the time derivative. Over the last few years, iterative schemes derived from the rotated finite difference approximation have been proven to work well in solving standard diffusion equations. However, its application on time fractional diffusion counterpart is still yet to be investigated. In this paper, we will present a preliminary study on the formulation and analysis of new explicit group iterative methods in solving a two-dimensional time fractional diffusion equation. These methods were derived from the standard and rotated Crank-Nicolson difference approximation formula. Several numerical experiments were conducted to show the efficiency of the developed schemes in terms of CPU time and iteration number. At the request of all authors of the paper an updated version of this article was published on 7 July 2016. The original version supplied to AIP Publishing contained an error in Table 1 and References 15 and 16 were incomplete. These errors have been corrected in the updated and republished article.
On the anisotropic advection-diffusion equation with time dependent coefficients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez-Coronado, Hector; Coronado, Manuel; Del-Castillo-Negrete, Diego B.
The advection-diffusion equation with time dependent velocity and anisotropic time dependent diffusion tensor is examined in regard to its non-classical transport features and to the use of a non-orthogonal coordinate system. Although this equation appears in diverse physical problems, particularly in particle transport in stochastic velocity fields and in underground porous media, a detailed analysis of its solutions is lacking. In order to study the effects of the time-dependent coefficients and the anisotropic diffusion on transport, we solve analytically the equation for an initial Dirac delta pulse. Here, we discuss the solutions to three cases: one based on power-law correlationmore » functions where the pulse diffuses faster than the classical rate ~t, a second case specically designed to display slower rate of diffusion than the classical one, and a third case to describe hydrodynamic dispersion in porous media« less
On the anisotropic advection-diffusion equation with time dependent coefficients
Hernandez-Coronado, Hector; Coronado, Manuel; Del-Castillo-Negrete, Diego B.
2017-02-01
The advection-diffusion equation with time dependent velocity and anisotropic time dependent diffusion tensor is examined in regard to its non-classical transport features and to the use of a non-orthogonal coordinate system. Although this equation appears in diverse physical problems, particularly in particle transport in stochastic velocity fields and in underground porous media, a detailed analysis of its solutions is lacking. In order to study the effects of the time-dependent coefficients and the anisotropic diffusion on transport, we solve analytically the equation for an initial Dirac delta pulse. Here, we discuss the solutions to three cases: one based on power-law correlationmore » functions where the pulse diffuses faster than the classical rate ~t, a second case specically designed to display slower rate of diffusion than the classical one, and a third case to describe hydrodynamic dispersion in porous media« less
NASA Astrophysics Data System (ADS)
Lin, Guoxing
2018-10-01
Anomalous diffusion has been investigated in many polymer and biological systems. The analysis of PFG anomalous diffusion relies on the ability to obtain the signal attenuation expression. However, the general analytical PFG signal attenuation expression based on the fractional derivative has not been previously reported. Additionally, the reported modified-Bloch equations for PFG anomalous diffusion in the literature yielded different results due to their different forms. Here, a new integral type modified-Bloch equation based on the fractional derivative for PFG anomalous diffusion is proposed, which is significantly different from the conventional differential type modified-Bloch equation. The merit of the integral type modified-Bloch equation is that the original properties of the contributions from linear or nonlinear processes remain unchanged at the instant of the combination. From the modified-Bloch equation, the general solutions are derived, which includes the finite gradient pulse width (FGPW) effect. The numerical evaluation of these PFG signal attenuation expressions can be obtained either by the Adomian decomposition, or a direct integration method that is fast and practicable. The theoretical results agree with the continuous-time random walk (CTRW) simulations performed in this paper. Additionally, the relaxation effect in PFG anomalous diffusion is found to be different from that in PFG normal diffusion. The new modified-Bloch equations and their solutions provide a fundamental tool to analyze PFG anomalous diffusion in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI).
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-10-19
CEPXS is a multigroup-Legendre cross-section generating code. The cross sections produced by CEPXS enable coupled electron-photon transport calculations to be performed with multigroup radiation transport codes, e.g. MITS and SCEPTRE. CEPXS generates multigroup-Legendre cross sections for photons, electrons and positrons over the energy range from 100 MeV to 1.0 keV. The continuous slowing-down approximation is used for those electron interactions that result in small-energy losses. The extended transport correction is applied to the forward-peaked elastic scattering cross section for electrons. A standard multigroup-Legendre treatment is used for the other coupled electron-photon cross sections. CEPXS extracts electron cross-section information from themore » DATAPAC data set and photon cross-section information from Biggs-Lighthill data. The model that is used for ionization/relaxation in CEPXS is essentially the same as that employed in ITS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, R; Fallone, B; Cross Cancer Institute, Edmonton, AB
Purpose: To develop a Graphic Processor Unit (GPU) accelerated deterministic solution to the Linear Boltzmann Transport Equation (LBTE) for accurate dose calculations in radiotherapy (RT). A deterministic solution yields the potential for major speed improvements due to the sparse matrix-vector and vector-vector multiplications and would thus be of benefit to RT. Methods: In order to leverage the massively parallel architecture of GPUs, the first order LBTE was reformulated as a second order self-adjoint equation using the Least Squares Finite Element Method (LSFEM). This produces a symmetric positive-definite matrix which is efficiently solved using a parallelized conjugate gradient (CG) solver. Themore » LSFEM formalism is applied in space, discrete ordinates is applied in angle, and the Multigroup method is applied in energy. The final linear system of equations produced is tightly coupled in space and angle. Our code written in CUDA-C was benchmarked on an Nvidia GeForce TITAN-X GPU against an Intel i7-6700K CPU. A spatial mesh of 30,950 tetrahedral elements was used with an S4 angular approximation. Results: To avoid repeating a full computationally intensive finite element matrix assembly at each Multigroup energy, a novel mapping algorithm was developed which minimized the operations required at each energy. Additionally, a parallelized memory mapping for the kronecker product between the sparse spatial and angular matrices, including Dirichlet boundary conditions, was created. Atomicity is preserved by graph-coloring overlapping nodes into separate kernel launches. The one-time mapping calculations for matrix assembly, kronecker product, and boundary condition application took 452±1ms on GPU. Matrix assembly for 16 energy groups took 556±3s on CPU, and 358±2ms on GPU using the mappings developed. The CG solver took 93±1s on CPU, and 468±2ms on GPU. Conclusion: Three computationally intensive subroutines in deterministically solving the LBTE have been formulated on GPU, resulting in two orders of magnitude speedup. Funding support from Natural Sciences and Engineering Research Council and Alberta Innovates Health Solutions. Dr. Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta bi-planar linac MR for commercialization).« less
Monte Carlo charged-particle tracking and energy deposition on a Lagrangian mesh.
Yuan, J; Moses, G A; McKenty, P W
2005-10-01
A Monte Carlo algorithm for alpha particle tracking and energy deposition on a cylindrical computational mesh in a Lagrangian hydrodynamics code used for inertial confinement fusion (ICF) simulations is presented. The straight line approximation is used to follow propagation of "Monte Carlo particles" which represent collections of alpha particles generated from thermonuclear deuterium-tritium (DT) reactions. Energy deposition in the plasma is modeled by the continuous slowing down approximation. The scheme addresses various aspects arising in the coupling of Monte Carlo tracking with Lagrangian hydrodynamics; such as non-orthogonal severely distorted mesh cells, particle relocation on the moving mesh and particle relocation after rezoning. A comparison with the flux-limited multi-group diffusion transport method is presented for a polar direct drive target design for the National Ignition Facility. Simulations show the Monte Carlo transport method predicts about earlier ignition than predicted by the diffusion method, and generates higher hot spot temperature. Nearly linear speed-up is achieved for multi-processor parallel simulations.
Three-dimensional analytical solutions of the atmospheric diffusion equation with multiple sources and height-dependent wind speed and eddy diffusivities are derived in a systematic fashion. For homogeneous Neumann (total reflection), Dirichlet (total adsorpti...
Three-dimensional analytical solutions of the atmospheric diffusion equation with multiple sources and height-dependent wind speed and eddy diffusivities are derived in a systematic fashion. For homogeneous Neumann (total reflection), Dirichlet (total adsorpti...
Three-dimensional stochastic modeling of radiation belts in adiabatic invariant coordinates
NASA Astrophysics Data System (ADS)
Zheng, Liheng; Chan, Anthony A.; Albert, Jay M.; Elkington, Scot R.; Koller, Josef; Horne, Richard B.; Glauert, Sarah A.; Meredith, Nigel P.
2014-09-01
A 3-D model for solving the radiation belt diffusion equation in adiabatic invariant coordinates has been developed and tested. The model, named Radbelt Electron Model, obtains a probabilistic solution by solving a set of Itô stochastic differential equations that are mathematically equivalent to the diffusion equation. This method is capable of solving diffusion equations with a full 3-D diffusion tensor, including the radial-local cross diffusion components. The correct form of the boundary condition at equatorial pitch angle α0=90° is also derived. The model is applied to a simulation of the October 2002 storm event. At α0 near 90°, our results are quantitatively consistent with GPS observations of phase space density (PSD) increases, suggesting dominance of radial diffusion; at smaller α0, the observed PSD increases are overestimated by the model, possibly due to the α0-independent radial diffusion coefficients, or to insufficient electron loss in the model, or both. Statistical analysis of the stochastic processes provides further insights into the diffusion processes, showing distinctive electron source distributions with and without local acceleration.
NASA Astrophysics Data System (ADS)
Sun, HongGuang; Liu, Xiaoting; Zhang, Yong; Pang, Guofei; Garrard, Rhiannon
2017-09-01
Fractional-order diffusion equations (FDEs) extend classical diffusion equations by quantifying anomalous diffusion frequently observed in heterogeneous media. Real-world diffusion can be multi-dimensional, requiring efficient numerical solvers that can handle long-term memory embedded in mass transport. To address this challenge, a semi-discrete Kansa method is developed to approximate the two-dimensional spatiotemporal FDE, where the Kansa approach first discretizes the FDE, then the Gauss-Jacobi quadrature rule solves the corresponding matrix, and finally the Mittag-Leffler function provides an analytical solution for the resultant time-fractional ordinary differential equation. Numerical experiments are then conducted to check how the accuracy and convergence rate of the numerical solution are affected by the distribution mode and number of spatial discretization nodes. Applications further show that the numerical method can efficiently solve two-dimensional spatiotemporal FDE models with either a continuous or discrete mixing measure. Hence this study provides an efficient and fast computational method for modeling super-diffusive, sub-diffusive, and mixed diffusive processes in large, two-dimensional domains with irregular shapes.
NASA Astrophysics Data System (ADS)
Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue
2018-01-01
This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0 . Furthermore, we prove the global existence and uniqueness of C^{α ,β } -solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1 -space. The exponential convergence rate is also derived.
NASA Astrophysics Data System (ADS)
Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue
2018-06-01
This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0. Furthermore, we prove the global existence and uniqueness of C^{α ,β }-solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1-space. The exponential convergence rate is also derived.
Diffusion phenomenon for linear dissipative wave equations in an exterior domain
NASA Astrophysics Data System (ADS)
Ikehata, Ryo
Under the general condition of the initial data, we will derive the crucial estimates which imply the diffusion phenomenon for the dissipative linear wave equations in an exterior domain. In order to derive the diffusion phenomenon for dissipative wave equations, the time integral method which was developed by Ikehata and Matsuyama (Sci. Math. Japon. 55 (2002) 33) plays an effective role.
An enriched finite element method to fractional advection-diffusion equation
NASA Astrophysics Data System (ADS)
Luan, Shengzhi; Lian, Yanping; Ying, Yuping; Tang, Shaoqiang; Wagner, Gregory J.; Liu, Wing Kam
2017-08-01
In this paper, an enriched finite element method with fractional basis [ 1,x^{α }] for spatial fractional partial differential equations is proposed to obtain more stable and accurate numerical solutions. For pure fractional diffusion equation without advection, the enriched Galerkin finite element method formulation is demonstrated to simulate the exact solution successfully without any numerical oscillation, which is advantageous compared to the traditional Galerkin finite element method with integer basis [ 1,x] . For fractional advection-diffusion equation, the oscillatory behavior becomes complex due to the introduction of the advection term which can be characterized by a fractional element Peclet number. For the purpose of addressing the more complex numerical oscillation, an enriched Petrov-Galerkin finite element method is developed by using a dimensionless fractional stabilization parameter, which is formulated through a minimization of the residual of the nodal solution. The effectiveness and accuracy of the enriched finite element method are demonstrated by a series of numerical examples of fractional diffusion equation and fractional advection-diffusion equation, including both one-dimensional and two-dimensional, steady-state and time-dependent cases.
A moving mesh finite difference method for equilibrium radiation diffusion equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaobo, E-mail: xwindyb@126.com; Huang, Weizhang, E-mail: whuang@ku.edu; Qiu, Jianxian, E-mail: jxqiu@xmu.edu.cn
2015-10-01
An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativitymore » of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.« less
The equilibrium-diffusion limit for radiation hydrodynamics
Ferguson, J. M.; Morel, J. E.; Lowrie, R.
2017-07-27
The equilibrium-diffusion approximation (EDA) is used to describe certain radiation-hydrodynamic (RH) environments. When this is done the RH equations reduce to a simplified set of equations. The EDA can be derived by asymptotically analyzing the full set of RH equations in the equilibrium-diffusion limit. Here, we derive the EDA this way and show that it and the associated set of simplified equations are both first-order accurate with transport corrections occurring at second order. Having established the EDA’s first-order accuracy we then analyze the grey nonequilibrium-diffusion approximation and the grey Eddington approximation and show that they both preserve this first-order accuracy.more » Further, these approximations preserve the EDA’s first-order accuracy when made in either the comoving-frame (CMF) or the lab-frame (LF). And while analyzing the Eddington approximation, we found that the CMF and LF radiation-source equations are equivalent when neglecting O(β 2) terms and compared in the LF. Of course, the radiation pressures are not equivalent. It is expected that simplified physical models and numerical discretizations of the RH equations that do not preserve this first-order accuracy will not retain the correct equilibrium-diffusion solutions. As a practical example, we show that nonequilibrium-diffusion radiative-shock solutions devolve to equilibrium-diffusion solutions when the asymptotic parameter is small.« less
A Robust and Efficient Method for Steady State Patterns in Reaction-Diffusion Systems
Lo, Wing-Cheong; Chen, Long; Wang, Ming; Nie, Qing
2012-01-01
An inhomogeneous steady state pattern of nonlinear reaction-diffusion equations with no-flux boundary conditions is usually computed by solving the corresponding time-dependent reaction-diffusion equations using temporal schemes. Nonlinear solvers (e.g., Newton’s method) take less CPU time in direct computation for the steady state; however, their convergence is sensitive to the initial guess, often leading to divergence or convergence to spatially homogeneous solution. Systematically numerical exploration of spatial patterns of reaction-diffusion equations under different parameter regimes requires that the numerical method be efficient and robust to initial condition or initial guess, with better likelihood of convergence to an inhomogeneous pattern. Here, a new approach that combines the advantages of temporal schemes in robustness and Newton’s method in fast convergence in solving steady states of reaction-diffusion equations is proposed. In particular, an adaptive implicit Euler with inexact solver (AIIE) method is found to be much more efficient than temporal schemes and more robust in convergence than typical nonlinear solvers (e.g., Newton’s method) in finding the inhomogeneous pattern. Application of this new approach to two reaction-diffusion equations in one, two, and three spatial dimensions, along with direct comparisons to several other existing methods, demonstrates that AIIE is a more desirable method for searching inhomogeneous spatial patterns of reaction-diffusion equations in a large parameter space. PMID:22773849
Cantisano, Gabriela Topa; Domínguez, J Francisco Morales; García, J Luis Caeiro
2007-05-01
This study focuses on the mediator role of social comparison in the relationship between perceived breach of psychological contract and burnout. A previous model showing the hypothesized effects of perceived breach on burnout, both direct and mediated, is proposed. The final model reached an optimal fit to the data and was confirmed through multigroup analysis using a sample of Spanish teachers (N = 401) belonging to preprimary, primary, and secondary schools. Multigroup analyses showed that the model fit all groups adequately.
A Hydrodynamic Theory for Spatially Inhomogeneous Semiconductor Lasers: Microscopic Approach
NASA Technical Reports Server (NTRS)
Li, Jianzhong; Ning, C. Z.; Biegel, Bryan A. (Technical Monitor)
2001-01-01
Starting from the microscopic semiconductor Bloch equations (SBEs) including the Boltzmann transport terms in the distribution function equations for electrons and holes, we derived a closed set of diffusion equations for carrier densities and temperatures with self-consistent coupling to Maxwell's equation and to an effective optical polarization equation. The coherent many-body effects are included within the screened Hartree-Fock approximation, while scatterings are treated within the second Born approximation including both the in- and out-scatterings. Microscopic expressions for electron-hole (e-h) and carrier-LO (c-LO) phonon scatterings are directly used to derive the momentum and energy relaxation rates. These rates expressed as functions of temperatures and densities lead to microscopic expressions for self- and mutual-diffusion coefficients in the coupled density-temperature diffusion equations. Approximations for reducing the general two-component description of the electron-hole plasma (EHP) to a single-component one are discussed. In particular, we show that a special single-component reduction is possible when e-h scattering dominates over c-LO phonon scattering. The ambipolar diffusion approximation is also discussed and we show that the ambipolar diffusion coefficients are independent of e-h scattering, even though the diffusion coefficients of individual components depend sensitively on the e-h scattering rates. Our discussions lead to new perspectives into the roles played in the single-component reduction by the electron-hole correlation in momentum space induced by scatterings and the electron-hole correlation in real space via internal static electrical field. Finally, the theory is completed by coupling the diffusion equations to the lattice temperature equation and to the effective optical polarization which in turn couples to the laser field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, J.; Kosson, D.S., E-mail: david.s.kosson@vanderbilt.edu; Garrabrants, A.
2013-02-15
A robust numerical solution of the nonlinear Poisson-Boltzmann equation for asymmetric polyelectrolyte solutions in discrete pore geometries is presented. Comparisons to the linearized approximation of the Poisson-Boltzmann equation reveal that the assumptions leading to linearization may not be appropriate for the electrochemical regime in many cementitious materials. Implications of the electric double layer on both partitioning of species and on diffusive release are discussed. The influence of the electric double layer on anion diffusion relative to cation diffusion is examined.
The precise time-dependent solution of the Fokker–Planck equation with anomalous diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Ran; Du, Jiulin, E-mail: jiulindu@aliyun.com
2015-08-15
We study the time behavior of the Fokker–Planck equation in Zwanzig’s rule (the backward-Ito’s rule) based on the Langevin equation of Brownian motion with an anomalous diffusion in a complex medium. The diffusion coefficient is a function in momentum space and follows a generalized fluctuation–dissipation relation. We obtain the precise time-dependent analytical solution of the Fokker–Planck equation and at long time the solution approaches to a stationary power-law distribution in nonextensive statistics. As a test, numerically we have demonstrated the accuracy and validity of the time-dependent solution. - Highlights: • The precise time-dependent solution of the Fokker–Planck equation with anomalousmore » diffusion is found. • The anomalous diffusion satisfies a generalized fluctuation–dissipation relation. • At long time the time-dependent solution approaches to a power-law distribution in nonextensive statistics. • Numerically we have demonstrated the accuracy and validity of the time-dependent solution.« less
Doblas, Sabrina; Wagner, Mathilde; Leitao, Helena S; Daire, Jean-Luc; Sinkus, Ralph; Vilgrain, Valérie; Van Beers, Bernard E
2013-10-01
The objective of this study was to compare the value of the apparent diffusion coefficient (ADC) determined with 3 b values and the intravoxel incoherent motion (IVIM)-derived parameters in the determination of malignancy and characterization of hepatic tumor type. Seventy-six patients with 86 solid hepatic lesions, including 8 hemangiomas, 20 lesions of focal nodular hyperplasia, 9 adenomas, 30 hepatocellular carcinomas, 13 metastases, and 6 cholangiocarcinomas, were assessed in this prospective study. Diffusion-weighted images were acquired with 11 b values to measure the ADCs (with b = 0, 150, and 500 s/mm) and the IVIM-derived parameters, namely, the pure diffusion coefficient and the perfusion-related diffusion fraction and coefficient. The diffusion parameters were compared between benign and malignant tumors and between tumor types, and their diagnostic value in identifying tumor malignancy was assessed. The apparent and pure diffusion coefficients were significantly higher in benign than in malignant tumors (benign: 2.32 [0.87] × 10 mm/s and 1.42 [0.37] × 10 mm/s vs malignant: 1.64 [0.51] × 10 mm/s and 1.14 [0.28] × 10 mm/s, respectively; P < 0.0001 and P = 0.0005), whereas the perfusion-related diffusion parameters did not differ significantly between the 2 groups. The apparent and pure diffusion coefficients provided similar accuracy in assessing tumor malignancy (areas under the receiver operating characteristic curve of 0.770 and 0.723, respectively). In the multigroup analysis, the ADC was found to be significantly higher in hemangiomas than in hepatocellular carcinomas, metastases, and cholangiocarcinomas. In the same manner, it was higher in lesions of focal nodular hyperplasia than in metastases and cholangiocarcinomas. However, the pure diffusion coefficient was significantly higher only in hemangiomas versus hepatocellular and cholangiocellular carcinomas. Compared with the ADC, the diffusion parameters derived from the IVIM model did not improve the determination of malignancy and characterization of hepatic tumor type.
Projecting diffusion along the normal bundle of a plane curve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valero-Valdés, Carlos; Herrera-Guzmán, Rafael
2014-05-15
The purpose of this paper is to provide new formulas for the effective diffusion coefficient of a generalized Fick-Jacob's equation obtained by projecting the two-dimensional diffusion equation along the normal directions of an arbitrary curve on the plane.
NUMERICAL ANALYSES FOR TREATING DIFFUSION IN SINGLE-, TWO-, AND THREE-PHASE BINARY ALLOY SYSTEMS
NASA Technical Reports Server (NTRS)
Tenney, D. R.
1994-01-01
This package consists of a series of three computer programs for treating one-dimensional transient diffusion problems in single and multiple phase binary alloy systems. An accurate understanding of the diffusion process is important in the development and production of binary alloys. Previous solutions of the diffusion equations were highly restricted in their scope and application. The finite-difference solutions developed for this package are applicable for planar, cylindrical, and spherical geometries with any diffusion-zone size and any continuous variation of the diffusion coefficient with concentration. Special techniques were included to account for differences in modal volumes, initiation and growth of an intermediate phase, disappearance of a phase, and the presence of an initial composition profile in the specimen. In each analysis, an effort was made to achieve good accuracy while minimizing computation time. The solutions to the diffusion equations for single-, two-, and threephase binary alloy systems are numerically calculated by the three programs NAD1, NAD2, and NAD3. NAD1 treats the diffusion between pure metals which belong to a single-phase system. Diffusion in this system is described by a one-dimensional Fick's second law and will result in a continuous composition variation. For computational purposes, Fick's second law is expressed as an explicit second-order finite difference equation. Finite difference calculations are made by choosing the grid spacing small enough to give convergent solutions of acceptable accuracy. NAD2 treats diffusion between pure metals which form a two-phase system. Diffusion in the twophase system is described by two partial differential equations (a Fick's second law for each phase) and an interface-flux-balance equation which describes the location of the interface. Actual interface motion is obtained by a mass conservation procedure. To account for changes in the thicknesses of the two phases as diffusion progresses, a variable grid technique developed by Murray and Landis is employed. These equations are expressed in finite difference form and solved numerically. Program NAD3 treats diffusion between pure metals which form a two-phase system with an intermediate third phase. Diffusion in the three-phase system is described by three partial differential expressions of Fick's second law and two interface-flux-balance equations. As with the two-phase case, a variable grid finite difference is used to numerically solve the diffusion equations. Computation time is minimized without sacrificing solution accuracy by treating the three-phase problem as a two-phase problem when the thickness of the intermediate phase is less than a preset value. Comparisons between these programs and other solutions have shown excellent agreement. The programs are written in FORTRAN IV for batch execution on the CDC 6600 with a central memory requirement of approximately 51K (octal) 60 bit words.
Fractional diffusion on bounded domains
Defterli, Ozlem; D'Elia, Marta; Du, Qiang; ...
2015-03-13
We found that the mathematically correct specification of a fractional differential equation on a bounded domain requires specification of appropriate boundary conditions, or their fractional analogue. In this paper we discuss the application of nonlocal diffusion theory to specify well-posed fractional diffusion equations on bounded domains.
Mathematics of thermal diffusion in an exponential temperature field
NASA Astrophysics Data System (ADS)
Zhang, Yaqi; Bai, Wenyu; Diebold, Gerald J.
2018-04-01
The Ludwig-Soret effect, also known as thermal diffusion, refers to the separation of gas, liquid, or solid mixtures in a temperature gradient. The motion of the components of the mixture is governed by a nonlinear, partial differential equation for the density fractions. Here solutions to the nonlinear differential equation for a binary mixture are discussed for an externally imposed, exponential temperature field. The equation of motion for the separation without the effects of mass diffusion is reduced to a Hamiltonian pair from which spatial distributions of the components of the mixture are found. Analytical calculations with boundary effects included show shock formation. The results of numerical calculations of the equation of motion that include both thermal and mass diffusion are given.
A Non Local Electron Heat Transport Model for Multi-Dimensional Fluid Codes
NASA Astrophysics Data System (ADS)
Schurtz, Guy
2000-10-01
Apparent inhibition of thermal heat flow is one of the most ancient problems in computational Inertial Fusion and flux-limited Spitzer-Harm conduction has been a mainstay in multi-dimensional hydrodynamic codes for more than 25 years. Theoretical investigation of the problem indicates that heat transport in laser produced plasmas has to be considered as a non local process. Various authors contributed to the non local theory and proposed convolution formulas designed for practical implementation in one-dimensional fluid codes. Though the theory, confirmed by kinetic calculations, actually predicts a reduced heat flux, it fails to explain the very small limiters required in two-dimensional simulations. Fokker-Planck simulations by Epperlein, Rickard and Bell [PRL 61, 2453 (1988)] demonstrated that non local effects could lead to a strong reduction of heat flow in two dimensions, even in situations where a one-dimensional analysis suggests that the heat flow is nearly classical. We developed at CEA/DAM a non local electron heat transport model suitable for implementation in our two-dimensional radiation hydrodynamic code FCI2. This model may be envisionned as the first step of an iterative solution of the Fokker-Planck equations; it takes the mathematical form of multigroup diffusion equations, the solution of which yields both the heat flux and the departure of the electron distribution function to the Maxwellian. Although direct implementation of the model is straightforward, formal solutions of it can be expressed in convolution form, exhibiting a three-dimensional tensor propagator. Reduction to one dimension retrieves the original formula of Luciani, Mora and Virmont [PRL 51, 1664 (1983)]. Intense magnetic fields may be generated by thermal effects in laser targets; these fields, as well as non local effects, will inhibit electron conduction. We present simulations where both effects are taken into account and shortly discuss the coupling strategy between them.
Double diffusivity model under stochastic forcing
NASA Astrophysics Data System (ADS)
Chattopadhyay, Amit K.; Aifantis, Elias C.
2017-05-01
The "double diffusivity" model was proposed in the late 1970s, and reworked in the early 1980s, as a continuum counterpart to existing discrete models of diffusion corresponding to high diffusivity paths, such as grain boundaries and dislocation lines. It was later rejuvenated in the 1990s to interpret experimental results on diffusion in polycrystalline and nanocrystalline specimens where grain boundaries and triple grain boundary junctions act as high diffusivity paths. Technically, the model pans out as a system of coupled Fick-type diffusion equations to represent "regular" and "high" diffusivity paths with "source terms" accounting for the mass exchange between the two paths. The model remit was extended by analogy to describe flow in porous media with double porosity, as well as to model heat conduction in media with two nonequilibrium local temperature baths, e.g., ion and electron baths. Uncoupling of the two partial differential equations leads to a higher-ordered diffusion equation, solutions of which could be obtained in terms of classical diffusion equation solutions. Similar equations could also be derived within an "internal length" gradient (ILG) mechanics formulation applied to diffusion problems, i.e., by introducing nonlocal effects, together with inertia and viscosity, in a mechanics based formulation of diffusion theory. While being remarkably successful in studies related to various aspects of transport in inhomogeneous media with deterministic microstructures and nanostructures, its implications in the presence of stochasticity have not yet been considered. This issue becomes particularly important in the case of diffusion in nanopolycrystals whose deterministic ILG-based theoretical calculations predict a relaxation time that is only about one-tenth of the actual experimentally verified time scale. This article provides the "missing link" in this estimation by adding a vital element in the ILG structure, that of stochasticity, that takes into account all boundary layer fluctuations. Our stochastic-ILG diffusion calculation confirms rapprochement between theory and experiment, thereby benchmarking a new generation of gradient-based continuum models that conform closer to real-life fluctuating environments.
NASA Astrophysics Data System (ADS)
Al-Chalabi, Rifat M. Khalil
1997-09-01
Development of an improvement to the computational efficiency of the existing nested iterative solution strategy of the Nodal Exapansion Method (NEM) nodal based neutron diffusion code NESTLE is presented. The improvement in the solution strategy is the result of developing a multilevel acceleration scheme that does not suffer from the numerical stalling associated with a number of iterative solution methods. The acceleration scheme is based on the multigrid method, which is specifically adapted for incorporation into the NEM nonlinear iterative strategy. This scheme optimizes the computational interplay between the spatial discretization and the NEM nonlinear iterative solution process through the use of the multigrid method. The combination of the NEM nodal method, calculation of the homogenized, neutron nodal balance coefficients (i.e. restriction operator), efficient underlying smoothing algorithm (power method of NESTLE), and the finer mesh reconstruction algorithm (i.e. prolongation operator), all operating on a sequence of coarser spatial nodes, constitutes the multilevel acceleration scheme employed in this research. Two implementations of the multigrid method into the NESTLE code were examined; the Imbedded NEM Strategy and the Imbedded CMFD Strategy. The main difference in implementation between the two methods is that in the Imbedded NEM Strategy, the NEM solution is required at every MG level. Numerical tests have shown that the Imbedded NEM Strategy suffers from divergence at coarse- grid levels, hence all the results for the different benchmarks presented here were obtained using the Imbedded CMFD Strategy. The novelties in the developed MG method are as follows: the formulation of the restriction and prolongation operators, and the selection of the relaxation method. The restriction operator utilizes a variation of the reactor physics, consistent homogenization technique. The prolongation operator is based upon a variant of the pin power reconstruction methodology. The relaxation method, which is the power method, utilizes a constant coefficient matrix within the NEM non-linear iterative strategy. The choice of the MG nesting within the nested iterative strategy enables the incorporation of other non-linear effects with no additional coding effort. In addition, if an eigenvalue problem is being solved, it remains an eigenvalue problem at all grid levels, simplifying coding implementation. The merit of the developed MG method was tested by incorporating it into the NESTLE iterative solver, and employing it to solve four different benchmark problems. In addition to the base cases, three different sensitivity studies are performed, examining the effects of number of MG levels, homogenized coupling coefficients correction (i.e. restriction operator), and fine-mesh reconstruction algorithm (i.e. prolongation operator). The multilevel acceleration scheme developed in this research provides the foundation for developing adaptive multilevel acceleration methods for steady-state and transient NEM nodal neutron diffusion equations. (Abstract shortened by UMI.)
Rarefied gas flows through a curved channel: Application of a diffusion-type equation
NASA Astrophysics Data System (ADS)
Aoki, Kazuo; Takata, Shigeru; Tatsumi, Eri; Yoshida, Hiroaki
2010-11-01
Rarefied gas flows through a curved two-dimensional channel, caused by a pressure or a temperature gradient, are investigated numerically by using a macroscopic equation of convection-diffusion type. The equation, which was derived systematically from the Bhatnagar-Gross-Krook model of the Boltzmann equation and diffuse-reflection boundary condition in a previous paper [K. Aoki et al., "A diffusion model for rarefied flows in curved channels," Multiscale Model. Simul. 6, 1281 (2008)], is valid irrespective of the degree of gas rarefaction when the channel width is much shorter than the scale of variations of physical quantities and curvature along the channel. Attention is also paid to a variant of the Knudsen compressor that can produce a pressure raise by the effect of the change of channel curvature and periodic temperature distributions without any help of moving parts. In the process of analysis, the macroscopic equation is (partially) extended to the case of the ellipsoidal-statistical model of the Boltzmann equation.
Numerical applications of the advective-diffusive codes for the inner magnetosphere
NASA Astrophysics Data System (ADS)
Aseev, N. A.; Shprits, Y. Y.; Drozdov, A. Y.; Kellerman, A. C.
2016-11-01
In this study we present analytical solutions for convection and diffusion equations. We gather here the analytical solutions for the one-dimensional convection equation, the two-dimensional convection problem, and the one- and two-dimensional diffusion equations. Using obtained analytical solutions, we test the four-dimensional Versatile Electron Radiation Belt code (the VERB-4D code), which solves the modified Fokker-Planck equation with additional convection terms. The ninth-order upwind numerical scheme for the one-dimensional convection equation shows much more accurate results than the results obtained with the third-order scheme. The universal limiter eliminates unphysical oscillations generated by high-order linear upwind schemes. Decrease in the space step leads to convergence of a numerical solution of the two-dimensional diffusion equation with mixed terms to the analytical solution. We compare the results of the third- and ninth-order schemes applied to magnetospheric convection modeling. The results show significant differences in electron fluxes near geostationary orbit when different numerical schemes are used.
Fractional-calculus diffusion equation
2010-01-01
Background Sequel to the work on the quantization of nonconservative systems using fractional calculus and quantization of a system with Brownian motion, which aims to consider the dissipation effects in quantum-mechanical description of microscale systems. Results The canonical quantization of a system represented classically by one-dimensional Fick's law, and the diffusion equation is carried out according to the Dirac method. A suitable Lagrangian, and Hamiltonian, describing the diffusive system, are constructed and the Hamiltonian is transformed to Schrodinger's equation which is solved. An application regarding implementation of the developed mathematical method to the analysis of diffusion, osmosis, which is a biological application of the diffusion process, is carried out. Schrödinger's equation is solved. Conclusions The plot of the probability function represents clearly the dissipative and drift forces and hence the osmosis, which agrees totally with the macro-scale view, or the classical-version osmosis. PMID:20492677
An asymptotic induced numerical method for the convection-diffusion-reaction equation
NASA Technical Reports Server (NTRS)
Scroggs, Jeffrey S.; Sorensen, Danny C.
1988-01-01
A parallel algorithm for the efficient solution of a time dependent reaction convection diffusion equation with small parameter on the diffusion term is presented. The method is based on a domain decomposition that is dictated by singular perturbation analysis. The analysis is used to determine regions where certain reduced equations may be solved in place of the full equation. Parallelism is evident at two levels. Domain decomposition provides parallelism at the highest level, and within each domain there is ample opportunity to exploit parallelism. Run time results demonstrate the viability of the method.
A new Eulerian model for viscous and heat conducting compressible flows
NASA Astrophysics Data System (ADS)
Svärd, Magnus
2018-09-01
In this article, a suite of physically inconsistent properties of the Navier-Stokes equations, associated with the lack of mass diffusion and the definition of velocity, is presented. We show that these inconsistencies are consequences of the Lagrangian derivation that models viscous stresses rather than diffusion. A new model for compressible and diffusive (viscous and heat conducting) flows of an ideal gas, is derived in a purely Eulerian framework. We propose that these equations supersede the Navier-Stokes equations. A few numerical experiments demonstrate some differences and similarities between the new system and the Navier-Stokes equations.
Analytical solution of the nonlinear diffusion equation
NASA Astrophysics Data System (ADS)
Shanker Dubey, Ravi; Goswami, Pranay
2018-05-01
In the present paper, we derive the solution of the nonlinear fractional partial differential equations using an efficient approach based on the q -homotopy analysis transform method ( q -HATM). The fractional diffusion equations derivatives are considered in Caputo sense. The derived results are graphically demonstrated as well.
Rodríguez-Entrena, Macario; Schuberth, Florian; Gelhard, Carsten
2018-01-01
Structural equation modeling using partial least squares (PLS-SEM) has become a main-stream modeling approach in various disciplines. Nevertheless, prior literature still lacks a practical guidance on how to properly test for differences between parameter estimates. Whereas existing techniques such as parametric and non-parametric approaches in PLS multi-group analysis solely allow to assess differences between parameters that are estimated for different subpopulations, the study at hand introduces a technique that allows to also assess whether two parameter estimates that are derived from the same sample are statistically different. To illustrate this advancement to PLS-SEM, we particularly refer to a reduced version of the well-established technology acceptance model.
Relationships between bullying, school climate, and student risk behaviors.
Klein, Jennifer; Cornell, Dewey; Konold, Timothy
2012-09-01
This study examined whether characteristics of a positive school climate were associated with lower student risk behavior in a sample of 3,687 high school students who completed the School Climate Bullying Survey and questions about risk behavior from the Youth Risk Behavior Surveillance Survey (YRBS). Confirmatory factor analyses established fit for 20 items with three hypothesized school climate scales measuring (1) prevalence of bullying and teasing; (2) aggressive attitudes; and (3) student willingness to seek help. Structural equation modeling established the relationship of these measures with student reports of risk behavior. Multigroup analyses identified differential effects across gender and race. A positive school climate could be an important protective factor in preventing student risk behavior.
Ruthig, Joelle C
2016-09-01
Protection Motivation Theory (PMT) was applied to explore the relationship between perceived risk of acute health crises and intent to exercise. Interviews of 351 community-living older adults assessed prior physical activity (PPA), all PMT components, and exercise intent. A multi-group structural equation model revealed gender differences in PMT predictors of exercise intent. PPA, age, self-efficacy, and response efficacy directly predicted men's intent. Women's PPA and age predicted PMT components of self-efficacy and response costs, which predicted intent. Findings have implications for devising interventions to enhance physical activity in later life by targeting different PMT components for older men and women. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Li, Huicong; Wang, Xuefeng; Wu, Yanxia
2014-11-01
We consider the logistic diffusion equation on a bounded domain, which has two components with a thin coating surrounding a body. The diffusion tensor is isotropic on the body, and anisotropic on the coating. The size of the diffusion tensor on these components may be very different; within the coating, the diffusion rates in the normal and tangent directions may be in different scales. We find effective boundary conditions (EBCs) that are approximately satisfied by the solution of the diffusion equation on the boundary of the body. We also prove that the lifespan of each EBC, which measures how long the EBC remains effective, is infinite. The EBCs enable us to see clearly the effect of the coating and ease the difficult task of solving the PDE in a thin region with a small diffusion tensor. The motivation of the mathematics includes a nature reserve surrounded by a buffer zone.
Martínez-López, Brais; Gontard, Nathalie; Peyron, Stéphane
2018-03-01
A reliable prediction of migration levels of plastic additives into food requires a robust estimation of diffusivity. Predictive modelling of diffusivity as recommended by the EU commission is carried out using a semi-empirical equation that relies on two polymer-dependent parameters. These parameters were determined for the polymers most used by packaging industry (LLDPE, HDPE, PP, PET, PS, HIPS) from the diffusivity data available at that time. In the specific case of general purpose polystyrene, the diffusivity data published since then shows that the use of the equation with the original parameters results in systematic underestimation of diffusivity. The goal of this study was therefore, to propose an update of the aforementioned parameters for PS on the basis of up to date diffusivity data, so the equation can be used for a reasoned overestimation of diffusivity.
