Science.gov

Sample records for multilayer composite fabric

  1. Multilayered carbon nanotube/polymer composite based thermoelectric fabrics.

    PubMed

    Hewitt, Corey A; Kaiser, Alan B; Roth, Siegmar; Craps, Matt; Czerw, Richard; Carroll, David L

    2012-03-14

    Thermoelectrics are materials capable of the solid-state conversion between thermal and electrical energy. Carbon nanotube/polymer composite thin films are known to exhibit thermoelectric effects, however, have a low figure of merit (ZT) of 0.02. In this work, we demonstrate individual composite films of multiwalled carbon nanotubes (MWNT)/polyvinylidene fluoride (PVDF) that are layered into multiple element modules that resemble a felt fabric. The thermoelectric voltage generated by these fabrics is the sum of contributions from each layer, resulting in increased power output. Since these fabrics have the potential to be cheaper, lighter, and more easily processed than the commonly used thermoelectric bismuth telluride, the overall performance of the fabric shows promise as a realistic alternative in a number of applications such as portable lightweight electronics.

  2. Fabrication of graphene/polyaniline composite multilayer films by electrostatic layer-by-layer assembly

    SciTech Connect

    Cong, Jiaojiao; Chen, Yuze; Luo, Jing Liu, Xiaoya

    2014-10-15

    A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet–visible absorption spectrum (UV–vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10{sup −4} to 1.2×10{sup −3} M with the detect limit of 5×10{sup −6} M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor. - Graphical abstract: A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. - Highlights: • A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. • The water dispersible and negatively charged graphene (CCG) was used as building block. • CCG was achieved through partly reduced graphene oxide with carboxyl group on its surface. • CCG/PANI film kept

  3. Some features of the fabrication of multilayer fiber composites by explosive welding

    NASA Technical Reports Server (NTRS)

    Kotov, V. A.; Mikhaylov, A. N.; Cabelka, D.

    1985-01-01

    The fabrication of multilayer fiber composites by explosive welding is characterized by intense plastic deformation of the matrix material as it fills the spaces between fibers and by high velocity of the collision between matrix layers due to acceleration in the channels between fibers. The plastic deformation of the matrix layers and fiber-matrix friction provide mechanical and thermal activation of the contact surfaces, which contributes to the formation of a bond. An important feature of the process is that the fiber-matrix adhesion strength can be varied over a wide range by varying the parameters of impulsive loading.

  4. Modeling multilayer woven fabrics

    NASA Astrophysics Data System (ADS)

    Åström, J. A.; Mäkinen, J. P.; Timonen, J.

    2001-07-01

    A numerical algorithm for nonlinear elastic relaxation of a multilayer woven fabric is introduced and tested. The equilibrium solutions are compared with real samples. An excellent result is obtained in spite of two simplifications: Bending stiffness of the fibers and friction between the fibers are both neglected. The numerical simulation is very fast and cost efficient in the search for optimal fabrics.

  5. The fabrication of single-walled carbon nanotube/polyelectrolyte multilayer composites by layer-by-layer assembly and magnetic field assisted alignment

    NASA Astrophysics Data System (ADS)

    Tian, Ying; Park, Jin Gyu; Cheng, Qunfeng; Liang, Zhiyong; Zhang, Chuck; Wang, Ben

    2009-08-01

    Single-walled carbon nanotube (SWNT)/polymer composites are widely studied because of their potential for high mechanical performance and multifunctional applications. In order to realize highly ordered multilayer nanostructures, we combined the layer-by-layer (LBL) assembly method with magnetic force-induced alignment to fabricate SWNT/poly(ethylamine) (PEI) multilayer composites. The SWNTs were functionalized with the anionic surfactant sodium dodecylbenzenesulfonate (NaDDBS) to realize negative charge at pH>7, while the PEI is positively charged at pH<7. The LBL method is based on the electrostatic absorption between the charged SWNTs and PEI resin to form multilayer composites on a solid substrate polydimethylsiloxane. Since the fabricated thickness of each SWNT-NaDDBS/PEI bilayer is uniform (~150 nm), the multilayer film thickness can be strictly controlled via the number of deposition cycles. A high magnetic field (8.5 Tesla) was used to align the SWNTs during the LBL process. The resultant LBL composite samples demonstrated high SWNT loading of approximately 50 wt% and uniform distribution of SWNTs in the multilayer structures, which was verified using a quartz crystal microbalance. Good alignment was also realized and observed through using high magnetic fields to align the nanotubes during the LBL deposition process. The results indicate that the LBL/magnetic alignment approach has potential for fabricating nanotube composites with highly ordered nanostructures for multifunctional materials and device applications.

