Sample records for multigroup diffusion solver

  1. CRASH: A BLOCK-ADAPTIVE-MESH CODE FOR RADIATIVE SHOCK HYDRODYNAMICS-IMPLEMENTATION AND VERIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van der Holst, B.; Toth, G.; Sokolov, I. V.

    We describe the Center for Radiative Shock Hydrodynamics (CRASH) code, a block-adaptive-mesh code for multi-material radiation hydrodynamics. The implementation solves the radiation diffusion model with a gray or multi-group method and uses a flux-limited diffusion approximation to recover the free-streaming limit. Electrons and ions are allowed to have different temperatures and we include flux-limited electron heat conduction. The radiation hydrodynamic equations are solved in the Eulerian frame by means of a conservative finite-volume discretization in either one-, two-, or three-dimensional slab geometry or in two-dimensional cylindrical symmetry. An operator-split method is used to solve these equations in three substeps: (1)more » an explicit step of a shock-capturing hydrodynamic solver; (2) a linear advection of the radiation in frequency-logarithm space; and (3) an implicit solution of the stiff radiation diffusion, heat conduction, and energy exchange. We present a suite of verification test problems to demonstrate the accuracy and performance of the algorithms. The applications are for astrophysics and laboratory astrophysics. The CRASH code is an extension of the Block-Adaptive Tree Solarwind Roe Upwind Scheme (BATS-R-US) code with a new radiation transfer and heat conduction library and equation-of-state and multi-group opacity solvers. Both CRASH and BATS-R-US are part of the publicly available Space Weather Modeling Framework.« less

  2. Potential of pin-by-pin SPN calculations as an industrial reference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fliscounakis, M.; Girardi, E.; Courau, T.

    2012-07-01

    This paper aims at analysing the potential of pin-by-pin SP{sub n} calculations to compute the neutronic flux in PWR cores as an alternative to the diffusion approximation. As far as pin-by-pin calculations are concerned, a SPH equivalence is used to preserve the reactions rates. The use of SPH equivalence is a common practice in core diffusion calculations. In this paper, a methodology to generalize the equivalence procedure in the SP{sub n} equations context is presented. In order to verify and validate the equivalence procedure, SP{sub n} calculations are compared to 2D transport reference results obtained with the APOLL02 code. Themore » validation cases consist in 3x3 analytical assembly color sets involving burn-up heterogeneities, UOX/MOX interfaces, and control rods. Considering various energy discretizations (up to 26 groups) and flux development orders (up to 7) for the SP{sub n} equations, results show that 26-group SP{sub 3} calculations are very close to the transport reference (with pin production rates discrepancies < 1%). This proves the high interest of pin-by-pin SP{sub n} calculations as an industrial reference when relying on 26 energy groups combined with SP{sub 3} flux development order. Additionally, the SP{sub n} results are compared to diffusion pin-by-pin calculations, in order to evaluate the potential benefit of using a SP{sub n} solver as an alternative to diffusion. Discrepancies on pin-production rates are less than 1.6% for 6-group SP{sub 3} calculations against 3.2% for 2-group diffusion calculations. This shows that SP{sub n} solvers may be considered as an alternative to multigroup diffusion. (authors)« less

  3. A multigroup radiation diffusion test problem: Comparison of code results with analytic solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shestakov, A I; Harte, J A; Bolstad, J H

    2006-12-21

    We consider a 1D, slab-symmetric test problem for the multigroup radiation diffusion and matter energy balance equations. The test simulates diffusion of energy from a hot central region. Opacities vary with the cube of the frequency and radiation emission is given by a Wien spectrum. We compare results from two LLNL codes, Raptor and Lasnex, with tabular data that define the analytic solution.

  4. A lumped parameter method of characteristics approach and multigroup kernels applied to the subgroup self-shielding calculation in MPACT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stimpson, Shane G.; Liu, Yuxuan; Collins, Benjamin S.

    An essential component of the neutron transport solver is the resonance self-shielding calculation used to determine equivalence cross sections. The neutron transport code, MPACT, is currently using the subgroup self-shielding method, in which the method of characteristics (MOC) is used to solve purely absorbing fixed-source problems. Recent efforts incorporating multigroup kernels to the MOC solvers in MPACT have reduced runtime by roughly 2×. Applying the same concepts for self-shielding and developing a novel lumped parameter approach to MOC, substantial improvements have also been made to the self-shielding computational efficiency without sacrificing any accuracy. These new multigroup and lumped parameter capabilitiesmore » have been demonstrated on two test cases: (1) a single lattice with quarter symmetry known as VERA (Virtual Environment for Reactor Applications) Progression Problem 2a and (2) a two-dimensional quarter-core slice known as Problem 5a-2D. From these cases, self-shielding computational time was reduced by roughly 3–4×, with a corresponding 15–20% increase in overall memory burden. An azimuthal angle sensitivity study also shows that only half as many angles are needed, yielding an additional speedup of 2×. In total, the improvements yield roughly a 7–8× speedup. Furthermore given these performance benefits, these approaches have been adopted as the default in MPACT.« less

  5. A lumped parameter method of characteristics approach and multigroup kernels applied to the subgroup self-shielding calculation in MPACT

    DOE PAGES

    Stimpson, Shane G.; Liu, Yuxuan; Collins, Benjamin S.; ...

    2017-07-17

    An essential component of the neutron transport solver is the resonance self-shielding calculation used to determine equivalence cross sections. The neutron transport code, MPACT, is currently using the subgroup self-shielding method, in which the method of characteristics (MOC) is used to solve purely absorbing fixed-source problems. Recent efforts incorporating multigroup kernels to the MOC solvers in MPACT have reduced runtime by roughly 2×. Applying the same concepts for self-shielding and developing a novel lumped parameter approach to MOC, substantial improvements have also been made to the self-shielding computational efficiency without sacrificing any accuracy. These new multigroup and lumped parameter capabilitiesmore » have been demonstrated on two test cases: (1) a single lattice with quarter symmetry known as VERA (Virtual Environment for Reactor Applications) Progression Problem 2a and (2) a two-dimensional quarter-core slice known as Problem 5a-2D. From these cases, self-shielding computational time was reduced by roughly 3–4×, with a corresponding 15–20% increase in overall memory burden. An azimuthal angle sensitivity study also shows that only half as many angles are needed, yielding an additional speedup of 2×. In total, the improvements yield roughly a 7–8× speedup. Furthermore given these performance benefits, these approaches have been adopted as the default in MPACT.« less

  6. DMM: A MULTIGROUP, MULTIREGION ONE-SPACE-DIMENSIONAL COMPUTER PROGRAM USING NEUTRON DIFFUSION THEORY. PART II. DMM PROGRAM DESCRIPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavanagh, D.L.; Antchagno, M.J.; Egawa, E.K.

    1960-12-31

    Operating instructions are presented for DMM, a Remington Rand 1103A program using one-space-dimensional multigroup diffusion theory to calculate the reactivity or critical conditions and flux distribution of a multiregion reactor. Complete descriptions of the routines and problem input and output specifications are also included. (D.L.C.)

  7. Eigenvalue Solvers for Modeling Nuclear Reactors on Leadership Class Machines

    DOE PAGES

    Slaybaugh, R. N.; Ramirez-Zweiger, M.; Pandya, Tara; ...

    2018-02-20

    In this paper, three complementary methods have been implemented in the code Denovo that accelerate neutral particle transport calculations with methods that use leadership-class computers fully and effectively: a multigroup block (MG) Krylov solver, a Rayleigh quotient iteration (RQI) eigenvalue solver, and a multigrid in energy (MGE) preconditioner. The MG Krylov solver converges more quickly than Gauss Seidel and enables energy decomposition such that Denovo can scale to hundreds of thousands of cores. RQI should converge in fewer iterations than power iteration (PI) for large and challenging problems. RQI creates shifted systems that would not be tractable without the MGmore » Krylov solver. It also creates ill-conditioned matrices. The MGE preconditioner reduces iteration count significantly when used with RQI and takes advantage of the new energy decomposition such that it can scale efficiently. Each individual method has been described before, but this is the first time they have been demonstrated to work together effectively. The combination of solvers enables the RQI eigenvalue solver to work better than the other available solvers for large reactors problems on leadership-class machines. Using these methods together, RQI converged in fewer iterations and in less time than PI for a full pressurized water reactor core. These solvers also performed better than an Arnoldi eigenvalue solver for a reactor benchmark problem when energy decomposition is needed. The MG Krylov, MGE preconditioner, and RQI solver combination also scales well in energy. Finally, this solver set is a strong choice for very large and challenging problems.« less

  8. Eigenvalue Solvers for Modeling Nuclear Reactors on Leadership Class Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slaybaugh, R. N.; Ramirez-Zweiger, M.; Pandya, Tara

    In this paper, three complementary methods have been implemented in the code Denovo that accelerate neutral particle transport calculations with methods that use leadership-class computers fully and effectively: a multigroup block (MG) Krylov solver, a Rayleigh quotient iteration (RQI) eigenvalue solver, and a multigrid in energy (MGE) preconditioner. The MG Krylov solver converges more quickly than Gauss Seidel and enables energy decomposition such that Denovo can scale to hundreds of thousands of cores. RQI should converge in fewer iterations than power iteration (PI) for large and challenging problems. RQI creates shifted systems that would not be tractable without the MGmore » Krylov solver. It also creates ill-conditioned matrices. The MGE preconditioner reduces iteration count significantly when used with RQI and takes advantage of the new energy decomposition such that it can scale efficiently. Each individual method has been described before, but this is the first time they have been demonstrated to work together effectively. The combination of solvers enables the RQI eigenvalue solver to work better than the other available solvers for large reactors problems on leadership-class machines. Using these methods together, RQI converged in fewer iterations and in less time than PI for a full pressurized water reactor core. These solvers also performed better than an Arnoldi eigenvalue solver for a reactor benchmark problem when energy decomposition is needed. The MG Krylov, MGE preconditioner, and RQI solver combination also scales well in energy. Finally, this solver set is a strong choice for very large and challenging problems.« less

  9. An AMR capable finite element diffusion solver for ALE hydrocodes [An AMR capable diffusion solver for ALE-AMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, A. C.; Bailey, D. S.; Kaiser, T. B.

    2015-02-01

    Here, we present a novel method for the solution of the diffusion equation on a composite AMR mesh. This approach is suitable for including diffusion based physics modules to hydrocodes that support ALE and AMR capabilities. To illustrate, we proffer our implementations of diffusion based radiation transport and heat conduction in a hydrocode called ALE-AMR. Numerical experiments conducted with the diffusion solver and associated physics packages yield 2nd order convergence in the L 2 norm.

  10. A comparison of acceleration methods for solving the neutron transport k-eigenvalue problem

    NASA Astrophysics Data System (ADS)

    Willert, Jeffrey; Park, H.; Knoll, D. A.

    2014-10-01

    Over the past several years a number of papers have been written describing modern techniques for numerically computing the dominant eigenvalue of the neutron transport criticality problem. These methods fall into two distinct categories. The first category of methods rewrite the multi-group k-eigenvalue problem as a nonlinear system of equations and solve the resulting system using either a Jacobian-Free Newton-Krylov (JFNK) method or Nonlinear Krylov Acceleration (NKA), a variant of Anderson Acceleration. These methods are generally successful in significantly reducing the number of transport sweeps required to compute the dominant eigenvalue. The second category of methods utilize Moment-Based Acceleration (or High-Order/Low-Order (HOLO) Acceleration). These methods solve a sequence of modified diffusion eigenvalue problems whose solutions converge to the solution of the original transport eigenvalue problem. This second class of methods is, in our experience, always superior to the first, as most of the computational work is eliminated by the acceleration from the LO diffusion system. In this paper, we review each of these methods. Our computational results support our claim that the choice of which nonlinear solver to use, JFNK or NKA, should be secondary. The primary computational savings result from the implementation of a HOLO algorithm. We display computational results for a series of challenging multi-dimensional test problems.

  11. VENTURE: a code block for solving multigroup neutronics problems applying the finite-difference diffusion-theory approximation to neutron transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.

    1975-10-01

    The computer code block VENTURE, designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P$sub 1$) in up to three- dimensional geometry is described. A variety of types of problems may be solved: the usual eigenvalue problem, a direct criticality search on the buckling, on a reciprocal velocity absorber (prompt mode), or on nuclide concentrations, or an indirect criticality search on nuclide concentrations, or on dimensions. First- order perturbation analysis capability is available at the macroscopic cross section level. (auth)

  12. AMPX: a modular code system for generating coupled multigroup neutron-gamma libraries from ENDF/B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, N.M.; Lucius, J.L.; Petrie, L.M.

    1976-03-01

    AMPX is a modular system for producing coupled multigroup neutron-gamma cross section sets. Basic neutron and gamma cross-section data for AMPX are obtained from ENDF/B libraries. Most commonly used operations required to generate and collapse multigroup cross-section sets are provided in the system. AMPX is flexibly dimensioned; neutron group structures, and gamma group structures, and expansion orders to represent anisotropic processes are all arbitrary and limited only by available computer core and budget. The basic processes provided will (1) generate multigroup neutron cross sections; (2) generate multigroup gamma cross sections; (3) generate gamma yields for gamma-producing neutron interactions; (4) combinemore » neutron cross sections, gamma cross sections, and gamma yields into final ''coupled sets''; (5) perform one-dimensional discrete ordinates transport or diffusion theory calculations for neutrons and gammas and, on option, collapse the cross sections to a broad-group structure, using the one-dimensional results as weighting functions; (6) plot cross sections, on option, to facilitate the ''evaluation'' of a particular multigroup set of data; (7) update and maintain multigroup cross section libraries in such a manner as to make it not only easy to combine new data with previously processed data but also to do it in a single pass on the computer; and (8) output multigroup cross sections in convenient formats for other codes. (auth)« less

  13. Construction, classification and parametrization of complex Hadamard matrices

    NASA Astrophysics Data System (ADS)

    Szöllősi, Ferenc

    To improve the design of nuclear systems, high-fidelity neutron fluxes are required. Leadership-class machines provide platforms on which very large problems can be solved. Computing such fluxes efficiently requires numerical methods with good convergence properties and algorithms that can scale to hundreds of thousands of cores. Many 3-D deterministic transport codes are decomposable in space and angle only, limiting them to tens of thousands of cores. Most codes rely on methods such as Gauss Seidel for fixed source problems and power iteration for eigenvalue problems, which can be slow to converge for challenging problems like those with highly scattering materials or high dominance ratios. Three methods have been added to the 3-D SN transport code Denovo that are designed to improve convergence and enable the full use of cutting-edge computers. The first is a multigroup Krylov solver that converges more quickly than Gauss Seidel and parallelizes the code in energy such that Denovo can use hundreds of thousand of cores effectively. The second is Rayleigh quotient iteration (RQI), an old method applied in a new context. This eigenvalue solver finds the dominant eigenvalue in a mathematically optimal way and should converge in fewer iterations than power iteration. RQI creates energy-block-dense equations that the new Krylov solver treats efficiently. However, RQI can have convergence problems because it creates poorly conditioned systems. This can be overcome with preconditioning. The third method is a multigrid-in-energy preconditioner. The preconditioner takes advantage of the new energy decomposition because the grids are in energy rather than space or angle. The preconditioner greatly reduces iteration count for many problem types and scales well in energy. It also allows RQI to be successful for problems it could not solve otherwise. The methods added to Denovo accomplish the goals of this work. They converge in fewer iterations than traditional methods and enable the use of hundreds of thousands of cores. Each method can be used individually, with the multigroup Krylov solver and multigrid-in-energy preconditioner being particularly successful on their own. The largest benefit, though, comes from using these methods in concert.

  14. Asymptotic, multigroup flux reconstruction and consistent discontinuity factors

    DOE PAGES

    Trahan, Travis J.; Larsen, Edward W.

    2015-05-12

    Recent theoretical work has led to an asymptotically derived expression for reconstructing the neutron flux from lattice functions and multigroup diffusion solutions. The leading-order asymptotic term is the standard expression for flux reconstruction, i.e., it is the product of a shape function, obtained through a lattice calculation, and the multigroup diffusion solution. The first-order asymptotic correction term is significant only where the gradient of the diffusion solution is not small. Inclusion of this first-order correction term can significantly improve the accuracy of the reconstructed flux. One may define discontinuity factors (DFs) to make certain angular moments of the reconstructed fluxmore » continuous across interfaces between assemblies in 1-D. Indeed, the standard assembly discontinuity factors make the zeroth moment (scalar flux) of the reconstructed flux continuous. The inclusion of the correction term in the flux reconstruction provides an additional degree of freedom that can be used to make two angular moments of the reconstructed flux continuous across interfaces by using current DFs in addition to flux DFs. Thus, numerical results demonstrate that using flux and current DFs together can be more accurate than using only flux DFs, and that making the second angular moment continuous can be more accurate than making the zeroth moment continuous.« less

  15. DIFF--A 7090 Fortran Program to Determine Neutron Diffusion Constants Relating to a Six-Group Calculation; DIFF--UN PROGRAMME FOR TRAN 7090 POUR DETERMINER LES CONSTANTES DE DIFFUSION NEUTRONIQUE RELATIVES A UN CALCUL A SIX GROUPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plelnevaux, C.

    The computer program DIFF, in Fortran for the IBM 7090, for calculating the neutron diffusion coefficients and attenuation areas (L/sup 2/) necessary for multigroup diffusion calculations for reactor shielding is described. Diffusion coefficients and values of the inverse attenuation length are given for a six group calculation for several interesting shielding materials. (D.C.W.)

  16. Solving regularly and singularly perturbed reaction-diffusion equations in three space dimensions

    NASA Astrophysics Data System (ADS)

    Moore, Peter K.

    2007-06-01

    In [P.K. Moore, Effects of basis selection and h-refinement on error estimator reliability and solution efficiency for higher-order methods in three space dimensions, Int. J. Numer. Anal. Mod. 3 (2006) 21-51] a fixed, high-order h-refinement finite element algorithm, Href, was introduced for solving reaction-diffusion equations in three space dimensions. In this paper Href is coupled with continuation creating an automatic method for solving regularly and singularly perturbed reaction-diffusion equations. The simple quasilinear Newton solver of Moore, (2006) is replaced by the nonlinear solver NITSOL [M. Pernice, H.F. Walker, NITSOL: a Newton iterative solver for nonlinear systems, SIAM J. Sci. Comput. 19 (1998) 302-318]. Good initial guesses for the nonlinear solver are obtained using continuation in the small parameter ɛ. Two strategies allow adaptive selection of ɛ. The first depends on the rate of convergence of the nonlinear solver and the second implements backtracking in ɛ. Finally a simple method is used to select the initial ɛ. Several examples illustrate the effectiveness of the algorithm.

  17. A Comparison of Monte Carlo and Deterministic Solvers for keff and Sensitivity Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haeck, Wim; Parsons, Donald Kent; White, Morgan Curtis

    Verification and validation of our solutions for calculating the neutron reactivity for nuclear materials is a key issue to address for many applications, including criticality safety, research reactors, power reactors, and nuclear security. Neutronics codes solve variations of the Boltzmann transport equation. The two main variants are Monte Carlo versus deterministic solutions, e.g. the MCNP [1] versus PARTISN [2] codes, respectively. There have been many studies over the decades that examined the accuracy of such solvers and the general conclusion is that when the problems are well-posed, either solver can produce accurate results. However, the devil is always in themore » details. The current study examines the issue of self-shielding and the stress it puts on deterministic solvers. Most Monte Carlo neutronics codes use continuous-energy descriptions of the neutron interaction data that are not subject to this effect. The issue of self-shielding occurs because of the discretisation of data used by the deterministic solutions. Multigroup data used in these solvers are the average cross section and scattering parameters over an energy range. Resonances in cross sections can occur that change the likelihood of interaction by one to three orders of magnitude over a small energy range. Self-shielding is the numerical effect that the average cross section in groups with strong resonances can be strongly affected as neutrons within that material are preferentially absorbed or scattered out of the resonance energies. This affects both the average cross section and the scattering matrix.« less

  18. High-Fidelity Thermal Radiation Models and Measurements for High-Pressure Reacting Laminar and Turbulent Flows

    DTIC Science & Technology

    2013-06-26

    flow code used ( OpenFOAM ) to include differential diffusion and cell-based stochastic RTE solvers. The models were validated by simulation of laminar...wavenumber selection is improved about by a factor of 10. (5) OpenFOAM Improvements for Laminar Flames A laminar-diffusion combustion solver, taking into...account the effects of differential diffusion, was developed within the open source CFD package OpenFOAM [18]. In addition, OpenFOAM was augmented to take

  19. Multigroup Radiation-Hydrodynamics with a High-Order, Low-Order Method

    DOE PAGES

    Wollaber, Allan Benton; Park, HyeongKae; Lowrie, Robert Byron; ...

    2016-12-09

    Recent efforts at Los Alamos National Laboratory to develop a moment-based, scale-bridging [or high-order (HO)–low-order (LO)] algorithm for solving large varieties of the transport (kinetic) systems have shown promising results. A part of our ongoing effort is incorporating this methodology into the framework of the Eulerian Applications Project to achieve algorithmic acceleration of radiationhydrodynamics simulations in production software. By starting from the thermal radiative transfer equations with a simple material-motion correction, we derive a discretely consistent energy balance equation (LO equation). We demonstrate that the corresponding LO system for the Monte Carlo HO solver is closely related to the originalmore » LO system without material-motion corrections. We test the implementation on a radiative shock problem and show consistency between the energy densities and temperatures in the HO and LO solutions as well as agreement with the semianalytic solution. We also test the approach on a more challenging two-dimensional problem and demonstrate accuracy enhancements and algorithmic speedups. This paper extends a recent conference paper by including multigroup effects.« less

  20. Parallel Solver for Diffuse Optical Tomography on Realistic Head Models With Scattering and Clear Regions.

    PubMed

    Placati, Silvio; Guermandi, Marco; Samore, Andrea; Scarselli, Eleonora Franchi; Guerrieri, Roberto

    2016-09-01

    Diffuse optical tomography is an imaging technique, based on evaluation of how light propagates within the human head to obtain the functional information about the brain. Precision in reconstructing such an optical properties map is highly affected by the accuracy of the light propagation model implemented, which needs to take into account the presence of clear and scattering tissues. We present a numerical solver based on the radiosity-diffusion model, integrating the anatomical information provided by a structural MRI. The solver is designed to run on parallel heterogeneous platforms based on multiple GPUs and CPUs. We demonstrate how the solver provides a 7 times speed-up over an isotropic-scattered parallel Monte Carlo engine based on a radiative transport equation for a domain composed of 2 million voxels, along with a significant improvement in accuracy. The speed-up greatly increases for larger domains, allowing us to compute the light distribution of a full human head ( ≈ 3 million voxels) in 116 s for the platform used.

  1. Wind-US Unstructured Flow Solutions for a Transonic Diffuser

    NASA Technical Reports Server (NTRS)

    Mohler, Stanley R., Jr.

    2005-01-01

    The Wind-US Computational Fluid Dynamics flow solver computed flow solutions for a transonic diffusing duct. The calculations used an unstructured (hexahedral) grid. The Spalart-Allmaras turbulence model was used. Static pressures along the upper and lower wall agreed well with experiment, as did velocity profiles. The effect of the smoothing input parameters on convergence and solution accuracy was investigated. The meaning and proper use of these parameters are discussed for the benefit of Wind-US users. Finally, the unstructured solver is compared to the structured solver in terms of run times and solution accuracy.

  2. Benchmarking of calculation schemes in APOLLO2 and COBAYA3 for WER lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheleva, N.; Ivanov, P.; Todorova, G.

    This paper presents solutions of the NURISP WER lattice benchmark using APOLLO2, TRIPOLI4 and COBAYA3 pin-by-pin. The main objective is to validate MOC based calculation schemes for pin-by-pin cross-section generation with APOLLO2 against TRIPOLI4 reference results. A specific objective is to test the APOLLO2 generated cross-sections and interface discontinuity factors in COBAYA3 pin-by-pin calculations with unstructured mesh. The VVER-1000 core consists of large hexagonal assemblies with 2 mm inter-assembly water gaps which require the use of unstructured meshes in the pin-by-pin core simulators. The considered 2D benchmark problems include 19-pin clusters, fuel assemblies and 7-assembly clusters. APOLLO2 calculation schemes withmore » the step characteristic method (MOC) and the higher-order Linear Surface MOC have been tested. The comparison of APOLLO2 vs. TRIPOLI4 results shows a very close agreement. The 3D lattice solver in COBAYA3 uses transport corrected multi-group diffusion approximation with interface discontinuity factors of Generalized Equivalence Theory (GET) or Black Box Homogenization (BBH) type. The COBAYA3 pin-by-pin results in 2, 4 and 8 energy groups are close to the reference solutions when using side-dependent interface discontinuity factors. (authors)« less

  3. ANALYSIS OF THE MOMENTS METHOD EXPERIMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kloster, R.L.

    1959-09-01

    Monte Cario calculations show the effects of a plane water-air boundary on both fast neutron and gamma dose rates. Multigroup diffusion theory calculation for a reactor source shows the effects of a plane water-air boundary on thermal neutron dose rate. The results of Monte Cario and multigroup calculations are compared with experimental values. The predicted boundary effect for fast neutrons of 7.3% agrees within 16% with the measured effect of 6.3%. The gamma detector did not measure a boundary effect because it lacked sensitivity at low energies. However, the effect predicted for gamma rays of 5 to 10% is asmore » large as that for neutrons. An estimate of the boundary effect for thermal neutrons from a PoBe source is obtained from the results of muitigroup diffusion theory calcuiations for a reactor source. The calculated boundary effect agrees within 13% with the measured values. (auth)« less

  4. Development of the V4.2m5 and V5.0m0 Multigroup Cross Section Libraries for MPACT for PWR and BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kang Seog; Clarno, Kevin T.; Gentry, Cole

    2017-03-01

    The MPACT neutronics module of the Consortium for Advanced Simulation of Light Water Reactors (CASL) core simulator is a 3-D whole core transport code being developed for the CASL toolset, Virtual Environment for Reactor Analysis (VERA). Key characteristics of the MPACT code include (1) a subgroup method for resonance selfshielding and (2) a whole-core transport solver with a 2-D/1-D synthesis method. The MPACT code requires a cross section library to support all the MPACT core simulation capabilities which would be the most influencing component for simulation accuracy.

  5. Efficient solution of the simplified P N equations

    DOE PAGES

    Hamilton, Steven P.; Evans, Thomas M.

    2014-12-23

    We show new solver strategies for the multigroup SPN equations for nuclear reactor analysis. By forming the complete matrix over space, moments, and energy a robust set of solution strategies may be applied. Moreover, power iteration, shifted power iteration, Rayleigh quotient iteration, Arnoldi's method, and a generalized Davidson method, each using algebraic and physics-based multigrid preconditioners, have been compared on C5G7 MOX test problem as well as an operational PWR model. These results show that the most ecient approach is the generalized Davidson method, that is 30-40 times faster than traditional power iteration and 6-10 times faster than Arnoldi's method.

  6. COMPLETE DETERMINATION OF POLARIZATION FOR A HIGH-ENERGY DEUTERON BEAM (thesis)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Button, J

    1959-05-01

    please delete the no. 17076<>13:017077The P/sub 1/ multigroup code was written for the IBM-704 in order to determine the accuracy of the few- group diffusion scheme with various imposed conditions and also to provide an alternate computational method when this scheme fails to be sufficiently accurate. The code solves for the spatially dependent multigroup flux, taking into account such nuclear phenomena is slowing down of neutrons resulting from elastic and inelastic scattering, the removal of neutrons resulting from epithermal capture and fission resonances, and the regeneration of fist neutrons resulting from fissioning which may occur in any of as manymore » as 80 fast multigroups or in the one thermal group. The code will accept as input a physical description of the reactor (that is: slab, cylindrical, or spherical geometry, number of points and regions, composition description group dependent boundary condition, transverse buckling, and mesh sizes) and a prepared library of nuclear properties of all the isotopes in each composition. The code will produce as output multigroup fluxes, currents, and isotopic slowing-down densities, in addition to pointwise and regionwise few-group macroscopic cross sections. (auth)« less

  7. Diffusion of Zonal Variables Using Node-Centered Diffusion Solver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, T B

    2007-08-06

    Tom Kaiser [1] has done some preliminary work to use the node-centered diffusion solver (originally developed by T. Palmer [2]) in Kull for diffusion of zonal variables such as electron temperature. To avoid numerical diffusion, Tom used a scheme developed by Shestakov et al. [3] and found their scheme could, in the vicinity of steep gradients, decouple nearest-neighbor zonal sub-meshes leading to 'alternating-zone' (red-black mode) errors. Tom extended their scheme to couple the sub-meshes with appropriate chosen artificial diffusion and thereby solved the 'alternating-zone' problem. Because the choice of the artificial diffusion coefficient could be very delicate, it is desirablemore » to use a scheme that does not require the artificial diffusion but still able to avoid both numerical diffusion and the 'alternating-zone' problem. In this document we present such a scheme.« less

  8. Methods for Solving Gas Damping Problems in Perforated Microstructures Using a 2D Finite-Element Solver

    PubMed Central

    Veijola, Timo; Råback, Peter

    2007-01-01

    We present a straightforward method to solve gas damping problems for perforated structures in two dimensions (2D) utilising a Perforation Profile Reynolds (PPR) solver. The PPR equation is an extended Reynolds equation that includes additional terms modelling the leakage flow through the perforations, and variable diffusivity and compressibility profiles. The solution method consists of two phases: 1) determination of the specific admittance profile and relative diffusivity (and relative compressibility) profiles due to the perforation, and 2) solution of the PPR equation with a FEM solver in 2D. Rarefied gas corrections in the slip-flow region are also included. Analytic profiles for circular and square holes with slip conditions are presented in the paper. To verify the method, square perforated dampers with 16–64 holes were simulated with a three-dimensional (3D) Navier-Stokes solver, a homogenised extended Reynolds solver, and a 2D PPR solver. Cases for both translational (in normal to the surfaces) and torsional motion were simulated. The presented method extends the region of accurate simulation of perforated structures to cases where the homogenisation method is inaccurate and the full 3D Navier-Stokes simulation is too time-consuming.

  9. Effects of high-frequency damping on iterative convergence of implicit viscous solver

    NASA Astrophysics Data System (ADS)

    Nishikawa, Hiroaki; Nakashima, Yoshitaka; Watanabe, Norihiko

    2017-11-01

    This paper discusses effects of high-frequency damping on iterative convergence of an implicit defect-correction solver for viscous problems. The study targets a finite-volume discretization with a one parameter family of damped viscous schemes. The parameter α controls high-frequency damping: zero damping with α = 0, and larger damping for larger α (> 0). Convergence rates are predicted for a model diffusion equation by a Fourier analysis over a practical range of α. It is shown that the convergence rate attains its minimum at α = 1 on regular quadrilateral grids, and deteriorates for larger values of α. A similar behavior is observed for regular triangular grids. In both quadrilateral and triangular grids, the solver is predicted to diverge for α smaller than approximately 0.5. Numerical results are shown for the diffusion equation and the Navier-Stokes equations on regular and irregular grids. The study suggests that α = 1 and 4/3 are suitable values for robust and efficient computations, and α = 4 / 3 is recommended for the diffusion equation, which achieves higher-order accuracy on regular quadrilateral grids. Finally, a Jacobian-Free Newton-Krylov solver with the implicit solver (a low-order Jacobian approximately inverted by a multi-color Gauss-Seidel relaxation scheme) used as a variable preconditioner is recommended for practical computations, which provides robust and efficient convergence for a wide range of α.

  10. Advanced Multi-Physics (AMP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philip, Bobby

    2012-06-01

    The Advanced Multi-Physics (AMP) code, in its present form, will allow a user to build a multi-physics application code for existing mechanics and diffusion operators and extend them with user-defined material models and new physics operators. There are examples that demonstrate mechanics, thermo-mechanics, coupled diffusion, and mechanical contact. The AMP code is designed to leverage a variety of mathematical solvers (PETSc, Trilinos, SUNDIALS, and AMP solvers) and mesh databases (LibMesh and AMP) in a consistent interchangeable approach.

  11. Zebra: An advanced PWR lattice code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, L.; Wu, H.; Zheng, Y.

    2012-07-01

    This paper presents an overview of an advanced PWR lattice code ZEBRA developed at NECP laboratory in Xi'an Jiaotong Univ.. The multi-group cross-section library is generated from the ENDF/B-VII library by NJOY and the 361-group SHEM structure is employed. The resonance calculation module is developed based on sub-group method. The transport solver is Auto-MOC code, which is a self-developed code based on the Method of Characteristic and the customization of AutoCAD software. The whole code is well organized in a modular software structure. Some numerical results during the validation of the code demonstrate that this code has a good precisionmore » and a high efficiency. (authors)« less

  12. A Robust and Efficient Method for Steady State Patterns in Reaction-Diffusion Systems

    PubMed Central

    Lo, Wing-Cheong; Chen, Long; Wang, Ming; Nie, Qing

    2012-01-01

    An inhomogeneous steady state pattern of nonlinear reaction-diffusion equations with no-flux boundary conditions is usually computed by solving the corresponding time-dependent reaction-diffusion equations using temporal schemes. Nonlinear solvers (e.g., Newton’s method) take less CPU time in direct computation for the steady state; however, their convergence is sensitive to the initial guess, often leading to divergence or convergence to spatially homogeneous solution. Systematically numerical exploration of spatial patterns of reaction-diffusion equations under different parameter regimes requires that the numerical method be efficient and robust to initial condition or initial guess, with better likelihood of convergence to an inhomogeneous pattern. Here, a new approach that combines the advantages of temporal schemes in robustness and Newton’s method in fast convergence in solving steady states of reaction-diffusion equations is proposed. In particular, an adaptive implicit Euler with inexact solver (AIIE) method is found to be much more efficient than temporal schemes and more robust in convergence than typical nonlinear solvers (e.g., Newton’s method) in finding the inhomogeneous pattern. Application of this new approach to two reaction-diffusion equations in one, two, and three spatial dimensions, along with direct comparisons to several other existing methods, demonstrates that AIIE is a more desirable method for searching inhomogeneous spatial patterns of reaction-diffusion equations in a large parameter space. PMID:22773849

  13. Reduction of numerical diffusion in three-dimensional vortical flows using a coupled Eulerian/Lagrangian solution procedure

    NASA Technical Reports Server (NTRS)

    Felici, Helene M.; Drela, Mark

    1993-01-01

    A new approach based on the coupling of an Eulerian and a Lagrangian solver, aimed at reducing the numerical diffusion errors of standard Eulerian time-marching finite-volume solvers, is presented. The approach is applied to the computation of the secondary flow in two bent pipes and the flow around a 3D wing. Using convective point markers the Lagrangian approach provides a correction of the basic Eulerian solution. The Eulerian flow in turn integrates in time the Lagrangian state-vector. A comparison of coarse and fine grid Eulerian solutions makes it possible to identify numerical diffusion. It is shown that the Eulerian/Lagrangian approach is an effective method for reducing numerical diffusion errors.

  14. Scalable domain decomposition solvers for stochastic PDEs in high performance computing

    DOE PAGES

    Desai, Ajit; Khalil, Mohammad; Pettit, Chris; ...

    2017-09-21

    Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolutionmore » in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.« less

  15. Scalable domain decomposition solvers for stochastic PDEs in high performance computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, Ajit; Khalil, Mohammad; Pettit, Chris

    Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolutionmore » in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.« less

  16. Ensemble Grouping Strategies for Embedded Stochastic Collocation Methods Applied to Anisotropic Diffusion Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Elia, M.; Edwards, H. C.; Hu, J.

    Previous work has demonstrated that propagating groups of samples, called ensembles, together through forward simulations can dramatically reduce the aggregate cost of sampling-based uncertainty propagation methods [E. Phipps, M. D'Elia, H. C. Edwards, M. Hoemmen, J. Hu, and S. Rajamanickam, SIAM J. Sci. Comput., 39 (2017), pp. C162--C193]. However, critical to the success of this approach when applied to challenging problems of scientific interest is the grouping of samples into ensembles to minimize the total computational work. For example, the total number of linear solver iterations for ensemble systems may be strongly influenced by which samples form the ensemble whenmore » applying iterative linear solvers to parameterized and stochastic linear systems. In this paper we explore sample grouping strategies for local adaptive stochastic collocation methods applied to PDEs with uncertain input data, in particular canonical anisotropic diffusion problems where the diffusion coefficient is modeled by truncated Karhunen--Loève expansions. Finally, we demonstrate that a measure of the total anisotropy of the diffusion coefficient is a good surrogate for the number of linear solver iterations for each sample and therefore provides a simple and effective metric for grouping samples.« less

  17. Ensemble Grouping Strategies for Embedded Stochastic Collocation Methods Applied to Anisotropic Diffusion Problems

    DOE PAGES

    D'Elia, M.; Edwards, H. C.; Hu, J.; ...

    2018-01-18

    Previous work has demonstrated that propagating groups of samples, called ensembles, together through forward simulations can dramatically reduce the aggregate cost of sampling-based uncertainty propagation methods [E. Phipps, M. D'Elia, H. C. Edwards, M. Hoemmen, J. Hu, and S. Rajamanickam, SIAM J. Sci. Comput., 39 (2017), pp. C162--C193]. However, critical to the success of this approach when applied to challenging problems of scientific interest is the grouping of samples into ensembles to minimize the total computational work. For example, the total number of linear solver iterations for ensemble systems may be strongly influenced by which samples form the ensemble whenmore » applying iterative linear solvers to parameterized and stochastic linear systems. In this paper we explore sample grouping strategies for local adaptive stochastic collocation methods applied to PDEs with uncertain input data, in particular canonical anisotropic diffusion problems where the diffusion coefficient is modeled by truncated Karhunen--Loève expansions. Finally, we demonstrate that a measure of the total anisotropy of the diffusion coefficient is a good surrogate for the number of linear solver iterations for each sample and therefore provides a simple and effective metric for grouping samples.« less

  18. Monte Carol-based validation of neutronic methodology for EBR-II analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liaw, J.R.; Finck, P.J.

    1993-01-01

    The continuous-energy Monte Carlo code VIM (Ref. 1) has been validated extensively over the years against fast critical experiments and other neutronic analysis codes. A high degree of confidence in VIM for predicting reactor physics parameters has been firmly established. This paper presents a numerical validation of two conventional multigroup neutronic analysis codes, DIF3D (Ref. 4) and VARIANT (Ref. 5), against VIM for two Experimental Breeder Reactor II (EBR-II) core loadings in detailed three-dimensional hexagonal-z geometry. The DIF3D code is based on nodal diffusion theory, and it is used in calculations for day-today reactor operations, whereas the VARIANT code ismore » based on nodal transport theory and is used with increasing frequency for specific applications. Both DIF3D and VARIANT rely on multigroup cross sections generated from ENDF/B-V by the ETOE-2/MC[sup 2]-II/SDX (Ref. 6) code package. Hence, this study also validates the multigroup cross-section processing methodology against the continuous-energy approach used in VIM.« less

  19. Inverse design of centrifugal compressor vaned diffusers in inlet shear flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zangeneh, M.

    1996-04-01

    A three-dimensional inverse design method in which the blade (or vane) geometry is designed for specified distributions of circulation and blade thickness is applied to the design of centrifugal compressor vaned diffusers. Two generic diffusers are designed, one with uniform inlet flow (equivalent to a conventional design) and the other with a sheared inlet flow. The inlet shear flow effects are modeled in the design method by using the so-called ``Secondary Flow Approximation`` in which the Bernoulli surfaces are convected by the tangentially mean inviscid flow field. The difference between the vane geometry of the uniform inlet flow and nonuniformmore » inlet flow diffusers is found to be most significant from 50 percent chord to the trailing edge region. The flows through both diffusers are computed by using Denton`s three-dimensional inviscid Euler solver and Dawes` three-dimensional Navier-Stokes solver under sheared in-flow conditions. The predictions indicate improved pressure recovery and internal flow field for the diffuser designed for shear inlet flow conditions.« less

  20. An improved random walk algorithm for the implicit Monte Carlo method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keady, Kendra P., E-mail: keadyk@lanl.gov; Cleveland, Mathew A.

    In this work, we introduce a modified Implicit Monte Carlo (IMC) Random Walk (RW) algorithm, which increases simulation efficiency for multigroup radiative transfer problems with strongly frequency-dependent opacities. To date, the RW method has only been implemented in “fully-gray” form; that is, the multigroup IMC opacities are group-collapsed over the full frequency domain of the problem to obtain a gray diffusion problem for RW. This formulation works well for problems with large spatial cells and/or opacities that are weakly dependent on frequency; however, the efficiency of the RW method degrades when the spatial cells are thin or the opacities aremore » a strong function of frequency. To address this inefficiency, we introduce a RW frequency group cutoff in each spatial cell, which divides the frequency domain into optically thick and optically thin components. In the modified algorithm, opacities for the RW diffusion problem are obtained by group-collapsing IMC opacities below the frequency group cutoff. Particles with frequencies above the cutoff are transported via standard IMC, while particles below the cutoff are eligible for RW. This greatly increases the total number of RW steps taken per IMC time-step, which in turn improves the efficiency of the simulation. We refer to this new method as Partially-Gray Random Walk (PGRW). We present numerical results for several multigroup radiative transfer problems, which show that the PGRW method is significantly more efficient than standard RW for several problems of interest. In general, PGRW decreases runtimes by a factor of ∼2–4 compared to standard RW, and a factor of ∼3–6 compared to standard IMC. While PGRW is slower than frequency-dependent Discrete Diffusion Monte Carlo (DDMC), it is also easier to adapt to unstructured meshes and can be used in spatial cells where DDMC is not applicable. This suggests that it may be optimal to employ both DDMC and PGRW in a single simulation.« less

  1. Parallel computation of multigroup reactivity coefficient using iterative method

    NASA Astrophysics Data System (ADS)

    Susmikanti, Mike; Dewayatna, Winter

    2013-09-01

    One of the research activities to support the commercial radioisotope production program is a safety research target irradiation FPM (Fission Product Molybdenum). FPM targets form a tube made of stainless steel in which the nuclear degrees of superimposed high-enriched uranium. FPM irradiation tube is intended to obtain fission. The fission material widely used in the form of kits in the world of nuclear medicine. Irradiation FPM tube reactor core would interfere with performance. One of the disorders comes from changes in flux or reactivity. It is necessary to study a method for calculating safety terrace ongoing configuration changes during the life of the reactor, making the code faster became an absolute necessity. Neutron safety margin for the research reactor can be reused without modification to the calculation of the reactivity of the reactor, so that is an advantage of using perturbation method. The criticality and flux in multigroup diffusion model was calculate at various irradiation positions in some uranium content. This model has a complex computation. Several parallel algorithms with iterative method have been developed for the sparse and big matrix solution. The Black-Red Gauss Seidel Iteration and the power iteration parallel method can be used to solve multigroup diffusion equation system and calculated the criticality and reactivity coeficient. This research was developed code for reactivity calculation which used one of safety analysis with parallel processing. It can be done more quickly and efficiently by utilizing the parallel processing in the multicore computer. This code was applied for the safety limits calculation of irradiated targets FPM with increment Uranium.

  2. Large-Eddy/Reynolds-Averaged Navier-Stokes Simulation of Shock-Train Development in a Coil-Laser Diffuser

    DTIC Science & Technology

    2014-09-06

    as the Riemann solver . The primitive-variable vector Ts kTwvupW ],,,,,,[ ω= is used in the reconstruction. The initial step in the PPM...University’s (NCSU) REACTMB flow solver is used in the present effort. REACTMB solves the Navier-Stokes equations governing a multi-component

  3. Methodes d'optimisation des parametres 2D du reflecteur dans un reacteur a eau pressurisee

    NASA Astrophysics Data System (ADS)

    Clerc, Thomas

    With a third of the reactors in activity, the Pressurized Water Reactor (PWR) is today the most used reactor design in the world. This technology equips all the 19 EDF power plants. PWRs fit into the category of thermal reactors, because it is mainly the thermal neutrons that contribute to the fission reaction. The pressurized light water is both used as the moderator of the reaction and as the coolant. The active part of the core is composed of uranium, slightly enriched in uranium 235. The reflector is a region surrounding the active core, and containing mostly water and stainless steel. The purpose of the reflector is to protect the vessel from radiations, and also to slow down the neutrons and reflect them into the core. Given that the neutrons participate to the reaction of fission, the study of their behavior within the core is capital to understand the general functioning of how the reactor works. The neutrons behavior is ruled by the transport equation, which is very complex to solve numerically, and requires very long calculation. This is the reason why the core codes that will be used in this study solve simplified equations to approach the neutrons behavior in the core, in an acceptable calculation time. In particular, we will focus our study on the diffusion equation and approximated transport equations, such as SPN or S N equations. The physical properties of the reflector are radically different from those of the fissile core, and this structural change causes important tilt in the neutron flux at the core/reflector interface. This is why it is very important to accurately design the reflector, in order to precisely recover the neutrons behavior over the whole core. Existing reflector calculation techniques are based on the Lefebvre-Lebigot method. This method is only valid if the energy continuum of the neutrons is discretized in two energy groups, and if the diffusion equation is used. The method leads to the calculation of a homogeneous reflector. The aim of this study is to create a computational scheme able to compute the parameters of heterogeneous, multi-group reflectors, with both diffusion and SPN/SN operators. For this purpose, two computational schemes are designed to perform such a reflector calculation. The strategy used in both schemes is to minimize the discrepancies between a power distribution computed with a core code and a reference distribution, which will be obtained with an APOLLO2 calculation based on the method Method Of Characteristics (MOC). In both computational schemes, the optimization parameters, also called control variables, are the diffusion coefficients in each zone of the reflector, for diffusion calculations, and the P-1 corrected macroscopic total cross-sections in each zone of the reflector, for SPN/SN calculations (or correction factors on these parameters). After a first validation of our computational schemes, the results are computed, always by optimizing the fast diffusion coefficient for each zone of the reflector. All the tools of the data assimilation have been used to reflect the different behavior of the solvers in the different parts of the core. Moreover, the reflector is refined in six separated zones, corresponding to the physical structure of the reflector. There will be then six control variables for the optimization algorithms. [special characters omitted]. Our computational schemes are then able to compute heterogeneous, 2-group or multi-group reflectors, using diffusion or SPN/SN operators. The optimization performed reduces the discrepancies distribution between the power computed with the core codes and the reference power. However, there are two main limitations to this study: first the homogeneous modeling of the reflector assemblies doesn't allow to properly describe its physical structure near the core/reflector interface. Moreover, the fissile assemblies are modeled in infinite medium, and this model reaches its limit at the core/reflector interface. These two problems should be tackled in future studies. (Abstract shortened by UMI.).

  4. Reactor Statics Module, RS-9: Multigroup Diffusion Program Using an Exponential Acceleration Technique.

    ERIC Educational Resources Information Center

    Macek, Victor C.

    The nine Reactor Statics Modules are designed to introduce students to the use of numerical methods and digital computers for calculation of neutron flux distributions in space and energy which are needed to calculate criticality, power distribution, and fuel burnup for both slow neutron and fast neutron fission reactors. The last module, RS-9,…

  5. VENTURE/PC manual: A multidimensional multigroup neutron diffusion code system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, A.; Huria, H.C.; Cho, K.W.

    1991-12-01

    VENTURE/PC is a recompilation of part of the Oak Ridge BOLD VENTURE code system, which will operate on an IBM PC or compatible computer. Neutron diffusion theory solutions are obtained for multidimensional, multigroup problems. This manual contains information associated with operating the code system. The purpose of the various modules used in the code system, and the input for these modules are discussed. The PC code structure is also given. Version 2 included several enhancements not given in the original version of the code. In particular, flux iterations can be done in core rather than by reading and writing tomore » disk, for problems which allow sufficient memory for such in-core iterations. This speeds up the iteration process. Version 3 does not include any of the special processors used in the previous versions. These special processors utilized formatted input for various elements of the code system. All such input data is now entered through the Input Processor, which produces standard interface files for the various modules in the code system. In addition, a Standard Interface File Handbook is included in the documentation which is distributed with the code, to assist in developing the input for the Input Processor.« less

  6. On numerical instabilities of Godunov-type schemes for strong shocks

    NASA Astrophysics Data System (ADS)

    Xie, Wenjia; Li, Wei; Li, Hua; Tian, Zhengyu; Pan, Sha

    2017-12-01

    It is well known that low diffusion Riemann solvers with minimal smearing on contact and shear waves are vulnerable to shock instability problems, including the carbuncle phenomenon. In the present study, we concentrate on exploring where the instability grows out and how the dissipation inherent in Riemann solvers affects the unstable behaviors. With the help of numerical experiments and a linearized analysis method, it has been found that the shock instability is strongly related to the unstable modes of intermediate states inside the shock structure. The consistency of mass flux across the normal shock is needed for a Riemann solver to capture strong shocks stably. The famous carbuncle phenomenon is interpreted as the consequence of the inconsistency of mass flux across the normal shock for a low diffusion Riemann solver. Based on the results of numerical experiments and the linearized analysis, a robust Godunov-type scheme with a simple cure for the shock instability is suggested. With only the dissipation corresponding to shear waves introduced in the vicinity of strong shocks, the instability problem is circumvented. Numerical results of several carefully chosen strong shock wave problems are investigated to demonstrate the robustness of the proposed scheme.

  7. Coupled electromagnetic-thermodynamic simulations of microwave heating problems using the FDTD algorithm.

    PubMed

    Kopyt, Paweł; Celuch, Małgorzata

    2007-01-01

    A practical implementation of a hybrid simulation system capable of modeling coupled electromagnetic-thermodynamic problems typical in microwave heating is described. The paper presents two approaches to modeling such problems. Both are based on an FDTD-based commercial electromagnetic solver coupled to an external thermodynamic analysis tool required for calculations of heat diffusion. The first approach utilizes a simple FDTD-based thermal solver while in the second it is replaced by a universal commercial CFD solver. The accuracy of the two modeling systems is verified against the original experimental data as well as the measurement results available in literature.

  8. An Adaptive Flow Solver for Air-Borne Vehicles Undergoing Time-Dependent Motions/Deformations

    NASA Technical Reports Server (NTRS)

    Singh, Jatinder; Taylor, Stephen

    1997-01-01

    This report describes a concurrent Euler flow solver for flows around complex 3-D bodies. The solver is based on a cell-centered finite volume methodology on 3-D unstructured tetrahedral grids. In this algorithm, spatial discretization for the inviscid convective term is accomplished using an upwind scheme. A localized reconstruction is done for flow variables which is second order accurate. Evolution in time is accomplished using an explicit three-stage Runge-Kutta method which has second order temporal accuracy. This is adapted for concurrent execution using another proven methodology based on concurrent graph abstraction. This solver operates on heterogeneous network architectures. These architectures may include a broad variety of UNIX workstations and PCs running Windows NT, symmetric multiprocessors and distributed-memory multi-computers. The unstructured grid is generated using commercial grid generation tools. The grid is automatically partitioned using a concurrent algorithm based on heat diffusion. This results in memory requirements that are inversely proportional to the number of processors. The solver uses automatic granularity control and resource management techniques both to balance load and communication requirements, and deal with differing memory constraints. These ideas are again based on heat diffusion. Results are subsequently combined for visualization and analysis using commercial CFD tools. Flow simulation results are demonstrated for a constant section wing at subsonic, transonic, and a supersonic case. These results are compared with experimental data and numerical results of other researchers. Performance results are under way for a variety of network topologies.

  9. Monte Carlo Transport for Electron Thermal Transport

    NASA Astrophysics Data System (ADS)

    Chenhall, Jeffrey; Cao, Duc; Moses, Gregory

    2015-11-01

    The iSNB (implicit Schurtz Nicolai Busquet multigroup electron thermal transport method of Cao et al. is adapted into a Monte Carlo transport method in order to better model the effects of non-local behavior. The end goal is a hybrid transport-diffusion method that combines Monte Carlo Transport with a discrete diffusion Monte Carlo (DDMC). The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the method will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.

  10. Development of Tokamak Transport Solvers for Stiff Confinement Systems

    NASA Astrophysics Data System (ADS)

    St. John, H. E.; Lao, L. L.; Murakami, M.; Park, J. M.

    2006-10-01

    Leading transport models such as GLF23 [1] and MM95 [2] describe turbulent plasma energy, momentum and particle flows. In order to accommodate existing transport codes and associated solution methods effective diffusivities have to be derived from these turbulent flow models. This can cause significant problems in predicting unique solutions. We have developed a parallel transport code solver, GCNMP, that can accommodate both flow based and diffusivity based confinement models by solving the discretized nonlinear equations using modern Newton, trust region, steepest descent and homotopy methods. We present our latest development efforts, including multiple dynamic grids, application of two-level parallel schemes, and operator splitting techniques that allow us to combine flow based and diffusivity based models in tokamk simulations. 6pt [1] R.E. Waltz, et al., Phys. Plasmas 4, 7 (1997). [2] G. Bateman, et al., Phys. Plasmas 5, 1793 (1998).

  11. Cosmic-ray propagation with DRAGON2: I. numerical solver and astrophysical ingredients

    NASA Astrophysics Data System (ADS)

    Evoli, Carmelo; Gaggero, Daniele; Vittino, Andrea; Di Bernardo, Giuseppe; Di Mauro, Mattia; Ligorini, Arianna; Ullio, Piero; Grasso, Dario

    2017-02-01

    We present version 2 of the DRAGON code designed for computing realistic predictions of the CR densities in the Galaxy. The code numerically solves the interstellar CR transport equation (including inhomogeneous and anisotropic diffusion, either in space and momentum, advective transport and energy losses), under realistic conditions. The new version includes an updated numerical solver and several models for the astrophysical ingredients involved in the transport equation. Improvements in the accuracy of the numerical solution are proved against analytical solutions and in reference diffusion scenarios. The novel features implemented in the code allow to simulate the diverse scenarios proposed to reproduce the most recent measurements of local and diffuse CR fluxes, going beyond the limitations of the homogeneous galactic transport paradigm. To this end, several applications using DRAGON2 are presented as well. This new version facilitates the users to include their own physical models by means of a modular C++ structure.

  12. Partitioned coupling of advection-diffusion-reaction systems and Brinkman flows

    NASA Astrophysics Data System (ADS)

    Lenarda, Pietro; Paggi, Marco; Ruiz Baier, Ricardo

    2017-09-01

    We present a partitioned algorithm aimed at extending the capabilities of existing solvers for the simulation of coupled advection-diffusion-reaction systems and incompressible, viscous flow. The space discretisation of the governing equations is based on mixed finite element methods defined on unstructured meshes, whereas the time integration hinges on an operator splitting strategy that exploits the differences in scales between the reaction, advection, and diffusion processes, considering the global system as a number of sequentially linked sets of partial differential, and algebraic equations. The flow solver presents the advantage that all unknowns in the system (here vorticity, velocity, and pressure) can be fully decoupled and thus turn the overall scheme very attractive from the computational perspective. The robustness of the proposed method is illustrated with a series of numerical tests in 2D and 3D, relevant in the modelling of bacterial bioconvection and Boussinesq systems.

  13. Improved Solver Settings for 3D Exploding Wire Simulations in ALEGRA

    DTIC Science & Technology

    2016-08-01

    expanding plasma and shock wave resulting from the wire burst can extend to tens of cen- timeters. The elliptic nature of the magnetic diffusion...such simulations were prohibitively slow due in part to unoptimized (matrix) solver settings. In this report, we address that by varying 6 parameters...distribution is unlimited. simulation code developed by SNL for modeling high-deformation solid dynam- ics, shock -hydrodynamics, magnetohydrodynamics

  14. VENTURE/PC manual: A multidimensional multigroup neutron diffusion code system. Version 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, A.; Huria, H.C.; Cho, K.W.

    1991-12-01

    VENTURE/PC is a recompilation of part of the Oak Ridge BOLD VENTURE code system, which will operate on an IBM PC or compatible computer. Neutron diffusion theory solutions are obtained for multidimensional, multigroup problems. This manual contains information associated with operating the code system. The purpose of the various modules used in the code system, and the input for these modules are discussed. The PC code structure is also given. Version 2 included several enhancements not given in the original version of the code. In particular, flux iterations can be done in core rather than by reading and writing tomore » disk, for problems which allow sufficient memory for such in-core iterations. This speeds up the iteration process. Version 3 does not include any of the special processors used in the previous versions. These special processors utilized formatted input for various elements of the code system. All such input data is now entered through the Input Processor, which produces standard interface files for the various modules in the code system. In addition, a Standard Interface File Handbook is included in the documentation which is distributed with the code, to assist in developing the input for the Input Processor.« less

  15. Unstructured Polyhedral Mesh Thermal Radiation Diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, T.S.; Zika, M.R.; Madsen, N.K.

    2000-07-27

    Unstructured mesh particle transport and diffusion methods are gaining wider acceptance as mesh generation, scientific visualization and linear solvers improve. This paper describes an algorithm that is currently being used in the KULL code at Lawrence Livermore National Laboratory to solve the radiative transfer equations. The algorithm employs a point-centered diffusion discretization on arbitrary polyhedral meshes in 3D. We present the results of a few test problems to illustrate the capabilities of the radiation diffusion module.

  16. Bounded fractional diffusion in geological media: Definition and Lagrangian approximation

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang

    2016-11-01

    Spatiotemporal fractional-derivative models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and nonzero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing nonzero-value spatial-nonlocal boundary conditions with directional superdiffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eulerian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the nonlocal and nonsymmetric fractional diffusion. For a nonzero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite domains to those with any size and boundary conditions.

  17. Large-scale optimization-based non-negative computational framework for diffusion equations: Parallel implementation and performance studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Justin; Karra, Satish; Nakshatrala, Kalyana B.

    It is well-known that the standard Galerkin formulation, which is often the formulation of choice under the finite element method for solving self-adjoint diffusion equations, does not meet maximum principles and the non-negative constraint for anisotropic diffusion equations. Recently, optimization-based methodologies that satisfy maximum principles and the non-negative constraint for steady-state and transient diffusion-type equations have been proposed. To date, these methodologies have been tested only on small-scale academic problems. The purpose of this paper is to systematically study the performance of the non-negative methodology in the context of high performance computing (HPC). PETSc and TAO libraries are, respectively, usedmore » for the parallel environment and optimization solvers. For large-scale problems, it is important for computational scientists to understand the computational performance of current algorithms available in these scientific libraries. The numerical experiments are conducted on the state-of-the-art HPC systems, and a single-core performance model is used to better characterize the efficiency of the solvers. Furthermore, our studies indicate that the proposed non-negative computational framework for diffusion-type equations exhibits excellent strong scaling for real-world large-scale problems.« less

  18. Large-scale optimization-based non-negative computational framework for diffusion equations: Parallel implementation and performance studies

    DOE PAGES

    Chang, Justin; Karra, Satish; Nakshatrala, Kalyana B.

    2016-07-26

    It is well-known that the standard Galerkin formulation, which is often the formulation of choice under the finite element method for solving self-adjoint diffusion equations, does not meet maximum principles and the non-negative constraint for anisotropic diffusion equations. Recently, optimization-based methodologies that satisfy maximum principles and the non-negative constraint for steady-state and transient diffusion-type equations have been proposed. To date, these methodologies have been tested only on small-scale academic problems. The purpose of this paper is to systematically study the performance of the non-negative methodology in the context of high performance computing (HPC). PETSc and TAO libraries are, respectively, usedmore » for the parallel environment and optimization solvers. For large-scale problems, it is important for computational scientists to understand the computational performance of current algorithms available in these scientific libraries. The numerical experiments are conducted on the state-of-the-art HPC systems, and a single-core performance model is used to better characterize the efficiency of the solvers. Furthermore, our studies indicate that the proposed non-negative computational framework for diffusion-type equations exhibits excellent strong scaling for real-world large-scale problems.« less

  19. On the eddy-resolving capability of high-order discontinuous Galerkin approaches to implicit LES / under-resolved DNS of Euler turbulence

    NASA Astrophysics Data System (ADS)

    Moura, R. C.; Mengaldo, G.; Peiró, J.; Sherwin, S. J.

    2017-02-01

    We present estimates of spectral resolution power for under-resolved turbulent Euler flows obtained with high-order discontinuous Galerkin (DG) methods. The '1% rule' based on linear dispersion-diffusion analysis introduced by Moura et al. (2015) [10] is here adapted for 3D energy spectra and validated through the inviscid Taylor-Green vortex problem. The 1% rule estimates the wavenumber beyond which numerical diffusion induces an artificial dissipation range on measured energy spectra. As the original rule relies on standard upwinding, different Riemann solvers are tested. Very good agreement is found for solvers which treat the different physical waves in a consistent manner. Relatively good agreement is still found for simpler solvers. The latter however displayed spurious features attributed to the inconsistent treatment of different physical waves. It is argued that, in the limit of vanishing viscosity, such features might have a significant impact on robustness and solution quality. The estimates proposed are regarded as useful guidelines for no-model DG-based simulations of free turbulence at very high Reynolds numbers.

  20. FY17 Status Report on NEAMS Neutronics Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C. H.; Jung, Y. S.; Smith, M. A.

    2017-09-30

    Under the U.S. DOE NEAMS program, the high-fidelity neutronics code system has been developed to support the multiphysics modeling and simulation capability named SHARP. The neutronics code system includes the high-fidelity neutronics code PROTEUS, the cross section library and preprocessing tools, the multigroup cross section generation code MC2-3, the in-house meshing generation tool, the perturbation and sensitivity analysis code PERSENT, and post-processing tools. The main objectives of the NEAMS neutronics activities in FY17 are to continue development of an advanced nodal solver in PROTEUS for use in nuclear reactor design and analysis projects, implement a simplified sub-channel based thermal-hydraulic (T/H)more » capability into PROTEUS to efficiently compute the thermal feedback, improve the performance of PROTEUS-MOCEX using numerical acceleration and code optimization, improve the cross section generation tools including MC2-3, and continue to perform verification and validation tests for PROTEUS.« less

  1. Bounded fractional diffusion in geological media: Definition and Lagrangian approximation

    USGS Publications Warehouse

    Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang

    2016-01-01

    Spatiotemporal Fractional-Derivative Models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and non-zero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing non-zero-value spatial-nonlocal boundary conditions with directional super-diffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eularian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the non-local and non-symmetric fractional diffusion. For a non-zero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite do mains to those with any size and boundary conditions.

  2. Propagation of diffuse light in a turbid medium with multiple spherical inhomogeneities.

    PubMed

    Pustovit, Vitaliy N; Markel, Vadim A

    2004-01-01

    We develop a fast and accurate solver for the forward problem of diffusion tomography in the case of several spherical inhomogeneities. The approach allows one to take into account multiple scattering of diffuse waves between different inhomogeneities. Theoretical results are illustrated with numerical examples; excellent numerical convergence and efficiency are demonstrated. The method is generalized for the case of additional planar diffuse-nondiffuse interfaces and is therefore applicable to the half-space and slab imaging geometries.

  3. Nonlinear Solver Approaches for the Diffusive Wave Approximation to the Shallow Water Equations

    NASA Astrophysics Data System (ADS)

    Collier, N.; Knepley, M.

    2015-12-01

    The diffusive wave approximation to the shallow water equations (DSW) is a doubly-degenerate, nonlinear, parabolic partial differential equation used to model overland flows. Despite its challenges, the DSW equation has been extensively used to model the overland flow component of various integrated surface/subsurface models. The equation's complications become increasingly problematic when ponding occurs, a feature which becomes pervasive when solving on large domains with realistic terrain. In this talk I discuss the various forms and regularizations of the DSW equation and highlight their effect on the solvability of the nonlinear system. In addition to this analysis, I present results of a numerical study which tests the applicability of a class of composable nonlinear algebraic solvers recently added to the Portable, Extensible, Toolkit for Scientific Computation (PETSc).

  4. A low diffusive Lagrange-remap scheme for the simulation of violent air-water free-surface flows

    NASA Astrophysics Data System (ADS)

    Bernard-Champmartin, Aude; De Vuyst, Florian

    2014-10-01

    In 2002, Després and Lagoutière [17] proposed a low-diffusive advection scheme for pure transport equation problems, which is particularly accurate for step-shaped solutions, and thus suited for interface tracking procedure by a color function. This has been extended by Kokh and Lagoutière [28] in the context of compressible multifluid flows using a five-equation model. In this paper, we explore a simplified variant approach for gas-liquid three-equation models. The Eulerian numerical scheme has two ingredients: a robust remapped Lagrange solver for the solution of the volume-averaged equations, and a low diffusive compressive scheme for the advection of the gas mass fraction. Numerical experiments show the performance of the computational approach on various flow reference problems: dam break, sloshing of a tank filled with water, water-water impact and finally a case of Rayleigh-Taylor instability. One of the advantages of the present interface capturing solver is its natural implementation on parallel processors or computers.

  5. Cosmic-ray propagation with DRAGON2: I. numerical solver and astrophysical ingredients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evoli, Carmelo; Gaggero, Daniele; Vittino, Andrea

    2017-02-01

    We present version 2 of the DRAGON code designed for computing realistic predictions of the CR densities in the Galaxy. The code numerically solves the interstellar CR transport equation (including inhomogeneous and anisotropic diffusion, either in space and momentum, advective transport and energy losses), under realistic conditions. The new version includes an updated numerical solver and several models for the astrophysical ingredients involved in the transport equation. Improvements in the accuracy of the numerical solution are proved against analytical solutions and in reference diffusion scenarios. The novel features implemented in the code allow to simulate the diverse scenarios proposed tomore » reproduce the most recent measurements of local and diffuse CR fluxes, going beyond the limitations of the homogeneous galactic transport paradigm. To this end, several applications using DRAGON2 are presented as well. This new version facilitates the users to include their own physical models by means of a modular C++ structure.« less

  6. SU-G-TeP1-15: Toward a Novel GPU Accelerated Deterministic Solution to the Linear Boltzmann Transport Equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, R; Fallone, B; Cross Cancer Institute, Edmonton, AB

    Purpose: To develop a Graphic Processor Unit (GPU) accelerated deterministic solution to the Linear Boltzmann Transport Equation (LBTE) for accurate dose calculations in radiotherapy (RT). A deterministic solution yields the potential for major speed improvements due to the sparse matrix-vector and vector-vector multiplications and would thus be of benefit to RT. Methods: In order to leverage the massively parallel architecture of GPUs, the first order LBTE was reformulated as a second order self-adjoint equation using the Least Squares Finite Element Method (LSFEM). This produces a symmetric positive-definite matrix which is efficiently solved using a parallelized conjugate gradient (CG) solver. Themore » LSFEM formalism is applied in space, discrete ordinates is applied in angle, and the Multigroup method is applied in energy. The final linear system of equations produced is tightly coupled in space and angle. Our code written in CUDA-C was benchmarked on an Nvidia GeForce TITAN-X GPU against an Intel i7-6700K CPU. A spatial mesh of 30,950 tetrahedral elements was used with an S4 angular approximation. Results: To avoid repeating a full computationally intensive finite element matrix assembly at each Multigroup energy, a novel mapping algorithm was developed which minimized the operations required at each energy. Additionally, a parallelized memory mapping for the kronecker product between the sparse spatial and angular matrices, including Dirichlet boundary conditions, was created. Atomicity is preserved by graph-coloring overlapping nodes into separate kernel launches. The one-time mapping calculations for matrix assembly, kronecker product, and boundary condition application took 452±1ms on GPU. Matrix assembly for 16 energy groups took 556±3s on CPU, and 358±2ms on GPU using the mappings developed. The CG solver took 93±1s on CPU, and 468±2ms on GPU. Conclusion: Three computationally intensive subroutines in deterministically solving the LBTE have been formulated on GPU, resulting in two orders of magnitude speedup. Funding support from Natural Sciences and Engineering Research Council and Alberta Innovates Health Solutions. Dr. Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta bi-planar linac MR for commercialization).« less

  7. AMPX-77: A modular code system for generating coupled multigroup neutron-gamma cross-section libraries from ENDF/B-IV and/or ENDF/B-V

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, N.M.; Ford, W.E. III; Petrie, L.M.

