Stress Compensating Multilayers
NASA Technical Reports Server (NTRS)
Broadway, David M.; Ramsey, Brian D.; O'dell, Stephen; Gurgew, Danielle
2017-01-01
We present in-situ stress measurement results for single and multilayer thin-films deposited by magnetron sputtering. In particular, we report on the influence of the material interfaces on the ensuing stress in both the transient and steady-state regimes of film growth. This behavior is used to determine the appropriate thicknesses of the constituent layers that will result in a net tensile stress in multilayers composed of various material combinations. These multilayers can then be used to compensate the compressive integrated stress in single and multilayer EUV and x-ray optical coatings. The use of multilayers to compensate the integrated stress might be advantageous because, unlike single layers of chromium, the roughness is not expected to increase with the total thickness of the multilayer. In this paper, we demonstrate the technique for W/Si and Mo/Si multilayers and discuss its application to other material combinations.
NASA Astrophysics Data System (ADS)
Broadway, David M.; Ramsey, Brian D.; O'Dell, Stephen L.; Gurgew, Danielle
2017-09-01
We present in-situ stress measurement results for single and multilayer thin-films deposited by magnetron sputtering. In particular, we report on the influence of the material interfaces on the ensuing stress in both the transient and steady-state regimes of film growth. This behavior is used to determine the appropriate thicknesses of the constituent layers that will result in a net tensile stress in multilayers composed of various material combinations. These multilayers can then be used to compensate the compressive integrated stress in single and multilayer EUV and x-ray optical coatings. The use of multilayers to compensate the integrated stress might be advantageous because, unlike single layers of chromium, the roughness is not expected to increase with the total thickness of the multilayer. In this paper, we demonstrate the technique for W/Si and Mo/Si multilayers and discuss its application to other material combinations.
Developing Multilayer Thin Film Strain Sensors With High Thermal Stability
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.; Gonzalez, Jose M., III
2006-01-01
A multilayer thin film strain sensor for large temperature range use is under development using a reactively-sputtered process. The sensor is capable of being fabricated in fine line widths utilizing the sacrificial-layer lift-off process that is used for micro-fabricated noble-metal sensors. Tantalum nitride films were optimized using reactive sputtering with an unbalanced magnetron source. A first approximation model of multilayer resistance and temperature coefficient of resistance was used to set the film thicknesses in the multilayer film sensor. Two multifunctional sensors were fabricated using multilayered films of tantalum nitride and palladium chromium, and tested for low temperature resistivity, TCR and strain response. The low temperature coefficient of resistance of the films will result in improved stability in thin film sensors for low to high temperature use.
Broadband infrared absorbers with stacked double chromium ring resonators
Deng, Huixu; Stan, Liliana; Czaplewski, David A.; ...
2017-10-31
A broadband absorber in the infrared wavelength range from 1 μm up to 5 μm is designed and demonstrated with stacked double chromium ring resonators on a reflective chromium mirror. The near-perfect broadband absorption is realized by combining the multilayer impedance match in the short wavelength range and the double plasmonic resonances in the long wavelength range, which is illustrated with an equivalent circuit model for the impedance analysis. The broadband absorber is proved to be angle-insensitive and polarization-independent due to the geometrical symmetry. Lastly, the thermal analysis for heat generation and temperature distributions inside the absorber structure is alsomore » investigated.« less
Broadband infrared absorbers with stacked double chromium ring resonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Huixu; Stan, Liliana; Czaplewski, David A.
A broadband absorber in the infrared wavelength range from 1 μm up to 5 μm is designed and demonstrated with stacked double chromium ring resonators on a reflective chromium mirror. The near-perfect broadband absorption is realized by combining the multilayer impedance match in the short wavelength range and the double plasmonic resonances in the long wavelength range, which is illustrated with an equivalent circuit model for the impedance analysis. The broadband absorber is proved to be angle-insensitive and polarization-independent due to the geometrical symmetry. Lastly, the thermal analysis for heat generation and temperature distributions inside the absorber structure is alsomore » investigated.« less
Gold-based thin multilayers for ohmic contacts in RF-MEMS switches
NASA Astrophysics Data System (ADS)
Mulloni, V.; Iannacci, J.; Bartali, R.; Micheli, V.; Colpo, S.; Laidani, N.; Margesin, B.
2011-06-01
In RF-MEMS switches many reliability issues are related to the metal contacts in the switching area. The characteristics of this contact influence not only contact resistance and insertion loss, but also the most relevant switch failure mechanisms that are wear of ohmic contact, adhesion and stiction. Gold is widely used for this purpose because of its good conductivity and chemical inertness, but is a soft metal, and the development of hard contact materials with low resistivity is of great interest for RF-MEMS switch reliability. It is possible to increase the contact hardness preserving the convenient gold properties alternating gold layers with thin layers of different metals. The material becomes harder not only by simple alloying but also by the presence of interfaces which act as barriers for mechanical dislocation migration. A detailed study of mechanical, electrical and morphological properties of gold-chromium, gold-platinum and gold-palladium multilayers is presented and discussed. It is found that the annealing treatments are important for tuning hardness values, and a careful choice of the alloying metal is essential when the material is inserted in a real switch fabrication cycle, because hardness improvements can vanish during oxygen plasma treatments usually involved in RF-switches fabrication. Platinum is the only metal tested that is unaffected by oxidation, and also modifies the chromium adhesion layer diffusion on the contact surface.
Forming aspheric optics by controlled deposition
Hawryluk, A.M.
1998-04-28
An aspheric optical element is disclosed formed by depositing material onto a spherical surface of an optical element by controlled deposition to form an aspheric surface of desired shape. A reflecting surface, single or multi-layer, can then be formed on the aspheric surface by evaporative or sputtering techniques. Aspheric optical elements are suitable for deep ultra-violet (UV) and x-ray wavelengths. The reflecting surface may, for example, be a thin ({approx}100 nm) layer of aluminum, or in some cases the deposited modifying layer may function as the reflecting surface. For certain applications, multi-layer reflective surfaces may be utilized, such as chromium-carbon or tungsten-carbon multi-layer, with the number of layers and thickness being determined by the intended application. 4 figs.
Forming aspheric optics by controlled deposition
Hawryluk, Andrew M.
1998-01-01
An aspheric optical element formed by depositing material onto a spherical surface of an optical element by controlled deposition to form an aspheric surface of desired shape. A reflecting surface, single or multi-layer, can then be formed on the aspheric surface by evaporative or sputtering techniques. Aspheric optical elements are suitable for deep ultra-violet (UV) and x-ray wavelengths. The reflecting surface may, for example, be a thin (.about.100 nm) layer of aluminum, or in some cases the deposited modifying layer may function as the reflecting surface. For certain applications, multi-layer reflective surfaces may be utilized, such as chromium-carbon or tungsten-carbon multi-layer, with the number of layers and thickness being determined by the intended application.
Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures
Song, Tiancheng; Cai, Xinghan; Tu, Matisse Wei-Yuan; ...
2018-05-03
Magnetic multilayer devices that exploit magnetoresistance are the backbone of magnetic sensing and data storage technologies. Here, we report multiple-spin-filter magnetic tunnel junctions (sf-MTJs) based on van der Waals (vdW) heterostructures in which atomically thin chromium triiodide (CrI3) acts as a spin-filter tunnel barrier sandwiched between graphene contacts. We demonstrate tunneling magnetoresistance which is drastically enhanced with increasing CrI 3 layer thickness, reaching a record 19,000% for magnetic multilayer structures using four-layer sf-MTJs at low temperatures. Using magnetic circular dichroism measurements, we attribute these effects to the intrinsic layer-by-layer antiferromagnetic ordering of the atomically thin CrI 3. In conclusion, ourmore » work reveals the possibility to push magnetic information storage to the atomically thin limit and highlights CrI 3 as a superlative magnetic tunnel barrier for vdW heterostructure spintronic devices.« less
Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Tiancheng; Cai, Xinghan; Tu, Matisse Wei-Yuan
Magnetic multilayer devices that exploit magnetoresistance are the backbone of magnetic sensing and data storage technologies. Here, we report multiple-spin-filter magnetic tunnel junctions (sf-MTJs) based on van der Waals (vdW) heterostructures in which atomically thin chromium triiodide (CrI3) acts as a spin-filter tunnel barrier sandwiched between graphene contacts. We demonstrate tunneling magnetoresistance which is drastically enhanced with increasing CrI 3 layer thickness, reaching a record 19,000% for magnetic multilayer structures using four-layer sf-MTJs at low temperatures. Using magnetic circular dichroism measurements, we attribute these effects to the intrinsic layer-by-layer antiferromagnetic ordering of the atomically thin CrI 3. In conclusion, ourmore » work reveals the possibility to push magnetic information storage to the atomically thin limit and highlights CrI 3 as a superlative magnetic tunnel barrier for vdW heterostructure spintronic devices.« less
Major, L; Janusz, M; Lackner, J M; Kot, M; Major, B
2016-06-01
Studies of advanced protective chromium-based coatings on the carbon fibre composite (CFC) were performed. Multidisciplinary examinations were carried out comprising: microstructure transmission electron microscopy (TEM, HREM) studies, micromechanical analysis and wear resistance. Coatings were prepared using a magnetron sputtering technique with application of high-purity chromium and carbon (graphite) targets deposited on the CFC substrate. Selection of the CFC for surface modification in respect to irregularities on the surface making the CFC surface more smooth was performed. Deposited coatings consisted of two parts. The inner part was responsible for the residual stress compensation and cracking initiation as well as resistance at elevated temperatures occurring namely during surgical tools sterilization process. The outer part was responsible for wear resistance properties and biocompatibility. Experimental studies revealed that irregularities on the substrate surface had a negative influence on the crystallites growth direction. Chromium implanted into the a-C:H structure reacted with carbon forming the cubic nanocrystal chromium carbides of the Cr23 C6 type. The cracking was initiated at the coating/substrate interface and the energy of brittle cracking was reduced because of the plastic deformation at each Cr interlayer interface. The wear mechanism and cracking process was described in micro- and nanoscale by means of transmission electron microscope studies. Examined materials of coated CFC type would find applications in advanced surgical tools. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Sergeev, A. P.; Tarasov, D. A.; Buevich, A. G.; Subbotina, I. E.; Shichkin, A. V.; Sergeeva, M. V.; Lvova, O. A.
2017-06-01
The work deals with the application of neural networks residual kriging (NNRK) to the spatial prediction of the abnormally distributed soil pollutant (Cr). It is known that combination of geostatistical interpolation approaches (kriging) and neural networks leads to significantly better prediction accuracy and productivity. Generalized regression neural networks and multilayer perceptrons are classes of neural networks widely used for the continuous function mapping. Each network has its own pros and cons; however both demonstrated fast training and good mapping possibilities. In the work, we examined and compared two combined techniques: generalized regression neural network residual kriging (GRNNRK) and multilayer perceptron residual kriging (MLPRK). The case study is based on the real data sets on surface contamination by chromium at a particular location of the subarctic Novy Urengoy, Russia, obtained during the previously conducted screening. The proposed models have been built, implemented and validated using ArcGIS and MATLAB environments. The networks structures have been chosen during a computer simulation based on the minimization of the RMSE. MLRPK showed the best predictive accuracy comparing to the geostatistical approach (kriging) and even to GRNNRK.
Durable silver coating for mirrors
Wolfe, Jesse D.; Thomas, Norman L.
2000-01-01
A durable multilayer mirror includes reflective layers of aluminum and silver and has high reflectance over a broad spectral range from ultraviolet to visible to infrared. An adhesion layer of a nickel and/or chromium alloy or nitride is deposited on an aluminum surface, and a thin layer of silver is then deposited on the adhesion layer. The silver layer is protected by a passivation layer of a nickel and/or chromium alloy or nitride and by one or more durability layers made of metal oxides and typically a first layer of metal nitride. The durability layers may include a composite silicon aluminum nitride and an oxinitride transition layer to improve bonding between nitride and oxide layers.
Bolakis, C; Grbovic, D; Lavrik, N V; Karunasiri, G
2010-07-05
A terahertz-absorbing thin-film stack, containing a dielectric Bragg reflector and a thin chromium metal film, was fabricated on a silicon substrate for applications in bi-material terahertz (THz) sensors. The Bragg reflector is to be used for optical readout of sensor deformation under THz illumination. The THz absorption characteristics of the thin-film composite were measured using Fourier transform infrared spectroscopy. The absorption of the structure was calculated both analytically and by finite element modeling and the two approaches agreed well. Finite element modeling provides a convenient way to extract the amount of power dissipation in each layer and is used to quantify the THz absorption in the multi-layer stack. The calculation and the model were verified by experimentally characterizing the multi-layer stack in the 3-5 THz range. The measured and simulated absorption characteristics show a reasonably good agreement. It was found that the composite film absorbed about 20% of the incident THz power. The model was used to optimize the thickness of the chromium film for achieving high THz absorption and found that about 50% absorption can be achieved when film thickness is around 9 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, J.A.
1979-06-15
Magnetron sputtering technology, which permits coatings to be deposited over large areas with significantly increased deposition rates, is reviewed with particular emphasis on cylindrical magnetrons and their application to reactive sputtering. Work is reported in which cylindrical-post magnetron sputtering sources have been used to deposit both graded and multi-layered cermet-type coatings by sputtering chromium and type 304 stainless steel in Ar and O/sub 2/ and Ar and CO gas mixtures under various conditions of reactive gas injection. The substrates are aluminum-coated glass and aluminum foil. The coatings are of an interference type, typically about 100 nm thick, with a metal-rich,more » highly absorbing layer adjacent to the substrate and a dielectric material at the surface. In some cases a reactively sputtered aluminum oxide anti-reflective surface layer has also been used. No advantages have been found for using chromium as opposed to the more readily available stainless steel. The reactive sputtering with CO is attractive because under many conditions the sputtering rates are relatively large compared to oxygen. Hemispherical absorptance and emittance data are reported. Typical absorptances are about 0.90 with emittances of 0.10.« less
Preparation of multilayered nanocrystalline thin films with composition-modulated interfaces
NASA Astrophysics Data System (ADS)
Biro, D.; Barna, P. B.; Székely, L.; Geszti, O.; Hattori, T.; Devenyi, A.
2008-06-01
The properties of multilayer thin film structures depend on the morphology and structure of interfaces. A broad interface, in which the composition is varying, can enhance, e.g., the hardness of multilayer thin films. In the present experiments multilayers of TiAlN and CrN as well as TiAlN, CrN and MoS 2 were studied by using unbalanced magnetron sputter sources. The sputter sources were arranged side by side on an arc. This arrangement permits development of a transition zone between the layers, where the composition changes continuously. The multilayer system was deposited by one-fold oscillating movement of substrates in front of sputter sources. Thicknesses of layers could be changed both by oscillation frequency and by the power applied to sputter sources. Ti/Al: 50/50 at%, pure chromium and MoS 2 targets were used in the sputter sources. The depositions were performed in an Ar-N 2 mixture at 0.22 Pa working pressure. The sputtering power of the TiAl source was feed-back adjusted in fuzzy-logic mode in order to avoid fluctuation of the TiAl target sputter rate due to poisoning of the target surface. Structure characterization of films deposited on <1 0 0> Si wafers covered by thermally grown SiO 2 was performed by cross-sectional transmission electron microscopy. At first a 100 nm thick Cr base layer was deposited on the substrate to improve adhesion, which was followed by a CrN transition layer. The CrN transition layer was followed by a 100 nm thick TiAlN/CrN multilayer system. The TiAlN/CrN/MoS 2 multilayer system was deposited on the surface of this underlayer system. The underlayer systems Cr, CrN and TiAlN/CrN were crystalline with columnar structure according to the morphology of zone T of the structure zone models. The column boundaries contained segregated phases showing up in the under-focused TEM images. The surface of the underlayer system was wavy due to dome-shaped columns. The nanometer-scaled TiAlN/CrN/MoS 2 multilayer system followed this waviness. Crystallinity of the TiAlN and CrN layers in the multilayer system decreases with increasing thickness of the MoS 2 layer.
Chromium (VI) biosorption by Saccharomyces cerevisiae subjected to chemical and thermal treatments.
De Rossi, Andrea; Rigon, Magali Rejane; Zaparoli, Munise; Braido, Rafael Dalmas; Colla, Luciane Maria; Dotto, Guilherme Luiz; Piccin, Jeferson Steffanello
2018-05-28
The potential of chemically and thermally treated Saccharomyces cerevisiae as biosorbents for chromium (VI) was investigated in this work. The presence of this toxic metal in industrial effluents is harmful to the environment, so, it is important to develop environmental friendly methods for Cr(VI) removal from these effluents. Biosorption using microorganisms such as S. cerevisiae is a viable treatment option because this biomass is easily available as a residue of fermentation industries. In this study, the affecting variables on Cr(VI) biosorption were studied by constructing biosorption isotherms, using lyophilized yeast subjected to chemical and thermal treatments. S. cerevisiae was able to remove 99.66% of Cr(VI) from effluents by biosorption. The significant variables affecting biosorption were pH, initial Cr(VI) concentration, and contact time. The biosorption isotherms were represented by the Freundlich model for the untreated biomass, BET model for the chemically treated biomass, and Langmuir model for the heat-treated biomass. Thermal treatment increased the biosorption affinity of the biomass for chromium, while the chemical treatment facilitated the formation of a multilayer.
NASA Astrophysics Data System (ADS)
Moss, Tyler; Cao, Guoping; Was, Gary S.
2017-04-01
The objective of this study is to determine whether the oxidation of Alloys 600 and 690 in supercritical water occurs by the same mechanism in subcritical water. Coupons of Alloys 690 and 600 were exposed to hydrogenated subcritical and supercritical water from 633 K to 673 K (360 °C to 400 °C) and the oxidation behavior was observed. By all measures of oxide character and behavior, the oxidation process is the same above and below the supercritical line. Similar oxide morphologies, structures, and chemistries were observed for each alloy across the critical point, indicating that the oxidation mechanism is the same in both subcritical and supercritical water. Oxidation results in a multi-layer oxide structure composed of particles of NiO and NiFe2O4 formed by precipitation on the outer surface and a chromium-rich inner oxide layer formed by diffusion of oxygen to the metal-oxide interface. The inner oxide on Alloy 600 is less chromium rich than that observed on Alloy 690 and is accompanied by preferential oxidation of grain boundaries. The inner oxide on Alloy 690 initially forms by internal oxidation before a protective layer of chromium-rich MO is formed with Cr2O3 at the metal-oxide interface. Grain boundaries in Alloy 690 act as fast diffusion paths for chromium that forms a protective Cr2O3 layer at the surface, preventing grain boundary oxidation from occurring.
Weihs, Timothy P.; Barbee, Jr., Troy W.
2002-01-01
Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).
Double-spiral magnetic structure of the Fe/Cr multilayer revealed by nuclear resonance reflectivity
NASA Astrophysics Data System (ADS)
Andreeva, M. A.; Baulin, R. A.; Chumakov, A. I.; Rüffer, R.; Smirnov, G. V.; Babanov, Y. A.; Devyaterikov, D. I.; Milyaev, M. A.; Ponomarev, D. A.; Romashev, L. N.; Ustinov, V. V.
2018-01-01
We have studied the magnetization depth profiles in a [57Fe (dFe) /Cr (dCr) ]30 multilayer with ultrathin Fe layers and nominal thickness of the chromium spacers dCr≈2.0 nm using nuclear resonance scattering of synchrotron radiation. The presence of a broad pure-magnetic half-order (1/2) Bragg reflection has been detected at zero external field. The joint fit of the reflectivity curves and Mössbauer spectra of reflectivity measured near the critical angle and at the "magnetic" peak reveals that the magnetic structure of the multilayer is formed by two spirals, one in the odd and another one in the even iron layers, with the opposite signs of rotation. The double-spiral structure starts from the surface with the almost-antiferromagnetic alignment of the adjacent Fe layers. The rotation of the two spirals leads to nearly ferromagnetic alignment of the two magnetic subsystems at some depth, where the sudden turn of the magnetic vectors by ˜180∘ (spin flop) appears, and both spirals start to rotate in opposite directions. The observation of this unusual double-spiral magnetic structure suggests that the unique properties of giant magnetoresistance devices can be further tailored using ultrathin magnetic layers.
Process for the production of star-tracking reticles
NASA Technical Reports Server (NTRS)
Toft, A. R.; Smith, W. O.
1974-01-01
Reticles designed with quartz bases are masked with desired pattern and then are coated with highly adherent layers of chromium, chromium silver alloy, silver, copper, and black chromium (mixture of chromium and chromium oxides). Black chromium final layer produces required nonreflective surface.
Background Paper on Aerospace & Missile Needs
2006-05-01
Micro- welding based coatings Trivalent chromium plated coatings Nano-composite Ni-P and Co-P based plated coatings Thermal diffusion coatings Plasma...working in conjunction with Advanced Surfaces and Processes, Inc. to determine the applicability of another type of ESD process. Trivalent Chromium ...Plating: Trivalent chromium is considered to be much less toxic than hexavalent chromium . Consequently, trivalent chromium coatings are being
Elemental speciation for chromium in chromium picolinate products
NASA Astrophysics Data System (ADS)
Ding, Hong; Olson, Lisa K.; Caruso, Joseph A.
1996-12-01
Chromium picolinate products have been examined for different forms of chromium, using chromatographic separation and inductively coupled plasma mass spectrometric detection. The brands we evaluated contained no detectable amount of elemental chromium(VI), the toxic form. Since chromium picolinate might have other chromium forms as impurities, different products may contain different forms of chromium species. Compared with ion-exchange, reversed-phase chromatography showed excellent chromium recovery based on the amount stated on the product label.
NASA Astrophysics Data System (ADS)
Gao, Feng
The hot section components in gas turbines are subjected to a harsh environment with the temperature being increased continuously. The higher temperature has directly resulted in severe oxidation of these components. Monolithic coatings such as MCrAIY and aluminide have been traditionally used to protect the components from oxidation; however, increased operating temperature quickly deteriorates the coatings due to accelerated diffusion of aluminum in the coatings. To improve the oxidation resistance a group of multilayered coatings are developed in this study. The multilayered coatings consist of a Cr-Si co-deposited layer as the diffusion barrier, a plasma sprayed NiCrA1Y coating as the middle layer and an aluminized top layer. The Cr-Si and aluminized layers are fabricated using pack cementation processes and the NiCrA1Y coatings are produced using the Mettech Axial III(TM) System. All of the coating processes are optimized using the methodology of Design of Experiments (DOE) and the results are analyzed using statistical method. The optimal processes are adopted to fabricate the multilayered coatings for oxidation tests. The coatings are exposed in air at 1050°C and 1150°C for 1000 hr. The results indicate that a Cr layer and a silicon-rich barrier layer have formed on the interface between the Cr-Si coating and the NiCrA1Y coating. This barrier layer not only prevents aluminum and chromium from diffusing into the substrate, but also impedes the diffusion of other elements from the substrate into the coating. The results also reveal that, for optimal oxidation resistance at 1050°C, the top layer in a multilayered coating should have at least Al/Ni ratio of one; whereas the multilayered coating with the All Ni ratio of two in the top layer exhibits the best oxidation resistance at 1150°C. The DOE methodology provides an excellent means for process optimization and the selection of oxidation test matrix, and also offers a more thorough understanding of the effects of process parameters on the coating microstructure, and the effects of layers and their interactions on the oxidation behavior of the multilayered coatings.
Reveko, Valeriia; Lampert, Felix; Din, Rameez U; Thyssen, Jacob P; Møller, Per
2018-05-01
A colorimetric 1,5-diphenylcarbazide (DPC)-based spot test can be used to identify hexavalent chromium on various metallic and leather surfaces. DPC testing on trivalent chromium-passivated zinc surfaces has unexpectedly given positive results in some cases, apparently indicating the presence of hexavalent chromium; however, the presence of hexavalent chromium has never been confirmed with more sensitive and accurate test methods. To examine the presence of hexavalent chromium on trivalent chromium-passivated zinc surfaces with a DPC-based spot test. A colorimetric DPC spot test was used for the initial detection of hexavalent chromium on new and 1-year-aged trivalent chromium-passivated zinc surfaces. Then, X-ray photoelectron spectroscopy (XPS) was performed for all samples. The DPC spot test indicated the presence of hexavalent chromium in aged, but not new, trivalent chromium passivation on zinc; however, subsequent analysis by XPS could not confirm the presence of chromium in a hexavalent state. Unintended oxidation of DPC induced by atmospheric corrosion is suggested as a possible reason for the false-positive reaction of the DPC test on a trivalent chromium-passivated zinc surface. Further validation of the use of the DPC test for chromium-containing metallic surfaces is required. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Process for the Production of Star Tracklng [Tracking] Reticles
NASA Technical Reports Server (NTRS)
Smith, Wade O. (Inventor); Toft, Albert R. (Inventor)
1972-01-01
A method for the production of reticles, particularly those for use in outer space, wherein the product is a quartz base coated with highly adherent layers of chromium, chromium-silver, and silver vacuum deposited through a mask, and then coated with an electrodeposit of copper from a copper sulfate solution followed by an electrodeposit of black chromium. The masks are produced by coating a beryllium-copper alloy substrate with a positive working photoresist, developing the photoresist according to a pattern to leave a positive mask, plating uncoated areas with gold, removing the photoresist, coating the substrate with a negative working photoresist, developing the negative working photoresist to expose the base metal of the pattern, and chemically etching the unplated side of the pattern to produce the mask. The mask produced is then used in the vacuum deposition of: (1) chromium metal on the surface of a quartz base to obtain a highly adherent quartz-chromium interface; (2) silver on the chromium deposit, during the final stage of chromium deposit, to produce a silver chromium alloy layer; and (3) silver onto the surface of the alloy layer. The coated quartz base is then coated by electroplating utilizing an acid copper deposit followed by a black chromium electrodeposit to produce the product of the present invention.
1991-12-01
34 0-0-° AD-A256 238 - DTIC 7 ELECTE A S OCTI 6 1992 R CM S PHARMACOKINETIC MODELING OF T TRIVALENT AND HEXAVALENT CHROMIUM R BASED ON INGESTION AND...or inhalation of trivalent or hexavalent soluble chromium compounds. The research described herein began in June 1990 and was completed in December... trivalent and hexavalent chromium compounds, chromic chloride-hexahydrate and sodium dichromate, respectively (Table I). An inhalation control group was
Extraordinary Corrosion Protection from Polymer-Clay Nanobrick Wall Thin Films.
Schindelholz, Eric J; Spoerke, Erik D; Nguyen, Hai-Duy; Grunlan, Jaime C; Qin, Shuang; Bufford, Daniel C
2018-06-20
Metals across all industries demand anticorrosion surface treatments and drive a continual need for high-performing and low-cost coatings. Here we demonstrate polymer-clay nanocomposite thin films as a new class of transparent conformal barrier coatings for protection in corrosive atmospheres. Films assembled via layer-by-layer deposition, as thin as 90 nm, are shown to reduce copper corrosion rates by >1000× in an aggressive H 2 S atmosphere. These multilayer nanobrick wall coatings hold promise as high-performing anticorrosion treatment alternatives to costlier, more toxic, and less scalable thin films, such as graphene, hexavalent chromium, or atomic-layer-deposited metal oxides.
A physiologically based model of chromium kinetics in the rat.
O'Flaherty, E J
1996-05-01
A physiologically based model of chromium kinetics in rats has been developed. The general structure of the model is similar to that of a model of lead kinetics in rats. Like lead chromium exchanges between plasma and the bone surfaces in contact with plasma, and also like lead, although with much lower efficiency, it can become incorporated into actively mineralizing bone. Both processes are included in the model. Parallel absorption and disposition schemes for chromium(VI) and chromium(III) are linked in the model by reduction processes occurring throughout the body, including the lung and gastrointestinal tract. Examination of a number of data sets from studies in which chromium salts were administered to rats intravenously, orally, or by intratracheal instillation established that intravenous administration, on the one hand, and oral or pulmonary administration, on the other hand, result in different disposition patterns. The model was calibrated based on published oral and intratracheal kinetic studies in rats given soluble chromium(III) and chromium(VI) salts. In the most complete of these studies, chromium concentrations were monitored in individual tissues for 42 days following intratracheal administration of a soluble chromium(VI) salt. Inclusion in the model of a urinary excretion delay was necessary in order to fit excretion data from two other intratracheal studies. Model predictions of blood chromium concentrations are compared with the results of a published kinetic study in which rats were administered a soluble chromium(VI) salt by inhalation.
Development of a Groundwater Transport Simulation Tool for Remedial Process Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivarson, Kristine A.; Hanson, James P.; Tonkin, M.
2015-01-14
The groundwater remedy for hexavalent chromium at the Hanford Site includes operation of five large pump-and-treat systems along the Columbia River. The systems at the 100-HR-3 and 100-KR-4 groundwater operable units treat a total of about 9,840 liters per minute (2,600 gallons per minute) of groundwater to remove hexavalent chromium, and cover an area of nearly 26 square kilometers (10 square miles). The pump-and-treat systems result in large scale manipulation of groundwater flow direction, velocities, and most importantly, the contaminant plumes. Tracking of the plumes and predicting needed system modifications is part of the remedial process optimization, and is amore » continual process with the goal of reducing costs and shortening the timeframe to achieve the cleanup goals. While most of the initial system evaluations are conducted by assessing performance (e.g., reduction in contaminant concentration in groundwater and changes in inferred plume size), changes to the well field are often recommended. To determine the placement for new wells, well realignments, and modifications to pumping rates, it is important to be able to predict resultant plume changes. In smaller systems, it may be effective to make small scale changes periodically and adjust modifications based on groundwater monitoring results. Due to the expansive nature of the remediation systems at Hanford, however, additional tools were needed to predict the plume reactions to system changes. A computer simulation tool was developed to support pumping rate recommendations for optimization of large pump-and-treat groundwater remedy systems. This tool, called the Pumping Optimization Model, or POM, is based on a 1-layer derivation of a multi-layer contaminant transport model using MODFLOW and MT3D.« less
Trzonkowska, Laura; Leśniewska, Barbara; Godlewska-Żyłkiewicz, Beata
2016-07-03
The biological activity of Cr(III) and Cr(VI) species, their chemical behavior, and toxic effects are dissimilar. The speciation analysis of Cr(III) and Cr(VI) in environmental matrices is then of great importance and much research has been devoted to this area. This review presents recent developments in on-line speciation analysis of chromium in such samples. Flow systems have proved to be excellent tools for automation of sample pretreatment, separation/preconcentration of chromium species, and their detection by various instrumental techniques. Analytical strategies used in chromium speciation analysis discussed in this review are divided into categories based on selective extraction/separation of chromium species on solid sorbents and liquid-liquid extraction of chromium species. The most popular strategy is that based on solid-phase extraction. Therefore, this review shows the potential of novel materials designed and used for selective binding of chromium species. The progress in miniaturization of measurement systems is also presented.
Low-cost evacuated-tube solar collector
NASA Astrophysics Data System (ADS)
1981-02-01
A prototype design for an evacuated tube air cooled solar collector module was completed. A product cost study, based on the production of 60,000 of the prototype modules per year (approx. 1,000,000 square feet annually), estimates that the module as shipped would have a cost at inventory of $7.09 to $7.40 per square foot of aperture. Computer programs were developed to predict the optical and thermal performane of the module. Antireflective coatings (porous aluminum oxide) formed by spraying or dipping were demonstrated but degraded more rapidly when exposed to a high humidity ambient acid etched films. A selective black chromium oxide multi-layered graded film was vapor deposited which had an absorptivity of about 0.9 and an emissivity of 0.03. When the film was heated to temperatures of 4000 C in a gettered vacuum for as little as 24 hours, however, irreversible changes took place both between and within coating layers which resulted in alpha decreasing to about 0.73 and epsilon increasing to 0.14.
Brownley, Kimberly A.; Boettiger, Charlotte A.; Young, Laura; Cefalu, William T.
2015-01-01
Dietary chromium supplementation for the treatment of diabetes remains controversial. The prevailing view that chromium supplementation for glucose regulation is unjustified has been based upon prior studies showing mixed, modest-sized effects in patients with type 2 diabetes (T2DM). Based on chromium's potential to improve insulin, dopamine, and serotonin function, we hypothesize that chromium has a greater glucoregulatory effect in individuals who have concurrent disturbances in dopamine and serotonin function – that is, complex patients with comorbid diabetes, depression, and binge eating. We propose, as suggested by the collective data to date, the need to go beyond the “one size fits all” approach to chromium supplementation and put forth a series of experiments designed to link physiological and neurobehavioral processes in the chromium response phenotype. PMID:25838140
Stabilization of chromium-bearing electroplating sludge with MSWI fly ash-based Friedel matrices.
Qian, Guangren; Yang, Xiaoyan; Dong, Shixiang; Zhou, Jizhi; Sun, Ying; Xu, Yunfeng; Liu, Qiang
2009-06-15
This work investigated the feasibility and effectiveness of MSWI fly ash-based Friedel matrices on stabilizing/solidifying industrial chromium-bearing electroplating sludge using MSWI fly ash as the main raw material with a small addition of active aluminum. The compressive strength, leaching behavior and chemical speciation of heavy metals and hydration phases of matrices were characterized by TCLP, XRD, FTIR and other experimental methods. The results revealed that MSWI fly ash-based Friedel matrices could effectively stabilize chromium-bearing electroplating sludge, the formed ettringite and Friedel phases played a significant role in the fixation of heavy metals in electroplating sludge. The co-disposal of chromium-bearing electroplating sludge and MSWI fly ash-based Friedel matrices with a small addition of active aluminum is promising to be an effective way of stabilizing chromium-bearing electroplating sludge.
Hou, Dongwei; Zhang, Guoping; Pant, Rohit Raj; Wei, Zhongxin; Shen, Shuilong
2016-11-08
Clay-based nanostructured multilayers, such as clay-polymer multilayers and clay-oxide multilayers, have attracted growing attention owing to their remarkable mechanical properties and promising application in various fields. In this paper, synthesis of a new kind of nanostructured clay-oxide multilayers by layer-by-layer self-assembly was explored. Nano-mechanical characterization of 18 clay-based multilayer samples, prepared under as-deposited (i.e., air-dried) and annealing conditions at 400 °C/600 °C with different precursor cations and multilayer structure, were carried out using nanoindentation testing, atomic force microscopy (AFM), and X-ray diffraction (XRD). The influencing factors, including as-deposited and annealing conditions and clay concentrations on the mechanical properties were analyzed. Results show that all of the multilayers exhibit high bonding strength between interlayers. Higher modulus and hardness of clay-based multilayers were obtained with lower clay concentrations than that with higher clay concentrations. Different relationships between the modulus and hardness and the annealing temperature exist for a specific type of clay-oxide multilayer. This work offers the basic and essential knowledge on design of clay-based nanostructured multilayers by layer-by-layer self-assembly.
New alloys to conserve critical elements
NASA Technical Reports Server (NTRS)
Stephens, J. R.
1978-01-01
Based on availability of domestic reserves, chromium is one of the most critical elements within the U.S. metal industry. New alloys having reduced chromium contents which offer potential as substitutes for higher chromium containing alloys currently in use are being investigated. This paper focuses primarily on modified Type 304 stainless steels having one-third less chromium, but maintaining comparable oxidation and corrosion properties to that of type 304 stainless steel, the largest single use of chromium. Substitutes for chromium in these modified Type 304 stainless steel alloys include silicon and aluminum plus molybdenum.
Preliminary Material Properties Handbook. Volume 2: SI Units
2000-07-01
6-1 6.2 Iron- Chromium -Nickel-Base Alloys...iron, or chromium . In addition to strengthening of titanium by the alloying additions, alpha-beta alloys may be further strengthened by heat...6.3.3 6.3.4 6.3.5 6.4 6.5 6.5.1 Iron- Chromium -Nickel-Base Alloys Nickel-Base Alloys AEREX® 350 alloy HAYNES® 230® alloy HAYNES® HR-120® alloy Inconel
Production of Chromium Oxide from Turkish Chromite Concentrate Using Ethanol
NASA Astrophysics Data System (ADS)
Aktas, S.; Eyuboglu, C.; Morcali, M. H.; Özbey, S.; Sucuoglu, Y.
2015-05-01
In this study, the possibility of chromium extraction from Turkish chromite concentrate and the production of chromium oxide were investigated. For the conversion of chromium(III) into chromium(VI), NaOH was employed, as well as air with a rate of 20 L/min. The effects of the base amount, fusing temperature, and fusing time on the chromium conversion percentage were investigated in detail. The conversion kinetics of chromium(III) to chromium(VI) was also undertaken. Following the steps of dissolving the sodium chromate in water and filtering, aluminum hydroxide was precipitated by adjusting the pH level of the solution. The chromium(VI) solution was subsequently converted to Cr(III) by the combination of sulfuric acid and ethanol. Interestingly, it was observed that ethanol precipitated chromium as chromium(VI) at mildly acidic pH levels, although this effect is more pronounced for K2Cr2O7 than Na2Cr2O7. On the other hand, in the strongly acidic regime, ethanol acted as a reducing agent role in that chromium(VI) was converted into Cr(III) whereas ethanol itself was oxidized to carbon dioxide and water. Subsequently, chromium hydroxide was obtained by the help of sodium hydroxide and converted to chromium oxide by heating at 800 °C, as indicated in thermo gravimetric analysis (TGA).
Chromium Recycling in the United States in 1998
Papp, John F.
2001-01-01
The purpose of this report is to illustrate the extent to which chromium was recycled in the United States in 1998 and to identify chromium-recycling trends. The major use of chromium was in the metallurgical industry to make stainless steel; substantially less chromium was used in the refractory and chemical industries. In this study, the only chromium recycling reported was that which was a part of stainless steel scrap reuse. In 1998, 20 percent of the U.S. apparent consumption of chromium was secondary (from recycling); the remaining 80 percent was based on net chromium commodity imports and stock adjustments. Chromite ore was not mined in the United States in 1998. In 1998, 75,300 metric tons (t) of chromium contained in old scrap was consumed in the United States; it was valued at $66.4 million. Old scrap generated contained 132,000 t of chromium. The old scrap recycling efficiency was 87 percent, and the recycling rate was 20 percent. About 18,000 t of chromium in old scrap was unrecovered. New scrap consumed contained 28,600 t of chromium, which yielded a new-to-old-scrap ratio of 28:72. U.S. chromium-bearing stainless steel scrap net exports were valued at $154 million and were estimated to have contained 41,000 t of chromium.
Preliminary Material Properties Handbook. Volume 1: English Units
2000-07-01
6-1 6.2 Iron- Chromium -Nickel-Base Alloys...titanium but is stabilized to room temperature by sufficient quantities of beta stabilizing elements as vanadium, molybdenum, iron, or chromium . In...Designation 6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.4 6.5 6.5.1 Iron- Chromium -Nickel-Base Alloys Nickel-Base Alloys AEREX® 350 alloy HAYNES® 230® alloy
Ferrate treatment for removing chromium from high-level radioactive tank waste.
Sylvester, P; Rutherford, L A; Gonzalez-Martin, A; Kim, J; Rapko, B M; Lumetta, G J
2001-01-01
A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. This method could be generally applicable to removing chromium from chromium-contaminated solids, when coupled with a subsequent reduction of the separated chromate back to chromium(III). The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(II) molar ratio, but the chromium removal tends to level out for Fe(VI)/ Cr(III) greaterthan 10. Increasingtemperature leadsto better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be disposed as low-activity waste.
Preliminary Material Properties Handbook, English Units
1999-12-01
References 5-17 Chapter 6. Heat-Resistant Alloys 6.1 General 6-1 6.2 Iron- Chromium -Nickel-Base Alloys 6-3 6.3 Nickel-Base Alloys 6-3 6.4...elements as vanadium, molybdenum, iron, or chromium . In addition to strengthening of titanium by the alloying additions, alpha-beta alloys may be...alloys are arbitrarily defined as iron alloys richer in alloy content than the 18 percent chromium , 8 percent nickel types, or as alloys with a base
1998-06-29
chromium are Cr° (metal), Cr3+ and Cr6+. The trivalent chromium (Cr3+) and hexavalent chromium (Cr6+) are the most biologically significant. Cr + is...REFERENCES Agency for Toxic Substances and Disease Registry (ATSDR). "Case Studies in Environmental Medicine: Chromium Toxicity," U.S. Department...Wilson B. M. ’The Fate of Hexavalent Chromium in the Atmosphere," Research Triangle Institute RTI/3 798/00- 01F (October 1988). Hughes, S., Ayer, J
FORMATION AND DESTRUCTION OF HEXAVALENT CHROMIUM IN A LABORATORY SWIRL FLAME INCINERATOR
The partitioning of chromium (Cr) in combustion systems was investigated theoretically and experimentally. Theoretical predictions were based on chemical equilibrium and suggested that hexavalent chromium [Cr(VI)] was favored by the presence of chlorine (Cl) and diminished by the...
A highly selective chemiluminescent probe for the detection of chromium(VI)
NASA Astrophysics Data System (ADS)
Jin, Yan; Sun, Yonghua; Li, Chongying; Yang, Chao
2018-03-01
In present work, rhodamine B hydrazide and rhodamine 6G hydrazide were synthesized and the chemiluminescence performance has been investigated. Based on the chemiluminescence of rhodamine 6G hydrazide-chromium(VI), a selective and sensitive method for the direct detection of chromium(VI) was developed. The chemiluminescence intensity was linearly related to the concentration of chromium(VI) in the range of 2.60 × 10- 8-8.00 × 10- 6 mol/L with a correlation coefficient of r = 0.998 and a detection limit of 1.4 × 10- 8 mol/L (S/N = 3). The results indicated rhodamine 6G hydrazide was an excellent chemiluminescent probe for chromium(VI) without reduction of chromium(VI) to chromium(III). A possible mechanism of CL emission was also suggested.
Air Force Successes and Challenges in Cr(VI) Elimination
2011-05-10
ion vapor deposited Al, and Cd coatings 2. Use trivalent chromium [Cr(III)] conversion coating (CC) on Dipsol IZ- C17+ zinc-nickel (Zn-Ni) coating...interested in results Anodized T-38 aileron levers 10 Chromium -Free Conversion Coatings Identify and evaluate chromium -free conversion coatings (CFCCs...the chromium -based conversion coating for treatment of aluminum alloys at OC-ALC • Conduct technology assessment to identify suitable Cr-free
Chromium Trioxide Hole-Selective Heterocontacts for Silicon Solar Cells.
Lin, Wenjie; Wu, Weiliang; Liu, Zongtao; Qiu, Kaifu; Cai, Lun; Yao, Zhirong; Ai, Bin; Liang, Zongcun; Shen, Hui
2018-04-25
A high recombination rate and high thermal budget for aluminum (Al) back surface field are found in the industrial p-type silicon solar cells. Direct metallization on lightly doped p-type silicon, however, exhibits a large Schottky barrier for the holes on the silicon surface because of Fermi-level pinning effect. As a result, low-temperature-deposited, dopant-free chromium trioxide (CrO x , x < 3) with high stability and high performance is first applied in a p-type silicon solar cell as a hole-selective contact at the rear surface. By using 4 nm CrO x between the p-type silicon and Ag, we achieve a reduction of the contact resistivity for the contact of Ag directly on p-type silicon. For further improvement, we utilize a CrO x (2 nm)/Ag (30 nm)/CrO x (2 nm) multilayer film on the contact between Ag and p-type crystalline silicon (c-Si) to achieve a lower contact resistance (40 mΩ·cm 2 ). The low-resistivity Ohmic contact is attributed to the high work function of the uniform CrO x film and the depinning of the Fermi level of the SiO x layer at the silicon interface. Implementing the advanced hole-selective contacts with CrO x /Ag/CrO x on the p-type silicon solar cell results in a power conversion efficiency of 20.3%, which is 0.1% higher than that of the cell utilizing 4 nm CrO x . Compared with the commercialized p-type solar cell, the novel CrO x -based hole-selective transport material opens up a new possibility for c-Si solar cells using high-efficiency, low-temperature, and dopant-free deposition techniques.
NASA Astrophysics Data System (ADS)
Wen, Jing; Jiang, Tao; Xu, Yingzhe; Liu, Jiayi; Xue, Xiangxin
2018-06-01
Vanadium and chromium are important rare metals, leading to a focus on high chromium vanadium slag (HCVS) as a potential raw material to extract vanadium and chromium in China. In this work, a novel method based on selective two-stage roasting-leaching was proposed to separate and extract vanadium and chromium efficiently in HCVS. XRD, FT-IR, and SEM were utilized to analyze the phase evolutions and microstructure during the whole process. Calcification roasting, which can calcify vanadium selectively using thermodynamics, was carried out in the first roasting stage to transfer vanadium into acid-soluble vanadate and leave chromium in the leaching residue as (Fe0.6Cr0.4)2O3 after H2SO4 leaching. When HCVS and CaO were mixed in the molar ratio CaO/V2O3 (n(CaO)/n(V2O3)) of 0.5 to 1.25, around 90 pct vanadium and less than 1 pct chromium were extracted in the first leaching liquid, thus achieving the separation of vanadium and chromium. In the second roasting stage, sodium salt, which combines with chromium easily, was added to the first leaching residue to extract chromium and 95.16 pct chromium was extracted under the optimal conditions. The total vanadium and chromium leaching rates were above 95 pct, achieving the efficient separation and extraction of vanadium and chromium. The established method provides a new technique to separate vanadium and chromium during roasting rather than in the liquid form, which is useful for the comprehensive application of HCVS.
NASA Astrophysics Data System (ADS)
Wen, Jing; Jiang, Tao; Xu, Yingzhe; Liu, Jiayi; Xue, Xiangxin
2018-04-01
Vanadium and chromium are important rare metals, leading to a focus on high chromium vanadium slag (HCVS) as a potential raw material to extract vanadium and chromium in China. In this work, a novel method based on selective two-stage roasting-leaching was proposed to separate and extract vanadium and chromium efficiently in HCVS. XRD, FT-IR, and SEM were utilized to analyze the phase evolutions and microstructure during the whole process. Calcification roasting, which can calcify vanadium selectively using thermodynamics, was carried out in the first roasting stage to transfer vanadium into acid-soluble vanadate and leave chromium in the leaching residue as (Fe0.6Cr0.4)2O3 after H2SO4 leaching. When HCVS and CaO were mixed in the molar ratio CaO/V2O3 (n(CaO)/n(V2O3)) of 0.5 to 1.25, around 90 pct vanadium and less than 1 pct chromium were extracted in the first leaching liquid, thus achieving the separation of vanadium and chromium. In the second roasting stage, sodium salt, which combines with chromium easily, was added to the first leaching residue to extract chromium and 95.16 pct chromium was extracted under the optimal conditions. The total vanadium and chromium leaching rates were above 95 pct, achieving the efficient separation and extraction of vanadium and chromium. The established method provides a new technique to separate vanadium and chromium during roasting rather than in the liquid form, which is useful for the comprehensive application of HCVS.
Meeting the Challenge of Environmental Regulations in Europe and North America
2011-02-08
salts • Electrolytic • Trivalent chromium • Rare earth salts • Sol Gel Socomor Finishing Technologies 24 Ce document et les informations qu’il contient...l’autorisation préalable et écrite de Safran. ASETS DEFENSE 2011 CHROMATE C.C. REPLACEMENT (3) TRIVALENT CHROMIUM • SUITABLE ONLY TO 1000, 3000, 5000...REPLACEMENT(4) ) - TRIVALENT CHROMIUM + TOP COAT - TRIVALENT CHROMIUM + INHIBITORS - OTHER CHEMISTRY BASED - SOL GEL Socomor Finishing Technologies
Toxicity assessment and geochemical model of chromium leaching from AOD slag.
Liu, Bao; Li, Junguo; Zeng, Yanan; Wang, Ziming
2016-02-01
AOD (Argon Oxygen Decarburization) slag is a by-product of the stainless steel refining process. The leaching toxicity of chromium from AOD slag cannot be ignored in the recycling process of the AOD slag. To assess the leaching toxicity of the AOD slag, batch leaching tests have been performed. PHREEQC simulations combined with FactSage were carried out based on the detailed mineralogical analysis and petrophysical data. Moreover, Pourbaix diagram of the Cr-H2O system was protracted by HSC 5.0 software to explore the chromium speciation in leachates. It was found that AOD slag leachate is an alkaline and reductive solution. The Pourbaix diagram of the Cr-H2O system indicated that trivalent chromium, such as Cr(OH)4(-), is the major chromium species in the experimental Eh-pH region considered. However, toxic hexavalent chromium was released with maximum concentrations of 30 µg L(-1) and 18 µg L(-1) at L/S 10 and 100, respectively, during the earlier leaching stage. It concluded that the AOD slag possessed a certain leaching toxicity. After 10 d of leaching, trivalent chromium was the dominant species in the leachates, which corresponded to the results of PHREEQC simulation. Leaching toxicity of AOD slag is based on the chromium speciation and its transformation. Great attention should be focused on such factors as aging, crystal form of chromium-enriched minerals, and electrochemical characteristics of the leachates. Copyright © 2015 Elsevier Ltd. All rights reserved.
Special Advanced Studies for Pollution Prevention Delivery Order 0065: The Monitor - Winter 2001
2001-04-01
were selected based on previous efforts. These alternatives included Alodine 2000, NCS Rainseal, Sanchem Full Process, and trivalent chromium . CTC’s IVD...12 Alternatives for Chromium Electroplating: ElectroSpark Deposition .................. 13...Requirements ............ 15 Aluminum Substitution for Cadmium/ Chromium ............................................... 16 Review of Cadmium Alternatives
IRIS Toxicological Review of Hexavalent Chromium (2010 External Review Draft)
NASA Technical Reports Server (NTRS)
Deadmore, D. L.; Lowell, C. E.
1975-01-01
Several oxide dispersion strengthened (ODS) nickel-base alloys were tested in high velocity gases for cyclic oxidation resistance at temperatures to 1200 C and times to 500 hours and for hot corrosion resistance at 900 C for 200 hours. Nickel-chromium-aluminum ODS alloys were found to have superior resistance to oxidation and hot corrosion when compared to bare and coated nickel-chromium ODS alloys. The best of the alloys tested had compositions of nickel - 15.5 to 16 weight percent chromium with aluminum weight percents between 4.5 and 5.0. All of the nickel-chromium-aluminum ODS materials experienced small weight losses (less than 16 mg/sq cm).
Spectral tailoring of nanoscale EUV and soft x-ray multilayer optics
NASA Astrophysics Data System (ADS)
Huang, Qiushi; Medvedev, Viacheslav; van de Kruijs, Robbert; Yakshin, Andrey; Louis, Eric; Bijkerk, Fred
2017-03-01
Extreme ultraviolet and soft X-ray (XUV) multilayer optics have experienced significant development over the past few years, particularly on controlling the spectral characteristics of light for advanced applications like EUV photolithography, space observation, and accelerator- or lab-based XUV experiments. Both planar and three dimensional multilayer structures have been developed to tailor the spectral response in a wide wavelength range. For the planar multilayer optics, different layered schemes are explored. Stacks of periodic multilayers and capping layers are demonstrated to achieve multi-channel reflection or suppression of the reflective properties. Aperiodic multilayer structures enable broadband reflection both in angles and wavelengths, with the possibility of polarization control. The broad wavelength band multilayer is also used to shape attosecond pulses for the study of ultrafast phenomena. Narrowband multilayer monochromators are delivered to bridge the resolution gap between crystals and regular multilayers. High spectral purity multilayers with innovated anti-reflection structures are shown to select spectrally clean XUV radiation from broadband X-ray sources, especially the plasma sources for EUV lithography. Significant progress is also made in the three dimensional multilayer optics, i.e., combining micro- and nanostructures with multilayers, in order to provide new freedom to tune the spectral response. Several kinds of multilayer gratings, including multilayer coated gratings, sliced multilayer gratings, and lamellar multilayer gratings are being pursued for high resolution and high efficiency XUV spectrometers/monochromators, with their advantages and disadvantages, respectively. Multilayer diffraction optics are also developed for spectral purity enhancement. New structures like gratings, zone plates, and pyramids that obtain full suppression of the unwanted radiation and high XUV reflectance are reviewed. Based on the present achievement of the spectral tailoring multilayer optics, the remaining challenges and opportunities for future researches are discussed.
NASA Astrophysics Data System (ADS)
Salerno-Kochan, R.
2017-10-01
The aim of this paper is to propose the bioindicative measuring method for screening and assessing the safety of textile and leather materials in relation to chemical threats. This method is based on toxicological assay in which Tetrahymena pyriformis, unicellular organism belonging to protozoans, is used as a test organism. For the realization of the research goal the sensitivity threshold of test organisms to chromium(VI) solutions was identified. The changes in cell development of test organisms in chromium solutions were registered by colorimetric measurements in the presence of alamarBlue® cell viability reagent. Empirical data enabled to fit logistic curves on the base of which the level of chromium toxicity was estimated. In the second step, harmfulness of aqueous extracts obtained from textile and leather samples containing chromium in relation to test organisms was evaluated. The performed research confirmed the high efficiency of the proposed method in screening and assessing chromium content in clothes and shoes materials and showed possibilities of using it in safety assessment of products with regard to chemical risks.
Progress in the chemistry of chromium(V) doping agents used in polarized target materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krumpolc, M.; Hill, D.; Struhrmann, H.B.
1990-01-01
We wish to report progress in two areas of the chromium (V)-based doping agents: Two commonly used chromium (V) complexes, I and II, have been synthesized in perdeuterated form (i.e., all hydrogens replaced by deuterium). They are sodium bis(2-ethyl-2-deuteroxy-butyrato)oxochromate(V)monodeuterate, IV, (acronym EDBA-Cr(V)), and sodium bis(2-deuteroxy-2-methylpropionato)oxochromate(V), III, (acronym DMPA-Cr(V)). A synthetic route leading to the preparation of stable, chromium(III)-free solutions of chromium(V) in diols (1,2-ethanediol/ethylene glycol/and 1,2-propanediol/propylene glycol/) has been outlined.
Synchrotron-based analysis of chromium distributions in multicrystalline silicon for solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Mallory Ann; Hofstetter, Jasmin; Morishige, Ashley E.
Chromium (Cr) can degrade silicon wafer-based solar cell efficiencies at concentrations as low as 10(10) cm(-3). In this contribution, we employ synchrotron-based X-ray fluorescence microscopy to study chromium distributions in multicrystalline silicon in as-grown material and after phosphorous diffusion. We complement quantified precipitate size and spatial distribution with interstitial Cr concentration and minority carrier lifetime measurements to provide insight into chromium gettering kinetics and offer suggestions for minimizing the device impacts of chromium. We observe that Cr-rich precipitates in as-grown material are generally smaller than iron-rich precipitates and that Cri point defects account for only one-half of the total Crmore » in the as-grown material. This observation is consistent with previous hypotheses that Cr transport and CrSi2 growth are more strongly diffusion-limited during ingot cooling. We apply two phosphorous diffusion gettering profiles that both increase minority carrier lifetime by two orders of magnitude and reduce [Cr-i] by three orders of magnitude to approximate to 10(10) cm(-3). Some Cr-rich precipitates persist after both processes, and locally high [Cri] after the high-temperature process indicates that further optimization of the chromium gettering profile is possible. (C) 2015 AIP Publishing LLC.« less
POLYELECTROLYTE MULTILAYER STAMPING IN AQUEOUS PHASE AND NON-CONTACT MODE
Mehrotra, Sumit; Lee, Ilsoon; Liu, Chun; Chan, Christina
2011-01-01
Polyelectrolyte multilayer (PEM) transfer printing has been previously achieved by stamping under dry conditions. Here, we show for the first time, that PEM can be transferred from a stamp to the base substrate under aqueous conditions whereby the two surfaces are in a non-contact mode. Degradable multilayers of (PAA/PEG)10.5 followed by non-degradable multilayers of (PDAC/SPS)80.5 were fabricated under acidic pH conditions on either PDMS or glass (stamp), and subsequently transferred over top of another multilayer prepared on a different substrate (base substrate), with a spacing of ~ 200 μm between the stamping surface and the base substrate. This multilayer transfer was performed under physiological pH conditions. This process is referred to herein as non-contact, aqueous-phase multilayer (NAM) transfer. NAM transfer can be useful for applications such as fabricating three-dimensional (3-D) cellular scaffolds. We attempted to create a 3-D cellular scaffold using NAM transfer, and characterized the scaffolds with conventional and fluorescence microscopy. PMID:21860540
NASA Astrophysics Data System (ADS)
Denisov, A. L.; Zharikov, E. V.; Zavartsev, Iu. D.; Zagumennyi, A. I.; Lutts, G. B.
1991-02-01
The development of passively Q-switched and self-Q-switched lasers based on chromium-containing scandium garnets with phototropic centers is reported. The lasers operate over a wide frequency repetition rate with a mean output up to 100 W. The characteristics of phototropic absorption in the 1-micron region are examined, and the possibility of lasing at the weak transition of the Nd(3+) ion in chromium-containing scandium garnets with phototropic centers is discussed.
Maximum availability and mineralogical control of chromium released from AOD slag.
Li, Junguo; Liu, Bao; Zeng, Yanan; Wang, Ziming; Gao, Zhiyuan
2017-03-01
AOD (argon oxygen decarburization) slag is the by-product in the stainless steel refining process. Chromium existing in AOD slag can leach out and probably poses a serious threat to the environment. To assess the leaching toxicity of chromium released from AOD slag, the temperature-dependent maximum availability leaching test was performed. To determine the controlling mineralogical phases of chromium released from AOD slag, a Visual MINTEQ simulation was established based on Vminteq30 and the FactSage 7.0 database. The leaching tests indicated that the leaching availability of chromium was slight and mainly consisted of trivalent chromium. Aging of AOD slag under the atmosphere can oxidize trivalent chromium to hexavalent chromium, which could be leached out by rainwater. According to the simulation, the chromium concentration in leachates was controlled by the freely soluble pseudo-binary phases in the pH = 7.0 leaching process and controlled by the Cr 2 O 3 phase in the pH = 4.0 leaching process. Chromium concentrations were underestimated when the controlling phases were determined to be FeCr 2 O 4 and MgCr 2 O 4 . Facilitating the generation of the insoluble spinel-like phases during the cooling and disposal process of the molten slag could be an effective approach to decreasing the leaching concentration of chromium and its environmental risk.
Experimental evaluation of chromium-carbide-based solid lubricant coatings for use to 760 C
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher
1987-01-01
A research program is described which further developed and investigated chromium carbide based self-lubricating coatings for use to 760 C. A bonded chromium carbide was used as the base stock because of the known excellent wear resistance and the chemical stability of chromium carbide. Additives were silver and barium fluoride/calcium fluoride eutectic. The three coating components were blended in powder form, applied to stainless steel substrates by plasma spraying and then diamond ground to the desired coating thickness. A variety of coating compositions was tested to determine the coating composition which gave optimum tribological results. Coatings were tested in air, helium, and hydrogen at temperatures from 25 to 760 C. Several counterface materials were evaluated with the objective of discovering a satisfactory metal/coating sliding combination for potential applications, such as piston ring/cylinder liner couples for Stirling engines. In general, silver and fluoride additions to chromium carbide reduced the friction coefficient and increased the wear resistance relative to the unmodified coating. The lubricant additives acted synergistically in reducing friction and wear.
Shi, Hui-Sheng; Kan, Li-Li
2009-03-15
The study of cementitious activity of chromium residue (CR) was carried out to formulate the properties of chromium residue-cement matrices (CRCM) by blending CR with Ordinary Portland Cement (OPC). The particle size distribution, microstructures of CR were investigated by some apparatuses, and physical properties, leaching behavior of hexavalent chromium [Cr(VI)] of CRCM were also determined by some experiments. Three types of commonly used superplasticizers (sulphonated acetone formaldehyde superplasticizer (J1), polycarboxylate-based superplasticizer (J2) and naphthalene superplasticizer (J3)) were chosen to investigate their influences on the physical properties and the Cr(VI)-immobilisation in the leachate of the CRCM hardened pastes. The results show that the CR has a certain cementitious activity. The incorporation of CR improves the pore size distribution of CRCM. The Cr(VI) concentrations in the leachate of CRCM significantly decrease by incorporation of J2. Among three superplasticizers, J2 achieves lowest Cr(VI) leaching ratio. Based on this study, it is likely to develop CR as a potential new additive used in cement-based materials.
Environmentally Friendly Zirconium Oxide Pretreatment
2013-05-01
during the conversion of the highly soluble hexavalent chromate ions to an inert and relatively insoluble trivalent chromium oxide layer. Depletion of...are being used commercially in automotive and other industrial operations as replacements to hexavalent chromium -based and zinc phosphate...Society for Testing and Materials AVCRAD Aviation Classification Repair Activity Depot Chrome (VI) Hexavalent Chromium CRS Cold Rolled Steel
Comparison of Mg-based multilayers for solar He II radiation at 30.4 nm wavelength
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Jingtao; Zhou Sika; Li Haochuan
2010-07-10
Mg-based multilayers, including SiC/Mg, Co/Mg, B4C/Mg, and Si/Mg, are investigated for solar imaging and a He II calibration lamp at a 30.4 nm wavelength. These multilayers were fabricated by a magnetron sputtering method and characterized by x-ray reflection. The reflectivities of these multilayers were measured by synchrotron radiation. Near-normal-incidence reflectivities of Co/Mg and SiC/Mg multilayer mirrors are as high as 40.3% and 44.6%, respectively, while those of B4C/Mg and Si/Mg mirrors are too low for application. The measured results suggest that SiC/Mg, Co/Mg multilayers are promising for a 30.4 nm wavelength.
Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review.
Jobby, Renitta; Jha, Pamela; Yadav, Anoop Kumar; Desai, Nitin
2018-05-09
Chromium (VI) is one of the most common environmental contaminant due to its tremendous industrial applications. It is non-biodegradable as it is a heavy metal, and hence, of major concern. Therefore, it is pertinent that the remediation method should be such that brings chromium within permissible limits before the effluent is discharged. Several different strategies are adopted by microorganisms for Cr (VI) removal mostly involving biosorption and biotransformation or both. These mechanisms are based on the surface nature of the biosorbent and the availability of reductants. This review article focuses on chromium pollution problem, its chemistry, sources, effects, remediation strategies by biological agents and detailed chromium detoxification mechanism in microbial cell. A summary of applied in situ and ex situ chromium bioremediation technologies is also listed. This can be helpful for developing technologies to be more efficient for Cr (VI) removal thereby bridging the gap between laboratory findings and industrial application for chromium remediation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Therapeutic review: is ascorbic acid of value in chromium poisoning and chromium dermatitis?