  6. Superabsorbent Multilayer Fabric

    NASA Technical Reports Server (NTRS)

    Coreale, J. V.; Dawn, F. S.

    1982-01-01

    Material contains gel-forming polymer and copolymer that absorb from 70 to 200 times their weight of liquid. Superabsorbent Polymer and Copolymer form gels to bind and retain liquid in multiply fabric. Until reaction between liquid and absorbent masses forms gel, backing layer retains liquids within fabric; also allows material to "breathe." Possible applications include baby diapers, female hygiene napkins, and hospital bedpads. Might also have uses in improvement of dry soil.

  7. Multilayer Composite Pressure Vessels

    NASA Technical Reports Server (NTRS)

    DeLay, Tom

    2005-01-01

    A method has been devised to enable the fabrication of lightweight pressure vessels from multilayer composite materials. This method is related to, but not the same as, the method described in gMaking a Metal- Lined Composite-Overwrapped Pressure Vessel h (MFS-31814), NASA Tech Briefs, Vol. 29, No. 3 (March 2005), page 59. The method is flexible in that it poses no major impediment to changes in tank design and is applicable to a wide range of tank sizes. The figure depicts a finished tank fabricated by this method, showing layers added at various stages of the fabrication process. In the first step of the process, a mandrel that defines the size and shape of the interior of the tank is machined from a polyurethane foam or other suitable lightweight tooling material. The mandrel is outfitted with metallic end fittings on a shaft. Each end fitting includes an outer flange that has a small step to accommodate a thin layer of graphite/epoxy or other suitable composite material. The outer surface of the mandrel (but not the fittings) is covered with a suitable release material. The composite material is filament- wound so as to cover the entire surface of the mandrel from the step on one end fitting to the step on the other end fitting. The composite material is then cured in place. The entire workpiece is cut in half in a plane perpendicular to the axis of symmetry at its mid-length point, yielding two composite-material half shells, each containing half of the foam mandrel. The halves of the mandrel are removed from within the composite shells, then the shells are reassembled and bonded together with a belly band of cured composite material. The resulting composite shell becomes a mandrel for the subsequent steps of the fabrication process and remains inside the final tank. The outer surface of the composite shell is covered with a layer of material designed to be impermeable by the pressurized fluid to be contained in the tank. A second step on the outer flange of

  8. TiN films fabricated by reactive gas pulse sputtering: A hybrid design of multilayered and compositionally graded structures

    NASA Astrophysics Data System (ADS)

    Yang, Jijun; Zhang, Feifei; Wan, Qiang; Lu, Chenyang; Peng, Mingjing; Liao, Jiali; Yang, Yuanyou; Wang, Lumin; Liu, Ning

    2016-12-01

    Reactive gas pulse (RGP) sputtering approach was used to prepare TiN thin films through periodically changing the N2/Ar gas flow ratio. The obtained RGPsbnd TiN film possessed a hybrid architecture containing compositionally graded and multilayered structures, composed of hcp Ti-phase and fcc TiN-phase sublayers. Meanwhile, the RGP-TiN film exhibited a composition-oscillation along the film thickness direction, where the Ti-phase sublayer had a compositional gradient and the TiN-phase retained a constant stoichiometric ratio of Ti:N ≈ 1. The film modulation ratio λ (the thicknesses ratio of the Ti and TiN-phase sublayer) can be effectively tuned by controlling the undulation behavior of the N2 partial flow rate. Detailed analysis showed that this hybrid structure originated from a periodic transition of the film growth mode during the reactive sputtering process.

  9. Fabrication of wedged multilayer Laue lenses

    SciTech Connect

    Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; Andrejczuk, A.; Chapman, H. N.; Bajt, S.

    2015-01-01

    We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack. This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.

  10. Fabrication of wedged multilayer Laue lenses

    DOE PAGES

    Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; ...

    2015-01-01

    We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack.more » This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.« less

  11. Boron containing multilayer coatings and method of fabrication

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1997-01-01

    Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition.

  12. Reactive multilayers fabricated by vapor deposition. A critical review

    SciTech Connect

    Adams, D. P.