    AMPX-77 is a modular system of computer programs that pertain to nuclear analyses, with a primary emphasis on tasks associated with the production and use of multigroup cross sections. AH basic cross-section data are to be input in the formats used by the Evaluated Nuclear Data Files (ENDF/B), and output can be obtained in a variety of formats, including its own internal and very general formats, along with a variety of other useful formats used by major transport, diffusion theory, and Monte Carlo codes. Processing is provided for both neutron and gamma-my data. The present release contains codes all writtenmore » in the FORTRAN-77 dialect of FORTRAN and wig process ENDF/B-V and earlier evaluations, though major modules are being upgraded in order to process ENDF/B-VI and will be released when a complete collection of usable routines is available.« less

  8. Hybrid transport and diffusion modeling using electron thermal transport Monte Carlo SNB in DRACO

    NASA Astrophysics Data System (ADS)

    Chenhall, Jeffrey; Moses, Gregory

    2017-10-01

    The iSNB (implicit Schurtz Nicolai Busquet) multigroup diffusion electron thermal transport method is adapted into an Electron Thermal Transport Monte Carlo (ETTMC) transport method to better model angular and long mean free path non-local effects. Previously, the ETTMC model had been implemented in the 2D DRACO multiphysics code and found to produce consistent results with the iSNB method. Current work is focused on a hybridization of the computationally slower but higher fidelity ETTMC transport method with the computationally faster iSNB diffusion method in order to maximize computational efficiency. Furthermore, effects on the energy distribution of the heat flux divergence are studied. Work to date on the hybrid method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.

  9. Mass-conserving advection-diffusion Lattice Boltzmann model for multi-species reacting flows

    NASA Astrophysics Data System (ADS)

    Hosseini, S. A.; Darabiha, N.; Thévenin, D.

    2018-06-01

    Given the complex geometries usually found in practical applications, the Lattice Boltzmann (LB) method is becoming increasingly attractive. In addition to the simple treatment of intricate geometrical configurations, LB solvers can be implemented on very large parallel clusters with excellent scalability. However, reacting flows and especially combustion lead to additional challenges and have seldom been studied by LB methods. Indeed, overall mass conservation is a pressing issue in modeling multi-component flows. The classical advection-diffusion LB model recovers the species transport equations with the generalized Fick approximation under the assumption of an incompressible flow. However, for flows involving multiple species with different diffusion coefficients and density fluctuations - as is the case with weakly compressible solvers like Lattice Boltzmann -, this approximation is known not to conserve overall mass. In classical CFD, as the Fick approximation does not satisfy the overall mass conservation constraint a diffusion correction velocity is usually introduced. In the present work, a local expression is first derived for this correction velocity in a LB framework. In a second step, the error due to the incompressibility assumption is also accounted for through a modified equilibrium distribution function. Theoretical analyses and simulations show that the proposed scheme performs much better than the conventional advection-diffusion Lattice Boltzmann model in terms of overall mass conservation.

  10. New Multi-group Transport Neutronics (PHISICS) Capabilities for RELAP5-3D and its Application to Phase I of the OECD/NEA MHTGR-350 MW Benchmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhard Strydom; Cristian Rabiti; Andrea Alfonsi

    2012-10-01

    PHISICS is a neutronics code system currently under development at the Idaho National Laboratory (INL). Its goal is to provide state of the art simulation capability to reactor designers. The different modules for PHISICS currently under development are a nodal and semi-structured transport core solver (INSTANT), a depletion module (MRTAU) and a cross section interpolation (MIXER) module. The INSTANT module is the most developed of the mentioned above. Basic functionalities are ready to use, but the code is still in continuous development to extend its capabilities. This paper reports on the effort of coupling the nodal kinetics code package PHISICSmore » (INSTANT/MRTAU/MIXER) to the thermal hydraulics system code RELAP5-3D, to enable full core and system modeling. This will enable the possibility to model coupled (thermal-hydraulics and neutronics) problems with more options for 3D neutron kinetics, compared to the existing diffusion theory neutron kinetics module in RELAP5-3D (NESTLE). In the second part of the paper, an overview of the OECD/NEA MHTGR-350 MW benchmark is given. This benchmark has been approved by the OECD, and is based on the General Atomics 350 MW Modular High Temperature Gas Reactor (MHTGR) design. The benchmark includes coupled neutronics thermal hydraulics exercises that require more capabilities than RELAP5-3D with NESTLE offers. Therefore, the MHTGR benchmark makes extensive use of the new PHISICS/RELAP5-3D coupling capabilities. The paper presents the preliminary results of the three steady state exercises specified in Phase I of the benchmark using PHISICS/RELAP5-3D.« less

  11. BioFVM: an efficient, parallelized diffusive transport solver for 3-D biological simulations

    PubMed Central

    Ghaffarizadeh, Ahmadreza; Friedman, Samuel H.; Macklin, Paul

    2016-01-01

    Motivation: Computational models of multicellular systems require solving systems of PDEs for release, uptake, decay and diffusion of multiple substrates in 3D, particularly when incorporating the impact of drugs, growth substrates and signaling factors on cell receptors and subcellular systems biology. Results: We introduce BioFVM, a diffusive transport solver tailored to biological problems. BioFVM can simulate release and uptake of many substrates by cell and bulk sources, diffusion and decay in large 3D domains. It has been parallelized with OpenMP, allowing efficient simulations on desktop workstations or single supercomputer nodes. The code is stable even for large time steps, with linear computational cost scalings. Solutions are first-order accurate in time and second-order accurate in space. The code can be run by itself or as part of a larger simulator. Availability and implementation: BioFVM is written in C ++ with parallelization in OpenMP. It is maintained and available for download at http://BioFVM.MathCancer.org and http://BioFVM.sf.net under the Apache License (v2.0). Contact: paul.macklin@usc.edu. Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26656933

  12. TransCut: interactive rendering of translucent cutouts.

    PubMed

    Li, Dongping; Sun, Xin; Ren, Zhong; Lin, Stephen; Tong, Yiying; Guo, Baining; Zhou, Kun

    2013-03-01

    We present TransCut, a technique for interactive rendering of translucent objects undergoing fracturing and cutting operations. As the object is fractured or cut open, the user can directly examine and intuitively understand the complex translucent interior, as well as edit material properties through painting on cross sections and recombining the broken pieces—all with immediate and realistic visual feedback. This new mode of interaction with translucent volumes is made possible with two technical contributions. The first is a novel solver for the diffusion equation (DE) over a tetrahedral mesh that produces high-quality results comparable to the state-of-art finite element method (FEM) of Arbree et al. but at substantially higher speeds. This accuracy and efficiency is obtained by computing the discrete divergences of the diffusion equation and constructing the DE matrix using analytic formulas derived for linear finite elements. The second contribution is a multiresolution algorithm to significantly accelerate our DE solver while adapting to the frequent changes in topological structure of dynamic objects. The entire multiresolution DE solver is highly parallel and easily implemented on the GPU. We believe TransCut provides a novel visual effect for heterogeneous translucent objects undergoing fracturing and cutting operations.

  13. Simulations of pattern dynamics for reaction-diffusion systems via SIMULINK

    PubMed Central

    2014-01-01

    Background Investigation of the nonlinear pattern dynamics of a reaction-diffusion system almost always requires numerical solution of the system’s set of defining differential equations. Traditionally, this would be done by selecting an appropriate differential equation solver from a library of such solvers, then writing computer codes (in a programming language such as C or Matlab) to access the selected solver and display the integrated results as a function of space and time. This “code-based” approach is flexible and powerful, but requires a certain level of programming sophistication. A modern alternative is to use a graphical programming interface such as Simulink to construct a data-flow diagram by assembling and linking appropriate code blocks drawn from a library. The result is a visual representation of the inter-relationships between the state variables whose output can be made completely equivalent to the code-based solution. Results As a tutorial introduction, we first demonstrate application of the Simulink data-flow technique to the classical van der Pol nonlinear oscillator, and compare Matlab and Simulink coding approaches to solving the van der Pol ordinary differential equations. We then show how to introduce space (in one and two dimensions) by solving numerically the partial differential equations for two different reaction-diffusion systems: the well-known Brusselator chemical reactor, and a continuum model for a two-dimensional sheet of human cortex whose neurons are linked by both chemical and electrical (diffusive) synapses. We compare the relative performances of the Matlab and Simulink implementations. Conclusions The pattern simulations by Simulink are in good agreement with theoretical predictions. Compared with traditional coding approaches, the Simulink block-diagram paradigm reduces the time and programming burden required to implement a solution for reaction-diffusion systems of equations. Construction of the block-diagram does not require high-level programming skills, and the graphical interface lends itself to easy modification and use by non-experts. PMID:24725437

  14. Simulations of pattern dynamics for reaction-diffusion systems via SIMULINK.

    PubMed

    Wang, Kaier; Steyn-Ross, Moira L; Steyn-Ross, D Alistair; Wilson, Marcus T; Sleigh, Jamie W; Shiraishi, Yoichi

    2014-04-11

    Investigation of the nonlinear pattern dynamics of a reaction-diffusion system almost always requires numerical solution of the system's set of defining differential equations. Traditionally, this would be done by selecting an appropriate differential equation solver from a library of such solvers, then writing computer codes (in a programming language such as C or Matlab) to access the selected solver and display the integrated results as a function of space and time. This "code-based" approach is flexible and powerful, but requires a certain level of programming sophistication. A modern alternative is to use a graphical programming interface such as Simulink to construct a data-flow diagram by assembling and linking appropriate code blocks drawn from a library. The result is a visual representation of the inter-relationships between the state variables whose output can be made completely equivalent to the code-based solution. As a tutorial introduction, we first demonstrate application of the Simulink data-flow technique to the classical van der Pol nonlinear oscillator, and compare Matlab and Simulink coding approaches to solving the van der Pol ordinary differential equations. We then show how to introduce space (in one and two dimensions) by solving numerically the partial differential equations for two different reaction-diffusion systems: the well-known Brusselator chemical reactor, and a continuum model for a two-dimensional sheet of human cortex whose neurons are linked by both chemical and electrical (diffusive) synapses. We compare the relative performances of the Matlab and Simulink implementations. The pattern simulations by Simulink are in good agreement with theoretical predictions. Compared with traditional coding approaches, the Simulink block-diagram paradigm reduces the time and programming burden required to implement a solution for reaction-diffusion systems of equations. Construction of the block-diagram does not require high-level programming skills, and the graphical interface lends itself to easy modification and use by non-experts.

  15. Dosimetric validation of the Acuros XB Advanced Dose Calculation algorithm: fundamental characterization in water

    NASA Astrophysics Data System (ADS)

    Fogliata, Antonella; Nicolini, Giorgia; Clivio, Alessandro; Vanetti, Eugenio; Mancosu, Pietro; Cozzi, Luca

    2011-05-01

    This corrigendum intends to clarify some important points that were not clearly or properly addressed in the original paper, and for which the authors apologize. The original description of the first Acuros algorithm is from the developers, published in Physics in Medicine and Biology by Vassiliev et al (2010) in the paper entitled 'Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams'. The main equations describing the algorithm reported in our paper, implemented as the 'Acuros XB Advanced Dose Calculation Algorithm' in the Varian Eclipse treatment planning system, were originally described (for the original Acuros algorithm) in the above mentioned paper by Vassiliev et al. The intention of our description in our paper was to give readers an overview of the algorithm, not pretending to have authorship of the algorithm itself (used as implemented in the planning system). Unfortunately our paper was not clear, particularly in not allocating full credit to the work published by Vassiliev et al on the original Acuros algorithm. Moreover, it is important to clarify that we have not adapted any existing algorithm, but have used the Acuros XB implementation in the Eclipse planning system from Varian. In particular, the original text of our paper should have been as follows: On page 1880 the sentence 'A prototype LBTE solver, called Attila (Wareing et al 2001), was also applied to external photon beam dose calculations (Gifford et al 2006, Vassiliev et al 2008, 2010). Acuros XB builds upon many of the methods in Attila, but represents a ground-up rewrite of the solver where the methods were adapted especially for external photon beam dose calculations' should be corrected to 'A prototype LBTE solver, called Attila (Wareing et al 2001), was also applied to external photon beam dose calculations (Gifford et al 2006, Vassiliev et al 2008). A new algorithm called Acuros, developed by the Transpire Inc. group, was built upon many of the methods in Attila, but represents a ground-up rewrite of the solver where the methods were especially adapted for external photon beam dose calculations, and described in Vassiliev et al (2010). Acuros XB is the Varian implementation of the original Acuros algorithm in the Eclipse planning system'. On page 1881, the sentence 'Monte Carlo and explicit LBTE solution, with sufficient refinement, will converge on the same solution. However, both methods produce errors (inaccuracies). In explicit LBTE solution methods, errors are primarily systematic, and result from discretization of the solution variables in space, angle, and energy. In both Monte Carlo and explicit LBTE solvers, a trade-off exists between speed and accuracy: reduced computational time may be achieved when less stringent accuracy criteria are specified, and vice versa' should cite the reference Vassiliev et al (2010). On page 1882, the beginning of the sub-paragraph The radiation transport model should start with 'The following description of the Acuros XB algorithm is as outlined by Vassiliev et al (2010) and reports the main steps of the radiation transport model as implemented in Eclipse'. The authors apologize for this lack of clarity in our published paper, and trust that this corrigendum gives full credit to Vassiliev et al in their earlier paper, with respect to previous work on the Acuros algorithm. However we wish to note that the entire contents of the data and results published in our paper are original and the work of the listed authors. References Gifford K A, Horton J L Jr, Wareing T A, Failla G and Mourtada F 2006 Comparison of a finite-element multigroup discrete-ordinates code with Monte Carlo for radiotherapy calculations Phys. Med. Biol. 51 2253-65 Vassiliev O N, Wareing T A, Davis I M, McGhee J, Barnett D, Horton J L, Gifford K, Failla G, Titt U and Mourtada F 2008 Feasibility of a multigroup deterministic solution method for three-dimensional radiotherapy dose calculations Int. J. Radiat. Oncol. Biol. Phys. 72 220-7 Vassiliev O N, Wareing T A, McGhee J, Failla G, Salehpour M R and Mourtada F 2010 Validation of a new grid based Boltzmann equation solver for dose calculation in radiotherapy with photon beams Phys. Med. Biol. 55 581-98 Wareing T A, McGhee J M, Morel J E and Pautz S D 2001 Discontinuous finite element Sn methods on three-dimensional unstructured grids Nucl. Sci. Eng. 138 256-68

  16. A Riemann solver for single-phase and two-phase shallow flow models based on relaxation. Relations with Roe and VFRoe solvers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelanti, Marica, E-mail: Marica.Pelanti@ens.f; Bouchut, Francois, E-mail: francois.bouchut@univ-mlv.f; Mangeney, Anne, E-mail: mangeney@ipgp.jussieu.f

    2011-02-01

    We present a Riemann solver derived by a relaxation technique for classical single-phase shallow flow equations and for a two-phase shallow flow model describing a mixture of solid granular material and fluid. Our primary interest is the numerical approximation of this two-phase solid/fluid model, whose complexity poses numerical difficulties that cannot be efficiently addressed by existing solvers. In particular, we are concerned with ensuring a robust treatment of dry bed states. The relaxation system used by the proposed solver is formulated by introducing auxiliary variables that replace the momenta in the spatial gradients of the original model systems. The resultingmore » relaxation solver is related to Roe solver in that its Riemann solution for the flow height and relaxation variables is formally computed as Roe's Riemann solution. The relaxation solver has the advantage of a certain degree of freedom in the specification of the wave structure through the choice of the relaxation parameters. This flexibility can be exploited to handle robustly vacuum states, which is a well known difficulty of standard Roe's method, while maintaining Roe's low diffusivity. For the single-phase model positivity of flow height is rigorously preserved. For the two-phase model positivity of volume fractions in general is not ensured, and a suitable restriction on the CFL number might be needed. Nonetheless, numerical experiments suggest that the proposed two-phase flow solver efficiently models wet/dry fronts and vacuum formation for a large range of flow conditions. As a corollary of our study, we show that for single-phase shallow flow equations the relaxation solver is formally equivalent to the VFRoe solver with conservative variables of Gallouet and Masella [T. Gallouet, J.-M. Masella, Un schema de Godunov approche C.R. Acad. Sci. Paris, Serie I, 323 (1996) 77-84]. The relaxation interpretation allows establishing positivity conditions for this VFRoe method.« less

  17. Thermal neutron streaming effects and WIMS analysis of the Penn State subcritical graphite pile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feltus, M.A.; Zediak, C.S.; Jester, W.A.

    1997-12-01

    This analysis was performed on the Pennsylvania State University (PSU) subcritical reactor to find more accurate values for such nuclear parameters as the thermal fuel utilization factor, thermal diffusion length in the graphite, migration area, k{sub eff}, etc. The analysis involved using the Winfrith Integrated Multigroup Scheme (WIMS) code as well as various hand calculations to find and compare those parameters. The data found in this analysis will be used by future students in the Penn State laboratory courses.

  18. A NUMERICAL ALGORITHM FOR MODELING MULTIGROUP NEUTRINO-RADIATION HYDRODYNAMICS IN TWO SPATIAL DIMENSIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swesty, F. Douglas; Myra, Eric S.

    It is now generally agreed that multidimensional, multigroup, neutrino-radiation hydrodynamics (RHD) is an indispensable element of any realistic model of stellar-core collapse, core-collapse supernovae, and proto-neutron star instabilities. We have developed a new, two-dimensional, multigroup algorithm that can model neutrino-RHD flows in core-collapse supernovae. Our algorithm uses an approach similar to the ZEUS family of algorithms, originally developed by Stone and Norman. However, this completely new implementation extends that previous work in three significant ways: first, we incorporate multispecies, multigroup RHD in a flux-limited-diffusion approximation. Our approach is capable of modeling pair-coupled neutrino-RHD, and includes effects of Pauli blocking inmore » the collision integrals. Blocking gives rise to nonlinearities in the discretized radiation-transport equations, which we evolve implicitly in time. We employ parallelized Newton-Krylov methods to obtain a solution of these nonlinear, implicit equations. Our second major extension to the ZEUS algorithm is the inclusion of an electron conservation equation that describes the evolution of electron-number density in the hydrodynamic flow. This permits calculating deleptonization of a stellar core. Our third extension modifies the hydrodynamics algorithm to accommodate realistic, complex equations of state, including those having nonconvex behavior. In this paper, we present a description of our complete algorithm, giving sufficient details to allow others to implement, reproduce, and extend our work. Finite-differencing details are presented in appendices. We also discuss implementation of this algorithm on state-of-the-art, parallel-computing architectures. Finally, we present results of verification tests that demonstrate the numerical accuracy of this algorithm on diverse hydrodynamic, gravitational, radiation-transport, and RHD sample problems. We believe our methods to be of general use in a variety of model settings where radiation transport or RHD is important. Extension of this work to three spatial dimensions is straightforward.« less

  19. Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology.

    PubMed

    Schaff, James C; Gao, Fei; Li, Ye; Novak, Igor L; Slepchenko, Boris M

    2016-12-01

    Hybrid deterministic-stochastic methods provide an efficient alternative to a fully stochastic treatment of models which include components with disparate levels of stochasticity. However, general-purpose hybrid solvers for spatially resolved simulations of reaction-diffusion systems are not widely available. Here we describe fundamentals of a general-purpose spatial hybrid method. The method generates realizations of a spatially inhomogeneous hybrid system by appropriately integrating capabilities of a deterministic partial differential equation solver with a popular particle-based stochastic simulator, Smoldyn. Rigorous validation of the algorithm is detailed, using a simple model of calcium 'sparks' as a testbed. The solver is then applied to a deterministic-stochastic model of spontaneous emergence of cell polarity. The approach is general enough to be implemented within biologist-friendly software frameworks such as Virtual Cell.

  20. Luminescence and efficiency optimization of InGaN/GaN core-shell nanowire LEDs by numerical modelling

    NASA Astrophysics Data System (ADS)

    Römer, Friedhard; Deppner, Marcus; Andreev, Zhelio; Kölper, Christopher; Sabathil, Matthias; Strassburg, Martin; Ledig, Johannes; Li, Shunfeng; Waag, Andreas; Witzigmann, Bernd

    2012-02-01

    We present a computational study on the anisotropic luminescence and the efficiency of a core-shell type nanowire LED based on GaN with InGaN active quantum wells. The physical simulator used for analyzing this device integrates a multidimensional drift-diffusion transport solver and a k . p Schrödinger problem solver for quantization effects and luminescence. The solution of both problems is coupled to achieve self-consistency. Using this solver we investigate the effect of dimensions, design of quantum wells, and current injection on the efficiency and luminescence of the core-shell nanowire LED. The anisotropy of the luminescence and re-absorption is analyzed with respect to the external efficiency of the LED. From the results we derive strategies for design optimization.

  1. CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. II. GRAY RADIATION HYDRODYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, W.; Almgren, A.; Bell, J.

    We describe the development of a flux-limited gray radiation solver for the compressible astrophysics code, CASTRO. CASTRO uses an Eulerian grid with block-structured adaptive mesh refinement based on a nested hierarchy of logically rectangular variable-sized grids with simultaneous refinement in both space and time. The gray radiation solver is based on a mixed-frame formulation of radiation hydrodynamics. In our approach, the system is split into two parts, one part that couples the radiation and fluid in a hyperbolic subsystem, and another parabolic part that evolves radiation diffusion and source-sink terms. The hyperbolic subsystem is solved explicitly with a high-order Godunovmore » scheme, whereas the parabolic part is solved implicitly with a first-order backward Euler method.« less

  2. Depletion Calculations Based on Perturbations. Application to the Study of a Rep-Like Assembly at Beginning of Cycle with TRIPOLI-4®.

    NASA Astrophysics Data System (ADS)

    Dieudonne, Cyril; Dumonteil, Eric; Malvagi, Fausto; M'Backé Diop, Cheikh

    2014-06-01

    For several years, Monte Carlo burnup/depletion codes have appeared, which couple Monte Carlo codes to simulate the neutron transport to deterministic methods, which handle the medium depletion due to the neutron flux. Solving Boltzmann and Bateman equations in such a way allows to track fine 3-dimensional effects and to get rid of multi-group hypotheses done by deterministic solvers. The counterpart is the prohibitive calculation time due to the Monte Carlo solver called at each time step. In this paper we present a methodology to avoid the repetitive and time-expensive Monte Carlo simulations, and to replace them by perturbation calculations: indeed the different burnup steps may be seen as perturbations of the isotopic concentration of an initial Monte Carlo simulation. In a first time we will present this method, and provide details on the perturbative technique used, namely the correlated sampling. In a second time the implementation of this method in the TRIPOLI-4® code will be discussed, as well as the precise calculation scheme a meme to bring important speed-up of the depletion calculation. Finally, this technique will be used to calculate the depletion of a REP-like assembly, studied at beginning of its cycle. After having validated the method with a reference calculation we will show that it can speed-up by nearly an order of magnitude standard Monte-Carlo depletion codes.

  3. RELATIVISTIC MAGNETOHYDRODYNAMICS: RENORMALIZED EIGENVECTORS AND FULL WAVE DECOMPOSITION RIEMANN SOLVER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anton, Luis; MartI, Jose M; Ibanez, Jose M

    2010-05-01

    We obtain renormalized sets of right and left eigenvectors of the flux vector Jacobians of the relativistic MHD equations, which are regular and span a complete basis in any physical state including degenerate ones. The renormalization procedure relies on the characterization of the degeneracy types in terms of the normal and tangential components of the magnetic field to the wave front in the fluid rest frame. Proper expressions of the renormalized eigenvectors in conserved variables are obtained through the corresponding matrix transformations. Our work completes previous analysis that present different sets of right eigenvectors for non-degenerate and degenerate states, andmore » can be seen as a relativistic generalization of earlier work performed in classical MHD. Based on the full wave decomposition (FWD) provided by the renormalized set of eigenvectors in conserved variables, we have also developed a linearized (Roe-type) Riemann solver. Extensive testing against one- and two-dimensional standard numerical problems allows us to conclude that our solver is very robust. When compared with a family of simpler solvers that avoid the knowledge of the full characteristic structure of the equations in the computation of the numerical fluxes, our solver turns out to be less diffusive than HLL and HLLC, and comparable in accuracy to the HLLD solver. The amount of operations needed by the FWD solver makes it less efficient computationally than those of the HLL family in one-dimensional problems. However, its relative efficiency increases in multidimensional simulations.« less

  4. Local error estimates for adaptive simulation of the Reaction–Diffusion Master Equation via operator splitting

    PubMed Central

    Hellander, Andreas; Lawson, Michael J; Drawert, Brian; Petzold, Linda

    2015-01-01

    The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps are adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the Diffusive Finite-State Projection (DFSP) method, to incorporate temporal adaptivity. PMID:26865735

  5. Local error estimates for adaptive simulation of the Reaction-Diffusion Master Equation via operator splitting.

    PubMed

    Hellander, Andreas; Lawson, Michael J; Drawert, Brian; Petzold, Linda

    2014-06-01

    The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps are adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the Diffusive Finite-State Projection (DFSP) method, to incorporate temporal adaptivity.

  6. The Method of Space-time Conservation Element and Solution Element: Development of a New Implicit Solver

    NASA Technical Reports Server (NTRS)

    Chang, S. C.; Wang, X. Y.; Chow, C. Y.; Himansu, A.

    1995-01-01

    The method of space-time conservation element and solution element is a nontraditional numerical method designed from a physicist's perspective, i.e., its development is based more on physics than numerics. It uses only the simplest approximation techniques and yet is capable of generating nearly perfect solutions for a 2-D shock reflection problem used by Helen Yee and others. In addition to providing an overall view of the new method, we introduce a new concept in the design of implicit schemes, and use it to construct a highly accurate solver for a convection-diffusion equation. It is shown that, in the inviscid case, this new scheme becomes explicit and its amplification factors are identical to those of the Leapfrog scheme. On the other hand, in the pure diffusion case, its principal amplification factor becomes the amplification factor of the Crank-Nicolson scheme.

  7. Multigrid approaches to non-linear diffusion problems on unstructured meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The efficiency of three multigrid methods for solving highly non-linear diffusion problems on two-dimensional unstructured meshes is examined. The three multigrid methods differ mainly in the manner in which the nonlinearities of the governing equations are handled. These comprise a non-linear full approximation storage (FAS) multigrid method which is used to solve the non-linear equations directly, a linear multigrid method which is used to solve the linear system arising from a Newton linearization of the non-linear system, and a hybrid scheme which is based on a non-linear FAS multigrid scheme, but employs a linear solver on each level as a smoother. Results indicate that all methods are equally effective at converging the non-linear residual in a given number of grid sweeps, but that the linear solver is more efficient in cpu time due to the lower cost of linear versus non-linear grid sweeps.

  8. Studying effects of non-equilibrium radiative transfer via HPC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holladay, Daniel

    This report presents slides on Ph.D. Research Goals; Local Thermodynamic Equilibrium (LTE) Implications; Calculating an Opacity; Opacity: Pictographic Representation; Opacity: Pictographic Representation; Opacity: Pictographic Representation; Collisional Radiative Modeling; Radiative and Collisional Excitation; Photo and Electron Impact Ionization; Autoionization; The Rate Matrix; Example: Total Photoionization rate; The Rate Coefficients; inlinlte version 1.1; inlinlte: Verification; New capabilities: Rate Matrix – Flexibility; Memory Option Comparison; Improvements over previous DCA solver; Inter- and intra-node load balancing; Load Balance – Full Picture; Load Balance – Full Picture; Load Balance – Internode; Load Balance – Scaling; Description; Performance; xRAGE Simulation; Post-process @ 2hr; Post-process @ 4hr;more » Post-process @ 8hr; Takeaways; Performance for 1 realization; Motivation for QOI; Multigroup Er; Transport and NLTE large effects (1mm, 1keV); Transport large effect, NLTE lesser (1mm, 750eV); Blastwave Diagnostici – Description & Performance; Temperature Comparison; NLTE has effect on dynamics at wall; NLTE has lesser effect in the foam; Global Takeaways; The end.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollaber, Allan Benton; Park, HyeongKae; Lowrie, Robert Byron

    Recent efforts at Los Alamos National Laboratory to develop a moment-based, scale-bridging [or high-order (HO)–low-order (LO)] algorithm for solving large varieties of the transport (kinetic) systems have shown promising results. A part of our ongoing effort is incorporating this methodology into the framework of the Eulerian Applications Project to achieve algorithmic acceleration of radiationhydrodynamics simulations in production software. By starting from the thermal radiative transfer equations with a simple material-motion correction, we derive a discretely consistent energy balance equation (LO equation). We demonstrate that the corresponding LO system for the Monte Carlo HO solver is closely related to the originalmore » LO system without material-motion corrections. We test the implementation on a radiative shock problem and show consistency between the energy densities and temperatures in the HO and LO solutions as well as agreement with the semianalytic solution. We also test the approach on a more challenging two-dimensional problem and demonstrate accuracy enhancements and algorithmic speedups. This paper extends a recent conference paper by including multigroup effects.« less

  10. Application of PDSLin to the magnetic reconnection problem

    NASA Astrophysics Data System (ADS)

    Yuan, Xuefei; Li, Xiaoye S.; Yamazaki, Ichitaro; Jardin, Stephen C.; Koniges, Alice E.; Keyes, David E.

    2013-01-01

    Magnetic reconnection is a fundamental process in a magnetized plasma at both low and high magnetic Lundquist numbers (the ratio of the resistive diffusion time to the Alfvén wave transit time), which occurs in a wide variety of laboratory and space plasmas, e.g. magnetic fusion experiments, the solar corona and the Earth's magnetotail. An implicit time advance for the two-fluid magnetic reconnection problem is known to be difficult because of the large condition number of the associated matrix. This is especially troublesome when the collisionless ion skin depth is large so that the Whistler waves, which cause the fast reconnection, dominate the physics (Yuan et al 2012 J. Comput. Phys. 231 5822-53). For small system sizes, a direct solver such as SuperLU can be employed to obtain an accurate solution as long as the condition number is bounded by the reciprocal of the floating-point machine precision. However, SuperLU scales effectively only to hundreds of processors or less. For larger system sizes, it has been shown that physics-based (Chacón and Knoll 2003 J. Comput. Phys. 188 573-92) or other preconditioners can be applied to provide adequate solver performance. In recent years, we have been developing a new algebraic hybrid linear solver, PDSLin (Parallel Domain decomposition Schur complement-based Linear solver) (Yamazaki and Li 2010 Proc. VECPAR pp 421-34 and Yamazaki et al 2011 Technical Report). In this work, we compare numerical results from a direct solver and the proposed hybrid solver for the magnetic reconnection problem and demonstrate that the new hybrid solver is scalable to thousands of processors while maintaining the same robustness as a direct solver.

  11. Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology

    PubMed Central

    Gao, Fei; Li, Ye; Novak, Igor L.; Slepchenko, Boris M.

    2016-01-01

    Hybrid deterministic-stochastic methods provide an efficient alternative to a fully stochastic treatment of models which include components with disparate levels of stochasticity. However, general-purpose hybrid solvers for spatially resolved simulations of reaction-diffusion systems are not widely available. Here we describe fundamentals of a general-purpose spatial hybrid method. The method generates realizations of a spatially inhomogeneous hybrid system by appropriately integrating capabilities of a deterministic partial differential equation solver with a popular particle-based stochastic simulator, Smoldyn. Rigorous validation of the algorithm is detailed, using a simple model of calcium ‘sparks’ as a testbed. The solver is then applied to a deterministic-stochastic model of spontaneous emergence of cell polarity. The approach is general enough to be implemented within biologist-friendly software frameworks such as Virtual Cell. PMID:27959915

  12. On the use of reverse Brownian motion to accelerate hybrid simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakarji, Joseph; Tartakovsky, Daniel M., E-mail: tartakovsky@stanford.edu

    Multiscale and multiphysics simulations are two rapidly developing fields of scientific computing. Efficient coupling of continuum (deterministic or stochastic) constitutive solvers with their discrete (stochastic, particle-based) counterparts is a common challenge in both kinds of simulations. We focus on interfacial, tightly coupled simulations of diffusion that combine continuum and particle-based solvers. The latter employs the reverse Brownian motion (rBm), a Monte Carlo approach that allows one to enforce inhomogeneous Dirichlet, Neumann, or Robin boundary conditions and is trivially parallelizable. We discuss numerical approaches for improving the accuracy of rBm in the presence of inhomogeneous Neumann boundary conditions and alternative strategiesmore » for coupling the rBm solver with its continuum counterpart. Numerical experiments are used to investigate the convergence, stability, and computational efficiency of the proposed hybrid algorithm.« less

  13. Model Comparison for Electron Thermal Transport

    NASA Astrophysics Data System (ADS)

    Moses, Gregory; Chenhall, Jeffrey; Cao, Duc; Delettrez, Jacques

    2015-11-01

    Four electron thermal transport models are compared for their ability to accurately and efficiently model non-local behavior in ICF simulations. Goncharov's transport model has accurately predicted shock timing in implosion simulations but is computationally slow and limited to 1D. The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. uses multigroup diffusion to speed up the calculation. Chenhall has expanded upon the iSNB diffusion model to a higher order simplified P3 approximation and a Monte Carlo transport model, to bridge the gap between the iSNB and Goncharov models while maintaining computational efficiency. Comparisons of the above models for several test problems will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.

  14. Update on Advection-Diffusion Purge Flow Model

    NASA Technical Reports Server (NTRS)

    Brieda, Lubos

    2015-01-01

    Gaseous purge is commonly used in sensitive spacecraft optical or electronic instruments to prevent infiltration of contaminants and/or water vapor. Typically, purge is sized using simplistic zero-dimensional models that do not take into account instrument geometry, surface effects, and the dependence of diffusive flux on the concentration gradient. For this reason, an axisymmetric computational fluid dynamics (CFD) simulation was recently developed to model contaminant infiltration and removal by purge. The solver uses a combined Navier-Stokes and Advection-Diffusion approach. In this talk, we report on updates in the model, namely inclusion of a particulate transport model.

  15. Detailed modeling analysis for soot formation and radiation in microgravity gas jet diffusion flames

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.; Tong, LI; Greenberg, Paul S.

    1995-01-01

    Radiation heat transfer in combustion systems has been receiving increasing interest. In the case of hydrocarbon fuels, a significant portion of the radiation comes from soot particles, justifying the need for detailed soot formation model and radiation transfer calculations. For laminar gas jet diffusion flames, results from this project (4/1/91 8/22/95) and another NASA study show that flame shape, soot concentration, and radiation heat fluxes are substantially different under microgravity conditions. Our emphasis is on including detailed soot transport models and a detailed solution for radiation heat transfer, and on coupling them with the flame structure calculations. In this paper, we will discuss the following three specific areas: (1) Comparing two existing soot formation models, and identifying possible improvements; (2) A simple yet reasonably accurate approach to calculating total radiative properties and/or fluxes over the spectral range; and (3) Investigating the convergence of iterations between the flame structure solver and the radiation heat transfer solver.

  16. Parallel computation safety analysis irradiation targets fission product molybdenum in neutronic aspect using the successive over-relaxation algorithm

    NASA Astrophysics Data System (ADS)

    Susmikanti, Mike; Dewayatna, Winter; Sulistyo, Yos

    2014-09-01

    One of the research activities in support of commercial radioisotope production program is a safety research on target FPM (Fission Product Molybdenum) irradiation. FPM targets form a tube made of stainless steel which contains nuclear-grade high-enrichment uranium. The FPM irradiation tube is intended to obtain fission products. Fission materials such as Mo99 used widely the form of kits in the medical world. The neutronics problem is solved using first-order perturbation theory derived from the diffusion equation for four groups. In contrast, Mo isotopes have longer half-lives, about 3 days (66 hours), so the delivery of radioisotopes to consumer centers and storage is possible though still limited. The production of this isotope potentially gives significant economic value. The criticality and flux in multigroup diffusion model was calculated for various irradiation positions and uranium contents. This model involves complex computation, with large and sparse matrix system. Several parallel algorithms have been developed for the sparse and large matrix solution. In this paper, a successive over-relaxation (SOR) algorithm was implemented for the calculation of reactivity coefficients which can be done in parallel. Previous works performed reactivity calculations serially with Gauss-Seidel iteratives. The parallel method can be used to solve multigroup diffusion equation system and calculate the criticality and reactivity coefficients. In this research a computer code was developed to exploit parallel processing to perform reactivity calculations which were to be used in safety analysis. The parallel processing in the multicore computer system allows the calculation to be performed more quickly. This code was applied for the safety limits calculation of irradiated FPM targets containing highly enriched uranium. The results of calculations neutron show that for uranium contents of 1.7676 g and 6.1866 g (× 106 cm-1) in a tube, their delta reactivities are the still within safety limits; however, for 7.9542 g and 8.838 g (× 106 cm-1) the limits were exceeded.

  17. Advanced nodal neutron diffusion method with space-dependent cross sections: ILLICO-VX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajic, H.L.; Ougouag, A.M.

    1987-01-01

    Advanced transverse integrated nodal methods for neutron diffusion developed since the 1970s require that node- or assembly-homogenized cross sections be known. The underlying structural heterogeneity can be accurately accounted for in homogenization procedures by the use of heterogeneity or discontinuity factors. Other (milder) types of heterogeneity, burnup-induced or due to thermal-hydraulic feedback, can be resolved by explicitly accounting for the spatial variations of material properties. This can be done during the nodal computations via nonlinear iterations. The new method has been implemented in the code ILLICO-VX (ILLICO variable cross-section method). Numerous numerical tests were performed. As expected, the convergence ratemore » of ILLICO-VX is lower than that of ILLICO, requiring approx. 30% more outer iterations per k/sub eff/ computation. The methodology has also been implemented as the NOMAD-VX option of the NOMAD, multicycle, multigroup, two- and three-dimensional nodal diffusion depletion code. The burnup-induced heterogeneities (space dependence of cross sections) are calculated during the burnup steps.« less

  18. AN EXTENSION OF THE ATHENA++ CODE FRAMEWORK FOR GRMHD BASED ON ADVANCED RIEMANN SOLVERS AND STAGGERED-MESH CONSTRAINED TRANSPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Christopher J.; Stone, James M.; Gammie, Charles F.

    2016-08-01

    We present a new general relativistic magnetohydrodynamics (GRMHD) code integrated into the Athena++ framework. Improving upon the techniques used in most GRMHD codes, ours allows the use of advanced, less diffusive Riemann solvers, in particular HLLC and HLLD. We also employ a staggered-mesh constrained transport algorithm suited for curvilinear coordinate systems in order to maintain the divergence-free constraint of the magnetic field. Our code is designed to work with arbitrary stationary spacetimes in one, two, or three dimensions, and we demonstrate its reliability through a number of tests. We also report on its promising performance and scalability.

  19. A Fractional PDE Approach to Turbulent Mixing; Part II: Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Samiee, Mehdi; Zayernouri, Mohsen

    2016-11-01

    We propose a generalizing fractional order transport model of advection-diffusion kind with fractional time- and space-derivatives, governing the evolution of passive scalar turbulence. This approach allows one to incorporate the nonlocal and memory effects in the underlying anomalous diffusion i.e., sub-to-standard diffusion to model the trapping of particles inside the eddied, and super-diffusion associated with the sudden jumps of particles from one coherent region to another. For this nonlocal model, we develop a high order numerical (spectral) method in addition to a fast solver, examined in the context of some canonical problems. PhD student, Department of Mechanical Engineering, & Department Computational Mathematics, Science, and Engineering.

  20. Travelling Wave Solutions in Multigroup Age-Structured Epidemic Models

    NASA Astrophysics Data System (ADS)

    Ducrot, Arnaut; Magal, Pierre; Ruan, Shigui

    2010-01-01

    Age-structured epidemic models have been used to describe either the age of individuals or the age of infection of certain diseases and to determine how these characteristics affect the outcomes and consequences of epidemiological processes. Most results on age-structured epidemic models focus on the existence, uniqueness, and convergence to disease equilibria of solutions. In this paper we investigate the existence of travelling wave solutions in a deterministic age-structured model describing the circulation of a disease within a population of multigroups. Individuals of each group are able to move with a random walk which is modelled by the classical Fickian diffusion and are classified into two subclasses, susceptible and infective. A susceptible individual in a given group can be crisscross infected by direct contact with infective individuals of possibly any group. This process of transmission can depend upon the age of the disease of infected individuals. The goal of this paper is to provide sufficient conditions that ensure the existence of travelling wave solutions for the age-structured epidemic model. The case of two population groups is numerically investigated which applies to the crisscross transmission of feline immunodeficiency virus (FIV) and some sexual transmission diseases.

  1. An Improved Neutron Transport Algorithm for Space Radiation

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.; Clowdsley, Martha S.; Wilson, John W.

    2000-01-01

    A low-energy neutron transport algorithm for use in space radiation protection is developed. The algorithm is based upon a multigroup analysis of the straight-ahead Boltzmann equation by using a mean value theorem for integrals. This analysis is accomplished by solving a realistic but simplified neutron transport test problem. The test problem is analyzed by using numerical and analytical procedures to obtain an accurate solution within specified error bounds. Results from the test problem are then used for determining mean values associated with rescattering terms that are associated with a multigroup solution of the straight-ahead Boltzmann equation. The algorithm is then coupled to the Langley HZETRN code through the evaporation source term. Evaluation of the neutron fluence generated by the solar particle event of February 23, 1956, for a water and an aluminum-water shield-target configuration is then compared with LAHET and MCNPX Monte Carlo code calculations for the same shield-target configuration. The algorithm developed showed a great improvement in results over the unmodified HZETRN solution. In addition, a two-directional solution of the evaporation source showed even further improvement of the fluence near the front of the water target where diffusion from the front surface is important.

  2. A Stable Finite-Difference Scheme for Population Growth and Diffusion on a Map

    PubMed Central

    Callegari, S.; Lake, G. R.; Tkachenko, N.; Weissmann, J. D.; Zollikofer, Ch. P. E.

    2017-01-01

    We describe a general Godunov-type splitting for numerical simulations of the Fisher–Kolmogorov–Petrovski–Piskunov growth and diffusion equation on a world map with Neumann boundary conditions. The procedure is semi-implicit, hence quite stable. Our principal application for this solver is modeling human population dispersal over geographical maps with changing paleovegetation and paleoclimate in the late Pleistocene. As a proxy for carrying capacity we use Net Primary Productivity (NPP) to predict times for human arrival in the Americas. PMID:28085882

  3. Adaptive Implicit Non-Equilibrium Radiation Diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philip, Bobby; Wang, Zhen; Berrill, Mark A

    2013-01-01

    We describe methods for accurate and efficient long term time integra- tion of non-equilibrium radiation diffusion systems: implicit time integration for effi- cient long term time integration of stiff multiphysics systems, local control theory based step size control to minimize the required global number of time steps while control- ling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  4. Computation of the unsteady facilitated transport of oxygen in hemoglobin

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1990-01-01

    The transport of a reacting permeant diffusing through a thin membrane is extended to more realistic dissociation models. A new nonlinear analysis of the reaction-diffusion equations, using implicit finite-difference methods and direct block solvers, is used to study the limits of linearized and equilibrium theories. Computed curves of molecular oxygen permeating through hemoglobin solution are used to illustrate higher-order reaction models, the effect of concentration boundary layers at the membrane interfaces, and the transient buildup of oxygen flux.

  5. A Stable Finite-Difference Scheme for Population Growth and Diffusion on a Map.

    PubMed

    Petersen, W P; Callegari, S; Lake, G R; Tkachenko, N; Weissmann, J D; Zollikofer, Ch P E

    2017-01-01

    We describe a general Godunov-type splitting for numerical simulations of the Fisher-Kolmogorov-Petrovski-Piskunov growth and diffusion equation on a world map with Neumann boundary conditions. The procedure is semi-implicit, hence quite stable. Our principal application for this solver is modeling human population dispersal over geographical maps with changing paleovegetation and paleoclimate in the late Pleistocene. As a proxy for carrying capacity we use Net Primary Productivity (NPP) to predict times for human arrival in the Americas.

  6. Elimination of numerical diffusion in 1 - phase and 2 - phase flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajamaeki, M.

    1997-07-01

    The new hydraulics solution method PLIM (Piecewise Linear Interpolation Method) is capable of avoiding the excessive errors, numerical diffusion and also numerical dispersion. The hydraulics solver CFDPLIM uses PLIM and solves the time-dependent one-dimensional flow equations in network geometry. An example is given for 1-phase flow in the case when thermal-hydraulics and reactor kinetics are strongly coupled. Another example concerns oscillations in 2-phase flow. Both the example computations are not possible with conventional methods.

  7. New algorithms for field-theoretic block copolymer simulations: Progress on using adaptive-mesh refinement and sparse matrix solvers in SCFT calculations

    NASA Astrophysics Data System (ADS)

    Sides, Scott; Jamroz, Ben; Crockett, Robert; Pletzer, Alexander

    2012-02-01

    Self-consistent field theory (SCFT) for dense polymer melts has been highly successful in describing complex morphologies in block copolymers. Field-theoretic simulations such as these are able to access large length and time scales that are difficult or impossible for particle-based simulations such as molecular dynamics. The modified diffusion equations that arise as a consequence of the coarse-graining procedure in the SCF theory can be efficiently solved with a pseudo-spectral (PS) method that uses fast-Fourier transforms on uniform Cartesian grids. However, PS methods can be difficult to apply in many block copolymer SCFT simulations (eg. confinement, interface adsorption) in which small spatial regions might require finer resolution than most of the simulation grid. Progress on using new solver algorithms to address these problems will be presented. The Tech-X Chompst project aims at marrying the best of adaptive mesh refinement with linear matrix solver algorithms. The Tech-X code PolySwift++ is an SCFT simulation platform that leverages ongoing development in coupling Chombo, a package for solving PDEs via block-structured AMR calculations and embedded boundaries, with PETSc, a toolkit that includes a large assortment of sparse linear solvers.

  8. A coarse-grid projection method for accelerating incompressible flow computations

    NASA Astrophysics Data System (ADS)

    San, Omer; Staples, Anne

    2011-11-01

    We present a coarse-grid projection (CGP) algorithm for accelerating incompressible flow computations, which is applicable to methods involving Poisson equations as incompressibility constraints. CGP methodology is a modular approach that facilitates data transfer with simple interpolations and uses black-box solvers for the Poisson and advection-diffusion equations in the flow solver. Here, we investigate a particular CGP method for the vorticity-stream function formulation that uses the full weighting operation for mapping from fine to coarse grids, the third-order Runge-Kutta method for time stepping, and finite differences for the spatial discretization. After solving the Poisson equation on a coarsened grid, bilinear interpolation is used to obtain the fine data for consequent time stepping on the full grid. We compute several benchmark flows: the Taylor-Green vortex, a vortex pair merging, a double shear layer, decaying turbulence and the Taylor-Green vortex on a distorted grid. In all cases we use either FFT-based or V-cycle multigrid linear-cost Poisson solvers. Reducing the number of degrees of freedom of the Poisson solver by powers of two accelerates these computations while, for the first level of coarsening, retaining the same level of accuracy in the fine resolution vorticity field.

  9. Strain-based diffusion solver for realistic representation of diffusion front in physical reactions

    PubMed Central

    2017-01-01

    When simulating fluids, such as water or fire, interacting with solids, it is a challenging problem to represent details of diffusion front in physical reaction. Previous approaches commonly use isotropic or anisotropic diffusion to model the transport of a quantity through a medium or long interface. We have identified unrealistic monotonous patterns with previous approaches and therefore, propose to extend these approaches by integrating the deformation of the material with the diffusion process. Specifically, stretching deformation represented by strain is incorporated in a divergence-constrained diffusion model. A novel diffusion model is introduced to increase the global rate at which the solid acquires relevant quantities, such as heat or saturation. This ensures that the equations describing fluid flow are linked to the change of solid geometry, and also satisfy the divergence-free condition. Experiments show that our method produces convincing results. PMID:28448591

  10. Importance of resonance interference effects in multigroup self-shielding calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stachowski, R.E.; Protsik, R.

    1995-12-31

    The impact of the resonance interference method (RIF) on multigroup neutron cross sections is significant for major isotopes in the fuel, indicating the importance of resonance interference in the computation of gadolinia burnout and plutonium buildup. The self-shielding factor method with the RIF method effectively eliminates shortcomings in multigroup resonance calculations.

  11. SCALE Code System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rearden, Bradley T.; Jessee, Matthew Anderson

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.« less

  12. Monte Carlo capabilities of the SCALE code system

    DOE PAGES

    Rearden, Bradley T.; Petrie, Jr., Lester M.; Peplow, Douglas E.; ...

    2014-09-12

    SCALE is a broadly used suite of tools for nuclear systems modeling and simulation that provides comprehensive, verified and validated, user-friendly capabilities for criticality safety, reactor physics, radiation shielding, and sensitivity and uncertainty analysis. For more than 30 years, regulators, licensees, and research institutions around the world have used SCALE for nuclear safety analysis and design. SCALE provides a “plug-and-play” framework that includes three deterministic and three Monte Carlo radiation transport solvers that can be selected based on the desired solution, including hybrid deterministic/Monte Carlo simulations. SCALE includes the latest nuclear data libraries for continuous-energy and multigroup radiation transport asmore » well as activation, depletion, and decay calculations. SCALE’s graphical user interfaces assist with accurate system modeling, visualization, and convenient access to desired results. SCALE 6.2 will provide several new capabilities and significant improvements in many existing features, especially with expanded continuous-energy Monte Carlo capabilities for criticality safety, shielding, depletion, and sensitivity and uncertainty analysis. Finally, an overview of the Monte Carlo capabilities of SCALE is provided here, with emphasis on new features for SCALE 6.2.« less

  13. SCALE Code System 6.2.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rearden, Bradley T.; Jessee, Matthew Anderson

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.« less

  14. New developments in the method of space-time conservation element and solution element: Applications to the Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung

    1993-01-01

    A new numerical framework for solving conservation laws is being developed. This new approach differs substantially in both concept and methodology from the well-established methods--i.e., finite difference, finite volume, finite element, and spectral methods. It is conceptually simple and designed to avoid several key limitations to the above traditional methods. An explicit model scheme for solving a simple 1-D unsteady convection-diffusion equation is constructed and used to illuminate major differences between the current method and those mentioned above. Unexpectedly, its amplification factors for the pure convection and pure diffusion cases are identical to those of the Leapfrog and the DuFort-Frankel schemes, respectively. Also, this explicit scheme and its Navier-Stokes extension have the unusual property that their stabilities are limited only by the CFL condition. Moreover, despite the fact that it does not use any flux-limiter or slope-limiter, the Navier-Stokes solver is capable of generating highly accurate shock tube solutions with shock discontinuities being resolved within one mesh interval. An accurate Euler solver also is constructed through another extension. It has many unusual properties, e.g., numerical diffusion at all mesh points can be controlled by a set of local parameters.

  15. Procedure to Generate the MPACT Multigroup Library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kang Seog

    The CASL neutronics simulator MPACT is under development for the neutronics and T-H coupled simulation for the light water reactor. The objective of this document is focused on reviewing the current procedure to generate the MPACT multigroup library. Detailed methodologies and procedures are included in this document for further discussion to improve the MPACT multigroup library.

  16. Euler equation computations for the flow over a hovering helicopter rotor

    NASA Technical Reports Server (NTRS)

    Roberts, Thomas Wesley

    1988-01-01

    A numerical solution technique is developed for computing the flow field around an isolated helicopter rotor in hover. The flow is governed by the compressible Euler equations which are integrated using a finite volume approach. The Euler equations are coupled to a free wake model of the rotary wing vortical wake. This wake model is incorporated into the finite volume solver using a prescribed flow, or perturbation, technique which eliminates the numerical diffusion of vorticity due to the artificial viscosity of the scheme. The work is divided into three major parts: (1) comparisons of Euler solutions to experimental data for the flow around isolated wings show good agreement with the surface pressures, but poor agreement with the vortical wake structure; (2) the perturbation method is developed and used to compute the interaction of a streamwise vortex with a semispan wing. The rapid diffusion of the vortex when only the basic Euler solver is used is illustrated, and excellent agreement with experimental section lift coefficients is demonstrated when using the perturbation approach; and (3) the free wake solution technique is described and the coupling of the wake to the Euler solver for an isolated rotor is presented. Comparisons with experimental blade load data for several cases show good agreement, with discrepancies largely attributable to the neglect of viscous effects. The computed wake geometries agree less well with experiment, the primary difference being that too rapid a wake contraction is predicted for all the cases.

  17. Year End Progress Report on Rattlesnake Improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yaqi; DeHart, Mark David; Gleicher, Frederick Nathan

    Rattlesnake is a MOOSE-based radiation transport application developed at INL to support modern multi-physics simulations. At the beginning of the last year, Rattlesnake was able to perform steady-state, transient and eigenvalue calculations for the multigroup radiation transport equations. Various discretization schemes, including continuous finite element method (FEM) with discrete ordinates method (SN) and spherical harmonics expansion method (PN) for the self-adjoint angular flux (SAAF) formulation, continuous FEM (CFEM) with SN for the least square (LS) formulation, diffusion approximation with CFEM and discontinuous FEM (DFEM), have been implemented. A separate toolkit, YAKXS, for multigroup cross section management was developed to supportmore » Rattlesnake calculations with feedback both from changes in the field variables, such as fuel temperature, coolant density, and etc., and in isotope inventory. The framework for doing nonlinear diffusion acceleration (NDA) within Rattlesnake has been set up, and both NDA calculations with SAAF-SN-CFEM scheme and Monte Carlo with OpenMC have been performed. It was also used for coupling BISON and RELAP-7 for the full-core multiphysics simulations. Within the last fiscal year, significant improvements have been made in Rattlesnake. Rattlesnake development was migrated into our internal GITLAB development environment at the end of year 2014. Since then total 369 merge requests has been accepted into Rattlesnake. It is noted that the MOOSE framework that Rattlesnake is based on is under continuous developments. Improvements made in MOOSE can improve the Rattlesnake. It is acknowledged that MOOSE developers spent efforts on patching Rattlesnake for the improvements made on the framework side. This report will not cover the code restructuring for better readability and modularity and documentation improvements, which we have spent tremendous effort on. It only details some of improvements in the following sections.« less

  18. Distributed Memory Parallel Computing with SEAWAT

    NASA Astrophysics Data System (ADS)

    Verkaik, J.; Huizer, S.; van Engelen, J.; Oude Essink, G.; Ram, R.; Vuik, K.

    2017-12-01

    Fresh groundwater reserves in coastal aquifers are threatened by sea-level rise, extreme weather conditions, increasing urbanization and associated groundwater extraction rates. To counteract these threats, accurate high-resolution numerical models are required to optimize the management of these precious reserves. The major model drawbacks are long run times and large memory requirements, limiting the predictive power of these models. Distributed memory parallel computing is an efficient technique for reducing run times and memory requirements, where the problem is divided over multiple processor cores. A new Parallel Krylov Solver (PKS) for SEAWAT is presented. PKS has recently been applied to MODFLOW and includes Conjugate Gradient (CG) and Biconjugate Gradient Stabilized (BiCGSTAB) linear accelerators. Both accelerators are preconditioned by an overlapping additive Schwarz preconditioner in a way that: a) subdomains are partitioned using Recursive Coordinate Bisection (RCB) load balancing, b) each subdomain uses local memory only and communicates with other subdomains by Message Passing Interface (MPI) within the linear accelerator, c) it is fully integrated in SEAWAT. Within SEAWAT, the PKS-CG solver replaces the Preconditioned Conjugate Gradient (PCG) solver for solving the variable-density groundwater flow equation and the PKS-BiCGSTAB solver replaces the Generalized Conjugate Gradient (GCG) solver for solving the advection-diffusion equation. PKS supports the third-order Total Variation Diminishing (TVD) scheme for computing advection. Benchmarks were performed on the Dutch national supercomputer (https://userinfo.surfsara.nl/systems/cartesius) using up to 128 cores, for a synthetic 3D Henry model (100 million cells) and the real-life Sand Engine model ( 10 million cells). The Sand Engine model was used to investigate the potential effect of the long-term morphological evolution of a large sand replenishment and climate change on fresh groundwater resources. Speed-ups up to 40 were obtained with the new PKS solver.

  19. A coarse-grid projection method for accelerating incompressible flow computations

    NASA Astrophysics Data System (ADS)

    San, Omer; Staples, Anne E.

    2013-01-01

    We present a coarse-grid projection (CGP) method for accelerating incompressible flow computations, which is applicable to methods involving Poisson equations as incompressibility constraints. The CGP methodology is a modular approach that facilitates data transfer with simple interpolations and uses black-box solvers for the Poisson and advection-diffusion equations in the flow solver. After solving the Poisson equation on a coarsened grid, an interpolation scheme is used to obtain the fine data for subsequent time stepping on the full grid. A particular version of the method is applied here to the vorticity-stream function, primitive variable, and vorticity-velocity formulations of incompressible Navier-Stokes equations. We compute several benchmark flow problems on two-dimensional Cartesian and non-Cartesian grids, as well as a three-dimensional flow problem. The method is found to accelerate these computations while retaining a level of accuracy close to that of the fine resolution field, which is significantly better than the accuracy obtained for a similar computation performed solely using a coarse grid. A linear acceleration rate is obtained for all the cases we consider due to the linear-cost elliptic Poisson solver used, with reduction factors in computational time between 2 and 42. The computational savings are larger when a suboptimal Poisson solver is used. We also find that the computational savings increase with increasing distortion ratio on non-Cartesian grids, making the CGP method a useful tool for accelerating generalized curvilinear incompressible flow solvers.

  20. Using hybrid implicit Monte Carlo diffusion to simulate gray radiation hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleveland, Mathew A., E-mail: cleveland7@llnl.gov; Gentile, Nick

    This work describes how to couple a hybrid Implicit Monte Carlo Diffusion (HIMCD) method with a Lagrangian hydrodynamics code to evaluate the coupled radiation hydrodynamics equations. This HIMCD method dynamically applies Implicit Monte Carlo Diffusion (IMD) [1] to regions of a problem that are opaque and diffusive while applying standard Implicit Monte Carlo (IMC) [2] to regions where the diffusion approximation is invalid. We show that this method significantly improves the computational efficiency as compared to a standard IMC/Hydrodynamics solver, when optically thick diffusive material is present, while maintaining accuracy. Two test cases are used to demonstrate the accuracy andmore » performance of HIMCD as compared to IMC and IMD. The first is the Lowrie semi-analytic diffusive shock [3]. The second is a simple test case where the source radiation streams through optically thin material and heats a thick diffusive region of material causing it to rapidly expand. We found that HIMCD proves to be accurate, robust, and computationally efficient for these test problems.« less

  1. Parallel SOR methods with a parabolic-diffusion acceleration technique for solving an unstructured-grid Poisson equation on 3D arbitrary geometries

    NASA Astrophysics Data System (ADS)

    Zapata, M. A. Uh; Van Bang, D. Pham; Nguyen, K. D.

    2016-05-01

    This paper presents a parallel algorithm for the finite-volume discretisation of the Poisson equation on three-dimensional arbitrary geometries. The proposed method is formulated by using a 2D horizontal block domain decomposition and interprocessor data communication techniques with message passing interface. The horizontal unstructured-grid cells are reordered according to the neighbouring relations and decomposed into blocks using a load-balanced distribution to give all processors an equal amount of elements. In this algorithm, two parallel successive over-relaxation methods are presented: a multi-colour ordering technique for unstructured grids based on distributed memory and a block method using reordering index following similar ideas of the partitioning for structured grids. In all cases, the parallel algorithms are implemented with a combination of an acceleration iterative solver. This solver is based on a parabolic-diffusion equation introduced to obtain faster solutions of the linear systems arising from the discretisation. Numerical results are given to evaluate the performances of the methods showing speedups better than linear.

  2. CFD Simulation on the J-2X Engine Exhaust in the Center-Body Diffuser and Spray Chamber at the B-2 Facility

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Wey, Thomas; Buehrle, Robert

    2009-01-01

    A computational fluid dynamic (CFD) code is used to simulate the J-2X engine exhaust in the center-body diffuser and spray chamber at the Spacecraft Propulsion Facility (B-2). The CFD code is named as the space-time conservation element and solution element (CESE) Euler solver and is very robust at shock capturing. The CESE results are compared with independent analysis results obtained by using the National Combustion Code (NCC) and show excellent agreement.

  3. A level-set method for two-phase flows with moving contact line and insoluble surfactant

    NASA Astrophysics Data System (ADS)

    Xu, Jian-Jun; Ren, Weiqing

    2014-04-01

    A level-set method for two-phase flows with moving contact line and insoluble surfactant is presented. The mathematical model consists of the Navier-Stokes equation for the flow field, a convection-diffusion equation for the surfactant concentration, together with the Navier boundary condition and a condition for the dynamic contact angle derived by Ren et al. (2010) [37]. The numerical method is based on the level-set continuum surface force method for two-phase flows with surfactant developed by Xu et al. (2012) [54] with some cautious treatment for the boundary conditions. The numerical method consists of three components: a flow solver for the velocity field, a solver for the surfactant concentration, and a solver for the level-set function. In the flow solver, the surface force is dealt with using the continuum surface force model. The unbalanced Young stress at the moving contact line is incorporated into the Navier boundary condition. A convergence study of the numerical method and a parametric study are presented. The influence of surfactant on the dynamics of the moving contact line is illustrated using examples. The capability of the level-set method to handle complex geometries is demonstrated by simulating a pendant drop detaching from a wall under gravity.

  4. ICF target 2D modeling using Monte Carlo SNB electron thermal transport in DRACO

    NASA Astrophysics Data System (ADS)

    Chenhall, Jeffrey; Cao, Duc; Moses, Gregory

    2016-10-01

    The iSNB (implicit Schurtz Nicolai Busquet multigroup diffusion electron thermal transport method is adapted into a Monte Carlo (MC) transport method to better model angular and long mean free path non-local effects. The MC model was first implemented in the 1D LILAC code to verify consistency with the iSNB model. Implementation of the MC SNB model in the 2D DRACO code enables higher fidelity non-local thermal transport modeling in 2D implosions such as polar drive experiments on NIF. The final step is to optimize the MC model by hybridizing it with a MC version of the iSNB diffusion method. The hybrid method will combine the efficiency of a diffusion method in intermediate mean free path regions with the accuracy of a transport method in long mean free path regions allowing for improved computational efficiency while maintaining accuracy. Work to date on the method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.

  5. Gravitational effects on planetary neutron flux spectra

    NASA Astrophysics Data System (ADS)

    Feldman, W. C.; Drake, D. M.; O'dell, R. D.; Brinkley, F. W.; Anderson, R. C.

    1989-01-01

    The effects of gravity on the planetary neutron flux spectra for planet Mars, and the lifetime of the neutron, were investigated using a modified one-dimensional diffusion accelerated neutral-particle transport code, coupled with a multigroup cross-section library tailored specifically for Mars. The results showed the presence of a qualitatively new feature in planetary neutron leakage spectra in the form of a component of returning neutrons with kinetic energies less than the gravitational binding energy (0.132 eV for Mars). The net effect is an enhancement in flux at the lowest energies that is largest at and above the outermost layer of planetary matter.

  6. An incomplete assembly with thresholding algorithm for systems of reaction-diffusion equations in three space dimensions IAT for reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Moore, Peter K.

    2003-07-01

    Solving systems of reaction-diffusion equations in three space dimensions can be prohibitively expensive both in terms of storage and CPU time. Herein, I present a new incomplete assembly procedure that is designed to reduce storage requirements. Incomplete assembly is analogous to incomplete factorization in that only a fixed number of nonzero entries are stored per row and a drop tolerance is used to discard small values. The algorithm is incorporated in a finite element method-of-lines code and tested on a set of reaction-diffusion systems. The effect of incomplete assembly on CPU time and storage and on the performance of the temporal integrator DASPK, algebraic solver GMRES and preconditioner ILUT is studied.

  7. Fast Multilevel Solvers for a Class of Discrete Fourth Order Parabolic Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Bin; Chen, Luoping; Hu, Xiaozhe

    2016-03-05

    In this paper, we study fast iterative solvers for the solution of fourth order parabolic equations discretized by mixed finite element methods. We propose to use consistent mass matrix in the discretization and use lumped mass matrix to construct efficient preconditioners. We provide eigenvalue analysis for the preconditioned system and estimate the convergence rate of the preconditioned GMRes method. Furthermore, we show that these preconditioners only need to be solved inexactly by optimal multigrid algorithms. Our numerical examples indicate that the proposed preconditioners are very efficient and robust with respect to both discretization parameters and diffusion coefficients. We also investigatemore » the performance of multigrid algorithms with either collective smoothers or distributive smoothers when solving the preconditioner systems.« less

  8. Modeling of photon migration in the human lung using a finite volume solver

    NASA Astrophysics Data System (ADS)

    Sikorski, Zbigniew; Furmanczyk, Michal; Przekwas, Andrzej J.

    2006-02-01

    The application of the frequency domain and steady-state diffusive optical spectroscopy (DOS) and steady-state near infrared spectroscopy (NIRS) to diagnosis of the human lung injury challenges many elements of these techniques. These include the DOS/NIRS instrument performance and accurate models of light transport in heterogeneous thorax tissue. The thorax tissue not only consists of different media (e.g. chest wall with ribs, lungs) but its optical properties also vary with time due to respiration and changes in thorax geometry with contusion (e.g. pneumothorax or hemothorax). This paper presents a finite volume solver developed to model photon migration in the diffusion approximation in heterogeneous complex 3D tissues. The code applies boundary conditions that account for Fresnel reflections. We propose an effective diffusion coefficient for the void volumes (pneumothorax) based on the assumption of the Lambertian diffusion of photons entering the pleural cavity and accounting for the local pleural cavity thickness. The code has been validated using the MCML Monte Carlo code as a benchmark. The code environment enables a semi-automatic preparation of 3D computational geometry from medical images and its rapid automatic meshing. We present the application of the code to analysis/optimization of the hybrid DOS/NIRS/ultrasound technique in which ultrasound provides data on the localization of thorax tissue boundaries. The code effectiveness (3D complex case computation takes 1 second) enables its use to quantitatively relate detected light signal to absorption and reduced scattering coefficients that are indicators of the pulmonary physiologic state (hemoglobin concentration and oxygenation).

  9. pyro: Python-based tutorial for computational methods for hydrodynamics

    NASA Astrophysics Data System (ADS)

    Zingale, Michael

    2015-07-01

    pyro is a simple python-based tutorial on computational methods for hydrodynamics. It includes 2-d solvers for advection, compressible, incompressible, and low Mach number hydrodynamics, diffusion, and multigrid. It is written with ease of understanding in mind. An extensive set of notes that is part of the Open Astrophysics Bookshelf project provides details of the algorithms.

  10. Development of an efficient multigrid method for the NEM form of the multigroup neutron diffusion equation

    NASA Astrophysics Data System (ADS)

    Al-Chalabi, Rifat M. Khalil

    1997-09-01

    Development of an improvement to the computational efficiency of the existing nested iterative solution strategy of the Nodal Exapansion Method (NEM) nodal based neutron diffusion code NESTLE is presented. The improvement in the solution strategy is the result of developing a multilevel acceleration scheme that does not suffer from the numerical stalling associated with a number of iterative solution methods. The acceleration scheme is based on the multigrid method, which is specifically adapted for incorporation into the NEM nonlinear iterative strategy. This scheme optimizes the computational interplay between the spatial discretization and the NEM nonlinear iterative solution process through the use of the multigrid method. The combination of the NEM nodal method, calculation of the homogenized, neutron nodal balance coefficients (i.e. restriction operator), efficient underlying smoothing algorithm (power method of NESTLE), and the finer mesh reconstruction algorithm (i.e. prolongation operator), all operating on a sequence of coarser spatial nodes, constitutes the multilevel acceleration scheme employed in this research. Two implementations of the multigrid method into the NESTLE code were examined; the Imbedded NEM Strategy and the Imbedded CMFD Strategy. The main difference in implementation between the two methods is that in the Imbedded NEM Strategy, the NEM solution is required at every MG level. Numerical tests have shown that the Imbedded NEM Strategy suffers from divergence at coarse- grid levels, hence all the results for the different benchmarks presented here were obtained using the Imbedded CMFD Strategy. The novelties in the developed MG method are as follows: the formulation of the restriction and prolongation operators, and the selection of the relaxation method. The restriction operator utilizes a variation of the reactor physics, consistent homogenization technique. The prolongation operator is based upon a variant of the pin power reconstruction methodology. The relaxation method, which is the power method, utilizes a constant coefficient matrix within the NEM non-linear iterative strategy. The choice of the MG nesting within the nested iterative strategy enables the incorporation of other non-linear effects with no additional coding effort. In addition, if an eigenvalue problem is being solved, it remains an eigenvalue problem at all grid levels, simplifying coding implementation. The merit of the developed MG method was tested by incorporating it into the NESTLE iterative solver, and employing it to solve four different benchmark problems. In addition to the base cases, three different sensitivity studies are performed, examining the effects of number of MG levels, homogenized coupling coefficients correction (i.e. restriction operator), and fine-mesh reconstruction algorithm (i.e. prolongation operator). The multilevel acceleration scheme developed in this research provides the foundation for developing adaptive multilevel acceleration methods for steady-state and transient NEM nodal neutron diffusion equations. (Abstract shortened by UMI.)

