Sample records for multijunction modules nrel

  1. The reliability and stability of multijunction amorphous silicon PV modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, D.E.

    1995-11-01

    Solarex is developing a manufacturing process for the commercial production of 8 ft{sup 2} multijunction amorphous silicon (a-Si) PV modules starting in 1996. The device structure used in these multijunction modules is: glass/textured tin oxide/p-i-n/p-i-n/ZnO/Al/EVA/Tedlar where the back junction of the tandem structure contains an amorphous silicon germanium alloy. As an interim step, 4 ft{sup 2} multijunction modules have been fabricated in a pilot production mode over the last several months. The distribution of initial conversion efficiencies for an engineering run of 67 modules (4 ft{sup 2}) is shown. Measurements recently performed at NREL indicate that the actual efficiencies aremore » about 5% higher than those shown, and thus exhibit an average initial conversion efficiency of about 9.5%. The data indicates that the process is relatively robust since there were no modules with initial efficiencies less than 7.5%.« less

  2. NREL Inks Technology Agreement for High Efficiency Multijunction Solar

    Science.gov Websites

    ) multijunction solar cells. While high-efficiency multijunction solar cells are commonly used for space Devices is excited to now be commercializing IMM solar cells for high-performance space and UAV Cells | News | NREL Inks Technology Agreement for High Efficiency Multijunction Solar Cells

  3. Computational Modeling | Photovoltaic Research | NREL

    Science.gov Websites

    performance of single- and multijunction cells and modules. We anticipate the upcoming completion of our next software package for a simplified electronic design of single- and multicrystalline silicon solar cells

  4. Device Performance Capabilities | Photovoltaic Research | NREL

    Science.gov Websites

    multijunction cells and modules. We use I-V measurement systems to assess the main performance parameters for PV cells and modules. I-V measurement systems determine the output performance of devices, including: open the device (η). Some I-V systems may also be used to perform dark I-V measurements to determine diode

  5. High-Concentration III-V Multijunction Solar Cells | Photovoltaic Research

    Science.gov Websites

    | NREL High-Concentration III-V Multijunction Solar Cells High-Concentration III-V transfer to the high-efficiency cell industry, and the invention and development of the inverted metamorphic multijunction (IMM) cell technology. PV Research Other Materials & Devices pages: High

  6. NREL: News - Scientific American' Recognizes Solar Cell Research

    Science.gov Websites

    Scientific American' Recognizes Solar Cell Research Monday November 11, 2002 Magazine Names NREL to . NREL's research into multi-junction solar cells for more than a decade has led the way to ever more photovoltaic research can be found at www.nrel.gov/ncpv/. Selected by the magazine's Board of Editors, the

  7. Sarah Kurtz | NREL

    Science.gov Websites

    next stage of growth for the PV industry. Participated in the demonstration of the GaInP/GaAs solar photovoltaics (PV), concentrator PV, and PV reliability. Kurtz and NREL colleague Jerry Olson championed the early use of multi-junction solar cells by showing that a top cell of gallium indium phosphide (GaInP

  8. Electrodeposition of Metal Matrix Composites and Materials Characterization for Thin-Film Solar Cells

    DTIC Science & Technology

    2017-12-04

    34High-Concentration III-V Multijunction Solar Cells," 2017, <http://www.nrel.gov/ pv /high-concentration-iii-v-multijunction- solar - cells.html>. O. K...AFRL-RV-PS- AFRL-RV-PS- TR-2017-0174 TR-2017-0174 ELECTRODEPOSITION OF METAL MATRIX COMPOSITES AND MATERIALS CHARACTERIZATION FOR THIN-FILM SOLAR ...0242 Electrodeposition of Metal Matrix Composites and Materials Characterization for Thin-Film Solar Cells 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  9. Improving Translation Models for Predicting the Energy Yield of Photovoltaic Power Systems. Cooperative Research and Development Final Report, CRADA Number CRD-13-526

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emery, Keith

    2015-08-04

    The project under this CRADA will analyze field data of various flat-plate and concentrator module technologies and cell measurements at the laboratory level. The field data will consist of current versus voltage data collected over many years on a latitude tilt test bed for Si, CdTe, amorphous silicon, and CIGS technologies. The concentrator data will be for mirror- and lens-based module designs using multijunction cells. The laboratory data will come from new measurements of cell performance with systematic variation of irradiance, temperature and spectral composition. These measurements will be labor-intensive and the aim will be to cover the widest possiblemore » parameter space for as many different PV samples as possible. The data analysis will require software tools to be developed. These tools will be customized for use with the specific NREL datasets and will be unsuitable for commercial release. The tools will be used to evaluate different translation equations against NREL outdoor datasets.« less

  10. NREL, Swiss Scientists Power Past Solar Efficiency Records | NREL | News |

    Science.gov Websites

    of these multijunction silicon-based solar cells, at least in the near term, is the cost. Assuming 30 % efficiency, the researchers estimated the GaInP-based cell would cost $4.85 per watt and the GaAs-based cell would cost $7.15 per watt. But as manufacturing ramps up and the efficiencies of these types of cells

  11. New Multijunction Design Leads to Ultra-Efficient Solar Cell; Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-09-01

    NREL has demonstrated a 45.7% conversion efficiency for a four-junction solar cell at 234 suns concentration. This achievement represents one of the highest photovoltaic research cell efficiencies ever achieved across all types of solar cells. NREL's new solar cell, which is designed for operation in a concentrator photovoltaic (CPV) system where it can receive more than 1,000 suns of concentrated sunlight, greatly improves earlier designs by adding an additional high quality absorber layer to achieve an ultra-high efficiency.

  12. NREL/Boeing Spectrolab Team Wins Research and Development Award | News |

    Science.gov Websites

    approach represents a powerful new technology for designing super-efficient multi-junction solar cells. The results in superior electrical performance. But, with the HEMM approach, the atoms are unevenly spaced

  13. Research Fellows | NREL

    Science.gov Websites

    years and has contributed greatly to world-record efficiencies in various photovoltaic technologies is a world-renowned expert in the fields of multijunction PV, concentrator PV, and PV reliability Publications Photo of Mark O'Malley Mark O'Malley SENIOR RESEARCH FELLOW Mark O'Malley is a world authority on

  14. The effect of different module configurations on the radiation tolerance of multijunction solar cells

    NASA Technical Reports Server (NTRS)

    Gee, James M.; Curtis, Henry B.

    1988-01-01

    The effect of different module configurations on the performance of multijunction (MJ) solar cells in a radiation environment was investigated. Module configuration refers to the electrical circuit in which the subcells of the multijunction cell are wired. Experimental data for AlCaAs, GaAs, InGaAs, and silicon single-junction concentrator cells subjected to 1 MeV electron irradiation was used to calculate the expected performance of AlGaAs/InGaAs, AlGa/silicon, GaAs/InGaAs, and GaAs/silicon Mj concentrator cells. These calculations included independent, series, and voltage-matched configurations. The module configuration was found to have a significant impact on the radiation tolerance characteristic of the MJ cells.

  15. High efficiency solar cells for concentrator systems: silicon or multi-junction?

    NASA Astrophysics Data System (ADS)

    Slade, Alexander; Stone, Kenneth W.; Gordon, Robert; Garboushian, Vahan

    2005-08-01

    Amonix has become the first company to begin production of high concentration silicon solar cells where volumes are over 10 MW/year. Higher volumes are available due to the method of manufacture; Amonix solely uses semiconductor foundries for solar cell production. In the previous years of system and cell field testing, this method of manufacturing enabled Amonix to maintain a very low overhead while incurring a high cost for the solar cell. However, recent simplifications to the solar cell processing sequence resulted in cost reduction and increased yield. This new process has been tested by producing small qualities in very short time periods, enabling a simulation of high volume production. Results have included over 90% wafer yield, up to 100% die yield and world record performance (η =27.3%). This reduction in silicon solar cell cost has increased the required efficiency for multi-junction concentrator solar cells to be competitive / advantageous. Concentrator systems are emerging as a low-cost, high volume option for solar-generated electricity due to the very high utilization of the solar cell, leading to a much lower $/Watt cost of a photovoltaic system. Parallel to this is the onset of alternative solar cell technologies, such as the very high efficiency multi-junction solar cells developed at NREL over the last two decades. The relatively high cost of these type of solar cells has relegated their use to non-terrestrial applications. However, recent advancements in both multi-junction concentrator cell efficiency and their stability under high flux densities has made their large-scale terrestrial deployment significantly more viable. This paper presents Amonix's experience and testing results of both high-efficiency silicon rear-junction solar cells and multi-junction solar cells made for concentrated light operation.

  16. Multijunction high-voltage solar cell

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Goradia, C.; Chai, A. T.

    1981-01-01

    Multijunction cell allows for fabrication of high-voltage solar cell on single semiconductor wafer. Photovoltaic energy source using cell is combined on wafer with circuit it is to power. Cell consists of many voltage-generating regions internally or externally interconnected to give desired voltage and current combination. For computer applications, module is built on silicon wafer with energy for internal information processing and readouts derived from external light source.

  17. NREL Adds Solar Array Field to Help Inform Consumers | NREL

    Science.gov Websites

    PV modules at NREL's new solar array field. Workers install PV modules just north of the NREL parking be Added Each Year Once completed, the new solar array field will house four rows of PV modules. The the lifetime of a PV system, and that increases the per-kilowatt-hour cost of generating solar

  18. High Power Orbit Transfer Vehicle

    DTIC Science & Technology

    2003-07-01

    multijunction device is a stack of individual single-junction cells in descending order of band gap. The top cell captures the high-energy photons and passes...the rest of the photons on to be absorbed by lower-band-gap cells. Multijunction devices achieve a higher total conversion efficiency because they...minimum temperatures on the thruster modules and main bus. In the MATLAB code for these calculations, maximum and minimum temperatures are plotted

  19. 30% CPV Module Milestone

    NASA Astrophysics Data System (ADS)

    Gordon, Robert; Kinsey, Geoff; Nayaak, Adi; Garboushian, Vahan

    2010-10-01

    Concentrating Photovoltaics has held out the promise of low cost solar electricity for now several decades. Steady progress towards this goal in the 80's and 90's gradually produced more efficient and reliable systems. System efficiency is regarded as the largest factor in lowering the electricity cost and the relatively recent advent of the terrestrial multi-junction solar cell has pressed this race forward dramatically. CPV systems are now exhibiting impressive AC field efficiencies of 25% and more, approximately twice that of the best flat plate systems available today. Amonix inc. has just tested their latest generation multi-junction module design, achieving over 31% DC efficiency at near PVUSA test conditions. Inculcating this design into their next MegaModule is forthcoming, but the expected AC system field efficiency should be significantly higher than current 25% levels.

  20. Enhanced Contacts for Inverted Metamorphic Multi-Junction Solar Cells Using Carbon Nanotube Metal Matrix Composites

    DTIC Science & Technology

    2018-01-18

    to a variety solar energy markets. For instance, micro-cracks have been shown to cause decreased power output in single- and multi-crystalline Si PV ...fingers in silicon wafer solar cells and PV modules," Solar Energy Materials and Solar Cells, vol. 108, pp. 78-81, 1// 2013. [4] T. H. Reijenga and H...AFRL-RV-PS- AFRL-RV-PS- TR-2017-0125 TR-2017-0125 ENHANCED CONTACTS FOR INVERTED METAMORPHIC MULTI-JUNCTION SOLAR CELLS USING CARBON NANOTUBE METAL

  1. Solar concentrator modules with silicone-onglass Fresnel lens panels and multijunction cells.

    PubMed

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.

  2. 2015 NREL Photovoltaic Reliability Workshops | Photovoltaic Research | NREL

    Science.gov Websites

    5 NREL Photovoltaic Reliability Workshops 2015 NREL Photovoltaic Reliability Workshops The 2015 NREL Photovoltaic Reliability Workshop was held February 24-27, 2015, in Golden, Colorado. This event be available for download as soon as possible. The Photovoltaic Module Reliability Workshop is

  3. NREL Research Team Wins R&D 100 Award | News | NREL

    Science.gov Websites

    performance PV modules for large-scale solar power plants, commercial and residential buildings, and off-grid Laboratory (NREL) and First Solar have been selected to receive a 2003 R&D 100 award from R&D Magazine for developing a new process for depositing semiconductor layers onto photovoltaic (PV) modules

  4. Kent Terwilliger | NREL

    Science.gov Websites

    Science Kent.Terwilliger@nrel.gov | 303-384-6254 Research Interests Environmental Testing of PV Modules Maintenance and operation of environmental testing; tracking of module testing. Troubleshooting and repairing

  5. Mike Kempe | NREL

    Science.gov Websites

    cells and modules. His work concerns primarily modeling and measuring moisture ingress into PV modules and studying the effect of moisture on polymer adhesion, device performance, and component corrosion Photovoltaic Modules." Solar Energy Materials and Solar Cells, 90: 2720-2738. View all NREL publications

  6. Solar concentrator modules with silicone-on-glass Fresnel lens panels and multijunction cells.

    PubMed

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.

  7. 2016 NREL Photovoltaic Module Reliability Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Sarah

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology - both critical goals for moving PV technologies deeper into the electricity marketplace.

  8. 2015 NREL Photovoltaic Module Reliability Workshops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Sarah

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  9. Wafer integrated micro-scale concentrating photovoltaics

    NASA Astrophysics Data System (ADS)

    Gu, Tian; Li, Duanhui; Li, Lan; Jared, Bradley; Keeler, Gordon; Miller, Bill; Sweatt, William; Paap, Scott; Saavedra, Michael; Das, Ujjwal; Hegedus, Steve; Tauke-Pedretti, Anna; Hu, Juejun

    2017-09-01

    Recent development of a novel micro-scale PV/CPV technology is presented. The Wafer Integrated Micro-scale PV approach (WPV) seamlessly integrates multijunction micro-cells with a multi-functional silicon platform that provides optical micro-concentration, hybrid photovoltaic, and mechanical micro-assembly. The wafer-embedded micro-concentrating elements is shown to considerably improve the concentration-acceptance-angle product, potentially leading to dramatically reduced module materials and fabrication costs, sufficient angular tolerance for low-cost trackers, and an ultra-compact optical architecture, which makes the WPV module compatible with commercial flat panel infrastructures. The PV/CPV hybrid architecture further allows the collection of both direct and diffuse sunlight, thus extending the geographic and market domains for cost-effective PV system deployment. The WPV approach can potentially benefits from both the high performance of multijunction cells and the low cost of flat plate Si PV systems.

  10. NREL module energy rating methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitaker, C.; Newmiller, J.; Kroposki, B.

    1995-11-01

    The goals of this project were to develop a tool for: evaluating one module in different climates; comparing different modules; provide a Q&D method for estimating periodic energy production; provide an achievable module rating; provide an incentive for manufacturers to optimize modules to non-STC conditions; and to have a consensus-based, NREL-sponsored activity. The approach taken was to simulate module energy for five reference days of various weather conditions. A performance model was developed.

  11. Supply Constraints Analysis | Energy Analysis | NREL

    Science.gov Websites

    module cost, and future price could be critical to the economic viability of this PV technology. Even constraints on future CdTe PV module deployment and found that: CdTe PV modules can remain cost-competitive and 4070 GW of annual CdTe production by 2030. Cost estimates were based on NREL's manufacturing cost

  12. NREL Report Shows Utility-Scale Solar PV System Cost Fell Nearly 30% Last

    Science.gov Websites

    Year | NREL | News | NREL Report Shows Utility-Scale Solar PV System Cost Fell Nearly 30% Last Year News Release: NREL Report Shows Utility-Scale Solar PV System Cost Fell Nearly 30% Last Year September 12, 2017 Record-low costs enabled by decline in module and inverter prices The installed cost of

  13. Component Cell-Based Restriction of Spectral Conditions and the Impact on CPV Module Power Rating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, Matthew T; Steiner, Marc; Siefer, Gerald

    One approach to consider the prevailing spectral conditions when performing CPV module power ratings according to the standard IEC 62670-3 is based on spectral matching ratios (SMRs) determined by the means of component cell sensors. In this work, an uncertainty analysis of the SMR approach is performed based on a dataset of spectral irradiances created with SMARTS2. Using these illumination spectra, the respective efficiencies of multijunction solar cells with different cell architectures are calculated. These efficiencies were used to analyze the influence of different component cell sensors and SMR filtering methods. The 3 main findings of this work are asmore » follows. First, component cells based on the lattice-matched triple-junction (LM3J) cell are suitable for restricting spectral conditions and are qualified for the standardized power rating of CPV modules - even if the CPV module is using multijunction cells other than LM3J. Second, a filtering of all 3 SMRs with +/-3.0% of unity results in the worst case scenario in an underestimation of -1.7% and overestimation of +2.4% compared to AM1.5d efficiency. Third, there is no benefit in matching the component cells to the module cell in respect to the measurement uncertainty.« less

  14. Timothy Silverman | NREL

    Science.gov Websites

    physical phenomena, PV package reliability, and outdoor PV performance. At NREL, he performs research in advanced concept PV modules. Dr. Silverman studies the performance and reliability of PV modules, including previously studied the degradation of solder joints in high-concentration PV and the outdoor performance of

  15. Rural Energy Options Analysis Training Development and Implementation at NREL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilman, P.

    2005-01-01

    NREL has developed a rural energy options analysis training program for rural energy decision makers that provides knowledge, skills and tools for the evaluation of technologies, including renewables, for rural energy applications. Through the Department of Energy (DOE) Solar Energy Technologies Program (SETP), NREL has refined materials for the program and developed a module that offers hands-on training in the preparation of data for options analysis using HOMER, NREL's micropower optimization model. NREL has used the materials for training in Brazil, the Maldives, Mexico, and Sri Lanka.

  16. Hybrid photovoltaic and thermoelectric module for high concentration solar system

    NASA Astrophysics Data System (ADS)

    Tamaki, Ryo; Toyoda, Takeshi; Tamura, Yoichi; Matoba, Akinari; Minamikawa, Toshiharu; Tokuda, Masayuki; Masui, Megumi; Okada, Yoshitaka

    2017-09-01

    A photovoltaic (PV) and thermoelectric (TE) hybrid module was developed for application to high concentration solar systems. The waste heat from the solar cells under concentrated light illumination was utilized to generate additional electricity by assembling TE devices below the multi-junction solar cells (MJSCs). Considering the high operating temperature of the PV and TE hybrid module compared with conventional concentrator PV modules, the TE device could compensate a part of the MJSC efficiency degradation at high temperature. The performance investigation clarified the feasibility of the hybrid PV and TE module under highly concentrated sunlight illumination.

  17. Spectrum sensitivity, energy yield, and revenue prediction of PV and CPV modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinsey, Geoffrey S., E-mail: Geoffrey.kinsey@ee.doe.gov

    2015-09-28

    Impact on module performance of spectral irradiance variation has been determined for III-V multijunctions compared against the four most common flat-plate module types (cadmium telluride, multicrystalline silicon, copper indium gallium selenide, and monocrystalline silicon. Hour-by-hour representative spectra were generated using atmospheric variables for Albuquerque, New Mexico, USA. Convolution with published values for external quantum efficiency gave the predicted current output. When combined with specifications of commercial PV modules, energy yield and revenue were predicted. This approach provides a means for optimizing PV module design based on various site-specific temporal variables.

  18. Spectrum sensitivity, energy yield, and revenue prediction of PV and CPV modules

    NASA Astrophysics Data System (ADS)

    Kinsey, Geoffrey S.

    2015-09-01

    Impact on module performance of spectral irradiance variation has been determined for III-V multijunctions compared against the four most common flat-plate module types (cadmium telluride, multicrystalline silicon, copper indium gallium selenide, and monocrystalline silicon. Hour-by-hour representative spectra were generated using atmospheric variables for Albuquerque, New Mexico, USA. Convolution with published values for external quantum efficiency gave the predicted current output. When combined with specifications of commercial PV modules, energy yield and revenue were predicted. This approach provides a means for optimizing PV module design based on various site-specific temporal variables.

  19. Steve Rummel | NREL

    Science.gov Websites

    Module Intercomparison," Proc. Solar Energies Technologies Review Meeting Nov. 7-10, 2005, NREL tech . Rummel, D.R. Myers, T.L. Stoffel, and D. Waddington, "A Comparison of Photovoltaic Calibration

  20. Bill Sekulic | NREL

    Science.gov Websites

    ;Back-of-Module Temperature Measurement Methods." Solar Pro, 4.6, Nov/Dec 2014; NREL/JA-5200-52213 -temperature-measurement-methods. Sekulic, B. 2004. DC Current Transducer Environmental Drift Test (Technical

  1. Equipment Loan for Concentrated PV Cavity Converter (PVCC) Research: Cooperative Research and Development Final Report, CRADA Number CRD-08-285

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Netter, Judy

    2015-07-28

    Interest in High Concentration Photovoltaics (HCPV) for terrestrial applications has significantly grown in recent years. A major driver behind this growth trend is the availability of high efficiency multi-junction (MJ) cells that promise reliable operation under high concentrations (500 to 1000 suns). The primary impact of HCPV on the solar electricity cost is the dramatic reduction in cell cost. For terrestrial HCPV systems, operating at concentrations ≥ 500 suns, the expensive MJ cells are marginally affordable. Most recently, triple-junction test cells have achieved a conversion efficiency of over 40% under concentrated sunlight. Photovoltaic Cavity Converter (PVCC) is a multi-bandgap, highmore » concentration PV device developed by United Innovations, Inc., under subcontract to NREL. The lateral- (2- dimensional) structure of PVCC, as opposed to vertical multi-junction (MJ) structure, helps to circumvent most of the developmental challenges MJ technology has yet to overcome. This CRADA will allow the continued development of this technology by United Innovations. This project was funded by the California Energy Commission and is the second phase of a twopart demonstration program. The key advantage of the design was the use of a PVCC as the receiver. PVCCs efficiently process highly concentrated solar radiation into electricity by recycling photons that are reflected from the surface of the cells. Conventional flat, twodimensional receivers cannot recycle photons and the reflected photons are lost to the conversion process.« less

  2. NREL to Host Ninth Annual PV Reliability Workshop | News | NREL

    Science.gov Websites

    share research leading to more durable and reliable PV modules, thus reducing the cost of solar to Host Ninth Annual PV Reliability Workshop NREL to Host Ninth Annual PV Reliability Workshop their results during a poster session at the 2017 PV Reliability Workshop. 4 people consult two

  3. Solar cell system having alternating current output

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr. (Inventor)

    1980-01-01

    A monolithic multijunction solar cell was modified by fabricating an integrated circuit inverter on the back of the cell to produce a device capable of generating an alternating current output. In another embodiment, integrated curcuit power conditioning electronics was incorporated in a module containing a solar cell power supply.

  4. NREL Report Shows U.S. Solar Photovoltaic Costs Continuing to Fall in 2016

    Science.gov Websites

    chart of solar pv costs from q4 2009 to q1 2016 NREL U.S. PV system cost benchmarks, from the fourth (NREL). Driving the cost reductions were lower module and inverter prices, increased competition, lower ;The continuing total cost decline of solar PV systems demonstrates the sustained economic

  5. Module 1: Text Versions | State, Local, and Tribal Governments | NREL

    Science.gov Websites

    bonus module is on using solar PV for resilience. And, as Jenny and Harrison both mentioned, if you do working definition. To simply resilience and to incorporate solutions like on-site solar PV, NREL has into solar PV projects. Energy resilience can only be achieved by understanding energy needs and

  6. Progress in amorphous silicon based large-area multijunction modules

    NASA Astrophysics Data System (ADS)

    Carlson, D. E.; Arya, R. R.; Bennett, M.; Chen, L.-F.; Jansen, K.; Li, Y.-M.; Maley, N.; Morris, J.; Newton, J.; Oswald, R. S.; Rajan, K.; Vezzetti, D.; Willing, F.; Yang, L.

    1996-01-01

    Solarex, a business unit of Amoco/Enron Solar, is scaling up its a-Si:H/a-SiGe:H tandem device technology for the production of 8 ft2 modules. The current R&D effort is focused on improving the performance, reliability and cost-effectiveness of the tandem junction technology by systematically optimizing the materials and interfaces in small-area single- and tandem junction cells. Average initial conversion efficiencies of 8.8% at 85% yield have been obtained in pilot production runs with 4 ft2 tandem modules.

  7. 2014 NREL Photovoltaic Reliability Workshops | Photovoltaic Research | NREL

    Science.gov Websites

    Curves and Visual Inspection of PV Modules Deployed at TEP Solar Test Yard-Peter McNutt, NREL Data Determining PV System's Degradation Rate and the Impact of Data Filters-Wilson Zexu Zhang, REC Solar Pte. Ltd " Test in Qualifying Solar PV Inverters-Dutch Uselton, Lennox IND System Reliability for Utility PV

  8. NREL/industry interaction: Amorphous silicon alloy research team formation

    NASA Astrophysics Data System (ADS)

    Luft, Werner

    1994-06-01

    The low material cost and proven manufacturability of amorphous silicon (a-Si) alloy photovoltaic technology make it ideally suited for large-scale terrestrial applications. The present efficiency of a-Si alloy modules is, however, much lower than the 15% stable efficiency that would lead to significant penetration of the electric utility bulk-power market. The slow progress in achieving high stabilized a-Si alloy module efficiencies may in part be attributed to the fact that only in the last few years did we emphasize stable efficiencies. A mission-focused integrated effort among the a-Si PV industry, universities, and the National Renewable Energy Laboratory (NREL) would help. To foster research integration, NREL has established four research teams with significant industry participation. In the 11 months since the research team formation, a close interaction among the a-Si PV industry, universities, and NREL has been achieved and has resulted in mission-directed research.

  9. NREL/industry interaction: Amorphous silicon alloy research team formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luft, W.

    1994-06-30

    The low material cost and proven manufacturability of amorphous silicon (a-Si) alloy photovoltaic technology make it ideally suited for large-scale terrestrial applications. The present efficiency of a-Si alloy modules is, however, much lower than the 15% stable efficiency that would lead to [ital significant] penetration of the electric utility bulk-power market. The slow progress in achieving high stabilized a-Si alloy module efficiencies may in part be attributed to the fact that only in the last few years did we emphasize stable efficiencies. A mission-focused integrated effort among the a-Si PV industry, universities, and the National Renewable Energy Laboratory (NREL) wouldmore » help. To foster research integration, NREL has established four research teams with significant industry participation. In the 11 months since the research team formation, a close interaction among the a-Si PV industry, universities, and NREL has been achieved and has resulted in mission-directed research.« less

  10. Multi-crystalline II-VI based multijunction solar cells and modules

    DOEpatents

    Hardin, Brian E.; Connor, Stephen T.; Groves, James R.; Peters, Craig H.

    2015-06-30

    Multi-crystalline group II-VI solar cells and methods for fabrication of same are disclosed herein. A multi-crystalline group II-VI solar cell includes a first photovoltaic sub-cell comprising silicon, a tunnel junction, and a multi-crystalline second photovoltaic sub-cell. A plurality of the multi-crystalline group II-VI solar cells can be interconnected to form low cost, high throughput flat panel, low light concentration, and/or medium light concentration photovoltaic modules or devices.

  11. NREL's Sarah Kurtz Wins Prestigious Cherry Award from IEEE | News | NREL

    Science.gov Websites

    out, are quite challenging experiments to design. "To win the Cherry Award is a deep honor," Quality Assurance Task Force to develop comparative test standards for PV modules. She is recognized

  12. Golden Rays - July 2016 | Solar Research | NREL

    Science.gov Websites

    . See the video or read the NREL news release. Must Reads Side-by-Side Comparison of CPV Module and installations across the country, and the next million systems are expected to be installed during the next 2

  13. Analysis of a Single Year of Performance Data for Thin Film Modules Deployed at NREL and NISE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacAlpine, Sara; Deceglie, Michael; Kurtz, Sarah

    2016-08-01

    The National Renewable Energy Laboratory (NREL) and National Institute of Solar Energy (NISE), located in the United States and India, respectively, have partnered to deploy and monitor modules of three different thin film technologies, to compare the performance and/or degradation between the two sites. This report analyzes a single year of performance data (May 2014 -- May 2015) for the three thin film technologies, exploring the modules' performance under standard test conditions and monthly performance ratios, as well as fill factors varying season, light level, and temperature.

  14. Chris Deline | NREL

    Science.gov Websites

    ., Meydbray, J., Donovan, M., and Forrest, J. 2014. Photovoltaic Shading Testbed for Module-Level Power Renewable Energy Laboratory (NREL) in Golden, Colorado, in the photovoltaic (PV) performance and reliability performance and stabilization, mismatch and partial shading in PV systems, and distributed power electronics

  15. 2017 NREL Photovoltaic Reliability Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Sarah

    NREL's Photovoltaic (PV) Reliability Workshop (PVRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology -- both critical goals for moving PV technologies deeper into the electricity marketplace.

  16. Innovative architecture design for high performance organic and hybrid multi-junction solar cells

    NASA Astrophysics Data System (ADS)

    Li, Ning; Spyropoulos, George D.; Brabec, Christoph J.

    2017-08-01

    The multi-junction concept is especially attractive for the photovoltaic (PV) research community owing to its potential to overcome the Schockley-Queisser limit of single-junction solar cells. Tremendous research interests are now focused on the development of high-performance absorbers and novel device architectures for emerging PV technologies, such as organic and perovskite PVs. It has been predicted that the multi-junction concept is able to boost the organic and perovskite PV technologies approaching the 20% and 30% benchmarks, respectively, showing a bright future of commercialization of the emerging PV technologies. In this contribution, we will demonstrate innovative architecture design for solution-processed, highly functional organic and hybrid multi-junction solar cells. A simple but elegant approach to fabricating organic and hybrid multi-junction solar cells will be introduced. By laminating single organic/hybrid solar cells together through an intermediate layer, the manufacturing cost and complexity of large-scale multi-junction solar cells can be significantly reduced. This smart approach to balancing the photocurrents as well as open circuit voltages in multi-junction solar cells will be demonstrated and discussed in detail.

  17. New NREL Method Reduces Uncertainty in Photovoltaic Module Calibrations |

    Science.gov Websites

    calibration traceability to certified test laboratories. This reliable calibration, in turn, determines the of a spire flash simulator, SOMS outdoor test bed, and LACSS continuous simulator. In NREL's Cell and % (k=2 coverage factor). This value is the lowest reported Pmax uncertainty of any accredited test

  18. Analysis of a four lamp flash system for calibrating multi-junction solar cells under concentrated light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schachtner, Michael, E-mail: michael.schachtner@ise.fraunhofer.de; Prado, Marcelo Loyo; Reichmuth, S. Kasimir

    2015-09-28

    It has been known for a long time that the precise characterization of multi-junction solar cells demands spectrally tunable solar simulators. The calibration of innovative multi-junction solar cells for CPV applications now requires tunable solar simulators which provide high irradiation levels. This paper describes the commissioning and calibration of a flash-based four-lamp simulator to be used for the measurement of multi-junction solar cells with up to four subcells under concentrated light.

  19. Reliability and Engineering | Photovoltaic Research | NREL

    Science.gov Websites

    -Time PV and Solar Resource Testing We study long-term performance, reliability, and failures of PV (NCPV) at NREL, we focus on photovoltaic (PV) reliability research and development (R&D) to improve PV technologies. We test modules and systems for long-term performance and stress them in the field

  20. Metamorphic Epitaxy for Multijunction Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    France, Ryan M.; Dimroth, Frank; Grassman, Tyler J.

    Multijunction solar cells have proven to be capable of extremely high efficiencies by combining multiple semiconductor materials with bandgaps tuned to the solar spectrum. Reaching the optimum set of semiconductors often requires combining high-quality materials with different lattice constants into a single device, a challenge particularly suited for metamorphic epitaxy. In this article, we describe different approaches to metamorphic multijunction solar cells, including traditional upright metamorphic, state-of-the-art inverted metamorphic, and forward-looking multijunction designs on silicon. We also describe the underlying materials science of graded buffers that enables metamorphic subcells with low dislocation densities. Following nearly two decades of research, recentmore » efforts have demonstrated high-quality lattice-mismatched multijunction solar cells with very little performance loss related to the mismatch, enabling solar-to-electric conversion efficiencies over 45%.« less

  1. Peter Hacke | NREL

    Science.gov Websites

    photovoltaic (PV) modules, inspections for root cause of module failures in the field, and accelerated lifetime delamination. His research interests are in modeling of degradation processes of PV modules, module integrated analysis of PV degradation data. He also explores accelerated multi-stress and combined stress testing to

  2. Golden Rays - November 2016 | Solar Research | NREL

    Science.gov Websites

    develop PV module materials for reliable, low-cost solar electricity. Photo of three individuals behind quantum dots. Photo of a man inside a room with manufacturing equipment NREL Report Shows U.S. Solar PV sustained economic competitiveness of solar PV for the industry across all three sectors. Must Reads

  3. Technology Pathway Partnership Final Scientific Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, John C. Dr.; Godby, Larry A.

    2012-04-26

    This report covers the scientific progress and results made in the development of high efficiency multijunction solar cells and the light concentrating non-imaging optics for the commercial generation of renewable solar energy. During the contract period the efficiency of the multijunction solar cell was raised from 36.5% to 40% in commercially available fully qualified cells. In addition significant strides were made in automating production process for these cells in order to meet the costs required to compete with commercial electricity. Concurrent with the cells effort Boeing also developed a non imaging optical systems to raise the light intensity at themore » photovoltaic cell to the rage of 800 to 900 suns. Solar module efficiencies greater than 30% were consistently demonstrated. The technology and its manufacturing were maturated to a projected price of < $0.015 per kWh and demonstrated by automated assembly in a robotic factory with a throughput of 2 MWh/yr. The technology was demonstrated in a 100 kW power plant erected at California State University Northridge, CA.« less

  4. PV Module Reliability Workshop | Photovoltaic Research | NREL

    Science.gov Websites

    -year old PV system in Quebec, Canada-Alex Bradley, Tanya Dhir, Yves Poissant Solar panel design factors PV Module Reliability Workshop PV Module Reliability Workshop Tuesday, February 24, 2015 Chair : Michael Kempe The 2015 PV Module Reliability Workshop (PVMRW) continued in the tradition of this annual

  5. Potential of thin-film solar cell module technology

    NASA Technical Reports Server (NTRS)

    Shimada, K.; Ferber, R. R.; Costogue, E. N.