Bradberry, S M; Vale, J A
1999-01-01
Repeated topical exposure to chromium(VI) may cause an allergic contact dermatitis or the formation of chrome ulcers. Systemic toxicity may occur following the ingestion of a chromium(VI) salt, from chromium(VI)-induced skin burns, or from inhalation of chromium(VI) occurring occupationally. Soluble chromium(VI) salts are usually absorbed more easily and cross cell membranes more readily than trivalent chromium salts, and, therefore chromium(VI) is more toxic than chromium(III). In experimental studies, endogenous ascorbic acid in rat lung, liver, and kidney and human plasma, effectively reduces chromium(VI) to chromium(III). The administration of exogenous ascorbic acid has been advocated therefore in the treatment of systemic chromium poisoning and chromium dermatitis to enhance the extracellular reduction of chromium(VI) to the less bioavailable chromium(III). In vitro experiments confirm that the addition of ascorbic acid to plasma containing chromium(VI) leads to a dose-dependent reduction of chromium(VI) to chromium(III). In animal studies, parenteral ascorbic acid 0.5-5 g/kg significantly reduced chromium-induced nephrotoxicity when administered 30 minutes before parenteral sodium dichromate and up to 1 hour after parenteral sodium chromate dosing. Parenteral ascorbic acid 0.5-5 g/kg also reduced mortality when given orally up to 2 hours after oral potassium dichromate dosing. However, the administration of parenteral ascorbic acid more than 2 hours after parenteral chromate in these experimental studies did not protect against renal damage, and parenteral ascorbic acid given 3 hours postparenteral chromate increased toxicity. In addition, there is no confirmed clinical evidence that the administration of ascorbic acid lessens morbidity or mortality in systemic chromium poisoning. A possible reason for the lack of benefit of ascorbic acid when administration is delayed, is that chromium(VI) cellular uptake has occurred prior to ascorbic acid administration. Topical 10% ascorbic acid has been claimed to reduce significantly the healing time of experimentally induced chrome ulcers in guinea pigs. The proposed mechanism is reduction on the skin surface of chromium(VI) to chromium(III). Several case reports suggest that topical ascorbic acid is effective in the management of chromium dermatitis but this has not been confirmed in controlled clinical trials and, moreover, the practical difficulties of frequent application are likely to limit its usefulness. Based on experimental studies, substantial amounts of ascorbic acid would need to be administered, preferably parenterally, soon after exposure to prevent systemic toxicity from chromium(VI) in humans. However, as ascorbic acid is a metabolic precursor of oxalate, the administration of ascorbic acid in high dose could lead to acute oxalate nephropathy, particularly in the presence of renal failure. While smaller doses of ascorbic acid (e.g., 10 g intravenously) are not toxic, such doses probably will not reduce the mortality from systemic chromium poisoning. There is currently insufficient evidence to advocate the use of ascorbic acid in the management of systemic chromium toxicity. Topical ascorbic acid may reduce dermal hexavalent chromium exposure, but this observation must be confirmed in controlled studies.
A novel multilayer model with controllable mechanical properties for magnesium-based bone plates.
Zhou, Juncen; Huang, Wanru; Li, Qing; She, Zuxin; Chen, Funan; Li, Longqin
2015-04-01
Proper mechanical properties are essential for the clinical application of magnesium-based implants. In the present work, a novel multilayer model composed of three layers with desirable features was developed. The modulus of the multilayer model can be adjusted by changing the thickness of each layer. To combine three layers and improve the corrosion resistance of the whole multilayer model, the polycaprolactone coating was employed. In the immersion test, pH values, the concentration of released magnesium ions, and weight loss indicate that the corrosion rate of multilayer models is considerable lower than that of the one-layer bare substrate. The three-point bending test, which is used to examine models' mechanical properties, shows that the flexural modulus of multilayer models is reduced effectively. In addition, the mechanical degradation of multilayer models is more stable, compared to the one-layer substrate.
Studies on the essentiality of chromium in ruminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samsell, L.J.; Spears, J.W.
1986-03-01
Although chromium has been established as an essential trace element for certain animal species, no requirement has been shown for ruminants. Sixteen female lambs (35 kg) were used in an attempt to determine if chromium is essential in the ruminant. Animals were individually housed in all plastic pens and fed twice daily either a low chromium (100 ppb) torula yeast based diet or the basal diet supplemented with 10 ppm chromium as CrCl/sub 3/. Blood samples obtained prior to the morning feeding and 2 and 6 hr post-feeding on days 28 and 56 indicated no significant treatment differences in plasmamore » glucose or serum free fatty acids. By day 56, serum cholesterol tended to be lower in chromium supplemented lambs (60.9 vs 71.7 mg/dl). Lambs in the chromium supplemented treatment also tended to gain more efficiently through 56 days (.130 vs .118 gain/fed). On day 84, lambs were bled after a 48 hr fast, refed, then bled again at 2 and 6 hr post-feeding. Plasma glucose and serum free fatty acids were not affected by chromium at the end of the 48 hr fast or when lambs were refed following fasting. At 84 days both total serum cholesterol and HDL-cholesterol were lower in lambs receiving supplemental chromium. These results suggest that chromium may have a biological role in the ruminant.« less
Chromium(VI) release from leather and metals can be detected with a diphenylcarbazide spot test.
Bregnbak, David; Johansen, Jeanne D; Jellesen, Morten S; Zachariae, Claus; Thyssen, Jacob P
2015-11-01
Along with chromium, nickel and cobalt are the clinically most important metal allergens. However, unlike for nickel and cobalt, there is no validated colorimetric spot test that detects chromium. Such a test could help both clinicians and their patients with chromium dermatitis to identify culprit exposures. To evaluate the use of diphenylcarbazide (DPC) as a spot test reagent for the identification of chromium(VI) release. A colorimetric chromium(VI) spot test based on DPC was prepared and used on different items from small market surveys. The DPC spot test was able to identify chromium(VI) release at 0.5 ppm without interference from other pure metals, alloys, or leather. A market survey using the test showed no chromium(VI) release from work tools (0/100). However, chromium(VI) release from metal screws (7/60), one earring (1/50), leather shoes (4/100) and leather gloves (6/11) was observed. We found no false-positive test reactions. Confirmatory testing was performed with X-ray fluorescence (XRF) and spectrophotometrically on extraction fluids. The use of DPC as a colorimetric spot test reagent appears to be a good and valid test method for detecting the release of chromium(VI) ions from leather and metal articles. The spot test has the potential to become a valuable screening tool. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Development of Protective Coatings for Chromium-Base Alloys
NASA Technical Reports Server (NTRS)
English, J. J.; MacMillan, C. A.; Williams, D. N.; Bartlett, E. S.
1966-01-01
Chromium alloy sheet was clad with 5 to 10-mil-thick oxidation-resistant nickel-base alloy foils. Specimens also contained 1/2 to 1-mil-thick intermediate layers of platinum, tungsten, and/or W-25Re. Cladding was done by the isostatic hot gas-pressure bonding,.process. The clad chromium-alloy specimens were cyclic oxidation tested at 2100 F and 2300 F for up to 200 hours to determine the effectiveness of these metal claddings in protecting the chromium alloy Cr-5W from oxidation and contamination. Cladding systems consisting of 5-mil-thick Ni-20Cr-20W modified with 3 to 5 weight percent aluminum and containing a 1 /2-mil tungsten diffusion barrier demonstrated potential for long-time service at temperatures as high as 2300 F.
Fang, Zhijia; Zhao, Min; Zhen, Hong; Chen, Lifeng; Shi, Ping; Huang, Zhiwei
2014-01-01
Chromium occurs mostly in tri- and hexavalent states in the environment. Hexavalent chromium [Cr(VI)] compounds are extensively used in diverse industries, and trivalent chromium [Cr(III)] salts are used as micronutrients and dietary supplements. In the present work, we report that they both induce genetic mutations in yeast cells. They both also cause DNA damage in both yeast and Jurkat cells and the effect of Cr(III) is greater than that of Cr(VI). We further show that Cr(III) and Cr(VI) cause DNA damage through different mechanisms. Cr(VI) intercalates DNA and Cr(III) interferes base pair stacking. Based on our results, we conclude that Cr(III) can directly cause genotoxicity in vivo. PMID:25111056
NASA Astrophysics Data System (ADS)
Ogwu, A. A.; Oje, A. M.; Kavanagh, J.
2016-04-01
We report our investigation on chromium oxide thin film coatings that show a negligible ion release during electrochemical corrosion testing in saline solution. The chemical constituents of the films prepared by reactive magnetron sputtering were identified to be predominantly Cr2O3 based on Raman spectroscopy anti-symmetric stretching vibration modes for CrIII-O and other peaks and an FTIR spectroscopy E u vibrational mode at 409 cm-1. X-ray photoelectron spectroscopy, multiplet fitting for 2P 3/2 and 2P 1/2 states also confirmed the predominantly Cr2O3 stoichiometry in the films. The prepared chromium oxide coatings showed superior pitting corrosion resistance compared to the native chromium oxide films on bare uncoated stainless steel when tested under open circuit potential, potentiodynamic polarisation and cyclic voltammetry in saline solution. The chromium ion released into solution during the corrosion testing of stainless steel substrates coated with chromium oxide coatings was found to be negligibly small based on atomic absorption spectroscopy measurements. Our Mott-Schottky analysis investigation showed that the negligibly small ion release from the chromium oxide coated steel substrates is most likely due to a much lower defect density on the surface of the deposited coatings compared to the native oxide layer on the uncoated steel substrates. This opens up the opportunity for using chromium oxide surface coatings in hip, knee and other orthopaedic implants where possible metal ion release in vivo still poses a great challenge.
[Repercussions of chromium picolinate in the protein metabolism based on the age].
González Muñoz, M J; Meseguer, I; Martínez Para, M C; Aguilar, M V; Bernao, A
2006-01-01
Commercialized like dietetic supplement, chromium picolinate has been promoted to favour the increase of muscle mass and the loss of weight, due to its' effect on the action of insulin. To evaluate the effect of supplementation of the diet with chromium (500 microg/kg) in the form of chromium picolinate (CrPic) (12 days) on growth and protein turnover in rats at different growth stages (infantile and puberal). No significant effect of CrPic on bodyweight gain, feed intake and feed conversion rate was observed at any of the stages of development studied. CrPic seems to increase the muscle mass, either by stimulating protein anabolism due to the involution of the insulin by chromium, or by reducing protein catabolism. Since the use of chromium picolinate could jeopardize the correct renal function and its' beneficial effects are not evident, it should always be consumed with caution.
Mechanism of chromium poisoning the conventional cathode material for solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Zhang, Xiaoqiang; Yu, Guangsen; Zeng, Shumao; Parbey, Joseph; Xiao, Shuhao; Li, Baihai; Li, Tingshuai; Andersson, Martin
2018-03-01
Chromium poisoning the La0.875Sr0.125MnO3 (LSM) cathode for solid oxide fuel cells is a critical issue that can strongly affect the stability. In this study, we evaluate the temperature distribution in a SOFC based on a 3D model and then combine conductivity test and material computation to reveal the effects of chromium in SUS430 stainless steels on LSM conductivities. The starch concentration in LSM pellets and the applied pressure on the contact with interconnect materials show close relationships with the chromium poisoning behavior. The density functional theory (DFT) computing results indicate that chromium atoms preferably adsorb on the MnO2-terminated and La (Sr)-O-terminated (001) surfaces. The resulting conclusions are expected to deeply understand mechanism of chromium deactivating conventional cathodes at some typical operational conditions, and offer crucial information to optimize the structure to avoid the poisoning effect.
Gao, Zhong-Ke; Dang, Wei-Dong; Li, Shan; Yang, Yu-Xuan; Wang, Hong-Tao; Sheng, Jing-Ran; Wang, Xiao-Fan
2017-07-14
Numerous irregular flow structures exist in the complicated multiphase flow and result in lots of disparate spatial dynamical flow behaviors. The vertical oil-water slug flow continually attracts plenty of research interests on account of its significant importance. Based on the spatial transient flow information acquired through our designed double-layer distributed-sector conductance sensor, we construct multilayer modality-based network to encode the intricate spatial flow behavior. Particularly, we calculate the PageRank versatility and multilayer weighted clustering coefficient to quantitatively explore the inferred multilayer modality-based networks. Our analysis allows characterizing the complicated evolution of oil-water slug flow, from the opening formation of oil slugs, to the succedent inter-collision and coalescence among oil slugs, and then to the dispersed oil bubbles. These properties render our developed method particularly powerful for mining the essential flow features from the multilayer sensor measurements.
Kocurek, P; Kolomazník, K; Bařinová, M; Hendrych, J
2017-04-01
This paper deals with the problem of chromium recovery from chrome-tanned waste and thus with reducing the environmental impact of the leather industry. Chrome-tanned waste was transformed by alkaline enzymatic hydrolysis promoted by magnesium oxide into practically chromium-free, commercially applicable collagen hydrolysate and filtration cake containing a high portion of chromium. The crude and magnesium-deprived chromium cakes were subjected to a process of thermal decomposition at 650°C under oxygen-free conditions to reduce the amount of this waste and to study the effect of magnesium removal on the resulting products. Oxygen-free conditions were applied in order to prevent the oxidation of trivalent chromium into the hazardous hexavalent form. Thermal decomposition products from both crude and magnesium-deprived chrome cakes were characterized by high chromium content over 50%, which occurred as eskolaite (Cr 2 O 3 ) and magnesiochromite (MgCr 2 O 4 ) crystal phases, respectively. Thermal decomposition decreased the amount of chrome cake dry feed by 90%. Based on the performed experiments, a scheme for the total control of chromium in the leather industry was designed.
Ventilation Technical Guide, 2nd Edition
2013-04-12
Typical metals found include lead, cadmium, zinc, and chromium . It is difficult to quantify all of the potential exposures associated with blasting...bases. Many of these booths are used to apply some of the most hazardous substances still found in the inventory, including chromium products and...is important to note that some metals used in welding have OSHA specific standards (lead, cadmium, chromium , beryllium, etc.), potentially
Tribocorrosion: Ceramic and Oxidized Zirconium vs Cobalt-Chromium Heads in Total Hip Arthroplasty.
Tan, Sok Chuen; Lau, Adrian C K; Del Balso, Christopher; Howard, James L; Lanting, Brent A; Teeter, Matthew G
2016-09-01
This matched-cohort study aims to compare tribocorrosion between matched ceramic and cobalt-chromium femoral head trunnions and between matched Oxinium and cobalt-chromium femoral head trunnions. Secondary objectives were to investigate whether taper design, depth of trunnion, implantation time, age, body mass index, and gender have an effect on fretting and corrosion. All hip prostheses retrieved between 1999 and 2015 at one center were reviewed, giving a total of 52 ceramic heads. These were matched to a cobalt-chromium cohort according to taper design, head size, neck length, and implantation time. The trunnions were examined by 2 observers using a 4-point scoring technique and scored in 3 zones: apex, middle, and base. The observers were blinded to clinical and manufacturing data where possible. A separate matched-cohort analysis was performed between 8 Oxinium heads and 8 cobalt-chromium heads, which were similarly scored. Ceramic head trunnions demonstrated a lower median fretting and corrosion score at the base zone (P < .001), middle zone (P < .001), and in the combined score (P < .001). Taper design had a significant effect on fretting and corrosion in the apex zone (P = .04) of the ceramic group, as well as the cobalt-chromium group (P = .03). Between Oxinium heads and cobalt-chromium heads, there was no significant difference in the fretting and corrosion score across all 3 zones (base: P = .22; middle: P = .92; and apex: P = .71) and for the combined score (P = .67). This study shows that ceramic head confers an advantage in trunnion fretting and corrosion. Taper design and implantation time were also significant factors for fretting and corrosion. Copyright © 2016 Elsevier Inc. All rights reserved.
Gupta, Pratishtha; Kumar, Vipin; Usmani, Zeba; Rani, Rupa; Chandra, Avantika
2018-02-01
In this study, an effort was made to identify an efficient phosphate solubilizing bacterial strain from chromium contaminated agricultural soils. Based on the formation of a solubilized halo around the colonies on Pikovskaya's agar amended with chromium (VI), 10 strains were initially screened out. Out of 10, strain CPSB4, which showed significantly high solubilization zone at different chromium concentrations, was selected for further study. The strain CPSB4 showed significant plant growth promotion traits with chromium (VI) stress under in-vitro conditions in broth. The plant growth promotion activities of the strain decreased regularly, but were not completely lost with the increase in concentration of chromium up to 200 mg L -1 . On subjected to FT-IR analysis, the presence of the functional group, indicating the organic acid aiding in phosphate solubilization was identified. At an optimal temperature of 30 ° C and pH 7.0, the strain showed around 93% chromium (VI) reduction under in-vitro conditions in broth study. In soil condition, the maximum chromium (VI) reduction obtained was 95% under in-vitro conditions. The strain CPSB4 was identified as Klebsiella sp. on the basis of morphological, biochemical and 16S rRNA gene sequencing. This study shows that the diverse role of the bacterial strain CPSB4 would be useful in the chromium contaminated soil as a good bioremediation and plant growth promoting agent as well. Copyright © 2017 Elsevier Ltd. All rights reserved.
Investigation of Reaction Mechanism on the Lime-Free Roasting of Chromium-Containing Slag
NASA Astrophysics Data System (ADS)
Yu, Kai-ping; Zhang, Hong-ling; Chen, Bo; Xu, Hong-bin; Zhang, Yi
2015-12-01
The lime-free roasting process of trivalent chromium-containing slag was investigated. The effect of Fe and liquid phase on the conversion reaction of chromium was discussed. The oxidation of trivalent chromium depends greatly on the diffusion of Na+ and O2. Both the raw material Na2CO3 and the intermediate product NaFeO2 serve as the carriers of Na+. The Na+ diffusion is improved by the binary liquid phase of Na2CrO4-Na2CO3, whereas excess liquid phase results in a low conversion rate of chromium by hindering the diffusion of oxygen towards the reaction interface. With the increasing of liquid volume, the controlled step of chromium oxidation changes from Na+ diffusion to oxygen diffusion. The mechanism study showed that the volume of liquid phase increased while raising the reaction temperature or prolonging the reaction time. Based on the role of both liquid phase and Fe, the oxidation process of chromium was summarized as a three-stage model: the Na+ diffusion-controlled stage, the O2 diffusion-controlled stage, and the oxidation reaction halted stage.
Mesenchymal Stem Cell-Based Therapy for Prostate Cancer
2014-09-01
method for incubating hbMSCs with radioactive sodium chromate (51CrO4). Sodium chromate is cell permeable, but following reduction to trivalent ... chromium ion intracellularly it becomes impermeable due to crosslinking to macromolecules. Chromium -labeled cells (1x106) were then injected IV into...animals bearing CWR22 xenografts. Whole tissues were excised at the respective time points and total chromium was measured using a gamma counter, which
Wastewater Characterization Survey, Edwards Air Force Base, California
1992-08-01
sampling, 23 and 24 Feb 92, concentrations of aluminum, chromium , copper, and iron were found to be slightly elevated when compared to average...concentrations of these metals detected during the other 6 sampling days. Detectable concentrations of aluminum, chromium , and zinc could be the result of...35.00 Cyanide .......................... 30.00 23.00 49.00 Chemical Oxygen Demand ........ 25.00 13.00 40.00 Chromium VI ...................... 25.00
Zhang, Qian; Sun, Xiaofang; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing
2017-01-01
Maternal malnutrition leads to the incidence of metabolic diseases in offspring. The purpose of this project was to examine whether maternal low chromium could disturb normal lipid metabolism in offspring, altering adipose cell differentiation and leading to the incidence of lipid metabolism diseases, including metabolic syndrome and obesity. Female C57BL mice were given a control diet (CD) or a low chromium diet (LCD) during the gestational and lactation periods. After weaning, offspring was fed with CD or LCD. The female offspring were assessed at 32 weeks of age. Fresh adipose samples from CD–CD group and LCD–CD group were collected. Genome mRNA were analysed using Affymetrix GeneChip Mouse Gene 2.0 ST Whole Transcript-based array. Differentially expressed genes (DEGs) were analysed based on gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis database. Maternal low chromium irreversibly increased offspring body weight, fat-pad weight, serum triglyceride (TG) and TNF-α. Eighty five genes increased and 109 genes reduced in the offspring adipose of the maternal low chromium group. According to KEGG pathway and String analyses, the PPAR signalling pathway may be the key controlled pathway related to the effect of maternal low chromium on female offspring. Maternal chromium status have long-term effects of lipid metabolism in female mice offspring. Normalizing offspring diet can not reverse these effects. The potential underlying mechanisms are the disturbance of the PPAR signalling pathway in adipose tissue. PMID:28320771
NASA Technical Reports Server (NTRS)
Dellacorte, C.; Sliney, H. E.
1986-01-01
This paper describes new compositions of self-lubricating coatings that contain chromium carbide. A bonded chromium carbide was used as the base stock because of the known excellent wear resistance and the chemical stability of chromium carbide. Additives were silver and barium fluoride/calcium fluoride eutectic. The coating constituents were treated as a ternary system consisting of: (1) the bonded carbide base material, (2) silver, and (3) the eutectic. A study to determine the optimum amounts of each constituent was performed. The various compositions were prepared by powder blending. The blended powders were then plasma sprayed onto superalloy substrates and diamond ground to the desired coating thickness. Friction and wear studies were performed at temperatures from 25 to 760 C in helium and hydrogen. A variety of counterface materials were evaluated with the objective of discovering a satisfactory metal/coating sliding combination for potential applications such as piston ring/cylinder liner couples for Stirling engines.
NASA Technical Reports Server (NTRS)
Dellacorte, Chris; Sliney, Harold E.
1987-01-01
This paper describes new compositions of self-lubricating coatings that contain chromium carbide. A bonded chromium carbide was used as the base stock because of the known excellent wear resistance and the chemical stability of chromium carbide. Additives were silver and barium fluoride/calcium fluoride eutectic. The coating constituents were treated as a ternary system consisting of: (1) the bonded carbide base material, (2) silver, and (3) the eutectic. A study to determine the optimum amounts of each constituent was performed. The various compositions were prepared by powder blending. The blended powders were then plasma sprayed onto superalloy substrates and diamond ground to the desired coating thickness. Friction and wear studies were performed at temperatures from 25 to 760 C in helium and hydrogen. A variety of counterface materials were evaluated with the objective of discovering a satisfactory metal/coating sliding combination for potential applications such as piston ring/cylinder liner couples for Stirling engines.
Slag-Based Nanomaterial in the Removal of Hexavalent Chromium
NASA Astrophysics Data System (ADS)
Baalamurugan, J.; Ganesh Kumar, V.; Govindaraju, K.; Naveen Prasad, B. S.; Bupesh Raja, V. K.; Padmapriya, R.
Slag-based nanomaterial is a by-product obtained during steel production and has wide range of components in the form of oxides. In this study, Induction Furnace (IF) steel slag-based application in adsorption of hexavalent chromium is investigated. IF slag has mixture of oxides mainly Fe2O3 and Chromium (VI) a highly toxic pollutant leads to environmental pollution and causes problem to human health mainly, carcinogenetic diseases. Slag-based nanomaterial is characterized using High Resolution Scanning Electron Microscope (HR-SEM) in which the size was around 100nm and X-ray Fluorescence (XRF) spectroscopy. Further inductively coupled plasma mass spectroscopy and Fourier transform infrared spectroscopy were used for adsorption studies. Slag activation using NaOH (alkali activation) to the intent of surface hydroxyl (-OH) group attachment will be a cost-effective process in the removal of hexavalent chromium. Cr(VI) ions are adsorbed on the surface of alkali activated slag material. The core-shell formation of Fe(II)/Fe(III)/Cr(VI) and the adsorption are investigated in detail in the present study.
Surface roughness of denture bases after immersion in fishcake vinegar solution
NASA Astrophysics Data System (ADS)
Kodir, K.; Tanti, I.; Odang, R. W.
2017-08-01
Fishcake is a common food in Palembang city and is usually eaten with fishcake vinegar sauce. Fishcake vinegar solution contains acetic acid and chloride and fluoride ions, all of which cause surface roughness on the denture base material. The objective of this study was to analyze the effect of fishcake vinegar solution on the surface roughness of heat-cured acrylic resin, thermoplastic nylon, and cobalt-chromium alloy denture bases. This laboratory-based experimental study was performed on heat-cured acrylic resins, thermoplastic nylon specimen plates formed in 15 × 10 × 1 mm shapes, and cobalt-chromium alloy specimens in cylinder forms with a 7.7 mm diameter and 17.5-mm height. Each group consisted of 10 pieces. Each specimen was immersed in a fishcake vinegar solution at 37 °C for 4 days. The surface roughness was measured using a profilometer before and after immersion. Statistical analyses showed significant (p < 0.05) changes in heat-cured acrylic resin, thermoplastic nylon, and the cobalt chromium alloy plates after immersion in a fishcake vinegar solution for 4 days. Fishcake vinegar solution affects the surface roughness of heat-cured acrylic resin, thermoplastic nylon, and cobalt-chromium alloy plates after a 4-day immersion period. The greatest surface roughness change occurred in the thermoplastic nylon plate, while the lowest change occurred in the cobalt-chromium alloy.
NASA Astrophysics Data System (ADS)
Angeliu, Thomas M.; Was, Gary S.
1990-08-01
Grain boundary composition and carbide composition and structure were characterized for various microstructures of controlled purity alloy 690. Heat treatments produced varying degrees of grain boundary chromium depletion and precipitate distributions which were characterized via scanning transmission electron microscopy (STEM). Convergent beam electron diffraction revealed that the dominant carbide is M23C6, and energy dispersive X-ray analysis (EDAX) determined that the metallic content was about 90 at. pct chromium. A discontinuous precipitation reaction was observed and is attributed to a high degree of carbon supersaturation. Grain boundary composition measurements confirm that chromium depletion is controlled by volume diffusion of chromium to chromium-rich grain boundary carbides in the temperature range of 873 to 1073 K. Grain boundary chromium levels as low as 18.8 at. pct were obtained by thermal treatment at 873 K for 250 hours and 973 K for 1 hour. A thermodynamic and kinetic model developed for alloy 600 was modified to describe the development of the chromium depletion profile in alloy 690 during thermal treatment. Experimentally measured chromium profiles agree well with the model results for the dependence of the chromium depletion zone width and depth on various input parameters. The establishment of the model for alloy 690 allows the chromium depletion zone width and depth to be computed as a function of alloy composition, grain size, and temperature. The chromium depletion profiles and the precipitate structure and composition of controlled purity 690 are compared to those of controlled purity 600. A thermodynamic analysis of the carbide stability indicates that other factors, such as favorable orientation relationships, play an important role in controlling the precipitation of Cr23C6 in nickel-base alloys.
Numerical simulation and experiment on multilayer stagger-split die.
Liu, Zhiwei; Li, Mingzhe; Han, Qigang; Yang, Yunfei; Wang, Bolong; Sui, Zhou
2013-05-01
A novel ultra-high pressure device, multilayer stagger-split die, has been constructed based on the principle of "dividing dies before cracking." Multilayer stagger-split die includes an encircling ring and multilayer assemblages, and the mating surfaces of the multilayer assemblages are mutually staggered between adjacent layers. In this paper, we investigated the stressing features of this structure through finite element techniques, and the results were compared with those of the belt type die and single split die. The contrast experiments were also carried out to test the bearing pressure performance of multilayer stagger-split die. It is concluded that the stress distributions are reasonable and the materials are utilized effectively for multilayer stagger-split die. And experiments indicate that the multilayer stagger-split die can bear the greatest pressure.
Kushwaha, Shilpi; Sreedhar, B; Sudhakar, Padmaja P
2012-07-01
Palm shell based adsorbents prepared under five different thermochemical conditions have been shown to be quite effective for removal of chromium (III and VI) from aqueous solutions. X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FT-IR) have been used to determine information about the speciation and binding of chromium on the adsorbents under study. X-ray photoelectron spectroscopy (XPS) studies indicate that oxidation of lignin moieties takes place concurrently to Cr(VI) reduction and leads to the formation of hydroxyl and carboxyl functions. The maximum adsorption capacity for hexavalent chromium was found to be about 313 mg/g in an acidic medium using PAPSP. This is comparable to other natural substrates and ordinary adsorbents. The efficacy of the adsorbents under study to remove chromium from plating waste water has been demonstrated. Copyright © 2012 Elsevier Ltd. All rights reserved.
Dettmer, Aline; Nunes, Keila Guerra Pacheco; Gutterres, Mariliz; Marcílio, Nilson Romeu
2010-04-15
Leather wastes tanned with chromium are generated during the production process of leather, hence the wastes from hand crafted goods and footwear industries are a serious environmental problem. The thermal treatment of leather wastes can be one of the treatment options because the wastes are rich in chromium and can be used as a raw material for sodium chromate production and further to obtain several chromium compounds. The objective of this study was to utilize the chromium from leather wastes via basic chromium sulfate production to be subsequently applied in a hide tanning. The obtained results have shown that this is the first successful attempt to achieve desired base properties of the product. The result was achieved when the following conditions were applied: a molar ratio between sodium sulfite and sodium dichromate equal to 6; reaction time equal to 5 min before addition of sulfuric acid; pH of sodium dichromate solution equal to 2. Summarizing, there is an opportunity to utilize the dangerous wastes and reused them in the production scheme by minimizing or annulling the environmental impact and to attend a sustainable process development concept. 2009 Elsevier B.V. All rights reserved.
A Case of Chromium Contact Dermatitis due to Exposure from a Golf Glove.
Lim, Jong Ho; Kim, Hei Sung; Park, Young Min; Lee, Jun Young; Kim, Hyung Ok
2010-02-01
Chromium is a transition metal and has been shown to elicit contact dermatitis. Although leather products have been known to be the most significant source of chromium exposure these days, the majority of reports have been related to exposure from shoe products. We herein report a professional golfer who became allergic to golf gloves made of chromium-tanned leather. A 27-year-old woman golfer presented with recurrent, pruritic, erythematous plaques that had been occurring on both hands for several years. The lesions developed whenever she had worn golf gloves for an extended period of time, especially during tournament season. To identify the causative agent, patch tests were performed and the results demonstrated a strong positive reaction to potassium dichromate 0.5% and to her own glove. The amount of chromium in her golf glove was analyzed to be 308.91 ppm and based on this, a diagnosis of allergic contact dermatitis due to a chromium-tanned leather glove was made. She was treated with oral antihistamines combined with topical steroids and advised to wear chromium-free leather gloves. There has been no evidence of recurrence during a six month follow-up period.
Zhang, Qian; Sun, Xiaofang; Xiao, Xinhua; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing
2017-04-30
Maternal malnutrition leads to the incidence of metabolic diseases in offspring. The purpose of this project was to examine whether maternal low chromium could disturb normal lipid metabolism in offspring, altering adipose cell differentiation and leading to the incidence of lipid metabolism diseases, including metabolic syndrome and obesity. Female C57BL mice were given a control diet (CD) or a low chromium diet (LCD) during the gestational and lactation periods. After weaning, offspring was fed with CD or LCD. The female offspring were assessed at 32 weeks of age. Fresh adipose samples from CD-CD group and LCD-CD group were collected. Genome mRNA were analysed using Affymetrix GeneChip Mouse Gene 2.0 ST Whole Transcript-based array. Differentially expressed genes (DEGs) were analysed based on gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis database. Maternal low chromium irreversibly increased offspring body weight, fat-pad weight, serum triglyceride (TG) and TNF-α. Eighty five genes increased and 109 genes reduced in the offspring adipose of the maternal low chromium group. According to KEGG pathway and String analyses, the PPAR signalling pathway may be the key controlled pathway related to the effect of maternal low chromium on female offspring. Maternal chromium status have long-term effects of lipid metabolism in female mice offspring. Normalizing offspring diet can not reverse these effects. The potential underlying mechanisms are the disturbance of the PPAR signalling pathway in adipose tissue. © 2017 The Author(s).
The Use Of Phosphates To Reduce Slag Penetration In Cr203-Based Refractories
Kwong, Kyei-Sing; Dogan, Cynthia P.; Bennett, James P.; Chinn, Richard E.; Petty, Arthur V.
2004-11-09
A high-chromium refractory material that provides improved resistance to coal slag penetration is presented. The refractory mixture comprises a blend of chromium oxide, aluminum oxide and phosphates. The refractory mixture may be blended with an aggregate and cured. In addition a phosphorous oxide may be blended with chromium oxide and aluminum oxide and additionally an aggregate. The refractory mixture reduces the rate of coal slag penetration into the surface of the cured refractory.
1987-08-01
total recoverable trivalent - ambient water, the estimated level is 2 more sensitive than those tested. No chromium the avallabe data indicate - mg/L...freshwater aquatic chronic toxicity of trivalent chromium to life occurs at concentrations as low as sensitive saltwater aquatic life...epoxide Lindane Nethoxyohlor Diazinon Malathion Parathion Toxaphene 2.4- 2,A.5-T 2,JI,5-TP (silvex) barsenic barium cadmiumn chromium (total). copper Iron
NASA Technical Reports Server (NTRS)
Distefano, S.; Rameshan, R.; Fitzgerald, D. J.
1991-01-01
Amorphous iron and titanium-based alloys containing various amounts of chromium, phosphorus, and boron exhibit high corrosion resistance. Some physical properties of Fe and Ti-based metallic alloy films deposited on a glass substrate by a dc-magnetron sputtering technique are reported. The films were characterized using differential scanning calorimetry, stress analysis, SEM, XRD, SIMS, electron microprobe, and potentiodynamic polarization techniques.
A MULTILAYER BIOCHEMICAL DRY DEPOSITION MODEL 1. MODEL FORMULATION
A multilayer biochemical dry deposition model has been developed based on the NOAA Multilayer Model (MLM) to study gaseous exchanges between the soil, plants, and the atmosphere. Most of the parameterizations and submodels have been updated or replaced. The numerical integration ...
NASA Astrophysics Data System (ADS)
Hamdy, Mohamed S.
2016-02-01
Siliceous TUD-1 mesoporous material was bi-functionalized by titanium dioxide nanoparticles and hexavalent chromium ions. The synthesis was carried out by one-pot procedure based on sol-gel technique. The photocatalytic performance of the prepared material was evaluated in the oxidation of propane under the illumination of ultraviolet light (wavelength = 360 nm) and monitored by in situ Fourier transform infrared spectroscopy. The photocatalytic activity of the prepared material exhibited an extra-ordinary activity than the reference samples that contain either hexavalent chromium ions or titanium dioxide nanoparticles only, confirming the true synergy between hexavalent chromium and tetravalent titanium ions of titanium dioxide nanoparticles.
Preliminary study on immobilization of buffing dust by solidification method in ceramic brick
NASA Astrophysics Data System (ADS)
Yuliansyah, Ahmad Tawfiequrrahman; Prasetya, Agus; Putra, Arif Eka; Satriawan, Humam Budi
2017-11-01
Leather-based industries generate a substantial amount of hazardous solid and liquid wastes in their process. One of the solid wastes is buffing dust, which is fine particulates containing fat, tanning, dyes and chromium. From 1 ton of leather processed, approximately 2-6 kg of buffing dust is generated. Chromium in the buffing dust is carcinogenic, so a proper handling is highly required. Solidification is a method commonly used to immobilize toxic material. Hence, the material is trapped in a matrix made of binding agents to minimize its mobility. However, a very small amount of the materials is sometimes released to the environment during storage. This study investigates leaching process of chromium from immobilized buffing dust in ceramic brick. Buffing dust, which contains chromium, is solidified by mixing it with clay at certain compositions and fired in a muffle furnace to produce a ceramic brick. Performance of the solidification process is evaluated by measuring the leaching of chromium in the leaching test. The results show that the solidification has significantly reduced the potential release of chromium to the environment. Higher of the firing temperature, less chromium is leached from ceramic brick. The chromium concentration of leachate water from 800°C brick is 0.376 ppm, while those from 850 and 900°C brick are 0.212 and 0.179 ppm respectively.
The carcinogenicity of chromium
Norseth, Tor
1981-01-01
The carcinogenicity of chromium compounds is reviewed with specific attention to the gaps in knowledge for risk estimation and research needs. The most important problems at present are whether trivalent chromium compounds cause cancer, and whether there is a difference in cancer causing effects between the soluble and the slightly soluble hexavalent compounds in the practical exposure situation. Dose estimates for risk estimation based on epidemiological investigations are also lacking. Present evidence indicates that the trivalent chromium compounds do not cause cancer although high concentrations in some in vitro systems have shown genetic toxicity. Hexavalent chromium compounds cause cancer in humans, in experimental animals and exert genetic toxicity in bacteria and in mammalian cells in vitro. Epidemiological evidence and animal experiments indicate that the slightly soluble hexavalent salts are the most potent carcinogens, but proper identification and characterization of exposure patterns in epidemiological work are lacking. Workers also tend to have mixed exposures. Soluble and slightly soluble salts are equally potent genotoxic agents in vitro. Further work for establishing dose estimates for risk evaluation in epidemiological work is important. In vitro systems should be applied for further identification of the mechanism of the carcinogenic effects, and animal experiments are urgent for comparison of the carcinogenic potency of the different hexavalent salts. Hexavalent chromium salts must be regarded as established carcinogens, and proper action should be taken in all industries with regard to such exposure. At present the carcinogenic risk to the general population caused by chromium compounds seems to be negligible, chromium in cigarettes, however, is an uncertainty in this respect. The amount of chromium and the type of chromium compounds inhaled from cigarettes is not known. PMID:7023928
Wise, John Pierce; Wise, Sandra S.; Holmes, Amie L.; LaCerte, Carolyne; Shaffiey, Fariba; Aboueissa, AbouEl-Makarim
2010-01-01
In this study we directly compared soluble and particulate chromate cytotoxicity and genotoxicity in human (Homo sapiens) and sea lion (Eumetopias jubatus) lung fibroblasts. Our results show that hexavalent chromium induces increased cell death and chromosome damage in both human and sea lion cells with increasing intracellular chromium ion levels. The data further indicate that both sodium chromate and lead chromate are less cytotoxic and genotoxic to sea lion cells than human cells, based on administered dose. Differences in chromium ion uptake explained some but not all of the reduced amounts of sodium chromate-induced cell death. By contrast, uptake differences could explain the differences in sodium chromate-induced chromosome damage and particulate chromate-induced toxicity. Altogether they indicate that while hexavalent chromium induces similar toxic effects in sea lion and human cells, there are different mechanisms underlying the toxic outcomes. PMID:20211760
Shen, Yan; Yu, Baihong; Lv, Yutao; Li, Bin
2017-01-01
A running-in and starved lubrication experiment is designed to investigate the heavy-duty scuffing behavior of piston ring coatings against cast iron (Fe) cylinder liner using the piston ring reciprocating liner test rig. The scuffing resistance of the piston ring with the chromium-based ceramic composite coating (CKS), and that with the thermally sprayed nickel-chromium-molybdenum coating (NCM) is compared at different nominal pressures (40~100 MPa) and temperatures (180~250 °C). With the failure time as a criterion, the rank order is as follows: NCM/Fe > CKS/Fe. Before the scoring occurs at the interface of the piston ring and cylinder liner (PRCL), the cast iron liner enters into a “polish wear” stage, and iron-based adhesive materials begin to form on the piston ring surface. With the macroscopic adhesion formation, the plastic shearing cycle causes surface damages mainly due to abrasive effects for the CKS/Fe pairs and adhesive effects for the NCM/Fe pairs. PMID:29036911
Evaluation of Non-Chromate Passivations on Electroplated gamma-Phase Zinc Nickel
NASA Astrophysics Data System (ADS)
Volz, Steven Michael
This research focused on the corrosion response and electrochemical behavior of electroplated low hydrogen embrittlement alkaline gamma-phase zinc nickel with passivation layers. The motivation was the need to replace hexavalent chromium conversion coatings in military grade electrical systems with a more environment friendly alternative. The passivation layers were employed for the purpose of mitigating corrosion attack while maintaining low contact resistance. Trivalent chromium-based passivations and cerium-based passivations were compared against the currently used hexavalent chromium conversion coating. The coating systems were compared using electrochemical impedance spectroscopy, cyclic potentiodymanic scans, salt spray exposure testing, electrical resistance measurements, microstructure analysis, and compositional analysis. Coating systems with lower open circuit had a lower corrosion current and performed better during salt spray testing. All of the systems evaluated had corrosion products consistent with oxidized zinc compounds but the morphology of the passivation was dependent on the passivation. The electrical contact resistance ranged from 1 to 108 mO/cm 2, after salt spray testing. Two versions of Trivalent chromium-based passivations, were able to meet military performance specifications after corrosion testing.
Hexavalent chromium emissions from aerospace operations: A case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaurushia, A.; Bajza, C.
1994-12-31
Northrop Aircraft Division (NAD) is subject to several air toxic regulations such as EPA SARA Title 3, California Assembly Bill 2588 (AB2588), and Proposition 65 and is a voluntary participant in air toxic emissions reduction programs such as the EPA 33/50 and MERIT Program. To quantify emissions, NAD initially followed regulatory guidelines which recommend that emission inventories of air toxics be based on engineering assumptions and conservative emission factors in absence of specific source test data. NAD was concerned that Chromium VI emissions from NAD`s spray coating and chemical tank line operations were not representative due to these techniques. Moremore » recently, NAD has relied upon information from its ongoing source testing program to determine emission rates of Chromium VI. Based on these source test results, NAD revised emission calculations for use in Chromium VI inventories, impact assessments and control strategies. NAD has been successful in demonstrating a significant difference between emissions calculated utilizing the source test results and emissions based on the traditional mass balance using agency suggested methods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rack, Alexander, E-mail: alexander.rack@esrf.fr; Vivo, Amparo; Morawe, Christian
2016-07-27
Multilayer mirrors present an attractive alternative for reflective hard X-ray monochromators due to their increased bandwidth compared with crystal-based systems. An issue remains the strong modulations in the reflected beam profile, i.e. an irregular stripe pattern. This is a major problem for micro-imaging applications, where multilayer-based monochromators are frequently employed to deliver higher photon flux density. A subject of particular interest is how to overcome beam profile modifications, namely the stripe patterns, induced by the reflection on a multilayer. For multilayer coatings in general it is known that the substrate and its surface quality significantly influence the performance of suchmore » kind of mirrors as the coating reproduces to a certain degree roughness and shape of the substrate. Our studies have shown that modified coatings can significantly change the impact of the multilayer reflection on the beam profile. We will present recent results as well as a critical review.« less
Chromium boron surfaced nickel-iron base alloys
NASA Technical Reports Server (NTRS)
Rashid, James M. (Inventor); Friedrich, Leonard A. (Inventor); Freling, Melvin (Inventor)
1984-01-01
Chromium boron diffusion coatings on nickel iron alloys uniquely provide them with improvement in high cycle fatigue strength (up to 30%) and erosion resistance (up to 15 times), compared to uncoated alloy. The diffused chromium layer extends in two essential concentration zones to a total depth of about 40.times.10.sup.-6 m, while the succeeding boron layer is limited to 50-90% of the depth of the richest Cr layer nearest the surface. Both coatings are applied using conventional pack diffusion processes.
NASA Astrophysics Data System (ADS)
Xiao, Zhong-yin; Zou, Huan-ling; Xu, Kai-Kai; Tang, Jing-yao
2018-03-01
Asymmetric transmission of linearly or circularly polarized waves is a well-established property not only for three-layered chiral structures but for multi-layered ones. Here we show a method which can simultaneously implement asymmetric transmission for arbitrary base vector polarized wave in multi-layered chiral meta-surface. We systematically study the implemented method based on a multi-layered chiral structure consisting of a y-shape, a half gammadion and an S-shape in the terahertz gap. A numerical simulation was carried out, followed by an explanation of the asymmetric transmission mechanism in these structures proposed in this work. The simulated results indicate that the multi-layered chiral structure can realize a maximum asymmetric transmission of 0.89 and 0.28 for circularly and linearly polarized waves, respectively, which exhibit magnitude improvement over previous chiral metamaterials. Specifically, the maximum asymmetric transmitted coefficient of the multi-layered chiral structure is insensitivity to the incident angles from 0° to 45° for circularly polarized components. Additionally, we also study the influence of structural parameters on the asymmetric transmission effect for both linearly and circularly polarized waves in detail.
The chief goal is to develop new selective solid state sensors for carcinogenic and toxic chromium(VI) and arsenic(V) in water based on redox quenching of the luminescence from nanostructured porous silicon and polysiloles.
Stanisławska, Magdalena; Janasik, Beata; Trzcinka-Ochocka, Małgorzata
2011-01-01
Occupational exposure to welding fumes is a known health hazard. The aim of this study was to determine concentrations of welding fumes components such as: iron, manganese, nickel and chromium (including chromium speciation) to assess exposure of stainless steel welders. The survey covered 14 workers of two metallurgic plants engaged in welding stainless steel (18% Cr and 8% Ni) by different techniques: manual metal arc (MMA), metal inert gas (MIG) and tungsten inert gas (TIG). Personal air samples were collected in the welders' breathing zone over a period of about 6-7 h (dust was collected on a membrane and glass filter) to determine time weighted average (TWA) concentration of welding fumes and its components. The concentrations of welding fumes (total particulate) were determined with use of the gravimetric method. Concentrations and welding fume components, such as: iron, manganese, nickel and chromium were determined by ICP-MS technique. The total hexavalent chromium was analyzed by applying the spectrophotometry method according to NIOSH. The water-soluble chromium species were analyzed by HPLC-ICP-MS. Time weighted average concentrations of the welding fumes and its components at the worker's breathing zone were (mg/m3): dust, 0.14-10.7; iron, 0.004-2.9; manganese, 0.001-1.12; nickel, < 0.001-0.2; and chromium <0.002-0.85 (mainly Cr(III) and insoluble Cr(VI)). The maximum admissible limits for workplace pollutants (TLV-TWA) were exceeded for manganese and for insoluble chromium Cr (VI). For Cr (III) the limit was exceeded in individual cases. The assessment of the workers' occupational exposure, based on the determined time weighted average (TWA) of fumes and their components, shows that the stainless steel welders worked in conditions harmful to their health owing to the significantly exceeded maximum admissible limits for manganese and the exceeded TLV value for insoluble chromium (VI).
Theoretical Design of Multilayer Dental Posts Using CAD-Based Approach and Sol-Gel Chemistry.
Maietta, Saverio; De Santis, Roberto; Catauro, Michelina; Martorelli, Massimo; Gloria, Antonio
2018-05-07
A computer-aided design (CAD)-based approach and sol-gel chemistry were used to design a multilayer dental post with a compositional gradient and a Young’s modulus varying from 12.4 to 2.3 GPa in the coronal-apical direction. Specifically, we propose a theoretical multilayer post design, consisting of titanium dioxide (TiO₂) and TiO₂/poly(ε-caprolactone) (PCL) hybrid materials containing PCL up to 24% by weight obtained using the sol-gel method. The current study aimed to analyze the effect of the designed multilayer dental post in endodontically treated anterior teeth. Stress distribution was investigated along and between the post and the surrounding structures. In comparison to a metal post, the most uniform distributions with lower stress values and no significant stress concentration were found when using the multilayer post.
[Metallurgical differentiation of cobalt-chromium alloys for implants].
Holzwarth, U; Thomas, P; Kachler, W; Göske, J; Schuh, A
2005-10-01
Cobalt Chromium alloys are used in cemented total hip or knee arthroplasty as well as in metal-on-metal bearings in total hip arthroplasty. An increasing number of publications report about (allergic) reactions to wear particles of Cobalt Chromium alloys. Reactions to nickel are more frequent in comparison to Cobalt or Chromium particles. It is well known that different kinds of Cobalt Chromium alloys contain different amounts of alloying elements; nevertheless. The aim of the current work was to compare the different Cobalt Chromium alloys according to ASTM F or ISO standards in respect to the different alloying elements. Co28Cr6Mo casting alloys according to ASTM F 75 or ISO 5832-4 as well as forging alloy types according to ASTM F 799 and ISO 5832 such as Co20Cr15W10Ni, Co35Ni20Cr, Fe40Co20Cr10Ni, Co20Cr20Ni, and Co28Cr6Mo were analyzed in respect to their element content of Co, Cr, Ni, Mo, Fe, W, and Mn. In 1935 the Cobalt based alloy "Vitallium" Co30Cr5Mo basically used in the aircraft industry was introduced into medicine. The chemical composition of this alloy based on Cobalt showed 30 wt.% Chromium and 5 wt.% Molybdenum. The differentiation using alloy names showed no Nickel information in single alloy names. The information given about different alloys can lead to an unprecise evaluation of histopathological findings in respect to alloys or alloying constituents. Therefore, implant manufacturers should give the exact information about the alloys used and adhere to European law, Euronorm 93/42/EWG.
Development of a standard reference material for Cr(vi) in contaminated soil
Nagourney, S.J.; Wilson, S.A.; Buckley, B.; Kingston, H.M.S.; Yang, S.-Y.; Long, S.E.
2008-01-01
Over the last several decades, considerable contamination by hexavalent chromium has resulted from the land disposal of Chromite Ore Processing Residue (COPR). COPR contains a number of hexavalent chromium-bearing compounds that were produced in high temperature industrial processes. Concern over the carcinogenic potential of this chromium species, and its environmental mobility, has resulted in efforts to remediate these waste sites. To provide support to analytical measurements of hexavalent chromium, a candidate National Institute of Standards and Technology (NIST) Standard Reference Material?? (SRM 2701), having a hexavalent chromium content of approximately 500 mg kg -1, has been developed using material collected from a waste site in Hudson County, New Jersey, USA. The collection, processing, preparation and preliminary physico-chemical characterization of the material are discussed. A two-phase multi-laboratory testing study was carried out to provide data on material homogeneity and to assess the stability of the material over the duration of the study. The study was designed to incorporate several United States Environmental Protection Agency (USEPA) determinative methods for hexavalent chromium, including Method 6800 which is based on speciated isotope dilution mass spectrometry (SIDMS), an approach which can account for chromium species inter-conversion during the extraction and measurement sequence. This journal is ?? The Royal Society of Chemistry 2008.
Asynchronous cracking with dissimilar paths in multilayer graphene.
Jang, Bongkyun; Kim, Byungwoon; Kim, Jae-Hyun; Lee, Hak-Joo; Sumigawa, Takashi; Kitamura, Takayuki
2017-11-16
Multilayer graphene consists of a stack of single-atomic-thick monolayer graphene sheets bound with π-π interactions and is a fascinating model material opening up a new field of fracture mechanics. In this study, fracture behavior of single-crystalline multilayer graphene was investigated using an in situ mode I fracture test under a scanning electron microscope, and abnormal crack propagation in multilayer graphene was identified for the first time. The fracture toughness of graphene was determined from the measured load-displacement curves and the realistic finite element modelling of specimen geometries. Nonlinear fracture behavior of the multilayer graphene is discussed based on nonlinear elastic fracture mechanics. In situ scanning electron microscope images obtained during the fracture test showed asynchronous crack propagation along independent paths, causing interlayer shear stress and slippages. We also found that energy dissipation by interlayer slippages between the graphene layers is the reason for the enhanced fracture toughness of multilayer graphene. The asynchronous cracking with independent paths is a unique cracking and toughening mechanism for single-crystalline multilayer graphene, which is not observed for the monolayer graphene. This could provide a useful insight for the design and development of graphene-based composite materials for structural applications.
NbTiN Based SIS Multilayer Structures for SRF Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valente, Anne-marie; Eremeev, Grigory; Phillips, H
2013-09-01
For the past three decades, bulk niobium has been the material of choice for SRF cavities applications. RF cavity performance is now approaching the theoretical limit for bulk niobium. For further improvement of RF cavity performance for future accelerator projects, Superconductor Insulator - Superconductor (SIS) multilayer structures (as recently proposed by Alex Gurevich) present the theoretical prospect to reach RF performance beyond bulk Nb, using thinly layered higher-Tc superconductors with enhanced Hc1. Jefferson Lab (JLab) is pursuing this approach with the development of NbTiN and AlN based multilayer SIS structures. This paper presents the results on the characteristics of NbTiNmore » films and the first RF measurements on NbTiN-based multilayer structure on thick Nb films.« less
Si nanocrystals-based multilayers for luminescent and photovoltaic device applications
NASA Astrophysics Data System (ADS)
Lu, Peng; Li, Dongke; Cao, Yunqing; Xu, Jun; Chen, Kunji
2018-06-01
Low dimensional Si materials have attracted much attention because they can be developed in many kinds of new-generation nano-electronic and optoelectronic devices, among which Si nanocrystals-based multilayered material is one of the most promising candidates and has been extensively studied. By using multilayered structures, the size and distribution of nanocrystals as well as the barrier thickness between two adjacent Si nanocrystal layers can be well controlled, which is beneficial to the device applications. This paper presents an overview of the fabrication and device applications of Si nanocrystals, especially in luminescent and photovoltaic devices. We first introduce the fabrication methods of Si nanocrystals-based multilayers. Then, we systematically review the utilization of Si nanocrystals in luminescent and photovoltaic devices. Finally, some expectations for further development of the Si nanocrystals-based photonic and photovoltaic devices are proposed. Project supported by the National Natural Science Foundation of China (Nos. 11774155, 11274155).
Biosensor for detection of dissolved chromium in potable water: A review.
Biswas, Puja; Karn, Abhinav Kumar; Balasubramanian, P; Kale, Paresh G
2017-08-15
The unprecedented deterioration rate of the environmental quality due to rapid urbanization and industrialization causes a severe global health concern to both ecosystem and humanity. Heavy metals are ubiquitous in nature and being used extensively in industrial processes, the exposure to excessive levels could alter the biochemical cycles of living systems. Hence the environmental monitoring through rapid and specific detection of heavy metal contamination in potable water is of paramount importance. Various standard analytical techniques and sensors are used for the detection of heavy metals include spectroscopy and chromatographic methods along with electrochemical, optical waveguide and polymer based sensors. However, the mentioned techniques lack the point of care application as it demands huge capital cost as well as the attention of expert personnel for sample preparation and operation. Recent advancements in the synergetic interaction among biotechnology and microelectronics have advocated the biosensor technology for a wide array of applications due to its characteristic features of sensitivity and selectivity. This review paper has outlined the overview of chromium toxicity, conventional analytical techniques along with a particular emphasis on electrochemical based biosensors for chromium detection in potable water. This article emphasized porous silicon as a host material for enzyme immobilization and elaborated the working principle, mechanism, kinetics of an enzyme-based biosensor for chromium detection. The significant characteristics such as pore size, thickness, and porosity make the porous silicon suitable for enzyme entrapment. Further, several schemes on porous silicon-based immobilized enzyme biosensors for the detection of chromium in potable water are proposed. Copyright © 2017 Elsevier B.V. All rights reserved.
Magneto-optical properties of PdCo based multilayered films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, K.; Tsunashima, S.; Iwata, S.
1989-09-01
Magneto-optical and magnetic properties of multilayered films composed of PdCo alloy and other noble metal (Pd, Pt or Cu) layers are investigated. Multilayered films were prepared by RF magnetron sputtering method. Kerr rotation spectra (275nm-800nm) of Pd/Co multilayered films resemble those of PdCo alloys. In the films composed of PdCo alloy and Pt bilayers, the Kerr rotation increases with increasing Pt content while the perpendicular anisotropy decreases.
NASA Astrophysics Data System (ADS)
Chen, Jiangwei; Liu, Jun; Xu, Weidong
2017-09-01
In this paper, refraction behaviors of light in both metal single-layered film and metal-dielectric-metal multilayered films are investigated based on the generalized formulas of reflection and refraction. The obtained results, especially, dependence of power refractive index on incident angles for a light beam traveling through a metal-dielectric-metal multilayered structure, are well consistent with the experimental observations. Our work may offer a new angle of view to understand the all-angle negative refraction of light in metal-dielectric-metal multilayered structures, and provide a convenient approach to optimize the devised design and address the issue on making the perfect lens.
Out-of-plane permeability of multilayer 0°/90° non-crimp fabrics
NASA Astrophysics Data System (ADS)
Fang, Liangchao; Wu, Wenyu; Xu, Chunting; Zhang, Hui
2018-03-01
Layer shift is the main source of the variations in permeability values for multilayer fabrics. This phenomenon could change the flow path and cause inadequate infiltration. In this paper, the out-of-plane permeability of multilayer 0°/90° non-crimp fabrics was analyzed statistically. Based on the prediction models of 2-layer fabrics, every two adjacent layers were regarded as porous media with different permeabilities. The out-of-plane permeability of multilayer fabrics was then modeled with the electrical resistance analogy. Analytical results were compared with experiment data. And the effect of number of layer on permeability was thoroughly researched based on the statistical point of view.
GROUND WATER REMEDIATION OF CHROMIUM USING ZERO-VALENT IRON IN A PERMEABLE REACTIVE BARRIER
A series of laboratory experiments were performed to elucidate the chromium transformation and precipitation reactions caused by the corrosion of zero-valent iron in water-based systems. Reaction rates were determined for chromate reduction in the presence of different types of ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... subpart are defined in the Act, in subpart A of this part, or in this section as follows: Chromium-based water treatment chemicals means any combination of chemical substances containing chromium used to treat... operational limitation on the capacity of the stationary source to emit a pollutant, including air pollution...
Release-rate calorimetry of multilayered materials for aircraft seats
NASA Technical Reports Server (NTRS)
Fewell, L. L.; Duskin, F. E.; Spieth, H.; Trabold, E.; Parker, J. A.
1979-01-01
Multilayered samples of contemporary and improved fire resistant aircraft seat materials (foam cushion, decorative fabric, slip sheet, fire blocking layer, and cushion reinforcement layer) were evaluated for their rates of heat release and smoke generation. Top layers (decorative fabric, slip sheet, fire blocking, and cushion reinforcement) with glass fiber block cushion were evaluated to determine which materials based on their minimum contributions to the total heat release of the multilayered assembly may be added or deleted. Top layers exhibiting desirable burning profiles were combined with foam cushion materials. The smoke and heat release rates of multilayered seat materials were then measured at heat fluxes of 1.5 and 3.5 W/sq cm. Choices of contact and silicone adhesives for bonding multilayered assemblies were based on flammability, burn and smoke generation, animal toxicity tests, and thermal gravimetric analysis. Abrasion tests were conducted on the decorative fabric covering and slip sheet to ascertain service life and compatibility of layers.
NASA Astrophysics Data System (ADS)
Berthod, Patrice
2018-06-01
Nickel-based cast alloys rich in chromium and reinforced by TaC carbides are potentially very interesting alloys for applications at elevated temperatures. Unfortunately, unlike cobalt-chromium and iron-chromium alloys, it is difficult to obtain exclusively TaC as primary carbides in Ni-Cr alloys. In alloys containing 30 wt pct Cr tantalum, carbides coexist with chromium carbides. The latter tend to weaken the alloy at elevated temperatures because they become rapidly spherical and then quickly lose their reinforcing effect. In this work, we attempted to stabilize TaC as a single carbide phase by testing different chromium contents in the [0, 50 wt pct] range. Six alloys containing 0.4C and 6Ta, weight contents corresponding to equivalent molar contents, were elaborated by foundry, and their as-cast microstructures were characterized. Samples of all alloys were exposed to 1127 °C and 1237 °C for 24 hours to characterize their stabilized microstructures. The surface fractions of chromium carbides and tantalum carbides were measured by image analysis, and their evolutions vs the chromium content were studied. For the chosen C and Ta contents, it appears that obtaining TaC only is possible by decreasing the chromium content to 10 wt pct. At the same time, TaC fractions are unfortunately too low because a large portion of tantalum integrates into the solid solution in the matrix. A second consequence is a critical decrease in oxidation resistance. Other possible methods to stabilize TaC as a single carbide are evocated, such as the simultaneous increase in Ta and decrease in chromium from 30 wt pct Cr.
Peat and coconut fiber as biofilters for chromium adsorption from contaminated wastewaters.
Henryk, Kołoczek; Jarosław, Chwastowski; Witold, Żukowski
2016-01-01
Batch adsorption experiments were performed for the removal of chromium (III) and chromium (VI) ions from aqueous solutions using Canadian peat and coconut fiber. The Langmuir model was used to describe the adsorption isotherm. The maximum adsorption for peat reached 18.75 mg/g for Cr(III) and 8.02 mg/g for Cr(VI), whereas the value for fiber was slightly higher and reached 19.21 mg/g for Cr(III) and 9.54 mg/g for Cr(VI). Both chromium forms could be easily eluted from the materials. The adsorption of chromium forms to organic matter could be explained in terms of formation of donor-acceptor chemical covalent bound with hydroxyl groups as ligands and chromium as the central atom in the formed complex. The chromate-reducing activities were monitored with the use of electron paramagnetic resonance spectroscopy. The results showed that both adsorption and reduction occurred simultaneously and the maximum adsorption capacity of hexavalent chromium being equal to 95% for fiber and 92% for peat was obtained at pH 1.5. The reduction of Cr(VI) in wastewaters began immediately and disappeared after 20 h. Both materials contained yeast and fungi species which can be responsible for reduction of chromium compounds, due to their enzymatic activity (Chwastowski and Koloczek (Acta Biochim Pol 60: 829-834, 2013)). The reduction of Cr(VI) is a two-phase process, the first phase being rapid and based on chemical reaction and the second phase having biological features. After the recovery step, both types of organic materials can be used again for chromium adsorption without any loss in the metal uptake. Both of the materials could be used as biofilters in the wastewater treatment plants.