  11. Determination of the diffusivity, dispersion, skewness and kurtosis in heterogeneous porous flow. Part I: Analytical solutions with the extended method of moments.

    NASA Astrophysics Data System (ADS)

    Ginzburg, Irina; Vikhansky, Alexander

    2018-05-01

    The extended method of moments (EMM) is elaborated in recursive algorithmic form for the prediction of the effective diffusivity, the Taylor dispersion dyadic and the associated longitudinal high-order coefficients in mean-concentration profiles and residence-time distributions. The method applies in any streamwise-periodic stationary d-dimensional velocity field resolved in the piecewise continuous heterogeneous porosity field. It is demonstrated that EMM reduces to the method of moments and the volume-averaging formulation in microscopic velocity field and homogeneous soil, respectively. The EMM simultaneously constructs two systems of moments, the spatial and the temporal, without resorting to solving of the high-order upscaled PDE. At the same time, the EMM is supported with the reconstruction of distribution from its moments, allowing to visualize the deviation from the classical ADE solution. The EMM can be handled by any linear advection-diffusion solver with explicit mass-source and diffusive-flux jump condition on the solid boundary and permeable interface. The prediction of the first four moments is decisive in the optimization of the dispersion, asymmetry, peakedness and heavy-tails of the solute distributions, through an adequate design of the composite materials, wetlands, chemical devices or oil recovery. The symbolic solutions for dispersion, skewness and kurtosis are constructed in basic configurations: diffusion process and Darcy flow through two porous blocks in "series", straight and radial Poiseuille flow, porous flow governed by the Stokes-Brinkman-Darcy channel equation and a fracture surrounded by penetrable diffusive matrix or embedded in porous flow. We examine the moments dependency upon porosity contrast, aspect ratio, Péclet and Darcy numbers, but also for their response on the effective Brinkman viscosity applied in flow modeling. Two numerical Lattice Boltzmann algorithms, a direct solver of the microscopic ADE in heterogeneous structure and a novel scheme for EMM numerical formulation, are called for validation of the constructed analytical predictions.

  12. An oscillation-free flow solver based on flux reconstruction

    NASA Astrophysics Data System (ADS)

    Aguerre, Horacio J.; Pairetti, Cesar I.; Venier, Cesar M.; Márquez Damián, Santiago; Nigro, Norberto M.

    2018-07-01

    In this paper, a segregated algorithm is proposed to suppress high-frequency oscillations in the velocity field for incompressible flows. In this context, a new velocity formula based on a reconstruction of face fluxes is defined eliminating high-frequency errors. In analogy to the Rhie-Chow interpolation, this approach is equivalent to including a flux-based pressure gradient with a velocity diffusion in the momentum equation. In order to guarantee second-order accuracy of the numerical solver, a set of conditions are defined for the reconstruction operator. To arrive at the final formulation, an outlook over the state of the art regarding velocity reconstruction procedures is presented comparing them through an error analysis. A new operator is then obtained by means of a flux difference minimization satisfying the required spatial accuracy. The accuracy of the new algorithm is analyzed by performing mesh convergence studies for unsteady Navier-Stokes problems with analytical solutions. The stabilization properties of the solver are then tested in a problem where spurious numerical oscillations arise for the velocity field. The results show a remarkable performance of the proposed technique eliminating high-frequency errors without losing accuracy.

  13. Scoping analysis of the Advanced Test Reactor using SN2ND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolters, E.; Smith, M.; SC)

    2012-07-26

    A detailed set of calculations was carried out for the Advanced Test Reactor (ATR) using the SN2ND solver of the UNIC code which is part of the SHARP multi-physics code being developed under the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program in DOE-NE. The primary motivation of this work is to assess whether high fidelity deterministic transport codes can tackle coupled dynamics simulations of the ATR. The successful use of such codes in a coupled dynamics simulation can impact what experiments are performed and what power levels are permitted during those experiments at the ATR. The advantages of themore » SN2ND solver over comparable neutronics tools are its superior parallel performance and demonstrated accuracy on large scale homogeneous and heterogeneous reactor geometries. However, it should be noted that virtually no effort from this project was spent constructing a proper cross section generation methodology for the ATR usable in the SN2ND solver. While attempts were made to use cross section data derived from SCALE, the minimal number of compositional cross section sets were generated to be consistent with the reference Monte Carlo input specification. The accuracy of any deterministic transport solver is impacted by such an approach and clearly it causes substantial errors in this work. The reasoning behind this decision is justified given the overall funding dedicated to the task (two months) and the real focus of the work: can modern deterministic tools actually treat complex facilities like the ATR with heterogeneous geometry modeling. SN2ND has been demonstrated to solve problems with upwards of one trillion degrees of freedom which translates to tens of millions of finite elements, hundreds of angles, and hundreds of energy groups, resulting in a very high-fidelity model of the system unachievable by most deterministic transport codes today. A space-angle convergence study was conducted to determine the meshing and angular cubature requirements for the ATR, and also to demonstrate the feasibility of performing this analysis with a deterministic transport code capable of modeling heterogeneous geometries. The work performed indicates that a minimum of 260,000 linear finite elements combined with a L3T11 cubature (96 angles on the sphere) is required for both eigenvalue and flux convergence of the ATR. A critical finding was that the fuel meat and water channels must each be meshed with at least 3 'radial zones' for accurate flux convergence. A small number of 3D calculations were also performed to show axial mesh and eigenvalue convergence for a full core problem. Finally, a brief analysis was performed with different cross sections sets generated from DRAGON and SCALE, and the findings show that more effort will be required to improve the multigroup cross section generation process. The total number of degrees of freedom for a converged 27 group, 2D ATR problem is {approx}340 million. This number increases to {approx}25 billion for a 3D ATR problem. This scoping study shows that both 2D and 3D calculations are well within the capabilities of the current SN2ND solver, given the availability of a large-scale computing center such as BlueGene/P. However, dynamics calculations are not realistic without the implementation of improvements in the solver.« less

  14. A fast semi-discrete Kansa method to solve the two-dimensional spatiotemporal fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Sun, HongGuang; Liu, Xiaoting; Zhang, Yong; Pang, Guofei; Garrard, Rhiannon

    2017-09-01

    Fractional-order diffusion equations (FDEs) extend classical diffusion equations by quantifying anomalous diffusion frequently observed in heterogeneous media. Real-world diffusion can be multi-dimensional, requiring efficient numerical solvers that can handle long-term memory embedded in mass transport. To address this challenge, a semi-discrete Kansa method is developed to approximate the two-dimensional spatiotemporal FDE, where the Kansa approach first discretizes the FDE, then the Gauss-Jacobi quadrature rule solves the corresponding matrix, and finally the Mittag-Leffler function provides an analytical solution for the resultant time-fractional ordinary differential equation. Numerical experiments are then conducted to check how the accuracy and convergence rate of the numerical solution are affected by the distribution mode and number of spatial discretization nodes. Applications further show that the numerical method can efficiently solve two-dimensional spatiotemporal FDE models with either a continuous or discrete mixing measure. Hence this study provides an efficient and fast computational method for modeling super-diffusive, sub-diffusive, and mixed diffusive processes in large, two-dimensional domains with irregular shapes.

  15. A Lattice Kinetic Monte Carlo Solver for First-Principles Microkinetic Trend Studies

    DOE PAGES

    Hoffmann, Max J.; Bligaard, Thomas

    2018-01-22

    Here, mean-field microkinetic models in combination with Brønsted–Evans–Polanyi like scaling relations have proven highly successful in identifying catalyst materials with good or promising reactivity and selectivity. Analysis of the microkinetic model by means of lattice kinetic Monte Carlo promises a faithful description of a range of atomistic features involving short-range ordering of species in the vicinity of an active site. In this paper, we use the “fruit fly” example reaction of CO oxidation on fcc(111) transition and coinage metals to motivate and develop a lattice kinetic Monte Carlo solver suitable for the numerically challenging case of vastly disparate rate constants.more » As a result, we show that for the case of infinitely fast diffusion and absence of adsorbate-adsorbate interaction it is, in fact, possible to match the prediction of the mean-field-theory method and the lattice kinetic Monte Carlo method. As a corollary, we conclude that lattice kinetic Monte Carlo simulations of surface chemical reactions are most likely to provide additional insight over mean-field simulations if diffusion limitations or adsorbate–adsorbate interactions have a significant influence on the mixing of the adsorbates.« less

  16. A Lattice Kinetic Monte Carlo Solver for First-Principles Microkinetic Trend Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, Max J.; Bligaard, Thomas

    Here, mean-field microkinetic models in combination with Brønsted–Evans–Polanyi like scaling relations have proven highly successful in identifying catalyst materials with good or promising reactivity and selectivity. Analysis of the microkinetic model by means of lattice kinetic Monte Carlo promises a faithful description of a range of atomistic features involving short-range ordering of species in the vicinity of an active site. In this paper, we use the “fruit fly” example reaction of CO oxidation on fcc(111) transition and coinage metals to motivate and develop a lattice kinetic Monte Carlo solver suitable for the numerically challenging case of vastly disparate rate constants.more » As a result, we show that for the case of infinitely fast diffusion and absence of adsorbate-adsorbate interaction it is, in fact, possible to match the prediction of the mean-field-theory method and the lattice kinetic Monte Carlo method. As a corollary, we conclude that lattice kinetic Monte Carlo simulations of surface chemical reactions are most likely to provide additional insight over mean-field simulations if diffusion limitations or adsorbate–adsorbate interactions have a significant influence on the mixing of the adsorbates.« less

  17. CEPXS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-10-19

    CEPXS is a multigroup-Legendre cross-section generating code. The cross sections produced by CEPXS enable coupled electron-photon transport calculations to be performed with multigroup radiation transport codes, e.g. MITS and SCEPTRE. CEPXS generates multigroup-Legendre cross sections for photons, electrons and positrons over the energy range from 100 MeV to 1.0 keV. The continuous slowing-down approximation is used for those electron interactions that result in small-energy losses. The extended transport correction is applied to the forward-peaked elastic scattering cross section for electrons. A standard multigroup-Legendre treatment is used for the other coupled electron-photon cross sections. CEPXS extracts electron cross-section information from themore » DATAPAC data set and photon cross-section information from Biggs-Lighthill data. The model that is used for ionization/relaxation in CEPXS is essentially the same as that employed in ITS.« less

  18. Monte Carlo charged-particle tracking and energy deposition on a Lagrangian mesh.

    PubMed

    Yuan, J; Moses, G A; McKenty, P W

    2005-10-01

    A Monte Carlo algorithm for alpha particle tracking and energy deposition on a cylindrical computational mesh in a Lagrangian hydrodynamics code used for inertial confinement fusion (ICF) simulations is presented. The straight line approximation is used to follow propagation of "Monte Carlo particles" which represent collections of alpha particles generated from thermonuclear deuterium-tritium (DT) reactions. Energy deposition in the plasma is modeled by the continuous slowing down approximation. The scheme addresses various aspects arising in the coupling of Monte Carlo tracking with Lagrangian hydrodynamics; such as non-orthogonal severely distorted mesh cells, particle relocation on the moving mesh and particle relocation after rezoning. A comparison with the flux-limited multi-group diffusion transport method is presented for a polar direct drive target design for the National Ignition Facility. Simulations show the Monte Carlo transport method predicts about earlier ignition than predicted by the diffusion method, and generates higher hot spot temperature. Nearly linear speed-up is achieved for multi-processor parallel simulations.

  19. Social comparison and perceived breach of psychological contract: their effects on burnout in a multigroup analysis.

    PubMed

    Cantisano, Gabriela Topa; Domínguez, J Francisco Morales; García, J Luis Caeiro

    2007-05-01

    This study focuses on the mediator role of social comparison in the relationship between perceived breach of psychological contract and burnout. A previous model showing the hypothesized effects of perceived breach on burnout, both direct and mediated, is proposed. The final model reached an optimal fit to the data and was confirmed through multigroup analysis using a sample of Spanish teachers (N = 401) belonging to preprimary, primary, and secondary schools. Multigroup analyses showed that the model fit all groups adequately.

  20. Greedy algorithms for diffuse optical tomography reconstruction

    NASA Astrophysics Data System (ADS)

    Dileep, B. P. V.; Das, Tapan; Dutta, Pranab K.

    2018-03-01

    Diffuse optical tomography (DOT) is a noninvasive imaging modality that reconstructs the optical parameters of a highly scattering medium. However, the inverse problem of DOT is ill-posed and highly nonlinear due to the zig-zag propagation of photons that diffuses through the cross section of tissue. The conventional DOT imaging methods iteratively compute the solution of forward diffusion equation solver which makes the problem computationally expensive. Also, these methods fail when the geometry is complex. Recently, the theory of compressive sensing (CS) has received considerable attention because of its efficient use in biomedical imaging applications. The objective of this paper is to solve a given DOT inverse problem by using compressive sensing framework and various Greedy algorithms such as orthogonal matching pursuit (OMP), compressive sampling matching pursuit (CoSaMP), and stagewise orthogonal matching pursuit (StOMP), regularized orthogonal matching pursuit (ROMP) and simultaneous orthogonal matching pursuit (S-OMP) have been studied to reconstruct the change in the absorption parameter i.e, Δα from the boundary data. Also, the Greedy algorithms have been validated experimentally on a paraffin wax rectangular phantom through a well designed experimental set up. We also have studied the conventional DOT methods like least square method and truncated singular value decomposition (TSVD) for comparison. One of the main features of this work is the usage of less number of source-detector pairs, which can facilitate the use of DOT in routine applications of screening. The performance metrics such as mean square error (MSE), normalized mean square error (NMSE), structural similarity index (SSIM), and peak signal to noise ratio (PSNR) have been used to evaluate the performance of the algorithms mentioned in this paper. Extensive simulation results confirm that CS based DOT reconstruction outperforms the conventional DOT imaging methods in terms of computational efficiency. The main advantage of this study is that the forward diffusion equation solver need not be repeatedly solved.

  1. Determination of malignancy and characterization of hepatic tumor type with diffusion-weighted magnetic resonance imaging: comparison of apparent diffusion coefficient and intravoxel incoherent motion-derived measurements.

    PubMed

    Doblas, Sabrina; Wagner, Mathilde; Leitao, Helena S; Daire, Jean-Luc; Sinkus, Ralph; Vilgrain, Valérie; Van Beers, Bernard E

    2013-10-01

    The objective of this study was to compare the value of the apparent diffusion coefficient (ADC) determined with 3 b values and the intravoxel incoherent motion (IVIM)-derived parameters in the determination of malignancy and characterization of hepatic tumor type. Seventy-six patients with 86 solid hepatic lesions, including 8 hemangiomas, 20 lesions of focal nodular hyperplasia, 9 adenomas, 30 hepatocellular carcinomas, 13 metastases, and 6 cholangiocarcinomas, were assessed in this prospective study. Diffusion-weighted images were acquired with 11 b values to measure the ADCs (with b = 0, 150, and 500 s/mm) and the IVIM-derived parameters, namely, the pure diffusion coefficient and the perfusion-related diffusion fraction and coefficient. The diffusion parameters were compared between benign and malignant tumors and between tumor types, and their diagnostic value in identifying tumor malignancy was assessed. The apparent and pure diffusion coefficients were significantly higher in benign than in malignant tumors (benign: 2.32 [0.87] × 10 mm/s and 1.42 [0.37] × 10 mm/s vs malignant: 1.64 [0.51] × 10 mm/s and 1.14 [0.28] × 10 mm/s, respectively; P < 0.0001 and P = 0.0005), whereas the perfusion-related diffusion parameters did not differ significantly between the 2 groups. The apparent and pure diffusion coefficients provided similar accuracy in assessing tumor malignancy (areas under the receiver operating characteristic curve of 0.770 and 0.723, respectively). In the multigroup analysis, the ADC was found to be significantly higher in hemangiomas than in hepatocellular carcinomas, metastases, and cholangiocarcinomas. In the same manner, it was higher in lesions of focal nodular hyperplasia than in metastases and cholangiocarcinomas. However, the pure diffusion coefficient was significantly higher only in hemangiomas versus hepatocellular and cholangiocellular carcinomas. Compared with the ADC, the diffusion parameters derived from the IVIM model did not improve the determination of malignancy and characterization of hepatic tumor type.

  2. Diffusion of external magnetic fields into the cone-in-shell target in the fast ignition

    NASA Astrophysics Data System (ADS)

    Sunahara, Atsushi; Morita, Hiroki; Johzaki, Tomoyuki; Nagatomo, Hideo; Fujioka, Shinsuke; Hassanein, Ahmed; Firex Project Team

    2017-10-01

    We simulated the diffusion of externally applied magnetic fields into cone-in-shell target in the fast ignition. Recently, in the fast ignition scheme, the externally magnetic fields up to kilo-Tesla is used to guide fast electrons to the high-dense imploded core. In order to study the profile of the magnetic field, we have developed 2D cylindrical Maxwell equation solver with Ohm's law, and carried out simulations of diffusion of externally applied magnetic fields into a cone-in-shell target. We estimated the conductivity of the cone and shell target based on the assumption of Saha-ionization equilibrium. Also, we calculated the temporal evolution of the target temperature heated by the eddy current driven by temporal variation of magnetic fields, based on the accurate equation of state. Both, the diffusion of magnetic field and the increase of target temperature interact with each other. We present our results of temporal evolution of the magnetic field and its diffusion into the cone and shell target.

  3. A study of hydrogen diffusion flames using PDF turbulence model

    NASA Technical Reports Server (NTRS)

    Hsu, Andrew T.

    1991-01-01

    The application of probability density function (pdf) turbulence models is addressed. For the purpose of accurate prediction of turbulent combustion, an algorithm that combines a conventional computational fluid dynamic (CFD) flow solver with the Monte Carlo simulation of the pdf evolution equation was developed. The algorithm was validated using experimental data for a heated turbulent plane jet. The study of H2-F2 diffusion flames was carried out using this algorithm. Numerical results compared favorably with experimental data. The computations show that the flame center shifts as the equivalence ratio changes, and that for the same equivalence ratio, similarity solutions for flames exist.

  4. A study of hydrogen diffusion flames using PDF turbulence model

    NASA Technical Reports Server (NTRS)

    Hsu, Andrew T.

    1991-01-01

    The application of probability density function (pdf) turbulence models is addressed in this work. For the purpose of accurate prediction of turbulent combustion, an algorithm that combines a conventional CFD flow solver with the Monte Carlo simulation of the pdf evolution equation has been developed. The algorithm has been validated using experimental data for a heated turbulent plane jet. The study of H2-F2 diffusion flames has been carried out using this algorithm. Numerical results compared favorably with experimental data. The computuations show that the flame center shifts as the equivalence ratio changes, and that for the same equivalence ratio, similarity solutions for flames exist.

  5. Evaluation of a Multigrid Scheme for the Incompressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.

    2004-01-01

    A fast multigrid solver for the steady, incompressible Navier-Stokes equations is presented. The multigrid solver is based upon a factorizable discrete scheme for the velocity-pressure form of the Navier-Stokes equations. This scheme correctly distinguishes between the advection-diffusion and elliptic parts of the operator, allowing efficient smoothers to be constructed. To evaluate the multigrid algorithm, solutions are computed for flow over a flat plate, parabola, and a Karman-Trefftz airfoil. Both nonlifting and lifting airfoil flows are considered, with a Reynolds number range of 200 to 800. Convergence and accuracy of the algorithm are discussed. Using Gauss-Seidel line relaxation in alternating directions, multigrid convergence behavior approaching that of O(N) methods is achieved. The computational efficiency of the numerical scheme is compared with that of Runge-Kutta and implicit upwind based multigrid methods.

  6. Application of an Upwind High Resolution Finite-Differencing Scheme and Multigrid Method in Steady-State Incompressible Flow Simulations

    NASA Technical Reports Server (NTRS)

    Yang, Cheng I.; Guo, Yan-Hu; Liu, C.- H.

    1996-01-01

    The analysis and design of a submarine propulsor requires the ability to predict the characteristics of both laminar and turbulent flows to a higher degree of accuracy. This report presents results of certain benchmark computations based on an upwind, high-resolution, finite-differencing Navier-Stokes solver. The purpose of the computations is to evaluate the ability, the accuracy and the performance of the solver in the simulation of detailed features of viscous flows. Features of interest include flow separation and reattachment, surface pressure and skin friction distributions. Those features are particularly relevant to the propulsor analysis. Test cases with a wide range of Reynolds numbers are selected; therefore, the effects of the convective and the diffusive terms of the solver can be evaluated separately. Test cases include flows over bluff bodies, such as circular cylinders and spheres, at various low Reynolds numbers, flows over a flat plate with and without turbulence effects, and turbulent flows over axisymmetric bodies with and without propulsor effects. Finally, to enhance the iterative solution procedure, a full approximation scheme V-cycle multigrid method is implemented. Preliminary results indicate that the method significantly reduces the computational effort.

  7. SU-F-T-111: Investigation of the Attila Deterministic Solver as a Supplement to Monte Carlo for Calculating Out-Of-Field Radiotherapy Dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mille, M; Lee, C; Failla, G

    Purpose: To use the Attila deterministic solver as a supplement to Monte Carlo for calculating out-of-field organ dose in support of epidemiological studies looking at the risks of second cancers. Supplemental dosimetry tools are needed to speed up dose calculations for studies involving large-scale patient cohorts. Methods: Attila is a multi-group discrete ordinates code which can solve the 3D photon-electron coupled linear Boltzmann radiation transport equation on a finite-element mesh. Dose is computed by multiplying the calculated particle flux in each mesh element by a medium-specific energy deposition cross-section. The out-of-field dosimetry capability of Attila is investigated by comparing averagemore » organ dose to that which is calculated by Monte Carlo simulation. The test scenario consists of a 6 MV external beam treatment of a female patient with a tumor in the left breast. The patient is simulated by a whole-body adult reference female computational phantom. Monte Carlo simulations were performed using MCNP6 and XVMC. Attila can export a tetrahedral mesh for MCNP6, allowing for a direct comparison between the two codes. The Attila and Monte Carlo methods were also compared in terms of calculation speed and complexity of simulation setup. A key perquisite for this work was the modeling of a Varian Clinac 2100 linear accelerator. Results: The solid mesh of the torso part of the adult female phantom for the Attila calculation was prepared using the CAD software SpaceClaim. Preliminary calculations suggest that Attila is a user-friendly software which shows great promise for our intended application. Computational performance is related to the number of tetrahedral elements included in the Attila calculation. Conclusion: Attila is being explored as a supplement to the conventional Monte Carlo radiation transport approach for performing retrospective patient dosimetry. The goal is for the dosimetry to be sufficiently accurate for use in retrospective epidemiological investigations.« less

  8. Development of a point-kinetic verification scheme for nuclear reactor applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demazière, C., E-mail: demaz@chalmers.se; Dykin, V.; Jareteg, K.

    In this paper, a new method that can be used for checking the proper implementation of time- or frequency-dependent neutron transport models and for verifying their ability to recover some basic reactor physics properties is proposed. This method makes use of the application of a stationary perturbation to the system at a given frequency and extraction of the point-kinetic component of the system response. Even for strongly heterogeneous systems for which an analytical solution does not exist, the point-kinetic component follows, as a function of frequency, a simple analytical form. The comparison between the extracted point-kinetic component and its expectedmore » analytical form provides an opportunity to verify and validate neutron transport solvers. The proposed method is tested on two diffusion-based codes, one working in the time domain and the other working in the frequency domain. As long as the applied perturbation has a non-zero reactivity effect, it is demonstrated that the method can be successfully applied to verify and validate time- or frequency-dependent neutron transport solvers. Although the method is demonstrated in the present paper in a diffusion theory framework, higher order neutron transport methods could be verified based on the same principles.« less

  9. Performance of a parallel algebraic multilevel preconditioner for stabilized finite element semiconductor device modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Paul T.; Shadid, John N.; Sala, Marzio

    In this study results are presented for the large-scale parallel performance of an algebraic multilevel preconditioner for solution of the drift-diffusion model for semiconductor devices. The preconditioner is the key numerical procedure determining the robustness, efficiency and scalability of the fully-coupled Newton-Krylov based, nonlinear solution method that is employed for this system of equations. The coupled system is comprised of a source term dominated Poisson equation for the electric potential, and two convection-diffusion-reaction type equations for the electron and hole concentration. The governing PDEs are discretized in space by a stabilized finite element method. Solution of the discrete system ismore » obtained through a fully-implicit time integrator, a fully-coupled Newton-based nonlinear solver, and a restarted GMRES Krylov linear system solver. The algebraic multilevel preconditioner is based on an aggressive coarsening graph partitioning of the nonzero block structure of the Jacobian matrix. Representative performance results are presented for various choices of multigrid V-cycles and W-cycles and parameter variations for smoothers based on incomplete factorizations. Parallel scalability results are presented for solution of up to 10{sup 8} unknowns on 4096 processors of a Cray XT3/4 and an IBM POWER eServer system.« less

  10. A flexible nonlinear diffusion acceleration method for the S N transport equations discretized with discontinuous finite elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schunert, Sebastian; Wang, Yaqi; Gleicher, Frederick

    This paper presents a flexible nonlinear diffusion acceleration (NDA) method that discretizes both the S N transport equation and the diffusion equation using the discontinuous finite element method (DFEM). The method is flexible in that the diffusion equation can be discretized on a coarser mesh with the only restriction that it is nested within the transport mesh and the FEM shape function orders of the two equations can be different. The consistency of the transport and diffusion solutions at convergence is defined by using a projection operator mapping the transport into the diffusion FEM space. The diffusion weak form ismore » based on the modified incomplete interior penalty (MIP) diffusion DFEM discretization that is extended by volumetric drift, interior face, and boundary closure terms. In contrast to commonly used coarse mesh finite difference (CMFD) methods, the presented NDA method uses a full FEM discretized diffusion equation for acceleration. Suitable projection and prolongation operators arise naturally from the FEM framework. Via Fourier analysis and numerical experiments for a one-group, fixed source problem the following properties of the NDA method are established for structured quadrilateral meshes: (1) the presented method is unconditionally stable and effective in the presence of mild material heterogeneities if the same mesh and identical shape functions either of the bilinear or biquadratic type are used, (2) the NDA method remains unconditionally stable in the presence of strong heterogeneities, (3) the NDA method with bilinear elements extends the range of effectiveness and stability by a factor of two when compared to CMFD if a coarser diffusion mesh is selected. In addition, the method is tested for solving the C5G7 multigroup, eigenvalue problem using coarse and fine mesh acceleration. Finally, while NDA does not offer an advantage over CMFD for fine mesh acceleration, it reduces the iteration count required for convergence by almost a factor of two in the case of coarse mesh acceleration.« less

  11. A flexible nonlinear diffusion acceleration method for the S N transport equations discretized with discontinuous finite elements

    DOE PAGES

    Schunert, Sebastian; Wang, Yaqi; Gleicher, Frederick; ...

    2017-02-21

    This paper presents a flexible nonlinear diffusion acceleration (NDA) method that discretizes both the S N transport equation and the diffusion equation using the discontinuous finite element method (DFEM). The method is flexible in that the diffusion equation can be discretized on a coarser mesh with the only restriction that it is nested within the transport mesh and the FEM shape function orders of the two equations can be different. The consistency of the transport and diffusion solutions at convergence is defined by using a projection operator mapping the transport into the diffusion FEM space. The diffusion weak form ismore » based on the modified incomplete interior penalty (MIP) diffusion DFEM discretization that is extended by volumetric drift, interior face, and boundary closure terms. In contrast to commonly used coarse mesh finite difference (CMFD) methods, the presented NDA method uses a full FEM discretized diffusion equation for acceleration. Suitable projection and prolongation operators arise naturally from the FEM framework. Via Fourier analysis and numerical experiments for a one-group, fixed source problem the following properties of the NDA method are established for structured quadrilateral meshes: (1) the presented method is unconditionally stable and effective in the presence of mild material heterogeneities if the same mesh and identical shape functions either of the bilinear or biquadratic type are used, (2) the NDA method remains unconditionally stable in the presence of strong heterogeneities, (3) the NDA method with bilinear elements extends the range of effectiveness and stability by a factor of two when compared to CMFD if a coarser diffusion mesh is selected. In addition, the method is tested for solving the C5G7 multigroup, eigenvalue problem using coarse and fine mesh acceleration. Finally, while NDA does not offer an advantage over CMFD for fine mesh acceleration, it reduces the iteration count required for convergence by almost a factor of two in the case of coarse mesh acceleration.« less

  12. Technical report series on global modeling and data assimilation. Volume 2: Direct solution of the implicit formulation of fourth order horizontal diffusion for gridpoint models on the sphere

    NASA Technical Reports Server (NTRS)

    Li, Yong; Moorthi, S.; Bates, J. Ray; Suarez, Max J.

    1994-01-01

    High order horizontal diffusion of the form K Delta(exp 2m) is widely used in spectral models as a means of preventing energy accumulation at the shortest resolved scales. In the spectral context, an implicit formation of such diffusion is trivial to implement. The present note describes an efficient method of implementing implicit high order diffusion in global finite difference models. The method expresses the high order diffusion equation as a sequence of equations involving Delta(exp 2). The solution is obtained by combining fast Fourier transforms in longitude with a finite difference solver for the second order ordinary differential equation in latitude. The implicit diffusion routine is suitable for use in any finite difference global model that uses a regular latitude/longitude grid. The absence of a restriction on the timestep makes it particularly suitable for use in semi-Lagrangian models. The scale selectivity of the high order diffusion gives it an advantage over the uncentering method that has been used to control computational noise in two-time-level semi-Lagrangian models.

  13. Application of the discrete generalized multigroup method to ultra-fine energy mesh in infinite medium calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, N. A.; Forget, B.

    2012-07-01

    The Discrete Generalized Multigroup (DGM) method uses discrete Legendre orthogonal polynomials to expand the energy dependence of the multigroup neutron transport equation. This allows a solution on a fine energy mesh to be approximated for a cost comparable to a solution on a coarse energy mesh. The DGM method is applied to an ultra-fine energy mesh (14,767 groups) to avoid using self-shielding methodologies without introducing the cost usually associated with such energy discretization. Results show DGM to converge to the reference ultra-fine solution after a small number of recondensation steps for multiple infinite medium compositions. (authors)

  14. The DANTE Boltzmann transport solver: An unstructured mesh, 3-D, spherical harmonics algorithm compatible with parallel computer architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGhee, J.M.; Roberts, R.M.; Morel, J.E.

    1997-06-01

    A spherical harmonics research code (DANTE) has been developed which is compatible with parallel computer architectures. DANTE provides 3-D, multi-material, deterministic, transport capabilities using an arbitrary finite element mesh. The linearized Boltzmann transport equation is solved in a second order self-adjoint form utilizing a Galerkin finite element spatial differencing scheme. The core solver utilizes a preconditioned conjugate gradient algorithm. Other distinguishing features of the code include options for discrete-ordinates and simplified spherical harmonics angular differencing, an exact Marshak boundary treatment for arbitrarily oriented boundary faces, in-line matrix construction techniques to minimize memory consumption, and an effective diffusion based preconditioner formore » scattering dominated problems. Algorithm efficiency is demonstrated for a massively parallel SIMD architecture (CM-5), and compatibility with MPP multiprocessor platforms or workstation clusters is anticipated.« less

  15. PDF approach for compressible turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Hsu, A. T.; Tsai, Y.-L. P.; Raju, M. S.

    1993-01-01

    The objective of the present work is to develop a probability density function (pdf) turbulence model for compressible reacting flows for use with a CFD flow solver. The probability density function of the species mass fraction and enthalpy are obtained by solving a pdf evolution equation using a Monte Carlo scheme. The pdf solution procedure is coupled with a compressible CFD flow solver which provides the velocity and pressure fields. A modeled pdf equation for compressible flows, capable of capturing shock waves and suitable to the present coupling scheme, is proposed and tested. Convergence of the combined finite-volume Monte Carlo solution procedure is discussed, and an averaging procedure is developed to provide smooth Monte-Carlo solutions to ensure convergence. Two supersonic diffusion flames are studied using the proposed pdf model and the results are compared with experimental data; marked improvements over CFD solutions without pdf are observed. Preliminary applications of pdf to 3D flows are also reported.

  16. A Computational-Experimental Development of Vortex Generator Use for a Transitioning S-Diffuser

    NASA Technical Reports Server (NTRS)

    Wendt, Bruce J.; Dudek, Julianne C.

    1996-01-01

    The development of an effective design strategy for surface-mounted vortex generator arrays in a subsonic diffuser is described in this report. This strategy uses the strengths of both computational and experimental analyses to determine beneficial vortex generator locations and sizes. A parabolized Navier-Stokes solver, RNS3D, was used to establish proper placement of the vortex generators for reduction in circumferential total pressure distortion. Experimental measurements were used to determine proper vortex generator sizing to minimize total pressure recovery losses associated with vortex generator device drag. The best result achieved a 59% reduction in the distortion index DC60, with a 0.3% reduction in total pressure recovery.

  17. Hybrid parallel code acceleration methods in full-core reactor physics calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courau, T.; Plagne, L.; Ponicot, A.

    2012-07-01

    When dealing with nuclear reactor calculation schemes, the need for three dimensional (3D) transport-based reference solutions is essential for both validation and optimization purposes. Considering a benchmark problem, this work investigates the potential of discrete ordinates (Sn) transport methods applied to 3D pressurized water reactor (PWR) full-core calculations. First, the benchmark problem is described. It involves a pin-by-pin description of a 3D PWR first core, and uses a 8-group cross-section library prepared with the DRAGON cell code. Then, a convergence analysis is performed using the PENTRAN parallel Sn Cartesian code. It discusses the spatial refinement and the associated angular quadraturemore » required to properly describe the problem physics. It also shows that initializing the Sn solution with the EDF SPN solver COCAGNE reduces the number of iterations required to converge by nearly a factor of 6. Using a best estimate model, PENTRAN results are then compared to multigroup Monte Carlo results obtained with the MCNP5 code. Good consistency is observed between the two methods (Sn and Monte Carlo), with discrepancies that are less than 25 pcm for the k{sub eff}, and less than 2.1% and 1.6% for the flux at the pin-cell level and for the pin-power distribution, respectively. (authors)« less

  18. SCALE Code System 6.2.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rearden, Bradley T.; Jessee, Matthew Anderson

    The SCALE Code System is a widely used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor physics, radiation shielding, radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including 3 deterministic and 3 Monte Carlomore » radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results. SCALE 6.2 represents one of the most comprehensive revisions in the history of SCALE, providing several new capabilities and significant improvements in many existing features.« less

  19. Testing Specific Hypotheses Concerning Latent Group Differences in Multi-group Covariance Structure Analysis with Structured Means.

    ERIC Educational Resources Information Center

    Dolan, Conor V.; Molenaar, Peter C. M.

    1994-01-01

    In multigroup covariance structure analysis with structured means, the traditional latent selection model is formulated as a special case of phenotypic selection. Illustrations with real and simulated data demonstrate how one can test specific hypotheses concerning selection on latent variables. (SLD)

  20. Complex index of refraction estimation from degree of polarization with diffuse scattering consideration.

    PubMed

    Zhan, Hanyu; Voelz, David G; Cho, Sang-Yeon; Xiao, Xifeng

    2015-11-20

    The estimation of the refractive index from optical scattering off a target's surface is an important task for remote sensing applications. Optical polarimetry is an approach that shows promise for refractive index estimation. However, this estimation often relies on polarimetric models that are limited to specular targets involving single surface scattering. Here, an analytic model is developed for the degree of polarization (DOP) associated with reflection from a rough surface that includes the effect of diffuse scattering. A multiplicative factor is derived to account for the diffuse component and evaluation of the model indicates that diffuse scattering can significantly affect the DOP values. The scattering model is used in a new approach for refractive index estimation from a series of DOP values that involves jointly estimating n, k, and ρ(d)with a nonlinear equation solver. The approach is shown to work well with simulation data and additive noise. When applied to laboratory-measured DOP values, the approach produces significantly improved index estimation results relative to reference values.

  1. Multigroup computation of the temperature-dependent Resonance Scattering Model (RSM) and its implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghrayeb, S. Z.; Ouisloumen, M.; Ougouag, A. M.

    2012-07-01

    A multi-group formulation for the exact neutron elastic scattering kernel is developed. This formulation is intended for implementation into a lattice physics code. The correct accounting for the crystal lattice effects influences the estimated values for the probability of neutron absorption and scattering, which in turn affect the estimation of core reactivity and burnup characteristics. A computer program has been written to test the formulation for various nuclides. Results of the multi-group code have been verified against the correct analytic scattering kernel. In both cases neutrons were started at various energies and temperatures and the corresponding scattering kernels were tallied.more » (authors)« less

  2. Adaptive hierarchical grid model of water-borne pollutant dispersion

    NASA Astrophysics Data System (ADS)

    Borthwick, A. G. L.; Marchant, R. D.; Copeland, G. J. M.

    Water pollution by industrial and agricultural waste is an increasingly major public health issue. It is therefore important for water engineers and managers to be able to predict accurately the local behaviour of water-borne pollutants. This paper describes the novel and efficient coupling of dynamically adaptive hierarchical grids with standard solvers of the advection-diffusion equation. Adaptive quadtree grids are able to focus on regions of interest such as pollutant fronts, while retaining economy in the total number of grid elements through selective grid refinement. Advection is treated using Lagrangian particle tracking. Diffusion is solved separately using two grid-based methods; one is by explicit finite differences, the other a diffusion-velocity approach. Results are given in two dimensions for pure diffusion of an initially Gaussian plume, advection-diffusion of the Gaussian plume in the rotating flow field of a forced vortex, and the transport of species in a rectangular channel with side wall boundary layers. Close agreement is achieved with analytical solutions of the advection-diffusion equation and simulations from a Lagrangian random walk model. An application to Sepetiba Bay, Brazil is included to demonstrate the method with complex flows and topography.

  3. Familial Correlates of Overt and Relational Aggression between Young Adolescent Siblings

    ERIC Educational Resources Information Center

    Yu, Jeong Jin; Gamble, Wendy C.

    2008-01-01

    Multi-group confirmatory factor analysis and multi-group structural equation modeling were used to test correlates of overt and relational aggression between young adolescent siblings across four groups (i.e., male/male, male/female, female/male, and female/female sibling pairs), using 433 predominately European American families. Similar patterns…

  4. Testing Measurement Invariance in the Target Rotated Multigroup Exploratory Factor Model

    ERIC Educational Resources Information Center

    Dolan, Conor V.; Oort, Frans J.; Stoel, Reinoud D.; Wicherts, Jelte M.

    2009-01-01

    We propose a method to investigate measurement invariance in the multigroup exploratory factor model, subject to target rotation. We consider both oblique and orthogonal target rotation. This method has clear advantages over other approaches, such as the use of congruence measures. We demonstrate that the model can be implemented readily in the…

  5. You Don't Need Richards'... A New General 1-D Vadose Zone Solution Method that is Reliable

    NASA Astrophysics Data System (ADS)

    Ogden, F. L.; Lai, W.; Zhu, J.; Steinke, R. C.; Talbot, C. A.

    2015-12-01

    Hydrologic modelers and mathematicians have strived to improve 1-D Richards' equation (RE) solution reliability for predicting vadose zone fluxes. Despite advances in computing power and the numerical solution of partial differential equations since Richards first published the RE in 1931, the solution remains unreliable. That is to say that there is no guarantee that for a particular set of soil constitutive relations, moisture profile conditions, or forcing input that a numerical RE solver will converge to an answer. This risk of non-convergence renders prohibitive the use of RE solvers in hydrological models that need perhaps millions of infiltration solutions. In lieu of using unreliable numerical RE solutions, researchers have developed a wide array of approximate solutions that more-or-less mimic the behavior of the RE, with some notable deficiencies such as parameter insensitivity or divergence over time. The improved Talbot-Ogden (T-O) finite water-content scheme was shown by Ogden et al. (2015) to be an extremely good approximation of the 1-D RE solution, with a difference in cumulative infiltration of only 0.2 percent over an 8 month simulation comparing the improved T-O scheme with a RE numerical solver. The reason is that the newly-derived fundamental flow equation that underpins the improved T-O method is equivalent to the RE minus a term that is equal to the diffusive flux divided by the slope of the wetting front. Because the diffusive flux has zero mean, this term is not important in calculating the mean flux. The wetting front slope is near infinite (sharp) in coarser soils that produce more significant hydrological interactions between surface and ground waters, which also makes this missing term 1) disappear in the limit, and, 2) create stability challenges for the numerical solution of RE. The improved T-O method is a replacement for the 1-D RE in soils that can be simulated as homogeneous layers, where the user is willing to neglect the effects of soil water diffusivity. This presentation emphasizes the transformative nature of the improved T-O finite water-content solution, and highlights the benefits of the methods' reliability in high-resolution large watershed simulations in the high performance computing environment, and discusses coupling of the soil matrix and non-Darcian macropores.

  6. Development of a Chemically Reacting Flow Solver on the Graphic Processing Units

    DTIC Science & Technology

    2011-05-10

    been implemented on the GPU by Schive et al. (2010). The outcome of their work is the GAMER code for astrophysical simulation. Thibault and...Euler equations at each cell. For simplification, consider the Euler equations in one dimension with no source terms; the discretized form of the...is known to be more diffusive than the other fluxes due to the large bound of the numerical signal velocities: b+, b-. 3.4 Time Marching Methods

  7. Chemically reacting supersonic flow calculation using an assumed PDF model

    NASA Technical Reports Server (NTRS)

    Farshchi, M.

    1990-01-01

    This work is motivated by the need to develop accurate models for chemically reacting compressible turbulent flow fields that are present in a typical supersonic combustion ramjet (SCRAMJET) engine. In this paper the development of a new assumed probability density function (PDF) reaction model for supersonic turbulent diffusion flames and its implementation into an efficient Navier-Stokes solver are discussed. The application of this model to a supersonic hydrogen-air flame will be considered.

  8. Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baudron, Anne-Marie, E-mail: anne-marie.baudron@cea.fr; CEA-DRN/DMT/SERMA, CEN-Saclay, 91191 Gif sur Yvette Cedex; Lautard, Jean-Jacques, E-mail: jean-jacques.lautard@cea.fr

    2014-12-15

    In this paper we present a time-parallel algorithm for the 3D neutrons calculation of a transient model in a nuclear reactor core. The neutrons calculation consists in numerically solving the time dependent diffusion approximation equation, which is a simplified transport equation. The numerical resolution is done with finite elements method based on a tetrahedral meshing of the computational domain, representing the reactor core, and time discretization is achieved using a θ-scheme. The transient model presents moving control rods during the time of the reaction. Therefore, cross-sections (piecewise constants) are taken into account by interpolations with respect to the velocity ofmore » the control rods. The parallelism across the time is achieved by an adequate use of the parareal in time algorithm to the handled problem. This parallel method is a predictor corrector scheme that iteratively combines the use of two kinds of numerical propagators, one coarse and one fine. Our method is made efficient by means of a coarse solver defined with large time step and fixed position control rods model, while the fine propagator is assumed to be a high order numerical approximation of the full model. The parallel implementation of our method provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch–Maurer–Werner benchmark.« less

  9. On the Maxwell-Stefan approach to diffusion: a general resolution in the transient regime for one-dimensional systems.

    PubMed

    Leonardi, Erminia; Angeli, Celestino

    2010-01-14

    The diffusion process in a multicomponent system can be formulated in a general form by the generalized Maxwell-Stefan equations. This formulation is able to describe the diffusion process in different systems, such as, for instance, bulk diffusion (in the gas, liquid, and solid phase) and diffusion in microporous materials (membranes, zeolites, nanotubes, etc.). The Maxwell-Stefan equations can be solved analytically (only in special cases) or by numerical approaches. Different numerical strategies have been previously presented, but the number of diffusing species is normally restricted, with only few exceptions, to three in bulk diffusion and to two in microporous systems, unless simplifications of the Maxwell-Stefan equations are considered. In the literature, a large effort has been devoted to the derivation of the analytic expression of the elements of the Fick-like diffusion matrix and therefore to the symbolic inversion of a square matrix with dimensions n x n (n being the number of independent components). This step, which can be easily performed for n = 2 and remains reasonable for n = 3, becomes rapidly very complex in problems with a large number of components. This paper addresses the problem of the numerical resolution of the Maxwell-Stefan equations in the transient regime for a one-dimensional system with a generic number of components, avoiding the definition of the analytic expression of the elements of the Fick-like diffusion matrix. To this aim, two approaches have been implemented in a computational code; the first is the simple finite difference second-order accurate in time Crank-Nicolson scheme for which the full mathematical derivation and the relevant final equations are reported. The second is based on the more accurate backward differentiation formulas, BDF, or Gear's method (Shampine, L. F. ; Gear, C. W. SIAM Rev. 1979, 21, 1.), as implemented in the Livermore solver for ordinary differential equations, LSODE (Hindmarsh, A. C. Serial Fortran Solvers for ODE Initial Value Problems, Technical Report; https://computation.llnl.gov/casc/odepack/odepack_ home.html (2006).). Both methods have been applied to a series of specific problems, such as bulk diffusion of acetone and methanol through stagnant air, uptake of two components on a microporous material in a model system, and permeation across a microporous membrane in model systems, both with the aim to validate the method and to add new information to the comprehension of the peculiar behavior of these systems. The approach is validated by comparison with different published results and with analytic expressions for the steady-state concentration profiles or fluxes in particular systems. The possibility to treat a generic number of components (the limitation being essentially the computational power) is also tested, and results are reported on the permeation of a five component mixture through a membrane in a model system. It is worth noticing that the algorithm here reported can be applied also to the Fick formulation of the diffusion problem with concentration-dependent diffusion coefficients.

  10. A fast collocation method for a variable-coefficient nonlocal diffusion model

    NASA Astrophysics Data System (ADS)

    Wang, Che; Wang, Hong

    2017-02-01

    We develop a fast collocation scheme for a variable-coefficient nonlocal diffusion model, for which a numerical discretization would yield a dense stiffness matrix. The development of the fast method is achieved by carefully handling the variable coefficients appearing inside the singular integral operator and exploiting the structure of the dense stiffness matrix. The resulting fast method reduces the computational work from O (N3) required by a commonly used direct solver to O (Nlog ⁡ N) per iteration and the memory requirement from O (N2) to O (N). Furthermore, the fast method reduces the computational work of assembling the stiffness matrix from O (N2) to O (N). Numerical results are presented to show the utility of the fast method.

  11. Testing for Two-Way Interactions in the Multigroup Common Factor Model

    ERIC Educational Resources Information Center

    van Smeden, Maarten; Hessen, David J.

    2013-01-01

    In this article, a 2-way multigroup common factor model (MG-CFM) is presented. The MG-CFM can be used to estimate interaction effects between 2 grouping variables on 1 or more hypothesized latent variables. For testing the significance of such interactions, a likelihood ratio test is presented. In a simulation study, the robustness of the…

  12. Using Multi-Group Confirmatory Factor Analysis to Evaluate Cross-Cultural Research: Identifying and Understanding Non-Invariance

    ERIC Educational Resources Information Center

    Brown, Gavin T. L.; Harris, Lois R.; O'Quin, Chrissie; Lane, Kenneth E.

    2017-01-01

    Multi-group confirmatory factor analysis (MGCFA) allows researchers to determine whether a research inventory elicits similar response patterns across samples. If statistical equivalence in responding is found, then scale score comparisons become possible and samples can be said to be from the same population. This paper illustrates the use of…

  13. The Problem of Convergence and Commitment in Multigroup Evaluation Planning.

    ERIC Educational Resources Information Center

    Hausken, Chester A.

    This paper outlines a model for multigroup evaluation planning in a rural-education setting wherein the commitment to the structure necessary to evaluate a program is needed on the part of a research and development laboratory, the state departments of education, county supervisors, and the rural schools. To bridge the gap between basic research,…

  14. Code Verification of the HIGRAD Computational Fluid Dynamics Solver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Buren, Kendra L.; Canfield, Jesse M.; Hemez, Francois M.

    2012-05-04

    The purpose of this report is to outline code and solution verification activities applied to HIGRAD, a Computational Fluid Dynamics (CFD) solver of the compressible Navier-Stokes equations developed at the Los Alamos National Laboratory, and used to simulate various phenomena such as the propagation of wildfires and atmospheric hydrodynamics. Code verification efforts, as described in this report, are an important first step to establish the credibility of numerical simulations. They provide evidence that the mathematical formulation is properly implemented without significant mistakes that would adversely impact the application of interest. Highly accurate analytical solutions are derived for four code verificationmore » test problems that exercise different aspects of the code. These test problems are referred to as: (i) the quiet start, (ii) the passive advection, (iii) the passive diffusion, and (iv) the piston-like problem. These problems are simulated using HIGRAD with different levels of mesh discretization and the numerical solutions are compared to their analytical counterparts. In addition, the rates of convergence are estimated to verify the numerical performance of the solver. The first three test problems produce numerical approximations as expected. The fourth test problem (piston-like) indicates the extent to which the code is able to simulate a 'mild' discontinuity, which is a condition that would typically be better handled by a Lagrangian formulation. The current investigation concludes that the numerical implementation of the solver performs as expected. The quality of solutions is sufficient to provide credible simulations of fluid flows around wind turbines. The main caveat associated to these findings is the low coverage provided by these four problems, and somewhat limited verification activities. A more comprehensive evaluation of HIGRAD may be beneficial for future studies.« less

  15. Conjugate Analysis of Two-Dimensional Ablation and Pyrolysis in Rocket Nozzles

    NASA Astrophysics Data System (ADS)

    Cross, Peter G.

    The development of a methodology and computational framework for performing conjugate analyses of transient, two-dimensional ablation of pyrolyzing materials in rocket nozzle applications is presented. This new engineering methodology comprehensively incorporates fluid-thermal-chemical processes relevant to nozzles and other high temperature components, making it possible, for the first time, to rigorously capture the strong interactions and interdependencies that exist between the reacting flowfield and the ablating material. By basing thermal protection system engineering more firmly on first principles, improved analysis accuracy can be achieved. The computational framework developed in this work couples a multi-species, reacting flow solver to a two-dimensional material response solver. New capabilities are added to the flow solver in order to be able to model unique aspects of the flow through solid rocket nozzles. The material response solver is also enhanced with new features that enable full modeling of pyrolyzing, anisotropic materials with a true two-dimensional treatment of the porous flow of the pyrolysis gases. Verification and validation studies demonstrating correct implementation of these new models in the flow and material response solvers are also presented. Five different treatments of the surface energy balance at the ablating wall, with increasing levels of fidelity, are investigated. The Integrated Equilibrium Surface Chemistry (IESC) treatment computes the surface energy balance and recession rate directly from the diffusive fluxes at the ablating wall, without making transport coefficient or unity Lewis number assumptions, or requiring pre-computed surface thermochemistry tables. This method provides the highest level of fidelity, and can inherently account for the effects that recession, wall temperature, blowing, and the presence of ablation product species in the boundary layer have on the flowfield and ablation response. Multiple decoupled and conjugate ablation analysis studies for the HIPPO nozzle test case are presented. Results from decoupled simulations show sensitivity to the wall temperature profile used within the flow solver, indicating the need for conjugate analyses. Conjugate simulations show that the thermal response of the nozzle is relatively insensitive to the choice of the surface energy balance treatment. However, the surface energy balance treatment is found to strongly affect the surface recession predictions. Out of all the methods considered, the IESC treatment produces surface recession predictions with the best agreement to experimental data. These results show that the increased fidelity provided by the proposed conjugate ablation modeling methodology produces improved analysis accuracy, as desired.

  16. THOR: an open-source exo-GCM

    NASA Astrophysics Data System (ADS)

    Grosheintz, Luc; Mendonça, João; Käppeli, Roger; Lukas Grimm, Simon; Mishra, Siddhartha; Heng, Kevin

    2015-12-01

    In this talk, I will present THOR, the first fully conservative, GPU-accelerated exo-GCM (general circulation model) on a nearly uniform, global grid that treats shocks and is non-hydrostatic. THOR will be freely available to the community as a standard tool.Unlike most GCMs THOR solves the full, non-hydrostatic Euler equations instead of the primitive equations. The equations are solved on a global three-dimensional icosahedral grid by a second order Finite Volume Method (FVM). Icosahedral grids are nearly uniform refinements of an icosahedron. We've implemented three different versions of this grid. FVM conserves the prognostic variables (density, momentum and energy) exactly and doesn't require a diffusion term (artificial viscosity) in the Euler equations to stabilize our solver. Historically FVM was designed to treat discontinuities correctly. Hence it excels at resolving shocks, including those present in hot exoplanetary atmospheres.Atmospheres are generally in near hydrostatic equilibrium. We therefore implement a well-balancing technique recently developed at the ETH Zurich. This well-balancing ensures that our FVM maintains hydrostatic equilibrium to machine precision. Better yet, it is able to resolve pressure perturbations from this equilibrium as small as one part in 100'000. It is important to realize that these perturbations are significantly smaller than the truncation error of the same scheme without well-balancing. If during the course of the simulation (due to forcing) the atmosphere becomes non-hydrostatic, our solver continues to function correctly.THOR just passed an important mile stone. We've implemented the explicit part of the solver. The explicit solver is useful to study instabilities or local problems on relatively short time scales. I'll show some nice properties of the explicit THOR. An explicit solver is not appropriate for climate study because the time step is limited by the sound speed. Therefore, we are working on the first fully implicit GCM. By ESS3, I hope to present results for the advection equation.THOR is part of the Exoclimes Simulation Platform (ESP), a set of open-source community codes for simulating and understanding the atmospheres of exoplanets. The ESP also includes tools for radiative transfer and retrieval (HELIOS), an opacity calculator (HELIOS-K), and a chemical kinetics solver (VULCAN). We expect to publicly release an initial version of THOR in 2016 on www.exoclime.org.

  17. MILAMIN 2 - Fast MATLAB FEM solver

    NASA Astrophysics Data System (ADS)

    Dabrowski, Marcin; Krotkiewski, Marcin; Schmid, Daniel W.

    2013-04-01

    MILAMIN is a free and efficient MATLAB-based two-dimensional FEM solver utilizing unstructured meshes [Dabrowski et al., G-cubed (2008)]. The code consists of steady-state thermal diffusion and incompressible Stokes flow solvers implemented in approximately 200 lines of native MATLAB code. The brevity makes the code easily customizable. An important quality of MILAMIN is speed - it can handle millions of nodes within minutes on one CPU core of a standard desktop computer, and is faster than many commercial solutions. The new MILAMIN 2 allows three-dimensional modeling. It is designed as a set of functional modules that can be used as building blocks for efficient FEM simulations using MATLAB. The utilities are largely implemented as native MATLAB functions. For performance critical parts we use MUTILS - a suite of compiled MEX functions optimized for shared memory multi-core computers. The most important features of MILAMIN 2 are: 1. Modular approach to defining, tracking, and discretizing the geometry of the model 2. Interfaces to external mesh generators (e.g., Triangle, Fade2d, T3D) and mesh utilities (e.g., element type conversion, fast point location, boundary extraction) 3. Efficient computation of the stiffness matrix for a wide range of element types, anisotropic materials and three-dimensional problems 4. Fast global matrix assembly using a dedicated MEX function 5. Automatic integration rules 6. Flexible prescription (spatial, temporal, and field functions) and efficient application of Dirichlet, Neuman, and periodic boundary conditions 7. Treatment of transient and non-linear problems 8. Various iterative and multi-level solution strategies 9. Post-processing tools (e.g., numerical integration) 10. Visualization primitives using MATLAB, and VTK export functions We provide a large number of examples that show how to implement a custom FEM solver using the MILAMIN 2 framework. The examples are MATLAB scripts of increasing complexity that address a given technical topic (e.g., creating meshes, reordering nodes, applying boundary conditions), a given numerical topic (e.g., using various solution strategies, non-linear iterations), or that present a fully-developed solver designed to address a scientific topic (e.g., performing Stokes flow simulations in synthetic porous medium). References: Dabrowski, M., M. Krotkiewski, and D. W. Schmid MILAMIN: MATLAB-based finite element method solver for large problems, Geochem. Geophys. Geosyst., 9, Q04030, 2008

  18. Multi-Population Invariance with Dichotomous Measures: Combining Multi-Group and MIMIC Methodologies in Evaluating the General Aptitude Test in the Arabic Language

    ERIC Educational Resources Information Center

    Sideridis, Georgios D.; Tsaousis, Ioannis; Al-harbi, Khaleel A.

    2015-01-01

    The purpose of the present study was to extend the model of measurement invariance by simultaneously estimating invariance across multiple populations in the dichotomous instrument case using multi-group confirmatory factor analytic and multiple indicator multiple causes (MIMIC) methodologies. Using the Arabic version of the General Aptitude Test…

  19. An efficient transport solver for tokamak plasmas

    DOE PAGES

    Park, Jin Myung; Murakami, Masanori; St. John, H. E.; ...

    2017-01-03

    A simple approach to efficiently solve a coupled set of 1-D diffusion-type transport equations with a stiff transport model for tokamak plasmas is presented based on the 4th order accurate Interpolated Differential Operator scheme along with a nonlinear iteration method derived from a root-finding algorithm. Here, numerical tests using the Trapped Gyro-Landau-Fluid model show that the presented high order method provides an accurate transport solution using a small number of grid points with robust nonlinear convergence.

  20. Use of Excel ion exchange equilibrium solver with WinGEMS to model and predict NPE distribution in the Mead/Westvaco Evandale, TX, hardwood bleach plant

    Treesearch

    Christopher Litvay; Alan Rudie; Peter Hart

    2003-01-01

    An Excel spreadsheet developed to solve the ion-exchange equilibrium in wood pulps has been linked by dynamic data exchange to WinGEMS and used to model the non-process elements in the hardwood bleach plant of the Mead/Westvaco Evandale mill. Pulp and filtrate samples were collected from the diffusion washers and final wash press of the bleach plant. A WinGEMS model of...

  1. 3D numerical modeling of the carrier transport and radiative efficiency for InGaN/GaN light emitting diodes with V-shaped pits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chi-Kang; Wu, Chen-Kuo; Hsu, Chung-Cheng

    2016-05-15

    In this paper, influence of a V-pit embedded inside the multiple quantum wells (MQWs) LED was studied. A fully three-dimensional stress-strain solver and Poisson-drift-diffusion solver are employed to study the current path, where the quantum efficiency and turn-on voltage will be discussed. Our results show that the hole current is not only from top into lateral quantum wells (QWs) but flowing through shallow sidewall QWs and then injecting into the deeper lateral QWs in V-pit structures, where the V-pit geometry provides more percolation length for holes to make the distribution uniform along lateral MQWs. The IQE behavior with different V-pitmore » sizes, threading dislocation densities, and current densities were analyzed. Substantially, the variation of the quantum efficiency for different V-pit sizes is due to the trap-assisted nonradiative recombination, effective QW ratio, and ability of hole injections.« less

  2. On the development of OpenFOAM solvers based on explicit and implicit high-order Runge-Kutta schemes for incompressible flows with heat transfer

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Valerio; Binci, Lorenzo; Montelpare, Sergio; Ricci, Renato

    2018-01-01

    Open-source CFD codes provide suitable environments for implementing and testing low-dissipative algorithms typically used to simulate turbulence. In this research work we developed CFD solvers for incompressible flows based on high-order explicit and diagonally implicit Runge-Kutta (RK) schemes for time integration. In particular, an iterated PISO-like procedure based on Rhie-Chow correction was used to handle pressure-velocity coupling within each implicit RK stage. For the explicit approach, a projected scheme was used to avoid the "checker-board" effect. The above-mentioned approaches were also extended to flow problems involving heat transfer. It is worth noting that the numerical technology available in the OpenFOAM library was used for space discretization. In this work, we additionally explore the reliability and effectiveness of the proposed implementations by computing several unsteady flow benchmarks; we also show that the numerical diffusion due to the time integration approach is completely canceled using the solution techniques proposed here.

  3. Psychometric Evaluation of the 6-item Version of the Multigroup Ethnic Identity Measure with East Asian Adolescents in Canada

    PubMed Central

    Homma, Yuko; Zumbo, Bruno D.; Saewyc, Elizabeth M.; Wong, Sabrina T.

    2016-01-01

    We examined the psychometric properties of scores on a 6-item version of the Multigroup Ethnic Identity Measure (MEIM) among East Asian adolescents in Canada. A series of confirmatory factor analysis (CFA) was conducted for 4,190 East Asians who completed a provincial survey of students in grades 7 to 12. The MEIM measured highly correlated dimensions of ethnic identity (exploration and commitment). Further, multi-group CFA indicated that the scale measured the same constructs on the same metric across three age groups and across four groups with varying degrees of exposure to Canadian and East Asian cultures. The findings suggest the short version of the MEIM can be used to compare levels of ethnic identity across different age or acculturation groups. PMID:27833471

  4. Gray and multigroup radiation transport through 3D binary stochastic media with different sphere radii distributions

    DOE PAGES

    Olson, Gordon Lee

    2016-12-06

    Here, gray and multigroup radiation is transported through 3D media consisting of spheres randomly placed in a uniform background. Comparisons are made between using constant radii spheres and three different distributions of sphere radii. Because of the computational cost of 3D calculations, only the lowest angle order, n=1, is tested. If the mean chord length is held constant, using different radii distributions makes little difference. This is true for both gray and multigroup solutions. 3D transport solutions are compared to 2D and 1D solutions with the same mean chord lengths. 2D disk and 3D sphere media give solutions that aremore » nearly identical while 1D slab solutions are fundamentally different.« less

  5. Gray and multigroup radiation transport through 3D binary stochastic media with different sphere radii distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Gordon Lee

    Here, gray and multigroup radiation is transported through 3D media consisting of spheres randomly placed in a uniform background. Comparisons are made between using constant radii spheres and three different distributions of sphere radii. Because of the computational cost of 3D calculations, only the lowest angle order, n=1, is tested. If the mean chord length is held constant, using different radii distributions makes little difference. This is true for both gray and multigroup solutions. 3D transport solutions are compared to 2D and 1D solutions with the same mean chord lengths. 2D disk and 3D sphere media give solutions that aremore » nearly identical while 1D slab solutions are fundamentally different.« less

  6. Ignition of detonation in accreted helium envelopes

    NASA Astrophysics Data System (ADS)

    Glasner, S. Ami; Livne, E.; Steinberg, E.; Yalinewich, A.; Truran, James W.

    2018-05-01

    Sub-Chandrasekhar CO white dwarfs accreting helium have been considered as candidates for Type Ia supernova (SNIa) progenitors since the early 1980s (helium shell mass >0.1 M⊙). These models, once detonated, did not fit the observed spectra and light curve of typical SNIa observations. New theoretical work examined detonations on much less massive (<0.05 M⊙) envelopes. They find stable detonations that lead to light curves, spectra, and abundances that compare relatively well with the observational data. The exact mechanism leading to the ignition of helium detonation is a key issue, since it is a mandatory first step for the whole scenario. As the flow of the accreted envelope is unstable to convection long before any hydrodynamic phenomena develops, a multidimensional approach is needed in order to study the ignition process. The complex convective reactive flow is challenging to any hydrodynamical solver. To the best of our knowledge, all previous 2D studies ignited the detonation artificially. We present here, for the first time, fully consistent results from two hydrodynamical 2D solvers that adopt two independent accurate schemes. For both solvers, an effort was made to overcome the problematics raised by the finite resolution and numerical diffusion by the advective terms. Our best models lead to the ignition of a detonation in a convective cell. Our results are robust and the agreement between the two different numerical approaches is very good.

  7. An adjoint view on flux consistency and strong wall boundary conditions to the Navier–Stokes equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stück, Arthur, E-mail: arthur.stueck@dlr.de

    2015-11-15

    Inconsistent discrete expressions in the boundary treatment of Navier–Stokes solvers and in the definition of force objective functionals can lead to discrete-adjoint boundary treatments that are not a valid representation of the boundary conditions to the corresponding adjoint partial differential equations. The underlying problem is studied for an elementary 1D advection–diffusion problem first using a node-centred finite-volume discretisation. The defect of the boundary operators in the inconsistently defined discrete-adjoint problem leads to oscillations and becomes evident with the additional insight of the continuous-adjoint approach. A homogenisation of the discretisations for the primal boundary treatment and the force objective functional yieldsmore » second-order functional accuracy and eliminates the defect in the discrete-adjoint boundary treatment. Subsequently, the issue is studied for aerodynamic Reynolds-averaged Navier–Stokes problems in conjunction with a standard finite-volume discretisation on median-dual grids and a strong implementation of noslip walls, found in many unstructured general-purpose flow solvers. Going out from a base-line discretisation of force objective functionals which is independent of the boundary treatment in the flow solver, two improved flux-consistent schemes are presented; based on either body wall-defined or farfield-defined control-volumes they resolve the dual inconsistency. The behaviour of the schemes is investigated on a sequence of grids in 2D and 3D.« less

  8. Efficient numerical simulation of non-integer-order space-fractional reaction-diffusion equation via the Riemann-Liouville operator

    NASA Astrophysics Data System (ADS)

    Owolabi, Kolade M.

    2018-03-01

    In this work, we are concerned with the solution of non-integer space-fractional reaction-diffusion equations with the Riemann-Liouville space-fractional derivative in high dimensions. We approximate the Riemann-Liouville derivative with the Fourier transform method and advance the resulting system in time with any time-stepping solver. In the numerical experiments, we expect the travelling wave to arise from the given initial condition on the computational domain (-∞, ∞), which we terminate in the numerical experiments with a large but truncated value of L. It is necessary to choose L large enough to allow the waves to have enough space to distribute. Experimental results in high dimensions on the space-fractional reaction-diffusion models with applications to biological models (Fisher and Allen-Cahn equations) are considered. Simulation results reveal that fractional reaction-diffusion equations can give rise to a range of physical phenomena when compared to non-integer-order cases. As a result, most meaningful and practical situations are found to be modelled with the concept of fractional calculus.

  9. Point-particle method to compute diffusion-limited cellular uptake.

    PubMed

    Sozza, A; Piazza, F; Cencini, M; De Lillo, F; Boffetta, G

    2018-02-01

    We present an efficient point-particle approach to simulate reaction-diffusion processes of spherical absorbing particles in the diffusion-limited regime, as simple models of cellular uptake. The exact solution for a single absorber is used to calibrate the method, linking the numerical parameters to the physical particle radius and uptake rate. We study the configurations of multiple absorbers of increasing complexity to examine the performance of the method by comparing our simulations with available exact analytical or numerical results. We demonstrate the potential of the method to resolve the complex diffusive interactions, here quantified by the Sherwood number, measuring the uptake rate in terms of that of isolated absorbers. We implement the method in a pseudospectral solver that can be generalized to include fluid motion and fluid-particle interactions. As a test case of the presence of a flow, we consider the uptake rate by a particle in a linear shear flow. Overall, our method represents a powerful and flexible computational tool that can be employed to investigate many complex situations in biology, chemistry, and related sciences.

  10. Prescribed Velocity Gradients for Highly Viscous SPH Fluids with Vorticity Diffusion.

    PubMed

    Peer, Andreas; Teschner, Matthias

    2017-12-01

    Working with prescribed velocity gradients is a promising approach to efficiently and robustly simulate highly viscous SPH fluids. Such approaches allow to explicitly and independently process shear rate, spin, and expansion rate. This can be used to, e.g., avoid interferences between pressure and viscosity solvers. Another interesting aspect is the possibility to explicitly process the vorticity, e.g., to preserve the vorticity. In this context, this paper proposes a novel variant of the prescribed-gradient idea that handles vorticity in a physically motivated way. In contrast to a less appropriate vorticity preservation that has been used in a previous approach, vorticity is diffused. The paper illustrates the utility of the vorticity diffusion. Therefore, comparisons of the proposed vorticity diffusion with vorticity preservation and additionally with vorticity damping are presented. The paper further discusses the relation between prescribed velocity gradients and prescribed velocity Laplacians which improves the intuition behind the prescribed-gradient method for highly viscous SPH fluids. Finally, the paper discusses the relation of the proposed method to a physically correct implicit viscosity formulation.