    1985-01-01

    During the past five years, thin-film cell technology has made remarkable progress as a potential alternative to crystalline silicon cell technology. The efficiency of a single-junction thin-film cell, which is the most promising for use in flat-plate modules, is now in the range of 11 percent with 1-sq cm cells consisting of amorphous silicon, CuInSe2 or CdTe materials. Cell efficiencies higher than 18 percent, suitable for 15 percent-efficient flat plate modules, would require a multijunction configuration such as the CdTe/CuInSe2 and tandem amorphous-silicon (a-Si) alloy cells. Assessments are presented of the technology status of thin-film-cell module research and the potential of achieving the higher efficiencies required for large-scale penetration into the photovoltaic (PV) energy market.

  6. Anomalous electron transport in metal/carbon multijunction devices by engineering of the carbon thickness and selecting metal layer

    NASA Astrophysics Data System (ADS)

    Dwivedi, Neeraj; Dhand, Chetna; Rawal, Ishpal; Kumar, Sushil; Malik, Hitendra K.; Lakshminarayanan, Rajamani

    2017-06-01

    A longstanding concern in the research of amorphous carbon films is their poor electrical conductivity at room temperature which constitutes a major barrier for the development of cost effective electronic and optoelectronic devices. Here, we propose metal/carbon hybrid multijunction devices as a promising facile way to overcome room temperature electron transport issues in amorphous carbon films. By the tuning of carbon thickness and swapping metal layers, we observe giant (upto ˜7 orders) reduction of electrical resistance in metal/carbon multijunction devices with respect to monolithic amorphous carbon device. We engineer the maximum current (electrical resistance) from about 10-7 to 10-3 A (˜107 to 103 Ω) in metal (Cu or Ti)/carbon hybrid multijunction devices with a total number of 10 junctions. The introduction of thin metal layers breaks the continuity of relatively higher resistance carbon layer as well as promotes the nanostructuring of carbon. These contribute to low electrical resistance of metal/carbon hybrid multijunction devices, with respect to monolithic carbon device, which is further reduced by decreasing the thickness of carbon layers. We also propose and discuss equivalent circuit model to explain electrical resistance in monolithic carbon and metal/carbon multijunction devices. Cu/carbon multijunction devices display relatively better electrical transport than Ti/carbon devices owing to low affinity of Cu with carbon that restricts carbide formation. We also observe that in metal/carbon multijunction devices, the transport mechanism changes from Poole-Frenkel/Schottky model to the hopping model with a decrease in carbon thickness. Our approach opens a new route to develop carbon-based inexpensive electronic and optoelectronic devices.

  7. NREL Photovoltaic Program. FY 1994 annual report, October 1, 1993--September 30, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-01

    This report summarizes the in-house and subcontracted research and development activities under the National renewable Energy Laboratory (NREL) Photovoltaics (PV) program for fiscal year 1994. Research is organized under the following areas; PV program management; crystalline silicon and advanced devices; thin-film PV technologies; PV manufacturing; PV module and system performance and engineering; and PV applications and markets.

  8. NREL Solar Research Garners Two Prestigious R&D 100 Awards | News | NREL

    Science.gov Websites

    efficient bulk power generator that produces 40 percent more energy than conventional fixed photovoltaic panels. The 53-kilowatt photovoltaic power generator is based on the MegaModule, a turnkey unit pairing a wafers more efficient and a mammoth power generator that sets a new standard for the production of solar

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Module-level power electronics, such as DC power optimizers, microinverters, and those found in AC modules, are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software. This paper extends the work completed at NREL that provided recommendations to model the performance of distributed power electronics in NREL’s popular PVWatts calculator [1], to provide similar guidelines for modeling these technologies in NREL's more complex System Advisor Model (SAM). Module-level power electronics - such asmore » DC power optimizers, microinverters, and those found in AC modules-- are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software.« less

  10. Photovoltaic Module Reliability Workshop 2011: February 16-17, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, S.

    2013-11-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  11. Photovoltaic Module Reliability Workshop 2014: February 25-26, 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, S.

    2014-02-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  12. Photovoltaic Module Reliability Workshop 2013: February 26-27, 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, S.

    2013-10-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  13. Photovoltaic Module Reliability Workshop 2010: February 18-19, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, J.

    2013-11-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  14. Analysis of Aurora's Performance Simulation Engine for Three Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Janine; Simon, Joseph

    2015-07-07

    Aurora Solar Inc. is building a cloud-based optimization platform to automate the design, engineering, and permit generation process of solar photovoltaic (PV) installations. They requested that the National Renewable Energy Laboratory (NREL) validate the performance of the PV system performance simulation engine of Aurora Solar’s solar design platform, Aurora. In previous work, NREL performed a validation of multiple other PV modeling tools 1, so this study builds upon that work by examining all of the same fixed-tilt systems with available module datasheets that NREL selected and used in the aforementioned study. Aurora Solar set up these three operating PV systemsmore » in their modeling platform using NREL-provided system specifications and concurrent weather data. NREL then verified the setup of these systems, ran the simulations, and compared the Aurora-predicted performance data to measured performance data for those three systems, as well as to performance data predicted by other PV modeling tools.« less

  15. Summary of NREL's FY13-FY15 Photovoltaic Subprogram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-03-31

    In this report, you will find summaries of the completed FY13-FY15 Photovoltaic projects that were funded within NREL. The summaries describe the initial motivation for the project; significant achievements, including publications, intellectual property, and collaborations; and remaining challenges. Among the NREL projects, you will find research of almost every major PV technology - from the next generation of silicon PV to relatively new organic PVs - as well as projects advancing PV module durability and characterization. Each of these projects was designed to support SunShot's goals, putting the United States one step closer to widespread use of low-cost, clean electricity.

  16. CPV cell characterization following one-year exposure in Golden Colorado

    NASA Astrophysics Data System (ADS)

    Bosco, Nick; Kurtz, Sarah

    2014-09-01

    A CPV module containing 30 III-V multijunction cells was operated on-sun for one year in Golden, Colorado. Each cell was characterized prior to and following exposure. A module power degradation of 10% was observed and found to be a result as an overall decrease in cell short circuit current and the presence of at least one shunted cell. A positive correlation between initial shunt current and an increase in shunt current following exposure was also found. Cell exfoliation was also observed and found to be coincident with the presence of water and/or charring of the cell package due to an off-sun event.

  17. Terrestrial photovoltaic collector technology trends

    NASA Technical Reports Server (NTRS)

    Shimada, K.; Costogue, E.

    1984-01-01

    Following the path of space PV collector development in its early stages, terrestrial PV technologies based upon single-crystal silicon have matured rapidly. Currently, terrestrial PV cells with efficiencies approaching space cell efficiencies are being fabricated into modules at a fraction of the space PV module cost. New materials, including CuInSe2 and amorphous silicon, are being developed for lowering the cost, and multijunction materials for achieving higher efficiency. Large grid-interactive, tracking flat-plate power systems and concentrator PV systems totaling about 10 MW, are already in operation. Collector technology development both flat-plate and concentrator, will continue under an extensive government and private industry partnership.

  18. Multijunction cells for concentrators: Technology prospects

    NASA Technical Reports Server (NTRS)

    Ferber, R. R. (Compiler); Costogue, E. N. (Compiler); Shimada, K. (Compiler)

    1984-01-01

    Development of high-efficiency multijunction solar cells for concentrator applications is a key step in achieving the goals of the U.S. Department of Energy National Photovoltaics Program. This report summarizes findings of an issue study conducted by the Jet Propulsion Laboratory Photovoltaic Analysis and Integration Center, with the assistance of the Solar Energy Research Institute and Sandia National laboratoies, which surveyed multijunction cell research for concentrators undertaken by federal agencies and by private industry. The team evaluated the potentials of research activities sponsored by DOE and by corporate funding to achieve projected high-efficiency goals and developed summary statements regarding industry expectations. Recommendations are made for the direction of future work to address specific unresolved aspects of multijunction cell technology.

  19. Multi-junction solar cell device

    DOEpatents

    Friedman, Daniel J.; Geisz, John F.

    2007-12-18

    A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.

  20. Investigations To Characterize Multi-Junction Solar Cells In The Stratosphere Using Low-Cost Balloon And Communication Technologies

    NASA Technical Reports Server (NTRS)

    Bowe, Glenroy A.; Wang, Qianghua; Woodyard, James R.; Johnston, Richard R.; Brown, William J.

    2005-01-01

    The use of current balloon, control and communication technologies to test multi-junction solar sell in the stratosphere to achieve near AMO conditions have been investigated. The design criteria for the technologies are that they be reliable, low cost and readily available. Progress is reported on a program to design, launch, fly and retrieve payloads dedicated to testing multi-junction solar cells.

  1. Optical and thermal simulation for wide acceptance angle CPV module

    NASA Astrophysics Data System (ADS)

    Ahmad, Nawwar; Ota, Yasuyuki; Araki, Kenji; Lee, Kan-Hua; Yamaguchi, Masafumi; Nishioka, Kensuke

    2017-09-01

    Concentrator photovoltaic (CPV) technology has the potential to decrease the cost of systems in the near future by using less expensive optical elements in the system which replace the receiving surface aperture and concentrate the sunlight onto small solar cells. One of the main concerns of CPV is the need for high precision tracking system and the relation to the acceptance angle. In this paper, we proposed a CPV module with concentration ratio larger than 100 times and wide acceptance angle. An optical simulation for the module with S-TIM2 glass as a lens material was conducted to estimate the optical performance of the module. Thermal and electrical simulation was also conducted using COMSOL Multiphysics and SPICE respectively to evaluate the working temperature and electrical characteristics of the multijunction solar cell under concentration conditions.

  2. Rapid Deposition Technology Holds the Key for the World's Largest Manufacturer of Thin-Film Solar Modules (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2013-08-01

    First Solar, Inc. has been collaborating with NREL since 1991, advancing its thin-film cadmium telluride solar technology to grow from a startup company to become one of the world's largest manufacturers of solar modules, and the world's largest manufacturer of thin-film solar modules.

  3. Photovoltaic Module Reliability Workshop 2012: February 28 - March 1, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, S.

    2013-11-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  4. NREL at 40: It All Started With a Desire to Harness the Sun | News | NREL

    Science.gov Websites

    (PV) industry. Their job was to ultimately develop new solar technology and to chart a path toward its of reliability for PV modules and systems, helping bolster consumer and investor confidence in solar With a Desire to Harness the Sun July 5, 2017 Photo of PV panels under a bright blue sky. A PV array on

  5. Investigation of the Carbon Arc Source as an AM0 Solar Simulator for Use in Characterizing Multi-Junction Solar Cells

    NASA Technical Reports Server (NTRS)

    Xu, Jianzeng; Woodyward, James R.

    2005-01-01

    The operation of multi-junction solar cells used for production of space power is critically dependent on the spectral irradiance of the illuminating light source. Unlike single-junction cells where the spectral irradiance of the simulator and computational techniques may be used to optimized cell designs, optimization of multi-junction solar cell designs requires a solar simulator with a spectral irradiance that closely matches AM0.

  6. Optimization of an Advanced Multi-Junction Solar-Cell Design for Space Environments (AM0) Using Nearly Orthogonal Latin Hypercubes

    DTIC Science & Technology

    2017-06-01

    AN ADVANCED MULTI-JUNCTION SOLAR -CELL DESIGN FOR SPACE ENVIRONMENTS (AM0) USING NEARLY ORTHOGONAL LATIN HYPERCUBES by Silvio Pueschel June...ADVANCED MULTI-JUNCTION SOLAR -CELL DESIGN FOR SPACE ENVIRONMENTS (AM0) USING NEARLY ORTHOGONAL LATIN HYPERCUBES 5. FUNDING NUMBERS 6. AUTHOR(S) Silvio...multi-junction solar cells with Silvaco Atlas simulation software. It introduces the nearly orthogonal Latin hypercube (NOLH) design of experiments (DoE

  7. 2015 Inverter Workshop | Photovoltaic Research | NREL

    Science.gov Websites

    Utility PV Inverters-Ron Vidano, Advanced Energy Module Level Power Electronics-Jack Flicker (Chair ), Sandia National Laboratories Standardization and Reliability Testing of Module-Level Power Electronics Failure Modes in Inverters-Diganta Das, CALCE Corrosion of Electronics-Rob Sorensen, Sandia National

  8. CPV Cell Characterization Following One-Year Exposure in Golden, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosco, Nick; Kurtz, Sarah

    2014-09-26

    A CPV module containing 30 III-V multijunction cells was operated on--sun for one year in Golden, Colorado. Each cell was characterized prior to and following exposure. A module power degradation of 10% was observed and found to be a result as an overall decrease in cell short circuit current and the presence of at least one shunted cell. A positive correlation between initial shunt current and an increase in shunt current following exposure was also found. Cell exfoliation was also observed and found to be coincident with the presence of water and/or charring of the cell package due to anmore » off-sun event.« less

  9. CPV Cell Characterization Following One-Year Exposure in Golden, Colorado: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosco, N.; Kurtz, S.

    2014-08-01

    A CPV module containing 30 III-V multijunction cells was operated on?sun for one year in Golden, Colorado. Each cell was characterized prior to and following exposure. A module power degradation of 10% was observed and found to be a result as an overall decrease in cell short circuit current and the presence of at least one shunted cell. A positive correlation between initial shunt current and an increase in shunt current following exposure was also found. Cell exfoliation was also observed and found to be coincident with the presence of water and/or charring of the cell package due to anmore » off-sun event.« less

  10. David S. Albin | NREL

    Science.gov Websites

    Optics+Photonics Meeting-Reliability of Photovoltaic Cells, Modules, Components and Systems (2008). R.L Photovoltaic Cells, Modules, Components and Systems (2011). D.S. Albin, "Growth temperature and of governing factors for photovoltaic loss mechanism of n-CdS/p-CdTe heterojunction via multiway data

  11. Steve P. Harvey | NREL

    Science.gov Websites

    photoemission measurements to better understand materials fundamentals and degradation in semiconductor, organic , investigating root-cause mechanisms of degradation in photovoltaic modules, investigating organic-inorganic

  12. Modeling of defect-tolerant thin multi-junction solar cells for space application

    NASA Astrophysics Data System (ADS)

    Mehrotra, A.; Alemu, A.; Freundlich, A.

    2012-02-01

    Using drift-diffusion model and considering experimental III-V material parameters, AM0 efficiencies of lattice-matched multijunction solar cells have been calculated and the effects of dislocations and radiation damage have been analyzed. Ultrathin multi-junction devices perform better in presence of dislocations or/and radiation harsh environment compared to conventional thick multijunction devices. Our results show that device design optimization of Ga0.51In0.49P/GaAs multijunction devices leads to an improvement in EOL efficiency from 4.8%, for the conventional thick device design, to 12.7%, for the EOL optimized thin devices. In addition, an optimized defect free lattice matched Ga0.51In0.49P/GaAs solar cell under 1016cm-2 1Mev equivalent electron fluence is shown to give an EOL efficiency of 12.7%; while a Ga0.51In0.49P/GaAs solar cell with 108 cm-2 dislocation density under 1016cm-2 electron fluence gives an EOL efficiency of 12.3%. The results suggest that by optimizing the device design, we can obtain nearly the same EOL efficiencies for high dislocation metamorphic solar cells and defect filtered metamorphic multijunction solar cells. The findings relax the need for thick or graded buffer used for defect filtering in metamorphic devices. It is found that device design optimization allows highly dislocated devices to be nearly as efficient as defect free devices for space applications.

  13. NREL and Solarex Partner to Expand Development of Solar Technology

    Science.gov Websites

    use in building integrated photovoltaic applications, solar farms (power plants for electricity Frederick, Md. to conduct further research on thin film photovoltaic modules. The agreement is designed to produced from sunlight) and more traditional remote habitation applications. Thin film photovoltaic modules

  14. Semiconductor solar cells: Recent progress in terrestrial applications

    NASA Astrophysics Data System (ADS)

    Avrutin, V.; Izyumskaya, N.; Morkoç, H.

    2011-04-01

    In the last decade, the photovoltaic industry grew at a rate exceeding 30% per year. Currently, solar-cell modules based on single-crystal and large-grain polycrystalline silicon wafers comprise more than 80% of the market. Bulk Si photovoltaics, which benefit from the highly advanced growth and fabrication processes developed for microelectronics industry, is a mature technology. The light-to-electric power conversion efficiency of the best modules offered on the market is over 20%. While there is still room for improvement, the device performance is approaching the thermodynamic limit of ˜28% for single-junction Si solar cells. The major challenge that the bulk Si solar cells face is, however, the cost reduction. The potential for price reduction of electrical power generated by wafer-based Si modules is limited by the cost of bulk Si wafers, making the electrical power cost substantially higher than that generated by combustion of fossil fuels. One major strategy to bring down the cost of electricity generated by photovoltaic modules is thin-film solar cells, whose production does not require expensive semiconductor substrates and very high temperatures and thus allows decreasing the cost per unit area while retaining a reasonable efficiency. Thin-film solar cells based on amorphous, microcrystalline, and polycrystalline Si as well as cadmium telluride and copper indium diselenide compound semiconductors have already proved their commercial viability and their market share is increasing rapidly. Another avenue to reduce the cost of photovoltaic electricity is to increase the cell efficiency beyond the Shockley-Queisser limit. A variety of concepts proposed along this avenue forms the basis of the so-called third generation photovoltaics technologies. Among these approaches, high-efficiency multi-junction solar cells based on III-V compound semiconductors, which initially found uses in space applications, are now being developed for terrestrial applications. In this article, we discuss the progress, outstanding problems, and environmental issues associated with bulk Si, thin-film, and high-efficiency multi-junction solar cells.

  15. Battery Pack Thermal Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pesaran, Ahmad

    This presentation describes the thermal design of battery packs at the National Renewable Energy Laboratory. A battery thermal management system essential for xEVs for both normal operation during daily driving (achieving life and performance) and off-normal operation during abuse conditions (achieving safety). The battery thermal management system needs to be optimized with the right tools for the lowest cost. Experimental tools such as NREL's isothermal battery calorimeter, thermal imaging, and heat transfer setups are needed. Thermal models and computer-aided engineering tools are useful for robust designs. During abuse conditions, designs should prevent cell-to-cell propagation in a module/pack (i.e., keep themore » fire small and manageable). NREL's battery ISC device can be used for evaluating the robustness of a module/pack to cell-to-cell propagation.« less

  16. Dirk Jordan | NREL

    Science.gov Websites

    quantify module degradation rates. Statistical analysis of reported degradation rates of PV modules degradation rates," Prog. in PV 24(7), 2016, DOI: 10.1002/pip.2744 Jordan D.C., Silverman T.J PV, 2017, DOI: 10.1002/pip.2866 Jordan D.C., Silverman T.J., Sekulic B., Kurtz S.R., "PV

  17. NREL Technologies Win National Awards

    Science.gov Websites

    percent for a prototype module, 7.6 percent for a commercial module) from amorphous silicon, which is less expensive to produce than crystalline silicon used in most commercial solar cells. The resulting product is biomass resources such as wood waste or plant material into gas for electric power generation. The new

  18. Measurements | Photovoltaic Research | NREL

    Science.gov Websites

    to hold an ISO 17025 accreditation for primary reference cell and secondary module calibration, in addition to accreditation for secondary reference cell calibration under ASTM and IEC standards. Time

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narumanchi, S.; Bennion, K.; DeVoto, D.

    This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.

  20. Indoor and outdoor characterization of the HIRL prototype: An innovative highly integrated receiverless LCPV concept using multijunction cells

    NASA Astrophysics Data System (ADS)

    Weick, Clément; De Betelu, Romain; Tauzin, Aurélie; Baudrit, Mathieu

    2017-09-01

    Concentrator photovoltaic (CPV) modules are composed of many components and interfaces, which require complex assembling processes, resulting in fabrication complexity and often lack of reliability. The present work addresses these issues, by proposing an innovative low concentration photovoltaic (LCPV) concept. In particular, the purpose here is to develop a module with a high level of integration by lowering the number of components and interfaces. The mirror used as the concentrator optic is multifunctional, as it combines thermal, structural and optical function. Moreover, the proposed design claims to demonstrate the applicability of reliable flat PV processes (such as lamination and cells interconnections), for the manufacturing of this LCPV module. The paper describes both indoor and outdoor characterization of a new prototype. Performances by means of IV curves tracing will be discussed regarding the losses distribution within the optical chain.

  1. Running STAR-CCM+ Software on the Peregrine System | High-Performance

    Science.gov Websites

    /bin/lmutil lmstat -c 1999@wind-lms.nrel.gov -a module load star-ccm export TMPDIR="/scratch/$USER + -power -rsh "ssh -oStrictHostKeyChecking=no" -machinefile nodelist -np $(($nodes*$cores , type the commands from the SLURM script and make sure the job runs: module load star-ccm export TMPDIR

  2. Degradation of Silicone Encapsulants in CPV Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Can; Miller, David C.; Tappan, Ian A.

    High efficiency multijunction solar cells in terrestrial concentrator photovoltaic (CPV) modules are becoming an increasingly cost effective and viable option in utility scale power generation. As with other utility scale photovoltaics, CPV modules need to guarantee operational lifetimes of at least 25 years. The reliability of optical elements in CPV modules poses a unique materials challenge due to the increased UV irradiance and enhanced temperature cycling associated with concentrated solar flux. The polymeric and thin film materials used in the optical elements are especially susceptible to UV damage, diurnal temperature cycling and active chemical species from the environment. We usedmore » fracture mechanics approaches to study the degradation modes including: the adhesion between the encapsulant and the cell or secondary optical element; and the cohesion of the encapsulant itself. Understanding the underlying mechanisms of materials degradation under elevated stress conditions is critical for commercialization of CPV technology and can offer unique insights into degradation modes in similar encapsulants used in other photovoltaic modules.« less

  3. Degradation of Silicone Encapsulants in CPV Optics: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, David C.; Tappan, Ian A.; Cai, Can

    High efficiency multijunction solar cells in terrestrial concentrator photovoltaic (CPV) modules are becoming an increasingly cost effective and viable option in utility scale power generation. As with other utility scale photovoltaics, CPV modules need to guarantee operational lifetimes of at least 25 years. The reliability of optical elements in CPV modules poses a unique materials challenge due to the increased UV irradiance and enhanced temperature cycling associated with concentrated solar flux. The polymeric and thin film materials used in the optical elements are especially susceptible to UV damage, diurnal temperature cycling and active chemical species from the environment. We usedmore » fracture mechanics approaches to study the degradation modes including: the adhesion between the encapsulant and the cell or secondary optical element; and the cohesion of the encapsulant itself. Understanding the underlying mechanisms of materials degradation under elevated stress conditions is critical for commercialization of CPV technology and can offer unique insights into degradation modes in similar encapsulants used in other photovoltaic modules.« less

  4. Optimized design and research of secondary microprism for dense array concentrating photovoltaic module

    NASA Astrophysics Data System (ADS)

    Yang, Guanghui; Chen, Bingzhen; Liu, Youqiang; Guo, Limin; Yao, Shun; Wang, Zhiyong

    2015-10-01

    As the critical component of concentrating photovoltaic module, secondary concentrators can be effective in increasing the acceptance angle and incident light, as well as improving the energy uniformity of focal spots. This paper presents a design of transmission-type secondary microprism for dense array concentrating photovoltaic module. The 3-D model of this design is established by Solidworks and important parameters such as inclination angle and component height are optimized using Zemax. According to the design and simulation results, several secondary microprisms with different parameters are fabricated and tested in combination with Fresnel lens and multi-junction solar cell. The sun-simulator IV test results show that the combination has the highest output power when secondary microprism height is 5mm and top facet side length is 7mm. Compared with the case without secondary microprism, the output power can improve 11% after the employment of secondary microprisms, indicating the indispensability of secondary microprisms in concentrating photovoltaic module.

  5. Status of Photovoltaic Calibration and Measurement Standards

    NASA Technical Reports Server (NTRS)

    Baraona, Cosmo; Bailey, Sheila; Curtis, Henry; Brinker, David; Jenkins, Phillip; Scheiman, David

    2001-01-01

    The 7th International Workshop on Space Solar Cell Calibration and Measurement was held on September 25-27, 2000 in Girdwood, Alaska. Representatives from eight countries discussed international standards for single and multijunction solar cell measurement and calibration methods, round robin intercomparisons, and irradiation test methods for space solar cells. Progress toward adoption of an ISO standard on single junction cells was made. Agreement was reached to begin work on new standards for multijunction cells and irradiation testing. Progress on present single junction round robin measurements was discussed and future multijunction round robins were planned. The next workshop will be held in Germany in October 2001.

  6. Solar cell circuit and method for manufacturing solar cells

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick (Inventor)

    2010-01-01

    The invention is a novel manufacturing method for making multi-junction solar cell circuits that addresses current problems associated with such circuits by allowing the formation of integral diodes in the cells and allows for a large number of circuits to readily be placed on a single silicon wafer substrate. The standard Ge wafer used as the base for multi-junction solar cells is replaced with a thinner layer of Ge or a II-V semiconductor material on a silicon/silicon dioxide substrate. This allows high-voltage cells with multiple multi-junction circuits to be manufactured on a single wafer, resulting in less array assembly mass and simplified power management.

  7. NREL`s variable speed test bed: Preliminary results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlin, P.W.; Fingersh, L.J.; Fuchs, E.F.

    1996-10-01

    Under an NREL subcontract, the Electrical and Computer Engineering Department of the University of Colorado (CU) designed a 20-kilowatt, 12-pole, permanent-magnet, electric generator and associated custom power electronics modules. This system can supply power over a generator speed range from 60 to 120 RPM. The generator was fabricated and assembled by the Denver electric-motor manufacturer, Unique Mobility, and the power electronics modules were designed and fabricated at the University. The generator was installed on a 56-foot tower in the modified nacelle of a Grumman Windstream 33 wind turbine in early October 1995. For checkout it was immediately loaded directly intomore » a three-phase resistive load in which it produced 3.5 kilowatts of power. Abstract only included. The ten-meter Grumman host wind machine is equipped with untwisted, untapered, NREL series S809 blades. The machine was instrumented to record both mechanical hub power and electrical power delivered to the utility. Initial tests are focusing on validating the calculated power surface. This mathematical surface shows the wind machine power as a function of both wind speed and turbine rotor speed. Upon the completion of this task, maximum effort will be directed toward filling a test matrix in which variable-speed operation will be contrasted with constant-speed mode by switching the variable speed control algorithm with the baseline constant speed control algorithm at 10 minutes time intervals. Other quantities in the test matrix will be analyzed to detect variable speed-effects on structural loads and power quality.« less

  8. Effect of Atmospheric Absorption Bands on the Optimal Design of Multijunction Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahon, William E.; Friedman, Daniel J.; Geisz, John F.

    Designing terrestrial multijunction (MJ) cells with 5+ junctions is challenging, in part because the presence of atmospheric absorption bands creates a design space with numerous local maxima. Here we introduce a new taxonomical structure which facilitates both numerical convergence and the visualization of the resulting designs.

  9. PV Module Reliability Experts Gather for DuraMAT Workshop | News | NREL

    Science.gov Websites

    DuraMAT Workshop June 20, 2017 On May 22 and 23, 2017, the Bay Area Photovoltaic Consortium (BAPVC) and with the photovoltaic and supply-chain industries to discover, develop, de-risk, and enable the commercialization of new materials and designs for photovoltaic modules-with the potential for a levelized cost of

  10. Superstrate sub-cell voltage-matched multijunction solar cells

    DOEpatents

    Mascarenhas, Angelo; Alberi, Kirstin

    2016-03-15

    Voltage-matched thin film multijunction solar cell and methods of producing cells having upper CdTe pn junction layers formed on a transparent substrate which in the completed device is operatively positioned in a superstate configuration. The solar cell also includes a lower pn junction formed independently of the CdTe pn junction and an insulating layer between CdTe and lower pn junctions. The voltage-matched thin film multijunction solar cells further include a parallel connection between the CdTe pn junction and lower pn junctions to form a two-terminal photonic device. Methods of fabricating devices from independently produced upper CdTe junction layers and lower junction layers are also disclosed.

  11. Solar Energy Research Facility | Photovoltaic Research | NREL

    Science.gov Websites

    -efficiency crystalline solar cells. Laboratories in the center module are used to fabricate prototype solar cells and analyze the semiconductor material used to make solar cells, as well as to research hydrogen

  12. Transitioning the California Energy Commission Eligible Equipment List to a National Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truitt, Sarah; Nobler, Erin; Krasko, Vitaliy

    The Energy Commission called on the National Renewable Energy Laboratory's (NREL)'s Solar Technical Assistance Team to explore various pathways for supporting continued evolution of the list. NREL staff utilized the Database of State Incentives for Renewables and Efficiency (DSIRE), California Solar Initiative (CSI) data, and information from in-depth interviews to better understand the impact of a lack of an updated list and suggest potential solutions. A total of 18 people from state energy offices, rebate program administrators, utilities, national testing laboratories, private companies, nonprofit organizations, and the federal government were interviewed between July and September 2013. CSI data were analyzedmore » to illustrate the monetary benefits of the algorithm behind calculating performance of PV modules included on the list. The primary objectives of this study are to: 1) Determine the impact of not maintaining the list, and 2) Explore alternatives to the State of California's maintenance of the list.« less

  13. HPC USER WORKSHOP - JUNE 12TH | High-Performance Computing | NREL

    Science.gov Websites

    to CentOS 7, changes to modules management, Singularity and containers on Peregrine, and using of changes, with the remaining two hours dedicated to demos and one-on-one interaction as needed

  14. NREL's New Perovskite Ink Opens Window for Quality Cells | News | News |

    Science.gov Websites

    scalable deposition methods, which are suitable for future module production, still lag behind state-of-the -coating methods. Both methods were tested and produced indistinguishable film morphology and device

  15. Michael Deceglie | NREL

    Science.gov Websites

    postdoctoral researcher focused on photovoltaic performance and reliability. His current research interests illumination nonuniformity, and outdoor performance of advanced photovoltaic technologies. Featured photovoltaic module," Proceedings of the Thirty-ninth IEEE Photovoltaic Specialists Conference (PVSC), pp

  16. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy

    NASA Astrophysics Data System (ADS)

    Sahoo, Prasana K.; Memaran, Shahriar; Xin, Yan; Balicas, Luis; Gutiérrez, Humberto R.

    2018-01-01

    Two-dimensional heterojunctions of transition-metal dichalcogenides have great potential for application in low-power, high-performance and flexible electro-optical devices, such as tunnelling transistors, light-emitting diodes, photodetectors and photovoltaic cells. Although complex heterostructures have been fabricated via the van der Waals stacking of different two-dimensional materials, the in situ fabrication of high-quality lateral heterostructures with multiple junctions remains a challenge. Transition-metal-dichalcogenide lateral heterostructures have been synthesized via single-step, two-step or multi-step growth processes. However, these methods lack the flexibility to control, in situ, the growth of individual domains. In situ synthesis of multi-junction lateral heterostructures does not require multiple exchanges of sources or reactors, a limitation in previous approaches as it exposes the edges to ambient contamination, compromises the homogeneity of domain size in periodic structures, and results in long processing times. Here we report a one-pot synthetic approach, using a single heterogeneous solid source, for the continuous fabrication of lateral multi-junction heterostructures consisting of monolayers of transition-metal dichalcogenides. The sequential formation of heterojunctions is achieved solely by changing the composition of the reactive gas environment in the presence of water vapour. This enables selective control of the water-induced oxidation and volatilization of each transition-metal precursor, as well as its nucleation on the substrate, leading to sequential edge-epitaxy of distinct transition-metal dichalcogenides. Photoluminescence maps confirm the sequential spatial modulation of the bandgap, and atomic-resolution images reveal defect-free lateral connectivity between the different transition-metal-dichalcogenide domains within a single crystal structure. Electrical transport measurements revealed diode-like responses across the junctions. Our new approach offers greater flexibility and control than previous methods for continuous growth of transition-metal-dichalcogenide-based multi-junction lateral heterostructures. These findings could be extended to other families of two-dimensional materials, and establish a foundation for the development of complex and atomically thin in-plane superlattices, devices and integrated circuits.

  17. Reliability Evaluation of Next Generation Inverter: Cooperative Research and Development Final Report, CRADA Number CRD-12-478

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paret, Paul

    The National Renewable Energy Laboratory (NREL) will conduct thermal and reliability modeling on three sets of power modules for the development of a next generation inverter for electric traction drive vehicles. These modules will be chosen by General Motors (GM) to represent three distinct technological approaches to inverter power module packaging. Likely failure mechanisms will be identified in each package and a physics-of-failure-based reliability assessment will be conducted.

  18. Multijunction Solar Cells Optimized for the Mars Surface Solar Spectrum

    NASA Technical Reports Server (NTRS)

    Edmondson, Kenneth M.; Fetzer, Chris; Karam, Nasser H.; Stella, Paul; Mardesich, Nick; Mueller, Robert

    2007-01-01

    This paper gives an update on the performance of the Mars Exploration Rovers (MER) which have been continually performing for more than 3 years beyond their original 90-day missions. The paper also gives the latest results on the optimization of a multijunction solar cell that is optimized to give more power on the surface of Mars.

  19. Fabrication of multijunction high voltage concentrator solar cells by integrated circuit technology

    NASA Technical Reports Server (NTRS)

    Valco, G. J.; Kapoor, V. J.; Evans, J. C., Jr.; Chai, A.-T.

    1981-01-01

    Standard integrated circuit technology has been developed for the design and fabrication of planar multijunction (PMJ) solar cell chips. Each 1 cm x 1 cm solar chip consisted of six n(+)/p, back contacted, internally series interconnected unit cells. These high open circuit voltage solar cells were fabricated on 2 ohm-cm, p-type 75 microns thick, silicon substrates. A five photomask level process employing contact photolithography was used to pattern for boron diffusions, phorphorus diffusions, and contact metallization. Fabricated devices demonstrated an open circuit voltage of 3.6 volts and a short circuit current of 90 mA at 80 AMl suns. An equivalent circuit model of the planar multi-junction solar cell was developed.

  20. The handling of thin substrates and its potential for new architectures in multi-junction solar cells technology

    NASA Astrophysics Data System (ADS)

    Colin, Clément; Jaouad, Abdelatif; Darnon, Maxime; De Lafontaine, Mathieu; Volatier, Maïté; Boucherif, Abderraouf; Arès, Richard; Fafard, Simon; Aimez, Vincent

    2017-09-01

    In this paper, we investigate the development of a robust handling process for thin (<50 µm) substrates in the framework of the monolithic multi-junction solar cell (MJSC) technology. The process, designed for its versatility, is based on a temporary front side bonding of the cell with a polymeric adhesive and then a permanent back side soldering, allowing classical cell micro-fabrication steps on both sides of the wafer. We have demonstrated that the process does not degrade the performances of monolithic MJSC with Ge substrates thickness reduced from 170 µm to 25 µm. Then, we investigate a perspective unlocked with this work: the study of 3D-interconnect architecture for multi-junction solar cells.