1951-09-15
ended. O^J’’" ’•» >i- feud .**■ J ’. I’ /fi ’. . f ■ ^ Conclusions and Recommendations The work reported herein shows that...the chromium-iron alloy plating process is not yet ready for full-scale application to gun tubes. The need for additional beaker-scale work on the...additional work is needed to allow production of uniform good plates each plating trial. The firing-test results showed that adhesion of the plate is not
Ferreira, Thania Alexandra; Rodriguez, Jose Antonio; Paez-Hernandez, María Elena; Guevara-Lara, Alfredo; Barrado, Enrique; Hernandez, Prisciliano
2017-01-01
An evaluation of the chromium(VI) adsorption capacity of four magnetite sorbents coated with a polymer phase containing polymethacrylic acid or polyallyl-3-methylimidazolium is presented. Factors that influence the chromium(VI) removal such as solution pH and contact time were investigated in batch experiments and in stirred tank reactor mode. Affinity and rate constants increased with the molar ratio of the imidazolium. The highest adsorption was obtained at pH 2.0 due to the contribution of electrostatic interactions. PMID:28772865
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Huixu; Li, Zhigang; Stan, Liliana
Broadband perfect absorber based on one ultrathin layer of the refractory metal chromium without structure pat- terning is proposed and demonstrated. The ideal permittivity of the metal layer for achieving broadband perfect absorption is derived based on the impedance transformation method. Since the permittivity of the refractory metal chromium matches this ideal permittivity well in the visible and near-infrared range, a silica-chromium-silica three-layer absorber is fabricated to demonstrate the broadband perfect absorption. The experimental results under normal incidence show that the absorption is above 90% over the wavelength range of 0.4–1.4 μm, and the measurements under angled incidence within 400–800more » nm prove that the absorber is angle-insensitive and polarization- independent.« less
NASA Technical Reports Server (NTRS)
Smith, W. O.; Toft, A. R. (Inventor)
1973-01-01
A method for the production of reticles, particularly those for use in outer space, where the product is a quartz base coated with highly adherent layers of chromium, chromium-silver, and silver vacuum deposited through a mask, and then coated with an electrodeposit of copper from a copper sulfate solution followed by an electrodeposit of black chromium is described. The masks are produced by coating a beryllium-copper alloy substrate with a positive working photoresist, developing the photoresist, according to a pattern to leave a positive mask, plating uncoated areas with gold, removing the photoresist, coating the substrate with a negative working photoresist, developing the negative working photoresist to expose the base metal of the pattern, and chemically etching the unplated side of the pattern to produce the mask.
Liang, D.; Xu, X.; Tsang, L.; Andreadis, K.M.; Josberger, E.G.
2008-01-01
A model for the microwave emissions of multilayer dry snowpacks, based on dense media radiative transfer (DMRT) theory with the quasicrystalline approximation (QCA), provides more accurate results when compared to emissions determined by a homogeneous snowpack and other scattering models. The DMRT model accounts for adhesive aggregate effects, which leads to dense media Mie scattering by using a sticky particle model. With the multilayer model, we examined both the frequency and polarization dependence of brightness temperatures (Tb's) from representative snowpacks and compared them to results from a single-layer model and found that the multilayer model predicts higher polarization differences, twice as much, and weaker frequency dependence. We also studied the temporal evolution of Tb from multilayer snowpacks. The difference between Tb's at 18.7 and 36.5 GHz can be S K lower than the single-layer model prediction in this paper. By using the snowpack observations from the Cold Land Processes Field Experiment as input for both multi- and single-layer models, it shows that the multilayer Tb's are in better agreement with the data than the single-layer model. With one set of physical parameters, the multilayer QCA/DMRT model matched all four channels of Tb observations simultaneously, whereas the single-layer model could only reproduce vertically polarized Tb's. Also, the polarization difference and frequency dependence were accurately matched by the multilayer model using the same set of physical parameters. Hence, algorithms for the retrieval of snowpack depth or water equivalent should be based on multilayer scattering models to achieve greater accuracy. ?? 2008 IEEE.
Development of Iron Aluminides
1987-05-01
in aircraft turbine engines as altIErnatives to high chromium steels and nickel-base alloys. The pirogram was divided into three tasks. A process and...RSR) and the determination of their potential for use in aircraft turbine engines as alternative. to high chromium steels and nickel-base alloys. The...intermediated temperatures. Any alloys must also exhibit adequate corrosion resistance in a gas turbine environment if they are to replace existing alloys. A
Kawada, Shinichiro; Hayashi, Hiroyuki; Ishii, Hideki; Kimura, Masahiko; Ando, Akira; Omiya, Suetake; Kubodera, Noriyuki
2015-11-03
Although lead-free piezoelectric ceramics have been extensively studied, many problems must still be overcome before they are suitable for practical use. One of the main problems is fabricating a multilayer structure, and one solution attracting growing interest is the use of lead-free multilayer piezoelectric ceramics. The paper reviews work that has been done by the authors on lead-free alkali niobate-based multilayer piezoelectric ceramics co-fired with nickel inner electrodes. Nickel inner electrodes have many advantages, such as high electromigration resistance, high interfacial strength with ceramics, and greater cost effectiveness than silver palladium inner electrodes. However, widely used lead zirconate titanate-based ceramics cannot be co-fired with nickel inner electrodes, and silver palladium inner electrodes are usually used for lead zirconate titanate-based piezoelectric ceramics. A possible alternative is lead-free ceramics co-fired with nickel inner electrodes. We have thus been developing lead-free alkali niobate-based multilayer ceramics co-fired with nickel inner electrodes. The normalized electric-field-induced thickness strain ( S max / E max ) of a representative alkali niobate-based multilayer ceramic structure with nickel inner electrodes was 360 pm/V, where S max denotes the maximum strain and E max denotes the maximum electric field. This value is about half that for the lead zirconate titanate-based ceramics that are widely used. However, a comparable value can be obtained by stacking more ceramic layers with smaller thicknesses. In the paper, the compositional design and process used to co-fire lead-free ceramics with nickel inner electrodes are introduced, and their piezoelectric properties and reliabilities are shown. Recent advances are introduced, and future development is discussed.
Kawada, Shinichiro; Hayashi, Hiroyuki; Ishii, Hideki; Kimura, Masahiko; Ando, Akira; Omiya, Suetake; Kubodera, Noriyuki
2015-01-01
Although lead-free piezoelectric ceramics have been extensively studied, many problems must still be overcome before they are suitable for practical use. One of the main problems is fabricating a multilayer structure, and one solution attracting growing interest is the use of lead-free multilayer piezoelectric ceramics. The paper reviews work that has been done by the authors on lead-free alkali niobate-based multilayer piezoelectric ceramics co-fired with nickel inner electrodes. Nickel inner electrodes have many advantages, such as high electromigration resistance, high interfacial strength with ceramics, and greater cost effectiveness than silver palladium inner electrodes. However, widely used lead zirconate titanate-based ceramics cannot be co-fired with nickel inner electrodes, and silver palladium inner electrodes are usually used for lead zirconate titanate-based piezoelectric ceramics. A possible alternative is lead-free ceramics co-fired with nickel inner electrodes. We have thus been developing lead-free alkali niobate-based multilayer ceramics co-fired with nickel inner electrodes. The normalized electric-field-induced thickness strain (Smax/Emax) of a representative alkali niobate-based multilayer ceramic structure with nickel inner electrodes was 360 pm/V, where Smax denotes the maximum strain and Emax denotes the maximum electric field. This value is about half that for the lead zirconate titanate-based ceramics that are widely used. However, a comparable value can be obtained by stacking more ceramic layers with smaller thicknesses. In the paper, the compositional design and process used to co-fire lead-free ceramics with nickel inner electrodes are introduced, and their piezoelectric properties and reliabilities are shown. Recent advances are introduced, and future development is discussed. PMID:28793646
Malek, Ammar; Hachemi, Messaoud; Didier, Villemin
2009-10-15
Herein, we describe an original novel method which allows the decontamination of the chromium-containing leather wastes to simplify the recovery of its considerable protein fractions. Organic salts and acids such as potassium oxalate, potassium tartrate, acetic and citric acids were tested for their efficiency to separate the chromium from the leather waste. Our investigation is based on the research of the total reversibility of the tanning process, in order to decontaminate the waste without its previous degradation or digestion. The effect of several influential parameters on the treatment process was also studied. Therefore, the action of chemical agents used in decontamination process seems very interesting. The optimal yield of chromium extraction about 95% is obtained. The aim of the present study is to define a preliminary processing of solid leather waste with two main impacts: Removing with reusing chromium in the tanning process with simple, ecological and economic treatment process and potential valorization of the organic matrix of waste decontaminated.
Remediation of chromium-slag leakage with electricity cogeneration via a urea-Cr(VI) cell
Yu, Binbin; Zhang, Huimin; Xu, Wei; Li, Gang; Wu, Zucheng
2014-01-01
Chromium pollution has been historically widespread throughout the world. Most available remediation technologies often require energy consumption. This study is aimed to develop electrochemical remediation for Cr(VI) in chromium-slag leakage with self-generated electricity. Dynamic leaching experiments of chromium-slag samples were conducted to survey the release and leaching behavior of Cr(VI). Based on previous work, a unique urea-Cr(VI) was designed, in which urea was employed as the fuel and Cr(VI) from the leakage of the dichromate slag served as the oxidant. Furthermore, the electrochemical results showed that the removal percent of Cr(VI) was more than 96% after 18 h with the leakage Cr(VI) concentration of 2.69 mM. The open circuit potential (OCP) varied in the range of 1.56 ~ 1.59 V under different initial Cr(VI) leakage concentrations. The approach explores the feasibility of the promising technique without the need of energy input for simultaneous chromium-slag remediation and generation of electricity. PMID:25168513
An in situ pilot study was conducted to evaluate the performance of a ferrous iron-based reductant solution in treating hexavalent chromium within a saturated zone source area at a former industrial site in Charleston, South Carolina (USA). The hexavalent source area, consisting...
Oje, A. M.
2017-01-01
Chromium oxide coatings prepared by radiofrequency reactive magnetron sputtering on stainless steel substrates were exposed to Ringer's physiological solution and tested for their electrochemical corrosion stability using an open circuit potential measurement, potentiodynamic polarization, electrochemical impedance spectroscopy and Mott–Schottky analysis. The coatings were found to be predominantly Cr2O3, based on the observation of the dominance of A1g and Eg symmetric modes in our Raman spectroscopic investigation and the Eu vibrational modes in our Fourier transform infrared spectroscopic measurements on the coatings. We investigated for the presence of chromium ions in Ringer's solution after all of the above electrochemical tests using atomic absorption spectroscopy, without finding a trace of chromium ions at the ppm level for coatings tested under open circuit and at the lower potentials implants are likely to experience in the human body. The coatings were further exposed to Ringer's solution for one month and tested for adhesion strength changes, and we found that they retained substantial adhesion to the substrates. We expect this finding to be significant for future orthopaedic implants where chromium ion release is still a major challenge. PMID:28791150
Research on cascading failure in multilayer network with different coupling preference
NASA Astrophysics Data System (ADS)
Zhang, Yong; Jin, Lei; Wang, Xiao Juan
This paper is aimed at constructing robust multilayer networks against cascading failure. Considering link protection strategies in reality, we design a cascading failure model based on load distribution and extend it to multilayer. We use the cascading failure model to deduce the scale of the largest connected component after cascading failure, from which we can find that the performance of four kinds of load distribution strategies associates with the load ratio of the current edge to its adjacent edge. Coupling preference is a typical characteristic in multilayer networks which corresponds to the network robustness. The coupling preference of multilayer networks is divided into two forms: the coupling preference in layers and the coupling preference between layers. To analyze the relationship between the coupling preference and the multilayer network robustness, we design a construction algorithm to generate multilayer networks with different coupling preferences. Simulation results show that the load distribution based on the node betweenness performs the best. When the coupling coefficient in layers is zero, the scale-free network is the most robust. In the random network, the assortative coupling in layers is more robust than the disassortative coupling. For the coupling preference between layers, the assortative coupling between layers is more robust than the disassortative coupling both in the scale free network and the random network.
Multilayer composition coatings for cutting tools: formation and performance properties
NASA Astrophysics Data System (ADS)
Tabakov, Vladimir P.; Vereschaka, Anatoly S.; Vereschaka, Alexey A.
2018-03-01
The paper considers the concept of a multi-layer architecture of the coating in which each layer has a predetermined functionality. Latest generation of coatings with multi-layered architecture for cutting tools secure a dual nature of the coating, in which coatings should not only improve the mechanical and physical characteristics of the cutting tool material, but also reduce the thermo-mechanical effect on the cutting tool determining wear intensity. Here are presented the results of the development of combined methods of forming multi-layer coatings with improved properties. Combined method of forming coatings using a pulsed laser allowed reducing excessively high levels of compressive residual stress and increasing micro hardness of the multilayered coatings. The results in testing coated HSS tools showed that the use of additional pulse of laser processing increases tool life up to 3 times. Using filtered cathodic vacuum arc deposition for the generation of multilayer coatings based on TiAlN compound has increased the wear-resistance of carbide tools by 2 fold compared with tool life of cutting tool with commercial TiN coatings. The aim of this study was to develop an innovative methodological approach to the deposition of multilayer coatings for cutting tools with functional architectural selection, properties and parameters of the coating based on sound knowledge of coating failure in machining process.
Design of a normal incidence multilayer imaging X-ray microscope
NASA Astrophysics Data System (ADS)
Shealy, David L.; Gabardi, David R.; Hoover, Richard B.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.
Normal incidence multilayer Cassegrain X-ray telescopes were flown on the Stanford/MSFC Rocket X-ray Spectroheliograph. These instruments produced high spatial resolution images of the sun and conclusively demonstrated that doubly reflecting multilayer X-ray optical systems are feasible. The images indicated that aplanatic imaging soft X-ray/EUV microscopes should be achievable using multilayer optics technology. A doubly reflecting normal incidence multilayer imaging X-ray microscope based on the Schwarzschild configuration has been designed. The design of the microscope and the results of the optical system ray trace analysis are discussed. High resolution aplanatic imaging X-ray microscopes using normal incidence multilayer X-ray mirrors should have many important applications in advanced X-ray astronomical instrumentation, X-ray lithography, biological, biomedical, metallurgical, and laser fusion research.
Loch, R A; Sobierajski, R; Louis, E; Bosgra, J; Bijkerk, F
2012-12-17
The single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources are theoretically investigated, using a model developed on the basis of experimental data obtained at the FLASH and LCLS free electron lasers. We compare the radiation hardness of commonly used multilayer optics and propose new material combinations selected for a high damage threshold. Our study demonstrates that the damage thresholds of multilayer optics can vary over a large range of incidence fluences and can be as high as several hundreds of mJ/cm(2). This strongly suggests that multilayer mirrors are serious candidates for damage resistant optics. Especially, multilayer optics based on Li(2)O spacers are very promising for use in current and future short-wavelength radiation sources.
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I. (Inventor); Chambers, Matthew D. (Inventor)
2014-01-01
Systems and methods that are capable of measuring pressure or temperature based on luminescence are discussed herein. These systems and methods are based on spin-allowed broadband luminescence of sensors with orthorhombic perovskite structures of rare earth aluminates doped with chromium or similar transition metals, such as chromium-doped gadolinium aluminate. Luminescence from these sensors can be measured to determine at least one of temperature or pressure, based on either the intense luminescence of these sensors, even at high temperatures, or low temperature techniques discussed herein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ang, Caen K.; Burns, Joseph R.; Terrani, Kurt A.
2016-09-01
There is a need to increase the safety margins of current and future light water reactors (LWRs) due to the unfortunate events at Fukushima Daiichi Nuclear Plant. Safety is crucial to restore public confidence in nuclear energy, acknowledged as an economical, high-density energy solution to climate change. The development of accident-tolerant fuel (ATF) concepts is crucial to this endeavor. The objective of ATF is to delay the consequences of accident progression, being inset in high temperature steam and maintaining high thermomechanical strength for radionuclide retention. The use of advanced SiCf-SiC composite as a substitute for zircaloy-based cladding is being considered.more » However, at normal operations, SiC is vulnerable to the reactor coolant and may corrode at an unacceptable rate. As a ceramic-matrix composite material, it is likely to undergo microcracking operation, which may compromise the ability to contain gaseous fission products. A proposed solution to both issues is the application of mitigation coatings for use in normal operations. At Oak Ridge National Laboratory (ORNL), three coating technologies have been investigated with industry collaborators and vendors. These are electrochemical deposition, cathodic arc physical vapor deposition (PVD hereafter) and vacuum plasma spray (VPS). The objective of this document is to summarize these processing technologies, the resultant as-processed microstructures and properties of the coatings. In all processes, substrate constraint resulted in substantial tensile stresses within the coating layer. Each technology must mitigate this tensile stress. Electrochemical coatings use chromium as the coolant facing material, and are deposited on a nickel or carbon “bond coat”. This is economical but suffers microcracking in the chromium layer. PVD-based coatings use chromium and titanium in both metallic form and nitrides, and can be deposited defense-in-depth as multilayers. This vapor method eliminated tensile stress during processing and coatings were up to ~30 μm thick without microcracking. VPS produced coatings based on Zircaloy-2, which has a proven reactor-compatibility. The tensile stresses appearred to be partially mitigated by annealing. Analysis showed that VPS coatings required further optimizations to prevent adverse reactions with the substrate and need a minimum thickness of ~50 μm. In addition, development of coatings are constrained by neutronic depletion analysis, which clearly indicated enrichment as an issue if the coating is too thick. Based on the present work, the cathodic arc PVD technology was considered ready for the extensive testing and evaluation on cladding materials due to their ability to mitigate the excessive tensile stresses and the reasonable coating quality achieved. The VPS Zircaloy-2 coating technology required additional development toward mitigation of issues related to the substrate reaction and porosity. In the future, PVD and VPS will have be scaled upon successful development and demonstration. Electrochemical coatings, which are proven scalability, currently require development to mitigate issues related to the tensile stress after deposition.« less
Iron-based alloy and nitridation treatment for PEM fuel cell bipolar plates
Brady, Michael P [Oak Ridge, TN; Yang, Bing [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN
2010-11-09
A corrosion resistant electrically conductive component that can be used as a bipolar plate in a PEM fuel cell application is composed of an alloy substrate which has 10-30 wt. % Cr, 0.5 to 7 wt. % V, and base metal being Fe, and a continuous surface layer of chromium nitride and vanadium nitride essentially free of base metal. A oxide layer of chromium vanadium oxide can be disposed between the alloy substrate and the continuous surface nitride layer. A method to prepare the corrosion resistant electrically conductive component involves a two-step nitridization sequence by exposing the alloy to a oxygen containing gas at an elevated temperature, and subsequently exposing the alloy to an oxygen free nitrogen containing gas at an elevated temperature to yield a component where a continuous chromium nitride layer free of iron has formed at the surface.
Matsuda, Yasuhiro; Yanagida, Hiroaki; Ide, Takako; Matsumura, Hideo; Tanoue, Naomi
2010-06-01
The shear bond strength of an auto-polymerizing poly(methyl methacrylate) denture base resin material to cast titanium and cobalt-chromium alloy treated with six conditioning methods was investigated. Disk specimens (10 mm in diameter and 2.5 mm in thickness) were cast from pure titanium and cobalt-chromium alloy. The specimens were wet ground to a final surface finish of 600 grit, air dried, and treated with the following bonding systems: 1) air abraded with 50-70-microm-grain alumina (SAN); 2) air abraded with 50-70-microm-grain alumina + conditioned with Alloy Primer (ALP); 3) air abraded with 50-70-microm-grain alumina + conditioned with AZ Primer (AZP); 4) air abraded with 50-70-microm-grain alumina + conditioned with Estenia Opaque Primer (EOP); 5) air abraded with 50-70-microm-grain alumina + conditioned with Metal Link Primer (MLP), and 6) treated with ROCATEC system (ROC). A denture base material (Palapress Vario) was then applied to each metal specimen. Shear bond strengths were determined before and after 10,000 thermocycles. The strengths decreased after thermocycling in all combinations. Among the treatment methods assessed, groups 2 and 4 showed significantly (p < 0.05) enhanced shear bond strengths for both metals. In group 4, the strength in MPa (n = 7) after thermocycling for cobalt-chromium alloy was 38.3, which was statistically (p < 0.05) higher than that for cast titanium (34.7). Air abrasion followed by the application of two primers containing a hydrophobic phosphate monomer (MDP) effectively improved the strength of the bond of denture base material to cast titanium and cobalt-chromium alloy.
NASA Astrophysics Data System (ADS)
Falub, Claudiu V.; Bless, Martin; Hida, Rachid; MeduÅa, Mojmír; Ammann, Arnold
2018-04-01
We present an innovative, economical method for manufacturing soft magnetic materials that may pave the way for integrated thin film magnetic cores with dramatically improved properties. Soft magnetic multilayered thin films based on the Fe-28%Co20%B (at.%) and Co-4.5%Ta4%Zr (at.%) amorphous alloys are deposited on 8" bare Si and Si/200nm-thermal-SiO2 wafers in an industrial, high-throughput Evatec LLS EVO II magnetron sputtering system. The multilayers consist of stacks of alternating 80-nm-thick ferromagnetic layers and 4-nm-thick Al2O3 dielectric interlayers. Since in our dynamic sputter system the substrate cage rotates continuously, such that the substrates face different targets alternatively, each ferromagnetic sublayer in the multilayer consists of a fine structure comprising alternating CoTaZr and FeCoB nanolayers with very sharp interfaces. We adjust the thickness of these individual nanolayers between 0.5 and 1.5 nm by changing the cage rotation speed and the power of each gun, which is an excellent mode to engineer new, composite ferromagnetic materials. Using X-ray reflectometry (XRR) we reveal that the interfaces between the FeCoB and CoTaZr nanolayers are perfectly smooth with roughness of 0.2-0.3 nm. Kerr magnetometry and B-H looper measurements for the as-deposited samples show that the coercivity of these thin films is very low, 0.2-0.3 Oe, and gradually scales up with the thickness of FeCoB nanolayers, i.e. with the increase of the overall Fe content from 0 % (e.g. CoTaZr-based multilayers) to 52 % (e.g. FeCoB-based multilayers). We explain this trend in the random anisotropy model, based on considerations of grain size growth, as revealed by glancing angle X-ray diffraction (GAXRD), but also because of the increase of magnetostriction with the increase of Fe content as shown by B-H looper measurements performed on strained wafers. The unexpected enhancement of the in-plane anisotropy field from 18.3 Oe and 25.8 Oe for the conventional CoTaZr- and FeCoB-based multilayers, respectively, up to ˜48 Oe for the nanostructured multilayers with FeCoB/CoTaZr nano-bilayers is explained based on interface anisotropy contribution. These novel soft magnetic multilayers, with enhanced in-plane anisotropy, allow operation at higher frequencies, as revealed by broadband (between 100 MHz and 10 GHz) RF measurements that exhibit a classical Landau-Lifschitz-Gilbert (LLG) behavior.
The layer boundary effect on multi-layer mesoporous TiO 2 film based dye sensitized solar cells
Xu, Feng; Zhu, Kai; Zhao, Yixin
2016-10-10
Multi-layer mesoporous TiO 2 prepared by screen printing is widely used for fabrication of high-efficiency dye-sensitized solar cells (DSSCs). Here, we compare the three types of ~10 um thick mesoporous TiO 2 films, which were screen printed as 1-, 2- and 4-layers using the same TiO 2 nanocrystal paste. The layer boundary of the multi-layer mesoporous TiO 2 films was observed in the cross-section SEM. The existence of a layer boundary could reduce the photoelectron diffusion length with the increase of layer number. However, the photoelectron diffusion lengths of the Z907 dye sensitized solar cells based on these different layeredmore » mesoporous TiO 2 films are all longer than the film thickness. Consequently, the photovoltaic performance seems to have little dependence on the layer number of the multi-layer TiO 2 based DSSCs.« less
Robust Guar Gum/Cellulose Nanofibrils Multilayer Films with Good Barrier Properties.
Dai, Lei; Long, Zhu; Chen, Jie; An, Xingye; Cheng, Dong; Khan, Avik; Ni, Yonghao
2017-02-15
The pursuit of sustainable functional materials requires development of materials based on renewable resources and efficient fabrication methods. Hereby, we fabricated all-polysaccharides multilayer films using cationic guar gum (CGG) and anionic cellulose nanofibrils (i.e., TEMPO-oxidized cellulose nanofibrils, TOCNs) through a layer-by-layer casting method. This technique is based on alternate depositions of oppositely charged water-based CGG and TOCNs onto laminated films. The resultant polyelectrolyte multilayer films were transparent, ductile, and strong. More importantly, the self-standing films exhibited excellent gas (water vapor and oxygen) and oil barrier performances. Another outstanding feature of these resultant films was their resistance to various organic solvents including methanol, acetone, N,N-dimethylacetamide (DMAc) and tetrahydrofuran (THF). The proposed film fabrication process is environmentally benign, cost-effective, and easy to scale-up. The developed CGG/TOCNs multilayer films can be used as a renewable material for industrial applications such as packaging.
The layer boundary effect on multi-layer mesoporous TiO 2 film based dye sensitized solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Feng; Zhu, Kai; Zhao, Yixin
Multi-layer mesoporous TiO 2 prepared by screen printing is widely used for fabrication of high-efficiency dye-sensitized solar cells (DSSCs). Here, we compare the three types of ~10 um thick mesoporous TiO 2 films, which were screen printed as 1-, 2- and 4-layers using the same TiO 2 nanocrystal paste. The layer boundary of the multi-layer mesoporous TiO 2 films was observed in the cross-section SEM. The existence of a layer boundary could reduce the photoelectron diffusion length with the increase of layer number. However, the photoelectron diffusion lengths of the Z907 dye sensitized solar cells based on these different layeredmore » mesoporous TiO 2 films are all longer than the film thickness. Consequently, the photovoltaic performance seems to have little dependence on the layer number of the multi-layer TiO 2 based DSSCs.« less
Technique for etching monolayer and multilayer materials
Bouet, Nathalie C. D.; Conley, Raymond P.; Divan, Ralu; Macrander, Albert
2015-10-06
A process is disclosed for sectioning by etching of monolayers and multilayers using an RIE technique with fluorine-based chemistry. In one embodiment, the process uses Reactive Ion Etching (RIE) alone or in combination with Inductively Coupled Plasma (ICP) using fluorine-based chemistry alone and using sufficient power to provide high ion energy to increase the etching rate and to obtain deeper anisotropic etching. In a second embodiment, a process is provided for sectioning of WSi.sub.2/Si multilayers using RIE in combination with ICP using a combination of fluorine-based and chlorine-based chemistries and using RF power and ICP power. According to the second embodiment, a high level of vertical anisotropy is achieved by a ratio of three gases; namely, CHF.sub.3, Cl.sub.2, and O.sub.2 with RF and ICP. Additionally, in conjunction with the second embodiment, a passivation layer can be formed on the surface of the multilayer which aids in anisotropic profile generation.
Protective claddings for high strength chromium alloys
NASA Technical Reports Server (NTRS)
Collins, J. F.
1971-01-01
The application of a Cr-Y-Hf-Th alloy as a protective cladding for a high strength chromium alloy was investigated for its effectiveness in inhibiting nitrogen embrittlement of a core alloy. Cladding was accomplished by a combination of hot gas pressure bonding and roll cladding techniques. Based on bend DBTT, the cladding alloy was effective in inhibiting nitrogen embrittlement of the chromium core alloy for up to 720 ks (200hours) in air at 1422 K (2100 F). A significant increase in the bend DBTT occurred with longer time exposures at 1422 K or short time exposures at 1589 K (2400 F).
Niu, Zhiqiang; Du, Jianjun; Cao, Xuebo; Sun, Yinghui; Zhou, Weiya; Hng, Huey Hoon; Ma, Jan; Chen, Xiaodong; Xie, Sishen
2012-10-22
Graphene nanosheets and metal nanoparticles (NPs) have been used as nano-building-blocks for assembly into macroscale hybrid structures with promising performance in electrical devices. However, in most graphene and metal NP hybrid structures, the graphene sheets and metal NPs (e.g., AuNPs) do not enable control of the reaction process, orientation of building blocks, and organization at the nanoscale. Here, an electrophoretic layer-by-layer assembly for constructing multilayered reduced graphene oxide (RGO)/AuNP films and lateral micropatterns is presented. This assembly method allows easy control of the nano-architecture of building blocks along the normal direction of the film, including the number and thickness of RGO and AuNP layers, in addition to control of the lateral orientation of the resultant multilayered structures. Conductivity of multilayered RGO/AuNP hybrid nano-architecture shows great improvement caused by a bridging effect of the AuNPs along the out-of-plane direction between the upper and lower RGO layers. The results clearly show the potential of electrophoretic build-up in the fabrication of graphene-based alternately multilayered films and patterns. Finally, flexible supercapacitors based on multilayered RGO/AuNP hybrid films are fabricated, and excellent performance, such as high energy and power densities, are achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lazarova, Katerina; Awala, Hussein; Thomas, Sebastien; Vasileva, Marina; Mintova, Svetlana; Babeva, Tsvetanka
2014-01-01
The preparation of responsive multilayered structures with quarter-wave design based on layer-by-layer deposition of sol-gel derived Nb2O5 films and spin-coated MEL type zeolite is demonstrated. The refractive indices (n) and thicknesses (d) of the layers are determined using non-linear curve fitting of the measured reflectance spectra. Besides, the surface and cross-sectional features of the multilayered structures are characterized by scanning electron microscopy (SEM). The quasi-omnidirectional photonic band for the multilayered structures is predicted theoretically, and confirmed experimentally by reflectance measurements at oblique incidence with polarized light. The sensing properties of the multilayered structures toward acetone are studied by measuring transmittance spectra prior and after vapor exposure. Furthermore, the potential of the one-dimensional photonic crystals based on the multilayered structure consisting of Nb2O5 and MEL type zeolite as a chemical sensor with optical read-out is discussed. PMID:25010695
The transmission of finite amplitude sound beam in multi-layered biological media
NASA Astrophysics Data System (ADS)
Liu, Xiaozhou; Li, Junlun; Yin, Chang; Gong, Xiufen; Zhang, Dong; Xue, Honghui
2007-02-01
Based on the Khokhlov Zabolotskaya Kuznetsov (KZK) equation, a model in the frequency domain is given to describe the transmission of finite amplitude sound beam in multi-layered biological media. Favorable agreement between the theoretical analyses and the measured results shows this approach could effectively describe the transmission of finite amplitude sound wave in multi-layered biological media.
NASA Technical Reports Server (NTRS)
Viudez-Mora, Antonio; Kato, Seiji
2015-01-01
This work evaluates the multilayer cloud (MCF) algorithm based on CO2-slicing techniques against CALISPO-CloudSat (CLCS) measurement. This evaluation showed that the MCF underestimates the presence of multilayered clouds compared with CLCS and are retrained to cloud emissivities below 0.8 and cloud optical septs no larger than 0.3.
Structural diversity effects of multilayer networks on the threshold of interacting epidemics
NASA Astrophysics Data System (ADS)
Wang, Weihong; Chen, MingMing; Min, Yong; Jin, Xiaogang
2016-02-01
Foodborne diseases always spread through multiple vectors (e.g. fresh vegetables and fruits) and reveal that multilayer network could spread fatal pathogen with complex interactions. In this paper, first, we use a "top-down analysis framework that depends on only two distributions to describe a random multilayer network with any number of layers. These two distributions are the overlaid degree distribution and the edge-type distribution of the multilayer network. Second, based on the two distributions, we adopt three indicators of multilayer network diversity to measure the correlation between network layers, including network richness, likeness, and evenness. The network richness is the number of layers forming the multilayer network. The network likeness is the degree of different layers sharing the same edge. The network evenness is the variance of the number of edges in every layer. Third, based on a simple epidemic model, we analyze the influence of network diversity on the threshold of interacting epidemics with the coexistence of collaboration and competition. Our work extends the "top-down" analysis framework to deal with the more complex epidemic situation and more diversity indicators and quantifies the trade-off between thresholds of inter-layer collaboration and intra-layer transmission.
Tuning cell adhesive properties via layer-by-layer assembly of chitosan and alginate
Silva, Joana M.; García, José R.; Reis, Rui L.; García, Andrés J.; Mano, João F.
2017-01-01
Understanding the mechanisms controlling cell-multilayer film interactions is crucial to the successful engineering of these coatings for biotechnological and biomedical applications. Herein, we present a strategy to tune the cell adhesive properties of multilayers based on marine polysaccharides with and without cross-linking and/or coating with extracellular matrix proteins. Chemical cross-linking of multilayers improved mechanical properties of the coatings but also elicited changes in surface chemistry that alter the adhesion of human umbilical vein endothelial cells. We evaluated a strategy to decouple the mechanical and chemical properties of these films, enabling the transition from cell-adhesive to cell-resistant multilayers. Addition of chitosan/alginate multilayers on top of cross-linked films decreased endothelial cell adhesion, spreading, and proliferation to similar levels as uncross-linked films. Our findings highlight the key role of surface chemistry in cell-multilayer film interactions, and these engineered nanocoatings represent a tunable model of cell adhesive and non-adhesive multilayered films. PMID:28126597
Goh, Madeline Shuhua; Pumera, Martin
2011-01-01
The detection of explosives in seawater is of great interest. We compared response single-, few-, and multilayer graphene nanoribbons and graphite microparticle-based electrodes toward the electrochemical reduction of 2,4,6-trinitrotoluene (TNT). We optimized parameters such as accumulation time, accumulation potential, and pH. We found that few-layer graphene exhibits about 20% enhanced signal for TNT after accumulation when compared to multilayer graphene nanoribbons. However, graphite microparticle-modified electrode provides higher sensitivity, and there was no significant difference in the performance of single-, few-, and multilayer graphene nanoribbons and graphite microparticles for the electrochemical detection of TNT. We established the limit of detection of TNT in untreated seawater at 1 μg/mL.
Anthropogenic Chromium Emissions in China from 1990 to 2009
Cheng, Hongguang; Zhou, Tan; Li, Qian; Lu, Lu; Lin, Chunye
2014-01-01
An inventory of chromium emission into the atmosphere and water from anthropogenic activities in China was compiled for 1990 through to 2009. We estimate that the total emission of chromium to the atmosphere is about 1.92×105t. Coal and oil combustion were the two leading sources of chromium emission to the atmosphere in China, while the contribution of them showed opposite annual growth trend. In total, nearly 1.34×104t of chromium was discharged to water, mainly from six industrial categories in 20 years. Among them, the metal fabrication industry and the leather tanning sector were the dominant sources of chromium emissions, accounting for approximately 68.0% and 20.0% of the total emissions and representing increases of15.6% and 10.3% annually, respectively. The spatial trends of Cr emissions show significant variation based on emissions from 2005 to 2009. The emission to the atmosphere was heaviest in Hebei, Shandong, Guangdong, Zhejiang and Shanxi, whose annual emissions reached more than 1000t for the high level of coal and oil consumption. In terms of emission to water, the largest contributors were Guangdong, Jiangsu, Shandong and Zhejiang, where most of the leather production and metal manufacturing occur and these four regions accounted for nearly 47.4% of the total emission to water. PMID:24505309
Multilayer-based lab-on-a-chip systems for perfused cell-based assays
NASA Astrophysics Data System (ADS)
Klotzbach, Udo; Sonntag, Frank; Grünzner, Stefan; Busek, Mathias; Schmieder, Florian; Franke, Volker
2014-12-01
A novel integrated technology chain of laser-microstructured multilayer foils for fast, flexible, and low-cost manufacturing of lab-on-a-chip devices especially for complex cell and tissue culture applications, which provides pulsatile fluid flow within physiological ranges at low media-to-cells ratio, was developed and established. Initially the microfluidic system is constructively divided into individual layers, which are formed by separate foils or plates. Based on the functional boundary conditions and the necessary properties of each layer, their corresponding foils and plates are chosen. In the third step, the foils and plates are laser microstructured and functionalized from both sides. In the fourth and last manufacturing step, the multiple plates and foils are joined using different bonding techniques like adhesive bonding, welding, etc. This multilayer technology together with pneumatically driven micropumps and valves permits the manufacturing of fluidic structures and perfusion systems, which spread out above multiple planes. Based on the established lab-on-a-chip platform for perfused cell-based assays, a multilayer microfluidic system with two parallel connected cell culture chambers was successfully implemented.
Feng, Weiwei; Zhao, Ting; Mao, Guanghua; Wang, Wei; Feng, Yun; Li, Fang; Zheng, Daheng; Wu, Huiyu; Jin, Dun; Yang, Liuqing; Wu, Xiangyang
2015-01-01
Our previous study showed that chromium malate improved the regulation of blood glucose in mice with alloxan-induced diabetes. The present study was designed to evaluate the effect of chromium malate on glycometabolism, glycometabolism-related enzymes and lipid metabolism in type 2 diabetic rats. Our results showed that fasting blood glucose, serum insulin level, insulin resistance index and C-peptide level in the high dose group had a significant downward trend when compared with the model group, chromium picolinate group and chromium trichloride group. The hepatic glycogen, glucose-6-phosphate dehydrogenase, glucokinase, Glut4, phosphor-AMPKβ1 and Akt levels in the high dose group were significantly higher than those of the model, chromium picolinate and chromium trichloride groups. Chromium malate in a high dose group can significantly increase high density lipoprotein cholesterol level while decreasing the total cholesterol, low density lipoprotein cholesterol and triglyceride levels when compared with chromium picolinate and chromium trichloride. The serum chromium content in chromium malate and chromium picolinate group is significantly higher than that of the chromium trichloride group. The results indicated that the curative effects of chromium malate on glycometabolism, glycometabolism-related enzymes and lipid metabolism changes are better than those of chromium picolinate and chromium trichloride. Chromium malate contributes to glucose uptake and transport in order to improved glycometabolism and glycometabolism-related enzymes. PMID:25942313
Feng, Weiwei; Zhao, Ting; Mao, Guanghua; Wang, Wei; Feng, Yun; Li, Fang; Zheng, Daheng; Wu, Huiyu; Jin, Dun; Yang, Liuqing; Wu, Xiangyang
2015-01-01
Our previous study showed that chromium malate improved the regulation of blood glucose in mice with alloxan-induced diabetes. The present study was designed to evaluate the effect of chromium malate on glycometabolism, glycometabolism-related enzymes and lipid metabolism in type 2 diabetic rats. Our results showed that fasting blood glucose, serum insulin level, insulin resistance index and C-peptide level in the high dose group had a significant downward trend when compared with the model group, chromium picolinate group and chromium trichloride group. The hepatic glycogen, glucose-6-phosphate dehydrogenase, glucokinase, Glut4, phosphor-AMPKβ1 and Akt levels in the high dose group were significantly higher than those of the model, chromium picolinate and chromium trichloride groups. Chromium malate in a high dose group can significantly increase high density lipoprotein cholesterol level while decreasing the total cholesterol, low density lipoprotein cholesterol and triglyceride levels when compared with chromium picolinate and chromium trichloride. The serum chromium content in chromium malate and chromium picolinate group is significantly higher than that of the chromium trichloride group. The results indicated that the curative effects of chromium malate on glycometabolism, glycometabolism-related enzymes and lipid metabolism changes are better than those of chromium picolinate and chromium trichloride. Chromium malate contributes to glucose uptake and transport in order to improved glycometabolism and glycometabolism-related enzymes.
NASA Astrophysics Data System (ADS)
Jiao, S. Y.; Zhang, M. C.; Zheng, L.; Dong, J. X.
2010-01-01
For the purpose of studying the effect of heat treatment on carbide morphology and chromium concentration distribution, which are critical to the resistance of alloy 690 to stress corrosion cracking (SCC), a series of thermal treatments was performed. A model taking into account the intercorrelated dynamic process between the carbide precipitation and chemical diffusion of the chromium atom from matrix to grain boundary (GB) was constructed on the basis of classical nucleation theory, Kolmogorov-Johnson-Mehl-Avrami law, and diffusion theory. The validity of this model was evaluated by comparing the simulated results of the carbide average size and chromium concentration near the GB with the corresponding measured results. A discontinuous factor was introduced based on the relation linking the interdistance between the carbides and the carbide average size; thus, the carbide morphology and chromium concentration could be predicted by this model. According to the results of the experiments and simulations, a carbide discontinuous factor smaller than 2.2 together with the chromium concentration at the GB higher than a critical value (21 wt pct) were essential for the corrosion resistance ability of the alloy, and then some proper heat-treatment conditions were obtained through predicting the value of the two variables. In addition, the effects of the grain size and composition variation on the carbide discontinuous factor and chromium concentration profile were simulated. The results indicated that an intermediate grain size of approximately 31.8 to ~63.5 μm was beneficial for effectively improving the resistance of the alloy to SCC. Simultaneously, the carbon content should be adjusted near 0.02 pct, and the chromium content should be the highest possible in its chemical composition scale.
The use of trivalent chromium bath to obtain a solar selective black chromium coating
NASA Astrophysics Data System (ADS)
Survilienė, S.; Češūnienė, A.; Juškėnas, R.; Selskienė, A.; Bučinskienė, D.; Kalinauskas, P.; Juškevičius, K.; Jurevičiūtė, I.
2014-06-01
Black chromium coatings were electrodeposited from a trivalent chromium bath using a ZnO additive as a second main component. Black chromium was electrodeposited on steel and copper plates and substrates plated with bright nickel prior to black chromium electrodeposition. The black chromium coatings were characterized by XRD and SEM. The XRD data suggest that the phase structure of black chromium may be defined as a zinc solid solution in chromium or a chromium solid solution in zinc depending on the chromium/zinc ratio in the deposit. The role of substrate finish was evaluated through the corrosion resistance and reflectance of black chromium. According to corrosion tests the samples plated with bright nickel prior to black chromium deposition have shown the highest corrosion resistance. The electrodeposited black chromium possesses good optical properties for the absorption of solar energy. The absorption coefficient of black chromium was found to be over 0.99 for the samples obtained without the Ni undercoat and below 0.99 for those obtained with the use of Ni undercoat. However, the use of nickel undercoat before black chromium plating is recommended because it remarkably improves the corrosion resistance of samples.
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher
1987-01-01
A test program to determine the optimum composition of chromium carbide based solid lubricant coatings for compliant gas bearings is described. The friction and wear properties of the coatings are evaluated using a foil gas bearing test apparatus. The various coatings were prepared by powder blending, then plasma sprayed onto Inconel 718 test journals and diamond ground to the desired coating thickness and surface finish. The journals were operated against preoxidized nickel-chromium alloy foils. The test bearings were subjected to repeated start/stop cycles under a 14 kPa (2 psi) bearing unit load. The bearings were tested for 9000 start/stop cycles or until the specimen wear reached a predetermined failure level. In general, the addition of silver and eutectic to the chromium carbide base stock significantly reduced foil wear and increased journal coating wear. The optimum coating composition, PS212 (70 wt% metal bonded Cr3C2, 15 wt% Ag, 15% BaF2/CaF2 eutectic), reduced foil wear by a factor of two and displayed coating wear well within acceptable limits. The load capacity of the bearing using the plasma-sprayed coating prior to and after a run-in period was ascertained and compared to polished Inconel 718 specimens.
Riales, R; Albrink, M J
1981-12-01
Chromium deficiency may cause insulin resistance, hyperinsulinemia, impaired glucose tolerance, and hyperlipidemia, recovered by chromium supplementation. The effect of chromium supplementation on serum lipids and glucose tolerance was tested in a double-blind 12-wk study of 23 healthy adult men aged 31 to 60 yr. Either 200 micrograms trivalent chromium in 5 ml water (Cr) or 5 ml plain water (W) was ingested daily 5 days each week. Half the subjects volunteered for glucose tolerance tests with insulin levels. At 12 wk high-density lipoprotein cholesterol increased in the Cr group from 35 to 39 mg/dl (p less than 0.05) but did not change in the water group (34 mg/dl). The largest increase in high-density lipoprotein cholesterol and decreases in insulin and glucose were found in those subjects having normal glucose levels together with elevated insulin levels at base-line. The data are thus consistent with the hypothesis that Cr supplementation raises high-density lipoprotein cholesterol and improves insulin sensitivity in those with evidence of insulin resistance but normal glucose tolerance.
Fajadet, Jean; Neumann, Franz-Josef; Hildick-Smith, David; Petronio, Sonia; Zaman, Azfar; Spence, Mark; Wöhrle, Jochen; Elhadad, Simon; Roberts, David; Hovasse, Thomas; Valdés, Mariano; Silber, Sigmund
2017-01-20
The aim of the study was to compare the safety and efficacy of the platinum-chromium-based everolimus-eluting stent (EES) with a cobalt-chromium EES. We performed a prospective, multicentre, single-blind non-inferiority all-comers study randomising patients with stable or unstable coronary artery disease (2:1) to treatment with the platinum-chromium EES (n=1,952) or the control cobalt-chromium EES (n=1,028) in Europe (PLATINUM PLUS trial). The primary endpoint was target vessel failure (TVF) at 12 months, a composite of target vessel-related cardiac death, myocardial infarction (MI), and ischaemia-driven target vessel revascularisation (TVR). Among 2,980 patients, 33% presented with acute coronary syndromes, and 48% with multivessel disease. At 12 months, the intention-to-treat analysis determined that the platinum-chromium EES was non-inferior to the cobalt-chromium EES for the primary endpoint (86 [4.6%] patients vs. 32 [3.2%], absolute difference 1.4%, 95% confidence interval [CI]: -0.1-2.9; upper limit of the one-sided 95% CI: 2.57%; non-inferiority p=0.012; superiority analysis: hazard ratio [HR] 1.44, 95% CI: 0.96-2.16, p=0.08). In the per protocol analysis, however, the primary endpoint was significantly more common in the platinum-chromium EES (HR 1.64, 95% CI: 1.05-2.55, p=0.03). There were no significant differences in the rates of cardiac death (1.1% vs. 1.0%, p=0.78), MI (1.6% vs. 0.8%, p=0.09), or ischaemia-driven TLR (2.0% vs. 1.6%, p=0.49). The rates of ARC definite or probable stent thrombosis were comparable between platforms (0.8% vs. 0.5%, p=0.44). At one year, the platinum-chromium EES satisfied the pre-specified criteria for non-inferiority relative to the control cobalt-chromium EES in this all-comers trial.
Sequential Leaching of Chromium Contaminated Sediments - A Study Characterizing Natural Attenuation
NASA Astrophysics Data System (ADS)
Musa, D.; Ding, M.; Beroff, S.; Rearick, M.; Perkins, G.; WoldeGabriel, G. W.; Ware, D.; Harris, R.; Kluk, E.; Katzman, D.; Reimus, P. W.; Heikoop, J. M.
2015-12-01
Natural attenuation is an important process in slowing down the transport of hexavalent chromium, Cr(VI), an anthropogenic environmental contaminant, either by adsorption of Cr(VI) to sediments, or by reduction to nontoxic trivalent chromium, Cr(III). The capacity and mechanism of attenuation is explored in this sequential leaching study of different particle size fractions of chromium contaminated sediments and similar uncontaminated sediments from the regional aquifer near Los Alamos, New Mexico. Using this leaching protocol each sediment sample is split in two: one half is leached three times using a 0.1 M sodium bicarbonate/carbonate solution, while the second half is leached three times using a 0.01 M nitric acid, followed by two consecutively increasing magnitudes of nitric acid concentrations. Based on the amphoteric nature of chromium, alkaline leaching is used to establish the amount of Cr(VI) sorbed on the sediment, whereas acid leaching is used to establish the amount of Cr(III). The weak acid is predicted to release the attenuated anthropogenic Cr(III), without affecting Cr-bearing minerals. The sequential, stronger, acid is anticipated to leach Cr(III)-incorporated in the minerals. The efficiency and validation of the sequential leaching method is assessed by comparing the leaching behavior of bentonite and biotite samples, with and without loaded Cr(VI). A 97% chromium mass balance of leached Cr(VI)-loaded bentonite and biotite proves the viability of this method for further use on leaching contaminated sediments. By comparing contaminated and uncontaminated sediment leachate results, of chromium and other major and trace elements, the signature of anthropogenic chromium is determined. Further mineralogical characterization of the sediments provides a quantitative measure of the natural attenuation capacity for chromium. Understanding these results is pertinent in delineating the optimal procedure for the remediation of Cr(VI) in the regional aquifer near Los Alamos.
Nanostructured Thin Films Obtained from Fischer Aminocarbene Complexes
Lazo-Jiménez, Rosa E.; Ortega-Alfaro, M. Carmen; López-Cortés, José G.; Alvarez-Toledano, Cecilio; Chávez-Carvayar, José Á.; Ignés-Mullol, Jordi; González-Torres, Maykel; Carreón-Castro, Pilar
2016-01-01
The synthesis of four amphiphilic organometallic complexes with the general formula RC = M(CO)5NH(CH2)15CH3, where R is a ferrocenyl 2(a-b) or a phenyl 4(a-b) group as a donor moiety and a Fischer carbene of chromium (0) or tungsten (0) as an acceptor group, are reported. These four push-pull systems formed Langmuir (L) monolayers at the air-water interface, which were characterized by isotherms of surface pressure versus molecular area and compression/expansion cycles (hysteresis curves); Brewster angle microscopic images were also obtained. By using the Langmuir–Blodgett (LB) method, molecular monolayers were transferred onto glass substrates forming Z-type multilayers. LB films were characterized through ultraviolet-visible spectroscopy, atomic force microscopy and X-ray diffraction techniques. Results indicated that films obtained from 2b complex [(Ferrocenyl)(hexadecylamine)methylidene] pentacarbonyl tungsten (0) are the most stable and homogeneous; due to their properties, these materials may be incorporated into organic electronic devices. PMID:28773289
Risk of Type 2 Diabetes Is Lower in US Adults Taking Chromium-Containing Supplements123
McIver, David J; Grizales, Ana Maria; Brownstein, John S; Goldfine, Allison B
2015-01-01
Background: Dietary supplement use is widespread in the United States. Although it has been suggested in both in vitro and small in vivo human studies that chromium has potentially beneficial effects in type 2 diabetes (T2D), chromium supplementation in diabetes has not been investigated at the population level. Objective: The objective of this study was to examine the use and potential benefits of chromium supplementation in T2D by examining NHANES data. Methods: An individual was defined as having diabetes if he or she had a glycated hemoglobin (HbA1c) value of ≥6.5%, or reported having been diagnosed with diabetes. Data on all consumed dietary supplements from the NHANES database were analyzed, with the OR of having diabetes as the main outcome of interest based on chromium supplement use. Results: The NHANES for the years 1999–2010 included information on 62,160 individuals. After filtering the database for the required covariates (gender, ethnicity, socioeconomic status, body mass index, diabetes diagnosis, supplement usage, and laboratory HbA1c values), and when restricted to adults, the study cohort included 28,539 people. A total of 58.3% of people reported consuming a dietary supplement in the previous 30 d, 28.8% reported consuming a dietary supplement that contained chromium, and 0.7% consumed supplements that had “chromium” in the title. Compared with nonusers, the odds of having T2D (HbA1c ≥6.5%) were lower in persons who consumed chromium-containing supplements within the previous 30 d than in those who did not (OR: 0.73; 95% CI: 0.62, 0.86; P = 0.001). Supplement use alone (without chromium) did not influence the odds of having T2D (OR: 0.89; 95% CI: 0.77, 1.03; P = 0.11). Conclusions: Over one-half the adult US population consumes nutritional supplements, and over one-quarter consumes supplemental chromium. The odds of having T2D were lower in those who, in the previous 30 d, had consumed supplements containing chromium. Given the magnitude of exposure, studies on safety and efficacy are warranted. PMID:26446484
Advanced coatings for next generation lithography
NASA Astrophysics Data System (ADS)
Naujok, P.; Yulin, S.; Kaiser, N.; Tünnermann, A.
2015-03-01
Beyond EUV lithography at 6.X nm wavelength has a potential to extend EUVL beyond the 11 nm node. To implement B-based mirrors and to enable their industrial application in lithography tools, a reflectivity level of > 70% has to be reached in near future. The authors will prove that transition from conventional La/B4C to promising LaN/B4C multilayer coatings leads to enhanced optical properties. Currently a near normal-incidence reflectivity of 58.1% @ 6.65 nm is achieved by LaN/B4C multilayer mirrors. The introduction of ultrathin diffusion barriers into the multilayer design to reach the targeted reflectivity of 70% was also tested. The optimization of multilayer design and deposition process for interface-engineered La/C/B4C multilayer mirrors resulted in peak reflectivity of 56.8% at the wavelength of 6.66 nm. In addition, the thermal stability of several selected multilayers was investigated and will be discussed.
Feng, Weiwei; Mao, Guanghua; Li, Qian; Wang, Wei; Chen, Yao; Zhao, Ting; Li, Fang; Zou, Ye; Wu, Huiyu; Yang, Liuqing; Wu, Xiangyang
2015-01-01
Aims/Introduction The present study was designed to evaluate the effect of chromium malate on glycometabolism, glycometabolism-related enzyme levels and lipid metabolism in type 2 diabetic rats, and dose–response and curative effects. Materials and Methods The model of type 2 diabetes rats was developed, and daily treatment with chromium malate was given for 4 weeks. A rat enzyme-linked immunosorbent assay kit was used to assay glycometabolism, glycometabolism-related enzyme levels and lipid metabolism changes. Results The results showed that the antihyperglycemic activity increased with administration of chromium malate in a dose–dependent manner. The serum insulin level, insulin resistance index and C-peptide level of the chromium malate groups at a dose of 17.5, 20.0 and 20.8 μg chromium/kg bodyweight were significantly lower than that of the model, chromium trichloride and chromium picolinate groups. The hepatic glycogen, glucose-6-phosphate dehydrogenase and glucokinase levels of the chromium malate groups at a dose of 17.5, 20.0 and 20.8 μg chromium/kg bodyweight were significantly higher than that of the model, chromium trichloride and chromium picolinate groups. Chromium malate at a dose of 20.0 and 20.8 μg chromium/kg bodyweight significantly changed the total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglycerides levels compared with the chromium trichloride and chromium picolinate groups. Conclusions The results showed that chromium malate exhibits greater benefits in treating type 2 diabetes, and the curative effect of chromium malate is superior to chromium trichloride and chromium picolinate. PMID:26221518
Polypeptide multilayer film co-delivers oppositely-charged drug molecules in sustained manners.
Jiang, Bingbing; Defusco, Elizabeth; Li, Bingyun
2010-12-13
The current state-of-the-art for drug-carrying biomedical devices is mostly limited to those that release a single drug. Yet there are many situations in which more than one therapeutic agent is needed. Also, most polyelectrolyte multilayer films intended for drug delivery are loaded with active molecules only during multilayer film preparation. In this paper, we present the integration of capsules as vehicles within polypeptide multilayer films for sustained release of multiple oppositely charged drug molecules using layer-by-layer nanoassembly technology. Calcium carbonate (CaCO(3)) particles were impregnated with polyelectrolytes, shelled with polyelectrolyte multilayers, and then assembled onto polypeptide multilayer films using glutaraldehyde. Capsule-integrated polypeptide multilayer films were obtained after decomposition of CaCO(3) templates. Two oppositely charged drugs were loaded into capsules within polypeptide multilayer films postpreparation based on electrostatic interactions between the drugs and the polyelectrolytes impregnated within capsules. We determined that the developed innovative capsule-integrated polypeptide multilayer films could be used to load multiple drugs of very different properties (e.g., opposite charges) any time postpreparation (e.g., minutes before surgical implantation inside an operating room), and such capsule-integrated films allowed simultaneous delivery of two oppositely charged drug molecules and a sustained (up to two weeks or longer) and sequential release was achieved.
Polypeptide Multilayer Film Co-Delivers Oppositely-Charged Drug Molecules in Sustained Manners
Jiang, Bingbing; DeFusco, Elizabeth; Li, Bingyun
2010-01-01
The current state-of-the-art for drug-carrying biomedical devices is mostly limited to those that release a single drug. Yet there are many situations in which more than one therapeutic agent is needed. Also, most polyelectrolyte multilayer films intending for drug delivery are loaded with active molecules only during multilayer film preparation. In this paper, we present the integration of capsules as vehicles within polypeptide multilayer films for sustained release of multiple oppositely-charged drug molecules using layer-by-layer nanoassembly technology. Calcium carbonate (CaCO3) particles were impregnated with polyelectrolytes, shelled with polyelectrolyte multilayers, and then assembled onto polypeptide multilayer films using glutaraldehyde. Capsule-integrated polypeptide multilayer films were obtained after decomposition of CaCO3 templates. Two oppositely-charged drugs were loaded into capsules within polypeptide multilayer films post-preparation based on electrostatic interactions between the drugs and the polyelectrolytes impregnated within capsules. We determined that the developed innovative capsule-integrated polypeptide multilayer films could be used to load multiple drugs of very different properties (e.g. opposite charges) any time post-preparation (e.g. minutes before surgical implantation inside an operating room), and such capsule-integrated films allowed simultaneous delivery of two oppositely-charged drug molecules and a sustained (up to two weeks or longer) and sequential release was achieved. PMID:21058719
Ao, Haiyong; Zong, Jiajia; Nie, Yanjiao; Wan, Yizao; Zheng, Xiebin
2018-03-01
Aseptic loosening of implant is one of the main causes of Ti-based implant failure. In our previous work, a novel stable collagen/hyaluronic acid (Col/HA) multilayer modified titanium coatings (TCs) was developed by layer-by-layer (LBL) covalent immobilization technique, which showed enhanced biological properties compared with TCs that were physically absorbed with Col/HA multilayer in vitro . In this study, a rabbit model with femur condyle defect was employed to compare the osteointegration performance of them. Results indicated that Col/HA multilayer with favourable stability could better facilitate osteogenesis around implants and bone-implant contact. The Col/HA multilayer covalent-immobilized TC may reduce aseptic loosening of implant.
Standard cell-based implementation of a digital optoelectronic neural-network hardware.
Maier, K D; Beckstein, C; Blickhan, R; Erhard, W
2001-03-10
A standard cell-based implementation of a digital optoelectronic neural-network architecture is presented. The overall structure of the multilayer perceptron network that was used, the optoelectronic interconnection system between the layers, and all components required in each layer are defined. The design process from VHDL-based modeling from synthesis and partly automatic placing and routing to the final editing of one layer of the circuit of the multilayer perceptrons are described. A suitable approach for the standard cell-based design of optoelectronic systems is presented, and shortcomings of the design tool that was used are pointed out. The layout for the microelectronic circuit of one layer in a multilayer perceptron neural network with a performance potential 1 magnitude higher than neural networks that are purely electronic based has been successfully designed.
Baral, A; Engelken, R; Stephens, W; Farris, J; Hannigan, R
2006-05-01
This study evaluated aquatic toxicities of chromium and chromium-containing laboratory samples representative of effluents from chromium electroplating industries, and compared the aquatic environmental risks of hexavalent and trivalent chromium electroplating operations. Trivalent chromium electroplating has emerged as an acceptable alternative to hazardous hexavalent chromium electroplating. This process substitution has reduced the human health impact in the workplace and minimized the production of hazardous sludge regulated under the Resource Conservation and Recovery Act (RCRA). The thrust behind this research was to investigate whether trivalent chromium electroplating operations have lower adverse impacts on standardized toxicity test organisms. Ceriodaphnia dubia and Pimephales promelas were used to investigate toxicities of trivalent chromium (Cr (III)), hexavalent chromium (Cr (VI)), and industrial effluents. In agreement with previous studies, Cr (III) was found to be less toxic than Cr (VI). Despite having several organic and inorganic constituents in the effluents obtained from trivalent chromium plating baths, they exhibited less adverse effects to C. dubia than effluents obtained from hexavalent chromium electroplating baths. Thus, transition from hexavalent to trivalent chromium electroplating processes may be justified. However, because of the presence of organic constituents such as formate, oxalate, and triethylene glycol in effluents, trivalent chromium electroplating operations may face additional regulatory requirements for removal of total organic carbon.
NASA Astrophysics Data System (ADS)
Zhao, Z. X.; Zhang, X. S.
2017-01-01
A new online flow injection spectrophotometric method for the determination of trivalent chromium was developed. This method is based on the property of trivalent chromium to be a catalyst for the oxidation of Indigo Carmine (IC) with potassium periodate and to lose its color in the presence of ethylenediaminetetraacetic acid and sodium tripolyphosphate. It was shown that Tween-20 serves as an additional accelerator of the catalytic oxidation. The linear dynamic range of the determination of Cr(III) was 1-40.0 μg/L, while the limit of detection was 0.05 μg/L. The correlation coefficient r was 0.998, while the relative standard deviation for 5 μg/L of the Cr(III) solution was 3.83%. The feasibility of this method was checked by its application to trivalent chromium determination in real water samples.
Baysal, Asli; Akman, Suleyman
2018-05-01
The determination and evaluation of nickel and chromium in Tuzla Aydinli Bay is an important subject since it is an industrial marine area for decades and it is crucial to protect aquatic life which are toxic for the aqueous environment. In this study, 32 samples were collected both from near the coastal shipyard activity to far of the activity areas in Tuzla Aydinli Bay, Istanbul (Turkey) according to the standard guidance. Nickel and chromium were determined in the sea water and sediment samples by graphite furnace atomic absorption spectrometry. The contamination factors and geoaccumulation indices with respect to nickel and chromium were calculated and evaluated. Based on the modified ecological risk assessments, variable results were obtained depending on the selection of control (blank) points. Copyright © 2018 Elsevier Ltd. All rights reserved.
2013-10-01
2 Omitting this pretreatment/conversion coating step was justified because hexavalent chromium - based pretreatments, such as DOD-P-15328 (8...along with the fact that it does not contain chrome (hex or trivalent ), were the criteria for selecting Oxsilan 9310/2 for demonstrating on the...Hexavalent Chromium -Based DOD-P-15328D Wash Primer for MIL-A-46100D High Hard Steel Armor; ARL-TR-3393; U.S. Army Research Laboratory: Aberdeen Proving
Evaluation of Alkaline Cleaner Materials
NASA Technical Reports Server (NTRS)
Partz, Earl
1998-01-01
Alkaline cleaners used to process aluminum substrates have contained chromium as the corrosion inhibitor. Chromium is a hazardous substance whose use and control are described by environmental laws. Replacement materials that have the characteristics of chromated alkaline cleaners need to be found that address both the cleaning requirements and environmental impacts. This report will review environmentally friendly candidates evaluated as non-chromium alkaline cleaner replacements and methods used to compare those candidates one versus another. The report will also list characteristics used to select candidates based on their declared contents. It will also describe and evaluate methods used to discriminate among the large number of prospective candidates.
Studying Pulsed Laser Deposition conditions for Ni/C-based multi-layers
NASA Astrophysics Data System (ADS)
Bollmann, Tjeerd R. J.
2018-04-01
Nickel carbon based multi-layers are a viable route towards future hard X-ray and soft γ-ray focusing telescopes. Here, we study the Pulsed Laser Deposition growth conditions of such bilayers by Reflective High Energy Electron Diffraction, X-ray Reflectivity and Diffraction, Atomic Force Microscopy, X-ray Photoelectron Spectroscopy and cross-sectional Transmission Electron Microscopy analysis, with emphasis on optimization of process pressure and substrate temperature during growth. The thin multi-layers are grown on a treated SiO substrate resulting in Ni and C layers with surface roughnesses (RMS) of ≤0.2 nm. Small droplets resulting during melting of the targets surface increase the roughness, however, and cannot be avoided. The sequential process at temperatures beyond 300 °C results into intermixing between the two layers, being destructive for the reflectivity of the multi-layer.