Modeling Morphogenesis with Reaction-Diffusion Equations Using Galerkin Spectral Methods
2002-05-06
reaction- diffusion equation is a difficult problem in analysis that will not be addressed here. Errors will also arise from numerically approx solutions to...the ODEs. When comparing the approximate solution to actual reaction- diffusion systems found in nature, we must also take into account errors that...
Simpson, Matthew J.; Sharp, Jesse A.; Morrow, Liam C.; Baker, Ruth E.
2015-01-01
Embryonic development involves diffusion and proliferation of cells, as well as diffusion and reaction of molecules, within growing tissues. Mathematical models of these processes often involve reaction–diffusion equations on growing domains that have been primarily studied using approximate numerical solutions. Recently, we have shown how to obtain an exact solution to a single, uncoupled, linear reaction–diffusion equation on a growing domain, 0 < x < L(t), where L(t) is the domain length. The present work is an extension of our previous study, and we illustrate how to solve a system of coupled reaction–diffusion equations on a growing domain. This system of equations can be used to study the spatial and temporal distributions of different generations of cells within a population that diffuses and proliferates within a growing tissue. The exact solution is obtained by applying an uncoupling transformation, and the uncoupled equations are solved separately before applying the inverse uncoupling transformation to give the coupled solution. We present several example calculations to illustrate different types of behaviour. The first example calculation corresponds to a situation where the initially–confined population diffuses sufficiently slowly that it is unable to reach the moving boundary at x = L(t). In contrast, the second example calculation corresponds to a situation where the initially–confined population is able to overcome the domain growth and reach the moving boundary at x = L(t). In its basic format, the uncoupling transformation at first appears to be restricted to deal only with the case where each generation of cells has a distinct proliferation rate. However, we also demonstrate how the uncoupling transformation can be used when each generation has the same proliferation rate by evaluating the exact solutions as an appropriate limit. PMID:26407013
Simpson, Matthew J; Sharp, Jesse A; Morrow, Liam C; Baker, Ruth E
2015-01-01
Embryonic development involves diffusion and proliferation of cells, as well as diffusion and reaction of molecules, within growing tissues. Mathematical models of these processes often involve reaction-diffusion equations on growing domains that have been primarily studied using approximate numerical solutions. Recently, we have shown how to obtain an exact solution to a single, uncoupled, linear reaction-diffusion equation on a growing domain, 0 < x < L(t), where L(t) is the domain length. The present work is an extension of our previous study, and we illustrate how to solve a system of coupled reaction-diffusion equations on a growing domain. This system of equations can be used to study the spatial and temporal distributions of different generations of cells within a population that diffuses and proliferates within a growing tissue. The exact solution is obtained by applying an uncoupling transformation, and the uncoupled equations are solved separately before applying the inverse uncoupling transformation to give the coupled solution. We present several example calculations to illustrate different types of behaviour. The first example calculation corresponds to a situation where the initially-confined population diffuses sufficiently slowly that it is unable to reach the moving boundary at x = L(t). In contrast, the second example calculation corresponds to a situation where the initially-confined population is able to overcome the domain growth and reach the moving boundary at x = L(t). In its basic format, the uncoupling transformation at first appears to be restricted to deal only with the case where each generation of cells has a distinct proliferation rate. However, we also demonstrate how the uncoupling transformation can be used when each generation has the same proliferation rate by evaluating the exact solutions as an appropriate limit.
An accurate computational method for the diffusion regime verification
NASA Astrophysics Data System (ADS)
Zhokh, Alexey A.; Strizhak, Peter E.
2018-04-01
The diffusion regime (sub-diffusive, standard, or super-diffusive) is defined by the order of the derivative in the corresponding transport equation. We develop an accurate computational method for the direct estimation of the diffusion regime. The method is based on the derivative order estimation using the asymptotic analytic solutions of the diffusion equation with the integer order and the time-fractional derivatives. The robustness and the computational cheapness of the proposed method are verified using the experimental methane and methyl alcohol transport kinetics through the catalyst pellet.
Williams, Monnica T; Duque, Gerardo; Wetterneck, Chad T; Chapman, L Kevin; DeLapp, Ryan C T
2018-04-01
Prior research has found that a strong positive ethnic identity is a protective factor against anxiety and depression in African Americans. In this study, ethnic identity is examined in a geographically representative sample of African American young adults (n = 242), using the Multigroup Ethnic Identity Measure (MEIM) (Phinney in J Adolescent Res 7:156-76, 15). The two-factor structure of the measure (Roberts et al. in J Early Adolescence 19:301-22, 1) was analyzed using a structural equation model and displayed an acceptable fit only when multiple error terms were correlated. A multigroup confirmatory factor analysis revealed measurement equivalence of the two-factor structure between African Americans from Southern and non-Southern regions of the USA. We found that significantly higher levels of ethnic identity were present among African American in the South compared to other regions, and region significantly predicted total ethnic identity scores in a linear regression, even when controlling for gender, age, urbanicity, and years of education. Furthermore, among African Americans, living in the South was significantly correlated with less help-seeking for diagnosed depression, anxiety, and/or obsessive-compulsive disorder, where help-seeking was defined as obtaining a diagnosis by a professional. The role of ethnic identity and social support are discussed in the context of African American mental health.
Limbers, Christine A; Newman, Daniel A; Varni, James W
2008-07-01
The objective of the present study was to examine the factorial invariance of the PedsQL 4.0 Generic Core Scales for child self-report across 11,433 children ages 5-18 with chronic health conditions and healthy children. Multigroup Confirmatory Factor Analysis was performed specifying a five-factor model. Two multigroup structural equation models, one with constrained parameters and the other with unconstrained parameters, were proposed in order to compare the factor loadings across children with chronic health conditions and healthy children. Metric invariance (i.e., equal factor loadings) was demonstrated based on stability of the Comparative Fit Index (CFI) between the two models, and several additional indices of practical fit including the root mean squared error of approximation, the Non-normed Fit Index, and the Parsimony Normed Fit Index. The findings support an equivalent five-factor structure on the PedsQL 4.0 Generic Core Scales across healthy and chronic health condition groups. These findings suggest that when differences are found across chronic health condition and healthy groups when utilizing the PedsQL, these differences are more likely real differences in self-perceived health-related quality of life, rather than differences in interpretation of the PedsQL items as a function of health status.
Control of reaction-diffusion equations on time-evolving manifolds.
Rossi, Francesco; Duteil, Nastassia Pouradier; Yakoby, Nir; Piccoli, Benedetto
2016-12-01
Among the main actors of organism development there are morphogens, which are signaling molecules diffusing in the developing organism and acting on cells to produce local responses. Growth is thus determined by the distribution of such signal. Meanwhile, the diffusion of the signal is itself affected by the changes in shape and size of the organism. In other words, there is a complete coupling between the diffusion of the signal and the change of the shapes. In this paper, we introduce a mathematical model to investigate such coupling. The shape is given by a manifold, that varies in time as the result of a deformation given by a transport equation. The signal is represented by a density, diffusing on the manifold via a diffusion equation. We show the non-commutativity of the transport and diffusion evolution by introducing a new concept of Lie bracket between the diffusion and the transport operator. We also provide numerical simulations showing this phenomenon.
Fractional Number Operator and Associated Fractional Diffusion Equations
NASA Astrophysics Data System (ADS)
Rguigui, Hafedh
2018-03-01
In this paper, we study the fractional number operator as an analog of the finite-dimensional fractional Laplacian. An important relation with the Ornstein-Uhlenbeck process is given. Using a semigroup approach, the solution of the Cauchy problem associated to the fractional number operator is presented. By means of the Mittag-Leffler function and the Laplace transform, we give the solution of the Caputo time fractional diffusion equation and Riemann-Liouville time fractional diffusion equation in infinite dimensions associated to the fractional number operator.
Vázquez, J. L.
2010-01-01
The goal of this paper is to state the optimal decay rate for solutions of the nonlinear fast diffusion equation and, in self-similar variables, the optimal convergence rates to Barenblatt self-similar profiles and their generalizations. It relies on the identification of the optimal constants in some related Hardy–Poincaré inequalities and concludes a long series of papers devoted to generalized entropies, functional inequalities, and rates for nonlinear diffusion equations. PMID:20823259
Note on coefficient matrices from stochastic Galerkin methods for random diffusion equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou Tao, E-mail: tzhou@lsec.cc.ac.c; Tang Tao, E-mail: ttang@hkbu.edu.h
2010-11-01
In a recent work by Xiu and Shen [D. Xiu, J. Shen, Efficient stochastic Galerkin methods for random diffusion equations, J. Comput. Phys. 228 (2009) 266-281], the Galerkin methods are used to solve stochastic diffusion equations in random media, where some properties for the coefficient matrix of the resulting system are provided. They also posed an open question on the properties of the coefficient matrix. In this work, we will provide some results related to the open question.
NASA Astrophysics Data System (ADS)
Tawfik, Ashraf M.; Fichtner, Horst; Elhanbaly, A.; Schlickeiser, Reinhard
2018-06-01
Anomalous diffusion models of energetic particles in space plasmas are developed by introducing the fractional Parker diffusion-convection equation. Analytical solution of the space-time fractional equation is obtained by use of the Caputo and Riesz-Feller fractional derivatives with the Laplace-Fourier transforms. The solution is given in terms of the Fox H-function. Profiles of particle densities are illustrated for different values of the space fractional order and the so-called skewness parameter.
Stress, deformation and diffusion interactions in solids - A simulation study
NASA Astrophysics Data System (ADS)
Fischer, F. D.; Svoboda, J.
2015-05-01
Equations of diffusion treated in the frame of Manning's concept, are completed by equations for generation/annihilation of vacancies at non-ideal sources and sinks, by conservation laws, by equations for generation of an eigenstrain state and by a strain-stress analysis. The stress-deformation-diffusion interactions are demonstrated on the evolution of a diffusion couple consisting of two thin layers of different chemical composition forming a free-standing plate without external loading. The equations are solved for different material parameters represented by the values of diffusion coefficients of individual components and by the intensity of sources and sinks for vacancies. The results of simulations indicate that for low intensity of sources and sinks for vacancies a significant eigenstress state can develop and the interdiffusion process is slowed down. For high intensity of sources and sinks for vacancies a significant eigenstrain state can develop and the eigenstress state quickly relaxes. If the difference in the diffusion coefficients of individual components is high, then the intensity of sources and sinks for vacancies influences the interdiffusion process considerably. For such systems their description only by diffusion coefficients is insufficient and must be completed by a microstructure characterization.
A double medium model for diffusion in fluid-bearing rock
NASA Astrophysics Data System (ADS)
Wang, H. F.
1993-09-01
The concept of a double porosity medium to model fluid flow in fractured rock has been applied to model diffusion in rock containing a small amount of a continuous fluid phase that surrounds small volume elements of the solid matrix. The model quantifies the relative role of diffusion in the fluid and solid phases of the rock. The fluid is the fast diffusion path, but the solid contains the volumetrically significant amount of the diffusing species. The double medium model consists of two coupled differential equations. One equation is the diffusion equation for the fluid concentration; it contains a source term for change in the average concentration of the diffusing species in the solid matrix. The second equation represents the assumption that the change in average concentration in a solid element is proportional to the difference between the average concentration in the solid and the concentration in the fluid times the solid-fluid partition coefficient. The double medium model is shown to apply to laboratory data on iron diffusion in fluid-bearing dunite and to measured oxygen isotope ratios at marble-metagranite contacts. In both examples, concentration profiles are calculated for diffusion taking place at constant temperature, where a boundary value changes suddenly and is subsequently held constant. Knowledge of solid diffusivities can set a lower bound to the length of time over which diffusion occurs, but only the product of effective fluid diffusivity and time is constrained for times longer than the characteristic solid diffusion time. The double medium results approach a local, grain-scale equilibrium model for times that are large relative to the time constant for solid diffusion.
Diffusion in the special theory of relativity.
Herrmann, Joachim
2009-11-01
The Markovian diffusion theory is generalized within the framework of the special theory of relativity. Since the velocity space in relativity is a hyperboloid, the mathematical stochastic calculus on Riemanian manifolds can be applied but adopted here to the velocity space. A generalized Langevin equation in the fiber space of position, velocity, and orthonormal velocity frames is defined from which the generalized relativistic Kramers equation in the phase space in external force fields is derived. The obtained diffusion equation is invariant under Lorentz transformations and its stationary solution is given by the Jüttner distribution. Besides, a nonstationary analytical solution is derived for the example of force-free relativistic diffusion.
Group theoretic approach for solving the problem of diffusion of a drug through a thin membrane
NASA Astrophysics Data System (ADS)
Abd-El-Malek, Mina B.; Kassem, Magda M.; Meky, Mohammed L. M.
2002-03-01
The transformation group theoretic approach is applied to study the diffusion process of a drug through a skin-like membrane which tends to partially absorb the drug. Two cases are considered for the diffusion coefficient. The application of one parameter group reduces the number of independent variables by one, and consequently the partial differential equation governing the diffusion process with the boundary and initial conditions is transformed into an ordinary differential equation with the corresponding conditions. The obtained differential equation is solved numerically using the shooting method, and the results are illustrated graphically and in tables.
NASA Astrophysics Data System (ADS)
Aihara, Yuichi; Sugimoto, Kyoko; Price, William S.; Hayamizu, Kikuko
2000-08-01
The Debye-Hückel-Onsager and Nernst-Einstein equations, which are based on two different conceptual approaches, constitute the most widely used equations for relating ionic conduction to ionic mobility. However, both of these classical (simple) equations are predictive of ionic conductivity only at very low salt concentrations. In the present work the ionic conductivity of four organic solvent-lithium salt-based electrolytes were measured. These experimental conductivity values were then contrasted with theoretical values calculated using the translational diffusion (also known as self-diffusion or intradiffusion) coefficients of all of the species present obtained using pulsed-gradient spin-echo (1H, 19F and 7Li) nuclear magnetic resonance self-diffusion measurements. The experimental results verified the applicability of both theoretical approaches at very low salt concentrations for these particular systems as well as helping to clarify the reasons for the divergence between theory and experiment. In particular, it was found that the correspondence between the Debye-Hückel-Onsager equation and experimental values could be improved by using the measured solvent self-diffusion values to correct for salt-induced changes in the solution viscosity. The concentration dependence of the self-diffusion coefficients is discussed in terms of the Jones-Dole equation.
Singh, Brajesh K; Srivastava, Vineet K
2015-04-01
The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations.
Singh, Brajesh K.; Srivastava, Vineet K.
2015-01-01
The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations. PMID:26064639
Obstructions to Existence in Fast-Diffusion Equations
NASA Astrophysics Data System (ADS)
Rodriguez, Ana; Vazquez, Juan L.
The study of nonlinear diffusion equations produces a number of peculiar phenomena not present in the standard linear theory. Thus, in the sub-field of very fast diffusion it is known that the Cauchy problem can be ill-posed, either because of non-uniqueness, or because of non-existence of solutions with small data. The equations we consider take the general form ut=( D( u, ux) ux) x or its several-dimension analogue. Fast diffusion means that D→∞ at some values of the arguments, typically as u→0 or ux→0. Here, we describe two different types of non-existence phenomena. Some fast-diffusion equations with very singular D do not allow for solutions with sign changes, while other equations admit only monotone solutions, no oscillations being allowed. The examples we give for both types of anomaly are closely related. The most typical examples are vt=( vx/∣ v∣) x and ut= uxx/∣ ux∣. For these equations, we investigate what happens to the Cauchy problem when we take incompatible initial data and perform a standard regularization. It is shown that the limit gives rise to an initial layer where the data become admissible (positive or monotone, respectively), followed by a standard evolution for all t>0, once the obstruction has been removed.
Multi-Component Diffusion with Application To Computational Aerothermodynamics
NASA Technical Reports Server (NTRS)
Sutton, Kenneth; Gnoffo, Peter A.
1998-01-01
The accuracy and complexity of solving multicomponent gaseous diffusion using the detailed multicomponent equations, the Stefan-Maxwell equations, and two commonly used approximate equations have been examined in a two part study. Part I examined the equations in a basic study with specified inputs in which the results are applicable for many applications. Part II addressed the application of the equations in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) computational code for high-speed entries in Earth's atmosphere. The results showed that the presented iterative scheme for solving the Stefan-Maxwell equations is an accurate and effective method as compared with solutions of the detailed equations. In general, good accuracy with the approximate equations cannot be guaranteed for a species or all species in a multi-component mixture. 'Corrected' forms of the approximate equations that ensured the diffusion mass fluxes sum to zero, as required, were more accurate than the uncorrected forms. Good accuracy, as compared with the Stefan- Maxwell results, were obtained with the 'corrected' approximate equations in defining the heating rates for the three Earth entries considered in Part II.
A Three-Fold Approach to the Heat Equation: Data, Modeling, Numerics
ERIC Educational Resources Information Center
Spayd, Kimberly; Puckett, James
2016-01-01
This article describes our modeling approach to teaching the one-dimensional heat (diffusion) equation in a one-semester undergraduate partial differential equations course. We constructed the apparatus for a demonstration of heat diffusion through a long, thin metal rod with prescribed temperatures at each end. The students observed the physical…
NASA Astrophysics Data System (ADS)
Sakai, K.; Watabe, D.; Minamidani, T.; Zhang, G. S.
2012-10-01
According to Godunov theorem for numerical calculations of advection equations, there exist no higher-order schemes with constant positive difference coefficients in a family of polynomial schemes with an accuracy exceeding the first-order. We propose a third-order computational scheme for numerical fluxes to guarantee the non-negative difference coefficients of resulting finite difference equations for advection-diffusion equations in a semi-conservative form, in which there exist two kinds of numerical fluxes at a cell surface and these two fluxes are not always coincident in non-uniform velocity fields. The present scheme is optimized so as to minimize truncation errors for the numerical fluxes while fulfilling the positivity condition of the difference coefficients which are variable depending on the local Courant number and diffusion number. The feature of the present optimized scheme consists in keeping the third-order accuracy anywhere without any numerical flux limiter. We extend the present method into multi-dimensional equations. Numerical experiments for advection-diffusion equations showed nonoscillatory solutions.
NASA Astrophysics Data System (ADS)
Dong, Bo-Qing; Jia, Yan; Li, Jingna; Wu, Jiahong
2018-05-01
This paper focuses on a system of the 2D magnetohydrodynamic (MHD) equations with the kinematic dissipation given by the fractional operator (-Δ )^α and the magnetic diffusion by partial Laplacian. We are able to show that this system with any α >0 always possesses a unique global smooth solution when the initial data is sufficiently smooth. In addition, we make a detailed study on the large-time behavior of these smooth solutions and obtain optimal large-time decay rates. Since the magnetic diffusion is only partial here, some classical tools such as the maximal regularity property for the 2D heat operator can no longer be applied. A key observation on the structure of the MHD equations allows us to get around the difficulties due to the lack of full Laplacian magnetic diffusion. The results presented here are the sharpest on the global regularity problem for the 2D MHD equations with only partial magnetic diffusion.
Fisher equation for anisotropic diffusion: simulating South American human dispersals.
Martino, Luis A; Osella, Ana; Dorso, Claudio; Lanata, José L
2007-09-01
The Fisher equation is commonly used to model population dynamics. This equation allows describing reaction-diffusion processes, considering both population growth and diffusion mechanism. Some results have been reported about modeling human dispersion, always assuming isotropic diffusion. Nevertheless, it is well-known that dispersion depends not only on the characteristics of the habitats where individuals are but also on the properties of the places where they intend to move, then isotropic approaches cannot adequately reproduce the evolution of the wave of advance of populations. Solutions to a Fisher equation are difficult to obtain for complex geometries, moreover, when anisotropy has to be considered and so few studies have been conducted in this direction. With this scope in mind, we present in this paper a solution for a Fisher equation, introducing anisotropy. We apply a finite difference method using the Crank-Nicholson approximation and analyze the results as a function of the characteristic parameters. Finally, this methodology is applied to model South American human dispersal.
Delchini, Marc O.; Ragusa, Jean C.; Ferguson, Jim
2017-02-17
A viscous regularization technique, based on the local entropy residual, was proposed by Delchini et al. (2015) to stabilize the nonequilibrium-diffusion Grey Radiation-Hydrodynamic equations using an artificial viscosity technique. This viscous regularization is modulated by the local entropy production and is consistent with the entropy minimum principle. However, Delchini et al. (2015) only based their work on the hyperbolic parts of the Grey Radiation-Hydrodynamic equations and thus omitted the relaxation and diffusion terms present in the material energy and radiation energy equations. Here in this paper, we extend the theoretical grounds for the method and derive an entropy minimum principlemore » for the full set of nonequilibrium-diffusion Grey Radiation-Hydrodynamic equations. This further strengthens the applicability of the entropy viscosity method as a stabilization technique for radiation-hydrodynamic shock simulations. Radiative shock calculations using constant and temperature-dependent opacities are compared against semi-analytical reference solutions, and we present a procedure to perform spatial convergence studies of such simulations.« less
Localization and Ballistic Diffusion for the Tempered Fractional Brownian-Langevin Motion
NASA Astrophysics Data System (ADS)
Chen, Yao; Wang, Xudong; Deng, Weihua
2017-10-01
This paper discusses the tempered fractional Brownian motion (tfBm), its ergodicity, and the derivation of the corresponding Fokker-Planck equation. Then we introduce the generalized Langevin equation with the tempered fractional Gaussian noise for a free particle, called tempered fractional Langevin equation (tfLe). While the tfBm displays localization diffusion for the long time limit and for the short time its mean squared displacement (MSD) has the asymptotic form t^{2H}, we show that the asymptotic form of the MSD of the tfLe transits from t^2 (ballistic diffusion for short time) to t^{2-2H}, and then to t^2 (again ballistic diffusion for long time). On the other hand, the overdamped tfLe has the transition of the diffusion type from t^{2-2H} to t^2 (ballistic diffusion). The tfLe with harmonic potential is also considered.
A Nonlinear Diffusion Equation-Based Model for Ultrasound Speckle Noise Removal
NASA Astrophysics Data System (ADS)
Zhou, Zhenyu; Guo, Zhichang; Zhang, Dazhi; Wu, Boying
2018-04-01
Ultrasound images are contaminated by speckle noise, which brings difficulties in further image analysis and clinical diagnosis. In this paper, we address this problem in the view of nonlinear diffusion equation theories. We develop a nonlinear diffusion equation-based model by taking into account not only the gradient information of the image, but also the information of the gray levels of the image. By utilizing the region indicator as the variable exponent, we can adaptively control the diffusion type which alternates between the Perona-Malik diffusion and the Charbonnier diffusion according to the image gray levels. Furthermore, we analyze the proposed model with respect to the theoretical and numerical properties. Experiments show that the proposed method achieves much better speckle suppression and edge preservation when compared with the traditional despeckling methods, especially in the low gray level and low-contrast regions.
Nature of self-diffusion in two-dimensional fluids
NASA Astrophysics Data System (ADS)
Choi, Bongsik; Han, Kyeong Hwan; Kim, Changho; Talkner, Peter; Kidera, Akinori; Lee, Eok Kyun
2017-12-01
Self-diffusion in a two-dimensional simple fluid is investigated by both analytical and numerical means. We investigate the anomalous aspects of self-diffusion in two-dimensional fluids with regards to the mean square displacement, the time-dependent diffusion coefficient, and the velocity autocorrelation function (VACF) using a consistency equation relating these quantities. We numerically confirm the consistency equation by extensive molecular dynamics simulations for finite systems, corroborate earlier results indicating that the kinematic viscosity approaches a finite, non-vanishing value in the thermodynamic limit, and establish the finite size behavior of the diffusion coefficient. We obtain the exact solution of the consistency equation in the thermodynamic limit and use this solution to determine the large time asymptotics of the mean square displacement, the diffusion coefficient, and the VACF. An asymptotic decay law of the VACF resembles the previously known self-consistent form, 1/(t\\sqrt{{ln}t}), however with a rescaled time.
Dimensional reduction of a general advection–diffusion equation in 2D channels
NASA Astrophysics Data System (ADS)
Kalinay, Pavol; Slanina, František
2018-06-01
Diffusion of point-like particles in a two-dimensional channel of varying width is studied. The particles are driven by an arbitrary space dependent force. We construct a general recurrence procedure mapping the corresponding two-dimensional advection-diffusion equation onto the longitudinal coordinate x. Unlike the previous specific cases, the presented procedure enables us to find the one-dimensional description of the confined diffusion even for non-conservative (vortex) forces, e.g. caused by flowing solvent dragging the particles. We show that the result is again the generalized Fick–Jacobs equation. Despite of non existing scalar potential in the case of vortex forces, the effective one-dimensional scalar potential, as well as the corresponding quasi-equilibrium and the effective diffusion coefficient can be always found.
Diffusion of liquid polystyrene into glassy poly(phenylene oxide) characterized by DSC
NASA Astrophysics Data System (ADS)
Li, Linling; Wang, Xiaoliang; Zhou, Dongshan; Xue, Gi
2013-03-01
We report a diffusion study on the polystyrene/poly(phenylene oxide) (PS/PPO) mixture consisted by the PS and PPO nanoparticles. Diffusion of liquid PS into glassy PPO (l-PS/g-PPO) is promoted by annealing the PS/PPO mixture at several temperatures below Tg of the PPO. By tracing the Tgs of the PS-rich domain behind the diffusion front using DSC, we get the relationships of PS weight fractions and diffusion front advances with the elapsed diffusion times at different diffusion temperatures using the Gordon-Taylor equation and core-shell model. We find that the plots of weight fraction of PS vs. elapsed diffusion times at different temperatures can be converted to a master curve by Time-Temperature superposition, and the shift factors obey the Arrhenius equation. Besides, the diffusion front advances of l-PS into g-PPO show an excellent agreement with the t1/2 scaling law at the beginning of the diffusion process, and the diffusion coefficients of different diffusion temperatures also obey the Arrhenius equation. We believe the diffusion mechanism for l-PS/g-PPO should be the Fickean law rather than the Case II, though there are departures of original linearity at longer diffusion times due to the limited liquid supply system. Diffusion of liquid polystyrene into glassy poly(phenylene oxide) characterized by DSC
ERIC Educational Resources Information Center
Dolan, Conor V.; Molenaar, Peter C. M.
1994-01-01
In multigroup covariance structure analysis with structured means, the traditional latent selection model is formulated as a special case of phenotypic selection. Illustrations with real and simulated data demonstrate how one can test specific hypotheses concerning selection on latent variables. (SLD)
Vapor Transport Within the Thermal Diffusion Cloud Chamber
NASA Technical Reports Server (NTRS)
Ferguson, Frank T.; Heist, Richard H.; Nuth, Joseph A., III
2000-01-01
A review of the equations used to determine the 1-D vapor transport in the thermal diffusion cloud chamber (TDCC) is presented. These equations closely follow those of the classical Stefan tube problem in which there is transport of a volatile species through a noncondensible, carrier gas. In both cases, the very plausible assumption is made that the background gas is stagnant. Unfortunately, this assumption results in a convective flux which is inconsistent with the momentum and continuity equations for both systems. The approximation permits derivation of an analytical solution for the concentration profile in the Stefan tube, but there is no computational advantage in the case of the TDCC. Furthermore, the degree of supersaturation is a sensitive function of the concentration profile in the TD CC and the stagnant background gas approximation can make a dramatic difference in the calculated supersaturation. In this work, the equations typically used with a TDCC are compared with very general transport equations describing the 1-D diffusion of the volatile species. Whereas no pressure dependence is predicted with the typical equations, a strong pressure dependence is present with the more general equations given in this work. The predicted behavior is consistent with observations in diffusion cloud experiments. It appears that the new equations may account for much of the pressure dependence noted in TDCC experiments, but a comparison between the new equations and previously obtained experimental data are needed for verification.
Boundary particle method for Laplace transformed time fractional diffusion equations
NASA Astrophysics Data System (ADS)
Fu, Zhuo-Jia; Chen, Wen; Yang, Hai-Tian
2013-02-01
This paper develops a novel boundary meshless approach, Laplace transformed boundary particle method (LTBPM), for numerical modeling of time fractional diffusion equations. It implements Laplace transform technique to obtain the corresponding time-independent inhomogeneous equation in Laplace space and then employs a truly boundary-only meshless boundary particle method (BPM) to solve this Laplace-transformed problem. Unlike the other boundary discretization methods, the BPM does not require any inner nodes, since the recursive composite multiple reciprocity technique (RC-MRM) is used to convert the inhomogeneous problem into the higher-order homogeneous problem. Finally, the Stehfest numerical inverse Laplace transform (NILT) is implemented to retrieve the numerical solutions of time fractional diffusion equations from the corresponding BPM solutions. In comparison with finite difference discretization, the LTBPM introduces Laplace transform and Stehfest NILT algorithm to deal with time fractional derivative term, which evades costly convolution integral calculation in time fractional derivation approximation and avoids the effect of time step on numerical accuracy and stability. Consequently, it can effectively simulate long time-history fractional diffusion systems. Error analysis and numerical experiments demonstrate that the present LTBPM is highly accurate and computationally efficient for 2D and 3D time fractional diffusion equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Justin; Karra, Satish; Nakshatrala, Kalyana B.
It is well-known that the standard Galerkin formulation, which is often the formulation of choice under the finite element method for solving self-adjoint diffusion equations, does not meet maximum principles and the non-negative constraint for anisotropic diffusion equations. Recently, optimization-based methodologies that satisfy maximum principles and the non-negative constraint for steady-state and transient diffusion-type equations have been proposed. To date, these methodologies have been tested only on small-scale academic problems. The purpose of this paper is to systematically study the performance of the non-negative methodology in the context of high performance computing (HPC). PETSc and TAO libraries are, respectively, usedmore » for the parallel environment and optimization solvers. For large-scale problems, it is important for computational scientists to understand the computational performance of current algorithms available in these scientific libraries. The numerical experiments are conducted on the state-of-the-art HPC systems, and a single-core performance model is used to better characterize the efficiency of the solvers. Furthermore, our studies indicate that the proposed non-negative computational framework for diffusion-type equations exhibits excellent strong scaling for real-world large-scale problems.« less
Chang, Justin; Karra, Satish; Nakshatrala, Kalyana B.
2016-07-26
It is well-known that the standard Galerkin formulation, which is often the formulation of choice under the finite element method for solving self-adjoint diffusion equations, does not meet maximum principles and the non-negative constraint for anisotropic diffusion equations. Recently, optimization-based methodologies that satisfy maximum principles and the non-negative constraint for steady-state and transient diffusion-type equations have been proposed. To date, these methodologies have been tested only on small-scale academic problems. The purpose of this paper is to systematically study the performance of the non-negative methodology in the context of high performance computing (HPC). PETSc and TAO libraries are, respectively, usedmore » for the parallel environment and optimization solvers. For large-scale problems, it is important for computational scientists to understand the computational performance of current algorithms available in these scientific libraries. The numerical experiments are conducted on the state-of-the-art HPC systems, and a single-core performance model is used to better characterize the efficiency of the solvers. Furthermore, our studies indicate that the proposed non-negative computational framework for diffusion-type equations exhibits excellent strong scaling for real-world large-scale problems.« less
Ionic Channels as Natural Nanodevices
2006-05-01
introduce the numerical techniques required to simulate charge transport in ion channels. [1] Using Poisson- Nernst -Planck-type (PNP) equations ...Eisenberg. 2003. Ionic diffusion through protein channels: from molecular description to continuum equations . Nanotech 2003, 3: 439-442. 4...Nadler, B., Schuss, Z., Singer, A., and R. S. Eisenberg. 2004. Ionic diffusion through confined geometries: from Langevin equations to partial
Feynman-Kac equation for anomalous processes with space- and time-dependent forces
NASA Astrophysics Data System (ADS)
Cairoli, Andrea; Baule, Adrian
2017-04-01
Functionals of a stochastic process Y(t) model many physical time-extensive observables, for instance particle positions, local and occupation times or accumulated mechanical work. When Y(t) is a normal diffusive process, their statistics are obtained as the solution of the celebrated Feynman-Kac equation. This equation provides the crucial link between the expected values of diffusion processes and the solutions of deterministic second-order partial differential equations. When Y(t) is non-Brownian, e.g. an anomalous diffusive process, generalizations of the Feynman-Kac equation that incorporate power-law or more general waiting time distributions of the underlying random walk have recently been derived. A general representation of such waiting times is provided in terms of a Lévy process whose Laplace exponent is directly related to the memory kernel appearing in the generalized Feynman-Kac equation. The corresponding anomalous processes have been shown to capture nonlinear mean square displacements exhibiting crossovers between different scaling regimes, which have been observed in numerous experiments on biological systems like migrating cells or diffusing macromolecules in intracellular environments. However, the case where both space- and time-dependent forces drive the dynamics of the generalized anomalous process has not been solved yet. Here, we present the missing derivation of the Feynman-Kac equation in such general case by using the subordination technique. Furthermore, we discuss its extension to functionals explicitly depending on time, which are of particular relevance for the stochastic thermodynamics of anomalous diffusive systems. Exact results on the work fluctuations of a simple non-equilibrium model are obtained. An additional aim of this paper is to provide a pedagogical introduction to Lévy processes, semimartingales and their associated stochastic calculus, which underlie the mathematical formulation of anomalous diffusion as a subordinated process.
FDM study of ion exchange diffusion equation in glass
NASA Astrophysics Data System (ADS)
Zhou, Zigang; Yang, Yongjia; Wang, Qiang; Sun, Guangchun
2009-05-01
Ion-exchange technique in glass was developed to fabricate gradient refractive index optical devices. In this paper, the Finite Difference Method(FDM), which is used for the solution of ion-diffusion equation, is reported. This method transforms continual diffusion equation to separate difference equation. It unitizes the matrix of MATLAB program to solve the iteration process. The collation results under square boundary condition show that it gets a more accurate numerical solution. Compared to experiment data, the relative error is less than 0.2%. Furthermore, it has simply operation and kinds of output solutions. This method can provide better results for border-proliferation of the hexagonal and the channel devices too.
Gas-induced friction and diffusion of rigid rotors
NASA Astrophysics Data System (ADS)
Martinetz, Lukas; Hornberger, Klaus; Stickler, Benjamin A.
2018-05-01
We derive the Boltzmann equation for the rotranslational dynamics of an arbitrary convex rigid body in a rarefied gas. It yields as a limiting case the Fokker-Planck equation accounting for friction, diffusion, and nonconservative drift forces and torques. We provide the rotranslational friction and diffusion tensors for specular and diffuse reflection off particles with spherical, cylindrical, and cuboidal shape, and show that the theory describes thermalization, photophoresis, and the inverse Magnus effect in the free molecular regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghrayeb, S. Z.; Ouisloumen, M.; Ougouag, A. M.
2012-07-01
A multi-group formulation for the exact neutron elastic scattering kernel is developed. This formulation is intended for implementation into a lattice physics code. The correct accounting for the crystal lattice effects influences the estimated values for the probability of neutron absorption and scattering, which in turn affect the estimation of core reactivity and burnup characteristics. A computer program has been written to test the formulation for various nuclides. Results of the multi-group code have been verified against the correct analytic scattering kernel. In both cases neutrons were started at various energies and temperatures and the corresponding scattering kernels were tallied.more » (authors)« less
NASA Astrophysics Data System (ADS)
Hosseini, Kamyar; Mayeli, Peyman; Bekir, Ahmet; Guner, Ozkan
2018-01-01
In this article, a special type of fractional differential equations (FDEs) named the density-dependent conformable fractional diffusion-reaction (DDCFDR) equation is studied. Aforementioned equation has a significant role in the modelling of some phenomena arising in the applied science. The well-organized methods, including the \\exp (-φ (\\varepsilon )) -expansion and modified Kudryashov methods are exerted to generate the exact solutions of this equation such that some of the solutions are new and have been reported for the first time. Results illustrate that both methods have a great performance in handling the DDCFDR equation.
A Simple, Analytical Model of Collisionless Magnetic Reconnection in a Pair Plasma
NASA Technical Reports Server (NTRS)
Hesse, Michael; Zenitani, Seiji; Kuznetova, Masha; Klimas, Alex
2011-01-01
A set of conservation equations is utilized to derive balance equations in the reconnection diffusion region of a symmetric pair plasma. The reconnection electric field is assumed to have the function to maintain the current density in the diffusion region, and to impart thermal energy to the plasma by means of quasi-viscous dissipation. Using these assumptions it is possible to derive a simple set of equations for diffusion region parameters in dependence on inflow conditions and on plasma compressibility. These equations are solved by means of a simple, iterative, procedure. The solutions show expected features such as dominance of enthalpy flux in the reconnection outflow, as well as combination of adiabatic and quasi-viscous heating. Furthermore, the model predicts a maximum reconnection electric field of E(sup *)=0.4, normalized to the parameters at the inflow edge of the diffusion region.
A simple, analytical model of collisionless magnetic reconnection in a pair plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hesse, Michael; Zenitani, Seiji; Kuznetsova, Masha
2009-10-15
A set of conservation equations is utilized to derive balance equations in the reconnection diffusion region of a symmetric pair plasma. The reconnection electric field is assumed to have the function to maintain the current density in the diffusion region and to impart thermal energy to the plasma by means of quasiviscous dissipation. Using these assumptions it is possible to derive a simple set of equations for diffusion region parameters in dependence on inflow conditions and on plasma compressibility. These equations are solved by means of a simple, iterative procedure. The solutions show expected features such as dominance of enthalpymore » flux in the reconnection outflow, as well as combination of adiabatic and quasiviscous heating. Furthermore, the model predicts a maximum reconnection electric field of E{sup *}=0.4, normalized to the parameters at the inflow edge of the diffusion region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horsten, N., E-mail: niels.horsten@kuleuven.be; Baelmans, M.; Dekeyser, W.
2016-01-15
We derive fluid neutral approximations for a simplified 1D edge plasma model, suitable to study the neutral behavior close to the target of a nuclear fusion divertor, and compare its solutions to the solution of the corresponding kinetic Boltzmann equation. The plasma is considered as a fixed background extracted from a detached 2D simulation. We show that the Maxwellian equilibrium distribution is already obtained very close to the target, justifying the use of a fluid approximation. We compare three fluid neutral models: (i) a diffusion model; (ii) a pressure-diffusion model (i.e., a combination of a continuity and momentum equation) assumingmore » equal neutral and ion temperatures; and (iii) the pressure-diffusion model coupled to a neutral energy equation taking into account temperature differences between neutrals and ions. Partial reflection of neutrals reaching the boundaries is included in both the kinetic and fluid models. We propose two methods to obtain an incident neutral flux boundary condition for the fluid models: one based on a diffusion approximation and the other assuming a truncated Chapman-Enskog distribution. The pressure-diffusion model predicts the plasma sources very well. The diffusion boundary condition gives slightly better results overall. Although including an energy equation still improves the results, the assumption of equal ion and neutral temperature already gives a very good approximation.« less
Testing Measurement Invariance in the Target Rotated Multigroup Exploratory Factor Model
ERIC Educational Resources Information Center
Dolan, Conor V.; Oort, Frans J.; Stoel, Reinoud D.; Wicherts, Jelte M.