  1. On-Orbit Demonstration of a Lithium-Ion Capacitor and Thin-Film Multijunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Kukita, Akio; Takahashi, Masato; Shimazaki, Kazunori; Kobayashi, Yuki; Sakai, Tomohiko; Toyota, Hiroyuki; Takahashi, Yu; Murashima, Mio; Uno, Masatoshi; Imaizumi, Mitsuru

    2014-08-01

    This paper describes an on-orbit demonstration of the Next-generation Small Satellite Instrument for Electric power systems (NESSIE) on which an aluminum- laminated lithium-ion capacitor (LIC) and a lightweight solar panel called KKM-PNL, which has space solar sheets using thin-film multijunction solar cells, were installed. The flight data examined in this paper covers a period of 143 days from launch. We verified the integrity of an LIC constructed using a simple and lightweight mounting method: no significant capacitance reduction was observed. We also confirmed that inverted metamorphic multijunction triple-junction thin-film solar cells used for evaluation were healthy at 143 days after launch, because their degradation almost matched the degradation predictions for dual-junction thin-film solar cells.

  2. Planar multijunction high voltage solar cells

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Chai, A. T.; Goradia, C.

    1980-01-01

    Technical considerations, preliminary results, and fabrication details are discussed for a family of high-voltage planar multi-junction (PMJ) solar cells which combine the attractive features of planar cells with conventional or interdigitated back contacts and the vertical multijunction (VMJ) solar cell. The PMJ solar cell is internally divided into many voltage-generating regions, called unit cells, which are internally connected in series. The key to obtaining reasonable performance from this device was the separation of top surface field regions over each active unit cell. Using existing solar cell fabricating methods, output voltages in excess of 20 volts per linear centimeter are possible. Analysis of the new device is complex, and numerous geometries are being studied which should provide substantial benefits in both normal sunlight usage as well as with concentrators.

  3. The planar multijunction cell - A new solar cell for earth and space

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Chai, A.-T.; Goradia, C.

    1980-01-01

    A new family of high-voltage solar cells, called the planar multijunction (PMJ) cell is being developed. The new cells combine the attractive features of planar cells with conventional or interdigitated back contacts and the vertical multijunction (VMJ) solar cell. The PMJ solar cell is internally divided into many voltage-generating regions, called unit cells, which are internally connected in series. The key to obtaining reasonable performance from this device was the separation of top surface field regions over each active unit cell area. Using existing solar cell fabricating methods, output voltages in excess of 20 volts per linear centimeter are possible. Analysis of the new device is complex, and numerous geometries are being studied which should provide substantial benefits in both normal sunlight usage as well as with concentrators.

  4. Straw man trade between multi-junction, gallium arsenide, and silicon solar cells

    NASA Technical Reports Server (NTRS)

    Gaddy, Edward M.

    1995-01-01

    Multi-junction (MJ), gallium arsenide (GaAs), and silicon (Si) solar cells have respective test efficiencies of approximately 24%, 18.5% and 14.8%. Multi-junction and gallium arsenide solar cells weigh more than silicon solar cells and cost approximately five times as much per unit power at the cell level. A straw man trade is performed for the TRMM spacecraft to determine which of these cell types would have offered an overall performance and price advantage to the spacecraft. A straw man trade is also performed for the multi-junction cells under the assumption that they will cost over ten times that of silicon cells at the cell level. The trade shows that the TRMM project, less the cost of the instrument, ground systems and mission operations, would spend approximately $552 thousand dollars per kilogram to launch and service science in the case of the spacecraft equipped with silicon solar cells. If these cells are changed out for gallium arsenide solar cells, an additional 31 kilograms of science can be launched and serviced at a price of approximately $90 thousand per kilogram. The weight reduction is shown to derive from the smaller area of the array and hence reductions in the weight of the array substrate and supporting structure. If the silicon solar cells are changed out for multi-junction solar cells, an additional 45 kilograms of science above the silicon base line can be launched and serviced at a price of approximately $58 thousand per kilogram. The trade shows that even if the multi-junction arrays are priced over ten times that of silicon cells, a price that is much higher than projected, that the additional 45 kilograms of science are launched and serviced at $182 thousand per kilogram. This is still much less than original $552 thousand per kilogram to launch and service the science. Data and qualitative factors are presented to show that these figures are subject to a great deal of uncertainty. Nonetheless, the benefit of the higher efficiency solar cells for TRMM is far greater than the uncertainties in the analysis.

  5. Cost Trade Between Multi-Junction, Gallium Arsenide, and Silicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Gaddy, Edward M.

    1995-01-01

    Multi-junction (MJ), gallium arsenide (GaAs), and silicon (Si) solar cells have respective test efficiencies of approximately 24%, 18.5% and 14.8%. Multi-junction and gallium arsenide solar cells weigh more than silicon solar 2 cells and cost approximately five times as much per unit power at the cell level. A trade is performed for the TRMM spacecraft to determine which of these cell types would have offered an overall performance and price advantage to the spacecraft. A trade is also performed for the multi-junction cells under the assumption that they will cost over ten times that of silicon cells at the cell level. The trade shows that the TRMM project, less the cost of the instrument, ground systems and mission operations, would spend approximately $552,000 dollars per kilogram to launch and suppon3science in the case of the spacecraft equipped with silicon solar cells. If these cells are changed out for gallium arsenide solar cells, an additional 31 kilograms of science can be launched and serviced at a price of approximately $90 thousand per kilogram. The weight reduction is shown to derive from the smaller area of the array and hence reductions in the weight of the array substrate and supporting structure. ff the silicon solar cells are changed out for multi-junction solar cells, an additional 45 kilograms of science above the silicon base line can be launched and supported at a price of approximately $58,000 per kilogram. The trade shows that even if the multi-junction cells are priced over ten times that of silicon cells, a price that is much higher than projected, that the additional 45 kilograms of science are launched and serviced at $180,000 per kilogram. This is still much less than the original $552,000 per kilogram to launch and service the science. Data and qualitative factors are presented to show that these figures are subject to a great deal of uncertainty. Nonetheless, the benefit of the higher efficiency solar cells for TRMM is far greater than the uncertainties in the analysis.

  6. Improved photostability of NREL-developed EVA pottant formulations for PV module encapsulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F.J.; Glick, S.H.

    1997-12-31

    Several new formulations of ethylene vinyl acetate (EVA)-based encapsulant have been developed at NREL and have greatly improved photostability against UV-induced discoloration. The new EVA formulations use stabilizers and a curing agent entirely different from any of those used in existing formulations known to the authors. No discoloration was observed for the laminated and cured samples that were exposed to a {approximately}5-sun UV light (300--400 nm) from a solar simulator at a black panel temperature (BPT) of 44 {+-} 2 C for {approximately}3250 h followed by at 85 C for {approximately}850 h, an equivalent of approximately 9.4 years for anmore » average 6-h daily, 1-sun solar exposure in Golden, Colorado. Under the same conditions, substantial discoloration and premature delamination were observed for two commercial EVA formulations. Encapsulation with the new EVA formulations should extend the long-term stability for PV modules in the field, especially when coupled with UV-filtering, Ce-containing glass superstrates.« less

  7. Cell chip temperature measurements in different operation regimes of HCPV modules

    NASA Astrophysics Data System (ADS)

    Rumyantsev, V. D.; Chekalin, A. V.; Davidyuk, N. Yu.; Malevskiy, D. A.; Pokrovskiy, P. V.; Sadchikov, N. A.; Pan'chak, A. N.

    2013-09-01

    A new method has been developed for accurate measurements of the solar cell temperature in maximum power point (MPP) operation regime in comparison with that in open circuit (OC) regime (TMPP and TOC). For this, an electronic circuit has been elaborated for fast variation of the cell load conditions and for voltage measurements, so that VOC values could serve as an indicator of TMPP at the first moment after the load disconnection. The method was verified in indoor investigations of the single-junction AlGaAs/GaAs cells under CW laser irradiation, where different modifications of the heat spreaders were involved. PV modules of the "SMALFOC" design (Small-size concentrators; Multijunction cells; "All-glass" structure; Lamination technology; Fresnel Optics for Concentration) with triple-junction InGaP/GaAs/Ge cells were examined outdoors to evaluate temperature regimes of their operation.

  8. Performance analysis of high-concentrated multi-junction solar cells in hot climate

    NASA Astrophysics Data System (ADS)

    Ghoneim, Adel A.; Kandil, Kandil M.; Alzanki, Talal H.; Alenezi, Mohammad R.

    2018-03-01

    Multi-junction concentrator solar cells are a promising technology as they can fulfill the increasing energy demand with renewable sources. Focusing sunlight upon the aperture of multi-junction photovoltaic (PV) cells can generate much greater power densities than conventional PV cells. So, concentrated PV multi-junction solar cells offer a promising way towards achieving minimum cost per kilowatt-hour. However, these cells have many aspects that must be fixed to be feasible for large-scale energy generation. In this work, a model is developed to analyze the impact of various atmospheric factors on concentrator PV performance. A single-diode equivalent circuit model is developed to examine multi-junction cells performance in hot weather conditions, considering the impacts of both temperature and concentration ratio. The impacts of spectral variations of irradiance on annual performance of various high-concentrated photovoltaic (HCPV) panels are examined, adapting spectra simulations using the SMARTS model. Also, the diode shunt resistance neglected in the existing models is considered in the present model. The present results are efficiently validated against measurements from published data to within 2% accuracy. Present predictions show that the single-diode model considering the shunt resistance gives accurate and reliable results. Also, aerosol optical depth (AOD) and air mass are most important atmospheric parameters having a significant impact on HCPV cell performance. In addition, the electrical efficiency (η) is noticed to increase with concentration to a certain concentration degree after which it decreases. Finally, based on the model predictions, let us conclude that the present model could be adapted properly to examine HCPV cells' performance over a broad range of operating conditions.

  9. Performance evaluation of multi-junction solar cells by spatially resolved electroluminescence microscopy.

    PubMed

    Kong, Lijing; Wu, Zhiming; Chen, Shanshan; Cao, Yiyan; Zhang, Yong; Li, Heng; Kang, Junyong

    2015-01-01

    An electroluminescence microscopy combined with a spectroscopy was developed to visually analyze multi-junction solar cells. Triple-junction solar cells with different conversion efficiencies were characterized by using this system. The results showed that the mechanical damages and material defects in solar cells can be clearly distinguished, indicating a high-resolution imaging. The external quantum efficiency (EQE) measurements demonstrated that different types of defects or damages impacted cell performance in various degrees and the electric leakage mostly degraded the EQE. Meanwhile, we analyzed the relationship between electroluminescence intensity and short-circuit current density J SC. The results indicated that the gray value of the electroluminescence image corresponding to the intensity was almost proportional to J SC. This technology provides a potential way to evaluate the current matching status of multi-junction solar cells.

  10. Development of new EVA formulations for improved performance at NREL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F.J.

    1997-02-01

    We review in chronological order the research stages and fundamental concepts involved in developing modified and new EVA formulations for improved performance against photo-induced degradation and discoloration. The new NREL EVA formulations use additives totally different from the present commercial formulations (EVA A9918 and EVA 15295). Validation of their long-term photostability and thermostability is presently under way. Together with UV-absorbing glass superstrates, they may offer better success in achieving a more reliable module performance and longer service life without significant EVA discoloration problems, which are commonly experienced with EVA A9918 and, at a lesser rate, EVA 15295. {copyright} {ital 1997more » American Institute of Physics.}« less

  11. Materials and Chemical Science and Technology | Research | NREL

    Science.gov Websites

    Applications and Performance Developing high-efficiency crystalline PV, measuring PV cell/module performance Cells and Hydrogen Program Developing, integrating, and demonstrating hydrogen production/delivery /storage through core programs and EFRCs Point of Contact Bill Tumas MCST Research Advisors/Fellows Senior

  12. Ingrid Repins | NREL

    Science.gov Websites

    International Electrotechnical Commission Working Group for Photovoltaic Modules, and UL standards technical thin-film photovoltaic device, and the most highly cited 2008-2009 paper in the field of energy ., Shaheen, S.E., Torvik, J.T., Rockett, A.A., Fthenakis, V.M., Aydil, E.S, 2011. "Photovoltaic

  13. Pete Sheldon | NREL

    Science.gov Websites

    research experience in a wide variety of photovoltaic materials and device technologies. Previously, he , and standardized cell/module measurements for the photovoltaic community. He was the Group Leader of polycrystalline CdS/CdTe materials for photovoltaic device applications. He has held Senior and Staff Scientist

  14. Indiana | Solar Research | NREL

    Science.gov Websites

    Incentive Programs Indiana exempts solar PV modules, racking, and inverter from state sales and use taxes . The entire solar generating system is exempt from property taxation. Utility Incentive Programs Utility Incentive Limitations Northern Indiana Public Service Company (Solar PV feed-in-tariff) $0.1564

  15. TEM verification of the <111>-type 4-arm multi-junction in [001]-Mo single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsiung, L

    2005-03-14

    To investigate and verify the formation of <111>-type 4-arm multi-junction by the dislocation reaction of 1/2[111] [b1] + 1/2[{bar 1}1{bar 1}] [b2] + 1/2[{bar 1}{bar 1}1] [b3] = 1/2[{bar 1}11] [b4], which has recently been discovered through computer simulations conducted by Vasily Bulatov and his colleagues.

  16. Selenium Interlayer for High-Efficiency Multijunction Solar Cell

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A. (Inventor)

    2016-01-01

    A multi-junction solar cell is provided and includes multiple semiconducting layers and an interface layer disposed between the multiple semiconducting layers. The interface layer is made from an interface bonding material that has a refractive index such that a ratio of a refractive index of each of the multiple semiconducting layers to the refractive index of the interface bonding material is less than or equal to 1.5.

  17. Device Performance | Photovoltaic Research | NREL

    Science.gov Websites

    Device Performance Device Performance PV Calibrations Blog Check out the latest updates from the PV than 190 person-years. Capabilities Our capabilities for measuring key performance parameters of solar cells and modules include the use of various solar simulators and tools to measure current-voltage and

  18. Energy Storage Thermal Safety | Transportation Research | NREL

    Science.gov Websites

    battery exterior to activate the short, as do most of the other evaluation methodologies, but instead cells, modules, sub-packs, and some full-size battery packs, as well as across energy systems. Learn batteries and across energy storage systems, providing designers and manufacturers with the information

  19. Copper Indium Gallium Diselenide Solar Cells | Photovoltaic Research | NREL

    Science.gov Websites

    primary research areas that are currently our focus are the following: Understanding effects of material . Such metastable effects frustrate the repeatable and accurate measurement of a module's performance in by perturbing the voltage bias or temperature. Another associated challenge is that elevated

  20. Thorough subcells diagnosis in a multi-junction solar cell via absolute electroluminescence-efficiency measurements

    PubMed Central

    Chen, Shaoqiang; Zhu, Lin; Yoshita, Masahiro; Mochizuki, Toshimitsu; Kim, Changsu; Akiyama, Hidefumi; Imaizumi, Mitsuru; Kanemitsu, Yoshihiko

    2015-01-01

    World-wide studies on multi-junction (tandem) solar cells have led to record-breaking improvements in conversion efficiencies year after year. To obtain detailed and proper feedback for solar-cell design and fabrication, it is necessary to establish standard methods for diagnosing subcells in fabricated tandem devices. Here, we propose a potential standard method to quantify the detailed subcell properties of multi-junction solar cells based on absolute measurements of electroluminescence (EL) external quantum efficiency in addition to the conventional solar-cell external-quantum-efficiency measurements. We demonstrate that the absolute-EL-quantum-efficiency measurements provide I–V relations of individual subcells without the need for referencing measured I–V data, which is in stark contrast to previous works. Moreover, our measurements quantify the absolute rates of junction loss, non-radiative loss, radiative loss, and luminescence coupling in the subcells, which constitute the “balance sheets” of tandem solar cells. PMID:25592484

  1. Adhesion of Antireflective Coatings in Multijunction Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brock, Ryan; Miller, David C.; Dauskardt, Reinhold H.

    2016-11-21

    The development of a new composite dual cantilever beam (cDCB) thin-film adhesion testing method is reported, which allows the measurement of adhesion on the fragile thin substrates used in multijunction photovoltaics. We address the adhesion of several antireflective coating systems on multijunction cells. By varying interface chemistry and morphology, we demonstrate the ensuing effects on adhesion and help to develop an understanding of how high adhesion can be achieved, as adhesion values ranging from 0.5 J/m2 to 10 J/m2 were measured. Damp Heat (85 degrees C/85% RH) was used to invoke degradation of interfacial adhesion. We show that even withmore » germanium substrates that fracture easily, quantitative measurements of adhesion can still be made at high test yield. The cDCB test is discussed as an important new methodology, which can be broadly applied to any system that makes use of thin, brittle, or otherwise fragile substrates.« less

  2. Adhesion of Antireflective Coatings in Multijunction Photovoltaics: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brock, Ryan; Dauskardt, Reinhold H.; Miller, David C.

    2016-06-16

    The development of a new composite dual cantilever beam (cDCB) thin-film adhesion testing method is reported, which allows the measurement of adhesion on the fragile thin substrates used in multijunction photovoltaics. We address the adhesion of several antireflective coating systems on multijunction cells. By varying interface chemistry and morphology, we demonstrate the ensuing effects on adhesion and help to develop an understanding of how high adhesion can be achieved, as adhesion values ranging from 0.5 J/m2 to 10 J/m2 were measured. Damp Heat (85 degrees C/85% RH) was used to invoke degradation of interfacial adhesion. We show that even withmore » germanium substrates that fracture easily, quantitative measurements of adhesion can still be made at high test yield. The cDCB test is discussed as an important new methodology, which can be broadly applied to any system that makes use of thin, brittle, or otherwise fragile substrates.« less

  3. Thin-film amorphous silicon alloy research partnership. Phase 2, Annual technical progress report, 2 February 1996--1 February 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guha, S

    This is Phase II of a 3-phase, 3-year program. It is intended to expand, enhance, and accelerate knowledge and capabilities for developing high-performance, two-terminal multijunction amorphous Si alloy modules. We discuss investigations on back reflectors to improve cell performance and investigate uniformity in performance over a 1-sq.-ft. area. We present results on component cell performance, both in the initial and in the light-degraded states, deposited over a 1-sq.-ft. area. The uniformity in deposited is investigated by studying the performance of subcells deposited over the entire area. We also present results on the performance of triple- junction cells and modules. Themore » modules use grid-lines and encapsulants compatible with our production technology. We discuss the novel laser-processing technique that has bee developed at United Solar to improve energy-conversion efficiency and reduce manufacturing costs. We discuss in detail the optimization of the processing steps, and the performance of a laser-processed, triple- junction device of 12.6 cm{sup 2} area is presented. We also present experimental results on investigations of module reliability.« less

  4. P/N In(Al) GaAs multijunction laser power converters

    NASA Technical Reports Server (NTRS)

    Wojtczuk, Steven; Parados, Themis; Walker, Gilbert

    1994-01-01

    Eight In(AI)GaAs PN junctions grown epitaxially on the semi-insulating wafer were monolithically integrated in series to boost the approximately 0.4V photovoltage per typical In(Al)GaAs junction to over 3 volts for the 1 sq cm laser power converted (LPC) chip. Advantages of multijunction LCP designs include the need for less circuitry for power reconditioning and the potential for lower I(sup 2)R power loss. As an example, these LPC's have a responsivity of approximately 1 amp/watt. With a single junction LPC, 100 watts/sq cm incident power would lead to about 100 A/sq cm short-circuit current at approximately 0.4V open-cicuit voltage. One disadvantage is the large current would lead to a large I(sup 2)R loss which would lower the fill factor so that 40 watts/sq cm output would not be obtained. Another is that few circuits are designed to work at 0.4 volts, so DC-DC power conversion circuitry would be necessary to raise the voltage to a reasonable level. The multijunction LPC being developed in this program is a step toward solving these problems. In the above example, an eight-junction LPC would have eight times the voltage, approximately 3V, so that DC-DC power conversion may not be needed in many instances. In addition, the multijunction LPC would have 1/8 the current of a single-junction LPC, for only 1/64 the I(sup 2)R loss if the series resistance is the same. Working monolithic multijunction laser power converters (LPC's) were made in two different compositions of the In(x)Al(y)Ga(1-x-y)As semiconductor alloy, In(0.53)Ga(0.47)As (0.74 eV) and In(0.5)Al(0.1)Ga(0.4)As (0.87 eV). The final 0.8 sq cm LPC's had output voltages of about 3 volts and output currents up to about one-half amp. Maximum 1.3 micron power conversion efficiencies were approximately 22 percent. One key advantage of multijunction LPC's is that they have higher output voltages, so that less DC-DC power conversion circuitry is needed in applications.

  5. Multijunction Solar Cell Efficiencies: Effect of Spectral Window, Optical Environment and Radiative Coupling

    DTIC Science & Technology

    2014-09-04

    Multijunction solar cell efficiencies: effect of spectral window, optical environment and radiative coupling† Carissa N. Eisler ,a Ze’ev R. Abrams,b...SC0001293. C. N. Eisler was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG...Photovoltaic Specialists Conference, Tampa, FL, 2013. 20 E. M. Ellion, World Pat., 8,701,512, 1987 . 21 B. Mitchell, G. Peharz, G. Siefer, M. Peters, T

  6. Measurement Process and Helpful Resources | Photovoltaic Research | NREL

    Science.gov Websites

    measurement, we typically follow a procedure that ensures quality measurement and follow-up. After logging in to determine module response under direct plus diffuse lighting conditions. After measurement, the , the spectrum is adjusted so that all subcells are within 1% of their target current. After all

  7. NREL to Lead New Consortium to Improve Reliability and Performance of Solar

    Science.gov Websites

    for photovoltaics (PV) and lower the cost of electricity generated by solar power. The Durable Module the cost of electricity from photovoltaics." The Energy Department's Office of Energy Efficiency , DuraMat will address the substantial opportunities that exist for durable, high-performance, low-cost

  8. Real-Time Photovoltaic and Solar Resource Testing | Photovoltaic Research |

    Science.gov Websites

    community toward developing comprehensive PV standards. Each year, NCPV researchers, along with solar performance Bill Marion: Solar radiation resource information, and PV module and system performance modeling NREL Real-Time Photovoltaic and Solar Resource Testing Real-Time Photovoltaic and Solar

  9. Outdoor Test Facility and Related Facilities | Photovoltaic Research | NREL

    Science.gov Websites

    advanced or emerging photovoltaic (PV) technologies under simulated, accelerated indoor and outdoor, and evaluate prototype, pre-commercial, and commercial PV modules. One of the major roles of researchers at the OTF is to work with industry to develop uniform and consensus standards and codes for testing PV

  10. Photovoltaic Research | NREL

    Science.gov Websites

    the cost of solar cells, modules, and systems; and improving the reliability of PV components and Science-funded Center for Next Generation of Materials by Design. Reliability. Real-Time PV and Solar Research Solar panels line the rooftop of the parking garage at the south table mountain campus of

  11. Photovoltaic Module Soiling Map | Photovoltaic Research | NREL

    Science.gov Websites

    proposed in: M. Deceglie, L. Micheli, and M. Muller, "Quantifying soiling loss directly from PV yield described in: L. Micheli and M. Muller, "An investigation of the key parameters for predicting PV : M. Muller, L. Micheli, and A.A. Martinez-Morales, "A Method to Extract Soiling Loss Data from

  12. Distributed Generation Market Demand Model (dGen): Documentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigrin, Benjamin; Gleason, Michael; Preus, Robert

    The Distributed Generation Market Demand model (dGen) is a geospatially rich, bottom-up, market-penetration model that simulates the potential adoption of distributed energy resources (DERs) for residential, commercial, and industrial entities in the continental United States through 2050. The National Renewable Energy Laboratory (NREL) developed dGen to analyze the key factors that will affect future market demand for distributed solar, wind, storage, and other DER technologies in the United States. The new model builds off, extends, and replaces NREL's SolarDS model (Denholm et al. 2009a), which simulates the market penetration of distributed PV only. Unlike the SolarDS model, dGen can modelmore » various DER technologies under one platform--it currently can simulate the adoption of distributed solar (the dSolar module) and distributed wind (the dWind module) and link with the ReEDS capacity expansion model (Appendix C). The underlying algorithms and datasets in dGen, which improve the representation of customer decision making as well as the spatial resolution of analyses (Figure ES-1), also are improvements over SolarDS.« less

  13. Thin film, concentrator, and multijunction space solar cells: Status and potential

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1991-01-01

    Recent, rapid advances in a variety of solar cell technologies offer the potential for significantly enhancing, or enabling entirely new, mission capabilities. Thin film solar cells are of particular interest. A review is provided of the status of those thin film cell technologies of interest for space applications, and the issues to be resolved before mission planners can consider them. A short summary of recent developments in concentrator and multijunction space solar cell and array technology is given.

  14. Thin film, concentrator and multijunction space solar cells: Status and potential

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1991-01-01

    Recent, rapid advances in a variety of solar cell technologies offer the potential for significantly enhancing, or enabling entirely new, mission capabilities. Thin film solar cells are of particular interest in that regard. A review is provided of the status of those thin film cell technologies of interest for space applications, and the issues to be resolved before mission planners can consider them. A short summary is also given of recent developments in concentrator and multijunction space solar cell and array technology.

  15. Space Photovoltaic Research and Technology, 1989

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Remarkable progress on a wide variety of approaches in space photovoltaics, for both near and far term applications is reported. Papers were presented in a variety of technical areas, including multi-junction cell technology, GaAs and InP cells, system studies, cell and array development, and non-solar direct conversion. Five workshops were held to discuss the following topics: mechanical versus monolithic multi-junction cells; strategy in space flight experiments; non-solar direct conversion; indium phosphide cells; and space cell theory and modeling.

  16. Thermal management approaches of Cu(In x ,Ga1-x )Se2 micro-solar cells

    NASA Astrophysics Data System (ADS)

    Sancho-Martínez, Diego; Schmid, Martina

    2017-11-01

    Concentrator photovoltaics (CPV) is a cost-effective method for generating electricity in regions that have a large fraction of direct solar radiation. With the help of lenses, sunlight is concentrated onto miniature, highly efficient multi-junction solar cells with a photovoltaic performance above 40%. To ensure illumination with direct radiation, CPV modules must be installed on trackers to follow the sun’s path. However, the costs of huge concentration optics and the photovoltaic technology used, narrow the market possibilities for CPV technology. Efforts to reduce these costs are being undertaken by the promotion of Cu(In x ,Ga1-x )Se2 solar cells to take over the high cost multi-junction solar cells and implementing more compact devices by minimization of solar cell area. Micrometer-sized absorbers have the potential of low cost, high efficiencies and good thermal dissipation under concentrated illumination. Heat dissipation at low (<10×) to medium (10  ×  to 100×) flux density distributions is the key point of high concentration studies for macro- and micro-sized solar cells (from 1 µm2 to 1 mm2). To study this thermal process and to optimize it, critical parameters must be taken in account: absorber area, substrate area and thickness, structure design, heat transfer mechanism, concentration factor and illumination profile. A close study on them will be carried out to determine the best structure to enhance and reach the highest possible thermal management pointing to an efficiency improvement.

  17. High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency

    NASA Astrophysics Data System (ADS)

    Che, Xiaozhou; Li, Yongxi; Qu, Yue; Forrest, Stephen R.

    2018-05-01

    Multijunction solar cells are effective for increasing the power conversion efficiency beyond that of single-junction cells. Indeed, the highest solar cell efficiencies have been achieved using two or more subcells to adequately cover the solar spectrum. However, the efficiencies of organic multijunction solar cells are ultimately limited by the lack of high-performance, near-infrared absorbing organic subcells within the stack. Here, we demonstrate a tandem cell with an efficiency of 15.0 ± 0.3% (for 2 mm2 cells) that combines a solution-processed non-fullerene-acceptor-based infrared absorbing subcell on a visible-absorbing fullerene-based subcell grown by vacuum thermal evaporation. The hydrophilic-hydrophobic interface within the charge-recombination zone that connects the two subcells leads to >95% fabrication yield among more than 130 devices, and with areas up to 1 cm2. The ability to stack solution-based on vapour-deposited cells provides significant flexibility in design over the current, all-vapour-deposited multijunction structures.

  18. Quantitative adhesion characterization of antireflective coatings in multijunction photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brock, Ryan; Rewari, Raunaq; Novoa, Fernando D.

    We discuss the development of a new composite dual cantilever beam (cDCB) thin-film adhesion testing method, which enables the quantitative measurement of adhesion on the thin and fragile substrates used in multijunction photovoltaics. In particular, we address the adhesion of several 2- and 3-layer antireflective coating systems on multijunction cells. By varying interface chemistry and morphology through processing, we demonstrate the marked effects on adhesion and help to develop an understanding of how high adhesion can be achieved, as adhesion values ranging from 0.5 J/m2 to 10 J/m2 were measured. Damp heat (85 degrees C/85% RH) was used to invokemore » degradation of interfacial adhesion. We demonstrate that even with germanium substrates that fracture relatively easily, quantitative measurements of adhesion can be made at high test yield. The cDCB test is discussed as an important new methodology, which can be broadly applied to any system that makes use of thin, brittle, or otherwise fragile substrates.« less

  19. AlInAsSb for GaSb-based multi-junction solar cells

    NASA Astrophysics Data System (ADS)

    Tournet, J.; Rouillard, Y.; Tournié, E.

    2018-02-01

    Bandgap engineering, by means of alloying or inserting nanostructures, is the bedrock of high efficiency photovoltaics. III-V quaternary alloys in particular enable bandgap tailoring of a multi-junction subcell while conserving a single lattice parameter. Among the possible candidates, AlInAsSb could in theory reach the widest range of bandgap energies while being lattice-matched to InP or GaSb. Although these material systems are still emerging photovoltaic segments, they do offer advantages for multi-junction design. GaSbbased structures in particular can make use of highly efficient GaSb/InAs tunnel junctions to connect the subcells. There has been only little information concerning GaSb-lattice matched AlInAsSb in the literature. The alloy's miscibility gap can be circumvented by the use of non-equilibrium techniques. Nevertheless, appropriate growth conditions remain to be found in order to produce a stable alloy. Furthermore, the abnormally low bandgap energies reported for the material need to be confirmed and interpreted with a multi-junction perspective. In this work, we propose a tandem structure made of an AlInAsSb top cell and a GaSb bottom cell. An epitaxy study of the AlInAsSb alloy lattice-matched to GaSb was first performed. The subcells were then grown and processed. The GaSb subcell yielded an efficiency of 5.9% under 1 sun and the tandem cell is under optimization. Preliminary results are presented in this document.

  20. More Than 200 Attend NREL/SNL/BNL Photovoltaic Reliability Workshops | News

    Science.gov Websites

    solar cells on the market today and by the lack of understanding of the causes of the changes. A document how modules respond to extended application of common stress tests. Observed changes in the see if these changes are also observed in the field. Presentations from the workshops are posted

  1. Module 1: Text Versions | State, Local, and Tribal Governments | NREL

    Science.gov Websites

    U.S., cities are setting different types of renewable energy goals based on different priorities. Air will talk about different types of goals for renewable energy development, and the importance of , you'll be able to understand the nuances between different types of goals, the importance of terminology

  2. Hybrid Tandem Solar Cells | Photovoltaic Research | NREL

    Science.gov Websites

    Hybrid Tandem Solar Cells Hybrid Tandem Solar Cells To achieve aggressive cost reductions in photovoltaics (PV) beyond the 6¢/kWh SunShot Initiative 2020 goal, module efficiency must be increased beyond on a silicon platform and that aim to provide viable prototypes for commercialization. PV Research

  3. Module 3: Text Versions | State, Local, and Tribal Governments | NREL

    Science.gov Websites

    walk through the key considerations and activities that should be performed when evaluating a site for speak about larger systems. So generally when you start thinking about site evaluation and kinda moving some of the key considerations, key things that should be considered when you're doing a site

  4. Module Measurements | Photovoltaic Research | NREL

    Science.gov Websites

    prototype concentrator evaluation test bed, and the Daystar DS-10/125 portable I-V curve tracer. Standard Evaluation Test Bed. We developed this test bed to be able to evaluate I-V characteristics throughout the day a function of time, temperature, and light level. This test bed data set is also used to evaluate

  5. Multijunction photovoltaic device and fabrication method

    DOEpatents

    Arya, Rajeewa R.; Catalano, Anthony W.

    1993-09-21

    A multijunction photovoltaic device includes first and second amorphous silicon PIN photovoltaic cells in a stacked arrangement. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one or the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers. The disclosed device is fabricated by a glow discharge process.

  6. Multijunction high voltage concentrator solar cells

    NASA Technical Reports Server (NTRS)

    Valco, G. J.; Kapoor, V. J.; Evans, J. C.; Chai, A.-T.

    1981-01-01

    The standard integrated circuit technology has been developed to design and fabricate new innovative planar multi-junction solar cell chips for concentrated sunlight applications. This 1 cm x 1 cm cell consisted of several voltage generating regions called unit cells which were internally connected in series within a single chip resulting in high open circuit voltages. Typical open-circuit voltages of 3.6 V and short-circuit currents of 90 ma were obtained at 80 AM1 suns. A dramatic increase in both short circuit current and open circuit voltage with increased light levels was observed.

  7. Optimization of Processing and Modeling Issues for Thin Film Solar Cell Devices Including Concepts for The Development of Polycrystalline Multijunctions: Annual Report; 24 August 1998-23 August 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.

    2000-08-25

    This report describes results achieved during phase 1 of a three-phase subcontract to develop and understand thin-film solar cell technology associated to CuInSe{sub 2} and related alloys, a-Si and its alloys, and CdTe. Modules based on all these thin films are promising candidates to meet DOE long-range efficiency, reliability, and manufacturing cost goals. The critical issues being addressed under this program are intended to provide the science and engineering basis for the development of viable commercial processes and to improve module performance. The generic research issues addressed are: (1) quantitative analysis of processing steps to provide information for efficient commercial-scalemore » equipment design and operation; (2) device characterization relating the device performance to materials properties and process conditions; (3) development of alloy materials with different bandgaps to allow improved device structures for stability and compatibility with module design; (4) development of improved window/heterojunction layers and contacts to improve device performance and reliability; and (5) evaluation of cell stability with respect to illumination, temperature, and ambient and with respect to device structure and module encapsulation.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holley, W.A.