Experimental patch testing with chromium-coated materials.
Bregnbak, David; Thyssen, Jacob P; Jellesen, Morten S; Zachariae, Claus; Johansen, Jeanne D
2017-06-01
Chromium coatings on metal alloys can be decorative, and prevent corrosion and metal ion release. We recently showed that handling of a chromium-containing disc resulted in chromium deposition on the skin. To examine patch test reactivity to chromium-coated discs. We included 15 patients: 10 chromium-allergic patients, and 5 patients without chromium allergy. All were patch tested with potassium dichromate, cobalt chloride, nickel sulfate, and nine different metallic discs. The chromium-allergic patients were also patch tested with serial dilutions of potassium dichromate. Positive/weaker reactions were observed to disc B (1 of 10), disc C (1 of 10), and disc D, disc E, and disc I (4 of 10 each). As no controls reacted to any of the discs, the weak reactions indicate allergic reactions. Positive patch test reactions to 1770 ppm chromium(VI) in the serial dilutions of potassium dichromate were observed in 7 of 10 patients. When the case group was narrowed down to include only the patients with a current positive patch test reaction to potassium dichromate, elicitation of dermatitis by both chromium(III) and chromium(VI) discs was observed in 4 of 7 of patients. Many of the patients reacted to both chromium(III) and chromium(VI) surfaces. Our results indicate that both chromium(VI) and chromium(III) pose a risk to chromium-allergic patients. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
FEM-based strain analysis study for multilayer sheet forming process
NASA Astrophysics Data System (ADS)
Zhang, Rongjing; Lang, Lihui; Zafar, Rizwan
2015-12-01
Fiber metal laminates have many advantages over traditional laminates (e.g., any type of fiber and resin material can be placed anywhere between the metallic layers without risk of failure of the composite fabric sheets). Furthermore, the process requirements to strictly control the temperature and punch force in fiber metal laminates are also less stringent than those in traditional laminates. To further explore the novel method, this study conducts a finite element method-based (FEM-based) strain analysis on multilayer blanks by using the 3A method. Different forming modes such as wrinkling and fracture are discussed by using experimental and numerical studies. Hydroforming is used for multilayer forming. The Barlat 2000 yield criteria and DYNAFORM/LS-DYNA are used for the simulations. Optimal process parameters are determined on the basis of fixed die-binder gap and variable cavity pressure. The results of this study will enhance the knowledge on the mechanics of multilayer structures formed by using the 3A method and expand its commercial applications.
NASA Astrophysics Data System (ADS)
Wu, Meiyi; Burcklen, Catherine; André, Jean-Michel; Guen, Karine Le; Giglia, Angelo; Koshmak, Konstantin; Nannarone, Stefano; Bridou, Françoise; Meltchakov, Evgueni; Rossi, Sébastien de; Delmotte, Franck; Jonnard, Philippe
2017-11-01
We study Cr/Sc-based multilayer mirrors designed to work in the water window range using hard and soft x-ray reflectivity as well as x-ray fluorescence enhanced by standing waves. Samples differ by the elemental composition of the stack, the thickness of each layer, and the order of deposition. This paper mainly consists of two parts. In the first part, the optical performances of different Cr/Sc-based multilayers are reported, and in the second part, we extend further the characterization of the structural parameters of the multilayers, which can be extracted by comparing the experimental data with simulations. The methodology is detailed in the case of Cr/B4C/Sc sample for which a three-layer model is used. Structural parameters determined by fitting reflectivity curve are then introduced as fixed parameters to plot the x-ray standing wave curve, to compare with the experiment, and confirm the determined structure of the stack.
NASA Technical Reports Server (NTRS)
Sartori, Michael A.; Passino, Kevin M.; Antsaklis, Panos J.
1992-01-01
In rule-based AI planning, expert, and learning systems, it is often the case that the left-hand-sides of the rules must be repeatedly compared to the contents of some 'working memory'. The traditional approach to solve such a 'match phase problem' for production systems is to use the Rete Match Algorithm. Here, a new technique using a multilayer perceptron, a particular artificial neural network model, is presented to solve the match phase problem for rule-based AI systems. A syntax for premise formulas (i.e., the left-hand-sides of the rules) is defined, and working memory is specified. From this, it is shown how to construct a multilayer perceptron that finds all of the rules which can be executed for the current situation in working memory. The complexity of the constructed multilayer perceptron is derived in terms of the maximum number of nodes and the required number of layers. A method for reducing the number of layers to at most three is also presented.
Centini, Marco; D'Aguanno, Giuseppe; Sciscione, Letizia; Sibilia, Concita; Bertolotti, Mario; Scalora, Michael; Bloemer, Mark J
2004-08-15
Traditional notions of second-harmonic generation rely on phase matching or quasi phase matching to achieve good conversion efficiencies. We present an entirely new concept for efficient second-harmonic generation that is based on the interference of counterpropagating waves in multilayer structures. Conversion efficiencies are an order of magnitude larger than with phase-matched second-harmonic generation in similar multilayer structures.
Chromium Exposure and Hygienic Behaviors in Printing Workers in Southern Thailand
Decharat, Somsiri
2015-01-01
Objectives. The main objective of this study was to assess the chromium exposure levels in printing workers. The study evaluated the airborne, serum, and urinary chromium levels and determines any correlation between level of chromium in specimen and airborne chromium levels. Material and Methods. A cross-sectional study was conducted with 75 exposed and 75 matched nonexposed subjects. Air breathing zone was measured by furnace atomic absorption spectrophotometer. Serum and urine samples were collected to determine chromium levels by graphite furnaces atomic absorption spectrometer chromium analyzer. Results and Discussion. The printing workers' urinary chromium levels (6.86 ± 1.93 μg/g creatinine) and serum chromium levels (1.24 ± 1.13 μg/L) were significantly higher than the control group (p < 0.001 and p < 0.001). Work position, duration of work, personal protective equipment (PPE), and personal hygiene were significantly associated with urinary chromium level and serum chromium levels (p < 0.001 and p < 0.001). This study found a correlation between airborne chromium levels and urinary chromium levels (r = 0.247, p = 0.032). A multiple regression model was constructed. Significant predictors of urinary and serum chromium levels were shown in this study. Conclusion. Improvements in working conditions, occupational health training, and PPE use are recommended to reduce chromium exposure. PMID:26448746
Design of a normal incidence multilayer imaging x-ray microscope.
Shealy, D L; Gabardi, D R; Hoover, R B; Walker, A B; Lindblom, J F; Barbee, T W
1989-01-01
Normal incidence multilayer Cassegrain x-ray telescopes were flown on the Stanford/MSFC Rocket X-Ray Spectroheliograph. These instruments produced high spatial resolution images of the Sun and conclusively demonstrated that doubly reflecting multilayer x-ray optical systems are feasible. The images indicated that aplanatic imaging soft x-ray /EUV microscopes should be achievable using multilayer optics technology. We have designed a doubly reflecting normal incidence multilayer imaging x-ray microscope based on the Schwarzschild configuration. The Schwarzschild microscope utilizes two spherical mirrors with concentric radii of curvature which are chosen such that the third-order spherical aberration and coma are minimized. We discuss the design of the microscope and the results of the optical system ray trace analysis which indicates that diffraction-limited performance with 600 Å spatial resolution should be obtainable over a 1 mm field of view at a wavelength of 100 Å. Fabrication of several imaging soft x-ray microscopes based upon these designs, for use in conjunction with x-ray telescopes and laser fusion research, is now in progress. High resolution aplanatic imaging x-ray microscopes using normal incidence multilayer x-ray mirrors should have many important applications in advanced x-ray astronomical instrumentation, x-ray lithography, biological, biomedical, metallurgical, and laser fusion research.
Design and function of biomimetic multilayer water purification membranes
Ling, Shengjie; Qin, Zhao; Huang, Wenwen; Cao, Sufeng; Kaplan, David L.; Buehler, Markus J.
2017-01-01
Multilayer architectures in water purification membranes enable increased water throughput, high filter efficiency, and high molecular loading capacity. However, the preparation of membranes with well-organized multilayer structures, starting from the nanoscale to maximize filtration efficiency, remains a challenge. We report a complete strategy to fully realize a novel biomaterial-based multilayer nanoporous membrane via the integration of computational simulation and experimental fabrication. Our comparative computational simulations, based on coarse-grained models of protein nanofibrils and mineral plates, reveal that the multilayer structure can only form with weak interactions between nanofibrils and mineral plates. We demonstrate experimentally that silk nanofibril (SNF) and hydroxyapatite (HAP) can be used to fabricate highly ordered multilayer membranes with nanoporous features by combining protein self-assembly and in situ biomineralization. The production is optimized to be a simple and highly repeatable process that does not require sophisticated equipment and is suitable for scaled production of low-cost water purification membranes. These membranes not only show ultrafast water penetration but also exhibit broad utility and high efficiency of removal and even reuse (in some cases) of contaminants, including heavy metal ions, dyes, proteins, and other nanoparticles in water. Our biomimetic design and synthesis of these functional SNF/HAP materials have established a paradigm that could lead to the large-scale, low-cost production of multilayer materials with broad spectrum and efficiency for water purification, with applications in wastewater treatment, biomedicine, food industry, and the life sciences. PMID:28435877
Design and function of biomimetic multilayer water purification membranes.
Ling, Shengjie; Qin, Zhao; Huang, Wenwen; Cao, Sufeng; Kaplan, David L; Buehler, Markus J
2017-04-01
Multilayer architectures in water purification membranes enable increased water throughput, high filter efficiency, and high molecular loading capacity. However, the preparation of membranes with well-organized multilayer structures, starting from the nanoscale to maximize filtration efficiency, remains a challenge. We report a complete strategy to fully realize a novel biomaterial-based multilayer nanoporous membrane via the integration of computational simulation and experimental fabrication. Our comparative computational simulations, based on coarse-grained models of protein nanofibrils and mineral plates, reveal that the multilayer structure can only form with weak interactions between nanofibrils and mineral plates. We demonstrate experimentally that silk nanofibril (SNF) and hydroxyapatite (HAP) can be used to fabricate highly ordered multilayer membranes with nanoporous features by combining protein self-assembly and in situ biomineralization. The production is optimized to be a simple and highly repeatable process that does not require sophisticated equipment and is suitable for scaled production of low-cost water purification membranes. These membranes not only show ultrafast water penetration but also exhibit broad utility and high efficiency of removal and even reuse (in some cases) of contaminants, including heavy metal ions, dyes, proteins, and other nanoparticles in water. Our biomimetic design and synthesis of these functional SNF/HAP materials have established a paradigm that could lead to the large-scale, low-cost production of multilayer materials with broad spectrum and efficiency for water purification, with applications in wastewater treatment, biomedicine, food industry, and the life sciences.
Chromium-induced skin damage among Taiwanese cement workers.
Chou, Tzu-Chieh; Wang, Po-Chih; Wu, Jyun-De; Sheu, Shiann-Cherng
2016-10-01
Little research has been done on the relationships between chromium exposure, skin barrier function, and other hygienic habits in cement workers. Our purpose was to investigate chromium-induced skin barrier disruption due to cement exposure among cement workers. One hundred and eight cement workers were recruited in this study. Urinary chromium concentration was used to characterize exposure levels. The biological exposure index was used to separate high and low chromium exposure. Transepidermal water loss (TEWL) was used to assess the skin barrier function. TEWL was significantly increased in workers with high chromium exposure levels than those with low chromium exposure levels (p = 0.048). A positive correlation was also found between urinary chromium concentration and TEWL (R = 0.28, p = 0.004). After adjusting for smoking status and glove use, a significant correlation between urinary chromium concentrations and TEWL remained. Moreover, workers who smoked and had a high chromium exposure had significantly increased TEWL compared to nonsmokers with low chromium exposure (p = 0.01). Skin barrier function of cement workers may have been disrupted by chromium in cement, and smoking might significantly enhance such skin barrier perturbation with chromium exposure. Decreased chromium skin exposure and smoking cessation should be encouraged at work. © The Author(s) 2015.
Cytotoxicity and oxidative mechanisms of different forms of chromium.
Bagchi, Debasis; Stohs, Sidney J; Downs, Bernard W; Bagchi, Manashi; Preuss, Harry G
2002-10-30
Chromium exists mostly in two valence states in nature: hexavalent chromium [chromium(VI)] and trivalent chromium [chromium(III)]. Chromium(VI) is commonly used in industrial chrome plating, welding, painting, metal finishes, steel manufacturing, alloy, cast iron and wood treatment, and is a proven toxin, mutagen and carcinogen. The mechanistic cytotoxicity of chromium(VI) is not completely understood, however, a large number of studies demonstrated that chromium(VI) induces oxidative stress, DNA damage, apoptotic cell death and altered gene expression. Conversely, chromium(III) is essential for proper insulin function and is required for normal protein, fat and carbohydrate metabolism, and is acknowledged as a dietary supplement. In this paper, comparative concentration- and time-dependent effects of chromium(VI) and chromium(III) were demonstrated on increased production of reactive oxygen species (ROS) and lipid peroxidation, enhanced excretion of urinary lipid metabolites, DNA fragmentation and apoptotic cell death in both in vitro and in vivo models. Chromium(VI) demonstrated significantly higher toxicity as compared with chromium(III). To evaluate the role of p53 gene, the dose-dependent effects of chromium(VI) were assessed in female C57BL/6Ntac and p53-deficient C57BL/6TSG p53 mice on enhanced production of ROS, lipid peroxidation and DNA fragmentation in hepatic and brain tissues. Chromium(VI) induced more pronounced oxidative damage in multiple target organs in p53 deficient mice. Comparative studies of chromium(III) picolinate and niacin-bound chromium(III), two popular dietary supplements, reveal that chromium(III) picolinate produces significantly more oxidative stress and DNA damage. Studies have implicated the toxicity of chromium picolinate in renal impairment, skin blisters and pustules, anemia, hemolysis, tissue edema, liver dysfunction; neuronal cell injury, impaired cognitive, perceptual and motor activity; enhanced production of hydroxyl radicals, chromosomal aberration, depletion of antioxidant enzymes, and DNA damage. Recently, chromium picolinate has been shown to be mutagenic and picolinic acid moiety appears to be responsible as studies show that picolinic acid alone is clastogenic. Niacin-bound chromium(III) has been demonstrated to be more bioavailable and efficacious and no toxicity has been reported. In summary, these studies demonstrate that a cascade of cellular events including oxidative stress, genomic DNA damage and modulation of apoptotic regulatory gene p53 are involved in chromium(VI)-induced toxicity and carcinogenesis. The safety of chromium(III) is largely dependent on the ligand, and adequate clinical studies are warranted to demonstrate the safety and efficacy of chromium(III) for human consumption.
Pointillist structural color in Pollia fruit
Vignolini, Silvia; Rudall, Paula J.; Rowland, Alice V.; Reed, Alison; Moyroud, Edwige; Faden, Robert B.; Baumberg, Jeremy J.; Glover, Beverley J.; Steiner, Ullrich
2012-01-01
Biological communication by means of structural color has existed for at least 500 million years. Structural color is commonly observed in the animal kingdom, but has been little studied in plants. We present a striking example of multilayer-based strong iridescent coloration in plants, in the fruit of Pollia condensata. The color is caused by Bragg reflection of helicoidally stacked cellulose microfibrils that form multilayers in the cell walls of the epicarp. We demonstrate that animals and plants have convergently evolved multilayer-based photonic structures to generate colors using entirely distinct materials. The bright blue coloration of this fruit is more intense than that of any previously described biological material. Uniquely in nature, the reflected color differs from cell to cell, as the layer thicknesses in the multilayer stack vary, giving the fruit a striking pixelated or pointillist appearance. Because the multilayers form with both helicoidicities, optical characterization reveals that the reflected light from every epidermal cell is polarized circularly either to the left or to the right, a feature that has never previously been observed in a single tissue. PMID:23019355
NASA Astrophysics Data System (ADS)
Oh, Dohyun; Yun, Dong Yeol; Cho, Woon-Jo; Kim, Tae Whan
2014-08-01
Transparent indium-zinc-tin oxide (IZTO)-based thin-film transistors (TFTs) with IZTO/Ag/IZTO multilayer electrodes were fabricated on glass substrates using a tilted dual-target radio-frequency magnetron sputtering system. The IZTO TFTs with IZTO/Ag/IZTO multilayer electrodes exhibited a high optical transmittance in a visible region. The threshold voltage, the mobility, and the on/off-current ratio of the TFTs with IZTO/Ag/IZTO multilayer electrodes were enhanced in comparison with those of the TFTs with ITO electrodes. The source/drain contact resistance of the IZTO TFTs with IZTO/Ag/IZTO multilayer electrodes was smaller than that of the IZTO TFTs with ITO electrodes, resulting in enhancement of their electrical characteristics.
SiC/Mg multilayer coatings for SCORE coronagraph: long term stability analysis
NASA Astrophysics Data System (ADS)
Pelizzo, Maria Guglielmina; Fineschi, Silvano; Zuppella, Paola; Corso, Alain Jody; Windt, David L.; Nicolosi, Piergiorgio
2011-10-01
SiC/Mg multilayers have been used as coatings of the Sounding-rocket CORonagraphic Experiment (SCORE) telescope mirrors launched during the NASA HERSCHEL program. This materials couple has been largely studied by researchers since it provides higher performances than a standard Mo/Si multilayer; the SCORE mirrors show in fact a peak reflectance of around 40% at HeII 30.4 nm. Nevertheless, long term stability of this coating is an open problem. A study on the aging and stability of this multilayer has been carried on. SiC/Mg multilayer samples characterized by different structural parameters have been deposited. They have been measured just after deposition and four years later to verify degradation based on natural aging. Experimental results and analysis are presented.
Dadrasnia, Arezoo; Chuan Wei, Kelvin Swee; Shahsavari, Nasser; Azirun, Mohd Sofian; Ismail, Salmah
2015-12-03
The present study investigated the biosorption capacity of live and dead cells of a novel Bacillus strain for chromium. The optimum biosorption condition was evaluated in various analytical parameters, including initial concentration of chromium, pH, and contact time. The Langmuir isotherm model showed an enhanced fit to the equilibrium data. Live and dead biomasses followed the monolayer biosorption of the active surface sites. The maximum biosorption capacity was 20.35 mg/g at 25 °C, with pH 3 and contact time of 50 min. Strain 139SI was an excellent host to the hexavalent chromium. The biosorption kinetics of chromium in the dead and live cells of Bacillus salmalaya (B. salmalaya) 139SI followed the pseudo second-order mechanism. Scanning electron microscopy and fourier transform infrared indicated significant influence of the dead cells on the biosorption of chromium based on cell morphological changes. Approximately 92% and 70% desorption efficiencies were achieved using dead and live cells, respectively. These findings demonstrated the high sorption capacity of dead biomasses of B. salmalaya 139SI in the biosorption process. Thermodynamic evaluation (ΔG⁰, ΔH⁰, and ΔS⁰) indicated that the mechanism of Cr(VI) adsorption is endothermic; that is, chemisorption. Results indicated that chromium accumulation occurred in the cell wall of B. salmalaya 139SI rather than intracellular accumulation.
Biosorption Potential of Bacillus salmalaya Strain 139SI for Removal of Cr(VI) from Aqueous Solution
Dadrasnia, Arezoo; Chuan Wei, Kelvin Swee; Shahsavari, Nasser; Azirun, Mohd Sofian; Ismail, Salmah
2015-01-01
The present study investigated the biosorption capacity of live and dead cells of a novel Bacillus strain for chromium. The optimum biosorption condition was evaluated in various analytical parameters, including initial concentration of chromium, pH, and contact time. The Langmuir isotherm model showed an enhanced fit to the equilibrium data. Live and dead biomasses followed the monolayer biosorption of the active surface sites. The maximum biosorption capacity was 20.35 mg/g at 25 °C, with pH 3 and contact time of 50 min. Strain 139SI was an excellent host to the hexavalent chromium. The biosorption kinetics of chromium in the dead and live cells of Bacillus salmalaya (B. salmalaya) 139SI followed the pseudo second-order mechanism. Scanning electron microscopy and fourier transform infrared indicated significant influence of the dead cells on the biosorption of chromium based on cell morphological changes. Approximately 92% and 70% desorption efficiencies were achieved using dead and live cells, respectively. These findings demonstrated the high sorption capacity of dead biomasses of B. salmalaya 139SI in the biosorption process. Thermodynamic evaluation (ΔG0, ΔH0, and ΔS0) indicated that the mechanism of Cr(VI) adsorption is endothermic; that is, chemisorption. Results indicated that chromium accumulation occurred in the cell wall of B. salmalaya 139SI rather than intracellular accumulation. PMID:26633454
Predicting the impact of chromium on flow-accelerated corrosion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chexal, B.; Goyette, L.F.; Horowitz, J.S.
1996-12-01
Flow-Accelerated Corrosion (FAC) continues to cause problems in nuclear and fossil power plants. Many experiments have been performed to understand the mechanism of FAC. For approximately twenty years, it has ben widely recognized that the presence of small amounts of chromium will reduce the rate of FAC. This effect was quantified in the eighties by research performed in France, Germany and the Netherlands. The results of this research has been incorporated into the computer-based tools used by utility engineers to deal with this issue. For some time, plant data from Diablo Canyon has suggested that the existing correlations relating themore » concentration of chromium to the rate of FAC are conservative. Laboratory examinations have supported this observation. It appears that the existing correlations fail to capture a change in mechanism from a FAC process with linear kinetics to a general corrosion process with parabolic kinetics. This change in mechanism occurs at a chromium level of approximately 0.1%, within the allowable alloy range of typical carbon steel (ASTM/ASME A106 Grade B) used in power piping in most domestic plants. It has been difficult to obtain plant data that has sufficient chromium to develop a new correlation. Data from Diablo Canyon and the Dukovany Power Plant in the Czech Republic will be used to develop a new chromium correlation for predicting FAC rate.« less
Nirola, Ramkrishna; Megharaj, Mallavarapu; Subramanian, Avudainayagam; Thavamani, Palanisami; Ramadass, Kavitha; Aryal, Rupak; Saint, Christopher
2018-02-01
Chromium from tannery waste dump site causes significant environmental pollution affecting surrounding flora and fauna. The primary aims of this study were to survey vegetation, investigate the degree of soil pollution occurring near tannery waste dump site and make a systematic evaluation of soil contamination based on the chromium levels found in plants and earthworms from the impacted areas. This paper presents the pollution load of toxic heavy metals, and especially chromium, in 10 soil samples and 12 species of plants. Soil samples were analysed for heavy metals by using ICP-MS/ICP-OES method. Results indicated that Cr in soils exceeded soil quality guideline limits (SQGL). The total chromium present in the above ground parts of plants ranged from 1.7 mg kg -1 in Casuarina sp. to 1007 mg kg -1 in Sonchus asper. The Cr bioaccumulation in Eisenia fetida from tannery waste soil ranged from 5 to 194 mg kg -1 . The high enrichment factor of Cr in S. asper and bioaccumulation factor in earthworms indicate that there is a steady increase of toxic chromium risk in this area, which could be correlated with the past dumping activity. Emphasis needs to be put on control measures of pollution and remediation techniques in such areas to achieve an ecologically sustainable industrialisation.
Treatment of chromium contaminated soil using bioremediation
NASA Astrophysics Data System (ADS)
Purwanti, Ipung Fitri; Putri, Tesya Paramita; Kurniawan, Setyo Budi
2017-11-01
Chromium contamination in soil occurs due to the disposal of chromium industrial wastewater or sludge that excess the quality standard. Chromium concentration in soil is ranged between 1 to 300 mg/kg while the maximum health standard is 2.5 mg/kg. Bioremediation is one of technology that could be used for remediating heavy metal contamination in soil. Bacteria have an ability to remove heavy metal from soil. One bacteria species that capable to remove chromium from soil is Bacillus subtilis. The aim of this research was to know the chromium removal percentage in contaminated soil by Bacillus subtilis. Artificial chromium contaminated soil was used by mixing 425gram sand and chromium trichloride solution. Concentration of chromium added into the spiked soil were 50, 75, and 100 mg/L. During 14 days, pH, soil temperature and soil moisture were tested. Initial and final number of bacterial colony and chromium concentration analysed. The result showed that the highest percentage of chromium removal was 11% at a chromium concentration of 75 mg/L
Acquisition of Infrared Variable Angle Spectroscopic Ellipsometer (IR-VASE)
2016-04-22
External Advisory Board Meeting in Rio Piedras, PR. March 2016 Quiñonez B.*, Castilla D., Almodóvar J.; “ Polysaccharide -based polyelectrolyte...April 2016 Quiñonez B.*, Castilla D., Almodóvar J.; “ Polysaccharide -based polyelectrolyte multilayers: Physicochemical characterization and in...2016 Quiñonez B.*, Castilla D., Almodóvar J.; “ Polysaccharide -based polyelectrolyte multilayers: Physicochemical characterization and in vitro
Material optimization of multi-layered enhanced nanostructures
NASA Astrophysics Data System (ADS)
Strobbia, Pietro
The employment of surface enhanced Raman scattering (SERS)-based sensing in real-world scenarios will offer numerous advantages over current optical sensors. Examples of these advantages are the intrinsic and simultaneous detection of multiple analytes, among many others. To achieve such a goal, SERS substrates with throughput and reproducibility comparable to commonly used fluorescence sensors have to be developed. To this end, our lab has discovered a multi-layer geometry, based on alternating films of a metal and a dielectric, that amplifies the SERS signal (multi-layer enhancement). The advantage of these multi-layered structures is to amplify the SERS signal exploiting layer-to-layer interactions in the volume of the structures, rather than on its surface. This strategy permits an amplification of the signal without modifying the surface characteristics of a substrate, and therefore conserving its reproducibility. Multi-layered structures can therefore be used to amplify the sensitivity and throughput of potentially any previously developed SERS sensor. In this thesis, these multi-layered structures were optimized and applied to different SERS substrates. The role of the dielectric spacer layer in the multi-layer enhancement was elucidated by fabricating spacers with different characteristics and studying their effect on the overall enhancement. Thickness, surface coverage and physical properties of the spacer were studied. Additionally, the multi-layered structures were applied to commercial SERS substrates and to isolated SERS probes. Studies on the dependence of the multi-layer enhancement on the thickness of the spacer demonstrated that the enhancement increases as a function of surface coverage at sub-monolayer thicknesses, due to the increasing multi-layer nature of the substrates. For fully coalescent spacers the enhancement decreases as a function of thickness, due to the loss of interaction between proximal metallic films. The influence of the physical properties of the spacer on the multi-layer enhancement were also studied. The trends in Schottky barrier height, interfacial potential and dielectric constant were isolated by using different materials as spacers (i.e., TiO2, HfO2, Ag 2O and Al2O3). The results show that the bulk dielectric constant of the material can be used to predict the relative magnitude of the multi-layer enhancement, with low dielectric constant materials performing more efficiently as spacers. Optimal spacer layers were found to be ultrathin coalescent films (ideally a monolayer) of low dielectric constant materials. Finally, multi-layered structures were observed to be employable to amplify SERS in drastically different substrate geometries. The multi-layered structures were applied to disposable commercial SERS substrates (i.e., Klarite). This project involved the regeneration of the used substrates, by stripping and redepositing the gold coating layer, and their amplification, by using the multi-layer geometry. The latter was observed to amplify the sensitivity of the substrates. Additionally, the multi-layered structures were applied to probes dispersed in solution. Such probes were observed to yield stronger SERS signal when optically trapped and to reduce the background signal. The application of the multi-layered structures on trapped probes, not only further amplified the SERS signal, but also increased the maximum number of applicable layers for the structures.
Lim, Y. C.; Sanderson, S.; Mahoney, M.; ...
2016-04-06
Here, we fabricated a thick-sectioned multilayered steel structure by multipass friction stir welding on A516 Grade 70 steel. Tensile strength of the multilayered samples was comparable to that of the base metal. Failure was located in the base metal when a defect-free sample was tested. Charpy impact toughness was higher in the stir zone and heat affected zone than in the base metal. For higher microhardness values were found in the stir zone and heat affected zone than the base metal due to grain refinement and modification of the microstructures. As a result, improved mechanical properties compared to the basemore » metal were found in the weld zones of friction stir welded A516 Grade 70 steel.« less
Song, Jeong-Gyu; Ryu, Gyeong Hee; Lee, Su Jeong; Sim, Sangwan; Lee, Chang Wan; Choi, Taejin; Jung, Hanearl; Kim, Youngjun; Lee, Zonghoon; Myoung, Jae-Min; Dussarrat, Christian; Lansalot-Matras, Clement; Park, Jusang; Choi, Hyunyong; Kim, Hyungjun
2015-01-01
The effective synthesis of two-dimensional transition metal dichalcogenides alloy is essential for successful application in electronic and optical devices based on a tunable band gap. Here we show a synthesis process for Mo1−xWxS2 alloy using sulfurization of super-cycle atomic layer deposition Mo1−xWxOy. Various spectroscopic and microscopic results indicate that the synthesized Mo1−xWxS2 alloys have complete mixing of Mo and W atoms and tunable band gap by systematically controlled composition and layer number. Based on this, we synthesize a vertically composition-controlled (VCC) Mo1−xWxS2 multilayer using five continuous super-cycles with different cycle ratios for each super-cycle. Angle-resolved X-ray photoemission spectroscopy, Raman and ultraviolet–visible spectrophotometer results reveal that a VCC Mo1−xWxS2 multilayer has different vertical composition and broadband light absorption with strong interlayer coupling within a VCC Mo1−xWxS2 multilayer. Further, we demonstrate that a VCC Mo1−xWxS2 multilayer photodetector generates three to four times greater photocurrent than MoS2- and WS2-based devices, owing to the broadband light absorption. PMID:26204328
Half life of chromium in serum and urine in a former plasma cutter of stainless steel
Petersen, R.; Thomsen, J. F.; Jorgensen, N. K.; Mikkelsen, S.
2000-01-01
For 8 years chromium in serum and urine has been followed up in a former plasma cutter of stainless steel who was exposed to airborne dust and fumes containing chromium during this work. After the first examination for serum chromium the exposure ended. Serum chromium concentration has been measured seven times during the period and was initially very high and has subsequently dropped slowly. The half life was 40 months in serum. Urinary chromium has been measured five times. The half life was 129 months in urine. The study shows that exposure to airborne dust and fumes containing chromium may cause accumulation of chromium in the body, and that when exposure ends, elimination of chromium is very slow. Previous studies suggest that chromium mainly accumulates in the lungs. Keywords: chromium half life; plasma cutting; stainless steel PMID:10711283
Sputtered silver films to improve chromium carbide based solid lubricant coatings for use to 900 C
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Sliney, Harold E.; Deadmore, Daniel L.
1988-01-01
Thin silver films, 250 to 3500 A thick, were sputtered onto PS200, a plasma sprayed, chromium carbide based solid lubricant coating, to reduce run-in wear and improve tribological properties. The coating contains bonded chromium carbide as the wear resistant base stock with silver and barium fluoride/calcium fluoride eutectic added as low and high temperature lubricants, respectively. Potential applications for the PS200 coating are cylinder wall/piston ring lubrication for Stirling engines and foil bearing journal lubrication. In this preliminary program, the silver film overlay thickness was optimized based on tests using a pin-on-disk tribometer. The friction and wear studies were performed in a helium atmosphere at temperatures from 25 to 760 C with a sliding velocity of 2.7 m/s under a 4.9 N load. Films between 1000 and 1500 A provide the best lubrication of the counterface material. The films enrich the sliding surface with lubricant and reduce the initial abrasiveness of the as ground, plasma-sprayed coating surface, thus reducing wear.
Sputtered silver films to improve chromium carbide based solid lubricant coatings for use to 900 C
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Sliney, Harold E.; Deadmore, Daniel L.
1988-01-01
Thin silver films, 250 to 3500 A thick, were sputtered onto PS200, a plasma sprayed, chromium carbide based solid lubricant coating, to reduce run-in wear and improve tribological properties. The coating contains bonded chromium carbide as the wear resistant base stock with silver and barium fluoride/calcium fluoride eutectic added as low and high temperature lubricants respectively. Potential applications for the PS200 coating are cylinder wall/piston ring lubrication for Stirling engines and foil bearing journal lubrication. In this preliminary program, the silver film overlay thickness was optimized based on tests using a pin-on-disk tribometer. The friction and wear studies were performed in a helium atmosphere at temperatures from 25 to 760 C with a sliding velocity of 2.7 m/s under a 4.9 N load. Films between 1000 and 1500 A provide the best lubrication of the counterface material. The films enrich the sliding surface with lubricant and reduce the initial abrasiveness of the as ground, plasma-sprayed coating surface, thus reducing wear.
2010-06-01
Chromium picolinate monohydrate is the commercially available form of chromium picolinate. Chromium picolinate is one of a number of compounds that contain chromium in the trivalent state (Cr III), which is the predominant form of chromium in nature. Humans ingest Cr III in food and dietary supplements. The major uses of Cr III in the chemical and manufacturing industries include production of chromium pigments and leather tanning. Chromium picolinate was nominated by the National Cancer Institute and a private individual for testing based on the potential for widespread consumer exposure from use as a dietary supplement. Male and female F344/N rats and B6C3F1 mice were exposed to chromium picolinate monohydrate (95% to 96% pure) in feed for 3 months or 2 years. Genetic toxicology studies with chromium picolinate monohydrate were conducted in Salmonella typhimurium and mouse peripheral blood erythrocytes. Genetic toxicology studies with chromium picolinate were conducted in S. typhimurium and rat bone marrow cells. 3-MONTH STUDY IN RATS: Groups of 10 male and 10 female rats were fed diets containing 0, 80, 240, 2,000, 10,000, or 50,000 ppm chromium picolinate monohydrate (equivalent to average daily doses of approximately 7, 20, 160, 800, and 4,240 mg chromium picolinate monohydrate/kg body weight to males and 6, 20, 160, 780, and 4,250 mg/kg to females) for 14 weeks. All rats survived to the end of the study. Mean body weights and feed consumption of all exposed groups of males and females were similar to those of the control groups throughout the study. No exposure-related lesions occurred in males or females. 3-MONTH STUDY IN MICE: Groups of 10 male and 10 female mice were fed diets containing 0, 80, 240, 2,000, 10,000, or 50,000 ppm chromium picolinate monohydrate (equivalent to average daily doses of approximately 17, 50, 450, 2,300, and 11,900 mg chromium picolinate monohydrate/kg body weight to males and 14, 40, 370, 1,775, and 9,140 mg/kg to females) for 14 weeks. All mice survived to the end of the study. Mean body weights and feed consumption of all exposed groups were similar to those of the control groups throughout the study. No exposure-related lesions occurred in male or female mice. 2-YEAR STUDY IN RATS: Groups of 50 male and 50 female rats were fed diets containing 0, 2,000, 10,000, or 50,000 ppm chromium picolinate monohydrate (equivalent to average daily doses of approximately 90, 460, and 2,400 mg/kg to males and 100, 510, and 2,630 mg/kg to females) for 105 weeks. Survival of all exposed groups of males and females was similar to that of the control groups. Mean body weights and feed consumption of exposed groups of males and females were generally similar to those of the controls throughout the study. The incidence of preputial gland adenoma was significantly increased in males exposed to 10,000 ppm and exceeded the historical control ranges. 2-YEAR STUDY IN MICE: Groups of 50 male and 50 female mice were fed diets containing 0, 2,000, 10,000, or 50,000 ppm chromium picolinate monohydrate (equivalent to average daily doses of approximately 250, 1,200, and 6,565 mg/kg to males and 240, 1,200, and 6,100 mg/kg to females) for 105 weeks. Survival of all exposed groups of males and females was similar to that of the control groups. Mean body weights of exposed groups of males were generally similar to those of the controls throughout the study; mean body weights of 50,000 ppm females was 10% less than the control group at 1 year. Feed consumption by exposed groups of males and females was similar to that by the controls throughout the study. No neoplasms or nonneoplastic lesions were attributed to exposure to chromium picolinate monohydrate. In the standard screening assays conducted by the NTP, chromium picolinate monohydrate showed no clear evidence of genotoxicity. It was not mutagenic in Salmonella typhimurium strains TA98 or TA100 or Escherichia coli strain WP2 uvrA/pKM101 when tested with or without exogenous metabolic activation (S9). No increase in the frequency of micronucleated normochromatic erythrocytes was observed in male B6C3F1 mice administered chromium picolinate monohydrate in feed for 3 months. A small increase in micronucleated normochromatic erythrocytes was seen in female mice at the highest exposure concentration tested, and the results in female mice were considered equivocal. Additional genotoxicity testing was conducted with chromium picolinate (not the monohydrate form of the compound), and results were also negative. No induction of gene mutations was observed in two independent studies conducted in several strains of S. typhimurium with and without S9. No induction of micronucleated polychromatic erythrocytes was observed in bone marrow of male F344/N rats treated with chromium picolinate by oral gavage three times at 24-hour intervals. Under the conditions of these 2-year feed studies there was equivocal evidence of carcinogenic activity* of chromium picolinate monohydrate in male F344/N rats based on an increase in the incidence of preputial gland adenoma. There was no evidence of carcinogenic activity of chromium picolinate monohydrate in female F344/N rats or in male or female B6C3F1 mice.
29 CFR 1926.1126 - Chromium (VI).
Code of Federal Regulations, 2014 CFR
2014-07-01
... activity involving chromium cannot release dusts, fumes, or mists of chromium (VI) in concentrations at or... 29 Labor 8 2014-07-01 2014-07-01 false Chromium (VI). 1926.1126 Section 1926.1126 Labor... Chromium (VI). (a) Scope. (1) This standard applies to occupational exposures to chromium (VI) in all forms...
29 CFR 1926.1126 - Chromium (VI).
Code of Federal Regulations, 2012 CFR
2012-07-01
... activity involving chromium cannot release dusts, fumes, or mists of chromium (VI) in concentrations at or... 29 Labor 8 2012-07-01 2012-07-01 false Chromium (VI). 1926.1126 Section 1926.1126 Labor... Chromium (VI). (a) Scope. (1) This standard applies to occupational exposures to chromium (VI) in all forms...
29 CFR 1926.1126 - Chromium (VI).
Code of Federal Regulations, 2011 CFR
2011-07-01
... activity involving chromium cannot release dusts, fumes, or mists of chromium (VI) in concentrations at or... 29 Labor 8 2011-07-01 2011-07-01 false Chromium (VI). 1926.1126 Section 1926.1126 Labor... Chromium (VI). (a) Scope. (1) This standard applies to occupational exposures to chromium (VI) in all forms...
29 CFR 1926.1126 - Chromium (VI).
Code of Federal Regulations, 2013 CFR
2013-07-01
... activity involving chromium cannot release dusts, fumes, or mists of chromium (VI) in concentrations at or... 29 Labor 8 2013-07-01 2013-07-01 false Chromium (VI). 1926.1126 Section 1926.1126 Labor... Chromium (VI). (a) Scope. (1) This standard applies to occupational exposures to chromium (VI) in all forms...
Reduction of hexavalent chromium collected on PVC filters.
Shin, Y C; Paik, N W
2000-01-01
Chromium exists at various valences, including elemental, trivalent, and hexavalent chromium, and undergoes reduction-oxidation reactions in the environment. Since hexavalent chromium is known as a human carcinogen, it is most important to evaluate the oxidation-reduction characteristics of the hexavalent chromium species. Although hexavalent chromium can be reduced to trivalent state, the detailed information on this in workplace environments is limited. The purpose of this study was to investigate hexavalent chromium reduction in time in various conditions. A pilot chrome plating operation was prepared and operated in a laboratory for this study. There was evidence that the hexavalent chromium was reduced by time after mist generation. The percentage ratio (with 95% confidence intervals in parentheses) of hexavalent chromium to total chromium was almost 100% (99.1 approximately 102.3) immediately after mist generation, and was reduced to 87.4% (84.8 approximately 89.9) at 1 hour and 81.0% (78.3 approximately 83.5) at 2 hours, respectively. Another test indicated that hexavalent chromium collected on PVC filters was also reduced by time after sampling. Hexavalent chromium was reduced to 90.8% (88.2 approximately 93.3) at 2 hours after sampling. It also was found that hexavalent chromium was reduced during storage in air. It is recommended that air samples of hexavalent chromium be protected against reduction during storage.
Wilts, Bodo D.; Leertouwer, Hein L.; Stavenga, Doekele G.
2008-01-01
We studied the structural as well as spatial and spectral reflectance characteristics of the wing scales of lycaenid butterfly species, where the scale bodies consist of perforated multilayers. The extent of the spatial scattering profiles was measured with a newly built scatterometer. The width of the reflectance spectra, measured with a microspectrophotometer, decreased with the degree of perforation, in agreement with the calculations based on multilayer theory. PMID:18782721
Ecotoxicological risks associated with tannery effluent wastewater.
Shakir, Lubna; Ejaz, Sohail; Ashraf, Muhammad; Qureshi, Naureen Aziz; Anjum, Aftab Ahmad; Iltaf, Imran; Javeed, Aqeel
2012-09-01
The problem of water pollution acquires greater relevance in the context of a developing agrarian economy like Pakistan. Even though, the leather industry is a leading economic sector in Pakistan, there is an increasing environmental concern regarding tanneries because they produce large amounts of potentially toxic wastewater containing both trivalent and hexavalent chromium, which are equally hazardous for human population, aquaculture and agricultural activities in the area. Therefore, we defined the scope of the present study as to employ different bioassays to determine the eco-toxic potential of tannery effluent wastewater (TW) and its chromium based components, i.e., potassium dichromate (K(2)Cr(2)O(7)) and chromium sulfate Cr(2)(SO(4))(3). Particle-induced X-ray emission (PIXE) analysis of TW was carried out to determine the concentration of chromium in TW and then equal concentrations of hexavalent (K(2)Cr(2)O(7)) and trivalent chromium Cr(2)(SO(4))(3) were obtained for this study. Cytotoxicity assay, artemia bioassay and phytotoxicity assay was utilized to investigate the eco-toxicological potential of different concentrations of TW, K(2)Cr(2)O(7) and Cr(2)(SO(4))(3). All the dilutions of TW, K(2)Cr(2)O(7) and Cr(2)(SO(4))(3) presented concentration dependent cytotoxic effects in these assays. The data clearly represents that among all three tested materials, different dilutions of K(2)Cr(2)O(7) caused significantly more damage (P<0.001) to vero cell, brine shrimp and germination of maize seeds. Interestingly, the overall toxicity effects of TW treated groups were subsequent to K(2)Cr(2)O(7) treated group. Based on biological evidences presented in this article, it is concluded that hexavalent chromium (K(2)Cr(2)O(7)) and TW has got significant eco-damaging potential clearly elaborating that environmental burden in district Kasur is numerous and high levels of chromium is posing a considerable risk to the human population, aquaculture and agricultural industry that can obliterate ecosystem surrounding the tanneries. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Reduction of Cr(VI) and survival in Cr-contaminated sites by Caulobacter crescentus
NASA Astrophysics Data System (ADS)
Hu, P.; Chakraborty, R.; Brodie, E. L.; Andersen, G. L.; Hazen, T. C.
2008-12-01
The Caulobacter spp. is known to be able to live in low-nutrient environments, a characteristic of most heavy metal-contaminated sites. Recent studies have shown that Caulobacter crescentus can grow in chemically defined medium containing up to 1 mM uranium. Whole-genome transcriptional analysis and electron microscopic imaging of heavy metal stresses in Caulobacter crescentus also provided insight and evidence that the bacterium used an array of defensive mechanisms to deal with heavy metal stresses. In addition to up-regulated enzymes protecting against oxidative stress, DNA repair and down-regulated potential chromium transport, one of the major gene groups respond to chromium stress is "electron transport process and cytochrome oxidases", including cytochrome c oxidases, raising the possibility that the cells can employ the cytochromes to reduce chromium. Analysis of the microbial community at the chromium contaminated DOE site at Hanford, WA revealed the presence of Caulobacter spp. As an oligotroph, Caulobacter can play a significant role in chromium reduction in the environment where the nutrients are limited. This result was confirmed by both 16S rDNA based microarray (Phylochip) as well as by MDA-based clone library data. Based on these results we further investigated the capability of this organism to reduce Cr(VI) using the well known model strain Caulobacter crescentus CB15N. Preliminary cell suspension experiments were set up with glucose as the electron donor and Cr(VI) as the electron acceptor in phosphate based M2 salts buffer. After 22 hours almost 27% of Cr(VI) was reduced in the incubations containing active cells relative to the controls containing heat killed cells. Also, in another set of controls with no electron acceptor added, cells showed no increase in cell density during that time demonstrating that the reduction of Cr(VI) by cells of Caulobacter was due to biological activity. Future experiments will investigate the components responsible and the mechanism of Cr(VI) reduction by Caulobacetr crescentus.
NASA Astrophysics Data System (ADS)
Whittenberger, J. D.
1995-12-01
The use of the solid- to- liquid phase transformation of LiF to store thermal energy is under consideration for a space- based solar dynamic system. Although advantageous in terms of its energy density, the melting point of this salt (1121K) is beyond the commonly accepted upper- use temperature of 1100 K for chromium- bearing superalloys in vacuum. However, one commercially available nickel- base superalloy (Hastelloy B- 2) is chromium free; unfortunately, because of its high molybdenum content, this alloy can form phases that cause high- temperature embrittlement. To test the suitability of Hastelloy B- 2, it has been exposed to molten LiF, its vapor and vacuum at 1173 K for 2500, 5000, and 10 h. For control, the chromium- containing cobalt- base Haynes alloy 188 and nickel- base Haynes alloy 230 were also exposed to LiF and vacuum at 1173 K for 5000 h. Neither LiF nor vacuum exposures had any significant effect on Hastelloy B- 2 in terms of microstructural surface damage or weight change. Measurement of the post exposure tensile properties of Hastelloy B- 2, nevertheless, revealed low tensile ductility at 1050 K. Such embrittlement and low strength at elevated temperatures appear to preclude the use of Hastelloy B- 2 as a containment material for LiF. Little evidence of significant attack by LiF was seen in either of the chromium- containing superalloys; however, considerable weight loss and near- surface microstructural damage occurred in both alloys exposed to vacuum. Although measurement of the post exposure room-temperature tensile properties of Haynes alloys 188 and 230 revealed no significant loss of strength or ductility, the severe degree of microstructural damage found in unshielded alloys exposed to vacuum indicates that chromium-bearing superalloys might also be unsuitable for prolonged containment of LiF in space above 1100 K. Keywords
Yano, Kazuyoshi; Iwasaki, Akira
2016-01-01
A functional modification of the surface of a 96-well microplate coupled with a thin layer deposition technique is demonstrated for enhanced fluorescence-based sandwich immunoassays. The plasma polymerization technique enabling the deposition of organic thin films was employed for the modification of the well surface of a microplate. A silver layer and a plasma-polymerized film were consecutively deposited on the microplate as a metal mirror and the optical interference layer, respectively. When Cy3-labeled antibody was applied to the wells of the resulting multilayered microplate without any immobilization step, greatly enhanced fluorescence was observed compared with that obtained with the unmodified one. The same effect could be also exhibited for an immunoassay targeting antigen directly adsorbed on the multilayered microplate. Furthermore, a sandwich immunoassay for the detection of interleukin 2 (IL-2) was performed with the multilayered microplates, resulting in specific and 88-fold–enhanced fluorescence detection. PMID:28029144
NASA Astrophysics Data System (ADS)
Lianhua, Yin
The heat shield of aircraft is made of the major thrusts structure with multilayer thermal insulation part. For protecting against thermo-radiation from larger thrusting force engine,the heat shield is installed around this engine nearby.The multilayer thermal insulation part with multilayer radiation/reflection structure is made of reflection layer and interval layer.At vacuum condition,these materials is higher heat insulation capability than other material,is applied for lots of pats on aircraft extensively.But because of these material is made of metal and nonmetal,it is impossible to receive it's mechanical properties of materials from mechanical tests.These paper describes a new measure of mechanical properties of materials in the heat shield based on model analysis test.At the requirement for the first order lateral frequency,these measure provide for the FEM analysis foundation on the optimization structure of the heat shield.
Method for fabricating beryllium-based multilayer structures
Skulina, Kenneth M.; Bionta, Richard M.; Makowiecki, Daniel M.; Alford, Craig S.
2003-02-18
Beryllium-based multilayer structures and a process for fabricating beryllium-based multilayer mirrors, useful in the wavelength region greater than the beryllium K-edge (111 .ANG. or 11.1 nm). The process includes alternating sputter deposition of beryllium and a metal, typically from the fifth row of the periodic table, such as niobium (Nb), molybdenum (Mo), ruthenium (Ru), and rhodium (Rh). The process includes not only the method of sputtering the materials, but the industrial hygiene controls for safe handling of beryllium. The mirrors made in accordance with the process may be utilized in soft x-ray and extreme-ultraviolet projection lithography, which requires mirrors of high reflectivity (>60%) for x-rays in the range of 60-140 .ANG. (60-14.0 nm).
Recent progress in high-mobility thin-film transistors based on multilayer 2D materials
NASA Astrophysics Data System (ADS)
Hong, Young Ki; Liu, Na; Yin, Demin; Hong, Seongin; Kim, Dong Hak; Kim, Sunkook; Choi, Woong; Yoon, Youngki
2017-04-01
Two-dimensional (2D) layered semiconductors are emerging as promising candidates for next-generation thin-film electronics because of their high mobility, relatively large bandgap, low-power switching, and the availability of large-area growth methods. Thin-film transistors (TFTs) based on multilayer transition metal dichalcogenides or black phosphorus offer unique opportunities for next-generation electronic and optoelectronic devices. Here, we review recent progress in high-mobility transistors based on multilayer 2D semiconductors. We describe the theoretical background on characterizing methods of TFT performance and material properties, followed by their applications in flexible, transparent, and optoelectronic devices. Finally, we highlight some of the methods used in metal-semiconductor contacts, hybrid structures, heterostructures, and chemical doping to improve device performance.
Li, Jinhua; Yao, Chenlan; Liu, Yanbiao; Li, Di; Zhou, Baoxue; Cai, Weimin
2012-06-30
In this paper, the effects of processing parameters and constituents of treating-agent on the presence of hazardous hexavalent chromium on trivalent chromium conversion coating were studied. Results showed that shorter immersion time, lower bath pH value as well as lower working and baking temperatures retarded the presence of hexavalent chromium. In addition, the concentration of hexavalent chromium on conversion coatings prepared by the oxalic acid treating-agent was far greater than those on conversion coatings prepared by formic acid and acetic acid treating-agents. Results also indicated that the concentration of hexavalent chromium on conversion coatings was enhanced due to the addition of bivalent cobalt and nitrate anion in treating-agent, especially for oxalic acid conversion coating. However, the addition of hydroxyl compound d-gluconic acid in treating-agent could reduce the concentration of hexavalent chromium effectively. Moreover, a possible formation mechanism of hexavalent chromium on trivalent conversion coating was proposed. Findings of this study provide a better understanding of the formation of hexavalent chromium on trivalent chromium conversion coating and can facilitate the management of trivalent chromium treating-agents and trivalent chromium fasteners. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, P. P.; Xu, C.; Fu, E. G.; Du, J. L.; Gao, Y.; Wang, X. J.; Qiu, Y. H.
2018-05-01
Sputtering-deposited Cu/V multilayer films with the individual layer thickness varying from 2.5 nm to 100 nm were irradiated by 1 MeV helium (He) ion at the fluence of 6 ×1016 ions ·cm-2 at room temperature. The resistivity of Cu/V multilayer films after ion irradiation was evaluated as a function of individual layer thickness at 300 K and compared with their resistivity before ion irradiation. The results show that the resistivity change before and after ion irradiation is largely determined by the interface structure, grain boundary and radiation induced defects. A model amended based on the model used in describing the resistivity of as-deposited Cu/V multilayer films was proposed to describe the resistivity of ion irradiated Cu/V multilayer films by considering the point defects induced by ion irradiation, the effect of interface absorption on defects and the effect of interface microstructure in the multilayer films.
Extended asymmetric-cut multilayer X-ray gratings.
Prasciolu, Mauro; Haase, Anton; Scholze, Frank; Chapman, Henry N; Bajt, Saša
2015-06-15
The fabrication and characterization of a large-area high-dispersion blazed grating for soft X-rays based on an asymmetric-cut multilayer structure is reported. An asymmetric-cut multilayer structure acts as a perfect blazed grating of high efficiency that exhibits a single diffracted order, as described by dynamical diffraction throughout the depth of the layered structure. The maximum number of grating periods created by cutting a multilayer deposited on a flat substrate is equal to the number of layers deposited, which limits the size of the grating. The size limitation was overcome by depositing the multilayer onto a substrate which itself is a coarse blazed grating and then polish it flat to reveal the uniformly spaced layers of the multilayer. The number of deposited layers required is such that the multilayer thickness exceeds the step height of the substrate structure. The method is demonstrated by fabricating a 27,060 line pairs per mm blazed grating (36.95 nm period) that is repeated every 3,200 periods by the 120-μm period substrate structure. This preparation technique also relaxes the requirements on stress control and interface roughness of the multilayer film. The dispersion and efficiency of the grating is demonstrated for soft X-rays of 13.2 nm wavelength.
1989-06-01
boilers and incinerators). Generally the chromium emissions from the processes are particu- late in nature. The trivalent chromium is converted to...runs at five different boiler and incinerator sources, typically less than 3 percent of the trivalent chromium converts to hexavalent chromium ...Emissions from this process contain 20 to 100 times more trivalent chromium than hexavalent chromium in the sample. In separating the hexavalent chromium
Sodium sulfur container with chromium/chromium oxide coating
Ludwig, Frank A.; Higley, Lin R.
1981-01-01
A coating of chromium/chromium oxide is disclosed for coating the surfaces of electrically conducting components of a sodium sulfur battery. This chromium/chromium oxide coating is placed on the surfaces of the electrically conducting components of the battery which are in contact with molten polysulfide and sulfur reactants during battery operation.
Fretting of Nickel-Chromium-Aluminum Alloys at Temperatures to 816 C
NASA Technical Reports Server (NTRS)
Bill, R. C.
1974-01-01
A series of four nickel-based alloys containing 10 percent and 20 percent chromium in combination with 2 percent and 5 percent aluminum were fretted in dry air at temperatures to 816 C. At all temperatures, the alloys showed far less fretting wear than did high-purity nickel. This was attributed to the formation of protective oxide films on the alloys, the result of the selective oxidation of the alloy constituents. Increasing the aluminum concentration reduced fretting wear at all temperatures. Increasing the chromium concentration from 10 percent to 20 percent resulted in decreased fretting wear at 23 and 540 C, but increased fretting wear at 650 and 816 C.
1986-08-28
beneath the Cr 0 layer. ’ 2~ 2 3 Nickel and cobalt based alloys were also tested with additions of Si N. . IN 3 4 particles and were found to behave in a...additions of Si ION, a high temperature compound found in the P*~~ 4 f°.-0 Si"Ali-O-N system, to cobalt - chromium alloys4 The particular SiAlON used in...a chromium spinel appeared as a product aLong with CrO0 Fe0. and Fe0 . At higher chromium concentrations Fe 0 was eliminat das a- detectable product
Superconducting nanowire single-photon detectors with non-periodic dielectric multilayers.
Yamashita, Taro; Waki, Kentaro; Miki, Shigehito; Kirkwood, Robert A; Hadfield, Robert H; Terai, Hirotaka
2016-10-24
We present superconducting nanowire single-photon detectors (SSPDs) on non-periodic dielectric multilayers, which enable us to design a variety of wavelength dependences of optical absorptance by optimizing the dielectric multilayer. By adopting a robust simulation to optimize the dielectric multilayer, we designed three types of SSPDs with target wavelengths of 500 nm, 800 nm, and telecom range respectively. We fabricated SSPDs based on the optimized designs for 500 and 800 nm, and evaluated the system detection efficiency at various wavelengths. The results obtained confirm that the designed SSPDs with non-periodic dielectric multilayers worked well. This versatile device structure can be effective for multidisciplinary applications in fields such as the life sciences and remote sensing that require high efficiency over a precise spectral range and strong signal rejection at other wavelengths.
Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits.
Shang, Kuanping; Pathak, Shibnath; Guan, Binbin; Liu, Guangyao; Yoo, S J B
2015-08-10
We design, fabricate, and demonstrate a silicon nitride (Si(3)N(4)) multilayer platform optimized for low-loss and compact multilayer photonic integrated circuits. The designed platform, with 200 nm thick waveguide core and 700 nm interlayer gap, is compatible for active thermal tuning and applicable to realizing compact photonic devices such as arrayed waveguide gratings (AWGs). We achieve ultra-low loss vertical couplers with 0.01 dB coupling loss, multilayer crossing loss of 0.167 dB at 90° crossing angle, 50 μm bending radius, 100 × 2 μm(2) footprint, lateral misalignment tolerance up to 400 nm, and less than -52 dB interlayer crosstalk at 1550 nm wavelength. Based on the designed platform, we demonstrate a 27 × 32 × 2 multilayer star coupler.
Design guidelines for advanced LSI microcircuit packaging using thick film multilayer technology
NASA Technical Reports Server (NTRS)
Peckinpaugh, C. J.
1974-01-01
Ceramic multilayer circuitry results from the sequential build-up of two or more layers of pre-determined conductive interconnections separated by dielectric layers and fired at an elevated temperature to form a solidly fused structure. The resultant ceramic interconnect matrix is used as a base to mount active and passive devices and provide the necessary electrical interconnection to accomplish the desired electrical circuit. Many methods are known for developing multilevel conductor mechanisms such as multilayer printed circuits, welded wire matrices, flexible copper tape conductors, and thin and thick-film ceramic multilayers. Each method can be considered as a specialized field with each possessing its own particular set of benefits and problems. This design guide restricts itself to the art of design, fabrication and assembly of ceramic multilayer circuitry and the reliability of the end product.
NASA Technical Reports Server (NTRS)
Spencer, Dwight C.
1996-01-01
Hoover et. al. built and tested two imaging Schwarzschild multilayer microscopes. These instruments were constructed as prototypes for the "Water Window Imaging X-Ray Microscope," which is a doubly reflecting, multilayer x-ray microscope configured to operate within the "water window." The "water window" is the narrow region of the x-ray spectrum between the K absorption edges of oxygen (lamda = 23.3 Angstroms) and of carbon (lamda = 43.62 Angstroms), where water is relatively highly transmissive and carbon is highly absorptive. This property of these materials, thus permits the use of high resolution multilayer x-ray microscopes for producing high contrast images of carbon-based structures within the aqueous physiological environments of living cells. We report the design, fabrication and testing of multilayer optics that operate in this regime.
Modeling of the self-Q-switching behavior of lasers based on chromium doped active material
NASA Astrophysics Data System (ADS)
Fromager, M.; Ameur, K. Aı̈t
2001-05-01
The aim of this paper is to study the influence of the direct coupling of the average lattice strains to the active ions on the behavior of a gain switching laser based on chromium doped active material. It is found that the resulting nonlinear time-dependent lensing effect combined with an internal aperture behaves as a saturable absorber. A resulting self-Q-switching effect is observed from the calculated output laser pulses. The results of our modeling are in agreement with experimental observations already reported in literature.
Novel application of polyelectrolyte multilayers as nanoscopic closures with hermetic sealing.
Marcott, Stephanie A; Ada, Sena; Gibson, Phillip; Camesano, Terri A; Nagarajan, R
2012-03-01
Closure systems for personnel protection applications, such as protective clothing or respirator face seals, should provide effective permeation barrier to toxic gases. Currently available mechanical closure systems based on the hook and loop types (example, Velcro) do not provide adequate barrier to gas permeation. To achieve hermetic sealing, we propose a nonmechanical, nanoscopic molecular closure system based on complementary polyelectrolyte multilayers, one with a polycation outermost layer and the other with a polyanion outermost layer. The closure surfaces were prepared by depositing polyelectrolyte multilayers under a variety of deposition conditions, on conformable polymer substrates (thin films of polyethylene teraphthalate, PET or polyimide, PI). The hermetic sealing property of the closures was evaluated by measuring the air flow resistance using the dynamic moisture permeation cell (DMPC) at different humidity conditions. The DMPC measurements show that the polyelectrolyte multilayer closures provide significantly large resistance to air flow, approximately 20-800 times larger than that possible with conventional hook and loop type closure systems, at all humidity levels (from 5 to 95% relative humidity). Hence, from the point of view of providing a hermetic seal against toxic gas permeation, the polyelectrolyte multilayer closures are viable candidates for further engineering development. However, the adhesive strength of the multilayer closures measured by atomic force microscopy suggests that the magnitude of adhesion is much smaller than what is possible with mechanical closures. Therefore, we envisage the development of a composite closure system combining the mechanical closure to provide strong adhesion and the multilayer closure to provide hermetic sealing. © 2012 American Chemical Society
The analytical biochemistry of chromium.