  11. Effect of Energetic Electrons Produced by Raman Scattering on Hohlraum Dynamics

    NASA Astrophysics Data System (ADS)

    Strozzi, D. J.; Bailey, D. S.; Doeppner, T.; Divol, L.; Harte, J. A.; Michel, P.; Thomas, C. A.

    2016-10-01

    A reduced model of laser-plasma interactions, namely crossed-beam energy transfer and stimulated Raman scattering (SRS), has recently been implemented in a self-consistent or ``inline'' way in radiation-hydrodynamics codes. We extend this work to treat the energetic electrons produced by Langmuir waves (LWs) from SRS by a suprathermal, multigroup diffusion model. This gives less spatially localized heating than depositing the LW energy into the local electron fluid. We compare the resulting hard x-ray production to imaging data on the National Ignition Facility, which indicate significant emission around the laser entrance hole. We assess the effects of energetic electrons, as well as background electron heat flow, on hohlraum dynamics and capsule implosion symmetry. Work performed under the auspices of the U.S. D.O.E. by LLNL under Contract No. DE-AC52-07NA27344.

  12. The Power to Detect Sex Differences in IQ Test Scores Using Multi-Group Covariance and Means Structure Analyses

    ERIC Educational Resources Information Center

    Molenaar, Dylan; Dolan, Conor V.; Wicherts, Jelle M.

    2009-01-01

    Research into sex differences in general intelligence, g, has resulted in two opposite views. In the first view, a g-difference is nonexistent, while in the second view, g is associated with a male advantage. Past research using Multi-Group Covariance and Mean Structure Analysis (MG-CMSA) found no sex difference in g. This failure raised the…

  13. Fast non-overlapping Schwarz domain decomposition methods for solving the neutron diffusion equation

    NASA Astrophysics Data System (ADS)

    Jamelot, Erell; Ciarlet, Patrick

    2013-05-01

    Studying numerically the steady state of a nuclear core reactor is expensive, in terms of memory storage and computational time. In order to address both requirements, one can use a domain decomposition method, implemented on a parallel computer. We present here such a method for the mixed neutron diffusion equations, discretized with Raviart-Thomas-Nédélec finite elements. This method is based on the Schwarz iterative algorithm with Robin interface conditions to handle communications. We analyse this method from the continuous point of view to the discrete point of view, and we give some numerical results in a realistic highly heterogeneous 3D configuration. Computations are carried out with the MINOS solver of the APOLLO3® neutronics code. APOLLO3 is a registered trademark in France.

  14. Hardware accelerated high performance neutron transport computation based on AGENT methodology

    NASA Astrophysics Data System (ADS)

    Xiao, Shanjie

    The spatial heterogeneity of the next generation Gen-IV nuclear reactor core designs brings challenges to the neutron transport analysis. The Arbitrary Geometry Neutron Transport (AGENT) AGENT code is a three-dimensional neutron transport analysis code being developed at the Laboratory for Neutronics and Geometry Computation (NEGE) at Purdue University. It can accurately describe the spatial heterogeneity in a hierarchical structure through the R-function solid modeler. The previous version of AGENT coupled the 2D transport MOC solver and the 1D diffusion NEM solver to solve the three dimensional Boltzmann transport equation. In this research, the 2D/1D coupling methodology was expanded to couple two transport solvers, the radial 2D MOC solver and the axial 1D MOC solver, for better accuracy. The expansion was benchmarked with the widely applied C5G7 benchmark models and two fast breeder reactor models, and showed good agreement with the reference Monte Carlo results. In practice, the accurate neutron transport analysis for a full reactor core is still time-consuming and thus limits its application. Therefore, another content of my research is focused on designing a specific hardware based on the reconfigurable computing technique in order to accelerate AGENT computations. It is the first time that the application of this type is used to the reactor physics and neutron transport for reactor design. The most time consuming part of the AGENT algorithm was identified. Moreover, the architecture of the AGENT acceleration system was designed based on the analysis. Through the parallel computation on the specially designed, highly efficient architecture, the acceleration design on FPGA acquires high performance at the much lower working frequency than CPUs. The whole design simulations show that the acceleration design would be able to speedup large scale AGENT computations about 20 times. The high performance AGENT acceleration system will drastically shortening the computation time for 3D full-core neutron transport analysis, making the AGENT methodology unique and advantageous, and thus supplies the possibility to extend the application range of neutron transport analysis in either industry engineering or academic research.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haghighat, A.; Sjoden, G.E.; Wagner, J.C.

    In the past 10 yr, the Penn State Transport Theory Group (PSTTG) has concentrated its efforts on developing accurate and efficient particle transport codes to address increasing needs for efficient and accurate simulation of nuclear systems. The PSTTG's efforts have primarily focused on shielding applications that are generally treated using multigroup, multidimensional, discrete ordinates (S{sub n}) deterministic and/or statistical Monte Carlo methods. The difficulty with the existing public codes is that they require significant (impractical) computation time for simulation of complex three-dimensional (3-D) problems. For the S{sub n} codes, the large memory requirements are handled through the use of scratchmore » files (i.e., read-from and write-to-disk) that significantly increases the necessary execution time. Further, the lack of flexible features and/or utilities for preparing input and processing output makes these codes difficult to use. The Monte Carlo method becomes impractical because variance reduction (VR) methods have to be used, and normally determination of the necessary parameters for the VR methods is very difficult and time consuming for a complex 3-D problem. For the deterministic method, the authors have developed the 3-D parallel PENTRAN (Parallel Environment Neutral-particle TRANsport) code system that, in addition to a parallel 3-D S{sub n} solver, includes pre- and postprocessing utilities. PENTRAN provides for full phase-space decomposition, memory partitioning, and parallel input/output to provide the capability of solving large problems in a relatively short time. Besides having a modular parallel structure, PENTRAN has several unique new formulations and features that are necessary for achieving high parallel performance. For the Monte Carlo method, the major difficulty currently facing most users is the selection of an effective VR method and its associated parameters. For complex problems, generally, this process is very time consuming and may be complicated due to the possibility of biasing the results. In an attempt to eliminate this problem, the authors have developed the A{sup 3}MCNP (automated adjoint accelerated MCNP) code that automatically prepares parameters for source and transport biasing within a weight-window VR approach based on the S{sub n} adjoint function. A{sup 3}MCNP prepares the necessary input files for performing multigroup, 3-D adjoint S{sub n} calculations using TORT.« less

  16. An application of a two-equation model of turbulence to three-dimensional chemically reacting flows

    NASA Technical Reports Server (NTRS)

    Lee, J.

    1994-01-01

    A numerical study of three dimensional chemically reacting and non-reacting flowfields is conducted using a two-equation model of turbulence. A generalized flow solver using an implicit Lower-Upper (LU) diagonal decomposition numerical technique and finite-rate chemistry has been coupled with a low-Reynolds number two-equation model of turbulence. This flow solver is then used to study chemically reacting turbulent supersonic flows inside combustors with synergetic fuel injectors. The reacting and non-reacting turbulent combustor solutions obtained are compared with zero-equation turbulence model solutions and with available experimental data. The hydrogen-air chemistry is modeled using a nine-species/eighteen reaction model. A low-Reynolds number k-epsilon model was used to model the effect of turbulence because, in general, the low-Reynolds number k-epsilon models are easier to implement numerically and are far more general than algebraic models. However, low-Reynolds number k-epsilon models require a much finer near-wall grid resolution than high-Reynolds number models to resolve accurately the near-wall physics. This is especially true in complex flowfields, where the stiff nature of the near-wall turbulence must be resolved. Therefore, the limitations imposed by the near-wall characteristics and compressible model corrections need to be evaluated further. The gradient-diffusion hypothesis is used to model the effects of turbulence on the mass diffusion process. The influence of this low-Reynolds number turbulence model on the reacting flowfield predictions was studied parametrically.

  17. NASA-Lewis experiences with multigroup cross sections and shielding calculations

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1972-01-01

    The nuclear reactor shield analysis procedures employed at NASA-Lewis are described. Emphasis is placed on the generation, use, and testing of multigroup cross section data. Although coupled neutron and gamma ray cross section sets are useful in two dimensional Sn transport calculations, much insight has been gained from examination of uncoupled calculations. These have led to experimental and analytic studies of areas deemed to be of first order importance to reactor shield calculations. A discussion is given of problems encountered in using multigroup cross sections in the resolved resonance energy range. The addition to ENDF files of calculated and/or measured neutron-energy-dependent capture gamma ray spectra for shielding calculations is questioned for the resonance region. Anomalies inherent in two dimensional Sn transport calculations which may overwhelm any cross section discrepancies are illustrated.

  18. Separating "Rotators" from "Nonrotators" in the Mental Rotations Test: A Multigroup Latent Class Analysis

    ERIC Educational Resources Information Center

    Geiser, Christian; Lehmann, Wolfgang; Eid, Michael

    2006-01-01

    Items of mental rotation tests can not only be solved by mental rotation but also by other solution strategies. A multigroup latent class analysis of 24 items of the Mental Rotations Test (MRT) was conducted in a sample of 1,695 German pupils and students to find out how many solution strategies can be identified for the items of this test. The…

  19. Uncertainty Quantification For Physical and Numerical Diffusion Models In Inertial Confinement Fusion Simulations

    NASA Astrophysics Data System (ADS)

    Rana, Verinder S.

    This thesis concerns simulations of Inertial Confinement Fusion. Inertial confinement is carried out in a large scale facility at National Ignition Facility. The experiments have failed to reproduce design calculations, and so uncertainty quantification of calculations is an important asset. Uncertainties can be classified as aleatoric or epistemic. This thesis is concerned with aleatoric uncertainty quantification. Among the many uncertain aspects that affect the simulations, we have narrowed our study of possible uncertainties. The first source of uncertainty we present is the amount of pre-heating of the fuel done by hot electrons. The second source of uncertainty we consider is the effect of the algorithmic and physical transport diffusion and their effect on the hot spot thermodynamics. Physical transport mechanisms play an important role for the entire duration of the ICF capsule, so modeling them correctly becomes extremely vital. In addition, codes that simulate material mixing introduce numerical (algorithmically) generated transport across the material interfaces. This adds another layer of uncertainty in the solution through the artificially added diffusion. The third source of uncertainty we consider is physical model uncertainty. The fourth source of uncertainty we focus on a single localized surface perturbation (a divot) which creates a perturbation to the solution that can potentially enter the hot spot to diminish the thermonuclear environment. Jets of ablator material are hypothesized to enter the hot spot and cool the core, contributing to the observed lower reactions than predicted levels. A plasma transport package, Transport for Inertial Confinement Fusion (TICF) has been implemented into the Radiation Hydrodynamics code FLASH, from the University of Chicago. TICF has thermal, viscous and mass diffusion models that span the entire ICF implosion regime. We introduced a Quantum Molecular Dynamics calibrated thermal conduction model due to Hu for thermal transport. The numerical approximation uncertainties are introduced by the choice of a hydrodynamic solver for a particular flow. Solvers tend to be diffusive at material interfaces and the Front Tracking (FT) algorithm, which is an already available software code in the form of an API, helps to ameliorate such effects. The FT algorithm has also been implemented in FLASH and we use this to study the effect that divots can have on the hot spot properties.

  20. Suite of Benchmark Tests to Conduct Mesh-Convergence Analysis of Nonlinear and Non-constant Coefficient Transport Codes

    NASA Astrophysics Data System (ADS)

    Zamani, K.; Bombardelli, F. A.

    2014-12-01

    Verification of geophysics codes is imperative to avoid serious academic as well as practical consequences. In case that access to any given source code is not possible, the Method of Manufactured Solution (MMS) cannot be employed in code verification. In contrast, employing the Method of Exact Solution (MES) has several practical advantages. In this research, we first provide four new one-dimensional analytical solutions designed for code verification; these solutions are able to uncover the particular imperfections of the Advection-diffusion-reaction equation, such as nonlinear advection, diffusion or source terms, as well as non-constant coefficient equations. After that, we provide a solution of Burgers' equation in a novel setup. Proposed solutions satisfy the continuity of mass for the ambient flow, which is a crucial factor for coupled hydrodynamics-transport solvers. Then, we use the derived analytical solutions for code verification. To clarify gray-literature issues in the verification of transport codes, we designed a comprehensive test suite to uncover any imperfection in transport solvers via a hierarchical increase in the level of tests' complexity. The test suite includes hundreds of unit tests and system tests to check vis-a-vis the portions of the code. Examples for checking the suite start by testing a simple case of unidirectional advection; then, bidirectional advection and tidal flow and build up to nonlinear cases. We design tests to check nonlinearity in velocity, dispersivity and reactions. The concealing effect of scales (Peclet and Damkohler numbers) on the mesh-convergence study and appropriate remedies are also discussed. For the cases in which the appropriate benchmarks for mesh convergence study are not available, we utilize symmetry. Auxiliary subroutines for automation of the test suite and report generation are designed. All in all, the test package is not only a robust tool for code verification but it also provides comprehensive insight on the ADR solvers capabilities. Such information is essential for any rigorous computational modeling of ADR equation for surface/subsurface pollution transport. We also convey our experiences in finding several errors which were not detectable with routine verification techniques.

  1. A hybrid multigroup neutron-pattern model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogosbekyan, L.R.; Lysov, D.A.

    In this paper, we use the general approach to construct a multigroup hybrid model for the neutron pattern. The equations are given together with a reasonably economic and simple iterative method of solving them. The algorithm can be used to calculate the pattern and the functionals as well as to correct the constants from the experimental data and to adapt the support over the constants to the engineering programs by reference to precision ones.

  2. Comparing Indirect Effects in Different Groups in Single-Group and Multi-Group Structural Equation Models

    PubMed Central

    Ryu, Ehri; Cheong, Jeewon

    2017-01-01

    In this article, we evaluated the performance of statistical methods in single-group and multi-group analysis approaches for testing group difference in indirect effects and for testing simple indirect effects in each group. We also investigated whether the performance of the methods in the single-group approach was affected when the assumption of equal variance was not satisfied. The assumption was critical for the performance of the two methods in the single-group analysis: the method using a product term for testing the group difference in a single path coefficient, and the Wald test for testing the group difference in the indirect effect. Bootstrap confidence intervals in the single-group approach and all methods in the multi-group approach were not affected by the violation of the assumption. We compared the performance of the methods and provided recommendations. PMID:28553248

  3. A Multigroup Method for the Calculation of Neutron Fluence with a Source Term

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.; Clowdsley, M. S.

    1998-01-01

    Current research on the Grant involves the development of a multigroup method for the calculation of low energy evaporation neutron fluences associated with the Boltzmann equation. This research will enable one to predict radiation exposure under a variety of circumstances. Knowledge of radiation exposure in a free-space environment is a necessity for space travel, high altitude space planes and satellite design. This is because certain radiation environments can cause damage to biological and electronic systems involving both short term and long term effects. By having apriori knowledge of the environment one can use prediction techniques to estimate radiation damage to such systems. Appropriate shielding can be designed to protect both humans and electronic systems that are exposed to a known radiation environment. This is the goal of the current research efforts involving the multi-group method and the Green's function approach.

  4. An Eulerian/Lagrangian method for computing blade/vortex impingement

    NASA Technical Reports Server (NTRS)

    Steinhoff, John; Senge, Heinrich; Yonghu, Wenren

    1991-01-01

    A combined Eulerian/Lagrangian approach to calculating helicopter rotor flows with concentrated vortices is described. The method computes a general evolving vorticity distribution without any significant numerical diffusion. Concentrated vortices can be accurately propagated over long distances on relatively coarse grids with cores only several grid cells wide. The method is demonstrated for a blade/vortex impingement case in 2D and 3D where a vortex is cut by a rotor blade, and the results are compared to previous 2D calculations involving a fifth-order Navier-Stokes solver on a finer grid.

  5. Exploring the limits of the ``SNB'' multi-group diffusion nonlocal model

    NASA Astrophysics Data System (ADS)

    Brodrick, Jonathan; Ridgers, Christopher; Kingham, Robert

    2014-10-01

    A correct treatment of nonlocal transport in the presence of steep temperature gradients found in laser and inertial fusion plasmas has long been highly desirable over the use of an ad-hoc flux limiter. Therefore, an implementation of the ``SNB'' nonlocal model (G P Schurtz, P D Nicolaï & M Busquet, Phys. Plas. 7, 4238 (2000)) has been benchmarked against a fully-implicit kinetic code: IMPACT. A variety of scenarios, including relaxation of temperature sinusoids and Gaussians in addition to continuous laser heating have been investigated. Results highlight the effect of neglecting electron inertia (∂f1/∂ t) as well as question the feasibility of a nonlocal model that does not continuously track the evolution of the distribution function. Deviations from the Spitzer electric fields used in the model across steep gradients are also investigated. Regimes of validity for such a model are identified and discussed, and possible improvements to the model are suggested.

  6. Flowing gas, non-nuclear experiments on the gas core reactor

    NASA Technical Reports Server (NTRS)

    Kunze, J. F.; Suckling, D. H.; Copper, C. G.

    1972-01-01

    Flow tests were conducted on models of the gas core (cavity) reactor. Variations in cavity wall and injection configurations were aimed at establishing flow patterns that give a maximum of the nuclear criticality eigenvalue. Correlation with the nuclear effect was made using multigroup diffusion theory normalized by previous benchmark critical experiments. Air was used to simulate the hydrogen propellant in the flow tests, and smoked air, argon, or freon to simulate the central nuclear fuel gas. All tests were run in the down-firing direction so that gravitational effects simulated the acceleration effect of a rocket. Results show that acceptable flow patterns with high volume fraction for the simulated nuclear fuel gas and high flow rate ratios of propellant to fuel can be obtained. Using a point injector for the fuel, good flow patterns are obtained by directing the outer gas at high velocity along the cavity wall, using louvered or oblique-angle-honeycomb injection schemes.

  7. Multigrid treatment of implicit continuum diffusion

    NASA Astrophysics Data System (ADS)

    Francisquez, Manaure; Zhu, Ben; Rogers, Barrett

    2017-10-01

    Implicit treatment of diffusive terms of various differential orders common in continuum mechanics modeling, such as computational fluid dynamics, is investigated with spectral and multigrid algorithms in non-periodic 2D domains. In doubly periodic time dependent problems these terms can be efficiently and implicitly handled by spectral methods, but in non-periodic systems solved with distributed memory parallel computing and 2D domain decomposition, this efficiency is lost for large numbers of processors. We built and present here a multigrid algorithm for these types of problems which outperforms a spectral solution that employs the highly optimized FFTW library. This multigrid algorithm is not only suitable for high performance computing but may also be able to efficiently treat implicit diffusion of arbitrary order by introducing auxiliary equations of lower order. We test these solvers for fourth and sixth order diffusion with idealized harmonic test functions as well as a turbulent 2D magnetohydrodynamic simulation. It is also shown that an anisotropic operator without cross-terms can improve model accuracy and speed, and we examine the impact that the various diffusion operators have on the energy, the enstrophy, and the qualitative aspect of a simulation. This work was supported by DOE-SC-0010508. This research used resources of the National Energy Research Scientific Computing Center (NERSC).

  8. On the implementation of an accurate and efficient solver for convection-diffusion equations

    NASA Astrophysics Data System (ADS)

    Wu, Chin-Tien

    In this dissertation, we examine several different aspects of computing the numerical solution of the convection-diffusion equation. The solution of this equation often exhibits sharp gradients due to Dirichlet outflow boundaries or discontinuities in boundary conditions. Because of the singular-perturbed nature of the equation, numerical solutions often have severe oscillations when grid sizes are not small enough to resolve sharp gradients. To overcome such difficulties, the streamline diffusion discretization method can be used to obtain an accurate approximate solution in regions where the solution is smooth. To increase accuracy of the solution in the regions containing layers, adaptive mesh refinement and mesh movement based on a posteriori error estimations can be employed. An error-adapted mesh refinement strategy based on a posteriori error estimations is also proposed to resolve layers. For solving the sparse linear systems that arise from discretization, goemetric multigrid (MG) and algebraic multigrid (AMG) are compared. In addition, both methods are also used as preconditioners for Krylov subspace methods. We derive some convergence results for MG with line Gauss-Seidel smoothers and bilinear interpolation. Finally, while considering adaptive mesh refinement as an integral part of the solution process, it is natural to set a stopping tolerance for the iterative linear solvers on each mesh stage so that the difference between the approximate solution obtained from iterative methods and the finite element solution is bounded by an a posteriori error bound. Here, we present two stopping criteria. The first is based on a residual-type a posteriori error estimator developed by Verfurth. The second is based on an a posteriori error estimator, using local solutions, developed by Kay and Silvester. Our numerical results show the refined mesh obtained from the iterative solution which satisfies the second criteria is similar to the refined mesh obtained from the finite element solution.

  9. Lagrangian transported MDF methods for compressible high speed flows

    NASA Astrophysics Data System (ADS)

    Gerlinger, Peter

    2017-06-01

    This paper deals with the application of thermochemical Lagrangian MDF (mass density function) methods for compressible sub- and supersonic RANS (Reynolds Averaged Navier-Stokes) simulations. A new approach to treat molecular transport is presented. This technique on the one hand ensures numerical stability of the particle solver in laminar regions of the flow field (e.g. in the viscous sublayer) and on the other hand takes differential diffusion into account. It is shown in a detailed analysis, that the new method correctly predicts first and second-order moments on the basis of conventional modeling approaches. Moreover, a number of challenges for MDF particle methods in high speed flows is discussed, e.g. high cell aspect ratio grids close to solid walls, wall heat transfer, shock resolution, and problems from statistical noise which may cause artificial shock systems in supersonic flows. A Mach 2 supersonic mixing channel with multiple shock reflection and a model rocket combustor simulation demonstrate the eligibility of this technique to practical applications. Both test cases are simulated successfully for the first time with a hybrid finite-volume (FV)/Lagrangian particle solver (PS).

  10. Final Report - Subcontract B623760

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bank, R.

    2017-11-17

    During my visit to LLNL during July 17{27, 2017, I worked on linear system solvers. The two level hierarchical solver that initiated our study was developed to solve linear systems arising from hp adaptive finite element calculations, and is implemented in the PLTMG software package, version 12. This preconditioner typically requires 3-20% of the space used by the stiffness matrix for higher order elements. It has multigrid like convergence rates for a wide variety of PDEs (self-adjoint positive de nite elliptic equations, convection dominated convection-diffusion equations, and highly indefinite Helmholtz equations, among others). The convergence rate is not independent ofmore » the polynomial degree p as p ! 1, but but remains strong for p 9, which is the highest polynomial degree allowed in PLTMG, due to limitations of the numerical quadrature rules implemented in the software package. A more complete description of the method and some numerical experiments illustrating its effectiveness appear in. Like traditional geometric multilevel methods, this scheme relies on knowledge of the underlying finite element space in order to construct the smoother and the coarse grid correction.« less

  11. Spectral modeling of radiation in combustion systems

    NASA Astrophysics Data System (ADS)

    Pal, Gopalendu

    Radiation calculations are important in combustion due to the high temperatures encountered but has not been studied in sufficient detail in the case of turbulent flames. Radiation calculations for such problems require accurate, robust, and computationally efficient models for the solution of radiative transfer equation (RTE), and spectral properties of radiation. One more layer of complexity is added in predicting the overall heat transfer in turbulent combustion systems due to nonlinear interactions between turbulent fluctuations and radiation. The present work is aimed at the development of finite volume-based high-accuracy thermal radiation modeling, including spectral radiation properties in order to accurately capture turbulence-radiation interactions (TRI) and predict heat transfer in turbulent combustion systems correctly and efficiently. The turbulent fluctuations of temperature and chemical species concentrations have strong effects on spectral radiative intensities, and TRI create a closure problem when the governing partial differential equations are averaged. Recently, several approaches have been proposed to take TRI into account. Among these attempts the most promising approaches are the probability density function (PDF) methods, which can treat nonlinear coupling between turbulence and radiative emission exactly, i.e., "emission TRI". The basic idea of the PDF method is to treat physical variables as random variables and to solve the PDF transport equation stochastically. The actual reacting flow field is represented by a large number of discrete stochastic particles each carrying their own random variable values and evolving with time. The mean value of any function of those random variables, such as the chemical source term, can be evaluated exactly by taking the ensemble average of particles. The local emission term belongs to this class and thus, can be evaluated directly and exactly from particle ensembles. However, the local absorption term involves interactions between the local particle and energy emitted by all other particles and, hence, cannot be obtained from particle ensembles directly. To close the nonlinear coupling between turbulence and absorption, i.e., "absorption TRI", an optically thin fluctuation approximation can be applied to virtually all combustion problems and obtain acceptable accuracy. In the present study a composition-PDF method is applied, in which only the temperature and the species concentrations are treated as random variables. A closely coupled hybrid finite-volume/Monte Carlo scheme is adopted, in which the Monte Carlo method is used to solve the composition-PDF for chemical reactions and the finite volume method is used to solve for the flow field and radiation. Spherical harmonics method-based finite volume solvers (P-1 and P-3) are developed using the data structures of the high fidelity open-source code flow software OpenFOAM. Spectral radiative properties of the participating medium are modeled using full-spectrum k-distribution methods. Advancements of basic k-distribution methods are performed for nongray nonhomogeneous gas- and particulate-phase (soot, fuel droplets, ash, etc.) participating media using multi-scale and multi-group based approaches. These methods achieve close-to benchmark line-by-line (LBL) accuracy in strongly inhomogeneous media at a tiny fraction of LBL's computational cost. A portable spectral module is developed, which includes all the basic to advanced k-distribution methods along with the precompiled accurate and compact k-distribution databases. The P-1 /P-3 RTE solver coupled with the spectral module is used in conjunction with the combined Reynolds-averaged Navier-Stokes (RANS) and composition-PDF-based turbulence-chemistry solver to investigate TRI in multiphase turbulent combustion systems. The combustion solvers developed in this study is employed to simulate several turbulent jet flames, such as Sandia Flame D, and artificial nonsooting and sooting flames derived from Flame D. The effects of combustion chemistry, radiation and TRI on total heat transfer and pollutant (such as NO x) generation are studied for the above flames. The accuracy of the overall combustion solver is assessed by comparing it with the experimental data for Flame D. Comparison of the accuracy and the computational cost among various spectral models and RTE solvers is extensively done on the artificial flames derived from Flame D to demonstrate the necessity of accurate modeling of radiation in combustion problems.

  12. A Comparative Study of Randomized Constraint Solvers for Random-Symbolic Testing

    NASA Technical Reports Server (NTRS)

    Takaki, Mitsuo; Cavalcanti, Diego; Gheyi, Rohit; Iyoda, Juliano; dAmorim, Marcelo; Prudencio, Ricardo

    2009-01-01

    The complexity of constraints is a major obstacle for constraint-based software verification. Automatic constraint solvers are fundamentally incomplete: input constraints often build on some undecidable theory or some theory the solver does not support. This paper proposes and evaluates several randomized solvers to address this issue. We compare the effectiveness of a symbolic solver (CVC3), a random solver, three hybrid solvers (i.e., mix of random and symbolic), and two heuristic search solvers. We evaluate the solvers on two benchmarks: one consisting of manually generated constraints and another generated with a concolic execution of 8 subjects. In addition to fully decidable constraints, the benchmarks include constraints with non-linear integer arithmetic, integer modulo and division, bitwise arithmetic, and floating-point arithmetic. As expected symbolic solving (in particular, CVC3) subsumes the other solvers for the concolic execution of subjects that only generate decidable constraints. For the remaining subjects the solvers are complementary.

  13. Efficient three-dimensional Poisson solvers in open rectangular conducting pipe

    NASA Astrophysics Data System (ADS)

    Qiang, Ji

    2016-06-01

    Three-dimensional (3D) Poisson solver plays an important role in the study of space-charge effects on charged particle beam dynamics in particle accelerators. In this paper, we propose three new 3D Poisson solvers for a charged particle beam in an open rectangular conducting pipe. These three solvers include a spectral integrated Green function (IGF) solver, a 3D spectral solver, and a 3D integrated Green function solver. These solvers effectively handle the longitudinal open boundary condition using a finite computational domain that contains the beam itself. This saves the computational cost of using an extra larger longitudinal domain in order to set up an appropriate finite boundary condition. Using an integrated Green function also avoids the need to resolve rapid variation of the Green function inside the beam. The numerical operational cost of the spectral IGF solver and the 3D IGF solver scales as O(N log(N)) , where N is the number of grid points. The cost of the 3D spectral solver scales as O(Nn N) , where Nn is the maximum longitudinal mode number. We compare these three solvers using several numerical examples and discuss the advantageous regime of each solver in the physical application.

  14. Examples of Linking Codes Within GeoFramework

    NASA Astrophysics Data System (ADS)

    Tan, E.; Choi, E.; Thoutireddy, P.; Aivazis, M.; Lavier, L.; Quenette, S.; Gurnis, M.

    2003-12-01

    Geological processes usually encompass a broad spectrum of length and time scales. Traditionally, a modeling code (solver) is written to solve a problem with specific length and time scales in mind. The utility of the solver beyond the designated purpose is usually limited. Furthermore, two distinct solvers, even if each can solve complementary parts of a new problem, are difficult to link together to solve the problem as a whole. For example, Lagrangian deformation model with visco-elastoplastic crust is used to study deformation near plate boundary. Ideally, the driving force of the deformation should be derived from underlying mantle convection, and it requires linking the Lagrangian deformation model with a Eulerian mantle convection model. As our understanding of geological processes evolves, the need of integrated modeling codes, which should reuse existing codes as much as possible, begins to surface. GeoFramework project addresses this need by developing a suite of reusable and re-combinable tools for the Earth science community. GeoFramework is based on and extends Pyre, a Python-based modeling framework, recently developed to link solid (Lagrangian) and fluid (Eulerian) models, as well as mesh generators, visualization packages, and databases, with one another for engineering applications. Under the framework, a solver is aware of the existence of other solvers and can interact with each other via exchanging information across adjacent boundary. A solver needs to conform a standard interface and provide its own implementation for exchanging boundary information. The framework also provides facilities to control the coordination between interacting solvers. We will show an example of linking two solvers within GeoFramework. CitcomS is a finite element code which solves for thermal convection within a 3D spherical shell. CitcomS can solve for problems either within a full spherical (global) domain or a restricted (regional) domain of a full sphere by using different meshers. We can embed a regional CitcomS solver within a global CitcomS solver. We not that linking instances of the same solver is conceptually equivalent to linking to different solvers. The global solver has a coarser grid and a longer stable time step than the regional solver. Therefore, a global-solver time step consists of several regional-solver time steps. The time-marching scheme is described below. First, the global solver is advanced one global-solver time step. Then, the regional solver is advanced for several regional-solver time steps until it catches up global solver. Within each regional-solver time step, the velocity field of the global solver is interpolated in time and then is imposed to the regional solver as boundary conditions. Finally, the temperature field of the regional solver is extrapolated in space and is fed back to the global. These two solvers are linked and synchronized by the time-marching scheme. An effort to embed a visco-elastoplastic representation of the crust within viscous mantle flow is underway.

  15. Comparing direct and iterative equation solvers in a large structural analysis software system

    NASA Technical Reports Server (NTRS)

    Poole, E. L.

    1991-01-01

    Two direct Choleski equation solvers and two iterative preconditioned conjugate gradient (PCG) equation solvers used in a large structural analysis software system are described. The two direct solvers are implementations of the Choleski method for variable-band matrix storage and sparse matrix storage. The two iterative PCG solvers include the Jacobi conjugate gradient method and an incomplete Choleski conjugate gradient method. The performance of the direct and iterative solvers is compared by solving several representative structural analysis problems. Some key factors affecting the performance of the iterative solvers relative to the direct solvers are identified.

  16. Honor Thy Parents: An Ethnic Multigroup Analysis of Filial Responsibility, Health Perceptions, and Caregiving Decisions.

    PubMed

    Santoro, Maya S; Van Liew, Charles; Holloway, Breanna; McKinnon, Symone; Little, Timothy; Cronan, Terry A

    2016-08-01

    The present study explores patterns of parity and disparity in the effect of filial responsibility on health-related evaluations and caregiving decisions. Participants who identified as White, Black, Hispanic, or Asian/Pacific Islander read a vignette about an older man needing medical care. They were asked to imagine that they were the man's son and answer questions regarding their likelihood of hiring a health care advocate (HCA) for services related to the father's care. A multigroup (ethnicity) path analysis was performed, and an intercept invariant multigroup model fits the data best. Direct and indirect effect estimation showed that filial responsibility mediated the relationship between both the perceived severity of the father's medical condition and the perceived need for medical assistance and the likelihood of hiring an HCA only for White and Hispanic participants, albeit differently. The findings demonstrate that culture and ethnicity affect health evaluations and caregiving decision making. © The Author(s) 2015.

  17. Necessary but Insufficient

    PubMed Central

    2017-01-01

    Abstract Cross-national data production in social science research has increased dramatically in recent decades. Assessing the comparability of data is necessary before drawing substantive conclusions that are based on cross-national data. Researchers assessing data comparability typically use either quantitative methods such as multigroup confirmatory factor analysis or qualitative methods such as online probing. Because both methods have complementary strengths and weaknesses, this study applies both multigroup confirmatory factor analysis and online probing in a mixed-methods approach to assess the comparability of constructive patriotism and nationalism, two important concepts in the study of national identity. Previous measurement invariance tests failed to achieve scalar measurement invariance, which prohibits a cross-national comparison of latent means (Davidov 2009). The arrival of the 2013 ISSP Module on National Identity has encouraged a reassessment of both constructs and a push to understand why scalar invariance cannot be achieved. Using the example of constructive patriotism and nationalism, this study demonstrates how the combination of multigroup confirmatory factor analysis and online probing can uncover and explain issues related to cross-national comparability. PMID:28579643

  18. A stable 1D multigroup high-order low-order method

    DOE PAGES

    Yee, Ben Chung; Wollaber, Allan Benton; Haut, Terry Scot; ...

    2016-07-13

    The high-order low-order (HOLO) method is a recently developed moment-based acceleration scheme for solving time-dependent thermal radiative transfer problems, and has been shown to exhibit orders of magnitude speedups over traditional time-stepping schemes. However, a linear stability analysis by Haut et al. (2015 Haut, T. S., Lowrie, R. B., Park, H., Rauenzahn, R. M., Wollaber, A. B. (2015). A linear stability analysis of the multigroup High-Order Low-Order (HOLO) method. In Proceedings of the Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method; Nashville, TN, April 19–23, 2015. American Nuclear Society.)more » revealed that the current formulation of the multigroup HOLO method was unstable in certain parameter regions. Since then, we have replaced the intensity-weighted opacity in the first angular moment equation of the low-order (LO) system with the Rosseland opacity. Furthermore, this results in a modified HOLO method (HOLO-R) that is significantly more stable.« less

  19. Numerical modeling and optimization of the Iguassu gas centrifuge

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Borman, V. D.; Borisevich, V. D.; Tronin, V. N.; Tronin, I. V.

    2017-07-01

    The full procedure of the numerical calculation of the optimized parameters of the Iguassu gas centrifuge (GC) is under discussion. The procedure consists of a few steps. On the first step the problem of a hydrodynamical flow of the gas in the rotating rotor of the GC is solved numerically. On the second step the problem of diffusion of the binary mixture of isotopes is solved. The separation power of the gas centrifuge is calculated after that. On the last step the time consuming procedure of optimization of the GC is performed providing us the maximum of the separation power. The optimization is based on the BOBYQA method exploring the results of numerical simulations of the hydrodynamics and diffusion of the mixture of isotopes. Fast convergence of calculations is achieved due to exploring of a direct solver at the solution of the hydrodynamical and diffusion parts of the problem. Optimized separative power and optimal internal parameters of the Iguassu GC with 1 m rotor were calculated using the developed approach. Optimization procedure converges in 45 iterations taking 811 minutes.

  20. MPACT Subgroup Self-Shielding Efficiency Improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stimpson, Shane; Liu, Yuxuan; Collins, Benjamin S.

    Recent developments to improve the efficiency of the MOC solvers in MPACT have yielded effective kernels that loop over several energy groups at once, rather that looping over one group at a time. These kernels have produced roughly a 2x speedup on the MOC sweeping time during eigenvalue calculation. However, the self-shielding subgroup calculation had not been reevaluated to take advantage of these new kernels, which typically requires substantial solve time. The improvements covered in this report start by integrating the multigroup kernel concepts into the subgroup calculation, which are then used as the basis for further extensions. The nextmore » improvement that is covered is what is currently being termed as “Lumped Parameter MOC”. Because the subgroup calculation is a purely fixed source problem and multiple sweeps are performed only to update the boundary angular fluxes, the sweep procedure can be condensed to allow for the instantaneous propagation of the flux across a spatial domain, without the need to sweep along all segments in a ray. Once the boundary angular fluxes are considered to be converged, an additional sweep that will tally the scalar flux is completed. The last improvement that is investigated is the possible reduction of the number of azimuthal angles per octant in the shielding sweep. Typically 16 azimuthal angles per octant are used for self-shielding and eigenvalue calculations, but it is possible that the self-shielding sweeps are less sensitive to the number of angles than the full eigenvalue calculation.« less

  1. Scattering of Gaussian Beams by Disordered Particulate Media

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.

    2016-01-01

    A frequently observed characteristic of electromagnetic scattering by a disordered particulate medium is the absence of pronounced speckles in angular patterns of the scattered light. It is known that such diffuse speckle-free scattering patterns can be caused by averaging over randomly changing particle positions and/or over a finite spectral range. To get further insight into the possible physical causes of the absence of speckles, we use the numerically exact superposition T-matrix solver of the Maxwell equations and analyze the scattering of plane-wave and Gaussian beams by representative multi-sphere groups. We show that phase and amplitude variations across an incident Gaussian beam do not serve to extinguish the pronounced speckle pattern typical of plane-wave illumination of a fixed multi-particle group. Averaging over random particle positions and/or over a finite spectral range is still required to generate the classical diffuse speckle-free regime.

  2. Analysis of Classes of Singular Steady State Reaction Diffusion Equations

    NASA Astrophysics Data System (ADS)

    Son, Byungjae

    We study positive radial solutions to classes of steady state reaction diffusion problems on the exterior of a ball with both Dirichlet and nonlinear boundary conditions. We study both Laplacian as well as p-Laplacian problems with reaction terms that are p-sublinear at infinity. We consider both positone and semipositone reaction terms and establish existence, multiplicity and uniqueness results. Our existence and multiplicity results are achieved by a method of sub-supersolutions and uniqueness results via a combination of maximum principles, comparison principles, energy arguments and a-priori estimates. Our results significantly enhance the literature on p-sublinear positone and semipositone problems. Finally, we provide exact bifurcation curves for several one-dimensional problems. In the autonomous case, we extend and analyze a quadrature method, and in the nonautonomous case, we employ shooting methods. We use numerical solvers in Mathematica to generate the bifurcation curves.

  3. A resilient domain decomposition polynomial chaos solver for uncertain elliptic PDEs

    NASA Astrophysics Data System (ADS)

    Mycek, Paul; Contreras, Andres; Le Maître, Olivier; Sargsyan, Khachik; Rizzi, Francesco; Morris, Karla; Safta, Cosmin; Debusschere, Bert; Knio, Omar

    2017-07-01

    A resilient method is developed for the solution of uncertain elliptic PDEs on extreme scale platforms. The method is based on a hybrid domain decomposition, polynomial chaos (PC) framework that is designed to address soft faults. Specifically, parallel and independent solves of multiple deterministic local problems are used to define PC representations of local Dirichlet boundary-to-boundary maps that are used to reconstruct the global solution. A LAD-lasso type regression is developed for this purpose. The performance of the resulting algorithm is tested on an elliptic equation with an uncertain diffusivity field. Different test cases are considered in order to analyze the impacts of correlation structure of the uncertain diffusivity field, the stochastic resolution, as well as the probability of soft faults. In particular, the computations demonstrate that, provided sufficiently many samples are generated, the method effectively overcomes the occurrence of soft faults.

  4. An Eulerian/Lagrangian coupling procedure for three-dimensional vortical flows

    NASA Technical Reports Server (NTRS)

    Felici, Helene M.; Drela, Mark

    1993-01-01

    A coupled Eulerian/Lagrangian method is presented for the reduction of numerical diffusion observed in solutions of 3D vortical flows using standard Eulerian finite-volume time-marching procedures. A Lagrangian particle tracking method, added to the Eulerian time-marching procedure, provides a correction of the Eulerian solution. In turn, the Eulerian solution is used to integrate the Lagrangian state-vector along the particles trajectories. While the Eulerian solution ensures the conservation of mass and sets the pressure field, the particle markers describe accurately the convection properties and enhance the vorticity and entropy capturing capabilities of the Eulerian solver. The Eulerian/Lagrangian coupling strategies are discussed and the combined scheme is tested on a constant stagnation pressure flow in a 90 deg bend and on a swirling pipe flow. As the numerical diffusion is reduced when using the Lagrangian correction, a vorticity gradient augmentation is identified as a basic problem of this inviscid calculation.

  5. Multigrid methods for numerical simulation of laminar diffusion flames

    NASA Technical Reports Server (NTRS)

    Liu, C.; Liu, Z.; Mccormick, S.

    1993-01-01

    This paper documents the result of a computational study of multigrid methods for numerical simulation of 2D diffusion flames. The focus is on a simplified combustion model, which is assumed to be a single step, infinitely fast and irreversible chemical reaction with five species (C3H8, O2, N2, CO2 and H2O). A fully-implicit second-order hybrid scheme is developed on a staggered grid, which is stretched in the streamwise coordinate direction. A full approximation multigrid scheme (FAS) based on line distributive relaxation is developed as a fast solver for the algebraic equations arising at each time step. Convergence of the process for the simplified model problem is more than two-orders of magnitude faster than other iterative methods, and the computational results show good grid convergence, with second-order accuracy, as well as qualitatively agreement with the results of other researchers.

  6. Anomalous transport scaling in the DIII-D tokamak matched by supercomputer simulation.

    PubMed

    Candy, J; Waltz, R E

    2003-07-25

    Gyrokinetic simulation of tokamak transport has evolved sufficiently to allow direct comparison of numerical results with experimental data. It is to be emphasized that only with the simultaneous inclusion of many distinct and complex effects can this comparison realistically be made. Until now, numerical studies of tokamak microturbulence have been restricted to either (a) flux tubes or (b) electrostatic fluctuations. Using a newly developed global electromagnetic solver, we have been able to recover via direct simulation the Bohm-like scaling observed in DIII-D L-mode discharges. We also match, well within experimental uncertainty, the measured energy diffusivities.

  7. Study of the adaptive refinement on an open source 2D shallow-water flow solver using quadtree grid for flash flood simulations.

    NASA Astrophysics Data System (ADS)

    Kirstetter, G.; Popinet, S.; Fullana, J. M.; Lagrée, P. Y.; Josserand, C.

    2015-12-01

    The full resolution of shallow-water equations for modeling flash floods may have a high computational cost, so that majority of flood simulation softwares used for flood forecasting uses a simplification of this model : 1D approximations, diffusive or kinematic wave approximations or exotic models using non-physical free parameters. These kind of approximations permit to save a lot of computational time by sacrificing in an unquantified way the precision of simulations. To reduce drastically the cost of such 2D simulations by quantifying the lost of precision, we propose a 2D shallow-water flow solver built with the open source code Basilisk1, which is using adaptive refinement on a quadtree grid. This solver uses a well-balanced central-upwind scheme, which is at second order in time and space, and treats the friction and rain terms implicitly in finite volume approach. We demonstrate the validity of our simulation on the case of the flood of Tewkesbury (UK) occurred in July 2007, as shown on Fig. 1. On this case, a systematic study of the impact of the chosen criterium for adaptive refinement is performed. The criterium which has the best computational time / precision ratio is proposed. Finally, we present the power law giving the computational time in respect to the maximum resolution and we show that this law for our 2D simulation is close to the one of 1D simulation, thanks to the fractal dimension of the topography. [1] http://basilisk.fr/

  8. Tree-based solvers for adaptive mesh refinement code FLASH - I: gravity and optical depths

    NASA Astrophysics Data System (ADS)

    Wünsch, R.; Walch, S.; Dinnbier, F.; Whitworth, A.

    2018-04-01

    We describe an OctTree algorithm for the MPI parallel, adaptive mesh refinement code FLASH, which can be used to calculate the gas self-gravity, and also the angle-averaged local optical depth, for treating ambient diffuse radiation. The algorithm communicates to the different processors only those parts of the tree that are needed to perform the tree-walk locally. The advantage of this approach is a relatively low memory requirement, important in particular for the optical depth calculation, which needs to process information from many different directions. This feature also enables a general tree-based radiation transport algorithm that will be described in a subsequent paper, and delivers excellent scaling up to at least 1500 cores. Boundary conditions for gravity can be either isolated or periodic, and they can be specified in each direction independently, using a newly developed generalization of the Ewald method. The gravity calculation can be accelerated with the adaptive block update technique by partially re-using the solution from the previous time-step. Comparison with the FLASH internal multigrid gravity solver shows that tree-based methods provide a competitive alternative, particularly for problems with isolated or mixed boundary conditions. We evaluate several multipole acceptance criteria (MACs) and identify a relatively simple approximate partial error MAC which provides high accuracy at low computational cost. The optical depth estimates are found to agree very well with those of the RADMC-3D radiation transport code, with the tree-solver being much faster. Our algorithm is available in the standard release of the FLASH code in version 4.0 and later.

  9. A Lagrangian model for soil water dynamics: can we step beyond Richard's equation while preserving capillarity as first order control?

    NASA Astrophysics Data System (ADS)

    Zehe, Erwin; Jackisch, Conrad

    2016-04-01

    Water storage in the unsaturated zone is controlled by capillary forces which increase nonlinearly with decreasing pore size, because water acts as a wetting fluid in soil. The standard approach to represent capillary and gravity controlled soil water dynamics is the Darcy-Richards equation in combination with suitable soil water characteristics. This continuum model essentially assumes capillarity controlled diffusive fluxes to dominate soil water dynamics under local thermodynamic equilibrium conditions. Today we know that the assumptions of local equilibrium conditions e.g. and a mainly diffusive flow are often not appropriate, particularly during rainfall events in structured soils. Rapid or preferential flow imply a strong local disequilibrium and imperfect mixing between a fast fraction of soil water, traveling in interconnected coarse pores or non-capillary macropores, and the slower diffusive flow in finer fractions of the pore space. Although various concepts have been proposed to overcome the inability of the Darcy - Richards concept to cope with not-well mixed preferential flow, we still lack an approach that is commonly accepted. Notwithstanding the listed short comings, one should not mistake the limitations of the Richards equation with non-importance of capillary forces in soil. Without capillarity infiltrating rainfall would drain into groundwater bodies, leaving an empty soil as the local equilibrium state - there would be no soil water dynamics at all, probably even no terrestrial vegetation without capillary forces. Better alternatives for the Darcy-Richards approach are thus highly desirable, as long they preserve the grain of "truth" about capillarity as first order control. Here we propose such an alternative approach to simulate soil moisture dynamics in a stochastic and yet physical way. Soil water is represented by particles of constant mass, which travel according to the Itô form of the Fokker Planck equation. The model concept builds on established soil physics by estimating the drift velocity and the diffusion term based on the soil water characteristics. A naive random walk, which assumes all water particles to move at the same drift velocity and diffusivity, overestimated depletion of soil moisture gradients compared to a Richards' solver within three distinctly different soils. This is because soil water and hence the corresponding water particles in smaller pores size fractions, are, due to the non-linear decrease of soil hydraulic conductivity with decreasing soil moisture, much less mobile. After accounting for this subscale variability of particle mobility, the particle model and a Richards' solver performed highly similar during simulated wetting and drying circles in three distinctly different soils. Alternatively, we tested a computational less approach, assuming only the 10 or 20% of the fastest particles as mobile, while treating the remaining particles located in smaller pores sizes as immobile. For instance in a sandy soil a mobile fraction of 20% revealed almost identical results as the full mobility model and performed even closer to the Richards solver. In this context we also compared the cases of perfect mixing and no mixing between mobile and immobile water particles between different time steps. The second option was clearly superior with respect to match simulations with the Richards' solver. The particle model is hence a suitable tool to "unmask" a) inherent implications of the Darcy-Richards concept on the fraction of soil water that actually contributes to soil water dynamics and b) the inherent very limited degrees of freedom for mixing between mobile and immobile water fractions. A main asset of the particle based approach is that the assumption of local equilibrium equation during infiltration may be easily released. We tested this idea in a straight forward manner, by treating infiltrating event water particles as second particle type which travel initially, mainly gravity driven, in the largest pore fraction at maximum drift, and yet experience a slow diffusive mixing with the pre-event water particles within a characteristic mixing time. Simulations with the particle model in the non-equilibrium mode were a) rather sensitive to the coefficient describing mixing of event water particles and b) clearly outperformed the Richards model with respect to match observed soil dynamics in a real world benchmark. The proposed non-linear random walk of water particles is, hence, an easy to implement alternative for simulating soil moisture dynamics in the unsaturated, which preserves the influence of capillarity and makes use of established soil physics. The approach is particularly promising to deal with preferential flow and transport of solutes and to explore transit time distributions.

  10. Tortuosity Computations of Porous Materials using the Direct Simulation Monte Carlo

    NASA Technical Reports Server (NTRS)

    Borner, A.; Ferguson, C.; Panerai, F.; Mansour, Nagi N.

    2017-01-01

    Low-density carbon fiber preforms, used as thermal protection systems (TPS) materials for planetary entry systems, have permeable, highly porous microstructures consisting of interlaced fibers. Internal gas transport in TPS is important in modeling the penetration of hot boundary-layer gases and the in-depth transport of pyrolysis and ablation products. The gas effective diffusion coefficient of a porous material must be known before the gas transport can be modeled in material response solvers; however, there are very little available data for rigid fibrous insulators used in heritage TPS.The tortuosity factor, which reflects the efficiency of the percolation paths, can be computed from the effective diffusion coefficient of a gas inside a porous material and is based on the micro-structure of the material. It is well known, that the tortuosity factor is a strong function of the Knudsen number. Due to the small characteristic scales of porous media used in TPS applications (typical pore size of the order of 50 micron), the transport of gases can occur in the rarefied and transitional regimes, at Knudsen numbers above 1. A proper way to model the gas dynamics at these conditions consists in solving the Boltzmann equation using particle-based methods that account for movement and collisions of atoms and molecules.In this work we adopt, for the first time, the Direct Simulation Monte Carlo (DSMC) method to compute the tortuosity factor of fibrous media in the rarefied regime. To enable realistic simulations of the actual transport of gases in the porous medium, digitized computational grids are obtained from X-ray micro-tomography imaging of real TPS materials. The SPARTA DSMC solver is used for simulations. Effective diffusion coefficients and tortuosity factors are obtained by computing the mean-square displacement of diffusing particles.We first apply the method to compute the tortuosity factors as a function of the Knudsen number for computationally designed materials such as random cylindrical fibers and packed bed of spheres with prescribed porosity. Results are compared to literature values obtained using random walk methods in the rarefied and transitional regime and a finite-volume method for the continuum regime. We then compute tortuosity factors for a real carbon fiber material with a transverse isotropic structure (FiberForm), quantifying differences between through-thickness and in-plain tortuosities at various Knudsen regimes.

  11. Recent Advances in Agglomerated Multigrid

    NASA Technical Reports Server (NTRS)

    Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.; Hammond, Dana P.

    2013-01-01

    We report recent advancements of the agglomerated multigrid methodology for complex flow simulations on fully unstructured grids. An agglomerated multigrid solver is applied to a wide range of test problems from simple two-dimensional geometries to realistic three- dimensional configurations. The solver is evaluated against a single-grid solver and, in some cases, against a structured-grid multigrid solver. Grid and solver issues are identified and overcome, leading to significant improvements over single-grid solvers.

  12. Parallel Solver for H(div) Problems Using Hybridization and AMG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Chak S.; Vassilevski, Panayot S.

    2016-01-15

    In this paper, a scalable parallel solver is proposed for H(div) problems discretized by arbitrary order finite elements on general unstructured meshes. The solver is based on hybridization and algebraic multigrid (AMG). Unlike some previously studied H(div) solvers, the hybridization solver does not require discrete curl and gradient operators as additional input from the user. Instead, only some element information is needed in the construction of the solver. The hybridization results in a H1-equivalent symmetric positive definite system, which is then rescaled and solved by AMG solvers designed for H1 problems. Weak and strong scaling of the method are examinedmore » through several numerical tests. Our numerical results show that the proposed solver provides a promising alternative to ADS, a state-of-the-art solver [12], for H(div) problems. In fact, it outperforms ADS for higher order elements.« less

  13. Implicit Space-Time Conservation Element and Solution Element Schemes

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Himansu, Ananda; Wang, Xiao-Yen

    1999-01-01

    Artificial numerical dissipation is in important issue in large Reynolds number computations. In such computations, the artificial dissipation inherent in traditional numerical schemes can overwhelm the physical dissipation and yield inaccurate results on meshes of practical size. In the present work, the space-time conservation element and solution element method is used to construct new and accurate implicit numerical schemes such that artificial numerical dissipation will not overwhelm physical dissipation. Specifically, these schemes have the property that numerical dissipation vanishes when the physical viscosity goes to zero. These new schemes therefore accurately model the physical dissipation even when it is extremely small. The new schemes presented are two highly accurate implicit solvers for a convection-diffusion equation. The two schemes become identical in the pure convection case, and in the pure diffusion case. The implicit schemes are applicable over the whole Reynolds number range, from purely diffusive equations to convection-dominated equations with very small viscosity. The stability and consistency of the schemes are analysed, and some numerical results are presented. It is shown that, in the inviscid case, the new schemes become explicit and their amplification factors are identical to those of the Leapfrog scheme. On the other hand, in the pure diffusion case, their principal amplification factor becomes the amplification factor of the Crank-Nicolson scheme.

  14. Multidimensional Riemann problem with self-similar internal structure - part III - a multidimensional analogue of the HLLI Riemann solver for conservative hyperbolic systems

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Nkonga, Boniface

    2017-10-01

    Just as the quality of a one-dimensional approximate Riemann solver is improved by the inclusion of internal sub-structure, the quality of a multidimensional Riemann solver is also similarly improved. Such multidimensional Riemann problems arise when multiple states come together at the vertex of a mesh. The interaction of the resulting one-dimensional Riemann problems gives rise to a strongly-interacting state. We wish to endow this strongly-interacting state with physically-motivated sub-structure. The fastest way of endowing such sub-structure consists of making a multidimensional extension of the HLLI Riemann solver for hyperbolic conservation laws. Presenting such a multidimensional analogue of the HLLI Riemann solver with linear sub-structure for use on structured meshes is the goal of this work. The multidimensional MuSIC Riemann solver documented here is universal in the sense that it can be applied to any hyperbolic conservation law. The multidimensional Riemann solver is made to be consistent with constraints that emerge naturally from the Galerkin projection of the self-similar states within the wave model. When the full eigenstructure in both directions is used in the present Riemann solver, it becomes a complete Riemann solver in a multidimensional sense. I.e., all the intermediate waves are represented in the multidimensional wave model. The work also presents, for the very first time, an important analysis of the dissipation characteristics of multidimensional Riemann solvers. The present Riemann solver results in the most efficient implementation of a multidimensional Riemann solver with sub-structure. Because it preserves stationary linearly degenerate waves, it might also help with well-balancing. Implementation-related details are presented in pointwise fashion for the one-dimensional HLLI Riemann solver as well as the multidimensional MuSIC Riemann solver.

  15. Application of a flexible lattice Boltzmann method based simulation tool for modelling physico-chemical processes at different scales

    NASA Astrophysics Data System (ADS)

    Patel, Ravi A.; Perko, Janez; Jacques, Diederik

    2017-04-01

    Often, especially in the disciplines related to natural porous media, such as for example vadoze zone or aquifer hydrology or contaminant transport, the relevant spatial and temporal scales on which we need to provide information is larger than the scale where the processes actually occur. Usual techniques used to deal with these problems assume the existence of a REV. However, in order to understand the behavior on larger scales it is important to downscale the problem onto the relevant scale of the processes. Due to the limitations of resources (time, memory) the downscaling can only be made up to the certain lower scale. At this lower scale still several scales may co-exist - the scale which can be explicitly described and a scale which needs to be conceptualized by effective properties. Hence, models which are supposed to provide effective properties on relevant scales should therefor be flexible enough to represent complex pore-structure by explicit geometry on one side, and differently defined processes (e.g. by the effective properties) which emerge on lower scale. In this work we present the state-of-the-art lattice Boltzmann method based simulation tool applicable to advection-diffusion equation coupled to geochemical processes. The lattice Boltzmann transport solver can be coupled with an external geochemical solver which allows to account for a wide range of geochemical reaction networks through thermodynamic databases. The applicability to multiphase systems is ongoing. We provide several examples related to the calculation of an effective diffusion properties, permeability and effective reaction rate based on a continuum scale based on the pore scale geometry.

  16. Validation of Yoon's Critical Thinking Disposition Instrument.

    PubMed

    Shin, Hyunsook; Park, Chang Gi; Kim, Hyojin

    2015-12-01

    The lack of reliable and valid evaluation tools targeting Korean nursing students' critical thinking (CT) abilities has been reported as one of the barriers to instructing and evaluating students in undergraduate programs. Yoon's Critical Thinking Disposition (YCTD) instrument was developed for Korean nursing students, but few studies have assessed its validity. This study aimed to validate the YCTD. Specifically, the YCTD was assessed to identify its cross-sectional and longitudinal measurement invariance. This was a validation study in which a cross-sectional and longitudinal (prenursing and postnursing practicum) survey was used to validate the YCTD using 345 nursing students at three universities in Seoul, Korea. The participants' CT abilities were assessed using the YCTD before and after completing an established pediatric nursing practicum. The validity of the YCTD was estimated and then group invariance test using multigroup confirmatory factor analysis was performed to confirm the measurement compatibility of multigroups. A test of the seven-factor model showed that the YCTD demonstrated good construct validity. Multigroup confirmatory factor analysis findings for the measurement invariance suggested that this model structure demonstrated strong invariance between groups (i.e., configural, factor loading, and intercept combined) but weak invariance within a group (i.e., configural and factor loading combined). In general, traditional methods for assessing instrument validity have been less than thorough. In this study, multigroup confirmatory factor analysis using cross-sectional and longitudinal measurement data allowed validation of the YCTD. This study concluded that the YCTD can be used for evaluating Korean nursing students' CT abilities. Copyright © 2015. Published by Elsevier B.V.

  17. MPSalsa Version 1.5: A Finite Element Computer Program for Reacting Flow Problems: Part 1 - Theoretical Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devine, K.D.; Hennigan, G.L.; Hutchinson, S.A.

    1999-01-01

    The theoretical background for the finite element computer program, MPSalsa Version 1.5, is presented in detail. MPSalsa is designed to solve laminar or turbulent low Mach number, two- or three-dimensional incompressible and variable density reacting fluid flows on massively parallel computers, using a Petrov-Galerkin finite element formulation. The code has the capability to solve coupled fluid flow (with auxiliary turbulence equations), heat transport, multicomponent species transport, and finite-rate chemical reactions, and to solve coupled multiple Poisson or advection-diffusion-reaction equations. The program employs the CHEMKIN library to provide a rigorous treatment of multicomponent ideal gas kinetics and transport. Chemical reactions occurringmore » in the gas phase and on surfaces are treated by calls to CHEMKIN and SURFACE CHEMK3N, respectively. The code employs unstructured meshes, using the EXODUS II finite element database suite of programs for its input and output files. MPSalsa solves both transient and steady flows by using fully implicit time integration, an inexact Newton method and iterative solvers based on preconditioned Krylov methods as implemented in the Aztec. solver library.« less

  18. Multi-Dimensional Quantum Tunneling and Transport Using the Density-Gradient Model

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Yu, Zhi-Ping; Ancona, Mario; Rafferty, Conor; Saini, Subhash (Technical Monitor)

    1999-01-01

    We show that quantum effects are likely to significantly degrade the performance of MOSFETs (metal oxide semiconductor field effect transistor) as these devices are scaled below 100 nm channel length and 2 nm oxide thickness over the next decade. A general and computationally efficient electronic device model including quantum effects would allow us to monitor and mitigate these effects. Full quantum models are too expensive in multi-dimensions. Using a general but efficient PDE solver called PROPHET, we implemented the density-gradient (DG) quantum correction to the industry-dominant classical drift-diffusion (DD) model. The DG model efficiently includes quantum carrier profile smoothing and tunneling in multi-dimensions and for any electronic device structure. We show that the DG model reduces DD model error from as much as 50% down to a few percent in comparison to thin oxide MOS capacitance measurements. We also show the first DG simulations of gate oxide tunneling and transverse current flow in ultra-scaled MOSFETs. The advantages of rapid model implementation using the PDE solver approach will be demonstrated, as well as the applicability of the DG model to any electronic device structure.

  19. Numerical simulation of supersonic water vapor jet impinging on a flat plate

    NASA Astrophysics Data System (ADS)

    Kuzuu, Kazuto; Aono, Junya; Shima, Eiji

    2012-11-01

    We investigated supersonic water vapor jet impinging on a flat plate through numerical simulation. This simulation is for estimating heating effect of a reusable sounding rocket during vertical landing. The jet from the rocket bottom is supersonic, M=2 to 3, high temperature, T=2000K, and over-expanded. Atmospheric condition is a stationary standard air. The simulation is base on the full Navier-Stokes equations, and the flow is numerically solved by an unstructured compressible flow solver, in-house code LS-FLOW-RG. In this solver, the transport properties of muti-species gas and mass conservation equations of those species are considered. We employed DDES method as a turbulence model. For verification and validation, we also carried out a simulation under the condition of air, and compared with the experimental data. Agreement between our results and the experimental data are satisfactory. Through this simulation, we calculated the flow under some exit pressure conditions, and discuss the effects of pressure ratio on flow structures, heat transfer and so on. Furthermore, we also investigated diffusion effects of water vapor, and we confirmed that these phenomena are generated by the interaction of atmospheric air and affects the heat transfer to the surrounding environment.

  20. Multi-group measurement invariance of the multiple sclerosis walking scale-12?

    PubMed

    Motl, Robert W; Mullen, Sean; McAuley, Edward

    2012-03-01

    One primary assumption underlying the interpretation of composite multiple sclerosis walking scale-12 (MSWS-12) scores across levels of disability status is multi-group measurement invariance. This assumption was tested in the present study between samples that differed in self-reported disability status. Participants (n = 867) completed a battery of questionnaires that included the MSWS-12 and patient-determined disease step (PDDS) scale. The multi-group invariance was tested between samples that had PDDS scores of ≤2 (i.e. no mobility limitation; n = 470) and PDDS scores ≥3 (onset of mobility limitation; n = 397) using Mplus 6·0. The omnibus test of equal covariance matrices indicated that the MSWS-12 was not invariant between the two samples that differed in disability status. The source of non-invariance occurred with the initial equivalence test of the factor structure itself. We provide evidence that questions the unambiguous interpretation of scores from the MSWS-12 as a measure of walking impairment between samples of persons with multiple sclerosis who differ in disability status.

  1. Mixed Legendre moments and discrete scattering cross sections for anisotropy representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calloo, A.; Vidal, J. F.; Le Tellier, R.

    2012-07-01

    This paper deals with the resolution of the integro-differential form of the Boltzmann transport equation for neutron transport in nuclear reactors. In multigroup theory, deterministic codes use transfer cross sections which are expanded on Legendre polynomials. This modelling leads to negative values of the transfer cross section for certain scattering angles, and hence, the multigroup scattering source term is wrongly computed. The first part compares the convergence of 'Legendre-expanded' cross sections with respect to the order used with the method of characteristics (MOC) for Pressurised Water Reactor (PWR) type cells. Furthermore, the cross section is developed using piecewise-constant functions, whichmore » better models the multigroup transfer cross section and prevents the occurrence of any negative value for it. The second part focuses on the method of solving the transport equation with the above-mentioned piecewise-constant cross sections for lattice calculations for PWR cells. This expansion thereby constitutes a 'reference' method to compare the conventional Legendre expansion to, and to determine its pertinence when applied to reactor physics calculations. (authors)« less

  2. Effect of Nonlocal Electron Transport in Both Directions on the Symmetry of Polar-Drive--Ignition Targets

    NASA Astrophysics Data System (ADS)

    Delettrez, J. A.; Collins, T. J. B.; Shvydky, A.; Moses, G.; Cao, D.; Marinak, M. M.

    2012-10-01

    A nonlocal, multigroup diffusion model for thermal electron transportfootnotetextG. P. Schurtz, Ph. D. Nicola"i, and M. Busquet, Phys. Plasmas 7, 4238 (2000). has been added to the 2-D hydrodynamic code DRACO. This model has been applied to simulations of polar-drive (PD) NIF ignition designs. Previous simulations were carried out with a constant flux-limiter model in both the radial and transverse directions. Due to the nonsymmetry of PD illumination, these implosions suffer from low-mode nonuniformities that affect their performance. Nonlocal electron transport in both directions is expected to reduce these nonuniformities. The 2-D thermal electron flux from simulations, using either the nonlocal model or the standard flux-limited approach, will be compared and the effect of the nonlocal transport model on the growth of the nonuniformities and on target performance will be presented. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

  3. Improvements to Busquet's Non LTE algorithm in NRL's Hydro code

    NASA Astrophysics Data System (ADS)

    Klapisch, M.; Colombant, D.

    1996-11-01

    Implementation of the Non LTE model RADIOM (M. Busquet, Phys. Fluids B, 5, 4191 (1993)) in NRL's RAD2D Hydro code in conservative form was reported previously(M. Klapisch et al., Bull. Am. Phys. Soc., 40, 1806 (1995)).While the results were satisfactory, the algorithm was slow and not always converging. We describe here modifications that address the latter two shortcomings. This method is quicker and more stable than the original. It also gives information about the validity of the fitting. It turns out that the number and distribution of groups in the multigroup diffusion opacity tables - a basis for the computation of radiation effects in the ionization balance in RADIOM- has a large influence on the robustness of the algorithm. These modifications give insight about the algorithm, and allow to check that the obtained average charge state is the true average. In addition, code optimization resulted in greatly reduced computing time: The ratio of Non LTE to LTE computing times being now between 1.5 and 2.

  4. Simulations of a Molecular Cloud experiment using CRASH

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Keiter, Paul; Vandervort, Robert; Drake, R. Paul; Shvarts, Dov

    2017-10-01

    Recent laboratory experiments explore molecular cloud radiation hydrodynamics. The experiment irradiates a gold foil with a laser producing x-rays to drive the implosion or explosion of a foam ball. The CRASH code, an Eulerian code with block-adaptive mesh refinement, multigroup diffusive radiation transport, and electron heat conduction developed at the University of Michigan to design and analyze high-energy-density experiments, is used to perform a parameter search in order to identify optically thick, optically thin and transition regimes suitable for these experiments. Specific design issues addressed by the simulations are the x-ray drive temperature, foam density, distance from the x-ray source to the ball, as well as other complicating issues such as the positioning of the stalk holding the foam ball. We present the results of this study and show ways the simulations helped improve the quality of the experiment. This work is funded by the LLNL under subcontract B614207 and NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956.

  5. Design study of long-life PWR using thorium cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subkhi, Moh. Nurul; Su'ud, Zaki; Waris, Abdul

    2012-06-06

    Design study of long-life Pressurized Water Reactor (PWR) using thorium cycle has been performed. Thorium cycle in general has higher conversion ratio in the thermal spectrum domain than uranium cycle. Cell calculation, Burn-up and multigroup diffusion calculation was performed by PIJ-CITATION-SRAC code using libraries based on JENDL 3.2. The neutronic analysis result of infinite cell calculation shows that {sup 231}Pa better than {sup 237}Np as burnable poisons in thorium fuel system. Thorium oxide system with 8%{sup 233}U enrichment and 7.6{approx} 8%{sup 231}Pa is the most suitable fuel for small-long life PWR core because it gives reactivity swing less than 1%{Delta}k/kmore » and longer burn up period (more than 20 year). By using this result, small long-life PWR core can be designed for long time operation with reduced excess reactivity as low as 0.53%{Delta}k/k and reduced power peaking during its operation.« less

  6. Discontinuous Galerkin (DG) Method for solving time dependent convection-diffusion type temperature equation : Demonstration and Comparison with Other Methods in the Mantle Convection Code ASPECT

    NASA Astrophysics Data System (ADS)

    He, Y.; Puckett, E. G.; Billen, M. I.; Kellogg, L. H.