2009-01-01
We propose a method to investigate measurement invariance in the multigroup exploratory factor model, subject to target rotation. We consider both oblique and orthogonal target rotation. This method has clear advantages over other approaches, such as the use of congruence measures. We demonstrate that the model can be implemented readily in the…
NASA Astrophysics Data System (ADS)
Gandarias, M. L.; Medina, E.
Fourth-order nonlinear diffusion equations appear frequently in the description of physical processes, among these, the lubrication equation ut = (unuxxxx)x or the corresponding modified version ut = unuxxxx play an important role in the study of the interface movements. In this work we analyze the generalizations of the above equations given by ut = (f(u)uxxxx)x, ut = (f(u)uxxxx, and we find that if f(u) = un or f(u) = e-u the equations admit extra classical symmetries. The corresponding reductions are performed and some solutions are characterized.
Wave and pseudo-diffusion equations from squeezed states
NASA Technical Reports Server (NTRS)
Daboul, Jamil
1993-01-01
We show that the probability distributions P(sub n)(q,p;y) := the absolute value squared of (n(p,q;y), which are obtained from squeezed states, obey an interesting partial differential equation, to which we give two intuitive interpretations: as a wave equation in one space dimension; and as a pseudo-diffusion equation. We also study the corresponding Wehrl entropies S(sub n)(y), and we show that they have minima at zero squeezing, y = 0.
NASA Astrophysics Data System (ADS)
Hosseinirad, Mohammad; Abbassi, Shahram; Roshan, Mahmood; Naficy, Kazem
2018-04-01
Recent observations of the filamentary molecular clouds show that their properties deviate from the isothermal equation of state. Theoretical investigations proposed that the logatropic and the polytropic equations of state with negative indexes can provide a better description for these filamentary structures. Here, we aim to compare the effects of these softer non-isothermal equations of state with their isothermal counterpart on the global gravitational instability of a filamentary molecular cloud. By incorporating the ambipolar diffusion, we use the non-ideal magnetohydrodynamics framework for a filament that is threaded by a uniform axial magnetic field. We perturb the fluid and obtain the dispersion relation both for the logatropic and polytropic equations of state by taking the effects of magnetic field and ambipolar diffusion into account. Our results suggest that, in absence of the magnetic field, a softer equation of state makes the system more prone to gravitational instability. We also observed that a moderate magnetic field is able to enhance the stability of the filament in a way that is sensitive to the equation of state in general. However, when the magnetic field is strong, this effect is suppressed and all the equations of state have almost the same stability properties. Moreover, we find that for all the considered equations of state, the ambipolar diffusion has destabilizing effects on the filament.
Equivalence of Fluctuation Splitting and Finite Volume for One-Dimensional Gas Dynamics
NASA Technical Reports Server (NTRS)
Wood, William A.
1997-01-01
The equivalence of the discretized equations resulting from both fluctuation splitting and finite volume schemes is demonstrated in one dimension. Scalar equations are considered for advection, diffusion, and combined advection/diffusion. Analysis of systems is performed for the Euler and Navier-Stokes equations of gas dynamics. Non-uniform mesh-point distributions are included in the analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shemon, Emily R.; Smith, Micheal A.; Lee, Changho
2016-02-16
PROTEUS-SN is a three-dimensional, highly scalable, high-fidelity neutron transport code developed at Argonne National Laboratory. The code is applicable to all spectrum reactor transport calculations, particularly those in which a high degree of fidelity is needed either to represent spatial detail or to resolve solution gradients. PROTEUS-SN solves the second order formulation of the transport equation using the continuous Galerkin finite element method in space, the discrete ordinates approximation in angle, and the multigroup approximation in energy. PROTEUS-SN’s parallel methodology permits the efficient decomposition of the problem by both space and angle, permitting large problems to run efficiently on hundredsmore » of thousands of cores. PROTEUS-SN can also be used in serial or on smaller compute clusters (10’s to 100’s of cores) for smaller homogenized problems, although it is generally more computationally expensive than traditional homogenized methodology codes. PROTEUS-SN has been used to model partially homogenized systems, where regions of interest are represented explicitly and other regions are homogenized to reduce the problem size and required computational resources. PROTEUS-SN solves forward and adjoint eigenvalue problems and permits both neutron upscattering and downscattering. An adiabatic kinetics option has recently been included for performing simple time-dependent calculations in addition to standard steady state calculations. PROTEUS-SN handles void and reflective boundary conditions. Multigroup cross sections can be generated externally using the MC2-3 fast reactor multigroup cross section generation code or internally using the cross section application programming interface (API) which can treat the subgroup or resonance table libraries. PROTEUS-SN is written in Fortran 90 and also includes C preprocessor definitions. The code links against the PETSc, METIS, HDF5, and MPICH libraries. It optionally links against the MOAB library and is a part of the SHARP multi-physics suite for coupled multi-physics analysis of nuclear reactors. This user manual describes how to set up a neutron transport simulation with the PROTEUS-SN code. A companion methodology manual describes the theory and algorithms within PROTEUS-SN.« less
Strongly anomalous diffusion in sheared magnetic configurations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanden Eijnden, E.; Balescu, R.
1996-03-01
The statistical behavior of magnetic lines in a sheared magnetic configuration with reference surface {ital x}=0 is investigated within the framework of the kinetic theory. A Liouville equation is associated with the equations of motion of the stochastic magnetic lines. After averaging over an ensemble of realizations, it yields a convection-diffusion equation within the quasilinear approximation. The diffusion coefficients are space dependent and peaked around the reference surface {ital x}=0. Due to the shear, the diffusion of lines away from the reference surface is slowed down. The behavior of the lines is asymptotically strongly non-Gaussian. The reference surface acts likemore » an attractor around which the magnetic lines spread with an effective subdiffusive behavior. Comparison is also made with more usual treatments based on the study of the first two moments equations. For sheared systems, it is explicitly shown that the Corrsin approximation assumed in the latter approach is no longer valid. It is also concluded that the diffusion coefficients cannot be derived from the mean square displacement of the magnetic lines in an inhomogeneous medium. {copyright} {ital 1996 American Institute of Physics.}« less
Chatterjee, Abhijit; Vlachos, Dionisios G
2007-07-21
While recently derived continuum mesoscopic equations successfully bridge the gap between microscopic and macroscopic physics, so far they have been derived only for simple lattice models. In this paper, general deterministic continuum mesoscopic equations are derived rigorously via nonequilibrium statistical mechanics to account for multiple interacting surface species and multiple processes on multiple site types and/or different crystallographic planes. Adsorption, desorption, reaction, and surface diffusion are modeled. It is demonstrated that contrary to conventional phenomenological continuum models, microscopic physics, such as the interaction potential, determines the final form of the mesoscopic equation. Models of single component diffusion and binary diffusion of interacting particles on single-type site lattice and of single component diffusion on complex microporous materials' lattices consisting of two types of sites are derived, as illustrations of the mesoscopic framework. Simplification of the diffusion mesoscopic model illustrates the relation to phenomenological models, such as the Fickian and Maxwell-Stefan transport models. It is demonstrated that the mesoscopic equations are in good agreement with lattice kinetic Monte Carlo simulations for several prototype examples studied.
Finite Difference Formulation for Prediction of Water Pollution
NASA Astrophysics Data System (ADS)
Johari, Hanani; Rusli, Nursalasawati; Yahya, Zainab
2018-03-01
Water is an important component of the earth. Human being and living organisms are demand for the quality of water. Human activity is one of the causes of the water pollution. The pollution happened give bad effect to the physical and characteristic of water contents. It is not practical to monitor all aspects of water flow and transport distribution. So, in order to help people to access to the polluted area, a prediction of water pollution concentration must be modelled. This study proposed a one-dimensional advection diffusion equation for predicting the water pollution concentration transport. The numerical modelling will be produced in order to predict the transportation of water pollution concentration. In order to approximate the advection diffusion equation, the implicit Crank Nicolson is used. For the purpose of the simulation, the boundary condition and initial condition, the spatial steps and time steps as well as the approximations of the advection diffusion equation have been encoded. The results of one dimensional advection diffusion equation have successfully been used to predict the transportation of water pollution concentration by manipulating the velocity and diffusion parameters.
Lau, Ying; Htun, Tha Pyai; Lim, Peng Im; Ho-Lim, Sarah Su Tin; Chi, Claudia; Tsai, Cammy; Ong, Kai Wen; Klainin-Yobas, Piyanee
2017-02-01
Identifying the factors influencing breastfeeding attitude is significant for the implementation of effective promotion policies and counselling activities. To our best knowledge, no previous studies have modelled the relationships among breastfeeding attitude, health-related quality of life and maternal obesity among multi-ethnic pregnant women; the current study attempts to fill this research gap. This study investigated the relationships among maternal characteristics, health-related quality of life and breastfeeding attitude amidst normal weight and overweight/obese pregnant women using a multi-group structural equation modelling approach. Exploratory cross-sectional design was used. Antenatal clinics of a university-affiliated hospital PARTICIPANTS: Pregnant women were invited to participate; 708 (78.8%) agreed to participate in the study. We examined a hypothetical model on the basis of integrating the concepts of a breastfeeding decision-making model, theory of planned behaviour-based model for breastfeeding and health-related quality of life model among 708 multi-ethnic pregnant women in Singapore. The Iowa Infant Feeding Attitude Scale and Medical Outcomes Study Short Form Health Survey were used to measure breastfeeding attitude and health-related quality of life, respectively. Two structural equation models demonstrated that better health-related quality of life, higher monthly household income, planned pregnancy and previous exclusive breastfeeding experience were significantly associated with positive breastfeeding attitude among normal and overweight/obese pregnant women. Among normal weight pregnant women, those who were older with higher educational level were more likely to have positive breastfeeding attitude. Among overweight/obese pregnant women, Chinese women with confinement nanny plan were less likely to have positive breastfeeding attitude. No significant difference existed between normal weight and overweight/obese pregnant women concerning estimates of health-related quality of life on breastfeeding attitude (Critical Ratio=-0.193). The model satisfactorily fitted the data (Incremental Fit Index=0.924, Tucker-Lewis Index=0.905, Comparative Fit Index=0.921 and Root Means Square Error of Approximation=0.025). Health-related quality of life was found to affect breastfeeding attitude in multi-ethnic pregnant women. This relationship implied the importance of early culturally specific interventions to enhance health-related quality of life for improving positive breastfeeding attitude among pregnant women across different ethnic groups. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mathematical analysis of thermal diffusion shock waves
NASA Astrophysics Data System (ADS)
Gusev, Vitalyi; Craig, Walter; Livoti, Roberto; Danworaphong, Sorasak; Diebold, Gerald J.
2005-10-01
Thermal diffusion, also known as the Ludwig-Soret effect, refers to the separation of mixtures in a temperature gradient. For a binary mixture the time dependence of the change in concentration of each species is governed by a nonlinear partial differential equation in space and time. Here, an exact solution of the Ludwig-Soret equation without mass diffusion for a sinusoidal temperature field is given. The solution shows that counterpropagating shock waves are produced which slow and eventually come to a halt. Expressions are found for the shock time for two limiting values of the starting density fraction. The effects of diffusion on the development of the concentration profile in time and space are found by numerical integration of the nonlinear differential equation.
Solution of a cauchy problem for a diffusion equation in a Hilbert space by a Feynman formula
NASA Astrophysics Data System (ADS)
Remizov, I. D.
2012-07-01
The Cauchy problem for a class of diffusion equations in a Hilbert space is studied. It is proved that the Cauchy problem in well posed in the class of uniform limits of infinitely smooth bounded cylindrical functions on the Hilbert space, and the solution is presented in the form of the so-called Feynman formula, i.e., a limit of multiple integrals against a gaussian measure as the multiplicity tends to infinity. It is also proved that the solution of the Cauchy problem depends continuously on the diffusion coefficient. A process reducing an approximate solution of an infinite-dimensional diffusion equation to finding a multiple integral of a real function of finitely many real variables is indicated.
Modeling boundary measurements of scattered light using the corrected diffusion approximation
Lehtikangas, Ossi; Tarvainen, Tanja; Kim, Arnold D.
2012-01-01
We study the modeling and simulation of steady-state measurements of light scattered by a turbid medium taken at the boundary. In particular, we implement the recently introduced corrected diffusion approximation in two spatial dimensions to model these boundary measurements. This implementation uses expansions in plane wave solutions to compute boundary conditions and the additive boundary layer correction, and a finite element method to solve the diffusion equation. We show that this corrected diffusion approximation models boundary measurements substantially better than the standard diffusion approximation in comparison to numerical solutions of the radiative transport equation. PMID:22435102
Optical Oversampled Analog-to-Digital Conversion
1992-06-29
hologram weights and interconnects in the digital image halftoning configuration. First, no temporal error diffusion occurs in the digital image... halftoning error diffusion ar- chitecture as demonstrated by Equation (6.1). Equation (6.2) ensures that the hologram weights sum to one so that the exact...optimum halftone image should be faster. Similarly, decreased convergence time suggests that an error diffusion filter with larger spatial dimensions
Modelling the radiotherapy effect in the reaction-diffusion equation.
Borasi, Giovanni; Nahum, Alan
2016-09-01
In recent years, the reaction-diffusion (Fisher-Kolmogorov) equation has received much attention from the oncology research community due to its ability to describe the infiltrating nature of glioblastoma multiforme and its extraordinary resistance to any type of therapy. However, in a number of previous papers in the literature on applications of this equation, the term (R) expressing the 'External Radiotherapy effect' was incorrectly derived. In this note we derive an analytical expression for this term in the correct form to be included in the reaction-diffusion equation. The R term has been derived starting from the Linear-Quadratic theory of cell killing by ionizing radiation. The correct definition of R was adopted and the basic principles of differential calculus applied. The compatibility of the R term derived here with the reaction-diffusion equation was demonstrated. Referring to a typical glioblastoma tumour, we have compared the results obtained using our expression for the R term with the 'incorrect' expression proposed by other authors. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION.
Liu, F; Meerschaert, M M; McGough, R J; Zhuang, P; Liu, Q
2013-03-01
In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian.
NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION
Liu, F.; Meerschaert, M.M.; McGough, R.J.; Zhuang, P.; Liu, Q.
2013-01-01
In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian. PMID:23772179
Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations
NASA Astrophysics Data System (ADS)
Indekeu, Joseph O.; Smets, Ruben
2017-08-01
Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically.
Traveling wave solutions to a reaction-diffusion equation
NASA Astrophysics Data System (ADS)
Feng, Zhaosheng; Zheng, Shenzhou; Gao, David Y.
2009-07-01
In this paper, we restrict our attention to traveling wave solutions of a reaction-diffusion equation. Firstly we apply the Divisor Theorem for two variables in the complex domain, which is based on the ring theory of commutative algebra, to find a quasi-polynomial first integral of an explicit form to an equivalent autonomous system. Then through this first integral, we reduce the reaction-diffusion equation to a first-order integrable ordinary differential equation, and a class of traveling wave solutions is obtained accordingly. Comparisons with the existing results in the literature are also provided, which indicates that some analytical results in the literature contain errors. We clarify the errors and instead give a refined result in a simple and straightforward manner.
Nature of self-diffusion in two-dimensional fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Bongsik; Han, Kyeong Hwan; Kim, Changho
Self-diffusion in a two-dimensional simple fluid is investigated by both analytical and numerical means. We investigate the anomalous aspects of self-diffusion in two-dimensional fluids with regards to the mean square displacement, the time-dependent diffusion coefficient, and the velocity autocorrelation function (VACF) using a consistency equation relating these quantities. Here, we numerically confirm the consistency equation by extensive molecular dynamics simulations for finite systems, corroborate earlier results indicating that the kinematic viscosity approaches a finite, non-vanishing value in the thermodynamic limit, and establish the finite size behavior of the diffusion coefficient. We obtain the exact solution of the consistency equation in the thermodynamic limit and use this solution to determine the large time asymptotics of the mean square displacement, the diffusion coefficient, and the VACF. An asymptotic decay law of the VACF resembles the previously known self-consistent form, 1/(more » $$t\\sqrt{In t)}$$ however with a rescaled time.« less
Nature of self-diffusion in two-dimensional fluids
Choi, Bongsik; Han, Kyeong Hwan; Kim, Changho; ...
2017-12-18
Self-diffusion in a two-dimensional simple fluid is investigated by both analytical and numerical means. We investigate the anomalous aspects of self-diffusion in two-dimensional fluids with regards to the mean square displacement, the time-dependent diffusion coefficient, and the velocity autocorrelation function (VACF) using a consistency equation relating these quantities. Here, we numerically confirm the consistency equation by extensive molecular dynamics simulations for finite systems, corroborate earlier results indicating that the kinematic viscosity approaches a finite, non-vanishing value in the thermodynamic limit, and establish the finite size behavior of the diffusion coefficient. We obtain the exact solution of the consistency equation in the thermodynamic limit and use this solution to determine the large time asymptotics of the mean square displacement, the diffusion coefficient, and the VACF. An asymptotic decay law of the VACF resembles the previously known self-consistent form, 1/(more » $$t\\sqrt{In t)}$$ however with a rescaled time.« less
NASA Astrophysics Data System (ADS)
Xia, Ya-Rong; Zhang, Shun-Li; Xin, Xiang-Peng
2018-03-01
In this paper, we propose the concept of the perturbed invariant subspaces (PISs), and study the approximate generalized functional variable separation solution for the nonlinear diffusion-convection equation with weak source by the approximate generalized conditional symmetries (AGCSs) related to the PISs. Complete classification of the perturbed equations which admit the approximate generalized functional separable solutions (AGFSSs) is obtained. As a consequence, some AGFSSs to the resulting equations are explicitly constructed by way of examples.
Testing for Two-Way Interactions in the Multigroup Common Factor Model
ERIC Educational Resources Information Center
van Smeden, Maarten; Hessen, David J.
2013-01-01
In this article, a 2-way multigroup common factor model (MG-CFM) is presented. The MG-CFM can be used to estimate interaction effects between 2 grouping variables on 1 or more hypothesized latent variables. For testing the significance of such interactions, a likelihood ratio test is presented. In a simulation study, the robustness of the…
ERIC Educational Resources Information Center
Brown, Gavin T. L.; Harris, Lois R.; O'Quin, Chrissie; Lane, Kenneth E.
2017-01-01
Multi-group confirmatory factor analysis (MGCFA) allows researchers to determine whether a research inventory elicits similar response patterns across samples. If statistical equivalence in responding is found, then scale score comparisons become possible and samples can be said to be from the same population. This paper illustrates the use of…
The Problem of Convergence and Commitment in Multigroup Evaluation Planning.
ERIC Educational Resources Information Center
Hausken, Chester A.
This paper outlines a model for multigroup evaluation planning in a rural-education setting wherein the commitment to the structure necessary to evaluate a program is needed on the part of a research and development laboratory, the state departments of education, county supervisors, and the rural schools. To bridge the gap between basic research,…
den Brok, Perry; van Tartwijk, Jan; Wubbels, Theo; Veldman, Ietje
2010-06-01
The differential effectiveness of schools and teachers receives a growing interest, but few studies focused on the relevance of student ethnicity for this effectiveness and only a small number of these studies investigated teaching in terms of the teacher-student interpersonal relationship. Furthermore, the methodology employed often restricted researchers to investigating direct effects between variables across large samples of students. This study uses causal modelling to investigate associations between student background characteristics, students' perceptions of the teacher-student interpersonal relationship, and student outcomes, across and within several population subgroups in Dutch secondary multi-ethnic classes. Multi-group structural equation modelling was used to investigate causal paths between variables in four ethnic groups: Dutch (N=387), Turkish first- and second-generation immigrant students (N=267), Moroccan first and second generation (N=364), and Surinamese second-generation students (N=101). Different structural paths were necessary to explain associations between variables in the different (sub) groups. Different amounts of variance in student attitudes could be explained by these variables. The teacher-student interpersonal relationship is more important for students with a non-Dutch background than for students with a Dutch background. Results suggest that the teacher-student relationship is more important for second generation than for first-generation immigrant students. Multi-group causal model analyses can provide a better, more differentiated picture of the associations between student background variables, teacher behaviour, and student outcomes than do more traditional types of analyses.
Ahn, Hyun Seon; Usher, Ellen L; Butz, Amanda; Bong, Mimi
2016-03-01
The potential role of culture in the development and operation of self-efficacy has been acknowledged by researchers. Clearer understanding of this cultural impact will benefit from research that shows how the same efficacy information is evaluated across cultures. We tested whether two sources of self-efficacy information delivered by multiple social agents (i.e., vicarious experience and social persuasion) were weighed differently by adolescents in different cultures. Of 2,893 middle school students in Korea (n = 416), the Philippines (n = 522), and the United States (n = 1,955) who completed the survey, 400 students were randomly pooled from each country. Invariance of the measurement and of the latent means for self-efficacy and self-efficacy sources across the groups was tested by multigroup confirmatory factor analysis. Predictive utility of the self-efficacy sources was compared by multigroup structural equation modelling. Compared to the students in the two collectivistic countries, the US students reported significantly higher mathematics self-efficacy. Whereas the efficacy beliefs of the Korean and the US students were predicted equally well by the vicarious experience from their teachers and the social persuasion by their family and peers, those of the Filipino adolescents were best predicted by the social persuasion from their peers. This study provided empirical evidence that socially conveyed sources of self-efficacy information are construed and evaluated differently across cultures, depending on who delivered the efficacy-relevant information. © 2015 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Bremmer, Rolf H.; van Gemert, Martin J. C.; Faber, Dirk J.; van Leeuwen, Ton G.; Aalders, Maurice C. G.
2013-08-01
Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20 m at reduced scattering coefficients of 1 and 11.5 mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt.
Diffusion in random networks: Asymptotic properties, and numerical and engineering approximations
NASA Astrophysics Data System (ADS)
Padrino, Juan C.; Zhang, Duan Z.
2016-11-01
The ensemble phase averaging technique is applied to model mass transport by diffusion in random networks. The system consists of an ensemble of random networks, where each network is made of a set of pockets connected by tortuous channels. Inside a channel, we assume that fluid transport is governed by the one-dimensional diffusion equation. Mass balance leads to an integro-differential equation for the pores mass density. The so-called dual porosity model is found to be equivalent to the leading order approximation of the integration kernel when the diffusion time scale inside the channels is small compared to the macroscopic time scale. As a test problem, we consider the one-dimensional mass diffusion in a semi-infinite domain, whose solution is sought numerically. Because of the required time to establish the linear concentration profile inside a channel, for early times the similarity variable is xt- 1 / 4 rather than xt- 1 / 2 as in the traditional theory. This early time sub-diffusive similarity can be explained by random walk theory through the network. In addition, by applying concepts of fractional calculus, we show that, for small time, the governing equation reduces to a fractional diffusion equation with known solution. We recast this solution in terms of special functions easier to compute. Comparison of the numerical and exact solutions shows excellent agreement.
On solutions of the fifth-order dispersive equations with porous medium type non-linearity
NASA Astrophysics Data System (ADS)
Kocak, Huseyin; Pinar, Zehra
2018-07-01
In this work, we focus on obtaining the exact solutions of the fifth-order semi-linear and non-linear dispersive partial differential equations, which have the second-order diffusion-like (porous-type) non-linearity. The proposed equations were not studied in the literature in the sense of the exact solutions. We reveal solutions of the proposed equations using the classical Riccati equations method. The obtained exact solutions, which can play a key role to simulate non-linear waves in the medium with dispersion and diffusion, are illustrated and discussed in details.
Is the kinetic equation for turbulent gas-particle flows ill posed?
Reeks, M; Swailes, D C; Bragg, A D
2018-02-01
This paper is about the kinetic equation for gas-particle flows, in particular its well-posedness and realizability and its relationship to the generalized Langevin model (GLM) probability density function (PDF) equation. Previous analyses, e.g. [J.-P. Minier and C. Profeta, Phys. Rev. E 92, 053020 (2015)PLEEE81539-375510.1103/PhysRevE.92.053020], have concluded that this kinetic equation is ill posed, that in particular it has the properties of a backward heat equation, and as a consequence, its solution will in the course of time exhibit finite-time singularities. We show that this conclusion is fundamentally flawed because it ignores the coupling between the phase space variables in the kinetic equation and the time and particle inertia dependence of the phase space diffusion tensor. This contributes an extra positive diffusion that always outweighs the negative diffusion associated with the dispersion along one of the principal axes of the phase space diffusion tensor. This is confirmed by a numerical evaluation of analytic solutions of these positive and negative contributions to the particle diffusion coefficient along this principal axis. We also examine other erroneous claims and assumptions made in previous studies that demonstrate the apparent superiority of the GLM PDF approach over the kinetic approach. In so doing, we have drawn attention to the limitations of the GLM approach, which these studies have ignored or not properly considered, to give a more balanced appraisal of the benefits of both PDF approaches.
Void Formation during Diffusion - Two-Dimensional Approach
NASA Astrophysics Data System (ADS)
Wierzba, Bartek
2016-06-01
The final set of equations defining the interdiffusion process in solid state is presented. The model is supplemented by vacancy evolution equation. The competition between the Kirkendall shift, backstress effect and vacancy migration is considered. The proper diffusion flux based on the Nernst-Planck formula is proposed. As a result, the comparison of the experimental and calculated evolution of the void formation in the Fe-Pd diffusion couple is shown.
New Solution of Diffusion-Advection Equation for Cosmic-Ray Transport Using Ultradistributions
NASA Astrophysics Data System (ADS)
Rocca, M. C.; Plastino, A. R.; Plastino, A.; Ferri, G. L.; de Paoli, A.
2015-11-01
In this paper we exactly solve the diffusion-advection equation (DAE) for cosmic-ray transport. For such a purpose we use the Theory of Ultradistributions of J. Sebastiao e Silva, to give a general solution for the DAE. From the ensuing solution, we obtain several approximations as limiting cases of various situations of physical and astrophysical interest. One of them involves Solar cosmic-rays' diffusion.
A Least-Squares Transport Equation Compatible with Voids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Jon; Peterson, Jacob; Morel, Jim
Standard second-order self-adjoint forms of the transport equation, such as the even-parity, odd-parity, and self-adjoint angular flux equation, cannot be used in voids. Perhaps more important, they experience numerical convergence difficulties in near-voids. Here we present a new form of a second-order self-adjoint transport equation that has an advantage relative to standard forms in that it can be used in voids or near-voids. Our equation is closely related to the standard least-squares form of the transport equation with both equations being applicable in a void and having a nonconservative analytic form. However, unlike the standard least-squares form of the transportmore » equation, our least-squares equation is compatible with source iteration. It has been found that the standard least-squares form of the transport equation with a linear-continuous finite-element spatial discretization has difficulty in the thick diffusion limit. Here we extensively test the 1D slab-geometry version of our scheme with respect to void solutions, spatial convergence rate, and the intermediate and thick diffusion limits. We also define an effective diffusion synthetic acceleration scheme for our discretization. Our conclusion is that our least-squares S n formulation represents an excellent alternative to existing second-order S n transport formulations« less
NASA Astrophysics Data System (ADS)
Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman
2017-07-01
This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.
NASA Technical Reports Server (NTRS)
Karimbadi, H.; Krauss-Varban, D.
1992-01-01
A novel diffusion formalism that takes into account the finite width of resonances is presented. The resonance diagram technique is shown to reproduce the details of the particle orbits very accurately, and can be used to determine the acceleration/scattering in the presence of a given wave spectrum. Ways in which the nonlinear orbits can be incorporated into the diffusion equation are shown. The resulting diffusion equation is an extension of the Q-L theory to cases where the waves have large amplitudes and/or are coherent. This new equation does not have a gap at 90 deg in cases where the individual orbits can cross the gap. The conditions under which the resonance gap at 90-deg pitch angle exits are also examined.
Finite-volume scheme for anisotropic diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Es, Bram van, E-mail: bramiozo@gmail.com; FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands"1; Koren, Barry
In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.
NASA Astrophysics Data System (ADS)
Ancey, C.; Bohorquez, P.; Heyman, J.
2015-12-01
The advection-diffusion equation is one of the most widespread equations in physics. It arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Phenomenological laws are usually sufficient to derive this equation and interpret its terms. Stochastic models can also be used to derive it, with the significant advantage that they provide information on the statistical properties of particle activity. These models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. Among these stochastic models, the most common approach consists of random walk models. For instance, they have been used to model the random displacement of tracers in rivers. Here we explore an alternative approach, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. Birth-death Markov processes are well suited to this objective. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received no attention. We therefore look into the possibility of deriving the advection-diffusion equation (with a source term) within the framework of birth-death Markov processes. We show that in the continuum limit (when the cell size becomes vanishingly small), we can derive an advection-diffusion equation for particle activity. Yet while this derivation is formally valid in the continuum limit, it runs into difficulty in practical applications involving cells or meshes of finite length. Indeed, within our stochastic framework, particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due to velocity fluctuations), with the important consequence that local measurements depend on both the intrinsic properties of particle displacement and the dimensions of the measurement system.
NASA Astrophysics Data System (ADS)
Luce, C.; Tonina, D.; Gariglio, F. P.; Applebee, R.
2012-12-01
Differences in the diurnal variations of temperature at different depths in streambed sediments are commonly used for estimating vertical fluxes of water in the streambed. We applied spatial and temporal rescaling of the advection-diffusion equation to derive two new relationships that greatly extend the kinds of information that can be derived from streambed temperature measurements. The first equation provides a direct estimate of the Peclet number from the amplitude decay and phase delay information. The analytical equation is explicit (e.g. no numerical root-finding is necessary), and invertable. The thermal front velocity can be estimated from the Peclet number when the thermal diffusivity is known. The second equation allows for an independent estimate of the thermal diffusivity directly from the amplitude decay and phase delay information. Several improvements are available with the new information. The first equation uses a ratio of the amplitude decay and phase delay information; thus Peclet number calculations are independent of depth. The explicit form also makes it somewhat faster and easier to calculate estimates from a large number of sensors or multiple positions along one sensor. Where current practice requires a priori estimation of streambed thermal diffusivity, the new approach allows an independent calculation, improving precision of estimates. Furthermore, when many measurements are made over space and time, expectations of the spatial correlation and temporal invariance of thermal diffusivity are valuable for validation of measurements. Finally, the closed-form explicit solution allows for direct calculation of propagation of uncertainties in error measurements and parameter estimates, providing insight about error expectations for sensors placed at different depths in different environments as a function of surface temperature variation amplitudes. The improvements are expected to increase the utility of temperature measurement methods for studying groundwater-surface water interactions across space and time scales. We discuss the theoretical implications of the new solutions supported by examples with data for illustration and validation.
The dynamics of oceanic fronts. I - The Gulf Stream
NASA Technical Reports Server (NTRS)
Kao, T. W.
1980-01-01
The establishment and maintenance of the mean hydrographic properties of large-scale density fronts in the upper ocean is considered. The dynamics is studied by posing an initial value problem starting with a near-surface discharge of buoyant water with a prescribed density deficit into an ambient stationary fluid of uniform density; full time dependent diffusion and Navier-Stokes equations are then used with constant eddy diffusion and viscosity coefficients, together with a constant Coriolis parameter. Scaling analysis reveals three independent scales of the problem including the radius of deformation of the inertial length, buoyancy length, and diffusive length scales. The governing equations are then suitably scaled and the resulting normalized equations are shown to depend on the Ekman number alone for problems of oceanic interest. It is concluded that the mean Gulf Stream dynamics can be interpreted in terms of a solution of the Navier-Stokes and diffusion equations, with the cross-stream circulation responsible for the maintenance of the front; this mechanism is suggested for the maintenance of the Gulf Stream dynamics.
1979-02-01
coefficient (at equilibrium) when hysteresis is apparent. 6. Coefficient n in Freundlich equation for 1/n soil or sediment adsorption isotherms ýX - KC . 7...Biodegradation Chemical structures cal clasaes (e.g., Diffusion Correlations phenols). General Diffusion coefficients Equations terms for organic...OF THE FATE AND TRANSPORT OF ORGANIC CHEMICALS Adsorption coefficients: K, n* from Freundlich equation + Desorption coefficients: K’*, n’* from
Reactive-Diffusive-Advective Traveling Waves in a Family of Degenerate Nonlinear Equations.
Sánchez-Garduño, Faustino; Pérez-Velázquez, Judith
This paper deals with the analysis of existence of traveling wave solutions (TWS) for a diffusion-degenerate (at D (0) = 0) and advection-degenerate (at h '(0) = 0) reaction-diffusion-advection (RDA) equation. Diffusion is a strictly increasing function and the reaction term generalizes the kinetic part of the Fisher-KPP equation. We consider different forms of the convection term h ( u ): (1) h '( u ) is constant k , (2) h '( u ) = ku with k > 0, and (3) it is a quite general form which guarantees the degeneracy in the advective term. In Case 1, we prove that the task can be reduced to that for the corresponding equation, where k = 0, and then previous results reported from the authors can be extended. For the other two cases, we use both analytical and numerical tools. The analysis we carried out is based on the restatement of searching TWS for the full RDA equation into a two-dimensional dynamical problem. This consists of searching for the conditions on the parameter values for which there exist heteroclinic trajectories of the ordinary differential equations (ODE) system in the traveling wave coordinates. Throughout the paper we obtain the dynamics by using tools coming from qualitative theory of ODE.
Reactive-Diffusive-Advective Traveling Waves in a Family of Degenerate Nonlinear Equations
Sánchez-Garduño, Faustino
2016-01-01
This paper deals with the analysis of existence of traveling wave solutions (TWS) for a diffusion-degenerate (at D(0) = 0) and advection-degenerate (at h′(0) = 0) reaction-diffusion-advection (RDA) equation. Diffusion is a strictly increasing function and the reaction term generalizes the kinetic part of the Fisher-KPP equation. We consider different forms of the convection term h(u): (1) h′(u) is constant k, (2) h′(u) = ku with k > 0, and (3) it is a quite general form which guarantees the degeneracy in the advective term. In Case 1, we prove that the task can be reduced to that for the corresponding equation, where k = 0, and then previous results reported from the authors can be extended. For the other two cases, we use both analytical and numerical tools. The analysis we carried out is based on the restatement of searching TWS for the full RDA equation into a two-dimensional dynamical problem. This consists of searching for the conditions on the parameter values for which there exist heteroclinic trajectories of the ordinary differential equations (ODE) system in the traveling wave coordinates. Throughout the paper we obtain the dynamics by using tools coming from qualitative theory of ODE. PMID:27689131
ERIC Educational Resources Information Center
Sideridis, Georgios D.; Tsaousis, Ioannis; Al-harbi, Khaleel A.
2015-01-01
The purpose of the present study was to extend the model of measurement invariance by simultaneously estimating invariance across multiple populations in the dichotomous instrument case using multi-group confirmatory factor analytic and multiple indicator multiple causes (MIMIC) methodologies. Using the Arabic version of the General Aptitude Test…
Nonlocal electrical diffusion equation
NASA Astrophysics Data System (ADS)
Gómez-Aguilar, J. F.; Escobar-Jiménez, R. F.; Olivares-Peregrino, V. H.; Benavides-Cruz, M.; Calderón-Ramón, C.
2016-07-01
In this paper, we present an analysis and modeling of the electrical diffusion equation using the fractional calculus approach. This alternative representation for the current density is expressed in terms of the Caputo derivatives, the order for the space domain is 0<β≤1 and for the time domain is 0<γ≤2. We present solutions for the full fractional equation involving space and time fractional derivatives using numerical methods based on Fourier variable separation. The case with spatial fractional derivatives leads to Levy flight type phenomena, while the time fractional equation is related to sub- or super diffusion. We show that the mathematical concept of fractional derivatives can be useful to understand the behavior of semiconductors, the design of solar panels, electrochemical phenomena and the description of anomalous complex processes.
NASA Astrophysics Data System (ADS)
Jain, Sonal
2018-01-01
In this paper, we aim to use the alternative numerical scheme given by Gnitchogna and Atangana for solving partial differential equations with integer and non-integer differential operators. We applied this method to fractional diffusion model and fractional Buckmaster models with non-local fading memory. The method yields a powerful numerical algorithm for fractional order derivative to implement. Also we present in detail the stability analysis of the numerical method for solving the diffusion equation. This proof shows that this method is very stable and also converges very quickly to exact solution and finally some numerical simulation is presented.
Biswas, Samir Kumar; Kanhirodan, Rajan; Vasu, Ram Mohan; Roy, Debasish
2011-08-01
We explore a pseudodynamic form of the quadratic parameter update equation for diffuse optical tomographic reconstruction from noisy data. A few explicit and implicit strategies for obtaining the parameter updates via a semianalytical integration of the pseudodynamic equations are proposed. Despite the ill-posedness of the inverse problem associated with diffuse optical tomography, adoption of the quadratic update scheme combined with the pseudotime integration appears not only to yield higher convergence, but also a muted sensitivity to the regularization parameters, which include the pseudotime step size for integration. These observations are validated through reconstructions with both numerically generated and experimentally acquired data.
The diffusion approximation. An application to radiative transfer in clouds
NASA Technical Reports Server (NTRS)
Arduini, R. F.; Barkstrom, B. R.
1976-01-01
It is shown how the radiative transfer equation reduces to the diffusion equation. To keep the mathematics as simple as possible, the approximation is applied to a cylindrical cloud of radius R and height h. The diffusion equation separates in cylindrical coordinates and, in a sample calculation, the solution is evaluated for a range of cloud radii with cloud heights of 0.5 km and 1.0 km. The simplicity of the method and the speed with which solutions are obtained give it potential as a tool with which to study the effects of finite-sized clouds on the albedo of the earth-atmosphere system.
Homma, Yuko; Zumbo, Bruno D.; Saewyc, Elizabeth M.; Wong, Sabrina T.