Katz, S A
1991-01-01
The essentiality and carcinogenicity of chromium depend on its chemical form. Oxidation state and solubility are particularly important in determining the biological effects of chromium compounds. For this reason, total chromium measurements are of little value in assessing its nutritional benefits or its toxicological hazards. Aqueous sodium carbonate-sodium hydroxide solutions have been successfully used for extracting hexavalent chromium from a variety of environmental and biological matrices while preserving its oxidation state. Typical recoveries are 90 to 105% in samples spiked with both trivalent and hexavalent chromium. Determination of hexavalent chromium after extraction with sodium carbonate-sodium hydroxide solution, coupled with the determination of total chromium after nitric acid-hydrogen peroxide digestion, has been applied to the evaluation of chromium speciation in airborne particulates, sludges, and biological tissues. PMID:1935842
Shahid, Muhammad; Shamshad, Saliha; Rafiq, Marina; Khalid, Sana; Bibi, Irshad; Niazi, Nabeel Khan; Dumat, Camille; Rashid, Muhammad Imtiaz
2017-07-01
Chromium (Cr) is a potentially toxic heavy metal which does not have any essential metabolic function in plants. Various past and recent studies highlight the biogeochemistry of Cr in the soil-plant system. This review traces a plausible link among Cr speciation, bioavailability, phytouptake, phytotoxicity and detoxification based on available data, especially published from 2010 to 2016. Chromium occurs in different chemical forms (primarily as chromite (Cr(III)) and chromate (Cr(VI)) in soil which vary markedly in term of their biogeochemical behavior. Chromium behavior in soil, its soil-plant transfer and accumulation in different plant parts vary with its chemical form, plant type and soil physico-chemical properties. Soil microbial community plays a key role in governing Cr speciation and behavior in soil. Chromium does not have any specific transporter for its uptake by plants and it primarily enters the plants through specific and non-specific channels of essential ions. Chromium accumulates predominantly in plant root tissues with very limited translocation to shoots. Inside plants, Cr provokes numerous deleterious effects to several physiological, morphological, and biochemical processes. Chromium induces phytotoxicity by interfering plant growth, nutrient uptake and photosynthesis, inducing enhanced generation of reactive oxygen species, causing lipid peroxidation and altering the antioxidant activities. Plants tolerate Cr toxicity via various defense mechanisms such as complexation by organic ligands, compartmentation into the vacuole, and scavenging ROS via antioxidative enzymes. Consumption of Cr-contaminated-food can cause human health risks by inducing severe clinical conditions. Therefore, there is a dire need to monitor biogeochemical behavior of Cr in soil-plant system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lees, P S
1991-01-01
Dozens of epidemiologic studies have been conducted since the late 1940s in an attempt to elucidate the relationship between exposure to chromium compounds and increased rates of certain cancers observed in several industries. The relationship between employment in industries producing chromium compounds from chromite ore and lung cancer has been well established in numerous studies. The relationship between exposure to certain chromium-based pigments and chromic acid and lung cancer, although not as strong, is fairly well accepted. The data concerning emissions from stainless-steel manufacturing and disease are contradictory. Although individual studies have indicated excesses of gastrointestinal and occasionally other cancers in these industries, results are not consistent and not universally accepted. There is general agreement that chromite ore does not have an associated risk of cancer. Although the chromium compound (or compounds) responsible for disease have yet to be identified, there is general agreement that hexavalent species are responsible for these diseases and that the trivalent species are not. Hypotheses about the carcinogenicity of specific chromium compounds generally relate to their solubility in body fluids. These hypotheses, however, have generally been produced as a result of toxicologic, not epidemiologic, investigation. Well-designed epidemiologic studies incorporating detailed assessments of worker exposures have the potential to help elucidate causality, identify specific carcinogenic compounds, and quantify risk in humans, eliminating the need to extrapolate from animal data. Although the need for exposure data crucial to this effort was identified in the earliest epidemiologic studies of chromium, such studies have not been conducted. As a result, little more is known today about the relationship between this chemical and disease in humans than was known 40 years ago. PMID:1935857
Chromium speciation in environmental samples using a solid phase spectrophotometric method
NASA Astrophysics Data System (ADS)
Amin, Alaa S.; Kassem, Mohammed A.
2012-10-01
A solid phase extraction technique is proposed for preconcentration and speciation of chromium in natural waters using spectrophotometric analysis. The procedure is based on sorption of chromium(III) as 4-(2-benzothiazolylazo)2,2'-biphenyldiol complex on dextran-type anion-exchange gel (Sephadex DEAE A-25). After reduction of Cr(VI) by 0.5 ml of 96% concentrated H2SO4 and ethanol, the system was applied to the total chromium. The concentration of Cr(VI) was calculated as the difference between the total Cr and the Cr(III) content. The influences of some analytical parameters such as: pH of the aqueous solution, amounts of 4-(2-benzothiazolylazo)2,2'-biphenyldiol (BTABD), and sample volumes were investigated. The absorbance of the gel, at 628 and 750 nm, packed in a 1.0 mm cell, is measured directly. The molar absorptivities were found to be 2.11 × 107 and 3.90 × 107 L mol-1 cm-1 for 500 and 1000 ml, respectively. Calibration is linear over the range 0.05-1.45 μg L-1 with RSD of <1.85% (n = 8.0). Using 35 mg exchanger, the detection and quantification limits were 13 and 44 ng L-1 for 500 ml sample, whereas for 1000 ml sample were 8.0 and 27 ng L-1, respectively. Increasing the sample volume can enhance the sensitivity. No considerable interferences have been observed from other investigated anions and cations on the chromium speciation. The proposed method was applied to the speciation of chromium in natural waters and total chromium preconcentration in microwave digested tobacco, coffee, tea, and soil samples. The results were simultaneously compared with those obtained using an ET AAS method, whereby the validity of the method has been tested.
A study on (K, Na) NbO3 based multilayer piezoelectric ceramics micro speaker
NASA Astrophysics Data System (ADS)
Gao, Renlong; Chu, Xiangcheng; Huan, Yu; Sun, Yiming; Liu, Jiayi; Wang, Xiaohui; Li, Longtu
2014-10-01
A flat panel micro speaker was fabricated from (K, Na) NbO3 (KNN)-based multilayer piezoelectric ceramics by a tape casting and cofiring process using Ag-Pd alloys as an inner electrode. The interface between ceramic and electrode was investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). The acoustic response was characterized by a standard audio test system. We found that the micro speaker with dimensions of 23 × 27 × 0.6 mm3, using three layers of 30 μm thickness KNN-based ceramic, has a high average sound pressure level (SPL) of 87 dB, between 100 Hz-20 kHz under five voltage. This result was even better than that of lead zirconate titanate (PZT)-based ceramics under the same conditions. The experimental results show that the KNN-based multilayer ceramics could be used as lead free piezoelectric micro speakers.
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Xia, Changliang; Yan, Yan; Geng, Qiang; Shi, Tingna
2017-08-01
Due to the complicated rotor structure and nonlinear saturation of rotor bridges, it is difficult to build a fast and accurate analytical field calculation model for multilayer interior permanent magnet (IPM) machines. In this paper, a hybrid analytical model suitable for the open-circuit field calculation of multilayer IPM machines is proposed by coupling the magnetic equivalent circuit (MEC) method and the subdomain technique. In the proposed analytical model, the rotor magnetic field is calculated by the MEC method based on the Kirchhoff's law, while the field in the stator slot, slot opening and air-gap is calculated by subdomain technique based on the Maxwell's equation. To solve the whole field distribution of the multilayer IPM machines, the coupled boundary conditions on the rotor surface are deduced for the coupling of the rotor MEC and the analytical field distribution of the stator slot, slot opening and air-gap. The hybrid analytical model can be used to calculate the open-circuit air-gap field distribution, back electromotive force (EMF) and cogging torque of multilayer IPM machines. Compared with finite element analysis (FEA), it has the advantages of faster modeling, less computation source occupying and shorter time consuming, and meanwhile achieves the approximate accuracy. The analytical model is helpful and applicable for the open-circuit field calculation of multilayer IPM machines with any size and pole/slot number combination.
NASA Astrophysics Data System (ADS)
Pradhan, P. C.; Bhartiya, S.; Singh, A.; Majhi, A.; Gome, A.; Dhawan, R.; Nayak, M.; Sahoo, P. K.; Rai, S. K.; Reddy, V. R.
2017-08-01
We present fabrication and structural analysis of two different multilayer grating structures. W/B4C based lamellar multilayer grating (LMG) was studied for high resolution monochomator application near soft x-ray region ( 1.5 keV). Whereas NbC/Si based multilayer phase-shift reflector (MPR) was studied for high reflection at normal incidence near Si L-edge ( 99 eV) and simultaneously to suppress the unwanted vacuum ultraviolet / infrared radiation. The grating patterns of different periods down to D = 10 micron were fabricated on Si substrates by using photolithography, and multilayers (MLs) of different periodicity (d = 10 to 2 nm) and number of layer pairs (15 to 100) were coated using sputtering techniques by optimizing the process parameters. The LMG and MPR samples are characterized by x-ray reflectivity (XRR) and atomic force microscopy (AFM) measurements. XRR results show successive higher order Bragg peaks that reveal a well-defined vertical periodic structure in LMG, MPR and ML structures. The lateral periodicity of the grating and depth of the rectangular groves were analyzed using AFM. The AFM results show good quality of lateral periodic structures in terms of groove profile. The effect of the process parameters on the microstructure (both on vertical and lateral patterns) of ML, LMG and MPR were analyzed.
Hexavalent and trivalent chromium in leather: What should be done?
Moretto, Angelo
2015-11-01
Trivalent chromium compounds are used for leather tanning, and chromium may be released during use of leather goods. In certain instances, small amounts of hexavalent chromium can be formed and released. Both trivalent and hexavalent chromium can elicit allergic skin reaction in chromium sensitised subjects, the latter being significantly more potent. Induction of sensitisation only occurs after exposure to hexavalent chromium. A minority of subjects are sensitised to chromium, and in a fraction of these subjects allergic skin reaction have been described after wearing leather shoes or, less frequently, other leather goods. The evidence that in all these cases the reaction is related to hexavalent chromium is not always strong. The content of hexavalent chromium in leather is regulated in European Union, but rate of release rather than content is relevant for allergic skin reaction. The role of trivalent chromium appear much less relevant if at all. Modern tanning procedure do not pose significant risk due to either hexavalent or trivalent chromium. Dismissing bad quality and worn-off leather goods is relevant in reducing or eliminating the skin reaction. It should also be pointed out that shoe components or substances other than chromium in leather may cause allergic/irritative skin reactions. Copyright © 2015 Elsevier Inc. All rights reserved.
Whittaker, Paul; San, Richard H C; Clarke, Jane J; Seifried, Harold E; Dunkel, Virginia C
2005-11-01
Chromium picolinate is one of the most commonly used chromium dietary supplements available in the United States, and it has been marketed to consumers for use in weight loss, increasing muscle mass, and lowering serum cholesterol. Chromium picolinate is a synthetic compound that provides a bioavailable form of Cr(III) that is absorbed better than dietary chromium. However, there are several reports that it can have adverse effects. In order to study the mechanism of observed cellular toxicity and mutagenicity, chromium picolinate and its component compounds, chromium (III) chloride and picolinic acid, were evaluated in Salmonella typhimurium and L5178Y mouse lymphoma cells. Neither chromium picolinate nor chromium chloride induced a mutagenic response in S. typhimurium. However, in the L5178Y mouse lymphoma mutation assay, chromium picolinate induced mutagenic responses without and with the addition of S9.
Desktop aligner for fabrication of multilayer microfluidic devices.
Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping
2015-07-01
Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm(-1). To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices.
Desktop aligner for fabrication of multilayer microfluidic devices
Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping
2015-01-01
Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm−1. To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices. PMID:26233409
Advanced materials for multilayer mirrors for extreme ultraviolet solar astronomy.
Bogachev, S A; Chkhalo, N I; Kuzin, S V; Pariev, D E; Polkovnikov, V N; Salashchenko, N N; Shestov, S V; Zuev, S Y
2016-03-20
We provide an analysis of contemporary multilayer optics for extreme ultraviolet (EUV) solar astronomy in the wavelength ranges: λ=12.9-13.3 nm, λ=17-21 nm, λ=28-33 nm, and λ=58.4 nm. We found new material pairs, which will make new spaceborne experiments possible due to the high reflection efficiencies, spectral resolution, and long-term stabilities of the proposed multilayer coatings. In the spectral range λ=13 nm, Mo/Be multilayer mirrors were shown to demonstrate a better ratio of reflection efficiency and spectral resolution compared with the commonly used Mo/Si. In the spectral range λ=17-21 nm, a new multilayer structure Al/Si was proposed, which had higher spectral resolution along with comparable reflection efficiency compared with the commonly used Al/Zr multilayer structures. In the spectral range λ=30 nm, the Si/B4C/Mg/Cr multilayer structure turned out to best obey reflection efficiency and long-term stability. The B4C and Cr layers prevented mutual diffusion of the Si and Mg layers. For the spectral range λ=58 nm, a new multilayer Mo/Mg-based structure was developed; its reflection efficiency and long-term stability have been analyzed. We also investigated intrinsic stresses inherent for most of the multilayer structures and proposed possibilities for stress elimination.
Metals removal from aqueous solution by iron-based bonding agents.
Deliyanni, Eleni A; Lazaridis, Nikolaos K; Peleka, Efrosini N; Matis, Konstantinos A
2004-01-01
GOAL AND SCOPE AND BACKGROUND: The application of a promising method, termed sorptive flotation, for the removal of chromium(VI) and zinc ions was the aim of the present paper. A special case of sorptive flotation is adsorbing colloid flotation. Suitable sorbent preparation techniques have been developed in the laboratory. Sorptive flotation, consisting of the sorption and flotation processes combined in series, has proved to give fast and satisfactory treatment of the industrial streams and effluents bearing dilute aqueous solutions of zinc and chromium(VI). Goethite has proved to be effective for the removal of chromium(VI) and zinc ions. Also, adsorbing colloid flotation with ferric hydroxide (as the co-precipitant) could be an alternative method to the above-mentioned separation of metal ions. In both cases, chromium(VI) (pH=4) and zinc (pH=7) removal was about 100%. The reasons for selecting the iron-based bonding materials, like goethite and/or in-situ produced ferric hydroxide, are that they are cheap, easily synthesized, suitable both for cation and anion sorption, and, furthermore, that they present low risks for adding a further pollutant to the system. Promising results were obtained. The application of goethite and in-situ produced ferric hydroxide has demonstrated their effectiveness in the removal of heavy metal ions, such as chromium anions and zinc cations. A proposed continuation of current work is the utilization of similar iron oxides, for instance synthesized akaganeite. The comparison between the results reported in this paper with the results reported in the literature, also deserves attention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantu Cantu, David; McGrail, B. Peter; Glezakou, Vassiliki Alexandra
2014-09-18
Based on density functional theory calculations and simulation, a detailed mechanism is presented on the formation of the secondary building unit (SBU) of MIL-101, a chromium terephthalate metal-organic framework (MOF). SBU formation is key to MOF nucleation, the rate-limiting step in the formation process of many MOFs. A series of reactions that lead to the formation of the SBU of MIL-101 is proposed in this work. Initial rate-limiting reactions form the metal cluster with three chromium (III) atoms linked to a central bridging oxygen. Terephthalate linkers play a key role as chromium (III) atoms are joined to linker carboxylate groupsmore » prior to the placement of the central bridging oxygen. Multiple linker addition reactions, which follow in different paths due to structural isomers, are limited by the removal of water molecules in the first chromium coordination shell. The least energy path is identified were all linkers on one face of the metal center plane are added first. A simple kinetic model based on transition state theory shows the rate of secondary building unit formation similar to the rate metal-organic framework nucleation. The authors are thankful to Dr. R. Rousseau for a critical reading of the manuscript. This research would not have been possible without the support of the Office of Fossil Energy, U.S. Department of Energy. This research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and the PNNL Institutional Computing (PIC) program located at Pacific Northwest National Laboratory.« less
Stabilization of chromium: an alternative to make safe leathers.
Gong, Ying; Liu, Xiaoling; Huang, Li; Chen, Wuyong
2010-07-15
In this study, the original causes for hexavalent chromium presence in the leather were first evaluated by ageing of chromium(III) solutions and chrome tanned hide powder (50 degrees C, UV lightening at 340 nm, 0-36 h). The results showed that the trivalent chromium at instable coordination state was easy to convert into hexavalent chromium in high pH environment, and the probability of the oxidation increased in this order: multi-coordinate chromium, mono-coordinate chromium, and free chromium. For this reason, the process for stabilizing chromium in the leather was designed with the specific material, which was mostly consisted of the reducers and the chelating agents. After treated with the developed process, these leathers were aged (50 degrees C, UV irradiance as 0.68 W/m(2) at 340 nm, 0-72 h) to estimate chromium(VI) presence. Hexavalent chromium was not found in these treated leathers even if the leathers were aged for 72 h. Moreover, the physical and mechanical properties for the leathers varied little after treating. In a word, an inherent safe and effective process was proved to avoid the formation of hexavalent chromium in the leather. 2010 Elsevier B.V. All rights reserved.
Press, R. I.; Geller, J.; Evans, G. W.
1990-01-01
Chromium has been implicated as a cofactor in the maintenance of normal lipid and carbohydrate metabolism. A deficiency of chromium results from diets low in biologically available chromium. Picolinic acid, a metabolite of tryptophan, forms stable complexes with transitional metal ions, which results in an improved bioavailability of the metal ion chromium. To determine whether or not chromium picolinate is effective in humans, 28 volunteer subjects were given either chromium tripicolinate (3.8 micromol [200 micrograms] chromium) or a placebo daily for 42 days in a double-blind crossover study. A 14-day period off capsules was used between treatments. Levels of total cholesterol, low-density lipoprotein (LDL) cholesterol, and apolipoprotein B, the principal protein of the LDL fraction, decreased significantly while the subjects were ingesting chromium picolinate. The concentration of apolipoprotein A-I, the principal protein of the high-density lipoprotein (HDL) fraction, increased substantially during treatment with chromium picolinate. The HDL-cholesterol level was elevated slightly but not significantly during ingestion of chromium picolinate. Only apolipoprotein B, of the variables measured, was altered significantly during supplementation with the placebo. These observations show that chromium picolinate is efficacious in lowering blood lipids in humans. PMID:2408233
Reduction of Health Risks Due to Chromium(VI)Using Mesquite: A Potential Cr Phytoremediator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardea-Torresdey, Jorge L.; Aldrich, Mary V.; Peralta-Videa, Jose R.
Chromium is a transition metal extensively used in industry. Cr mining and industrial operations account for chromium wastes at Superfund sites in the United States. A study was performed to investigate the possibility of using mesquite (Prosopis spp.), which is an indigenous desert plant species, to remove Cr from contaminated sites. In this study, mesquite plants were grown in an agar-based medium containing 75 mg L-1 and 125 mg L-1 of Cr(VI). The Cr content of leaf tissue (992 mg kg-1 of dry weight, from 125 mg L-1 of Cr(VI)) indicated that mesquite could be classified as a chromium hyperaccumulator.more » X-ray absorption spectroscopy (XAS) studies performed to experimental samples showed that mesquite roots absorbed some of the supplied Cr(VI). However, the data analyses of plant tissues demonstrated that the absorbed Cr(VI) was fully reduced to Cr(III) in the leaf tissue.« less
NASA Astrophysics Data System (ADS)
Tae, Soon-Jae; Morita, Kazuki
2017-05-01
The immobilization of hexavalent chromium in stainless steel slag using blast furnace slag as the immobilizing agent and by performing a hydrothermal treatment was investigated. The results showed that there was no immobilization in the absence of the blast furnace slag. On the other hand, the hexavalent chromium in stainless steel slag could be immobilized through the hydrothermal reaction when blast furnace slag was used at 250 °C for 24 h. A leaching test was performed to evaluate the degree of immobilization of hexavalent chromium in the products formed by the hydrothermal reaction. It was found that the degree of immobilization was very high. Based on the results obtained, the immobilization mechanism of hexavalent chromium in stainless steel slag, resulting from the hydrothermal treatment of blast furnace slag, could be elucidated. Finally, the immobilization of cadmium, lead, and arsenic using blast furnace slag as the immobilization agent was also studied while focusing on the effects of the hydrothermal treatment.
Millach, Laia; Solé, Antoni; Esteve, Isabel
2015-01-01
The aim of this work was to study the potential of the two phototrophic microorganisms, both isolated from Ebro Delta microbial mats, to be used as bioindicators and immobilizers of chromium. The results obtained indicated that (i) the Minimum Metal Concentration (MMC) significantly affecting Chlorophyll a intensity in Geitlerinema sp. DE2011 and Scenedesmus sp. DE2009 was 0.25 µM and 0.75 µM, respectively, these values being lower than those established by current legislation, and (ii) Scenedesmus sp. DE2009 was able to immobilize chromium externally in extracellular polymeric substances (EPS) and intracellularly in polyphosphate (PP) inclusions. Additionally, this microorganism maintained high viability, including at 500 µM. Based on these results, we postulate that Geitlerinema sp. DE2011 and Scenedesmus sp. DE2009 are good chromium-indicators of cytotoxicity and, further, that Scenedesmus sp. DE2009 plays an important role in immobilizing this metal in a contaminated natural environment.
2015-01-01
The aim of this work was to study the potential of the two phototrophic microorganisms, both isolated from Ebro Delta microbial mats, to be used as bioindicators and immobilizers of chromium. The results obtained indicated that (i) the Minimum Metal Concentration (MMC) significantly affecting Chlorophyll a intensity in Geitlerinema sp. DE2011 and Scenedesmus sp. DE2009 was 0.25 µM and 0.75 µM, respectively, these values being lower than those established by current legislation, and (ii) Scenedesmus sp. DE2009 was able to immobilize chromium externally in extracellular polymeric substances (EPS) and intracellularly in polyphosphate (PP) inclusions. Additionally, this microorganism maintained high viability, including at 500 µM. Based on these results, we postulate that Geitlerinema sp. DE2011 and Scenedesmus sp. DE2009 are good chromium-indicators of cytotoxicity and, further, that Scenedesmus sp. DE2009 plays an important role in immobilizing this metal in a contaminated natural environment. PMID:26167488
Diffusion-Based Design of Multi-Layered Ophthalmic Lenses for Controlled Drug Release
Pimenta, Andreia F. R.; Serro, Ana Paula; Paradiso, Patrizia; Saramago, Benilde
2016-01-01
The study of ocular drug delivery systems has been one of the most covered topics in drug delivery research. One potential drug carrier solution is the use of materials that are already commercially available in ophthalmic lenses for the correction of refractive errors. In this study, we present a diffusion-based mathematical model in which the parameters can be adjusted based on experimental results obtained under controlled conditions. The model allows for the design of multi-layered therapeutic ophthalmic lenses for controlled drug delivery. We show that the proper combination of materials with adequate drug diffusion coefficients, thicknesses and interfacial transport characteristics allows for the control of the delivery of drugs from multi-layered ophthalmic lenses, such that drug bursts can be minimized, and the release time can be maximized. As far as we know, this combination of a mathematical modelling approach with experimental validation of non-constant activity source lamellar structures, made of layers of different materials, accounting for the interface resistance to the drug diffusion, is a novel approach to the design of drug loaded multi-layered contact lenses. PMID:27936138
Lakshmanraj, Levankumar; Gurusamy, Ayyanar; Gobinath, M B; Chandramohan, R
2009-09-30
Investigations were carried out to study the chromium removal efficiency of boiled mucilaginous seeds of Ocimum americanum. Batch experiments were conducted to study the biosorption kinetics of chromium removal for the concentrations 10mg/L, 20mg/L and 40 mg/L of chromium(VI) solutions. The biosorbent dosage was 8 g dry seeds/L. The toxic hexavalent chromium was reduced to less toxic chromium(III) in the presence of seeds and the reduced chromium was adsorbed on the mucilage of seeds. Both the chromium(VI) and chromium(III) were present in the aqueous phase. The optimum chromium reduction and adsorption was observed at the pH value 1.5. The biosorption data fitted well with Langmuir isotherm. The biosorption capacity calculated from the Langmuir isotherm was q=32 mg chromium(III)/g of dry seeds. The continuous column study was also carried out at the flow rate of 27 mL/h for the initial concentration 25mg/L of chromium(VI) feed solution using a packed bed column filled with boiled mucilaginous seeds. The maximum reduction of chromium(VI) to chromium(III) in the packed bed was 80%. The percentage removal of reduced chromium from the aqueous solution was 56.25%. This value was maintained constant until 0.52 L of chromium(VI) solution was pumped through the packed bed column. Thus the naturally immobilized polysaccharides on the seeds mimic the microbial polysaccharides in terms of their ability to adsorb heavy metals with an added advantage of making the immobilization step unnecessary which is a major cost factor of the metal removal process when microbial exopolysaccharides used. The uniform size and spherical shape of swollen seeds give an additional advantage to use them in a packed bed column for continuous removal of chromium(VI) from aqueous solutions.
Chromium: a review of environmental and occupational toxicology.
Bencko, V
1985-01-01
The following topics are covered in this brief review on the environmental and occupational toxicology of chromium: occurrence, production and uses of chromium and chromium compounds; experimental toxicology; chromium toxicity for man; hygienic and ecologic aspects of chromium contamination of the environment. The review provides a conclusive evidence which suggests that chromium, especially its hexavalent form, is both toxic and carcinogenic, but its trivalent form is physiologically essential in the metabolism of insulin. It is also emphasized that among the major sources of environmental chromium today are the cement industry and the increasingly widespread use of chromium compounds added as an anticorrosion admixture to a variety of cooling systems, e.g. in large power plants, which may greatly contribute to the overall pollution of outdoor air at the sites.
NASA Astrophysics Data System (ADS)
Loka, Chadrasekhar; Moon, Sung Whan; Choi, YiSik; Lee, Kee-Sun
2018-03-01
Transparent conducting oxides attract intense interests due to its diverse industrial applications. In this study, we report sapphire substrate-based TiO2/Ag/TiO2 (TAT) multilayer structure of indium-free transparent conductive multilayer coatings. The TAT thin films were deposited at room temperature on sapphire substrates and a rigorous analysis has been presented on the electrical and optical properties of the films as a function of Ag thickness. The optical and electrical properties were mainly controlled by the Ag mid-layer thickness of the TAT tri-layer. The TAT films showed high luminous transmittance 84% at 550 nm along with noteworthy low electrical resistance 3.65 × 10-5 Ω-cm and sheet resistance of 3.77 Ω/square, which is better are than those of amorphous ITO films and any sapphire-based dielectric/metal/dielectric multilayer stack. The carrier concentration of the films was increased with respect to Ag thickness. We obtained highest Hackke's figure of merit 43.97 × 10-3 Ω-1 from the TAT multilayer thin film with a 16 nm thick Ag mid-layer.
Bioerodible System for Sequential Release of Multiple Drugs
Sundararaj, Sharath C.; Thomas, Mark V.; Dziubla, Thomas D.; Puleo, David A.
2013-01-01
Because many complex physiological processes are controlled by multiple biomolecules, comprehensive treatment of certain disease conditions may be more effectively achieved by administration of more than one type of drug. Thus, the objective of the present research was to develop a multilayered, polymer-based system for sequential delivery of multiple drugs. The polymers used were cellulose acetate phthalate (CAP) complexed with Pluronic F-127 (P). After evaluating morphology of the resulting CAPP system, in vitro release of small molecule drugs and a model protein was studied from both single and multilayered devices. Drug release from single-layered CAPP films followed zero-order kinetics related to surface erosion of the association polymer. Release studies from multilayered CAPP devices showed the possibility of achieving intermittent release of one type of drug as well as sequential release of more than one type of drug. Mathematical modeling accurately predicted the release profiles for both single layer and multilayered devices. The present CAPP association polymer-based multilayer devices can be used for localized, sequential delivery of multiple drugs for the possible treatment of complex disease conditions, and perhaps for tissue engineering applications, that require delivery of more than one type of biomolecule. PMID:24096151
Water Quality Conditions in the Missouri River Mainstem System: 2008 Report
2009-09-01
aluminum, arsenic, cadmium , chromium, copper, cyanide, lead, nickel, selenium, silver, and zinc . The acute and chronic water quality standards criteria for... adipose , etc.) tend to accumulate toxicants at different rates. Therefore, when used as an indicator, fish tissue analysis typically uses whole...for metals (i.e., cadmium , chromium, copper, lead, nickel, silver, and zinc ) are based on hardness. Criteria shown for those metals were calculated
Installation Restoration Program Records Search for Bergstrom Air Force Base, Texas.
1983-07-01
August 1981. "Pilot Plant Study of Copper , Zinc, and Trivalent Chromium Removal by Adsorbing Colloid Foam Flotation ." M.S. Thesis, Vanderbilt...graduate school and one of his activities included researching the removal of heavy metals, including copper , zinc and trivalent chromium, using a large...scale adsorbing colloid foam flotation pilot plant. Professional Registration Engineer-In-Training, Florida % -7. GREGORY T. MCINTYRE Membership in
Removal of chromium from synthetic plating waste by zero-valent iron and sulfate-reducing bacteria.
Guha, Saumyen; Bhargava, Puja
2005-01-01
Experiments were conducted to evaluate the potential of zero-valent iron and sulfate-reducing bacteria (SRB) for reduction and removal of chromium from synthetic electroplating waste. The zero-valent iron shows promising results as a reductant of hexavalent chromium (Cr+6) to trivalent chromium (Cr+3), capable of 100% reduction. The required iron concentration was a function of chromium concentration in the waste stream. Removal of Cr+3 by adsorption or precipitation on iron leads to complete removal of chromium from the waste and was a slower process than the reduction of Cr+6. Presence SRB in a completely mixed batch reactor inhibited the reduction of Cr+6. In a fixed-bed column reactor, SRB enhanced chromium removal and showed promising results for the treatment of wastes with low chromium concentrations. It is proposed that, for waste with high chromium concentration, zero-valent iron is an efficient reductant and can be used for reduction of Cr+6. For low chromium concentrations, a SRB augmented zero-valent iron and sand column is capable of removing chromium completely.
Gallic Acid as an Oxygen Scavenger in Bio-Based Multilayer Packaging Films
Pant, Astrid F.; Sängerlaub, Sven; Müller, Kajetan
2017-01-01
Oxygen scavengers are used in food packaging to protect oxygen-sensitive food products. A mixture of gallic acid (GA) and sodium carbonate was used as an oxygen scavenger (OSc) in bio-based multilayer packaging films produced in a three-step process: compounding, flat film extrusion, and lamination. We investigated the film surface color as well as oxygen absorption at different relative humidities (RHs) and temperatures, and compared the oxygen absorption of OSc powder, monolayer films, and multilayer films. The films were initially brownish-red in color but changed to greenish-black during oxygen absorption under humid conditions. We observed a maximum absorption capacity of 447 mg O2/g GA at 21 °C and 100% RH. The incorporation of GA into a polymer matrix reduced the rate of oxygen absorption compared to the GA powder because the polymer acted as a barrier to oxygen and water vapor diffusion. As expected, the temperature had a significant effect on the initial absorption rate of the multilayer films; the corresponding activation energy was 75.4 kJ/mol. Higher RH significantly increased the oxygen absorption rate. These results demonstrate for the first time the production and the properties of a bio-based multilayer packaging film with GA as the oxygen scavenger. Potential applications include the packaging of food products with high water activity (aw > 0.86). PMID:28772849
Gallic Acid as an Oxygen Scavenger in Bio-Based Multilayer Packaging Films.
Pant, Astrid F; Sängerlaub, Sven; Müller, Kajetan
2017-05-03
Oxygen scavengers are used in food packaging to protect oxygen-sensitive food products. A mixture of gallic acid (GA) and sodium carbonate was used as an oxygen scavenger (OSc) in bio-based multilayer packaging films produced in a three-step process: compounding, flat film extrusion, and lamination. We investigated the film surface color as well as oxygen absorption at different relative humidities (RHs) and temperatures, and compared the oxygen absorption of OSc powder, monolayer films, and multilayer films. The films were initially brownish-red in color but changed to greenish-black during oxygen absorption under humid conditions. We observed a maximum absorption capacity of 447 mg O₂/g GA at 21 °C and 100% RH. The incorporation of GA into a polymer matrix reduced the rate of oxygen absorption compared to the GA powder because the polymer acted as a barrier to oxygen and water vapor diffusion. As expected, the temperature had a significant effect on the initial absorption rate of the multilayer films; the corresponding activation energy was 75.4 kJ/mol. Higher RH significantly increased the oxygen absorption rate. These results demonstrate for the first time the production and the properties of a bio-based multilayer packaging film with GA as the oxygen scavenger. Potential applications include the packaging of food products with high water activity (a w > 0.86).
Highly Crystalline CVD-grown Multilayer MoSe2 Thin Film Transistor for Fast Photodetector
Jung, Chulseung; Kim, Seung Min; Moon, Hyunseong; Han, Gyuchull; Kwon, Junyeon; Hong, Young Ki; Omkaram, Inturu; Yoon, Youngki; Kim, Sunkook; Park, Jozeph
2015-01-01
Hexagonal molybdenum diselenide (MoSe2) multilayers were grown by chemical vapor deposition (CVD). A relatively high pressure (>760 Torr) was used during the CVD growth to achieve multilayers by creating multiple nuclei based on the two-dimensional crystal growth model. Our CVD-grown multilayer MoSe2 thin-film transistors (TFTs) show p-type-dominant ambipolar behaviors, which are attributed to the formation of Se vacancies generated at the decomposition temperature (650 °C) after the CVD growth for 10 min. Our MoSe2 TFT with a reasonably high field-effect mobility (10 cm2/V · s) exhibits a high photoresponsivity (93.7 A/W) and a fast photoresponse time (τrise ~ 0.4 s) under the illumination of light, which demonstrates the practical feasibility of multilayer MoSe2 TFTs for photodetector applications. PMID:26477744
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray-Chaudhuri, A.K.; Ng, W.; Cerrina, F.
1995-11-01
Multilayer-coated imaging systems for extreme ultraviolet (EUV) lithography at 13 nm represent a significant challenge for alignment and characterization. The standard practice of utilizing visible light interferometry fundamentally provides an incomplete picture since this technique fails to account for phase effects induced by the multilayer coating. Thus the development of optical techniques at the functional EUV wavelength is required. We present the development of two EUV optical tests based on Foucault and Ronchi techniques. These relatively simple techniques are extremely sensitive due to the factor of 50 reduction in wavelength. Both techniques were utilized to align a Mo--Si multilayer-coated Schwarzschildmore » camera. By varying the illumination wavelength, phase shift effects due to the interplay of multilayer coating and incident angle were uniquely detected. {copyright} {ital 1995} {ital American} {ital Vacuum} {ital Society}« less
NASA Astrophysics Data System (ADS)
Wang, L.; Jiang, M.; Wang, E. B.; Duan, L. Y.; Hao, N.; Lan, Y.; Xu, L.; Li, Z.
2003-11-01
Ultrathin multilayer films of the wheel-shaped molybdenum polyoxometalate cluster (Mo 38) n and poly(allylamine hydrochloride)(PAH) have been prepared by the layer-by-layer (LbL) self-assembly method. The ((Mo 38) n/PAH) m multilayer films have been characterized by X-ray photoelectron spectra (XPS) and atomic force microscopy (AFM). UV-VIS measurements reveal regular film growth with each (Mo 38) n adsorption. The electrochemistry behavior of the film at room temperature was investigated.
NASA Astrophysics Data System (ADS)
Pang, Linyong; Hu, Peter; Satake, Masaki; Tolani, Vikram; Peng, Danping; Li, Ying; Chen, Dongxue
2011-11-01
According to the ITRS roadmap, mask defects are among the top technical challenges to introduce extreme ultraviolet (EUV) lithography into production. Making a multilayer defect-free extreme ultraviolet (EUV) blank is not possible today, and is unlikely to happen in the next few years. This means that EUV must work with multilayer defects present on the mask. The method proposed by Luminescent is to compensate effects of multilayer defects on images by modifying the absorber patterns. The effect of a multilayer defect is to distort the images of adjacent absorber patterns. Although the defect cannot be repaired, the images may be restored to their desired targets by changing the absorber patterns. This method was first introduced in our paper at BACUS 2010, which described a simple pixel-based compensation algorithm using a fast multilayer model. The fast model made it possible to complete the compensation calculations in seconds, instead of days or weeks required for rigorous Finite Domain Time Difference (FDTD) simulations. Our SPIE 2011 paper introduced an advanced compensation algorithm using the Level Set Method for 2D absorber patterns. In this paper the method is extended to consider process window, and allow repair tool constraints, such as permitting etching but not deposition. The multilayer defect growth model is also enhanced so that the multilayer defect can be "inverted", or recovered from the top layer profile using a calibrated model.
TM-pass polarizer based on multilayer graphene polymer waveguide
NASA Astrophysics Data System (ADS)
Cai, Ke-su; Li, Yue-e.; Wei, Wen-jing; Mu, Xi-jiao; Ma, A.-ning; Wang, Zhong; Song, Dan-ming
2018-05-01
A TM-pass polarizer based on multilayer graphene polymer waveguide is proposed and theoretically analyzed. The mode properties, the extinction ratio, the insertion loss and the bandwidth are also discussed. The results show that a TM-pass polarizer, which only guides the TM mode, can be achieved by multilayer graphene polymer waveguide. With length of 150 μm, the proposed polarizer can achieve extinction ratio of 33 dB and insertion loss of 0.5 dB at optical wavelength of 1.55 μm. This device has an excellent performance, including large extinction ratio and low insertion loss within the spectral range from 1.45 μm to 1.6 μm.
40 CFR 63.344 - Performance test requirements and test methods.
Code of Federal Regulations, 2014 CFR
2014-07-01
... blanket type fume suppressants are used to control chromium emissions from a hard chromium electroplating... National Emission Standards for Chromium Emissions From Hard and Decorative Chromium Electroplating and Chromium Anodizing Tanks § 63.344 Performance test requirements and test methods. (a) Performance test...
40 CFR 63.344 - Performance test requirements and test methods.
Code of Federal Regulations, 2012 CFR
2012-07-01
... blanket type fume suppressants are used to control chromium emissions from a hard chromium electroplating... National Emission Standards for Chromium Emissions From Hard and Decorative Chromium Electroplating and Chromium Anodizing Tanks § 63.344 Performance test requirements and test methods. (a) Performance test...
40 CFR 63.344 - Performance test requirements and test methods.
Code of Federal Regulations, 2013 CFR
2013-07-01
... blanket type fume suppressants are used to control chromium emissions from a hard chromium electroplating... National Emission Standards for Chromium Emissions From Hard and Decorative Chromium Electroplating and Chromium Anodizing Tanks § 63.344 Performance test requirements and test methods. (a) Performance test...
40 CFR 424.70 - Applicability; description of the electrolytic chromium subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... electrolytic chromium subcategory. 424.70 Section 424.70 Protection of Environment ENVIRONMENTAL PROTECTION... Electrolytic Chromium Subcategory § 424.70 Applicability; description of the electrolytic chromium subcategory. The provisions of this subpart are applicable to discharges resulting from the manufacture of chromium...
40 CFR 424.70 - Applicability; description of the electrolytic chromium subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... electrolytic chromium subcategory. 424.70 Section 424.70 Protection of Environment ENVIRONMENTAL PROTECTION... Electrolytic Chromium Subcategory § 424.70 Applicability; description of the electrolytic chromium subcategory. The provisions of this subpart are applicable to discharges resulting from the manufacture of chromium...
40 CFR 424.70 - Applicability; description of the electrolytic chromium subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... electrolytic chromium subcategory. 424.70 Section 424.70 Protection of Environment ENVIRONMENTAL PROTECTION... Electrolytic Chromium Subcategory § 424.70 Applicability; description of the electrolytic chromium subcategory. The provisions of this subpart are applicable to discharges resulting from the manufacture of chromium...
Electrochemical Removal of Chromium from Wastewater
1992-07-15
chromium removal from a wastewater stream. In one process, electrodeposition of chromium on a reticulated vitreous carbon cathode was proposed [5]. On a...reduction to metallic chromium more difficult [31. Removal of hexavalent chromium by adsorption on activated carbon is not suf- ficiently effective to be
40 CFR 424.70 - Applicability; description of the electrolytic chromium subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... electrolytic chromium subcategory. 424.70 Section 424.70 Protection of Environment ENVIRONMENTAL PROTECTION... Electrolytic Chromium Subcategory § 424.70 Applicability; description of the electrolytic chromium subcategory. The provisions of this subpart are applicable to discharges resulting from the manufacture of chromium...
40 CFR 424.70 - Applicability; description of the electrolytic chromium subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... electrolytic chromium subcategory. 424.70 Section 424.70 Protection of Environment ENVIRONMENTAL PROTECTION... Electrolytic Chromium Subcategory § 424.70 Applicability; description of the electrolytic chromium subcategory. The provisions of this subpart are applicable to discharges resulting from the manufacture of chromium...
Castro, Marcello Pardi; de Moraes, Flávio Ruas; Fujimoto, Rodrigo Yudi; da Cruz, Claudinei; Belo, Marco Antonio de Andrade; de Moraes, Julieta Rodini Engrácia
2014-02-01
This study evaluated the toxicity of hexavalent and trivalent compounds of chromium to the pacu, Piaractus mesopotamicus, in acute exposures of 96 h through mortality and histopathological responses. Hexavalent potassium dichromate was more toxic than trivalent compounds of chromium chloride, chromium oxide and chromium carbochelate. Sufficient mortalities occurred only with potassium dichromate to yield an LC50 value at 124.2 mg L(-1). Hexavalent chromium caused reversible and irreversible lesions, which may affect organ functionality. Histopathological evaluation showed that trivalent chromium caused lesions of lower severity. Pacu subjected to different concentrations of chromium carbochelate showed no histopathological changes in the kidneys, liver, skin and gills, being similar to those of the control fish. Among the three sources of Cr(3+), only chromium chloride at 200 mg L(-1) resulted in mortality, which reached 100 % within the first 18 h. These findings confirm that trivalent chromium, when administered within recommended levels, may be used safely in aquaculture.
Complex Mixture-Associated Hormesis and Toxicity: The Case of Leather Tanning Industry
Pagano, Giovanni; Castello, Giuseppe; Gallo, Marialuisa; Borriello, Ilaria; Guida, Marco
2008-01-01
A series of studies investigated the toxicities of tannery-derived complex mixtures, i.e. vegetable tannin (VT) from Acacia sp. or phenol-based synthetic tannin (ST), and waste-water from tannin-based vs. chromium-based tanneries. Toxicity was evaluated by multiple bioassays including developmental defects and loss of fertilization rate in sea urchin embryos and sperm (Paracentrotus lividus and Sphaerechinus granularis), and algal growth inhibition (Dunaliella tertiolecta and Selenastrum capricornutum). Both VT and ST water extracts resulted in hormetic effects at concentrations ranging 0.1 to 0.3%, and toxicity at levels ≥1%, both in sea urchin embryo and sperm, and in algal growth bioassays. When comparing tannin-based tannery wastewater (TTW) vs. chromium-based tannery effluent (CTE), a hormesis to toxicity trend was observed for TTW both in terms of developmental and fertilization toxicity in sea urchins, and in algal growth inhibition, with hormetic effects at 0.1 to 0.2% TTW, and toxicity at TTW levels ≥1%. Unlike TTW, CTE showed a monotonic toxicity increase from the lowest tested level (0.1%) and CTE toxicity at higher levels was significantly more severe than TTW-induced toxicity. The results support the view that leather production utilizing tannins might be regarded as a more environmentally friendly procedure than chromium-based tanning process. PMID:19088903
Complex mixture-associated hormesis and toxicity: the case of leather tanning industry.
Pagano, Giovanni; Castello, Giuseppe; Gallo, Marialuisa; Borriello, Ilaria; Guida, Marco
2008-01-01
A series of studies investigated the toxicities of tannery-derived complex mixtures, i.e. vegetable tannin (VT) from Acacia sp. or phenol-based synthetic tannin (ST), and waste-water from tannin-based vs. chromium-based tanneries. Toxicity was evaluated by multiple bioassays including developmental defects and loss of fertilization rate in sea urchin embryos and sperm (Paracentrotus lividus and Sphaerechinus granularis), and algal growth inhibition (Dunaliella tertiolecta and Selenastrum capricornutum). Both VT and ST water extracts resulted in hormetic effects at concentrations ranging 0.1 to 0.3%, and toxicity at levels > or =1%, both in sea urchin embryo and sperm, and in algal growth bioassays. When comparing tannin-based tannery wastewater (TTW) vs. chromium-based tannery effluent (CTE), a hormesis to toxicity trend was observed for TTW both in terms of developmental and fertilization toxicity in sea urchins, and in algal growth inhibition, with hormetic effects at 0.1 to 0.2% TTW, and toxicity at TTW levels > or =1%. Unlike TTW, CTE showed a monotonic toxicity increase from the lowest tested level (0.1%) and CTE toxicity at higher levels was significantly more severe than TTW-induced toxicity. The results support the view that leather production utilizing tannins might be regarded as a more environmentally friendly procedure than chromium-based tanning process.
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher
1988-01-01
The determination of the tribilogically optimum composition of chromium-carbide-based solid lubricant coatings using a foil gas bearing test apparatus is described. The coatings contain a wear resistant chromium carbide `base stock' with the lubricant additives silver and BaF2-CaF2 eutectic. The coating composition is optimized for air-lubricated foil gas bearings at temperatures ranging from 25 to 650 C. The various compositions were prepared by powder blending, then plasma sprayed onto Inconel 718 test journals and diamond ground to the desired coating thickness and surface finish. The journals were operated against preoxidized Ni-Cr alloy foils, and the test bearings were subjected to repeated start-stop cycles under a bearing unit of 14 kPa. Sliding contact between the coated journal and the smooth foil occurs during bearing start-up before lift-off or hydrodynamic lubrication by the air film and during bearing coast-down. The bearings were tested for 9000 start-stop cycles or until specimen reached a predetermined failure level.
2009-09-01
Commercially available Alternative Technologies Steel Pretreatments – Non chromium – Henkel NT-1 – Trivalent chromium – Surtec 650 TCP – Non- chromium ...UNCLASSIFIED: Approved for public release; distribution unlimited. Evaluation and Demonstration of Non-Hexavalent Chromium Pretreatments and...Hexavalent Chromium Pretreatments and Sealers for Steel Substrates 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d
Meng, Fansheng; Xue, Hao; Wang, Yeyao; Zheng, Binghui; Wang, Juling
2018-02-01
Electrokinetic experiments were conducted on chromium-residue-contaminated soils collected from a chemical plant in China. Acidification-electrokinetic remediation technology was proposed in order to solve the problem of removing inefficient with ordinary electrokinetic. The results showed that electrokinetic remediation removal efficiency of chromium from chromium-contaminated soil was significantly enhanced with acidizing pretreatment. The total chromium [Cr(T)] and hexavalent chromium [Cr(VI)] removal rate of the group acidized by citric acid (0.9 mol/L) for 5 days was increased from 6.23% and 19.01% in the acid-free experiments to 26.97% and 77.66% in the acidification-treated experiments, respectively. In addition, part of chromium with the state of carbonate-combined will be converted into water-soluble state through acidification to improve the removal efficiency. Within the appropriate concentration range, the higher concentration of acid was, the more chromium was released. So the removal efficiency of chromium depended on the acid concentration. The citric acid is also a kind of complexing agent, which produced complexation with Cr that was released by the electrokinetic treatment and then enhanced the removal efficiency. The major speciation of chromium that was removed from soils by acidification-electrokinetics remediation was acid-soluble speciation, revivification speciation and oxidation speciation, which reduced biological availability of chromium.
Reaction diffusion in the nickel-chromium-aluminum and cobalt-chromium-aluminum systems
NASA Technical Reports Server (NTRS)
Levine, S. R.
1977-01-01
The effects of MCrAl coating-substrate interdiffusion on oxidation life and the general mutliphase, multicomponent diffusion problem were examined. Semi-infinite diffusion couples that had sources representing coatings and sinks representing gas turbine alloys were annealed at 1,000, 1,095, 1,150, or 1,205 C for as long as 500 hours. The source and sink aluminum and chromium contents and the base metal (cobalt or nickel) determined the parabolic diffusion rate constants of the couples and predicted finite coating lives. The beta source strength concept provided a method (1) for correlating beta recession rate constants with composition; (2) for determining reliable average total, diffusion, and constitutional activation energies; and (3) for calculating interdiffusion coefficients.
Torki, Mehran; Zangeneh, Samira; Habibian, Mahmood
2014-02-01
A 3 × 2 factorial experiment consisting three levels (0, 200, and 400 μg/kg) of chromium (chromium picolinate) and two levels (0 and 250 mg/kg) of vitamin C was employed to evaluate the effects of these dietary supplements on performance, egg quality traits, and serum biochemical parameters of heat-stressed laying hens (Lohmann LSL-Lite) from 66 to 74 weeks of age. Feed intake increased when birds were given either 400 μg/kg chromium or 250 mg/kg vitamin C (P < 0.05), but the birds that received both chromium and vitamin C consumed feed similar to those that received only chromium. Dietary treatments had no effect on egg production, egg mass, egg volume, feed conversion ratio, and body mass (P > 0.05). The birds that fed on diet with chromium or vitamin C produced eggs with higher shell mass and thickness compared to the control. Both eggshell mass and thickness decreased when vitamin C and chromium were supplemented simultaneously, and birds given the diet supplemented with 400 μg/kg chromium and 250 mg/kg vitamin C had eggshell mass and thickness similar to those of the control group. The serum concentration of chromium increased due to increasing level of dietary chromium (P < 0.05). The birds that received diet with chromium and vitamin C had higher serum concentrations of chromium compared to those that received only chromium (P < 0.05). Similarly, the hens that received chromium and vitamin C had higher serum concentrations of calcium and phosphorus compared to the hens fed with other treatments (P < 0.05). The birds given with supplemental chromium exhibited lower serum glucose, total cholesterol, and triglycerides concentrations but higher serum albumin and total protein concentrations compared to the other groups (P < 0.05).
NASA Astrophysics Data System (ADS)
Sahlaoui, Habib; Sidhom, Habib
2013-07-01
The phase precipitation in industrial AISI 316L stainless steel during aging for up to 80,000 hours between 823 K and 1073 K (550 °C and 800 °C) has been studied using transmission electron microscopy, scanning transmission electron microscopy, and carbon replica energy-dispersive X-ray microanalysis. Three phases were identified: Chromium carbides (M23C6), Laves phase ( η), and σ-phase (Fe-Cr). M23C6 carbide precipitation occurred firstly and was followed by the η and σ-phases at grain boundaries when the aging temperature is higher than 873 K (600 °C). Precipitation and growth of M23C6 create chromium depletion zones at the grain boundaries and also retard the σ-phase formation. Thus, the σ-phase is controlled by the kinetic of chromium bulk diffusion and can appear only when the chromium reaches, at grain boundaries and at the M23C6/ γ and M23C6/ η/ γ interfaces, content higher than a critical value obtained by self-healing. An analytical model, based on equivalent chromium content, has been established in this study and successfully validated to predict the time-temperature-precipitation diagram of the σ-phase. The obtained diagram is in good agreement with the experimental results.
40 CFR 63.341 - Definitions and nomenclature.
Code of Federal Regulations, 2012 CFR
2012-07-01
... air pollution control device or a chemical fume suppressant, that is used to reduce chromium emissions... trivalent chromium plating baths. For trivalent chromium baths, the bath composition is proprietary in most... to the surface tension. Trivalent chromium means the form of chromium in a valence state of +3...
29 CFR 1915.1026 - Chromium (VI).
Code of Federal Regulations, 2012 CFR
2012-07-01
... a specific process, operation, or activity involving chromium cannot release dusts, fumes, or mists... 29 Labor 7 2012-07-01 2012-07-01 false Chromium (VI). 1915.1026 Section 1915.1026 Labor... § 1915.1026 Chromium (VI). (a) Scope. (1) This standard applies to occupational exposures to chromium (VI...
29 CFR 1915.1026 - Chromium (VI).
Code of Federal Regulations, 2011 CFR
2011-07-01
... a specific process, operation, or activity involving chromium cannot release dusts, fumes, or mists... 29 Labor 7 2011-07-01 2011-07-01 false Chromium (VI). 1915.1026 Section 1915.1026 Labor... § 1915.1026 Chromium (VI). (a) Scope. (1) This standard applies to occupational exposures to chromium (VI...
29 CFR 1915.1026 - Chromium (VI).
Code of Federal Regulations, 2013 CFR
2013-07-01
... a specific process, operation, or activity involving chromium cannot release dusts, fumes, or mists... 29 Labor 7 2013-07-01 2013-07-01 false Chromium (VI). 1915.1026 Section 1915.1026 Labor... § 1915.1026 Chromium (VI). (a) Scope. (1) This standard applies to occupational exposures to chromium (VI...
29 CFR 1915.1026 - Chromium (VI).
Code of Federal Regulations, 2014 CFR
2014-07-01
... a specific process, operation, or activity involving chromium cannot release dusts, fumes, or mists... 29 Labor 7 2014-07-01 2014-07-01 false Chromium (VI). 1915.1026 Section 1915.1026 Labor... § 1915.1026 Chromium (VI). (a) Scope. (1) This standard applies to occupational exposures to chromium (VI...
40 CFR 63.340 - Applicability and designation of sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... National Emission Standards for Chromium Emissions From Hard and Decorative Chromium Electroplating and Chromium Anodizing Tanks § 63.340 Applicability and designation of sources. (a) The affected source to which the provisions of this subpart apply is each chromium electroplating or chromium anodizing tank at...
40 CFR 63.340 - Applicability and designation of sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... National Emission Standards for Chromium Emissions From Hard and Decorative Chromium Electroplating and Chromium Anodizing Tanks § 63.340 Applicability and designation of sources. (a) The affected source to which the provisions of this subpart apply is each chromium electroplating or chromium anodizing tank at...
Guo, Daoyou; An, Yuehua; Cui, Wei; Zhi, Yusong; Zhao, Xiaolong; Lei, Ming; Li, Linghong; Li, Peigang; Wu, Zhenping; Tang, Weihua
2016-04-28
Multilayer thin films based on the ferromagnetic and ultraviolet transparent semiconductors may be interesting because their magnetic/electronic/photonic properties can be manipulated by the high energy photons. Herein, the Ga2O3/(Ga1-xFex)2O3 multilayer epitaxial thin films were obtained by alternating depositing of wide band gap Ga2O3 layer and Fe ultrathin layer due to inter diffusion between two layers at high temperature using the laser molecular beam epitaxy technique. The multilayer films exhibits a preferred growth orientation of crystal plane, and the crystal lattice expands as Fe replaces Ga site. Fe ions with a mixed valence of Fe(2+) and Fe(3+) are stratified distributed in the film and exhibit obvious agglomerated areas. The multilayer films only show a sharp absorption edge at about 250 nm, indicating a high transparency for ultraviolet light. What's more, the Ga2O3/(Ga1-xFex)2O3 multilayer epitaxial thin films also exhibits room temperature ferromagnetism deriving from the Fe doping Ga2O3.
2004-03-01
oxidized rapidly producing trivalent chromium and insoluble organic compounds that eventually decomposed to carbon dioxide. This behavior required...frequent or continuous WA/FS additions, making them a more temporary than permanent solution. The trivalent chromium was also a bath contaminant requiring...need for hard chromium electroplating, but is not expected to ever be able to eliminate it. • Trivalent Chromium Electroplating: Chromium can be
Tillman, Fred; McCleskey, R. Blaine; Hermosillo, Edyth
2016-01-01
Potential health effects from hexavalent chromium in groundwater have recently become a concern to regulators at the Tucson International Airport Area Superfund site. In 2016, the U.S. Geological Survey sampled 46 wells in the area to characterize the nature and extent of chromium in groundwater, to understand what proportion of total chromium is in the hexavalent state, and to determine if substantial differences are present between filtered and unfiltered chromium concentrations. Results indicate detectable chromium concentrations in all wells, over 75 % of total chromium is in the hexavalent state in a majority of wells, and filtered and unfiltered results differ substantially in only a few high-turbidity total chromium samples.
Tillman, Fred D; McCleskey, R Blaine; Hermosillo, Edyth
2016-10-01
Potential health effects from hexavalent chromium in groundwater have recently become a concern to regulators at the Tucson International Airport Area Superfund site. In 2016, the U.S. Geological Survey sampled 46 wells in the area to characterize the nature and extent of chromium in groundwater, to understand what proportion of total chromium is in the hexavalent state, and to determine if substantial differences are present between filtered and unfiltered chromium concentrations. Results indicate detectable chromium concentrations in all wells, over 75 % of total chromium is in the hexavalent state in a majority of wells, and filtered and unfiltered results differ substantially in only a few high-turbidity total chromium samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, B.L.; Scott, P.K.; Norton, R.L.
1996-08-09
This study evaluates the significance of increased urinary chromium concentrations as a marker of chromium exposure and potential health risk. Six human volunteers ingested trivalent chromium [Cr(III)] and hexavalent chromium [Cr(VI)] at doses that are known to be safe but higher than typical levels. The following dosing regimen was used: d 1-7, 200 {mu}g/d chromium picolinate; d 8-10, Cr(VI) ingestion at the U.S. Environmental Protection Agency (EPA) reference dose (RfD) of 0.005 mg/kg/d; d 11-13, no dose; d 14-16, Cr(III) ingestion at the U.S. EPA RfD of 1.0 mg/kg/d; and 17-18, postdose. Findings are as follows: (1) ingestion of 200more » {mu}g/d of chromium picolinate yielded significantly elevated urine concentrations such that each participant routinely exceeded background, (2) ingestion of the Cr(VI) RfD (0.005 mg/kg/d) yielded individual mean urinary chromium levels (1.2-2.3 {mu}g/L) and a pooled mean urinary chromium level (2.4 {mu}g/L) that significantly exceeded background, and (3) ingestion of the Cr(III) RfD yielded no significantly exceeded background, and (3) ingestion of the Cr(III) RfD yielded no significant increase in urinary chromium concentrations, indicating that little, if any, absorption occurred. Our work identified three critical issues that need to be accounted for in any future studies that will use urinary chromium as a marker of exposure. First, a minimum urinary chromium concentration of approximately 2 {mu}g/L should be used as a screening level to critically identify individuals who may have experienced elevated exposures to chromium. Second, if Cr(III) levels in soils are known to be less than 80,000 ppm and the Cr(III) is insoluble, urinary chromium concentrations are not an appropriate marker of exposure. Third, newer forms of chromium supplements that contain organic forms of Cr(III) must be considered potential confounders and their contribution to residential chromium uptake must be carefully evaluated. 19 refs., 7 figs., 3 tabs.« less
Design of a multilayer-based collimated plane-grating monochromator for tender X-ray range.
Yang, Xiaowei; Wang, Hongchang; Hand, Matthew; Sawhney, Kawal; Kaulich, Burkhard; Kozhevnikov, Igor V; Huang, Qiushi; Wang, Zhanshan
2017-01-01
Collimated plane-grating monochromators (cPGMs), consisting of a plane mirror and plane diffraction grating, are essential optics in synchrotron radiation sources for their remarkable flexibility and good optical characteristics in the soft X-ray region. However, the poor energy transport efficiency of a conventional cPGM (single-layer-coated) degrades the source intensity and leaves reduced flux at the sample, especially for the tender X-ray range (1-4 keV) that covers a large number of K- and L-edges of medium-Z elements, and M-edges of high-Z elements. To overcome this limitation, the use of a multilayer-based cPGM is proposed, combining a multilayer-coated plane mirror with blazed multilayer gratings. With this combination, the effective efficiency of cPGMs can be increased by an order of magnitude compared with the conventional single-layer cPGMs. In addition, higher resolving power can be achieved with improved efficiency by increasing the blaze angle and working at higher diffraction order.
Design of a multilayer-based collimated plane-grating monochromator for tender X-ray range
Yang, Xiaowei; Wang, Hongchang; Hand, Matthew; Sawhney, Kawal; Kaulich, Burkhard; Kozhevnikov, Igor V.; Huang, Qiushi; Wang, Zhanshan
2017-01-01
Collimated plane-grating monochromators (cPGMs), consisting of a plane mirror and plane diffraction grating, are essential optics in synchrotron radiation sources for their remarkable flexibility and good optical characteristics in the soft X-ray region. However, the poor energy transport efficiency of a conventional cPGM (single-layer-coated) degrades the source intensity and leaves reduced flux at the sample, especially for the tender X-ray range (1–4 keV) that covers a large number of K- and L-edges of medium-Z elements, and M-edges of high-Z elements. To overcome this limitation, the use of a multilayer-based cPGM is proposed, combining a multilayer-coated plane mirror with blazed multilayer gratings. With this combination, the effective efficiency of cPGMs can be increased by an order of magnitude compared with the conventional single-layer cPGMs. In addition, higher resolving power can be achieved with improved efficiency by increasing the blaze angle and working at higher diffraction order. PMID:28009556
Environmental responsiveness of polygalacturonic acid-based multilayers to variation of pH.
Westwood, Marta; Noel, Timothy R; Parker, Roger
2011-02-14
The effect of pH on the stability of layer-by-layer deposited polygalacturonic acid (PGalA)-based multilayer films prepared with the polycations poly-L-lysine, chitosan, and lysozyme is studied. The response was characterized using a quartz crystal microbalance, dual polarization interferometry, and Fourier transform infrared spectroscopy which probe multilayer thickness, density, polymer mass (composition and speciation), and hydration. All multilayers showed irreversible changes in response to pH change becoming thinner due to the partial disassembly. Preferential loss of the polycation (50-80% w/w) and relative small losses of PGaLA (10-35% w/w) occurred. The charge density on the polycation has a strong influence on the response to the acid cycle. Most of the disassembly takes place at the pH lower that pK(a) of PGaLA, indicating that this factor was crucial in determining the stability of the films. The pH challenge also revealed a polycation-dependent shift to acid pH in the PGaLA pK(a).
Development of a hybrid wave based-transfer matrix model for sound transmission analysis.
Dijckmans, A; Vermeir, G
2013-04-01
In this paper, a hybrid wave based-transfer matrix model is presented that allows for the investigation of the sound transmission through finite multilayered structures placed between two reverberant rooms. The multilayered structure may consist of an arbitrary configuration of fluid, elastic, or poro-elastic layers. The field variables (structural displacements and sound pressures) are expanded in terms of structural and acoustic wave functions. The boundary and continuity conditions in the rooms determine the participation factors in the pressure expansions. The displacement of the multilayered structure is determined by the mechanical impedance matrix, which gives a relation between the pressures and transverse displacements at both sides of the structure. The elements of this matrix are calculated with the transfer matrix method. First, the hybrid model is numerically validated. Next a comparison is made with sound transmission loss measurements of a hollow brick wall and a sandwich panel. Finally, numerical simulations show the influence of structural damping, room dimensions and plate dimensions on the sound transmission loss of multilayered structures.
NASA Astrophysics Data System (ADS)
Su, Wei-Jhih; Chang, Hsuan-Chen; Honda, Shin-ichi; Lin, Pao-Hung; Huang, Ying-Sheng; Lee, Kuei-Yi
2017-08-01
Chemical doping with hetero-atoms is an effective method used to change the characteristics of materials. Nitrogen doping technology plays a critical role in regulating the electronic properties of graphene. Nitrogen plasma treatment was used in this work to dope nitrogen atoms to modulate multilayer graphene electrical properties. The measured I-V multilayer graphene-base field-effect transistor characteristics (GFETs) showed a V-shaped transfer curve with the hole and electron region separated from the measured current-voltage (I-V) minimum. GFETs fabricated with multilayer graphene from chemical vapor deposition (CVD) exhibited p-type behavior because of oxygen adsorption. After using different nitrogen plasma treatment times, the minimum in I-V characteristic shifted into the negative gate voltage region with increased nitrogen concentration and the GFET channel became an n-type semiconductor. GFETs could be easily fabricated using this method with potential for various applications. The GFET transfer characteristics could be tuned precisely by adjusting the nitrogen plasma treatment time.