    2016-12-01

    For a convection-dominated system, like convection in the Earth's mantle, accurate modeling of the temperature field in terms of the interaction between convective and diffusive processes is one of the most common numerical challenges. In the geodynamics community using Finite Element Method (FEM) with artificial entropy viscosity is a popular approach to resolve this difficulty, but introduce numerical diffusion. The extra artificial viscosity added into the temperature system will not only oversmooth the temperature field where the convective process dominates, but also change the physical properties by increasing the local material conductivity, which will eventually change the local conservation of energy. Accurate modeling of temperature is especially important in the mantle, where material properties are strongly dependent on temperature. In subduction zones, for example, the rheology of the cold sinking slab depends nonlinearly on the temperature, and physical processes such as slab detachment, rollback, and melting all are sensitively dependent on temperature and rheology. Therefore methods that overly smooth the temperature may inaccurately represent the physical processes governing subduction, lithospheric instabilities, plume generation and other aspects of mantle convection. Here we present a method for modeling the temperature field in mantle dynamics simulations using a new solver implemented in the ASPECT software. The new solver for the temperature equation uses a Discontinuous Galerkin (DG) approach, which combines features of both finite element and finite volume methods, and is particularly suitable for problems satisfying the conservation law, and the solution has a large variation locally. Furthermore, we have applied a post-processing technique to insure that the solution satisfies a local discrete maximum principle in order to eliminate the overshoots and undershoots in the temperature locally. To demonstrate the capabilities of this new method we present benchmark results (e.g., falling sphere), and a simple subduction models with kinematic surface boundary condition. To evaluate the trade-offs in computational speed and solution accuracy we present results for the same benchmarks using the Finite Element entropy viscosity method available in ASPECT.

  7. Continuous-energy eigenvalue sensitivity coefficient calculations in TSUNAMI-3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perfetti, C. M.; Rearden, B. T.

    2013-07-01

    Two methods for calculating eigenvalue sensitivity coefficients in continuous-energy Monte Carlo applications were implemented in the KENO code within the SCALE code package. The methods were used to calculate sensitivity coefficients for several test problems and produced sensitivity coefficients that agreed well with both reference sensitivities and multigroup TSUNAMI-3D sensitivity coefficients. The newly developed CLUTCH method was observed to produce sensitivity coefficients with high figures of merit and a low memory footprint, and both continuous-energy sensitivity methods met or exceeded the accuracy of the multigroup TSUNAMI-3D calculations. (authors)

  8. A new multigroup method for cross-sections that vary rapidly in energy

    DOE PAGES

    Haut, Terry Scot; Ahrens, Cory D.; Jonko, Alexandra; ...

    2016-11-04

    Here, we present a numerical method for solving the time-independent thermal radiative transfer (TRT) equation or the neutron transport (NT) equation when the opacity (cross-section) varies rapidly in frequency (energy) on the microscale ε; ε corresponds to the characteristic spacing between absorption lines or resonances, and is much smaller than the macroscopic frequency (energy) variation of interest. The approach is based on a rigorous homogenization of the TRT/NT equation in the frequency (energy) variable. Discretization of the homogenized TRT/NT equation results in a multigroup-type system, and can therefore be solved by standard methods.

  9. New Methodologies for Generation of Multigroup Cross Sections for Shielding Applications

    NASA Astrophysics Data System (ADS)

    Arzu Alpan, F.; Haghighat, Alireza

    2003-06-01

    Coupled neutron and gamma multigroup (broad-group) libraries used for Light Water Reactor shielding and dosimetry commonly include 47-neutron and 20-gamma groups. These libraries are derived from the 199-neutron, 42-gamma fine-group VITAMIN-B6 library. In this paper, we introduce modifications to the generation procedure of the broad-group libraries. Among these modifications, we show that the fine-group structure and collapsing technique have the largest impact. We demonstrate that a more refined fine-group library and the bi-linear adjoint weighting collapsing technique can improve the accuracy of transport calculation results.

  10. Development of a SCALE Tool for Continuous-Energy Eigenvalue Sensitivity Coefficient Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perfetti, Christopher M; Rearden, Bradley T

    2013-01-01

    Two methods for calculating eigenvalue sensitivity coefficients in continuous-energy Monte Carlo applications were implemented in the KENO code within the SCALE code package. The methods were used to calculate sensitivity coefficients for several criticality safety problems and produced sensitivity coefficients that agreed well with both reference sensitivities and multigroup TSUNAMI-3D sensitivity coefficients. The newly developed CLUTCH method was observed to produce sensitivity coefficients with high figures of merit and low memory requirements, and both continuous-energy sensitivity methods met or exceeded the accuracy of the multigroup TSUNAMI-3D calculations.

  11. Numerical simulations of detonation propagation in gaseous fuel-air mixtures

    NASA Astrophysics Data System (ADS)

    Honhar, Praveen; Kaplan, Carolyn; Houim, Ryan; Oran, Elaine

    2017-11-01

    Unsteady multidimensional numerical simulations of detonation propagation and survival in mixtures of fuel (hydrogen or methane) diluted with air were carried out with a fully compressible Navier-Stokes solver using a simplified chemical-diffusive model (CDM). The CDM was derived using a genetic algorithm combined with the Nelder-Mead optimization algorithm and reproduces physically correct laminar flame and detonation properties. Cases studied are overdriven detonations propagating through confined mediums, with or without gradients in composition. Results from simulations confirm that the survival of the detonation depends on the channel heights. In addition, the simulations show that the propagation of the detonation waves depends on the steepness in composition gradients.

  12. New Developments in the Method of Space-Time Conservation Element and Solution Element-Applications to Two-Dimensional Time-Marching Problems

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Wang, Xiao-Yen; Chow, Chuen-Yen

    1994-01-01

    A new numerical discretization method for solving conservation laws is being developed. This new approach differs substantially in both concept and methodology from the well-established methods, i.e., finite difference, finite volume, finite element, and spectral methods. It is motivated by several important physical/numerical considerations and designed to avoid several key limitations of the above traditional methods. As a result of the above considerations, a set of key principles for the design of numerical schemes was put forth in a previous report. These principles were used to construct several numerical schemes that model a 1-D time-dependent convection-diffusion equation. These schemes were then extended to solve the time-dependent Euler and Navier-Stokes equations of a perfect gas. It was shown that the above schemes compared favorably with the traditional schemes in simplicity, generality, and accuracy. In this report, the 2-D versions of the above schemes, except the Navier-Stokes solver, are constructed using the same set of design principles. Their constructions are simplified greatly by the use of a nontraditional space-time mesh. Its use results in the simplest stencil possible, i.e., a tetrahedron in a 3-D space-time with a vertex at the upper time level and other three at the lower time level. Because of the similarity in their design, each of the present 2-D solvers virtually shares with its 1-D counterpart the same fundamental characteristics. Moreover, it is shown that the present Euler solver is capable of generating highly accurate solutions for a famous 2-D shock reflection problem. Specifically, both the incident and the reflected shocks can be resolved by a single data point without the presence of numerical oscillations near the discontinuity.

  13. A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension

    NASA Astrophysics Data System (ADS)

    Garrick, Daniel P.; Owkes, Mark; Regele, Jonathan D.

    2017-06-01

    Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge-Kutta method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the Continuum Surface Force (CSF) model. Fluxes are upwinded with a modified Harten-Lax-van Leer Contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas-liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach 1.47 and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.

  14. A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrick, Daniel P.; Owkes, Mark; Regele, Jonathan D., E-mail: jregele@iastate.edu

    Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge–Kuttamore » method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the Continuum Surface Force (CSF) model. Fluxes are upwinded with a modified Harten–Lax–van Leer Contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas–liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach 1.47 and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.« less

  15. General purpose nonlinear system solver based on Newton-Krylov method.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2013-12-01

    KINSOL is part of a software family called SUNDIALS: SUite of Nonlinear and Differential/Algebraic equation Solvers [1]. KINSOL is a general-purpose nonlinear system solver based on Newton-Krylov and fixed-point solver technologies [2].

  16. Numerical Investigation of an Oscillating Flat Plate Airfoil

    NASA Astrophysics Data System (ADS)

    Mohaghegh, Fazlolah; Janechek, Matthew; Buchholz, James; Udaykumar, Hs

    2017-11-01

    This research investigates the vortex dynamics of a plunging flat plate airfoil by analyzing the vorticity transport in 2D simulations. A horizontal airfoil is subject to a freestream flow at Re =10000. A prescribed vertical sinusoidal motion is applied to the airfoil. Smoothed Profile Method (SPM) models the fluid-structure interaction. SPM as a diffuse interface model considers a thickness for the interface and applies a smooth transition from solid to fluid. As the forces on the airfoil are highly affected by the interaction of the generated vortices from the surface, it is very important to find out whether a diffuse interface solver can model a flow dominated by vorticities. The results show that variation of lift coefficient with time agrees well with the experiment. Study of vortex evolution shows that similar to experiments, when the plate starts moving downward from top, the boundary layer is attached to the surface and the leading-edge vortex (LEV) is very small. By time, LEV grows and rolls up and a secondary vortex emerges. Meanwhile, the boundary layer starts to separate and finally LEV detaches from the surface. In overall, SPM as a diffuse interface model can predict the lift force and vortex pattern accurately.

  17. An HLLC Riemann solver for resistive relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Miranda-Aranguren, S.; Aloy, M. A.; Rembiasz, T.

    2018-05-01

    We present a new approximate Riemann solver for the augmented system of equations of resistive relativistic magnetohydrodynamics that belongs to the family of Harten-Lax-van Leer contact wave (HLLC) solvers. In HLLC solvers, the solution is approximated by two constant states flanked by two shocks separated by a contact wave. The accuracy of the new approximate solver is calibrated through 1D and 2D test problems.

  18. A computational study of the use of an optimization-based method for simulating large multibody systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petra, C.; Gavrea, B.; Anitescu, M.

    2009-01-01

    The present work aims at comparing the performance of several quadratic programming (QP) solvers for simulating large-scale frictional rigid-body systems. Traditional time-stepping schemes for simulation of multibody systems are formulated as linear complementarity problems (LCPs) with copositive matrices. Such LCPs are generally solved by means of Lemke-type algorithms and solvers such as the PATH solver proved to be robust. However, for large systems, the PATH solver or any other pivotal algorithm becomes unpractical from a computational point of view. The convex relaxation proposed by one of the authors allows the formulation of the integration step as a QPD, for whichmore » a wide variety of state-of-the-art solvers are available. In what follows we report the results obtained solving that subproblem when using the QP solvers MOSEK, OOQP, TRON, and BLMVM. OOQP is presented with both the symmetric indefinite solver MA27 and our Cholesky reformulation using the CHOLMOD package. We investigate computational performance and address the correctness of the results from a modeling point of view. We conclude that the OOQP solver, particularly with the CHOLMOD linear algebra solver, has predictable performance and memory use patterns and is far more competitive for these problems than are the other solvers.« less

  19. Methodes iteratives paralleles: Applications en neutronique et en mecanique des fluides

    NASA Astrophysics Data System (ADS)

    Qaddouri, Abdessamad

    Dans cette these, le calcul parallele est applique successivement a la neutronique et a la mecanique des fluides. Dans chacune de ces deux applications, des methodes iteratives sont utilisees pour resoudre le systeme d'equations algebriques resultant de la discretisation des equations du probleme physique. Dans le probleme de neutronique, le calcul des matrices des probabilites de collision (PC) ainsi qu'un schema iteratif multigroupe utilisant une methode inverse de puissance sont parallelises. Dans le probleme de mecanique des fluides, un code d'elements finis utilisant un algorithme iteratif du type GMRES preconditionne est parallelise. Cette these est presentee sous forme de six articles suivis d'une conclusion. Les cinq premiers articles traitent des applications en neutronique, articles qui representent l'evolution de notre travail dans ce domaine. Cette evolution passe par un calcul parallele des matrices des PC et un algorithme multigroupe parallele teste sur un probleme unidimensionnel (article 1), puis par deux algorithmes paralleles l'un mutiregion l'autre multigroupe, testes sur des problemes bidimensionnels (articles 2--3). Ces deux premieres etapes sont suivies par l'application de deux techniques d'acceleration, le rebalancement neutronique et la minimisation du residu aux deux algorithmes paralleles (article 4). Finalement, on a mis en oeuvre l'algorithme multigroupe et le calcul parallele des matrices des PC sur un code de production DRAGON ou les tests sont plus realistes et peuvent etre tridimensionnels (article 5). Le sixieme article (article 6), consacre a l'application a la mecanique des fluides, traite la parallelisation d'un code d'elements finis FES ou le partitionneur de graphe METIS et la librairie PSPARSLIB sont utilises.

  20. Measurement invariance via multigroup SEM: Issues and solutions with chi-square-difference tests.

    PubMed

    Yuan, Ke-Hai; Chan, Wai

    2016-09-01

    Multigroup structural equation modeling (SEM) plays a key role in studying measurement invariance and in group comparison. When population covariance matrices are deemed not equal across groups, the next step to substantiate measurement invariance is to see whether the sample covariance matrices in all the groups can be adequately fitted by the same factor model, called configural invariance. After configural invariance is established, cross-group equalities of factor loadings, error variances, and factor variances-covariances are then examined in sequence. With mean structures, cross-group equalities of intercepts and factor means are also examined. The established rule is that if the statistic at the current model is not significant at the level of .05, one then moves on to testing the next more restricted model using a chi-square-difference statistic. This article argues that such an established rule is unable to control either Type I or Type II errors. Analysis, an example, and Monte Carlo results show why and how chi-square-difference tests are easily misused. The fundamental issue is that chi-square-difference tests are developed under the assumption that the base model is sufficiently close to the population, and a nonsignificant chi-square statistic tells little about how good the model is. To overcome this issue, this article further proposes that null hypothesis testing in multigroup SEM be replaced by equivalence testing, which allows researchers to effectively control the size of misspecification before moving on to testing a more restricted model. R code is also provided to facilitate the applications of equivalence testing for multigroup SEM. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. Taking into account the impact of attrition on the assessment of response shift and true change: a multigroup structural equation modeling approach.

    PubMed

    Verdam, Mathilde G E; Oort, Frans J; van der Linden, Yvette M; Sprangers, Mirjam A G

    2015-03-01

    Missing data due to attrition present a challenge for the assessment and interpretation of change and response shift in HRQL outcomes. The objective was to handle such missingness and to assess response shift and 'true change' with the use of an attrition-based multigroup structural equation modeling (SEM) approach. Functional limitations and health impairments were measured in 1,157 cancer patients, who were treated with palliative radiotherapy for painful bone metastases, before [time (T) 0], every week after treatment (T1 through T12), and then monthly for up to 2 years (T13 through T24). To handle missing data due to attrition, the SEM procedure was extended to a multigroup approach, in which we distinguished three groups: short survival (3-5 measurements), medium survival (6-12 measurements), and long survival (>12 measurements). Attrition after third, sixth, and 13th measurement occasions was 11, 24, and 41 %, respectively. Results show that patterns of change in functional limitations and health impairments differ between patients with short, medium, or long survival. Moreover, three response-shift effects were detected: recalibration of 'pain' and 'sickness' and reprioritization of 'physical functioning.' If response-shift effects would not have been taken into account, functional limitations and health impairments would generally be underestimated across measurements. The multigroup SEM approach enables the analysis of data from patients with different patterns of missing data due to attrition. This approach does not only allow for detection of response shift and assessment of true change across measurements, but also allow for detection of differences in response shift and true change across groups of patients with different attrition rates.

  2. SMITHERS: An object-oriented modular mapping methodology for MCNP-based neutronic–thermal hydraulic multiphysics

    DOE PAGES

    Richard, Joshua; Galloway, Jack; Fensin, Michael; ...

    2015-04-04

    A novel object-oriented modular mapping methodology for externally coupled neutronics–thermal hydraulics multiphysics simulations was developed. The Simulator using MCNP with Integrated Thermal-Hydraulics for Exploratory Reactor Studies (SMITHERS) code performs on-the-fly mapping of material-wise power distribution tallies implemented by MCNP-based neutron transport/depletion solvers for use in estimating coolant temperature and density distributions with a separate thermal-hydraulic solver. The key development of SMITHERS is that it reconstructs the hierarchical geometry structure of the material-wise power generation tallies from the depletion solver automatically, with only a modicum of additional information required from the user. In addition, it performs the basis mapping from themore » combinatorial geometry of the depletion solver to the required geometry of the thermal-hydraulic solver in a generalizable manner, such that it can transparently accommodate varying levels of thermal-hydraulic solver geometric fidelity, from the nodal geometry of multi-channel analysis solvers to the pin-cell level of discretization for sub-channel analysis solvers.« less

  3. Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion

    NASA Astrophysics Data System (ADS)

    Philip, B.; Wang, Z.; Berrill, M. A.; Birke, M.; Pernice, M.

    2014-04-01

    The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  4. Three-dimensional implementation of the Low Diffusion method for continuum flow simulations

    NASA Astrophysics Data System (ADS)

    Mirza, A.; Nizenkov, P.; Pfeiffer, M.; Fasoulas, S.

    2017-11-01

    Concepts of a particle-based continuum method have existed for many years. The ultimate goal is to couple such a method with the Direct Simulation Monte Carlo (DSMC) in order to bridge the gap of numerical tools in the treatment of the transitional flow regime between near-equilibrium and rarefied gas flows. For this purpose, the Low Diffusion (LD) method, introduced first by Burt and Boyd, offers a promising solution. In this paper, the LD method is revisited and the implementation in a modern particle solver named PICLas is given. The modifications of the LD routines enable three-dimensional continuum flow simulations. The implementation is successfully verified through a series of test cases: simple stationary shock, oblique shock simulation and thermal Couette flow. Additionally, the capability of this method is demonstrated by the simulation of a hypersonic nitrogen flow around a 70°-blunted cone. Overall results are in very good agreement with experimental data. Finally, the scalability of PICLas using LD on a high performance cluster is presented.

  5. FoSSI: the family of simplified solver interfaces for the rapid development of parallel numerical atmosphere and ocean models

    NASA Astrophysics Data System (ADS)

    Frickenhaus, Stephan; Hiller, Wolfgang; Best, Meike

    The portable software FoSSI is introduced that—in combination with additional free solver software packages—allows for an efficient and scalable parallel solution of large sparse linear equations systems arising in finite element model codes. FoSSI is intended to support rapid model code development, completely hiding the complexity of the underlying solver packages. In particular, the model developer need not be an expert in parallelization and is yet free to switch between different solver packages by simple modifications of the interface call. FoSSI offers an efficient and easy, yet flexible interface to several parallel solvers, most of them available on the web, such as PETSC, AZTEC, MUMPS, PILUT and HYPRE. FoSSI makes use of the concept of handles for vectors, matrices, preconditioners and solvers, that is frequently used in solver libraries. Hence, FoSSI allows for a flexible treatment of several linear equations systems and associated preconditioners at the same time, even in parallel on separate MPI-communicators. The second special feature in FoSSI is the task specifier, being a combination of keywords, each configuring a certain phase in the solver setup. This enables the user to control a solver over one unique subroutine. Furthermore, FoSSI has rather similar features for all solvers, making a fast solver intercomparison or exchange an easy task. FoSSI is a community software, proven in an adaptive 2D-atmosphere model and a 3D-primitive equation ocean model, both formulated in finite elements. The present paper discusses perspectives of an OpenMP-implementation of parallel iterative solvers based on domain decomposition methods. This approach to OpenMP solvers is rather attractive, as the code for domain-local operations of factorization, preconditioning and matrix-vector product can be readily taken from a sequential implementation that is also suitable to be used in an MPI-variant. Code development in this direction is in an advanced state under the name ScOPES: the Scalable Open Parallel sparse linear Equations Solver.

  6. A Fast Vector Radiative Transfer Model for Atmospheric and Oceanic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Ding, J.; Yang, P.; King, M. D.; Platnick, S. E.; Meyer, K.

    2017-12-01

    A fast vector radiative transfer model is developed in support of atmospheric and oceanic remote sensing. This model is capable of simulating the Stokes vector observed at the top of the atmosphere (TOA) and the terrestrial surface by considering absorption, scattering, and emission. The gas absorption is parameterized in terms of atmospheric gas concentrations, temperature, and pressure. The parameterization scheme combines a regression method and the correlated-K distribution method, and can easily integrate with multiple scattering computations. The approach is more than four orders of magnitude faster than a line-by-line radiative transfer model with errors less than 0.5% in terms of transmissivity. A two-component approach is utilized to solve the vector radiative transfer equation (VRTE). The VRTE solver separates the phase matrices of aerosol and cloud into forward and diffuse parts and thus the solution is also separated. The forward solution can be expressed by a semi-analytical equation based on the small-angle approximation, and serves as the source of the diffuse part. The diffuse part is solved by the adding-doubling method. The adding-doubling implementation is computationally efficient because the diffuse component needs much fewer spherical function expansion terms. The simulated Stokes vector at both the TOA and the surface have comparable accuracy compared with the counterparts based on numerically rigorous methods.

  7. Transport dissipative particle dynamics model for mesoscopic advection- diffusion-reaction problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhen, Li; Yazdani, Alireza; Tartakovsky, Alexandre M.

    2015-07-07

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic DPD framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between particles, and an analytical formula is proposed to relate the mesoscopic concentration friction to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPDmore » simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers.« less

  8. Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations

    NASA Astrophysics Data System (ADS)

    Moghaderi, Hamid; Dehghan, Mehdi; Donatelli, Marco; Mazza, Mariarosa

    2017-12-01

    Fractional diffusion equations (FDEs) are a mathematical tool used for describing some special diffusion phenomena arising in many different applications like porous media and computational finance. In this paper, we focus on a two-dimensional space-FDE problem discretized by means of a second order finite difference scheme obtained as combination of the Crank-Nicolson scheme and the so-called weighted and shifted Grünwald formula. By fully exploiting the Toeplitz-like structure of the resulting linear system, we provide a detailed spectral analysis of the coefficient matrix at each time step, both in the case of constant and variable diffusion coefficients. Such a spectral analysis has a very crucial role, since it can be used for designing fast and robust iterative solvers. In particular, we employ the obtained spectral information to define a Galerkin multigrid method based on the classical linear interpolation as grid transfer operator and damped-Jacobi as smoother, and to prove the linear convergence rate of the corresponding two-grid method. The theoretical analysis suggests that the proposed grid transfer operator is strong enough for working also with the V-cycle method and the geometric multigrid. On this basis, we introduce two computationally favourable variants of the proposed multigrid method and we use them as preconditioners for Krylov methods. Several numerical results confirm that the resulting preconditioning strategies still keep a linear convergence rate.

  9. Multigroup cross section library for GFR2400

    NASA Astrophysics Data System (ADS)

    Čerba, Štefan; Vrban, Branislav; Lüley, Jakub; Haščík, Ján; Nečas, Vladimír

    2017-09-01

    In this paper the development and optimization of the SBJ_E71 multigroup cross section library for GFR2400 applications is discussed. A cross section processing scheme, merging Monte Carlo and deterministic codes, was developed. Several fine and coarse group structures and two weighting flux options were analysed through 18 benchmark experiments selected from the handbook of ICSBEP and based on performed similarity assessments. The performance of the collapsed version of the SBJ_E71 library was compared with MCNP5 CE ENDF/B VII.1 and the Korean KAFAX-E70 library. The comparison was made based on integral parameters of calculations performed on full core homogenous models.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollaeger, Ryan T.; Van Rossum, Daniel R., E-mail: wollaeger@wisc.edu, E-mail: daan@flash.uchicago.edu

    Implicit Monte Carlo (IMC) and Discrete Diffusion Monte Carlo (DDMC) are methods used to stochastically solve the radiative transport and diffusion equations, respectively. These methods combine into a hybrid transport-diffusion method we refer to as IMC-DDMC. We explore a multigroup IMC-DDMC scheme that in DDMC, combines frequency groups with sufficient optical thickness. We term this procedure ''opacity regrouping''. Opacity regrouping has previously been applied to IMC-DDMC calculations for problems in which the dependence of the opacity on frequency is monotonic. We generalize opacity regrouping to non-contiguous groups and implement this in SuperNu, a code designed to do radiation transport inmore » high-velocity outflows with non-monotonic opacities. We find that regrouping of non-contiguous opacity groups generally improves the speed of IMC-DDMC radiation transport. We present an asymptotic analysis that informs the nature of the Doppler shift in DDMC groups and summarize the derivation of the Gentile-Fleck factor for modified IMC-DDMC. We test SuperNu using numerical experiments including a quasi-manufactured analytic solution, a simple 10 group problem, and the W7 problem for Type Ia supernovae. We find that opacity regrouping is necessary to make our IMC-DDMC implementation feasible for the W7 problem and possibly Type Ia supernova simulations in general. We compare the bolometric light curves and spectra produced by the SuperNu and PHOENIX radiation transport codes for the W7 problem. The overall shape of the bolometric light curves are in good agreement, as are the spectra and their evolution with time. However, for the numerical specifications we considered, we find that the peak luminosity of the light curve calculated using SuperNu is ∼10% less than that calculated using PHOENIX.« less

  11. Radiation Transport for Explosive Outflows: Opacity Regrouping

    NASA Astrophysics Data System (ADS)

    Wollaeger, Ryan T.; van Rossum, Daniel R.

    2014-10-01

    Implicit Monte Carlo (IMC) and Discrete Diffusion Monte Carlo (DDMC) are methods used to stochastically solve the radiative transport and diffusion equations, respectively. These methods combine into a hybrid transport-diffusion method we refer to as IMC-DDMC. We explore a multigroup IMC-DDMC scheme that in DDMC, combines frequency groups with sufficient optical thickness. We term this procedure "opacity regrouping." Opacity regrouping has previously been applied to IMC-DDMC calculations for problems in which the dependence of the opacity on frequency is monotonic. We generalize opacity regrouping to non-contiguous groups and implement this in SuperNu, a code designed to do radiation transport in high-velocity outflows with non-monotonic opacities. We find that regrouping of non-contiguous opacity groups generally improves the speed of IMC-DDMC radiation transport. We present an asymptotic analysis that informs the nature of the Doppler shift in DDMC groups and summarize the derivation of the Gentile-Fleck factor for modified IMC-DDMC. We test SuperNu using numerical experiments including a quasi-manufactured analytic solution, a simple 10 group problem, and the W7 problem for Type Ia supernovae. We find that opacity regrouping is necessary to make our IMC-DDMC implementation feasible for the W7 problem and possibly Type Ia supernova simulations in general. We compare the bolometric light curves and spectra produced by the SuperNu and PHOENIX radiation transport codes for the W7 problem. The overall shape of the bolometric light curves are in good agreement, as are the spectra and their evolution with time. However, for the numerical specifications we considered, we find that the peak luminosity of the light curve calculated using SuperNu is ~10% less than that calculated using PHOENIX.

  12. The Group-Level Consequences of Sexual Conflict in Multigroup Populations

    PubMed Central

    Eldakar, Omar Tonsi; Gallup, Andrew C.

    2011-01-01

    In typical sexual conflict scenarios, males best equipped to exploit females are favored locally over more prudent males, despite reducing female fitness. However, local advantage is not the only relevant form of selection. In multigroup populations, groups with less sexual conflict will contribute more offspring to the next generation than higher conflict groups, countering the local advantage of harmful males. Here, we varied male aggression within-and between-groups in a laboratory population of water striders and measured resulting differences in local population growth over a period of three weeks. The overall pool fitness (i.e., adults produced) of less aggressive pools exceeded that of high aggression pools by a factor of three, with the high aggression pools essentially experiencing no population growth over the course of the study. When comparing the fitness of individuals across groups, aggression appeared to be under stabilizing selection in the multigroup population. The use of contextual analysis revealed that overall stabilizing selection was a product of selection favoring aggression within groups, but selected against it at the group-level. Therefore, this report provides further evidence to show that what evolves in the total population is not merely an extension of within-group dynamics. PMID:22039491

  13. MT71x: Multi-Temperature Library Based on ENDF/B-VII.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conlin, Jeremy Lloyd; Parsons, Donald Kent; Gray, Mark Girard

    The Nuclear Data Team has released a multitemperature transport library, MT71x, based upon ENDF/B-VII.1 with a few modifications as well as additional evaluations for a total of 427 isotope tables. The library was processed using NJOY2012.39 into 23 temperatures. MT71x consists of two sub-libraries; MT71xMG for multigroup energy representation data and MT71xCE for continuous energy representation data. These sub-libraries are suitable for deterministic transport and Monte Carlo transport applications, respectively. The SZAs used are the same for the two sub-libraries; that is, the same SZA can be used for both libraries. This makes comparisons between the two libraries and betweenmore » deterministic and Monte Carlo codes straightforward. Both the multigroup energy and continuous energy libraries were verified and validated with our checking codes checkmg and checkace (multigroup and continuous energy, respectively) Then an expanded suite of tests was used for additional verification and, finally, verified using an extensive suite of critical benchmark models. We feel that this library is suitable for all calculations and is particularly useful for calculations sensitive to temperature effects.« less

  14. Multi-group acculturation orientations in a changing context: Palestinian Christian Arab adolescents in Israel after the lost decade.

    PubMed

    Munayer, Salim J; Horenczyk, Gabriel

    2014-10-01

    Grounded in a contextual approach to acculturation of minorities, this study examines changes in acculturation orientations among Palestinian Christian Arab adolescents in Israel following the "lost decade of Arab-Jewish coexistence." Multi-group acculturation orientations among 237 respondents were assessed vis-à-vis two majorities--Muslim Arabs and Israeli Jews--and compared to 1998 data. Separation was the strongest endorsed orientation towards both majority groups. Comparisons with the 1998 data also show a weakening of the Integration attitude towards Israeli Jews, and also distancing from Muslim Arabs. For the examination of the "Westernisation" hypothesis, multi-dimensional scaling (MDS) analyses of perceptions of Self and group values clearly showed that, after 10 years, Palestinian Christian Arabs perceive Israeli Jewish culture as less close to Western culture, and that Self and the Christian Arab group have become much closer, suggesting an increasing identification of Palestinian Christian Arab adolescents with their ethnoreligious culture. We discuss the value of a multi-group, multi-method, and multi-wave approach to the examination of the role of the political context in acculturation processes. © 2014 International Union of Psychological Science.

  15. Geospatial Data Fusion and Multigroup Decision Support for Surface Water Quality Management

    NASA Astrophysics Data System (ADS)

    Sun, A. Y.; Osidele, O.; Green, R. T.; Xie, H.

    2010-12-01

    Social networking and social media have gained significant popularity and brought fundamental changes to many facets of our everyday life. With the ever-increasing adoption of GPS-enabled gadgets and technology, location-based content is likely to play a central role in social networking sites. While location-based content is not new to the geoscience community, where geographic information systems (GIS) are extensively used, the delivery of useful geospatial data to targeted user groups for decision support is new. Decision makers and modelers ought to make more effective use of the new web-based tools to expand the scope of environmental awareness education, public outreach, and stakeholder interaction. Environmental decision processes are often rife with uncertainty and controversy, requiring integration of multiple sources of information and compromises between diverse interests. Fusing of multisource, multiscale environmental data for multigroup decision support is a challenging task. Toward this goal, a multigroup decision support platform should strive to achieve transparency, impartiality, and timely synthesis of information. The latter criterion often constitutes a major technical bottleneck to traditional GIS-based media, featuring large file or image sizes and requiring special processing before web deployment. Many tools and design patterns have appeared in recent years to ease the situation somewhat. In this project, we explore the use of Web 2.0 technologies for “pushing” location-based content to multigroups involved in surface water quality management and decision making. In particular, our granular bottom-up approach facilitates effective delivery of information to most relevant user groups. Our location-based content includes in-situ and remotely sensed data disseminated by NASA and other national and local agencies. Our project is demonstrated for managing the total maximum daily load (TMDL) program in the Arroyo Colorado coastal river basin in Texas. The overall design focuses on assigning spatial information to decision support elements and on efficiently using Web 2.0 technologies to relay scientific information to the nonscientific community. We conclude that (i) social networking, if appropriately used, has great potential for mitigating difficulty associated with multigroup decision making; (ii) all potential stakeholder groups should be involved in creating a useful decision support system; and (iii) environmental decision support systems should be considered a must-have, instead of an optional component of TMDL decision support projects. Acknowledgment: This project was supported by NASA grant NNX09AR63G.

  16. A Newton-Krylov solver for fast spin-up of online ocean tracers

    NASA Astrophysics Data System (ADS)

    Lindsay, Keith

    2017-01-01

    We present a Newton-Krylov based solver to efficiently spin up tracers in an online ocean model. We demonstrate that the solver converges, that tracer simulations initialized with the solution from the solver have small drift, and that the solver takes orders of magnitude less computational time than the brute force spin-up approach. To demonstrate the application of the solver, we use it to efficiently spin up the tracer ideal age with respect to the circulation from different time intervals in a long physics run. We then evaluate how the spun-up ideal age tracer depends on the duration of the physics run, i.e., on how equilibrated the circulation is.

  17. Oasis: A high-level/high-performance open source Navier-Stokes solver

    NASA Astrophysics Data System (ADS)

    Mortensen, Mikael; Valen-Sendstad, Kristian

    2015-03-01

    Oasis is a high-level/high-performance finite element Navier-Stokes solver written from scratch in Python using building blocks from the FEniCS project (fenicsproject.org). The solver is unstructured and targets large-scale applications in complex geometries on massively parallel clusters. Oasis utilizes MPI and interfaces, through FEniCS, to the linear algebra backend PETSc. Oasis advocates a high-level, programmable user interface through the creation of highly flexible Python modules for new problems. Through the high-level Python interface the user is placed in complete control of every aspect of the solver. A version of the solver, that is using piecewise linear elements for both velocity and pressure, is shown to reproduce very well the classical, spectral, turbulent channel simulations of Moser et al. (1999). The computational speed is strongly dominated by the iterative solvers provided by the linear algebra backend, which is arguably the best performance any similar implicit solver using PETSc may hope for. Higher order accuracy is also demonstrated and new solvers may be easily added within the same framework.

  18. The Use of Sparse Direct Solver in Vector Finite Element Modeling for Calculating Two Dimensional (2-D) Magnetotelluric Responses in Transverse Electric (TE) Mode

    NASA Astrophysics Data System (ADS)

    Yihaa Roodhiyah, Lisa’; Tjong, Tiffany; Nurhasan; Sutarno, D.

    2018-04-01

    The late research, linear matrices of vector finite element in two dimensional(2-D) magnetotelluric (MT) responses modeling was solved by non-sparse direct solver in TE mode. Nevertheless, there is some weakness which have to be improved especially accuracy in the low frequency (10-3 Hz-10-5 Hz) which is not achieved yet and high cost computation in dense mesh. In this work, the solver which is used is sparse direct solver instead of non-sparse direct solverto overcome the weaknesses of solving linear matrices of vector finite element metod using non-sparse direct solver. Sparse direct solver will be advantageous in solving linear matrices of vector finite element method because of the matrix properties which is symmetrical and sparse. The validation of sparse direct solver in solving linear matrices of vector finite element has been done for a homogen half-space model and vertical contact model by analytical solution. Thevalidation result of sparse direct solver in solving linear matrices of vector finite element shows that sparse direct solver is more stable than non-sparse direct solver in computing linear problem of vector finite element method especially in low frequency. In the end, the accuracy of 2D MT responses modelling in low frequency (10-3 Hz-10-5 Hz) has been reached out under the efficient allocation memory of array and less computational time consuming.

  19. Asymptotically and exactly energy balanced augmented flux-ADER schemes with application to hyperbolic conservation laws with geometric source terms

    NASA Astrophysics Data System (ADS)

    Navas-Montilla, A.; Murillo, J.

    2016-07-01

    In this work, an arbitrary order HLL-type numerical scheme is constructed using the flux-ADER methodology. The proposed scheme is based on an augmented Derivative Riemann solver that was used for the first time in Navas-Montilla and Murillo (2015) [1]. Such solver, hereafter referred to as Flux-Source (FS) solver, was conceived as a high order extension of the augmented Roe solver and led to the generation of a novel numerical scheme called AR-ADER scheme. Here, we provide a general definition of the FS solver independently of the Riemann solver used in it. Moreover, a simplified version of the solver, referred to as Linearized-Flux-Source (LFS) solver, is presented. This novel version of the FS solver allows to compute the solution without requiring reconstruction of derivatives of the fluxes, nevertheless some drawbacks are evidenced. In contrast to other previously defined Derivative Riemann solvers, the proposed FS and LFS solvers take into account the presence of the source term in the resolution of the Derivative Riemann Problem (DRP), which is of particular interest when dealing with geometric source terms. When applied to the shallow water equations, the proposed HLLS-ADER and AR-ADER schemes can be constructed to fulfill the exactly well-balanced property, showing that an arbitrary quadrature of the integral of the source inside the cell does not ensure energy balanced solutions. As a result of this work, energy balanced flux-ADER schemes that provide the exact solution for steady cases and that converge to the exact solution with arbitrary order for transient cases are constructed.

  20. Progress in development of HEDP capabilities in FLASH's Unsplit Staggered Mesh MHD solver

    NASA Astrophysics Data System (ADS)

    Lee, D.; Xia, G.; Daley, C.; Dubey, A.; Gopal, S.; Graziani, C.; Lamb, D.; Weide, K.

    2011-11-01

    FLASH is a publicly available astrophysical community code designed to solve highly compressible multi-physics reactive flows. We are adding capabilities to FLASH that will make it an open science code for the academic HEDP community. Among many important numerical requirements, we consider the following features to be important components necessary to meet our goals for FLASH as an HEDP open toolset. First, we are developing computationally efficient time-stepping integration methods that overcome the stiffness that arises in the equations describing a physical problem when there are disparate time scales. To this end, we are adding two different time-stepping schemes to FLASH that relax the time step limit when diffusive effects are present: an explicit super-time-stepping algorithm (Alexiades et al. in Com. Num. Mech. Eng. 12:31-42, 1996) and a Jacobian-Free Newton-Krylov implicit formulation. These two methods will be integrated into a robust, efficient, and high-order accurate Unsplit Staggered Mesh MHD (USM) solver (Lee and Deane in J. Comput. Phys. 227, 2009). Second, we have implemented an anisotropic Spitzer-Braginskii conductivity model to treat thermal heat conduction along magnetic field lines. Finally, we are implementing the Biermann Battery term to account for spontaneous generation of magnetic fields in the presence of non-parallel temperature and density gradients.

  1. Two-dimensional CFD modeling of wave rotor flow dynamics

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.; Chima, Rodrick V.

    1994-01-01

    A two-dimensional Navier-Stokes solver developed for detailed study of wave rotor flow dynamics is described. The CFD model is helping characterize important loss mechanisms within the wave rotor. The wave rotor stationary ports and the moving rotor passages are resolved on multiple computational grid blocks. The finite-volume form of the thin-layer Navier-Stokes equations with laminar viscosity are integrated in time using a four-stage Runge-Kutta scheme. Roe's approximate Riemann solution scheme or the computationally less expensive advection upstream splitting method (AUSM) flux-splitting scheme is used to effect upwind-differencing of the inviscid flux terms, using cell interface primitive variables set by MUSCL-type interpolation. The diffusion terms are central-differenced. The solver is validated using a steady shock/laminar boundary layer interaction problem and an unsteady, inviscid wave rotor passage gradual opening problem. A model inlet port/passage charging problem is simulated and key features of the unsteady wave rotor flow field are identified. Lastly, the medium pressure inlet port and high pressure outlet port portion of the NASA Lewis Research Center experimental divider cycle is simulated and computed results are compared with experimental measurements. The model accurately predicts the wave timing within the rotor passages and the distribution of flow variables in the stationary inlet port region.

  2. Two-dimensional CFD modeling of wave rotor flow dynamics

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.; Chima, Rodrick V.

    1993-01-01

    A two-dimensional Navier-Stokes solver developed for detailed study of wave rotor flow dynamics is described. The CFD model is helping characterize important loss mechanisms within the wave rotor. The wave rotor stationary ports and the moving rotor passages are resolved on multiple computational grid blocks. The finite-volume form of the thin-layer Navier-Stokes equations with laminar viscosity are integrated in time using a four-stage Runge-Kutta scheme. The Roe approximate Riemann solution scheme or the computationally less expensive Advection Upstream Splitting Method (AUSM) flux-splitting scheme are used to effect upwind-differencing of the inviscid flux terms, using cell interface primitive variables set by MUSCL-type interpolation. The diffusion terms are central-differenced. The solver is validated using a steady shock/laminar boundary layer interaction problem and an unsteady, inviscid wave rotor passage gradual opening problem. A model inlet port/passage charging problem is simulated and key features of the unsteady wave rotor flow field are identified. Lastly, the medium pressure inlet port and high pressure outlet port portion of the NASA Lewis Research Center experimental divider cycle is simulated and computed results are compared with experimental measurements. The model accurately predicts the wave timing within the rotor passage and the distribution of flow variables in the stationary inlet port region.

  3. A Stabilized Finite Element Method for Modified Poisson-Nernst-Planck Equations to Determine Ion Flow Through a Nanopore

    PubMed Central

    Chaudhry, Jehanzeb Hameed; Comer, Jeffrey; Aksimentiev, Aleksei; Olson, Luke N.

    2013-01-01

    The conventional Poisson-Nernst-Planck equations do not account for the finite size of ions explicitly. This leads to solutions featuring unrealistically high ionic concentrations in the regions subject to external potentials, in particular, near highly charged surfaces. A modified form of the Poisson-Nernst-Planck equations accounts for steric effects and results in solutions with finite ion concentrations. Here, we evaluate numerical methods for solving the modified Poisson-Nernst-Planck equations by modeling electric field-driven transport of ions through a nanopore. We describe a novel, robust finite element solver that combines the applications of the Newton's method to the nonlinear Galerkin form of the equations, augmented with stabilization terms to appropriately handle the drift-diffusion processes. To make direct comparison with particle-based simulations possible, our method is specifically designed to produce solutions under periodic boundary conditions and to conserve the number of ions in the solution domain. We test our finite element solver on a set of challenging numerical experiments that include calculations of the ion distribution in a volume confined between two charged plates, calculations of the ionic current though a nanopore subject to an external electric field, and modeling the effect of a DNA molecule on the ion concentration and nanopore current. PMID:24363784

  4. Highly Efficient Parallel Multigrid Solver For Large-Scale Simulation of Grain Growth Using the Structural Phase Field Crystal Model

    NASA Astrophysics Data System (ADS)

    Guan, Zhen; Pekurovsky, Dmitry; Luce, Jason; Thornton, Katsuyo; Lowengrub, John

    The structural phase field crystal (XPFC) model can be used to model grain growth in polycrystalline materials at diffusive time-scales while maintaining atomic scale resolution. However, the governing equation of the XPFC model is an integral-partial-differential-equation (IPDE), which poses challenges in implementation onto high performance computing (HPC) platforms. In collaboration with the XSEDE Extended Collaborative Support Service, we developed a distributed memory HPC solver for the XPFC model, which combines parallel multigrid and P3DFFT. The performance benchmarking on the Stampede supercomputer indicates near linear strong and weak scaling for both multigrid and transfer time between multigrid and FFT modules up to 1024 cores. Scalability of the FFT module begins to decline at 128 cores, but it is sufficient for the type of problem we will be examining. We have demonstrated simulations using 1024 cores, and we expect to achieve 4096 cores and beyond. Ongoing work involves optimization of MPI/OpenMP-based codes for the Intel KNL Many-Core Architecture. This optimizes the code for coming pre-exascale systems, in particular many-core systems such as Stampede 2.0 and Cori 2 at NERSC, without sacrificing efficiency on other general HPC systems.

  5. Transport Equation Based Wall Distance Computations Aimed at Flows With Time-Dependent Geometry

    NASA Technical Reports Server (NTRS)

    Tucker, Paul G.; Rumsey, Christopher L.; Bartels, Robert E.; Biedron, Robert T.

    2003-01-01

    Eikonal, Hamilton-Jacobi and Poisson equations can be used for economical nearest wall distance computation and modification. Economical computations may be especially useful for aeroelastic and adaptive grid problems for which the grid deforms, and the nearest wall distance needs to be repeatedly computed. Modifications are directed at remedying turbulence model defects. For complex grid structures, implementation of the Eikonal and Hamilton-Jacobi approaches is not straightforward. This prohibits their use in industrial CFD solvers. However, both the Eikonal and Hamilton-Jacobi equations can be written in advection and advection-diffusion forms, respectively. These, like the Poisson s Laplacian, are commonly occurring industrial CFD solver elements. Use of the NASA CFL3D code to solve the Eikonal and Hamilton-Jacobi equations in advective-based forms is explored. The advection-based distance equations are found to have robust convergence. Geometries studied include single and two element airfoils, wing body and double delta configurations along with a complex electronics system. It is shown that for Eikonal accuracy, upwind metric differences are required. The Poisson approach is found effective and, since it does not require offset metric evaluations, easiest to implement. The sensitivity of flow solutions to wall distance assumptions is explored. Generally, results are not greatly affected by wall distance traits.

  6. Transport Equation Based Wall Distance Computations Aimed at Flows With Time-Dependent Geometry

    NASA Technical Reports Server (NTRS)

    Tucker, Paul G.; Rumsey, Christopher L.; Bartels, Robert E.; Biedron, Robert T.

    2003-01-01

    Eikonal, Hamilton-Jacobi and Poisson equations can be used for economical nearest wall distance computation and modification. Economical computations may be especially useful for aeroelastic and adaptive grid problems for which the grid deforms, and the nearest wall distance needs to be repeatedly computed. Modifications are directed at remedying turbulence model defects. For complex grid structures, implementation of the Eikonal and Hamilton-Jacobi approaches is not straightforward. This prohibits their use in industrial CFD solvers. However, both the Eikonal and Hamilton-Jacobi equations can be written in advection and advection-diffusion forms, respectively. These, like the Poisson's Laplacian, are commonly occurring industrial CFD solver elements. Use of the NASA CFL3D code to solve the Eikonal and Hamilton-Jacobi equations in advective-based forms is explored. The advection-based distance equations are found to have robust convergence. Geometries studied include single and two element airfoils, wing body and double delta configurations along with a complex electronics system. It is shown that for Eikonal accuracy, upwind metric differences are required. The Poisson approach is found effective and, since it does not require offset metric evaluations, easiest to implement. The sensitivity of flow solutions to wall distance assumptions is explored. Generally, results are not greatly affected by wall distance traits.

  7. High Maneuverability Airframe: Investigation of Fin and Canard Sizing for Optimum Maneuverability

    DTIC Science & Technology

    2014-09-01

    overset grids (unified- grid); 5) total variation diminishing discretization based on a new multidimensional interpolation framework; 6) Riemann solvers to...Aerodynamics .........................................................................................3 3.1.1 Solver ...describes the methodology used for the simulations. 3.1.1 Solver The double-precision solver of a commercially available code, CFD ++ v12.1.1, 9

  8. A fast direct solver for a class of two-dimensional separable elliptic equations on the sphere

    NASA Technical Reports Server (NTRS)

    Moorthi, Shrinivas; Higgins, R. Wayne

    1992-01-01

    An efficient, direct, second-order solver for the discrete solution of two-dimensional separable elliptic equations on the sphere is presented. The method involves a Fourier transformation in longitude and a direct solution of the resulting coupled second-order finite difference equations in latitude. The solver is made efficient by vectorizing over longitudinal wavenumber and by using a vectorized fast Fourier transform routine. It is evaluated using a prescribed solution method and compared with a multigrid solver and the standard direct solver from FISHPAK.

  9. Development of axisymmetric lattice Boltzmann flux solver for complex multiphase flows

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Shu, Chang; Yang, Li-Ming; Yuan, Hai-Zhuan

    2018-05-01

    This paper presents an axisymmetric lattice Boltzmann flux solver (LBFS) for simulating axisymmetric multiphase flows. In the solver, the two-dimensional (2D) multiphase LBFS is applied to reconstruct macroscopic fluxes excluding axisymmetric effects. Source terms accounting for axisymmetric effects are introduced directly into the governing equations. As compared to conventional axisymmetric multiphase lattice Boltzmann (LB) method, the present solver has the kinetic feature for flux evaluation and avoids complex derivations of external forcing terms. In addition, the present solver also saves considerable computational efforts in comparison with three-dimensional (3D) computations. The capability of the proposed solver in simulating complex multiphase flows is demonstrated by studying single bubble rising in a circular tube. The obtained results compare well with the published data.

  10. Real-time scene and signature generation for ladar and imaging sensors

    NASA Astrophysics Data System (ADS)

    Swierkowski, Leszek; Christie, Chad L.; Antanovskii, Leonid; Gouthas, Efthimios

    2014-05-01

    This paper describes development of two key functionalities within the VIRSuite scene simulation program, broadening its scene generation capabilities and increasing accuracy of thermal signatures. Firstly, a new LADAR scene generation module has been designed. It is capable of simulating range imagery for Geiger mode LADAR, in addition to the already existing functionality for linear mode systems. Furthermore, a new 3D heat diffusion solver has been developed within the VIRSuite signature prediction module. It is capable of calculating the temperature distribution in complex three-dimensional objects for enhanced dynamic prediction of thermal signatures. With these enhancements, VIRSuite is now a robust tool for conducting dynamic simulation for missiles with multi-mode seekers.

  11. Wind-US Flow Calculations for the M2129 S-Duct Using Structured and Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Mohler, Stanley R., Jr.

    2003-01-01

    Computational Fluid Dynamics (CFD) flow solutions for the M2129 diffusing S-duct with and without vane effectors were computed by the Wind-US flow solver. Both structured and unstructured 3-D grids were used. Without vane effectors, the duct exhibited massive flow separation in both experiment and CFD. With vane effectors installed, the flow remained attached and aerodynamic losses were reduced. Total pressure recovery and distortion near the duct outlet were computed from the solutions and compared favorably to experimental values. These calculations are part of a validation effort for the Wind-US code. They also provide an example case to aid engineers in learning to use the Wind-US software.

  12. Differences in the Processes of Solving Physics Problems between Good Physics Problem Solvers and Poor Physics Problem Solvers.

    ERIC Educational Resources Information Center

    Finegold, M.; Mass, R.

    1985-01-01

    Good problem solvers and poor problem solvers in advanced physics (N=8) were significantly different in their ability in translating, planning, and physical reasoning, as well as in problem solving time; no differences in reliance on algebraic solutions and checking problems were noted. Implications for physics teaching are discussed. (DH)

  13. Acceleration of FDTD mode solver by high-performance computing techniques.

    PubMed

    Han, Lin; Xi, Yanping; Huang, Wei-Ping

    2010-06-21

    A two-dimensional (2D) compact finite-difference time-domain (FDTD) mode solver is developed based on wave equation formalism in combination with the matrix pencil method (MPM). The method is validated for calculation of both real guided and complex leaky modes of typical optical waveguides against the bench-mark finite-difference (FD) eigen mode solver. By taking advantage of the inherent parallel nature of the FDTD algorithm, the mode solver is implemented on graphics processing units (GPUs) using the compute unified device architecture (CUDA). It is demonstrated that the high-performance computing technique leads to significant acceleration of the FDTD mode solver with more than 30 times improvement in computational efficiency in comparison with the conventional FDTD mode solver running on CPU of a standard desktop computer. The computational efficiency of the accelerated FDTD method is in the same order of magnitude of the standard finite-difference eigen mode solver and yet require much less memory (e.g., less than 10%). Therefore, the new method may serve as an efficient, accurate and robust tool for mode calculation of optical waveguides even when the conventional eigen value mode solvers are no longer applicable due to memory limitation.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gearhart, Jared Lee; Adair, Kristin Lynn; Durfee, Justin David.

    When developing linear programming models, issues such as budget limitations, customer requirements, or licensing may preclude the use of commercial linear programming solvers. In such cases, one option is to use an open-source linear programming solver. A survey of linear programming tools was conducted to identify potential open-source solvers. From this survey, four open-source solvers were tested using a collection of linear programming test problems and the results were compared to IBM ILOG CPLEX Optimizer (CPLEX) [1], an industry standard. The solvers considered were: COIN-OR Linear Programming (CLP) [2], [3], GNU Linear Programming Kit (GLPK) [4], lp_solve [5] and Modularmore » In-core Nonlinear Optimization System (MINOS) [6]. As no open-source solver outperforms CPLEX, this study demonstrates the power of commercial linear programming software. CLP was found to be the top performing open-source solver considered in terms of capability and speed. GLPK also performed well but cannot match the speed of CLP or CPLEX. lp_solve and MINOS were considerably slower and encountered issues when solving several test problems.« less

  15. Generalized conjugate-gradient methods for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing

    1991-01-01

    A generalized conjugate-gradient method is used to solve the two-dimensional, compressible Navier-Stokes equations of fluid flow. The equations are discretized with an implicit, upwind finite-volume formulation. Preconditioning techniques are incorporated into the new solver to accelerate convergence of the overall iterative method. The superiority of the new solver is demonstrated by comparisons with a conventional line Gauss-Siedel Relaxation solver. Computational test results for transonic flow (trailing edge flow in a transonic turbine cascade) and hypersonic flow (M = 6.0 shock-on-shock phenoena on a cylindrical leading edge) are presented. When applied to the transonic cascade case, the new solver is 4.4 times faster in terms of number of iterations and 3.1 times faster in terms of CPU time than the Relaxation solver. For the hypersonic shock case, the new solver is 3.0 times faster in terms of number of iterations and 2.2 times faster in terms of CPU time than the Relaxation solver.

  16. Multigroup SIR epidemic model with stochastic perturbation

    NASA Astrophysics Data System (ADS)

    Ji, Chunyan; Jiang, Daqing; Shi, Ningzhong

    2011-05-01

    In this paper, we discuss a multigroup SIR model with stochastic perturbation. We deduce the globally asymptotic stability of the disease-free equilibrium when R0≤1, which means the disease will die out. On the other hand, when R0>1, we derive the disease will prevail, which is measured through the difference between the solution and the endemic equilibrium of the deterministic model in time average. Furthermore, we prove the system is persistent in the mean which also reflects the disease will prevail. The key to our analysis is choosing appropriate Lyapunov functions. Finally, we illustrate the dynamic behavior of the model with n=2 and their approximations via a range of numerical experiments.

  17. Shape reanalysis and sensitivities utilizing preconditioned iterative boundary solvers

    NASA Technical Reports Server (NTRS)

    Guru Prasad, K.; Kane, J. H.

    1992-01-01

    The computational advantages associated with the utilization of preconditined iterative equation solvers are quantified for the reanalysis of perturbed shapes using continuum structural boundary element analysis (BEA). Both single- and multi-zone three-dimensional problems are examined. Significant reductions in computer time are obtained by making use of previously computed solution vectors and preconditioners in subsequent analyses. The effectiveness of this technique is demonstrated for the computation of shape response sensitivities required in shape optimization. Computer times and accuracies achieved using the preconditioned iterative solvers are compared with those obtained via direct solvers and implicit differentiation of the boundary integral equations. It is concluded that this approach employing preconditioned iterative equation solvers in reanalysis and sensitivity analysis can be competitive with if not superior to those involving direct solvers.

  18. Analysis Tools for CFD Multigrid Solvers

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Thomas, James L.; Diskin, Boris

    2004-01-01

    Analysis tools are needed to guide the development and evaluate the performance of multigrid solvers for the fluid flow equations. Classical analysis tools, such as local mode analysis, often fail to accurately predict performance. Two-grid analysis tools, herein referred to as Idealized Coarse Grid and Idealized Relaxation iterations, have been developed and evaluated within a pilot multigrid solver. These new tools are applicable to general systems of equations and/or discretizations and point to problem areas within an existing multigrid solver. Idealized Relaxation and Idealized Coarse Grid are applied in developing textbook-efficient multigrid solvers for incompressible stagnation flow problems.

  19. On the implicit density based OpenFOAM solver for turbulent compressible flows

    NASA Astrophysics Data System (ADS)

    Fürst, Jiří

    The contribution deals with the development of coupled implicit density based solver for compressible flows in the framework of open source package OpenFOAM. However the standard distribution of OpenFOAM contains several ready-made segregated solvers for compressible flows, the performance of those solvers is rather week in the case of transonic flows. Therefore we extend the work of Shen [15] and we develop an implicit semi-coupled solver. The main flow field variables are updated using lower-upper symmetric Gauss-Seidel method (LU-SGS) whereas the turbulence model variables are updated using implicit Euler method.

  20. A 3D approximate maximum likelihood localization solver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-09-23

    A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with acoustic transmitters and vocalizing marine mammals to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives and support Marine Renewable Energy. An approximate maximum likelihood solver was developed using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.

  1. NHDS: The New Hampshire Dispersion Relation Solver

    NASA Astrophysics Data System (ADS)

    Verscharen, Daniel; Chandran, Benjamin D. G.

    2018-04-01

    NHDS is the New Hampshire Dispersion Relation Solver. This article describes the numerics of the solver and its capabilities. The code is available for download on https://github.com/danielver02/NHDS.

  2. EUPDF: Eulerian Monte Carlo Probability Density Function Solver for Applications With Parallel Computing, Unstructured Grids, and Sprays

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    1998-01-01

    The success of any solution methodology used in the study of gas-turbine combustor flows depends a great deal on how well it can model the various complex and rate controlling processes associated with the spray's turbulent transport, mixing, chemical kinetics, evaporation, and spreading rates, as well as convective and radiative heat transfer and other phenomena. The phenomena to be modeled, which are controlled by these processes, often strongly interact with each other at different times and locations. In particular, turbulence plays an important role in determining the rates of mass and heat transfer, chemical reactions, and evaporation in many practical combustion devices. The influence of turbulence in a diffusion flame manifests itself in several forms, ranging from the so-called wrinkled, or stretched, flamelets regime to the distributed combustion regime, depending upon how turbulence interacts with various flame scales. Conventional turbulence models have difficulty treating highly nonlinear reaction rates. A solution procedure based on the composition joint probability density function (PDF) approach holds the promise of modeling various important combustion phenomena relevant to practical combustion devices (such as extinction, blowoff limits, and emissions predictions) because it can account for nonlinear chemical reaction rates without making approximations. In an attempt to advance the state-of-the-art in multidimensional numerical methods, we at the NASA Lewis Research Center extended our previous work on the PDF method to unstructured grids, parallel computing, and sprays. EUPDF, which was developed by M.S. Raju of Nyma, Inc., was designed to be massively parallel and could easily be coupled with any existing gas-phase and/or spray solvers. EUPDF can use an unstructured mesh with mixed triangular, quadrilateral, and/or tetrahedral elements. The application of the PDF method showed favorable results when applied to several supersonic-diffusion flames and spray flames. The EUPDF source code will be available with the National Combustion Code (NCC) as a complete package.

  3. A High-Order Direct Solver for Helmholtz Equations with Neumann Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Sun, Xian-He; Zhuang, Yu

    1997-01-01

    In this study, a compact finite-difference discretization is first developed for Helmholtz equations on rectangular domains. Special treatments are then introduced for Neumann and Neumann-Dirichlet boundary conditions to achieve accuracy and separability. Finally, a Fast Fourier Transform (FFT) based technique is used to yield a fast direct solver. Analytical and experimental results show this newly proposed solver is comparable to the conventional second-order elliptic solver when accuracy is not a primary concern, and is significantly faster than that of the conventional solver if a highly accurate solution is required. In addition, this newly proposed fourth order Helmholtz solver is parallel in nature. It is readily available for parallel and distributed computers. The compact scheme introduced in this study is likely extendible for sixth-order accurate algorithms and for more general elliptic equations.

  4. The international river interface cooperative: Public domain flow and morphodynamics software for education and applications

    NASA Astrophysics Data System (ADS)

    Nelson, Jonathan M.; Shimizu, Yasuyuki; Abe, Takaaki; Asahi, Kazutake; Gamou, Mineyuki; Inoue, Takuya; Iwasaki, Toshiki; Kakinuma, Takaharu; Kawamura, Satomi; Kimura, Ichiro; Kyuka, Tomoko; McDonald, Richard R.; Nabi, Mohamed; Nakatsugawa, Makoto; Simões, Francisco R.; Takebayashi, Hiroshi; Watanabe, Yasunori

    2016-07-01

    This paper describes a new, public-domain interface for modeling flow, sediment transport and morphodynamics in rivers and other geophysical flows. The interface is named after the International River Interface Cooperative (iRIC), the group that constructed the interface and many of the current solvers included in iRIC. The interface is entirely free to any user and currently houses thirteen models ranging from simple one-dimensional models through three-dimensional large-eddy simulation models. Solvers are only loosely coupled to the interface so it is straightforward to modify existing solvers or to introduce other solvers into the system. Six of the most widely-used solvers are described in detail including example calculations to serve as an aid for users choosing what approach might be most appropriate for their own applications. The example calculations range from practical computations of bed evolution in natural rivers to highly detailed predictions of the development of small-scale bedforms on an initially flat bed. The remaining solvers are also briefly described. Although the focus of most solvers is coupled flow and morphodynamics, several of the solvers are also specifically aimed at providing flood inundation predictions over large spatial domains. Potential users can download the application, solvers, manuals, and educational materials including detailed tutorials at www.-i-ric.org. The iRIC development group encourages scientists and engineers to use the tool and to consider adding their own methods to the iRIC suite of tools.

  5. Preconditioned conjugate-gradient methods for low-speed flow calculations

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing

    1993-01-01

    An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations is integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the Lower-Upper Successive Symmetric Over-Relaxation iterative scheme is more efficient than a preconditioner based on Incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional Line Gauss-Seidel Relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.

  6. Preconditioned Conjugate Gradient methods for low speed flow calculations

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing

    1993-01-01

    An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations are integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and the convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the lower-upper (L-U)-successive symmetric over-relaxation iterative scheme is more efficient than a preconditioner based on incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional line Gauss-Seidel relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.

  7. The international river interface cooperative: Public domain flow and morphodynamics software for education and applications

    USGS Publications Warehouse

    Nelson, Jonathan M.; Shimizu, Yasuyuki; Abe, Takaaki; Asahi, Kazutake; Gamou, Mineyuki; Inoue, Takuya; Iwasaki, Toshiki; Kakinuma, Takaharu; Kawamura, Satomi; Kimura, Ichiro; Kyuka, Tomoko; McDonald, Richard R.; Nabi, Mohamed; Nakatsugawa, Makoto; Simoes, Francisco J.; Takebayashi, Hiroshi; Watanabe, Yasunori

    2016-01-01

    This paper describes a new, public-domain interface for modeling flow, sediment transport and morphodynamics in rivers and other geophysical flows. The interface is named after the International River Interface Cooperative (iRIC), the group that constructed the interface and many of the current solvers included in iRIC. The interface is entirely free to any user and currently houses thirteen models ranging from simple one-dimensional models through three-dimensional large-eddy simulation models. Solvers are only loosely coupled to the interface so it is straightforward to modify existing solvers or to introduce other solvers into the system. Six of the most widely-used solvers are described in detail including example calculations to serve as an aid for users choosing what approach might be most appropriate for their own applications. The example calculations range from practical computations of bed evolution in natural rivers to highly detailed predictions of the development of small-scale bedforms on an initially flat bed. The remaining solvers are also briefly described. Although the focus of most solvers is coupled flow and morphodynamics, several of the solvers are also specifically aimed at providing flood inundation predictions over large spatial domains. Potential users can download the application, solvers, manuals, and educational materials including detailed tutorials at www.-i-ric.org. The iRIC development group encourages scientists and engineers to use the tool and to consider adding their own methods to the iRIC suite of tools.

  8. MC 2 -3: Multigroup Cross Section Generation Code for Fast Reactor Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Changho; Yang, Won Sik

    This paper presents the methods and performance of the MC2 -3 code, which is a multigroup cross-section generation code for fast reactor analysis, developed to improve the resonance self-shielding and spectrum calculation methods of MC2 -2 and to simplify the current multistep schemes generating region-dependent broad-group cross sections. Using the basic neutron data from ENDF/B data files, MC2 -3 solves the consistent P1 multigroup transport equation to determine the fundamental mode spectra for use in generating multigroup neutron cross sections. A homogeneous medium or a heterogeneous slab or cylindrical unit cell problem is solved in ultrafine (2082) or hyperfine (~400more » 000) group levels. In the resolved resonance range, pointwise cross sections are reconstructed with Doppler broadening at specified temperatures. The pointwise cross sections are directly used in the hyperfine group calculation, whereas for the ultrafine group calculation, self-shielded cross sections are prepared by numerical integration of the pointwise cross sections based upon the narrow resonance approximation. For both the hyperfine and ultrafine group calculations, unresolved resonances are self-shielded using the analytic resonance integral method. The ultrafine group calculation can also be performed for a two-dimensional whole-core problem to generate region-dependent broad-group cross sections. Verification tests have been performed using the benchmark problems for various fast critical experiments including Los Alamos National Laboratory critical assemblies; Zero-Power Reactor, Zero-Power Physics Reactor, and Bundesamt für Strahlenschutz experiments; Monju start-up core; and Advanced Burner Test Reactor. Verification and validation results with ENDF/B-VII.0 data indicated that eigenvalues from MC2 -3/DIF3D agreed well with Monte Carlo N-Particle5 MCNP5 or VIM Monte Carlo solutions within 200 pcm and regionwise one-group fluxes were in good agreement with Monte Carlo solutions.« less

  9. Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems

    PubMed Central

    Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em

    2015-01-01

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of these Lagrangian particles. An analytical formula is proposed to relate the tDPD parameters to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the conventional DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers. PMID:26156459

  10. Simulations of Rayleigh Taylor Instabilities in the presence of a Strong Radiative shock

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Kuranz, Carolyn; Shvarts, Dov; Drake, R. P.

    2016-10-01

    Recent Supernova Rayleigh Taylor experiments on the National Ignition Facility (NIF) are relevant to the evolution of core-collapse supernovae in which red supergiant stars explode. Here we report simulations of these experiments using the CRASH code. The CRASH code, developed at the University of Michigan to design and analyze high-energy-density experiments, is an Eulerian code with block-adaptive mesh refinement, multigroup diffusive radiation transport, and electron heat conduction. We explore two cases, one in which the shock is strongly radiative, and another with negligible radiation. The experiments in all cases produced structures at embedded interfaces by the Rayleigh Taylor instability. The weaker shocked environment is cooler and the instability grows classically. The strongly radiative shock produces a warm environment near the instability, ablates the interface, and alters the growth. We compare the simulated results with the experimental data and attempt to explain the differences. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956.

  11. Ion kinetic effects on the ignition and burn of inertial confinement fusion targets: A multi-scale approach

    NASA Astrophysics Data System (ADS)

    Peigney, B. E.; Larroche, O.; Tikhonchuk, V.

    2014-12-01

    In this article, we study the hydrodynamics and burn of the thermonuclear fuel in inertial confinement fusion pellets at the ion kinetic level. The analysis is based on a two-velocity-scale Vlasov-Fokker-Planck kinetic model that is specially tailored to treat fusion products (suprathermal α-particles) in a self-consistent manner with the thermal bulk. The model assumes spherical symmetry in configuration space and axial symmetry in velocity space around the mean flow velocity. A typical hot-spot ignition design is considered. Compared with fluid simulations where a multi-group diffusion scheme is applied to model α transport, the full ion-kinetic approach reveals significant non-local effects on the transport of energetic α-particles. This has a direct impact on hydrodynamic spatial profiles during combustion: the hot spot reactivity is reduced, while the inner dense fuel layers are pre-heated by the escaping α-suprathermal particles, which are transported farther out of the hot spot. We show how the kinetic transport enhancement of fusion products leads to a significant reduction of the fusion yield.

  12. Ion kinetic effects on the ignition and burn of inertial confinement fusion targets: A multi-scale approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peigney, B. E.; Larroche, O.; Tikhonchuk, V.