    The goals of the NREL PVMaT program are, among others, to reduce module manufacturing costs and improve the quality, and we might add here the reliability, of manufactured PV products. One component critical to the service life of PV modules is the useful life of the EVA resin-based encapsulant which is employed extensively by module manufacturers on a worldwide basis. This pottant has been in commercial use since 1982, and over that time has proven to be a dependable material from the standpoint of production, module fabrication, and end-use. But despite the widespread acceptance of the EVA resin-based A9918 andmore » similar formulations for PV encapsulation, some module producers, end-users, and investigators have reported a yellowing or browning phenomenon with EVA resin-based encapsulants in the field. Wile the incidence of this discoloration/degradation appeared at comparatively few sites at the time that this present program was conceived, it raised serious concern as to the long term reliability of EVA resin-based encapsulation systems. Consequently, under the NREL PVMaT program, Springborn Laboratories proposed a comprehensive study of the EVA aging and discoloration problem and its possible solution(s). During the first year of this program, accelerated U.V. aging methods were surveyed. On careful review of the various types of accelerated U.V. aging equipment available, an Atlas Ci35A Weather-Ometer Xenon Exposure System was selected as appropriate equipment for this work. The following report summarizes how this accelerated aging technique has been used to develop a family of solutions to the discoloration problem, the most significant of which is a series of EVA-based encapsulants which are resistant to discoloration.« less

  9. Using the General Algebraic Modeling System on Peregrine | High-Performance

    Science.gov Websites

    directory, type the following: module load gams cp /nopt/nrel/apps/gams/example/trnsport.gms . gams trnsport file. For example, if your model input uses LP procedure and you want to use Gurobi solver to solve it directory that you run GAMS. For example, for the Gurobi solver, its option file is "gurobi.opt"

  10. Module 1: Text Versions | State, Local, and Tribal Governments | NREL

    Science.gov Websites

    local government solar project portal. The link is there on the right, and you can see a screen shot , when we talk about SAM, we're really talking about combining two different things together - one is a power, biomass, combustion power, and solar water heating - so, that's one that comes along with these

  11. Improvements in Cz silicon PV module manufacturing

    NASA Astrophysics Data System (ADS)

    King, Richard R.; Mitchell, Kim W.; Jester, Theresa L.

    1997-02-01

    Work focused on reducing the cost per watt of Cz Si photovoltaic modules under Phase I of Siemens Solar Industries' DOE/NREL PVMaT 4A subcontract is described. Module cost components are analyzed and solutions to high-cost items are discussed in terms of specific module designs. The approaches of using larger cells and modules to reduce per-part processing cost, and of minimizing yield loss are particularly leveraging. Yield components for various parts of the fabrication process and various types of defects are shown, and measurements of the force required to break wafers throughout the cell fabrication sequence are given. The most significant type of yield loss is mechanical breakage. The implementation of statistical process control on key manufacturing processes at Siemens Solar Industries is described. Module configurations prototyped during Phase I of this project and scheduled to begin production in Phase II have a projected cost per watt reduction of 19%.

  12. Wire Array Photovoltaics

    NASA Astrophysics Data System (ADS)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction arrays. These devices offer potential efficiencies of 34%, as demonstrated through an analytical model and optoelectronic simulations. SiGe and Ge wires were fabricated via chemical-vapor deposition and reactive ion etching. GaAs was then grown on these substrates at the National Renewable Energy Lab and yielded ns lifetime components, as required for achieving high efficiency devices.

  13. Development of metal matrix composite gridlines for space photovoltaics

    NASA Astrophysics Data System (ADS)

    Abudayyeh, Omar Kamal

    Space vehicles today are primarily powered by multi-junction photovoltaic cells due to their high efficiency and high radiation hardness in the space environment. While multi-junction solar cells provide high efficiency, microcracks develop in the crystalline semiconductor due to a variety of reasons, including: growth defects, film stress due to lattice constant mismatch, and external mechanical stresses introduced during shipping, installation, and operation. These microcracks have the tendency to propagate through the different layers of the semiconductor reaching the metal gridlines of the cell, resulting in electrically isolated areas from the busbar region, ultimately lowering the power output of the cell and potentially reducing the lifetime of the space mission. Pre-launch inspection are often expensive and difficult to perform, in which individual cells and entire modules must be replaced. In many cases, such microcracks are difficult to examine even with a thorough inspection. While repairs are possible pre-launch of the space vehicle, and even to some extent in low-to-earth missions, they are virtually impossible for deep space missions, therefore, efforts to mitigate the effects of these microcracks have substantial impact on the cell performance and overall success of the space mission. In this effort, we have investigated the use of multi-walled carbon nanotubes as mechanical reinforcement to the metal gridlines capable of bridging gaps generated in the underlying semiconductor while providing a redundant electrical conduction pathway. The carbon nanotubes are embedded in a silver matrix to create a metal matrix composite, which are later integrated onto commercial triple-junction solar cells.

  14. Chemical beam epitaxy growth of AlGaAs/GaAs tunnel junctions using trimethyl aluminium for multijunction solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paquette, B.; DeVita, M.; Turala, A.

    AlGaAs/GaAs tunnel junctions for use in high concentration multijunction solar cells were designed and grown by chemical beam epitaxy (CBE) using trimethyl aluminium (TMA) as the p-dopant source for the AlGaAs active layer. Controlled hole concentration up to 4⋅10{sup 20} cm{sup −3} was achieved through variation in growth parameters. Fabricated tunnel junctions have a peak tunneling current up to 6140 A/cm{sup 2}. These are suitable for high concentration use and outperform GaAs/GaAs tunnel junctions.

  15. High band gap 2-6 and 3-5 tunneling junctions for silicon multijunction solar cells

    NASA Technical Reports Server (NTRS)

    Daud, Taher (Inventor); Kachare, Akaram H. (Inventor)

    1986-01-01

    A multijunction silicon solar cell of high efficiency is provided by providing a tunnel junction between the solar cell junctions to connect them in series. The tunnel junction is comprised of p+ and n+ layers of high band gap 3-5 or 2-6 semiconductor materials that match the lattice structure of silicon, such as GaP (band gap 2.24 eV) or ZnS (band gap 3.6 eV). Each of which has a perfect lattice match with silicon to avoid defects normally associated with lattice mismatch.

  16. Lower hybrid current drive experiments in the HT-6M tokamak

    NASA Astrophysics Data System (ADS)

    Jiang, Tongwen; Liu, Yuexiu; Guo, Wenkang; Zhang, Xuelei; Luo, Jiarong

    1987-07-01

    Lower hybrid current drive (LHCD) experiments with a multijunction grill have been performed in the HT-6M tokamak. When the RF power pulse with 15ms risetime is injected into the plasma, the toroidal current amplitude is raised, but the temporal variation of the loop voltage does not have measurable change. The efficiency of current drive is Irf/Prf=0.57kA/kW at bar ne=3 × 1012cm-3 and Bt=8KG. It seems that the multijunction grill has the same efficiency as the ordinary grill on the LHCD experiments.

  17. Superstructures and multijunction cells for high efficiency energy conversion

    NASA Technical Reports Server (NTRS)

    Wagner, M.; Leburton, J. P.

    1985-01-01

    Potential applications of superlattices to photovoltaic structures are discussed. A single-bandgap, multijunction cell with selective electrodes for lateral transport of collected carriers is proposed. The concept is based on similar doping superlattice (NIPI) structures. Computer simulations show that by reducing bulk recombination losses, the spectral response of such cells is enhanced, particularly for poor quality materials with short diffusion lengths. Dark current contributions of additional junctions result in a trade-off between short-circuit current and open-circuit voltage as the number of layers is increased. One or two extra junctions appear to be optimal.

  18. Antireflective coatings for multijunction solar cells under wide-angle ray bundles.

    PubMed

    Victoria, Marta; Domínguez, César; Antón, Ignacio; Sala, Gabriel

    2012-03-26

    Two important aspects must be considered when optimizing antireflection coatings (ARCs) for multijunction solar cells to be used in concentrators: the angular light distribution over the cell created by the particular concentration system and the wide spectral bandwidth the solar cell is sensitive to. In this article, a numerical optimization procedure and its results are presented. The potential efficiency enhancement by means of ARC optimization is calculated for several concentrating PV systems. In addition, two methods for ARCs direct characterization are presented. The results of these show that real ARCs slightly underperform theoretical predictions.

  19. NREL Photovoltaic Program FY 1995 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-06-01

    This report summarizes the in-house and subcontracted R&D activities from Oct. 1994 through Sept. 1995; their objectives are to conduct basic, applied, and engineering research, manage subcontracted R&D projects, perform research complementary to subcontracted work, develop and maintain state-of-the-art measurement and device capabilities, develop PV manufacturing technology and modules, transfer results to industry, and evolve viable partnerships for PV systems and market development. The research activities are grouped into 5 sections: crystalline Si and advanced devices, thin-film PV, PV manufacturing, PV module and system performance and engineering, and PV applications and market development.

  20. Sharon Smolinski | NREL

    Science.gov Websites

    (NREL), 2010-present Scientist I, NREL, 2009-2010 Senior Research Technician, NREL, 2009-2009 Research Technician I, NREL, 2008-2009 Research Associate, NREL, 2000-2008 Patents "Process and genes for in Rubrivivax gelatinosus," Applied and Environmental Microbiology (2010) "Energy

  1. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    PubMed Central

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A.; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R.; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D.; Alivisatos, A. Paul; Meitl, Matthew; Burroughs, Scott; Hussain, Muhammad Mustafa; Lee, Jeong Chul; Nuzzo, Ralph G.; Rogers, John A.

    2016-01-01

    Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III–V semiconductor technologies. In this CPV+ scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation. PMID:27930331

  2. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    DOE PAGES

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; ...

    2016-12-05

    Emerging classes ofconcentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PVmore » conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV + scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV + modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.« less

  3. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A.; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R.; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D.; Alivisatos, A. Paul; Meitl, Matthew; Burroughs, Scott; Mustafa Hussain, Muhammad; Lee, Jeong Chul; Nuzzo, Ralph G.; Rogers, John A.

    2016-12-01

    Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV+ scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.

  4. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation.

    PubMed

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D; Alivisatos, A Paul; Meitl, Matthew; Burroughs, Scott; Hussain, Muhammad Mustafa; Lee, Jeong Chul; Nuzzo, Ralph G; Rogers, John A

    2016-12-20

    Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV + scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV + modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.

  5. Module 2: Text Versions | State, Local, and Tribal Governments | NREL

    Science.gov Websites

    benefit of having the shade, especially in the summer, that the overall cost increase was worth it. After how much energy a solar project will produce given your location; the cost of solar technologies and large of a project you'll be able to consider; your utility cost and consumption or what the solar

  6. Module 4: Text Versions | State, Local, and Tribal Governments | NREL

    Science.gov Websites

    own or finance a system. We'll help you understand the different financing types available to local often specific to a particular segment of the market with different amounts of incentives, different system size caps, and different total funds or aggregate capacity. The customer can identify if solar PV

  7. About NREL | NREL

    Science.gov Websites

    tour through NREL's campus. NREL's 327-acre campus in Golden, Colorado, houses many research projects. Explore the ESIF's interactive illustration to learn more. Photo of NREL's Research Support Facility. Research Support Facility Completed in 2010, NREL's ultra-high-efficiency Research Support

  8. Thermosyphon Cooler Hybrid System for Water Savings in an Energy-Efficient HPC Data Center: Modeling and Installation: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Thomas; Liu, Zan; Sickinger, David

    The Thermosyphon Cooler Hybrid System (TCHS) integrates the control of a dry heat rejection device, the thermosyphon cooler (TSC), with an open cooling tower. A combination of equipment and controls, this new heat rejection system embraces the 'smart use of water,' using evaporative cooling when it is most advantageous and then saving water and modulating toward increased dry sensible cooling as system operations and ambient weather conditions permit. Innovative fan control strategies ensure the most economical balance between water savings and parasitic fan energy. The unique low-pressure-drop design of the TSC allows water to be cooled directly by the TSCmore » evaporator without risk of bursting tubes in subfreezing ambient conditions. Johnson Controls partnered with the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories to deploy the TSC as a test bed at NREL's high-performance computing (HPC) data center in the first half of 2016. Located in NREL's Energy Systems Integration Facility (ESIF), this HPC data center has achieved an annualized average power usage effectiveness rating of 1.06 or better since 2012. Warm-water liquid cooling is used to capture heat generated by computer systems direct to water; that waste heat is either reused as the primary heat source in the ESIF building or rejected using evaporative cooling. This data center is the single largest source of water and power demand on the NREL campus, using about 7,600 m3 (2.0 million gal) of water during the past year with an hourly average IT load of nearly 1 MW (3.4 million Btu/h) -- so dramatically reducing water use while continuing efficient data center operations is of significant interest. Because Sandia's climate is similar to NREL's, this new heat rejection system being deployed at NREL has gained interest at Sandia. Sandia's data centers utilize an hourly average of 8.5 MW (29 million Btu/h) and are also one of the largest consumers of water on Sandia's site. In addition to describing the installation of the TSC and its integration into the ESIF, this paper focuses on the full heat rejection system simulation program used for hourly analysis of the energy and water consumption of the complete system under varying operating scenarios. A follow-up paper will detail the test results. The evaluation of the TSC's performance at NREL will also determine a path forward at Sandia for possible deployment in a large-scale system not only for data center use but also possibly site wide.« less

  9. GaSb solar cells grown on GaAs via interfacial misfit arrays for use in the III-Sb multi-junction cell

    NASA Astrophysics Data System (ADS)

    Nelson, George T.; Juang, Bor-Chau; Slocum, Michael A.; Bittner, Zachary S.; Laghumavarapu, Ramesh B.; Huffaker, Diana L.; Hubbard, Seth M.

    2017-12-01

    Growth of GaSb with low threading dislocation density directly on GaAs may be possible with the strategic strain relaxation of interfacial misfit arrays. This creates an opportunity for a multi-junction solar cell with access to a wide range of well-developed direct bandgap materials. Multi-junction cells with a single layer of GaSb/GaAs interfacial misfit arrays could achieve higher efficiency than state-of-the-art inverted metamorphic multi-junction cells while forgoing the need for costly compositionally graded buffer layers. To develop this technology, GaSb single junction cells were grown via molecular beam epitaxy on both GaSb and GaAs substrates to compare homoepitaxial and heteroepitaxial GaSb device results. The GaSb-on-GaSb cell had an AM1.5g efficiency of 5.5% and a 44-sun AM1.5d efficiency of 8.9%. The GaSb-on-GaAs cell was 1.0% efficient under AM1.5g and 4.5% at 44 suns. The lower performance of the heteroepitaxial cell was due to low minority carrier Shockley-Read-Hall lifetimes and bulk shunting caused by defects related to the mismatched growth. A physics-based device simulator was used to create an inverted triple-junction GaInP/GaAs/GaSb model. The model predicted that, with current GaSb-on-GaAs material quality, the not-current-matched, proof-of-concept cell would provide 0.5% absolute efficiency gain over a tandem GaInP/GaAs cell at 1 sun and 2.5% gain at 44 suns, indicating that the effectiveness of the GaSb junction was a function of concentration.

  10. Determination of optimal biomass pretreatment strategies for biofuel production: investigation of relationships between surface-exposed polysaccharides and their enzymatic conversion using carbohydrate-binding modules.

    PubMed

    Khatri, Vinay; Meddeb-Mouelhi, Fatma; Adjallé, Kokou; Barnabé, Simon; Beauregard, Marc

    2018-01-01

    Pretreatment of lignocellulosic biomass (LCB) is a key step for its efficient bioconversion into ethanol. Determining the best pretreatment and its parameters requires monitoring its impacts on the biomass material. Here, we used fluorescent protein-tagged carbohydrate-binding modules method (FTCM)-depletion assay to study the relationship between surface-exposed polysaccharides and enzymatic hydrolysis of LCB. Our results indicated that alkali extrusion pretreatment led to the highest hydrolysis rates for alfalfa stover, cattail stems and flax shives, despite its lower lignin removal efficiency compared to alkali pretreatment. Corn crop residues were more sensitive to alkali pretreatments, leading to higher hydrolysis rates. A clear relationship was consistently observed between total surface-exposed cellulose detected by the FTCM-depletion assay and biomass enzymatic hydrolysis. Comparison of bioconversion yield and total composition analysis (by NREL/TP-510-42618) of LCB prior to or after pretreatments did not show any close relationship. Lignin removal efficiency and total cellulose content (by NREL/TP-510-42618) led to an unreliable prediction of enzymatic polysaccharide hydrolysis. Fluorescent protein-tagged carbohydrate-binding modules method (FTCM)-depletion assay provided direct evidence that cellulose exposure is the key determinant of hydrolysis yield. The clear and robust relationships that were observed between the cellulose accessibility by FTCM probes and enzymatic hydrolysis rates change could be evolved into a powerful prediction tool that might help develop optimal biomass pretreatment strategies for biofuel production.

  11. NREL Supercomputer Tackles Grid Challenges | News | NREL

    Science.gov Websites

    traditional database processes. Photo by Dennis Schroeder, NREL "Big data" is playing an imagery, and large-scale simulation data. Photo by Dennis Schroeder, NREL "Peregrine provides much . Photo by Dennis Schroeder, NREL Collaboration is key, and it is hard-wired into the ESIF's core. NREL

  12. Partnerships Drive New Transportation Solutions | News | NREL

    Science.gov Websites

    efficiency challenges. Photo by Dennis Schroeder, NREL Hybrid car sales have taken off in recent years, with by Dennis Schroeder, NREL "NREL's connection to the marketplace and deployment, its strong Systems Integration Facility. Photo by Dennis Schroeder, NREL NREL leverages partnerships to deepen its

  13. A Practical Irradiance Model for Bifacial PV Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marion, Bill; MacAlpine, Sara; Deline, Chris

    2017-06-21

    A model, suitable for a row or multiple rows of photovoltaic (PV) modules, is presented for estimating the backside irradiance for bifacial PV modules. The model, which includes the effects of shading by the PV rows, is based on the use of configuration factors to determine the fraction of a source of irradiance that is received by the backside of the PV module. Backside irradiances are modeled along the sloped height of the PV module, but assumed not to vary along the length of the PV row. The backside irradiances are corrected for angle-of-incidence losses and may be added tomore » the front side irradiance to determine the total irradiance resource for the PV cell. Model results are compared with the measured backside irradiances for NREL and Sandia PV systems, and with results when using ray tracing software.« less

  14. A Practical Irradiance Model for Bifacial PV Modules: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marion, Bill; MacAlpine, Sara; Deline, Chris

    2017-06-15

    A model, suitable for a row or multiple rows of photovoltaic (PV) modules, is presented for estimating the backside irradiance for bifacial PV modules. The model, which includes the effects of shading by the PV rows, is based on the use of configuration factors (CFs) to determine the fraction of a source of irradiance that is received by the backside of the PV module. Backside irradiances are modeled along the sloped height of the PV module, but assumed not to vary along the length of the PV row. The backside irradiances are corrected for angle-of-incidence losses and may be addedmore » to the front side irradiance to determine the total irradiance resource for the PV cell. Model results are compared with the measured backside irradiances for NREL and Sandia PV systems, and with results when using the RADIANCE ray tracing program.« less

  15. "Drop-In" Biofuels Solve Integration Issues? - Continuum Magazine | NREL

    Science.gov Websites

    NREL's ReFUEL Lab. Photo by Dennis Schroeder, NREL "Drop-In" Biofuels Solve Integration Issues by Dennis Schroeder, NREL The National Advanced Biofuels Consortium (NABC), which NREL and Pacific . Photo by Dennis Schroeder, NREL The second process the NABC is investigating is the catalytic conversion

  16. Undersea Microbes Provide Path to Energy Storage | News | NREL

    Science.gov Websites

    microorganisms that will convert hydrogen and carbon dioxide into methane. Photo by Dennis Schroeder, NREL 47786 initially grew a small batch of the microorganisms. Photo by Dennis Schroeder, NREL 47789 A murky mixture of microorganisms. Photo by Dennis Schroeder, NREL 47789 California Utility Relying on NREL R&D NREL's pilot

  17. The Key to Greener Fleets - Continuum Magazine | NREL

    Science.gov Websites

    heavy-duty vehicles. Photo by Dennis Schroeder, NREL Green is more than a color of paint for truck of hybridization. Photo by Dennis Schroeder, NREL One popular tool that NREL has developed is Fleet being run on the chassis dynamometer at the ReFUEL Lab. Photo by Dennis Schroeder, NREL NREL's

  18. NREL Research Pushes Perovskites Closer to Market | News | NREL

    Science.gov Websites

    cell. Photo by Dennis Schroeder/NREL Kai Zhu, a researcher at the U.S. Department of Energy's National Kai Zhu has been conducting perovskite research at NREL since 2012. Photo by Dennis Schroeder/NREL , creating a solar cell. Photo by Dennis Schroeder/NREL Pioneering Cutting-Edge Research In a solar cell

  19. NREL-Led Effort Results in Groundbreaking New ASTM High-Octane Fuel

    Science.gov Websites

    Standard | News | NREL NREL-Led Effort Results in Groundbreaking New ASTM High-Octane Fuel Standard NREL-Led Effort Results in Groundbreaking New ASTM High-Octane Fuel Standard April 7, 2017 NREL . Photo by Dennis Schroeder, NREL 20114. ASTM International recently announced the release of a new high

  20. Cross-Sectional Transport Imaging in a Multijunction Solar Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haegel, Nancy M.; Ke, Chi-Wen; Taha, Hesham

    2015-06-14

    Combining highly localized electron-beam excitation at a point with the spatial resolution capability of optical near-field imaging, we have imaged carrier transport in a cross-sectioned multijunction (GaInP/GaInAs/Ge) solar cell. We image energy transport associated with carrier diffusion throughout the full width of the middle (GaInAs) cell and luminescent coupling from point excitation in the top cell GaInP to the middle cell. Supporting cathodoluminescence and near-field photoluminescence measurements demonstrate excitation-dependent Fermi level splitting effects that influence cross-sectioned spectroscopy results as well as transport limitations on the spatial resolution of cross-sectional measurements.

  1. Highly doped layer for tunnel junctions in solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fetzer, Christopher M.

    A highly doped layer for interconnecting tunnel junctions in multijunction solar cells is presented. The highly doped layer is a delta doped layer in one or both layers of a tunnel diode junction used to connect two or more p-on-n or n-on-p solar cells in a multijunction solar cell. A delta doped layer is made by interrupting the epitaxial growth of one of the layers of the tunnel diode, depositing a delta dopant at a concentration substantially greater than the concentration used in growing the layer of the tunnel diode, and then continuing to epitaxially grow the remaining tunnel diode.

  2. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction

    DOE PAGES

    Mailoa, Jonathan P.; Bailie, Colin D.; Johlin, Eric C.; ...

    2015-03-24

    With the advent of efficient high-bandgap metal-halide perovskite photovoltaics, an opportunity exists to make perovskite/silicon tandem solar cells. We fabricate a monolithic tandem by developing a silicon-based interband tunnel junction that facilitates majority-carrier charge recombination between the perovskite and silicon sub-cells. We demonstrate a 1 cm 2 2-terminal monolithic perovskite/silicon multijunction solar cell with a V OC as high as 1.65 V. As a result, we achieve a stable 13.7% power conversion efficiency with the perovskite as the current-limiting sub-cell, and identify key challenges for this device architecture to reach efficiencies over 25%.

  3. Tunnel Junction Development Using Hydride Vapor Phase Epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ptak, Aaron J.; Simon, John D.; Schulte, Kevin L.

    We demonstrate for the first time III-V tunnel junctions grown using hydride vapor phase epitaxy (HVPE) with peak tunneling currents >8 A/cm 2, sufficient for operation of a multijunction device to several hundred suns of concentration. Multijunction solar cells rely on tunneling interconnects between subcells to enable series connection with minimal voltage loss, but tunnel junctions have never been shown using the HVPE growth method. HVPE has recently reemerged as a low-cost growth method for high-quality III-V materials and devices, including the growth of high-efficiency III-V solar cells. We previously showed single-junction GaAs solar cells with conversion efficiencies of ~24%more » with a path forward to equal or exceed the practical efficiency limits of crystalline Si. Moving to a multijunction device structure will allow for even higher efficiencies with minimal impact on cost, necessitating the development of tunnel interconnects. Here in this paper, we demonstrate the performance of both isolated HVPE-grown tunnel junctions, as well as single-junction GaAs solar cell structures with a tunnel junction incorporated into the contact region. We observe no degradation in device performance compared to a structure without the added junction.« less

  4. Tunnel Junction Development Using Hydride Vapor Phase Epitaxy

    DOE PAGES

    Ptak, Aaron J.; Simon, John D.; Schulte, Kevin L.; ...

    2017-10-18

    We demonstrate for the first time III-V tunnel junctions grown using hydride vapor phase epitaxy (HVPE) with peak tunneling currents >8 A/cm 2, sufficient for operation of a multijunction device to several hundred suns of concentration. Multijunction solar cells rely on tunneling interconnects between subcells to enable series connection with minimal voltage loss, but tunnel junctions have never been shown using the HVPE growth method. HVPE has recently reemerged as a low-cost growth method for high-quality III-V materials and devices, including the growth of high-efficiency III-V solar cells. We previously showed single-junction GaAs solar cells with conversion efficiencies of ~24%more » with a path forward to equal or exceed the practical efficiency limits of crystalline Si. Moving to a multijunction device structure will allow for even higher efficiencies with minimal impact on cost, necessitating the development of tunnel interconnects. Here in this paper, we demonstrate the performance of both isolated HVPE-grown tunnel junctions, as well as single-junction GaAs solar cell structures with a tunnel junction incorporated into the contact region. We observe no degradation in device performance compared to a structure without the added junction.« less

  5. NREL and Partners Support Hawaii Clean Energy Initiative - Text Version |

    Science.gov Websites

    NREL NREL and Partners Support Hawaii Clean Energy Initiative - Text Version NREL and Partners Support Hawaii Clean Energy Initiative - Text Version Below is the text version for the video NREL and

  6. NREL Helps Universities Go Solar Video - Text Version | State, Local, and

    Science.gov Websites

    Tribal Governments | NREL NREL Helps Universities Go Solar Video - Text Version NREL Helps Universities Go Solar Video - Text Version Below is the text version for the NREL Helps Universities Go Solar

  7. Laboratory instrumentation and techniques for characterizing multi-junction solar cells for space applications

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.

    1995-01-01

    Multi-junction solar cells are attractive for space applications because they can be designed to convert a larger fraction of AMO into electrical power at a lower cost than single-junction cells. The performance of multi-junction cells is much more sensitive to the spectral irradiance of the illuminating source than single-junction cells. The design of high efficiency multi-junction cells for space applications requires matching the optoelectronic properties of the junctions to AMO spectral irradiance. Unlike single-junction cells, it is not possible to carry out quantum efficiency measurements using only a monochromatic probe beam and determining the cell short-circuit current assuming linearity of the quantum efficiency. Additionally, current-voltage characteristics can not be calculated from measurements under non-AMO light sources using spectral-correction methods. There are reports in the literature on characterizing the performance of multi junction cells by measuring and convoluting the quantum efficiency of each junction with the spectral irradiance; the technique is of limited value for the characterization of cell performance under AMO power-generating conditions. We report the results of research to develop instrumentation and techniques for characterizing multi junction solar cells for space . An integrated system is described which consists of a standard lamp, spectral radiometer, dual-source solar simulator, and personal computer based current-voltage and quantum efficiency equipment. The spectral radiometer is calibrated regularly using the tungsten-halogen standard lamp which has a calibration based on NIST scales. The solar simulator produces the light bias beam for current-voltage and cell quantum efficiency measurements. The calibrated spectral radiometer is used to 'fit' the spectral irradiance of the dual-source solar simulator to WRL AMO data. The quantum efficiency apparatus includes a monochromatic probe beam for measuring the absolute cell quantum efficiency at various voltage biases, including the voltage bias corresponding to the maximum-power point under AMO light bias. The details of the procedures to 'fit' the spectral irradiance to AMO will be discussed. An assessment of the role of the accuracy of the 'fit' of the spectral irradiance and probe beam intensity on measured cell characteristics will be presented. quantum efficiencies were measured with both spectral light bias and AMO light bias; the measurements show striking differences. Spectral irradiances were convoluted with cell quantum efficiencies to calculate cell currents as function of voltage. The calculated currents compare with measured currents at the 1% level. Measurements on a variety of multi-junction cells will be presented. The dependence of defects in junctions on cell quantum efficiencies measured under light and voltage bias conditions will be presented. Comments will be made on issues related to standards for calibration, and limitations of the instrumentation and techniques. Expeditious development of multi-junction solar cell technology for space presents challenges for cell characterization in the laboratory.

  8. IEEE Photovoltaic Specialists Conference, 20th, Las Vegas, NV, Sept. 26-30, 1988, Conference Record. Volumes 1 & 2

    NASA Astrophysics Data System (ADS)

    Various papers on photovoltaics are presented. The general topics considered include: amorphous materials and cells; amorphous silicon-based solar cells and modules; amorphous silicon-based materials and processes; amorphous materials characterization; amorphous silicon; high-efficiency single crystal solar cells; multijunction and heterojunction cells; high-efficiency III-V cells; modeling and characterization of high-efficiency cells; LIPS flight experience; space mission requirements and technology; advanced space solar cell technology; space environmental effects and modeling; space solar cell and array technology; terrestrial systems and array technology; terrestrial utility and stand-alone applications and testing; terrestrial concentrator and storage technology; terrestrial stand-alone systems applications; terrestrial systems test and evaluation; terrestrial flatplate and concentrator technology; use of polycrystalline materials; polycrystalline II-VI compound solar cells; analysis of and fabrication procedures for compound solar cells.

  9. Direct sunlight facility for testing and research in HCPV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sciortino, Luisa, E-mail: luisa.sciortino@unipa.it; Agnello, Simonpietro, E-mail: luisa.sciortino@unipa.it; Bonsignore, Gaetano

    2014-09-26

    A facility for testing different components for HCPV application has been developed in the framework of 'Fotovoltaico ad Alta Efficienza' (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in severalmore » locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules.« less

  10. Internships | NREL

    Science.gov Websites

    Apply here Contact: nrel.education@nrel.gov Benefits and Opportunities at a Glance NREL Undergraduate NREL's sponsored internships. Learn more Benefits Option to enroll in medical benefits (if working 30 undergraduate education and research program. Learn more SULI Benefits Salary - $625 per week Regional

  11. David LoVullo | NREL

    Science.gov Websites

    , NREL Technical Report (2017) Energy Assessment Toolkits, NREL Technical Report (2017) Solid-State Lighting Replacement and Maintenance of Lighting Design Goals, NREL Technical Report (2017) Nevada National Security Site 23 Solar and Storage Assessment, NREL Technical Report (2016) Tiller Ranger Station Net Zero

  12. NREL Analysis Identifies Where Commercial Customers Might Benefit from

    Science.gov Websites

    Battery Energy Storage | NREL | News | NREL NREL Analysis Identifies Where Commercial Customers Might Benefit from Battery Energy Storage News Release: NREL Analysis Identifies Where Commercial reduce operating costs for customers paying demand charges Commercial electricity customers who are

  13. Breakdown Breakthrough: NREL Finds Easier Ways to Deconstruct Biomass |

    Science.gov Websites

    soften biomass. Photo by Dennis Schroeder, NREL If there's an easier, more efficient method, science will Dennis Schroeder, NREL The process normally used to deconstruct biomass, called simultaneous in NREL's Biosciences Center. Photo by Dennis Schroeder, NREL New Technology Could Provide Boost to

  14. NREL at 40: Driving Advanced Energy Research | NREL

    Science.gov Websites

    , domestically sourced products like ammonia for fertilizer, ethylene for plastics, and acrylonitrile for carbon , Director, National Renewable Energy Laboratory NREL Partnerships Accelerate Commercialization The . NREL has won 61 R&D 100 Awards; in 2016, NREL won three awards. 2017 American Council of Renewable

  15. NREL Advances Wells Fargo Innovation Incubator Projects | Energy Systems

    Science.gov Websites

    Integration Facility | NREL NREL Advances Wells Fargo Innovation Incubator Projects NREL Advances Wells Fargo Innovation Incubator Projects NREL has provided technical support and validation testing at the ESIF to help advance Wells Fargo Innovation Incubator (IN2) projects. The IN2 program helps

  16. Research Staff | Integrated Energy Solutions | NREL

    Science.gov Websites

    Ricardo.Castillo@nrel.gov 303-384-7452 Chamberlain, Kyle Post Graduate Researcher Kyle.Chamberlain@nrel.gov 303-275 Researcher-Land Reuse & Arctic Energy Solutions Gail.Mosey@nrel.gov 303-384-7356 Mow, Benjamin Post Peterson, Zachary Post Graduate Researcher - Grid Modernization Zachary.Peterson@nrel.gov 303-275-4949

  17. NREL Dedicates Advanced Hydrogen Fueling Station | News | NREL

    Science.gov Websites

    5 » NREL Dedicates Advanced Hydrogen Fueling Station News Release: NREL Dedicates Advanced Hydrogen Fueling Station October 8, 2015 The Energy Department's National Renewable Energy Laboratory (NREL ) today dedicated its 700 bar hydrogen fueling station, the first of its kind in Colorado and in the

  18. Partnering: An Engine for Innovation - Continuum Magazine | NREL

    Science.gov Websites

    Schroeder, NREL Collaborative research truly is an engine for innovation. While the term "partnership (DOE) National Renewable Energy Laboratory (NREL) engages in research with the public and private agreements as in the case of NREL and HP. NREL set requirements, and then the lab and HP collaborated on the

  19. Timothy J. Coutts | NREL

    Science.gov Websites

    conducting films of cadmium stannate: X. Wu, and T. J. Coutts (NREL IR#9545) PV devices comprising cadmium (NREL IR#9535) PV devices comprising zinc stannate buffer layer and method for making: X. Wu, P. Sheldon , and T. J. Coutts (NREL IR#9721) (filed) Publications View all NREL publications for Dr. Coutts. Awards

  20. Research Staff | Bioenergy | NREL

    Science.gov Websites

    -275-4798 Alahuhta, Markus Researcher IV-Molecular Biology Petri.Alahuhta@nrel.gov 303-384-7850 Amore Katherine.Chou@nrel.gov 303-384-7626 Chou, Yat Researcher IV-Molecular Biology Yat.Chen.Chou@nrel.gov 303-384 Emeritus Researcher Helena.Chum@nrel.gov 303-275-4668 Chung, Daehwan Researcher III-Molecular Biology

  1. Contact Us about NREL | NREL

    Science.gov Websites

    Contact Us about NREL Contact Us about NREL Find mailing addresses, phone numbers, and contact -2157 202-488-2200 Phone Phone Numbers View a list of important phone numbers. Address book Contact a Staff Member at NREL Our searchable staff directory has contact information for staff. Questions

  2. Energy Saving Homes and Buildings - Continuum Magazine | NREL

    Science.gov Websites

    Spring 2014 / Issue 6 Continuum. Clean Energy Innovation at NREL Energy Saving Homes and Buildings Continuum showcases NREL's unique research capabilities and most impactful clean energy innovations. Dan Says From our director Dan says NREL Provides a Foundation for Home Energy Performance 01 NREL Provides

  3. Lars Lisell | NREL

    Science.gov Websites

    ) Analysis of Web-Based Solar Photovoltaic Mapping Tools, NREL Conference Paper (2009) Solar Ready Building novel approach to solar rooftop optimization, NREL Conference Paper (2011) View all NREL publications

  4. Transportation Research | NREL

    Science.gov Websites

    successes and awards: batteries and energy storage | climate control | commercial vehicle technologies Energy Follow NREL × NREL Blows Up Batteries to Make the World Safer Learn More about NREL's Energy

  5. Single-graded CIGS with narrow bandgap for tandem solar cells.

    PubMed

    Feurer, Thomas; Bissig, Benjamin; Weiss, Thomas P; Carron, Romain; Avancini, Enrico; Löckinger, Johannes; Buecheler, Stephan; Tiwari, Ayodhya N

    2018-01-01

    Multi-junction solar cells show the highest photovoltaic energy conversion efficiencies, but the current technologies based on wafers and epitaxial growth of multiple layers are very costly. Therefore, there is a high interest in realizing multi-junction tandem devices based on cost-effective thin film technologies. While the efficiency of such devices has been limited so far because of the rather low efficiency of semitransparent wide bandgap top cells, the recent rise of wide bandgap perovskite solar cells has inspired the development of new thin film tandem solar devices. In order to realize monolithic, and therefore current-matched thin film tandem solar cells, a bottom cell with narrow bandgap (~1 eV) and high efficiency is necessary. In this work, we present Cu(In,Ga)Se 2 with a bandgap of 1.00 eV and a maximum power conversion efficiency of 16.1%. This is achieved by implementing a gallium grading towards the back contact into a CuInSe 2 base material. We show that this modification significantly improves the open circuit voltage but does not reduce the spectral response range of these devices. Therefore, efficient cells with narrow bandgap absorbers are obtained, yielding the high current density necessary for thin film multi-junction solar cells.