2012-01-01
The dielectric/metal/dielectric multilayer is suitable for a transparent electrode because of its high-optical and high-electrical properties; however, it is fabricated by an expensive and inefficient multistep vacuum process. We present a WO3/Ag/WO3 (WAW) multilayer transparent anode with solution-processed WO3 for polymer light-emitting diodes (PLEDs). This WAW multilayer not only has high transmittance and low resistance but also can be easily and rapidly fabricated. We devised a novel method to deposit a thin WO3 layer by a solution process in an air environment. A tungstic acid solution was prepared from an aqueous solution of Na2WO4 and then converted to WO3 nanoparticles (NPs) by a thermal treatment. Thin WO3 NP layers form WAW multilayer with a thermal-evaporated Ag layer, and they improve the transmittance of the WAW multilayer because of its high transmittance and refractive index. Moreover, the surface of the WO3 layer is homogeneous and flat with low roughness because of the WO3 NP generation from the tungstic acid solution without aggregation. We performed optical simulation and experiments, and the optimized WAW multilayer had a high transmittance of 85% with a sheet resistance of 4 Ω/sq. Finally, PLEDs based on the WAW multilayer anode achieved a maximum luminance of 35,550 cd/m2 at 8 V, and this result implies that the solution-processed WAW multilayer is appropriate for use as a transparent anode in PLEDs. PMID:22587669
Jeon, Kangmin; Youn, Hongseok; Kim, Seongbeom; Shin, Seongbeom; Yang, Minyang
2012-05-15
The dielectric/metal/dielectric multilayer is suitable for a transparent electrode because of its high-optical and high-electrical properties; however, it is fabricated by an expensive and inefficient multistep vacuum process. We present a WO3/Ag/WO3 (WAW) multilayer transparent anode with solution-processed WO3 for polymer light-emitting diodes (PLEDs). This WAW multilayer not only has high transmittance and low resistance but also can be easily and rapidly fabricated. We devised a novel method to deposit a thin WO3 layer by a solution process in an air environment. A tungstic acid solution was prepared from an aqueous solution of Na2WO4 and then converted to WO3 nanoparticles (NPs) by a thermal treatment. Thin WO3 NP layers form WAW multilayer with a thermal-evaporated Ag layer, and they improve the transmittance of the WAW multilayer because of its high transmittance and refractive index. Moreover, the surface of the WO3 layer is homogeneous and flat with low roughness because of the WO3 NP generation from the tungstic acid solution without aggregation. We performed optical simulation and experiments, and the optimized WAW multilayer had a high transmittance of 85% with a sheet resistance of 4 Ω/sq. Finally, PLEDs based on the WAW multilayer anode achieved a maximum luminance of 35,550 cd/m2 at 8 V, and this result implies that the solution-processed WAW multilayer is appropriate for use as a transparent anode in PLEDs.
Ag-Pd-Cu alloy inserted transparent indium tin oxide electrodes for organic solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyo-Joong; Seo, Ki-Won; Kim, Han-Ki, E-mail: imdlhkkim@khu.ac.kr
2014-09-01
The authors report on the characteristics of Ag-Pd-Cu (APC) alloy-inserted indium tin oxide (ITO) films sputtered on a glass substrate at room temperature for application as transparent anodes in organic solar cells (OSCs). The effect of the APC interlayer thickness on the electrical, optical, structural, and morphological properties of the ITO/APC/ITO multilayer were investigated and compared to those of ITO/Ag/ITO multilayer electrodes. At the optimized APC thickness of 8 nm, the ITO/APC/ITO multilayer exhibited a resistivity of 8.55 × 10{sup −5} Ω cm, an optical transmittance of 82.63%, and a figure-of-merit value of 13.54 × 10{sup −3} Ω{sup −1}, comparable to those of the ITO/Ag/ITOmore » multilayer. Unlike the ITO/Ag/ITO multilayer, agglomeration of the metal interlayer was effectively relieved with APC interlayer due to existence of Pd and Cu elements in the thin region of the APC interlayer. The OSCs fabricated on the ITO/APC/ITO multilayer showed higher power conversion efficiency than that of OSCs prepared on the ITO/Ag/ITO multilayer below 10 nm due to the flatness of the APC layer. The improved performance of the OSCs with ITO/APC/ITO multilayer electrodes indicates that the APC alloy interlayer prevents the agglomeration of the Ag-based metal interlayer and can decrease the thickness of the metal interlayer in the oxide-metal-oxide multilayer of high-performance OSCs.« less
NASA Technical Reports Server (NTRS)
Barrett, C. A.; Lowell, C. E.
1975-01-01
Twenty-five commercial nickel-, iron-, and cobalt-base sheet alloys incorporating chromium or chromium and aluminum additions for oxidation resistance were tested at 1150 C in air for 100 hr in both isothermal and 1-hr cyclic furnace exposures. The alloys were evaluated by sample specific weight change, by type of scale formed, by amount and type of spall, and by sample thickness change and microstructure.-
Installation Restoration Program. Phase 1, Records Search. Chanute AFB, Illinois
1983-12-01
Ogle County in northern Illinois to Wabash County in the southeast part of the state. It occurs approximately two miles west of Chanute Air Force Base...AFB) Station I Oil & Ammonia Cadmium Chromium Copper Iron Lead Mercury Nickel Silver Date COD Grease (*) Phosphorus (50)* (1000)* (20)* (1000) • (100...MONITORING DATA SALT FORK CREEK BEFORE TRIBUTARY CONFLUENCE (Before Entering Chanute APB) Station 2 Oil & Ammonia Cadmium Chromium Copper Iron Lead Mercury
Capacity and Delay Spread in Multilayer Diffusion-Based Molecular Communication (DBMC) Channel.
Md Mustam, Saizalmursidi; Syed-Yusof, Sharifah K; Zubair, Suleiman
2016-10-01
In nanoscale communication, diffusion-based molecular communication (DBMC) in which information is encoded into molecule patterns by a transmitter nanomachine, has emerged as a promising communication system, particularly for biomedical and healthcare applications. Although, numerous studies have been conducted to evaluate and analyze DBMC systems, investigation on DBMC system through a multilayer channel has received less attention. The aims of this paper are to formulate channel characteristics and to evaluate the performance of multilayer DBMC channel in terms of delay spread and capacity. In this paper, the propagation of molecules over an n- layer channel is assumed to follow the Brownian motion and subjected to Fick's law of diffusion. Fourier transform is used to convert time to frequency domain functions. Besides, the multilayer channel is considered as a linear and deterministic channel. For the performance evaluation, the air-water-blood plasma medium representing the simplified multilayer diffusion model in the respiratory system was chosen. It was found that a high channel capacity can be achieved with wide transmission bandwidth, short transmission distance, and high averaged transmitted power. In addition, the findings showed that channel delay spread increases as both the transmission distance, and the pulse duration increased. By setting the symbol duration greater than the pulse duration or delay spread, an inter-symbol interference problem due to previous molecules transmission can be mitigated. These findings can be used as a guide in the development and fabrication of future artificial nanocommunication and nanonetworks systems involving multilayer transmission medium.
Togawa, Kayo; Le Cornet, Charlotte; Feychting, Maria; Tynes, Tore; Pukkala, Eero; Hansen, Johnni; Olsson, Ann; Oksbjerg Dalton, Susanne; Nordby, Karl-Christian; Uuksulainen, Sanni; Wiebert, Pernilla; Woldbæk, Torill; Skakkebæk, Niels E; Fervers, Béatrice; Schüz, Joachim
2016-10-01
Data are scarce on the association between prenatal/preconception environmental exposure and testicular germ cell tumor (TGCT) in offspring. We examined parental occupational exposures to heavy metals and welding fumes in relation to TGCT in offspring in a registry-based case-control study (NORD-TEST Study). We identified TGCT cases diagnosed at ages 14-49 years in Finland (1988-2012), Norway (1978-2010), and Sweden (1979-2011) through nationwide cancer registries. These cases were individually matched by country and year of birth to controls selected from population registries. Information on parental occupations was retrieved from censuses. From this, we estimated prenatal/preconception exposures of chromium, iron, nickel, lead, and welding fumes (all three countries), and cadmium (Finland only) for each parent using job-exposure matrices specifying prevalence (P) and mean exposure level (L). Exposure indices were calculated as a product of P and L (P × L), and exposure categories were based on P × L or different combinations of P and L. The study comprised 8,112 cases and 26,264 controls. We observed no statistically significant TGCT risk associated with presence of heavy metals/welding fumes (P × L > 0) and no dose-response relationship (P trend ≥ 0.32). A statistically significant elevated TGCT risk was found in paternal exposure category where both P and L of chromium were high (vs. no chromium; OR = 1.37, 95% confidence interval; 1.05-1.79). Our study provides little evidence of associations between parental exposures to heavy metals/welding fumes and TGCT in offspring with the potential exception of high paternal chromium exposure. Further research on paternal chromium exposure is warranted. Cancer Epidemiol Biomarkers Prev; 25(10); 1426-34. ©2016 AACR. ©2016 American Association for Cancer Research.
Fresquez, Mark R; Gonzalez-Jimenez, Nathalie; Gray, Naudia; Valentin-Blasini, Liza; Watson, Clifford H; Pappas, R Steven
2017-05-01
Chromium is transported in mainstream tobacco smoke at very low concentrations. However, when chromium is deposited too deeply in the lungs for mucociliary clearance, or is in a particle that is too large to pass directly through tissues, it bioaccumulates in the lungs of smokers. It is important to determine the concentrations of chromium that are transported in mainstream smoke. Several reliable studies have resulted in reports of chromium concentrations in smoke particulate that were below limits of detection (LODs) for the instruments and methods employed. In this study, electrothermal vaporization-triple quad-inductively coupled plasma-mass spectrometry (ETV-QQQ-ICP-MS) was chosen for determination of chromium concentrations in mainstream smoke because of the high sensitivity of ETV combined with QQQ-ICP-MS. The smoke from five reference, quality control, and commercial cigarettes was analyzed using ETV-QQQ-ICP-MS with isotope dilution for quantitative determination of chromium. The method LOD was sufficiently low that chromium concentrations in mainstream smoke could indeed be determined. The chromium concentrations in the smoke particulate were between 0.60 and 1.03 ng/cigarette. The range of chromium concentrations was at or below previously reported LODs. Determination of the oxidation state of the chromium transported in mainstream smoke would also be important, in consideration of the fact that both chromium(III) and chromium(VI) oxidation states cause inhalation toxicity, but chromium(VI) is also a carcinogen. It was possible to separate the oxidation states using ETV-QQQ-ICP-MS. However, determination of individual species at the levels found in mainstream smoke particulate matter was not possible with the present method. Published by Oxford University Press 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Fresquez, Mark R.; Gonzalez-Jimenez, Nathalie; Gray, Naudia; Valentin-Blasini, Liza; Watson, Clifford H.; Pappas, R. Steven
2017-01-01
Chromium is transported in mainstream tobacco smoke at very low concentrations. However, when chromium is deposited too deeply in the lungs for mucociliary clearance, or is in a particle that is too large to pass directly through tissues, it bioaccumulates in the lungs of smokers. It is important to determine the concentrations of chromium that are transported in mainstream smoke. Several reliable studies have resulted in reports of chromium concentrations in smoke particulate that were below limits of detection for the instruments and methods employed. In this study, electrothermal vaporization-triple quad-inductively coupled plasma-mass spectrometry (ETV-QQQ-ICP-MS) was chosen for determination of chromium concentrations in mainstream smoke because of the high sensitivity of ETV combined with QQQ-ICP-MS. The smoke from five reference, quality control, and commercial cigarettes was analyzed using ETV-QQQ-ICP-MS with isotope dilution for quantitative determination of chromium. The method limit of detection (LOD) was sufficiently low that chromium concentrations in mainstream smoke could indeed be determined. The chromium concentrations in the smoke particulate were between 0.60 and 1.03 ng/cigarette. The range of chromium concentrations was at or below previously reported LODs. Determination of the oxidation state of the chromium transported in mainstream smoke would also be important, in consideration of the fact that both chromium(III) and chromium(VI) oxidation states cause inhalation toxicity, but chromium(VI) is also a carcinogen. It was possible to separate the oxidation states using ETV-QQQ-ICP-MS. However, determination of individual species at the levels found in mainstream smoke particulate matter was not possible with the present method. PMID:28164228
Zhang, Jian-rong; Li, Juan; Xu, Wei
2013-09-01
In-situ biological stabilization solidification (SS) technology is an effective ground water risk control method for chromium contaminated sites. Through on-site engineering test, this paper has preliminarily validated the remediation effect of in-situ SS method on a southern chromium contaminated site. The engineering test site has an area of approximately 600 m2, and is located at the upstream of the contaminated area. Due to the severe contamination of chromium, the total chromium concentration reached up to 11,850 mg x kg(-1), while the hexavalent chromium concentration reached up to 349 mg x kg(-1), and the most severely contaminated soil had a depth of -0.5 - -2 m. Variations in hexavalent chromium and total chromium concentration in groundwater were observed through the injection of reducing agents and microbial regulators into the injection wells in the test site, and through the monitoring analysis at different time and different depth under the action of the injection agents. Results of the engineering test showed that the on-site SS technology significantly changed the chromium speciation in soil and then reduced the migration of chromium, thus the groundwater risk was reduced. The injected agents had a good effect of hexavalent chromium remediation in groundwater within the effective range of the injection wells, and the SS rate of hexavalent chromium into trivalent chromium reached 94%-99.9%, the SS rate of total chromium fixation reached 83.9%-99.8%. The test results are of significant reference value for the remediation of contaminated sites with features of shallow groundwater depth and soil mainly consisting of silty clay and sandy clay.
NASA Technical Reports Server (NTRS)
Powers, William O.
1987-01-01
A study of reduced chromium content in a nickel base superalloy via element substitution and rapid solidification processing was performed. The two elements used as partial substitutes for chromium were Si and Zr. The microstructure of conventionally solidified materials was characterized using microscopy techniques. These alloys were rapidly solidified using the chill block melt spinning technique and the rapidly solidified microstructures were characterized using electron microscopy. The spinning technique and the rapidly solidified microstructures was assessed following heat treatments at 1033 and 1272 K. Rapidly solidified material of three alloys was reduced to particulate form and consolidated using hot isostatic pressing (HIP). The consolidated materials were also characterized using microscopy techniques. In order to evaluate the relative strengths of the consolidated alloys, compression tests were performed at room temperature and 1033 K on samples of as-HIPed and HIPed plus solution treated material. Yield strength, porosity, and oxidation resistance characteristics are given and compared.
Rhodes, Nicholas R.; Belmore, Ken; Cassady, Carolyn J.; Vincent, John B.
2013-01-01
The synthesis and characterization of chromium basic carboxylate complexes, [Cr3(O2CR)6L3]+, containing trifluoroacetate, 3-fluoropyridine, 3-trifluoromethylpyridine, and 4-trifluoromethylpyridine are described. The substituted pyridine ligands are used as models of DNA bases to determine whether 19F NMR would be a potentially useful probe of the binding of Cr3+ to DNA. The 19F NMR resonances of the coordinated ligands, while broadened by delocalization of unpaired electron density from the S=3/2 chromic centers, are readily discernable, and the contact shifts are of sufficient magnitude that the signals from coordinated and free ligands can easily be differentiated. Thus, 19F NMR appears to be a potentially useful probe of the binding of Cr3+ to DNA containing F-labeled bases. Additionally, electrospray MS is shown to be a convenient method to establish the identity of chromium basic carboxylate assemblies. PMID:24222929
Oxidation/vaporization of silicide coated columbium base alloys
NASA Technical Reports Server (NTRS)
Kohl, F. J.; Stearns, C. A.
1971-01-01
Mass spectrometric and target collection experiments were made at 1600 K to elucidate the mode of oxidative vaporization of two columbium alloys, fused-slurry-coated with a complex silicide former (Si-20Cr-Fe). At oxygen pressures up to 0.0005 torr the major vapor component detected by mass spectrometry for oxidized samples was gaseous silicon monoxide. Analysis of condensates collected at oxygen pressures of 0.1, 1.0 and 10 torr revealed that chromium-, silicon-, iron- and tungsten- containing species were the major products of vaporization. Equilibrium thermochemical diagrams were constructed for the metal-oxygen system corresponding to each constituent metal in both the coating and base alloy. The major vaporizing species are expected to be the gaseous oxides of chromium, silicon, iron and tungsten. Plots of vapor phase composition and maximum vaporization rate versus oxygen pressure were calculated for each coating constituent. The major contribution to weight loss by vaporization at oxygen pressures above 1 torr was shown to be the chromium-containing species.
Navy Electroplating Pollution Control Technology Assessment Manual.
1984-02-01
quality. Dummying of chromium baths is used in the special case where high cathode-to-anode 5ea ratio has resulted in build up of trivalent chromium (Cr...Dummying with a high anode -to-cat hode area ratio can be 6used to reoxidize the trivalent to hexavalent chromium (Cr ).Proper scheduling of work can...unit processes: * Chromium reduction (if needed) of segregated chromium waste streams to reduce the chromium from its hexavalent form to the trivalent
Monitored Natural Recovery at Contaminated Sediment Sites
2009-05-01
Cr(VI) hexavalent chromium Cr(III) trivalent chromium CSM conceptual site model DBT dibutyltin DELT deformities, eroded fins, lesions, and...nickel sulfide complexes in Foundry Cove, NY (USEPA 2005c). Hexavalent chromium (Cr(VI)) reduction, subsequent precipitation as trivalent chromium (Cr...established scientific findings—such as the reduction of hexavalent chromium (Cr(VI)) to trivalent chromium (Cr(III)) in reduced environments (Martello et
Effect of feeders in 3D modeling of low impedance multilayer CPW transmission line
NASA Astrophysics Data System (ADS)
Zaini, R. I.; Kyabaggu, P. B. K.; Sinulingga, E. P.
2018-02-01
Improved characteristics with low dissipation loss MMICs are highly desirable for wireless communications. However, the current industrial MMIC design is mainly based on microstrip concept which suffered from parasitic and unwanted phenomenon especially at higher frequency (>20 GHz). On the other hand, for future wireless technology, higher frequency operation is required and on-wafer microwave characterizations as well as precise modeling of 3D Multilayer CPW components are vital. This project concerns with understanding of the microwave characteristics behavior of Multilayer CPW components in MMIC applications. Feeder effect as unwanted parts in the characteristics has been investigated to determine its relation with the half wavelength resonance of the Multilayer CPW Low Impedance Transmission Line.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-20
.... Regulated sources do not include chromium electroplating and chromium anodizing sources, as those sources are subject to 40 CFR part 63, subpart N, ``Chromium Emissions From Hard and Decorative Chromium Electroplating and Chromium Anodizing Tanks.'' Manufacturing 32, 33 Area source establishments engaged in one or...
Concentrations and Potential Health Risks of Metals in Lip Products
Liu, Sa; Rojas-Cheatham, Ann
2013-01-01
Background: Metal content in lip products has been an issue of concern. Objectives: We measured lead and eight other metals in a convenience sample of 32 lip products used by young Asian women in Oakland, California, and assessed potential health risks related to estimated intakes of these metals. Methods: We analyzed lip products by inductively coupled plasma optical emission spectrometry and used previous estimates of lip product usage rates to determine daily oral intakes. We derived acceptable daily intakes (ADIs) based on information used to determine public health goals for exposure, and compared ADIs with estimated intakes to assess potential risks. Results: Most of the tested lip products contained high concentrations of titanium and aluminum. All examined products had detectable manganese. Lead was detected in 24 products (75%), with an average concentration of 0.36 ± 0.39 ppm, including one sample with 1.32 ppm. When used at the estimated average daily rate, estimated intakes were > 20% of ADIs derived for aluminum, cadmium, chromium, and manganese. In addition, average daily use of 10 products tested would result in chromium intake exceeding our estimated ADI for chromium. For high rates of product use (above the 95th percentile), the percentages of samples with estimated metal intakes exceeding ADIs were 3% for aluminum, 68% for chromium, and 22% for manganese. Estimated intakes of lead were < 20% of ADIs for average and high use. Conclusions: Cosmetics safety should be assessed not only by the presence of hazardous contents, but also by comparing estimated exposures with health-based standards. In addition to lead, metals such as aluminum, cadmium, chromium, and manganese require further investigation. PMID:23674482
Development of ductile high-strength chromium alloys, phase 2
NASA Technical Reports Server (NTRS)
Filippi, A. M.
1973-01-01
Strength and ductility were evaluated for chromium alloys dispersion hardened with the putative TaC, TaB, CbC, and CbB compounds. TaC and TaB proved to be the most potent strengtheners, but when combined, their effect far outweighed that produced individually. Tests at 1422 K (2100 F) on an alloy containing these two compounds at the combined level of 0.5 m/o revealed a 495 MN/sq m (70 ksi) tensile strength for wrought material, and a 100 hour rupture strength of 208 MN/sq m (30 ksi) when solution annealed and aged to maximize creep resistance. These levels of high temperature strength greatly exceed that reported for any other chromium-base alloy. The ductile-to-brittle transition temperature (DBTT) of the two phase strengthened alloy occurred at approximately 588 K (600 F) when heat treated to optimize creep strength and was not improved by fabrication to produce a wrought and recovered microstructure. The lowest DBTT measured on any of the alloys investigated was 422 K (300 F). Strengthening phases actually formed in Cr-Ta-B and Cr-Cb-B compositions are probable M2CrB2 (M=Ta or Cb) compounds of tetragonal crystal structure. The likely habit relationship between these compounds and chromium is postulated. Cube habit coherency was identified for TaC precipitation in chromium by electron microscopy. In another study, the maximum solubility of carbon in chromium was indicated to lie between 3/4 and 1 a/o and that of boron to be 1/2 a/o.
Aqueous chemical growth of alpha-Fe2O3-alpha-Cr203 nanocompositethin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vayssieres, Lionel; Guo, Jinghua; Nordgren, Joseph
2001-06-30
We are reporting here on the inexpensive fabrication and optical properties of an iron(III) oxide chromium(III) oxide nanocomposite thin film of corundum crystal structure. Its novel and unique-designed architecture consists of uniformed, well-defined and oriented nanorods of Hematite (alpha-Fe2O3) of 50 nm in diameter and 500nm in length and homogeneously distributed nonaggregated monodisperse spherical nanoparticles of Eskolaite (alpha-Cr2O3) of 250 nm in diameter. This alpha-Fe2O3 alpha-Cr2O3 nanocomposite thin film is obtained by growing, directly onto transparent polycrystalline conducting substrate, an oriented layer of hematite nanorods and growing subsequently, the eskolaite layer. The synthesis is carried out by a template-free, low-temperature,more » multilayer thin film coating process using aqueous solution of metal salts as precursors. Almost 100 percent of the light is absorbed by the composite film between 300 and 525 nm and 40 percent at 800 nm which yields great expectations as photoanode materials for photovoltaic cells and photocatalytic devices.« less
Cutaneous absorption of trivalent chromium: tissue levels and treatment by exchange transfusion
Kelly, W F; Ackrill, P; Day, J P; O'Hara, Maureen; Tye, C T; Burton, I; Orton, C; Harris, M
1982-01-01
ABSTRACT A man was accidentally immersed in hot acidic trivalent chromium sulphate solution but none was swallowed. The clinical course was dominated by burns, intravascular haemolysis, and acute renal failure. Blood concentrations of chromium were measured during treatment and tissue concentrations were measured at death. Exchange transfusion reduced blood chromium concentrations by two-thirds. The total quantities of chromium absorbed and removed by various routes were calculated. In-vitro studies showed that the chromium solution did not directly cause haemolysis. Images PMID:7138799
2010-01-01
aluminum parts with a more benign trivalent chromium process. LOGCOM, located in Albany, Georgia, is the focal point for the planning and execution of...for choosing trivalent chromium as a replacement. “ Trivalent chromium is better for not only the work environ- ment, but the larger environment. It is...hexava- lent chromium and trivalent chromium anodizing are dip-tank processes requiring parts to be dipped into containers of the solution,” says Petties
1992-05-01
replicates were ɘ.020 mg/L. The chromium present was in the trivalent form. 139. Vendor 2. The replicate total chromium TCLP concentrations in the...criterion. The chromium present in the leachates was in the trivalent form, shown by concentrations of Cr(VI) of ɘ.020, ɘ.020, and 0.042 mg/L. 142...concentrations of total chromium were 4.7, 3.7, and 4.1 mg/L. Chromium is present in the trivalent form. The total chromium concentrations were below
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kjornrattanawanich, Benjawan
2002-09-01
The motivation of this work is to develop high reflectance normal-incidence multilayer mirrors in the 8-12 nm wavelength region for applications in astronomy and extreme ultraviolet lithography. To achieve this goal, Mo/Sr and Mo/Y multilayers were studied. These multilayers were deposited with a UHV magnetron sputtering system and their reflectances were measured with synchrotron radiation. High normal-incidence reflectances of 23% at 8.8 nm, 40.8% at 9.4 nm, and 48.3% at 10.5 nm were achieved. However, the reflectance of Mo/Sr multilayers decreased rapidly after exposure to air. Attempts to use thin layers of carbon to passivate the surface of Mo/Sr multilayers were unsuccessful. Experimental results on the refractive indexmore » $$\\tilde{n}$$ = 1-δ + iβ of yttrium and molybdenum in the 50-1300 eV energy region are reported in this work. This is the first time ever that values on the refractive index of yttrium are measured in this energy range. The absorption part β was determined through transmittance measurements. The dispersive part δ was calculated by means of the Kramers-Kronig formalism. The newly determined values of the refractive index of molybdenum are in excellent agreement with the published data. Those of yttrium are more accurate and contain fine structures around the yttrium M-absorption edges where Mo/Y multilayers operate. These improved sets of optical data lead to better design and modeling of the optical properties of Mo/Y multilayers. The reflectance quality of Mo/Y multilayers is dependent on their optical and structural properties. To correlate these properties with the multilayer reflectance, x-ray diffraction, Rutherford backscattering spectrometry, and transmission electron microscopy were used to analyze samples. Normal-incidence reflectances of 32.6% at 9.27 nm, 38.4% at 9.48 nm, and 29.6% at 9.46 nm were obtained from three representative Mo/Y multilayers which had about 0%, 25%, and 39% atomic oxygen assimilated in their yttrium layers, respectively. Based on the optical properties, multilayers with higher oxygen content should have higher absorption. However, the 25%-oxygen multilayer had less interface roughness and thus had higher reflectance than the 0%-oxygen sample. The 39%-oxygen multilayer had the highest absorption and roughness, thus had the lowest reflectance among three samples. The optical and structural properties of the multilayers are competing in the reflectance results.« less
Colla, Luciane Maria; Dal'Magro, Clinei; De Rossi, Andreia; Thomé, Antônio; Reinehr, Christian Oliveira; Bertolin, Telma Elita; Costa, Jorge Alberto Vieira
2015-01-01
Microalga biomass has been described worldwide according their capacity to realize biosorption of toxic metals. Chromium is one of the most toxic metals that could contaminate superficial and underground water. Considering the importance of Spirulina biomass in production of supplements for humans and for animal feed we assessed the biosorption of hexavalent chromium by living Spirulina platensis and its capacity to convert hexavalent chromium to trivalent chromium, less toxic, through its metabolism during growth. The active biomass was grown in Zarrouk medium diluted to 50% with distilled water, keeping the experiments under controlled conditions of aeration, temperature of 30°C and lighting of 1,800 lux. Hexavalent chromium was added using a potassium dichromate solution in fed-batch mode with the aim of evaluate the effect of several additions contaminant in the kinetic parameters of the culture. Cell growth was affected by the presence of chromium added at the beginning of cultures, and the best growth rates were obtained at lower metal concentrations in the medium. The biomass removed until 65.2% of hexavalent chromium added to the media, being 90.4% converted into trivalent chromium in the media and 9.6% retained in the biomass as trivalent chromium (0.931 mg.g(-1)).
NASA Astrophysics Data System (ADS)
Survilienė, S.; Češūnienė, A.; Jasulaitienė, V.; Jurevičiūtė, I.
2015-01-01
The paper reviews black chromium electrodeposited from a trivalent chromium bath containing ZnO as a second main component. The chemical compositions of the top layers of the black chromium coatings were studied by the X-ray photoelectron spectroscopy method. The surface of black chromium was found to be almost entirely covered with organic substances. To gain information on the state of each element in the deposit bulk, the layer-by-layer etching of the black chromium surface with argon gas was used. Analysis of XPS spectra has shown that the top layers of black chromium without zinc are composed of various Cr(III) components, organic substances and metallic Cr, whereas metallic Cr is almost absent in black chromium containing some amount of Zn(II) compounds. The ratios of metal/oxide phases were found to be 10/27 and 2/28 for black chromium without and with zinc, respectively. It has been determined that owing to the presence of ZnO in the Cr(III) bath, the percentage of metallic chromium is substantially reduced in black chromium which is quite important for good solar selective characteristics of the coating. The results confirm some of earlier observations and provide new information on the composition of the near-surface layers.
Bregnbak, David; Thyssen, Jacob P; Jellesen, Morten S; Zachariae, Claus; Johansen, Jeanne D
2016-08-01
Chromium is an important skin sensitizer. Exposure to it has been regulated in cement, and recently in leather. Studies on the deposition of chromium ions on the skin as a result of handling different chromium-containing materials are sparse, but could improve the risk assessment of contact sensitization and allergic contact dermatitis caused by chromium. To determine whether the handling of chromium-containing samples of leather and metal results in the deposition of chromium onto the skin. Five healthy volunteers participated. For 30 min, they handled samples of leather and metal known to contain and release chromium. Skin deposition of chromium was assessed with the acid wipe sampling technique. Acid wipe sampling of the participants' fingers showed chromium deposition on the skin in all participants who had been exposed to leather (range 0.01-0.20 µg/cm(2) ) and in 3 of 5 participants after they had manually handled metal discs (range 0.02-0.04 µg/cm(2) ). We found that samples of leather and metal had the ability to deposit chromium on the skin at significant levels, in spite of a short duration of exposure. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Kim, Jun-Hwan; Kang, Ju-Chan
2016-01-01
Juvenile rockfish (mean length 13.7±1.7 cm, and mean weight 55.6±4.8 g) were exposed for 4 weeks with the different levels of dietary chromium (Cr(6+)) at 0, 30, 60, 120 and 240 mg/kg. The profile of chromium in the tissues of rockfish is dependent on the exposure periods and chromium concentration. After 4 weeks, the order of chromium accumulation in tissues was liver>kidney>spleen>intestine>gill>muscle. The dietary chromium exposure decreased the growth rate and hepatosomatic index of rockfish. The major hematological findings were significant decrease in the red blood cell (RBC) count, hematocrit (Ht) value, and hemoglobin (Hb) concentration exposed to ≥120 mg/kg chromium concentrations. The dietary chromium exposure (≥120 mg/kg) led to notable increase in glucose, cholesterol, glutamic oxalate transaminase (GOT), and glutamic pyruvate transaminase (GPT) in plasma, whereas there was no considerable change in calcium, magnesium, total protein, and alkaline phosphatase (ALP). The results indicated that the dietary chromium exposure to rockfish can induce significant chromium accumulation in the specific tissues, inhibition of growth, and hematological alterations. Copyright © 2015 Elsevier B.V. All rights reserved.
Chromium supplementation improved post-stroke brain infarction and hyperglycemia.
Chen, Wen-Ying; Mao, Frank Chiahung; Liu, Chia-Hsin; Kuan, Yu-Hsiang; Lai, Nai-Wei; Wu, Chih-Cheng; Chen, Chun-Jung
2016-04-01
Hyperglycemia is common after acute stroke and is associated with a worse outcome of stroke. Thus, a better understanding of stress hyperglycemia is helpful to the prevention and therapeutic treatment of stroke. Chromium is an essential nutrient required for optimal insulin activity and normal carbohydrate and lipid metabolism. Beyond its nutritional effects, dietary supplement of chromium causes beneficial outcomes against several diseases, in particular diabetes-associated complications. In this study, we investigated whether post-stroke hyperglycemia involved chromium dynamic mobilization in a rat model of permanent focal cerebral ischemia and whether dietary supplement of chromium improved post-stroke injury and alterations. Stroke rats developed brain infarction, hyperglycemia, hyperinsulinemia, glucose intolerance, and insulin resistance. Post-stroke hyperglycemia was accompanied by elevated secretion of counter-regulatory hormones including glucagon, corticosterone, and norepinephrine, decreased insulin signaling in skeletal muscles, and increased hepatic gluconeogenesis. Correlation studies revealed that counter-regulatory hormone secretion showed a positive correlation with chromium loss and blood glucose increased together with chromium loss. Daily chromium supplementation increased tissue chromium levels, attenuated brain infarction, improved hyperglycemia, and decreased plasma levels of glucagon and corticosterone in stroke rats. Our findings suggest that stroke rats show disturbance of tissue chromium homeostasis with a net loss through urinary excretion and chromium mobilization and loss might be an alternative mechanism responsible for post-stroke hyperglycemia.
Fume generation and content of total chromium and hexavalent chromium in flux-cored arc welding.
Yoon, Chung Sik; Paik, Nam Won; Kim, Jeong Han
2003-11-01
This study was performed to investigate the fume generation rates (FGRs) and the concentrations of total chromium and hexavalent chromium when stainless steel was welded using flux-cored arc welding (FCAW) with CO2 gas. FGRs and concentrations of total chromium and hexavalent chromium were quantified using a method recommended by the American Welding Society, inductively coupled plasma-atomic emission spectroscopy (NIOSH Method 7300) and ion chromatography (modified NIOSH Method 7604), respectively. The amount of total fume generated was significantly related to the level of input power. The ranges of FGR were 189-344, 389-698 and 682-1157 mg/min at low, optimal and high input power, respectively. It was found that the FGRs increased with input power by an exponent of 1.19, and increased with current by an exponent of 1.75. The ranges of total chromium fume generation rate (FGRCr) were 3.83-8.27, 12.75-37.25 and 38.79-76.46 mg/min at low, optimal and high input power, respectively. The ranges of hexavalent chromium fume generation rate (FGRCr6+) were 0.46-2.89, 0.76-6.28 and 1.70-11.21 mg/min at low, optimal and high input power, respectively. Thus, hexavalent chromium, which is known to be a carcinogen, generated 1.9 (1.0-2.7) times and 3.7 (2.4-5.0) times as the input power increased from low to optimal and low to high, respectively. As a function of input power, the concentration of total chromium in the fume increased from 1.57-2.65 to 5.45-8.13% while the concentration of hexavalent chromium ranged from 0.15 to 1.08%. The soluble fraction of hexavalent chromium produced by FCAW was approximately 80-90% of total hexavalent chromium. The concentration of total chromium and the solubility of hexavalent chromium were similar to those reported from other studies of shielded metal arc welding fumes, and the concentration of hexavalent chromium was similar to that obtained for metal inert gas-welding fumes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Processes Included in the Determination of BAT Effluent Limitations for Total Chromium, Hexavalent Chromium, and Phenolic Compounds (4AAP) A...—Processes Included in the Determination of BAT Effluent Limitations for Total Chromium, Hexavalent Chromium...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Processes Included in the Determination of BAT Effluent Limitations for Total Chromium, Hexavalent Chromium, and Phenolic Compounds (4AAP) A...—Processes Included in the Determination of BAT Effluent Limitations for Total Chromium, Hexavalent Chromium...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Processes Included in the Determination of BAT Effluent Limitations for Total Chromium, Hexavalent Chromium, and Phenolic Compounds (4AAP) A...—Processes Included in the Determination of BAT Effluent Limitations for Total Chromium, Hexavalent Chromium...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, B.
1989-06-27
A drilling fluid additive is described comprising a mixture of: (a) a sulfoalkylated tannin and (b) chromium acetate selected from the group consisting of chromium (III) acetate and chromium (II) acetate, wherein the chromium acetate is present in a weight ratio of the chromium acetate to the sulfoalkylated tannin in the range of from about 1:20 to about 1:1.
Development of Ni-based multilayers for future focusing soft gamma ray telescopes
NASA Astrophysics Data System (ADS)
Girou, David A.; Massahi, Sonny; Sleire, Erlend K.; Jakobsen, Anders C.; Christensen, Finn E.
2015-09-01
Ni-based multilayers are a possible solution to extend the upper energy range of hard X-ray focusing telescopes currently limited at ≈79:4 keV by the Pt-K absorption edge. In this study 10 bilayers multilayers with a constant bilayer thickness were coated with the DC magnetron sputtering facility at DTU Space, characterized at 8 keV using X-ray reectometry and fitted using the IMD software. Ni/C multilayers were found to have a mean interface roughness ≈ 1:5 times lower than Ni/B4C multilayers. Reactive sputtering with ≈ 76% of Ar and ≈ 24% of N2 reduced the mean interface roughness by a factor of ≈ 1:7. It also increased the coating rate of C by a factor of ≈ 3:1 and lead to a coating process going ≈ 1:6 times faster. Honeycomb collimation proved to limit the increase in mean interface roughness when the bilayer thickness increases at the price of a coating process going ≈ 1:9 times longer than with separator plates. Finally a Ni/C 150 bilayers depth-graded mutilayer was coated with reactive sputtering and honeycomb collimation and then characterized from 10 keV to 150 keV. It showed 10% reectance up to 85 keV.
Investigation of Electrical and Optical Properties of Highly Transparent TCO/Ag/TCO Multilayer.
Kim, Sunbo; Lee, Jaehyeong; Dao, Vinh Ai; Ahn, Shihyun; Hussain, Shahzada Qamar; Park, Jinjoo; Jung, Junhee; Lee, Chan; Song, Bong-Shik; Choi, Byoungdeog; Lee, Youn-Jung; Iftiquar, S M; Yi, Junsin
2015-03-01
Transparent conductive oxides (TCOs) have been widely used as transparent electrodes for opto-electronic devices, such as solar cells, flat-panel displays, and light-emitting diodes, because of their unique characteristics of high optical transmittance and low electrical resistivity. Among various TCO materials, zinc oxide based films have recently received much attention because they have advantages over commonly used indium and tin-based oxide films. Most TCO films, however, exhibit valleys of transmittance in the wavelength range of 550-700 nm, lowering the average transmittance in the visible region and decreasing short-circuit current (Isc) of solar cells. A TCO/Ag/TCO multi-layer structure has emerged as an attractive alternative because it provides optical characteristics without the valley of transmittance compared with a 100-nm-thick single-layer TCO. In this article, we report the electrical, optical and surface properties of TCO/Ag/TCO. These multi-layers were deposited at room temperature with various Ag film thicknesses from 5 to 15 nm while the thickness of TCO thin film was fixed at 40 nm. The TCO/Ag/TCO multi-layer with a 10-nm-thick Ag film showed optimum transmittance in the visible (400-800 nm) wavelength region. These multi-layer structures have advantages over TCO layers of the same thickness.
Modeling of Interface and Internal Disorder Applied to XRD Analysis of Ag-Based Nano-Multilayers.
Ariosa, Daniel; Cancellieri, Claudia; Araullo-Peters, Vicente; Chiodi, Mirco; Klyatskina, Elizaveta; Janczak-Rusch, Jolanta; Jeurgens, Lars P H
2018-06-20
Multilayered structures are a promising route to tailor electronic, magnetic, optical, and/or mechanical properties and durability of functional materials. Sputter deposition at room temperature, being an out-of-equilibrium process, introduces structural defects and confers to these nanosystems an intrinsic thermodynamical instability. As-deposited materials exhibit a large amount of internal atomic displacements within each constituent block as well as severe interface roughness between different layers. To access and characterize the internal multilayer disorder and its thermal evolution, X-ray diffraction investigation and analysis are performed systematically at differently grown Ag-Ge/aluminum nitride (AlN) multilayers (co-deposited, sequentially deposited with and without radio frequency (RF) bias) samples and after high-temperature annealing treatment. We report here on model calculations based on a kinematic formalism describing the displacement disorder both within the multilayer blocks and at the interfaces to reproduce the experimental X-ray diffraction intensities. Mixing and displacements at the interface are found to be considerably reduced after thermal treatment for co- and sequentially deposited Ag-Ge/AlN samples. The application of a RF bias during the deposition causes the highest interface mixing and introduces random intercalates in the AlN layers. X-ray analysis is contrasted to transmission electron microscopy pictures to validate the approach.
Multilayer modal actuator-based piezoelectric transformers.
Huang, Yao-Tien; Wu, Wen-Jong; Wang, Yen-Chieh; Lee, Chih-Kung
2007-02-01
An innovative, multilayer piezoelectric transformer equipped with a full modal filtering input electrode is reported herein. This modal-shaped electrode, based on the orthogonal property of structural vibration modes, is characterized by full modal filtering to ensure that only the desired vibration mode is excited during operation. The newly developed piezoelectric transformer is comprised of three layers: a multilayered input layer, an insulation layer, and a single output layer. The electrode shape of the input layer is derived from its structural vibration modal shape, which takes advantage of the orthogonal property of the vibration modes to achieve a full modal filtering effect. The insulation layer possesses two functions: first, to couple the mechanical vibration energy between the input and output, and second, to provide electrical insulation between the two layers. To meet the two functions, a low temperature, co-fired ceramic (LTCC) was used to provide the high mechanical rigidity and high electrical insulation. It can be shown that this newly developed piezoelectric transformer has the advantage of possessing a more efficient energy transfer and a wider optimal working frequency range when compared to traditional piezoelectric transformers. A multilayer piezoelectric, transformer-based inverter applicable for use in LCD monitors or portable displays is presented as well.
NASA Astrophysics Data System (ADS)
Setyaningsih, Yuliani; Husodo, Adi Heru; Astuti, Indwiani
2018-02-01
One of the informal sector which absorbs labor was electroplating business. This sector uses chromium as coating material because it was strong, corrosion resistant and strong. Nonetheless hexavalent chromium is highly toxic if inhaled, swallowed and contact with skin. Poor hygiene, the lack of work environment factors and sanitation conditions can increase the levels of chromium in the body. This aimed of this study was to analyze the association between work environment factors and levels of urinary chromium in informal electroplating worker. A Purposive study was conducted in Tegal Central Java. The research subjects were 66 male workers. Chi Square analysis was used to establish an association between work environment factors and level of urinary chromium. There is a relationship between heat stress and wind direction to the chromium levels in urine (p <0.05), but there is no relationship between humidity and levels of chromium in the urine (p> 0.05). This explains that work environment factors can increase chromium levels in the urine of informal electroplating workers.
Zeng, Jing; Gou, Min; Tang, Yue-Qin; Li, Guo-Ying; Sun, Zhao-Yong; Kida, Kenji
2016-10-01
In this study, a sulfur-oxidizing community was enriched from activated sludge generated in tannery wastewater treatment plants. Bioleaching of tannery sludge containing 0.9-1.2% chromium was investigated to evaluate the effectiveness of the enriched community, the effect of chromium binding forms on bioleaching efficiency, and the dominant microbes contributing to chromium bioleaching. Sludge samples inoculated with the enriched community presented 79.9-96.8% of chromium leaching efficiencies, much higher than those without the enriched community. High bioleaching efficiencies of over 95% were achieved for chromium in reducible fraction, while 60.9-97.9% were observed for chromium in oxidizable and residual fractions. Acidithiobacillus thiooxidans, the predominant bacteria in the enriched community, played an important role in bioleaching, whereas some indigenous heterotrophic species in sludge might have had a supporting role. The results indicated that A. thiooxidans-dominant enriched microbial community had high chromium bioleaching efficiency, and chromium binding forms affected the bioleaching performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yuan, Dong; Fu, Dayou; Wang, Rong; Yuan, Jigang
2008-11-01
A new rapid and sensitive FI method is reported for spectrophotometric determination of trace chromium(VI) in electroplating waste water. The method is based on the reaction of Cr(VI) with sodium diphenylamine sulfonate (DPH) in acidic medium to form a purple complex (lambda(max) = 550 nm). Under the optimized conditions, the calibration curve is linear in the range 0.04-3.8 microg ml(-1) at a sampling rate of 30 h(-1). The detection limit of the method is 0.0217 microg ml(-1), and the relative standard deviation is 1.1% for eight determinations of 2 microg ml(-1) Cr(VI). The proposed method was applied to the determination of chromium in electroplating waste water with satisfactory results.
Formation of star tracking reticles
NASA Technical Reports Server (NTRS)
Smith, W. O.; Toft, A. R. (Inventor)
1974-01-01
The present application is directed towards a process for producing high resolution, substantially non-reflective reticles or choppers suitable for use for transmitting in both the visible and near ultra-violet regions, able to withstand reasonable handling and extreme environmental conditions, and capable of operating at speeds of from 2800 to about 9000 revolutions per minute without distortion. In particular, the present invention is directed towards the production or reticles having a quartz base vacuum coated with chromium, chromium-silver alloy, and silver with electrodeposited copper and black chromium thereon, respectively, in the form of a reticle pattern. The quartz permits the transmission of light while the pattern is opaque to light. The reticles of the present invention are intended for use in optical trackers, such as star trackers used in outer space.
X-ray diffraction, FTIR, UV-VIS and SEM studies on chromium (III) complexes
NASA Astrophysics Data System (ADS)
Mishra, Ashutosh; Dwivedi, Jagrati; Shukla, Kritika
2015-06-01
Five Chromium (III) complexes have been prepared using Schiff base ligands which derived from benzoin and five different amino acids (H2N-R). Samples were characterized by XRD, FTIR, UV-VIS and SEM method. X-Ray diffraction pattern analyzed that all chromium (III) complexes have hexagonal structure and crystalline, in nature, using Bruker D8 Advance instrument. Using VERTAX 70, FTIR spectroscopy reveals that Samples have (C=N), (C-O), (M-N) and (M-O) bonds in the range of 4000-400cm-1. UV-VIS spectroscopy give information that samples absorb the visible light which is in the range of 380-780nm. For this, Lambda 960 spectrometer used. SEM is designed for studying of the solid objects, using JEOL JSM 5600 instrument.
Carcinogenicity and mutagenicity of chromium.
Léonard, A; Lauwerys, R R
1980-11-01
Occupational exposure represents the main source of human contamination by chromium. For non-occupationally exposed people the major environmental exposure to chromium occurs as a consequence of its presence in food. Chromium must be considered as an essential element. Its deficiency impairs glucose metabolism. Trivalent chromium salts are poorly absorbed through the gastro-intestinal and respiratory tracts because they do not cross membranes easily. Hexavalent chromium can be absorbed by the oral and pulmonary routes and probably also through the skin. After its absorption, hexavalent chromium is rapidly reduced to the trivalent form which is probably the only form to be found in biological material. Epidemiological studies have shown that some chromium salts (mainly the slightly soluble hexavalent salts) are carcinogens. Lung cancers have, indeed, often been reported among workers in chromate-producing industry and, to a lesser extent, in workers from the chrome-pigment industry. The first attempts to produce cancers in experimental animals by inhalation or parenteral introduction gave negative or equivocal results but, from 1960, positive results have been obtained with various chromium compounds. As for the carcinogenic activity, the mutagenicity of chromium has mainly been found with hexavalent salts. In the majority of assay systems used, trivalent chromium appears inactive. It can be considered as evident, however, that the ultimate mutagen which binds to the genetic material is the trivalent form produced intracellularly from hexavalent chromium, the apparent lack of activity of the trivalent form being due to its poor cellular uptake.
From Internationalisation to Education for Global Citizenship: A Multi-Layered History
ERIC Educational Resources Information Center
Haigh, Martin
2014-01-01
The evolving narrative on internationalisation in higher education is complex and multi-layered. This overview explores the evolution of thinking about internationalisation among different stakeholder groups in universities. It parses out eight coexisting layers that progress from concerns based largely upon institutional survival and competition…
Multilayered Word Structure Model for Assessing Spelling of Finnish Children in Shallow Orthography
ERIC Educational Resources Information Center
Kulju, Pirjo; Mäkinen, Marita
2017-01-01
This study explores Finnish children's word-level spelling by applying a linguistically based multilayered word structure model for assessing spelling performance. The model contributes to the analytical qualitative assessment approach in order to identify children's spelling performance for enhancing writing skills. The children (N = 105)…
Metal and Non-Metal Inorganic Coatings. Methods of Checking
1979-07-20
base metal (15) Copper (16) Steel (17) Zinc alloy (18) Nickel (19) Copper and its alloys (20) Nickel (21) Chromium (22) Silver (23) Copper and its alloys... Silver (9) Copper-tine alloy (for solution #6)1 NOTE,. The value (H )is given for the ninc coatings from cyanide, sulfateo ammoniat4, and zincate...fluoborlc; silver from cyanide and thiocyanic acid; dull chromium - from sulfate; copper -from sulfate and cyanide electrolytes (for solution 06). -Q -gp
Gluschenko, N; Vasylyshyn, Kh; Roschupkin, A; Lekishvili, S; Gladchenko, O
2016-01-01
The aim of this paper is to investigate the content of chromium, cobalt and nickel in serum and erythrocytes in children with type 1 diabetes mellitus, depending on the level of glycemic control. The study was conducted on 68 children with type 1 diabetes mellitus. The patients were divided into four groups based on glycemic control. Group I was composed of 9 children with optimal level of glycemic control. Group II - 25 children with suboptimal level of glycemic control. Group III - 34 children with a high risk to life level of glycemic control. Group IV (control group) consisted of 30 healthy children. Compensation state of type 1 diabetes was evaluated according to ISPAD (Consensus for the Management of Type 1 Diabetes Mellitus in Children and Adolescens 2000). The content of trace elements in biological agents was determined by atomic absorbtion spectrophotometry method with C-115M1 mass-spectrophotometer, manufactured by «Selmi» enterprise (Ukraine). It is found that there is a decrease in serum concentrations of chromium and erythrocyte content of cobalt in patients with optimal level of glycemic control. The deficiency of chromium is accompanied by the deficiency of cobalt in patients with suboptimal level of glycemic control. The lower levels of cobalt and nickel are recorded simultaneously, but there is theexcess of chromium in the erythrocytes of these patients. Patients, who suffer from 1 type diabetes mellitus and high risk for life level of glycemic control have considerable polideficiency of cobalt, nickel and chromium in serum.The increasing level of chromium was recorded only in the erythrocytes. The level of glycemic control and the duration of 1 type diabetes mellitus are important in the forecasting of the development of chronic diabetic complications. It is found that the duration of 1 type diabetes mellitus influences the levels of cobalt and nickel in serum mostly, while the level of glycemic control influences the chromium content.
Chromium speciation in environmental samples using a solid phase spectrophotometric method.
Amin, Alaa S; Kassem, Mohammed A
2012-10-01
A solid phase extraction technique is proposed for preconcentration and speciation of chromium in natural waters using spectrophotometric analysis. The procedure is based on sorption of chromium(III) as 4-(2-benzothiazolylazo)2,2'-biphenyldiol complex on dextran-type anion-exchange gel (Sephadex DEAE A-25). After reduction of Cr(VI) by 0.5 ml of 96% concentrated H(2)SO(4) and ethanol, the system was applied to the total chromium. The concentration of Cr(VI) was calculated as the difference between the total Cr and the Cr(III) content. The influences of some analytical parameters such as: pH of the aqueous solution, amounts of 4-(2-benzothiazolylazo)2,2'-biphenyldiol (BTABD), and sample volumes were investigated. The absorbance of the gel, at 628 and 750 nm, packed in a 1.0 mm cell, is measured directly. The molar absorptivities were found to be 2.11×10(7) and 3.90×10(7) L mol(-1)cm(-1) for 500 and 1000 ml, respectively. Calibration is linear over the range 0.05-1.45 μg L(-1) with RSD of <1.85% (n=8.0). Using 35 mg exchanger, the detection and quantification limits were 13 and 44 ng L(-1) for 500 ml sample, whereas for 1000 ml sample were 8.0 and 27 ng L(-1), respectively. Increasing the sample volume can enhance the sensitivity. No considerable interferences have been observed from other investigated anions and cations on the chromium speciation. The proposed method was applied to the speciation of chromium in natural waters and total chromium preconcentration in microwave digested tobacco, coffee, tea, and soil samples. The results were simultaneously compared with those obtained using an ET AAS method, whereby the validity of the method has been tested. Copyright © 2012 Elsevier B.V. All rights reserved.
Evolution of topological skyrmions across the spin reorientation transition in Pt/Co/Ta multilayers
NASA Astrophysics Data System (ADS)
He, Min; Li, Gang; Zhu, Zhaozhao; Zhang, Ying; Peng, Licong; Li, Rui; Li, Jianqi; Wei, Hongxiang; Zhao, Tongyun; Zhang, X.-G.; Wang, Shouguo; Lin, Shi-Zeng; Gu, Lin; Yu, Guoqiang; Cai, J. W.; Shen, Bao-gen
2018-05-01
Magnetic skyrmions in multilayers are particularly appealing as next generation memory devices due to their topological compact size, the robustness against external perturbations, the capability of electrical driving and detection, and the compatibility with the existing spintronic technologies. To date, Néel-type skyrmions at room temperature (RT) have been studied mostly in multilayers with easy-axis magnetic anisotropy. Here, we systematically broadened the evolution of magnetic skyrmions with sub-50-nm size in a series of Pt/Co/Ta multilayers where the magnetic anisotropy is tuned continuously from easy axis to easy plane by increasing the ferromagnetic Co layer thickness. The existence of nontrivial skyrmions is identified via the combination of in situ Lorentz transmission electron microscopy (L-TEM) and Hall transport measurements. A high density of magnetic skyrmions over a wide temperature range is observed in the multilayers with easy-plane anisotropy, which will stimulate further exploration for new materials and accelerate the development of skyrmion-based spintronic devices.
Feng, Xing-Yao; Liu, Hong-Xia; Wang, Xing; Zhao, Lu; Fei, Chen-Xi; Liu, He-Lei
2016-12-01
The mechanism of flat band voltage (VFB) shift for alternate La2O3/Al2O3 multilayer stack structures in different annealing condition is investigated. The samples were prepared for alternate multilayer structures, which were annealed in different conditions. The capacitance-voltage (C-V) measuring results indicate that the VFB of samples shift negatively for thinner bottom Al2O3 layer, increasing annealing temperature or longer annealing duration. Simultaneously, the diffusion of high-k material to interfaces in different multilayer structures and annealing conditions is observed by X-ray photoelectron spectroscopy (XPS). Based on the dipole theory, a correlation between the diffusion effect of La towards bottom Al2O3/Si interface and VFB shift is found. Without changing the dielectric constant k of films, VFB shift can be manipulated by controlling the single-layer cycles and annealing conditions of alternate high-k multilayer stack.
NASA Technical Reports Server (NTRS)
Hoover, Richard B. (Editor)
1992-01-01
The present conference discusses the Advanced X-ray Astrophysics Facility (AXAF) calibration by means of synchrotron radiation and its X-ray reflectivity, X-ray scattering measurements from thin-foil X-ray mirrors, lobster-eye X-ray optics using microchannel plates, space-based interferometry at EUV and soft X-ray wavelengths, a water-window imaging X-ray telescope, a graded d-spacing multilayer telescope for high energy X-ray astronomy, photographic films for the multispectral solar telescope array, a soft X-ray ion chamber, and the development of hard X-ray optics. Also discussed are X-ray spectroscopy with multilayered optics, a slit aperture for monitoring X-ray experiments, an objective double-crystal spectrometer, a Ly-alpha coronagraph/polarimeter, tungsten/boron nitride multilayers for XUV optical applications, the evaluation of reflectors for soft X-ray optics, the manufacture of elastically bent crystals and multilayer mirrors, and selective photodevices for the VUV.
Indium-saving effect and physical properties of transparent conductive multilayers
NASA Astrophysics Data System (ADS)
Kawamura, M.; Kiba, T.; Abe, Y.; Kim, K. H.
2018-03-01
Indium-free transparent conductive multilayer structures consisting of top and bottom MoO3 layers and an Ag interlayer (MoO3/Ag/MoO3; MAM) are deposited onto glass substrates by vacuum evaporation. The transmittance and sheet resistance of the structures are evaluated, and the optimum structure is determined to be MAM (20/14/30 nm) as it shows the best figure of merit (FOM), which is used as the index for transparent conductive films, with a value of 6.2 × 10-3 Ω-1. To further improve the performance of the films, we attempt to fabricate a multilayer consisting of MoO3 and indium zinc oxide (IZO), based on previous results. The obtained IAM (30/14/50 nm) multilayer shows an FOM higher than that of the MAM, with a value of 32 × 10-3 Ω-1. Moreover, it reduces the amount of required indium as compared with the IZO/Ag/IZO multilayer.
Li, Wei; Wang, Shaolei; Hu, Mingyue; He, Sufeng; Ge, Pengpeng; Wang, Jing; Guo, Yan Yan; Zhaowei, Liu
2015-07-03
In this paper, we prepared a novel structure to enhance the electroluminescence intensity from Si quantum dots/SiO2multilayers. An amorphous Si/SiO2 multilayer film was fabricated by plasma-enhanced chemical vapor deposition on a Pt nanoparticle (NP)-coated Si nanopillar array substrate. By thermal annealing, an embedded Si quantum dot (QDs)/SiO2 multilayer film was obtained. The result shows that electroluminescence intensity was significantly enhanced. And, the turn-on voltage of the luminescent device was reduced to 3 V. The enhancement of the light emission is due to the resonance coupling between the localized-surface-plasmon (LSP) of Pt NPs and the band-gap emission of Si QDs/SiO2 multilayers. The other factors were the improved absorption of excitation light and the increase of light extraction ratio by surface roughening structures. These excellent characteristics are promising for silicon-based light-emitting applications.
Li, Wei; Wang, Shaolei; Hu, Mingyue; He, Sufeng; Ge, Pengpeng; Wang, Jing; Guo, Yan Yan; Zhaowei, Liu
2015-01-01
In this paper, we prepared a novel structure to enhance the electroluminescence intensity from Si quantum dots/SiO2multilayers. An amorphous Si/SiO2 multilayer film was fabricated by plasma-enhanced chemical vapor deposition on a Pt nanoparticle (NP)-coated Si nanopillar array substrate. By thermal annealing, an embedded Si quantum dot (QDs)/SiO2 multilayer film was obtained. The result shows that electroluminescence intensity was significantly enhanced. And, the turn-on voltage of the luminescent device was reduced to 3 V. The enhancement of the light emission is due to the resonance coupling between the localized-surface-plasmon (LSP) of Pt NPs and the band-gap emission of Si QDs/SiO2 multilayers. The other factors were the improved absorption of excitation light and the increase of light extraction ratio by surface roughening structures. These excellent characteristics are promising for silicon-based light-emitting applications. PMID:26138830
NASA Astrophysics Data System (ADS)
Li, Hao; Xie, Mingling; Zhang, Guangan; Fan, Xiaoqiang; Li, Xia; Zhu, Minhao; Wang, Liping
2018-03-01
The Pb-Ti/MoS2 nanoscaled multilayer films with different bilayer period were deposited by unbalanced magnetron sputtering system. The morphology, microstructure, mechanical and tribological properties of the films were investigated. It was found that the film changed from multilayer structure to composite structure as the bilayer period decreased from 25 nm to 6 nm, due to the diffusion effect. The multilayer film showed a pronounced (002) diffraction peak, the growth of the MoS2 platelets below the interface were affected by Pb and Ti, and the c-axis of MoS2 platelets were inclined to the substrate at an angle of -30° to 30°. The hardness of the film ranged from 5.9 to 7.2 GPa depending on the bilayer period. The tribological behavior of the films was performed under vacuum, and the friction coefficient were typically below 0.25. Furthermore, the nanoscale multilayer film with a bilayer period of 20 nm exhibits much better mechanical and tribological properties than pure MoS2. The result indicates that the nanoscale multilayer is a design methodology for developing high basal plane oriented and vacuum solid lubricating MoS2 based materials.
The Role of Annealing Process in Ag-Based BaSnO3 Multilayer Thin Films.
Wu, Muying; Yu, Shihui; He, Lin; Yang, Lei; Zhang, Weifeng
2016-12-01
The BaSnO3/Ag/BaSnO3 multilayer structure was designed and fabricated on a quartz glass by magnetron sputtering, followed by an annealing process at a temperature from 150 to 750 °C in air. In this paper, we investigated the influence of the annealing temperature on the structural, optical, and electrical properties of the multilayers and proposed the mechanisms of conduction and transmittance. The maximum value of the figure of merit of 31.8 × 10(-3) Ω(-1) was achieved for the BaSnO3/Ag/BaSnO3 multilayer thin films annealed at 150 °C, while the average optical transmittance in the visible ranges was >84 %, the resistivity was 5.71 × 10(-5) Ω cm, and the sheet resistance was 5.57 Ω/sq. When annealed at below 600 °C, the values of resistivity and transmittance of the multilayers were within an acceptable range (resistivity <5.0 × 10(-4) Ω cm, transmittance >80 %). The observed property of the multilayer film is suitable for the application of transparent conductive electrodes.
Docetaxel-loaded multilayer nanoparticles with nanodroplets for cancer therapy.
Oh, Keun Sang; Kim, Kyungim; Yoon, Byeong Deok; Lee, Hye Jin; Park, Dal Yong; Kim, Eun-Yeong; Lee, Kiho; Seo, Jae Hong; Yuk, Soon Hong
2016-01-01
A mixture of docetaxel (DTX) and Solutol(®) HS 15 (Solutol) transiently formed nanodroplets when it was suspended in an aqueous medium. However, nanodroplets that comprised DTX and Solutol showed a rapid precipitation of DTX because of their unstable characteristics in the aqueous medium. The incorporation of nanodroplets that comprised DTX and Solutol through vesicle fusion and subsequent stabilization was designed to prepare multilayer nanoparticles (NPs) with a DTX-loaded Solutol nanodroplet (as template NPs) core for an efficient delivery of DTX as a chemotherapeutic drug. As a result, the DTX-loaded Solutol nanodroplets (~11.7 nm) were observed to have an increased average diameter (from 11.7 nm to 156.1 nm) and a good stability of the hydrated NPs without precipitation of DTX by vesicle fusion and multilayered structure, respectively. Also, a long circulation of the multilayer NPs was observed, and this was due to the presence of Pluronic F-68 on the surface of the multilayer NPs. This led to an improved antitumor efficacy based on the enhanced permeation and retention effect. Therefore, this study indicated that the multilayer NPs have a considerable potential as a drug delivery system with an enhanced therapeutic efficacy by blood circulation and with low side effects.