    2014-12-15

    In this article, we study the hydrodynamics and burn of the thermonuclear fuel in inertial confinement fusion pellets at the ion kinetic level. The analysis is based on a two-velocity-scale Vlasov-Fokker-Planck kinetic model that is specially tailored to treat fusion products (suprathermal α-particles) in a self-consistent manner with the thermal bulk. The model assumes spherical symmetry in configuration space and axial symmetry in velocity space around the mean flow velocity. A typical hot-spot ignition design is considered. Compared with fluid simulations where a multi-group diffusion scheme is applied to model α transport, the full ion-kinetic approach reveals significant non-local effectsmore » on the transport of energetic α-particles. This has a direct impact on hydrodynamic spatial profiles during combustion: the hot spot reactivity is reduced, while the inner dense fuel layers are pre-heated by the escaping α-suprathermal particles, which are transported farther out of the hot spot. We show how the kinetic transport enhancement of fusion products leads to a significant reduction of the fusion yield.« less

  13. Multiply scaled constrained nonlinear equation solvers. [for nonlinear heat conduction problems

    NASA Technical Reports Server (NTRS)

    Padovan, Joe; Krishna, Lala

    1986-01-01

    To improve the numerical stability of nonlinear equation solvers, a partitioned multiply scaled constraint scheme is developed. This scheme enables hierarchical levels of control for nonlinear equation solvers. To complement the procedure, partitioned convergence checks are established along with self-adaptive partitioning schemes. Overall, such procedures greatly enhance the numerical stability of the original solvers. To demonstrate and motivate the development of the scheme, the problem of nonlinear heat conduction is considered. In this context the main emphasis is given to successive substitution-type schemes. To verify the improved numerical characteristics associated with partitioned multiply scaled solvers, results are presented for several benchmark examples.

  14. Shallow-water sloshing in a moving vessel with variable cross-section and wetting-drying using an extension of George's well-balanced finite volume solver

    NASA Astrophysics Data System (ADS)

    Alemi Ardakani, Hamid; Bridges, Thomas J.; Turner, Matthew R.

    2016-06-01

    A class of augmented approximate Riemann solvers due to George (2008) [12] is extended to solve the shallow-water equations in a moving vessel with variable bottom topography and variable cross-section with wetting and drying. A class of Roe-type upwind solvers for the system of balance laws is derived which respects the steady-state solutions. The numerical solutions of the new adapted augmented f-wave solvers are validated against the Roe-type solvers. The theory is extended to solve the shallow-water flows in moving vessels with arbitrary cross-section with influx-efflux boundary conditions motivated by the shallow-water sloshing in the ocean wave energy converter (WEC) proposed by Offshore Wave Energy Ltd. (OWEL) [1]. A fractional step approach is used to handle the time-dependent forcing functions. The numerical solutions are compared to an extended new Roe-type solver for the system of balance laws with a time-dependent source function. The shallow-water sloshing finite volume solver can be coupled to a Runge-Kutta integrator for the vessel motion.

  15. STEPS: efficient simulation of stochastic reaction-diffusion models in realistic morphologies.

    PubMed

    Hepburn, Iain; Chen, Weiliang; Wils, Stefan; De Schutter, Erik

    2012-05-10

    Models of cellular molecular systems are built from components such as biochemical reactions (including interactions between ligands and membrane-bound proteins), conformational changes and active and passive transport. A discrete, stochastic description of the kinetics is often essential to capture the behavior of the system accurately. Where spatial effects play a prominent role the complex morphology of cells may have to be represented, along with aspects such as chemical localization and diffusion. This high level of detail makes efficiency a particularly important consideration for software that is designed to simulate such systems. We describe STEPS, a stochastic reaction-diffusion simulator developed with an emphasis on simulating biochemical signaling pathways accurately and efficiently. STEPS supports all the above-mentioned features, and well-validated support for SBML allows many existing biochemical models to be imported reliably. Complex boundaries can be represented accurately in externally generated 3D tetrahedral meshes imported by STEPS. The powerful Python interface facilitates model construction and simulation control. STEPS implements the composition and rejection method, a variation of the Gillespie SSA, supporting diffusion between tetrahedral elements within an efficient search and update engine. Additional support for well-mixed conditions and for deterministic model solution is implemented. Solver accuracy is confirmed with an original and extensive validation set consisting of isolated reaction, diffusion and reaction-diffusion systems. Accuracy imposes upper and lower limits on tetrahedron sizes, which are described in detail. By comparing to Smoldyn, we show how the voxel-based approach in STEPS is often faster than particle-based methods, with increasing advantage in larger systems, and by comparing to MesoRD we show the efficiency of the STEPS implementation. STEPS simulates models of cellular reaction-diffusion systems with complex boundaries with high accuracy and high performance in C/C++, controlled by a powerful and user-friendly Python interface. STEPS is free for use and is available at http://steps.sourceforge.net/

  16. STEPS: efficient simulation of stochastic reaction–diffusion models in realistic morphologies

    PubMed Central

    2012-01-01

    Background Models of cellular molecular systems are built from components such as biochemical reactions (including interactions between ligands and membrane-bound proteins), conformational changes and active and passive transport. A discrete, stochastic description of the kinetics is often essential to capture the behavior of the system accurately. Where spatial effects play a prominent role the complex morphology of cells may have to be represented, along with aspects such as chemical localization and diffusion. This high level of detail makes efficiency a particularly important consideration for software that is designed to simulate such systems. Results We describe STEPS, a stochastic reaction–diffusion simulator developed with an emphasis on simulating biochemical signaling pathways accurately and efficiently. STEPS supports all the above-mentioned features, and well-validated support for SBML allows many existing biochemical models to be imported reliably. Complex boundaries can be represented accurately in externally generated 3D tetrahedral meshes imported by STEPS. The powerful Python interface facilitates model construction and simulation control. STEPS implements the composition and rejection method, a variation of the Gillespie SSA, supporting diffusion between tetrahedral elements within an efficient search and update engine. Additional support for well-mixed conditions and for deterministic model solution is implemented. Solver accuracy is confirmed with an original and extensive validation set consisting of isolated reaction, diffusion and reaction–diffusion systems. Accuracy imposes upper and lower limits on tetrahedron sizes, which are described in detail. By comparing to Smoldyn, we show how the voxel-based approach in STEPS is often faster than particle-based methods, with increasing advantage in larger systems, and by comparing to MesoRD we show the efficiency of the STEPS implementation. Conclusion STEPS simulates models of cellular reaction–diffusion systems with complex boundaries with high accuracy and high performance in C/C++, controlled by a powerful and user-friendly Python interface. STEPS is free for use and is available at http://steps.sourceforge.net/ PMID:22574658

  17. MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model -- GMG Linear Equation Solver Package Documentation

    USGS Publications Warehouse

    Wilson, John D.; Naff, Richard L.

    2004-01-01

    A geometric multigrid solver (GMG), based in the preconditioned conjugate gradient algorithm, has been developed for solving systems of equations resulting from applying the cell-centered finite difference algorithm to flow in porous media. This solver has been adapted to the U.S. Geological Survey ground-water flow model MODFLOW-2000. The documentation herein is a description of the solver and the adaptation to MODFLOW-2000.

  18. Experimental validation of a coupled neutron-photon inverse radiation transport solver

    NASA Astrophysics Data System (ADS)

    Mattingly, John; Mitchell, Dean J.; Harding, Lee T.

    2011-10-01

    Sandia National Laboratories has developed an inverse radiation transport solver that applies nonlinear regression to coupled neutron-photon deterministic transport models. The inverse solver uses nonlinear regression to fit a radiation transport model to gamma spectrometry and neutron multiplicity counting measurements. The subject of this paper is the experimental validation of that solver. This paper describes a series of experiments conducted with a 4.5 kg sphere of α-phase, weapons-grade plutonium. The source was measured bare and reflected by high-density polyethylene (HDPE) spherical shells with total thicknesses between 1.27 and 15.24 cm. Neutron and photon emissions from the source were measured using three instruments: a gross neutron counter, a portable neutron multiplicity counter, and a high-resolution gamma spectrometer. These measurements were used as input to the inverse radiation transport solver to evaluate the solver's ability to correctly infer the configuration of the source from its measured radiation signatures.

  19. BCYCLIC: A parallel block tridiagonal matrix cyclic solver

    NASA Astrophysics Data System (ADS)

    Hirshman, S. P.; Perumalla, K. S.; Lynch, V. E.; Sanchez, R.

    2010-09-01

    A block tridiagonal matrix is factored with minimal fill-in using a cyclic reduction algorithm that is easily parallelized. Storage of the factored blocks allows the application of the inverse to multiple right-hand sides which may not be known at factorization time. Scalability with the number of block rows is achieved with cyclic reduction, while scalability with the block size is achieved using multithreaded routines (OpenMP, GotoBLAS) for block matrix manipulation. This dual scalability is a noteworthy feature of this new solver, as well as its ability to efficiently handle arbitrary (non-powers-of-2) block row and processor numbers. Comparison with a state-of-the art parallel sparse solver is presented. It is expected that this new solver will allow many physical applications to optimally use the parallel resources on current supercomputers. Example usage of the solver in magneto-hydrodynamic (MHD), three-dimensional equilibrium solvers for high-temperature fusion plasmas is cited.

  20. High-performance equation solvers and their impact on finite element analysis

    NASA Technical Reports Server (NTRS)

    Poole, Eugene L.; Knight, Norman F., Jr.; Davis, D. Dale, Jr.

    1990-01-01

    The role of equation solvers in modern structural analysis software is described. Direct and iterative equation solvers which exploit vectorization on modern high-performance computer systems are described and compared. The direct solvers are two Cholesky factorization methods. The first method utilizes a novel variable-band data storage format to achieve very high computation rates and the second method uses a sparse data storage format designed to reduce the number of operations. The iterative solvers are preconditioned conjugate gradient methods. Two different preconditioners are included; the first uses a diagonal matrix storage scheme to achieve high computation rates and the second requires a sparse data storage scheme and converges to the solution in fewer iterations that the first. The impact of using all of the equation solvers in a common structural analysis software system is demonstrated by solving several representative structural analysis problems.

  1. High-performance equation solvers and their impact on finite element analysis

    NASA Technical Reports Server (NTRS)

    Poole, Eugene L.; Knight, Norman F., Jr.; Davis, D. D., Jr.

    1992-01-01

    The role of equation solvers in modern structural analysis software is described. Direct and iterative equation solvers which exploit vectorization on modern high-performance computer systems are described and compared. The direct solvers are two Cholesky factorization methods. The first method utilizes a novel variable-band data storage format to achieve very high computation rates and the second method uses a sparse data storage format designed to reduce the number od operations. The iterative solvers are preconditioned conjugate gradient methods. Two different preconditioners are included; the first uses a diagonal matrix storage scheme to achieve high computation rates and the second requires a sparse data storage scheme and converges to the solution in fewer iterations that the first. The impact of using all of the equation solvers in a common structural analysis software system is demonstrated by solving several representative structural analysis problems.

  2. A fully-neoclassical finite-orbit-width version of the CQL3D Fokker–Planck code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrov, Yu V.; Harvey, R. W.

    The time-dependent bounce-averaged CQL3D flux-conservative finite-difference Fokker–Planck equation (FPE) solver has been upgraded to include finite-orbit-width (FOW) capabilities which are necessary for an accurate description of neoclassical transport, losses to the walls, and transfer of particles, momentum, and heat to the scrape-off layer. The FOW modifications are implemented in the formulation of the neutral beam source, collision operator, RF quasilinear diffusion operator, and in synthetic particle diagnostics. The collisional neoclassical radial transport appears naturally in the FOW version due to the orbit-averaging of local collision coefficients coupled with transformation coefficients from local (R, Z) coordinates along each guiding-center orbit tomore » the corresponding midplane computational coordinates, where the FPE is solved. In a similar way, the local quasilinear RF diffusion terms give rise to additional radial transport of orbits. We note that the neoclassical results are obtained for ‘full’ orbits, not dependent on a common small orbit-width approximation. Results of validation tests for the FOW version are also presented.« less

  3. A fully-neoclassical finite-orbit-width version of the CQL3D Fokker–Planck code

    DOE PAGES

    Petrov, Yu V.; Harvey, R. W.

    2016-09-08

    The time-dependent bounce-averaged CQL3D flux-conservative finite-difference Fokker–Planck equation (FPE) solver has been upgraded to include finite-orbit-width (FOW) capabilities which are necessary for an accurate description of neoclassical transport, losses to the walls, and transfer of particles, momentum, and heat to the scrape-off layer. The FOW modifications are implemented in the formulation of the neutral beam source, collision operator, RF quasilinear diffusion operator, and in synthetic particle diagnostics. The collisional neoclassical radial transport appears naturally in the FOW version due to the orbit-averaging of local collision coefficients coupled with transformation coefficients from local (R, Z) coordinates along each guiding-center orbit tomore » the corresponding midplane computational coordinates, where the FPE is solved. In a similar way, the local quasilinear RF diffusion terms give rise to additional radial transport of orbits. We note that the neoclassical results are obtained for ‘full’ orbits, not dependent on a common small orbit-width approximation. Results of validation tests for the FOW version are also presented.« less

  4. Simulation of Ultra-Small MOSFETs Using a 2-D Quantum-Corrected Drift-Diffusion Model

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Rafferty, Conor S.; Yu, Zhiping; Dutton, Robert W.; Ancona, Mario G.; Saini, Subhash (Technical Monitor)

    1998-01-01

    We describe an electronic transport model and an implementation approach that respond to the challenges of device modeling for gigascale integration. We use the density-gradient (DG) transport model, which adds tunneling and quantum smoothing of carrier density profiles to the drift-diffusion model. We present the current implementation of the DG model in PROPHET, a partial differential equation solver developed by Lucent Technologies. This implementation approach permits rapid development and enhancement of models, as well as run-time modifications and model switching. We show that even in typical bulk transport devices such as P-N diodes and BJTs, DG quantum effects can significantly modify the I-V characteristics. Quantum effects are shown to be even more significant in small, surface transport devices, such as sub-0.1 micron MOSFETs. In thin-oxide MOS capacitors, we find that quantum effects may reduce gate capacitance by 25% or more. The inclusion of quantum effects in simulations dramatically improves the match between C-V simulations and measurements. Significant quantum corrections also occur in the I-V characteristics of short-channel MOSFETs due to the gate capacitance correction.

  5. IRMHD: an implicit radiative and magnetohydrodynamical solver for self-gravitating systems

    NASA Astrophysics Data System (ADS)

    Hujeirat, A.

    1998-07-01

    The 2D implicit hydrodynamical solver developed by Hujeirat & Rannacher is now modified to include the effects of radiation, magnetic fields and self-gravity in different geometries. The underlying numerical concept is based on the operator splitting approach, and the resulting 2D matrices are inverted using different efficient preconditionings such as ADI (alternating direction implicit), the approximate factorization method and Line-Gauss-Seidel or similar iteration procedures. Second-order finite volume with third-order upwinding and second-order time discretization is used. To speed up convergence and enhance efficiency we have incorporated an adaptive time-step control and monotonic multilevel grid distributions as well as vectorizing the code. Test calculations had shown that it requires only 38 per cent more computational effort than its explicit counterpart, whereas its range of application to astrophysical problems is much larger. For example, strongly time-dependent, quasi-stationary and steady-state solutions for the set of Euler and Navier-Stokes equations can now be sought on a non-linearly distributed and strongly stretched mesh. As most of the numerical techniques used to build up this algorithm have been described by Hujeirat & Rannacher in an earlier paper, we focus in this paper on the inclusion of self-gravity, radiation and magnetic fields. Strategies for satisfying the condition ∇.B=0 in the implicit evolution of MHD flows are given. A new discretization strategy for the vector potential which allows alternating use of the direct method is prescribed. We investigate the efficiencies of several 2D solvers for a Poisson-like equation and compare their convergence rates. We provide a splitting approach for the radiative flux within the FLD (flux-limited diffusion) approximation to enhance consistency and accuracy between regions of different optical depths. The results of some test problems are presented to demonstrate the accuracy and robustness of the code.

  6. Numerical MHD codes for modeling astrophysical flows

    NASA Astrophysics Data System (ADS)

    Koldoba, A. V.; Ustyugova, G. V.; Lii, P. S.; Comins, M. L.; Dyda, S.; Romanova, M. M.; Lovelace, R. V. E.

    2016-05-01

    We describe a Godunov-type magnetohydrodynamic (MHD) code based on the Miyoshi and Kusano (2005) solver which can be used to solve various astrophysical hydrodynamic and MHD problems. The energy equation is in the form of entropy conservation. The code has been implemented on several different coordinate systems: 2.5D axisymmetric cylindrical coordinates, 2D Cartesian coordinates, 2D plane polar coordinates, and fully 3D cylindrical coordinates. Viscosity and diffusivity are implemented in the code to control the accretion rate in the disk and the rate of penetration of the disk matter through the magnetic field lines. The code has been utilized for the numerical investigations of a number of different astrophysical problems, several examples of which are shown.

  7. Level-set simulations of soluble surfactant driven flows

    NASA Astrophysics Data System (ADS)

    Cleret de Langavant, Charles; Guittet, Arthur; Theillard, Maxime; Temprano-Coleto, Fernando; Gibou, Frédéric

    2017-11-01

    We present an approach to simulate the diffusion, advection and adsorption-desorption of a material quantity defined on an interface in two and three spatial dimensions. We use a level-set approach to capture the interface motion and a Quad/Octree data structure to efficiently solve the equations describing the underlying physics. Coupling with a Navier-Stokes solver enables the study of the effect of soluble surfactants that locally modify the parameters of surface tension on different types of flows. The method is tested on several benchmarks and applied to three typical examples of flows in the presence of surfactant: a bubble in a shear flow, the well-known phenomenon of tears of wine, and the Landau-Levich coating problem.

  8. Progress in Unsteady Turbopump Flow Simulations Using Overset Grid Systems

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin C.; Chan, William; Kwak, Dochan

    2002-01-01

    This viewgraph presentation provides information on unsteady flow simulations for the Second Generation RLV (Reusable Launch Vehicle) baseline turbopump. Three impeller rotations were simulated by using a 34.3 million grid points model. MPI/OpenMP hybrid parallelism and MLP shared memory parallelism has been implemented and benchmarked in INS3D, an incompressible Navier-Stokes solver. For RLV turbopump simulations a speed up of more than 30 times has been obtained. Moving boundary capability is obtained by using the DCF module. Scripting capability from CAD geometry to solution is developed. Unsteady flow simulations for advanced consortium impeller/diffuser by using a 39 million grid points model are currently underway. 1.2 impeller rotations are completed. The fluid/structure coupling is initiated.

  9. Finite Element Estimation of Protein-Ligand Association Rates with Post-Encounter Effects: Applications to Calcium binding in Troponin C and SERCA

    PubMed Central

    Kekenes-Huskey, P. M.; Gillette, A.; Hake, J.; McCammon, J. A.

    2012-01-01

    We introduce a computational pipeline and suite of software tools for the approximation of diffusion-limited binding based on a recently developed theoretical framework. Our approach handles molecular geometries generated from high-resolution structural data and can account for active sites buried within the protein or behind gating mechanisms. Using tools from the FEniCS library and the APBS solver, we implement a numerical code for our method and study two Ca2+-binding proteins: Troponin C and the Sarcoplasmic Reticulum Ca2+ ATPase (SERCA). We find that a combination of diffusional encounter and internal ‘buried channel’ descriptions provide superior descriptions of association rates, improving estimates by orders of magnitude. PMID:23293662

  10. Finite Element Estimation of Protein-Ligand Association Rates with Post-Encounter Effects: Applications to Calcium binding in Troponin C and SERCA.

    PubMed

    Kekenes-Huskey, P M; Gillette, A; Hake, J; McCammon, J A

    2012-10-31

    We introduce a computational pipeline and suite of software tools for the approximation of diffusion-limited binding based on a recently developed theoretical framework. Our approach handles molecular geometries generated from high-resolution structural data and can account for active sites buried within the protein or behind gating mechanisms. Using tools from the FEniCS library and the APBS solver, we implement a numerical code for our method and study two Ca(2+)-binding proteins: Troponin C and the Sarcoplasmic Reticulum Ca(2+) ATPase (SERCA). We find that a combination of diffusional encounter and internal 'buried channel' descriptions provide superior descriptions of association rates, improving estimates by orders of magnitude.

  11. Finite-element estimation of protein-ligand association rates with post-encounter effects: applications to calcium binding in troponin C and SERCA

    NASA Astrophysics Data System (ADS)

    Kekenes-Huskey, P. M.; Gillette, A.; Hake, J.; McCammon, J. A.

    2012-01-01

    We introduce a computational pipeline and suite of software tools for the approximation of diffusion-limited binding based on a recently developed theoretical framework. Our approach handles molecular geometries generated from high-resolution structural data and can account for active sites buried within the protein or behind gating mechanisms. Using tools from the FEniCS library and the APBS solver, we implement a numerical code for our method and study two Ca2+-binding proteins: troponin C and the sarcoplasmic reticulum Ca2+ ATPase. We find that a combination of diffusional encounter and internal ‘buried channel’ descriptions provides superior descriptions of association rates, improving estimates by orders of magnitude.

  12. Implementation of density-based solver for all speeds in the framework of OpenFOAM

    NASA Astrophysics Data System (ADS)

    Shen, Chun; Sun, Fengxian; Xia, Xinlin

    2014-10-01

    In the framework of open source CFD code OpenFOAM, a density-based solver for all speeds flow field is developed. In this solver the preconditioned all speeds AUSM+(P) scheme is adopted and the dual time scheme is implemented to complete the unsteady process. Parallel computation could be implemented to accelerate the solving process. Different interface reconstruction algorithms are implemented, and their accuracy with respect to convection is compared. Three benchmark tests of lid-driven cavity flow, flow crossing over a bump, and flow over a forward-facing step are presented to show the accuracy of the AUSM+(P) solver for low-speed incompressible flow, transonic flow, and supersonic/hypersonic flow. Firstly, for the lid driven cavity flow, the computational results obtained by different interface reconstruction algorithms are compared. It is indicated that the one dimensional reconstruction scheme adopted in this solver possesses high accuracy and the solver developed in this paper can effectively catch the features of low incompressible flow. Then via the test cases regarding the flow crossing over bump and over forward step, the ability to capture characteristics of the transonic and supersonic/hypersonic flows are confirmed. The forward-facing step proves to be the most challenging for the preconditioned solvers with and without the dual time scheme. Nonetheless, the solvers described in this paper reproduce the main features of this flow, including the evolution of the initial transient.

  13. Vortex Generators in a Streamline-Traced, External-Compression Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Baydar, Ezgihan; Lu, Frank K.; Slater, John W.; Trefny, Charles J.

    2017-01-01

    Vortex generators within a streamline-traced, external-compression supersonic inlet for Mach 1.66 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. The vortex generators studied were rectangular vanes arranged in counter-rotating and co-rotating arrays. The vane geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The vanes were simulated using a vortex generator model. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of the vanes and search for optimal vane arrays. Co-rotating vane arrays with negative angles-of-incidence positioned on the supersonic diffuser were effective in sweeping low-momentum flow from the top toward the sides of the subsonic diffuser. This distributed the low-momentum flow more evenly about the circumference of the subsonic diffuser and reduced distortion. Co-rotating vane arrays with negative angles-of-incidence or counter-rotating vane arrays positioned downstream of the terminal shock were effective in mixing higher-momentum flow with lower-momentum flow to increase recovery and decrease distortion. A strategy of combining a co-rotating vane array on the supersonic diffuser with a counter-rotating vane array on the subsonic diffuser was effective in increasing recovery and reducing distortion.

  14. The surface roughness effect on the performance of supersonic ejectors

    NASA Astrophysics Data System (ADS)

    Brezgin, D. V.; Aronson, K. E.; Mazzelli, F.; Milazzo, A.

    2017-07-01

    The paper presents the numerical simulation results of the surface roughness influence on gas-dynamic processes inside flow parts of a supersonic ejector. These simulations are performed using two commercial CFD solvers (Star- CCM+ and Fluent). The results are compared to each other and verified by a full-scale experiment in terms of global flow parameters (the entrainment ratio: the ratio between secondary to primary mass flow rate - ER hereafter) and local flow parameters distribution (the static pressure distribution along the mixing chamber and diffuser walls). A detailed comparative study of the employed methods and approaches in both CFD packages is carried out in order to estimate the roughness effect on the logarithmic law velocity distribution inside the boundary layer. Influence of the surface roughness is compared with the influence of the backpressure (static pressure at the ejector outlet). It has been found out that increasing either the ejector backpressure or the surface roughness height, the shock position displaces upstream. Moreover, the numerical simulation results of an ejector with rough walls in the both CFD solvers are well quantitatively agreed with each other in terms of the mean ER and well qualitatively agree in terms of the local flow parameters distribution. It is found out that in the case of exceeding the "critical roughness height" for the given boundary conditions and ejector's geometry, the ejector switches to the "off-design" mode and its performance decreases considerably.

  15. Global magnetosphere simulations using constrained-transport Hall-MHD with CWENO reconstruction

    NASA Astrophysics Data System (ADS)

    Lin, L.; Germaschewski, K.; Maynard, K. M.; Abbott, S.; Bhattacharjee, A.; Raeder, J.

    2013-12-01

    We present a new CWENO (Centrally-Weighted Essentially Non-Oscillatory) reconstruction based MHD solver for the OpenGGCM global magnetosphere code. The solver was built using libMRC, a library for creating efficient parallel PDE solvers on structured grids. The use of libMRC gives us access to its core functionality of providing an automated code generation framework which takes a user provided PDE right hand side in symbolic form to generate an efficient, computer architecture specific, parallel code. libMRC also supports block-structured adaptive mesh refinement and implicit-time stepping through integration with the PETSc library. We validate the new CWENO Hall-MHD solver against existing solvers both in standard test problems as well as in global magnetosphere simulations.

  16. A method for including external feed in depletion calculations with CRAM and implementation into ORIGEN

    DOE PAGES

    Isotalo, Aarno E.; Wieselquist, William A.

    2015-05-15

    A method for including external feed with polynomial time dependence in depletion calculations with the Chebyshev Rational Approximation Method (CRAM) is presented and the implementation of CRAM to the ORIGEN module of the SCALE suite is described. In addition to being able to handle time-dependent feed rates, the new solver also adds the capability to perform adjoint calculations. Results obtained with the new CRAM solver and the original depletion solver of ORIGEN are compared to high precision reference calculations, which shows the new solver to be orders of magnitude more accurate. Lastly, in most cases, the new solver is upmore » to several times faster due to not requiring similar substepping as the original one.« less

  17. User's Manual for PCSMS (Parallel Complex Sparse Matrix Solver). Version 1.

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.

    2000-01-01

    PCSMS (Parallel Complex Sparse Matrix Solver) is a computer code written to make use of the existing real sparse direct solvers to solve complex, sparse matrix linear equations. PCSMS converts complex matrices into real matrices and use real, sparse direct matrix solvers to factor and solve the real matrices. The solution vector is reconverted to complex numbers. Though, this utility is written for Silicon Graphics (SGI) real sparse matrix solution routines, it is general in nature and can be easily modified to work with any real sparse matrix solver. The User's Manual is written to make the user acquainted with the installation and operation of the code. Driver routines are given to aid the users to integrate PCSMS routines in their own codes.

  18. Nuclear data uncertainty propagation by the XSUSA method in the HELIOS2 lattice code

    NASA Astrophysics Data System (ADS)

    Wemple, Charles; Zwermann, Winfried

    2017-09-01

    Uncertainty quantification has been extensively applied to nuclear criticality analyses for many years and has recently begun to be applied to depletion calculations. However, regulatory bodies worldwide are trending toward requiring such analyses for reactor fuel cycle calculations, which also requires uncertainty propagation for isotopics and nuclear reaction rates. XSUSA is a proven methodology for cross section uncertainty propagation based on random sampling of the nuclear data according to covariance data in multi-group representation; HELIOS2 is a lattice code widely used for commercial and research reactor fuel cycle calculations. This work describes a technique to automatically propagate the nuclear data uncertainties via the XSUSA approach through fuel lattice calculations in HELIOS2. Application of the XSUSA methodology in HELIOS2 presented some unusual challenges because of the highly-processed multi-group cross section data used in commercial lattice codes. Currently, uncertainties based on the SCALE 6.1 covariance data file are being used, but the implementation can be adapted to other covariance data in multi-group structure. Pin-cell and assembly depletion calculations, based on models described in the UAM-LWR Phase I and II benchmarks, are performed and uncertainties in multiplication factor, reaction rates, isotope concentrations, and delayed-neutron data are calculated. With this extension, it will be possible for HELIOS2 users to propagate nuclear data uncertainties directly from the microscopic cross sections to subsequent core simulations.

  19. Computational flow predictions for hypersonic drag devices

    NASA Technical Reports Server (NTRS)

    Tokarcik, Susan A.; Venkatapathy, Ethiraj

    1993-01-01

    The effectiveness of two types of hypersonic decelerators is examined: mechanically deployable flares and inflatable ballutes. Computational fluid dynamics (CFD) is used to predict the flowfield around a solid rocket motor (SRM) with a deployed decelerator. The computations are performed with an ideal gas solver using an effective specific heat ratio of 1.15. The results from the ideal gas solver are compared to computational results from a thermochemical nonequilibrium solver. The surface pressure coefficient, the drag, and the extend of the compression corner separation zone predicted by the ideal gas solver compare well with those predicted by the nonequilibrium solver. The ideal gas solver is computationally inexpensive and is shown to be well suited for preliminary design studies. The computed solutions are used to determine the size and shape of the decelerator that are required to achieve a drag coefficient of 5. Heat transfer rates to the SRM and the decelerators are predicted to estimate the amount of thermal protection required.

  20. Nuclear Data Uncertainty Propagation in Depletion Calculations Using Cross Section Uncertainties in One-group or Multi-group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Díez, C.J., E-mail: cj.diez@upm.es; Cabellos, O.; Instituto de Fusión Nuclear, Universidad Politécnica de Madrid, 28006 Madrid

    Several approaches have been developed in last decades to tackle nuclear data uncertainty propagation problems of burn-up calculations. One approach proposed was the Hybrid Method, where uncertainties in nuclear data are propagated only on the depletion part of a burn-up problem. Because only depletion is addressed, only one-group cross sections are necessary, and hence, their collapsed one-group uncertainties. This approach has been applied successfully in several advanced reactor systems like EFIT (ADS-like reactor) or ESFR (Sodium fast reactor) to assess uncertainties on the isotopic composition. However, a comparison with using multi-group energy structures was not carried out, and has tomore » be performed in order to analyse the limitations of using one-group uncertainties.« less

  1. Nuclear Data Uncertainty Propagation in Depletion Calculations Using Cross Section Uncertainties in One-group or Multi-group

    NASA Astrophysics Data System (ADS)

    Díez, C. J.; Cabellos, O.; Martínez, J. S.

    2015-01-01

    Several approaches have been developed in last decades to tackle nuclear data uncertainty propagation problems of burn-up calculations. One approach proposed was the Hybrid Method, where uncertainties in nuclear data are propagated only on the depletion part of a burn-up problem. Because only depletion is addressed, only one-group cross sections are necessary, and hence, their collapsed one-group uncertainties. This approach has been applied successfully in several advanced reactor systems like EFIT (ADS-like reactor) or ESFR (Sodium fast reactor) to assess uncertainties on the isotopic composition. However, a comparison with using multi-group energy structures was not carried out, and has to be performed in order to analyse the limitations of using one-group uncertainties.

  2. A multi-group firefly algorithm for numerical optimization

    NASA Astrophysics Data System (ADS)

    Tong, Nan; Fu, Qiang; Zhong, Caiming; Wang, Pengjun

    2017-08-01

    To solve the problem of premature convergence of firefly algorithm (FA), this paper analyzes the evolution mechanism of the algorithm, and proposes an improved Firefly algorithm based on modified evolution model and multi-group learning mechanism (IMGFA). A Firefly colony is divided into several subgroups with different model parameters. Within each subgroup, the optimal firefly is responsible for leading the others fireflies to implement the early global evolution, and establish the information mutual system among the fireflies. And then, each firefly achieves local search by following the brighter firefly in its neighbors. At the same time, learning mechanism among the best fireflies in various subgroups to exchange information can help the population to obtain global optimization goals more effectively. Experimental results verify the effectiveness of the proposed algorithm.

  3. Gasdynamic Inlet Isolation in Rotating Detonation Engine

    DTIC Science & Technology

    2010-12-01

    2D Total Variation Diminishing (TVD): Continuous Riemann Solver Minimum Dissipation: LHS & RHS Activate pressure switch : Supersonic Activate...Total Variation Diminishing (TVD) limiter: Continuous Riemann Solver Minimum Dissipation: LHS & RHS Activate pressure switch : Supersonic Activate...Continuous 94 Riemann Solver Minimum Dissipation: LHS & RHS Activate pressure switch : Supersonic Activate pressure gradient switch: Normal

  4. MACSYMA's symbolic ordinary differential equation solver

    NASA Technical Reports Server (NTRS)

    Golden, J. P.

    1977-01-01

    The MACSYMA's symbolic ordinary differential equation solver ODE2 is described. The code for this routine is delineated, which is of interest because it is written in top-level MACSYMA language, and may serve as a good example of programming in that language. Other symbolic ordinary differential equation solvers are mentioned.

  5. Application of an unstructured grid flow solver to planes, trains and automobiles

    NASA Technical Reports Server (NTRS)

    Spragle, Gregory S.; Smith, Wayne A.; Yadlin, Yoram

    1993-01-01

    Rampant, an unstructured flow solver developed at Fluent Inc., is used to compute three-dimensional, viscous, turbulent, compressible flow fields within complex solution domains. Rampant is an explicit, finite-volume flow solver capable of computing flow fields using either triangular (2d) or tetrahedral (3d) unstructured grids. Local time stepping, implicit residual smoothing, and multigrid techniques are used to accelerate the convergence of the explicit scheme. The paper describes the Rampant flow solver and presents flow field solutions about a plane, train, and automobile.

  6. Finite difference method accelerated with sparse solvers for structural analysis of the metal-organic complexes

    NASA Astrophysics Data System (ADS)

    Guda, A. A.; Guda, S. A.; Soldatov, M. A.; Lomachenko, K. A.; Bugaev, A. L.; Lamberti, C.; Gawelda, W.; Bressler, C.; Smolentsev, G.; Soldatov, A. V.; Joly, Y.

    2016-05-01

    Finite difference method (FDM) implemented in the FDMNES software [Phys. Rev. B, 2001, 63, 125120] was revised. Thorough analysis shows, that the calculated diagonal in the FDM matrix consists of about 96% zero elements. Thus a sparse solver would be more suitable for the problem instead of traditional Gaussian elimination for the diagonal neighbourhood. We have tried several iterative sparse solvers and the direct one MUMPS solver with METIS ordering turned out to be the best. Compared to the Gaussian solver present method is up to 40 times faster and allows XANES simulations for complex systems already on personal computers. We show applicability of the software for metal-organic [Fe(bpy)3]2+ complex both for low spin and high spin states populated after laser excitation.

  7. Computation of three-dimensional multiphase flow dynamics by Fully-Coupled Immersed Flow (FCIF) solver

    NASA Astrophysics Data System (ADS)

    Miao, Sha; Hendrickson, Kelli; Liu, Yuming

    2017-12-01

    This work presents a Fully-Coupled Immersed Flow (FCIF) solver for the three-dimensional simulation of fluid-fluid interaction by coupling two distinct flow solvers using an Immersed Boundary (IB) method. The FCIF solver captures dynamic interactions between two fluids with disparate flow properties, while retaining the desirable simplicity of non-boundary-conforming grids. For illustration, we couple an IB-based unsteady Reynolds Averaged Navier Stokes (uRANS) simulator with a depth-integrated (long-wave) solver for the application of slug development with turbulent gas and laminar liquid. We perform a series of validations including turbulent/laminar flows over prescribed wavy boundaries and freely-evolving viscous fluids. These confirm the effectiveness and accuracy of both one-way and two-way coupling in the FCIF solver. Finally, we present a simulation example of the evolution from a stratified turbulent/laminar flow through the initiation of a slug that nearly bridges the channel. The results show both the interfacial wave dynamics excited by the turbulent gas forcing and the influence of the liquid on the gas turbulence. These results demonstrate that the FCIF solver effectively captures the essential physics of gas-liquid interaction and can serve as a useful tool for the mechanistic study of slug generation in two-phase gas/liquid flows in channels and pipes.

  8. SediFoam: A general-purpose, open-source CFD-DEM solver for particle-laden flow with emphasis on sediment transport

    NASA Astrophysics Data System (ADS)

    Sun, Rui; Xiao, Heng

    2016-04-01

    With the growth of available computational resource, CFD-DEM (computational fluid dynamics-discrete element method) becomes an increasingly promising and feasible approach for the study of sediment transport. Several existing CFD-DEM solvers are applied in chemical engineering and mining industry. However, a robust CFD-DEM solver for the simulation of sediment transport is still desirable. In this work, the development of a three-dimensional, massively parallel, and open-source CFD-DEM solver SediFoam is detailed. This solver is built based on open-source solvers OpenFOAM and LAMMPS. OpenFOAM is a CFD toolbox that can perform three-dimensional fluid flow simulations on unstructured meshes; LAMMPS is a massively parallel DEM solver for molecular dynamics. Several validation tests of SediFoam are performed using cases of a wide range of complexities. The results obtained in the present simulations are consistent with those in the literature, which demonstrates the capability of SediFoam for sediment transport applications. In addition to the validation test, the parallel efficiency of SediFoam is studied to test the performance of the code for large-scale and complex simulations. The parallel efficiency tests show that the scalability of SediFoam is satisfactory in the simulations using up to O(107) particles.

  9. GSRP/David Marshall: Fully Automated Cartesian Grid CFD Application for MDO in High Speed Flows

    NASA Technical Reports Server (NTRS)

    2003-01-01

    With the renewed interest in Cartesian gridding methodologies for the ease and speed of gridding complex geometries in addition to the simplicity of the control volumes used in the computations, it has become important to investigate ways of extending the existing Cartesian grid solver functionalities. This includes developing methods of modeling the viscous effects in order to utilize Cartesian grids solvers for accurate drag predictions and addressing the issues related to the distributed memory parallelization of Cartesian solvers. This research presents advances in two areas of interest in Cartesian grid solvers, viscous effects modeling and MPI parallelization. The development of viscous effects modeling using solely Cartesian grids has been hampered by the widely varying control volume sizes associated with the mesh refinement and the cut cells associated with the solid surface. This problem is being addressed by using physically based modeling techniques to update the state vectors of the cut cells and removing them from the finite volume integration scheme. This work is performed on a new Cartesian grid solver, NASCART-GT, with modifications to its cut cell functionality. The development of MPI parallelization addresses issues associated with utilizing Cartesian solvers on distributed memory parallel environments. This work is performed on an existing Cartesian grid solver, CART3D, with modifications to its parallelization methodology.

  10. Computational Study of the CC3 Impeller and Vaneless Diffuser Experiment

    NASA Technical Reports Server (NTRS)

    Kulkarni, Sameer; Beach, Timothy A.; Skoch, Gary J.

    2013-01-01

    Centrifugal compressors are compatible with the low exit corrected flows found in the high pressure compressor of turboshaft engines and may play an increasing role in turbofan engines as engine overall pressure ratios increase. Centrifugal compressor stages are difficult to model accurately with RANS CFD solvers. A computational study of the CC3 centrifugal impeller in its vaneless diffuser configuration was undertaken as part of an effort to understand potential causes of RANS CFD mis-prediction in these types of geometries. Three steady, periodic cases of the impeller and diffuser were modeled using the TURBO Parallel Version 4 code: 1) a k-epsilon turbulence model computation on a 6.8 million point grid using wall functions, 2) a k-epsilon turbulence model computation on a 14 million point grid integrating to the wall, and 3) a k-omega turbulence model computation on the 14 million point grid integrating to the wall. It was found that all three cases compared favorably to data from inlet to impeller trailing edge, but the k-epsilon and k-omega computations had disparate results beyond the trailing edge and into the vaneless diffuser. A large region of reversed flow was observed in the k-epsilon computations which extended from 70% to 100% span at the exit rating plane, whereas the k-omega computation had reversed flow from 95% to 100% span. Compared to experimental data at near-peak-efficiency, the reversed flow region in the k-epsilon case resulted in an under-prediction in adiabatic efficiency of 8.3 points, whereas the k-omega case was 1.2 points lower in efficiency.

  11. Computational Study of the CC3 Impeller and Vaneless Diffuser Experiment

    NASA Technical Reports Server (NTRS)

    Kulkarni, Sameer; Beach, Timothy A.; Skoch, Gary J.

    2013-01-01

    Centrifugal compressors are compatible with the low exit corrected flows found in the high pressure compressor of turboshaft engines and may play an increasing role in turbofan engines as engine overall pressure ratios increase. Centrifugal compressor stages are difficult to model accurately with RANS CFD solvers. A computational study of the CC3 centrifugal impeller in its vaneless diffuser configuration was undertaken as part of an effort to understand potential causes of RANS CFD mis-prediction in these types of geometries. Three steady, periodic cases of the impeller and diffuser were modeled using the TURBO Parallel Version 4 code: (1) a k-e turbulence model computation on a 6.8 million point grid using wall functions, (2) a k-e turbulence model computation on a 14 million point grid integrating to the wall, and (3) a k-? turbulence model computation on the 14 million point grid integrating to the wall. It was found that all three cases compared favorably to data from inlet to impeller trailing edge, but the k-e and k-? computations had disparate results beyond the trailing edge and into the vaneless diffuser. A large region of reversed flow was observed in the k-e computations which extended from 70 to 100 percent span at the exit rating plane, whereas the k-? computation had reversed flow from 95 to 100 percent span. Compared to experimental data at near-peak-efficiency, the reversed flow region in the k-e case resulted in an underprediction in adiabatic efficiency of 8.3 points, whereas the k-? case was 1.2 points lower in efficiency.

  12. Fractional Diffusion Analysis of the Electromagnetic Field In Fractured Media Part II: 2.5-D Approach

    NASA Astrophysics Data System (ADS)

    Ge, J.; Everett, M. E.; Weiss, C. J.

    2012-12-01

    A 2.5D finite difference (FD) frequency-domain modeling algorithm based on the theory of fractional diffusion of electromagnetic (EM) fields generated by a loop source lying above a fractured geological medium is addressed in this paper. The presence of fractures in the subsurface, usually containing highly conductive pore fluids, gives rise to spatially hierarchical flow paths of induced EM eddy currents. The diffusion of EM eddy currents in such formations is anomalous, generalizing the classical Gaussian process described by the conventional Maxwell equations. Based on the continuous time random walk (CTRW) theory, the diffusion of EM eddy currents in a rough medium is governed by the fractional Maxwell equations. Here, we model the EM response of a 2D subsurface containing fractured zones, with a 3D loop source, which results the so-called 2.5D model geometry. The governing equation in the frequency domain is converted using Fourier transform into k domain along the strike direction (along which the model conductivity doesn't vary). The resulting equation system is solved by the multifrontal massively parallel solver (MUMPS). The data obtained is then converted back to spatial domain and the time domain. We find excellent agreement between the FD and analytic solutions for a rough halfspace model. Then FD solutions are calculated for a 2D fault zone model with variable conductivity and roughness. We compare the results with responses from several classical models and explore the relationship between the roughness and the spatial density of the fracture distribution.

  13. Performance Models for the Spike Banded Linear System Solver

    DOE PAGES

    Manguoglu, Murat; Saied, Faisal; Sameh, Ahmed; ...

    2011-01-01

    With availability of large-scale parallel platforms comprised of tens-of-thousands of processors and beyond, there is significant impetus for the development of scalable parallel sparse linear system solvers and preconditioners. An integral part of this design process is the development of performance models capable of predicting performance and providing accurate cost models for the solvers and preconditioners. There has been some work in the past on characterizing performance of the iterative solvers themselves. In this paper, we investigate the problem of characterizing performance and scalability of banded preconditioners. Recent work has demonstrated the superior convergence properties and robustness of banded preconditioners,more » compared to state-of-the-art ILU family of preconditioners as well as algebraic multigrid preconditioners. Furthermore, when used in conjunction with efficient banded solvers, banded preconditioners are capable of significantly faster time-to-solution. Our banded solver, the Truncated Spike algorithm is specifically designed for parallel performance and tolerance to deep memory hierarchies. Its regular structure is also highly amenable to accurate performance characterization. Using these characteristics, we derive the following results in this paper: (i) we develop parallel formulations of the Truncated Spike solver, (ii) we develop a highly accurate pseudo-analytical parallel performance model for our solver, (iii) we show excellent predication capabilities of our model – based on which we argue the high scalability of our solver. Our pseudo-analytical performance model is based on analytical performance characterization of each phase of our solver. These analytical models are then parameterized using actual runtime information on target platforms. An important consequence of our performance models is that they reveal underlying performance bottlenecks in both serial and parallel formulations. All of our results are validated on diverse heterogeneous multiclusters – platforms for which performance prediction is particularly challenging. Finally, we provide predict the scalability of the Spike algorithm using up to 65,536 cores with our model. In this paper we extend the results presented in the Ninth International Symposium on Parallel and Distributed Computing.« less

  14. Laboratory Photoionization Fronts in Nitrogen Gas: A Numerical Feasibility and Parameter Study

    NASA Astrophysics Data System (ADS)

    Gray, William J.; Keiter, P. A.; Lefevre, H.; Patterson, C. R.; Davis, J. S.; van Der Holst, B.; Powell, K. G.; Drake, R. P.

    2018-05-01

    Photoionization fronts play a dominant role in many astrophysical situations but remain difficult to achieve in a laboratory experiment. We present the results from a computational parameter study evaluating the feasibility of the photoionization experiment presented in the design paper by Drake et al. in which a photoionization front is generated in a nitrogen medium. The nitrogen gas density and the Planckian radiation temperature of the X-ray source define each simulation. Simulations modeled experiments in which the X-ray flux is generated by a laser-heated gold foil, suitable for experiments using many kJ of laser energy, and experiments in which the flux is generated by a “z-pinch” device, which implodes a cylindrical shell of conducting wires. The models are run using CRASH, our block-adaptive-mesh code for multimaterial radiation hydrodynamics. The radiative transfer model uses multigroup, flux-limited diffusion with 30 radiation groups. In addition, electron heat conduction is modeled using a single-group, flux-limited diffusion. In the theory, a photoionization front can exist only when the ratios of the electron recombination rate to the photoionization rate and the electron-impact ionization rate to the recombination rate lie in certain ranges. These ratios are computed for several ionization states of nitrogen. Photoionization fronts are found to exist for laser-driven models with moderate nitrogen densities (∼1021 cm‑3) and radiation temperatures above 90 eV. For “z-pinch”-driven models, lower nitrogen densities are preferred (<1021 cm‑3). We conclude that the proposed experiments are likely to generate photoionization fronts.

  15. Improved Convergence Rate of Multi-Group Scattering Moment Tallies for Monte Carlo Neutron Transport Codes

    NASA Astrophysics Data System (ADS)

    Nelson, Adam

    Multi-group scattering moment matrices are critical to the solution of the multi-group form of the neutron transport equation, as they are responsible for describing the change in direction and energy of neutrons. These matrices, however, are difficult to correctly calculate from the measured nuclear data with both deterministic and stochastic methods. Calculating these parameters when using deterministic methods requires a set of assumptions which do not hold true in all conditions. These quantities can be calculated accurately with stochastic methods, however doing so is computationally expensive due to the poor efficiency of tallying scattering moment matrices. This work presents an improved method of obtaining multi-group scattering moment matrices from a Monte Carlo neutron transport code. This improved method of tallying the scattering moment matrices is based on recognizing that all of the outgoing particle information is known a priori and can be taken advantage of to increase the tallying efficiency (therefore reducing the uncertainty) of the stochastically integrated tallies. In this scheme, the complete outgoing probability distribution is tallied, supplying every one of the scattering moment matrices elements with its share of data. In addition to reducing the uncertainty, this method allows for the use of a track-length estimation process potentially offering even further improvement to the tallying efficiency. Unfortunately, to produce the needed distributions, the probability functions themselves must undergo an integration over the outgoing energy and scattering angle dimensions. This integration is too costly to perform during the Monte Carlo simulation itself and therefore must be performed in advance by way of a pre-processing code. The new method increases the information obtained from tally events and therefore has a significantly higher efficiency than the currently used techniques. The improved method has been implemented in a code system containing a new pre-processor code, NDPP, and a Monte Carlo neutron transport code, OpenMC. This method is then tested in a pin cell problem and a larger problem designed to accentuate the importance of scattering moment matrices. These tests show that accuracy was retained while the figure-of-merit for generating scattering moment matrices and fission energy spectra was significantly improved.

  16. Integrating Eye Trackers with Handwriting Tablets to Discover Difficulties of Solving Geometry Problems

    ERIC Educational Resources Information Center

    Lin, John J. H.; Lin, Sunny S. J.

    2018-01-01

    To deepen our understanding of those aspects of problems that cause the most difficulty for solvers, this study integrated eye-tracking with handwriting devices to investigate problem solvers' online processes while solving geometry problems. We are interested in whether the difference between successful and unsuccessful solvers can be identified…

  17. Numerical Simulations of Aero-Optical Distortions Around Various Turret Geometries

    DTIC Science & Technology

    2013-06-12

    arbi trary cell topologies. The spatial operator uses the exact Riemann Solver of Gottlieb and Groth, least squares gradient cal- culations using QR...Unstructured Euler/Navier-Stokes Flow Solver ," in A/AA Paper 1999-0786, 1999. [9] J. J. Gottlieb and C. P. T. Groth, "Assessment of Riemann Solvers

  18. USM3D Unstructured Grid Solutions for CAWAPI at NASA LaRC

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Abdol-Hamid, Khaled S.

    2007-01-01

    In support the Cranked Arrow Wing Aerodynamic Project International (CAWAPI) to improve the Technology Readiness Level of flow solvers by comparing results with measured F-16XL-1 flight data, NASA Langley employed the TetrUSS unstructured grid solver, USM3D, to obtain solutions for all seven flight conditions of interest. A newly available solver version that incorporates a number of turbulence models, including the two-equation linear and non-linear k-epsilon, was used in this study. As a first test, a choice was made to utilize only a single grid resolution with the solver for the simulation of the different flight conditions. Comparisons are presented with three turbulence models in USM3D, flight data for surface pressure, boundary-layer profiles, and skin-friction results, as well as limited predictions from other solvers. A result of these comparisons is that the USM3D solver can be used in an engineering environment to predict flow physics on a complex configuration at flight Reynolds numbers with a two-equation linear k-epsilon turbulence model.

  19. Towards a Coupled Vortex Particle and Acoustic Boundary Element Solver to Predict the Noise Production of Bio-Inspired Propulsion

    NASA Astrophysics Data System (ADS)

    Wagenhoffer, Nathan; Moored, Keith; Jaworski, Justin

    2016-11-01

    The design of quiet and efficient bio-inspired propulsive concepts requires a rapid, unified computational framework that integrates the coupled fluid dynamics with the noise generation. Such a framework is developed where the fluid motion is modeled with a two-dimensional unsteady boundary element method that includes a vortex-particle wake. The unsteady surface forces from the potential flow solver are then passed to an acoustic boundary element solver to predict the radiated sound in low-Mach-number flows. The use of the boundary element method for both the hydrodynamic and acoustic solvers permits dramatic computational acceleration by application of the fast multiple method. The reduced order of calculations due to the fast multipole method allows for greater spatial resolution of the vortical wake per unit of computational time. The coupled flow-acoustic solver is validated against canonical vortex-sound problems. The capability of the coupled solver is demonstrated by analyzing the performance and noise production of an isolated bio-inspired swimmer and of tandem swimmers.

  20. Summer Proceedings 2016: The Center for Computing Research at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carleton, James Brian; Parks, Michael L.

    Solving sparse linear systems from the discretization of elliptic partial differential equations (PDEs) is an important building block in many engineering applications. Sparse direct solvers can solve general linear systems, but are usually slower and use much more memory than effective iterative solvers. To overcome these two disadvantages, a hierarchical solver (LoRaSp) based on H2-matrices was introduced in [22]. Here, we have developed a parallel version of the algorithm in LoRaSp to solve large sparse matrices on distributed memory machines. On a single processor, the factorization time of our parallel solver scales almost linearly with the problem size for three-dimensionalmore » problems, as opposed to the quadratic scalability of many existing sparse direct solvers. Moreover, our solver leads to almost constant numbers of iterations, when used as a preconditioner for Poisson problems. On more than one processor, our algorithm has significant speedups compared to sequential runs. With this parallel algorithm, we are able to solve large problems much faster than many existing packages as demonstrated by the numerical experiments.« less

  1. Multigrid accelerated simulations for Twisted Mass fermions

    NASA Astrophysics Data System (ADS)

    Bacchio, Simone; Alexandrou, Constantia; Finkerath, Jacob

    2018-03-01

    Simulations at physical quark masses are affected by the critical slowing down of the solvers. Multigrid preconditioning has proved to deal effectively with this problem. Multigrid accelerated simulations at the physical value of the pion mass are being performed to generate Nf = 2 and Nf = 2 + 1 + 1 gauge ensembles using twisted mass fermions. The adaptive aggregation-based domain decomposition multigrid solver, referred to as DD-αAMG method, is employed for these simulations. Our simulation strategy consists of an hybrid approach of different solvers, involving the Conjugate Gradient (CG), multi-mass-shift CG and DD-αAMG solvers. We present an analysis of the multigrid performance during the simulations discussing the stability of the method. This significant speeds up the Hybrid Monte Carlo simulation by more than a factor 4 at physical pion mass compared to the usage of the CG solver.

  2. A coupled sharp-interface immersed boundary-finite-element method for flow-structure interaction with application to human phonation.

    PubMed

    Zheng, X; Xue, Q; Mittal, R; Beilamowicz, S

    2010-11-01

    A new flow-structure interaction method is presented, which couples a sharp-interface immersed boundary method flow solver with a finite-element method based solid dynamics solver. The coupled method provides robust and high-fidelity solution for complex flow-structure interaction (FSI) problems such as those involving three-dimensional flow and viscoelastic solids. The FSI solver is used to simulate flow-induced vibrations of the vocal folds during phonation. Both two- and three-dimensional models have been examined and qualitative, as well as quantitative comparisons, have been made with established results in order to validate the solver. The solver is used to study the onset of phonation in a two-dimensional laryngeal model and the dynamics of the glottal jet in a three-dimensional model and results from these studies are also presented.

  3. Fault tolerance in an inner-outer solver: A GVR-enabled case study

    DOE PAGES

    Zhang, Ziming; Chien, Andrew A.; Teranishi, Keita

    2015-04-18

    Resilience is a major challenge for large-scale systems. It is particularly important for iterative linear solvers, since they take much of the time of many scientific applications. We show that single bit flip errors in the Flexible GMRES iterative linear solver can lead to high computational overhead or even failure to converge to the right answer. Informed by these results, we design and evaluate several strategies for fault tolerance in both inner and outer solvers appropriate across a range of error rates. We implement them, extending Trilinos’ solver library with the Global View Resilience (GVR) programming model, which provides multi-streammore » snapshots, multi-version data structures with portable and rich error checking/recovery. Lastly, experimental results validate correct execution with low performance overhead under varied error conditions.« less

  4. Probability density function approach for compressible turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Hsu, A. T.; Tsai, Y.-L. P.; Raju, M. S.

    1994-01-01

    The objective of the present work is to extend the probability density function (PDF) tubulence model to compressible reacting flows. The proability density function of the species mass fractions and enthalpy are obtained by solving a PDF evolution equation using a Monte Carlo scheme. The PDF solution procedure is coupled with a compression finite-volume flow solver which provides the velocity and pressure fields. A modeled PDF equation for compressible flows, capable of treating flows with shock waves and suitable to the present coupling scheme, is proposed and tested. Convergence of the combined finite-volume Monte Carlo solution procedure is discussed. Two super sonic diffusion flames are studied using the proposed PDF model and the results are compared with experimental data; marked improvements over solutions without PDF are observed.

  5. Full Core TREAT Kinetics Demonstration Using Rattlesnake/BISON Coupling Within MAMMOTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortensi, Javier; DeHart, Mark D.; Gleicher, Frederick N.

    2015-08-01

    This report summarizes key aspects of research in evaluation of modeling needs for TREAT transient simulation. Using a measured TREAT critical measurement and a transient for a small, experimentally simplified core, Rattlesnake and MAMMOTH simulations are performed building from simple infinite media to a full core model. Cross sections processing methods are evaluated, various homogenization approaches are assessed and the neutronic behavior of the core studied to determine key modeling aspects. The simulation of the minimum critical core with the diffusion solver shows very good agreement with the reference Monte Carlo simulation and the experiment. The full core transient simulationmore » with thermal feedback shows a significantly lower power peak compared to the documented experimental measurement, which is not unexpected in the early stages of model development.« less

  6. An iterative solver for the 3D Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Belonosov, Mikhail; Dmitriev, Maxim; Kostin, Victor; Neklyudov, Dmitry; Tcheverda, Vladimir

    2017-09-01

    We develop a frequency-domain iterative solver for numerical simulation of acoustic waves in 3D heterogeneous media. It is based on the application of a unique preconditioner to the Helmholtz equation that ensures convergence for Krylov subspace iteration methods. Effective inversion of the preconditioner involves the Fast Fourier Transform (FFT) and numerical solution of a series of boundary value problems for ordinary differential equations. Matrix-by-vector multiplication for iterative inversion of the preconditioned matrix involves inversion of the preconditioner and pointwise multiplication of grid functions. Our solver has been verified by benchmarking against exact solutions and a time-domain solver.

  7. The Interplay between Proto--Neutron Star Convection and Neutrino Transport in Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Mezzacappa, A.; Calder, A. C.; Bruenn, S. W.; Blondin, J. M.; Guidry, M. W.; Strayer, M. R.; Umar, A. S.

    1998-01-01

    We couple two-dimensional hydrodynamics to realistic one-dimensional multigroup flux-limited diffusion neutrino transport to investigate proto-neutron star convection in core-collapse supernovae, and more specifically, the interplay between its development and neutrino transport. Our initial conditions, time-dependent boundary conditions, and neutrino distributions for computing neutrino heating, cooling, and deleptonization rates are obtained from one-dimensional simulations that implement multigroup flux-limited diffusion and one-dimensional hydrodynamics. The development and evolution of proto-neutron star convection are investigated for both 15 and 25 M⊙ models, representative of the two classes of stars with compact and extended iron cores, respectively. For both models, in the absence of neutrino transport, the angle-averaged radial and angular convection velocities in the initial Ledoux unstable region below the shock after bounce achieve their peak values in ~20 ms, after which they decrease as the convection in this region dissipates. The dissipation occurs as the gradients are smoothed out by convection. This initial proto-neutron star convection episode seeds additional convectively unstable regions farther out beneath the shock. The additional proto-neutron star convection is driven by successive negative entropy gradients that develop as the shock, in propagating out after core bounce, is successively strengthened and weakened by the oscillating inner core. The convection beneath the shock distorts its sphericity, but on the average the shock radius is not boosted significantly relative to its radius in our corresponding one-dimensional models. In the presence of neutrino transport, proto-neutron star convection velocities are too small relative to bulk inflow velocities to result in any significant convective transport of entropy and leptons. This is evident in our two-dimensional entropy snapshots, which in this case appear spherically symmetric. The peak angle-averaged radial and angular convection velocities are orders of magnitude smaller than they are in the corresponding ``hydrodynamics-only'' models. A simple analytical model supports our numerical results, indicating that the inclusion of neutrino transport reduces the entropy-driven (lepton-driven) convection growth rates and asymptotic velocities by a factor ~3 (50) at the neutrinosphere and a factor ~250 (1000) at ρ = 1012 g cm-3, for both our 15 and 25 M⊙ models. Moreover, when transport is included, the initial postbounce entropy gradient is smoothed out by neutrino diffusion, whereas the initial lepton gradient is maintained by electron capture and neutrino escape near the neutrinosphere. Despite the maintenance of the lepton gradient, proto-neutron star convection does not develop over the 100 ms duration typical of all our simulations, except in the instance where ``low-test'' intial conditions are used, which are generated by core-collapse and bounce simulations that neglect neutrino-electron scattering and ion-ion screening corrections to neutrino-nucleus elastic scattering. Models favoring the development of proto-neutron star convection either by starting with more favorable, albeit artificial (low-test), initial conditions or by including transport corrections that were ignored in our ``fiducial'' models were considered. Our conclusions nonetheless remained the same. Evidence of proto-neutron star convection in our two-dimensional entropy snapshots was minimal, and, as in our fiducial models, the angle-averaged convective velocities when neutrino transport was included remained orders of magnitude smaller than their counterparts in the corresponding hydrodynamics-only models.

  8. Analyzing average and conditional effects with multigroup multilevel structural equation models

    PubMed Central

    Mayer, Axel; Nagengast, Benjamin; Fletcher, John; Steyer, Rolf

    2014-01-01

    Conventionally, multilevel analysis of covariance (ML-ANCOVA) has been the recommended approach for analyzing treatment effects in quasi-experimental multilevel designs with treatment application at the cluster-level. In this paper, we introduce the generalized ML-ANCOVA with linear effect functions that identifies average and conditional treatment effects in the presence of treatment-covariate interactions. We show how the generalized ML-ANCOVA model can be estimated with multigroup multilevel structural equation models that offer considerable advantages compared to traditional ML-ANCOVA. The proposed model takes into account measurement error in the covariates, sampling error in contextual covariates, treatment-covariate interactions, and stochastic predictors. We illustrate the implementation of ML-ANCOVA with an example from educational effectiveness research where we estimate average and conditional effects of early transition to secondary schooling on reading comprehension. PMID:24795668

  9. An Automatic Detection System of Lung Nodule Based on Multi-Group Patch-Based Deep Learning Network.

    PubMed

    Jiang, Hongyang; Ma, He; Qian, Wei; Gao, Mengdi; Li, Yan

    2017-07-14

    High-efficiency lung nodule detection dramatically contributes to the risk assessment of lung cancer. It is a significant and challenging task to quickly locate the exact positions of lung nodules. Extensive work has been done by researchers around this domain for approximately two decades. However, previous computer aided detection (CADe) schemes are mostly intricate and time-consuming since they may require more image processing modules, such as the computed tomography (CT) image transformation, the lung nodule segmentation and the feature extraction, to construct a whole CADe system. It is difficult for those schemes to process and analyze enormous data when the medical images continue to increase. Besides, some state of the art deep learning schemes may be strict in the standard of database. This study proposes an effective lung nodule detection scheme based on multi-group patches cut out from the lung images, which are enhanced by the Frangi filter. Through combining two groups of images, a four-channel convolution neural networks (CNN) model is designed to learn the knowledge of radiologists for detecting nodules of four levels. This CADe scheme can acquire the sensitivity of 80.06% with 4.7 false positives per scan and the sensitivity of 94% with 15.1 false positives per scan. The results demonstrate that the multi-group patch-based learning system is efficient to improve the performance of lung nodule detection and greatly reduce the false positives under a huge amount of image data.

  10. A new multigroup method for cross-sections that vary rapidly in energy

    NASA Astrophysics Data System (ADS)

    Haut, T. S.; Ahrens, C.; Jonko, A.; Lowrie, R.; Till, A.

    2017-01-01

    We present a numerical method for solving the time-independent thermal radiative transfer (TRT) equation or the neutron transport (NT) equation when the opacity (cross-section) varies rapidly in frequency (energy) on the microscale ε; ε corresponds to the characteristic spacing between absorption lines or resonances, and is much smaller than the macroscopic frequency (energy) variation of interest. The approach is based on a rigorous homogenization of the TRT/NT equation in the frequency (energy) variable. Discretization of the homogenized TRT/NT equation results in a multigroup-type system, and can therefore be solved by standard methods. We demonstrate the accuracy and efficiency of the approach on three model problems. First we consider the Elsasser band model with constant temperature and a line spacing ε =10-4 . Second, we consider a neutron transport application for fast neutrons incident on iron, where the characteristic resonance spacing ε necessitates ≈ 16 , 000 energy discretization parameters if Planck-weighted cross sections are used. Third, we consider an atmospheric TRT problem for an opacity corresponding to water vapor over a frequency range 1000-2000 cm-1, where we take 12 homogeneous layers between 1-15 km, and temperature/pressure values in each layer from the standard US atmosphere. For all three problems, we demonstrate that we can achieve between 0.1 and 1 percent relative error in the solution, and with several orders of magnitude fewer parameters than a standard multigroup formulation using Planck-weighted (source-weighted) opacities for a comparable accuracy.

  11. Longitudinal multigroup invariance analysis of the satisfaction with food-related life scale in university students.

    PubMed

    Schnettler, Berta; Miranda, Horacio; Miranda-Zapata, Edgardo; Salinas-Oñate, Natalia; Grunert, Klaus G; Lobos, Germán; Sepúlveda, José; Orellana, Ligia; Hueche, Clementina; Bonilla, Héctor

    2017-06-01

    This study examined longitudinal measurement invariance in the Satisfaction with Food-related Life (SWFL) scale using follow-up data from university students. We examined this measure of the SWFL in different groups of students, separated by various characteristics. Through non-probabilistic longitudinal sampling, 114 university students (65.8% female, mean age: 22.5) completed the SWFL questionnaire three times, over intervals of approximately one year. Confirmatory factor analysis was used to examine longitudinal measurement invariance. Two types of analysis were conducted: first, a longitudinal invariance by time, and second, a multigroup longitudinal invariance by sex, age, socio-economic status and place of residence during the study period. Results showed that the 3-item version of the SWFL exhibited strong longitudinal invariance (equal factor loadings and equal indicator intercepts). Longitudinal multigroup invariance analysis also showed that the 3-item version of the SWFL displays strong invariance by socio-economic status and place of residence during the study period over time. Nevertheless, it was only possible to demonstrate equivalence of the longitudinal factor structure among students of both sexes, and among those older and younger than 22 years. Generally, these findings suggest that the SWFL scale has satisfactory psychometric properties for longitudinal measurement invariance in university students with similar characteristics as the students that participated in this research. It is also possible to suggest that satisfaction with food-related life is associated with sex and age. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Modeling hemodynamics in intracranial aneurysms: Comparing accuracy of CFD solvers based on finite element and finite volume schemes.

    PubMed

    Botti, Lorenzo; Paliwal, Nikhil; Conti, Pierangelo; Antiga, Luca; Meng, Hui

    2018-06-01

    Image-based computational fluid dynamics (CFD) has shown potential to aid in the clinical management of intracranial aneurysms (IAs) but its adoption in the clinical practice has been missing, partially due to lack of accuracy assessment and sensitivity analysis. To numerically solve the flow-governing equations CFD solvers generally rely on two spatial discretization schemes: Finite Volume (FV) and Finite Element (FE). Since increasingly accurate numerical solutions are obtained by different means, accuracies and computational costs of FV and FE formulations cannot be compared directly. To this end, in this study we benchmark two representative CFD solvers in simulating flow in a patient-specific IA model: (1) ANSYS Fluent, a commercial FV-based solver and (2) VMTKLab multidGetto, a discontinuous Galerkin (dG) FE-based solver. The FV solver's accuracy is improved by increasing the spatial mesh resolution (134k, 1.1m, 8.6m and 68.5m tetrahedral element meshes). The dGFE solver accuracy is increased by increasing the degree of polynomials (first, second, third and fourth degree) on the base 134k tetrahedral element mesh. Solutions from best FV and dGFE approximations are used as baseline for error quantification. On average, velocity errors for second-best approximations are approximately 1cm/s for a [0,125]cm/s velocity magnitude field. Results show that high-order dGFE provide better accuracy per degree of freedom but worse accuracy per Jacobian non-zero entry as compared to FV. Cross-comparison of velocity errors demonstrates asymptotic convergence of both solvers to the same numerical solution. Nevertheless, the discrepancy between under-resolved velocity fields suggests that mesh independence is reached following different paths. This article is protected by copyright. All rights reserved.