2016-01-01
We examined the psychometric properties of scores on a 6-item version of the Multigroup Ethnic Identity Measure (MEIM) among East Asian adolescents in Canada. A series of confirmatory factor analysis (CFA) was conducted for 4,190 East Asians who completed a provincial survey of students in grades 7 to 12. The MEIM measured highly correlated dimensions of ethnic identity (exploration and commitment). Further, multi-group CFA indicated that the scale measured the same constructs on the same metric across three age groups and across four groups with varying degrees of exposure to Canadian and East Asian cultures. The findings suggest the short version of the MEIM can be used to compare levels of ethnic identity across different age or acculturation groups. PMID:27833471
Olson, Gordon Lee
2016-12-06
Here, gray and multigroup radiation is transported through 3D media consisting of spheres randomly placed in a uniform background. Comparisons are made between using constant radii spheres and three different distributions of sphere radii. Because of the computational cost of 3D calculations, only the lowest angle order, n=1, is tested. If the mean chord length is held constant, using different radii distributions makes little difference. This is true for both gray and multigroup solutions. 3D transport solutions are compared to 2D and 1D solutions with the same mean chord lengths. 2D disk and 3D sphere media give solutions that aremore » nearly identical while 1D slab solutions are fundamentally different.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, Gordon Lee
Here, gray and multigroup radiation is transported through 3D media consisting of spheres randomly placed in a uniform background. Comparisons are made between using constant radii spheres and three different distributions of sphere radii. Because of the computational cost of 3D calculations, only the lowest angle order, n=1, is tested. If the mean chord length is held constant, using different radii distributions makes little difference. This is true for both gray and multigroup solutions. 3D transport solutions are compared to 2D and 1D solutions with the same mean chord lengths. 2D disk and 3D sphere media give solutions that aremore » nearly identical while 1D slab solutions are fundamentally different.« less
On Entropy Production in the Madelung Fluid and the Role of Bohm's Potential in Classical Diffusion
NASA Astrophysics Data System (ADS)
Heifetz, Eyal; Tsekov, Roumen; Cohen, Eliahu; Nussinov, Zohar
2016-07-01
The Madelung equations map the non-relativistic time-dependent Schrödinger equation into hydrodynamic equations of a virtual fluid. While the von Neumann entropy remains constant, we demonstrate that an increase of the Shannon entropy, associated with this Madelung fluid, is proportional to the expectation value of its velocity divergence. Hence, the Shannon entropy may grow (or decrease) due to an expansion (or compression) of the Madelung fluid. These effects result from the interference between solutions of the Schrödinger equation. Growth of the Shannon entropy due to expansion is common in diffusive processes. However, in the latter the process is irreversible while the processes in the Madelung fluid are always reversible. The relations between interference, compressibility and variation of the Shannon entropy are then examined in several simple examples. Furthermore, we demonstrate that for classical diffusive processes, the "force" accelerating diffusion has the form of the positive gradient of the quantum Bohm potential. Expressing then the diffusion coefficient in terms of the Planck constant reveals the lower bound given by the Heisenberg uncertainty principle in terms of the product between the gas mean free path and the Brownian momentum.
Building 1D resonance broadened quasilinear (RBQ) code for fast ions Alfvénic relaxations
NASA Astrophysics Data System (ADS)
Gorelenkov, Nikolai; Duarte, Vinicius; Berk, Herbert
2016-10-01
The performance of the burning plasma is limited by the confinement of superalfvenic fusion products, e.g. alpha particles, which are capable of resonating with the Alfvénic eigenmodes (AEs). The effect of AEs on fast ions is evaluated using a resonance line broadened diffusion coefficient. The interaction of fast ions and AEs is captured for cases where there are either isolated or overlapping modes. A new code RBQ1D is being built which constructs diffusion coefficients based on realistic eigenfunctions that are determined by the ideal MHD code NOVA. The wave particle interaction can be reduced to one-dimensional dynamics where for the Alfvénic modes typically the particle kinetic energy is nearly constant. Hence to a good approximation the Quasi-Linear (QL) diffusion equation only contains derivatives in the angular momentum. The diffusion equation is then one dimensional that is efficiently solved simultaneously for all particles with the equation for the evolution of the wave angular momentum. The evolution of fast ion constants of motion is governed by the QL diffusion equations which are adapted to find the ion distribution function.
NASA Astrophysics Data System (ADS)
Agarwal, P.; El-Sayed, A. A.
2018-06-01
In this paper, a new numerical technique for solving the fractional order diffusion equation is introduced. This technique basically depends on the Non-Standard finite difference method (NSFD) and Chebyshev collocation method, where the fractional derivatives are described in terms of the Caputo sense. The Chebyshev collocation method with the (NSFD) method is used to convert the problem into a system of algebraic equations. These equations solved numerically using Newton's iteration method. The applicability, reliability, and efficiency of the presented technique are demonstrated through some given numerical examples.
Applicability of the Fokker-Planck equation to the description of diffusion effects on nucleation
NASA Astrophysics Data System (ADS)
Sorokin, M. V.; Dubinko, V. I.; Borodin, V. A.
2017-01-01
The nucleation of islands in a supersaturated solution of surface adatoms is considered taking into account the possibility of diffusion profile formation in the island vicinity. It is shown that the treatment of diffusion-controlled cluster growth in terms of the Fokker-Planck equation is justified only provided certain restrictions are satisfied. First of all, the standard requirement that diffusion profiles of adatoms quickly adjust themselves to the actual island sizes (adiabatic principle) can be realized only for sufficiently high island concentration. The adiabatic principle is essential for the probabilities of adatom attachment to and detachment from island edges to be independent of the adatom diffusion profile establishment kinetics, justifying the island nucleation treatment as the Markovian stochastic process. Second, it is shown that the commonly used definition of the "diffusion" coefficient in the Fokker-Planck equation in terms of adatom attachment and detachment rates is justified only provided the attachment and detachment are statistically independent, which is generally not the case for the diffusion-limited growth of islands. We suggest a particular way to define the attachment and detachment rates that allows us to satisfy this requirement as well. When applied to the problem of surface island nucleation, our treatment predicts the steady-state nucleation barrier, which coincides with the conventional thermodynamic expression, even though no thermodynamic equilibrium is assumed and the adatom diffusion is treated explicitly. The effect of adatom diffusional profiles on the nucleation rate preexponential factor is also discussed. Monte Carlo simulation is employed to analyze the applicability domain of the Fokker-Planck equation and the diffusion effect beyond it. It is demonstrated that a diffusional cloud is slowing down the nucleation process for a given monomer interaction with the nucleus edge.
Yamamura, Shigeo; Takehira, Rieko
2018-04-23
Pharmacy students in Japan have to maintain strong motivation to learn for six years during their education. The authors explored the students’ learning structure. All pharmacy students in their 4th through to 6th year at Josai International University participated in the survey. The revised two factor study process questionnaire and science motivation questionnaire II were used to assess their learning process and learning motivation profiles, respectively. Structural equation modeling (SEM) was used to examine a causal relationship between the latent variables in the learning process and those in the learning motivation profile. The learning structure was modeled on the idea that the learning process affects the learning motivation profile of respondents. In the multi-group SEM, the estimated mean of the deep learning to learning motivation profile increased just after their clinical clerkship for 6th year students. This indicated that the clinical experience benefited students’ deep learning, which is probably because the experience of meeting with real patients encourages meaningful learning in pharmacy studies.
Diffusion Processes Satisfying a Conservation Law Constraint
Bakosi, J.; Ristorcelli, J. R.
2014-03-04
We investigate coupled stochastic differential equations governing N non-negative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires that a set of fluctuating variables be non-negative and (if appropriately normalized) sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the non-negativity and the unit-sum conservation law constraint are satisfied as the variables evolve in time. We investigate the consequencesmore » of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first four moments of the probability density function. We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.« less
Diffusion Processes Satisfying a Conservation Law Constraint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakosi, J.; Ristorcelli, J. R.
We investigate coupled stochastic differential equations governing N non-negative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires that a set of fluctuating variables be non-negative and (if appropriately normalized) sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the non-negativity and the unit-sum conservation law constraint are satisfied as the variables evolve in time. We investigate the consequencesmore » of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first four moments of the probability density function. We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gleicher, Frederick N.; Williamson, Richard L.; Ortensi, Javier
The MOOSE neutron transport application RATTLESNAKE was coupled to the fuels performance application BISON to provide a higher fidelity tool for fuel performance simulation. This project is motivated by the desire to couple a high fidelity core analysis program (based on the self-adjoint angular flux equations) to a high fidelity fuel performance program, both of which can simulate on unstructured meshes. RATTLESNAKE solves self-adjoint angular flux transport equation and provides a sub-pin level resolution of the multigroup neutron flux with resonance treatment during burnup or a fast transient. BISON solves the coupled thermomechanical equations for the fuel on a sub-millimetermore » scale. Both applications are able to solve their respective systems on aligned and unaligned unstructured finite element meshes. The power density and local burnup was transferred from RATTLESNAKE to BISON with the MOOSE Multiapp transfer system. Multiple depletion cases were run with one-way data transfer from RATTLESNAKE to BISON. The eigenvalues are shown to agree well with values obtained from the lattice physics code DRAGON. The one-way data transfer of power density is shown to agree with the power density obtained from an internal Lassman-style model in BISON.« less
A model for shrinkage strain in photo polymerization of dental composites.
Petrovic, Ljubomir M; Atanackovic, Teodor M
2008-04-01
We formulate a new model for the shrinkage strain developed during photo polymerization in dental composites. The model is based on the diffusion type fractional order equation, since it has been proved that polymerization reaction is diffusion controlled (Atai M, Watts DC. A new kinetic model for the photo polymerization shrinkage-strain of dental composites and resin-monomers. Dent Mater 2006;22:785-91). Our model strongly confirms the observation by Atai and Watts (see reference details above) and their experimental results. The shrinkage strain is modeled by a nonlinear differential equation in (see reference details above) and that equation must be solved numerically. In our approach, we use the linear fractional order differential equation to describe the strain rate due to photo polymerization. This equation is solved exactly. As shrinkage is a consequence of the polymerization reaction and polymerization reaction is diffusion controlled, we postulate that shrinkage strain rate is described by a diffusion type equation. We find explicit form of solution to this equation and determine the strain in the resin monomers. Also by using equations of linear viscoelasticity, we determine stresses in the polymer due to the shrinkage. The time evolution of stresses implies that the maximal stresses are developed at the very beginning of the polymerization process. The stress in a dental composite that is light treated has the largest value short time after the treatment starts. The strain settles at the constant value in the time of about 100s (for the cases treated in Atai and Watts). From the model developed here, the shrinkage strain of dental composites and resin monomers is analytically determined. The maximal value of stresses is important, since this value must be smaller than the adhesive bond strength at cavo-restoration interface. The maximum stress determined here depends on the diffusivity coefficient. Since diffusivity coefficient increases as polymerization proceeds, it follows that the periods of light treatments should be shorter at the beginning of the treatment and longer at the end of the treatment, with dark interval between the initial low intensity and following high intensity curing. This is because at the end of polymerization the stress relaxation cannot take place.
Kokko, Katja; Simonton, Sharon; Dubow, Eric; Lansford, Jennifer E.; Olson, Sheryl L.; Huesmann, L. Rowell; Boxer, Paul; Pulkkinen, Lea; Bates, John E.; Dodge, Kenneth A.; Pettit, Gregory S.
2015-01-01
Using data from two American and one Finnish long-term longitudinal studies, we examined continuity of general aggression from age 8 to physical aggression in early adulthood (age 21–30) and whether continuity of aggression differed by country, sex, and parent occupational status. In all samples, childhood aggression was assessed via peer nominations and early adulthood aggression via self-reports. Multi-group structural equation models revealed significant continuity in aggression in the American samples but not in the Finnish sample. These relations did not differ by sex but did differ by parent occupational status: whereas there was no significant continuity among American children from professional family-of-origin backgrounds, there was significant continuity among American children from non-professional backgrounds. PMID:24990543
Shapka, Jennifer D; Onditi, Hezron Z; Collie, Rebecca J; Lapidot-Lefler, Noam
2018-01-01
This study explored cyberbullying and cybervictimization (CBCV), for adolescents aged 11-15 from Tanzania (N = 426) and Canada (N = 592). Measurement invariance and model invariance was found for CBCV. In addition, multigroup structural equation modeling was used to explore several variables: age, gender, average hours online each day, accessing the Internet in a private location, having online privacy concerns, going online for social purposes, and motivation for cyberbullying. Results found interesting patterns within each country. It was found that cellphone ownership moderated the relation between these predictor variables and reported incidences of CBCV uniquely for each country. These findings provide evidence for the global nature of cyberbullying. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.
Lavee, Yoav; Ben-Ari, Adital
2008-03-01
The study examined similarities and differences between people having individualist and collectivist cultural orientations in terms of what they perceive as stressful and uplifting experiences in their daily lives, and the relation between daily experiences and family and life satisfaction. Data were collected from two representative community samples (697 Jews and 303 Arabs). Each sample was grouped into individualist and collectivist cultural orientations. The two cultural orientation groups differed with respect to the appraisal of positive and negative daily experiences. A structural equation modeling (SEM) multi-group analysis indicated a similar factor structure for hassles and uplifts in both groups. However, the two groups differed in the effects of positive and negative daily occurrences on family and life satisfaction.
Effect of Energetic Electrons Produced by Raman Scattering on Hohlraum Dynamics
NASA Astrophysics Data System (ADS)
Strozzi, D. J.; Bailey, D. S.; Doeppner, T.; Divol, L.; Harte, J. A.; Michel, P.; Thomas, C. A.
2016-10-01
A reduced model of laser-plasma interactions, namely crossed-beam energy transfer and stimulated Raman scattering (SRS), has recently been implemented in a self-consistent or ``inline'' way in radiation-hydrodynamics codes. We extend this work to treat the energetic electrons produced by Langmuir waves (LWs) from SRS by a suprathermal, multigroup diffusion model. This gives less spatially localized heating than depositing the LW energy into the local electron fluid. We compare the resulting hard x-ray production to imaging data on the National Ignition Facility, which indicate significant emission around the laser entrance hole. We assess the effects of energetic electrons, as well as background electron heat flow, on hohlraum dynamics and capsule implosion symmetry. Work performed under the auspices of the U.S. D.O.E. by LLNL under Contract No. DE-AC52-07NA27344.
NASA Technical Reports Server (NTRS)
Li, Yong; Moorthi, S.; Bates, J. Ray; Suarez, Max J.
1994-01-01
High order horizontal diffusion of the form K Delta(exp 2m) is widely used in spectral models as a means of preventing energy accumulation at the shortest resolved scales. In the spectral context, an implicit formation of such diffusion is trivial to implement. The present note describes an efficient method of implementing implicit high order diffusion in global finite difference models. The method expresses the high order diffusion equation as a sequence of equations involving Delta(exp 2). The solution is obtained by combining fast Fourier transforms in longitude with a finite difference solver for the second order ordinary differential equation in latitude. The implicit diffusion routine is suitable for use in any finite difference global model that uses a regular latitude/longitude grid. The absence of a restriction on the timestep makes it particularly suitable for use in semi-Lagrangian models. The scale selectivity of the high order diffusion gives it an advantage over the uncentering method that has been used to control computational noise in two-time-level semi-Lagrangian models.
Ackerman, David M; Wang, Jing; Wendel, Joseph H; Liu, Da-Jiang; Pruski, Marek; Evans, James W
2011-03-21
We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. Diffusion within the pores is subject to a strict single-file (no passing) constraint. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice-gas model for this reaction-diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction-diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction-diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion in this multispecies system. The h-RDE successfully describe nontrivial aspects of transient behavior, in contrast to the mf-RDE, and also correctly capture unreactive steady-state behavior in the pore interior. However, steady-state reactivity, which is localized near the pore ends when those regions are catalytic, is controlled by fluctuations not incorporated into the hydrodynamic treatment. The mf-RDE partly capture these fluctuation effects, but cannot describe scaling behavior of the reactivity.
NASA Astrophysics Data System (ADS)
Han, Renji; Dai, Binxiang
2017-06-01
The spatiotemporal pattern induced by cross-diffusion of a toxic-phytoplankton-zooplankton model with nonmonotonic functional response is investigated in this paper. The linear stability analysis shows that cross-diffusion is the key mechanism for the formation of spatial patterns. By taking cross-diffusion rate as bifurcation parameter, we derive amplitude equations near the Turing bifurcation point for the excited modes in the framework of a weakly nonlinear theory, and the stability analysis of the amplitude equations interprets the structural transitions and stability of various forms of Turing patterns. Furthermore, we illustrate the theoretical results via numerical simulations. It is shown that the spatiotemporal distribution of the plankton is homogeneous in the absence of cross-diffusion. However, when the cross-diffusivity is greater than the critical value, the spatiotemporal distribution of all the plankton species becomes inhomogeneous in spaces and results in different kinds of patterns: spot, stripe, and the mixture of spot and stripe patterns depending on the cross-diffusivity. Simultaneously, the impact of toxin-producing rate of toxic-phytoplankton (TPP) species and natural death rate of zooplankton species on pattern selection is also explored.
Hosseinbor, Ameer Pasha; Chung, Moo K; Wu, Yu-Chien; Alexander, Andrew L
2011-01-01
The estimation of the ensemble average propagator (EAP) directly from q-space DWI signals is an open problem in diffusion MRI. Diffusion spectrum imaging (DSI) is one common technique to compute the EAP directly from the diffusion signal, but it is burdened by the large sampling required. Recently, several analytical EAP reconstruction schemes for multiple q-shell acquisitions have been proposed. One, in particular, is Diffusion Propagator Imaging (DPI) which is based on the Laplace's equation estimation of diffusion signal for each shell acquisition. Viewed intuitively in terms of the heat equation, the DPI solution is obtained when the heat distribution between temperatuere measurements at each shell is at steady state. We propose a generalized extension of DPI, Bessel Fourier Orientation Reconstruction (BFOR), whose solution is based on heat equation estimation of the diffusion signal for each shell acquisition. That is, the heat distribution between shell measurements is no longer at steady state. In addition to being analytical, the BFOR solution also includes an intrinsic exponential smootheing term. We illustrate the effectiveness of the proposed method by showing results on both synthetic and real MR datasets.
Cusping, transport and variance of solutions to generalized Fokker-Planck equations
NASA Astrophysics Data System (ADS)
Carnaffan, Sean; Kawai, Reiichiro
2017-06-01
We study properties of solutions to generalized Fokker-Planck equations through the lens of the probability density functions of anomalous diffusion processes. In particular, we examine solutions in terms of their cusping, travelling wave behaviours, and variance, within the framework of stochastic representations of generalized Fokker-Planck equations. We give our analysis in the cases of anomalous diffusion driven by the inverses of the stable, tempered stable and gamma subordinators, demonstrating the impact of changing the distribution of waiting times in the underlying anomalous diffusion model. We also analyse the cases where the underlying anomalous diffusion contains a Lévy jump component in the parent process, and when a diffusion process is time changed by an uninverted Lévy subordinator. On the whole, we present a combination of four criteria which serve as a theoretical basis for model selection, statistical inference and predictions for physical experiments on anomalously diffusing systems. We discuss possible applications in physical experiments, including, with reference to specific examples, the potential for model misclassification and how combinations of our four criteria may be used to overcome this issue.
Anomalous Transport of Cosmic Rays in a Nonlinear Diffusion Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litvinenko, Yuri E.; Fichtner, Horst; Walter, Dominik
2017-05-20
We investigate analytically and numerically the transport of cosmic rays following their escape from a shock or another localized acceleration site. Observed cosmic-ray distributions in the vicinity of heliospheric and astrophysical shocks imply that anomalous, superdiffusive transport plays a role in the evolution of the energetic particles. Several authors have quantitatively described the anomalous diffusion scalings, implied by the data, by solutions of a formal transport equation with fractional derivatives. Yet the physical basis of the fractional diffusion model remains uncertain. We explore an alternative model of the cosmic-ray transport: a nonlinear diffusion equation that follows from a self-consistent treatmentmore » of the resonantly interacting cosmic-ray particles and their self-generated turbulence. The nonlinear model naturally leads to superdiffusive scalings. In the presence of convection, the model yields a power-law dependence of the particle density on the distance upstream of the shock. Although the results do not refute the use of a fractional advection–diffusion equation, they indicate a viable alternative to explain the anomalous diffusion scalings of cosmic-ray particles.« less
Some Fundamental Issues of Mathematical Simulation in Biology
NASA Astrophysics Data System (ADS)
Razzhevaikin, V. N.
2018-02-01
Some directions of simulation in biology leading to original formulations of mathematical problems are overviewed. Two of them are discussed in detail: the correct solvability of first-order linear equations with unbounded coefficients and the construction of a reaction-diffusion equation with nonlinear diffusion for a model of genetic wave propagation.
Numerical study of centrifugal compressor stage vaneless diffusers
NASA Astrophysics Data System (ADS)
Galerkin, Y.; Soldatova, K.; Solovieva, O.
2015-08-01
The authors analyzed CFD calculations of flow in vaneless diffusers with relative width in range from 0.014 to 0.100 at inlet flow angles in range from 100 to 450 with different inlet velocity coefficients, Reynolds numbers and surface roughness. The aim is to simulate calculated performances by simple algebraic equations. The friction coefficient that represents head losses as friction losses is proposed for simulation. The friction coefficient and loss coefficient are directly connected by simple equation. The advantage is that friction coefficient changes comparatively little in range of studied parameters. Simple equations for this coefficient are proposed by the authors. The simulation accuracy is sufficient for practical calculations. To create the complete algebraic model of the vaneless diffuser the authors plan to widen this method of modeling to diffusers with different relative length and for wider range of Reynolds numbers.
Integral approximations to classical diffusion and smoothed particle hydrodynamics
Du, Qiang; Lehoucq, R. B.; Tartakovsky, A. M.
2014-12-31
The contribution of the paper is the approximation of a classical diffusion operator by an integral equation with a volume constraint. A particular focus is on classical diffusion problems associated with Neumann boundary conditions. By exploiting this approximation, we can also approximate other quantities such as the flux out of a domain. Our analysis of the model equation on the continuum level is closely related to the recent work on nonlocal diffusion and peridynamic mechanics. In particular, we elucidate the role of a volumetric constraint as an approximation to a classical Neumann boundary condition in the presence of physical boundary.more » The volume-constrained integral equation then provides the basis for accurate and robust discretization methods. As a result, an immediate application is to the understanding and improvement of the Smoothed Particle Hydrodynamics (SPH) method.« less
ERIC Educational Resources Information Center
Molenaar, Dylan; Dolan, Conor V.; Wicherts, Jelle M.
2009-01-01
Research into sex differences in general intelligence, g, has resulted in two opposite views. In the first view, a g-difference is nonexistent, while in the second view, g is associated with a male advantage. Past research using Multi-Group Covariance and Mean Structure Analysis (MG-CMSA) found no sex difference in g. This failure raised the…
Spin diffusion and torques in disordered antiferromagnets
NASA Astrophysics Data System (ADS)
Manchon, Aurelien
2017-03-01
We have developed a drift-diffusion equation of spin transport in collinear bipartite metallic antiferromagnets. Starting from a model tight-binding Hamiltonian, we obtain the quantum kinetic equation within Keldysh formalism and expand it to the lowest order in spatial gradient using Wigner expansion method. In the diffusive limit, these equations track the spatio-temporal evolution of the spin accumulations and spin currents on each sublattice of the antiferromagnet. We use these equations to address the nature of the spin transfer torque in (i) a spin-valve composed of a ferromagnet and an antiferromagnet, (ii) a metallic bilayer consisting of an antiferromagnet adjacent to a heavy metal possessing spin Hall effect, and in (iii) a single antiferromagnet possessing spin Hall effect. We show that the latter can experience a self-torque thanks to the non-vanishing spin Hall effect in the antiferromagnet.
Breakdown of the reaction-diffusion master equation with nonelementary rates
NASA Astrophysics Data System (ADS)
Smith, Stephen; Grima, Ramon
2016-05-01
The chemical master equation (CME) is the exact mathematical formulation of chemical reactions occurring in a dilute and well-mixed volume. The reaction-diffusion master equation (RDME) is a stochastic description of reaction-diffusion processes on a spatial lattice, assuming well mixing only on the length scale of the lattice. It is clear that, for the sake of consistency, the solution of the RDME of a chemical system should converge to the solution of the CME of the same system in the limit of fast diffusion: Indeed, this has been tacitly assumed in most literature concerning the RDME. We show that, in the limit of fast diffusion, the RDME indeed converges to a master equation but not necessarily the CME. We introduce a class of propensity functions, such that if the RDME has propensities exclusively of this class, then the RDME converges to the CME of the same system, whereas if the RDME has propensities not in this class, then convergence is not guaranteed. These are revealed to be elementary and nonelementary propensities, respectively. We also show that independent of the type of propensity, the RDME converges to the CME in the simultaneous limit of fast diffusion and large volumes. We illustrate our results with some simple example systems and argue that the RDME cannot generally be an accurate description of systems with nonelementary rates.
Reaction-diffusion systems coupled at the boundary and the Morse-Smale property
NASA Astrophysics Data System (ADS)
Broche, Rita de Cássia D. S.; de Oliveira, Luiz Augusto F.
We study an one-dimensional nonlinear reaction-diffusion system coupled on the boundary. Such system comes from modeling problems of temperature distribution on two bars of same length, jointed together, with different diffusion coefficients. We prove the transversality property of unstable and stable manifolds assuming all equilibrium points are hyperbolic. To this end, we write the system as an equation with noncontinuous diffusion coefficient. We then study the nonincreasing property of the number of zeros of a linearized nonautonomous equation as well as the Sturm-Liouville properties of the solutions of a linear elliptic problem.
Fick's second law transformed: one path to cloaking in mass diffusion.
Guenneau, S; Puvirajesinghe, T M
2013-06-06
Here, we adapt the concept of transformational thermodynamics, whereby the flux of temperature is controlled via anisotropic heterogeneous diffusivity, for the diffusion and transport of mass concentration. The n-dimensional, time-dependent, anisotropic heterogeneous Fick's equation is considered, which is a parabolic partial differential equation also applicable to heat diffusion, when convection occurs, for example, in fluids. This theory is illustrated with finite-element computations for a liposome particle surrounded by a cylindrical multi-layered cloak in a water-based environment, and for a spherical multi-layered cloak consisting of layers of fluid with an isotropic homogeneous diffusivity, deduced from an effective medium approach. Initial potential applications could be sought in bioengineering.
NASA Astrophysics Data System (ADS)
Kolesnichenko, A. V.; Marov, M. Ya.
2018-01-01
The defining relations for the thermodynamic diffusion and heat fluxes in a multicomponent, partially ionized gas mixture in an external electromagnetic field have been obtained by the methods of the kinetic theory. Generalized Stefan-Maxwell relations and algebraic equations for anisotropic transport coefficients (the multicomponent diffusion, thermal diffusion, electric and thermoelectric conductivity coefficients as well as the thermal diffusion ratios) associated with diffusion-thermal processes have been derived. The defining second-order equations are derived by the Chapman-Enskog procedure using Sonine polynomial expansions. The modified Stefan-Maxwell relations are used for the description of ambipolar diffusion in the Earth's ionospheric plasma (in the F region) composed of electrons, ions of many species, and neutral particles in a strong electromagnetic field.
From quantum stochastic differential equations to Gisin-Percival state diffusion
NASA Astrophysics Data System (ADS)
Parthasarathy, K. R.; Usha Devi, A. R.
2017-08-01
Starting from the quantum stochastic differential equations of Hudson and Parthasarathy [Commun. Math. Phys. 93, 301 (1984)] and exploiting the Wiener-Itô-Segal isomorphism between the boson Fock reservoir space Γ (L2(R+ ) ⊗(Cn⊕Cn ) ) and the Hilbert space L2(μ ) , where μ is the Wiener probability measure of a complex n-dimensional vector-valued standard Brownian motion {B (t ) ,t ≥0 } , we derive a non-linear stochastic Schrödinger equation describing a classical diffusion of states of a quantum system, driven by the Brownian motion B. Changing this Brownian motion by an appropriate Girsanov transformation, we arrive at the Gisin-Percival state diffusion equation [N. Gisin and J. Percival, J. Phys. A 167, 315 (1992)]. This approach also yields an explicit solution of the Gisin-Percival equation, in terms of the Hudson-Parthasarathy unitary process and a randomized Weyl displacement process. Irreversible dynamics of system density operators described by the well-known Gorini-Kossakowski-Sudarshan-Lindblad master equation is unraveled by coarse-graining over the Gisin-Percival quantum state trajectories.
Recursion equations in predicting band width under gradient elution.
Liang, Heng; Liu, Ying
2004-06-18
The evolution of solute zone under gradient elution is a typical problem of non-linear continuity equation since the local diffusion coefficient and local migration velocity of the mass cells of solute zones are the functions of position and time due to space- and time-variable mobile phase composition. In this paper, based on the mesoscopic approaches (Lagrangian description, the continuity theory and the local equilibrium assumption), the evolution of solute zones in space- and time-dependent fields is described by the iterative addition of local probability density of the mass cells of solute zones. Furthermore, on macroscopic levels, the recursion equations have been proposed to simulate zone migration and spreading in reversed-phase high-performance liquid chromatography (RP-HPLC) through directly relating local retention factor and local diffusion coefficient to local mobile phase concentration. This new approach differs entirely from the traditional theories on plate concept with Eulerian description, since band width recursion equation is actually the accumulation of local diffusion coefficients of solute zones to discrete-time slices. Recursion equations and literature equations were used in dealing with same experimental data in RP-HPLC, and the comparison results show that the recursion equations can accurately predict band width under gradient elution.
Banik, Suman Kumar; Bag, Bidhan Chandra; Ray, Deb Shankar
2002-05-01
Traditionally, quantum Brownian motion is described by Fokker-Planck or diffusion equations in terms of quasiprobability distribution functions, e.g., Wigner functions. These often become singular or negative in the full quantum regime. In this paper a simple approach to non-Markovian theory of quantum Brownian motion using true probability distribution functions is presented. Based on an initial coherent state representation of the bath oscillators and an equilibrium canonical distribution of the quantum mechanical mean values of their coordinates and momenta, we derive a generalized quantum Langevin equation in c numbers and show that the latter is amenable to a theoretical analysis in terms of the classical theory of non-Markovian dynamics. The corresponding Fokker-Planck, diffusion, and Smoluchowski equations are the exact quantum analogs of their classical counterparts. The present work is independent of path integral techniques. The theory as developed here is a natural extension of its classical version and is valid for arbitrary temperature and friction (the Smoluchowski equation being considered in the overdamped limit).
Theory of diffusion of active particles that move at constant speed in two dimensions.
Sevilla, Francisco J; Gómez Nava, Luis A
2014-08-01
Starting from a Langevin description of active particles that move with constant speed in infinite two-dimensional space and its corresponding Fokker-Planck equation, we develop a systematic method that allows us to obtain the coarse-grained probability density of finding a particle at a given location and at a given time in arbitrary short-time regimes. By going beyond the diffusive limit, we derive a generalization of the telegrapher equation. Such generalization preserves the hyperbolic structure of the equation and incorporates memory effects in the diffusive term. While no difference is observed for the mean-square displacement computed from the two-dimensional telegrapher equation and from our generalization, the kurtosis results in a sensible parameter that discriminates between both approximations. We carry out a comparative analysis in Fourier space that sheds light on why the standard telegrapher equation is not an appropriate model to describe the propagation of particles with constant speed in dispersive media.
2010-01-01
on Al ion diffu- sion can be computed using the Nernst –Planck equation . The Nernst –Plank equation is given in Eq. 4,22 J = − D dC dx − zFDC RT d dx...The use of the bulk diffusion equation is reason- able since during the time scales considered the movement of only the atoms initially on the surface
NASA Astrophysics Data System (ADS)
Tayebi, A.; Shekari, Y.; Heydari, M. H.
2017-07-01
Several physical phenomena such as transformation of pollutants, energy, particles and many others can be described by the well-known convection-diffusion equation which is a combination of the diffusion and advection equations. In this paper, this equation is generalized with the concept of variable-order fractional derivatives. The generalized equation is called variable-order time fractional advection-diffusion equation (V-OTFA-DE). An accurate and robust meshless method based on the moving least squares (MLS) approximation and the finite difference scheme is proposed for its numerical solution on two-dimensional (2-D) arbitrary domains. In the time domain, the finite difference technique with a θ-weighted scheme and in the space domain, the MLS approximation are employed to obtain appropriate semi-discrete solutions. Since the newly developed method is a meshless approach, it does not require any background mesh structure to obtain semi-discrete solutions of the problem under consideration, and the numerical solutions are constructed entirely based on a set of scattered nodes. The proposed method is validated in solving three different examples including two benchmark problems and an applied problem of pollutant distribution in the atmosphere. In all such cases, the obtained results show that the proposed method is very accurate and robust. Moreover, a remarkable property so-called positive scheme for the proposed method is observed in solving concentration transport phenomena.
Flow regimes for fluid injection into a confined porous medium
Zheng, Zhong; Guo, Bo; Christov, Ivan C.; ...
2015-02-24
We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governingmore » equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.« less
Fluctuation-enhanced electric conductivity in electrolyte solutions.
Péraud, Jean-Philippe; Nonaka, Andrew J; Bell, John B; Donev, Aleksandar; Garcia, Alejandro L
2017-10-10
We analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson-Nernst-Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation-anion diffusion coefficient. Specifically, we predict a nonzero cation-anion Maxwell-Stefan coefficient proportional to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye-Huckel-Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Finally, we show that strong applied electric fields result in anisotropically enhanced "giant" velocity fluctuations and reduced fluctuations of salt concentration.
Fluctuation-enhanced electric conductivity in electrolyte solutions
Péraud, Jean-Philippe; Nonaka, Andrew J.; Bell, John B.; Donev, Aleksandar; Garcia, Alejandro L.
2017-01-01
We analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson–Nernst–Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation–anion diffusion coefficient. Specifically, we predict a nonzero cation–anion Maxwell–Stefan coefficient proportional to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye–Huckel–Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Finally, we show that strong applied electric fields result in anisotropically enhanced “giant” velocity fluctuations and reduced fluctuations of salt concentration. PMID:28973890
NASA-Lewis experiences with multigroup cross sections and shielding calculations
NASA Technical Reports Server (NTRS)
Lahti, G. P.
1972-01-01
The nuclear reactor shield analysis procedures employed at NASA-Lewis are described. Emphasis is placed on the generation, use, and testing of multigroup cross section data. Although coupled neutron and gamma ray cross section sets are useful in two dimensional Sn transport calculations, much insight has been gained from examination of uncoupled calculations. These have led to experimental and analytic studies of areas deemed to be of first order importance to reactor shield calculations. A discussion is given of problems encountered in using multigroup cross sections in the resolved resonance energy range. The addition to ENDF files of calculated and/or measured neutron-energy-dependent capture gamma ray spectra for shielding calculations is questioned for the resonance region. Anomalies inherent in two dimensional Sn transport calculations which may overwhelm any cross section discrepancies are illustrated.
Barrenechea, Gabriel R; Burman, Erik; Karakatsani, Fotini
2017-01-01
For the case of approximation of convection-diffusion equations using piecewise affine continuous finite elements a new edge-based nonlinear diffusion operator is proposed that makes the scheme satisfy a discrete maximum principle. The diffusion operator is shown to be Lipschitz continuous and linearity preserving. Using these properties we provide a full stability and error analysis, which, in the diffusion dominated regime, shows existence, uniqueness and optimal convergence. Then the algebraic flux correction method is recalled and we show that the present method can be interpreted as an algebraic flux correction method for a particular definition of the flux limiters. The performance of the method is illustrated on some numerical test cases in two space dimensions.
Fractal Model of Fission Product Release in Nuclear Fuel
NASA Astrophysics Data System (ADS)
Stankunas, Gediminas
2012-09-01
A model of fission gas migration in nuclear fuel pellet is proposed. Diffusion process of fission gas in granular structure of nuclear fuel with presence of inter-granular bubbles in the fuel matrix is simulated by fractional diffusion model. The Grunwald-Letnikov derivative parameter characterizes the influence of porous fuel matrix on the diffusion process of fission gas. A finite-difference method for solving fractional diffusion equations is considered. Numerical solution of diffusion equation shows correlation of fission gas release and Grunwald-Letnikov derivative parameter. Calculated profile of fission gas concentration distribution is similar to that obtained in the experimental studies. Diffusion of fission gas is modeled for real RBMK-1500 fuel operation conditions. A functional dependence of Grunwald-Letnikov derivative parameter with fuel burn-up is established.
Thermodynamics of viscoelastic rate-type fluids with stress diffusion
NASA Astrophysics Data System (ADS)
Málek, Josef; Průša, Vít; Skřivan, Tomáš; Süli, Endre
2018-02-01
We propose thermodynamically consistent models for viscoelastic fluids with a stress diffusion term. In particular, we derive variants of compressible/incompressible Maxwell/Oldroyd-B models with a stress diffusion term in the evolution equation for the extra stress tensor. It is shown that the stress diffusion term can be interpreted either as a consequence of a nonlocal energy storage mechanism or as a consequence of a nonlocal entropy production mechanism, while different interpretations of the stress diffusion mechanism lead to different evolution equations for the temperature. The benefits of the knowledge of the thermodynamical background of the derived models are documented in the study of nonlinear stability of equilibrium rest states. The derived models open up the possibility to study fully coupled thermomechanical problems involving viscoelastic rate-type fluids with stress diffusion.
Dusty Pair Plasma—Wave Propagation and Diffusive Transition of Oscillations
NASA Astrophysics Data System (ADS)
Atamaniuk, Barbara; Turski, Andrzej J.
2011-11-01
The crucial point of the paper is the relation between equilibrium distributions of plasma species and the type of propagation or diffusive transition of plasma response to a disturbance. The paper contains a unified treatment of disturbance propagation (transport) in the linearized Vlasov electron-positron and fullerene pair plasmas containing charged dust impurities, based on the space-time convolution integral equations. Electron-positron-dust/ion (e-p-d/i) plasmas are rather widespread in nature. Space-time responses of multi-component linearized Vlasov plasmas on the basis of multiple integral equations are invoked. An initial-value problem for Vlasov-Poisson/Ampère equations is reduced to the one multiple integral equation and the solution is expressed in terms of forcing function and its space-time convolution with the resolvent kernel. The forcing function is responsible for the initial disturbance and the resolvent is responsible for the equilibrium velocity distributions of plasma species. By use of resolvent equations, time-reversibility, space-reflexivity and the other symmetries are revealed. The symmetries carry on physical properties of Vlasov pair plasmas, e.g., conservation laws. Properly choosing equilibrium distributions for dusty pair plasmas, we can reduce the resolvent equation to: (i) the undamped dispersive wave equations, (ii) and diffusive transport equations of oscillations.
A generalized mathematical scheme is developed to simulate the turbulent dispersion of pollutants which are adsorbed or deposit to the ground. The scheme is an analytical (exact) solution of the atmospheric diffusion equation with height-dependent wind speed a...
NASA Astrophysics Data System (ADS)
Owolabi, Kolade M.
2018-03-01
In this work, we are concerned with the solution of non-integer space-fractional reaction-diffusion equations with the Riemann-Liouville space-fractional derivative in high dimensions. We approximate the Riemann-Liouville derivative with the Fourier transform method and advance the resulting system in time with any time-stepping solver. In the numerical experiments, we expect the travelling wave to arise from the given initial condition on the computational domain (-∞, ∞), which we terminate in the numerical experiments with a large but truncated value of L. It is necessary to choose L large enough to allow the waves to have enough space to distribute. Experimental results in high dimensions on the space-fractional reaction-diffusion models with applications to biological models (Fisher and Allen-Cahn equations) are considered. Simulation results reveal that fractional reaction-diffusion equations can give rise to a range of physical phenomena when compared to non-integer-order cases. As a result, most meaningful and practical situations are found to be modelled with the concept of fractional calculus.