NASA Astrophysics Data System (ADS)
Shang, Kedong; Zheng, Shaoxian; Ren, Siming; Pu, Jibin; He, Dongqing; Liu, Shuan
2018-04-01
The pure MoS2 coating always performs high friction coefficient and short service life when used in high humidity or after long-time storage in humid atmospheric environment. In this study, the MoS2/Pb-Ti composite and MoS2/Pb-Ti multilayer coatings are deposited to improve the corrosion resistance in 3.5 wt% NaCl solution and tribological performance in high humidity condition. The electrochemical impedance spectra and salt spray test shown that the MoS2/Pb-Ti composite and multilayer coatings can inhibit the permeation of oxygen and other corrosive elements, thus resulting a high corrosion resistance. Furthermore, compared with pure MoS2 coating, the tribological performance of the MoS2/Pb-Ti composite and multilayer coatings is also improved significantly owing to the high mechanical properties and compact structure. Moreover, the heterogenous interfaces in MoS2/Pb-Ti multilayer coating play an important role to improve the corrosion resistance and tribological performance of coatings. Overall, the dual-doping and multilayer construction are promising approaches to design the MoS2 coatings as the environmentally adaptive lubricants.
Realistic absorption coefficient of each individual film in a multilayer architecture
NASA Astrophysics Data System (ADS)
Cesaria, M.; Caricato, A. P.; Martino, M.
2015-02-01
A spectrophotometric strategy, termed multilayer-method (ML-method), is presented and discussed to realistically calculate the absorption coefficient of each individual layer embedded in multilayer architectures without reverse engineering, numerical refinements and assumptions about the layer homogeneity and thickness. The strategy extends in a non-straightforward way a consolidated route, already published by the authors and here termed basic-method, able to accurately characterize an absorbing film covering transparent substrates. The ML-method inherently accounts for non-measurable contribution of the interfaces (including multiple reflections), describes the specific film structure as determined by the multilayer architecture and used deposition approach and parameters, exploits simple mathematics, and has wide range of applicability (high-to-weak absorption regions, thick-to-ultrathin films). Reliability tests are performed on films and multilayers based on a well-known material (indium tin oxide) by deliberately changing the film structural quality through doping, thickness-tuning and underlying supporting-film. Results are found consistent with information obtained by standard (optical and structural) analysis, the basic-method and band gap values reported in the literature. The discussed example-applications demonstrate the ability of the ML-method to overcome the drawbacks commonly limiting an accurate description of multilayer architectures.
Guo, Daoyou; An, Yuehua; Cui, Wei; Zhi, Yusong; Zhao, Xiaolong; Lei, Ming; Li, Linghong; Li, Peigang; Wu, Zhenping; Tang, Weihua
2016-01-01
Multilayer thin films based on the ferromagnetic and ultraviolet transparent semiconductors may be interesting because their magnetic/electronic/photonic properties can be manipulated by the high energy photons. Herein, the Ga2O3/(Ga1−xFex)2O3 multilayer epitaxial thin films were obtained by alternating depositing of wide band gap Ga2O3 layer and Fe ultrathin layer due to inter diffusion between two layers at high temperature using the laser molecular beam epitaxy technique. The multilayer films exhibits a preferred growth orientation of crystal plane, and the crystal lattice expands as Fe replaces Ga site. Fe ions with a mixed valence of Fe2+ and Fe3+ are stratified distributed in the film and exhibit obvious agglomerated areas. The multilayer films only show a sharp absorption edge at about 250 nm, indicating a high transparency for ultraviolet light. What’s more, the Ga2O3/(Ga1−xFex)2O3 multilayer epitaxial thin films also exhibits room temperature ferromagnetism deriving from the Fe doping Ga2O3. PMID:27121446
Bledt, Carlos M; Melzer, Jeffrey E; Harrington, James A
2014-02-01
This analysis explores the theory and design of dielectric multilayer reflection-enhancing thin film stacks based on high and low refractive index alternating layers of cadmium sulfide (CdS) and lead sulfide (PbS) on silver (Ag)-coated hollow glass waveguides (HGWs) for low loss transmission at midinfrared wavelengths. The fundamentals for determining propagation losses in such multilayer thin-film-coated Ag hollow waveguides is thoroughly discussed, and forms the basis for further theoretical analysis presented in this study. The effects on propagation loss resulting from several key parameters of these multilayer thin film stacks is further explored in order to bridge the gap between results predicted through calculation under ideal conditions and deviations from such ideal models that often arise in practice. In particular, the effects on loss due to the number of dielectric thin film layers deposited, deviation from ideal individual layer thicknesses, and surface roughness related scattering losses are presented and thoroughly investigated. Through such extensive theoretical analysis the level of understanding of the underlying loss mechanisms of multilayer thin-film Ag-coated HGWs is greatly advanced, considerably increasing the potential practical development of next-generation ultralow-loss mid-IR Ag/multilayer dielectric-coated HGWs.
Sertsu, M G; Nardello, M; Giglia, A; Corso, A J; Maurizio, C; Juschkin, L; Nicolosi, P
2015-12-10
Accurate measurements of optical properties of multilayer (ML) mirrors and chemical compositions of interdiffusion layers are particularly challenging to date. In this work, an innovative and nondestructive experimental characterization method for multilayers is discussed. The method is based on extreme ultraviolet (EUV) reflectivity measurements performed on a wide grazing incidence angular range at an energy near the absorption resonance edge of low-Z elements in the ML components. This experimental method combined with the underlying physical phenomenon of abrupt changes of optical constants near EUV resonance edges enables us to characterize optical and structural properties of multilayers with high sensitivity. A major advantage of the method is to perform detailed quantitative analysis of buried interfaces of multilayer structures in a nondestructive and nonimaging setup. Coatings of Si/Mo multilayers on a Si substrate with period d=16.4 nm, number of bilayers N=25, and different capping structures are investigated. Stoichiometric compositions of Si-on-Mo and Mo-on-Si interface diffusion layers are derived. Effects of surface oxidation reactions and carbon contaminations on the optical constants of capping layers and the impact of neighboring atoms' interactions on optical responses of Si and Mo layers are discussed.
Designing multilayered nanoplatforms for SERS-based detection of genetically modified organisms
NASA Astrophysics Data System (ADS)
Uluok, Saadet; Guven, Burcu; Eksi, Haslet; Ustundag, Zafer; Tamer, Ugur; Boyaci, Ismail Hakki
2015-01-01
In this study, the multilayered surface-enhanced Raman spectroscopy (SERS) platforms were developed for the analysis of genetically modified organisms (GMOs). For this purpose, two molecules [11-mercaptoundecanoic acid (11-MUA) and 2-mercaptoethylamine (2-MEA)] were attached with Aurod and Auspherical nanoparticles to form multilayered constructions on the gold (Au)slide surface. The best multilayered platform structure was chosen depending on SERS enhancement, and this surface was characterised with atomic force microscopy (AFM) and attenuated total reflectance Fourier transform infrared spectroscopy. After the optimum multilayered SERS platform and nanoparticle interaction was identified, the oligonucleotides on the Aurod nanoparticles and Auslide were combined to determine target concentrations from the 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) signals using SERS. The correlation between the SERS intensities for DTNB and target concentrations was found to be linear within a range of 10 pM to 1 µM, and with a detection limit of 34 fM. The selectivity and specificity of the developed sandwich assay were tested using negative and positive controls, and nonsense and real sample studies. The obtained results showed that the multilayered SERS sandwich method allows for sensitive, selective, and specific detection of oligonucleotide sequences.
Occurrences, uses, and properties of chromium.
Barnhart, J
1997-08-01
Chromium is the 21st most abundant element in the Earth's crust with a mean concentration in United States soils of about 40 mg/kg. Although it exists in several oxidation states, the zero, trivalent, and hexavalent states are the most important in commercial products and the environment. Nearly all naturally occurring chromium is in the trivalent state, usually in combination with iron or other metal oxides. Although only about 15% of the chromium mined is used in the manufacture of chemicals, most applications of chromium utilize the chemistry of chromium. For instance, the "stainless" nature of stainless steel is due to the chemical properties of the chromium oxides which form on the surface of the alloy. Similarly, the protective properties of chrome plating of metals, chromated copper arsenate (CCA) treatment of wood, and chrome tanning of leather are all dependent on chromium chemistry. The key to these uses is that under typical environmental and biological conditions of pH and oxidation-reduction potential, the most stable form of chromium is the trivalent oxide. This form has very low solubility and low reactivity resulting in low mobility in the environment and low toxicity in living organisms. In this paper the chemical properties of chromium are discussed for the major commercial products in the context of the Eh-pH diagram for chromium. Copyright 1997 Academic Press.
NASA Technical Reports Server (NTRS)
Cotton, James Dean
1992-01-01
Major obstacles to the use of NiAl-based alloys and composites are low ductility and toughness. These shortcomings result in part from a lack of sufficient slip systems to accommodate plastic deformation of polycrystalline material (von Mises Criterion). It has been reported that minor additions of chromium to polycrystalline NiAl cause the predominant slip system to shift from the usual. If true, then a major step toward increasing ductility in this compound may be realized. The purpose of the present study was to verify this phenomenon, characterize it with respect to chromium level and Ni to Al ratio, and correlate any change in slip system with microstructure and mechanical properties. Compression and tensile specimens were prepared from alloys containing 0 to 5 percent chromium and 45 to 55 percent aluminum. Following about one percent strain, transmission electron microscopy foils were produced and the slip systems determined using the g x b = 0 invisibility criterion. Contrary to previous results, chromium was found to have no effect on the preferred slip system of any of the alloys studied. Possible reasons for the inconsistency of the current results with previous work are considered. Composition-structure-property relationships are discerned for the alloys, and good correlation are demonstrated in terms of conventional strengthening models for metallic systems.
NASA Astrophysics Data System (ADS)
Mohammadzadeh, Roghayeh; Akbari, Alireza; Grumsen, Flemming B.; Somers, Marcel A. J.
2017-10-01
Chromium-rich nitride precipitates in production of nickel-free austenitic stainless steel plates via pressurised solution nitriding of Fe-22.7Cr-2.4Mo ferritic stainless steel at 1473 K (1200 °C) under a nitrogen gas atmosphere was investigated. The microstructure, chemical and phase composition, morphology and crystallographic orientation between the resulted austenite and precipitates were investigated using optical microscopy, X-ray Diffraction (XRD), Scanning and Transmission Electron Microscopy (TEM) and Electron Back Scatter Diffraction (EBSD). On prolonged nitriding, Chromium-rich nitride precipitates were formed firstly close to the surface and later throughout the sample with austenitic structure. Chromium-rich nitride precipitates with a rod or strip-like morphology was developed by a discontinuous cellular precipitation mechanism. STEM-EDS analysis demonstrated partitioning of metallic elements between austenite and nitrides, with chromium contents of about 80 wt.% in the precipitates. XRD analysis indicated that the Chromium-rich nitride precipitates are hexagonal (Cr, Mo)2N. Based on the TEM studies, (Cr, Mo)2N precipitates presented a (1 1 1)γ//(0 0 2)(Cr, Mo)2N, ?γ//?(Cr, Mo)2N orientation relationship with respect to the austenite matrix. EBSD studies revealed that the austenite in the regions that have transformed into austenite and (Cr, Mo)2N have no orientation relation to the untransformed austenite.
Development studies for a novel wet oxidation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhooge, P.M.; Hakim, L.B.
1994-01-01
A catalytic wet oxidation process (DETOX), which uses an acidic iron solution to oxidize organic compounds to carbon dioxide, water, and other simple products, was investigated as a potential method for the treatment of multicomponent hazardous and mixed wastes. The organic compounds picric acid, poly(vinyl chloride), tetrachlorothiophene, pentachloropyridine, Aroclor 1260 (a polychlorinated biphenyl), and hexachlorobenzene were oxidized in 125 ml reaction vessels. The metals arsenic, barium, beryllium, cadmium, cerium (as a surrogate for plutonium), chromium, lead, mercury, neodymium (as a surrogate for uranium), nickel, and vanadium were tested in the DETOX solution. Barium, beryllium, cerium, chromium, mercury, neodymium, nickel, andmore » vanadium were all found to be very soluble (>100 g/l) in the DETOX chloride-based solution. Arsenic, barium, cadmium, and lead solubilities were lower. Lead could be selectively precipitated from the DETOX solution. Chromium(VI) was reduced to relatively non-toxic chromium(III) by the solution. Six soils were contaminated with arsenic, barium, beryllium, chromium, lead, and neodymium oxides at approximately 0.1% by weight, and benzene, trichloroethene, mineral oil, and Aroclor 1260 at approximately 5% by weight total, and 5.g amounts treated with the DETOX solution in unstirred 125. ml reaction bombs. It is felt that soil treatment in a properly designed system is entirely possible despite incomplete oxidation of the less volatile organic materials in these unstirred tests.« less
Nakajima, Kenichi; Ohno, Hajime; Kondo, Yasushi; Matsubae, Kazuyo; Takeda, Osamu; Miki, Takahiro; Nakamura, Shinichiro; Nagasaka, Tetsuya
2013-05-07
Steel is not elemental iron but rather a group of iron-based alloys containing many elements, especially chromium, nickel, and molybdenum. Steel recycling is expected to promote efficient resource use. However, open-loop recycling of steel could result in quality loss of nickel and molybdenum and/or material loss of chromium. Knowledge about alloying element substance flow is needed to avoid such losses. Material flow analyses (MFAs) indicate the importance of steel recycling to recovery of alloying elements. Flows of nickel, chromium, and molybdenum are interconnected, but MFAs have paid little attention to the interconnected flow of materials/substances in supply chains. This study combined a waste input-output material flow model and physical unit input-output analysis to perform a simultaneous MFA for nickel, chromium, and molybdenum in the Japanese economy in 2000. Results indicated the importance of recovery of these elements in recycling policies for end-of-life (EoL) vehicles and constructions. Improvement in EoL sorting technologies and implementation of designs for recycling/disassembly at the manufacturing phase are needed. Possible solutions include development of sorting processes for steel scrap and introduction of easier methods for identifying the composition of secondary resources. Recovery of steel scrap with a high alloy content will reduce primary inputs of alloying elements and contribute to more efficient resource use.
Anomalous Hall effect assisted by interfacial chemical reaction in perpendicular Co/Pt multilayers
NASA Astrophysics Data System (ADS)
Liu, Qian; Jiang, Shaolong; Teng, Jiao
2018-05-01
To uncover the underlying mechanism of Mg effect on the improved anomalous Hall effect (AHE) of perpendicular [Pt/Co]3/Mg/HfO2 multilayers, the X-ray photoelectron spectroscopy analysis has been carried out. It is found that Mg interlayer at the Co/HfO2 interface could prevent the Co oxidation to some extent via interfacial chemical reaction. As a result, A large anomalous Hall resistivity (ρAH) is obtained in perpendicular [Pt/Co]3/Mg/HfO2 multilayers, with a maximum ρAH of 3.02 μΩ cm, which is 59% larger than that in Co/Pt multilayers without Mg insertion. This effective modification of the AHE based on interfacial chemical reaction provides a promising pathway for spintronic applications.
Roychowdhury, Roopali; Mukherjee, Pritam; Roy, Madhumita
2016-02-01
Eight chromium resistant bacteria were isolated from a dry fly ash sample of DVC-MTPS thermal power plant located in Bankura, West Bengal, India. These isolates displayed different degrees of chromate reduction under aerobic conditions. According to 16S rDNA gene analysis, five of them were Staphylococcus, two were Bacillus and one was Micrococcus. The minimum inhibitory concentration towards chromium and the ability to reduce hexavalent chromium to trivalent chromium was highest in Staphylococcus haemolyticus strain HMR17. All the strains were resistant to multiple heavy metals (As, Cu, Cd, Co, Zn, Mn, Pb and Fe) and reduced toxic hexavalent chromium to relatively non toxic trivalent chromium even in the presence of these multiple heavy metals. All of them showed resistance to different antibiotics. In a soil microcosm study, S. haemolyticus strain HMR17 completely reduced 4 mM hexavalent chromium within 7 days of incubation.
Ailanthus Altissima and Phragmites Australis for chromium removal from a contaminated soil.
Ranieri, Ezio; Fratino, Umberto; Petrella, Andrea; Torretta, Vincenzo; Rada, Elena Cristina
2016-08-01
The comparative effectiveness for hexavalent chromium removal from irrigation water, using two selected plant species (Phragmites australis and Ailanthus altissima) planted in soil contaminated with hexavalent chromium, has been studied in the present work. Total chromium removal from water was ranging from 55 % (Phragmites) to 61 % (Ailanthus). After 360 days, the contaminated soil dropped from 70 (initial) to 36 and 41 mg Cr/kg (dry soil), for Phragmites and Ailanthus, respectively. Phragmites accumulated the highest amount of chromium in the roots (1910 mg Cr/kg(dry tissue)), compared with 358 mg Cr/kg(dry tissue) for Ailanthus roots. Most of chromium was found in trivalent form in all plant tissues. Ailanthus had the lowest affinity for Cr(VI) reduction in the root tissues. Phragmites indicated the highest chromium translocation potential, from roots to stems. Both plant species showed good potentialities to be used in phytoremediation installations for chromium removal.
Li, Cuicui; Tzeng, Stephany Y; Tellier, Liane E; Green, Jordan J
2013-07-10
Biodegradable polyelectrolyte surfaces for gene delivery were created through electrospinning of biodegradable polycations combined with iterative solution-based multilayer coating. Poly(β-amino ester) (PBAE) poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-capped with 1-(3-aminopropyl)-4-methylpiperazine was utilized because of its ability to electrostatically interact with anionic molecules like DNA, its biodegradability, and its low cytotoxicity. A new DNA release system was developed for sustained release of DNA over 24 h, accompanied by high exogenous gene expression in primary human glioblastoma (GB) cells. Electrospinning a different PBAE, poly(1,4-butanediol diacrylate-co-4,4'-trimethylenedipiperidine), and its combination with polyelectrolyte 1-(3-aminopropyl)-4-methylpiperazine end-capped poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based multilayers are promising for DNA release and intracellular delivery from a surface.
Fabrication of 3D polypyrrole microstructures and their utilization as electrodes in supercapacitors
NASA Astrophysics Data System (ADS)
Ho, Vinh; Zhou, Cheng; Kulinsky, Lawrence; Madou, Marc
2013-12-01
We present a novel fabrication method for constructing three-dimensional (3D) conducting microstructures based on the controlled-growth of electrodeposited polypyrrole (PPy) within a lithographically patterned photoresist layer. PPy thin films, post arrays, suspended planes supported by post arrays and multi-layered PPy structures were fabricated. The performance of supercapacitors based on 3D PPy electrodes doped with dodecylbenzene sulfonate (DBS-) and perchlorate (ClO4-) anions was studied using cyclic voltammetry and galvanostatic charge/discharge tests. The highest specific capacitance obtained from the multi-layered PPy(ClO4) electrodes was 401 ± 18 mF cm-2, which is roughly twice as high as the highest specific capacitance of PPy-based supercapacitor reported thus far. The increase in capacitance is the result of higher surface area per unit footprint achieved through the fabrication of multi-layered 3D electrodes.
Li, Cuicui; Tzeng, Stephany Y; Tellier, Liane E.; Green, Jordan J
2013-01-01
Biodegradable polyelectrolyte surfaces for gene delivery were created through electrospinning of biodegradable polycations combined with iterative solution-based multilayer coating. Poly(β-amino ester) (PBAE) poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-capped with 1-(3-aminopropyl)-4-methylpiperazine was utilized due to its ability to electrostatically interact with anionic molecules like DNA, its biodegradability, and its low cytotoxicity. A new DNA release system was developed for sustained release of DNA over 24 hours, accompanied by high exogenous gene expression in primary human glioblastoma (GB) cells. Electrospinning a different PBAE, poly(1,4-butanediol diacrylate-co-4,4′-trimethylenedipiperidine), and its combination with polyelectrolyte 1-(3-aminopropyl)-4-methylpiperazine end-capped poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based multilayers are promising for DNA release and intracellular delivery from a surface. PMID:23755861
Corrosion Behavior of Sacrificial Coatings on Grade 10.9 Fasteners for Multimetal Armor Applications
2013-08-01
hexavalent chromium , immersion, magniplate, trivalent chromium (TCP), bolts nonchromate, hexavalent chrome, grade 10.9 fasteners, bolt-on armor...for Testing and Materials (ASTM) B633 (4) electroplated zinc with hexavalent chromium conversion coating 2. Trivalent Chromium Process (TCP): ASTM...B633 (4) electroplated zinc with trivalent chromium conversion coating 3. AlumiPlate: Process details, entire surface electroplated with aluminum (Al
Hexavalent Chromium Minimization Strategy
2011-05-01
Logistics 4 Initiative - DoD Hexavalent Chromium Minimization Non- Chrome Primer IIEXAVAJ ENT CHRO:M I~UMI CHROMIUM (VII Oil CrfVli.J CANCEfl HAnRD CD...Management Office of the Secretary of Defense Hexavalent Chromium Minimization Strategy Report Documentation Page Form ApprovedOMB No. 0704-0188...00-2011 4. TITLE AND SUBTITLE Hexavalent Chromium Minimization Strategy 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6
Byun, Hye-Ran; You, Eun-Ah; Ha, Young-Geun
2017-03-01
For large-area, printable, and flexible electronic applications using advanced semiconductors, novel dielectric materials with excellent capacitance, insulating property, thermal stability, and mechanical flexibility need to be developed to achieve high-performance, ultralow-voltage operation of thin-film transistors (TFTs). In this work, we first report on the facile fabrication of multifunctional hybrid multilayer gate dielectrics with tunable surface energy via a low-temperature solution-process to produce ultralow-voltage organic and amorphous oxide TFTs. The hybrid multilayer dielectric materials are constructed by iteratively stacking bifunctional phosphonic acid-based self-assembled monolayers combined with ultrathin high-k oxide layers. The nanoscopic thickness-controllable hybrid dielectrics exhibit the superior capacitance (up to 970 nF/cm 2 ), insulating property (leakage current densities <10 -7 A/cm 2 ), and thermal stability (up to 300 °C) as well as smooth surfaces (root-mean-square roughness <0.35 nm). In addition, the surface energy of the hybrid multilayer dielectrics are easily changed by switching between mono- and bifunctional phosphonic acid-based self-assembled monolayers for compatible fabrication with both organic and amorphous oxide semiconductors. Consequently, the hybrid multilayer dielectrics integrated into TFTs reveal their excellent dielectric functions to achieve high-performance, ultralow-voltage operation (< ± 2 V) for both organic and amorphous oxide TFTs. Because of the easily tunable surface energy, the multifunctional hybrid multilayer dielectrics can also be adapted for various organic and inorganic semiconductors, and metal gates in other device configurations, thus allowing diverse advanced electronic applications including ultralow-power and large-area electronic devices.
Methods for determining soluble and insoluble Cr III and Cr VI compounds in welding fumes.
Matczak, W; Chmielnicka, J
1989-01-01
An analytical procedure for simultaneous determination of soluble and insoluble Cr III and Cr VI compounds in welding fumes has been proposed. In the welding fume samples collected on a membrane filter, total chromium was determined with atomic absorption spectrophotometry (AAS). Glass filters with collected samples were divided into two parts. In one part of the sample, soluble and insoluble chromium was determined by means of AAS. The separation of soluble chromium III and VI was carried out on diphenylcarbazide resin. In the second part of the sample total chromium VI was determined by means of the colorimetric method with s-diphenylcarbazide. The difference in the results of these determinations allowed the calculation of the content of total Cr III, Cr III insolub. and Cr VI insolub. The results of determining chromium compounds in welding fumes samples collected in the welder's breathing zone and in experimental chambers are also presented in this paper. The content of total chromium in the fumes determined by AAS (from a membrane filtr) and that calculated from the sum of soluble and insoluble chromium (from a glass filter) were concordant and within the limits of the admissible error for the method. Total chromium content in welding fume samples collected individually was found to range from 2.4-4.2%. The percentage of particular chromium compounds as compared to total chromium (100%) amounted: total Cr III--34%, total Cr VI--66%, soluble chromium--66% and in this Cr III--20% and Cr VI--43%, insoluble chromium--34% and in this: Cr III--14% and Cr VI--20%.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-10
...- rolled steel products either plated or coated with tin, lead, chromium, chromium oxides, both tin and lead (``terne plate''), or both chromium and chromium oxides (``tin-free steel''), whether or not...
Anodic Stripping Voltammetry with Pencil Graphite Electrode for Determination of Chromium (III)
NASA Astrophysics Data System (ADS)
Wyantuti, S.; Hafidza, R. A.; Ishmayana, S.; Hartati, Y. W.
2017-02-01
Chromium is required as micronutrient that has roles in insulin metabolism and blood glucose level regulation. Chromium (III) deficiency can cause hyperglycemia and glycosuria. However, a high amount of chromium in body can cause allergic reaction, organ damage, and even death because of its toxicity. Chromium is commonly used in steel industries. Simultaneously with the development of industry, the waste disposal that can endanger environment also increased. Therefore, a sensitive and specific analysis method for chromium detection is required. Stripping voltammetry is one of the voltammetric methods that is commonly used for heavy metal analysis due to the very low limit of detection (sub ppb). The present study was conducted to develop an analysis method for chromium (III) determination using pencil graphite electrode. Quantitative determination was performed for chromium (III) which measured at -0.8 to +1.0 V with deposition time for 60 s and 50 mV/s scan rate. Stripping voltammetric analysis of chromium (III) using pencil graphite electrode gave linear range at 12.5 to 75 ppm with limit of detection of 0.31 ppm.
The impact of humic acid on chromium phytoextraction by aquatic macrophyte Lemna minor.
Kalčíková, Gabriela; Zupančič, Marija; Jemec, Anita; Gotvajn, Andreja Žgajnar
2016-03-01
Studies assessing chromium phytoextration from natural waters rarely consider potential implications of chromium speciation in the presence of ubiquitous humic substances. Therefore, the present study investigated the influence of environmentally relevant concentration of humic acid (TOC = 10 mg L(-1)) on chromium speciation (Cr = 0.15 mg L(-1)) and consequently on phytoextraction by aquatic macrophyte duckweed Lemna minor. In absence of humic acid, only hexavalent chromium was present in water samples and easily taken up by L. minor. Chromium uptake resulted in a significant reduction of growth rate by 22% and decrease of chlorophyll a and chlorophyll b contents by 48% and 43%, respectively. On the other hand, presence of humic acid significantly reduced chromium bioavailability (57% Cr uptake decrease) and consequently it did not cause any measurable effect to duckweed. Such effect was related to abiotic reduction of hexavalent chromium species to trivalent. Hence, findings of our study suggest that presence of humic acid and chromium speciation cannot be neglected during phytoextraction studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vasileiou, Eleni; Perraki, Maria; Stamatis, George; Gartzos, Efthimios
2014-05-01
High concentrations of heavy metals, particularly of the toxic hexavalent chromium, are recorded in surface and ground waters in many areas, and constitute one of the most severe environmental problems nowadays. The natural genesis of chromium is associated with the geological environment (peridotites and serpentintites). Chromium is structured in many minerals, mainly in spinel (e.g. chromite), in silicate minerals such as phyllosilicate serpentine minerals, chlorite, talc and chain-silicate minerals of pyroxene and amphibole group. Chromium is found in two forms in soils, waters and rocks, the hexavalent and the trivalent one. The relation between Cr(III) and Cr(VI) strongly depends on pH and oxidative properties of the area; however, in most cases, Cr(III) is the dominating variant. The natural oxidation of trivalent to hexavalent chromium can be achieved by manganese oxides, H2O2, O2 gas and oxy-hydroxides of trivalent iron. Anthropogenic factors may also cause the process of chromium's oxidation. In the Psachna basin, Central Euboea, Greece, high concentrations of hexavalent chromium were recently measured in spring- and drill- waters. In this work, we study the effect of the geological environment and of the anthropogenic activities on the water quality with emphasis on chromium. A detailed geochemical, petrological and mineralogical study of rocks and soils was carried out by means of optical microscopy, XRF, XRD and SEM/EDS. Ground and surface water samples were physically characterized and hydrochemically studied by means of ICP and AAF. Combined result evaluation indicates a natural source for the trivalent chromium in waters, attributed to the alteration of Cr-bearing minerals of the ultramafic rocks. However the oxidation of trivalent to hexavalent chromium results from anthropogenic activities, mainly from intensive agricultural activities and the extensive use of fertilizers and pesticides causing nitrate pollution in groundwater. It has been shown that there is a strong correlation between the nitrate concentration and the hexavalent chromium one; therefore it is believed that the presence of nitrates operates as oxidant for trivalent to hexavalent chromium. On the contrary, in natural areas, without anthropogenic activities, it was observed that the hexavalent chromium concentration in groundwater is lower. Besides, a strong correlation was also observed between chromium and yttrium concentrations in natural areas, pointing to a natural source of chromium, since chromium and yttrium exist naturally in a strongly bonded form.
Multilayer based lab-on-a-chip-systems for substance testing
NASA Astrophysics Data System (ADS)
Sonntag, Frank; Grünzner, Stefan; Schmieder, Florian; Busek, Mathias; Klotzbach, Udo; Franke, Volker
2015-03-01
An integrated technology chain for laser-microstructuring and bonding of polymer foils for fast, flexible and low-cost manufacturing of multilayer lab-on-a-chip devices especially for complex cell and tissue culture applications, which provides pulsatile fluid flow within physiological ranges at low media-to-cells ratio, was developed and established. Initially the microfluidic system is constructively divided into individual layers which are formed by separate foils or plates. Based on the functional boundary conditions and the necessary properties of each layer the corresponding foils and plates are chosen. In the third step the foils and plates are laser microstructured and functionalized from both sides. In the fourth and last manufacturing step the multiple plates and foils are joined using thermal diffusion bonding. Membranes for pneumatically driven valves and micropumps where bonded via chemical surface modification. Based on the established lab-on-a-chip platform for perfused cell-based assays, a multilayer microfluidic system with two parallel connected cell culture chambers was successfully implemented.
A pilot plant for removing chromium from residual water of tanneries.
Landgrave, J
1995-02-01
The purpose of this study is to develop a technical process for removing trivalent chromium from tannery wastewater via precipitation. This process can be considered an alternative that avoids a remediation procedure against the metal presence in industrial wastes. This process was verified in a treatment pilot plant located in León, México handling 10 m3/day of three types of effluents. The effluent streams were separated to facilitate the elimination of pollutants from each one. The process was based on in situ treatment and recycle to reduce problems associated with transportation and confinement of contaminated sludges. Two types of treatment were carried out in the pilot plant: The physical/chemical and biological treatments. Thirty-five experiments were conducted and the studied variables were the pH, type of flocculant, and its dose. The statistical significance of chromium samples was 94.7% for its precipitation and 99.7% for recovery. The objectives established for this phase of the development were accomplished and the overall efficiencies were measured for each stage in the pilot plant. The results were: a) chromium precipitation 99.5% from wastewater stream, b) chromium recovery 99% for recycling, and c) physical/chemical treatment to eliminate grease and fat at least 85% and 65 to 70% for the biological treatment. The tanning of a hide lot (350 pieces) was accomplished using 60% treated and recycled water without affecting the product quality. The recovered chromium liquor was also used in this hide tanning. This technical procedure is also applicable for removing heavy metals in other industrial sectors as well as in reducing water consumption rates, if pertinent adjustments are implemented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, J.G.; Dokken, K.; Peralta-Videa, J.R.
For the first time a method has been developed for the extended X-ray absorption fine structure (EXAFS) data analyses of biological samples containing multiple oxidation states of chromium. In this study, the first shell coordination and interatomic distances based on the data analysis of known standards of potassium chromate (Cr(VI)) and chromium nitrate hexahydrate (Cr(III)) were investigated. The standards examined were mixtures of the following molar ratios of Cr(VI):Cr(III), 0:1, 0.25:0.75, 0.5:0.5, 0.75:0.25, and 1:0. It was determined from the calibration data that the fitting error associated with linear combination X-ray absorption near edge structure (LC-XANES) fittings was approximately {+-}10%more » of the total fitting. The peak height of the Cr(VI) pre-edge feature after normalization of the X-ray absorption (XAS) spectra was used to prepare a calibration curve. The EXAFS fittings of the standards were also investigated and fittings to lechuguilla biomass samples laden with different ratios of Cr(III) and Cr(VI) were performed as well. An excellent agreement between the XANES data and the data presented in the EXAFS spectra was observed. The EXFAS data also presented mean coordination numbers directly related to the ratios of the different chromium oxidation states in the sample. The chromium oxygen interactions had two different bond lengths at approximately 1.68 and 1.98 {angstrom} for the Cr(VI) and Cr(III) in the sample, respectively.« less
A pilot plant for removing chromium from residual water of tanneries.
Landgrave, J
1995-01-01
The purpose of this study is to develop a technical process for removing trivalent chromium from tannery wastewater via precipitation. This process can be considered an alternative that avoids a remediation procedure against the metal presence in industrial wastes. This process was verified in a treatment pilot plant located in León, México handling 10 m3/day of three types of effluents. The effluent streams were separated to facilitate the elimination of pollutants from each one. The process was based on in situ treatment and recycle to reduce problems associated with transportation and confinement of contaminated sludges. Two types of treatment were carried out in the pilot plant: The physical/chemical and biological treatments. Thirty-five experiments were conducted and the studied variables were the pH, type of flocculant, and its dose. The statistical significance of chromium samples was 94.7% for its precipitation and 99.7% for recovery. The objectives established for this phase of the development were accomplished and the overall efficiencies were measured for each stage in the pilot plant. The results were: a) chromium precipitation 99.5% from wastewater stream, b) chromium recovery 99% for recycling, and c) physical/chemical treatment to eliminate grease and fat at least 85% and 65 to 70% for the biological treatment. The tanning of a hide lot (350 pieces) was accomplished using 60% treated and recycled water without affecting the product quality. The recovered chromium liquor was also used in this hide tanning. This technical procedure is also applicable for removing heavy metals in other industrial sectors as well as in reducing water consumption rates, if pertinent adjustments are implemented. PMID:7621802
Wang, Zhong Q; Zhang, Xian H; Russell, James C; Hulver, Matthew; Cefalu, William T
2006-02-01
Chromium is one of the few trace minerals for which a specific cellular mechanism of action has not been identified. Recent in vitro studies suggest that chromium supplementation may improve insulin sensitivity by enhancing insulin receptor signaling, but this has not been demonstrated in vivo. We investigated the effect of chromium supplementation on insulin receptor signaling in an insulin-resistant rat model, the JCR:LA-corpulent rat. Male JCR:LA-cp rats (4 mo of age) were randomly assigned to receive chromium picolinate (CrPic) (obese n=6, lean n=5) or vehicle (obese n=5, lean n=5) for 3 mo. The CrPic was provided in the water, and based on calculated water intake, rats randomized to CrPic received 80 microg/(kg.d). At the end of the study, skeletal muscle (vastus lateralis) biopsies were obtained at baseline and at 5, 15, and 30 min postinsulin stimulation to assess insulin signaling. Obese rats treated with CrPic had significantly improved glucose disposal rates and demonstrated a significant increase in insulin-stimulated phosphorylation of insulin receptor substrate (IRS)-1 and phosphatidylinositol (PI)-3 kinase activity in skeletal muscle compared with obese controls. The increase in cellular signaling was not associated with increased protein levels of the IRS proteins, PI-3 kinase or Akt. However, protein tyrosine phosphatase 1B (PTP1B) levels were significantly lower in obese rats administered CrPic than obese controls. When corrected for protein content, PTP1B activity was also significantly lower in obese rats administered CrPic than obese controls. Our data suggest that chromium supplementation of obese, insulin-resistant rats may improve insulin action by enhancing intracellular signaling.
Method for the determination of chromium in feed matrix by HPLC.
Umesh, Balakrishnan; Rajendran, Rajendra Moorthy; Manoharan, Muthu Tamizh
2015-11-01
An improved method for the chromatographic separation and determination of chromium (III) and (VI) [ CRIII AND CRVI: ] in mineral mixtures and feed samples has been developed. The method uses precolumn derivatization using ammonium pyrrolidinedithiocarbamate ( APD: ) followed by reversed-phase liquid chromatography to separate the chromium ions. Both Cr(III) and Cr(VI) species are chelated with ammonium pyrrolidinedithiocarbamate prior to separation by mixing with acetonitrile and 0.5 mmol acetate buffer (pH 4.5). Optimum chromatographic separations were obtained with a polymer-based reversed-phase column (Kinetex, 5 μ, 250 × 4.5 mm, Phenomenex, Torrance, CA) and a mobile phase containing acetonitrile and water (7:3). Both Cr(III) and Cr(VI) ion concentrations were directly determined from the corresponding areas in the chromatogram. The effect of analytical parameters, including pH, concentration of ligand, incubation temperature, and mobile phase, was optimized for both chromium complexes. The range of the procedure was found to be linear for Cr(III) and Cr(VI) concentrations between 0.125 and 4 μg/mL (r² = 0.9926) and 0.1 and 3.0 μg/mL (r² = 0.9983), respectively. Precision was evaluated by replicate analysis in which the percentage relative standard deviation values for chromium complex were found to be below 4.0. The recoveries obtained (85-115%) for both Cr(III) and Cr(VI) complexes indicated the accuracy of the developed method. The degradation products, as well as the excipients, were well resolved from the chromium complex peak in the chromatogram. Finally, the new method proved to be suitable for routine analysis of Cr(III) and Cr(VI) species in raw materials, mineral mixtures, and feed samples. © 2015 Poultry Science Association Inc.
Magnetoimpedance effect in the FeNi/Ti-based multilayered structure: A pressure sensor prototype
NASA Astrophysics Data System (ADS)
Chlenova, A. A.; Melnikov, G. Yu.; Svalov, A. V.; Kurlyandskaya, G. V.
2016-09-01
Magnetically soft [Ti/FeNi]5/Ti/Cu/Ti/[FeNi/Ti]4 multilayered structures were obtained by magnetron sputtering. Based on them sensitive elements have been investigated with focus on the design of the giant magnetoimpedance (MI) pressure sensors. Magnetic properties and MI of fabricated sensitive elements were comparatively analyzed for both multilayers deposited both onto rigid and flexible polymer substrates. Structures on a rigid substrate had the highest MI ratio of 140 %. They showed the sensitivity of 0.70 %/Ba suitable for possible applications in pressure sensing. Structures deposited onto flexible Cyclo Olefin Copolymer substrates had slightly lower sensitivity of 0.55 %/Ba. That structures showing linear dependence of MI ratio in the pressure range of 0 to 360 Ba are promising for microfluidic and biosensor applications.
NASA Astrophysics Data System (ADS)
Niu, Xiaoliang; Yuan, Fen; Huang, Shanguo; Guo, Bingli; Gu, Wanyi
2011-12-01
A Dynamic clustering scheme based on coordination of management and control is proposed to reduce network congestion rate and improve the blocking performance of hierarchical routing in Multi-layer and Multi-region intelligent optical network. Its implement relies on mobile agent (MA) technology, which has the advantages of efficiency, flexibility, functional and scalability. The paper's major contribution is to adjust dynamically domain when the performance of working network isn't in ideal status. And the incorporation of centralized NMS and distributed MA control technology migrate computing process to control plane node which releases the burden of NMS and improves process efficiently. Experiments are conducted on Multi-layer and multi-region Simulation Platform for Optical Network (MSPON) to assess the performance of the scheme.
A General Reliability Model for Ni-BaTiO3-Based Multilayer Ceramic Capacitors
NASA Technical Reports Server (NTRS)
Liu, Donhang
2014-01-01
The evaluation of multilayer ceramic capacitors (MLCCs) with Ni electrode and BaTiO3 dielectric material for potential space project applications requires an in-depth understanding of their reliability. A general reliability model for Ni-BaTiO3 MLCC is developed and discussed. The model consists of three parts: a statistical distribution; an acceleration function that describes how a capacitor's reliability life responds to the external stresses, and an empirical function that defines contribution of the structural and constructional characteristics of a multilayer capacitor device, such as the number of dielectric layers N, dielectric thickness d, average grain size, and capacitor chip size A. Application examples are also discussed based on the proposed reliability model for Ni-BaTiO3 MLCCs.
A General Reliability Model for Ni-BaTiO3-Based Multilayer Ceramic Capacitors
NASA Technical Reports Server (NTRS)
Liu, Donhang
2014-01-01
The evaluation for potential space project applications of multilayer ceramic capacitors (MLCCs) with Ni electrode and BaTiO3 dielectric material requires an in-depth understanding of the MLCCs reliability. A general reliability model for Ni-BaTiO3 MLCCs is developed and discussed in this paper. The model consists of three parts: a statistical distribution; an acceleration function that describes how a capacitors reliability life responds to external stresses; and an empirical function that defines the contribution of the structural and constructional characteristics of a multilayer capacitor device, such as the number of dielectric layers N, dielectric thickness d, average grain size r, and capacitor chip size A. Application examples are also discussed based on the proposed reliability model for Ni-BaTiO3 MLCCs.
Using a Multiperspective Design Team to Develop and Manage Multilayered Online Courses
ERIC Educational Resources Information Center
Anderson, Nella Bea; Poole, L. Lori; Quinn, Stephanie; Schlicht, Carrie L.
2014-01-01
The focus of this research-based review is how to best develop and manage online classes. After receiving faculty, student, and industry feedback, Colorado State University-Global Campus integrated multi-perspective design teams to develop and manage multilayered online courses. This article will reveal the instructional design, development…
40 CFR 415.176 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... liter Chromium (T) 1.0 0.50 Hexavalent Chromium 0.11 0.060 Nickel (T) 0.80 0.40 In cases where POTWs... an alternate: The limitations for Chromium (T), Hexavalent Chromium, and Nickel (T) are the same as...
40 CFR 415.176 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2014 CFR
2014-07-01
... liter Chromium (T) 1.0 0.50 Hexavalent Chromium 0.11 0.060 Nickel (T) 0.80 0.40 In cases where POTWs... an alternate: The limitations for Chromium (T), Hexavalent Chromium, and Nickel (T) are the same as...
40 CFR 415.176 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... liter Chromium (T) 1.0 0.50 Hexavalent Chromium 0.11 0.060 Nickel (T) 0.80 0.40 In cases where POTWs... an alternate: The limitations for Chromium (T), Hexavalent Chromium, and Nickel (T) are the same as...
40 CFR 415.176 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... liter Chromium (T) 1.0 0.50 Hexavalent Chromium 0.11 0.060 Nickel (T) 0.80 0.40 In cases where POTWs... an alternate: The limitations for Chromium (T), Hexavalent Chromium, and Nickel (T) are the same as...
2015-06-01
loading of the projectile steel against the gun tube with concomitant increased gun tube wear. Chromium Nodules and Thermal Gouging Chromium nodules...40 mm and 80-mm anti-aircraft gun ) and the fact that welded rotating bands in the past were made from ARMCO Inc. iron. Stainless steel was selected...down the gun tube. Nickel rotating band Stainless steel rotating band Figure 12 Redesigned band configurations Based on the results
Sasaki, Kazuhiro; Oguma, Shinichi; Namiki, Yukie; Ohmura, Naoya
2009-05-15
Isothiocyanobenzyl group-appended ethylenediamine tetraacetic acid (EDTA) was used to covalently couple Cr(III) x EDTA to keyhole limpet hemocyanin for use as an immunogen. An obtained monoclonal antibody (RD3G4) bound to Cr(III) x EDTA with an equilibrium dissociation constant (K(d)) of 9.7 nM, which was 100-fold tighter than the K(d)s for the other tested EDTA-metal complex. In particular, there was an over 2000-fold affinity difference between Cr(III) x EDTA and Fe(III) x EDTA, although the ion radius of trivalent chromium (0.76 A) was quite close to that of ferric ion (0.79 A). Hexavalent chromium could be detected by the antibody after being reduced into trivalent form. An immunoassay format showed an IC50 of 87 nM for hexavalent chromium, with a detection limit of 30 nM (1.6 microg/L). Therefore, the addition of reducing agents to the mixture of tri- and hexavalent chromium allows determination of the total chromium concentration by the immunoassay. Hexavalent chromium could be isolated from trivalent chromium by an anion-exchange column, and thus, the concentration of hexavalent chromium in tri- and hexa- mixture can also be estimated by the immunoassay.
Biosorption and biotransformation of chromium by Serratia sp. isolated from tannery effluent.
Srivastava, Shaili; Thakur, Indu Shekhar
2012-01-01
A bacterium isolated from soil and sediment ofa leather tanning mill's effluent was identified as Serratia sp. by the analysis of 16S rDNA. Scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX) and transmission electron microscopy (TEM) were used to assess morphological changes and confirm chromium biosorption in Serratia sp. both in a shake-flask culture containing chromium and in a tannery wastewater. The SEMEDX and the elemental analysis of the chromate-containing samples confirmed the binding of chromium with the bacterial biomass. The TEM exhibited chromium accumulation throughout the bacterial cell, with some granular deposits in the cell periphery and in the cytoplasm. X-ray diffraction analysis (XRD) was used to quantify the chromium and to determine the chemical nature of the metal-microbe interaction. The XRD data showed the crystalline character of the precipitates, which consisted of mainly calcium chromium oxide, chromium fluoride phosphate and related organo-Cr(III) complex crystals. The XRD data also revealed a strong involvement of cellular carboxyl and phosphate groups in chromium binding by the bacterial biomass. The results of the study indicated that a combined mechanism of ion-exchange, complexation, croprecipitation and immobilization was involved in the biosorption of chromium by bacterial cells in contaminated environments.
Torras, Josep; Buj, Irene; Rovira, Miquel; de Pablo, Joan
2012-03-30
Chromium plating used for functional purposes provides an extremely hard, wear and corrosion resistant layer by means of electrolytic deposition. Typical layer thicknesses range between 2.5 and 500 μm. Chromium electroplating baths contain high concentrations of Cr(VI) with chromium trioxide (CrO(3)) as the chromium source. When because of technical or economic reasons a bath gets exhausted, a waste containing mainly chromium as dichromate as well as other heavy metals is generated. Chromium may then be purified for use in other industrial processes with different requirements. In this work, a sustainable system for using galvanic wastes as reagents in the leather tanning industry, thus reducing quantity of wastes to be treated, is presented. Metal cations present in the chromium exhausted bath were precipitated with NaOH. Then, the solution containing mainly soluble Cr(VI) was separated. By means of sodium sulphite in acidic conditions, Cr(VI) was reduced to Cr(III) as chromium (III) sulphate. From chromium (III) sulphate a basic Cr(III) sulphate may be obtained, which is one of most used compounds in the tanning industry. Cr(III) concentration in the final solution allows its reuse without concentration, but with a slight dilution. Copyright © 2012 Elsevier B.V. All rights reserved.
Feng, Wei; Wu, Jing-Bin; Li, Xiaoli; ...
2015-05-20
In this paper, we demonstrate the strategies and principles for the performance improvement of layered semiconductor based photodetectors using multilayer indium selenide (InSe) as the model material. It is discovered that multiple reflection interference at the interfaces in the phototransistor device leads to a thickness-dependent photo-response, which provides a guideline to improve the performance of layered semiconductor based phototransistors. The responsivity and detectivity of InSe nanosheet phototransistor can be adjustable using applied gate voltage. Our InSe nanosheet phototransistor exhibits ultrahigh responsivity and detectivity. An ultrahigh external photo-responsivity of ~10 4 A W -1 can be achieved from broad spectra rangingmore » from UV to near infrared wavelength using our InSe nanosheet photodetectors. The detectivity of multilayer InSe devices is ~10 12 to 10 13 Jones, which surpasses that of the currently exploited InGaAs photodetectors (10 11 to 10 12 Jones). Finally, this research shows that multilayer InSe nanosheets are promising materials for high performance photodetectors.« less
NASA Astrophysics Data System (ADS)
Sahmani, S.; Aghdam, M. M.
2017-11-01
In this paper, a new size-dependent inhomogeneous plate model is constructed to analyze the nonlinear buckling and postbuckling characteristics of multilayer functionally graded composite nanoplates reinforced with graphene platelet (GPL) nanofillers under axial compressive load. To this purpose, the nonlocal strain gradient theory of elasticity is implemented into a refined hyperbolic shear deformation plate theory. The mechanical properties of multilayer graphene platelet-reinforced composite (GPLRC) nanoplates are evaluated based upon the Halpin-Tsai micromechanical scheme. The weight fraction of randomly dispersed GPLs remain constant in each individual layer, which results in U-GPLRC nanoplate, or changes layerwise in accordance with three different functionally graded patterns, which make X-GPLRC, O-GPLRC and A-GPLRC nanoplates. Via a two-stepped perturbation technique, explicit analytical expressions for nonlocal strain gradient stability paths are established for layerwise functionally graded GPLRC nanoplates. It is demonstrated that both the nonlocal and strain gradient size dependencies are more significant for multilayer GPLRC nanoplates filling by GPL nanofillers with higher length-to-thickness and width-to-thickness ratios.
Chen, Tuo; Tang, Xiaobin; Chen, Feida; Ni, Minxuan; Huang, Hai; Zhang, Yun; Chen, Da
2017-06-26
Radiation shielding of high-energy electrons is critical for successful space missions. However, conventional passive shielding systems exhibit several limitations, such as heavy configuration, poor shielding ability, and strong secondary bremsstrahlung radiation. In this work, an aluminum/vacuum multilayer structure was proposed based on the electron return effects induced by magnetic field. The shielding property of several configurations was evaluated by using the Monte Carlo method. Results showed that multilayer systems presented improved shielding ability to electrons, and less secondary x-ray transmissions than those of conventional systems. Moreover, the influences of magnetic flux density and number of layers on the shielding property of multilayer systems were investigated using a female Chinese hybrid reference phantom based on cumulative dose. In the case of two aluminum layers, the cumulative dose in a phantom gradually decreased with increasing magnetic flux density. The maximum decline rate was found within 0.4-1 Tesla. With increasing layers of configuration, the cumulative dose decreased and the shielding ability improved. This research provides effective shielding measures for future space radiation protection in high-energy electron environments.
Self-Assembled Nanoporous Biofilms from Functionalized Nanofibrous M13 Bacteriophage.
Devaraj, Vasanthan; Han, Jiye; Kim, Chuntae; Kang, Yong-Cheol; Oh, Jin-Woo
2018-06-12
Highly periodic and uniform nanostructures, based on a genetically engineered M13 bacteriophage, displayed unique properties at the nanoscale that have the potential for a variety of applications. In this work, we report a multilayer biofilm with self-assembled nanoporous surfaces involving a nanofiber-like genetically engineered 4E-type M13 bacteriophage, which was fabricated using a simple pulling method. The nanoporous surfaces were effectively formed by using the networking-like structural layers of the M13 bacteriophage during self-assembly. Therefore, an external template was not required. The actual M13 bacteriophage-based fabricated multilayered biofilm with porous nanostructures agreed well with experimental and simulation results. Pores formed in the final layer had a diameter of about 150⁻500 nm and a depth of about 15⁻30 nm. We outline a filter application for this multilayered biofilm that enables selected ions to be extracted from a sodium chloride solution. Here, we describe a simple, environmentally friendly, and inexpensive fabrication approach with large-scale production potential. The technique and the multi-layered biofilms produced may be applied to sensor, filter, plasmonics, and bio-mimetic fields.
NASA Astrophysics Data System (ADS)
Karaaslan, Muharrem; Bağmancı, Mehmet; Ünal, Emin; Akgol, Oguzhan; Sabah, Cumali
2017-06-01
We propose the design of a multiband absorber based on multi-layered square split ring (MSSR) structure. The multi-layered metamaterial structure is designed to be used in the frequency bands such as WIMAX, WLAN and satellite communication region. The absorption levels of the proposed structure are higher than 90% for all resonance frequencies. In addition, the incident angle and polarization dependence of the multi-layered metamaterial absorber and harvester is also investigated and it is observed that the structure has polarization angle independent frequency response with good absorption characteristics in the entire working frequency band. The energy harvesting ratios of the structure is investigated especially for the resonance frequencies at which the maximum absorption occurs. The energy harvesting potential of the proposed MSSRs is as good as those of the structures given in the literature. Therefore, the suggested design having good absorption, polarization and angle independent characteristics with a wide bandwidth is a potential candidate for future energy harvesting applications in commonly used wireless communication bands, namely WIMAX, WLAN and satellite communication bands.
Low friction and galling resistant coatings and processes for coating
Johnson, Roger N.
1987-01-01
The present invention describes coating processes and the resultant coated articles for use in high temperature sodium environments, such as those found in liquid metal fast breeder reactors and their associated systems. The substrate to which the coating is applied may be either an iron base or nickel base alloy. The coating itself is applied to the substrate by electro-spark deposition techniques which result in metallurgical bonding between the coating and the substrate. One coating according to the present invention involves electro-spark depositing material from a cemented chromium carbide electrode and an aluminum electrode. Another coating according to the present invention involves electro-spark depositing material from a cemented chromium carbide electrode and a nickel-base hardfacing alloy electrode.
Code of Federal Regulations, 2014 CFR
2014-07-01
... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject to...
Code of Federal Regulations, 2013 CFR
2013-07-01
... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject to...
Code of Federal Regulations, 2012 CFR
2012-07-01
... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject to...
Code of Federal Regulations, 2011 CFR
2011-07-01
... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject to...
Pati, Anupama; Chaudhary, Rubina
2015-12-01
Leather processing discharges enormous amount of chrome containing leather solid waste which creates a major disposal problem. Chrome-tanned leather solid waste is a complex of collagen and chromium. The presence of chromium limits protein application in fertilizer industry. The purified protein hydrolysate with zero chromium could be used as a nitrogen source for fertilizer formulation. In this study, an attempt has been made to employ purified protein hydrolysate derived from chrome-tanned leather shavings (CTLS) in formulation of fertilizer. The formulated fertilizer (1–3 t ha(-1)) is employed as nitrogen source in production of soybean. Plant growth study demonstrates that formulated fertilizer dosage 3 t ha(-1) produced similar effects of commercial fertilizer-treated plants. Application of formulated fertilizer yielded higher seed in plant than commercial fertilizer.
A mathematical model for the iron/chromium redox battery
NASA Technical Reports Server (NTRS)
Fedkiw, P. S.; Watts, R. W.
1984-01-01
A mathematical model has been developed to describe the isothermal operation of a single anode-separator-cathode unit cell in a redox-flow battery and has been applied to the NASA iron/chromium system. The model, based on porous electrode theory, incorporates redox kinetics, mass transfer, and ohmic effects as well as the parasitic hydrogen reaction which occurs in the chromium electrode. A numerical parameter study was carried out to predict cell performance to aid in the rational design, scale-up, and operation of the flow battery. The calculations demonstrate: (1) an optimum electrode thickness and electrolyte flow rate exist; (2) the amount of hydrogen evolved and, hence, cycle faradaic efficiency, can be affected by cell geometry, flow rate, and charging procedure; (3) countercurrent flow results in enhanced cell performance over cocurrent flow; and (4) elevated temperature operation enhances cell performance.
Strained multilayer structures with pseudomorphic GeSiSn layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timofeev, V. A., E-mail: Vyacheslav.t@isp.nsc.ru; Nikiforov, A. I.; Tuktamyshev, A. R.
2016-12-15
The temperature and composition dependences of the critical thickness of the 2D–3D transition for a GeSiSn film on Si(100) have been studied. The regularities of the formation of multilayer structures with pseudomorphic GeSiSn layers directly on a Si substrate, without relaxed buffer layers, were investigated for the first time. The possibility of forming multilayer structures based on pseudomorphic GeSiSn layers has been shown and the lattice parameters have been determined using transmission electron microscopy. The grown structures demonstrate photoluminescence for Sn contents from 3.5 to 5% in GeSiSn layers.
Wang, Xiao-Dong; Chen, Bo; Wang, Hai-Feng; He, Fei; Zheng, Xin; He, Ling-Ping; Chen, Bin; Liu, Shi-Jie; Cui, Zhong-Xu; Yang, Xiao-Hu; Li, Yun-Peng
2015-01-01
Application of π-multilayer technology is extended to high extinction coefficient materials, which is introduced into metal-dielectric filter design. Metal materials often have high extinction coefficients in far ultraviolet (FUV) region, so optical thickness of metal materials should be smaller than that of the dielectric material. A broadband FUV filter of 9-layer non-periodic Al/MgF2 multilayer was successfully designed and fabricated and it shows high reflectance in 140–180 nm, suppressed reflectance in 120–137 nm and 181–220 nm. PMID:25687255
Multiple infrared bands absorber based on multilayer gratings
NASA Astrophysics Data System (ADS)
Liu, Xiaoyi; Gao, Jinsong; Yang, Haigui; Wang, Xiaoyi; Guo, Chengli
2018-03-01
The present study offers an Ag/Si multilayer-grating microstructure based on an Si substrate. The microstructure exhibits designable narrowband absorption in multiple infrared wavebands, especially in mid- and long-wave infrared atmospheric windows. We investigate its resonance mode mechanism, and calculate the resonance wavelengths by the Fabry-Perot and metal-insulator-metal theories for comparison with the simulation results. Furthermore, we summarize the controlling rules of the absorption peak wavelength of the microstructure to provide a new method for generating a Si-based device with multiple working bands in infrared.
Luther, Steven; Brogfeld, Nathan; Kim, Jisoo; Parsons, J.G.
2013-01-01
Removal of chromium(III) or (VI) from aqueous solution was achieved using Fe3O4, and MnFe2O4 nanomaterials. The nanomaterials were synthesized using a precipitation method and characterized using XRD. The size of the nanomaterials was determined to be 22.4 ± 0.9 nm (Fe3O4) and 15.5 ± 0.5 nm (MnFe2O4). The optimal binding pH for chromium(III) and chromium(VI) were pH 6 and pH 3. Isotherm studies were performed, under light and dark conditions, to determine the capacity of the nanomaterials. The capacities for the light studies with MnFe2O4 and Fe3O4 were determined to be 7.189 and 10.63 mg/g, respectively, for chromium(III). The capacities for the light studies with MnFe2O4 and Fe3O4 were 3.21 and 3.46 mg/g, respectively, for chromium(VI). Under dark reaction conditions the binding of chromium(III) to the MnFe2O4 and Fe3O4 nanomaterials were 5.74 and 15.9 mg/g, respectively. The binding capacity for the binding of chromium(VI) to MnFe2O4 and Fe3O4 under dark reaction conditions were 3.87 and 8.54 mg/g, respectively. The thermodynamics for the reactions showed negative ΔG values, and positive ΔH values. The ΔS values were positive for the binding of chromium(III) and for chromium(VI) binding under dark reaction conditions. The ΔS values for chromium(VI) binding under the light reaction conditions were determined to be negative. PMID:23558081
Minoia, C; Cavalleri, A
1988-06-01
Using personal air sampling exposure to hexavalent and trivalent chromium was measured in 22 workers mainly exposed to Cr(VI) and in 15 workers mainly exposed to Cr(III) as basic chromium sulphate. Determination of Cr(VI) in the urine of all the subjects using a selective technique by ETA-AAS and liquid anion exchangers failed to show detectable amounts of the hexavalent form, the detection limit of the technique being 0.05 micrograms/L. A clear relationship between exposure and postshift urinary total chromium was found in subjects exposed to Cr(VI), while urinary levels in workers exposed to chromic sulphate high concentration proved lower. Determination of total chromium in serum and red blood cells showed a significant increase of chromium levels in erythrocytes of workers exposed to Cr(VI) while in subjects mainly exposed to Cr(III) an increase of the serum fraction was observed. The results demonstrate that Cr(III) is absorbed through the respiratory tract, but its kinetics and distribution in the body are not the same as for Cr(VI), and are not adequately monitored by short-term urinary determinations. Oxidation states of chromium largely influence uptake, mechanism of absorption, transport and organ distribution as well as toxicity of chromium-containing compounds. In particular, hexavalent derivatives are known to induce adverse effects, both acute and chronic, in occupationally exposed subjects, while there is little conclusive evidence for toxic effects caused by trivalent chromium compounds. Biological monitoring of exposure to chromium(VI) has usually been performed by determining total chromium levels in urine, whereas biological monitoring data in subjects occupationally exposed to Cr(III) are still scanty.(ABSTRACT TRUNCATED AT 250 WORDS)
Brownley, Kimberly A; Von Holle, Ann; Hamer, Robert M; La Via, Maria; Bulik, Cynthia M
2013-07-01
Chromium treatment has been shown to improve mood, appetite, and glucose regulation in various psychiatric and medical patient populations. The authors propose that chromium may be useful in the treatment of binge eating disorder (BED). Twenty-four overweight adults with BED were enrolled in a 6-month double-blind placebo-controlled trial and randomly assigned to receive either 1000mcg chromium/day ("high dose"; n=8) or 600mcg chromium/day ("moderate dose"; n=9) as chromium picolinate or placebo (n=7). Mixed linear regression models were used to estimate mean change in binge frequency and related psychopathology, weight, symptoms of depression, and fasting glucose. Fasting glucose was significantly reduced in both chromium groups compared to the placebo group; similarly, numerically, but not significantly, greater reductions in binge frequency, weight, and symptoms of depression were observed in those treated with chromium versus placebo, although statistical power was limited in this pilot trial. For fasting glucose, the findings suggest a dose response with larger effects in the high dose compared to moderate dose group. These initial findings support further larger trials to determine chromium's efficacy in maintaining normal glucose regulation, reducing binge eating and related psychopathology, promoting modest weight loss, and reducing symptoms of depression in individuals with BED. Studies designed to link the clinical effects of chromium with changes in underlying insulin, serotonin, and dopamine pathways may be especially informative. If efficacious, chromium supplementation may provide a useful, low-cost alternative to or augmentation strategy for selective serotonin reuptake inhibitors, which have partial efficacy in BED. ClinicalTrials.gov NCT00904306. Copyright © 2013 Elsevier Inc. All rights reserved.
Development of Extraction Tests for Determining the Bioavailability of Metals in Soil
2005-06-01
Liability Information System COV coefficient of variance Cr(III) trivalent chromium Cr(VI) hexavalent chromium DCB dithionite citrate bicarbonate...indicated that bioavailability was a less important issue for chromium than understanding the form of chromium (i.e., trivalent or hexavalent) that is...7.3.3 Chromium 50 7.3.4 Lead 50 7.3.5 Summary of In Vitro Testing for Wildlife Receptors 51 7.4 References 51 Supplemental Materials for
Dover AFB Characterization/Hazardous Waste Management Survey, Dover AFB, Delaware.