  6. Graded recombination layers for multijunction photovoltaics.

    PubMed

    Koleilat, Ghada I; Wang, Xihua; Sargent, Edward H

    2012-06-13

    Multijunction devices consist of a stack of semiconductor junctions having bandgaps tuned across a broad spectrum. In solar cells this concept is used to increase the efficiency of photovoltaic harvesting, while light emitters and detectors use it to achieve multicolor and spectrally tunable behavior. In series-connected current-matched multijunction devices, the recombination layers must allow the hole current from one cell to recombine, with high efficiency and low voltage loss, with the electron current from the next cell. We recently reported a tandem solar cell in which the recombination layer was implemented using a progression of n-type oxides whose doping densities and work functions serve to connect, with negligible resistive loss at solar current densities, the constituent cells. Here we present the generalized conditions for design of efficient graded recombination layer solar devices. We report the number of interlayers and the requirements on work function and doping of each interlayer, to bridge an work function difference as high as 1.6 eV. We also find solutions that minimize the doping required of the interlayers in order to minimize optical absorption due to free carriers in the graded recombination layer (GRL). We demonstrate a family of new GRL designs experimentally and highlight the benefits of the progression of dopings and work functions in the interlayers.

  7. Recent progress of Spectrolab high-efficiency space solar cells

    NASA Astrophysics Data System (ADS)

    Law, Daniel C.; Boisvert, J. C.; Rehder, E. M.; Chiu, P. T.; Mesropian, S.; Woo, R. L.; Liu, X. Q.; Hong, W. D.; Fetzer, C. M.; Singer, S. B.; Bhusari, D. M.; Edmondson, K. M.; Zakaria, A.; Jun, B.; Krut, D. D.; King, R. R.; Sharma, S. K.; Karam, N. H.

    2013-09-01

    Recent progress in III-V multijunction space solar cell has led to Spectrolab's GaInP/GaAs/Ge triple-junction, XTJ, cells with average 1-sun efficiency of 29% (AM0, 28°C) for cell size ranging from 59 to 72-cm2. High-efficiency inverted metamorphic (IMM) multijunction cells are developed as the next space solar cell architecture. Spectrolab's large-area IMM3J and IMM4J cells have achieved 33% and 34% 1-sun, AM0 efficiencies, respectively. The IMM3J and the IMM4J cells have both demonstrated normalized power retention of 0.86 at 5x1014 e-/cm2 fluence and 0.83 and 0.82 at 1x1015 e-/cm2 fluence post 1-MeV electron radiation, respectively. The IMM cells were further assembled into coverglass-interconnect-cell (CIC) strings and affixed to typical rigid aluminum honeycomb panels for thermal cycling characterization. Preliminary temperature cycling data of two coupons populated with IMM cell strings showed no performance degradation. Spectrolab has also developed semiconductor bonded technology (SBT) where highperformance component subcells were grown on GaAs and InP substrates separately then bonded directly to form the final multijunction cells. Large-area SBT 5-junction cells have achieved a 35.1% efficiency under 1-sun, AM0 condition.

  8. Single-graded CIGS with narrow bandgap for tandem solar cells

    PubMed Central

    Avancini, Enrico; Buecheler, Stephan; Tiwari, Ayodhya N.

    2018-01-01

    Abstract Multi-junction solar cells show the highest photovoltaic energy conversion efficiencies, but the current technologies based on wafers and epitaxial growth of multiple layers are very costly. Therefore, there is a high interest in realizing multi-junction tandem devices based on cost-effective thin film technologies. While the efficiency of such devices has been limited so far because of the rather low efficiency of semitransparent wide bandgap top cells, the recent rise of wide bandgap perovskite solar cells has inspired the development of new thin film tandem solar devices. In order to realize monolithic, and therefore current-matched thin film tandem solar cells, a bottom cell with narrow bandgap (~1 eV) and high efficiency is necessary. In this work, we present Cu(In,Ga)Se2 with a bandgap of 1.00 eV and a maximum power conversion efficiency of 16.1%. This is achieved by implementing a gallium grading towards the back contact into a CuInSe2 base material. We show that this modification significantly improves the open circuit voltage but does not reduce the spectral response range of these devices. Therefore, efficient cells with narrow bandgap absorbers are obtained, yielding the high current density necessary for thin film multi-junction solar cells. PMID:29707066

  9. NREL Provides a Foundation for Home Energy Performance - Continuum

    Science.gov Websites

    , Colorado home. Photo by Dennis Schroeder, NREL NREL Provides a Foundation for Home Energy Performance NREL effectively and safely. Photo by Dennis Schroeder, NREL DOE's weatherization program, 35 years old in 2014 checklists to his crews as they perform upgrades like drilling a hole to add insulation. Photo by Dennis

  10. NREL Research Fellow Howard Branz Named Fellow of American Physical Society

    Science.gov Websites

    | News | NREL 3 » NREL Research Fellow Howard Branz Named Fellow of American Physical Society News Release: NREL Research Fellow Howard Branz Named Fellow of American Physical Society January 14 fellow of the American Physical Society (APS). NREL Research Fellow Howard Branz was elected an APS

  11. NREL, Sandia, and Johnson Controls See Significant Water Savings for HPC

    Science.gov Websites

    Cooling | Energy Systems Integration Facility | NREL NREL, Sandia and Johnson Controls save 1M Gallons of Water a Year for HPC Cooling NREL, Sandia, and Johnson Controls See Significant Water Savings for HPC Cooling NREL partnered with Sandia National Laboratories and Johnson Controls to install the

  12. NREL to Receive Public Service Award for 40 Years of Energy Innovation |

    Science.gov Websites

    NREL | News | NREL to Receive Public Service Award for 40 Years of Energy Innovation News Release: NREL to Receive Public Service Award for 40 Years of Energy Innovation July 24, 2017 The U.S . Department of Energy's National Renewable Energy Laboratory (NREL) is again receiving national recognition

  13. NREL's Battery Life Predictive Model Helps Companies Take Charge | News |

    Science.gov Websites

    lithium-ion (Li-ion) batteries, are complex electrochemical systems. There are typically several different NREL NREL's Battery Life Predictive Model Helps Companies Take Charge NREL's Battery Life monitor. An example of a stationary, grid-connected battery is the NREL project from Erigo/EaglePicher

  14. NREL, University of Washington Scientists Elevate Quantum Dot Solar Cell

    Science.gov Websites

    World Record to 13.4 Percent | NREL | News | NREL NREL, University of Washington Scientists Elevate Quantum Dot Solar Cell World Record to 13.4 Percent News Release: NREL, University of Washington Scientists Elevate Quantum Dot Solar Cell World Record to 13.4 Percent October 27, 2017 Researchers at the

  15. Fuel Cell Technology Status Analysis | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    Technology Status Analysis Fuel Cell Technology Status Analysis Get Involved Fuel cell developers interested in collaborating with NREL on fuel cell technology status analysis should send an email to NREL's Technology Validation Team at techval@nrel.gov. NREL's analysis of fuel cell technology provides objective

  16. Photovoltaic Research News | Photovoltaic Research | NREL

    Science.gov Websites

    20, 2018 NREL and Hawaiian Electric Navigate Uncharted Waters of Energy Transformation (Part 2) NREL Transformation (Part 1) NREL helped the Hawaiian Electric Companies respond to new stability challenges

  17. NREL's Energy Systems Integration Supporting Facilities - Continuum

    Science.gov Websites

    Integration Facility opened in December, 2012. Photo by Dennis Schroeder, NREL NREL's Energy Systems capabilities. Photo by Dennis Schroeder, NREL This research electrical distribution bus (REDB) works as a power

  18. Upcoming Purchasing and Subcontracting Opportunities | NREL

    Science.gov Websites

    Services Fall 2022 Construction@nrel.gov Design-Build and Construction Spring 2018 Construction@nrel.gov Design-Build for Minor Construction Spring 2020 Construction@nrel.gov Testing of Fuel and Oil Samples

  19. Film Fabrication Technologies at NREL

    NASA Technical Reports Server (NTRS)

    Mcconnell, Robert D.

    1993-01-01

    The National Renewable Energy Laboratory (NREL) has extensive capabilities for fabricating a variety of high-technology films. Much of the in-house work in NREL's large photovoltaics (PV) program involves the fabrication of multiple thin-film semiconducting layers constituting a thin-film PV device. NREL's smaller program in superconductivity focuses on the fabrication of superconducting films on long, flexible tape substrates. This paper focuses on four of NREL's in-house research groups and their film fabrication techniques, developed for a variety of elements, alloys, and compounds to be deposited on a variety of substrates. As is the case for many national laboratories, NREL's technology transfer efforts are focusing on Cooperative Research and Development Agreements (CRADA's) between NREL researchers and private industry researchers.

  20. NREL and Sandia National Laboratories to Sharpen Wind Farm Turbine Controls

    Science.gov Websites

    | News | NREL NREL and Sandia National Laboratories to Sharpen Wind Farm Turbine Controls NREL and Sandia National Laboratories to Sharpen Wind Farm Turbine Controls April 1, 2016 Researchers at wind turbine modeling. The NREL controls team have been evaluating their control theory in simulations

  1. NREL Taps Young to Oversee Geothermal Energy Program | News | NREL

    Science.gov Websites

    Taps Young to Oversee Geothermal Energy Program News Release: NREL Taps Young to Oversee Geothermal (NREL) promoted Katherine Young to laboratory program manager for geothermal energy. Young has been with NREL since 2008, working as a senior geothermal analyst and engineer in the Strategic Energy Analysis

  2. Science Undergraduate Laboratory Internship Program at NREL | NREL

    Science.gov Websites

    domestic travel to and from NREL. By Car Travel by car and you'll be reimbursed up to $250, one way. Drug Screening and Background Check Drug Screening NREL coordinates a one-time background investigation and drug appointment for the drug screening, they have 72 hours to complete the required urine test. Work Hours NREL

  3. NREL: Renewable Resource Data Center - Biomass Resource Publications

    Science.gov Websites

    Marginal Lands in APEC Economies NREL Publications Database For a comprehensive list of other NREL biomass resource publications, explore NREL's Publications Database. When searching the database, search on "

  4. Integrated Systems Performance Assessment for the Evaluation of Space Nuclear Reactor Design Concepts (Phase 1: Demonstration of the Methodology).

    DTIC Science & Technology

    1992-11-01

    Incorporated. Each design is characterized by a moderated core, a NaK pumped loop primary coolant system, and a potassium heat pipe radiator as the...1 1 10 1 RelHX 1 2 10 2 nRel HX 3 3 RelSS nRelSS Irr 4 3 7 8 9 io 2 + 2 + 2 + 2 nRel Pwr nRel NaK nRel RC nRel HX 1 1 11 1 RelSS 1 2 11 2 nRel SS 3 3

  5. Battery Thermal Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyser, Matthew A

    The operating temperature is critical in achieving the right balance between performance, cost, and life for both Li-ion batteries and ultracapacitors. The chemistries of advanced energy-storage devices - such as lithium-based batteries - are very sensitive to operating temperature. High temperatures degrade batteries faster while low temperatures decrease their power and capacity, affecting vehicle range, performance, and cost. Understanding heat generation in battery systems - from the individual cells within a module, to the inter-connects between the cells, and across the entire battery system - is imperative for designing effective thermal-management systems and battery packs. At NREL, we have developedmore » unique capabilities to measure the thermal properties of cells and evaluate thermal performance of battery packs (air or liquid cooled). We also use our electro-thermal finite element models to analyze the thermal performance of battery systems in order to aid battery developers with improved thermal designs. NREL's tools are used to meet the weight, life, cost, and volume goals set by the U.S. Department of Energy for electric drive vehicles.« less

  6. Walter Musial | NREL

    Science.gov Websites

    Walter.Musial@nrel.gov | 303-384-6956 Walt is a principal engineer and the manager of Offshore Wind at NREL , where he has worked since 1988. In 2003, he initiated the offshore wind energy research program at NREL

  7. Maximizing the Benefits of Plug-in Electric Vehicles - Continuum Magazine

    Science.gov Websites

    Testing and Integration Facility. Photo by Dennis Schroeder, NREL Maximizing the Benefits of Plug-in . Electric vehicle charging stations in NREL's parking garage. Photo by Dennis Schroder, NREL An NREL

  8. NREL in the Community | NREL

    Science.gov Websites

    NREL's Economic Impact Summary and Case Studies Subscribe For updates related to campus activities and Campaign. Economic Impact Economic Impact NREL has a strong track record of providing economic benefits to

  9. NREL Wind Leaders Participate in Wind Industry Partnership Summit | News |

    Science.gov Websites

    NREL NREL Wind Leaders Participate in Wind Industry Partnership Summit NREL Wind Leaders enable innovations needed to advance U.S. wind systems. "The summit brought together leaders from

  10. NREL to Receive R & D 100 Awards at Annual Awards Ceremony | News | NREL

    Science.gov Websites

    5 » NREL to Receive R & D 100 Awards at Annual Awards Ceremony News Release: NREL to Receive R Energy's (DOE) National Renewable Energy Laboratory (NREL) will receive two R&D 100 awards during a black tie awards ceremony hosted by Research & Development (R&D) Magazine on Oct. 20 at

  11. More Ways to Obtain Publications | NREL

    Science.gov Websites

    More Ways to Obtain Publications More Ways to Obtain Publications Through the NREL Library or one information products. The NREL Library The library is open M-F, 8:00 a.m 5:00 p.m. Email or call 303-275-4215 Loan Service. Our OCLC symbol is SOE. Search the NREL Library The NREL Library has extensive resources

  12. NREL: A Year in Clean Energy Innovations; A Review of NREL's 2011 Feature Stories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-04-01

    This document is a compilation of articles featuring NREL research and development, deployment, commercialization, and outreach activities in 2011. The feature stories can be found online at http:www.nrel.gov/features/.

  13. The Community College Internship Program at NREL | NREL

    Science.gov Websites

    lower. Drug Screening and Background Check NREL coordinates a one-time background investigation and drug the drug screening, they have 72 hours to complete the required urine test. Work Hours NREL encourages

  14. Multijunction photovoltaic device and method of manufacture

    DOEpatents

    Arya, Rejeewa R.; Catalano, Anthony W.; Bennett, Murray

    1995-04-04

    A multijunction photovoltaic device includes first, second, and third amorphous silicon p-i-n photovoltaic cells in a stacked arrangement. The intrinsic layers of the second and third cells are formed of a-SiGe alloys with differing ratios of Ge such that the bandgap of the intrinsic layers respectively decrease from the first uppermost cell to the third lowermost cell. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one of the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers.

  15. III-V-N materials for super high-efficiency multijunction solar cells

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masafumi; Bouzazi, Boussairi; Suzuki, Hidetoshi; Ikeda, Kazuma; Kojima, Nobuaki; Ohshita, Yoshio

    2012-10-01

    We have been studying concentrator multi-junction solar cells under Japanese Innovative Photovoltaic R&D program since FY2008. InGaAsN is one of appropriate materials for 4-or 5-junction solar cell configuration because this material can be lattice-matched to GaAs and Ge substrates. However, present InGaAsN single-junction solar cells have been inefficient because of low minority-carrier lifetime due to N-related recombination centers and low carrier mobility due to alloy scattering and non-homogeneity of N. This paper presents our major results in the understanding of majority and minority carrier traps in GaAsN grown by chemical beam epitaxy and their relationships with the poor electrical properties of the materials.

  16. Material Science for High-Efficiency Photovoltaics: From Advanced Optical Coatings to Cell Design for High-Temperature Applications

    NASA Astrophysics Data System (ADS)

    Perl, Emmett Edward

    Solar cells based on III-V compound semiconductors are ideally suited to convert solar energy into electricity. The highest efficiency single-junction solar cells are made of gallium arsenide, and have attained an efficiency of 28.8%. Multiple III-V materials can be combined to construct multijunction solar cells, which have reached record efficiencies greater than 45% under concentration. III-V solar cells are also well suited to operate efficiently at elevated temperatures, due in large part to their high material quality. These properties make III-V solar cells an excellent choice for use in concentrator systems. Concentrator photovoltaic systems have attained module efficiencies that exceed 40%, and have the potential to reach the lowest levelized cost of electricity in sunny places like the desert southwest. Hybrid photovoltaic-thermal solar energy systems can utilize high-temperature III-V solar cells to simultaneously achieve dispatchability and a high sunlight-to-electricity efficiency. This dissertation explores material science to advance the state of III-V multijunction solar cells for use in concentrator photovoltaic and hybrid photovoltaic-thermal solar energy systems. The first half of this dissertation describes work on advanced optical designs to improve the efficiency of multijunction solar cells. As multijunction solar cells move to configurations with four or more subcells, they utilize a larger portion of the solar spectrum. Broadband antireflection coatings are essential to realizing efficiency gains for these state-of-the-art cells. A hybrid design consisting of antireflective nanostructures placed on top of multilayer interference-based optical coatings is developed. Antireflection coatings that utilize this hybrid approach yield unparalleled performance, minimizing reflection losses to just 0.2% on sapphire and 0.6% on gallium nitride for 300-1800nm light. Dichroic mirrors are developed for bonded 5-junction solar cells that utilize InGaN as a top junction. These designs maximize reflection of high-energy light for an InGaN top junction while minimizing reflection of low-energy light that would be absorbed by the lower four junctions. Increasing the reflectivity of high-energy photons enables a second pass of light through the InGaN cell, leading to increased absorption and a higher photocurrent. These optical designs enhanced the efficiency of a 2.65eV InGaN solar cell to a value of 3.3% under the AM0 spectrum, the highest reported efficiency for a standalone InGaN solar cell. The second half of the dissertation describes the development of III-V solar cells for high-temperature applications. As the operating temperature of a solar cell is increased, the ideal bandgap of the top junction increases. AlGaInP solar cells with bandgaps ranging from 1.9eV to 2.2eV are developed. A 2.03eV AlGaInP solar cell is demonstrated with a bandgap-voltage offset of 440mV, the lowest of any AlGaInP solar cell reported to date. Single-junction AlGaInP, GaInP, and GaAs solar cells designed for high-temperature operation are characterized up to a temperature of 400°C. The cell properties are compared to an analytical drift-diffusion model, and we find that a fundamental increase in the intrinsic carrier concentration, ni, dominates the temperature dependence of the dark currents, open-circuit voltage, and cell efficiency. These findings provide a valuable guide to the design of any system that requires high-temperature solar cell operation.

  17. Sustainable NREL, Biennial Report, FY 2010-2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slovensky, M.; Daw, J.

    2012-09-01

    This document reports on NREL's 'Campus of the Future,' which leverages partnerships and showcases sustainable energy on and near the NREL site. It is unique in that the report is based on GRI key performance indicators, that support NREL's sustainability goals.

  18. NREL, NASA, and UCL Team Up to Make Lithium-Ion Batteries Safer on Earth

    Science.gov Websites

    and in Space | News | NREL NREL, NASA, and UCL Team Up to Make Lithium-Ion Batteries Safer on Earth and in Space NREL, NASA, and UCL Team Up to Make Lithium-Ion Batteries Safer on Earth and in Space . NREL joined forces with NASA in finding new, more precise ways to trigger internal short circuits

  19. NREL Buildings Research Video

    ScienceCinema

    None

    2017-12-09

    Through research, the National Renewable Energy Laboratory (NREL) has developed many strategies and design techniques to ensure both commercial and residential buildings use as little energy as possible and also work well with the surroundings. Here you will find a video that introduces the work of NREL Buildings Research, highlights some of the facilities on the NREL campus, and demonstrates these efficient building strategies. Watch this video to see design highlights of the Science and Technology Facility on the NREL campus—the first Federal building to be LEED® Platinum certified. Additionally, the video demonstrates the energy-saving features of NRELs Thermal Test Facility.

  20. Combined heat and power generation with a HCPV system at 2000 suns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paredes, Filippo; Montagnino, Fabio M.; Milone, Sergio

    2015-09-28

    This work shows the development of an innovative solar CHP system for the combined production of heat and power based upon HCPV modules working at the high concentration level of 2000 suns. The solar radiation is concentrated on commercial InGaP/InGaAs/Ge triple-junction solar cells designed for intensive work. The primary optics is a rectangular off-axis parabolic mirror while a secondary optic at the focus of the parabolic mirror is glued in optical contact with the cell. Each module consist of 2 axis tracker (Alt-Alt type) with 20 multijunction cells each one integrated with an active heat sink. The cell is connectedmore » to an active heat transfer system that allows to keep the cell at a high level of electrical efficiency (ηel > 30 %), bringing the heat transfer fluid (water and glycol) up to an output temperature of 90°C. Accordingly with the experimental data collected from the first 1 kWe prototype, the total amount of extracted thermal energy is above the 50% of the harvested solar radiation. That, in addition the electrical efficiency of the system contributes to reach an overall CHP efficiency of more than the 80%.« less

  1. Combined heat and power generation with a HCPV system at 2000 suns

    NASA Astrophysics Data System (ADS)

    Paredes, Filippo; Montagnino, Fabio M.; Salinari, Piero; Bonsignore, Gaetano; Milone, Sergio; Agnello, Simonpietro; Barbera, Marco; Gelardi, Franco M.; Sciortino, Luisa; Collura, Alfonso; Lo Cicero, Ugo; Cannas, Marco

    2015-09-01

    This work shows the development of an innovative solar CHP system for the combined production of heat and power based upon HCPV modules working at the high concentration level of 2000 suns. The solar radiation is concentrated on commercial InGaP/InGaAs/Ge triple-junction solar cells designed for intensive work. The primary optics is a rectangular off-axis parabolic mirror while a secondary optic at the focus of the parabolic mirror is glued in optical contact with the cell. Each module consist of 2 axis tracker (Alt-Alt type) with 20 multijunction cells each one integrated with an active heat sink. The cell is connected to an active heat transfer system that allows to keep the cell at a high level of electrical efficiency (ηel > 30 %), bringing the heat transfer fluid (water and glycol) up to an output temperature of 90°C. Accordingly with the experimental data collected from the first 1 kWe prototype, the total amount of extracted thermal energy is above the 50% of the harvested solar radiation. That, in addition the electrical efficiency of the system contributes to reach an overall CHP efficiency of more than the 80%.

  2. Impact of spectral irradiance distribution and temperature on the outdoor performance of concentrator photovoltaic system

    NASA Astrophysics Data System (ADS)

    Husna, Husyira Al; Shibata, Naoki; Sawano, Naoki; Ueno, Seiya; Ota, Yasuyuki; Minemoto, Takashi; Araki, Kenji; Nishioka, Kensuke

    2013-09-01

    Multi-junction solar cell is designed to have considerable effect towards the solar spectrum distribution so that the maximum solar radiation could be absorbed hence, enhancing the energy conversion efficiency of the cell. Due to its application in CPV system, the system's characteristics are more sensitive to environmental factor in comparison to flat-plate PV system which commonly equipped with Si-based solar cell. In this paper, the impact of environmental factors i.e. average photon energy (APE) and temperature of solar cell (Tcell) towards the performance of the tracking type CPV system were discussed. A year data period of direct spectral irradiance, cell temperature, and power output which recorded from November 2010 to October 2011 at a CPV system power generator plant located at Miyazaki, Japan was used in this study. The result showed that most frequent condition during operation was at APE = 1.87±0.005eV, Tcell = 65±2.5°C with performance ratio of 83.9%. Furthermore, an equivalent circuit simulation of a CPV subsystem in module unit was conducted in order to investigate the influence of environmental factors towards the performance of the module.

  3. Joshua Schaidle | NREL

    Science.gov Websites

    , NREL, NBC, 2015-present Staff Engineer, NREL, NBC, 2012-present Post-Doctoral Researcher, NREL, NBC Bio-Oil via Ex Situ Catalytic Fast Pyrolysis and Hydrotreating," Fuel (2017) "An Biorefining (2016) "Conceptual Process Design and Techno-Economic Assessment of Ex Situ Catalytic Fast

  4. Thermochemical Users Facility | Bioenergy | NREL

    Science.gov Websites

    collaborate on research and development efforts or to use our equipment to test their materials and processes NREL's thermochemical process integration, scale-up, and piloting research. Schematic diagram of NRELs about NREL's thermochemical process integration, scale-up, and piloting research. Thermochemical

  5. Intro to NREL's Thermochemical Pilot Plant

    ScienceCinema

    Magrini, Kim

    2018-02-13

    NREL's Thermochemical Pilot Plant converts biomass into higher hydrocarbon fuels and chemicals.NREL is researching biomass pyrolysis. The lab is examining how to upgrade bio-oils via stabilization. Along with this, NREL is developing the engineering system requirements for producing these fuels and chemicals at larger scales.

  6. Vehicle Thermal Management Publications | Transportation Research | NREL

    Science.gov Websites

    Publications Vehicle Thermal Management Publications Explore NREL's recent publications about light - and heavy-duty vehicle thermal management. For the complete collection of NREL's vehicle thermal management publications, search the NREL Publications Database. All Light-Duty Electric-Drive Light-Duty

  7. Polycrystalline Thin Film Photovoltaics: Research, Development, and Technologies: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullal, H. S.; Zweibel, K.; von Roedern, B.

    2002-05-01

    II-VI binary thin-film solar cells based on cadmium telluride (CdTe) and I-III-VI ternary thin-film solar cells based on copper indium diselenide (CIS) and related materials have been the subject of intense research and development in the past few years. Substantial progress has been made thus far in the area of materials research, device fabrication, and technology development, and numerous applications based on CdTe and CIS have been deployed worldwide. World record efficiency of 16.5% has been achieved by NREL scientists for a thin-film CdTe solar cell using a modified device structure. Also, NREL scientists achieved world-record efficiency of 21.1% formore » a thin-film CIGS solar cell under a 14X concentration and AM1.5 global spectrum. When measured under a AM1.5 direct spectrum, the efficiency increases to 21.5%. Pathways for achieving 25% efficiency for tandem polycrystalline thin-film solar cells are elucidated. R&D issues relating to CdTe and CIS are reported in this paper, such as contact stability and accelerated life testing in CdTe, and effects of moisture ingress in thin-film CIS devices. Substantial technology development is currently under way, with various groups reporting power module efficiencies in the range of 7.0% to 12.1% and power output of 40.0 to 92.5 W. A number of lessons learned during the scale-up activities of the technology development for fabrication of thin-film power modules are discussed. The major global players actively involved in the technology development and commercialization efforts using both rigid and flexible power modules are highlighted.« less

  8. Publications | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    , and demonstration activities in hydrogen and fuel cells. NREL Publications Database Access the full library of our publications. Search the database View all NREL publications about hydrogen and fuel cell research. Transportation and Hydrogen Newsletter Get semi-monthly updates on NREL's research, development

  9. Steve Hammond | NREL

    Science.gov Websites

    Hammond Photo of Steven Hammond Steve Hammond Center Director II-Technical Steven.Hammond@nrel.gov | 303-275-4121 Steve Hammond is director of the Computational Science Center at the National Renewable includes leading NREL's efforts in energy efficient data centers. Prior to NREL, Steve managed the

  10. Solar energy converters based on multi-junction photoemission solar cells.

    PubMed

    Tereshchenko, O E; Golyashov, V A; Rodionov, A A; Chistokhin, I B; Kislykh, N V; Mironov, A V; Aksenov, V V

    2017-11-23

    Multi-junction solar cells with multiple p-n junctions made of different semiconductor materials have multiple bandgaps that allow reducing the relaxation energy loss and substantially increase the power-conversion efficiency. The choice of materials for each sub-cell is very limited due to the difficulties in extracting the current between the layers caused by the requirements for lattice- and current-matching. We propose a new vacuum multi-junction solar cell with multiple p-n junctions separated by vacuum gaps that allow using different semiconductor materials as cathode and anode, both activated to the state of effective negative electron affinity (NEA). In this work, the compact proximity focused vacuum tube with the GaAs(Cs,O) photocathode and AlGaAs/GaAs-(Cs,O) anode with GaAs quantum wells (QWs) is used as a prototype of a vacuum single-junction solar cell. The photodiode with the p-AlGaAs/GaAs anode showed the spectral power-conversion efficiency of about 1% at V bias  = 0 in transmission and reflection modes, while, at V bias  = 0.5 V, the efficiency increased up to 10%. In terms of energy conservation, we found the condition at which the energy cathode-to-anode transition was close to 1. Considering only the energy conservation part, the NEA-cell power-conversion efficiency can rich a quantum yield value which is measured up to more than 50%.

  11. Strain-balanced type-II superlattices for efficient multi-junction solar cells.

    PubMed

    Gonzalo, A; Utrilla, A D; Reyes, D F; Braza, V; Llorens, J M; Fuertes Marrón, D; Alén, B; Ben, T; González, D; Guzman, A; Hierro, A; Ulloa, J M

    2017-06-21

    Multi-junction solar cells made by assembling semiconductor materials with different bandgap energies have hold the record conversion efficiencies for many years and are currently approaching 50%. Theoretical efficiency limits make use of optimum designs with the right lattice constant-bandgap energy combination, which requires a 1.0-1.15 eV material lattice-matched to GaAs/Ge. Nevertheless, the lack of suitable semiconductor materials is hindering the achievement of the predicted efficiencies, since the only candidates were up to now complex quaternary and quinary alloys with inherent epitaxial growth problems that degrade carrier dynamics. Here we show how the use of strain-balanced GaAsSb/GaAsN superlattices might solve this problem. We demonstrate that the spatial separation of Sb and N atoms avoids the ubiquitous growth problems and improves crystal quality. Moreover, these new structures allow for additional control of the effective bandgap through the period thickness and provide a type-II band alignment with long carrier lifetimes. All this leads to a strong enhancement of the external quantum efficiency under photovoltaic conditions with respect to bulk layers of equivalent thickness. Our results show that GaAsSb/GaAsN superlattices with short periods are the ideal (pseudo)material to be integrated in new GaAs/Ge-based multi-junction solar cells that could approach the theoretical efficiency limit.

  12. David Mooney | NREL

    Science.gov Websites

    : Institute of Electrical and Electronics Engineers (IEEE). NREL/CP-5500-54165. doi:10.1109/EnergyTech 2011. Piscataway, NJ: Institute of Electrical and Electronics Engineers (IEEE). NREL/CP-5500-53565. doi Electrical and Electronics Engineers (IEEE). NREL/CP-550-47061. doi:10.1109/pes.2009.5275358 Mooney, D., M

  13. Ashutosh Mittal | NREL

    Science.gov Websites

    @nrel.gov | 303-384-6136 Research Interests Ashutosh Mittal received an M.S. in 2004 and a Ph.D. in 2007 in Laboratory (NREL), he is actively involved in research on biomass pretreatment and conversion of biomass ., Environmental Resource Engineering, SUNY, ESF, Syracuse Professional Experience Research Scientist IV, NREL

  14. Multi-Scale Multi-Domain Model | Transportation Research | NREL

    Science.gov Websites

    framework for NREL's MSMD model. NREL's MSMD model quantifies the impacts of electrical/thermal pathway : NREL Macroscopic design factors and highly dynamic environmental conditions significantly influence the design of affordable, long-lasting, high-performing, and safe large battery systems. The MSMD framework

  15. NREL Research Support Facility (RSF) Documentary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glover, Bill; Pless, Shanti; Torcellini, Paul

    2010-01-01

    The ideas and innovations that define NREL are now shaping the next generation of commercial office buildings. DOE's Research Support Facility at NREL, will set a new benchmark for affordable, sustainable commercial design and construction. The unique form of the RSF is driven by energy-saving strategies, many researched and advanced at NREL.