Liquefaction of Saturated Soil and the Diffusion Equation
NASA Astrophysics Data System (ADS)
Sawicki, Andrzej; Sławińska, Justyna
2015-06-01
The paper deals with the diffusion equation for pore water pressures with the source term, which is widely promoted in the marine engineering literature. It is shown that such an equation cannot be derived in a consistent way from the mass balance and the Darcy law. The shortcomings of the artificial source term are pointed out, including inconsistencies with experimental data. It is concluded that liquefaction and the preceding process of pore pressure generation and the weakening of the soil skeleton should be described by constitutive equations within the well-known framework of applied mechanics. Relevant references are provided
ERIC Educational Resources Information Center
Geiser, Christian; Lehmann, Wolfgang; Eid, Michael
2006-01-01
Items of mental rotation tests can not only be solved by mental rotation but also by other solution strategies. A multigroup latent class analysis of 24 items of the Mental Rotations Test (MRT) was conducted in a sample of 1,695 German pupils and students to find out how many solution strategies can be identified for the items of this test. The…
Transport mechanisms of contaminants released from fine sediment in rivers
NASA Astrophysics Data System (ADS)
Cheng, Pengda; Zhu, Hongwei; Zhong, Baochang; Wang, Daozeng
2015-12-01
Contaminants released from sediment into rivers are one of the main problems to study in environmental hydrodynamics. For contaminants released into the overlying water under different hydrodynamic conditions, the mechanical mechanisms involved can be roughly divided into convective diffusion, molecular diffusion, and adsorption/desorption. Because of the obvious environmental influence of fine sediment (D_{90}= 0.06 mm), non-cohesive fine sediment, and cohesive fine sediment are researched in this paper, and phosphorus is chosen for a typical adsorption of a contaminant. Through theoretical analysis of the contaminant release process, according to different hydraulic conditions, the contaminant release coupling mathematical model can be established by the N-S equation, the Darcy equation, the solute transport equation, and the adsorption/desorption equation. Then, the experiments are completed in an open water flume. The simulation results and experimental results show that convective diffusion dominates the contaminant release both in non-cohesive and cohesive fine sediment after their suspension, and that they contribute more than 90 % of the total release. Molecular diffusion and desorption have more of a contribution for contaminant release from unsuspended sediment. In unsuspension sediment, convective diffusion is about 10-50 times larger than molecular diffusion during the initial stages under high velocity; it is close to molecular diffusion in the later stages. Convective diffusion is about 6 times larger than molecular diffusion during the initial stages under low velocity, it is about a quarter of molecular diffusion in later stages, and has a similar level with desorption/adsorption. In unsuspended sediment, a seepage boundary layer exists below the water-sediment interface, and various release mechanisms in that layer mostly dominate the contaminant release process. In non-cohesive fine sediment, the depth of that layer increases linearly with shear stress. In cohesive fine sediment, the range seepage boundary is different from that in non-cohesive sediment, and that phenomenon is more obvious under a lower shear stress.
NASA Astrophysics Data System (ADS)
Liu, Fei; Tong, Huan; Ma, Rui; Ou-Yang, Zhong-can
2010-12-01
A formal apparatus is developed to unify derivations of the linear response theory and a variety of transient fluctuation relations for continuous diffusion processes from a backward point of view. The basis is a perturbed Kolmogorov backward equation and the path integral representation of its solution. We find that these exact transient relations could be interpreted as a consequence of a generalized Chapman-Kolmogorov equation, which intrinsically arises from the Markovian characteristic of diffusion processes.
NASA Technical Reports Server (NTRS)
Srivastava, R. C.; Coen, J. L.
1992-01-01
The traditional explicit growth equation has been widely used to calculate the growth and evaporation of hydrometeors by the diffusion of water vapor. This paper reexamines the assumptions underlying the traditional equation and shows that large errors (10-30 percent in some cases) result if it is used carelessly. More accurate explicit equations are derived by approximating the saturation vapor-density difference as a quadratic rather than a linear function of the temperature difference between the particle and ambient air. These new equations, which reduce the error to less than a few percent, merit inclusion in a broad range of atmospheric models.
On the use of Bayesian Monte-Carlo in evaluation of nuclear data
NASA Astrophysics Data System (ADS)
De Saint Jean, Cyrille; Archier, Pascal; Privas, Edwin; Noguere, Gilles
2017-09-01
As model parameters, necessary ingredients of theoretical models, are not always predicted by theory, a formal mathematical framework associated to the evaluation work is needed to obtain the best set of parameters (resonance parameters, optical models, fission barrier, average width, multigroup cross sections) with Bayesian statistical inference by comparing theory to experiment. The formal rule related to this methodology is to estimate the posterior density probability function of a set of parameters by solving an equation of the following type: pdf(posterior) ˜ pdf(prior) × a likelihood function. A fitting procedure can be seen as an estimation of the posterior density probability of a set of parameters (referred as x→?) knowing a prior information on these parameters and a likelihood which gives the probability density function of observing a data set knowing x→?. To solve this problem, two major paths could be taken: add approximations and hypothesis and obtain an equation to be solved numerically (minimum of a cost function or Generalized least Square method, referred as GLS) or use Monte-Carlo sampling of all prior distributions and estimate the final posterior distribution. Monte Carlo methods are natural solution for Bayesian inference problems. They avoid approximations (existing in traditional adjustment procedure based on chi-square minimization) and propose alternative in the choice of probability density distribution for priors and likelihoods. This paper will propose the use of what we are calling Bayesian Monte Carlo (referred as BMC in the rest of the manuscript) in the whole energy range from thermal, resonance and continuum range for all nuclear reaction models at these energies. Algorithms will be presented based on Monte-Carlo sampling and Markov chain. The objectives of BMC are to propose a reference calculation for validating the GLS calculations and approximations, to test probability density distributions effects and to provide the framework of finding global minimum if several local minimums exist. Application to resolved resonance, unresolved resonance and continuum evaluation as well as multigroup cross section data assimilation will be presented.
Dipierro, Serena; Valdinoci, Enrico
2018-07-01
Recently, several experiments have demonstrated the existence of fractional diffusion in the neuronal transmission occurring in the Purkinje cells, whose malfunctioning is known to be related to the lack of voluntary coordination and the appearance of tremors. Also, a classical mathematical feature is that (fractional) parabolic equations possess smoothing effects, in contrast with the case of hyperbolic equations, which typically exhibit shocks and discontinuities. In this paper, we show how a simple toy-model of a highly ramified structure, somehow inspired by that of the Purkinje cells, may produce a fractional diffusion via the superposition of travelling waves that solve a hyperbolic equation. This could suggest that the high ramification of the Purkinje cells might have provided an evolutionary advantage of "smoothing" the transmission of signals and avoiding shock propagations (at the price of slowing a bit such transmission). Although an experimental confirmation of the possibility of such evolutionary advantage goes well beyond the goals of this paper, we think that it is intriguing, as a mathematical counterpart, to consider the time fractional diffusion as arising from the superposition of delayed travelling waves in highly ramified transmission media. The case of a travelling concave parabola with sufficiently small curvature is explicitly computed. The new link that we propose between time fractional diffusion and hyperbolic equation also provides a novelty with respect to the usual paradigm relating time fractional diffusion with parabolic equations in the limit. This paper is written in such a way as to be of interest to both biologists and mathematician alike. In order to accomplish this aim, both complete explanations of the objects considered and detailed lists of references are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angstmann, C.N.; Donnelly, I.C.; Henry, B.I., E-mail: B.Henry@unsw.edu.au
We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also showmore » that the method can be applied to standard reaction–diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.« less
Limbers, Christine A; Newman, Daniel A; Varni, James W
2008-01-01
The utilization of health-related quality of life (HRQOL) measurement in an effort to improve pediatric health and well-being and determine the value of health care services has grown dramatically over the past decade. The paradigm shift toward patient-reported outcomes (PROs) in clinical trials has provided the opportunity to emphasize the value and essential need for pediatric patient self-report. In order for HRQOL/PRO comparisons to be meaningful for subgroup analyses, it is essential to demonstrate factorial invariance. This study examined age subgroup factorial invariance of child self-report for ages 5 to 16 years on more than 8,500 children utilizing the PedsQL 4.0 Generic Core Scales. Multigroup Confirmatory Factor Analysis (MGCFA) was performed specifying a five-factor model. Two multigroup structural equation models, one with constrained parameters and the other with unconstrained parameters, were proposed to compare the factor loadings across the age subgroups. Metric invariance (i.e., equal factor loadings) across the age subgroups was demonstrated based on stability of the Comparative Fit Index between the two models, and several additional indices of practical fit including the Root Mean Squared Error of Approximation, the Non-Normed Fit Index, and the Parsimony Normed Fit Index. The findings support an equivalent five-factor structure across the age subgroups. Based on these data, it can be concluded that children across the age subgroups in this study interpreted items on the PedsQL 4.0 Generic Core Scales in a similar manner regardless of their age.
Birth-jump processes and application to forest fire spotting.
Hillen, T; Greese, B; Martin, J; de Vries, G
2015-01-01
Birth-jump models are designed to describe population models for which growth and spatial spread cannot be decoupled. A birth-jump model is a nonlinear integro-differential equation. We present two different derivations of this equation, one based on a random walk approach and the other based on a two-compartmental reaction-diffusion model. In the case that the redistribution kernels are highly concentrated, we show that the integro-differential equation can be approximated by a reaction-diffusion equation, in which the proliferation rate contributes to both the diffusion term and the reaction term. We completely solve the corresponding critical domain size problem and the minimal wave speed problem. Birth-jump models can be applied in many areas in mathematical biology. We highlight an application of our results in the context of forest fire spread through spotting. We show that spotting increases the invasion speed of a forest fire front.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golub, R.; Rohm, Ryan M.; Swank, C. M.
2011-02-15
There is an extensive literature on magnetic-gradient-induced spin relaxation. Cates, Schaefer, and Happer, in a seminal publication, have solved the problem in the regime where diffusion theory (the Torrey equation) is applicable using an expansion of the density matrix in diffusion equation eigenfunctions and angular momentum tensors. McGregor has solved the problem in the same regime using a slightly more general formulation using the Redfield theory formulated in terms of the autocorrelation function of the fluctuating field seen by the spins and calculating the correlation functions using the diffusion-theory Green's function. The results of both calculations were shown to agreemore » for a special case. In the present work, we show that the eigenfunction expansion of the Torrey equation yields the expansion of the Green's function for the diffusion equation, thus showing the identity of this approach with that of the Redfield theory. The general solution can also be obtained directly from the Torrey equation for the density matrix. Thus, the physical content of the Redfield and Torrey approaches are identical. We then introduce a more general expression for the position autocorrelation function of particles moving in a closed cell, extending the range of applicability of the theory.« less
NASA Astrophysics Data System (ADS)
Gyrya, V.; Lipnikov, K.
2017-11-01
We present the arbitrary order mimetic finite difference (MFD) discretization for the diffusion equation with non-symmetric tensorial diffusion coefficient in a mixed formulation on general polygonal meshes. The diffusion tensor is assumed to be positive definite. The asymmetry of the diffusion tensor requires changes to the standard MFD construction. We present new approach for the construction that guarantees positive definiteness of the non-symmetric mass matrix in the space of discrete velocities. The numerically observed convergence rate for the scalar quantity matches the predicted one in the case of the lowest order mimetic scheme. For higher orders schemes, we observed super-convergence by one order for the scalar variable which is consistent with the previously published result for a symmetric diffusion tensor. The new scheme was also tested on a time-dependent problem modeling the Hall effect in the resistive magnetohydrodynamics.
Gyrya, V.; Lipnikov, K.
2017-07-18
Here, we present the arbitrary order mimetic finite difference (MFD) discretization for the diffusion equation with non-symmetric tensorial diffusion coefficient in a mixed formulation on general polygonal meshes. The diffusion tensor is assumed to be positive definite. The asymmetry of the diffusion tensor requires changes to the standard MFD construction. We also present new approach for the construction that guarantees positive definiteness of the non-symmetric mass matrix in the space of discrete velocities. The numerically observed convergence rate for the scalar quantity matches the predicted one in the case of the lowest order mimetic scheme. For higher orders schemes, wemore » observed super-convergence by one order for the scalar variable which is consistent with the previously published result for a symmetric diffusion tensor. The new scheme was also tested on a time-dependent problem modeling the Hall effect in the resistive magnetohydrodynamics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gyrya, V.; Lipnikov, K.
Here, we present the arbitrary order mimetic finite difference (MFD) discretization for the diffusion equation with non-symmetric tensorial diffusion coefficient in a mixed formulation on general polygonal meshes. The diffusion tensor is assumed to be positive definite. The asymmetry of the diffusion tensor requires changes to the standard MFD construction. We also present new approach for the construction that guarantees positive definiteness of the non-symmetric mass matrix in the space of discrete velocities. The numerically observed convergence rate for the scalar quantity matches the predicted one in the case of the lowest order mimetic scheme. For higher orders schemes, wemore » observed super-convergence by one order for the scalar variable which is consistent with the previously published result for a symmetric diffusion tensor. The new scheme was also tested on a time-dependent problem modeling the Hall effect in the resistive magnetohydrodynamics.« less
Maximum Path Information and Fokker Planck Equation
NASA Astrophysics Data System (ADS)
Li, Wei; Wang A., Q.; LeMehaute, A.
2008-04-01
We present a rigorous method to derive the nonlinear Fokker-Planck (FP) equation of anomalous diffusion directly from a generalization of the principle of least action of Maupertuis proposed by Wang [Chaos, Solitons & Fractals 23 (2005) 1253] for smooth or quasi-smooth irregular dynamics evolving in Markovian process. The FP equation obtained may take two different but equivalent forms. It was also found that the diffusion constant may depend on both q (the index of Tsallis entropy [J. Stat. Phys. 52 (1988) 479] and the time t.
Molecular dynamics on diffusive time scales from the phase-field-crystal equation.
Chan, Pak Yuen; Goldenfeld, Nigel; Dantzig, Jon
2009-03-01
We extend the phase-field-crystal model to accommodate exact atomic configurations and vacancies by requiring the order parameter to be non-negative. The resulting theory dictates the number of atoms and describes the motion of each of them. By solving the dynamical equation of the model, which is a partial differential equation, we are essentially performing molecular dynamics simulations on diffusive time scales. To illustrate this approach, we calculate the two-point correlation function of a fluid.
Non-Markovian Effects in Turbulent Diffusion in Magnetized Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zagorodny, Anatoly; Weiland, Jan
2009-10-08
The derivation of the kinetic equations for inhomogeneous plasma in an external magnetic field is presented. The Fokker-Planck-type equations with the non-Markovian kinetic coefficients are proposed. In the time-local limit (small correlation times with respect to the distribution function relaxation time) the relations obtained recover the results known from the appropriate quasilinear theory and the Dupree-Weinstock theory of plasma turbulence. The equations proposed are used to describe zonal flow generation and to estimate the diffusion coefficient for saturated turbulence.
Asinari, Pietro
2009-11-01
A finite difference lattice Boltzmann scheme for homogeneous mixture modeling, which recovers Maxwell-Stefan diffusion model in the continuum limit, without the restriction of the mixture-averaged diffusion approximation, was recently proposed [P. Asinari, Phys. Rev. E 77, 056706 (2008)]. The theoretical basis is the Bhatnagar-Gross-Krook-type kinetic model for gas mixtures [P. Andries, K. Aoki, and B. Perthame, J. Stat. Phys. 106, 993 (2002)]. In the present paper, the recovered macroscopic equations in the continuum limit are systematically investigated by varying the ratio between the characteristic diffusion speed and the characteristic barycentric speed. It comes out that the diffusion speed must be at least one order of magnitude (in terms of Knudsen number) smaller than the barycentric speed, in order to recover the Navier-Stokes equations for mixtures in the incompressible limit. Some further numerical tests are also reported. In particular, (1) the solvent and dilute test cases are considered, because they are limiting cases in which the Maxwell-Stefan model reduces automatically to Fickian cases. Moreover, (2) some tests based on the Stefan diffusion tube are reported for proving the complete capabilities of the proposed scheme in solving Maxwell-Stefan diffusion problems. The proposed scheme agrees well with the expected theoretical results.
A cross-diffusion system derived from a Fokker-Planck equation with partial averaging
NASA Astrophysics Data System (ADS)
Jüngel, Ansgar; Zamponi, Nicola
2017-02-01
A cross-diffusion system for two components with a Laplacian structure is analyzed on the multi-dimensional torus. This system, which was recently suggested by P.-L. Lions, is formally derived from a Fokker-Planck equation for the probability density associated with a multi-dimensional Itō process, assuming that the diffusion coefficients depend on partial averages of the probability density with exponential weights. A main feature is that the diffusion matrix of the limiting cross-diffusion system is generally neither symmetric nor positive definite, but its structure allows for the use of entropy methods. The global-in-time existence of positive weak solutions is proved and, under a simplifying assumption, the large-time asymptotics is investigated.
NASA Astrophysics Data System (ADS)
Marin, D.; Ribeiro, M. A.; Ribeiro, H. V.; Lenzi, E. K.
2018-07-01
We investigate the solutions for a set of coupled nonlinear Fokker-Planck equations coupled by the diffusion coefficient in presence of external forces. The coupling by the diffusion coefficient implies that the diffusion of each species is influenced by the other and vice versa due to this term, which represents an interaction among them. The solutions for the stationary case are given in terms of the Tsallis distributions, when arbitrary external forces are considered. We also use the Tsallis distributions to obtain a time dependent solution for a linear external force. The results obtained from this analysis show a rich class of behavior related to anomalous diffusion, which can be characterized by compact or long-tailed distributions.
Nonlinear Solver Approaches for the Diffusive Wave Approximation to the Shallow Water Equations
NASA Astrophysics Data System (ADS)
Collier, N.; Knepley, M.
2015-12-01
The diffusive wave approximation to the shallow water equations (DSW) is a doubly-degenerate, nonlinear, parabolic partial differential equation used to model overland flows. Despite its challenges, the DSW equation has been extensively used to model the overland flow component of various integrated surface/subsurface models. The equation's complications become increasingly problematic when ponding occurs, a feature which becomes pervasive when solving on large domains with realistic terrain. In this talk I discuss the various forms and regularizations of the DSW equation and highlight their effect on the solvability of the nonlinear system. In addition to this analysis, I present results of a numerical study which tests the applicability of a class of composable nonlinear algebraic solvers recently added to the Portable, Extensible, Toolkit for Scientific Computation (PETSc).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brantley, P S
2006-09-27
We describe an asymptotic analysis of the coupled nonlinear system of equations describing time-dependent three-dimensional monoenergetic neutron transport and isotopic depletion and radioactive decay. The classic asymptotic diffusion scaling of Larsen and Keller [1], along with a consistent small scaling of the terms describing the radioactive decay of isotopes, is applied to this coupled nonlinear system of equations in a medium of specified initial isotopic composition. The analysis demonstrates that to leading order the neutron transport equation limits to the standard time-dependent neutron diffusion equation with macroscopic cross sections whose number densities are determined by the standard system of ordinarymore » differential equations, the so-called Bateman equations, describing the temporal evolution of the nuclide number densities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, William W., E-mail: dai@lanl.gov; Scannapieco, Anthony J.
2015-11-01
A set of numerical schemes is developed for two- and three-dimensional time-dependent 3-T radiation diffusion equations in systems involving multi-materials. To resolve sub-cell structure, interface reconstruction is implemented within any cell that has more than one material. Therefore, the system of 3-T radiation diffusion equations is solved on two- and three-dimensional polyhedral meshes. The focus of the development is on the fully coupling between radiation and material, the treatment of nonlinearity in the equations, i.e., in the diffusion terms and source terms, treatment of the discontinuity across cell interfaces in material properties, the formulations for both transient and steady states,more » the property for large time steps, and second order accuracy in both space and time. The discontinuity of material properties between different materials is correctly treated based on the governing physics principle for general polyhedral meshes and full nonlinearity. The treatment is exact for arbitrarily strong discontinuity. The scheme is fully nonlinear for the full nonlinearity in the 3-T diffusion equations. Three temperatures are fully coupled and are updated simultaneously. The scheme is general in two and three dimensions on general polyhedral meshes. The features of the scheme are demonstrated through numerical examples for transient problems and steady states. The effects of some simplifications of numerical schemes are also shown through numerical examples, such as linearization, simple average of diffusion coefficient, and approximate treatment for the coupling between radiation and material.« less
A numerical solution for the diffusion equation in hydrogeologic systems
Ishii, A.L.; Healy, R.W.; Striegl, Robert G.
1989-01-01
The documentation of a computer code for the numerical solution of the linear diffusion equation in one or two dimensions in Cartesian or cylindrical coordinates is presented. Applications of the program include molecular diffusion, heat conduction, and fluid flow in confined systems. The flow media may be anisotropic and heterogeneous. The model is formulated by replacing the continuous linear diffusion equation by discrete finite-difference approximations at each node in a block-centered grid. The resulting matrix equation is solved by the method of preconditioned conjugate gradients. The conjugate gradient method does not require the estimation of iteration parameters and is guaranteed convergent in the absence of rounding error. The matrixes are preconditioned to decrease the steps to convergence. The model allows the specification of any number of boundary conditions for any number of stress periods, and the output of a summary table for selected nodes showing flux and the concentration of the flux quantity for each time step. The model is written in a modular format for ease of modification. The model was verified by comparison of numerical and analytical solutions for cases of molecular diffusion, two-dimensional heat transfer, and axisymmetric radial saturated fluid flow. Application of the model to a hypothetical two-dimensional field situation of gas diffusion in the unsaturated zone is demonstrated. The input and output files are included as a check on program installation. The definition of variables, input requirements, flow chart, and program listing are included in the attachments. (USGS)
Leonardi, Erminia; Angeli, Celestino
2010-01-14
The diffusion process in a multicomponent system can be formulated in a general form by the generalized Maxwell-Stefan equations. This formulation is able to describe the diffusion process in different systems, such as, for instance, bulk diffusion (in the gas, liquid, and solid phase) and diffusion in microporous materials (membranes, zeolites, nanotubes, etc.). The Maxwell-Stefan equations can be solved analytically (only in special cases) or by numerical approaches. Different numerical strategies have been previously presented, but the number of diffusing species is normally restricted, with only few exceptions, to three in bulk diffusion and to two in microporous systems, unless simplifications of the Maxwell-Stefan equations are considered. In the literature, a large effort has been devoted to the derivation of the analytic expression of the elements of the Fick-like diffusion matrix and therefore to the symbolic inversion of a square matrix with dimensions n x n (n being the number of independent components). This step, which can be easily performed for n = 2 and remains reasonable for n = 3, becomes rapidly very complex in problems with a large number of components. This paper addresses the problem of the numerical resolution of the Maxwell-Stefan equations in the transient regime for a one-dimensional system with a generic number of components, avoiding the definition of the analytic expression of the elements of the Fick-like diffusion matrix. To this aim, two approaches have been implemented in a computational code; the first is the simple finite difference second-order accurate in time Crank-Nicolson scheme for which the full mathematical derivation and the relevant final equations are reported. The second is based on the more accurate backward differentiation formulas, BDF, or Gear's method (Shampine, L. F. ; Gear, C. W. SIAM Rev. 1979, 21, 1.), as implemented in the Livermore solver for ordinary differential equations, LSODE (Hindmarsh, A. C. Serial Fortran Solvers for ODE Initial Value Problems, Technical Report; https://computation.llnl.gov/casc/odepack/odepack_ home.html (2006).). Both methods have been applied to a series of specific problems, such as bulk diffusion of acetone and methanol through stagnant air, uptake of two components on a microporous material in a model system, and permeation across a microporous membrane in model systems, both with the aim to validate the method and to add new information to the comprehension of the peculiar behavior of these systems. The approach is validated by comparison with different published results and with analytic expressions for the steady-state concentration profiles or fluxes in particular systems. The possibility to treat a generic number of components (the limitation being essentially the computational power) is also tested, and results are reported on the permeation of a five component mixture through a membrane in a model system. It is worth noticing that the algorithm here reported can be applied also to the Fick formulation of the diffusion problem with concentration-dependent diffusion coefficients.
Repins, Ingrid L.; Harvey, Steve; Bowers, Karen; ...
2017-05-15
Cu(In,Ga)Se 2(CIGS) photovoltaic absorbers frequently develop Ga gradients during growth. These gradients vary as a function of growth recipe, and are important to device performance. Prediction of Ga profiles using classic diffusion equations is not possible because In and Ga atoms occupy the same lattice sites and thus diffuse interdependently, and there is not yet a detailed experimental knowledge of the chemical potential as a function of composition that describes this interaction. Here, we show how diffusion equations can be modified to account for site sharing between In and Ga atoms. The analysis has been implemented in an Excel spreadsheet,more » and outputs predicted Cu, In, and Ga profiles for entered deposition recipes. A single set of diffusion coefficients and activation energies are chosen, such that simulated elemental profiles track with published data and those from this study. Extent and limits of agreement between elemental profiles predicted from the growth recipes and the spreadsheet tool are demonstrated.« less
NASA Technical Reports Server (NTRS)
Li, Jian-Zhong; Cheung, Samson H.; Ning, C. Z.
2001-01-01
Carrier diffusion and thermal conduction play a fundamental role in the operation of high-power, broad-area semiconductor lasers. Restricted geometry, high pumping level and dynamic instability lead to inhomogeneous spatial distribution of plasma density, temperature, as well as light field, due to strong light-matter interaction. Thus, modeling and simulation of such optoelectronic devices rely on detailed descriptions of carrier dynamics and energy transport in the system. A self-consistent description of lasing and heating in large-aperture, inhomogeneous edge- or surface-emitting lasers (VCSELs) require coupled diffusion equations for carrier density and temperature. In this paper, we derive such equations from the Boltzmann transport equation for the carrier distributions. The derived self- and mutual-diffusion coefficients are in general nonlinear functions of carrier density and temperature including many-body interactions. We study the effects of many-body interactions on these coefficients, as well as the nonlinearity of these coefficients for large-area VCSELs. The effects of mutual diffusions on carrier and temperature distributions in gain-guided VCSELs will be also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Repins, Ingrid L.; Harvey, Steve; Bowers, Karen
Cu(In,Ga)Se 2(CIGS) photovoltaic absorbers frequently develop Ga gradients during growth. These gradients vary as a function of growth recipe, and are important to device performance. Prediction of Ga profiles using classic diffusion equations is not possible because In and Ga atoms occupy the same lattice sites and thus diffuse interdependently, and there is not yet a detailed experimental knowledge of the chemical potential as a function of composition that describes this interaction. Here, we show how diffusion equations can be modified to account for site sharing between In and Ga atoms. The analysis has been implemented in an Excel spreadsheet,more » and outputs predicted Cu, In, and Ga profiles for entered deposition recipes. A single set of diffusion coefficients and activation energies are chosen, such that simulated elemental profiles track with published data and those from this study. Extent and limits of agreement between elemental profiles predicted from the growth recipes and the spreadsheet tool are demonstrated.« less
Fluctuation-enhanced electric conductivity in electrolyte solutions
Péraud, Jean-Philippe; Nonaka, Andrew J.; Bell, John B.; ...
2017-09-26
In this work, we analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson–Nernst–Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation–anion diffusion coefficient. Specifically, we predict a nonzero cation–anion Maxwell– Stefan coefficient proportionalmore » to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye–Huckel–Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Lastly, we show that strong applied electric fields result in anisotropically enhanced “giant” velocity fluctuations and reduced fluctuations of salt concentration.« less
Fluctuation-enhanced electric conductivity in electrolyte solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Péraud, Jean-Philippe; Nonaka, Andrew J.; Bell, John B.
In this work, we analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson–Nernst–Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation–anion diffusion coefficient. Specifically, we predict a nonzero cation–anion Maxwell– Stefan coefficient proportionalmore » to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye–Huckel–Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Lastly, we show that strong applied electric fields result in anisotropically enhanced “giant” velocity fluctuations and reduced fluctuations of salt concentration.« less
Viscosity and diffusivity in melts: from unary to multicomponent systems
NASA Astrophysics Data System (ADS)
Chen, Weimin; Zhang, Lijun; Du, Yong; Huang, Baiyun
2014-05-01
Viscosity and diffusivity, two important transport coefficients, are systematically investigated from unary melt to binary to multicomponent melts in the present work. By coupling with Kaptay's viscosity equation of pure liquid metals and effective radii of diffusion species, the Sutherland equation is modified by taking the size effect into account, and further derived into an Arrhenius formula for the convenient usage. Its reliability for predicting self-diffusivity and impurity diffusivity in unary liquids is then validated by comparing the calculated self-diffusivities and impurity diffusivities in liquid Al- and Fe-based alloys with the experimental and the assessed data. Moreover, the Kozlov model was chosen among various viscosity models as the most reliable one to reproduce the experimental viscosities in binary and multicomponent melts. Based on the reliable viscosities calculated from the Kozlov model, the modified Sutherland equation is utilized to predict the tracer diffusivities in binary and multicomponent melts, and validated in Al-Cu, Al-Ni and Al-Ce-Ni melts. Comprehensive comparisons between the calculated results and the literature data indicate that the experimental tracer diffusivities and the theoretical ones can be well reproduced by the present calculations. In addition, the vacancy-wind factor in binary liquid Al-Ni alloys with the increasing temperature is also discussed. What's more, the calculated inter-diffusivities in liquid Al-Cu, Al-Ni and Al-Ag-Cu alloys are also in excellent agreement with the measured and theoretical data. Comparisons between the simulated concentration profiles and the measured ones in Al-Cu, Al-Ce-Ni and Al-Ag-Cu melts are further used to validate the present calculation method.
Analytical study of fractional equations describing anomalous diffusion of energetic particles
NASA Astrophysics Data System (ADS)
Tawfik, A. M.; Fichtner, H.; Schlickeiser, R.; Elhanbaly, A.
2017-06-01
To present the main influence of anomalous diffusion on the energetic particle propagation, the fractional derivative model of transport is developed by deriving the fractional modified Telegraph and Rayleigh equations. Analytical solutions of the fractional modified Telegraph and the fractional Rayleigh equations, which are defined in terms of Caputo fractional derivatives, are obtained by using the Laplace transform and the Mittag-Leffler function method. The solutions of these fractional equations are given in terms of special functions like Fox’s H, Mittag-Leffler, Hermite and Hyper-geometric functions. The predicted travelling pulse solutions are discussed in each case for different values of fractional order.
Exploring the limits of the ``SNB'' multi-group diffusion nonlocal model
NASA Astrophysics Data System (ADS)
Brodrick, Jonathan; Ridgers, Christopher; Kingham, Robert
2014-10-01
A correct treatment of nonlocal transport in the presence of steep temperature gradients found in laser and inertial fusion plasmas has long been highly desirable over the use of an ad-hoc flux limiter. Therefore, an implementation of the ``SNB'' nonlocal model (G P Schurtz, P D Nicolaï & M Busquet, Phys. Plas. 7, 4238 (2000)) has been benchmarked against a fully-implicit kinetic code: IMPACT. A variety of scenarios, including relaxation of temperature sinusoids and Gaussians in addition to continuous laser heating have been investigated. Results highlight the effect of neglecting electron inertia (∂f1/∂ t) as well as question the feasibility of a nonlocal model that does not continuously track the evolution of the distribution function. Deviations from the Spitzer electric fields used in the model across steep gradients are also investigated. Regimes of validity for such a model are identified and discussed, and possible improvements to the model are suggested.
Flowing gas, non-nuclear experiments on the gas core reactor
NASA Technical Reports Server (NTRS)
Kunze, J. F.; Suckling, D. H.; Copper, C. G.
1972-01-01
Flow tests were conducted on models of the gas core (cavity) reactor. Variations in cavity wall and injection configurations were aimed at establishing flow patterns that give a maximum of the nuclear criticality eigenvalue. Correlation with the nuclear effect was made using multigroup diffusion theory normalized by previous benchmark critical experiments. Air was used to simulate the hydrogen propellant in the flow tests, and smoked air, argon, or freon to simulate the central nuclear fuel gas. All tests were run in the down-firing direction so that gravitational effects simulated the acceleration effect of a rocket. Results show that acceptable flow patterns with high volume fraction for the simulated nuclear fuel gas and high flow rate ratios of propellant to fuel can be obtained. Using a point injector for the fuel, good flow patterns are obtained by directing the outer gas at high velocity along the cavity wall, using louvered or oblique-angle-honeycomb injection schemes.
Subjective residual life expectancy in health self-regulation.
Ziegelmann, Jochen P; Lippke, Sonia; Schwarzer, Ralf
2006-07-01
Applying socioemotional selectivity theory to the domain of health, we examined the interplay of social-cognitive predictors of physical exercise in two groups of people who perceived their remaining lifetime as either expansive or limited (based on subjective longevity ratings). Individuals (N = 370) who were prescribed physical exercise were assessed at discharge from orthopedic rehabilitation as well as 6 and 12 months later. Multigroup structural equation modeling showed differences in latent means, interrelations of predictors, and amount of explained variance. Individuals who perceived their time as limited reported a less favorable profile on social-cognitive variables and less exercise goal attainment. We give first insights on how health self-regulation differs in these groups, and we discuss avenues for intervention based on socioemotional selectivity theory. In contrast to chronological age, subjective life expectancy can be targeted by intervention.
Tsai, William; Nguyen, D Julie; Weiss, Bahr; Ngo, Victoria; Lau, Anna S
2017-05-01
The current study examined the prospective relations between emotion suppression and maladjustment (i.e., depressive symptoms, family stress events, peer stress events, and family and peer support) among Vietnamese American (n = 372) and European American adolescents (n = 304). We found that at baseline Vietnamese Americans adolescents reported greater use of emotion suppression coping than European American adolescents. Multi-group structural equation modeling indicated that for European American teens emotion suppression was significantly related to increased depression symptoms and decreased quality of peer relationships. In contrast, for the Vietnamese Americans teens emotion suppression relations to later maladjustment was either nonsignificant or attenuated relative to the European American. These findings suggest ethnic group differences in both the utilization, and consequences and function of emotion suppression among Vietnamese American and European American adolescents.
An Explanatory Model of Dating Violence Risk Factors in Spanish Adolescents.
Aizpitarte, Alazne; Alonso-Arbiol, Itziar; Van de Vijver, Fons J R
2017-12-01
Dating violence is a serious public health issue that needs further understanding in terms of risk factors that may be involved in it. The main goal of this study was to test a mediational model of dating violence risk factors. The sample was composed of 477 secondary and college students from Spain (59% females). A dynamic developmental explanatory model considering aggressiveness, insecure attachment, interparental conflict, and peer dating violence was tested using a multigroup structural equation model. Aggressiveness partially mediated the relation between anxious attachment and dating violence and fully mediated the association between interparental conflict resolution and dating violence. Furthermore, perceived peer dating violence was a direct predictor of dating violence. Implications for prevention and intervention plans are discussed. © 2017 The Authors. Journal of Research on Adolescence © 2017 Society for Research on Adolescence.
Tsai, William; Nguyen, D. Julie; Weiss, Bahr; Ngo, Victoria; Lau, Anna S.
2016-01-01
The current study examined the prospective relations between emotion suppression and maladjustment (i.e., depressive symptoms, family stress events, peer stress events, and family and peer support) among Vietnamese American (n = 372) and European American adolescents (n = 304). We found that at baseline Vietnamese Americans adolescents reported greater use of emotion suppression coping than European American adolescents. Multi-group structural equation modeling indicated that for European American teens emotion suppression was significantly related to increased depression symptoms and decreased quality of peer relationships. In contrast, for the Vietnamese Americans teens emotion suppression relations to later maladjustment was either nonsignificant or attenuated relative to the European American. These findings suggest ethnic group differences in both the utilization, and consequences and function of emotion suppression among Vietnamese American and European American adolescents. PMID:27469318
NASA Astrophysics Data System (ADS)
Helmers, Michael; Herrmann, Michael
2018-03-01
We consider a lattice regularization for an ill-posed diffusion equation with a trilinear constitutive law and study the dynamics of phase interfaces in the parabolic scaling limit. Our main result guarantees for a certain class of single-interface initial data that the lattice solutions satisfy asymptotically a free boundary problem with a hysteretic Stefan condition. The key challenge in the proof is to control the microscopic fluctuations that are inevitably produced by the backward diffusion when a particle passes the spinodal region.
Nonequilibrium diffusive gas dynamics: Poiseuille microflow
NASA Astrophysics Data System (ADS)
Abramov, Rafail V.; Otto, Jasmine T.
2018-05-01
We test the recently developed hierarchy of diffusive moment closures for gas dynamics together with the near-wall viscosity scaling on the Poiseuille flow of argon and nitrogen in a one micrometer wide channel, and compare it against the corresponding Direct Simulation Monte Carlo computations. We find that the diffusive regularized Grad equations with viscosity scaling provide the most accurate approximation to the benchmark DSMC results. At the same time, the conventional Navier-Stokes equations without the near-wall viscosity scaling are found to be the least accurate among the tested closures.
A Comparison of Some Difference Schemes for a Parabolic Problem of Zero-Coupon Bond Pricing
NASA Astrophysics Data System (ADS)
Chernogorova, Tatiana; Vulkov, Lubin
2009-11-01
This paper describes a comparison of some numerical methods for solving a convection-diffusion equation subjected by dynamical boundary conditions which arises in the zero-coupon bond pricing. The one-dimensional convection-diffusion equation is solved by using difference schemes with weights including standard difference schemes as the monotone Samarskii's scheme, FTCS and Crank-Nicolson methods. The schemes are free of spurious oscillations and satisfy the positivity and maximum principle as demanded for the financial and diffusive solution. Numerical results are compared with analytical solutions.
A high-order Lagrangian-decoupling method for the incompressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Ho, Lee-Wing; Maday, Yvon; Patera, Anthony T.; Ronquist, Einar M.
1989-01-01
A high-order Lagrangian-decoupling method is presented for the unsteady convection-diffusion and incompressible Navier-Stokes equations. The method is based upon: (1) Lagrangian variational forms that reduce the convection-diffusion equation to a symmetric initial value problem; (2) implicit high-order backward-differentiation finite-difference schemes for integration along characteristics; (3) finite element or spectral element spatial discretizations; and (4) mesh-invariance procedures and high-order explicit time-stepping schemes for deducing function values at convected space-time points. The method improves upon previous finite element characteristic methods through the systematic and efficient extension to high order accuracy, and the introduction of a simple structure-preserving characteristic-foot calculation procedure which is readily implemented on modern architectures. The new method is significantly more efficient than explicit-convection schemes for the Navier-Stokes equations due to the decoupling of the convection and Stokes operators and the attendant increase in temporal stability. Numerous numerical examples are given for the convection-diffusion and Navier-Stokes equations for the particular case of a spectral element spatial discretization.
The general relativistic thin disc evolution equation
NASA Astrophysics Data System (ADS)
Balbus, Steven A.
2017-11-01
In the classical theory of thin disc accretion discs, the constraints of mass and angular momentum conservation lead to a diffusion-like equation for the turbulent evolution of the surface density. Here, we revisit this problem, extending the Newtonian analysis to the regime of Kerr geometry relevant to black holes. A diffusion-like equation once again emerges, but now with a singularity at the radius at which the effective angular momentum gradient passes through zero. The equation may be analysed using a combination of Wentzel-Kramers-Brillouin techniques, local techniques and matched asymptotic expansions. It is shown that imposing the boundary condition of a vanishing stress tensor (more precisely the radial-azimuthal component thereof) allows smooth stable modes to exist external to the angular momentum singularity, the innermost stable circular orbit, while smoothly vanishing inside this location. The extension of the disc diffusion equation to the domain of general relativity introduces a new tool for numerical and phenomenological studies of accretion discs, and may prove to be a useful technique for understanding black hole X-ray transients.