    2014-10-02

    The reactive multilayer thin films are a class of energetic materials that continue to attract attention for use in joining applications and as igniters. Generally composed of two reactants, these heterogeneous solids can be stimulated by an external source to promptly release stored chemical energy in a sudden emission of light and heat. In our critical review article, results from recent investigations of these materials are discussed. Discussion begins with a brief description of the vapor deposition techniques that provide accurate control of layer thickness and film composition. More than 50 reactive film compositions have been reported to date, with most multilayers fabricated by magnetron sputter deposition or electron-beam evaporation. In later sections, we review how multilayer ignition threshold, reaction rate, and total heat are tailored via thin film design. For example, planar multilayers with nanometer-scale periodicity exhibit rapid, self-sustained reactions with wavefront velocities up to 100 m/s. Numeric and analytical models have elucidated many of the fundamental processes that underlie propagating exothermic reactions while demonstrating how reaction rates vary with multilayer design. Recent, time-resolved diffraction and imaging studies have further revealed the phase transformations and the wavefront dynamics associated with propagating chemical reactions. Many reactive multilayers (e.g., Co/Al) form product phases that are consistent with published equilibrium phase diagrams, yet a few systems, such as Pt/Al, develop metastable products. The final section highlights current and emerging applications of reactive multilayers. Examples include reactive Ni(V)/Al and Pd/Al multilayers which have been developed for localized soldering of heat-sensitive components.

  13. Reactive multilayers fabricated by vapor deposition. A critical review

    DOE PAGES

    Adams, D. P.

    2014-10-02

    The reactive multilayer thin films are a class of energetic materials that continue to attract attention for use in joining applications and as igniters. Generally composed of two reactants, these heterogeneous solids can be stimulated by an external source to promptly release stored chemical energy in a sudden emission of light and heat. In our critical review article, results from recent investigations of these materials are discussed. Discussion begins with a brief description of the vapor deposition techniques that provide accurate control of layer thickness and film composition. More than 50 reactive film compositions have been reported to date, withmore » most multilayers fabricated by magnetron sputter deposition or electron-beam evaporation. In later sections, we review how multilayer ignition threshold, reaction rate, and total heat are tailored via thin film design. For example, planar multilayers with nanometer-scale periodicity exhibit rapid, self-sustained reactions with wavefront velocities up to 100 m/s. Numeric and analytical models have elucidated many of the fundamental processes that underlie propagating exothermic reactions while demonstrating how reaction rates vary with multilayer design. Recent, time-resolved diffraction and imaging studies have further revealed the phase transformations and the wavefront dynamics associated with propagating chemical reactions. Many reactive multilayers (e.g., Co/Al) form product phases that are consistent with published equilibrium phase diagrams, yet a few systems, such as Pt/Al, develop metastable products. The final section highlights current and emerging applications of reactive multilayers. Examples include reactive Ni(V)/Al and Pd/Al multilayers which have been developed for localized soldering of heat-sensitive components.« less

  14. Method of fabricating a multilayer insulation blanket

    DOEpatents

    Gonczy, John D.; Niemann, Ralph C.; Boroski, William N.

    1993-01-01

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  15. Multilayer insulation blanket, fabricating apparatus and method

    DOEpatents

    Gonczy, J.D.; Niemann, R.C.; Boroski, W.N.

    1992-09-01

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel. 7 figs.

  16. Method of fabricating a multilayer insulation blanket

    DOEpatents

    Gonczy, J.D.; Niemann, R.C.; Boroski, W.N.

    1993-07-06

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  17. Multilayer insulation blanket, fabricating apparatus and method

    DOEpatents

    Gonczy, John D.; Niemann, Ralph C.; Boroski, William N.

    1992-01-01

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  18. Magnetic nanodiscs fabricated from multilayered nanowires.

    PubMed

    Min, Ji Hyun; Cho, Ji Ung; An, Boo Hyun; Choi, Daniel S; Kimlr, Young Keun

    2014-10-01

    We report a simple, high throughput synthesis method of producing magnetic nanodiscs, in which the diameter and thickness are easily controlled. This method consists of two steps: (1) Electrodeposition for growing multilayered nanowires and (2) Selective etching of sacrificial layers. The electrodeposition step results in a bundle of multilayered nanowires. The nanowires consist of alternating layers of magnetic (e.g., Co) and sacrificial materials (e.g., Cu) inside the nanometer-sized pores of an anodized aluminum oxide (AAO) template. The diameter of each layer is determined by pore size, while the thickness is controlled by electrodeposition time. The selective wet etching step removes sacrificial layers, leaving the magnetic nanodiscs. Through this process, the magnetic nanodiscs are fabricated with aspect ratios ranging from 0.25 to 2.0.

  19. Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems. Part 2; Ballistic Impact Testing

    NASA Technical Reports Server (NTRS)

    Pereira, J. M.; Revilock, D. M.

    2004-01-01

    Under the Federal Aviation Administration's Airworthiness Assurance Center of Excellence and the Aircraft Catastrophic Failure Prevention Program, National Aeronautics and Space Administration Glenn Research Center collaborated with Arizona State University, Honeywell Engines, Systems and Services, and SRI International to develop improved computational models for designing fabric-based engine containment systems. In the study described in this report, ballistic impact tests were conducted on layered dry fabric rings to provide impact response data for calibrating and verifying the improved numerical models. This report provides data on projectile velocity, impact and residual energy, and fabric deformation for a number of different test conditions.