  16. NREL, Abengoa Making Concentrating Solar Power System Manufacturing More

    Science.gov Websites

    Cost Effective | Energy Systems Integration Facility | NREL Abengoa NREL, Abengoa Making Concentrating Solar Power System Manufacturing More Cost Effective Abengoa is working with NREL researchers to develop a new and more cost-effective manufacturing process for critical components of concentrating solar

  17. Resource Characterization | Water Power | NREL

    Science.gov Websites

    characterization and assessment, NREL has extended its capabilities to the field of water power. NREL's team of , modeling, data analysis, and Geographic Information Systems. Many years of experience in wind assessment have enabled NREL to develop the skills and methodologies to evaluate the development potential of many

  18. Negotiable Technology Licensing | NREL

    Science.gov Websites

    more than 800 patented or patent-pending technologies available for licensing. Software NREL currently available to both small and large businesses with the technical and financial resources necessary to turn Portal 250+ Licenses Since 2000, NREL has executed more than 250 licenses. Patents NREL currently has

  19. NREL Patents Method for Continuous Monitoring of Materials During

    Science.gov Websites

    Manufacturing | News | NREL NREL Patents Method for Continuous Monitoring of Materials During Manufacturing News Release: NREL Patents Method for Continuous Monitoring of Materials During Manufacturing patent for a novel method that rapidly characterizes specialized materials during the manufacturing

  20. NREL Evaluates Advanced Solar Inverter Performance for Hawaiian Electric

    Science.gov Websites

    Companies | Energy Systems Integration Facility | NREL NREL Evaluates Advanced Solar Inverter Performance for Hawaiian Electric Companies NREL Evaluates Advanced Solar Inverter Performance for Hawaiian performance and impacts of today's advanced solar inverters, as well as proprietary feedback to the inverter

  1. NREL, American Vanadium Demonstrate First-of-Its-Kind Battery Management

    Science.gov Websites

    System | Energy Systems Integration Facility | NREL American Vanadium NREL, American Vanadium Demonstrate First-of-Its-Kind Battery Management System NREL researchers are collaborating with American Vanadium, an integrated energy storage company, to evaluate and demonstrate the first North American

  2. NREL, EPRI Validate Advanced Microgrid Controller with ESIF's Virtual

    Science.gov Websites

    Microgrid Controller with ESIF's Virtual Microgrid Model NREL, EPRI Validate Advanced Microgrid Controller with ESIF's Virtual Microgrid Model NREL is working with the Electric Power Research Institute (EPRI Energy Systems Integration Facility, by connecting it to a virtual model of a microgrid. NREL researchers

  3. Dan Macumber | NREL

    Science.gov Websites

    Dan Macumber Photo of Daniel Macumber Dan Macumber Engineering Daniel.Macumber@nrel.gov | 303-384 -6172 Orcid ID http://orcid.org/0000-0002-6909-4725 Daniel joined NREL in 2008 and works in the and interoperability. Prior to joining NREL, Daniel worked as a software developer working on

  4. Work with Us | Bioenergy | NREL

    Science.gov Websites

    Work with Us Work with Us NREL provides partnerships and collaboration in the research and line graph in industrial facility; other workers in background. Leverage the expertise of our research variety of ways to get involved with NREL's bio-based research activities: Explore NREL's partnership

  5. NREL: International Activities - Global Partnerships

    Science.gov Websites

    specific examples of technical assistance provided by NREL, see entries on the Bilateral Partnerships page Integration Study NREL is supporting collaborative work across the governments of Canada, Mexico, and the conducting a regional grid integration study for South Asian countries. UN Environment NREL partners with UN

  6. NREL Opens Large Database of Inorganic Thin-Film Materials | News | NREL

    Science.gov Websites

    Inorganic Thin-Film Materials April 3, 2018 An extensive experimental database of inorganic thin-film Energy Laboratory (NREL) is now publicly available. The High Throughput Experimental Materials (HTEM Schroeder / NREL) "All existing experimental databases either contain many entries or have all this

  7. Popular NREL-Developed Transportation Mobile App Launches on Android

    Science.gov Websites

    Platform | News | NREL Popular NREL-Developed Transportation Mobile App Launches on Android Platform Popular NREL-Developed Transportation Mobile App Launches on Android Platform May 23, 2017 More . Department of Energy's (DOE) National Renewable Energy Laboratory developed the new mobile application for

  8. NREL Bolsters Batteries with Nanotubes | News | NREL

    Science.gov Websites

    has a busy collection of plastic containers. Enlarge image NREL Scientist Chunmei Ban assembles a rapidly charging and discharging. NREL's most recent contribution toward much-improved batteries are high electricity from the positive to the negative poles and back again. High-energy materials, such as metal

  9. NREL Research Support Facility (RSF) Documentary

    ScienceCinema

    Glover, Bill; Pless, Shanti; Torcellini, Paul; Judkoff, Ron; Detamore, Drew; Telesmanich, Eric

    2017-12-09

    The ideas and innovations that define NREL are now shaping the next generation of commercial office buildings. DOE's Research Support Facility at NREL, will set a new benchmark for affordable, sustainable commercial design and construction. The unique form of the RSF is driven by energy-saving strategies, many researched and advanced at NREL.

  10. Danny Studer | NREL

    Science.gov Websites

    Daniel.Studer@nrel.gov | 303-275-4368 Daniel joined NREL in 2009. As a member of the Commercial Buildings using EnergyPlus to identify large-scale areas for reducing and optimizing commercial building energy consumption. Recently, Daniel led NREL's commercial building workforce development efforts and he is leading

  11. NREL Partners with Technical University of Denmark on Renewable Energy

    Science.gov Websites

    System | Energy Systems Integration Facility | NREL Technical University of Denmark NREL Partners with Technical University of Denmark on Renewable Energy System NREL is working in partnership with the Technical University of Denmark for the Centre for IT-Intelligent Energy Systems in Cities

  12. NREL, San Diego Gas & Electric Are Advancing Utility Microgrid Performance

    Science.gov Websites

    in Borrego Springs, California | Energy Systems Integration Facility | NREL NREL, San Diego Gas & Electric Models Utility Microgrid in Borrego Springs NREL, San Diego Gas & Electric Are Advancing Utility Microgrid Performance in Borrego Springs, California San Diego Gas & Electric Company

  13. | NREL

    Science.gov Websites

    Greg.Glatzmaier@nrel.gov | 303-384-7470 Greg originally joined NREL in 1987 and worked in the Solar Thermal work on systems analysis, novel heat-transfer fluids, and thermal-storage concepts for CSP technologies . He currently manages the advanced heat-transfer fluids and thermal-storage work at NREL. Education

  14. Partners | Integrated Energy Solutions | NREL

    Science.gov Websites

    Develops Off-Grid Energy Access through Quality Assurance Framework for Mini-Grids NREL has teamed with the Africa to develop a Quality Assurance Framework for isolated mini-grids. NREL Enhances Energy Resiliency Partnership Develops Off-Grid Energy Access through Quality Assurance Framework for Mini-Grids NREL has teamed

  15. NREL Partnership Develops Off-Grid Energy Access through Quality Assurance

    Science.gov Websites

    Framework for Mini-Grids | Integrated Energy Solutions | NREL Partnership Develops Off-Grid Energy Access through Quality Assurance Framework for Mini-Grids NREL Partnership Develops Off-Grid Energy Access through Quality Assurance Framework for Mini-Grids NREL has teamed with the Global Lighting

  16. Design Review and Analysis | Water Power | NREL

    Science.gov Websites

    Design Review and Analysis Design Review and Analysis NREL is leveraging its 35 years of experience devices and components. As part of this effort, NREL researchers provide industry partners with design reviews and analyses. In addition to design reviews, NREL offers technical assistance to solve specific

  17. NREL Funding Reductions

    Science.gov Websites

    Energy Laboratory (NREL) announced today that it will further reduce its work force as a result of million. Recent indications, however, are that NREL's funding will be lowered by an additional $27 million employees. NREL Director Charles F. Gay said the additional funding cuts are a result of lower than expected

  18. Amy Robertson | NREL

    Science.gov Websites

    validation, and data analysis. At NREL, Amy specializes in the modeling of offshore wind system dynamics. She Amy.Robertson@nrel.gov | 303-384-7157 Amy's expertise is in structural dynamics modeling, verification and of offshore wind modeling tools. Prior to joining NREL, Amy worked as an independent consultant for

  19. Economic Impacts and Business Opportunities | NREL

    Science.gov Websites

    Economic Impacts and Business Opportunities Economic Impacts and Business Opportunities NREL corporations alike. Colorado flag Economic Impact The economic impact of NREL operations on the nation totaled Jefferson County where the economic benefit totaled $275 million in 2014. Growth chart Economic Benefit NREL

  20. Smarter Grid Solutions Demonstrates Smart Campus Power Control at NREL -

    Science.gov Websites

    Video Text Version | Energy Systems Integration Facility | NREL Smarter Grid Solutions Demonstrates Smart Campus Power Control at NREL - Video Text Version Smarter Grid Solutions Demonstrates Smart Campus Power Control at NREL - Video Text Version This is the text version for the Smarter Grid Solutions

  1. National Renewable Energy Laboratory (NREL) Home Page | NREL

    Science.gov Websites

    the STEM Wheel May 22, 2018 Breakdown Breakthrough: NREL Finds Easier Ways to Deconstruct Biomass May Accelerates Innovation and Adoption of Geothermal Technologies May 18, 2018 Research Turbine Leaves Legacy in and research breakthroughs from NREL. Sign up now Data and Tools Data and Tools Partnership

  2. George Scott | NREL

    Science.gov Websites

    George Scott George Scott Researcher IV-Software Engineering George.Scott@nrel.gov | 303-384-6903 Orcid ID http://orcid.org/0000-0002-7983-3050 George joined NREL (then SERI) in 1985. He specializes in turbines and wind plants. Before joining NREL, George was a research geophysicist with Superior Oil in

  3. Structural Testing Laboratory Video Transcript | Wind | NREL

    Science.gov Websites

    be able to structurally validate wind turbine blades and components. Ryan Beach, Structural Engineer weeks. Scott Hughes: Since 1990, NREL has tested over 200 wind turbine blades with over 10,000 strain blades. Text on Screen: Learn more about NREL's structural research facilities at nrel.gov/wind

  4. @NWTC Newsletter: Spring 2015 | Wind | NREL

    Science.gov Websites

    ). 8 pp.; NREL Report No. BR-5000-63254. Jimenez, T.; Tegen, S. (2015). Economic Impact from Large -Scale Deployment of Offshore Marine and Hydrokinetic Technology in Oregon. 42 pp.; NREL Report No. TP Validation Code. 31 pp.; NREL Report No. TP-5000-62595. Bulaevskaya, V.; Wharton, S.; Clifton, A.; Qualley, G

  5. Sustainable and Net Zero Buildings on the NREL Campus | NREL

    Science.gov Websites

    NREL Campus Many of the high-performance buildings on NREL's South Table Mountain campus have achieved high-performance, sustainable buildings on the South Table Mountain (STM) campus as of FY17. The campus campus also reported 100% compliance with the Guiding Principles for High Performance Sustainable

  6. Licensing Process | NREL

    Science.gov Websites

    Agreement After the company and NREL agree on license financial terms, NREL will draft a license agreement Group Licensing Guide and Sample License. 4. Negotiate License Language After a draft agreement has been created, NREL can tailor many of the license provisions to ensure an agreement that works for all parties

  7. Energy Analysis Research Staff | Energy Analysis | NREL

    Science.gov Websites

    303-275-3725 Augustine, Chad Researcher V-Systems Engineering Chad.Augustine@nrel.gov 303-384-7382 Researcher IV-Model Engineering Clayton.Barrows@nrel.gov 303-275-3921 Beiter, Philipp Energy Markets and Engineering Gregory.Brinkman@nrel.gov 303-384-7390 Brodt-Giles, Deborah Group Manager III-Data Science

  8. Elisa Miller | NREL

    Science.gov Websites

    Elisa Miller Photo of Elisa Miller Elisa Link-Miller Researcher III-Chemistry Elisa.Miller@nrel.gov | 303-384-6777 Dr. Elisa Miller-Link studies the surface of semiconductors that are applicable for , and other nanocrystalline films. Elisa came to NREL in 2013 as an NREL Director's Fellowship recipient

  9. Research Staff | Materials Science | NREL

    Science.gov Websites

    Nancy.Haegel@nrel.gov | 303-384-6548 | Photo of Mowafak Al-Jassim Mowafak Al-Jassim Group Research Manager III and Surface Science Group Manager Glenn.Teeter@nrel.gov | 303-384-6664 Photo of Philip Parilla. Philip Parilla Group Manager/Senior Scientist Philip.Parilla@nrel.gov | 303-384-6506 Name Position Email Phone

  10. NREL Scientists Report First Solar Cell Producing More Electrons In

    Science.gov Websites

    Photocurrent Than Solar Photons Entering Cell | News | NREL NREL Scientists Report First Solar Cell Producing More Electrons In Photocurrent Than Solar Photons Entering Cell News Release: NREL Scientists Report First Solar Cell Producing More Electrons In Photocurrent Than Solar Photons Entering Cell

  11. Industry Day Workshops | Energy Systems Integration Facility | NREL

    Science.gov Websites

    , 2017: Siemens-OMNETRIC Industry Day OMNETRIC Group demonstrated a distributed control hierarchy, based Systems Integration, NREL OMNETRIC Group: Grid Edge Communications and Control Utilizing an OpenFMB NREL Murali Baggu, Manager, Power Systems Operations and Control Group, NREL Santosh Veda, Research

  12. NREL Validates Plug-In Hybrid Truck for Pacific Gas and Electric Company |

    Science.gov Websites

    Energy Systems Integration Facility | NREL Pacific Gas and Electric Company NREL Validates Plug -In Hybrid Truck for Pacific Gas and Electric Company NREL is evaluating and analyzing a Pacific Gas and Electric Company (PG&E) plug-in hybrid electric utility truck developed by Efficient

  13. NREL Enhances Energy Resiliency at Marine Corps Air Station Miramar |

    Science.gov Websites

    Integrated Energy Solutions | NREL Enhances Energy Resiliency at Marine Corps Air Station Miramar NREL Enhances Energy Resiliency at Marine Corps Air Station Miramar Since 2008, NREL has partnered with Marine Corps Air Station (MCAS) Miramar, helping it become more renewable and more energy

  14. NREL Study Predicts Fuel and Emissions Impact of Automated Mobility

    Science.gov Websites

    District | News | NREL Study Predicts Fuel and Emissions Impact of Automated Mobility District NREL Study Predicts Fuel and Emissions Impact of Automated Mobility District January 21, 2016 With NREL study shows that a campus-sized -- ranging from four to 10 square miles -- automated mobility

  15. NREL Partners With General Electric, Duke Energy on Grid Voltage Regulation

    Science.gov Websites

    Study | Energy Systems Integration Facility | NREL NREL Partners With General Electric, Duke Energy on Grid Voltage Regulation Study NREL Partners With General Electric, Duke Energy on Grid Voltage Regulation Study When a large solar photovoltaic (PV) system is connected to the electric grid, a utility's

  16. Resilient Energy Systems | Integrated Energy Solutions | NREL

    Science.gov Websites

    of microgrids Business model and valuation analysis for resilience Photovoltaic plus storage analysis Framework for Mini-Grids NREL has teamed with the Global Lighting and Energy Access Partnership and the U.S mini-grids. NREL Enhances Energy Resiliency at Marine Corps Air Station Miramar NREL has partnered with

  17. Eric Lantz | NREL

    Science.gov Websites

    Lantz Photo of Eric Lantz Eric Lantz Manager II-Program Management Research Eric.Lantz@nrel.gov acceptance of renewable energy infrastructure. Eric was a contributing author to the IEA Wind Task 26, The published in 2013. Prior to joining NREL full-time, Eric was a graduate research partner to NREL and a

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emery, K.

    Evaluate MicroLink cells as a function of temperature and spectral irradiance following the teams' standard procedures. These measurements will include the standard procedures for evaluating multijunction cells including quantum efficiency measurements and current versus voltage measurements.

  19. Design Strategies for Ultra-high Efficiency Photovoltaics

    NASA Astrophysics Data System (ADS)

    Warmann, Emily Cathryn

    While concentrator photovoltaic cells have shown significant improvements in efficiency in the past ten years, once these cells are integrated into concentrating optics, connected to a power conditioning system and deployed in the field, the overall module efficiency drops to only 34 to 36%. This efficiency is impressive compared to conventional flat plate modules, but it is far short of the theoretical limits for solar energy conversion. Designing a system capable of achieving ultra high efficiency of 50% or greater cannot be achieved by refinement and iteration of current design approaches. This thesis takes a systems approach to designing a photovoltaic system capable of 50% efficient performance using conventional diode-based solar cells. The effort began with an exploration of the limiting efficiency of spectrum splitting ensembles with 2 to 20 sub cells in different electrical configurations. Incorporating realistic non-ideal performance with the computationally simple detailed balance approach resulted in practical limits that are useful to identify specific cell performance requirements. This effort quantified the relative benefit of additional cells and concentration for system efficiency, which will help in designing practical optical systems. Efforts to improve the quality of the solar cells themselves focused on the development of tunable lattice constant epitaxial templates. Initially intended to enable lattice matched multijunction solar cells, these templates would enable increased flexibility in band gap selection for spectrum splitting ensembles and enhanced radiative quality relative to metamorphic growth. The III-V material family is commonly used for multijunction solar cells both for its high radiative quality and for the ease of integrating multiple band gaps into one monolithic growth. The band gap flexibility is limited by the lattice constant of available growth templates. The virtual substrate consists of a thin III-V film with the desired lattice constant. The film is grown strained on an available wafer substrate, but the thickness is below the dislocation nucleation threshold. By removing the film from the growth substrate, allowing the strain to relax elastically, and bonding it to a supportive handle, a template with the desired lattice constant is formed. Experimental efforts towards this structure and initial proof of concept are presented. Cells with high radiative quality present the opportunity to recover a large amount of their radiative losses if they are incorporated in an ensemble that couples emission from one cell to another. This effect is well known, but has been explored previously in the context of sub cells that independently operate at their maximum power point. This analysis explicitly accounts for the system interaction and identifies ways to enhance overall performance by operating some cells in an ensemble at voltages that reduce the power converted in the individual cell. Series connected multijunctions, which by their nature facilitate strong optical coupling between sub-cells, are reoptimized with substantial performance benefit. Photovoltaic efficiency is usually measured relative to a standard incident spectrum to allow comparison between systems. Deployed in the field systems may differ in energy production due to sensitivity to changes in the spectrum. The series connection constraint in particular causes system efficiency to decrease as the incident spectrum deviates from the standard spectral composition. This thesis performs a case study comparing performance of systems over a year at a particular location to identify the energy production penalty caused by series connection relative to independent electrical connection.

  20. Slideshow: Sustainable Transportation - Continuum Magazine | NREL

    Science.gov Websites

    Dennis Schroeder, NREL A photo of a small, white Mitsubishi i-MiEV plugged into an electric charging . Photo by Dennis Schroeder, NREL A photo of a grey Toyota Highlander SUV parked in front of a single components to test possible configurations. Photo by Dennis Schroeder, NREL A close-up photo of a black and

  1. Connecting Tech to Market in New Ways - Continuum Magazine | NREL

    Science.gov Websites

    as they run a test at the Energy Systems Integration Facility. Photo by Dennis Schroeder, NREL working together in a CRADA. Photo by Dennis Schroeder, NREL "It was hugely successful. We were able . Photo by Dennis Schroeder, NREL Sometimes the path to partnership gets a push from chance that adds

  2. NREL Pioneers Better Way to Make Renewable Hydrogen | News | NREL

    Science.gov Websites

    Pioneers Better Way to Make Renewable Hydrogen News Release: NREL Pioneers Better Way to Make Renewable Hydrogen January 9, 2017 A man stands outside on the grounds of the NREL campus. John Turner is a research fellow at the National Renewable Energy Laboratory, where he has worked since 1979. Credit: Dennis

  3. NREL Develops Novel Method to Produce Renewable Acrylonitrile | News | NREL

    Science.gov Websites

    to Produce Renewable Acrylonitrile December 7, 2017 Research paves the way for cost-competitive , and Eric Karp, part of the NREL team working on a cost-competitive, sustainable process for creating traditional process in terms of cost and yield. Now, new NREL research is showing promise toward achieving

  4. Graduate Students Gain Hands-On PV Experience from NREL Researchers | News

    Science.gov Websites

    PV Experience (HOPE) Workshop, learning from top solar scientists at the U.S. Department of Energy's | NREL Graduate Students Gain Hands-On PV Experience from NREL Researchers Graduate Students Gain Hands-On PV Experience from NREL Researchers August 10, 2017 Two students, one standing, one

  5. 1999 News Releases | NREL

    Science.gov Websites

    technologies. Sunlight Helps Laboratory Get Ready for Y2K - (12/27/99) NREL Hosts Free Workshops on Solar and Hosts Free Workshop on Winterizing Your Home - (9/28/99) R&D 100 Awards Honor NREL Research - (9/21 by Using Solar Power for Disaster Management - (9/3/99) NREL Hosts Free Workshop on Residential Solar

  6. NREL Fuels and Engines R&D Revs Up Vehicle Efficiency, Performance (Text

    Science.gov Websites

    Version) | News | NREL Fuels and Engines R&D Revs Up Vehicle Efficiency, Performance (Text Version) NREL Fuels and Engines R&D Revs Up Vehicle Efficiency, Performance (Text Version) NREL's combustion to the evolution of how fuels interact with engine and vehicle design. This is a text version of

  7. NREL, Industry Collaboration To Usher in New Wave of Autonomous Vehicle

    Science.gov Websites

    Research (Text Version) | News | NREL Industry Collaboration To Usher in New Wave of Autonomous Vehicle Research (Text Version) NREL, Industry Collaboration To Usher in New Wave of Autonomous Vehicle Research (Text Version) This is a text version of the video entitled "NREL, Industry Collaboration To

  8. NREL Wins Prestigious UK "Academy Award" for Engineering | News | NREL

    Science.gov Websites

    College London (UCL), along with NASA, The European Synchrotron, and the UK National Physical Laboratory impressive company." UCL, NREL, NASA, and their partners were recognized in the category of Safety and Device developed by NREL and NASA to study failure mechanisms in Li-ion batteries and then recorded their

  9. NREL Tests Energy Storage System to Fill Renewable Gaps | News | NREL

    Science.gov Websites

    Tests Energy Storage System to Fill Renewable Gaps NREL Tests Energy Storage System to Fill -megawatt energy storage system from Renewable Energy Systems (RES) Americas will assist research that aims to optimize the grid for wind and solar plants. The system arrived at NREL's National Wind Technology

  10. NREL's 40 Years of Innovation Honored by ACORE | News | NREL

    Science.gov Websites

    NREL's 40 Years of Innovation Honored by ACORE NREL's 40 Years of Innovation Honored by ACORE March innovation. DOE's national laboratory located in Golden, Colo. will celebrate its long history of successful Innovation and Industry Leadership Award," for their rapid adoption of renewable energy and energy

  11. NREL Efforts Push Hydrogen Vehicles Further Along | News | NREL

    Science.gov Websites

    . Photo by Ellen Jaskol The inaugural National Hydrogen and Fuel Cell Day, held in October, was too new after a decade of waiting for this to happen," said Keith Wipke, manager of NREL's Fuel Cell and Hydrogen Technologies program. At NREL since 1993, Wipke has been passionate about having fuel cell

  12. NREL Solar Cell Wins Federal Technology Transfer Prize | News | NREL

    Science.gov Websites

    Solar Cell Wins Federal Technology Transfer Prize News Release: NREL Solar Cell Wins Federal ) Solar Cell was named a winner of the 2009 Award for Excellence in Technology Transfer by the Federal Laboratory Consortium for Technology Transfer. The original IMM cell was invented by Mark Wanlass of NREL's

  13. NREL's Economic Impact Tops $872 Million | News | NREL

    Science.gov Websites

    (NREL) was $872.3 million nationwide in fiscal year 2014, according to a study by the University of Colorado Boulder's Leeds School of Business. The study estimates NREL's impact to Colorado's economy laboratory is among the 10 largest employers in the county, according to the study, which was done by Richard

  14. NREL Convenes Gathering of U.S.-China Electric Vehicle Battery Experts |

    Science.gov Websites

    highlighted by Chinese speakers were the development of new anode materials for lithium-ion batteries and recycling used lithium-ion vehicle batteries. Dave Howell, acting deputy director with the Energy News | NREL NREL Convenes Gathering of U.S.-China Electric Vehicle Battery Experts NREL

  15. NREL Battery Calorimeters Win R&D 100 Award | News | NREL

    Science.gov Websites

    -lasting, and more cost-effective lithium-ion batteries. Understanding and controlling temperature is 3 » NREL Battery Calorimeters Win R&D 100 Award NREL Battery Calorimeters Win R&D 100 Award August 28, 2013 Isothermal Battery Calorimeters (IBCs) developed by the National Renewable Energy

  16. David Sickinger | NREL

    Science.gov Websites

    Sickinger David Sickinger Researcher III-High Performance Computing David.Sickinger@nrel.gov | 303 -275-3724 David Sickinger works with NREL's High Performance Computing Systems & Operations group

  17. Christopher W. Johnson | NREL

    Science.gov Websites

    the marketplace. Education Ph.D., Molecular Biology, University of Colorado - Anschutz Medical Campus , NREL, NBC, 2015-present Postdoctoral Researcher, NREL, NBC, 2012-2015 Molecular Biologist, Gevo, 2011

  18. Workshop Targets Graduate Students to Advance Careers in PV | News | NREL

    Science.gov Websites

    for a select group of U.S. graduate students to spend an immersive week at NREL in a hands-on, small -group research setting. NREL will select 12-14 students to participate in HOPE, held on the NREL campus . Past participants have found this interactive, one-week experience to be packed with information that

  19. NREL's Education Center Programs | NREL

    Science.gov Websites

    size is 30 students to three chaperones; the minimum group size is 15 students to one chaperone , community group tours, and power lunch lectures. Visit NREL in the community for the latest news for NREL regularly at 9:30 - 11 a.m. and 12 noon - to 1:30. Please contact us for more information. The maximum group

  20. Integrating Wind and Solar on the Grid-NREL Analysis Leads the Way -

    Science.gov Websites

    shown in color, but not including pink/IESO area.) Map provided by NREL Integrating Wind and Solar on the Grid-NREL Analysis Leads the Way NREL studies confirm big wind, solar potential for grid integration To fully harvest the nation's bountiful wind and solar resources, it is critical to know how much

  1. Jenny Heeter | NREL

    Science.gov Websites

    Energy Laboratory. NREL/TP-6A20-63052. Heeter, J., G. Barbose, L. Bird, S. Weaver, F. Flores-Espino, K Energy Laboratory. NREL/TP-6A20-54991. Cochran, J., L. Bird, J. Heeter, and D.J. Arent. 2012. Integrating , CO: National Renewable Energy Laboratory. NREL/TP-6A20-53732. Holt, E., J. Sumner, and L. Bird. 2011

  2. NREL Innovation Improves Safety of Electric Vehicle Batteries | News | NREL

    Science.gov Websites

    spacesuits and EDVs led NREL to join forces with NASA in finding new, more precise ways to trigger internal . Now, the resulting first-of-its-kind ISC device is being used by NREL, NASA, and manufacturers to study battery responses to these latent flaws and determine solutions. "The trials with NASA have

  3. NREL Research Garners Three Prestigious R&D 100 Awards | News | NREL

    Science.gov Websites

    , SkyFuel, to create a ground-breaking and low-cost system for utility-sized power generation. The SkyTrough installation costs into competition with gas-fired power plants. NREL shares this award with SkyFuel, Inc. NREL -film lithium microbattery. Its ideal applications are remote wireless sensors, smart homes, smart cars

  4. Winds of Change Blowing for Wind Farm Research with NREL's SOWFA Tool |

    Science.gov Websites

    News | NREL Winds of Change Blowing for Wind Farm Research with NREL's SOWFA Tool Winds of Change Blowing for Wind Farm Research with NREL's SOWFA Tool April 1, 2016 Before the Energy Department's that researchers all over the world could embrace. Now, the winds of change are blowing. SOWFA is a

  5. NREL and Army Validate Energy Savings for Net Zero Energy Installations |

    Science.gov Websites

    News | NREL and Army Validate Energy Savings for Net Zero Energy Installations News Release : NREL and Army Validate Energy Savings for Net Zero Energy Installations October 27, 2014 The U.S. Army (Army) has partnered with the Energy Department's National Renewable Energy Laboratory (NREL) to

  6. NREL Kicks Off Next Phase of Advanced Computer-Aided Battery Engineering |

    Science.gov Websites

    lithium-ion (Li-ion) batteries, known as a multi-scale multi-domain (GH-MSMD) model framework, was News | NREL Kicks Off Next Phase of Advanced Computer-Aided Battery Engineering NREL Kicks Off Next Phase of Advanced Computer-Aided Battery Engineering March 16, 2016 NREL researcher looks across

  7. NREL Spectrum of Clean Energy Innovation (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-09-01

    This brochure describes the NREL Spectrum of Clean Energy Innovation, which includes analysis and decision support, fundamental science, market relevant research, systems integration, testing and validation, commercialization and deployment. Through deep technical expertise and an unmatched breadth of capabilities, the National Renewable Energy Laboratory (NREL) leads an integrated approach across the spectrum of renewable energy innovation. From scientific discovery to accelerating market deployment, NREL works in partnership with private industry to drive the transformation of our nation's energy systems. NREL integrates the entire spectrum of innovation, including fundamental science, market relevant research, systems integration, testing and validation, commercialization, and deployment.more » Our world-class analysis and decision support informs every point on the spectrum. The innovation process at NREL is inter-dependent and iterative. Many scientific breakthroughs begin in our own laboratories, but new ideas and technologies may come to NREL at any point along the innovation spectrum to be validated and refined for commercial use.« less

  8. @NWTC Newsletter | Wind | NREL

    Science.gov Websites

    Mutually Beneficial NREL Researchers Play Integral Role in National Offshore Wind Strategy NWTC's Grid . More NREL Researchers Play Integral Role in National Offshore Wind Strategy The national energy

  9. Prashant Sharan | NREL

    Science.gov Websites

    Engineering Prashant.Sharan@nrel.gov | 303-275-3067 Prashant Sharan joined the Thermal Systems Group at NREL ), and solar thermal system. Prashant developed analytical methodologies for optimal integration of

  10. Partner News | NREL

    Science.gov Websites

    Uncharted Waters of Energy Transformation (Part 2) NREL and the Hawaiian Electric Companies are evaluating Electric Navigate Uncharted Waters of Energy Transformation (Part 1) NREL helped the Hawaiian Electric

  11. Postdoctoral Opportunities | NREL

    Science.gov Websites

    publications. If you're an international or foreign national applicant, see information on visas and NREL benefits. Contact Please direct questions or requests for information to university@nrel.gov.

  12. A Climate Change Vulnerability Assessment Report for the National Renewable Energy Laboratory: May 23, 2014 -- June 5, 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, J.; O'Grady, M.; Renfrow, S.

    The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), in Golden, Colorado, focuses on renewable energy and energy efficiency research. Its portfolio includes advancing renewable energy technologies that can help meet the nation's energy and environmental goals. NREL seeks to better understand the potential effects of climate change on the laboratory--and therefore on its mission--to ensure its ongoing success. Planning today for a changing climate can reduce NREL's risks and improve its resiliency to climate-related vulnerabilities. This report presents a vulnerability assessment for NREL. The assessment was conducted in fall 2014 to identify NREL's climate change vulnerabilities andmore » the aspects of NREL's mission or operations that may be affected by a changing climate.« less

  13. Evaluation of Installation Time for SMASHmount by SMASHsolar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Department of Energy SunShot Incubator program provides early-stage assistance to help startup companies cross technological barriers to commercialization while encouraging private sector investment. The SunShot Incubator program aims to shorten the time it takes for a young business or company to develop an innovative product concept and make it commercially available, which includes product prototyping, deployment, and, potentially, manufacturing. SMASHsolar was selected as an Incubator awardee to develop a simple, snap-together, module-integrated photovoltaic (PV) mounting system in attempts to dramatically reduce the time, effort and skill needed to install rooftop solar. In support of this award, the National Renewablemore » Energy Laboratory worked with SMASHsolar to develop a procedure for evaluating the installation time required for the SMASHmount system vs. widely-available rail systems. Amongst several installations, NREL measured the following installation times, subject to the qualifications and conditions described later in this report. NREL found that the SMASHsolar SMASHmount system was installed between 15% and 37% faster than tested competing systems after one or two installations of the system.« less

  14. Sign up for NREL News | NREL

    Science.gov Websites

    . All fields required. Email Name Organization Choose your subscriptions News Releases and Feature and technology news, publications, and job postings Subscribe Subscribe to NREL Research and Analysis

  15. Spectral binning for energy production calculations and multijunction solar cell design

    DOE PAGES

    Garcia, Iván; McMahon, William E.; Habte, Aron; ...

    2017-09-14

    Currently, most solar cells are designed for and evaluated under standard spectra intended to represent typical spectral conditions. However, no single spectrum can capture the spectral variability needed for annual energy production (AEP) calculations, and this shortcoming becomes more significant for series-connected multijunction cells as the number of junctions increases. For this reason, AEP calculations are often performed on very detailed yearlong sets of data, but these pose 2 inherent challenges: (1) These data sets comprise thousands of data points, which appear as a scattered cloud of data when plotted against typical parameters and are hence cumbersome to classify andmore » compare, and (2) large sets of spectra bring with them a corresponding increase in computation or measurement time. Here, we show how a large spectral set can be reduced to just a few 'proxy' spectra, which still retain the spectral variability information needed for AEP design and evaluation. The basic 'spectral binning' methods should be extensible to a variety of multijunction device architectures. In this study, as a demonstration, the AEP of a 4-junction device is computed for both a full set of spectra and a reduced proxy set, and the results show excellent agreement for as few as 3 proxy spectra. This enables much faster (and thereby more detailed) calculations and indoor measurements and provides a manageable way to parameterize a spectral set, essentially creating a 'spectral fingerprint,' which should facilitate the understanding and comparison of different sites.« less

  16. Graphene-Enhanced Thermal Interface Materials for Thermal Management of Solar Cells

    NASA Astrophysics Data System (ADS)

    Saadah, Mohammed Ahmed

    The interest to photovoltaic solar cells as a source of energy for a variety of applications has been rapidly increasing in recent years. Solar cells panels that employ optical concentrators can convert more than 30% of absorbed light into electricity. Most of the remaining 70% of absorbed energy is turned into heat inside the solar cell. The increase in the photovoltaic cell temperature negatively affects its power conversion efficiency and lifetime. In this dissertation research I investigated a feasibility of using graphene fillers in thermal interface materials for improving thermal management of multi-junction concentrator solar cells. Graphene and few-layer graphene fillers, produced by a scalable environmentally-friendly liquid-phase exfoliation technique, were incorporated into conventional thermal interface materials. Characteristics of the composites have been examined with Raman spectroscopy, optical microscopy and thermal conductivity measurements. Graphene-enhanced thermal interface materials have been applied between a solar cell and heat sink to improve heat dissipation. The performance of the single and multi-junction solar cells has been tested using an industry-standard solar simulator under the light concentration of up to 2000 suns. It was found that the application of graphene-enhanced thermal interface materials allows one to reduce the solar cell temperature and increase the open-circuit voltage. We demonstrated that the use of graphene helps in recovering significant amount of the power loss due to solar cell overheating. The obtained results are important for the development of new technologies for thermal management of concentrated and multi-junction photovoltaic solar cells.