NASA Astrophysics Data System (ADS)
Qin, Shanlin; Liu, Fawang; Turner, Ian W.
2018-03-01
The consideration of diffusion processes in magnetic resonance imaging (MRI) signal attenuation is classically described by the Bloch-Torrey equation. However, many recent works highlight the distinct deviation in MRI signal decay due to anomalous diffusion, which motivates the fractional order generalization of the Bloch-Torrey equation. In this work, we study the two-dimensional multi-term time and space fractional diffusion equation generalized from the time and space fractional Bloch-Torrey equation. By using the Galerkin finite element method with a structured mesh consisting of rectangular elements to discretize in space and the L1 approximation of the Caputo fractional derivative in time, a fully discrete numerical scheme is derived. A rigorous analysis of stability and error estimation is provided. Numerical experiments in the square and L-shaped domains are performed to give an insight into the efficiency and reliability of our method. Then the scheme is applied to solve the multi-term time and space fractional Bloch-Torrey equation, which shows that the extra time derivative terms impact the relaxation process.
Kong, Steven H; Shore, Joel D
2007-03-01
We study the propagation of light through a medium containing isotropic scattering and absorption centers. With a Monte Carlo simulation serving as the benchmark solution to the radiative transfer problem of light propagating through a turbid slab, we compare the transmission and reflection density computed from the telegrapher's equation, the diffusion equation, and multiple-flux theories such as the Kubelka-Munk and four-flux theories. Results are presented for both normally incident light and diffusely incident light. We find that we can always obtain very good results from the telegrapher's equation provided that two parameters that appear in the solution are set appropriately. We also find an interesting connection between certain solutions of the telegrapher's equation and solutions of the Kubelka-Munk and four-flux theories with a small modification to how the phenomenological parameters in those theories are traditionally related to the optical scattering and absorption coefficients of the slab. Finally, we briefly explore how well the theories can be extended to the case of anisotropic scattering by multiplying the scattering coefficient by a simple correction factor.
Conformable derivative approach to anomalous diffusion
NASA Astrophysics Data System (ADS)
Zhou, H. W.; Yang, S.; Zhang, S. Q.
2018-02-01
By using a new derivative with fractional order, referred to conformable derivative, an alternative representation of the diffusion equation is proposed to improve the modeling of anomalous diffusion. The analytical solutions of the conformable derivative model in terms of Gauss kernel and Error function are presented. The power law of the mean square displacement for the conformable diffusion model is studied invoking the time-dependent Gauss kernel. The parameters related to the conformable derivative model are determined by Levenberg-Marquardt method on the basis of the experimental data of chloride ions transportation in reinforced concrete. The data fitting results showed that the conformable derivative model agrees better with the experimental data than the normal diffusion equation. Furthermore, the potential application of the proposed conformable derivative model of water flow in low-permeability media is discussed.
Ionic channels: natural nanotubes described by the drift diffusion equations
NASA Astrophysics Data System (ADS)
Eisenberg, Bob
2000-05-01
Ionic channels are a large class of proteins with holes down their middle that control a wide range of cellular functions important in health and disease. Ionic channels can be analysed using a combination of the Poisson and drift diffusion equations familiar from computational electronics because their behavior is dominated by the electrical properties of their simple structure.
Analysis of pulse thermography using similarities between wave and diffusion propagation
NASA Astrophysics Data System (ADS)
Gershenson, M.
2017-05-01
Pulse thermography or thermal wave imaging are commonly used as nondestructive evaluation (NDE) method. While the technical aspect has evolve with time, theoretical interpretation is lagging. Interpretation is still using curved fitting on a log log scale. A new approach based directly on the governing differential equation is introduced. By using relationships between wave propagation and the diffusive propagation of thermal excitation, it is shown that one can transform from solutions in one type of propagation to the other. The method is based on the similarities between the Laplace transforms of the diffusion equation and the wave equation. For diffusive propagation we have the Laplace variable s to the first power, while for the wave propagation similar equations occur with s2. For discrete time the transformation between the domains is performed by multiplying the temperature data vector by a matrix. The transform is local. The performance of the techniques is tested on synthetic data. The application of common back projection techniques used in the processing of wave data is also demonstrated. The combined use of the transform and back projection makes it possible to improve both depth and lateral resolution of transient thermography.
Reaction rates for a generalized reaction-diffusion master equation
Hellander, Stefan; Petzold, Linda
2016-01-19
It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model, and show inmore » two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is on the order of the reaction radius of a reacting pair of molecules.« less
Reaction rates for a generalized reaction-diffusion master equation
Hellander, Stefan; Petzold, Linda
2016-01-01
It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model, and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is on the order of the reaction radius of a reacting pair of molecules. PMID:26871190
Differential equation of exospheric lateral transport and its application to terrestrial hydrogen
NASA Technical Reports Server (NTRS)
Hodges, R. R., Jr.
1973-01-01
The differential equation description of exospheric lateral transport of Hodges and Johnson is reformulated to extend its utility to light gases. Accuracy of the revised equation is established by applying it to terrestrial hydrogen. The resulting global distributions for several static exobase models are shown to be essentially the same as those that have been computed by Quessette using an integral equation approach. The present theory is subsequently used to elucidate the effects of nonzero lateral flow, exobase rotation, and diurnal tidal winds on the hydrogen distribution. Finally it is shown that the differential equation of exospheric transport is analogous to a diffusion equation. Hence it is practical to consider exospheric transport as a continuation of thermospheric diffusion, a concept that alleviates the need for an artificial exobase dividing thermosphere and exosphere.
Chu, Khim Hoong
2017-11-09
Surface diffusion coefficients may be estimated by fitting solutions of a diffusion model to batch kinetic data. For non-linear systems, a numerical solution of the diffusion model's governing equations is generally required. We report here the application of the classic Langmuir kinetics model to extract surface diffusion coefficients from batch kinetic data. The use of the Langmuir kinetics model in lieu of the conventional surface diffusion model allows derivation of an analytical expression. The parameter estimation procedure requires determining the Langmuir rate coefficient from which the pertinent surface diffusion coefficient is calculated. Surface diffusion coefficients within the 10 -9 to 10 -6 cm 2 /s range obtained by fitting the Langmuir kinetics model to experimental kinetic data taken from the literature are found to be consistent with the corresponding values obtained from the traditional surface diffusion model. The virtue of this simplified parameter estimation method is that it reduces the computational complexity as the analytical expression involves only an algebraic equation in closed form which is easily evaluated by spreadsheet computation.
Turbo fluid machinery and diffusers
NASA Technical Reports Server (NTRS)
Sakurai, T.
1984-01-01
The general theory behind turbo devices and diffusers is explained. Problems and the state of research on basic equations of flow and experimental and measuring methods are discussed. Conventional centrifugation-type compressor and fan diffusers are considered in detail.
Liu, Biao; Wu, Ranchao; Chen, Liping
2018-04-01
Turing instability and pattern formation in a super cross-diffusion predator-prey system with Michaelis-Menten type predator harvesting are investigated. Stability of equilibrium points is first explored with or without super cross-diffusion. It is found that cross-diffusion could induce instability of equilibria. To further derive the conditions of Turing instability, the linear stability analysis is carried out. From theoretical analysis, note that cross-diffusion is the key mechanism for the formation of spatial patterns. By taking cross-diffusion rate as bifurcation parameter, we derive amplitude equations near the Turing bifurcation point for the excited modes by means of weakly nonlinear theory. Dynamical analysis of the amplitude equations interprets the structural transitions and stability of various forms of Turing patterns. Furthermore, the theoretical results are illustrated via numerical simulations. Copyright © 2018. Published by Elsevier Inc.
Determination of the zincate diffusion coefficient and its application to alkaline battery problems
NASA Technical Reports Server (NTRS)
May, C. E.; Kautz, Harold E.
1978-01-01
The diffusion coefficient for the zincate ion at 24 C was found to be 9.9 X 10 to the minus 7th power squared cm per sec + or - 30 percent in 45 percent potassium hydroxide and 1.4 x 10 to the minus 7 squared cm per sec + or - 25 percent in 40 percent sodium hydroxide. Comparison of these values with literature values at different potassium hydroxide concentrations show that the Stokes-Einstein equation is obeyed. The diffusion coefficient is characteristic of the zincate ion (not the cation) and independent of its concentration. Calculations with the measured value of the diffusion coefficient show that the zinc concentration in an alkaline zincate half cell becomes uniform throughout in tens of hours by diffusion alone. Diffusion equations are derived which are applicable to finite size chambers. Details and discussion of the experimental method are also given.
Determination of the zincate diffusion coefficient and its application to alkaline battery problems
NASA Technical Reports Server (NTRS)
May, C. E.; Kautz, H. E.
1978-01-01
The diffusion coefficient for the zincate ion at 24 C was found to be 9.9 x 10 to the -7th power sq cm/sec + or - 30% in 45% potassium hydroxide and 1.4 x 10 to the -7th power sq cm/sec + or - 25% in 40% sodium hydroxide. Comparison of these values with literature values at different potassium hydroxide concentrations show that the Stokes-Einstein equation is obeyed. The diffusion coefficient is characteristic of the zincate ion (not the cation) and independent of its concentration. Calculations with the measured value of the diffusion coefficient show that the zinc concentration in an alkaline zincate half-cell becomes uniform throughout in tens of hours by diffusion alone. Diffusion equations are derived which are applicable to finite-size chambers. Details and discussion of the experimental method are also given.
Contini, D; Martelli, F; Zaccanti, G
1997-07-01
The diffusion approximation of the radiative transfer equation is a model used widely to describe photon migration in highly diffusing media and is an important matter in biological tissue optics. An analysis of the time-dependent diffusion equation together with its solutions for the slab geometry and for a semi-infinite diffusing medium are reported. These solutions, presented for both the time-dependent and the continuous wave source, account for the refractive index mismatch between the turbid medium and the surrounding medium. The results have been compared with those obtained when different boundary conditions were assumed. The comparison has shown that the effect of the refractive index mismatch cannot be disregarded. This effect is particularly important for the transmittance. The discussion of results also provides an analysis of the role of the absorption coefficient in the expression of the diffusion coefficient.
Nonparametric estimates of drift and diffusion profiles via Fokker-Planck algebra.
Lund, Steven P; Hubbard, Joseph B; Halter, Michael
2014-11-06
Diffusion processes superimposed upon deterministic motion play a key role in understanding and controlling the transport of matter, energy, momentum, and even information in physics, chemistry, material science, biology, and communications technology. Given functions defining these random and deterministic components, the Fokker-Planck (FP) equation is often used to model these diffusive systems. Many methods exist for estimating the drift and diffusion profiles from one or more identifiable diffusive trajectories; however, when many identical entities diffuse simultaneously, it may not be possible to identify individual trajectories. Here we present a method capable of simultaneously providing nonparametric estimates for both drift and diffusion profiles from evolving density profiles, requiring only the validity of Langevin/FP dynamics. This algebraic FP manipulation provides a flexible and robust framework for estimating stationary drift and diffusion coefficient profiles, is not based on fluctuation theory or solved diffusion equations, and may facilitate predictions for many experimental systems. We illustrate this approach on experimental data obtained from a model lipid bilayer system exhibiting free diffusion and electric field induced drift. The wide range over which this approach provides accurate estimates for drift and diffusion profiles is demonstrated through simulation.
Structural equation modeling for observational studies
Grace, J.B.
2008-01-01
Structural equation modeling (SEM) represents a framework for developing and evaluating complex hypotheses about systems. This method of data analysis differs from conventional univariate and multivariate approaches familiar to most biologists in several ways. First, SEMs are multiequational and capable of representing a wide array of complex hypotheses about how system components interrelate. Second, models are typically developed based on theoretical knowledge and designed to represent competing hypotheses about the processes responsible for data structure. Third, SEM is conceptually based on the analysis of covariance relations. Most commonly, solutions are obtained using maximum-likelihood solution procedures, although a variety of solution procedures are used, including Bayesian estimation. Numerous extensions give SEM a very high degree of flexibility in dealing with nonnormal data, categorical responses, latent variables, hierarchical structure, multigroup comparisons, nonlinearities, and other complicating factors. Structural equation modeling allows researchers to address a variety of questions about systems, such as how different processes work in concert, how the influences of perturbations cascade through systems, and about the relative importance of different influences. I present 2 example applications of SEM, one involving interactions among lynx (Lynx pardinus), mongooses (Herpestes ichneumon), and rabbits (Oryctolagus cuniculus), and the second involving anuran species richness. Many wildlife ecologists may find SEM useful for understanding how populations function within their environments. Along with the capability of the methodology comes a need for care in the proper application of SEM.
FROM THE HISTORY OF PHYSICS: Mysteries of diffusion and labyrinths of destiny
NASA Astrophysics Data System (ADS)
Bakunin, Oleg G.
2003-03-01
The role of prominent Soviet physicist B I Davydov in the development of our understanding of diffusion is briefly reviewed, with emphasis on the ideas he put forward in the 1930s: introducing additional partial derivatives into diffusion equations and extending diffusion concepts to phase space.
Some basic mathematical methods of diffusion theory. [emphasis on atmospheric applications
NASA Technical Reports Server (NTRS)
Giere, A. C.
1977-01-01
An introductory treatment of the fundamentals of diffusion theory is presented, starting with molecular diffusion and leading up to the statistical methods of turbulent diffusion. A multilayer diffusion model, designed to permit concentration and dosage calculations downwind of toxic clouds from rocket vehicles, is described. The concepts and equations of diffusion are developed on an elementary level, with emphasis on atmospheric applications.
Diffuse-Interface Capturing Methods for Compressible Two-Phase Flows
NASA Astrophysics Data System (ADS)
Saurel, Richard; Pantano, Carlos
2018-01-01
Simulation of compressible flows became a routine activity with the appearance of shock-/contact-capturing methods. These methods can determine all waves, particularly discontinuous ones. However, additional difficulties may appear in two-phase and multimaterial flows due to the abrupt variation of thermodynamic properties across the interfacial region, with discontinuous thermodynamical representations at the interfaces. To overcome this difficulty, researchers have developed augmented systems of governing equations to extend the capturing strategy. These extended systems, reviewed here, are termed diffuse-interface models, because they are designed to compute flow variables correctly in numerically diffused zones surrounding interfaces. In particular, they facilitate coupling the dynamics on both sides of the (diffuse) interfaces and tend to the proper pure fluid-governing equations far from the interfaces. This strategy has become efficient for contact interfaces separating fluids that are governed by different equations of state, in the presence or absence of capillary effects, and with phase change. More sophisticated materials than fluids (e.g., elastic-plastic materials) have been considered as well.
A novel finite volume discretization method for advection-diffusion systems on stretched meshes
NASA Astrophysics Data System (ADS)
Merrick, D. G.; Malan, A. G.; van Rooyen, J. A.
2018-06-01
This work is concerned with spatial advection and diffusion discretization technology within the field of Computational Fluid Dynamics (CFD). In this context, a novel method is proposed, which is dubbed the Enhanced Taylor Advection-Diffusion (ETAD) scheme. The model equation employed for design of the scheme is the scalar advection-diffusion equation, the industrial application being incompressible laminar and turbulent flow. Developed to be implementable into finite volume codes, ETAD places specific emphasis on improving accuracy on stretched structured and unstructured meshes while considering both advection and diffusion aspects in a holistic manner. A vertex-centered structured and unstructured finite volume scheme is used, and only data available on either side of the volume face is employed. This includes the addition of a so-called mesh stretching metric. Additionally, non-linear blending with the existing NVSF scheme was performed in the interest of robustness and stability, particularly on equispaced meshes. The developed scheme is assessed in terms of accuracy - this is done analytically and numerically, via comparison to upwind methods which include the popular QUICK and CUI techniques. Numerical tests involved the 1D scalar advection-diffusion equation, a 2D lid driven cavity and turbulent flow case. Significant improvements in accuracy were achieved, with L2 error reductions of up to 75%.
Numerical simulation of double‐diffusive finger convection
Hughes, Joseph D.; Sanford, Ward E.; Vacher, H. Leonard
2005-01-01
A hybrid finite element, integrated finite difference numerical model is developed for the simulation of double‐diffusive and multicomponent flow in two and three dimensions. The model is based on a multidimensional, density‐dependent, saturated‐unsaturated transport model (SUTRA), which uses one governing equation for fluid flow and another for solute transport. The solute‐transport equation is applied sequentially to each simulated species. Density coupling of the flow and solute‐transport equations is accounted for and handled using a sequential implicit Picard iterative scheme. High‐resolution data from a double‐diffusive Hele‐Shaw experiment, initially in a density‐stable configuration, is used to verify the numerical model. The temporal and spatial evolution of simulated double‐diffusive convection is in good agreement with experimental results. Numerical results are very sensitive to discretization and correspond closest to experimental results when element sizes adequately define the spatial resolution of observed fingering. Numerical results also indicate that differences in the molecular diffusivity of sodium chloride and the dye used to visualize experimental sodium chloride concentrations are significant and cause inaccurate mapping of sodium chloride concentrations by the dye, especially at late times. As a result of reduced diffusion, simulated dye fingers are better defined than simulated sodium chloride fingers and exhibit more vertical mass transfer.
New Insights into the Fractional Order Diffusion Equation Using Entropy and Kurtosis.
Ingo, Carson; Magin, Richard L; Parrish, Todd B
2014-11-01
Fractional order derivative operators offer a concise description to model multi-scale, heterogeneous and non-local systems. Specifically, in magnetic resonance imaging, there has been recent work to apply fractional order derivatives to model the non-Gaussian diffusion signal, which is ubiquitous in the movement of water protons within biological tissue. To provide a new perspective for establishing the utility of fractional order models, we apply entropy for the case of anomalous diffusion governed by a fractional order diffusion equation generalized in space and in time. This fractional order representation, in the form of the Mittag-Leffler function, gives an entropy minimum for the integer case of Gaussian diffusion and greater values of spectral entropy for non-integer values of the space and time derivatives. Furthermore, we consider kurtosis, defined as the normalized fourth moment, as another probabilistic description of the fractional time derivative. Finally, we demonstrate the implementation of anomalous diffusion, entropy and kurtosis measurements in diffusion weighted magnetic resonance imaging in the brain of a chronic ischemic stroke patient.
Henry, B I; Langlands, T A M; Wearne, S L
2006-09-01
We have revisited the problem of anomalously diffusing species, modeled at the mesoscopic level using continuous time random walks, to include linear reaction dynamics. If a constant proportion of walkers are added or removed instantaneously at the start of each step then the long time asymptotic limit yields a fractional reaction-diffusion equation with a fractional order temporal derivative operating on both the standard diffusion term and a linear reaction kinetics term. If the walkers are added or removed at a constant per capita rate during the waiting time between steps then the long time asymptotic limit has a standard linear reaction kinetics term but a fractional order temporal derivative operating on a nonstandard diffusion term. Results from the above two models are compared with a phenomenological model with standard linear reaction kinetics and a fractional order temporal derivative operating on a standard diffusion term. We have also developed further extensions of the CTRW model to include more general reaction dynamics.
Anomalous diffusion and scaling in coupled stochastic processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bel, Golan; Nemenman, Ilya
2009-01-01
Inspired by problems in biochemical kinetics, we study statistical properties of an overdamped Langevin processes with the friction coefficient depending on the state of a similar, unobserved, process. Integrating out the latter, we derive the Pocker-Planck the friction coefficient of the first depends on the state of the second. Integrating out the latter, we derive the Focker-Planck equation for the probability distribution of the former. This has the fonn of diffusion equation with time-dependent diffusion coefficient, resulting in an anomalous diffusion. The diffusion exponent can not be predicted using a simple scaling argument, and anomalous scaling appears as well. Themore » diffusion exponent of the Weiss-Havlin comb model is derived as a special case, and the same exponent holds even for weakly coupled processes. We compare our theoretical predictions with numerical simulations and find an excellent agreement. The findings caution against treating biochemical systems with unobserved dynamical degrees of freedom by means of standandard, diffusive Langevin descritpion.« less
A low diffusive Lagrange-remap scheme for the simulation of violent air-water free-surface flows
NASA Astrophysics Data System (ADS)
Bernard-Champmartin, Aude; De Vuyst, Florian
2014-10-01
In 2002, Després and Lagoutière [17] proposed a low-diffusive advection scheme for pure transport equation problems, which is particularly accurate for step-shaped solutions, and thus suited for interface tracking procedure by a color function. This has been extended by Kokh and Lagoutière [28] in the context of compressible multifluid flows using a five-equation model. In this paper, we explore a simplified variant approach for gas-liquid three-equation models. The Eulerian numerical scheme has two ingredients: a robust remapped Lagrange solver for the solution of the volume-averaged equations, and a low diffusive compressive scheme for the advection of the gas mass fraction. Numerical experiments show the performance of the computational approach on various flow reference problems: dam break, sloshing of a tank filled with water, water-water impact and finally a case of Rayleigh-Taylor instability. One of the advantages of the present interface capturing solver is its natural implementation on parallel processors or computers.
A computer program for the simulation of heat and moisture flow in soils
NASA Technical Reports Server (NTRS)
Camillo, P.; Schmugge, T. J.
1981-01-01
A computer program that simulates the flow of heat and moisture in soils is described. The space-time dependence of temperature and moisture content is described by a set of diffusion-type partial differential equations. The simulator uses a predictor/corrector to numerically integrate them, giving wetness and temperature profiles as a function of time. The simulator was used to generate solutions to diffusion-type partial differential equations for which analytical solutions are known. These equations include both constant and variable diffusivities, and both flux and constant concentration boundary conditions. In all cases, the simulated and analytic solutions agreed to within the error bounds which were imposed on the integrator. Simulations of heat and moisture flow under actual field conditions were also performed. Ground truth data were used for the boundary conditions and soil transport properties. The qualitative agreement between simulated and measured profiles is an indication that the model equations are reasonably accurate representations of the physical processes involved.
Sizemore, Kayla M; Olmstead, Spencer B
2017-01-01
Research on consensual nonmonogamy (CNM) has increased over the past decade. However, willingness to engage in CNM is an understudied phenomenon within this body of literature. Little research has examined the correlates of this aspect of CNM or focused on individuals in the developmental period of emerging adulthood. This study used multigroup structural equation modeling (SEM) to test a conceptual model of emerging adults' (ages 18 to 29; N = 890) willingness to engage in CNM. Results indicated that emerging adult experimentation/possibilities, sexual identity exploration, and permissive attitudes toward casual sex were all related to willingness to engage in CNM. Results also showed that the pathway from emerging adult experimentation/possibilities to willingness to engage in CNM was differentially mediated across gender. Specifically, for women there was an indirect (and positive) pathway from experimentation/possibilities to willingness to engage in CNM through sexual identity exploration. For men there was an indirect (and positive) pathway from experimentation/possibilities to willingness to engage in CNM through permissive attitudes toward casual sex. Implications for future studies on CNM among emerging adults are discussed.
A physical and economic model of the nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Schneider, Erich Alfred
A model of the nuclear fuel cycle that is suitable for use in strategic planning and economic forecasting is presented. The model, to be made available as a stand-alone software package, requires only a small set of fuel cycle and reactor specific input parameters. Critical design criteria include ease of use by nonspecialists, suppression of errors to within a range dictated by unit cost uncertainties, and limitation of runtime to under one minute on a typical desktop computer. Collision probability approximations to the neutron transport equation that lead to a computationally efficient decoupling of the spatial and energy variables are presented and implemented. The energy dependent flux, governed by coupled integral equations, is treated by multigroup or continuous thermalization methods. The model's output includes a comprehensive nuclear materials flowchart that begins with ore requirements, calculates the buildup of 24 actinides as well as fission products, and concludes with spent fuel or reprocessed material composition. The costs, direct and hidden, of the fuel cycle under study are also computed. In addition to direct disposal and plutonium recycling strategies in current use, the model addresses hypothetical cycles. These include cycles chosen for minor actinide burning and for their low weapons-usable content.
GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method
NASA Astrophysics Data System (ADS)
Gong, Chunye; Liu, Jie; Chi, Lihua; Huang, Haowei; Fang, Jingyue; Gong, Zhenghu
2011-07-01
Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates ( Sn) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.
Extremal equilibria for reaction-diffusion equations in bounded domains and applications
NASA Astrophysics Data System (ADS)
Rodríguez-Bernal, Aníbal; Vidal-López, Alejandro
We show the existence of two special equilibria, the extremal ones, for a wide class of reaction-diffusion equations in bounded domains with several boundary conditions, including non-linear ones. They give bounds for the asymptotic dynamics and so for the attractor. Some results on the existence and/or uniqueness of positive solutions are also obtained. As a consequence, several well-known results on the existence and/or uniqueness of solutions for elliptic equations are revisited in a unified way obtaining, in addition, information on the dynamics of the associated parabolic problem. Finally, we ilustrate the use of the general results by applying them to the case of logistic equations. In fact, we obtain a detailed picture of the positive dynamics depending on the parameters appearing in the equation.
NASA Astrophysics Data System (ADS)
Wang, I. T.
A general method for determining the effective transport wind speed, overlineu, in the Gaussian plume equation is discussed. Physical arguments are given for using the generalized overlineu instead of the often adopted release-level wind speed with the plume diffusion equation. Simple analytical expressions for overlineu applicable to low-level point releases and a wide range of atmospheric conditions are developed. A non-linear plume kinematic equation is derived using these expressions. Crosswind-integrated SF 6 concentration data from the 1983 PNL tracer experiment are used to evaluate the proposed analytical procedures along with the usual approach of using the release-level wind speed. Results of the evaluation are briefly discussed.
Reduced equations of motion for quantum systems driven by diffusive Markov processes.
Sarovar, Mohan; Grace, Matthew D
2012-09-28
The expansion of a stochastic Liouville equation for the coupled evolution of a quantum system and an Ornstein-Uhlenbeck process into a hierarchy of coupled differential equations is a useful technique that simplifies the simulation of stochastically driven quantum systems. We expand the applicability of this technique by completely characterizing the class of diffusive Markov processes for which a useful hierarchy of equations can be derived. The expansion of this technique enables the examination of quantum systems driven by non-Gaussian stochastic processes with bounded range. We present an application of this extended technique by simulating Stark-tuned Förster resonance transfer in Rydberg atoms with nonperturbative position fluctuations.
Grid adaption based on modified anisotropic diffusion equations formulated in the parametic domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagmeijer, R.
1994-11-01
A new grid-adaption algorithm for problems in computational fluid dynamics is presented. The basic equations are derived from a variational problem formulated in the parametric domain of the mapping that defines the existing grid. Modification of the basic equations provides desirable properties in boundary layers. The resulting modified anisotropic diffusion equations are solved for the computational coordinates as functions of the parametric coordinates and these functions are numerically inverted. Numerical examples show that the algorithm is robust, that shocks and boundary layers are well-resolved on the adapted grid, and that the flow solution becomes a globally smooth function of themore » computational coordinates.« less
A numerical study of the steady scalar convective diffusion equation for small viscosity
NASA Technical Reports Server (NTRS)
Giles, M. B.; Rose, M. E.
1983-01-01
A time-independent convection diffusion equation is studied by means of a compact finite difference scheme and numerical solutions are compared to the analytic inviscid solutions. The correct internal and external boundary layer behavior is observed, due to an inherent feature of the scheme which automatically produces upwind differencing in inviscid regions and the correct viscous behavior in viscous regions.
O the Derivation of the Schroedinger Equation from Stochastic Mechanics.
NASA Astrophysics Data System (ADS)
Wallstrom, Timothy Clarke
The thesis is divided into four largely independent chapters. The first three chapters treat mathematical problems in the theory of stochastic mechanics. The fourth chapter deals with stochastic mechanisms as a physical theory and shows that the Schrodinger equation cannot be derived from existing formulations of stochastic mechanics, as had previously been believed. Since the drift coefficients of stochastic mechanical diffusions are undefined on the nodes, or zeros of the density, an important problem has been to show that the sample paths stay away from the nodes. In Chapter 1, it is shown that for a smooth wavefunction, the closest approach to the nodes can be bounded solely in terms of the time -integrated energy. The ergodic properties of stochastic mechanical diffusions are greatly complicated by the tendency of the particles to avoid the nodes. In Chapter 2, it is shown that a sufficient condition for a stationary process to be ergodic is that there exist positive t and c such that for all x and y, p^{t} (x,y) > cp(y), and this result is applied to show that the set of spin-1over2 diffusions is uniformly ergodic. In stochastic mechanics, the Bopp-Haag-Dankel diffusions on IR^3times SO(3) are used to represent particles with spin. Nelson has conjectured that in the limit as the particle's moment of inertia I goes to zero, the projections of the Bopp -Haag-Dankel diffusions onto IR^3 converge to a Markovian limit process. This conjecture is proved for the spin-1over2 case in Chapter 3, and the limit process identified as the diffusion naturally associated with the solution to the regular Pauli equation. In Chapter 4 it is shown that the general solution of the stochastic Newton equation does not correspond to a solution of the Schrodinger equation, and that there are solutions to the Schrodinger equation which do not satisfy the Guerra-Morato Lagrangian variational principle. These observations are shown to apply equally to other existing formulations of stochastic mechanics, and it is argued that these difficulties represent fundamental inadequacies in the physical foundation of stochastic mechanics.
Nonlinear optical susceptibilities in the diffusion modified AlxGa1-xN/GaN single quantum well
NASA Astrophysics Data System (ADS)
Das, T.; Panda, S.; Panda, B. K.
2018-05-01
Under thermal treatment of the post growth AlGaN/GaN single quantum well, the diffusion of Al and Ga atoms across the interface is expected to form the diffusion modified quantum well with diffusion length as a quantitative parameter for diffusion. The modification of confining potential and position-dependent effective mass in the quantum well due to diffusion is calculated taking the Fick's law. The built-in electric field which arises from spontaneous and piezoelectric polarizations in the wurtzite structure is included in the effective mass equation. The electronic states are calculated from the effective mass equation using the finite difference method for several diffusion lengths. Since the effective well width decreases with increasing diffusion length, the energy levels increase with it. The intersubband energy spacing in the conduction band decreases with diffusion length due to built-in electric field and reduction of effective well width. The linear susceptibility for first-order and the nonlinear second-order and third-order susceptibilities are calculated using the compact density matrix approach taking only two levels. The calculated susceptibilities are red shifted with increase in diffusion lengths due to decrease in intersubband energy spacing.
First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems
NASA Technical Reports Server (NTRS)
Mazaheri, Alireza; Nishikawa, Hiroaki
2014-01-01
A time-dependent extension of the first-order hyperbolic system method for advection-diffusion problems is introduced. Diffusive/viscous terms are written and discretized as a hyperbolic system, which recovers the original equation in the steady state. The resulting scheme offers advantages over traditional schemes: a dramatic simplification in the discretization, high-order accuracy in the solution gradients, and orders-of-magnitude convergence acceleration. The hyperbolic advection-diffusion system is discretized by the second-order upwind residual-distribution scheme in a unified manner, and the system of implicit-residual-equations is solved by Newton's method over every physical time step. The numerical results are presented for linear and nonlinear advection-diffusion problems, demonstrating solutions and gradients produced to the same order of accuracy, with rapid convergence over each physical time step, typically less than five Newton iterations.
Ordinary differential equation for local accumulation time.
Berezhkovskii, Alexander M
2011-08-21
Cell differentiation in a developing tissue is controlled by the concentration fields of signaling molecules called morphogens. Formation of these concentration fields can be described by the reaction-diffusion mechanism in which locally produced molecules diffuse through the patterned tissue and are degraded. The formation kinetics at a given point of the patterned tissue can be characterized by the local accumulation time, defined in terms of the local relaxation function. Here, we show that this time satisfies an ordinary differential equation. Using this equation one can straightforwardly determine the local accumulation time, i.e., without preliminary calculation of the relaxation function by solving the partial differential equation, as was done in previous studies. We derive this ordinary differential equation together with the accompanying boundary conditions and demonstrate that the earlier obtained results for the local accumulation time can be recovered by solving this equation. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Liang, Yingjie; Chen, Wen
2018-03-01
Ultraslow diffusion has been observed in numerous complicated systems. Its mean squared displacement (MSD) is not a power law function of time, but instead a logarithmic function, and in some cases grows even more slowly than the logarithmic rate. The distributed-order fractional diffusion equation model simply does not work for the general ultraslow diffusion. Recent study has used the local structural derivative to describe ultraslow diffusion dynamics by using the inverse Mittag-Leffler function as the structural function, in which the MSD is a function of inverse Mittag-Leffler function. In this study, a new stretched logarithmic diffusion law and its underlying non-local structural derivative diffusion model are proposed to characterize the ultraslow diffusion in aging dense colloidal glass at both the short and long waiting times. It is observed that the aging dynamics of dense colloids is a class of the stretched logarithmic ultraslow diffusion processes. Compared with the power, the logarithmic, and the inverse Mittag-Leffler diffusion laws, the stretched logarithmic diffusion law has better precision in fitting the MSD of the colloidal particles at high densities. The corresponding non-local structural derivative diffusion equation manifests clear physical mechanism, and its structural function is equivalent to the first-order derivative of the MSD.
Influence of heat conducting substrates on explosive crystallization in thin layers
NASA Astrophysics Data System (ADS)
Schneider, Wilhelm
2017-09-01
Crystallization in a thin, initially amorphous layer is considered. The layer is in thermal contact with a substrate of very large dimensions. The energy equation of the layer contains source and sink terms. The source term is due to liberation of latent heat in the crystallization process, while the sink term is due to conduction of heat into the substrate. To determine the latter, the heat diffusion equation for the substrate is solved by applying Duhamel's integral. Thus, the energy equation of the layer becomes a heat diffusion equation with a time integral as an additional term. The latter term indicates that the heat loss due to the substrate depends on the history of the process. To complete the set of equations, the crystallization process is described by a rate equation for the degree of crystallization. The governing equations are then transformed to a moving co-ordinate system in order to analyze crystallization waves that propagate with invariant properties. Dual solutions are found by an asymptotic expansion for large activation energies of molecular diffusion. By introducing suitable variables, the results can be presented in a universal form that comprises the influence of all non-dimensional parameters that govern the process. Of particular interest for applications is the prediction of a critical heat loss parameter for the existence of crystallization waves with invariant properties.
Hibi, Yoshihiko; Kashihara, Ayumi
2018-03-01
A previous study has reported that Knudsen diffusion coefficients obtained by tracer experiments conducted with a binary gas system and a porous medium are consistently smaller than those obtained by permeability experiments conducted with a single-gas system and a porous medium. To date, however, that study is the only one in which tracer experiments have been conducted with a binary gas system. Therefore, to confirm this difference in Knudsen diffusion coefficients, we used a method we had developed previously to conduct tracer experiments with a binary carbon dioxide-nitrogen gas system and five porous media with permeability coefficients ranging from 10 -13 to 10 -11 m 2 . The results showed that the Knudsen diffusion coefficient of N 2 (D N2 ) (cm 2 /s) was related to the effective permeability coefficient k e (m 2 ) as D N2 = 7.39 × 10 7 k e 0.767 . Thus, the Knudsen diffusion coefficients of N 2 obtained by our tracer experiments were consistently 1/27 of those obtained by permeability experiments conducted with many porous media and air by other researchers. By using an inversion simulation to fit the advection-diffusion equation to the distribution of concentrations at observation points calculated by mathematically solving the equation, we confirmed that the method used to obtain the Knudsen diffusion coefficient in this study yielded accurate values. Moreover, because the Knudsen diffusion coefficient did not differ when columns with two different lengths, 900 and 1500 mm, were used, this column property did not influence the flow of gas in the column. The equation of the dusty gas model already includes obstruction factors for Knudsen diffusion and molecular diffusion, which relate to medium heterogeneity and tortuosity and depend only on the structure of the porous medium. Furthermore, there is no need to take account of any additional correction factor for molecular diffusion except the obstruction factor because molecular diffusion is only treated in a multicomponent gas system. Thus, molecular diffusion considers only the obstruction factor related to tortuosity. Therefore, we introduced a correction factor for a multicomponent gas system into the DGM equation, multiplying the Knudsen diffusion coefficient, which includes the obstruction factor related to tortuosity, by this correction factor. From the present experimental results, the value of this correction factor was 1/27, and it depended only on the structure of the gas system in the porous medium. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hibi, Yoshihiko; Kashihara, Ayumi
2018-03-01
A previous study has reported that Knudsen diffusion coefficients obtained by tracer experiments conducted with a binary gas system and a porous medium are consistently smaller than those obtained by permeability experiments conducted with a single-gas system and a porous medium. To date, however, that study is the only one in which tracer experiments have been conducted with a binary gas system. Therefore, to confirm this difference in Knudsen diffusion coefficients, we used a method we had developed previously to conduct tracer experiments with a binary carbon dioxide-nitrogen gas system and five porous media with permeability coefficients ranging from 10-13 to 10-11 m2. The results showed that the Knudsen diffusion coefficient of N2 (DN2) (cm2/s) was related to the effective permeability coefficient ke (m2) as DN2 = 7.39 × 107ke0.767. Thus, the Knudsen diffusion coefficients of N2 obtained by our tracer experiments were consistently 1/27 of those obtained by permeability experiments conducted with many porous media and air by other researchers. By using an inversion simulation to fit the advection-diffusion equation to the distribution of concentrations at observation points calculated by mathematically solving the equation, we confirmed that the method used to obtain the Knudsen diffusion coefficient in this study yielded accurate values. Moreover, because the Knudsen diffusion coefficient did not differ when columns with two different lengths, 900 and 1500 mm, were used, this column property did not influence the flow of gas in the column. The equation of the dusty gas model already includes obstruction factors for Knudsen diffusion and molecular diffusion, which relate to medium heterogeneity and tortuosity and depend only on the structure of the porous medium. Furthermore, there is no need to take account of any additional correction factor for molecular diffusion except the obstruction factor because molecular diffusion is only treated in a multicomponent gas system. Thus, molecular diffusion considers only the obstruction factor related to tortuosity. Therefore, we introduced a correction factor for a multicomponent gas system into the DGM equation, multiplying the Knudsen diffusion coefficient, which includes the obstruction factor related to tortuosity, by this correction factor. From the present experimental results, the value of this correction factor was 1/27, and it depended only on the structure of the gas system in the porous medium.
A stability analysis of the power-law steady state of marine size spectra.
Datta, Samik; Delius, Gustav W; Law, Richard; Plank, Michael J
2011-10-01
This paper investigates the stability of the power-law steady state often observed in marine ecosystems. Three dynamical systems are considered, describing the abundance of organisms as a function of body mass and time: a "jump-growth" equation, a first order approximation which is the widely used McKendrick-von Foerster equation, and a second order approximation which is the McKendrick-von Foerster equation with a diffusion term. All of these yield a power-law steady state. We derive, for the first time, the eigenvalue spectrum for the linearised evolution operator, under certain constraints on the parameters. This provides new knowledge of the stability properties of the power-law steady state. It is shown analytically that the steady state of the McKendrick-von Foerster equation without the diffusion term is always unstable. Furthermore, numerical plots show that eigenvalue spectra of the McKendrick-von Foerster equation with diffusion give a good approximation to those of the jump-growth equation. The steady state is more likely to be stable with a low preferred predator:prey mass ratio, a large diet breadth and a high feeding efficiency. The effects of demographic stochasticity are also investigated and it is concluded that these are likely to be small in real systems.