  13. MAFIA Version 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, T.; Bartsch, M.; Becker, U.

    1997-02-01

    MAFIA Version 4.0 is an almost completely new version of the general purpose electromagnetic simulator known since 13 years. The major improvements concern the new graphical user interface based on state of the art technology as well as a series of new solvers for new physics problems. MAFIA now covers heat distribution, electro-quasistatics, S-parameters in frequency domain, particle beam tracking in linear accelerators, acoustics and even elastodynamics. The solvers that were available in earlier versions have also been improved and/or extended, as for example the complex eigenmode solver, the 2D--3D coupled PIC solvers. Time domain solvers have new waveguide boundarymore » conditions with an extremely low reflection even near cutoff frequency, concentrated elements are available as well as a variety of signal processing options. Probably the most valuable addition are recursive sub-grid capabilities that enable modeling of very small details in large structures. {copyright} {ital 1997 American Institute of Physics.}« less

  14. MAFIA Version 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, T.; Bartsch, M.; Becker, U.

    1997-02-01

    MAFIA Version 4.0 is an almost completely new version of the general purpose electromagnetic simulator known since 13 years. The major improvements concern the new graphical user interface based on state of the art technology as well as a series of new solvers for new physics problems. MAFIA now covers heat distribution, electro-quasistatics, S-parameters in frequency domain, particle beam tracking in linear accelerators, acoustics and even elastodynamics. The solvers that were available in earlier versions have also been improved and/or extended, as for example the complex eigenmode solver, the 2D-3D coupled PIC solvers. Time domain solvers have new waveguide boundarymore » conditions with an extremely low reflection even near cutoff frequency, concentrated elements are available as well as a variety of signal processing options. Probably the most valuable addition are recursive sub-grid capabilities that enable modeling of very small details in large structures.« less

  15. A 3D approximate maximum likelihood solver for localization of fish implanted with acoustic transmitters

    DOE PAGES

    Li, Xinya; Deng, Z. Daniel; USA, Richland Washington; ...

    2014-11-27

    Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developedmore » using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.« less

  16. A 3D approximate maximum likelihood solver for localization of fish implanted with acoustic transmitters

    NASA Astrophysics Data System (ADS)

    Li, Xinya; Deng, Z. Daniel; Sun, Yannan; Martinez, Jayson J.; Fu, Tao; McMichael, Geoffrey A.; Carlson, Thomas J.

    2014-11-01

    Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developed using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.

  17. A 3D approximate maximum likelihood solver for localization of fish implanted with acoustic transmitters

    PubMed Central

    Li, Xinya; Deng, Z. Daniel; Sun, Yannan; Martinez, Jayson J.; Fu, Tao; McMichael, Geoffrey A.; Carlson, Thomas J.

    2014-01-01

    Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developed using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature. PMID:25427517

  18. A 3D approximate maximum likelihood solver for localization of fish implanted with acoustic transmitters.

    PubMed

    Li, Xinya; Deng, Z Daniel; Sun, Yannan; Martinez, Jayson J; Fu, Tao; McMichael, Geoffrey A; Carlson, Thomas J

    2014-11-27

    Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developed using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.

  19. Numerical Analysis of the Cavity Flow subjected to Passive Controls Techniques

    NASA Astrophysics Data System (ADS)

    Melih Guleren, Kursad; Turk, Seyfettin; Mirza Demircan, Osman; Demir, Oguzhan

    2018-03-01

    Open-source flow solvers are getting more and more popular for the analysis of challenging flow problems in aeronautical and mechanical engineering applications. They are offered under the GNU General Public License and can be run, examined, shared and modified according to user’s requirements. SU2 and OpenFOAM are the two most popular open-source solvers in Computational Fluid Dynamics (CFD) community. In the present study, some passive control methods on the high-speed cavity flows are numerically simulated using these open-source flow solvers along with one commercial flow solver called ANSYS/Fluent. The results are compared with the available experimental data. The solver SU2 are seen to predict satisfactory the mean streamline velocity but not turbulent kinetic energy and overall averaged sound pressure level (OASPL). Whereas OpenFOAM predicts all these parameters nearly as the same levels of ANSYS/Fluent.

  20. A Lagrangian meshfree method applied to linear and nonlinear elasticity.

    PubMed

    Walker, Wade A

    2017-01-01

    The repeated replacement method (RRM) is a Lagrangian meshfree method which we have previously applied to the Euler equations for compressible fluid flow. In this paper we present new enhancements to RRM, and we apply the enhanced method to both linear and nonlinear elasticity. We compare the results of ten test problems to those of analytic solvers, to demonstrate that RRM can successfully simulate these elastic systems without many of the requirements of traditional numerical methods such as numerical derivatives, equation system solvers, or Riemann solvers. We also show the relationship between error and computational effort for RRM on these systems, and compare RRM to other methods to highlight its strengths and weaknesses. And to further explain the two elastic equations used in the paper, we demonstrate the mathematical procedure used to create Riemann and Sedov-Taylor solvers for them, and detail the numerical techniques needed to embody those solvers in code.

  1. Hypersonic simulations using open-source CFD and DSMC solvers

    NASA Astrophysics Data System (ADS)

    Casseau, V.; Scanlon, T. J.; John, B.; Emerson, D. R.; Brown, R. E.

    2016-11-01

    Hypersonic hybrid hydrodynamic-molecular gas flow solvers are required to satisfy the two essential requirements of any high-speed reacting code, these being physical accuracy and computational efficiency. The James Weir Fluids Laboratory at the University of Strathclyde is currently developing an open-source hybrid code which will eventually reconcile the direct simulation Monte-Carlo method, making use of the OpenFOAM application called dsmcFoam, and the newly coded open-source two-temperature computational fluid dynamics solver named hy2Foam. In conjunction with employing the CVDV chemistry-vibration model in hy2Foam, novel use is made of the QK rates in a CFD solver. In this paper, further testing is performed, in particular with the CFD solver, to ensure its efficacy before considering more advanced test cases. The hy2Foam and dsmcFoam codes have shown to compare reasonably well, thus providing a useful basis for other codes to compare against.

  2. On Riemann solvers and kinetic relations for isothermal two-phase flows with surface tension

    NASA Astrophysics Data System (ADS)

    Rohde, Christian; Zeiler, Christoph

    2018-06-01

    We consider a sharp interface approach for the inviscid isothermal dynamics of compressible two-phase flow that accounts for phase transition and surface tension effects. Kinetic relations are frequently used to fix the mass exchange and entropy dissipation rate across the interface. The complete unidirectional dynamics can then be understood by solving generalized two-phase Riemann problems. We present new well-posedness theorems for the Riemann problem and corresponding computable Riemann solvers that cover quite general equations of state, metastable input data and curvature effects. The new Riemann solver is used to validate different kinetic relations on physically relevant problems including a comparison with experimental data. Riemann solvers are building blocks for many numerical schemes that are used to track interfaces in two-phase flow. It is shown that the new Riemann solver enables reliable and efficient computations for physical situations that could not be treated before.

  3. Efficient numerical calculation of MHD equilibria with magnetic islands, with particular application to saturated neoclassical tearing modes

    NASA Astrophysics Data System (ADS)

    Raburn, Daniel Louis

    We have developed a preconditioned, globalized Jacobian-free Newton-Krylov (JFNK) solver for calculating equilibria with magnetic islands. The solver has been developed in conjunction with the Princeton Iterative Equilibrium Solver (PIES) and includes two notable enhancements over a traditional JFNK scheme: (1) globalization of the algorithm by a sophisticated backtracking scheme, which optimizes between the Newton and steepest-descent directions; and, (2) adaptive preconditioning, wherein information regarding the system Jacobian is reused between Newton iterations to form a preconditioner for our GMRES-like linear solver. We have developed a formulation for calculating saturated neoclassical tearing modes (NTMs) which accounts for the incomplete loss of a bootstrap current due to gradients of multiple physical quantities. We have applied the coupled PIES-JFNK solver to calculate saturated island widths on several shots from the Tokamak Fusion Test Reactor (TFTR) and have found reasonable agreement with experimental measurement.

  4. A 3D approximate maximum likelihood solver for localization of fish implanted with acoustic transmitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xinya; Deng, Z. Daniel; USA, Richland Washington

    Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developedmore » using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.« less

  5. A Lagrangian meshfree method applied to linear and nonlinear elasticity

    PubMed Central

    2017-01-01

    The repeated replacement method (RRM) is a Lagrangian meshfree method which we have previously applied to the Euler equations for compressible fluid flow. In this paper we present new enhancements to RRM, and we apply the enhanced method to both linear and nonlinear elasticity. We compare the results of ten test problems to those of analytic solvers, to demonstrate that RRM can successfully simulate these elastic systems without many of the requirements of traditional numerical methods such as numerical derivatives, equation system solvers, or Riemann solvers. We also show the relationship between error and computational effort for RRM on these systems, and compare RRM to other methods to highlight its strengths and weaknesses. And to further explain the two elastic equations used in the paper, we demonstrate the mathematical procedure used to create Riemann and Sedov-Taylor solvers for them, and detail the numerical techniques needed to embody those solvers in code. PMID:29045443

  6. MPACT Theory Manual, Version 2.2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downar, Thomas; Collins, Benjamin S.; Gehin, Jess C.

    2016-06-09

    This theory manual describes the three-dimensional (3-D) whole-core, pin-resolved transport calculation methodology employed in the MPACT code. To provide sub-pin level power distributions with sufficient accuracy, MPACT employs the method of characteristics (MOC) solutions in the framework of a 3-D coarse mesh finite difference (CMFD) formulation. MPACT provides a 3D MOC solution, but also a 2D/1D solution in which the 2D planar solution is provided by MOC and the axial coupling is resolved by one-dimensional (1-D) lower order (diffusion or P3) solutions. In Chapter 2 of the manual, the MOC methodology is described for calculating the regional angular and scalarmore » fluxes from the Boltzmann transport equation. In Chapter 3, the 2D/1D methodology is described, together with the description of the CMFD iteration process involving dynamic homogenization and solution of the multigroup CMFD linear system. A description of the MPACT depletion algorithm is given in Chapter 4, followed by a discussion of the subgroup and ESSM resonance processing methods in Chapter 5. The final Chapter 6 describes a simplified thermal hydraulics model in MPACT.« less

  7. Computational Analyses in Support of Sub-scale Diffuser Testing for the A-3 Facility. Part 3; Aero-Acoustic Analyses and Experimental Validation

    NASA Technical Reports Server (NTRS)

    Allgood, Daniel C.; Graham, Jason S.; McVay, Greg P.; Langford, Lester L.

    2008-01-01

    A unique assessment of acoustic similarity scaling laws and acoustic analogy methodologies in predicting the far-field acoustic signature from a sub-scale altitude rocket test facility at the NASA Stennis Space Center was performed. A directional, point-source similarity analysis was implemented for predicting the acoustic far-field. In this approach, experimental acoustic data obtained from "similar" rocket engine tests were appropriately scaled using key geometric and dynamic parameters. The accuracy of this engineering-level method is discussed by comparing the predictions with acoustic far-field measurements obtained. In addition, a CFD solver was coupled with a Lilley's acoustic analogy formulation to determine the improvement of using a physics-based methodology over an experimental correlation approach. In the current work, steady-state Reynolds-averaged Navier-Stokes calculations were used to model the internal flow of the rocket engine and altitude diffuser. These internal flow simulations provided the necessary realistic input conditions for external plume simulations. The CFD plume simulations were then used to provide the spatial turbulent noise source distributions in the acoustic analogy calculations. Preliminary findings of these studies will be discussed.

  8. Numerical study on tilting salt finger in a laminar shear flow

    NASA Astrophysics Data System (ADS)

    Zhang, Xianfei; Wang, Ling-ling; Lin, Cheng; Zhu, Hai; Zeng, Cheng

    2018-02-01

    Salt fingers as a mixing mechanism in the ocean have been investigated for several decades, together with a key issue being focused on their convective evolution and flux ratio variation. However, related studies on tilting fingers in the ocean produced by shear flow have been ignored by previous researchers. In this paper, a 2-D numerical model is presented to study the evolution of the double-diffusion salt finger in a two-layer thermohaline system with laminar shear flow. The model is divided into a steady-state solver and double-diffusion convection system, aimed to reveal the effect of shear flow on salt fingers and analyze the mechanism behind the shear and fingers. Several cases are conducted for Re = 0 ˜ 900 to study the evolution of salt fingers in a laminar shear flow and the variation of salt flux with Re. The results show that salt fingers exist and tilt in the presence of laminar shear flow. The mass transport in the vertical direction is weakened as the Reynolds number increases. An asymmetric structure of the salt finger is discovered and accounts for the morphological tilt and salt flux reduction.

  9. Data fitting and image fine-tuning approach to solve the inverse problem in fluorescence molecular imaging

    NASA Astrophysics Data System (ADS)

    Gorpas, Dimitris; Politopoulos, Kostas; Yova, Dido; Andersson-Engels, Stefan

    2008-02-01

    One of the most challenging problems in medical imaging is to "see" a tumour embedded into tissue, which is a turbid medium, by using fluorescent probes for tumour labeling. This problem, despite the efforts made during the last years, has not been fully encountered yet, due to the non-linear nature of the inverse problem and the convergence failures of many optimization techniques. This paper describes a robust solution of the inverse problem, based on data fitting and image fine-tuning techniques. As a forward solver the coupled radiative transfer equation and diffusion approximation model is proposed and compromised via a finite element method, enhanced with adaptive multi-grids for faster and more accurate convergence. A database is constructed by application of the forward model on virtual tumours with known geometry, and thus fluorophore distribution, embedded into simulated tissues. The fitting procedure produces the best matching between the real and virtual data, and thus provides the initial estimation of the fluorophore distribution. Using this information, the coupled radiative transfer equation and diffusion approximation model has the required initial values for a computational reasonable and successful convergence during the image fine-tuning application.

  10. A Simplified Ab Initio Cosmic-ray Modulation Model with Simulated Time Dependence and Predictive Capability

    NASA Astrophysics Data System (ADS)

    Moloto, K. D.; Engelbrecht, N. E.; Burger, R. A.

    2018-06-01

    A simplified ab initio approach is followed to model cosmic-ray proton modulation, using a steady-state three-dimensional stochastic solver of the Parker transport equation that simulates some effects of time dependence. Standard diffusion coefficients based on Quasilinear Theory and Nonlinear Guiding Center Theory are employed. The spatial and temporal dependences of the various turbulence quantities required as inputs for the diffusion, as well as the turbulence-reduced drift coefficients, follow from parametric fits to results from a turbulence transport model as well as from spacecraft observations of these turbulence quantities. Effective values are used for the solar wind speed, magnetic field magnitude, and tilt angle in the modulation model to simulate temporal effects due to changes in the large-scale heliospheric plasma. The unusually high cosmic-ray intensities observed during the 2009 solar minimum follow naturally from the current model for most of the energies considered. This demonstrates that changes in turbulence contribute significantly to the high intensities during that solar minimum. We also discuss and illustrate how this model can be used to predict future cosmic-ray intensities, and comment on the reliability of such predictions.

  11. The Effect of New Vocabulary on Problem Solving in Novice Physics Students.

    ERIC Educational Resources Information Center

    Sobolewski, Stanley J.

    One of the difficulties encountered by novice problem solvers in introductory physics is in the area of problem solving. It has been shown in other studies that poor problem solvers are affected by the surface aspects of the problem in contrast with more efficient problem solvers who are capable of constructing a mental model of the physical…

  12. Adaptive Discontinuous Evolution Galerkin Method for Dry Atmospheric Flow

    DTIC Science & Technology

    2013-04-02

    standard one-dimensional approximate Riemann solver used for the flux integration demonstrate better stability, accuracy as well as reliability of the...discontinuous evolution Galerkin method for dry atmospheric convection. Comparisons with the standard one-dimensional approximate Riemann solver used...instead of a standard one- dimensional approximate Riemann solver , the flux integration within the discontinuous Galerkin method is now realized by

  13. Parallel performance investigations of an unstructured mesh Navier-Stokes solver

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    2000-01-01

    A Reynolds-averaged Navier-Stokes solver based on unstructured mesh techniques for analysis of high-lift configurations is described. The method makes use of an agglomeration multigrid solver for convergence acceleration. Implicit line-smoothing is employed to relieve the stiffness associated with highly stretched meshes. A GMRES technique is also implemented to speed convergence at the expense of additional memory usage. The solver is cache efficient and fully vectorizable, and is parallelized using a two-level hybrid MPI-OpenMP implementation suitable for shared and/or distributed memory architectures, as well as clusters of shared memory machines. Convergence and scalability results are illustrated for various high-lift cases.

  14. Numerical comparison of Riemann solvers for astrophysical hydrodynamics

    NASA Astrophysics Data System (ADS)

    Klingenberg, Christian; Schmidt, Wolfram; Waagan, Knut

    2007-11-01

    The idea of this work is to compare a new positive and entropy stable approximate Riemann solver by Francois Bouchut with a state-of the-art algorithm for astrophysical fluid dynamics. We implemented the new Riemann solver into an astrophysical PPM-code, the Prometheus code, and also made a version with a different, more theoretically grounded higher order algorithm than PPM. We present shock tube tests, two-dimensional instability tests and forced turbulence simulations in three dimensions. We find subtle differences between the codes in the shock tube tests, and in the statistics of the turbulence simulations. The new Riemann solver increases the computational speed without significant loss of accuracy.

  15. Application of fast Fourier transforms to the direct solution of a class of two-dimensional separable elliptic equations on the sphere

    NASA Technical Reports Server (NTRS)

    Moorthi, Shrinivas; Higgins, R. W.

    1993-01-01

    An efficient, direct, second-order solver for the discrete solution of a class of two-dimensional separable elliptic equations on the sphere (which generally arise in implicit and semi-implicit atmospheric models) is presented. The method involves a Fourier transformation in longitude and a direct solution of the resulting coupled second-order finite-difference equations in latitude. The solver is made efficient by vectorizing over longitudinal wave-number and by using a vectorized fast Fourier transform routine. It is evaluated using a prescribed solution method and compared with a multigrid solver and the standard direct solver from FISHPAK.

  16. A high performance linear equation solver on the VPP500 parallel supercomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakanishi, Makoto; Ina, Hiroshi; Miura, Kenichi

    1994-12-31

    This paper describes the implementation of two high performance linear equation solvers developed for the Fujitsu VPP500, a distributed memory parallel supercomputer system. The solvers take advantage of the key architectural features of VPP500--(1) scalability for an arbitrary number of processors up to 222 processors, (2) flexible data transfer among processors provided by a crossbar interconnection network, (3) vector processing capability on each processor, and (4) overlapped computation and transfer. The general linear equation solver based on the blocked LU decomposition method achieves 120.0 GFLOPS performance with 100 processors in the LIN-PACK Highly Parallel Computing benchmark.

  17. Application of NASA General-Purpose Solver to Large-Scale Computations in Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Storaasli, Olaf O.

    2004-01-01

    Of several iterative and direct equation solvers evaluated previously for computations in aeroacoustics, the most promising was the NASA-developed General-Purpose Solver (winner of NASA's 1999 software of the year award). This paper presents detailed, single-processor statistics of the performance of this solver, which has been tailored and optimized for large-scale aeroacoustic computations. The statistics, compiled using an SGI ORIGIN 2000 computer with 12 Gb available memory (RAM) and eight available processors, are the central processing unit time, RAM requirements, and solution error. The equation solver is capable of solving 10 thousand complex unknowns in as little as 0.01 sec using 0.02 Gb RAM, and 8.4 million complex unknowns in slightly less than 3 hours using all 12 Gb. This latter solution is the largest aeroacoustics problem solved to date with this technique. The study was unable to detect any noticeable error in the solution, since noise levels predicted from these solution vectors are in excellent agreement with the noise levels computed from the exact solution. The equation solver provides a means for obtaining numerical solutions to aeroacoustics problems in three dimensions.

  18. LAVA Simulations for the 3rd AIAA CFD High Lift Prediction Workshop with Body Fitted Grids

    NASA Technical Reports Server (NTRS)

    Jensen, James C.; Stich, Gerrit-Daniel; Housman, Jeffrey A.; Denison, Marie; Kiris, Cetin C.

    2018-01-01

    In response to the 3rd AIAA CFD High Lift Prediction Workshop, the workshop cases were analyzed using Reynolds-averaged Navier-Stokes flow solvers within the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework. For the workshop cases the advantages and limitations of both overset-structured an unstructured polyhedral meshes were assessed. The workshop included 3 cases: a 2D airfoil validation case, a mesh convergence study using the High Lift Common Research Model, and a nacelle/pylon integration study using the JAXA (Japan Aerospace Exploration Agency) Standard Model. The 2D airfoil case from the workshop is used to verify the implementation of the Spalart-Allmaras turbulence model along with some of its variants within the solver. The High Lift Common Research Model case is used to assess solver performance and accuracy at varying mesh resolutions, as well as identify the minimum mesh fidelity required for LAVA on this class of problem. The JAXA Standard Model case is used to assess the solver's sensitivity to the turbulence model and to compare the structured and unstructured mesh paradigms. These workshop cases have helped establish best practices for high lift flow configurations for the LAVA solver.

  19. Performance of Nonlinear Finite-Difference Poisson-Boltzmann Solvers

    PubMed Central

    Cai, Qin; Hsieh, Meng-Juei; Wang, Jun; Luo, Ray

    2014-01-01

    We implemented and optimized seven finite-difference solvers for the full nonlinear Poisson-Boltzmann equation in biomolecular applications, including four relaxation methods, one conjugate gradient method, and two inexact Newton methods. The performance of the seven solvers was extensively evaluated with a large number of nucleic acids and proteins. Worth noting is the inexact Newton method in our analysis. We investigated the role of linear solvers in its performance by incorporating the incomplete Cholesky conjugate gradient and the geometric multigrid into its inner linear loop. We tailored and optimized both linear solvers for faster convergence rate. In addition, we explored strategies to optimize the successive over-relaxation method to reduce its convergence failures without too much sacrifice in its convergence rate. Specifically we attempted to adaptively change the relaxation parameter and to utilize the damping strategy from the inexact Newton method to improve the successive over-relaxation method. Our analysis shows that the nonlinear methods accompanied with a functional-assisted strategy, such as the conjugate gradient method and the inexact Newton method, can guarantee convergence in the tested molecules. Especially the inexact Newton method exhibits impressive performance when it is combined with highly efficient linear solvers that are tailored for its special requirement. PMID:24723843

  20. The piecewise parabolic method for Riemann problems in nonlinear elasticity.

    PubMed

    Zhang, Wei; Wang, Tao; Bai, Jing-Song; Li, Ping; Wan, Zhen-Hua; Sun, De-Jun

    2017-10-18

    We present the application of Harten-Lax-van Leer (HLL)-type solvers on Riemann problems in nonlinear elasticity which undergoes high-load conditions. In particular, the HLLD ("D" denotes Discontinuities) Riemann solver is proved to have better robustness and efficiency for resolving complex nonlinear wave structures compared with the HLL and HLLC ("C" denotes Contact) solvers, especially in the shock-tube problem including more than five waves. Also, Godunov finite volume scheme is extended to higher order of accuracy by means of piecewise parabolic method (PPM), which could be used with HLL-type solvers and employed to construct the fluxes. Moreover, in the case of multi material components, level set algorithm is applied to track the interface between different materials, while the interaction of interfaces is realized through HLLD Riemann solver combined with modified ghost method. As seen from the results of both the solid/solid "stick" problem with the same material at the two sides of contact interface and the solid/solid "slip" problem with different materials at the two sides, this scheme composed of HLLD solver, PPM and level set algorithm can capture the material interface effectively and suppress spurious oscillations therein significantly.

  1. Local Discontinuous Galerkin (LDG) Method for Advection of Active Compositional Fields with Discontinuous Boundaries: Demonstration and Comparison with Other Methods in the Mantle Convection Code ASPECT

    NASA Astrophysics Data System (ADS)

    He, Y.; Billen, M. I.; Puckett, E. G.

    2015-12-01

    Flow in the Earth's mantle is driven by thermo-chemical convection in which the properties and geochemical signatures of rocks vary depending on their origin and composition. For example, tectonic plates are composed of compositionally-distinct layers of crust, residual lithosphere and fertile mantle, while in the lower-most mantle there are large compositionally distinct "piles" with thinner lenses of different material. Therefore, tracking of active or passive fields with distinct compositional, geochemical or rheologic properties is important for incorporating physical realism into mantle convection simulations, and for investigating the long term mixing properties of the mantle. The difficulty in numerically advecting fields arises because they are non-diffusive and have sharp boundaries, and therefore require different methods than usually used for temperature. Previous methods for tracking fields include the marker-chain, tracer particle, and field-correction (e.g., the Lenardic Filter) methods: each of these has different advantages or disadvantages, trading off computational speed with accuracy in tracking feature boundaries. Here we present a method for modeling active fields in mantle dynamics simulations using a new solver implemented in the deal.II package that underlies the ASPECT software. The new solver for the advection-diffusion equation uses a Local Discontinuous Galerkin (LDG) algorithm, which combines features of both finite element and finite volume methods, and is particularly suitable for problems with a dominant first-order term and discontinuities. Furthermore, we have applied a post-processing technique to insure that the solution satisfies a global maximum/minimum. One potential drawback for the LDG method is that the total number of degrees of freedom is larger than the finite element method. To demonstrate the capabilities of this new method we present results for two benchmarks used previously: a falling cube with distinct buoyancy and viscosity, and a Rayleigh-Taylor instability of a compositionally buoyant layer. To evaluate the trade-offs in computational speed and solution accuracy we present results for these same benchmarks using the two field tracking methods available in ASPECT: active tracer particles and the entropy viscosity method.

  2. Improved Modeling of Finite-Rate Turbulent Combustion Processes in Research Combustors

    NASA Technical Reports Server (NTRS)

    VanOverbeke, Thomas J.

    1998-01-01

    The objective of this thesis is to further develop and test a stochastic model of turbulent combustion in recirculating flows. There is a requirement to increase the accuracy of multi-dimensional combustion predictions. As turbulence affects reaction rates, this interaction must be more accurately evaluated. In this work a more physically correct way of handling the interaction of turbulence on combustion is further developed and tested. As turbulence involves randomness, stochastic modeling is used. Averaged values such as temperature and species concentration are found by integrating the probability density function (pdf) over the range of the scalar. The model in this work does not assume the pdf type, but solves for the evolution of the pdf using the Monte Carlo solution technique. The model is further developed by including a more robust reaction solver, by using accurate thermodynamics and by more accurate transport elements. The stochastic method is used with Semi-Implicit Method for Pressure-Linked Equations. The SIMPLE method is used to solve for velocity, pressure, turbulent kinetic energy and dissipation. The pdf solver solves for temperature and species concentration. Thus, the method is partially familiar to combustor engineers. The method is compared to benchmark experimental data and baseline calculations. The baseline method was tested on isothermal flows, evaporating sprays and combusting sprays. Pdf and baseline predictions were performed for three diffusion flames and one premixed flame. The pdf method predicted lower combustion rates than the baseline method in agreement with the data, except for the premixed flame. The baseline and stochastic predictions bounded the experimental data for the premixed flame. The use of a continuous mixing model or relax to mean mixing model had little effect on the prediction of average temperature. Two grids were used in a hydrogen diffusion flame simulation. Grid density did not effect the predictions except for peak temperature and tangential velocity. The hybrid pdf method did take longer and required more memory, but has a theoretical basis to extend to many reaction steps which cannot be said of current turbulent combustion models.

  3. Advanced Signal Processing for Integrated LES-RANS Simulations: Anti-aliasing Filters

    NASA Technical Reports Server (NTRS)

    Schlueter, J. U.

    2003-01-01

    Currently, a wide variety of flow phenomena are addressed with numerical simulations. Many flow solvers are optimized to simulate a limited spectrum of flow effects effectively, such as single parts of a flow system, but are either inadequate or too expensive to be applied to a very complex problem. As an example, the flow through a gas turbine can be considered. In the compressor and the turbine section, the flow solver has to be able to handle the moving blades, model the wall turbulence, and predict the pressure and density distribution properly. This can be done by a flow solver based on the Reynolds-Averaged Navier-Stokes (RANS) approach. On the other hand, the flow in the combustion chamber is governed by large scale turbulence, chemical reactions, and the presence of fuel spray. Experience shows that these phenomena require an unsteady approach. Hence, for the combustor, the use of a Large Eddy Simulation (LES) flow solver is desirable. While many design problems of a single flow passage can be addressed by separate computations, only the simultaneous computation of all parts can guarantee the proper prediction of multi-component phenomena, such as compressor/combustor instability and combustor/turbine hot-streak migration. Therefore, a promising strategy to perform full aero-thermal simulations of gas-turbine engines is the use of a RANS flow solver for the compressor sections, an LES flow solver for the combustor, and again a RANS flow solver for the turbine section.

  4. Least-Squares Spectral Element Solutions to the CAA Workshop Benchmark Problems

    NASA Technical Reports Server (NTRS)

    Lin, Wen H.; Chan, Daniel C.

    1997-01-01

    This paper presents computed results for some of the CAA benchmark problems via the acoustic solver developed at Rocketdyne CFD Technology Center under the corporate agreement between Boeing North American, Inc. and NASA for the Aerospace Industry Technology Program. The calculations are considered as benchmark testing of the functionality, accuracy, and performance of the solver. Results of these computations demonstrate that the solver is capable of solving the propagation of aeroacoustic signals. Testing of sound generation and on more realistic problems is now pursued for the industrial applications of this solver. Numerical calculations were performed for the second problem of Category 1 of the current workshop problems for an acoustic pulse scattered from a rigid circular cylinder, and for two of the first CAA workshop problems, i. e., the first problem of Category 1 for the propagation of a linear wave and the first problem of Category 4 for an acoustic pulse reflected from a rigid wall in a uniform flow of Mach 0.5. The aim for including the last two problems in this workshop is to test the effectiveness of some boundary conditions set up in the solver. Numerical results of the last two benchmark problems have been compared with their corresponding exact solutions and the comparisons are excellent. This demonstrates the high fidelity of the solver in handling wave propagation problems. This feature lends the method quite attractive in developing a computational acoustic solver for calculating the aero/hydrodynamic noise in a violent flow environment.

  5. Parallel Element Agglomeration Algebraic Multigrid and Upscaling Library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, Andrew T.; Benson, Thomas R.; Lee, Chak Shing

    ParELAG is a parallel C++ library for numerical upscaling of finite element discretizations and element-based algebraic multigrid solvers. It provides optimal complexity algorithms to build multilevel hierarchies and solvers that can be used for solving a wide class of partial differential equations (elliptic, hyperbolic, saddle point problems) on general unstructured meshes. Additionally, a novel multilevel solver for saddle point problems with divergence constraint is implemented.

  6. Solvers' Making of Drawings in Mathematical Problem Solving and Their Understanding of the Problem Situations

    ERIC Educational Resources Information Center

    Nunokawa, Kazuhiko

    2004-01-01

    The purpose of this paper was to investigate how it becomes possible for solvers to make drawings to advance their problem solving processes, in order to understand the use of drawings in mathematical problem solving more deeply. For this purpose, three examples in which drawings made by the solver played a critical role in the solutions have been…

  7. Galerkin CFD solvers for use in a multi-disciplinary suite for modeling advanced flight vehicles

    NASA Astrophysics Data System (ADS)

    Moffitt, Nicholas J.

    This work extends existing Galerkin CFD solvers for use in a multi-disciplinary suite. The suite is proposed as a means of modeling advanced flight vehicles, which exhibit strong coupling between aerodynamics, structural dynamics, controls, rigid body motion, propulsion, and heat transfer. Such applications include aeroelastics, aeroacoustics, stability and control, and other highly coupled applications. The suite uses NASA STARS for modeling structural dynamics and heat transfer. Aerodynamics, propulsion, and rigid body dynamics are modeled in one of the five CFD solvers below. Euler2D and Euler3D are Galerkin CFD solvers created at OSU by Cowan (2003). These solvers are capable of modeling compressible inviscid aerodynamics with modal elastics and rigid body motion. This work reorganized these solvers to improve efficiency during editing and at run time. Simple and efficient propulsion models were added, including rocket, turbojet, and scramjet engines. Viscous terms were added to the previous solvers to create NS2D and NS3D. The viscous contributions were demonstrated in the inertial and non-inertial frames. Variable viscosity (Sutherland's equation) and heat transfer boundary conditions were added to both solvers but not verified in this work. Two turbulence models were implemented in NS2D and NS3D: Spalart-Allmarus (SA) model of Deck, et al. (2002) and Menter's SST model (1994). A rotation correction term (Shur, et al., 2000) was added to the production of turbulence. Local time stepping and artificial dissipation were adapted to each model. CFDsol is a Taylor-Galerkin solver with an SA turbulence model. This work improved the time accuracy, far field stability, viscous terms, Sutherland?s equation, and SA model with NS3D as a guideline and added the propulsion models from Euler3D to CFDsol. Simple geometries were demonstrated to utilize current meshing and processing capabilities. Air-breathing hypersonic flight vehicles (AHFVs) represent the ultimate application of the suite. The current models are accurate at low supersonic speed and reasonable for engineering approximation at hypersonic speeds. Improvements to extend the models fully into the hypersonic regime are given in the Recommendations section.

  8. A reaction-diffusion model of CO2 influx into an oocyte

    PubMed Central

    Somersalo, Erkki; Occhipinti, Rossana; Boron, Walter F.; Calvetti, Daniela

    2012-01-01

    We have developed and implemented a novel mathematical model for simulating transients in surface pH (pHS) and intracellular pH (pHi) caused by the influx of carbon dioxide (CO2) into a Xenopus oocyte. These transients are important tools for studying gas channels. We assume that the oocyte is a sphere surrounded by a thin layer of unstirred fluid, the extracellular unconvected fluid (EUF), which is in turn surrounded by the well-stirred bulk extracellular fluid (BECF) that represents an infinite reservoir for all solutes. Here, we assume that the oocyte plasma membrane is permeable only to CO2. In both the EUF and intracellular space, solute concentrations can change because of diffusion and reactions. The reactions are the slow equilibration of the CO2 hydration-dehydration reactions and competing equilibria among carbonic acid (H2CO3)/bicarbonate ( HCO3-) and a multitude of non-CO2/HCO3- buffers. Mathematically, the model is described by a coupled system of reaction-diffusion equations that—assuming spherical radial symmetry—we solved using the method of lines with appropriate stiff solvers. In agreement with experimental data (Musa-Aziz et al, PNAS 2009, 106:5406–5411), the model predicts that exposing the cell to extracellular 1.5% CO2/10 mM HCO3- (pH 7.50) causes pHi to fall and pHS to rise rapidly to a peak and then decay. Moreover, the model provides insights into the competition between diffusion and reaction processes when we change the width of the EUF, membrane permeability to CO2, native extra-and intracellular carbonic anhydrase-like activities, the non-CO2/HCO3- (intrinsic) intracellular buffering power, or mobility of intrinsic intracellular buffers. PMID:22728674

  9. Origin of CH+ in diffuse molecular clouds. Warm H2 and ion-neutral drift

    NASA Astrophysics Data System (ADS)

    Valdivia, Valeska; Godard, Benjamin; Hennebelle, Patrick; Gerin, Maryvonne; Lesaffre, Pierre; Le Bourlot, Jacques

    2017-04-01

    Context. Molecular clouds are known to be magnetised and to display a turbulent and complex structure where warm and cold phases are interwoven. The turbulent motions within molecular clouds transport molecules, and the presence of magnetic fields induces a relative velocity between neutrals and ions known as the ion-neutral drift (vd). These effects all together can influence the chemical evolution of the clouds. Aims: This paper assesses the roles of two physical phenomena which have previously been invoked to boost the production of CH+ under realistic physical conditions: the presence of warm H2 and the increased formation rate due to the ion-neutral drift. Methods: We performed ideal magnetohydrodynamical (MHD) simulations that include the heating and cooling of the multiphase interstellar medium (ISM), and where we treat dynamically the formation of the H2 molecule. In a post-processing step we compute the abundances of species at chemical equilibrium using a solver that we developed. The solver uses the physical conditions of the gas as input parameters, and can also prescribe the H2 fraction if needed. We validate our approach by showing that the H2 molecule generally has a much longer chemical evolution timescale compared to the other species. Results: We show that CH+ is efficiently formed at the edge of clumps, in regions where the H2 fraction is low (0.3-30%) but nevertheless higher than its equilibrium value, and where the gas temperature is high (≳ 300 K). We show that warm and out of equilibrium H2 increases the integrated column densities of CH+ by one order of magnitude up to values still 3-10 times lower than those observed in the diffuse ISM. We balance the Lorentz force with the ion-neutral drag to estimate the ion-drift velocities from our ideal MHD simulations. We find that the ion-neutral drift velocity distribution peaks around 0.04 km s-1, and that high drift velocities are too rare to have a significant statistical impact on the abundances of CH+. Compared to previous works, our multiphase simulations reduce the spread in vd, and our self-consistent treatment of the ionisation leads to much reduced vd. Nevertheless, our resolution study shows that this velocity distribution is not converged: the ion-neutral drift has a higher impact on CH+ at higher resolution. On the other hand, our ideal MHD simulations do not include ambipolar diffusion, which would yield lower drift velocities. Conclusions: Within these limitations, we conclude that warm H2 is a key ingredient in the efficient formation of CH+ and that the ambipolar diffusion has very little influence on the abundance of CH+, mainly due to the small drift velocities obtained. However, we point out that small-scale processes and other non-thermal processes not included in our MHD simulation may be of crucial importance, and higher resolution studies with better controlled dissipation processes are needed.

  10. Mathematical and Numerical Aspects of the Adaptive Fast Multipole Poisson-Boltzmann Solver

    DOE PAGES

    Zhang, Bo; Lu, Benzhuo; Cheng, Xiaolin; ...

    2013-01-01

    This paper summarizes the mathematical and numerical theories and computational elements of the adaptive fast multipole Poisson-Boltzmann (AFMPB) solver. We introduce and discuss the following components in order: the Poisson-Boltzmann model, boundary integral equation reformulation, surface mesh generation, the nodepatch discretization approach, Krylov iterative methods, the new version of fast multipole methods (FMMs), and a dynamic prioritization technique for scheduling parallel operations. For each component, we also remark on feasible approaches for further improvements in efficiency, accuracy and applicability of the AFMPB solver to large-scale long-time molecular dynamics simulations. Lastly, the potential of the solver is demonstrated with preliminary numericalmore » results.« less

  11. Implementation of 5-layer thermal diffusion scheme in weather research and forecasting model with Intel Many Integrated Cores

    NASA Astrophysics Data System (ADS)

    Huang, Melin; Huang, Bormin; Huang, Allen H.

    2014-10-01

    For weather forecasting and research, the Weather Research and Forecasting (WRF) model has been developed, consisting of several components such as dynamic solvers and physical simulation modules. WRF includes several Land- Surface Models (LSMs). The LSMs use atmospheric information, the radiative and precipitation forcing from the surface layer scheme, the radiation scheme, and the microphysics/convective scheme all together with the land's state variables and land-surface properties, to provide heat and moisture fluxes over land and sea-ice points. The WRF 5-layer thermal diffusion simulation is an LSM based on the MM5 5-layer soil temperature model with an energy budget that includes radiation, sensible, and latent heat flux. The WRF LSMs are very suitable for massively parallel computation as there are no interactions among horizontal grid points. The features, efficient parallelization and vectorization essentials, of Intel Many Integrated Core (MIC) architecture allow us to optimize this WRF 5-layer thermal diffusion scheme. In this work, we present the results of the computing performance on this scheme with Intel MIC architecture. Our results show that the MIC-based optimization improved the performance of the first version of multi-threaded code on Xeon Phi 5110P by a factor of 2.1x. Accordingly, the same CPU-based optimizations improved the performance on Intel Xeon E5- 2603 by a factor of 1.6x as compared to the first version of multi-threaded code.

  12. Local bounds preserving stabilization for continuous Galerkin discretization of hyperbolic systems

    NASA Astrophysics Data System (ADS)

    Mabuza, Sibusiso; Shadid, John N.; Kuzmin, Dmitri

    2018-05-01

    The objective of this paper is to present a local bounds preserving stabilized finite element scheme for hyperbolic systems on unstructured meshes based on continuous Galerkin (CG) discretization in space. A CG semi-discrete scheme with low order artificial dissipation that satisfies the local extremum diminishing (LED) condition for systems is used to discretize a system of conservation equations in space. The low order artificial diffusion is based on approximate Riemann solvers for hyperbolic conservation laws. In this case we consider both Rusanov and Roe artificial diffusion operators. In the Rusanov case, two designs are considered, a nodal based diffusion operator and a local projection stabilization operator. The result is a discretization that is LED and has first order convergence behavior. To achieve high resolution, limited antidiffusion is added back to the semi-discrete form where the limiter is constructed from a linearity preserving local projection stabilization operator. The procedure follows the algebraic flux correction procedure usually used in flux corrected transport algorithms. To further deal with phase errors (or terracing) common in FCT type methods, high order background dissipation is added to the antidiffusive correction. The resulting stabilized semi-discrete scheme can be discretized in time using a wide variety of time integrators. Numerical examples involving nonlinear scalar Burgers equation, and several shock hydrodynamics simulations for the Euler system are considered to demonstrate the performance of the method. For time discretization, Crank-Nicolson scheme and backward Euler scheme are utilized.

  13. Resonance treatment using pin-based pointwise energy slowing-down method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Sooyoung, E-mail: csy0321@unist.ac.kr; Lee, Changho, E-mail: clee@anl.gov; Lee, Deokjung, E-mail: deokjung@unist.ac.kr

    A new resonance self-shielding method using a pointwise energy solution has been developed to overcome the drawbacks of the equivalence theory. The equivalence theory uses a crude resonance scattering source approximation, and assumes a spatially constant scattering source distribution inside a fuel pellet. These two assumptions cause a significant error, in that they overestimate the multi-group effective cross sections, especially for {sup 238}U. The new resonance self-shielding method solves pointwise energy slowing-down equations with a sub-divided fuel rod. The method adopts a shadowing effect correction factor and fictitious moderator material to model a realistic pointwise energy solution. The slowing-down solutionmore » is used to generate the multi-group cross section. With various light water reactor problems, it was demonstrated that the new resonance self-shielding method significantly improved accuracy in the reactor parameter calculation with no compromise in computation time, compared to the equivalence theory.« less

  14. Multigroup Monte Carlo on GPUs: Comparison of history- and event-based algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Steven P.; Slattery, Stuart R.; Evans, Thomas M.

    This article presents an investigation of the performance of different multigroup Monte Carlo transport algorithms on GPUs with a discussion of both history-based and event-based approaches. Several algorithmic improvements are introduced for both approaches. By modifying the history-based algorithm that is traditionally favored in CPU-based MC codes to occasionally filter out dead particles to reduce thread divergence, performance exceeds that of either the pure history-based or event-based approaches. The impacts of several algorithmic choices are discussed, including performance studies on Kepler and Pascal generation NVIDIA GPUs for fixed source and eigenvalue calculations. Single-device performance equivalent to 20–40 CPU cores onmore » the K40 GPU and 60–80 CPU cores on the P100 GPU is achieved. Last, in addition, nearly perfect multi-device parallel weak scaling is demonstrated on more than 16,000 nodes of the Titan supercomputer.« less

  15. Multigroup Monte Carlo on GPUs: Comparison of history- and event-based algorithms

    DOE PAGES

    Hamilton, Steven P.; Slattery, Stuart R.; Evans, Thomas M.

    2017-12-22

    This article presents an investigation of the performance of different multigroup Monte Carlo transport algorithms on GPUs with a discussion of both history-based and event-based approaches. Several algorithmic improvements are introduced for both approaches. By modifying the history-based algorithm that is traditionally favored in CPU-based MC codes to occasionally filter out dead particles to reduce thread divergence, performance exceeds that of either the pure history-based or event-based approaches. The impacts of several algorithmic choices are discussed, including performance studies on Kepler and Pascal generation NVIDIA GPUs for fixed source and eigenvalue calculations. Single-device performance equivalent to 20–40 CPU cores onmore » the K40 GPU and 60–80 CPU cores on the P100 GPU is achieved. Last, in addition, nearly perfect multi-device parallel weak scaling is demonstrated on more than 16,000 nodes of the Titan supercomputer.« less

  16. ATDM Rover Milestone Report STDA02-1 (FY2017 Q4)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Matt; Laney, Dan E.

    We have successfully completed the MS-4/Y1 Milestone STDA02-1 for the Rover Project. This document describes the milestone and provides an overview of the technical details and artifacts of the milestone. This milestone is focused on building a GPU accelerated ray tracing package capable of doing multi-group radiography, both back-lit and with self-emission as well as serving as a volume rendering plot in VisIt and other VTK-based visualization tools. The long term goal is a package with in-situ capability, but for this first version integration into VisIt is the primary goal. Milestone Execution Plan: Create API for GPU Raytracer that supportsmore » multi-group transport (up to hundreds of groups); Implement components into one or more of: VTK-m, VisIt, and a new library/package implementation to be hosted on LLNL Bitbucket (initially), before releasing to the wider community.« less

  17. Performance of uncertainty quantification methodologies and linear solvers in cardiovascular simulations

    NASA Astrophysics Data System (ADS)

    Seo, Jongmin; Schiavazzi, Daniele; Marsden, Alison

    2017-11-01

    Cardiovascular simulations are increasingly used in clinical decision making, surgical planning, and disease diagnostics. Patient-specific modeling and simulation typically proceeds through a pipeline from anatomic model construction using medical image data to blood flow simulation and analysis. To provide confidence intervals on simulation predictions, we use an uncertainty quantification (UQ) framework to analyze the effects of numerous uncertainties that stem from clinical data acquisition, modeling, material properties, and boundary condition selection. However, UQ poses a computational challenge requiring multiple evaluations of the Navier-Stokes equations in complex 3-D models. To achieve efficiency in UQ problems with many function evaluations, we implement and compare a range of iterative linear solver and preconditioning techniques in our flow solver. We then discuss applications to patient-specific cardiovascular simulation and how the problem/boundary condition formulation in the solver affects the selection of the most efficient linear solver. Finally, we discuss performance improvements in the context of uncertainty propagation. Support from National Institute of Health (R01 EB018302) is greatly appreciated.

  18. A new solver for granular avalanche simulation: Indoor experiment verification and field scale case study

    NASA Astrophysics Data System (ADS)

    Wang, XiaoLiang; Li, JiaChun

    2017-12-01

    A new solver based on the high-resolution scheme with novel treatments of source terms and interface capture for the Savage-Hutter model is developed to simulate granular avalanche flows. The capability to simulate flow spread and deposit processes is verified through indoor experiments of a two-dimensional granular avalanche. Parameter studies show that reduction in bed friction enhances runout efficiency, and that lower earth pressure restraints enlarge the deposit spread. The April 9, 2000, Yigong avalanche in Tibet, China, is simulated as a case study by this new solver. The predicted results, including evolution process, deposit spread, and hazard impacts, generally agree with site observations. It is concluded that the new solver for the Savage-Hutter equation provides a comprehensive software platform for granular avalanche simulation at both experimental and field scales. In particular, the solver can be a valuable tool for providing necessary information for hazard forecasts, disaster mitigation, and countermeasure decisions in mountainous areas.

  19. Application of an Unstructured Grid Navier-Stokes Solver to a Generic Helicopter Boby: Comparison of Unstructured Grid Results with Structured Grid Results and Experimental Results

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.

    1999-01-01

    An unstructured-grid Navier-Stokes solver was used to predict the surface pressure distribution, the off-body flow field, the surface flow pattern, and integrated lift and drag coefficients on the ROBIN configuration (a generic helicopter) without a rotor at four angles of attack. The results are compared to those predicted by two structured- grid Navier-Stokes solvers and to experimental surface pressure distributions. The surface pressure distributions from the unstructured-grid Navier-Stokes solver are in good agreement with the results from the structured-grid Navier-Stokes solvers. Agreement with the experimental pressure coefficients is good over the forward portion of the body. However, agreement is poor on the lower portion of the mid-section of the body. Comparison of the predicted surface flow patterns showed similar regions of separated flow. Predicted lift and drag coefficients were in fair agreement with each other.

  20. An Implicit Solver on A Parallel Block-Structured Adaptive Mesh Grid for FLASH

    NASA Astrophysics Data System (ADS)

    Lee, D.; Gopal, S.; Mohapatra, P.

    2012-07-01

    We introduce a fully implicit solver for FLASH based on a Jacobian-Free Newton-Krylov (JFNK) approach with an appropriate preconditioner. The main goal of developing this JFNK-type implicit solver is to provide efficient high-order numerical algorithms and methodology for simulating stiff systems of differential equations on large-scale parallel computer architectures. A large number of natural problems in nonlinear physics involve a wide range of spatial and time scales of interest. A system that encompasses such a wide magnitude of scales is described as "stiff." A stiff system can arise in many different fields of physics, including fluid dynamics/aerodynamics, laboratory/space plasma physics, low Mach number flows, reactive flows, radiation hydrodynamics, and geophysical flows. One of the big challenges in solving such a stiff system using current-day computational resources lies in resolving time and length scales varying by several orders of magnitude. We introduce FLASH's preliminary implementation of a time-accurate JFNK-based implicit solver in the framework of FLASH's unsplit hydro solver.

  1. Preconditioned implicit solvers for the Navier-Stokes equations on distributed-memory machines

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Liou, Meng-Sing; Dyson, Rodger W.

    1994-01-01

    The GMRES method is parallelized, and combined with local preconditioning to construct an implicit parallel solver to obtain steady-state solutions for the Navier-Stokes equations of fluid flow on distributed-memory machines. The new implicit parallel solver is designed to preserve the convergence rate of the equivalent 'serial' solver. A static domain-decomposition is used to partition the computational domain amongst the available processing nodes of the parallel machine. The SPMD (Single-Program Multiple-Data) programming model is combined with message-passing tools to develop the parallel code on a 32-node Intel Hypercube and a 512-node Intel Delta machine. The implicit parallel solver is validated for internal and external flow problems, and is found to compare identically with flow solutions obtained on a Cray Y-MP/8. A peak computational speed of 2300 MFlops/sec has been achieved on 512 nodes of the Intel Delta machine,k for a problem size of 1024 K equations (256 K grid points).

  2. Modifications of steam condensation model implemented in commercial solver

    NASA Astrophysics Data System (ADS)

    Sova, Libor; Jun, Gukchol; ŠÅ¥astný, Miroslav

    2017-09-01

    Nucleation theory and droplet grow theory and methods how they are incorporated into numerical solvers are crucial factors for proper wet steam modelling. Unfortunately, they are still covered by cloud of uncertainty and therefore some calibration of these models according to reliable experimental results is important for practical analyses of steam turbines. This article demonstrates how is possible to calibrate wet steam model incorporated into commercial solver ANSYS CFX.

  3. Implementation of a parallel unstructured Euler solver on the CM-5

    NASA Technical Reports Server (NTRS)

    Morano, Eric; Mavriplis, D. J.

    1995-01-01

    An efficient unstructured 3D Euler solver is parallelized on a Thinking Machine Corporation Connection Machine 5, distributed memory computer with vectoring capability. In this paper, the single instruction multiple data (SIMD) strategy is employed through the use of the CM Fortran language and the CMSSL scientific library. The performance of the CMSSL mesh partitioner is evaluated and the overall efficiency of the parallel flow solver is discussed.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, William E.; Siirola, John Daniel

    We describe new capabilities for modeling MPEC problems within the Pyomo modeling software. These capabilities include new modeling components that represent complementar- ity conditions, modeling transformations for re-expressing models with complementarity con- ditions in other forms, and meta-solvers that apply transformations and numeric optimization solvers to optimize MPEC problems. We illustrate the breadth of Pyomo's modeling capabil- ities for MPEC problems, and we describe how Pyomo's meta-solvers can perform local and global optimization of MPEC problems.

  5. LEM-CF Premixed Tool Kit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-01-19

    The purpose of LEM-CF Premixed Tool Kit is to process premixed flame simulation data from the LEM-CF solver (https://fileshare.craft-tech.com/clusters/view/lem-cf) into a large-eddy simulation (LES) subgrid model database. These databases may be used with a user-defined-function (UDF) that is included in the Tool Kit. The subgrid model UDF may be used with the ANSYS FLUENT flow solver or other commercial flow solvers.

  6. Conducting Automated Test Assembly Using the Premium Solver Platform Version 7.0 with Microsoft Excel and the Large-Scale LP/QP Solver Engine Add-In

    ERIC Educational Resources Information Center

    Cor, Ken; Alves, Cecilia; Gierl, Mark J.

    2008-01-01

    This review describes and evaluates a software add-in created by Frontline Systems, Inc., that can be used with Microsoft Excel 2007 to solve large, complex test assembly problems. The combination of Microsoft Excel 2007 with the Frontline Systems Premium Solver Platform is significant because Microsoft Excel is the most commonly used spreadsheet…

  7. Boosting Stochastic Problem Solvers Through Online Self-Analysis of Performance

    DTIC Science & Technology

    2003-07-21

    Boosting Stochastic Problem Solvers Through Online Self-Analysis of Performance Vincent A. Cicirello CMU-RI-TR-03-27 Submitted in partial fulfillment...AND SUBTITLE Boosting Stochastic Problem Solvers Through Online Self-Analysis of Performance 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...lead to the development of a search control framework, called QD-BEACON that uses online -generated statistical models of search performance to

  8. Mathematical Fluid Dynamic Modeling of Plasma Stall-Spin Departure Control

    DTIC Science & Technology

    2007-04-01

    filter (4), is appropriate for further CSN modeling of the vortical flow. The CNS solver reproduces symmetric and asymmetric vortex fields (Figure 11...calculations conducted for laminar flow showed that the CNS solver reproduces symmetric and asymmetric vortex fields and can be used for estimation of the...Galilean-invariant leeward vortex filter. The modified k-F EASM model was incorporated into our CSN solver. Parametric calculations showed that numerical

  9. A Conformal, Fully-Conservative Approach for Predicting Blast Effects on Ground Vehicles

    DTIC Science & Technology

    2014-04-01

    time integration  Approximate Riemann Fluxes (HLLE, HLLC) ◦ Robust mixture model for multi-material flows  Multiple Equations of State ◦ Perfect Gas...Loci/CHEM: Chemically reacting compressible flow solver . ◦ Currently in production use by NASA for the simulation of rocket motors, plumes, and...vehicles  Loci/DROPLET: Eulerian and Lagrangian multiphase solvers  Loci/STREAM: pressure-based solver ◦ Developed by Streamline Numerics and

  10. PBEQ-Solver for online visualization of electrostatic potential of biomolecules.

    PubMed

    Jo, Sunhwan; Vargyas, Miklos; Vasko-Szedlar, Judit; Roux, Benoît; Im, Wonpil

    2008-07-01

    PBEQ-Solver provides a web-based graphical user interface to read biomolecular structures, solve the Poisson-Boltzmann (PB) equations and interactively visualize the electrostatic potential. PBEQ-Solver calculates (i) electrostatic potential and solvation free energy, (ii) protein-protein (DNA or RNA) electrostatic interaction energy and (iii) pKa of a selected titratable residue. All the calculations can be performed in both aqueous solvent and membrane environments (with a cylindrical pore in the case of membrane). PBEQ-Solver uses the PBEQ module in the biomolecular simulation program CHARMM to solve the finite-difference PB equation of molecules specified by users. Users can interactively inspect the calculated electrostatic potential on the solvent-accessible surface as well as iso-electrostatic potential contours using a novel online visualization tool based on MarvinSpace molecular visualization software, a Java applet integrated within CHARMM-GUI (http://www.charmm-gui.org). To reduce the computational time on the server, and to increase the efficiency in visualization, all the PB calculations are performed with coarse grid spacing (1.5 A before and 1 A after focusing). PBEQ-Solver suggests various physical parameters for PB calculations and users can modify them if necessary. PBEQ-Solver is available at http://www.charmm-gui.org/input/pbeqsolver.

  11. A CFD Heterogeneous Parallel Solver Based on Collaborating CPU and GPU

    NASA Astrophysics Data System (ADS)

    Lai, Jianqi; Tian, Zhengyu; Li, Hua; Pan, Sha

    2018-03-01

    Since Graphic Processing Unit (GPU) has a strong ability of floating-point computation and memory bandwidth for data parallelism, it has been widely used in the areas of common computing such as molecular dynamics (MD), computational fluid dynamics (CFD) and so on. The emergence of compute unified device architecture (CUDA), which reduces the complexity of compiling program, brings the great opportunities to CFD. There are three different modes for parallel solution of NS equations: parallel solver based on CPU, parallel solver based on GPU and heterogeneous parallel solver based on collaborating CPU and GPU. As we can see, GPUs are relatively rich in compute capacity but poor in memory capacity and the CPUs do the opposite. We need to make full use of the GPUs and CPUs, so a CFD heterogeneous parallel solver based on collaborating CPU and GPU has been established. Three cases are presented to analyse the solver’s computational accuracy and heterogeneous parallel efficiency. The numerical results agree well with experiment results, which demonstrate that the heterogeneous parallel solver has high computational precision. The speedup on a single GPU is more than 40 for laminar flow, it decreases for turbulent flow, but it still can reach more than 20. What’s more, the speedup increases as the grid size becomes larger.

  12. Discontinuous Galerkin method for multicomponent chemically reacting flows and combustion

    NASA Astrophysics Data System (ADS)

    Lv, Yu; Ihme, Matthias

    2014-08-01

    This paper presents the development of a discontinuous Galerkin (DG) method for application to chemically reacting flows in subsonic and supersonic regimes under the consideration of variable thermo-viscous-diffusive transport properties, detailed and stiff reaction chemistry, and shock capturing. A hybrid-flux formulation is developed for treatment of the convective fluxes, combining a conservative Riemann-solver and an extended double-flux scheme. A computationally efficient splitting scheme is proposed, in which advection and diffusion operators are solved in the weak form, and the chemically stiff substep is advanced in the strong form using a time-implicit scheme. The discretization of the viscous-diffusive transport terms follows the second form of Bassi and Rebay, and the WENO-based limiter due to Zhong and Shu is extended to multicomponent systems. Boundary conditions are developed for subsonic and supersonic flow conditions, and the algorithm is coupled to thermochemical libraries to account for detailed reaction chemistry and complex transport. The resulting DG method is applied to a series of test cases of increasing physico-chemical complexity. Beginning with one- and two-dimensional multispecies advection and shock-fluid interaction problems, computational efficiency, convergence, and conservation properties are demonstrated. This study is followed by considering a series of detonation and supersonic combustion problems to investigate the convergence-rate and the shock-capturing capability in the presence of one- and multistep reaction chemistry. The DG algorithm is then applied to diffusion-controlled deflagration problems. By examining convergence properties for polynomial order and spatial resolution, and comparing these with second-order finite-volume solutions, it is shown that optimal convergence is achieved and that polynomial refinement provides advantages in better resolving the localized flame structure and complex flow-field features associated with multidimensional and hydrodynamic/thermo-diffusive instabilities in deflagration and detonation systems. Comparisons with standard third- and fifth-order WENO schemes are presented to illustrate the benefit of the DG scheme for application to detonation and multispecies flow/shock-interaction problems.

  13. Developments and Validations of Fully Coupled CFD and Practical Vortex Transport Method for High-Fidelity Wake Modeling in Fixed and Rotary Wing Applications

    NASA Technical Reports Server (NTRS)

    Anusonti-Inthra, Phuriwat

    2010-01-01

    A novel Computational Fluid Dynamics (CFD) coupling framework using a conventional Reynolds-Averaged Navier-Stokes (BANS) solver to resolve the near-body flow field and a Particle-based Vorticity Transport Method (PVTM) to predict the evolution of the far field wake is developed, refined, and evaluated for fixed and rotary wing cases. For the rotary wing case, the RANS/PVTM modules are loosely coupled to a Computational Structural Dynamics (CSD) module that provides blade motion and vehicle trim information. The PVTM module is refined by the addition of vortex diffusion, stretching, and reorientation models as well as an efficient memory model. Results from the coupled framework are compared with several experimental data sets (a fixed-wing wind tunnel test and a rotary-wing hover test).

  14. Numerical Simulation of Shock/Detonation-Deformable-Particle Interaction with Constrained Interface Reinitialization

    NASA Astrophysics Data System (ADS)

    Zhang, Ju; Jackson, Thomas; Balachandar, Sivaramakrishnan

    2015-06-01

    We will develop a computational model built upon our verified and validated in-house SDT code to provide improved description of the multiphase blast wave dynamics where solid particles are considered deformable and can even undergo phase transitions. Our SDT computational framework includes a reactive compressible flow solver with sophisticated material interface tracking capability and realistic equation of state (EOS) such as Mie-Gruneisen EOS for multiphase flow modeling. The behavior of diffuse interface models by Shukla et al. (2010) and Tiwari et al. (2013) at different shock impedance ratio will be first examined and characterized. The recent constrained interface reinitialization by Shukla (2014) will then be developed to examine if conservation property can be improved. This work was supported in part by the U.S. Department of Energy and by the Defense Threat Reduction Agency.

  15. Higher-order differencing method with a multigrid approach for the solution of the incompressible flow equations at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Tzanos, Constantine P.

    1992-10-01

    A higher-order differencing scheme (Tzanos, 1990) is used in conjunction with a multigrid approach to obtain accurate solutions of the Navier-Stokes convection-diffusion equations at high Re numbers. Flow in a square cavity with a moving lid is used as a test problem. a multigrid approach based on the additive correction method (Settari and Aziz) and an iterative incomplete lower and upper solver demonstrated good performance for the whole range of Re number under consideration (from 1000 to 10,000) and for both uniform and nonuniform grids. It is concluded that the combination of the higher-order differencing scheme with a multigrid approach proved to be an effective technique for giving accurate solutions of the Navier-Stokes equations at high Re numbers.

  16. Numerical modeling of pulsed laser-material interaction and of laser plume dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Qiang; Shi, Yina

    2015-03-10

    We have developed two-dimensional Arbitrary Lagrangian Eulerian (ALE) code which is used to study the physical processes, the plasma absorption, the crater profile, and the temperature distribution on metallic target and below the surface. The ALE method overcomes problems with Lagrangian moving mesh distortion by mesh smoothing and conservative quantities remapping from Lagrangian mesh to smoothed one. A new second order accurate diffusion solver has been implemented for the thermal conduction and radiation transport on distorted mesh. The results of numerical simulation of pulsed laser ablation are presented. The influences of different processes, such as time evolution of the surfacemore » temperature, interspecies interactions (elastic collisions, recombination-dissociation reaction), interaction with an ambient gas are examined. The study presents particular interest for the analysis of experimental results obtained during pulsed laser ablation.« less

  17. A Note on Substructuring Preconditioning for Nonconforming Finite Element Approximations of Second Order Elliptic Problems

    NASA Technical Reports Server (NTRS)

    Maliassov, Serguei

    1996-01-01

    In this paper an algebraic substructuring preconditioner is considered for nonconforming finite element approximations of second order elliptic problems in 3D domains with a piecewise constant diffusion coefficient. Using a substructuring idea and a block Gauss elimination, part of the unknowns is eliminated and the Schur complement obtained is preconditioned by a spectrally equivalent very sparse matrix. In the case of quasiuniform tetrahedral mesh an appropriate algebraic multigrid solver can be used to solve the problem with this matrix. Explicit estimates of condition numbers and implementation algorithms are established for the constructed preconditioner. It is shown that the condition number of the preconditioned matrix does not depend on either the mesh step size or the jump of the coefficient. Finally, numerical experiments are presented to illustrate the theory being developed.

  18. Modeling of frequency-domain scalar wave equation with the average-derivative optimal scheme based on a multigrid-preconditioned iterative solver

    NASA Astrophysics Data System (ADS)

    Cao, Jian; Chen, Jing-Bo; Dai, Meng-Xue

    2018-01-01

    An efficient finite-difference frequency-domain modeling of seismic wave propagation relies on the discrete schemes and appropriate solving methods. The average-derivative optimal scheme for the scalar wave modeling is advantageous in terms of the storage saving for the system of linear equations and the flexibility for arbitrary directional sampling intervals. However, using a LU-decomposition-based direct solver to solve its resulting system of linear equations is very costly for both memory and computational requirements. To address this issue, we consider establishing a multigrid-preconditioned BI-CGSTAB iterative solver fit for the average-derivative optimal scheme. The choice of preconditioning matrix and its corresponding multigrid components is made with the help of Fourier spectral analysis and local mode analysis, respectively, which is important for the convergence. Furthermore, we find that for the computation with unequal directional sampling interval, the anisotropic smoothing in the multigrid precondition may affect the convergence rate of this iterative solver. Successful numerical applications of this iterative solver for the homogenous and heterogeneous models in 2D and 3D are presented where the significant reduction of computer memory and the improvement of computational efficiency are demonstrated by comparison with the direct solver. In the numerical experiments, we also show that the unequal directional sampling interval will weaken the advantage of this multigrid-preconditioned iterative solver in the computing speed or, even worse, could reduce its accuracy in some cases, which implies the need for a reasonable control of directional sampling interval in the discretization.

  19. Use of general purpose graphics processing units with MODFLOW

    USGS Publications Warehouse

    Hughes, Joseph D.; White, Jeremy T.

    2013-01-01

    To evaluate the use of general-purpose graphics processing units (GPGPUs) to improve the performance of MODFLOW, an unstructured preconditioned conjugate gradient (UPCG) solver has been developed. The UPCG solver uses a compressed sparse row storage scheme and includes Jacobi, zero fill-in incomplete, and modified-incomplete lower-upper (LU) factorization, and generalized least-squares polynomial preconditioners. The UPCG solver also includes options for sequential and parallel solution on the central processing unit (CPU) using OpenMP. For simulations utilizing the GPGPU, all basic linear algebra operations are performed on the GPGPU; memory copies between the central processing unit CPU and GPCPU occur prior to the first iteration of the UPCG solver and after satisfying head and flow criteria or exceeding a maximum number of iterations. The efficiency of the UPCG solver for GPGPU and CPU solutions is benchmarked using simulations of a synthetic, heterogeneous unconfined aquifer with tens of thousands to millions of active grid cells. Testing indicates GPGPU speedups on the order of 2 to 8, relative to the standard MODFLOW preconditioned conjugate gradient (PCG) solver, can be achieved when (1) memory copies between the CPU and GPGPU are optimized, (2) the percentage of time performing memory copies between the CPU and GPGPU is small relative to the calculation time, (3) high-performance GPGPU cards are utilized, and (4) CPU-GPGPU combinations are used to execute sequential operations that are difficult to parallelize. Furthermore, UPCG solver testing indicates GPGPU speedups exceed parallel CPU speedups achieved using OpenMP on multicore CPUs for preconditioners that can be easily parallelized.

  20. Diffusion-driven fluid dynamics in ideal gases and plasmas

    NASA Astrophysics Data System (ADS)

    Vold, E. L.; Yin, L.; Taitano, W.; Molvig, K.; Albright, B. J.

    2018-06-01

    The classical transport theory based on Chapman-Enskog methods provides self-consistent approximations for the kinetic flux of mass, heat, and momentum in a fluid limit characterized with a small Knudsen number. The species mass fluxes relative to the center of mass, or "diffusive fluxes," are expressed as functions of known gradient quantities with kinetic coefficients evaluated using similar analyses for mixtures of gases or plasma components. The sum over species of the diffusive mass fluxes is constrained to be zero in the Lagrange frame, and thus results in a non-zero molar flux leading to a pressure perturbation. At an interface between two species initially in pressure equilibrium, the pressure perturbation driven by the diffusive molar flux induces a center of mass velocity directed from the species of greater atomic mass towards the lighter atomic mass species. As the ratio of the species particle masses increases, this center of mass velocity carries an increasingly greater portion of the mass across the interface and for a particle mass ratio greater than about two, the center of mass velocity carries more mass than the gradient driven diffusion flux. Early time transients across an interface between two species in a 1D plasma regime and initially in equilibrium are compared using three methods; a fluid code with closure in a classical transport approximation, a particle in cell simulation, and an implicit Fokker-Planck solver for the particle distribution functions. The early time transient phenomenology is shown to be similar in each of the computational simulation methods, including a pressure perturbation associated with the stationary "induced" component of the center of mass velocity which decays to pressure equilibrium during diffusion. At early times, the diffusive process generates pressure and velocity waves which propagate outward from the interface and are required to maintain momentum conservation. The energy in the outgoing waves dissipates as heat in viscous regions, and it is hypothesized that these diffusion driven waves may sustain fluctuations in less viscid finite domains after reflections from the boundaries. These fluid dynamic phenomena are similar in gases or plasmas and occur in flow transients with a moderate Knudsen number. The analysis and simulation results show how the kinetic flux, represented in the fluid transport closure, directly modifies the mass averaged flow described with the Euler equations.