  17. Influence of double- and triple-layer antireflection coatings on the formation of photocurrents in multijunction III–V solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musalinov, S. B.; Anzulevich, A. P.; Bychkov, I. V.

    2017-01-15

    The results of simulation by the transfer-matrix method of TiO{sub 2}/SiO{sub 2} double-layer and TiO{sub 2}/Si{sub 3}N{sub 4}/SiO{sub 2} triple-layer antireflection coatings for multijunction InGaP/GaAs/Ge heterostructure solar cells are presented. The TiO{sub 2}/SiO{sub 2} double-layer antireflection coating is experimentally developed and optimized. The experimental spectral dependences of the external quantum yield of the InGaP/GaAs/Ge heterostructure solar cell and optical characteristics of antireflection coatings, obtained in the simulation, are used to determine the photogenerated current densities of each subcell in the InGaP/GaAs/Ge solar cell under AM1.5D irradiation conditions (1000 W/m{sup 2}) and for the case of zero reflection loss. It ismore » shown in the simulation that the optimized TiO{sub 2}/Si{sub 3}N{sub 4}/SiO{sub 2} triple-layer antireflection coating provides a 2.3 mA/cm{sup 2} gain in the photocurrent density for the Ge subcell under AM1.5D conditions in comparison with the TiO{sub 2}/SiO{sub 2} double-layer antireflection coating under consideration. This thereby provides an increase in the fill factor of the current–voltage curve and in the output electric power of the multijunction solar cell.« less

  18. Optimization of antireflection coating design for multijunction solar cells and concentrator systems

    NASA Astrophysics Data System (ADS)

    Valdivia, Christopher E.; Desfonds, Eric; Masson, Denis; Fafard, Simon; Carlson, Andrew; Cook, John; Hall, Trevor J.; Hinzer, Karin

    2008-06-01

    Photovoltaic solar cells are a route towards local, environmentally benign, sustainable and affordable energy solutions. Antireflection coatings are necessary to input a high percentage of available light for photovoltaic conversion, and therefore have been widely exploited for silicon solar cells. Multi-junction III-V semiconductor solar cells have achieved the highest efficiencies of any photovoltaic technology, yielding up to 40% in the laboratory and 37% in commercial devices under varying levels of concentrated light. These devices benefit from a wide absorption spectrum (300- 1800 nm), but this also introduces significant challenges for antireflection coating design. Each sub-cell junction is electrically connected in series, limiting the overall device photocurrent by the lowest current-producing junction. Therefore, antireflection coating optimization must maximize the current from the limiting sub-cells at the expense of the others. Solar concentration, necessary for economical terrestrial deployment of multi-junction solar cells, introduces an angular-dependent irradiance spectrum. Antireflection coatings are optimized for both direct normal incidence in air and angular incidence in an Opel Mk-I concentrator, resulting in as little as 1-2% loss in photocurrent as compared to an ideal zero-reflectance solar cell, showing a similar performance to antireflection coatings on silicon solar cells. A transparent conductive oxide layer has also been considered to replace the metallic-grid front electrode and for inclusion as part of a multi-layer antireflection coating. Optimization of the solar cell, antireflection coating, and concentrator system should be considered simultaneously to enable overall optimal device performance.

  19. Spectral binning for energy production calculations and multijunction solar cell design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Iván; McMahon, William E.; Habte, Aron

    Currently, most solar cells are designed for and evaluated under standard spectra intended to represent typical spectral conditions. However, no single spectrum can capture the spectral variability needed for annual energy production (AEP) calculations, and this shortcoming becomes more significant for series-connected multijunction cells as the number of junctions increases. For this reason, AEP calculations are often performed on very detailed yearlong sets of data, but these pose 2 inherent challenges: (1) These data sets comprise thousands of data points, which appear as a scattered cloud of data when plotted against typical parameters and are hence cumbersome to classify andmore » compare, and (2) large sets of spectra bring with them a corresponding increase in computation or measurement time. Here, we show how a large spectral set can be reduced to just a few 'proxy' spectra, which still retain the spectral variability information needed for AEP design and evaluation. The basic 'spectral binning' methods should be extensible to a variety of multijunction device architectures. In this study, as a demonstration, the AEP of a 4-junction device is computed for both a full set of spectra and a reduced proxy set, and the results show excellent agreement for as few as 3 proxy spectra. This enables much faster (and thereby more detailed) calculations and indoor measurements and provides a manageable way to parameterize a spectral set, essentially creating a 'spectral fingerprint,' which should facilitate the understanding and comparison of different sites.« less

  20. Progress in the Development of Metamorphic Multi-Junction III-V Space-Solar Cells at Essential Research Incorporated

    NASA Technical Reports Server (NTRS)

    Sinharoy, Samar; Patton, Martin O.; Valko, Thomas M., Sr.; Weizer, Victor G.

    2002-01-01

    Theoretical calculations have shown that highest efficiency III-V multi-junction solar cells require alloy structures that cannot be grown on a lattice-matched substrate. Ever since the first demonstration of high efficiency metamorphic single junction 1.1 eV and 1.2 eV InGaAs solar cells by Essential Research Incorporated (ERI), interest has grown in the development of multi-junction cells of this type using graded buffer layer technology. ERI is currently developing a dual-junction 1.6 eV InGaP/1.1 eV InGaAs tandem cell (projected practical air-mass zero (AM0), one-sun efficiency of 28%, and 100-sun efficiency of 37.5%) under a Ballistic Missile Defense Command (BMDO) SBIR Phase II program. A second ongoing research effort at ERI involves the development of a 2.1 eV AlGaInP/1.6 eV InGaAsP/1.2 eV InGaAs triple-junction concentrator tandem cell (projected practical AM0 efficiency of 36.5% under 100 suns) under a SBIR Phase II program funded by the Air Force. We are in the process of optimizing the dual-junction cell performance. In case of the triple-junction cell, we have developed the bottom and the middle cell, and are in the process of developing the layer structures needed for the top cell. A progress report is presented in this paper.

  1. Media Room | NREL

    Science.gov Websites

    researcher profiles, and find other resources for media. View all news and feature stories Leadership Bios Learn more about NREL's director, deputy lab directors, and the complete leadership team. About NREL

  2. USAID-NREL Partnership News | NREL

    Science.gov Websites

    can benefit the Lao People's Democratic Republic has emerged from a new report published by NREL Leadership Academy Learning About Renewable Energy FAQs Share Home Research Advanced Manufacturing Bioenergy

  3. Analysis and Characterization | Bioenergy | NREL

    Science.gov Websites

    Analysis and Characterization Analysis and Characterization NREL's team of bioenergy analysts takes equipment in a lab Biomass Characterization Photo of NRELs Biochemical Process Development Unit showing a

  4. Eric Lockhart | NREL

    Science.gov Websites

    Lockhart Eric Lockhart Project Leader Eric.Lockhart@nrel.gov | 303-275-4637 Eric is a Project and technical assistance activities. Eric joined NREL in 2016, bringing with him professional

  5. Denver Post Names NREL as a Top Work Place | News | NREL

    Science.gov Websites

    interns. A recent study by the University of Colorado's Leeds School of Business noted that NREL is one of been recognized by the Denver Post as a "2013 Top Work Place." NREL is one of only 15 large Denver-area employers selected this year. "I am very gratified that we were nominated by one of our

  6. NREL to Work with 14 Additional Small Businesses as Part of the DOE Small

    Science.gov Websites

    Business Vouchers Program | NREL | News | NREL to Work with 14 Additional Small Businesses as Part of the DOE Small Business Vouchers Program News Release: NREL to Work with 14 Additional Small Businesses as Part of the DOE Small Business Vouchers Program May 2, 2017 The U.S. Department of Energy's

  7. NREL and Solectria Developing Advanced Photovoltaic Inverters | Energy

    Science.gov Websites

    Systems Integration Facility | NREL Solectria NREL and Solectria Developing Advanced inverters offer a lot of potential to help with this, and manufacturers like Solectria are developing

  8. Security and Resilience | Grid Modernization | NREL

    Science.gov Websites

    Security and Resilience Security and Resilience NREL develops tools and solutions to enable a more Consortium, NREL collaborates with industry, academia, and other research organizations to find solutions to

  9. Solar Research News | Solar Research | NREL

    Science.gov Websites

    Transformation (Part 2) NREL and the Hawaiian Electric Companies are evaluating energy trends and simulating Energy Transformation (Part 1) NREL helped the Hawaiian Electric Companies respond to new stability

  10. Community Meeting to Focus on NREL Construction Plans

    Science.gov Websites

    Community Meeting to Focus on NREL Construction Plans For more information contact: Kerry Masson issues including planned construction projects on NREL's 300-acre campus. Construction plans include

  11. Chemistry and Nanoscience News | Chemistry and Nanoscience Research | NREL

    Science.gov Websites

    News Chemistry and Nanoscience News December 7, 2017 News Release: NREL Develops Novel Method to Laboratory (NREL) establishes a novel catalytic method to produce renewable acrylonitrile using 3

  12. Community News | NREL

    Science.gov Websites

    , NREL hosted its 19th annual Middle School Electric Car Competition, where students raced solar and Colorado High School Science Bowl--hosted by NREL - where 41 teams from across the state competed for a

  13. NREL, Eaton Partner on Innovative Energy Solutions | News | News | NREL

    Science.gov Websites

    into a cooperative agreement with the National Renewable Energy Laboratory (NREL). The partnership for hybrid electric vehicles. This new agreement augments this relationship by enabling both

  14. Prestigious Council to Advise National Renewable Energy Lab

    Science.gov Websites

    laboratory by offering independent advice and counsel to the NREL operating contractor and NREL Director five years. The partnership officially became NREL's contractor today, following 21 years of management

  15. Energy Innovations: Science & Technology at NREL, Winter 2010 (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2010-02-01

    The Energy Innovations newsletter serves as a key outreach tool for NREL to tout the lab's accomplishments, progress, and activities to key stakeholders who can impact the lab's level of funding and potential resources. Audiences include VIP visitors to NREL, current and potential partners in our work, and key decision makers who want to know about NREL's R&D directions and the quality and significance of our results.

  16. Analysis of NREL Cold-Drink Vending Machines for Energy Savings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deru, M.; Torcellini, P.; Bottom, K.

    NREL Staff, as part of Sustainable NREL, an initiative to improve the overall energy and environmental performance of the lab, decided to control how its vending machines used energy. The cold-drink vending machines across the lab were analyzed for potential energy savings opportunities. This report gives the monitoring and the analysis of two energy conservation measures applied to the cold-drink vending machines at NREL.

  17. NREL Fuel Cell Bus Analysis Finds Fuel Economy to be 1.4 Times Higher than

    Science.gov Websites

    Diesel | News | NREL Fuel Cell Bus Analysis Finds Fuel Economy to be 1.4 Times Higher than Diesel NREL Fuel Cell Bus Analysis Finds Fuel Economy to be 1.4 Times Higher than Diesel December 2, 2016 NREL has published a new report showing that the average fuel economy of fuel cell electric buses from

  18. Energy Innovations: Science & Technology at NREL, Fall 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2009-09-01

    The Energy Innovations newsletter serves as a key outreach tool for NREL to tout the lab's accomplishments, progress, and activities to key stakeholders who can impact the lab's level of funding and potential resources. Audiences include VIP visitors to NREL, current and potential partners in our work, and key decision makers who want to know about NREL's R&D directions and the quality and significance of our results.

  19. NREL Analysis: Reimagining What's Possible for Clean Energy - Continuum

    Science.gov Websites

    Analysis Helps Enable the Energy System of the Future NREL Helps Countries Build Stronger Economies with Low-Emission Development NREL Helps Countries Build Stronger Economies with Low-Emission Development

  20. NREL Science Central to Success of New Biofuels Projects: DuPont-NREL

    Science.gov Websites

    without adversely affecting the next step in the process." Long Hours, True Collaboration Meanwhile processes. "This was a true collaboration," said NREL microbiologist Mary Ann Franden, who

  1. Fabian Wendt | NREL

    Science.gov Websites

    Fabian Wendt Photo of Fabian Wendt Fabian Wendt Researcher III-Physics Fabian.Wendt@nrel.gov | 303 external industry partners. Prior to joining NREL, Fabian worked on several projects related to the design

  2. NREL: News - Director of National Bioenergy Center Named

    Science.gov Websites

    coordinating NREL's activities with bioenergy research at Oak Ridge National Laboratory (ORNL) and other organizations. Pacheco will represent the NBC, NREL, ORNL, DOE, and the interests of bioenergy programs to

  3. Energy Education | NREL

    Science.gov Websites

    Energy Education Energy Education Learn how NREL's Workforce Development and Education Programs lectures at NREL's Education Center. Energy Education for Students 4th-12th Grades Energy Education

  4. NREL: News - NREL Researchers Use Sunlight to Power Laser

    Science.gov Websites

    Renewable Energy Laboratory (NREL) and the University of Chicago powered a laser with concentrated sunlight and University of Chicago researchers developed the secondary concentrator used for the solar laser as

  5. Energy Systems Analysis Tools | Energy Analysis | NREL

    Science.gov Websites

    energy resources. REFlex NREL uses this dispatch model to evaluate renewable generation as a function of information. Regional Energy Deployment System (ReEDS) NREL uses this multi-regional, multi-time period, GIS

  6. Ryan France | NREL

    Science.gov Websites

    at NREL. He has investigated growth of new materials such as GaAsBi and GaInNAs by molecular beam participated in an NREL-Fraunhofer ISE research exchange where he investigated III-V-on-Si growth and

  7. Solar Accuracy to the 3/10000 Degree - Continuum Magazine | NREL

    Science.gov Websites

    Laboratory, where he has developed Solar Position Algorithm software. Photo by Dennis Schroeder, NREL Solar -Pyrheliometer Comparison (NPC), on the deck of NREL's Solar Radiation Research Laboratory. Photo by Dennis

  8. Power Electronics and Electric Machines Facilities | Transportation

    Science.gov Websites

    current processes. Photo by Dennis Schroeder, NREL A photo of a researcher in safety glasses using a large focus in NREL's power electronics and electric machines labs. Photo by Dennis Schroeder, NREL Heat

  9. Facilities | Integrated Energy Solutions | NREL

    Science.gov Websites

    strategies needed to optimize our entire energy system. A photo of the high-performance computer at NREL . High-Performance Computing Data Center High-performance computing facilities at NREL provide high-speed

  10. Geospatial Data Science Research Staff | Geospatial Data Science | NREL

    Science.gov Websites

    Oliveira, Ricardo Researcher II-Geospatial Science Ricardo.Oliveira@nrel.gov 303-275-3272 Gilroy, Nicholas Specialist Pamela.Gray.hann@nrel.gov 303-275-4626 Grue, Nicholas Researcher III-Geospatial Science Nick.Grue

  11. NREL Director Elected to National Academy of Engineering

    Science.gov Websites

    NREL NREL Director Elected to National Academy of Engineering For more information contact: George Douglas, 303-275-4096 e:mail: George Douglas Golden, Colo., Feb. 18, 2000 - Richard Truly, director of the

  12. NREL and Panasonic | Energy Systems Integration Facility | NREL

    Science.gov Websites

    with distribution system modeling for the first time. The tool combines NREL's building energy system distribution system models, and Panasonic will perform cost-benefit analyses. Along with the creation of the

  13. Edwin Lee | NREL

    Science.gov Websites

    Edwin Lee Photo of Edwin Lee Edwin Lee Researcher III-Mechanical Engineering Edwin.Lee@nrel.gov | 303-275-3110 Edwin Lee joined NREL in 2013 and works in the Commercial Buildings Research Group. He

  14. Scale Up of Malonic Acid Fermentation Process: Cooperative Research and Development Final Report, CRADA Number CRD-16-612

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schell, Daniel J

    The goal of this work is to use the large fermentation vessels in the National Renewable Energy Laboratory's (NREL) Integrated Biorefinery Research Facility (IBRF) to scale-up Lygos' biological-based process for producing malonic acid and to generate performance data. Initially, work at the 1 L scale validated successful transfer of Lygos' fermentation protocols to NREL using a glucose substrate. Outside of the scope of the CRADA with NREL, Lygos tested their process on lignocellulosic sugars produced by NREL at Lawrence Berkeley National Laboratory's (LBNL) Advanced Biofuels Process Development Unit (ABPDU). NREL produced these cellulosic sugar solutions from corn stover using amore » separate cellulose/hemicellulose process configuration. Finally, NREL performed fermentations using glucose in large fermentors (1,500- and 9,000-L vessels) to intermediate product and to demonstrate successful performance of Lygos' technology at larger scales.« less

  15. Field Performance versus Standard Test Condition Efficiency of Tandem Solar Cells and the Singular Case of Perovskites/Silicon Devices.

    PubMed

    Dupré, Olivier; Niesen, Bjoern; De Wolf, Stefaan; Ballif, Christophe

    2018-01-18

    Multijunction cells may offer a cost-effective route to boost the efficiency of industrial photovoltaics. For any technology to be deployed in the field, its performance under actual operating conditions is extremely important. In this perspective, we evaluate the impact of spectrum, light intensity, and module temperature variations on the efficiency of tandem devices with crystalline silicon bottom cells with a particular focus on perovskite top cells. We consider devices with different efficiencies and calculate their energy yields using field data from Denver. We find that annual losses due to differences between operating conditions and standard test conditions are similar for single-junction and four-terminal tandem devices. The additional loss for the two-terminal tandem configuration caused by current mismatch reduces its performance ratio by only 1.7% when an optimal top cell bandgap is used. Additionally, the unusual bandgap temperature dependence of perovskites is shown to have a positive, compensating effect on current mismatch.

  16. Electrical-optical characterization of multijunction solar cells under 2000X concentration

    NASA Astrophysics Data System (ADS)

    Bonsignore, Gaetano; Gallitto, Aurelio Agliolo; Agnello, Simonpietro; Barbera, Marco; Candia, Roberto; Cannas, Marco; Collura, Alfonso; Dentici, Ignazio; Gelardi, Franco Mario; Cicero, Ugo Lo; Montagnino, Fabio Maria; Paredes, Filippo; Sciortino, Luisa

    2014-09-01

    In the framework of the FAE "Fotovoltaico ad Alta Efficienza" ("High Efficiency Photovoltaic") Research Project (PO FESR Sicilia 2007/2013 4.1.1.1), we have performed electrical and optical characterizations of commercial InGaP/InGaAs/Ge triple-junction solar cells (1 cm2) mounted on a prototype HCPV module, installed in Palermo (Italy). This system uses a reflective optics based on rectangular off-axis parabolic mirror with aperture 45×45 cm2 leading to a geometrical concentration ratio of 2025. In this study, we report the I-V curve measured under incident power of about 700 W/m2 resulting in an electrical power at maximum point (PMP) of 41.4 W. We also investigated the optical properties by the electroluminescence (EL) spectra of the top (InGaP) and middle (InGaAs) subcells. From the analysis of the experimental data we extracted the bandgap energies of these III-V semiconductors in the range 305÷385 K.

  17. Multijunction Solar Cell Development and Production at Spectrolab

    NASA Technical Reports Server (NTRS)

    Fetzer, Chris; King, R. R.; Law, D. C.; Edmondson, K. M.; Isshiki, T.; Haddad, M.; Zhang, X.; Boisvert, J. C.; Joslin, D. E.; Karam, N. H.

    2007-01-01

    Development of multijunction space solar cells is much like that for any high technology product. New products face two major pressures from the market: improving performance while maintaining heritage. This duality of purpose is not new and has been represented since ancient times by the Roman god Janus.[1] This deity was typically represented as two faces on a single head: one facing forward and the other to the rear. The image of Janus has been used as symbolism for many combined forces of dual purpose, such as the balance in life between beginnings and endings, or between art and science. For our purposes, Janus represents our design philosophy balance between looking to the future for improvement while simultaneously blending past heritage. In the space photovoltaics industry there are good reasons for both purposes. Looking to the past, a product must have a space flight heritage to gain widespread use. The main reason being that this is an unforgiving business. Spacecraft are expensive to build, launch and operate. Typically once a satellite is launched, in-field service for a power systems problem is near impossible.[2Balanced with this is looking forward. New missions typically require more power than previous programs or attempt new objectives such as a new orbit. And there is always the cost pressure for both the satellite itself as well as the launch costs. Both of which push solar technology to improve power density at a lower cost. The consequence of this balance in a high-risk environment is that space PV develops as a series of infrequent large technology steps or generational changes interspersed with more frequent small technology steps or evolutionary changes. Figure 1 gives a bit of clarification on this point. It depicts the historical progress in space solar cells tracked by efficiency against first launch date for most major products introduced by Spectrolab. The first generation is the Si-based technology reaching a peak values near 15% AM0 (herein denoted for max. power, AM0, 1.353 W/cm2, 28 C). The GaAs single junction device generation supplanted this technology with first flight of GaAs on GaAs substrate in 1982.[3] More recently this generation has been supplanted by the multijunction solar cell GaInP/GaAs/Ge generation. The first launch of a commercial satellite powered by multijunction technology was in 1997 (Hughes HS 601HP) using solar arrays based on Spectrolab s dual junction (DJ) cells. The cells at that time were an impressive 21.5% efficient at beginning-of-life (BOL).[4] Eight years later, the multijunction device has evolved through several versions. The incorporation of an active Ge subcell formed the Triple Junction (TJ) product line at 25.1% efficient, on orbit since November 2001. The evolution of the TJ into the Improved Triple Junction (ITJ) at 26.8% efficient has been on orbit since June of 2002.[5

  18. Two New R&D 100 Awards Uphold NREL Winning Streak - Continuum Magazine |

    Science.gov Websites

    -effective and meet the demand for power. Solution: NREL, in partnership with Solar Junction, a manufacturer escalating power costs, brownouts, and rolling blackouts. Solution: NREL and its partners, AILR Research, Inc

  19. NREL Researchers Named Fellows by Prestigious Industry Societies | News |

    Science.gov Websites

    Haegel Nancy Haegel (Photo by Dennis Schroeder/NREL) APS annually selects no more than a half-percent of industries throughout the world. Photo of Ahmad Pesaran Ahmad Pesaran (Photo by Dennis Schroeder/NREL

  20. Fuel Cell Electric Vehicles: Paving the Way to Commercial Success -

    Science.gov Websites

    emissions. Photo by Dennis Schroeder, NREL Fuel Cell Electric Vehicles: Paving the Way to Commercial Success advanced vehicle ride-and-drive event at the NREL Education Center. Photo by Dennis Schroeder, NREL "

  1. Research | Computational Science | NREL

    Science.gov Websites

    Research Research NREL's computational science experts use advanced high-performance computing (HPC technologies, thereby accelerating the transformation of our nation's energy system. Enabling High-Impact Research NREL's computational science capabilities enable high-impact research. Some recent examples

  2. Steve Nixon | NREL

    Science.gov Websites

    NREL. Steve has an extensive background in facilities engineering, facilities management, and Energy Manager, and a Project Management Professional. Prior to joining NREL, Steve was the Facilities manufacturing engineering, business application programming, and business process management positions

  3. Procurement | NREL

    Science.gov Websites

    Procurement Procurement The National Renewable Energy Laboratory (NREL) offers numerous procurement source of biofuels. Register Your Small Business NREL welcomes small, disadvantaged, HUBzone, veteran -owned, and women-owned business vendors and subcontractors. Register today

  4. NREL: International Activities - Working with Us

    Science.gov Websites

    opportunities to develop technology partnerships and researcher-driven collaboration. Technology Partnerships expertise, including our energy analysis capabilities. Researcher-Driven Collaboration NREL scientists formal means, such as collaboration on specific technical topics. NREL researchers also actively

  5. NREL Continuum

    Science.gov Websites

    Innovation Portal Bridging Information Gapa>
    Database revolutionizes of NREL's ever-expanding analytical capabilities.

    <a href=" ;http://www.nrel.gov/continuum/analysis/dan_says.html">Dan Saysa>

  6. NREL: News - New Award to Honor Renewable Energy Leaders

    Science.gov Websites

    contributions by an individual, team or organization that support NREL's mission of advancing renewable energy www.nrel.gov/rappaport_award/, must be submitted by June 15. Rappaport made many contributions to early work in

  7. High Radiation Resistance IMM Solar Cell

    NASA Technical Reports Server (NTRS)

    Pan, Noren

    2015-01-01

    Due to high launch costs, weight reduction is a key driver for the development of new solar cell technologies suitable for space applications. This project is developing a unique triple-junction inverted metamorphic multijunction (IMM) technology that enables the manufacture of very lightweight, low-cost InGaAsP-based multijunction solar cells. This IMM technology consists of indium (In) and phosphorous (P) solar cell active materials, which are designed to improve the radiation-resistant properties of the triple-junction solar cell while maintaining high efficiency. The intrinsic radiation hardness of InP materials makes them of great interest for building solar cells suitable for deployment in harsh radiation environments, such as medium Earth orbit and missions to the outer planets. NASA Glenn's recently developed epitaxial lift-off (ELO) process also will be applied to this new structure, which will enable the fabrication of the IMM structure without the substrate.

  8. Electro-architected porous platinum on metallic multijunction nanolayers to optimize their optical properties for infrared sensor application

    NASA Astrophysics Data System (ADS)

    Stanca, Sarmiza Elena; Hänschke, Frank; Zieger, Gabriel; Dellith, Jan; Dellith, Andrea; Ihring, Andreas; Belkner, Johannes; Meyer, Hans-Georg

    2018-03-01

    Tailoring the physicochemical properties of the metallic multijunction nanolayers is a prerequisite for the development of microelectronics. From this perspective, a desired lower reflectance of infrared radiation was achieved by an electrochemical deposition of porous platinum in nonaqueous media on silver mirror supported nickel-chrome and nickel-titanium metallic films with incremental decreasing thicknesses from 80-10 nm. The electro-assembled architectures were examined by means of scanning electron microscopy and Fourier transform infrared spectroscopy and it was observed that the layer and sublayer thicknesses and resistivities have a substantial effect upon the porous platinum morphology and its optical properties. It is here reported that the augmentation of the metallic layer electrical conductivity determines the electroformation of more compact platinum nanolayers. Moreover, the platinum black coating of metallic nanolayers causes a considerable decrease of the reflectance in the region from 1000-8000 cm-1.

  9. Color tunable monolithic InGaN/GaN LED having a multi-junction structure.

    PubMed

    Kong, Duk-Jo; Kang, Chang-Mo; Lee, Jun-Yeob; Kim, James; Lee, Dong-Seon

    2016-03-21

    In this study, we have fabricated a blue-green color-tunable monolithic InGaN/GaN LED having a multi-junction structure with three terminals. The device has an n-p-n structure consisting of a green and a blue active region, i.e., an n-GaN / blue-MQW / p-GaN / green-MQW / n-GaN / Al2O3 structure with three terminals for independently controlling the two active regions. To realize this LED structure, a typical LED consisting of layers of n-GaN, blue MQW, and p-GaN is regrown on a conventional green LED by using a metal organic chemical vapor deposition (MOCVD) method. We explain detailed mechanisms of three operation modes which are the green, blue, and cyan mode. Moreover, we discuss optical properties of the device.

  10. Effect of the electric field pattern on the generation of fast electrons in front of lower hybrid launchers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valade, Laurent, E-mail: laurent.valade@cea.fr; Ekedahl, Annika; Colas, Laurent

    2015-12-10

    The effect of the detailed waveguide spectrum on the electron acceleration has been studied for the 3.7 GHz LHCD launchers in Tore Supra, i.e. the ITER-like passive-active multijunction (PAM) launcher and the fully-active-multijunction (FAM) launcher, using test electron modelling technique. The detailed launched antenna wave spectrum is used as input to the code that computes the dynamics of the electrons in the electric field. Comparison with the LHCD launchers in EAST, operating at 2.45 GHz and 4.6 GHz, has also been made. The simulations show that the PAM-design generates lower flux of fast electrons than FAM-launchers, this could be themore » consequence of the wider waveguide of PAM-launcher (14.65 mm for Tore-Supra) than FAM-launcher (8 mm for Tore-Supra)« less

  11. Direct SSH Gateway Access to Peregrine | High Performance Computing |

    Science.gov Websites

    can access peregrine-ssh.nrel.gov, you must have: An active NREL HPC user account (see User Accounts ) An OTP Token (see One Time Password Tokens) Logging into peregrine-ssh.nrel.gov With your HPC account

  12. Working With Us | NREL

    Science.gov Websites

    Us Working With Us At NREL, we work with organizations large and small through research energy economy. NREL offers many opportunities to industry, organizations, government, researchers Opportunities Join hundreds of entities including federal government, small and large businesses, international

  13. NREL Software Models Performance of Wind Plants (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2015-01-01

    This NREL Highlight is being developed for the 2015 February Alliance S&T Meeting, and describes NREL's Simulator for Offshore Wind Farm Applications (SOWFA) software in collaboration with Norway-based Statoil, to optimize layouts and controls of wind plants arrays.

  14. Two NREL Scientists Named to Highly Cited Researcher List | News | NREL

    Science.gov Websites

    photocurrent that has an external quantum efficiency greater than 100 percent when excited with photons from the high energy region of the solar spectrum. Nozik and his NREL colleagues employed quantum dots that

  15. Mission and Programs | NREL

    Science.gov Websites

    Government International, Research, and Nonprofit Organizations R&D Programs NREL is the only federal laboratory dedicated to the research, development, commercialization, and deployment of renewable energy and Program supports NREL research and development that focuses on biomass characterization, thermochemical

  16. Megan Day | NREL

    Science.gov Websites

    research, analysis, and technical assistance on municipal energy planning and policy, utility-scale Baseline Analysis of Municipal Codification across the U.S., NREL Technical Report (2016) Navajo Generating Station & Federal Resource Planning - Volume 1: Sectoral, Technical, and Economic Trends, NREL

  17. Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-10-01

    This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuelsmore » processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being applied to algal biofuels processes. Analysts are also testing algal fuel properties to measure energy content and ensure compatibility with existing fueling infrastructure. (5) Cross-Cutting Analysis - NREL scientists and engineers are conducting rigorous techno-economic analyses of algal biofuels processes. In addition, they are performing a full life cycle assessment of the entire algae-to-biofuels process.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overview of NREL's work in Alaska. NREL provides objective, data-driven support to aid decision-makers in Alaska as they deploy advanced energy technologies and reduce energy burdens across the nation's largest state. NREL's technical assistance, research, and outreach activities are providing the catalyst for transforming the way Alaska uses energy.

  19. Energy Storage Publications | Transportation Research | NREL

    Science.gov Websites

    . 367, 1 November 2017 pp. 214-215. Quantitative Microstructure Characterization of a NMC Electrode . NREL/PR-5400-68759. Quantitative Microstructure Characterization of a NMC Electrode Presentation Source . NREL/PR-5400-68339. Microstructure Characterization and Modeling for Improved Electrode Design

  20. NREL Establishes New Center for Distributed Power

    Science.gov Websites

    Establishes New Center for Distributed Power Changing Electricity Market Demands Greater , smaller-scale generation facilities. That concept, known as "distributed power," will be Energy Laboratory (NREL). The Distributed Energy Resources Center at NREL will conduct research and

  1. Robot-Powered Reliability Testing at NREL's ESIF Video Text Version |

    Science.gov Websites

    Video Text Version Robot-Powered Reliability Testing at NREL's ESIF Video Text Version Below is the text version for the Robot-Powered Reliability Testing at NREL's ESIF video. [Text on screen] Robot-Powered

  2. Marykate O'Brien | NREL

    Science.gov Websites

    industry partners and NREL programmatic R&D. Sustainable energy/fuels research and development Catalyst Biological Engineering, University of Colorado, 2009 Professional Experience Bio-Process Engineer, NREL, 2013 Professional Research Assistant, University of Colorado, 2007-2012 Engineering Intern, Baxter Healthcare, 2007

  3. NREL, Duke Energy Explore Smart Inverters for Grid Stability | Energy

    Science.gov Websites

    Stability NREL, Duke Energy Explore Smart Inverters for Grid Stability NREL is working with Duke Energy and Alstom Grid to explore ways that smart inverters can increase grid stability. Using data from Duke Energy

  4. Mark Ruth | NREL

    Science.gov Websites

    : Moving Forward, Charlotte, NC, December 2014. NREL/CP-6A20-63207. Ruth, M.F., O.R. Zinaman, M. Antkowiak , 2011. Paper No. 2011-01-1345. NREL/CP-6A10-52454. doi:10.4271/2011-01-1345. Ruth, M., T. Mai, E. Newes

  5. NREL National Bioenergy Center Overview

    ScienceCinema

    Foust, Thomas; Pienkos, Phil; Sluiter, Justin; Magrini, Kim; McMillan, Jim

    2018-01-16

    The demand for clean, sustainable, secure energy is growing... and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is answering the call. NREL's National Bioenergy Center is pioneering biofuels research and development and accelerating the pace these technologies move into the marketplace.

  6. NREL Leads Energy Systems Integration, Continuum Magazine: Issue 4 (Book)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2013-04-01

    Continuum Magazine showcases NREL's latest and most impactful clean energy innovations. This issue, 'NREL Leads Energy Systems Integration' explores the discipline of energy systems integration, in particular the role of the laboratory's new, one-of-a-kind Energy System Integration Facility. NREL scientists, engineers, and analysts deeply understand the fundamental science and technologies underpinning major energy producing and consuming systems, as well as the transmission infrastructure and communications and data networks required to integrate energy systems at all scales.

  7. Sustainable NREL Biennial Report, FY 2012 - 2013 (Management Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slovensky, Michelle

    2014-03-01

    NREL's Sustainability Program plays a vital role bridging research and operations - integrating energy efficiency, water and material resource conservation and cultural change - adding depth in the fulfillment of NREL's mission. The report, per the GRI reporting format, elaborates on multi-year goals relative to executive orders, achievements, and challenges; and success stories provide specific examples. A section called "The Voice of NREL" gives an inside perspective of how to become more sustainable while at the same time addressing climate change.