NASA Astrophysics Data System (ADS)
Ancey, Christophe; Bohorquez, Patricio; Heyman, Joris
2016-04-01
The advection-diffusion equation arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Stochastic models can also be used to derive this equation, with the significant advantage that they provide information on the statistical properties of particle activity. Stochastic models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. We develop an approach based on birth-death Markov processes, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received little attention. We show that particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due to velocity fluctuations), with the important consequence that local measurements depend on both the intrinsic properties of particle displacement and the dimensions of the measurement system.
Subdiffusion in Membrane Permeation of Small Molecules.
Chipot, Christophe; Comer, Jeffrey
2016-11-02
Within the solubility-diffusion model of passive membrane permeation of small molecules, translocation of the permeant across the biological membrane is traditionally assumed to obey the Smoluchowski diffusion equation, which is germane for classical diffusion on an inhomogeneous free-energy and diffusivity landscape. This equation, however, cannot accommodate subdiffusive regimes, which have long been recognized in lipid bilayer dynamics, notably in the lateral diffusion of individual lipids. Through extensive biased and unbiased molecular dynamics simulations, we show that one-dimensional translocation of methanol across a pure lipid membrane remains subdiffusive on timescales approaching typical permeation times. Analysis of permeant motion within the lipid bilayer reveals that, in the absence of a net force, the mean squared displacement depends on time as t 0.7 , in stark contrast with the conventional model, which assumes a strictly linear dependence. We further show that an alternate model using a fractional-derivative generalization of the Smoluchowski equation provides a rigorous framework for describing the motion of the permeant molecule on the pico- to nanosecond timescale. The observed subdiffusive behavior appears to emerge from a crossover between small-scale rattling of the permeant around its present position in the membrane and larger-scale displacements precipitated by the formation of transient voids.
Pivovarov, Sergey
2009-04-01
This work presents a simple solution for the diffuse double layer model, applicable to calculation of surface speciation as well as to simulation of ionic adsorption within the diffuse layer of solution in arbitrary salt media. Based on Poisson-Boltzmann equation, the Gaines-Thomas selectivity coefficient for uni-bivalent exchange on clay, K(GT)(Me(2+)/M(+))=(Q(Me)(0.5)/Q(M)){M(+)}/{Me(2+)}(0.5), (Q is the equivalent fraction of cation in the exchange capacity, and {M(+)} and {Me(2+)} are the ionic activities in solution) may be calculated as [surface charge, mueq/m(2)]/0.61. The obtained solution of the Poisson-Boltzmann equation was applied to calculation of ionic exchange on clays and to simulation of the surface charge of ferrihydrite in 0.01-6 M NaCl solutions. In addition, a new model of acid-base properties was developed. This model is based on assumption that the net proton charge is not located on the mathematical surface plane but diffusely distributed within the subsurface layer of the lattice. It is shown that the obtained solution of the Poisson-Boltzmann equation makes such calculations possible, and that this approach is more efficient than the original diffuse double layer model.
NASA Astrophysics Data System (ADS)
Elwakil, S. A.; El-Labany, S. K.; Zahran, M. A.; Sabry, R.
2004-04-01
The modified extended tanh-function method were applied to the general class of nonlinear diffusion-convection equations where the concentration-dependent diffusivity, D( u), was taken to be a constant while the concentration-dependent hydraulic conductivity, K( u) were taken to be in a power law. The obtained solutions include rational-type, triangular-type, singular-type, and solitary wave solutions. In fact, the profile of the obtained solitary wave solutions resemble the characteristics of a shock-wave like structure for an arbitrary m (where m>1 is the power of the nonlinear convection term).
NASA Astrophysics Data System (ADS)
Jahani, Fereidoun
In the model for microbially induced crown corrosion, the diffusion of sulfide inside the concrete pores, its biological conversion to sulfuric acid, and the corrosion of calcium carbonate aggregates are represented. The corrosion front is modeled as a moving boundary. The location of the interface between the corrosion layer and the concrete is determined as part of the solution to the model equations. This model consisted of a system of one dimensional reaction-diffusion equations coupled to an equation describing the movement of the corrosion front. The equations were solved numerically using finite element Galerkin approximation. The concentration profiles of sulfide in the air and the liquid phases, the pH as a function of concrete depth, and the position of the corrosion front. A new equation for the corrosion rate was also derived. A more specific model for the degradation of a concrete specimen exposed to a sulfuric acid solution was also studied. In this model, diffusion of hydrogen ions and their reaction with alkaline components of concrete were expressed using Fick's Law of diffusion. The model equations described the moving boundary, the dissolution rate of alkaline components in the concrete, volume increase of sulfuric acid solution over the concrete specimen, and the boundary conditions on the surface of the concrete. An apparatus was designed and experiments were performed to measure pH changes on the surface of concrete. The data were used to calculate the dissolution rate of the concrete and, with the model, to determine the diffusion rate of sulfuric acid in the corrosion layer and corrosion layer thickness. Electrochemical Impedance Spectroscopy (EIS) was used to study the corrosion rate of iron pins embedded in the concrete sample. The open circuit potential (OCP) determined the onset of corrosion on the surface of the pins. Visual observation of the corrosion layer thickness was in good agreement with the simulation results.
Particle Transport through Scattering Regions with Clear Layers and Inclusions
NASA Astrophysics Data System (ADS)
Bal, Guillaume
2002-08-01
This paper introduces generalized diffusion models for the transport of particles in scattering media with nonscattering inclusions. Classical diffusion is known as a good approximation of transport only in scattering media. Based on asymptotic expansions and the coupling of transport and diffusion models, generalized diffusion equations with nonlocal interface conditions are proposed which offer a computationally cheap, yet accurate, alternative to solving the full phase-space transport equations. The paper shows which computational model should be used depending on the size and shape of the nonscattering inclusions in the simplified setting of two space dimensions. An important application is the treatment of clear layers in near-infrared (NIR) spectroscopy, an imaging technique based on the propagation of NIR photons in human tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakhai, B.
A new method for solving radiation transport problems is presented. The heart of the technique is a new cross section processing procedure for the calculation of group-to-point and point-to-group cross sections sets. The method is ideally suited for problems which involve media with highly fluctuating cross sections, where the results of the traditional multigroup calculations are beclouded by the group averaging procedures employed. Extensive computational efforts, which would be required to evaluate double integrals in the multigroup treatment numerically, prohibit iteration to optimize the energy boundaries. On the other hand, use of point-to-point techniques (as in the stochastic technique) ismore » often prohibitively expensive due to the large computer storage requirement. The pseudo-point code is a hybrid of the two aforementioned methods (group-to-group and point-to-point) - hence the name pseudo-point - that reduces the computational efforts of the former and the large core requirements of the latter. The pseudo-point code generates the group-to-point or the point-to-group transfer matrices, and can be coupled with the existing transport codes to calculate pointwise energy-dependent fluxes. This approach yields much more detail than is available from the conventional energy-group treatments. Due to the speed of this code, several iterations could be performed (in affordable computing efforts) to optimize the energy boundaries and the weighting functions. The pseudo-point technique is demonstrated by solving six problems, each depicting a certain aspect of the technique. The results are presented as flux vs energy at various spatial intervals. The sensitivity of the technique to the energy grid and the savings in computational effort are clearly demonstrated.« less
Santoro, Maya S; Van Liew, Charles; Holloway, Breanna; McKinnon, Symone; Little, Timothy; Cronan, Terry A
2016-08-01
The present study explores patterns of parity and disparity in the effect of filial responsibility on health-related evaluations and caregiving decisions. Participants who identified as White, Black, Hispanic, or Asian/Pacific Islander read a vignette about an older man needing medical care. They were asked to imagine that they were the man's son and answer questions regarding their likelihood of hiring a health care advocate (HCA) for services related to the father's care. A multigroup (ethnicity) path analysis was performed, and an intercept invariant multigroup model fits the data best. Direct and indirect effect estimation showed that filial responsibility mediated the relationship between both the perceived severity of the father's medical condition and the perceived need for medical assistance and the likelihood of hiring an HCA only for White and Hispanic participants, albeit differently. The findings demonstrate that culture and ethnicity affect health evaluations and caregiving decision making. © The Author(s) 2015.
2017-01-01
Abstract Cross-national data production in social science research has increased dramatically in recent decades. Assessing the comparability of data is necessary before drawing substantive conclusions that are based on cross-national data. Researchers assessing data comparability typically use either quantitative methods such as multigroup confirmatory factor analysis or qualitative methods such as online probing. Because both methods have complementary strengths and weaknesses, this study applies both multigroup confirmatory factor analysis and online probing in a mixed-methods approach to assess the comparability of constructive patriotism and nationalism, two important concepts in the study of national identity. Previous measurement invariance tests failed to achieve scalar measurement invariance, which prohibits a cross-national comparison of latent means (Davidov 2009). The arrival of the 2013 ISSP Module on National Identity has encouraged a reassessment of both constructs and a push to understand why scalar invariance cannot be achieved. Using the example of constructive patriotism and nationalism, this study demonstrates how the combination of multigroup confirmatory factor analysis and online probing can uncover and explain issues related to cross-national comparability. PMID:28579643
NASA Astrophysics Data System (ADS)
Pskhu, A. V.
2017-12-01
We solve the first boundary-value problem in a non-cylindrical domain for a diffusion-wave equation with the Dzhrbashyan- Nersesyan operator of fractional differentiation with respect to the time variable. We prove an existence and uniqueness theorem for this problem, and construct a representation of the solution. We show that a sufficient condition for unique solubility is the condition of Hölder smoothness for the lateral boundary of the domain. The corresponding results for equations with Riemann- Liouville and Caputo derivatives are particular cases of results obtained here.
ben-Avraham, D; Fokas, A S
2001-07-01
A new transform method for solving boundary value problems for linear and integrable nonlinear partial differential equations recently introduced in the literature is used here to obtain the solution of the modified Helmholtz equation q(xx)(x,y)+q(yy)(x,y)-4 beta(2)q(x,y)=0 in the triangular domain 0< or =x< or =L-y< or =L, with mixed boundary conditions. This solution is applied to the problem of diffusion-limited coalescence, A+A<==>A, in the segment (-L/2,L/2), with traps at the edges.
Singular solution of the Feller diffusion equation via a spectral decomposition.
Gan, Xinjun; Waxman, David
2015-01-01
Feller studied a branching process and found that the distribution for this process approximately obeys a diffusion equation [W. Feller, in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability (University of California Press, Berkeley and Los Angeles, 1951), pp. 227-246]. This diffusion equation and its generalizations play an important role in many scientific problems, including, physics, biology, finance, and probability theory. We work under the assumption that the fundamental solution represents a probability density and should account for all of the probability in the problem. Thus, under the circumstances where the random process can be irreversibly absorbed at the boundary, this should lead to the presence of a Dirac delta function in the fundamental solution at the boundary. However, such a feature is not present in the standard approach (Laplace transformation). Here we require that the total integrated probability is conserved. This yields a fundamental solution which, when appropriate, contains a term proportional to a Dirac delta function at the boundary. We determine the fundamental solution directly from the diffusion equation via spectral decomposition. We obtain exact expressions for the eigenfunctions, and when the fundamental solution contains a Dirac delta function at the boundary, every eigenfunction of the forward diffusion operator contains a delta function. We show how these combine to produce a weight of the delta function at the boundary which ensures the total integrated probability is conserved. The solution we present covers cases where parameters are time dependent, thereby greatly extending its applicability.
An improved model of fission gas atom transport in irradiated uranium dioxide
NASA Astrophysics Data System (ADS)
Shea, J. H.
2018-04-01
The hitherto standard approach to predicting fission gas release has been a pure diffusion gas atom transport model based upon Fick's law. An additional mechanism has subsequently been identified from experimental data at high burnup and has been summarised in an empirical model that is considered to embody a so-called fuel matrix 'saturation' phenomenon whereby the fuel matrix has become saturated with fission gas so that the continued addition of extra fission gas atoms results in their expulsion from the fuel matrix into the fuel rod plenum. The present paper proposes a different approach by constructing an enhanced fission gas transport law consisting of two components: 1) Fick's law and 2) a so-called drift term. The new transport law can be shown to be effectively identical in its predictions to the 'saturation' approach and is more readily physically justifiable. The method introduces a generalisation of the standard diffusion equation which is dubbed the Drift Diffusion Equation. According to the magnitude of a dimensionless Péclet number, P, the new equation can vary from pure diffusion to pure drift, which latter represents a collective motion of the fission gas atoms through the fuel matrix at a translational velocity. Comparison is made between the saturation and enhanced transport approaches. Because of its dependence on P, the Drift Diffusion Equation is shown to be more effective at managing the transition from one type of limiting transport phenomenon to the other. Thus it can adapt appropriately according to the reactor operation.
Singular solution of the Feller diffusion equation via a spectral decomposition
NASA Astrophysics Data System (ADS)
Gan, Xinjun; Waxman, David
2015-01-01
Feller studied a branching process and found that the distribution for this process approximately obeys a diffusion equation [W. Feller, in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability (University of California Press, Berkeley and Los Angeles, 1951), pp. 227-246]. This diffusion equation and its generalizations play an important role in many scientific problems, including, physics, biology, finance, and probability theory. We work under the assumption that the fundamental solution represents a probability density and should account for all of the probability in the problem. Thus, under the circumstances where the random process can be irreversibly absorbed at the boundary, this should lead to the presence of a Dirac delta function in the fundamental solution at the boundary. However, such a feature is not present in the standard approach (Laplace transformation). Here we require that the total integrated probability is conserved. This yields a fundamental solution which, when appropriate, contains a term proportional to a Dirac delta function at the boundary. We determine the fundamental solution directly from the diffusion equation via spectral decomposition. We obtain exact expressions for the eigenfunctions, and when the fundamental solution contains a Dirac delta function at the boundary, every eigenfunction of the forward diffusion operator contains a delta function. We show how these combine to produce a weight of the delta function at the boundary which ensures the total integrated probability is conserved. The solution we present covers cases where parameters are time dependent, thereby greatly extending its applicability.
THE EFFECT OF DIFFUSION ON THE PARTICLE SPECTRA IN PULSAR WIND NEBULAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorster, M. J.; Moraal, H., E-mail: 12792322@nwu.ac.za
2013-03-01
A possible way to calculate particle spectra as a function of position in pulsar wind nebulae is to solve a Fokker-Planck transport equation. This paper presents numerical solutions to the transport equation with the processes of convection, diffusion, adiabatic losses, and synchrotron radiation included. In the first part of the paper, the steady-state version of the transport equation is solved as a function of position and energy. This is done to distinguish the various effects of the aforementioned processes on the solutions to the transport equation. The second part of the paper deals with a time-dependent solution to the transportmore » equation, specifically taking into account the effect of a moving outer boundary. The paper highlights the fact that diffusion can play a significant role in reducing the amount of synchrotron losses, leading to a modification in the expected particle spectra. These modified spectra can explain the change in the photon index of the synchrotron emission as a function of position. The solutions presented in this paper are not limited to pulsar wind nebulae, but can be applied to any similar central source system, e.g., globular clusters.« less
Fractional calculus phenomenology in two-dimensional plasma models
NASA Astrophysics Data System (ADS)
Gustafson, Kyle; Del Castillo Negrete, Diego; Dorland, Bill
2006-10-01
Transport processes in confined plasmas for fusion experiments, such as ITER, are not well-understood at the basic level of fully nonlinear, three-dimensional kinetic physics. Turbulent transport is invoked to describe the observed levels in tokamaks, which are orders of magnitude greater than the theoretical predictions. Recent results show the ability of a non-diffusive transport model to describe numerical observations of turbulent transport. For example, resistive MHD modeling of tracer particle transport in pressure-gradient driven turbulence for a three-dimensional plasma reveals that the superdiffusive (2̂˜t^α where α> 1) radial transport in this system is described quantitatively by a fractional diffusion equation Fractional calculus is a generalization involving integro-differential operators, which naturally describe non-local behaviors. Our previous work showed the quantitative agreement of special fractional diffusion equation solutions with numerical tracer particle flows in time-dependent linearized dynamics of the Hasegawa-Mima equation (for poloidal transport in a two-dimensional cold-ion plasma). In pursuit of a fractional diffusion model for transport in a gyrokinetic plasma, we now present numerical results from tracer particle transport in the nonlinear Hasegawa-Mima equation and a planar gyrokinetic model. Finite Larmor radius effects will be discussed. D. del Castillo Negrete, et al, Phys. Rev. Lett. 94, 065003 (2005).
Modeling of adsorption dynamics at air-liquid interfaces using statistical rate theory (SRT).
Biswas, M E; Chatzis, I; Ioannidis, M A; Chen, P
2005-06-01
A large number of natural and technological processes involve mass transfer at interfaces. Interfacial properties, e.g., adsorption, play a key role in such applications as wetting, foaming, coating, and stabilizing of liquid films. The mechanistic understanding of surface adsorption often assumes molecular diffusion in the bulk liquid and subsequent adsorption at the interface. Diffusion is well described by Fick's law, while adsorption kinetics is less understood and is commonly described using Langmuir-type empirical equations. In this study, a general theoretical model for adsorption kinetics/dynamics at the air-liquid interface is developed; in particular, a new kinetic equation based on the statistical rate theory (SRT) is derived. Similar to many reported kinetic equations, the new kinetic equation also involves a number of parameters, but all these parameters are theoretically obtainable. In the present model, the adsorption dynamics is governed by three dimensionless numbers: psi (ratio of adsorption thickness to diffusion length), lambda (ratio of square of the adsorption thickness to the ratio of adsorption to desorption rate constant), and Nk (ratio of the adsorption rate constant to the product of diffusion coefficient and bulk concentration). Numerical simulations for surface adsorption using the proposed model are carried out and verified. The difference in surface adsorption between the general and the diffusion controlled model is estimated and presented graphically as contours of deviation. Three different regions of adsorption dynamics are identified: diffusion controlled (deviation less than 10%), mixed diffusion and transfer controlled (deviation in the range of 10-90%), and transfer controlled (deviation more than 90%). These three different modes predominantly depend on the value of Nk. The corresponding ranges of Nk for the studied values of psi (10(-2)
Generalized Fourier analyses of the advection-diffusion equation - Part I: one-dimensional domains
NASA Astrophysics Data System (ADS)
Christon, Mark A.; Martinez, Mario J.; Voth, Thomas E.
2004-07-01
This paper presents a detailed multi-methods comparison of the spatial errors associated with finite difference, finite element and finite volume semi-discretizations of the scalar advection-diffusion equation. The errors are reported in terms of non-dimensional phase and group speed, discrete diffusivity, artificial diffusivity, and grid-induced anisotropy. It is demonstrated that Fourier analysis provides an automatic process for separating the discrete advective operator into its symmetric and skew-symmetric components and characterizing the spectral behaviour of each operator. For each of the numerical methods considered, asymptotic truncation error and resolution estimates are presented for the limiting cases of pure advection and pure diffusion. It is demonstrated that streamline upwind Petrov-Galerkin and its control-volume finite element analogue, the streamline upwind control-volume method, produce both an artificial diffusivity and a concomitant phase speed adjustment in addition to the usual semi-discrete artifacts observed in the phase speed, group speed and diffusivity. The Galerkin finite element method and its streamline upwind derivatives are shown to exhibit super-convergent behaviour in terms of phase and group speed when a consistent mass matrix is used in the formulation. In contrast, the CVFEM method and its streamline upwind derivatives yield strictly second-order behaviour. In Part II of this paper, we consider two-dimensional semi-discretizations of the advection-diffusion equation and also assess the affects of grid-induced anisotropy observed in the non-dimensional phase speed, and the discrete and artificial diffusivities. Although this work can only be considered a first step in a comprehensive multi-methods analysis and comparison, it serves to identify some of the relative strengths and weaknesses of multiple numerical methods in a common analysis framework. Published in 2004 by John Wiley & Sons, Ltd.
Khan, Muhammad Aamir Shafique; Jianguo, Du; Usman, Muhammad; Ahmad, Malik I.
2017-01-01
In this study, first we examined the effect of workplace romance on employee job performance, and the mediatory role of psychological wellbeing in the relationship between workplace romance and employee performance. Then we tested the moderating effects of gender and workplace romance type – lateral or hierarchical – on the indirect effect of workplace romance on employee performance. Based on a survey of 311 doctors from five government teaching hospitals in Pakistan, we used structural equation modeling and bootstrapping to test these relationships. This study reveals that psychological wellbeing significantly fully mediates the positive relationship between workplace romance and job performance. Moreover, multi-group analysis shows that gender moderates the indirect effect of workplace romance on employee performance, where the indirect effect of workplace romance on employee performance is stronger for male participants. This study carries important implications, particularly for the policy makers and managers of healthcare sector organizations. PMID:29312042
Van den Broeck, Anja; Elst, Tinne Vander; Baillien, Elfi; Sercu, Maarten; Schouteden, Martijn; De Witte, Hans; Godderis, Lode
2017-04-01
The aim of this study was to gain insight in the importance of job demands and resources and the validity of the Job Demands Resources Model across sectors. We used one-way analyses of variance to examine mean differences, and multi-group Structural Equation Modeling analyses to test the strength of the relationships among job demands, resources, burnout, and work engagement across the health care, industry, service, and public sector. The four sectors differed in the experience of job demands, resources, burnout, and work engagement, but they did not vary in how (strongly) job demands and resources associated with burnout and work engagement. More attention is needed to decrease burnout and increase work engagement, particularly in industry, service, and the public sector. The Job Demands-Resources model may be helpful in this regard, as it is valid across sectors.
Makri-Botsari, Evi
2015-08-01
The purpose of this study was to detect gender specific patterns in the network of relations between unconditionality of parental and teacher acceptance in the form of unconditional positive regard and a range of educational outcomes, as indexed by academic self-perception, academic intrinsic motivation, and academic achievement. To test the role of gender as a moderator, a multi-group analysis was employed within the framework of structural equation modelling with increasing restrictions placed on the structural paths across genders. The results on a sample of 427 adolescents in grades 7-9 showed that conditionality of acceptance undermined level of perceived acceptance for both social agents. Moreover, unconditionality of teacher acceptance exerted stronger influences on students' educational outcomes than unconditionality of parental acceptance, with effect sizes being larger for girls than for boys. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Kang, Sun-Mee; Shaver, Phillip R; Sue, Stanley; Min, Kyung-Hwan; Jing, Hauibin
2003-12-01
This study was conducted to explore the culture-specific roles of emotion, relationship quality, and self-esteem in determining life satisfaction. It was hypothesized that maintaining good interpersonal relationships would make individuals in collectivistic cultures not only feel good about their lives but also feel better about themselves. Furthermore, two emotion variables--emotional expression and emotion differentiation--were proposed as possible determinants of relationship quality. It was hypothesized that emotional expressiveness would be more important for maintaining good interpersonal relationships in individualistic societies but emotion differentiation would be more important in collectivistic cultures. These hypotheses were tested with Euro-American, Asian American, Korean, and Chinese groups using multigroup analyses in a structural equation model. Results supported all proposed hypotheses and indicated that emotion differentiation contributes to maintaining good interpersonal relationships in collectivistic cultures, which contributes to self-esteem and satisfaction with life.
Khan, Muhammad Aamir Shafique; Jianguo, Du; Usman, Muhammad; Ahmad, Malik I
2017-01-01
In this study, first we examined the effect of workplace romance on employee job performance, and the mediatory role of psychological wellbeing in the relationship between workplace romance and employee performance. Then we tested the moderating effects of gender and workplace romance type - lateral or hierarchical - on the indirect effect of workplace romance on employee performance. Based on a survey of 311 doctors from five government teaching hospitals in Pakistan, we used structural equation modeling and bootstrapping to test these relationships. This study reveals that psychological wellbeing significantly fully mediates the positive relationship between workplace romance and job performance. Moreover, multi-group analysis shows that gender moderates the indirect effect of workplace romance on employee performance, where the indirect effect of workplace romance on employee performance is stronger for male participants. This study carries important implications, particularly for the policy makers and managers of healthcare sector organizations.
Jo, Youngoh; Zhang, Yan
2014-11-01
Limited studies have examined whether self-control fully mediates the effect of parenting on deviant behavior beyond Western cultures. Using a sample of 882 South Korean middle and high schools students, this article examines the applicability of Gottfredson and Hirschi's argument about the role of parenting in self-control theory in the context of Asian culture. Results of structural equation modeling (SEM) suggest the relationships among parenting, self-control, and delinquency hold in South Korean culture: Parenting has only an indirect effect through self-control on delinquency. The findings of multigroup SEM, however, indicate that gender differences exist in the relationships among parenting, self-control, and delinquency. This study provides support for cultural invariance of self-control theory but suggests that more studies examining gender differences and interaction between gender and race in the theory are required. © The Author(s) 2013.
A diffuse-interface method for two-phase flows with soluble surfactants
Teigen, Knut Erik; Song, Peng; Lowengrub, John; Voigt, Axel
2010-01-01
A method is presented to solve two-phase problems involving soluble surfactants. The incompressible Navier–Stokes equations are solved along with equations for the bulk and interfacial surfactant concentrations. A non-linear equation of state is used to relate the surface tension to the interfacial surfactant concentration. The method is based on the use of a diffuse interface, which allows a simple implementation using standard finite difference or finite element techniques. Here, finite difference methods on a block-structured adaptive grid are used, and the resulting equations are solved using a non-linear multigrid method. Results are presented for a drop in shear flow in both 2D and 3D, and the effect of solubility is discussed. PMID:21218125
A strictly Markovian expansion for plasma turbulence theory
NASA Technical Reports Server (NTRS)
Jones, F. C.
1976-01-01
The collision operator that appears in the equation of motion for a particle distribution function that was averaged over an ensemble of random Hamiltonians is non-Markovian. It is non-Markovian in that it involves a propagated integral over the past history of the ensemble averaged distribution function. All formal expansions of this nonlinear collision operator to date preserve this non-Markovian character term by term yielding an integro-differential equation that must be converted to a diffusion equation by an additional approximation. An expansion is derived for the collision operator that is strictly Markovian to any finite order and yields a diffusion equation as the lowest nontrivial order. The validity of this expansion is seen to be the same as that of the standard quasilinear expansion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Tao, E-mail: fengtao2@mail.ustc.edu.cn; Graduate School of China Academy Engineering Physics, Beijing 100083; An, Hengbin, E-mail: an_hengbin@iapcm.ac.cn
2013-03-01
Jacobian-free Newton–Krylov (JFNK) method is an effective algorithm for solving large scale nonlinear equations. One of the most important advantages of JFNK method is that there is no necessity to form and store the Jacobian matrix of the nonlinear system when JFNK method is employed. However, an approximation of the Jacobian is needed for the purpose of preconditioning. In this paper, JFNK method is employed to solve a class of non-equilibrium radiation diffusion coupled to material thermal conduction equations, and two preconditioners are designed by linearizing the equations in two methods. Numerical results show that the two preconditioning methods canmore » improve the convergence behavior and efficiency of JFNK method.« less
USDA-ARS?s Scientific Manuscript database
The diffusion coefficient of water in biobased hydrogels were measured utilizing a simple NMR method. This method tracks the migration of deuterium oxide through imaging data that is fit to a diffusion equation. The results show that a 5 wt% soybean oil based hydrogel gives aqueous diffusion of 1.37...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koumetz, Serge D., E-mail: Serge.Koumetz@univ-rouen.fr; Martin, Patrick; Murray, Hugues
Experimental results on the diffusion of grown-in beryllium (Be) in indium gallium arsenide (In{sub 0.53}Ga{sub 0.47}As) and indium gallium arsenide phosphide (In{sub 0.73}Ga{sub 0.27}As{sub 0.58}P{sub 0.42}) gas source molecular beam epitaxy alloys lattice-matched to indium phosphide (InP) can be successfully explained in terms of a combined kick-out and dissociative diffusion mechanism, involving neutral Be interstitials (Be{sub i}{sup 0}), singly positively charged gallium (Ga), indium (In) self-interstitials (I{sub III}{sup +}) and singly positively charged Ga, In vacancies (V{sub III}{sup +}). A new numerical method of solution to the system of diffusion equations, based on the finite difference approximations and Bairstow's method,more » is proposed.« less
Spatial pattern dynamics due to the fitness gradient flux in evolutionary games.
deForest, Russ; Belmonte, Andrew
2013-06-01
We introduce a nondiffusive spatial coupling term into the replicator equation of evolutionary game theory. The spatial flux is based on motion due to local gradients in the relative fitness of each strategy, providing a game-dependent alternative to diffusive coupling. We study numerically the development of patterns in one dimension (1D) for two-strategy games including the coordination game and the prisoner's dilemma, and in two dimensions (2D) for the rock-paper-scissors game. In 1D we observe modified traveling wave solutions in the presence of diffusion, and asymptotic attracting states under a frozen-strategy assumption without diffusion. In 2D we observe spiral formation and breakup in the frozen-strategy rock-paper-scissors game without diffusion. A change of variables appropriate to replicator dynamics is shown to correctly capture the 1D asymptotic steady state via a nonlinear diffusion equation.
Nonlinear diffusion and viral spread through the leaf of a plant
NASA Astrophysics Data System (ADS)
Edwards, Maureen P.; Waterhouse, Peter M.; Munoz-Lopez, María Jesús; Anderssen, Robert S.
2016-10-01
The spread of a virus through the leaf of a plant is both spatially and temporally causal in that the present status depends on the past and the spatial spread is compactly supported and progresses outwards. Such spatial spread is known to occur for certain nonlinear diffusion processes. The first compactly supported solution for nonlinear diffusion equations appears to be that of Pattle published in 1959. In that paper, no explanation is given as to how the solution was derived. Here, we show how the solution can be derived using Lie symmetry analysis. This lays a foundation for exploring the behavior of other choices for nonlinear diffusion and exploring the addition of reaction terms which do not eliminate the compactly supported structure. The implications associated with using the reaction-diffusion equation to model the spatial-temporal spread of a virus through the leaf of a plant are discussed.
NASA Technical Reports Server (NTRS)
Schlesinger, R. E.; Johnson, D. R.; Uccellini, L. W.
1983-01-01
In the present investigation, a one-dimensional linearized analysis is used to determine the effect of Asselin's (1972) time filter on both the computational stability and phase error of numerical solutions for the shallow water wave equations, in cases with diffusion but without rotation. An attempt has been made to establish the approximate optimal values of the filtering parameter nu for each of the 'lagged', Dufort-Frankel, and Crank-Nicholson diffusion schemes, suppressing the computational wave mode without materially altering the physical wave mode. It is determined that in the presence of diffusion, the optimum filter length depends on whether waves are undergoing significant propagation. When moderate propagation is present, with or without diffusion, the Asselin filter has little effect on the spatial phase lag of the physical mode for the leapfrog advection scheme of the three diffusion schemes considered.
Quantum Transmission Conditions for Diffusive Transport in Graphene with Steep Potentials
NASA Astrophysics Data System (ADS)
Barletti, Luigi; Negulescu, Claudia
2018-05-01
We present a formal derivation of a drift-diffusion model for stationary electron transport in graphene, in presence of sharp potential profiles, such as barriers and steps. Assuming the electric potential to have steep variations within a strip of vanishing width on a macroscopic scale, such strip is viewed as a quantum interface that couples the classical regions at its left and right sides. In the two classical regions, where the potential is assumed to be smooth, electron and hole transport is described in terms of semiclassical kinetic equations. The diffusive limit of the kinetic model is derived by means of a Hilbert expansion and a boundary layer analysis, and consists of drift-diffusion equations in the classical regions, coupled by quantum diffusive transmission conditions through the interface. The boundary layer analysis leads to the discussion of a four-fold Milne (half-space, half-range) transport problem.
Spatial pattern dynamics due to the fitness gradient flux in evolutionary games
NASA Astrophysics Data System (ADS)
deForest, Russ; Belmonte, Andrew
2013-06-01
We introduce a nondiffusive spatial coupling term into the replicator equation of evolutionary game theory. The spatial flux is based on motion due to local gradients in the relative fitness of each strategy, providing a game-dependent alternative to diffusive coupling. We study numerically the development of patterns in one dimension (1D) for two-strategy games including the coordination game and the prisoner's dilemma, and in two dimensions (2D) for the rock-paper-scissors game. In 1D we observe modified traveling wave solutions in the presence of diffusion, and asymptotic attracting states under a frozen-strategy assumption without diffusion. In 2D we observe spiral formation and breakup in the frozen-strategy rock-paper-scissors game without diffusion. A change of variables appropriate to replicator dynamics is shown to correctly capture the 1D asymptotic steady state via a nonlinear diffusion equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jungpyo; Wright, John; Bertelli, Nicola
In this study, a reduced model of quasilinear velocity diffusion by a small Larmor radius approximation is derived to couple the Maxwell’s equations and the Fokker Planck equation self-consistently for the ion cyclotron range of frequency waves in a tokamak. The reduced model ensures the important properties of the full model by Kennel-Engelmann diffusion, such as diffusion directions, wave polarizations, and H-theorem. The kinetic energy change (Wdot ) is used to derive the reduced model diffusion coefficients for the fundamental damping (n = 1) and the second harmonic damping (n = 2) to the lowest order of the finite Larmormore » radius expansion. The quasilinear diffusion coefficients are implemented in a coupled code (TORIC-CQL3D) with the equivalent reduced model of the dielectric tensor. We also present the simulations of the ITER minority heating scenario, in which the reduced model is verified within the allowable errors from the full model results.« less
Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion.
Bodrova, Anna S; Chechkin, Aleksei V; Cherstvy, Andrey G; Safdari, Hadiseh; Sokolov, Igor M; Metzler, Ralf
2016-07-27
It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases.
NASA Astrophysics Data System (ADS)
Beck, Margaret; Wayne, C. Eugene
2009-01-01
The large-time behavior of solutions to the Burgers equation with small viscosity is described using invariant manifolds. In particular, a geometric explanation is provided for a phenomenon known as metastability, which in the present context means that solutions spend a very long time near the family of solutions known as diffusive N-waves before finally converging to a stable self-similar diffusion wave. More precisely, it is shown that in terms of similarity, or scaling, variables in an algebraically weighted L^2 space, the self-similar diffusion waves correspond to a one-dimensional global center manifold of stationary solutions. Through each of these fixed points there exists a one-dimensional, global, attractive, invariant manifold corresponding to the diffusive N-waves. Thus, metastability corresponds to a fast transient in which solutions approach this metastable manifold of diffusive N-waves, followed by a slow decay along this manifold, and, finally, convergence to the self-similar diffusion wave.
Lee, Jungpyo; Wright, John; Bertelli, Nicola; ...
2017-04-24
In this study, a reduced model of quasilinear velocity diffusion by a small Larmor radius approximation is derived to couple the Maxwell’s equations and the Fokker Planck equation self-consistently for the ion cyclotron range of frequency waves in a tokamak. The reduced model ensures the important properties of the full model by Kennel-Engelmann diffusion, such as diffusion directions, wave polarizations, and H-theorem. The kinetic energy change (Wdot ) is used to derive the reduced model diffusion coefficients for the fundamental damping (n = 1) and the second harmonic damping (n = 2) to the lowest order of the finite Larmormore » radius expansion. The quasilinear diffusion coefficients are implemented in a coupled code (TORIC-CQL3D) with the equivalent reduced model of the dielectric tensor. We also present the simulations of the ITER minority heating scenario, in which the reduced model is verified within the allowable errors from the full model results.« less
Continuous time anomalous diffusion in a composite medium.
Stickler, B A; Schachinger, E
2011-08-01
The one-dimensional continuous time anomalous diffusion in composite media consisting of a finite number of layers in immediate contact is investigated. The diffusion process itself is described with the help of two probability density functions (PDFs), one of which is an arbitrary jump-length PDF, and the other is a long-tailed waiting-time PDF characterized by the waiting-time index β∈(0,1). The former is assumed to be a function of the space coordinate x and the time coordinate t while the latter is a function of x and the time interval. For such an environment a very general form of the diffusion equation is derived which describes the continuous time anomalous diffusion in a composite medium. This result is then specialized to two particular forms of the jump-length PDF, namely the continuous time Lévy flight PDF and the continuous time truncated Lévy flight PDF. In both cases the PDFs are characterized by the Lévy index α∈(0,2) which is regarded to be a function of x and t. It is possible to demonstrate that for particular choices of the indices α and β other equations for anomalous diffusion, well known from the literature, follow immediately. This demonstrates the very general applicability of the derivation and of the resulting fractional differential equation discussed here.
Slip and barodiffusion phenomena in slow flows of a gas mixture
NASA Astrophysics Data System (ADS)
Zhdanov, V. M.
2017-03-01
The slip and barodiffusion problems for the slow flows of a gas mixture are investigated on the basis of the linearized moment equations following from the Boltzmann equation. We restrict ourselves to the set of the third-order moment equations and state two general relations (resembling conservation equations) for the moments of the distribution function similar to the conditions used by Loyalka [S. K. Loyalka, Phys. Fluids 14, 2291 (1971), 10.1063/1.1693331] in his approximation method (the modified Maxwell method). The expressions for the macroscopic velocities of the gas mixture species, the partial viscous stress tensors, and the reduced heat fluxes for the stationary slow flow of a gas mixture in the semi-infinite space over a plane wall are obtained as a result of the exact solution of the linearized moment equations in the 10- and 13-moment approximations. The general expression for the slip velocity and the simple and accurate expressions for the viscous, thermal, diffusion slip, and baroslip coefficients, which are given in terms of the basic transport coefficients, are derived by using the modified Maxwell method. The solutions of moment equations are also used for investigation of the flow and diffusion of a gas mixture in a channel formed by two infinite parallel plates. A fundamental result is that the barodiffusion factor in the cross-section-averaged expression for the diffusion flux contains contributions associated with the viscous transfer of momentum in the gas mixture and the effect of the Knudsen layer. Our study revealed that the barodiffusion factor is equal to the diffusion slip coefficient (correct to the opposite sign). This result is consistent with the Onsager's reciprocity relations for kinetic coefficients following from nonequilibrium thermodynamics of the discontinuous systems.
Bidirectional plant canopy reflection models derived from the radiation transfer equation
NASA Technical Reports Server (NTRS)
Beeth, D. R.
1975-01-01
A collection of bidirectional canopy reflection models was obtained from the solution of the radiation transfer equation for a horizontally homogeneous canopy. A phase function is derived for a collection of bidirectionally reflecting and transmitting planar elements characterized geometrically by slope and azimuth density functions. Two approaches to solving the radiation transfer equation for the canopy are presented. One approach factors the radiation transfer equation into a solvable set of three first-order linear differential equations by assuming that the radiation field within the canopy can be initially approximated by three components: uniformly diffuse downwelling, uniformly diffuse upwelling, and attenuated specular. The solution to these equations, which can be iterated to any degree of accuracy, was used to obtain overall canopy reflection from the formal solution to the radiation transfer equation. A programable solution to canopy overall bidirectional reflection is given for this approach. The special example of Lambertian leaves with constant leaf bidirectional reflection and scattering functions is considered, and a programmable solution for this example is given. The other approach to solving the radiation transfer equation, a generalized Chandrasekhar technique, is presented in the appendix.