1986-07-01
chromium ion (chromate, chromic acid) needs to be reduced to the insoluble trivalent ion ( chromium oxide, chromic hydroxide) to facilitate effective...precipitation. The good removal efficiency seen in the Jar tests indicates the chromium may already be in the trivalent oxidation state, possibly reduced...fails the EP toxicity test for chromium alone, the waste may be excluded from being a hazardous waste, if the chromium is primarily in the trivalent
Technology Demonstration of the Zero Emissions Chromium Electroplating System
2008-02-01
Phase I trivalent chromium results ................................................................... 23 18 Phase II total chromium in PRD fluid results...0 xa B D F H J L Sam pies Figure 16. Phase II iron results. ERDC/CERL TR-05-35, Vol. 1 23 Trivalent Chromium Phase I Analysis for Phase I was...with the samples. Each sample was analyzed twice, and an average was computed. Figure 17 shows the results. ANAD has specified that Trivalent Chromium
Stratiform chromite deposit model: Chapter E in Mineral deposit models for resource assessment
Schulte, Ruth F.; Taylor, Ryan D.; Piatak, Nadine M.; Seal, Robert R.
2012-01-01
Most environmental concerns associated with the mining and processing of chromite ore focus on the solubility of chromium and its oxidation state. Although trivalent chromium (Cr3+) is an essential micronutrient for humans, hexavalent chromium (Cr6+) is highly toxic. Chromium-bearing solid phases that occur in the chromite ore-processing residue, for example, can effect the geochemical behavior and oxidation state of chromium in the environment.
Zasada, Katarzyna; Łukasiewicz-Atanasov, Magdalena; Kłysik, Katarzyna; Lewandowska-Łańcucka, Joanna; Gzyl-Malcher, Barbara; Puciul-Malinowska, Agnieszka; Karewicz, Anna; Nowakowska, Maria
2015-11-01
Ultrathin "one-component" multilayer polymeric films for potential biomedical applications were designed based on polyvinyl alcohol,-a non-toxic, fully degradable synthetic polymer. Good uniformity of the obtained film and adequate adsorption properties of the polymeric layers were achieved by functional modification of the polymer, which involved synthesis of cationic and anionic derivatives. Synthesized polymers were characterized by FTIR, NMR spectroscopy, dynamic light scattering measurements and elemental analysis. The layer by layer assembly technique was used to build up a multilayer film and this process was followed using UV-Vis spectroscopy and ellipsometry. The morphology and thickness of the obtained multilayered film material was evaluated by atomic force microscopy (AFM). Preliminary studies on the application of the obtained multilayer film for coating of liposomal nanocarriers containing phenytoin, an antiarrhythmic drug, were performed. The coating effectively stabilizes liposomes and the effect increases with an increasing number of deposited layers until the polymeric film reaches the optimal thickness. The obtained release profiles suggest that bilayer-coated liposomes release phenytoin less rapidly than uncoated ones. The cytotoxicity studies performed for all obtained nanocarriers confirmed that none of them has negative effect on cell viability. All of the performed experiments suggest that liposomes coated with ultrathin film obtained from PVA derivatives can be attractive drug nanocarriers. Copyright © 2015 Elsevier B.V. All rights reserved.
Qiuxia, Yang; Ying, Yang; Han, Xu; Di, Wu; Ke, Guo
2016-02-01
This study aims to determine the effect of fluoride concentration on the corrosion behavior of cobalt-chromium alloy fabricated by two different technology processes in a simulated oral environment. A total of 15 specimens were employed with selective laser melting (SLM) and another 15 for traditional casting (Cast) in cobalt-chromium alloy powders and blocks with the same material composition. The corrosion behavior of the specimens was studied by potentiodynamic polarization test under different oral environments with varying solubilities of fluorine (0, 0.05%, and 0.20% for each) in acid artificial saliva (pH = 5.0). The specimens were soaked in fluorine for 24 h, and the surface microstructure was observed under a field emission scanning electron microscope after immersing the specimens in the test solution at constant temperature. The corrosion potential (Ecorr) value of the cobalt-chromium alloy cast decreased with increasing fluoride concentration in acidic artificial saliva. The Ecorr, Icorr, and Rp values of the cobalt-chromium alloy fabricated by two different technology processes changed significantly when the fluoride concentration was 0.20% (P < 0.05). The Ecorr, Icorr, and Rp values of the cobalt-chromium alloy fabricated by two different technology processes exhibited a statistically significant difference. The Icorr value of the cobalt-chromium alloy cast was higher than that in the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20% (P < 0.05). The Ecorr, tRp alues of the cobalt-chromium alloy cast were lower htan those of the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20% (P< 0 .05). Fluoride ions adversely affected the corrosion resistance of the cobalt-chromium alloy fabricated by two different technology processes. The corrosion resistance of the cobalt-chromium alloy cast was worse than that of the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20%.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-19
.... Excluded from the scope of the orders are flat-rolled steel products either plated or coated with tin, lead, chromium, chromium oxides, both tin and lead (``terne plate''), or both chromium and chromium oxides (``tin...
Code of Federal Regulations, 2012 CFR
2012-07-01
... electroplating tanks using a trivalent chromium bath. (1) Each owner or operator of an existing, new, or reconstructed decorative chromium electroplating tank that uses a trivalent chromium bath that incorporates a... ingredient in the trivalent chromium bath components purchased from vendors. (2) Each owner or operator of an...
40 CFR 63.346 - Recordkeeping requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Standards for Chromium Emissions From Hard and Decorative Chromium Electroplating and Chromium Anodizing... rectifier capacity of hard chromium electroplating tanks at a facility expended during each month of the....342(c)(2); (13) For sources using fume suppressants to comply with the standards, records of the date...
40 CFR 63.346 - Recordkeeping requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards for Chromium Emissions From Hard and Decorative Chromium Electroplating and Chromium Anodizing...) Records of the actual cumulative rectifier capacity of hard chromium electroplating tanks at a facility... size in accordance with § 63.342(c)(2); (13) For sources using fume suppressants to comply with the...
40 CFR 63.346 - Recordkeeping requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Standards for Chromium Emissions From Hard and Decorative Chromium Electroplating and Chromium Anodizing... rectifier capacity of hard chromium electroplating tanks at a facility expended during each month of the....342(c)(2); (13) For sources using fume suppressants to comply with the standards, records of the date...
40 CFR 63.346 - Recordkeeping requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Standards for Chromium Emissions From Hard and Decorative Chromium Electroplating and Chromium Anodizing...) Records of the actual cumulative rectifier capacity of hard chromium electroplating tanks at a facility... size in accordance with § 63.342(c)(2); (13) For sources using fume suppressants to comply with the...
40 CFR 63.346 - Recordkeeping requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Standards for Chromium Emissions From Hard and Decorative Chromium Electroplating and Chromium Anodizing...) Records of the actual cumulative rectifier capacity of hard chromium electroplating tanks at a facility... size in accordance with § 63.342(c)(2); (13) For sources using fume suppressants to comply with the...
Chromium fate in constructed wetlands treating tannery wastewaters.
Dotro, Gabriela; Palazolo, Paul; Larsen, Daniel
2009-06-01
Nine experimental wetlands were built to determine chromium partitioning inside systems treating tannery wastewaters. Results showed 5-day biochemical oxygen demand and chromium removals of 95 to 99% and 90 to 99%, respectively. The majority of chromium was found in association with media (96 to 98%), followed by effluents (2.9 to 3.9%), and the least was found in plant parts (0.1%). Chemical speciation modeling of solutions and scanning electron microscope analysis suggest two potential chromium removal mechanisms--sorption/coprecipitation with iron hydroxides or oxyhydroxides and biomass sorption. The release of the majority of chromium in the iron- and organic-bound phases during sequential extractions supports the proposed dominant removal mechanisms. The use of a mixture of peat and gravel resulted in lower removal efficiencies and stronger partitioning in organic phases during sequential extractions. Chromium was efficiently removed by wetlands, retained through chemical and biological processes. Future research will focus on further exploring removal mechanisms and proposing management strategies for the chromium-containing wetland media.
Hypoglycemic potency of novel trivalent chromium in hyperglycemic insulin-deficient rats.
Machaliński, Bogusław; Walczak, Mieczysław; Syrenicz, Anhelli; Machalińska, Anna; Grymuła, Katarzyna; Stecewicz, Iwona; Wiszniewska, Barbara; Dabkowska, Elzbieta
2006-01-01
Two sources of chromium III, "chromium 454" and "chromium picolinate," were tested in insulin-deficient Streptozocin-treated diabetic rats. This model was selected in order to evaluate the possibility of any hypoglycemic potency of chromium in a relative absence of blood insulin concentration. Three weeks of the treatment with CRC454 and CrP resulted in a 38% and 11% reduction of blood glucose levels, respectively. Body weight gains were equally improved by both treatments. Blood levels of CK, ALT and AST were significantly reduced by CRC454 and CrP. These results might suggest that any hypoglycemic effect of trivalent chromium under insulin-deficient conditions could be largely dependent upon the type of chromium agent and associated characteristics such as solubility and bioavalibility. In contrast, improvement of body weight gains and blood levels of CK, AST and ALT seems to be less dependent on the type of chromium compound under these experimental conditions. In conclusion, CRC454 showed significant reduction of hyperglycemia under insulin-deficient conditions.
Controlling chromium slag pollution utilising scavengers: a case of Shandong Province, China.
Liu, Changhao; Côté, Raymond P
2015-04-01
The problem of chromium slag pollution is a great challenge for China. It is now an urgent task for China to take effective measures to eliminate chromium slag pollution. This article examines the case of the treatment of chromium slag in Shandong Province and explores how chromium slag pollution can be eliminated in Shandong Province. It shows that the chromium slag stockpiled by the chemical plants was successfully utilised by local steel companies, who act as 'scavenger companies'. The driving mechanism, seeking a potential 'scavenger company' within the local region and the role of the local government on the case of Shandong Province are discussed. This article concludes that local steel companies can be utilised to effectively and efficiently treat the chromium slag while benefiting the steel companies. The local governments need to play multiple roles in solving the problem of chromium slag pollution. Seeking and identifying 'scavenger companies' within a region could be an important approach to reducing pollution within the region. © The Author(s) 2015.
Chen, Yu-Cheng; Coble, Joseph B; Deziel, Nicole C; Ji, Bu-Tian; Xue, Shouzheng; Lu, Wei; Stewart, Patricia A; Friesen, Melissa C
2014-11-01
The reliability and validity of six experts' exposure ratings were evaluated for 64 nickel-exposed and 72 chromium-exposed workers from six Shanghai electroplating plants based on airborne and urinary nickel and chromium measurements. Three industrial hygienists and three occupational physicians independently ranked the exposure intensity of each metal on an ordinal scale (1-4) for each worker's job in two rounds: the first round was based on responses to an occupational history questionnaire and the second round also included responses to an electroplating industry-specific questionnaire. The Spearman correlation (r(s)) was used to compare each rating's validity to its corresponding subject-specific arithmetic mean of four airborne or four urinary measurements. Reliability was moderately high (weighted kappa range=0.60-0.64). Validity was poor to moderate (r(s)=-0.37-0.46) for both airborne and urinary concentrations of both metals. For airborne nickel concentrations, validity differed by plant. For dichotomized metrics, sensitivity and specificity were higher based on urinary measurements (47-78%) than airborne measurements (16-50%). Few patterns were observed by metal, assessment round, or expert type. These results suggest that, for electroplating exposures, experts can achieve moderately high agreement and (reasonably) distinguish between low and high exposures when reviewing responses to in-depth questionnaires used in population-based case-control studies.
Chen, Yu-Cheng; Coble, Joseph B; Deziel, Nicole C.; Ji, Bu-Tian; Xue, Shouzheng; Lu, Wei; Stewart, Patricia A; Friesen, Melissa C
2014-01-01
The reliability and validity of six experts’ exposure ratings were evaluated for 64 nickel-exposed and 72 chromium-exposed workers from six Shanghai electroplating plants based on airborne and urinary nickel and chromium measurements. Three industrial hygienists and three occupational physicians independently ranked the exposure intensity of each metal on an ordinal scale (1–4) for each worker's job in two rounds: the first round was based on responses to an occupational history questionnaire and the second round also included responses to an electroplating industry-specific questionnaire. Spearman correlation (rs) was used to compare each rating's validity to its corresponding subject-specific arithmetic mean of four airborne or four urinary measurements. Reliability was moderately-high (weighted kappa range=0.60–0.64). Validity was poor to moderate (rs= -0.37–0.46) for both airborne and urinary concentrations of both metals. For airborne nickel concentrations, validity differed by plant. For dichotomized metrics, sensitivity and specificity were higher based on urinary measurements (47–78%) than airborne measurements (16–50%). Few patterns were observed by metal, assessment round, or expert type. These results suggest that, for electroplating exposures, experts can achieve moderately-high agreement and (reasonably) distinguish between low and high exposures when reviewing responses to in-depth questionnaires used in population-based case-control studies. PMID:24736099
Rapid Laser Printing of Paper-Based Multilayer Circuits.
Huang, Gui-Wen; Feng, Qing-Ping; Xiao, Hong-Mei; Li, Na; Fu, Shao-Yun
2016-09-27
Laser printing has been widely used in daily life, and the fabricating process is highly efficient and mask-free. Here we propose a laser printing process for the rapid fabrication of paper-based multilayer circuits. It does not require wetting of the paper, which is more competitive in manufacturing paper-based circuits compared to conventional liquid printing process. In the laser printed circuits, silver nanowires (Ag-NWs) are used as conducting material for their excellent electrical and mechanical properties. By repeating the printing process, multilayer three-dimensional (3D) structured circuits can be obtained, which is quite significant for complex circuit applications. In particular, the performance of the printed circuits can be exactly controlled by varying the process parameters including Ag-NW content and laminating temperature, which offers a great opportunity for rapid prototyping of customized products with designed properties. A paper-based high-frequency radio frequency identification (RFID) label with optimized performance is successfully demonstrated. By adjusting the laminating temperature to 180 °C and the top-layer Ag-NW areal density to 0.3 mg cm(-2), the printed RFID antenna can be conjugately matched with the chip, and a big reading range of ∼12.3 cm with about 2.0 cm over that of the commercial etched Al antenna is achieved. This work provides a promising approach for fast and quality-controlled fabrication of multilayer circuits on common paper and may be enlightening for development of paper-based devices.
Li, Xiaodong; Zhang, Jianxiang; Hu, Qiaoling; Li, Xiaohui
2011-11-01
Polystyrene-poly(acrylic acid)/poly(allylamine hydrochloride) polyelectrolyte multilayer was found to be instable and apt to reconstruct in the pure water. By depositing polystyrene-poly(acrylic acid)/poly(allylamine hydrochloride) multilayer on the polystyrene-poly(acrylic acid) hybrid CaCO(3) templates, novel polyelectrolyte capsules could be prepared after the removal of the templates. The resultant capsules could keep their three-dimensional (3D) spherical shape after being dried at room temperature, dramatically different from the conventional polyelectrolyte capsules based on nonhybrid templates by layer-by-layer procedure. The instable polyelectrolyte multilayer, hybrid templates, and assembly cycles were demonstrated to be three indispensable factors responsible for the formation of this type of 3D stable capsules. The formation mechanism was also discussed in this study. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, David P.; Hirschfeld, Deidre A.; Hooper, Ryan J.
2015-09-01
Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. Much of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To enhance the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical model for the purposemore » of evaluating new foil-substrate combinations for screening and optimization. The model is experimentally validated using a commercially available Ni-Al multilayer foils and different alloys.« less
Tantalum-based thin film coatings for wear resistant arthroprostheses.
Balagna, C; Faga, M G; Spriano, S
2011-10-01
Cobalt-chromium-molybdenum alloys with high carbon content (HC-CoCrMo) are widely used as materials for arthroprosthesis, in particular in metal-on-metal (MoM) hip joints. In spite of their good wear and corrosion resistance, production of metallic wear particles and metal ion release will occur on a large time-scale. An enhancement of the metal ion level in the patient's blood and urine is often reported in clinical data. Hypersensitivity, inflammatory response and cell necrosis can occur as consequence. So implants on young patients and women on childbearing age are not so widespread. The aim of this research is the realization of a thin film coating in order to improve the biocompatibility of Co-based alloys and to reduce debris production, ion release and citotoxicity. The innovative process consists of a thermal treatment in molten salts, in order to obtain a tantalum enriched thin film coating. Tantalum is chosen because it is considered a biocompatible metal with high corrosion resistance and low ion release. Three HC-CoCrMo alloys, produced by different manufacturing processes, are tested as substrates. The coating is a thin film of TaC or it can be composed by a multilayer of two tantalum carbides and metallic tantalum, depending on the temperature of the treatment and on the carbon content of the substrate. The thin films as well the substrates are characterized from the structural, chemical and morphological point of view. Moreover mechanical behaviour of treated and untreated materials is analyzed by means of nanohardness, scratch and ball-on-disc wear tests. The coating increases the mechanical and tribological properties of HC-CoCrMo.
Mehdizadeh, Hamidreza; Bayrak, Elif S; Lu, Chenlin; Somo, Sami I; Akar, Banu; Brey, Eric M; Cinar, Ali
2015-11-01
A multi-layer agent-based model (ABM) of biomaterial scaffold vascularization is extended to consider the effects of scaffold degradation kinetics on blood vessel formation. A degradation model describing the bulk disintegration of porous hydrogels is incorporated into the ABM. The combined degradation-angiogenesis model is used to investigate growing blood vessel networks in the presence of a degradable scaffold structure. Simulation results indicate that higher porosity, larger mean pore size, and rapid degradation allow faster vascularization when not considering the structural support of the scaffold. However, premature loss of structural support results in failure for the material. A strategy using multi-layer scaffold with different degradation rates in each layer was investigated as a way to address this issue. Vascularization was improved with the multi-layered scaffold model compared to the single-layer model. The ABM developed provides insight into the characteristics that influence the selection of optimal geometric parameters and degradation behavior of scaffolds, and enables easy refinement of the model as new knowledge about the underlying biological phenomena becomes available. This paper proposes a multi-layer agent-based model (ABM) of biomaterial scaffold vascularization integrated with a structural-kinetic model describing bulk degradation of porous hydrogels to consider the effects of scaffold degradation kinetics on blood vessel formation. This enables the assessment of scaffold characteristics and in particular the disintegration characteristics of the scaffold on angiogenesis. Simulation results indicate that higher porosity, larger mean pore size, and rapid degradation allow faster vascularization when not considering the structural support of the scaffold. However, premature loss of structural support by scaffold disintegration results in failure of the material and disruption of angiogenesis. A strategy using multi-layer scaffold with different degradation rates in each layer was investigated as away to address this issue. Vascularization was improved with the multi-layered scaffold model compared to the single-layer model. The ABM developed provides insight into the characteristics that influence the selection of optimal geometric and degradation characteristics of tissue engineering scaffolds. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Sliney, Harold E.
1986-01-01
A new chromium carbide-based coating (PS 200) is described. This coating is shown to have good friction and wear properties over a wide temperature range. A nickel alloy-bonded chromium carbide coating was used as a baseline material for comparison with experimentally formulated coatings. Coatings were plasma sprayed onto metal disks, then diamond ground to a thickness of 0.025 cm. Friction and wear were determined using a pin on disk tribometer at temperatures from 25 to 900 C in hydrogen, helium, and air. Pin materials included several metallic alloys and silicon carbide. It was found that appropriate additions of metallic silver and of barium fluoride/calcium fluoride eutectic to the baseline carbide composition significantly reduced friction coefficients while preserving, and in some cases, even enhancing wear resistance. The results of this study demonstrate that PS 200 is a promising coating composition to consider for high temperature aerospace and advanced heat engine applications. The excellent results in hydrogen make this coating of particular interest for use in the Stirling engine.
NASA Technical Reports Server (NTRS)
Sliney, H. E.
1986-01-01
A new chromium carbide-based coating (PS 200) is described. This coating is shown to have good friction and wear properties over a wide temperature range. A nickel alloy-bonded chromium carbide coating was used as a baseline material for comparison with experimental formulated coatings. Coatings were plasma sprayed onto metal disks, then diamond ground to a thickness of 0.025 cm. Friction and wear were determined using a pin on disk tribometer at temperatures from 25 to 900 C in hydrogen, helium, and air. Pin materials included several metallic alloys and silicon carbide. It was found that appropriate additions of metallic silver and of barium fluoride/calcium fluoride eutectic to the baseline carbide composition significantly reduced friction coefficients while preserving, and in some cases, even enhancing wear resistance. The results of this study demonstrate that PS 200 is a promising coating composition to consider for high temperature aerospace and advanced heat engine applications. The excellent results in hydrogen make this coating of particular interest for use in the Stirling engine.
Efficacy of dietary chromium (III) supplementation on tissue chromium deposition in finishing pigs.
Wang, Min-Qi; Li, Hui; He, Yu-Dan; Wang, Chao; Tao, Wen-Jing; Du, Yong-Jie
2012-09-01
The study was conducted to evaluate the efficacy of different forms of trivalent chromium (Cr) supplementation on tissue chromium deposition in finishing pigs. A total of 96 pigs with an initial average body mass 65.57±1.05 kg were blocked by body mass and randomly assigned to four treatments with three replicates. Pigs were offered one of four diets including a control diet or the control diet supplemented with 200 μg/kg chromium from either chromium chloride (CrCl(3)), chromium picolinate (CrPic) or chromium nanocomposite (CrNano) for 40 days. During the trial, all pigs were given free access to feed and water. After feeding trial, eight pigs from each treatment were slaughtered for samples collection. The results showed that supplemental CrNano increased Cr content in blood, longissimus muscle, heart, liver, kidney, jejunum, and ileum (P<0.05). Supplemental Cr from three sources increased Cr excretion from all feces (P<0.05). Urinary Cr excretion was increased by CrNano or CrPic supplementation significantly. These results suggested that chromium nanocomposite exhibited more effective on tissue Cr deposition in pigs, which indicated higher absorption compared with CrCl(3) and CrPic.
Bolla, I; Gariboldi, L M; Gabrielli, M; Baldo, D; Romanelli, A; Tuberti, E; Magnani, F
1990-01-01
Twenty-six workers were studied (9 chrome-platers exposed to chromium dioxide and 17 workers exposed to metallic chromium dust) in order to investigate the macroscopic and cytological changes of the nasal mucosa due to exposure to water-soluble hexavalent chromium or to metallic chromium dust in the electroplating industry and the role of different valencies in the onset of nasal disease. Experimental and epidemiological data have shown that hexavalent chromium, which has strong oxidative power, induces more noticeable toxic effects on tissues and mucous membranes than other compounds. The correlation between the degree of local toxic effects and the chemical state of chromium was demonstrated in both the macro- and the microscopic investigations and in particular in the cytological examinations: cases of atypia were found only in workers exposed to hexavalent chromium. Evidence of atypia raises the question of whether hexavalent chromium may act as a carcinogenic agent on the rhinosinusal mucosa. For this reason, the introduction of cytological nasal examination in health surveillance programmes for this category of workers acquires considerable importance. Sample collection from the nasal mucosa by brushing is the method of choice since it is simple, non-invasive and gives good diagnostic results.
Rentsch, Barbe; Bernhardt, Anne; Henß, Anja; Ray, Seemun; Rentsch, Claudia; Schamel, Martha; Gbureck, Uwe; Gelinsky, Michael; Rammelt, Stefan; Lode, Anja
2018-03-15
Remodeling of calcium phosphate bone cements is a crucial prerequisite for their application in the treatment of large bone defects. In the present study trivalent chromium ions were incorporated into a brushite forming calcium phosphate cement in two concentrations (10 and 50 mmol/mol β-tricalcium phosphate) and implanted into a femoral defect in rats for 3 and 6 month, non-modified brushite was used as reference. Based on our previous in vitro findings indicating both an enhanced osteoclastic activity and cytocompatibility towards osteoprogenitor cells we hypothesized a higher in vivo remodeling rate of the Cr 3+ doped cements compared to the reference. A significantly enhanced degradation of the modified cements was evidenced by micro computed tomography, X-ray and histological examinations. Furthermore the formation of new bone tissue after 6 month of implantation was significantly increased from 29% to 46% during remodeling of cements, doped with the higher Cr 3+ amount. Time of flight secondary ion mass spectrometry (ToF-SIMS) of histological sections was applied to investigate the release of Cr 3+ ions from the cement after implantation and to image their distribution in the implant region and the surrounding bone tissue. The relatively weak incorporation of chromium into the newly formed bone tissue is in agreement to the low chromium concentrations which were released from the cements in vitro. The faster degradation of the Cr 3+ doped cements was also verified by ToF-SIMS. The positive effect of Cr 3+ doping on both degradation and new bone formation is discussed as a synergistic effect of Cr 3+ bioactivity on osteoclastic resorption on one hand and improvement of cytocompatibility and solubility by structural changes in the calcium phosphate matrix on the other hand. While biologically active metal ions like strontium, magnesium and zinc are increasingly applied for the modification of ceramic bone graft materials, the present study is the first report on the incorporation of low doses of trivalent chromium ions into a calcium phosphate based biomaterial and testing of its performance in bone defect regeneration in vivo. Chromium(III)-doped calcium phosphate bone cements show improved cytocompatibility and both degradation rate and new bone formation in vivo are significantly increased compared to the reference cement. This important discovery might be the starting point for the application of trivalent chromium salts for the modification of bone graft materials to increase their remodelling rate. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
40 CFR 63.341 - Definitions and nomenclature.
Code of Federal Regulations, 2013 CFR
2013-07-01
... control device or a chemical fume suppressant, that is used to reduce chromium emissions from chromium... workpiece. Bath component means the trade or brand name of each component(s) in trivalent chromium plating baths. For trivalent chromium baths, the bath composition is proprietary in most cases. Therefore, the...
40 CFR 63.341 - Definitions and nomenclature.
Code of Federal Regulations, 2014 CFR
2014-07-01
... control device or a chemical fume suppressant, that is used to reduce chromium emissions from chromium... workpiece. Bath component means the trade or brand name of each component(s) in trivalent chromium plating baths. For trivalent chromium baths, the bath composition is proprietary in most cases. Therefore, the...
Bagchi, D; Bagchi, M; Stohs, S J
2001-06-01
Chromium (VI) is a widely used industrial chemical, extensively used in paints, metal finishes, steel including stainless steel manufacturing, alloy cast irons, chrome, and wood treatment. On the contrary, chromium (III) salts such as chromium polynicotinate, chromium chloride and chromium picolinate, are used as micronutrients and nutritional supplements, and have been demonstrated to exhibit a significant number of health benefits in rodents and humans. However, the cause for the hexavalent chromium to induce cytotoxicity is not entirely understood. A series of in vitro and in vivo studies have demonstrated that chromium (VI) induces an oxidative stress through enhanced production of reactive oxygen species (ROS) leading to genomic DNA damage and oxidative deterioration of lipids and proteins. A cascade of cellular events occur following chromium (VI)-induced oxidative stress including enhanced production of superoxide anion and hydroxyl radicals, increased lipid peroxidation and genomic DNA fragmentation, modulation of intracellular oxidized states, activation of protein kinase C, apoptotic cell death and altered gene expression. In this paper, we have demonstrated concentration- and time-dependent effects of sodium dichromate (chromium (VI) or Cr (VI)) on enhanced production of superoxide anion and hydroxyl radicals, changes in intracellular oxidized states as determined by laser scanning confocal microscopy, DNA fragmentation and apoptotic cell death (by flow cytometry) in human peripheral blood mononuclear cells. These results were compared with the concentration-dependent effects of chromium (VI) on chronic myelogenous leukemic K562 cells and J774A.1 murine macrophage cells. Chromium (VI)-induced enhanced production of ROS, as well as oxidative tissue and DNA damage were observed in these cells. More pronounced effect was observed on chronic myelogenous leukemic K562 cells and J774A.1 murine macrophage cells. Furthermore, we have assessed the effect of a single oral LD50 dose of chromium (VI) on female C57BL/6Ntac and p53-deficient C57BL/6TSG p53 mice on enhanced production of superoxide anion, lipid peroxidation and DNA fragmentation in the hepatic and brain tissues. Chromium (VI)-induced more pronounced oxidative damage in p53 deficient mice. This in vivo study highlighted that apoptotic regulatory protein p53 may play a major role in chromium (VI)-induced oxidative stress and toxicity. Taken together, oxidative stress and oxidative tissue damage, and a cascade of cellular events including modulation of apoptotic regulatory gene p53 are involved in chromium (VI)-induced toxicity and carcinogenesis.
Nano-electromechanical switch-CMOS hybrid technology and its applications.
Lee, B H; Hwang, H J; Cho, C H; Lim, S K; Lee, S Y; Hwang, H
2011-01-01
Si-based CMOS technology is facing a serious challenge in terms of power consumption and variability. The increasing costs associated with physical scaling have motivated a search for alternative approaches. Hybridization of nano-electromechanical (NEM)-switch and Si-based CMOS devices has shown a theoretical feasibility for power management, but a huge technical gap must be bridged before a nanoscale NEM switch can be realized due to insufficient material development and the limited understanding of its reliability characteristics. These authors propose the use of a multilayer graphene as a nanoscale cantilever material for a nanoscale NEM switchwith dimensions comparable to those of the state-of-the-art Si-based CMOS devices. The optimal thickness for the multilayer graphene (about five layers) is suggested based on an analytical model. Multilayer graphene can provide the highest Young's modulus among the known electrode materials and a yielding strength that allows more than 15% bending. Further research on material screening and device integration is needed, however, to realize the promises of the hybridization of NEM-switch and Si-based CMOS devices.
Electrodeposition of Dense Chromium Coatings from Molten Salt Electrolytes
1991-04-01
AD-A235 978 . JUN 03 391 ELECTRODEPOSITION OF DENSE CHROMIUM COATINGS FROM MOLTEN SALT ELECTROLYTES Final Technical Report J t ]Vgca or by ~ 4 OTC... molten salts , pulsed currents, electrodeposition. 2. The results, on the electrodeposition of dense chromium coatings from molten salt electrolytes... salts dissolved in molten salts using the cell Cl2/C/!Cr 2 + in LiCI-KCI//Cr metal The chromium ions are introduced by anodizing a piece of chromium and
1985-12-01
cation impurities from the plating solution and anodes to oxidize trivalent chromium to hexavalent chromium . Hexa- . valent chromium ions remain on the...corrosion, or to improve its engineering properties (harlness, durability, solderability, or frictional characteristics). Chromium ic used principally...facturing consists of machining the worn part or stripping a portion of the old plate, overplating it with a thick layer of chromium (hard chrome plating
Design Criteria for Process Wastewater Pretreatment Facilities
1988-05-01
chamber where soluble trivalent chromium is formed. The trivalent chromium is then precipitated by raising the pH of the wastewater, usually through...lime addition at the mixing chamber outlet, and removed through claritication. The solubility of trivalent chromium is at a minimum near a solution pH... chromium e compounds are two of the dominant trivalent chromium species. -2 :.: -3- -4- 0 ,. -6 - -6- -7- -8 -a 9 - - .o -I1 - \\ ,.,’. -12 - Cro 2 - CrO3
Bregnbak, David; Thyssen, Jacob P; Zachariae, Claus; Johansen, Jeanne D
2014-12-01
Chromium-tanned leather articles currently constitute the most important cause of contact allergy to chromium in Denmark. A regulation on the content of hexavalent chromium in leather was adopted in November 2013 by the EU member states. To characterize patients with chromium allergy and their disease, to serve as a baseline for future studies on the potential effect of the new regulation on chromium in leather. A questionnaire case-control study was performed on 155 dermatitis patients with positive patch test reactions to potassium dichromate and a matched control group of 621 dermatitis patients. Comparisons were made by use of a χ(2) -test and the Mann-Whitney U-test. Logistic regression analyses were used to test for associations. Sixty-six per cent of chromium-allergic patients had a positive history of contact dermatitis caused by leather exposure. They had a significantly lower quality of life (p < 0.001), a higher prevalence of dermatitis during the last year (p = 0.008), a higher use of medication during the past 12 months (p = 0.001) and a higher prevalence of sick leave (p = 0.007) than patients in the control group. Chromium-allergic patients have more severe and more chronic contact dermatitis. Their primary chromium exposure comes from leather articles. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The electrical resistance of gold-capped chromium thin films
NASA Astrophysics Data System (ADS)
Ohashi, Masashi; Sawabu, Masaki; Ohashi, Kohei; Miyagawa, Masahiro; Maeta, Kae; Kubota, Takahide; Takanashi, Koki
2018-03-01
We studied the electrical resistance of polycrystalline chromium films capped by a gold layer. No anomaly was detected by resistance measurements of 10 nm thick film around room temperature, indicating that the antiferromagnetic interaction may be suppressed as decreasing the thickness of the chromium film. The sheet resistance Rs (T) curves differ from polycrystalline chromium films in previous studies because of the electrical current flows through a gold capping layer. On the other hand, the resistance drop is observed at T C = 1.15±0.05 K as that of polycrystalline chromium films in the previous report. It means that such resistance drop is not related to the chromium oxide layer on a polycrystalline chromium films. However, it is difficult to conclude that superconducting transition occurs because of the large residual resistance below the temperature where the resistance drop is observed.
2012-01-01
Background The use of chromium supplements is widespread for the prevention and treatment of diabetes mellitus but there are conflicting reports on efficacy, possibly reflecting discrepant effects across different populations. In the present studies, we test the hypothesis that chromium supplementation raises serum chromium levels and correspondingly improves insulin sensitivity. Methods A double blind placebo-controlled randomized trial was conducted on 31 non-obese, normoglycemic subjects. After baseline studies, the subjects were randomized to placebo or chromium picolinate 500 μg twice a day. The primary endpoint was change in insulin sensitivity as measured by euglycemic hyperinsulinemic clamp. Pre-specified secondary endpoints included fasting lipids, blood pressure, weight, body composition measured by DXA scan. Results After 16 weeks of chromium picolinate therapy there was no significant change in insulin sensitivity between groups (p=0.83). There was, however, a strong association between serum chromium and change in insulin resistance (β = -0.83, p=0.01), where subjects with the highest serum chromium had a worsening of insulin sensitivity. This effect could not be explained by changes in physiological parameters such as body weight, truncal fat and serum lipids with chromium therapy. Conclusions Chromium therapy did not improve insulin sensitivity in non-obese normoglycemic individuals. Further, subjects who have high serum chromium levels paradoxically had a decline in insulin sensitivity. Caution therefore should be exercised in recommending the use of this supplement. Trial registration The study was registered on the NIH registry (clinicaltrials.gov) and the identifier is NCT00846248 PMID:23194380
In vitro and in vivo corrosion evaluation of nickel-chromium- and copper-aluminum-based alloys.
Benatti, O F; Miranda, W G; Muench, A
2000-09-01
The low resistance to corrosion is the major problem related to the use of copper-aluminum alloys. This in vitro and in vivo study evaluated the corrosion of 2 copper-aluminum alloys (Cu-Al and Cu-Al-Zn) compared with a nickel-chromium alloy. For the in vitro test, specimens were immersed in the following 3 corrosion solutions: artificial saliva, 0.9% sodium chloride, and 1.0% sodium sulfide. For the in vivo test, specimens were embedded in complete dentures, so that one surface was left exposed. The 3 testing sites were (1) close to the oral mucosa (partial self-cleaning site), (2) surface exposed to the oral cavity (self-cleaning site), and (3) specimen bottom surface exposed to the saliva by means of a tunnel-shaped perforation (non-self-cleaning site). Almost no corrosion occurred with the nickel-chromium alloy, for either the in vitro or in vivo test. On the other hand, the 2 copper-aluminum-based alloys exhibited high corrosion in the sulfide solution. These same alloys also underwent high corrosion in non-self-cleaning sites for the in vivo test, although minimal attack was observed in self-cleaning sites. The nickel-chromium alloy presented high resistance to corrosion. Both copper-aluminum alloys showed considerable corrosion in the sulfide solution and clinically in the non-self-cleaning site. However, in self-cleaning sites these 2 alloys did not show substantial corrosion.
NASA Astrophysics Data System (ADS)
Sun, Y. C.; Lin, C. Y.; Wu, S. F.; Chung, Y. T.
2006-02-01
We have developed a simple and convenient method for the determination of Cr(III), Cr(VI), and the total chromium concentrations in natural water and urine samples that use a flow injection on-line desalter-inductively coupled plasma-mass spectrometry system. When using aqueous ammonium chloride (pH 8) as the stripping solution, the severe interference from sodium in the matrix can be eliminated prior to inductively coupled plasma-mass spectrometry measurement, and the Cr(VI) level can be determined directly. To determine the total concentration of Cr in natural water and urine samples, we used H 2O 2 or HNO 3 to decompose the organic matter and convert all chromium species into the Cr(VI) oxidation state. To overcome the spectral interference caused by the matrix chloride ion in the resulting solutions, we employed cool plasma to successfully suppress chloride-based molecular ion interference during the inductively coupled plasma-mass spectrometry measurement. By significantly eliminating interference from the cationic and anionic components in the matrices prior to the inductively coupled plasma-mass spectrometry measurement, we found that the detection limit reached 0.18 μg L - 1 (based on 3 sigma). We validated this method through the analysis of the total chromium content in two reference materials (NIST 1643c and 2670E) and through measuring the recovery in spiked samples.
EUV mirror based absolute incident flux detector
Berger, Kurt W.
2004-03-23
A device for the in-situ monitoring of EUV radiation flux includes an integrated reflective multilayer stack. This device operates on the principle that a finite amount of in-band EUV radiation is transmitted through the entire multilayer stack. This device offers improvements over existing vacuum photo-detector devices since its calibration does not change with surface contamination.
29 CFR 1926.1126 - Chromium (VI).
Code of Federal Regulations, 2010 CFR
2010-07-01
... is present or is likely to be present from skin or eye contact with chromium (VI), the employer shall... cleaned in a manner that minimizes skin or eye contact with chromium (VI) and effectively prevents the... CFR 1926.51 Where skin contact with chromium (VI) occurs, the employer shall provide washing...
21 CFR 73.2327 - Chromium oxide greens.
Code of Federal Regulations, 2010 CFR
2010-04-01
... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2327 Chromium oxide greens. (a) Identity and specifications. The color additive chromium oxide greens shall conform in identify and specifications to the requirements of § 73.1327 (a)(1) and (b). (b) Uses and restrictions. The color additive chromium oxide greens...
21 CFR 73.1326 - Chromium hydroxide green.
Code of Federal Regulations, 2010 CFR
2010-04-01
... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1326 Chromium hydroxide green. (a) Identity. (1) The color additive chromium hydroxide green is principally hydrated chromic sesquioxide (Cr2O3·XH2O). (2) Color additive mixtures for drug use made with chromium hydroxide green may contain only those...
40 CFR 63.345 - Provisions for new and reconstructed sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... electroplating, or chromium anodizing); (viii) A description of the air pollution control technique to be used to... National Emission Standards for Chromium Emissions From Hard and Decorative Chromium Electroplating and Chromium Anodizing Tanks § 63.345 Provisions for new and reconstructed sources. (a) This section identifies...
40 CFR 63.345 - Provisions for new and reconstructed sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... electroplating, or chromium anodizing); (viii) A description of the air pollution control technique to be used to... National Emission Standards for Chromium Emissions From Hard and Decorative Chromium Electroplating and Chromium Anodizing Tanks § 63.345 Provisions for new and reconstructed sources. (a) This section identifies...
77 FR 32998 - Tin- and Chromium-Coated Steel Sheet From Japan
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-04
... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-860 (Second Review)] Tin- and Chromium... order on tin- and chromium-coated steel sheet from Japan would be likely to lead to continuation or... USITC Publication 4325 (May 2012), entitled Tin- and Chromium-Coated Steel Sheet from Japan...
40 CFR 721.2097 - Azo chromium complex dyestuff preparation (generic name).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Azo chromium complex dyestuff... New Uses for Specific Chemical Substances § 721.2097 Azo chromium complex dyestuff preparation... substance identified generically as an azo chromium complex dyestuff preparation (PMN P-95-240) is subject...
40 CFR 721.2097 - Azo chromium complex dyestuff preparation (generic name).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Azo chromium complex dyestuff... New Uses for Specific Chemical Substances § 721.2097 Azo chromium complex dyestuff preparation... substance identified generically as an azo chromium complex dyestuff preparation (PMN P-95-240) is subject...
40 CFR 721.2097 - Azo chromium complex dyestuff preparation (generic name).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Azo chromium complex dyestuff... New Uses for Specific Chemical Substances § 721.2097 Azo chromium complex dyestuff preparation... substance identified generically as an azo chromium complex dyestuff preparation (PMN P-95-240) is subject...
21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining a... percent each) of oxides of barium, boron, silicon, and nickel. (b) Specifications. Chromium-cobalt... milliliters of 0.5 N hydrochloric acid. (c) Uses and restrictions. The color additive chromium-cobalt-aluminum...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-10
... Toxicological Review of Hexavalent Chromium: In Support of Summary Information on the Integrated Risk... of Hexavalent Chromium: In Support of Summary Information on the Integrated Risk Information System... ``Toxicological Review of Hexavalent Chromium: In Support of Summary Information on the Integrated Risk...
40 CFR 721.2097 - Azo chromium complex dyestuff preparation (generic name).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Azo chromium complex dyestuff... New Uses for Specific Chemical Substances § 721.2097 Azo chromium complex dyestuff preparation... substance identified generically as an azo chromium complex dyestuff preparation (PMN P-95-240) is subject...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Yong; Zhou Yuming, E-mail: ymzhou@seu.edu.cn; Ge Jianhua
Optically active polyurethane/titania/silica (LPU/TiO{sub 2}/SiO{sub 2}) multilayered core-shell composite microspheres were prepared by the combination of titania deposition on the surface of silica spheres and subsequent polymer grafting. LPU/TiO{sub 2}/SiO{sub 2} was characterized by FT-IR, UV-vis spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), SEM and TEM, and the infrared emissivity value (8-14 {mu}m) was investigated in addition. The results indicated that titania and polyurethane had been successfully coated onto the surfaces of silica microspheres. LPU/TiO{sub 2}/SiO{sub 2} exhibited clearly multilayered core-shell construction. The infrared emissivity values reduced along with the increase of covering layers thus provedmore » that the interfacial interactions had direct influence on the infrared emissivity. Besides, LPU/TiO{sub 2}/SiO{sub 2} multilayered microspheres based on the optically active polyurethane took advantages of the orderly secondary structure and strengthened interfacial synergistic actions. Consequently, it possessed the lowest infrared emissivity value. - Graphical Abstract: Optically active polyurethane/titania/silica (LPU/TiO{sub 2}/SiO{sub 2}) multilayered core-shell composite microspheres were prepared by the combination of titania deposition on the surface of silica spheres and subsequent polymer grafting. Highlights: > Optically active polyurethane based on tyrosine was used for the modification of nanoparticles. > LPU/TiO{sub 2}/SiO{sub 2} multilayered core-shell microspheres were prepared and characterized. > Interfacial interactions and secondary structure affected the infrared emissivity of composite.« less
FDTD-based computed terahertz wave propagation in multilayer medium structures
NASA Astrophysics Data System (ADS)
Tu, Wan-li; Zhong, Shun-cong; Yao, Hai-zi; Shen, Yao-chun
2013-08-01
The terahertz region of the electromagnetic spectrum spans the frequency range of 0.1THz~10THz, which means it sandwiches between the mid-infrared (IR) and the millimeter/ microwave. With the development and commercialization of terahertz pulsed spectroscopy (TPS) and terahertz pulsed imaging (TPI) systems, terahertz technologies have been widely used in the sensing and imaging fields. It allows high quality cross-sectional images from within scattering media to be obtained nondestructively. Characterizing the interaction of terahertz radiation with multilayer medium structures is critical for the development of nondestructive testing technology. Currently, there was much experimental investigation of using TPI for the characterization of terahertz radiation in materials (e.g., pharmaceutical tablet coatings), but there were few theoretical researches on propagation of terahertz radiation in multilayer medium structures. Finite Difference Time Domain (FDTD) algorithm is a proven method for electromagnetic scattering theory, which analyzes continuous electromagnetic problems by employing finite difference and obtains electromagnetic field value at the sampling point to approach the actual continuous solutions. In the present work, we investigated the propagation of terahertz radiation in multilayer medium structures based on FDTD method. The model of multilayer medium structures under the THz frequency plane wave incidence was established, and the reflected radiation properties were recorded and analyzed. The terahertz radiation used was broad-band in the frequency up to 2 THz. A batch of single layer coated pharmaceutical tablets, whose coating thickness in the range of 40~100μm, was computed by FDTD method. We found that the simulation results on pharmaceutical tablet coatings were in good agreement with the experimental results obtained using a commercial system (TPI imaga 2000, TeraView, Cambridge, UK) , demonstrating its usefulness in simulating and analyzing terahertz responses from a multilayered sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesham, Dean O.; Ivarson, Kristine A.; Hanson, James P.
2014-02-03
The U.S. Department of Energy’s (DOE’s) contractor, CH2M HILL Plateau Remediation Company, has successfully converted a series of groundwater treatment facilities to use a new treatment resin that is delivering more than $3 million in annual cost savings and efficiency in treating groundwater contamination at the DOE Hanford Site in southeastern Washington State. During the production era, the nuclear reactors at the Hanford Site required a continuous supply of high-quality cooling water during operations. Cooling water consumption ranged from about 151,417 to 378,541 L/min (40,000 to 100,000 gal/min) per reactor, depending on specific operating conditions. Water from the Columbia Rivermore » was filtered and treated chemically prior to use as cooling water, including the addition of sodium dichromate as a corrosion inhibitor. Hexavalent chromium was the primary component of the sodium dichromate and was introduced into the groundwater at the Hanford Site as a result of planned and unplanned discharges from the reactors starting in 1944. Groundwater contamination by hexavalent chromium and other contaminants related to nuclear reactor operations resulted in the need for groundwater remedial actions within the Hanford Site reactor areas. Beginning in 1995, groundwater treatment methods were evaluated, leading to the use of pump-and-treat facilities with ion exchange using Dowex™ 21K, a regenerable, strong-base anion exchange resin. This required regeneration of the resin, which was performed offsite. In 2008, DOE recognized that regulatory agreements would require significant expansion for the groundwater chromium treatment capacity. As a result, CH2M HILL performed testing at the Hanford Site in 2009 and 2010 to demonstrate resin performance in the specific groundwater chemistry at different waste sites. The testing demonstrated that a weak-base anion, single-use resin, specifically ResinTech SIR-700 ®, was effective at removing chromium, had a significantly higher capacity, could be disposed of efficiently onsite, and would eliminate the complexities and programmatic risks from sampling, packaging, transportation, and return of resin for regeneration.« less
Nonlinear multilayers as optical limiters
NASA Astrophysics Data System (ADS)
Turner-Valle, Jennifer Anne
1998-10-01
In this work we present a non-iterative technique for computing the steady-state optical properties of nonlinear multilayers and we examine nonlinear multilayer designs for optical limiters. Optical limiters are filters with intensity-dependent transmission designed to curtail the transmission of incident light above a threshold irradiance value in order to protect optical sensors from damage due to intense light. Thin film multilayers composed of nonlinear materials exhibiting an intensity-dependent refractive index are used as the basis for optical limiter designs in order to enhance the nonlinear filter response by magnifying the electric field in the nonlinear materials through interference effects. The nonlinear multilayer designs considered in this work are based on linear optical interference filter designs which are selected for their spectral properties and electric field distributions. Quarter wave stacks and cavity filters are examined for their suitability as sensor protectors and their manufacturability. The underlying non-iterative technique used to calculate the optical response of these filters derives from recognizing that the multi-valued calculation of output irradiance as a function of incident irradiance may be turned into a single-valued calculation of incident irradiance as a function of output irradiance. Finally, the benefits and drawbacks of using nonlinear multilayer for optical limiting are examined and future research directions are proposed.
Docetaxel-loaded multilayer nanoparticles with nanodroplets for cancer therapy
Oh, Keun Sang; Kim, Kyungim; Yoon, Byeong Deok; Lee, Hye Jin; Park, Dal Yong; Kim, Eun-yeong; Lee, Kiho; Seo, Jae Hong; Yuk, Soon Hong
2016-01-01
A mixture of docetaxel (DTX) and Solutol® HS 15 (Solutol) transiently formed nanodroplets when it was suspended in an aqueous medium. However, nanodroplets that comprised DTX and Solutol showed a rapid precipitation of DTX because of their unstable characteristics in the aqueous medium. The incorporation of nanodroplets that comprised DTX and Solutol through vesicle fusion and subsequent stabilization was designed to prepare multilayer nanoparticles (NPs) with a DTX-loaded Solutol nanodroplet (as template NPs) core for an efficient delivery of DTX as a chemotherapeutic drug. As a result, the DTX-loaded Solutol nanodroplets (~11.7 nm) were observed to have an increased average diameter (from 11.7 nm to 156.1 nm) and a good stability of the hydrated NPs without precipitation of DTX by vesicle fusion and multilayered structure, respectively. Also, a long circulation of the multilayer NPs was observed, and this was due to the presence of Pluronic F-68 on the surface of the multilayer NPs. This led to an improved antitumor efficacy based on the enhanced permeation and retention effect. Therefore, this study indicated that the multilayer NPs have a considerable potential as a drug delivery system with an enhanced therapeutic efficacy by blood circulation and with low side effects. PMID:27042062
Lowry, Troy W.; Hariri, Hanaa; Prommapan, Plengchart; Kusi-Appiah, Aubrey; Vafai, Nicholas; Bienkiewicz, Ewa A.; Van Winkle, David H.; Stagg, Scott M.
2016-01-01
The dynamic self-organization of lipids in biological systems is a highly regulated process that enables the compartmentalization of living systems at micro- and nanoscopic scales. Consequently, quantitative methods for assaying the kinetics of supramolecular remodeling such as vesicle formation from planar lipid bilayers or multilayers are needed to understand cellular self-organization. Here, a new nanotechnology-based method for quantitative measurements of lipid–protein interactions is presented and its suitability for quantifying the membrane binding, inflation, and budding activity of the membrane-remodeling protein Sar1 is demonstrated. Lipid multilayer gratings are printed onto surfaces using nanointaglio and exposed to Sar1, resulting in the inflation of lipid multilayers into unilamellar structures, which can be observed in a label-free manner by monitoring the diffracted light. Local variations in lipid multilayer volume on the surface is used to vary substrate availability in a microarray format. A quantitative model is developed that allows quantification of binding affinity (KD) and kinetics (kon and koff). Importantly, this assay is uniquely capable of quantifying membrane remodeling. Upon Sar1-induced inflation of single bilayers from surface supported multilayers, the semicylindrical grating lines are observed to remodel into semispherical buds when a critical radius of curvature is reached. PMID:26649649
Chickneyan, Zarui Sara; Briseno, Alejandro L; Shi, Xiangyang; Han, Shubo; Huang, Jiaxing; Zhou, Feimeng
2004-07-01
An approach to producing films of nanometer-sized copper oxide particulates, based on polyelectrolyte-mediated assembly of the precursor, copper(II)phthalocyanine tetrasulfonate (CPTS), is described. Multilayered CPTS and polydiallyldimethylammonium chloride (PDADMAC) were alternately assembled on different planar substrates via the layer-by-layer (LbL) procedure. The growth of CPTS multilayers was monitored by UV-visible spectrometry and quartz crystal microbalance (QCM) measurements. Both the UV-visible spectra and the QCM data showed that a fixed amount of CPTS could be attached to the substrate surface for a given adsorption cycle. Cyclic voltammograms at the CPTS/PDADMAC-covered gold electrode exhibited a decrease in peak currents with the layer number, indicating that the permeability of CPTS multilayers on the electrodes had diminished. When these CPTS multilayered films were calcined at elevated temperatures, uniform thin films composed of nanoparticulate copper oxide could be produced. Ellipsometry showed that the thickness of copper oxide nanoparticulate films could be precisely tailored by varying the thickness of CPTS multilayer films. The morphology and roughness of CPTS multilayer and copper oxide thin films were characterized by atomic force microscopy. X-ray diffraction (XRD) measurements indicated that these thin films contained both CuO and Cu2O nanoparticles. The preparation of such copper oxide thin films with the use of metal complex precursors represents a new route for the synthesis of inorganic oxide films with a controlled thickness.
NASA Astrophysics Data System (ADS)
Yao, Rihui; Zhang, Hongke; Fang, Zhiqiang; Ning, Honglong; Zheng, Zeke; Li, Xiaoqing; Zhang, Xiaochen; Cai, Wei; Lu, Xubing; Peng, Junbiao
2018-02-01
In this study, high conductivity and transparent multi-layer (AZO/Al/AZO-/Al/AZO) source/drain (S/D) electrodes for thin film transistors were fabricated via conventional physical vapor deposition approaches, without toxic elements or further thermal annealing process. The 68 nm-thick multi-layer films with excellent optical properties (transparency: 82.64%), good electrical properties (resistivity: 6.64 × 10-5 Ω m, work function: 3.95 eV), and superior surface roughness (R q = 0.757 nm with scanning area of 5 × 5 µm2) were fabricated as the S/D electrodes. Significantly, comprehensive performances of AZO films are enhanced by the insertion of ultra-thin Al layers. The optimal transparent TFT with this multi-layer S/D electrodes exhibited a decent electrical performance with a saturation mobility (µ sat) of 3.2 cm2 V-1 s-1, an I on/I off ratio of 1.59 × 106, a subthreshold swing of 1.05 V/decade. The contact resistance of AZO/Al/AZO/Al/AZO multi-layer electrodes is as low as 0.29 MΩ. Moreover, the average visible light transmittance of the unpatterned multi-layers constituting a whole transparent TFT could reach 72.5%. The high conductivity and transparent multi-layer S/D electrodes for transparent TFTs possessed great potential for the applications of the green and transparent displays industry.
NASA Astrophysics Data System (ADS)
Lahiner, Guillaume; Nicollet, Andrea; Zapata, James; Marín, Lorena; Richard, Nicolas; Rouhani, Mehdi Djafari; Rossi, Carole; Estève, Alain
2017-10-01
Thermite multilayered films have the potential to be used as local high intensity heat sources for a variety of applications. Improving the ability of researchers to more rapidly develop Micro Electro Mechanical Systems devices based on thermite multilayer films requires predictive modeling in which an understanding of the relationship between the properties (ignition and flame propagation), the multilayer structure and composition (bilayer thicknesses, ratio of reactants, and nature of interfaces), and aspects related to integration (substrate conductivity and ignition apparatus) is achieved. Assembling all these aspects, this work proposes an original 2D diffusion-reaction modeling framework to predict the ignition threshold and reaction dynamics of Al/CuO multilayered thin films. This model takes into consideration that CuO first decomposes into Cu2O, and then, released oxygen diffuses across the Cu2O and Al2O3 layers before reacting with pure Al to form Al2O3. This model is experimentally validated from ignition and flame velocity data acquired on Al/CuO multilayers deposited on a Kapton layer. This paper discusses, for the first time, the importance of determining the ceiling temperature above which the multilayers disintegrate, possibly before their complete combustion, thus severely impacting the reaction front velocity and energy release. This work provides a set of heating surface areas to obtain the best ignition conditions, i.e., with minimal ignition power, as a function of the substrate type.
Fernandes, Ridvan N.; Campos, Luís Fernando P.
2003-01-01
A multicommutated flow system for simultaneous determination of iron and chromium in steel alloys by photometry is described. The flow network consisted of an automatic injector and four solenoid valves assembled to form two independent analytical pathways, each one comprising reaction coils and a flow cell. The light source (LED) and detector (photodiode) were attached to the flow cells to form a compact unit. The flow system was microcomputer controlled by Quick BASIC 4.5 software, which carried out all steps of the analytical procedure. The feasibility of the system was proved by the determination of iron and chromium in steel alloys and its accuracy was accessed by comparing results with those obtained by plasma atomic emission spectrometry (ICP-AES). No significant difference at the 95% confidence level was observed. Other profitable features such as low reagent consumption (0.33 mg 1,10-phenantroline and 0.03 mg 1,5-diphenylcarbazide per determination); relative standard deviations (n = 5) of 0.4% for iron and 1.2% for chromium; and an analytical throughput of 160 determinations per h were also achieved. PMID:18924884
Ultrafiltration membrane for effective removal of chromium ions from potable water
NASA Astrophysics Data System (ADS)
Muthumareeswaran, M. R.; Alhoshan, Mansour; Agarwal, Gopal Prasad
2017-01-01
The objective of the present work was to investigate the efficacy of indigenously developed polyacrylonitrile (PAN) based ultrafiltration (UF) membrane for chromium ions removal from potable water. The hydrolyzed PAN membranes effectively rejected chromium anions in the feed ranging from 250 ppb to 400 ppm and a rejection of ≥90% was achieved for pH ≥ 7 at low chromate concentration (≤25 ppm) in feed. The rejection mechanism of chromium ions was strongly dependent on Donnan exclusion principle, while size exclusion principle for UF did not play a major role on ions rejection. Feed pH played a vital role in changing porosity of membrane, which influenced the retention behavior of chromate ions. Cross-flow velocity, pressure did not play significant role for ions rejection at low feed concentration. However, at higher feed concentration (≥400 ppm), concentration polarization became important and it reduced the chromate rejection to 32% at low cross flow and high pressure. Donnan steric-partitioning pore and dielectric exclusion model (DSPM-DE) was applied to evaluate the chromate ions transport through PAN UF membrane as a function of flux by using optimized model parameters and the simulated data matched well with experimental results.
NASA Astrophysics Data System (ADS)
Behera, Kishore Kumar; Pal, Snehanshu
2018-03-01
This paper describes a new approach towards optimum utilisation of ferrochrome added during stainless steel making in AOD converter. The objective of optimisation is to enhance end blow chromium content of steel and reduce the ferrochrome addition during refining. By developing a thermodynamic based mathematical model, a study has been conducted to compute the optimum trade-off between ferrochrome addition and end blow chromium content of stainless steel using a predator prey genetic algorithm through training of 100 dataset considering different input and output variables such as oxygen, argon, nitrogen blowing rate, duration of blowing, initial bath temperature, chromium and carbon content, weight of ferrochrome added during refining. Optimisation is performed within constrained imposed on the input parameters whose values fall within certain ranges. The analysis of pareto fronts is observed to generate a set of feasible optimal solution between the two conflicting objectives that provides an effective guideline for better ferrochrome utilisation. It is found out that after a certain critical range, further addition of ferrochrome does not affect the chromium percentage of steel. Single variable response analysis is performed to study the variation and interaction of all individual input parameters on output variables.
Callitriche cophocarpa biomass as a potential low-cost biosorbent for trivalent chromium.
Kyzioł-Komosińska, Joanna; Augustynowicz, Joanna; Lasek, Wojciech; Czupioł, Justyna; Ociński, Daniel
2018-05-15
The present study focused on the use of the dry mass of the macrophyte Callitriche cophocarpa as an effective biosorbent for chromium removal from concentrated solutions, typical for industrial effluents. In order to evaluate the usability of C. cophocarpa as the Cr(III) sorbent, its detailed physicochemical characterization has been performed as well as the preliminary adsorption studies. The biosorbent was characterized by specific surface area (SSA), porosity, total organic carbon (TOC), inorganic content as well as the cation exchange capacity (CEC), dominant exchangeable cations and anion exchange capacity (AEC), point of zero charge (pH pzc ) and buffering capacity. The effect of the initial chromium concentration, solution pH and co-existing anions on the sorption effectiveness have been investigated. Based on theoretical isotherm models, the maximum adsorption capacity of the dry C. cophocarpa has been determined as 77.1 mg Cr(III)/g. Finally, the strength of Cr-binding onto the plant biomass has been evaluated using the BCR extraction method, stating that chromium was strongly and - under environmental conditions - irreversibly bound to the plant biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.
Koch, Stefan; Joshi, Ravi K; Noyong, Michael; Timper, Jan; Schneider, Jörg J; Simon, Ulrich
2012-09-10
The formation of stochastically oriented carbon-nanotube networks on top of an array of free-standing chromium-capped silicon nanopillars is reported. The combination of nanosphere lithography and chemical vapor deposition enables the construction of nanostructures that exhibit a hierarchical sequence of structural sizes. Metallic chromium serves as an etching mask for Si-pillar formation and as a nucleation site for the formation of carbon nanotubes through the chemical vapor deposition of ethene, ethanol, and methane, respectively, thereby bridging individual pillars from top to top. Iron and cobalt were applied onto the chromium caps as catalysts for CNT growth and the influence of different carbon sources and different gas-flow rates were investigated. The carbon nanotubes were structurally characterized and their DC electrical properties were studied by in situ local- and ex situ macroscopic measurements, both of which reveal their semiconductor properties. This process demonstrates how carbon nanotubes can be integrated into Si-based semiconductors and, thus, this process may be used to form high-surface-area sensors or new porous catalyst supports with enhanced gas-permeation properties. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pheromone synthesis in a biomicroreactor coated with anti-adsorption polyelectrolyte multilayer
Dimov, Nikolay; Muñoz, Lourdes; Carot-Sans, Gerard; Verhoeven, Michel L. P. M.; Bula, Wojciech P.; Kocer, Gülistan; Guerrero, Angel; Gardeniers, Han J. G. E.
2011-01-01
To prepare a biosynthetic module in an infochemical communication project, we designed a silicon/glass microreactor with anti-adsorption polyelectrolyte multilayer coating and immobilized alcohol acetyl transferase (atf), one of the key biosynthetic enzymes of the pheromone of Spodoptera littoralis, on agarose beads inside. The system reproduces the last step of the biosynthesis in which the precursor diene alcohol (Z,E)-9,11-tetradecadienol is transformed into the major component (Z,E)-9,11-tetradecadienyl acetate. The scope of this study was to analyze and implement a multilayer, anti-adsorption coating based on layer-by-layer deposition of polyethylenimine/dextransulfate sodium salt (PEI/DSS). The multilayers were composed of two PEI with molecular weights 750 and 1.2 kDa at pH 9.2 or 6.0. Growth, morphology, and stability of the layers were analyzed by ellipsometry and atomic force microscopy (AFM). The anti-adsorption functionality of the multilayer inside the microreactor was validated. The activity of His6-(atf) was measured by gas chromatography coupled to mass spectrometer (GC-MS). PMID:22662033