  1. Statistical uncertainty analysis applied to the DRAGONv4 code lattice calculations and based on JENDL-4 covariance data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Solis, A.; Demaziere, C.; Ekberg, C.

    2012-07-01

    In this paper, multi-group microscopic cross-section uncertainty is propagated through the DRAGON (Version 4) lattice code, in order to perform uncertainty analysis on k{infinity} and 2-group homogenized macroscopic cross-sections predictions. A statistical methodology is employed for such purposes, where cross-sections of certain isotopes of various elements belonging to the 172 groups DRAGLIB library format, are considered as normal random variables. This library is based on JENDL-4 data, because JENDL-4 contains the largest amount of isotopic covariance matrixes among the different major nuclear data libraries. The aim is to propagate multi-group nuclide uncertainty by running the DRAGONv4 code 500 times, andmore » to assess the output uncertainty of a test case corresponding to a 17 x 17 PWR fuel assembly segment without poison. The chosen sampling strategy for the current study is Latin Hypercube Sampling (LHS). The quasi-random LHS allows a much better coverage of the input uncertainties than simple random sampling (SRS) because it densely stratifies across the range of each input probability distribution. Output uncertainty assessment is based on the tolerance limits concept, where the sample formed by the code calculations infers to cover 95% of the output population with at least a 95% of confidence. This analysis is the first attempt to propagate parameter uncertainties of modern multi-group libraries, which are used to feed advanced lattice codes that perform state of the art resonant self-shielding calculations such as DRAGONv4. (authors)« less

  2. Local Multi-Grouped Binary Descriptor With Ring-Based Pooling Configuration and Optimization.

    PubMed

    Gao, Yongqiang; Huang, Weilin; Qiao, Yu

    2015-12-01

    Local binary descriptors are attracting increasingly attention due to their great advantages in computational speed, which are able to achieve real-time performance in numerous image/vision applications. Various methods have been proposed to learn data-dependent binary descriptors. However, most existing binary descriptors aim overly at computational simplicity at the expense of significant information loss which causes ambiguity in similarity measure using Hamming distance. In this paper, by considering multiple features might share complementary information, we present a novel local binary descriptor, referred as ring-based multi-grouped descriptor (RMGD), to successfully bridge the performance gap between current binary and floated-point descriptors. Our contributions are twofold. First, we introduce a new pooling configuration based on spatial ring-region sampling, allowing for involving binary tests on the full set of pairwise regions with different shapes, scales, and distances. This leads to a more meaningful description than the existing methods which normally apply a limited set of pooling configurations. Then, an extended Adaboost is proposed for an efficient bit selection by emphasizing high variance and low correlation, achieving a highly compact representation. Second, the RMGD is computed from multiple image properties where binary strings are extracted. We cast multi-grouped features integration as rankSVM or sparse support vector machine learning problem, so that different features can compensate strongly for each other, which is the key to discriminativeness and robustness. The performance of the RMGD was evaluated on a number of publicly available benchmarks, where the RMGD outperforms the state-of-the-art binary descriptors significantly.

  3. Comparison of a 3-D multi-group SN particle transport code with Monte Carlo for intracavitary brachytherapy of the cervix uteri.

    PubMed

    Gifford, Kent A; Wareing, Todd A; Failla, Gregory; Horton, John L; Eifel, Patricia J; Mourtada, Firas

    2009-12-03

    A patient dose distribution was calculated by a 3D multi-group S N particle transport code for intracavitary brachytherapy of the cervix uteri and compared to previously published Monte Carlo results. A Cs-137 LDR intracavitary brachytherapy CT data set was chosen from our clinical database. MCNPX version 2.5.c, was used to calculate the dose distribution. A 3D multi-group S N particle transport code, Attila version 6.1.1 was used to simulate the same patient. Each patient applicator was built in SolidWorks, a mechanical design package, and then assembled with a coordinate transformation and rotation for the patient. The SolidWorks exported applicator geometry was imported into Attila for calculation. Dose matrices were overlaid on the patient CT data set. Dose volume histograms and point doses were compared. The MCNPX calculation required 14.8 hours, whereas the Attila calculation required 22.2 minutes on a 1.8 GHz AMD Opteron CPU. Agreement between Attila and MCNPX dose calculations at the ICRU 38 points was within +/- 3%. Calculated doses to the 2 cc and 5 cc volumes of highest dose differed by not more than +/- 1.1% between the two codes. Dose and DVH overlays agreed well qualitatively. Attila can calculate dose accurately and efficiently for this Cs-137 CT-based patient geometry. Our data showed that a three-group cross-section set is adequate for Cs-137 computations. Future work is aimed at implementing an optimized version of Attila for radiotherapy calculations.

  4. Simulation of breaking waves using the high-order spectral method with laboratory experiments: wave-breaking energy dissipation

    NASA Astrophysics Data System (ADS)

    Seiffert, Betsy R.; Ducrozet, Guillaume

    2018-01-01

    We examine the implementation of a wave-breaking mechanism into a nonlinear potential flow solver. The success of the mechanism will be studied by implementing it into the numerical model HOS-NWT, which is a computationally efficient, open source code that solves for the free surface in a numerical wave tank using the high-order spectral (HOS) method. Once the breaking mechanism is validated, it can be implemented into other nonlinear potential flow models. To solve for wave-breaking, first a wave-breaking onset parameter is identified, and then a method for computing wave-breaking associated energy loss is determined. Wave-breaking onset is calculated using a breaking criteria introduced by Barthelemy et al. (J Fluid Mech https://arxiv.org/pdf/1508.06002.pdf, submitted) and validated with the experiments of Saket et al. (J Fluid Mech 811:642-658, 2017). Wave-breaking energy dissipation is calculated by adding a viscous diffusion term computed using an eddy viscosity parameter introduced by Tian et al. (Phys Fluids 20(6): 066,604, 2008, Phys Fluids 24(3), 2012), which is estimated based on the pre-breaking wave geometry. A set of two-dimensional experiments is conducted to validate the implemented wave breaking mechanism at a large scale. Breaking waves are generated by using traditional methods of evolution of focused waves and modulational instability, as well as irregular breaking waves with a range of primary frequencies, providing a wide range of breaking conditions to validate the solver. Furthermore, adjustments are made to the method of application and coefficient of the viscous diffusion term with negligible difference, supporting the robustness of the eddy viscosity parameter. The model is able to accurately predict surface elevation and corresponding frequency/amplitude spectrum, as well as energy dissipation when compared with the experimental measurements. This suggests the model is capable of calculating wave-breaking onset and energy dissipation successfully for a wide range of breaking conditions. The model is also able to successfully calculate the transfer of energy between frequencies due to wave focusing and wave breaking. This study is limited to unidirectional waves but provides a valuable basis for future application of the wave-breaking model to a multidirectional wave field. By including parameters for removing energy due to wave-breaking into a nonlinear potential flow solver, the risk of developing numerical instabilities due to an overturning wave is decreased, thereby increasing the application range of the model, including calculating more extreme sea states. A computationally efficient and accurate model for the generation of a nonlinear random wave field is useful for predicting the dynamic response of offshore vessels and marine renewable energy devices, predicting loads on marine structures, and in the study of open ocean wave generation and propagation in a realistic environment.

  5. 3D unstructured-mesh radiation transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morel, J.

    1997-12-31

    Three unstructured-mesh radiation transport codes are currently being developed at Los Alamos National Laboratory. The first code is ATTILA, which uses an unstructured tetrahedral mesh in conjunction with standard Sn (discrete-ordinates) angular discretization, standard multigroup energy discretization, and linear-discontinuous spatial differencing. ATTILA solves the standard first-order form of the transport equation using source iteration in conjunction with diffusion-synthetic acceleration of the within-group source iterations. DANTE is designed to run primarily on workstations. The second code is DANTE, which uses a hybrid finite-element mesh consisting of arbitrary combinations of hexahedra, wedges, pyramids, and tetrahedra. DANTE solves several second-order self-adjoint forms of the transport equation including the even-parity equation, the odd-parity equation, and a new equation called the self-adjoint angular flux equation. DANTE also offers three angular discretization options:more » $$S{_}n$$ (discrete-ordinates), $$P{_}n$$ (spherical harmonics), and $$SP{_}n$$ (simplified spherical harmonics). DANTE is designed to run primarily on massively parallel message-passing machines, such as the ASCI-Blue machines at LANL and LLNL. The third code is PERICLES, which uses the same hybrid finite-element mesh as DANTE, but solves the standard first-order form of the transport equation rather than a second-order self-adjoint form. DANTE uses a standard $$S{_}n$$ discretization in angle in conjunction with trilinear-discontinuous spatial differencing, and diffusion-synthetic acceleration of the within-group source iterations. PERICLES was initially designed to run on workstations, but a version for massively parallel message-passing machines will be built. The three codes will be described in detail and computational results will be presented.« less

  6. Performance Improvements to the Naval Postgraduate School Turbopropulsion Labs Transonic Axially Splittered Rotor

    DTIC Science & Technology

    2013-12-01

    Implementation of current NPS TPL design procedure that uses COTS software (MATLAB, SolidWorks, and ANSYS - CFX ) for the geometric rendering and...procedure that uses commercial-off-the-shelf software (MATLAB, SolidWorks, and ANSYS - CFX ) for the geometric rendering and analysis was modified and... CFX The CFD simulation program in ANSYS Workbench. CFX -Pre CFX boundary conditions and solver settings module. CFX -Solver CFX solver program. CFX

  7. Avoiding Communication in the Lanczos Bidiagonalization Routine and Associated Least Squares QR Solver

    DTIC Science & Technology

    2015-04-12

    Avoiding communication in the Lanczos bidiagonalization routine and associated Least Squares QR solver Erin Carson Electrical Engineering and...Bidiagonalization Routine and Associated Least Squares QR Solver 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...throughout scienti c codes , are often the bottlenecks in application perfor- mance due to a low computation/communication ratio. In this paper we develop

  8. EUPDF: An Eulerian-Based Monte Carlo Probability Density Function (PDF) Solver. User's Manual

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    1998-01-01

    EUPDF is an Eulerian-based Monte Carlo PDF solver developed for application with sprays, combustion, parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and spray solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type. The manual provides the user with the coding required to couple the PDF code to any given flow code and a basic understanding of the EUPDF code structure as well as the models involved in the PDF formulation. The source code of EUPDF will be available with the release of the National Combustion Code (NCC) as a complete package.

  9. General Equation Set Solver for Compressible and Incompressible Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Sondak, Douglas L.; Dorney, Daniel J.

    2002-01-01

    Turbomachines for propulsion applications operate with many different working fluids and flow conditions. The flow may be incompressible, such as in the liquid hydrogen pump in a rocket engine, or supersonic, such as in the turbine which may drive the hydrogen pump. Separate codes have traditionally been used for incompressible and compressible flow solvers. The General Equation Set (GES) method can be used to solve both incompressible and compressible flows, and it is not restricted to perfect gases, as are many compressible-flow turbomachinery solvers. An unsteady GES turbomachinery flow solver has been developed and applied to both air and water flows through turbines. It has been shown to be an excellent alternative to maintaining two separate codes.

  10. Modularization and Validation of FUN3D as a CREATE-AV Helios Near-Body Solver

    NASA Technical Reports Server (NTRS)

    Jain, Rohit; Biedron, Robert T.; Jones, William T.; Lee-Rausch, Elizabeth M.

    2016-01-01

    Under a recent collaborative effort between the US Army Aeroflightdynamics Directorate (AFDD) and NASA Langley, NASA's general unstructured CFD solver, FUN3D, was modularized as a CREATE-AV Helios near-body unstructured grid solver. The strategies adopted in Helios/FUN3D integration effort are described. A validation study of the new capability is performed for rotorcraft cases spanning hover prediction, airloads prediction, coupling with computational structural dynamics, counter-rotating dual-rotor configurations, and free-flight trim. The integration of FUN3D, along with the previously integrated NASA OVERFLOW solver, lays the ground for future interaction opportunities where capabilities of one component could be leveraged with those of others in a relatively seamless fashion within CREATE-AV Helios.

  11. An approximate Riemann solver for hypervelocity flows

    NASA Technical Reports Server (NTRS)

    Jacobs, Peter A.

    1991-01-01

    We describe an approximate Riemann solver for the computation of hypervelocity flows in which there are strong shocks and viscous interactions. The scheme has three stages, the first of which computes the intermediate states assuming isentropic waves. A second stage, based on the strong shock relations, may then be invoked if the pressure jump across either wave is large. The third stage interpolates the interface state from the two initial states and the intermediate states. The solver is used as part of a finite-volume code and is demonstrated on two test cases. The first is a high Mach number flow over a sphere while the second is a flow over a slender cone with an adiabatic boundary layer. In both cases the solver performs well.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chao; Pouransari, Hadi; Rajamanickam, Sivasankaran

    We present a parallel hierarchical solver for general sparse linear systems on distributed-memory machines. For large-scale problems, this fully algebraic algorithm is faster and more memory-efficient than sparse direct solvers because it exploits the low-rank structure of fill-in blocks. Depending on the accuracy of low-rank approximations, the hierarchical solver can be used either as a direct solver or as a preconditioner. The parallel algorithm is based on data decomposition and requires only local communication for updating boundary data on every processor. Moreover, the computation-to-communication ratio of the parallel algorithm is approximately the volume-to-surface-area ratio of the subdomain owned by everymore » processor. We also provide various numerical results to demonstrate the versatility and scalability of the parallel algorithm.« less

  13. Diffusion MRI microstructure models with in vivo human brain Connectome data: results from a multi-group comparison.

    PubMed

    Ferizi, Uran; Scherrer, Benoit; Schneider, Torben; Alipoor, Mohammad; Eufracio, Odin; Fick, Rutger H J; Deriche, Rachid; Nilsson, Markus; Loya-Olivas, Ana K; Rivera, Mariano; Poot, Dirk H J; Ramirez-Manzanares, Alonso; Marroquin, Jose L; Rokem, Ariel; Pötter, Christian; Dougherty, Robert F; Sakaie, Ken; Wheeler-Kingshott, Claudia; Warfield, Simon K; Witzel, Thomas; Wald, Lawrence L; Raya, José G; Alexander, Daniel C

    2017-09-01

    A large number of mathematical models have been proposed to describe the measured signal in diffusion-weighted (DW) magnetic resonance imaging (MRI). However, model comparison to date focuses only on specific subclasses, e.g. compartment models or signal models, and little or no information is available in the literature on how performance varies among the different types of models. To address this deficiency, we organized the 'White Matter Modeling Challenge' during the International Symposium on Biomedical Imaging (ISBI) 2015 conference. This competition aimed to compare a range of different kinds of models in their ability to explain a large range of measurable in vivo DW human brain data. Specifically, we assessed the ability of models to predict the DW signal accurately for new diffusion gradients and b values. We did not evaluate the accuracy of estimated model parameters, as a ground truth is hard to obtain. We used the Connectome scanner at the Massachusetts General Hospital, using gradient strengths of up to 300 mT/m and a broad set of diffusion times. We focused on assessing the DW signal prediction in two regions: the genu in the corpus callosum, where the fibres are relatively straight and parallel, and the fornix, where the configuration of fibres is more complex. The challenge participants had access to three-quarters of the dataset and their models were ranked on their ability to predict the remaining unseen quarter of the data. The challenge provided a unique opportunity for a quantitative comparison of diverse methods from multiple groups worldwide. The comparison of the challenge entries reveals interesting trends that could potentially influence the next generation of diffusion-based quantitative MRI techniques. The first is that signal models do not necessarily outperform tissue models; in fact, of those tested, tissue models rank highest on average. The second is that assuming a non-Gaussian (rather than purely Gaussian) noise model provides little improvement in prediction of unseen data, although it is possible that this may still have a beneficial effect on estimated parameter values. The third is that preprocessing the training data, here by omitting signal outliers, and using signal-predicting strategies, such as bootstrapping or cross-validation, could benefit the model fitting. The analysis in this study provides a benchmark for other models and the data remain available to build up a more complete comparison in the future. Copyright © 2017 The Authors. NMR in Biomedicine Published by John Wiley & Sons, Ltd.

  14. A two-dimensional Riemann solver with self-similar sub-structure - Alternative formulation based on least squares projection

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Vides, Jeaniffer; Gurski, Katharine; Nkonga, Boniface; Dumbser, Michael; Garain, Sudip; Audit, Edouard

    2016-01-01

    Just as the quality of a one-dimensional approximate Riemann solver is improved by the inclusion of internal sub-structure, the quality of a multidimensional Riemann solver is also similarly improved. Such multidimensional Riemann problems arise when multiple states come together at the vertex of a mesh. The interaction of the resulting one-dimensional Riemann problems gives rise to a strongly-interacting state. We wish to endow this strongly-interacting state with physically-motivated sub-structure. The self-similar formulation of Balsara [16] proves especially useful for this purpose. While that work is based on a Galerkin projection, in this paper we present an analogous self-similar formulation that is based on a different interpretation. In the present formulation, we interpret the shock jumps at the boundary of the strongly-interacting state quite literally. The enforcement of the shock jump conditions is done with a least squares projection (Vides, Nkonga and Audit [67]). With that interpretation, we again show that the multidimensional Riemann solver can be endowed with sub-structure. However, we find that the most efficient implementation arises when we use a flux vector splitting and a least squares projection. An alternative formulation that is based on the full characteristic matrices is also presented. The multidimensional Riemann solvers that are demonstrated here use one-dimensional HLLC Riemann solvers as building blocks. Several stringent test problems drawn from hydrodynamics and MHD are presented to show that the method works. Results from structured and unstructured meshes demonstrate the versatility of our method. The reader is also invited to watch a video introduction to multidimensional Riemann solvers on http://www.nd.edu/ dbalsara/Numerical-PDE-Course.

  15. Computationally efficient simulation of unsteady aerodynamics using POD on the fly

    NASA Astrophysics Data System (ADS)

    Moreno-Ramos, Ruben; Vega, José M.; Varas, Fernando

    2016-12-01

    Modern industrial aircraft design requires a large amount of sufficiently accurate aerodynamic and aeroelastic simulations. Current computational fluid dynamics (CFD) solvers with aeroelastic capabilities, such as the NASA URANS unstructured solver FUN3D, require very large computational resources. Since a very large amount of simulation is necessary, the CFD cost is just unaffordable in an industrial production environment and must be significantly reduced. Thus, a more inexpensive, yet sufficiently precise solver is strongly needed. An opportunity to approach this goal could follow some recent results (Terragni and Vega 2014 SIAM J. Appl. Dyn. Syst. 13 330-65 Rapun et al 2015 Int. J. Numer. Meth. Eng. 104 844-68) on an adaptive reduced order model that combines ‘on the fly’ a standard numerical solver (to compute some representative snapshots), proper orthogonal decomposition (POD) (to extract modes from the snapshots), Galerkin projection (onto the set of POD modes), and several additional ingredients such as projecting the equations using a limited amount of points and fairly generic mode libraries. When applied to the complex Ginzburg-Landau equation, the method produces acceleration factors (comparing with standard numerical solvers) of the order of 20 and 300 in one and two space dimensions, respectively. Unfortunately, the extension of the method to unsteady, compressible flows around deformable geometries requires new approaches to deal with deformable meshes, high-Reynolds numbers, and compressibility. A first step in this direction is presented considering the unsteady compressible, two-dimensional flow around an oscillating airfoil using a CFD solver in a rigidly moving mesh. POD on the Fly gives results whose accuracy is comparable to that of the CFD solver used to compute the snapshots.

  16. Comparison of High-Order and Low-Order Methods for Large-Eddy Simulation of a Compressible Shear Layer

    NASA Technical Reports Server (NTRS)

    Mankbadi, Mina R.; Georgiadis, Nicholas J.; DeBonis, James R.

    2015-01-01

    The objective of this work is to compare a high-order solver with a low-order solver for performing Large-Eddy Simulations (LES) of a compressible mixing layer. The high-order method is the Wave-Resolving LES (WRLES) solver employing a Dispersion Relation Preserving (DRP) scheme. The low-order solver is the Wind-US code, which employs the second-order Roe Physical scheme. Both solvers are used to perform LES of the turbulent mixing between two supersonic streams at a convective Mach number of 0.46. The high-order and low-order methods are evaluated at two different levels of grid resolution. For a fine grid resolution, the low-order method produces a very similar solution to the highorder method. At this fine resolution the effects of numerical scheme, subgrid scale modeling, and filtering were found to be negligible. Both methods predict turbulent stresses that are in reasonable agreement with experimental data. However, when the grid resolution is coarsened, the difference between the two solvers becomes apparent. The low-order method deviates from experimental results when the resolution is no longer adequate. The high-order DRP solution shows minimal grid dependence. The effects of subgrid scale modeling and spatial filtering were found to be negligible at both resolutions. For the high-order solver on the fine mesh, a parametric study of the spanwise width was conducted to determine its effect on solution accuracy. An insufficient spanwise width was found to impose an artificial spanwise mode and limit the resolved spanwise modes. We estimate that the spanwise depth needs to be 2.5 times larger than the largest coherent structures to capture the largest spanwise mode and accurately predict turbulent mixing.

  17. Comparison of High-Order and Low-Order Methods for Large-Eddy Simulation of a Compressible Shear Layer

    NASA Technical Reports Server (NTRS)

    Mankbadi, M. R.; Georgiadis, N. J.; DeBonis, J. R.

    2015-01-01

    The objective of this work is to compare a high-order solver with a low-order solver for performing large-eddy simulations (LES) of a compressible mixing layer. The high-order method is the Wave-Resolving LES (WRLES) solver employing a Dispersion Relation Preserving (DRP) scheme. The low-order solver is the Wind-US code, which employs the second-order Roe Physical scheme. Both solvers are used to perform LES of the turbulent mixing between two supersonic streams at a convective Mach number of 0.46. The high-order and low-order methods are evaluated at two different levels of grid resolution. For a fine grid resolution, the low-order method produces a very similar solution to the high-order method. At this fine resolution the effects of numerical scheme, subgrid scale modeling, and filtering were found to be negligible. Both methods predict turbulent stresses that are in reasonable agreement with experimental data. However, when the grid resolution is coarsened, the difference between the two solvers becomes apparent. The low-order method deviates from experimental results when the resolution is no longer adequate. The high-order DRP solution shows minimal grid dependence. The effects of subgrid scale modeling and spatial filtering were found to be negligible at both resolutions. For the high-order solver on the fine mesh, a parametric study of the spanwise width was conducted to determine its effect on solution accuracy. An insufficient spanwise width was found to impose an artificial spanwise mode and limit the resolved spanwise modes. We estimate that the spanwise depth needs to be 2.5 times larger than the largest coherent structures to capture the largest spanwise mode and accurately predict turbulent mixing.

  18. How to Find a Bug in Ten Thousand Lines Transport Solver? Outline of Experiences from AN Advection-Diffusion Code Verification

    NASA Astrophysics Data System (ADS)

    Zamani, K.; Bombardelli, F.

    2011-12-01

    Almost all natural phenomena on Earth are highly nonlinear. Even simplifications to the equations describing nature usually end up being nonlinear partial differential equations. Transport (ADR) equation is a pivotal equation in atmospheric sciences and water quality. This nonlinear equation needs to be solved numerically for practical purposes so academicians and engineers thoroughly rely on the assistance of numerical codes. Thus, numerical codes require verification before they are utilized for multiple applications in science and engineering. Model verification is a mathematical procedure whereby a numerical code is checked to assure the governing equation is properly solved as it is described in the design document. CFD verification is not a straightforward and well-defined course. Only a complete test suite can uncover all the limitations and bugs. Results are needed to be assessed to make a distinction between bug-induced-defect and innate limitation of a numerical scheme. As Roache (2009) said, numerical verification is a state-of-the-art procedure. Sometimes novel tricks work out. This study conveys the synopsis of the experiences we gained during a comprehensive verification process which was done for a transport solver. A test suite was designed including unit tests and algorithmic tests. Tests were layered in complexity in several dimensions from simple to complex. Acceptance criteria defined for the desirable capabilities of the transport code such as order of accuracy, mass conservation, handling stiff source term, spurious oscillation, and initial shape preservation. At the begining, mesh convergence study which is the main craft of the verification is performed. To that end, analytical solution of ADR equation gathered. Also a new solution was derived. In the more general cases, lack of analytical solution could be overcome through Richardson Extrapolation and Manufactured Solution. Then, two bugs which were concealed during the mesh convergence study uncovered with the method of false injection and visualization of the results. Symmetry had dual functionality: there was a bug, which was hidden due to the symmetric nature of a test (it was detected afterward utilizing artificial false injection), on the other hand self-symmetry was used to design a new test, and in a case the analytical solution of the ADR equation was unknown. Assisting subroutines designed to check and post-process conservation of mass and oscillatory behavior. Finally, capability of the solver also checked for stiff reaction source term. The above test suite not only was a decent tool of error detection but also it provided a thorough feedback on the ADR solvers limitations. Such information is the crux of any rigorous numerical modeling for a modeler who deals with surface/subsurface pollution transport.

  19. Validation of the Chemistry Module for the Euler Solver in Unified Flow Solver

    DTIC Science & Technology

    2012-03-01

    traveling through the atmosphere there are three types of flow regimes that exist; the first is the continuum regime, second is the rarified regime and...The second method has been used in a program called Unified Flow Solver (UFS). UFS is currently being developed under collaborative efforts the Air...thermal non-equilibrium case and finally to a thermo-chemical non- equilibrium case. The data from the simulations will be compared to a second code

  20. Model Checking with Multi-Threaded IC3 Portfolios

    DTIC Science & Technology

    2015-01-15

    different runs varies randomly depending on the thread interleaving. The use of a portfolio of solvers to maximize the likelihood of a quick solution is...empirically show (cf. Sec. 5.2) that the predictions based on this formula have high accuracy. Note that each solver in the portfolio potentially searches...speedup of over 300. We also show that widening the proof search of ic3 by randomizing its SAT solver is not as effective as paral- lelization

  1. Execution of a parallel edge-based Navier-Stokes solver on commodity graphics processor units

    NASA Astrophysics Data System (ADS)

    Corral, Roque; Gisbert, Fernando; Pueblas, Jesus

    2017-02-01

    The implementation of an edge-based three-dimensional Reynolds Average Navier-Stokes solver for unstructured grids able to run on multiple graphics processing units (GPUs) is presented. Loops over edges, which are the most time-consuming part of the solver, have been written to exploit the massively parallel capabilities of GPUs. Non-blocking communications between parallel processes and between the GPU and the central processor unit (CPU) have been used to enhance code scalability. The code is written using a mixture of C++ and OpenCL, to allow the execution of the source code on GPUs. The Message Passage Interface (MPI) library is used to allow the parallel execution of the solver on multiple GPUs. A comparative study of the solver parallel performance is carried out using a cluster of CPUs and another of GPUs. It is shown that a single GPU is up to 64 times faster than a single CPU core. The parallel scalability of the solver is mainly degraded due to the loss of computing efficiency of the GPU when the size of the case decreases. However, for large enough grid sizes, the scalability is strongly improved. A cluster featuring commodity GPUs and a high bandwidth network is ten times less costly and consumes 33% less energy than a CPU-based cluster with an equivalent computational power.

  2. The novel high-performance 3-D MT inverse solver

    NASA Astrophysics Data System (ADS)

    Kruglyakov, Mikhail; Geraskin, Alexey; Kuvshinov, Alexey

    2016-04-01

    We present novel, robust, scalable, and fast 3-D magnetotelluric (MT) inverse solver. The solver is written in multi-language paradigm to make it as efficient, readable and maintainable as possible. Separation of concerns and single responsibility concepts go through implementation of the solver. As a forward modelling engine a modern scalable solver extrEMe, based on contracting integral equation approach, is used. Iterative gradient-type (quasi-Newton) optimization scheme is invoked to search for (regularized) inverse problem solution, and adjoint source approach is used to calculate efficiently the gradient of the misfit. The inverse solver is able to deal with highly detailed and contrasting models, allows for working (separately or jointly) with any type of MT responses, and supports massive parallelization. Moreover, different parallelization strategies implemented in the code allow optimal usage of available computational resources for a given problem statement. To parameterize an inverse domain the so-called mask parameterization is implemented, which means that one can merge any subset of forward modelling cells in order to account for (usually) irregular distribution of observation sites. We report results of 3-D numerical experiments aimed at analysing the robustness, performance and scalability of the code. In particular, our computational experiments carried out at different platforms ranging from modern laptops to HPC Piz Daint (6th supercomputer in the world) demonstrate practically linear scalability of the code up to thousands of nodes.

  3. A comparison of viscous-plastic sea ice solvers with and without replacement pressure

    NASA Astrophysics Data System (ADS)

    Kimmritz, Madlen; Losch, Martin; Danilov, Sergey

    2017-07-01

    Recent developments of the explicit elastic-viscous-plastic (EVP) solvers call for a new comparison with implicit solvers for the equations of viscous-plastic sea ice dynamics. In Arctic sea ice simulations, the modified and the adaptive EVP solvers, and the implicit Jacobian-free Newton-Krylov (JFNK) solver are compared against each other. The adaptive EVP method shows convergence rates that are generally similar or even better than those of the modified EVP method, but the convergence of the EVP methods is found to depend dramatically on the use of the replacement pressure (RP). Apparently, using the RP can affect the pseudo-elastic waves in the EVP methods by introducing extra non-physical oscillations so that, in the extreme case, convergence to the VP solution can be lost altogether. The JFNK solver also suffers from higher failure rates with RP implying that with RP the momentum equations are stiffer and more difficult to solve. For practical purposes, both EVP methods can be used efficiently with an unexpectedly low number of sub-cycling steps without compromising the solutions. The differences between the RP solutions and the NoRP solutions (when the RP is not being used) can be reduced with lower thresholds of viscous regularization at the cost of increasing stiffness of the equations, and hence the computational costs of solving them.

  4. New preconditioning strategy for Jacobian-free solvers for variably saturated flows with Richards’ equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipnikov, Konstantin; Moulton, David; Svyatskiy, Daniil

    2016-04-29

    We develop a new approach for solving the nonlinear Richards’ equation arising in variably saturated flow modeling. The growing complexity of geometric models for simulation of subsurface flows leads to the necessity of using unstructured meshes and advanced discretization methods. Typically, a numerical solution is obtained by first discretizing PDEs and then solving the resulting system of nonlinear discrete equations with a Newton-Raphson-type method. Efficiency and robustness of the existing solvers rely on many factors, including an empiric quality control of intermediate iterates, complexity of the employed discretization method and a customized preconditioner. We propose and analyze a new preconditioningmore » strategy that is based on a stable discretization of the continuum Jacobian. We will show with numerical experiments for challenging problems in subsurface hydrology that this new preconditioner improves convergence of the existing Jacobian-free solvers 3-20 times. Furthermore, we show that the Picard method with this preconditioner becomes a more efficient nonlinear solver than a few widely used Jacobian-free solvers.« less

  5. A fast mass spring model solver for high-resolution elastic objects

    NASA Astrophysics Data System (ADS)

    Zheng, Mianlun; Yuan, Zhiyong; Zhu, Weixu; Zhang, Guian

    2017-03-01

    Real-time simulation of elastic objects is of great importance for computer graphics and virtual reality applications. The fast mass spring model solver can achieve visually realistic simulation in an efficient way. Unfortunately, this method suffers from resolution limitations and lack of mechanical realism for a surface geometry model, which greatly restricts its application. To tackle these problems, in this paper we propose a fast mass spring model solver for high-resolution elastic objects. First, we project the complex surface geometry model into a set of uniform grid cells as cages through *cages mean value coordinate method to reflect its internal structure and mechanics properties. Then, we replace the original Cholesky decomposition method in the fast mass spring model solver with a conjugate gradient method, which can make the fast mass spring model solver more efficient for detailed surface geometry models. Finally, we propose a graphics processing unit accelerated parallel algorithm for the conjugate gradient method. Experimental results show that our method can realize efficient deformation simulation of 3D elastic objects with visual reality and physical fidelity, which has a great potential for applications in computer animation.

  6. A new fast direct solver for the boundary element method

    NASA Astrophysics Data System (ADS)

    Huang, S.; Liu, Y. J.

    2017-09-01

    A new fast direct linear equation solver for the boundary element method (BEM) is presented in this paper. The idea of the new fast direct solver stems from the concept of the hierarchical off-diagonal low-rank matrix. The hierarchical off-diagonal low-rank matrix can be decomposed into the multiplication of several diagonal block matrices. The inverse of the hierarchical off-diagonal low-rank matrix can be calculated efficiently with the Sherman-Morrison-Woodbury formula. In this paper, a more general and efficient approach to approximate the coefficient matrix of the BEM with the hierarchical off-diagonal low-rank matrix is proposed. Compared to the current fast direct solver based on the hierarchical off-diagonal low-rank matrix, the proposed method is suitable for solving general 3-D boundary element models. Several numerical examples of 3-D potential problems with the total number of unknowns up to above 200,000 are presented. The results show that the new fast direct solver can be applied to solve large 3-D BEM models accurately and with better efficiency compared with the conventional BEM.

  7. An approximate Riemann solver for real gas parabolized Navier-Stokes equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urbano, Annafederica, E-mail: annafederica.urbano@uniroma1.it; Nasuti, Francesco, E-mail: francesco.nasuti@uniroma1.it

    2013-01-15

    Under specific assumptions, parabolized Navier-Stokes equations are a suitable mean to study channel flows. A special case is that of high pressure flow of real gases in cooling channels where large crosswise gradients of thermophysical properties occur. To solve the parabolized Navier-Stokes equations by a space marching approach, the hyperbolicity of the system of governing equations is obtained, even for very low Mach number flow, by recasting equations such that the streamwise pressure gradient is considered as a source term. For this system of equations an approximate Roe's Riemann solver is developed as the core of a Godunov type finitemore » volume algorithm. The properties of the approximated Riemann solver, which is a modification of Roe's Riemann solver for the parabolized Navier-Stokes equations, are presented and discussed with emphasis given to its original features introduced to handle fluids governed by a generic real gas EoS. Sample solutions are obtained for low Mach number high compressible flows of transcritical methane, heated in straight long channels, to prove the solver ability to describe flows dominated by complex thermodynamic phenomena.« less

  8. A fast direct solver for boundary value problems on locally perturbed geometries

    NASA Astrophysics Data System (ADS)

    Zhang, Yabin; Gillman, Adrianna

    2018-03-01

    Many applications including optimal design and adaptive discretization techniques involve solving several boundary value problems on geometries that are local perturbations of an original geometry. This manuscript presents a fast direct solver for boundary value problems that are recast as boundary integral equations. The idea is to write the discretized boundary integral equation on a new geometry as a low rank update to the discretized problem on the original geometry. Using the Sherman-Morrison formula, the inverse can be expressed in terms of the inverse of the original system applied to the low rank factors and the right hand side. Numerical results illustrate for problems where perturbation is localized the fast direct solver is three times faster than building a new solver from scratch.

  9. WIND Flow Solver Released

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.

    1999-01-01

    The WIND code is a general-purpose, structured, multizone, compressible flow solver that can be used to analyze steady or unsteady flow for a wide range of geometric configurations and over a wide range of flow conditions. WIND is the latest product of the NPARC Alliance, a formal partnership between the NASA Lewis Research Center and the Air Force Arnold Engineering Development Center (AEDC). WIND Version 1.0 was released in February 1998, and Version 2.0 will be released in February 1999. The WIND code represents a merger of the capabilities of three existing computational fluid dynamics codes--NPARC (the original NPARC Alliance flow solver), NXAIR (an Air Force code used primarily for unsteady store separation problems), and NASTD (the primary flow solver at McDonnell Douglas, now part of Boeing).

  10. Efficiency optimization of a fast Poisson solver in beam dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zheng, Dawei; Pöplau, Gisela; van Rienen, Ursula

    2016-01-01

    Calculating the solution of Poisson's equation relating to space charge force is still the major time consumption in beam dynamics simulations and calls for further improvement. In this paper, we summarize a classical fast Poisson solver in beam dynamics simulations: the integrated Green's function method. We introduce three optimization steps of the classical Poisson solver routine: using the reduced integrated Green's function instead of the integrated Green's function; using the discrete cosine transform instead of discrete Fourier transform for the Green's function; using a novel fast convolution routine instead of an explicitly zero-padded convolution. The new Poisson solver routine preserves the advantages of fast computation and high accuracy. This provides a fast routine for high performance calculation of the space charge effect in accelerators.

  11. Benchmarking Defmod, an open source FEM code for modeling episodic fault rupture

    NASA Astrophysics Data System (ADS)

    Meng, Chunfang

    2017-03-01

    We present Defmod, an open source (linear) finite element code that enables us to efficiently model the crustal deformation due to (quasi-)static and dynamic loadings, poroelastic flow, viscoelastic flow and frictional fault slip. Ali (2015) provides the original code introducing an implicit solver for (quasi-)static problem, and an explicit solver for dynamic problem. The fault constraint is implemented via Lagrange Multiplier. Meng (2015) combines these two solvers into a hybrid solver that uses failure criteria and friction laws to adaptively switch between the (quasi-)static state and dynamic state. The code is capable of modeling episodic fault rupture driven by quasi-static loadings, e.g. due to reservoir fluid withdraw or injection. Here, we focus on benchmarking the Defmod results against some establish results.

  12. Optical solver for a system of ordinary differential equations based on an external feedback assisted microring resonator.

    PubMed

    Hou, Jie; Dong, Jianji; Zhang, Xinliang

    2017-06-15

    Systems of ordinary differential equations (SODEs) are crucial for describing the dynamic behaviors in various systems such as modern control systems which require observability and controllability. In this Letter, we propose and experimentally demonstrate an all-optical SODE solver based on the silicon-on-insulator platform. We use an add/drop microring resonator to construct two different ordinary differential equations (ODEs) and then introduce two external feedback waveguides to realize the coupling between these ODEs, thus forming the SODE solver. A temporal coupled mode theory is used to deduce the expression of the SODE. A system experiment is carried out for further demonstration. For the input 10 GHz NRZ-like pulses, the measured output waveforms of the SODE solver agree well with the calculated results.

  13. Shock-driven fluid-structure interaction for civil design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Stephen L; Deiterding, Ralf

    The multiphysics fluid-structure interaction simulation of shock-loaded structures requires the dynamic coupling of a shock-capturing flow solver to a solid mechanics solver for large deformations. The Virtual Test Facility combines a Cartesian embedded boundary approach with dynamic mesh adaptation in a generic software framework of flow solvers using hydrodynamic finite volume upwind schemes that are coupled to various explicit finite element solid dynamics solvers (Deiterding et al., 2006). This paper gives a brief overview of the computational approach and presents first simulations that utilize the general purpose solid dynamics code DYNA3D for complex 3D structures of interest in civil engineering.more » Results from simulations of a reinforced column, highway bridge, multistory building, and nuclear reactor building are presented.« less

  14. A Kernel-free Boundary Integral Method for Elliptic Boundary Value Problems ⋆

    PubMed Central

    Ying, Wenjun; Henriquez, Craig S.

    2013-01-01

    This paper presents a class of kernel-free boundary integral (KFBI) methods for general elliptic boundary value problems (BVPs). The boundary integral equations reformulated from the BVPs are solved iteratively with the GMRES method. During the iteration, the boundary and volume integrals involving Green's functions are approximated by structured grid-based numerical solutions, which avoids the need to know the analytical expressions of Green's functions. The KFBI method assumes that the larger regular domain, which embeds the original complex domain, can be easily partitioned into a hierarchy of structured grids so that fast elliptic solvers such as the fast Fourier transform (FFT) based Poisson/Helmholtz solvers or those based on geometric multigrid iterations are applicable. The structured grid-based solutions are obtained with standard finite difference method (FDM) or finite element method (FEM), where the right hand side of the resulting linear system is appropriately modified at irregular grid nodes to recover the formal accuracy of the underlying numerical scheme. Numerical results demonstrating the efficiency and accuracy of the KFBI methods are presented. It is observed that the number of GM-RES iterations used by the method for solving isotropic and moderately anisotropic BVPs is independent of the sizes of the grids that are employed to approximate the boundary and volume integrals. With the standard second-order FEMs and FDMs, the KFBI method shows a second-order convergence rate in accuracy for all of the tested Dirichlet/Neumann BVPs when the anisotropy of the diffusion tensor is not too strong. PMID:23519600

  15. Compartmental and Spatial Rule-Based Modeling with Virtual Cell.

    PubMed

    Blinov, Michael L; Schaff, James C; Vasilescu, Dan; Moraru, Ion I; Bloom, Judy E; Loew, Leslie M

    2017-10-03

    In rule-based modeling, molecular interactions are systematically specified in the form of reaction rules that serve as generators of reactions. This provides a way to account for all the potential molecular complexes and interactions among multivalent or multistate molecules. Recently, we introduced rule-based modeling into the Virtual Cell (VCell) modeling framework, permitting graphical specification of rules and merger of networks generated automatically (using the BioNetGen modeling engine) with hand-specified reaction networks. VCell provides a number of ordinary differential equation and stochastic numerical solvers for single-compartment simulations of the kinetic systems derived from these networks, and agent-based network-free simulation of the rules. In this work, compartmental and spatial modeling of rule-based models has been implemented within VCell. To enable rule-based deterministic and stochastic spatial simulations and network-free agent-based compartmental simulations, the BioNetGen and NFSim engines were each modified to support compartments. In the new rule-based formalism, every reactant and product pattern and every reaction rule are assigned locations. We also introduce the rule-based concept of molecular anchors. This assures that any species that has a molecule anchored to a predefined compartment will remain in this compartment. Importantly, in addition to formulation of compartmental models, this now permits VCell users to seamlessly connect reaction networks derived from rules to explicit geometries to automatically generate a system of reaction-diffusion equations. These may then be simulated using either the VCell partial differential equations deterministic solvers or the Smoldyn stochastic simulator. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. ELEFANT: a user-friendly multipurpose geodynamics code

    NASA Astrophysics Data System (ADS)

    Thieulot, C.

    2014-07-01

    A new finite element code for the solution of the Stokes and heat transport equations is presented. It has purposely been designed to address geological flow problems in two and three dimensions at crustal and lithospheric scales. The code relies on the Marker-in-Cell technique and Lagrangian markers are used to track materials in the simulation domain which allows recording of the integrated history of deformation; their (number) density is variable and dynamically adapted. A variety of rheologies has been implemented including nonlinear thermally activated dislocation and diffusion creep and brittle (or plastic) frictional models. The code is built on the Arbitrary Lagrangian Eulerian kinematic description: the computational grid deforms vertically and allows for a true free surface while the computational domain remains of constant width in the horizontal direction. The solution to the large system of algebraic equations resulting from the finite element discretisation and linearisation of the set of coupled partial differential equations to be solved is obtained by means of the efficient parallel direct solver MUMPS whose performance is thoroughly tested, or by means of the WISMP and AGMG iterative solvers. The code accuracy is assessed by means of many geodynamically relevant benchmark experiments which highlight specific features or algorithms, e.g., the implementation of the free surface stabilisation algorithm, the (visco-)plastic rheology implementation, the temperature advection, the capacity of the code to handle large viscosity contrasts. A two-dimensional application to salt tectonics presented as case study illustrates the potential of the code to model large scale high resolution thermo-mechanically coupled free surface flows.

  17. A hybrid incremental projection method for thermal-hydraulics applications

    NASA Astrophysics Data System (ADS)

    Christon, Mark A.; Bakosi, Jozsef; Nadiga, Balasubramanya T.; Berndt, Markus; Francois, Marianne M.; Stagg, Alan K.; Xia, Yidong; Luo, Hong

    2016-07-01

    A new second-order accurate, hybrid, incremental projection method for time-dependent incompressible viscous flow is introduced in this paper. The hybrid finite-element/finite-volume discretization circumvents the well-known Ladyzhenskaya-Babuška-Brezzi conditions for stability, and does not require special treatment to filter pressure modes by either Rhie-Chow interpolation or by using a Petrov-Galerkin finite element formulation. The use of a co-velocity with a high-resolution advection method and a linearly consistent edge-based treatment of viscous/diffusive terms yields a robust algorithm for a broad spectrum of incompressible flows. The high-resolution advection method is shown to deliver second-order spatial convergence on mixed element topology meshes, and the implicit advective treatment significantly increases the stable time-step size. The algorithm is robust and extensible, permitting the incorporation of features such as porous media flow, RANS and LES turbulence models, and semi-/fully-implicit time stepping. A series of verification and validation problems are used to illustrate the convergence properties of the algorithm. The temporal stability properties are demonstrated on a range of problems with 2 ≤ CFL ≤ 100. The new flow solver is built using the Hydra multiphysics toolkit. The Hydra toolkit is written in C++ and provides a rich suite of extensible and fully-parallel components that permit rapid application development, supports multiple discretization techniques, provides I/O interfaces, dynamic run-time load balancing and data migration, and interfaces to scalable popular linear solvers, e.g., in open-source packages such as HYPRE, PETSc, and Trilinos.

  18. Electromechanical feedback with reduced cellular connectivity alters electrical activity in an infarct injured left ventricle: a finite element model study

    PubMed Central

    Guccione, Julius M.; Ratcliffe, Mark B.; Sundnes, Joakim S.

    2012-01-01

    Myocardial infarction (MI) significantly alters the structure and function of the heart. As abnormal strain may drive heart failure and the generation of arrhythmias, we used computational methods to simulate a left ventricle with an MI over the course of a heartbeat to investigate strains and their potential implications to electrophysiology. We created a fully coupled finite element model of myocardial electromechanics consisting of a cellular physiological model, a bidomain electrical diffusion solver, and a nonlinear mechanics solver. A geometric mesh built from magnetic resonance imaging (MRI) measurements of an ovine left ventricle suffering from a surgically induced anteroapical infarct was used in the model, cycled through the cardiac loop of inflation, isovolumic contraction, ejection, and isovolumic relaxation. Stretch-activated currents were added as a mechanism of mechanoelectric feedback. Elevated fiber and cross fiber strains were observed in the area immediately adjacent to the aneurysm throughout the cardiac cycle, with a more dramatic increase in cross fiber strain than fiber strain. Stretch-activated channels decreased action potential (AP) dispersion in the remote myocardium while increasing it in the border zone. Decreases in electrical connectivity dramatically increased the changes in AP dispersion. The role of cross fiber strain in MI-injured hearts should be investigated more closely, since results indicate that these are more highly elevated than fiber strain in the border of the infarct. Decreases in connectivity may play an important role in the development of altered electrophysiology in the high-stretch regions of the heart. PMID:22058157

  19. A hybrid incremental projection method for thermal-hydraulics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christon, Mark A.; Bakosi, Jozsef; Nadiga, Balasubramanya T.

    In this paper, a new second-order accurate, hybrid, incremental projection method for time-dependent incompressible viscous flow is introduced in this paper. The hybrid finite-element/finite-volume discretization circumvents the well-known Ladyzhenskaya–Babuška–Brezzi conditions for stability, and does not require special treatment to filter pressure modes by either Rhie–Chow interpolation or by using a Petrov–Galerkin finite element formulation. The use of a co-velocity with a high-resolution advection method and a linearly consistent edge-based treatment of viscous/diffusive terms yields a robust algorithm for a broad spectrum of incompressible flows. The high-resolution advection method is shown to deliver second-order spatial convergence on mixed element topology meshes,more » and the implicit advective treatment significantly increases the stable time-step size. The algorithm is robust and extensible, permitting the incorporation of features such as porous media flow, RANS and LES turbulence models, and semi-/fully-implicit time stepping. A series of verification and validation problems are used to illustrate the convergence properties of the algorithm. The temporal stability properties are demonstrated on a range of problems with 2 ≤ CFL ≤ 100. The new flow solver is built using the Hydra multiphysics toolkit. The Hydra toolkit is written in C++ and provides a rich suite of extensible and fully-parallel components that permit rapid application development, supports multiple discretization techniques, provides I/O interfaces, dynamic run-time load balancing and data migration, and interfaces to scalable popular linear solvers, e.g., in open-source packages such as HYPRE, PETSc, and Trilinos.« less

  20. A hybrid incremental projection method for thermal-hydraulics applications

    DOE PAGES

    Christon, Mark A.; Bakosi, Jozsef; Nadiga, Balasubramanya T.; ...

    2016-07-01

    In this paper, a new second-order accurate, hybrid, incremental projection method for time-dependent incompressible viscous flow is introduced in this paper. The hybrid finite-element/finite-volume discretization circumvents the well-known Ladyzhenskaya–Babuška–Brezzi conditions for stability, and does not require special treatment to filter pressure modes by either Rhie–Chow interpolation or by using a Petrov–Galerkin finite element formulation. The use of a co-velocity with a high-resolution advection method and a linearly consistent edge-based treatment of viscous/diffusive terms yields a robust algorithm for a broad spectrum of incompressible flows. The high-resolution advection method is shown to deliver second-order spatial convergence on mixed element topology meshes,more » and the implicit advective treatment significantly increases the stable time-step size. The algorithm is robust and extensible, permitting the incorporation of features such as porous media flow, RANS and LES turbulence models, and semi-/fully-implicit time stepping. A series of verification and validation problems are used to illustrate the convergence properties of the algorithm. The temporal stability properties are demonstrated on a range of problems with 2 ≤ CFL ≤ 100. The new flow solver is built using the Hydra multiphysics toolkit. The Hydra toolkit is written in C++ and provides a rich suite of extensible and fully-parallel components that permit rapid application development, supports multiple discretization techniques, provides I/O interfaces, dynamic run-time load balancing and data migration, and interfaces to scalable popular linear solvers, e.g., in open-source packages such as HYPRE, PETSc, and Trilinos.« less

  1. Steady potential solver for unsteady aerodynamic analyses

    NASA Technical Reports Server (NTRS)

    Hoyniak, Dan

    1994-01-01

    Development of a steady flow solver for use with LINFLO was the objective of this report. The solver must be compatible with LINFLO, be composed of composite mesh, and have transonic capability. The approaches used were: (1) steady flow potential equations written in nonconservative form; (2) Newton's Method; (3) implicit, least-squares, interpolation method to obtain finite difference equations; and (4) matrix inversion routines from LINFLO. This report was given during the NASA LeRC Workshop on Forced Response in Turbomachinery in August of 1993.

  2. Evaluation of out-of-core computer programs for the solution of symmetric banded linear equations. [simultaneous equations

    NASA Technical Reports Server (NTRS)

    Dunham, R. S.

    1976-01-01

    FORTRAN coded out-of-core equation solvers that solve using direct methods symmetric banded systems of simultaneous algebraic equations. Banded, frontal and column (skyline) solvers were studied as well as solvers that can partition the working area and thus could fit into any available core. Comparison timings are presented for several typical two dimensional and three dimensional continuum type grids of elements with and without midside nodes. Extensive conclusions are also given.

  3. Program Package for 3d PIC Model of Plasma Fiber

    NASA Astrophysics Data System (ADS)

    Kulhánek, Petr; Břeň, David

    2007-08-01

    A fully three dimensional Particle in Cell model of the plasma fiber had been developed. The code is written in FORTRAN 95, implementation CVF (Compaq Visual Fortran) under Microsoft Visual Studio user interface. Five particle solvers and two field solvers are included in the model. The solvers have relativistic and non-relativistic variants. The model can deal both with periodical and non-periodical boundary conditions. The mechanism of the surface turbulences generation in the plasma fiber was successfully simulated with the PIC program package.

  4. Parallel-vector out-of-core equation solver for computational mechanics

    NASA Technical Reports Server (NTRS)

    Qin, J.; Agarwal, T. K.; Storaasli, O. O.; Nguyen, D. T.; Baddourah, M. A.

    1993-01-01

    A parallel/vector out-of-core equation solver is developed for shared-memory computers, such as the Cray Y-MP machine. The input/ output (I/O) time is reduced by using the a synchronous BUFFER IN and BUFFER OUT, which can be executed simultaneously with the CPU instructions. The parallel and vector capability provided by the supercomputers is also exploited to enhance the performance. Numerical applications in large-scale structural analysis are given to demonstrate the efficiency of the present out-of-core solver.

  5. The development of an intelligent interface to a computational fluid dynamics flow-solver code

    NASA Technical Reports Server (NTRS)

    Williams, Anthony D.

    1988-01-01

    Researchers at NASA Lewis are currently developing an 'intelligent' interface to aid in the development and use of large, computational fluid dynamics flow-solver codes for studying the internal fluid behavior of aerospace propulsion systems. This paper discusses the requirements, design, and implementation of an intelligent interface to Proteus, a general purpose, 3-D, Navier-Stokes flow solver. The interface is called PROTAIS to denote its introduction of artificial intelligence (AI) concepts to the Proteus code.

  6. The development of an intelligent interface to a computational fluid dynamics flow-solver code

    NASA Technical Reports Server (NTRS)

    Williams, Anthony D.

    1988-01-01

    Researchers at NASA Lewis are currently developing an 'intelligent' interface to aid in the development and use of large, computational fluid dynamics flow-solver codes for studying the internal fluid behavior of aerospace propulsion systems. This paper discusses the requirements, design, and implementation of an intelligent interface to Proteus, a general purpose, three-dimensional, Navier-Stokes flow solver. The interface is called PROTAIS to denote its introduction of artificial intelligence (AI) concepts to the Proteus code.

  7. A fast Poisson solver for unsteady incompressible Navier-Stokes equations on the half-staggered grid

    NASA Technical Reports Server (NTRS)

    Golub, G. H.; Huang, L. C.; Simon, H.; Tang, W. -P.

    1995-01-01

    In this paper, a fast Poisson solver for unsteady, incompressible Navier-Stokes equations with finite difference methods on the non-uniform, half-staggered grid is presented. To achieve this, new algorithms for diagonalizing a semi-definite pair are developed. Our fast solver can also be extended to the three dimensional case. The motivation and related issues in using this second kind of staggered grid are also discussed. Numerical testing has indicated the effectiveness of this algorithm.

  8. Convergence Acceleration of a Navier-Stokes Solver for Efficient Static Aeroelastic Computations

    NASA Technical Reports Server (NTRS)

    Obayashi, Shigeru; Guruswamy, Guru P.

    1995-01-01

    New capabilities have been developed for a Navier-Stokes solver to perform steady-state simulations more efficiently. The flow solver for solving the Navier-Stokes equations is based on a combination of the lower-upper factored symmetric Gauss-Seidel implicit method and the modified Harten-Lax-van Leer-Einfeldt upwind scheme. A numerically stable and efficient pseudo-time-marching method is also developed for computing steady flows over flexible wings. Results are demonstrated for transonic flows over rigid and flexible wings.

  9. BRAIN initiative: fast and parallel solver for real-time monitoring of the eddy current in the brain for TMS applications.

    PubMed

    Sabouni, Abas; Pouliot, Philippe; Shmuel, Amir; Lesage, Frederic

    2014-01-01

    This paper introduce a fast and efficient solver for simulating the induced (eddy) current distribution in the brain during transcranial magnetic stimulation procedure. This solver has been integrated with MRI and neuronavigation software to accurately model the electromagnetic field and show eddy current in the head almost in real-time. To examine the performance of the proposed technique, we used a 3D anatomically accurate MRI model of the 25 year old female subject.

  10. Racial-Ethnic Identity and Adjustment in Canadian Indigenous Adolescents

    ERIC Educational Resources Information Center

    Gfellner, Barbara M.; Armstrong, Helen D.

    2013-01-01

    This study supported associations between three theoretically driven conceptualizations of racial and ethnic identity (REI; Multigroup Ethnic Identity Measure; Multidimensional Racial Identity Measure; Bicultural Identity Measure) and with adaptive functioning among Canadian indigenous adolescents in middle school to high school. Age differences…

  11. The Multigroup Multilevel Categorical Latent Growth Curve Models

    ERIC Educational Resources Information Center

    Hung, Lai-Fa

    2010-01-01

    Longitudinal data describe developmental patterns and enable predictions of individual changes beyond sampled time points. Major methodological issues in longitudinal data include modeling random effects, subject effects, growth curve parameters, and autoregressive residuals. This study embedded the longitudinal model within a multigroup…

  12. The Computer Bulletin Board.

    ERIC Educational Resources Information Center

    Batt, Russell H., Ed.

    1990-01-01

    Described is how spreadsheet and problem solver microcomputer programs may assist students in performing mathematical calculations. Discussed is the application of the equation solver "MathCAD" to various areas in the undergraduate curriculum. (KR)

  13. AQUASOL: An efficient solver for the dipolar Poisson–Boltzmann–Langevin equation

    PubMed Central

    Koehl, Patrice; Delarue, Marc

    2010-01-01

    The Poisson–Boltzmann (PB) formalism is among the most popular approaches to modeling the solvation of molecules. It assumes a continuum model for water, leading to a dielectric permittivity that only depends on position in space. In contrast, the dipolar Poisson–Boltzmann–Langevin (DPBL) formalism represents the solvent as a collection of orientable dipoles with nonuniform concentration; this leads to a nonlinear permittivity function that depends both on the position and on the local electric field at that position. The differences in the assumptions underlying these two models lead to significant differences in the equations they generate. The PB equation is a second order, elliptic, nonlinear partial differential equation (PDE). Its response coefficients correspond to the dielectric permittivity and are therefore constant within each subdomain of the system considered (i.e., inside and outside of the molecules considered). While the DPBL equation is also a second order, elliptic, nonlinear PDE, its response coefficients are nonlinear functions of the electrostatic potential. Many solvers have been developed for the PB equation; to our knowledge, none of these can be directly applied to the DPBL equation. The methods they use may adapt to the difference; their implementations however are PBE specific. We adapted the PBE solver originally developed by Holst and Saied [J. Comput. Chem. 16, 337 (1995)] to the problem of solving the DPBL equation. This solver uses a truncated Newton method with a multigrid preconditioner. Numerical evidences suggest that it converges for the DPBL equation and that the convergence is superlinear. It is found however to be slow and greedy in memory requirement for problems commonly encountered in computational biology and computational chemistry. To circumvent these problems, we propose two variants, a quasi-Newton solver based on a simplified, inexact Jacobian and an iterative self-consistent solver that is based directly on the PBE solver. While both methods are not guaranteed to converge, numerical evidences suggest that they do and that their convergence is also superlinear. Both variants are significantly faster than the solver based on the exact Jacobian, with a much smaller memory footprint. All three methods have been implemented in a new code named AQUASOL, which is freely available. PMID:20151727

  14. AQUASOL: An efficient solver for the dipolar Poisson-Boltzmann-Langevin equation.

    PubMed

    Koehl, Patrice; Delarue, Marc

    2010-02-14

    The Poisson-Boltzmann (PB) formalism is among the most popular approaches to modeling the solvation of molecules. It assumes a continuum model for water, leading to a dielectric permittivity that only depends on position in space. In contrast, the dipolar Poisson-Boltzmann-Langevin (DPBL) formalism represents the solvent as a collection of orientable dipoles with nonuniform concentration; this leads to a nonlinear permittivity function that depends both on the position and on the local electric field at that position. The differences in the assumptions underlying these two models lead to significant differences in the equations they generate. The PB equation is a second order, elliptic, nonlinear partial differential equation (PDE). Its response coefficients correspond to the dielectric permittivity and are therefore constant within each subdomain of the system considered (i.e., inside and outside of the molecules considered). While the DPBL equation is also a second order, elliptic, nonlinear PDE, its response coefficients are nonlinear functions of the electrostatic potential. Many solvers have been developed for the PB equation; to our knowledge, none of these can be directly applied to the DPBL equation. The methods they use may adapt to the difference; their implementations however are PBE specific. We adapted the PBE solver originally developed by Holst and Saied [J. Comput. Chem. 16, 337 (1995)] to the problem of solving the DPBL equation. This solver uses a truncated Newton method with a multigrid preconditioner. Numerical evidences suggest that it converges for the DPBL equation and that the convergence is superlinear. It is found however to be slow and greedy in memory requirement for problems commonly encountered in computational biology and computational chemistry. To circumvent these problems, we propose two variants, a quasi-Newton solver based on a simplified, inexact Jacobian and an iterative self-consistent solver that is based directly on the PBE solver. While both methods are not guaranteed to converge, numerical evidences suggest that they do and that their convergence is also superlinear. Both variants are significantly faster than the solver based on the exact Jacobian, with a much smaller memory footprint. All three methods have been implemented in a new code named AQUASOL, which is freely available.

  15. Numerical Capture of Wing-tip Vortex Using Vorticity Confinement

    NASA Astrophysics Data System (ADS)

    Zhang, Baili; Lou, Jing; Kang, Chang Wei; Wilson, Alexander; Lundberg, Johan; Bensow, Rickard

    2012-11-01

    Tracking vortices accurately over large distances is very important in many areas of engineering, for instance flow over rotating helicopter blades, ship propeller blades and aircraft wings. However, due to the inherent numerical dissipation in the advection step of flow simulation, current Euler and RANS field solvers tend to damp these vortices too fast. One possible solution to reduce the unphysical decay of these vortices is the application of vorticity confinement methods. In this study, a vorticity confinement term is added to the momentum conservation equations which is a function of the local element size, the vorticity and the gradient of the absolute value of vorticity. The approach has been evaluated by a systematic numerical study on the tip vortex trailing from a rectangular NACA0012 half-wing. The simulated structure and development of the wing-tip vortex agree well with experiments both qualitatively and quantitatively without any adverse effects on the global flow field. It is shown that vorticity confinement can negate the effect of numerical dissipation, leading to a more or less constant vortex strength. This is an approximate method in that genuine viscous diffusion of the vortex is not modeled, but it can be appropriate for vortex dominant flows over short to medium length scales where viscous diffusion can be neglected.

  16. Soft Wall Ion Channel in Continuum Representation with Application to Modeling Ion Currents in α-Hemolysin

    PubMed Central

    Simakov, Nikolay A.

    2010-01-01

    A soft repulsion (SR) model of short range interactions between mobile ions and protein atoms is introduced in the framework of continuum representation of the protein and solvent. The Poisson-Nernst-Plank (PNP) theory of ion transport through biological channels is modified to incorporate this soft wall protein model. Two sets of SR parameters are introduced: the first is parameterized for all essential amino acid residues using all atom molecular dynamic simulations; the second is a truncated Lennard – Jones potential. We have further designed an energy based algorithm for the determination of the ion accessible volume, which is appropriate for a particular system discretization. The effects of these models of short-range interaction were tested by computing current-voltage characteristics of the α-hemolysin channel. The introduced SR potentials significantly improve prediction of channel selectivity. In addition, we studied the effect of choice of some space-dependent diffusion coefficient distributions on the predicted current-voltage properties. We conclude that the diffusion coefficient distributions largely affect total currents and have little effect on rectifications, selectivity or reversal potential. The PNP-SR algorithm is implemented in a new efficient parallel Poisson, Poisson-Boltzman and PNP equation solver, also incorporated in a graphical molecular modeling package HARLEM. PMID:21028776

  17. High-Order Hyperbolic Residual-Distribution Schemes on Arbitrary Triangular Grids

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza; Nishikawa, Hiroaki

    2015-01-01

    In this paper, we construct high-order hyperbolic residual-distribution schemes for general advection-diffusion problems on arbitrary triangular grids. We demonstrate that the second-order accuracy of the hyperbolic schemes can be greatly improved by requiring the scheme to preserve exact quadratic solutions. We also show that the improved second-order scheme can be easily extended to third-order by further requiring the exactness for cubic solutions. We construct these schemes based on the LDA and the SUPG methodology formulated in the framework of the residual-distribution method. For both second- and third-order-schemes, we construct a fully implicit solver by the exact residual Jacobian of the second-order scheme, and demonstrate rapid convergence of 10-15 iterations to reduce the residuals by 10 orders of magnitude. We demonstrate also that these schemes can be constructed based on a separate treatment of the advective and diffusive terms, which paves the way for the construction of hyperbolic residual-distribution schemes for the compressible Navier-Stokes equations. Numerical results show that these schemes produce exceptionally accurate and smooth solution gradients on highly skewed and anisotropic triangular grids, including curved boundary problems, using linear elements. We also present Fourier analysis performed on the constructed linear system and show that an under-relaxation parameter is needed for stabilization of Gauss-Seidel relaxation.

  18. A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the Electrical Impedance and Diffuse Optical Reconstruction Software project

    NASA Astrophysics Data System (ADS)

    Polydorides, Nick; Lionheart, William R. B.

    2002-12-01

    The objective of the Electrical Impedance and Diffuse Optical Reconstruction Software project is to develop freely available software that can be used to reconstruct electrical or optical material properties from boundary measurements. Nonlinear and ill posed problems such as electrical impedance and optical tomography are typically approached using a finite element model for the forward calculations and a regularized nonlinear solver for obtaining a unique and stable inverse solution. Most of the commercially available finite element programs are unsuitable for solving these problems because of their conventional inefficient way of calculating the Jacobian, and their lack of accurate electrode modelling. A complete package for the two-dimensional EIT problem was officially released by Vauhkonen et al at the second half of 2000. However most industrial and medical electrical imaging problems are fundamentally three-dimensional. To assist the development we have developed and released a free toolkit of Matlab routines which can be employed to solve the forward and inverse EIT problems in three dimensions based on the complete electrode model along with some basic visualization utilities, in the hope that it will stimulate further development. We also include a derivation of the formula for the Jacobian (or sensitivity) matrix based on the complete electrode model.

  19. Study of potential aerodynamic benefits from spanwise blowing at wingtip. Ph.D. Thesis - George Washington Univ., 1992

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.

    1995-01-01

    Comprehensive experimental and analytical studies have been conducted to assess the potential aerodynamic benefits from spanwise blowing at the tip of a moderate-aspect-ratio swept wing. Previous studies on low-aspect-ratio wings indicated that blowing from the wingtip can diffuse the tip vortex and displace it outward. The diffused and displaced vortex will induce a smaller downwash at the wing, and consequently the wing will have increased lift and decreased induced drag at a given angle of attack. Results from the present investigation indicated that blowing from jets with a short chord had little effect on lift or drag, but blowing from jets with a longer chord increased lift near the tip and reduced drag at low Mach numbers. A Navier-Stokes solver with modified boundary conditions at the tip was used to extrapolate the results to a Mach number of 0.72. Calculations indicated that lift and drag increase with increasing jet momentum coefficient. Because the momentum of the jet is typically greater than the reduction in the wing drag and the increase in the wing lift due to spanwise blowing is small, spanwise blowing at the wingtip does not appear to be a practical means of improving the aerodynamic efficiency of moderate-aspectratio swept wings at high subsonic Mach numbers.

  20. "Reliability generalization of the Multigroup Ethnic Identity Measure-Revised (MEIM-R)": Correction to Herrington et al. (2016).

    PubMed

    2016-10-01

    Reports an error in "Reliability Generalization of the Multigroup Ethnic Identity Measure-Revised (MEIM-R)" by Hayley M. Herrington, Timothy B. Smith, Erika Feinauer and Derek Griner ( Journal of Counseling Psychology , Advanced Online Publication, Mar 17, 2016, np). The name of author Erika Feinauer was misspelled as Erika Feinhauer. All versions of this article have been corrected. (The following abstract of the original article appeared in record 2016-13160-001.) Individuals' strength of ethnic identity has been linked with multiple positive indicators, including academic achievement and overall psychological well-being. The measure researchers use most often to assess ethnic identity, the Multigroup Ethnic Identity Measure (MEIM), underwent substantial revision in 2007. To inform scholars investigating ethnic identity, we performed a reliability generalization analysis on data from the revised version (MEIM-R) and compared it with data from the original MEIM. Random-effects weighted models evaluated internal consistency coefficients (Cronbach's alpha). Reliability coefficients for the MEIM-R averaged α = .88 across 37 samples, a statistically significant increase over the average of α = .84 for the MEIM across 75 studies. Reliability coefficients for the MEIM-R did not differ across study and participant characteristics such as sample gender and ethnic composition. However, consistently lower reliability coefficients averaging α = .81 were found among participants with low levels of education, suggesting that greater attention to data reliability is warranted when evaluating the ethnic identity of individuals such as middle-school students. Future research will be needed to ascertain whether data with other measures of aspects of personal identity (e.g., racial identity, gender identity) also differ as a function of participant level of education and associated cognitive or maturation processes. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

Top