NASA Astrophysics Data System (ADS)
Chen, Hao; Lv, Wen; Zhang, Tongtong
2018-05-01
We study preconditioned iterative methods for the linear system arising in the numerical discretization of a two-dimensional space-fractional diffusion equation. Our approach is based on a formulation of the discrete problem that is shown to be the sum of two Kronecker products. By making use of an alternating Kronecker product splitting iteration technique we establish a class of fixed-point iteration methods. Theoretical analysis shows that the new method converges to the unique solution of the linear system. Moreover, the optimal choice of the involved iteration parameters and the corresponding asymptotic convergence rate are computed exactly when the eigenvalues of the system matrix are all real. The basic iteration is accelerated by a Krylov subspace method like GMRES. The corresponding preconditioner is in a form of a Kronecker product structure and requires at each iteration the solution of a set of discrete one-dimensional fractional diffusion equations. We use structure preserving approximations to the discrete one-dimensional fractional diffusion operators in the action of the preconditioning matrix. Numerical examples are presented to illustrate the effectiveness of this approach.
Morphology Effect on Proton Dynamics in Nafion® 117 and Sulfonated Polyether Ether Ketone
NASA Astrophysics Data System (ADS)
Leong, Jun Xing; Diño, Wilson Agerico; Ahmad, Azizan; Daud, Wan Ramli Wan; Kasai, Hideaki
2016-09-01
We report results of our experimental and theoretical studies on the dynamics of proton conductivity in Nafion® 117 and self-fabricated sulfonated polyether ether ketone (SPEEK) membranes. Knowing that the presence of water molecules in the diffusion process results in a lower energy barrier, we determined the diffusion barriers and corresponding tunneling probabilities of Nafion® 117 and SPEEK system using a simple theoretical model that excludes the medium (water molecules) in the initial calculations. We then propose an equation that relates the membrane conductivity to the tunneling probability. We recover the effect of the medium by introducing a correction term into the proposed equation, which takes into account the effect of the proton diffusion distance and the hydration level. We have also experimentally verified that the proposed equation correctly explain the difference in conductivity between Nafion® 117 and SPEEK. We found that membranes that are to be operated in low hydration environments (high temperatures) need to be designed with short diffusion distances to enhance and maintain high conductivity.
Valuing options in shot noise market
NASA Astrophysics Data System (ADS)
Laskin, Nick
2018-07-01
A new exactly solvable option pricing model has been introduced and elaborated. It is assumed that a stock price follows a Geometric shot noise process. An arbitrage-free integro-differential option pricing equation has been obtained and solved. The new Greeks have been analytically calculated. It has been shown that in diffusion approximation the developed option pricing model incorporates the well-known Black-Scholes equation and its solution. The stochastic dynamic origin of the Black-Scholes volatility has been uncovered. To model the observed market stock price patterns consisting of high frequency small magnitude and low frequency large magnitude jumps, the superposition of two Geometric shot noises has been implemented. A new generalized option pricing equation has been obtained and its exact solution was found. Merton's jump-diffusion formula for option price was recovered in diffusion approximation. Despite the non-Gaussian nature of probability distributions involved, the new option pricing model has the same degree of analytical tractability as the Black-Scholes model and the Merton jump-diffusion model. This attractive feature allows one to derive exact formulas to value options and option related instruments in the market with jump-like price patterns.
The effect of shear flow on the rotational diffusivity of a single axisymmetric particle
NASA Astrophysics Data System (ADS)
Leahy, Brian; Koch, Donald; Cohen, Itai
2014-11-01
Colloidal suspensions of nonspherical particles abound in the world around us, from red blood cells in arteries to kaolinite discs in clay. Understanding the orientation dynamics of these particles is important for suspension rheology and particle self-assembly. However, even for the simplest case of dilute suspensions in simple shear flow, the orientation dynamics of Brownian nonspherical particles are poorly understood at large shear rates. Here, we analytically calculate the time-dependent orientation distributions of particles confined to the flow-gradient plane when the rotary diffusion is small but nonzero. For both startup and oscillatory shear flows, we find a coordinate change that maps the convection-diffusion equation to a simple diffusion equation with an enhanced diffusion constant, simplifying the orientation dynamics. For oscillatory shear, this enhanced diffusion drastically alters the quasi-steady orientation distributions. Our theory of the unsteady orientation dynamics provides an understanding of a nonspherical particle suspension's rheology for a large class of unsteady flows. For particles with aspect ratio 10 under oscillatory shear, the rotary diffusion and intrinsic viscosity vary with amplitude by a factor of ~ 40 and ~ 2 , respectively.
Diffusion of multiple species with excluded-volume effects.
Bruna, Maria; Chapman, S Jonathan
2012-11-28
Stochastic models of diffusion with excluded-volume effects are used to model many biological and physical systems at a discrete level. The average properties of the population may be described by a continuum model based on partial differential equations. In this paper we consider multiple interacting subpopulations/species and study how the inter-species competition emerges at the population level. Each individual is described as a finite-size hard core interacting particle undergoing brownian motion. The link between the discrete stochastic equations of motion and the continuum model is considered systematically using the method of matched asymptotic expansions. The system for two species leads to a nonlinear cross-diffusion system for each subpopulation, which captures the enhancement of the effective diffusion rate due to excluded-volume interactions between particles of the same species, and the diminishment due to particles of the other species. This model can explain two alternative notions of the diffusion coefficient that are often confounded, namely collective diffusion and self-diffusion. Simulations of the discrete system show good agreement with the analytic results.
A Semi-Analytical Model for Dispersion Modelling Studies in the Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Gupta, A.; Sharan, M.
2017-12-01
The severe impact of harmful air pollutants has always been a cause of concern for a wide variety of air quality analysis. The analytical models based on the solution of the advection-diffusion equation have been the first and remain the convenient way for modeling air pollutant dispersion as it is easy to handle the dispersion parameters and related physics in it. A mathematical model describing the crosswind integrated concentration is presented. The analytical solution to the resulting advection-diffusion equation is limited to a constant and simple profiles of eddy diffusivity and wind speed. In practice, the wind speed depends on the vertical height above the ground and eddy diffusivity profiles on the downwind distance from the source as well as the vertical height. In the present model, a method of eigen-function expansion is used to solve the resulting partial differential equation with the appropriate boundary conditions. This leads to a system of first order ordinary differential equations with a coefficient matrix depending on the downwind distance. The solution of this system, in general, can be expressed in terms of Peano-baker series which is not easy to compute, particularly when the coefficient matrix becomes non-commutative (Martin et al., 1967). An approach based on Taylor's series expansion is introduced to find the numerical solution of first order system. The method is applied to various profiles of wind speed and eddy diffusivities. The solution computed from the proposed methodology is found to be efficient and accurate in comparison to those available in the literature. The performance of the model is evaluated with the diffusion datasets from Copenhagen (Gryning et al., 1987) and Hanford (Doran et al., 1985). In addition, the proposed method is used to deduce three dimensional concentrations by considering the Gaussian distribution in crosswind direction, which is also evaluated with diffusion data corresponding to a continuous point source.
Tucker, J E; Mauzerall, D; Tucker, E B
1989-07-01
The kinetics of symplastic transport in staminal hairs of Setcreasea purpurea was studied. The tip cell of a staminal hair was microinjected with carboxyfluorescein (CF) and the symplastic transport of this CF was videotaped and the digital data analyzed to produce kinetic curves. Using a finite difference equation for diffusion between cells and for loss of dye into the vacuole, kinetic curves were calculated and fitted to the observed data. These curves were matched with data from actual microinjection experiments by adjusting K (the coefficient of intercellular junction diffusion) and L (the coefficient of intracellular loss) until a minimum in the least squares difference between the curves was obtained. (a) Symplastic transport of CF was governed by diffusion through intercellular pores (plasmodesmata) and intracellular loss. Diffusion within the cell cytoplasm was never limiting. (b) Each cell and its plasmodesmata must be considered as its own diffusion system. Therefore, a diffusion coefficient cannot be calculated for an entire chain of cells. (c) The movement through plasmodesmata in either direction was the same since the data are fit by a diffusion equation. (d) Diffusion through the intercellular pores was estimated to be slower than diffusion through similar pores filled with water.
Tucker, Joseph E.; Mauzerall, David; Tucker, Edward B.
1989-01-01
The kinetics of symplastic transport in staminal hairs of Setcreasea purpurea was studied. The tip cell of a staminal hair was microinjected with carboxyfluorescein (CF) and the symplastic transport of this CF was videotaped and the digital data analyzed to produce kinetic curves. Using a finite difference equation for diffusion between cells and for loss of dye into the vacuole, kinetic curves were calculated and fitted to the observed data. These curves were matched with data from actual microinjection experiments by adjusting K (the coefficient of intercellular junction diffusion) and L (the coefficient of intracellular loss) until a minimum in the least squares difference between the curves was obtained. (a) Symplastic transport of CF was governed by diffusion through intercellular pores (plasmodesmata) and intracellular loss. Diffusion within the cell cytoplasm was never limiting. (b) Each cell and its plasmodesmata must be considered as its own diffusion system. Therefore, a diffusion coefficient cannot be calculated for an entire chain of cells. (c) The movement through plasmodesmata in either direction was the same since the data are fit by a diffusion equation. (d) Diffusion through the intercellular pores was estimated to be slower than diffusion through similar pores filled with water. PMID:16666864
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biderman, N. J.; Sundaramoorthy, R.; Haldar, Pradeep
Cadmium diffusion experiments were performed on polished copper indium gallium diselenide (Cu(In,Ga)Se{sub 2} or CIGS) samples with resulting cadmium diffusion profiles measured by time-of-flight secondary ion mass spectroscopy. Experiments done in the annealing temperature range between 275 °C and 425 °C reveal two-stage cadmium diffusion profiles which may be indicative of multiple diffusion mechanisms. Each stage can be described by the standard solutions of Fick's second law. The slower cadmium diffusion in the first stage can be described by the Arrhenius equation D{sub 1} = 3 × 10{sup −4} exp (− 1.53 eV/k{sub B}T) cm{sup 2} s{sup −1}, possibly representing vacancy-meditated diffusion. The faster second-stage diffusion coefficients determined in these experiments matchmore » the previously reported cadmium diffusion Arrhenius equation of D{sub 2} = 4.8 × 10{sup −4} exp (−1.04 eV/k{sub B}T) cm{sup 2} s{sup −1}, suggesting an interstitial-based mechanism.« less
Some remarks on the numerical solution of parabolic partial differential equations
NASA Astrophysics Data System (ADS)
Campagna, R.; Cuomo, S.; Leveque, S.; Toraldo, G.; Giannino, F.; Severino, G.
2017-11-01
Numerous environmental/engineering applications relying upon the theory of diffusion phenomena into chaotic environments have recently stimulated the interest toward the numerical solution of parabolic partial differential equations (PDEs). In the present paper, we outline a formulation of the mathematical problem underlying a quite general diffusion mechanism in the natural environments, and we shortly emphasize some remarks concerning the applicability of the (straightforward) finite difference method. An illustration example is also presented.
Diffusion Of Mass In Evaporating Multicomponent Drops
NASA Technical Reports Server (NTRS)
Bellan, Josette; Harstad, Kenneth G.
1992-01-01
Report summarizes study of diffusion of mass and related phenomena occurring in evaporation of dense and dilute clusters of drops of multicomponent liquids intended to represent fuels as oil, kerosene, and gasoline. Cluster represented by simplified mathematical model, including global conservation equations for entire cluster and conditions on boundary between cluster and ambient gas. Differential equations of model integrated numerically. One of series of reports by same authors discussing evaporation and combustion of sprayed liquid fuels.
Real time visualization of quantum walk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyazaki, Akihide; Hamada, Shinji; Sekino, Hideo
2014-02-20
Time evolution of quantum particles like electrons is described by time-dependent Schrödinger equation (TDSE). The TDSE is regarded as the diffusion equation of electrons with imaginary diffusion coefficients. And the TDSE is solved by quantum walk (QW) which is regarded as a quantum version of a classical random walk. The diffusion equation is solved in discretized space/time as in the case of classical random walk with additional unitary transformation of internal degree of freedom typical for quantum particles. We call the QW for solution of the TDSE a Schrödinger walk (SW). For observation of one quantum particle evolution under amore » given potential in atto-second scale, we attempt a successive computation and visualization of the SW. Using Pure Data programming, we observe the correct behavior of a probability distribution under the given potential in real time for observers of atto-second scale.« less
NASA Technical Reports Server (NTRS)
Leon, R. P.
1987-01-01
Diffusion lengths and surface recombination velocities were measured in GaAs diodes and InP finished solar cells. The basic techniques used was charge collection microscopy also known as electron beam induced current (EBIC). The normalized currents and distances from the pn junction were read directly from the calibrated curves obtained while using the line scan mode in an SEM. These values were then equated to integral and infinite series expressions resulting from the solution of the diffusion equation with both extended generation and point generation functions. This expands previous work by examining both thin and thick samples. The surface recombination velocity was either treated as an unknown in a system of two equations, or measured directly using low e(-) beam accelerating voltages. These techniques give accurate results by accounting for the effects of surface recombination and the finite size of the generation volume.
Diffusion of test particles in stochastic magnetic fields for small Kubo numbers.
Neuer, Marcus; Spatschek, Karl H
2006-02-01
Motion of charged particles in a collisional plasma with stochastic magnetic field lines is investigated on the basis of the so-called A-Langevin equation. Compared to the previously used A-Langevin model, here finite Larmor radius effects are taken into account. The A-Langevin equation is solved under the assumption that the Lagrangian correlation function for the magnetic field fluctuations is related to the Eulerian correlation function (in Gaussian form) via the Corrsin approximation. The latter is justified for small Kubo numbers. The velocity correlation function, being averaged with respect to the stochastic variables including collisions, leads to an implicit differential equation for the mean square displacement. From the latter, different transport regimes, including the well-known Rechester-Rosenbluth diffusion coefficient, are derived. Finite Larmor radius contributions show a decrease of the diffusion coefficient compared to the guiding center limit. The case of small (or vanishing) mean fields is also discussed.
Drift-wave turbulence and zonal flow generation.
Balescu, R
2003-10-01
Drift-wave turbulence in a plasma is analyzed on the basis of the wave Liouville equation, describing the evolution of the distribution function of wave packets (quasiparticles) characterized by position x and wave vector k. A closed kinetic equation is derived for the ensemble-averaged part of this function by the methods of nonequilibrium statistical mechanics. It has the form of a non-Markovian advection-diffusion equation describing coupled diffusion processes in x and k spaces. General forms of the diffusion coefficients are obtained in terms of Lagrangian velocity correlations. The latter are calculated in the decorrelation trajectory approximation, a method recently developed for an accurate measure of the important trapping phenomena of particles in the rugged electrostatic potential. The analysis of individual decorrelation trajectories provides an illustration of the fragmentation of drift-wave structures in the radial direction and the generation of long-wavelength structures in the poloidal direction that are identified as zonal flows.
NASA Astrophysics Data System (ADS)
Moore, Peter K.
2003-07-01
Solving systems of reaction-diffusion equations in three space dimensions can be prohibitively expensive both in terms of storage and CPU time. Herein, I present a new incomplete assembly procedure that is designed to reduce storage requirements. Incomplete assembly is analogous to incomplete factorization in that only a fixed number of nonzero entries are stored per row and a drop tolerance is used to discard small values. The algorithm is incorporated in a finite element method-of-lines code and tested on a set of reaction-diffusion systems. The effect of incomplete assembly on CPU time and storage and on the performance of the temporal integrator DASPK, algebraic solver GMRES and preconditioner ILUT is studied.
Zhao, Renjie; Evans, James W.; Oliveira, Tiago J.
2016-04-08
Here, a discrete version of deposition-diffusion equations appropriate for description of step flow on a vicinal surface is analyzed for a two-dimensional grid of adsorption sites representing the stepped surface and explicitly incorporating kinks along the step edges. Model energetics and kinetics appropriately account for binding of adatoms at steps and kinks, distinct terrace and edge diffusion rates, and possible additional barriers for attachment to steps. Analysis of adatom attachment fluxes as well as limiting values of adatom densities at step edges for nonuniform deposition scenarios allows determination of both permeability and kinetic coefficients. Behavior of these quantities is assessedmore » as a function of key system parameters including kink density, step attachment barriers, and the step edge diffusion rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Renjie; Evans, James W.; Oliveira, Tiago J.
Here, a discrete version of deposition-diffusion equations appropriate for description of step flow on a vicinal surface is analyzed for a two-dimensional grid of adsorption sites representing the stepped surface and explicitly incorporating kinks along the step edges. Model energetics and kinetics appropriately account for binding of adatoms at steps and kinks, distinct terrace and edge diffusion rates, and possible additional barriers for attachment to steps. Analysis of adatom attachment fluxes as well as limiting values of adatom densities at step edges for nonuniform deposition scenarios allows determination of both permeability and kinetic coefficients. Behavior of these quantities is assessedmore » as a function of key system parameters including kink density, step attachment barriers, and the step edge diffusion rate.« less
NASA Technical Reports Server (NTRS)
Chang, C. H.
1999-01-01
The relationship between Joule heating, diffusion fluxes, and friction forces has been studied for both total and electron thermal energy equations, using general expressions for multicomponent diffusion in two-temperature plasmas with the velocity dependent Lorentz force acting on charged species in a magnetic field. It is shown that the derivation of Joule heating terms requires both diffusion fluxes and friction between species which represents the resistance experienced by the species moving at different relative velocities. It is also shown that the familiar Joule heating term in the electron thermal energy equation includes artificial effects produced by switching the convective velocity from the species velocity to the mass-weighted velocity, and thus should not be ignored even when there is no net energy dissipation.
NASA Astrophysics Data System (ADS)
Hsieh, T.
1986-10-01
Investigation of downstream boundary effects on the frequency of self-excited oscillations in two-dimensional, separated transonic diffuser flows were conducted numerically by solving the compressible, Reynolds-averaged, thin-layer Navier-Stokes equation with two equation turbulence models. It was found that the flow fields are very sensitive to the location of the downstream boundary. Extension of the diffuser downstream boundary significantly reduces the frequency and amplitude of oscillations for pressure, velocity, and shock. The existence of a suction slot in the experimental setpup obscures the physical downstream boundary and therefore presents a difficulty for quantitative comparisons between computation and experiment.
Calculation of two-dimension radial electric field in boundary plasmas by using BOUT++
NASA Astrophysics Data System (ADS)
Li, N. M.; Xu, X. Q.; Rognlien, T. D.; Gui, B.; Sun, J. Z.; Wang, D. Z.
2018-07-01
The steady state radial electric field (Er) is calculated by coupling a plasma transport model with the quasi-neutrality constraint and the vorticity equation within the BOUT++ framework. Based on the experimentally measured plasma density and temperature profiles in Alcator C-Mod discharges, the effective radial particle and heat diffusivities are inferred from the set of plasma transport equations. The effective diffusivities are then extended into the scrape-off layer (SOL) to calculate the plasma density, temperature and flow profiles across the separatrix into the SOL with the electrostatic sheath boundary conditions (SBC) applied on the divertor plates. Given these diffusivities, the electric field can be calculated self-consistently across the separatrix from the vorticity equation with SBC coupled to the plasma transport equations. The sheath boundary conditions act to generate a large and positive Er in the SOL, which is consistent with experimental measurements. The effect of magnetic particle drifts is shown to play a significant role on local particle transport and Er by inducing a net particle flow in both the edge and SOL regions.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Tel'nikhin, A. A.; Kronberg, T. K.
2007-01-01
In the Hamiltonian approach an electron motion in a coherent packet of the whistler mode waves propagating along the direction of an ambient magnetic field is studied. The physical processes by which these particles are accelerated to high energy are established. Equations governing a particle motion were transformed in to a closed pair of nonlinear difference equations. The solutions of these equations have shown there exists the energetic threshold below that the electron motion is regular, and when the initial energy is above the threshold an electron moves stochastically. Particle energy spectra and pitch angle electron scattering are described by the Fokker-Planck-Kolmogorov equations. Calculating the stochastic diffusion of electrons due to a spectrum of whistler modes is presented. The parametric dependence of the diffusion coefficients on the plasma particle density, magnitude of wave field, and the strength of magnetic field is studies. It is shown that significant pitch angle diffusion occurs for the Earth radiation belt electrons with energies from a few keV up to a few MeV.
Analysis of a diffuse interface model of multispecies tumor growth
NASA Astrophysics Data System (ADS)
Dai, Mimi; Feireisl, Eduard; Rocca, Elisabetta; Schimperna, Giulio; Schonbek, Maria E.
2017-04-01
We consider a diffuse interface model for tumor growth recently proposed in Chen et al (2014 Int. J. Numer. Methods Biomed. Eng. 30 726-54). In this new approach sharp interfaces are replaced by narrow transition layers arising due to adhesive forces among the cell species. Hence, a continuum thermodynamically consistent model is introduced. The resulting PDE system couples four different types of equations: a Cahn-Hilliard type equation for the tumor cells (which include proliferating and dead cells), a Darcy law for the tissue velocity field, whose divergence may be different from 0 and depend on the other variables, a transport equation for the proliferating (viable) tumor cells, and a quasi-static reaction diffusion equation for the nutrient concentration. We establish existence of weak solutions for the PDE system coupled with suitable initial and boundary conditions. In particular, the proliferation function at the boundary is supposed to be nonnegative on the set where the velocity \\mathbf{u} satisfies \\mathbf{u}\\centerdot ν >0 , where ν is the outer normal to the boundary of the domain.
Photon migration in non-scattering tissue and the effects on image reconstruction
NASA Astrophysics Data System (ADS)
Dehghani, H.; Delpy, D. T.; Arridge, S. R.
1999-12-01
Photon propagation in tissue can be calculated using the relationship described by the transport equation. For scattering tissue this relationship is often simplified and expressed in terms of the diffusion approximation. This approximation, however, is not valid for non-scattering regions, for example cerebrospinal fluid (CSF) below the skull. This study looks at the effects of a thin clear layer in a simple model representing the head and examines its effect on image reconstruction. Specifically, boundary photon intensities (total number of photons exiting at a point on the boundary due to a source input at another point on the boundary) are calculated using the transport equation and compared with data calculated using the diffusion approximation for both non-scattering and scattering regions. The effect of non-scattering regions on the calculated boundary photon intensities is presented together with the advantages and restrictions of the transport code used. Reconstructed images are then presented where the forward problem is solved using the transport equation for a simple two-dimensional system containing a non-scattering ring and the inverse problem is solved using the diffusion approximation to the transport equation.
A Model for the Oxidation of C/SiC Composite Structures
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.
2003-01-01
A mathematical theory and an accompanying numerical scheme have been developed for predicting the oxidation behavior of C/SiC composite structures. The theory is derived from the mechanics of the flow of ideal gases through a porous solid. Within the mathematical formulation, two diffusion mechanisms are possible: (1) the relative diffusion of one species with respect to the mixture, which is concentration gradient driven and (2) the diffusion associated with the average velocity of the gas mixture, which is total gas pressure gradient driven. The result of the theoretical formulation is a set of two coupled nonlinear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations must be solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of space and time. The local rate of carbon oxidation is determined as a function of space and time using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The nonlinear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual method, allowing for the solution of the differential equations numerically. The end result is a numerical scheme capable of determining the variation of the local carbon oxidation rates as a function of space and time for any arbitrary C/SiC composite structures.
NASA Astrophysics Data System (ADS)
Muhiddin, F. A.; Sulaiman, J.
2017-09-01
The aim of this paper is to investigate the effectiveness of the Successive Over-Relaxation (SOR) iterative method by using the fourth-order Crank-Nicolson (CN) discretization scheme to derive a five-point Crank-Nicolson approximation equation in order to solve diffusion equation. From this approximation equation, clearly, it can be shown that corresponding system of five-point approximation equations can be generated and then solved iteratively. In order to access the performance results of the proposed iterative method with the fourth-order CN scheme, another point iterative method which is Gauss-Seidel (GS), also presented as a reference method. Finally the numerical results obtained from the use of the fourth-order CN discretization scheme, it can be pointed out that the SOR iterative method is superior in terms of number of iterations, execution time, and maximum absolute error.
A two-equation model for heat transport in wall turbulent shear flows
NASA Astrophysics Data System (ADS)
Nagano, Y.; Kim, C.
1988-08-01
A new proposal for closing the energy equation is presented at the two-equation level of turbulence modeling. The eddy diffusivity concept is used in modeling. However, just as the eddy viscosity is determined from solutions of the k and epsilon equations, so the eddy diffusivity for heat is given as functions of temperature variance, and the dissipation rate of temperature fluctuations, together with k and epsilon. Thus, the proposed model does not require any questionable assumptions for the 'turbulent Prandtl number'. Modeled forms of the equations are developed to account for the physical effects of molecular Prandtl number and near-wall turbulence. The model is tested by application to a flat-plate boundary layer, the thermal entrance region of a pipe, and the turbulent heat transfer in fluids over a wide range of the Prandtl number. Agreement with the experiment is generally very satisfactory.
Information accumulation system by inheritance and diffusion
NASA Astrophysics Data System (ADS)
Shin, J. K.
2009-09-01
This paper suggests a new model, called as the IAS (Information Accumulation System), for the description of the dynamic process that people use to accumulate their information (knowledge or opinion) for specific issues. Using the concept of information, both the internal and the external mechanism of the opinion dynamics are treated on a unified frame. The information is quantified as a real number with fixed bounds. New concepts, such as inheritance and differential absorption, are incorporated in IAS in addition to the conventional diffusive interaction between people. Thus, the dynamics of the IAS are governed by following three factors: inheritance rate, diffusivity and absorption rate. The original set of equations was solved with an agent based modeling technique. In addition, the individual equations for each of the agents were assembled and transformed into a set of equations for the ensemble averages, which are greatly reduced in number and can be solved analytically. The example simulations showed interesting results such as the critical behavior with respect to diffusivity, the information polarization out of zero-sum news and the dependence of the solutions on the initial conditions alone. The results were speculated in relation to today’s modern society where the diffusivity of information has been greatly increased through the internet and mobile phones.
López-Sánchez, Erick J; Romero, Juan M; Yépez-Martínez, Huitzilin
2017-09-01
Different experimental studies have reported anomalous diffusion in brain tissues and notably this anomalous diffusion is expressed through fractional derivatives. Axons are important to understand neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Indeed, abnormal accumulation of proteins and organelles in axons is a hallmark of these diseases. The diffusion in the axons can become anomalous as a result of this abnormality. In this case the voltage propagation in axons is affected. Another hallmark of different neurodegenerative diseases is given by discrete swellings along the axon. In order to model the voltage propagation in axons with anomalous diffusion and swellings, in this paper we propose a fractional cable equation for a general geometry. This generalized equation depends on fractional parameters and geometric quantities such as the curvature and torsion of the cable. For a cable with a constant radius we show that the voltage decreases when the fractional effect increases. In cables with swellings we find that when the fractional effect or the swelling radius increases, the voltage decreases. Similar behavior is obtained when the number of swellings and the fractional effect increase. Moreover, we find that when the radius swelling (or the number of swellings) and the fractional effect increase at the same time, the voltage dramatically decreases.
NASA Astrophysics Data System (ADS)
López-Sánchez, Erick J.; Romero, Juan M.; Yépez-Martínez, Huitzilin
2017-09-01
Different experimental studies have reported anomalous diffusion in brain tissues and notably this anomalous diffusion is expressed through fractional derivatives. Axons are important to understand neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Indeed, abnormal accumulation of proteins and organelles in axons is a hallmark of these diseases. The diffusion in the axons can become anomalous as a result of this abnormality. In this case the voltage propagation in axons is affected. Another hallmark of different neurodegenerative diseases is given by discrete swellings along the axon. In order to model the voltage propagation in axons with anomalous diffusion and swellings, in this paper we propose a fractional cable equation for a general geometry. This generalized equation depends on fractional parameters and geometric quantities such as the curvature and torsion of the cable. For a cable with a constant radius we show that the voltage decreases when the fractional effect increases. In cables with swellings we find that when the fractional effect or the swelling radius increases, the voltage decreases. Similar behavior is obtained when the number of swellings and the fractional effect increase. Moreover, we find that when the radius swelling (or the number of swellings) and the fractional effect increase at the same time, the voltage dramatically decreases.
NASA Astrophysics Data System (ADS)
Zhong, Jiaqi; Zeng, Cheng; Yuan, Yupeng; Zhang, Yuzhe; Zhang, Ye
2018-04-01
The aim of this paper is to present an explicit numerical algorithm based on improved spectral Galerkin method for solving the unsteady diffusion-convection-reaction equation. The principal characteristics of this approach give the explicit eigenvalues and eigenvectors based on the time-space separation method and boundary condition analysis. With the help of Fourier series and Galerkin truncation, we can obtain the finite-dimensional ordinary differential equations which facilitate the system analysis and controller design. By comparing with the finite element method, the numerical solutions are demonstrated via two examples. It is shown that the proposed method is effective.
Numerical simulation of gas distribution in goaf under Y ventilation mode
NASA Astrophysics Data System (ADS)
Li, Shengzhou; Liu, Jun
2018-04-01
Taking the Y type ventilation of the working face as the research object, diffusion equation is introduced to simulate the diffusion characteristics of gas, using Navier-Stokes equation and Brinkman equation to simulate the gas flow in working face and goaf, the physical model of gas flow in coal mining face was established. With numerical simulation software COMSOL multiphysics methods, gas distribution in goaf under Y ventilation mode is simulated and gas distribution of the working face, the upper corner and goaf is analysised. The results show that the Y type ventilation system can effectively improve the corner gas accumulation and overrun problem.
Development and Application of Agglomerated Multigrid Methods for Complex Geometries
NASA Technical Reports Server (NTRS)
Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.
2010-01-01
We report progress in the development of agglomerated multigrid techniques for fully un- structured grids in three dimensions, building upon two previous studies focused on efficiently solving a model diffusion equation. We demonstrate a robust fully-coarsened agglomerated multigrid technique for 3D complex geometries, incorporating the following key developments: consistent and stable coarse-grid discretizations, a hierarchical agglomeration scheme, and line-agglomeration/relaxation using prismatic-cell discretizations in the highly-stretched grid regions. A signi cant speed-up in computer time is demonstrated for a model diffusion problem, the Euler equations, and the Reynolds-averaged Navier-Stokes equations for 3D realistic complex geometries.
A DYNAMIC DENSITY FUNCTIONAL THEORY APPROACH TO DIFFUSION IN WHITE DWARFS AND NEUTRON STAR ENVELOPES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaw, A.; Murillo, M. S.
2016-09-20
We develop a multicomponent hydrodynamic model based on moments of the Born–Bogolyubov–Green–Kirkwood–Yvon hierarchy equations for physical conditions relevant to astrophysical plasmas. These equations incorporate strong correlations through a density functional theory closure, while transport enters through a relaxation approximation. This approach enables the introduction of Coulomb coupling correction terms into the standard Burgers equations. The diffusive currents for these strongly coupled plasmas is self-consistently derived. The settling of impurities and its impact on cooling can be greatly affected by strong Coulomb coupling, which we show can be quantified using the direct correlation function.
An Attempt to Derive the epsilon Equation from a Two-Point Closure
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Cheng, Y.; Howard, A. M.
2010-01-01
The goal of this paper is to derive the equation for the turbulence dissipation rate epsilon for a shear-driven flow. In 1961, Davydov used a one-point closure model to derive the epsilon equation from first principles but the final result contained undetermined terms and thus lacked predictive power. Both in 1987 and in 2001, attempts were made to derive the epsilon equation from first principles using a two-point closure, but their methods relied on a phenomenological assumption. The standard practice has thus been to employ a heuristic form of the equation that contains three empirical ingredients: two constants, c(sub 1 epsilon), and c(sub 2 epsilon), and a diffusion term D(sub epsilon) In this work, a two-point closure is employed, yielding the following results: 1) the empirical constants get replaced by c(sub 1), c(sub 2), which are now functions of Kappa and epsilon; 2) c(sub 1) and c(sub 2) are not independent because a general relation between the two that are valid for any Kappa and epsilon are derived; 3) c(sub 1), c(sub 2) become constant with values close to the empirical values c(sub 1 epsilon), c(sub epsilon 2), (i.e., homogenous flows); and 4) the empirical form of the diffusion term D(sub epsilon) is no longer needed because it gets substituted by the Kappa-epsilon dependence of c(sub 1), c(sub 2), which plays the role of the diffusion, together with the diffusion of the turbulent kinetic energy D(sub Kappa), which now enters the new equation (i.e., inhomogeneous flows). Thus, the three empirical ingredients c(sub 1 epsilon), c(sub epsilon 2), D (sub epsilon)are replaced by a single function c(sub 1)(Kappa, epsilon ) or c(sub 2)(Kappa, epsilon ), plus a D(sub Kappa)term. Three tests of the new equation for epsilon are presented: one concerning channel flow and two concerning the shear-driven planetary boundary layer (PBL).
Lu, Benzhuo; Zhou, Y C; Huber, Gary A; Bond, Stephen D; Holst, Michael J; McCammon, J Andrew
2007-10-07
A computational framework is presented for the continuum modeling of cellular biomolecular diffusion influenced by electrostatic driving forces. This framework is developed from a combination of state-of-the-art numerical methods, geometric meshing, and computer visualization tools. In particular, a hybrid of (adaptive) finite element and boundary element methods is adopted to solve the Smoluchowski equation (SE), the Poisson equation (PE), and the Poisson-Nernst-Planck equation (PNPE) in order to describe electrodiffusion processes. The finite element method is used because of its flexibility in modeling irregular geometries and complex boundary conditions. The boundary element method is used due to the convenience of treating the singularities in the source charge distribution and its accurate solution to electrostatic problems on molecular boundaries. Nonsteady-state diffusion can be studied using this framework, with the electric field computed using the densities of charged small molecules and mobile ions in the solvent. A solution for mesh generation for biomolecular systems is supplied, which is an essential component for the finite element and boundary element computations. The uncoupled Smoluchowski equation and Poisson-Boltzmann equation are considered as special cases of the PNPE in the numerical algorithm, and therefore can be solved in this framework as well. Two types of computations are reported in the results: stationary PNPE and time-dependent SE or Nernst-Planck equations solutions. A biological application of the first type is the ionic density distribution around a fragment of DNA determined by the equilibrium PNPE. The stationary PNPE with nonzero flux is also studied for a simple model system, and leads to an observation that the interference on electrostatic field of the substrate charges strongly affects the reaction rate coefficient. The second is a time-dependent diffusion process: the consumption of the neurotransmitter acetylcholine by acetylcholinesterase, determined by the SE and a single uncoupled solution of the Poisson-Boltzmann equation. The electrostatic effects, counterion compensation, spatiotemporal distribution, and diffusion-controlled reaction kinetics are analyzed and different methods are compared.
Growing surfaces with anomalous diffusion: Results for the fractal Kardar-Parisi-Zhang equation
NASA Astrophysics Data System (ADS)
Katzav, Eytan
2003-09-01
In this paper I study a model for a growing surface in the presence of anomalous diffusion, also known as the fractal Kardar-Parisi-Zhang equation (FKPZ). This equation includes a fractional Laplacian that accounts for the possibility that surface transport is caused by a hopping mechanism of a Levy flight. It is shown that for a specific choice of parameters of the FKPZ equation, the equation can be solved exactly in one dimension, so that all the critical exponents, which describe the surface that grows under FKPZ, can be derived for that case. Afterwards, the self-consistent expansion (SCE) is used to predict the critical exponents for the FKPZ model for any choice of the parameters and any spatial dimension. It is then verified that the results obtained using SCE recover the exact result in one dimension. At the end a simple picture for the behavior of the fractal KPZ equation is suggested and the upper critical dimension of this model is discussed.
FAST TRACK COMMUNICATION Time-dependent exact solutions of the nonlinear Kompaneets equation
NASA Astrophysics Data System (ADS)
Ibragimov, N. H.
2010-12-01
Time-dependent exact solutions of the Kompaneets photon diffusion equation are obtained for several approximations of this equation. One of the approximations describes the case when the induced scattering is dominant. In this case, the Kompaneets equation has an additional symmetry which is used for constructing some exact solutions as group invariant solutions.
The Effect of Multigrid Parameters in a 3D Heat Diffusion Equation
NASA Astrophysics Data System (ADS)
Oliveira, F. De; Franco, S. R.; Pinto, M. A. Villela
2018-02-01
The aim of this paper is to reduce the necessary CPU time to solve the three-dimensional heat diffusion equation using Dirichlet boundary conditions. The finite difference method (FDM) is used to discretize the differential equations with a second-order accuracy central difference scheme (CDS). The algebraic equations systems are solved using the lexicographical and red-black Gauss-Seidel methods, associated with the geometric multigrid method with a correction scheme (CS) and V-cycle. Comparisons are made between two types of restriction: injection and full weighting. The used prolongation process is the trilinear interpolation. This work is concerned with the study of the influence of the smoothing value (v), number of mesh levels (L) and number of unknowns (N) on the CPU time, as well as the analysis of algorithm complexity.
NASA Astrophysics Data System (ADS)
Glushak, P. A.; Markiv, B. B.; Tokarchuk, M. V.
2018-01-01
We present a generalization of Zubarev's nonequilibrium statistical operator method based on the principle of maximum Renyi entropy. In the framework of this approach, we obtain transport equations for the basic set of parameters of the reduced description of nonequilibrium processes in a classical system of interacting particles using Liouville equations with fractional derivatives. For a classical systems of particles in a medium with a fractal structure, we obtain a non-Markovian diffusion equation with fractional spatial derivatives. For a concrete model of the frequency dependence of a memory function, we obtain generalized Kettano-type diffusion equation with the spatial and temporal fractality taken into account. We present a generalization of nonequilibrium thermofield dynamics in Zubarev's nonequilibrium statistical operator method in the framework of Renyi statistics.
A strictly Markovian expansion for plasma turbulence theory
NASA Technical Reports Server (NTRS)
Jones, F. C.
1978-01-01
The collision operator that appears in the equation of motion for a particle distribution function that has been averaged over an ensemble of random Hamiltonians is non-Markovian. It is non-Markovian in that it involves a propagated integral over the past history of the ensemble averaged distribution function. All formal expansions of this nonlinear collision operator to date preserve this non-Markovian character term by term yielding an integro-differential equation that must be converted to a diffusion equation by an additional approximation. In this note we derive an expansion of the collision operator that is strictly Markovian to any finite order and yields a diffusion equation as the lowest non-trivial order. The validity of this expansion is seen to be the same as that of the standard quasi-linear expansion.
A deterministic particle method for one-dimensional reaction-diffusion equations
NASA Technical Reports Server (NTRS)
Mascagni, Michael
1995-01-01
We derive a deterministic particle method for the solution of nonlinear reaction-diffusion equations in one spatial dimension. This deterministic method is an analog of a Monte Carlo method for the solution of these problems that has been previously investigated by the author. The deterministic method leads to the consideration of a system of ordinary differential equations for the positions of suitably defined particles. We then consider the time explicit and implicit methods for this system of ordinary differential equations and we study a Picard and Newton iteration for the solution of the implicit system. Next we solve numerically this system and study the discretization error both analytically and numerically. Numerical computation shows that this deterministic method is automatically adaptive to large gradients in the solution.