  8. Microfabricated multijunction thermal converters

    NASA Astrophysics Data System (ADS)

    Wunsch, Thomas Franzen

    2001-12-01

    In order to develop improved standards for the measurement of ac voltages and currents, a new thin-film fabrication technique for the multijunction thermal converter has been developed. The ability of a thermal converter to relate an rms ac voltage or current to a dc value is characterized by a quantity called `ac-dc difference' that is ideally zero. The best devices produced using the new techniques have ac-dc differences below 1 × 10-6 in the range of frequencies from 20 Hz to 10 kHz and below 7.5 × 10-6 in the range of frequencies from 20 kHz to 300 kHz. This is a reduction of two orders of magnitude in the lower frequency range and one order of magnitude in the higher frequency range over devices produced at the National Institute of Standards and Technology in 1996. The performance achieved is competitive with the best techniques in the world for ac measurements and additional evaluation is therefore warranted to determine the suitability of the devices for use as national standards that form the legal basis for traceable rms voltage measurements of time varying waveforms in the United States. The construction of the new devices is based on thin-film fabrication of a heated wire supported by a thermally isolated thin-film membrane. The membrane is produced utilizing a reactive ion plasma etch. A photoresist lift- off technique is used to pattern the metal thin-film layers that form the heater and the multijunction thermocouple circuit. The etching and lift-off allow the device to be produced without wet chemical etches that are time consuming and impede the investigation of structures with differing materials. These techniques result in an approach to fabrication that is simple, inexpensive, and free from the manual construction techniques used in the fabrication of conventional single and multijunction thermoelements. Thermal, thermoelectric, and electrical models have been developed to facilitate designs that reduce the low- frequency error. At high frequencies, from 300 kHz to 1 MHz, the performance of the device is degraded by a capacitive coupling effect that produces an ac-dc difference of approximately -90 × 10-6 at 1 MHz. A model is developed that explains this behavior. The model shows that an improvement in performance in the high-frequency range is possible through the use of very high or very low resistivity silicon substrates.

  9. Science and Technology Highlights | NREL

    Science.gov Websites

    Leads to Enhanced Upgrading Methods NREL's efforts to standardize techniques for bio-oil analysis inform enhanced modeling capability and affordable methods to increase energy efficiency. December 2012 NREL Meets Performance Demands of Advanced Lithium-ion Batteries Novel surface modification methods are

  10. High-Performance Computing Systems and Operations | Computational Science |

    Science.gov Websites

    NREL Systems and Operations High-Performance Computing Systems and Operations NREL operates high-performance computing (HPC) systems dedicated to advancing energy efficiency and renewable energy technologies. Capabilities NREL's HPC capabilities include: High-Performance Computing Systems We operate

  11. Environment, Health, and Safety | NREL

    Science.gov Websites

    property, and the environment. View the Environmental Stewardship, Health, Safety, and Quality Management (OHSAS) 18001 certification demonstrates NREL's commitment to a health and safety management system that into all activities. NREL's staff and management are committed to managing health and safety risk

  12. Joe Robertson | NREL

    Science.gov Websites

    Joe Robertson Photo of Joe Robertson Joe Robertson Research Engineer Joseph.Robertson@nrel.gov | 303-275-4575 Joe joined NREL in 2012. His research activities include automated building model student from the Colorado School of Mines on projects involving numerical methods applied to uncertainty

  13. NREL Research Earns Two Prestigious R&D 100 Awards | News | NREL

    Science.gov Websites

    R&D 100 Awards July 11, 2014 A growth system that can produce thin solar cells quickly and at NREL's other R&D 100 award, in collaboration with HP, was for the HP Apollo 8000 System. This

  14. Research Staff | Buildings | NREL

    Science.gov Websites

    Research Staff Research Staff Photo of Roderick Jackson Roderick Jackson Laboratory Program Manager -related research at NREL. He works closely with senior laboratory management to set the strategic agenda for NREL's buildings portfolio, including all research, development, and market implementation

  15. Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    Cells A hydrogen-powered fuel cell electric vehicle driving past NREL's hydrogen fueling station NREL's hydrogen and fuel cell research and development (R&D) focuses on developing, integrating, and demonstrating hydrogen production and delivery, hydrogen storage, and fuel cell technologies for transportation

  16. News | NREL

    Science.gov Websites

    leadership biographies in the NREL media room. Social Media News News Search News Search Learn about the latest NREL scientific breakthroughs with our social media and news feeds. View all news and feature stories Contacts Heather Lammers 303-275-4084 David

  17. National Renewable Energy Laboratory Information Resources Catalogue. A collection of energy efficiency and renewable energy information resources

    NASA Astrophysics Data System (ADS)

    1994-05-01

    NREL's first annual Information Resources Catalogue is intended to inform anyone interested in energy efficiency and renewable energy technologies of NREL's outreach activities, including publications and services. For ease of use, all entries are categorized by subject. The catalogue is separated into six main sections. The first section lists and describes services that are available through NREL and how they may be accessed. The second section contains a list of documents that are published by NREL on a regular or periodic basis. The third section highlights NREL's series publications written for specific audiences and presenting a wide range of subjects. NREL's General Interest Publications constitute the fourth section of the catalogue and are written for nontechnical audiences. Descriptions are provided for these publications. The fifth section contains Technical Reports that detail research and development projects. The section on Conference Papers/Journal Articles/Book Chapters makes up the sixth and final section of the catalogue.

  18. Craig Christensen | NREL

    Science.gov Websites

    Christensen Photo of Craig Christensen Craig Christensen Principal Engineer Craig.Christensen @nrel.gov | 303-384-7510 Craig joined NREL in 1979. He currently leads the energy analysis efforts for the development, analysis for new and existing residential buildings, and modeling accuracy. Craig has also led

  19. Alex Swindler | NREL

    Science.gov Websites

    distributed computing, Web information systems engineering, software engineering, computer graphics, and Dashboard, NREL Energy Story visualization, Green Button data integration, as well as a large number of Web of an R&D 100 Award. Prior to joining NREL, Alex worked as a system administrator, Web developer

  20. Solar Photovoltaic Manufacturing Cost Analysis | Energy Analysis | NREL

    Science.gov Websites

    Solar Photovoltaic Manufacturing Cost Analysis Solar Photovoltaic Manufacturing Cost Analysis NREL's photovoltaic (PV) manufacturing cost analysis-part of our broader effort supporting manufacturing manufacturing sector, and is that growth sustainable? NREL's manufacturing cost analysis studies show that: U.S

  1. Techno-Economic, Sustainability, and Market Analysis | Bioenergy | NREL

    Science.gov Websites

    Techno-Economic, Sustainability, and Market Analysis Techno-Economic, Sustainability, and Market Analysis NREL conducts techno-economic analyses (TEAs) for algal biofuels, thermochemical conversion, and agitating the liquid as it flows around. Algal Biofuels Techno-Economic Analysis NREL's Algae Techno

  2. NREL, Bosch, and Bonneville Power Administration | Energy Systems

    Science.gov Websites

    Bonneville Power Administration Analyze Residential Energy Storage and Sizing NREL, Bosch, and Bonneville lacks sizing standards or broad application guidelines. This combined with battery lifespan uncertainty uptake. The NREL, Bosch, Bonneville partnership will establish practical guidance for sizing, use case

  3. Impacts on Conventional Generators | Energy Analysis | NREL

    Science.gov Websites

    Impacts on Conventional Generators Impacts on Conventional Generators NREL is working to understand and quantify the impacts of increased penetrations of solar and wind generation on conventional plant efficiency and emissions. NREL's analyses of impacts of renewable electricity generation on

  4. Sivasathya Pradha Balamurugan | NREL

    Science.gov Websites

    Researcher II-Software Engineering SivasathyaPradha.Balamurugan@nrel.gov | 303-275-3883 Sivasathya joined NREL in 2017. Her research is focused on developing and supporting software for energy management in buildings. Her background is in software development, applied cryptography, and hardware. Education M.S

  5. Video: NREL and Buildings Research - Continuum Magazine | NREL

    Science.gov Websites

    solutions to improve the energy efficiency of both residential and commercial buildings, and to accelerate the integration of clean energy technologies with buildings. NREL's commercial buildings research focuses on providing large institutional and private sector commercial building owners with tools

  6. Energy Systems Integration Facility Videos | Energy Systems Integration

    Science.gov Websites

    Facility | NREL Energy Systems Integration Facility Videos Energy Systems Integration Facility Integration Facility NREL + SolarCity: Maximizing Solar Power on Electrical Grids Redefining What's Possible for Renewable Energy: Grid Integration Robot-Powered Reliability Testing at NREL's ESIF Microgrid

  7. Emma Elgqvist | NREL

    Science.gov Websites

    Energy Opportunities, Society of Telecommunication Engineers Cable-Tec Expo (2016) Automotive Lithium-ion Federal Tax Incentives for Battery Storage Systems, NREL Fact Sheet (2017) Portfolio Analysis of Renewable Battery (LIB) Supply Chain and U.S. Competitiveness Considerations, NREL Technical Report (2015) REopt: A

  8. Sean Esterly | NREL

    Science.gov Websites

    , micro and mini-grid policies and regulations, and international clean energy policy analysis. He has technologies, such as micro- and mini-grids. Strategic energy planning, focusing on both renewable and energy Considerations and Good Practices, NREL Technical Report (2015) Quality Assurance Framework for Mini-Grids, NREL

  9. Real-time Series Resistance Monitoring in PV Systems; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deceglie, M. G.; Silverman, T. J.; Marion, B.

    We apply the physical principles of a familiar method, suns-Voc, to a new application: the real-time detection of series resistance changes in modules and systems operating outside. The real-time series resistance (RTSR) method that we describe avoids the need for collecting IV curves or constructing full series-resistance-free IV curves. RTSR is most readily deployable at the module level on apply the physical principles of a familiar method, suns-Voc, to a new application: the real-time detection of series resistance changes in modules and systems operating outside. The real-time series resistance (RTSR) method that we describe avoids the need for collecting IVmore » curves or constructing full series-resistance-free IV curves. RTSR is most readily deployable at the module level on micro-inverters or module-integrated electronics, but it can also be extended to full strings. Automated detection of series resistance increases can provide early warnings of some of the most common reliability issues, which also pose fire risks, including broken ribbons, broken solder bonds, and contact problems in the junction or combiner box. We describe the method in detail and describe a sample application to data collected from modules operating in the field.« less

  10. NREL Quickens its Tech Transfer Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammers, H.

    2012-02-01

    Innovations and 'aha' movements in renewable energy and energy efficiency, while exciting in the lab, only truly live up to their promise once they find a place in homes or business. Late last year President Obama issued a directive to all federal agencies to increase their efforts to transfer technologies to the private sector in order to achieve greater societal and economic impacts of federal research investments. The president's call to action includes efforts to establish technology transfer goals and to measure progress, to engage in efforts to increase the speed of technology transfer and to enhance local and regionalmore » innovation partnerships. But, even before the White House began its initiative to restructure the commercialization process, the National Renewable Energy Laboratory had a major effort underway designed to increase the speed and impact of technology transfer activities and had already made sure its innovations had a streamlined path to the private sector. For the last three years, NREL has been actively setting commercialization goals and tracking progress against those goals. For example, NREL sought to triple the number of innovations over a five-year period that began in 2009. Through best practices associated with inventor engagement, education and collaboration, NREL quadrupled the number of innovations in just three years. Similar progress has been made in patenting, licensing transactions, income generation and rewards to inventors. 'NREL is known nationally for our cutting-edge research and companies know to call us when they are ready to collaborate,' William Farris, vice president for commercialization and technology transfer, said. 'Once a team is ready to dive in, they don't want be mired in paperwork. We've worked to make our process for licensing NREL technology faster; it now takes less than 60 days for us to come to an agreement and start work with a company interested in our research.' While NREL maintains a robust patent portfolio, often companies are looking to do more than just license a technology. These relationships are invaluable in successfully moving technologies from NREL to the marketplace. 'We may generate new and potentially valuable innovations, but our commercialization partners do the heavy work of building a successful business around our technology,' Farris said. Tools such as CRADAs (Cooperative Research and Development Agreements) allow NREL to continue working with companies to refine and develop technologies. And, working with businesses is an area where NREL excels. NREL is responsible for one quarter of the CRADAs in the DOE system. 'When you look at the results of our CRADA program, you can demonstrate that we are actively engaged with companies in collaborating on research and moving technologies to market,' Farris said. NREL is first among DOE labs with 186 active CRADAs. And last year, NREL also was first with the number of new CRADAs signed. 'Part of the success in our working with industry goes back to NREL's mission to grow and support new industries,' Farris added. 'NREL has basic research capabilities, but we are never going to be the ultimate producer of a commercial product. That is the role of the private sector.' Farris also credits the advocacy and support that the Office of Energy Efficiency and Renewable Energy at DOE provides for these technology transfer activities. 'EERE's support is critical to our success,' Farris said. To assist the private sector in moving a technology from the lab to the manufacturing line, NREL has a number of programs in place to give that first, or even final, nudge toward commercialization. For instance, the Commercialization Assistance Program helps startups overcome technical barriers by granting free access to 40 hours of work at the lab. Through the Innovation and Entrepreneurship Center, NREL also helps clean energy businesses develop strong links with the financial community, as well as other key stakeholders in the commercialization process. In March, NREL formally opened the Colorado Center for Renewable Energy and Economic Development a cooperative program with the state of Colorado designed to bring together stakeholders and service providers that support the growth of cleantech companies. CREED currently is working with more than 25 stakeholders - governmental partners, universities, industry associations, venture capital organizations and small businesses - to improve the access these groups have to technologies developed at NREL and to provide services such as classes and workshops for entrepreneurs. When it comes to bringing together cleantech stakeholders, NREL's Industry Growth Forum is the marquee event. At the forum, clean energy entrepreneurs have the opportunity to present their business cases to an expert panel of investors and energy executives. Companies that have presented have raised $3.4 billion in funding to date.« less

  11. Parabolic Trough Collector Cost Update for the System Advisor Model (SAM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurup, Parthiv; Turchi, Craig S.

    2015-11-01

    This report updates the baseline cost for parabolic trough solar fields in the United States within NREL's System Advisor Model (SAM). SAM, available at no cost at https://sam.nrel.gov/, is a performance and financial model designed to facilitate decision making for people involved in the renewable energy industry. SAM is the primary tool used by NREL and the U.S. Department of Energy (DOE) for estimating the performance and cost of concentrating solar power (CSP) technologies and projects. The study performed a bottom-up build and cost estimate for two state-of-the-art parabolic trough designs -- the SkyTrough and the Ultimate Trough. The SkyTroughmore » analysis estimated the potential installed cost for a solar field of 1500 SCAs as $170/m 2 +/- $6/m 2. The investigation found that SkyTrough installed costs were sensitive to factors such as raw aluminum alloy cost and production volume. For example, in the case of the SkyTrough, the installed cost would rise to nearly $210/m 2 if the aluminum alloy cost was $1.70/lb instead of $1.03/lb. Accordingly, one must be aware of fluctuations in the relevant commodities markets to track system cost over time. The estimated installed cost for the Ultimate Trough was only slightly higher at $178/m 2, which includes an assembly facility of $11.6 million amortized over the required production volume. Considering the size and overall cost of a 700 SCA Ultimate Trough solar field, two parallel production lines in a fully covered assembly facility, each with the specific torque box, module and mirror jigs, would be justified for a full CSP plant.« less

  12. NREL Scientists Model Methane-Eating Bacteria | News | NREL

    Science.gov Websites

    Scientists Model Methane-Eating Bacteria News Release: NREL Scientists Model Methane-Eating Bacteria February 13, 2018 Nature is full of surprises - not to mention solutions. A research team ) recently explored the possibilities provided by the natural world by researching how the bacteria

  13. Computational Science News | Computational Science | NREL

    Science.gov Websites

    -Cooled High-Performance Computing Technology at the ESIF February 28, 2018 NREL Launches New Website for High-Performance Computing System Users The National Renewable Energy Laboratory (NREL) Computational Science Center has launched a revamped website for users of the lab's high-performance computing (HPC

  14. High-Performance Computing and Visualization | Energy Systems Integration

    Science.gov Websites

    Facility | NREL High-Performance Computing and Visualization High-Performance Computing and Visualization High-performance computing (HPC) and visualization at NREL propel technology innovation as a . Capabilities High-Performance Computing NREL is home to Peregrine-the largest high-performance computing system

  15. Power Market Design | Grid Modernization | NREL

    Science.gov Websites

    Power Market Design Power Market Design NREL researchers are developing a modeling platform to test (a commercial electricity production simulation model) and FESTIV (the NREL-developed Flexible Energy consisting of researchers in power systems and economics Projects Grid Market Design Project The objective of

  16. Jessica Katz | NREL

    Science.gov Websites

    , Arizona State University (2006-2008) Featured Publications Katz, J.; Cochran, J. (2015). Integrating Variable Renewable Energy to the Grid: Key Issues. 2pp. NREL Report No. NREL/FS-6A20-63033. Katz, J .; Cochran, J. (2015). Scaling Up Renewable Energy Generation: Aligning Targets and Incentives with Grid

  17. Agreement Moves Nevada Solar Plant Step Closer to Reality

    Science.gov Websites

    Secretary Christine Ervin, CSTRR President Rose McKinney-James and NREL Director Dr. Charles Gay today new partnership, NREL will make available its facilities to test renewable energy technologies, help other renewable technologies. NREL will support the efforts of DOE's Federal Energy Management Program

  18. Dan Says - Continuum Magazine | NREL

    Science.gov Websites

    vital role of providing technology-neutral analysis to ensure that innovations developed in the lab fit success-and NREL analysis is playing a major role. We are also identifying the connections among energy and financial front, NREL analysis leadership is helping to identify and overcome barriers with

  19. Computational Science | NREL

    Science.gov Websites

    Science Photo of person viewing 3D visualization of a wind turbine The NREL Computational Science challenges in fields ranging from condensed matter physics and nonlinear dynamics to computational fluid dynamics. NREL is also home to the most energy-efficient data center in the world, featuring Peregrine-the

  20. Geospatial Data Science Modeling | Geospatial Data Science | NREL

    Science.gov Websites

    Geospatial Data Science Modeling Geospatial Data Science Modeling NREL uses geospatial data science modeling to develop innovative models and tools for energy professionals, project developers, and consumers . Photo of researchers inspecting maps on a large display. Geospatial modeling at NREL often produces the

  1. System Resource Allocations | High-Performance Computing | NREL

    Science.gov Websites

    Allocations System Resource Allocations To use NREL's high-performance computing (HPC) resources : Compute hours on NREL HPC Systems including Peregrine and Eagle Storage space (in Terabytes) on Peregrine , Eagle and Gyrfalcon. Allocations are principally done in response to an annual call for allocation

  2. NREL Updates Baseline Cost and Performance Data for Electricity Generation

    Science.gov Websites

    Technologies | News | NREL Updates Baseline Cost and Performance Data for Electricity Generation Technologies News Release: NREL Updates Baseline Cost and Performance Data for Electricity generation technology cost and performance data used to support and inform electric sector analysis in the

  3. Electric Motor Thermal Management | Transportation Research | NREL

    Science.gov Websites

    Electric Motor Thermal Management Electric Motor Thermal Management A photo of a piece of of electric-drive vehicles. Photo by Kevin Bennion, NREL NREL's electric motor thermal management construction of new electric motors. Electric motor thermal management involves a multifaceted interaction of

  4. Heavy-Duty Vehicle Thermal Management | Transportation Research | NREL

    Science.gov Websites

    Heavy-Duty Vehicle Thermal Management Heavy-Duty Vehicle Thermal Management Infrared image of a and meet more stringent idling regulations. NREL's HDV thermal management program, CoolCab, focuses on thermal management technologies undergo assessment at NREL's Vehicle Testing and Integration Facility test

  5. Brett Oakleaf | NREL

    Science.gov Websites

    Brett.Oakleaf@nrel.gov | 303-275-3771 Brett leads business development initiatives related to commercial ports within the oil and gas industry. In addition, he provides business development support for JISEA and CEMAC. Prior to NREL, he was the Director of Business Development Western Region for Invenergy, a

  6. Jao Van De Lagemaat | NREL

    Science.gov Websites

    Jao Van De Lagemaat Photo of Jao Vandelagemaat. Jao Van De Lagemaat Center Director: Chemistry and Lagemaat is currently the Center Director of the Chemistry and Nanoscience Center at NREL. He received his university. Education Ph.D. Physical Chemistry, University of Utrecht Featured Publications View all NREL

  7. Research Staff | Geothermal Technologies | NREL

    Science.gov Websites

    Position Email Phone Akar, Sertac Energy Analyst - Geothermal Sertac.Akar@nrel.gov 303-275-3725 Augustine -Geoscience Kate Young joined NREL in 2008. She has worked on analysis of geothermal exploration, drilling ) Toolkit, the Geothermal Resource Portfolio Optimization and Reporting Technique (GeoRePORT), and the

  8. NREL: Renewable Resource Data Center - Geothermal Resource Publications

    Science.gov Websites

    Publications For a list of Geothermal publications, go to Geothermal Technologies Publication page . For a list of legacy Geothermal publications, check out Geothermal Technologies Legacy Collection . NREL Publications Database For a comprehensive list of other NREL geothermal resource publications

  9. Publications | Geothermal Technologies | NREL

    Science.gov Websites

    Publications Publications NREL publishes a variety of publications related to geothermal energy geothermal energy research. Featured Publications Mexico's Geothermal Market Assessment Report NREL Technical investment in the country's geothermal energy sector. Since 2013, Mexico has enacted comprehensive reforms to

  10. Taylor Curtis | NREL

    Science.gov Websites

    , The Environmental Law Institute, Washington, D.C. (2014) Featured Publication Curtis, Taylor L., Aaron . Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-70098. Levine, Aaron. Taylor L. Curtis . Golden, CO: National Renewable Energy Laboratory: NREL/TP-6A20-70121. Kevin B. Jones, Curtis, Taylor L

  11. James L. Young | NREL

    Science.gov Websites

    L. Young James Young Postdoctoral Researcher-Chemistry James.Young@nrel.gov | 303-275-4456 Orcid ID http://orcid.org/0000-0001-7291-0079 Dr. James L. Young is a Postdoctoral Researcher at the National -splitting photocathode," Nature Energy (2017). View all NREL publications for James L. Young.

  12. Research Staff | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Research Staff Research Staff NREL's Energy Systems Integration directorate includes the Power investments in advanced energy research, and the security and resilience team under the DOE's multi-lab effort to modernize the nation's electrical grid. juan.torres@nrel.gov | 303-275-3094 ESI Research

  13. Research Staff | Wind | NREL

    Science.gov Websites

    Research Staff Research Staff Learn more about the expertise and technical skills of the wind power research team and staff at NREL. Name Position Email Phone Anstedt, Sheri Professional III-Writer/Editor /Web Content Sheri.Anstedt@nrel.gov 303-275-3255 Baker, Donald Research Technician V-Electrical

  14. Publications | Research Site Name | NREL

    Science.gov Websites

    Article Title, Journal Name (Year) Conference Paper Title, Conference Name (Year) Report Title, NREL Technical Report (Year) Topic 2 Article Title, Journal Name (Year) Conference Paper Title, Conference Name (Year) Report Title, NREL Technical Report (Year) Topic 3 Article Title, Journal Name (Year) Conference

  15. Biofuels Basics | NREL

    Science.gov Websites

    commonly made by fermenting any biomass high in carbohydrates through a process similar to beer brewing . Today, ethanol is made from starches and sugars, but NREL scientists are developing technology to allow plant matter. Cornstalks in a field with mountains in the background. NREL researchers are developing

  16. Marine and Hydrokinetic Research | Water Power | NREL

    Science.gov Websites

    . Resource Characterization and Maps NREL develops measurement systems, simulation tools, and web-based models and tools to evaluate the economic potential of power-generating devices for all technology Acceleration NREL analysts study the potential impacts that developing a robust MHK market could have on

  17. NREL Partners with California to Accelerate Advanced Energy Communities |

    Science.gov Websites

    , heating, and or cooling Smart energy management systems for residential, commercial and industrial the residences, commercial and industrial buildings. Visit the NREL website to learn about how NREL's efficiency of both residential and commercial buildings, communities, and districts. -Linh Truong Mission

  18. NREL, International Colleagues Propose Strategy for Stable, Commercial

    Science.gov Websites

    , Commercial Perovskite Solar Cells News Release: NREL, International Colleagues Propose Strategy for Stable , Commercial Perovskite Solar Cells October 17, 2016 Photo of two men in a lab. NREL Scientists Keith Emery and stable commercial PSCs-that includes the following: Developing a reproducible manufacturing method that

  19. Mary Ann Franden | NREL

    Science.gov Websites

    Ann Franden Photo of Mary Ann Franden Mary Franden Researcher IV-Molecular Biology Mary.Ann.Franden @nrel.gov | 303-384-7767 Research Interests Mary Ann Franden is a senior scientist in the Applied Biology University Professional Experience Senior Scientist, NREL, NBC, Applied Biology Group Professional Research

  20. Sara Fairchild | NREL

    Science.gov Websites

    Sara.Fairchild@nrel.gov | 303-384-7114 Sara brings strong data management and editing skills to NREL, gained through her work at the Institute of Alpine and Arctic Research. She specialized in biogeochemistry with an emphasis on soil science and had the opportunity to study soils throughout Northern California in

  1. Xin Jin | NREL

    Science.gov Websites

    Jin joined NREL in 2012. His research focuses on control systems, fault detection and diagnosis, load Jin Photo of Xin Jin Xin Jin Researcher IV-Control Engineering Xin.Jin@nrel.gov | 303-275-4360 Xin project engineer at A.O. Smith Corporate Technology Center creating innovative electronic control

  2. Research Staff | Chemistry and Nanoscience Research | NREL

    Science.gov Websites

    Jeffrey Blackburn Jeffrey Blackburn Group Research Manager III-Materials Science Dr. Blackburn is a Senior Scientist and Group Manager at NREL, leading projects on a variety of fundamental and applied research -Electrical Engineering Guido.Bender@nrel.gov 303-275-3810 Blackburn, Jeffrey Group Research Manager III

  3. Sheila Hayter | NREL

    Science.gov Websites

    Hayter Photo of Sheila Hayter Sheila Hayter Group Manager - Strategy, Policy, & Implementation Group Sheila.Hayter@nrel.gov | 303-384-7519 Sheila has been with NREL for more than 25 years and is presently a group manager within the Integrated Application Center (IAC) leading a team of technical and

  4. Research Staff | Photovoltaic Research | NREL

    Science.gov Websites

    -7511 Name Position Email Phone Al-Jassim, Mowafak Group Research Manager III-Materials Science , Teresa Acting Group Manager Teresa.Barnes@nrel.gov 303-384-6682 Beard, Matt Researcher VI-Chemistry @nrel.gov 303-384-7611 Blackburn, Jeffrey Group Research Manager III-Materials Science Jeffrey.Blackburn

  5. Impacts | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    Impacts Impacts Read about NREL's impacts on innovations in hydrogen and fuel cell research and -Splitting Electrodes NREL Shows How Cyanobacteria Build Hydrogen-Producing Enzyme Fuel Cell Systems R&D -Speed Scanner to Monitor Fuel Cell Material Defects Making Fuel Cells Cleaner, Better, and Cheaper GM

  6. Chris Colgan | NREL

    Science.gov Websites

    Colgan Photo Chris Colgan Chris Colgan Business Support II-Administrative Associate Chris.Colgan @nrel.gov | 303-384-7440 Chris joined NREL in January 2017. She provides support for the group manager , engineers, and researchers in the Residential Buildings Research Group and Building America Program. Chris

  7. Joseph J. Berry | NREL

    Science.gov Websites

    Cells Team Lead Joe.Berry@nrel.gov | 303-384-7611 Joseph Berry is a senior research scientist at NREL Department of Physics at the University of Colorado at Boulder. Research Interests His interest in transport theme of his work throughout his scientific carrier. These interests in fundamental aspects of

  8. Bill McMahon | NREL

    Science.gov Websites

    career at NREL in 1995 by conducting scanning tunneling microscope (STM) studies of the atomic structure revealed a new strain-induced step structure and contributed to the development of world-record-efficiency NREL's Computational Materials Science team, probing the atomic structure of dislocations in III-V

  9. Alaska | State, Local, and Tribal Governments | NREL

    Science.gov Websites

    Alaska Advancing Energy Solutions in Alaska NREL provides objective, data-driven support to aid decision makers in Alaska as they take actions to deploy sustainable energy technologies, prepare for a clean-energy-driven economic transition, and reduce energy burdens in their jurisdictions. NREL's

  10. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    NREL News Energy Systems Integration News A monthly recap of the latest happenings at the Energy Systems Integration Facility and developments in energy systems integration (ESI) research at NREL ; said Vahan Gevorgian, chief engineer with NREL's Power Systems Engineering Center. "Results of

  11. NREL to request proposals for reducing PV costs

    Science.gov Websites

    Laboratory (NREL) invites the photovoltaics and related industries to join its Photovoltaic Manufacturing photovoltaic products. NREL will issue in the next 90 days an $8 million request for proposals for research and development projects that will advance photovoltaic manufacturing technologies, reduce photovoltaic

  12. Katie Contos | NREL

    Science.gov Websites

    Katie Contos Photo of Katie Contos Katie Contos Project Controller Katie.Contos@nrel.gov | 303-384 -7386 Katie joined NREL in 2012. As a Project Administrator in the Integrated Applications Center, Katie works with a variety of project leaders and teams in project management, planning, implementation

  13. Emily Evans | NREL

    Science.gov Websites

    Evans Emily Evans Project Controller Emily.Evans@nrel.gov | 303-275-3125 Emily joined NREL in 2010 . As a Project Administrator in the Integrated Applications Center, Emily works with project managers and teams to develop and maintain project management excellence on large-scale, multi-year projects

  14. Research Staff | Concentrating Solar Power | NREL

    Science.gov Websites

    Research Staff Research Staff Photo of Mark Mehos Mark Mehos Group Manager, Thermal Systems R&D Mark joined NREL in 1986 and manages the Thermal Systems R&D group at NREL, which includes the for the International Energy Agency's SolarPACES "Solar Thermal Electric Power Systems" task

  15. Mark Mehos | NREL

    Science.gov Websites

    Mehos Photo of Mark Mehos Mark Mehos Group Manager, Thermal Systems R&D Mark.Mehos@nrel.gov Thermal Systems R&D group at NREL, which includes the Concentrating Solar Power (CSP) Program. Since SolarPACES "Solar Thermal Electric Power Systems" task, which focuses on the development of

  16. Joshua McTigue | NREL

    Science.gov Websites

    Engineering JoshuaDominic.McTigue@nrel.gov | 303-275-4682 Josh joined the Thermal Systems Group at NREL in integrate geothermal power, concentrating solar power and thermal energy storage. For his graduate work , Josh researched packed-bed thermal storage with an emphasis on exergy analysis and system design and

  17. FFP/NREL Collaboration on Hydrokinetic River Turbine Testing: Cooperative Research and Development Final Report, CRADA Number CRD-12-00473

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Driscoll, F.

    2013-04-01

    This shared resources CRADA defines collaborations between the National Renewable Energy Laboratory (NREL) and Free Flow Power (FFP) set forth in the following Joint Work Statement. Under the terms and conditions described in this CRADA, NREL and FFP will collaborate on the testing of FFP's hydrokinetic river turbine project on the Mississippi River (baseline location near Baton Rouge, LA; alternate location near Greenville, MS). NREL and FFP will work together to develop testing plans, instrumentation, and data acquisition systems; and perform field measurements.

  18. NREL photovoltaic program FY 1997 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnell, R.D.; Hansen, A.; Smoller, S.

    1998-06-01

    This report summarizes the in-house and subcontracted research and development (R and D) activities under the NREL PV Program from October 1, 1996, through September 30, 1997 (FY 1997). The NREL PV Program is part of the US Department of Energy`s (DOE`s) National Photovoltaics Program, as described in the DOE National Photovoltaics Program Plan for 1996--2000. The FY 1997 budget authority for carrying out the NREL PV Program was $39.3 million in operating funds and $0.4 million in capital equipment funds. Subcontract activities represent a major part of the NREL PV Program, with $21.8 million (55% of PV funds) goingmore » to some 84 subcontractors. Cost sharing by industry added almost $8.8 million to the subcontract R and D activities with industry.« less

  19. Annual Sustainability Report FY 2014. Incorporates NREL Site Sustainability Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rukavina, Frank

    NREL's Sustainability Program is responsible for upholding all executive orders, federal regulations, U.S. Department of Energy (DOE) orders, and goals related to sustainable and resilient facility operations. But NREL continues to expand sustainable practices above and beyond the laboratory's regulations and requirements to ensure that the laboratory fulfills its mission into the future, leaves the smallest possible legacy footprint, and models sustainable operations and behaviors on national, regional, and local levels. The report, per the GRI reporting format, elaborates on multi-year goals relative to executive orders, achievements, and challenges; and success stories provide specific examples. A section called 'Sustaining NREL'smore » Future Through Integration' provides insight into how NREL is successfully expanding the adoption of renewable energy technologies through integration.« less

  20. University of Washington/ Northwest National Marine Renewable Energy Center Tidal Current Technology Test Protocol, Instrumentation, Design Code, and Oceanographic Modeling Collaboration: Cooperative Research and Development Final Report, CRADA Number CRD-11-452

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Driscoll, Frederick R.

    The University of Washington (UW) - Northwest National Marine Renewable Energy Center (UW-NNMREC) and the National Renewable Energy Laboratory (NREL) will collaborate to advance research and development (R&D) of Marine Hydrokinetic (MHK) renewable energy technology, specifically renewable energy captured from ocean tidal currents. UW-NNMREC is endeavoring to establish infrastructure, capabilities and tools to support in-water testing of marine energy technology. NREL is leveraging its experience and capabilities in field testing of wind systems to develop protocols and instrumentation to advance field testing of MHK systems. Under this work, UW-NNMREC and NREL will work together to develop a common instrumentation systemmore » and testing methodologies, standards and protocols. UW-NNMREC is also establishing simulation capabilities for MHK turbine and turbine arrays. NREL has extensive experience in wind turbine array modeling and is developing several computer based numerical simulation capabilities for MHK systems. Under this CRADA, UW-NNMREC and NREL will work together to augment single device and array modeling codes. As part of this effort UW NNMREC will also work with NREL to run simulations on NREL's high performance computer system.« less

Top