  20. Boron containing multilayer coatings and method of fabrication

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1997-09-23

    Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition. 6 figs.

  1. Impact on multilayered composite plates

    NASA Technical Reports Server (NTRS)

    Kim, B. S.; Moon, F. C.

    1977-01-01

    Stress wave propagation in a multilayer composite plate due to impact was examined by means of the anisotropic elasticity theory. The plate was modelled as a number of identical anisotropic layers and the approximate plate theory of Mindlin was then applied to each layer to obtain a set of difference-differential equations of motion. Dispersion relations for harmonic waves and correction factors were found. The governing equations were reduced to difference equations via integral transforms. With given impact boundary conditions these equations were solved for an arbitrary number of layers in the plate and the transient propagation of waves was calculated by means of a Fast Fourier Transform algorithm. The multilayered plate problem was extended to examine the effect of damping layers present between two elastic layers. A reduction of the interlaminar normal stress was significant when the thickness of damping layer was increased but the effect was mostly due to the softness of the damping layer. Finally, the problem of a composite plate with a crack on the interlaminar boundary was formulated.

  2. Numerical Simulation of Impact Effects on Multilayer Fabrics

    NASA Astrophysics Data System (ADS)

    Fahrenthold, Eric

    2007-06-01

    High strength fabrics provide lightweight impact protection and are employed in a wide range of applications. Examples include body armor for law enforcement and military personnel and orbital debris shielding for the International Space Station. Numerical simulation of impact effects on fabric protection systems is difficult, due to the complex woven structure of the fabric layers and the typical application of fabrics in a multilayer configuration. Recent research has developed new particle-element methods for the simulation of impact effects on multilayer fabrics, applicable over a wide range of impact velocities, for use in body armor and orbital debris shielding applications.

  3. Numerical Simulation of Impact Effects on Multilayer Fabrics

    NASA Astrophysics Data System (ADS)

    Fahrenthold, Eric; Rabb, Robert; Bohannan, April

    2007-12-01

    High strength fabrics provide lightweight impact protection and are employed in a wide range of applications. Examples include body armor for law enforcement and military personnel and orbital debris shielding for the International Space Station. Numerical simulation of impact effects on fabric protection systems is difficult, due to the complex woven structure of the fabric layers and the typical application of fabrics in a multilayer configuration. Recent research has applied a new particle-element method to the simulation of impact effects on multilayer fabrics, applicable over a wide range of impact velocities, for use in body armor and orbital debris shielding design applications.

  4. Weaving multi-layer fabrics for reinforcement of engineering components

    NASA Technical Reports Server (NTRS)

    Hill, B. J.; Mcilhagger, R.; Mclaughlin, P.

    1993-01-01

    The performance of interlinked, multi-layer fabrics and near net shape preforms for engineering applications, woven on a 48 shaft dobby loom using glass, aramid, and carbon continuous filament yarns is assessed. The interlinking was formed using the warp yarns. Two basic types of structure were used. The first used a single warp beam and hence each of the warp yarns followed a similar path to form four layer interlinked reinforcements and preforms. In the second two warp beams were used, one for the interlinking yarns which pass from the top to the bottom layer through-the-thickness of the fabric and vice versa, and the other to provide 'straight' yarns in the body of the structure to carry the axial loading. Fabrics up to 15mm in thickness were constructed with varying amounts of through-the-thickness reinforcement. Tapered T and I sections were also woven, with the shaping produced by progressive removal of ends during construction. These fabrics and preforms were impregnated with resin and cured to form composite samples for testing. Using these two basic types of construction, the influence of reinforcement construction and the proportion and type of interlinking yarn on the performance of the composite was assessed.

  5. Multilayer composites and manufacture of same

    DOEpatents

    Holesinger, Terry G.; Jia, Quanxi

    2006-02-07

    The present invention is directed towards a process of depositing multilayer thin films, disk-shaped targets for deposition of multilayer thin films by a pulsed laser or pulsed electron beam deposition process, where the disk-shaped targets include at least two segments with differing compositions, and a multilayer thin film structure having alternating layers of a first composition and a second composition, a pair of the alternating layers defining a bi-layer wherein the thin film structure includes at least 20 bi-layers per micron of thin film such that an individual bi-layer has a thickness of less than about 100 nanometers.

  6. Natural Curaua Fiber-Reinforced Composites in Multilayered Ballistic Armor

    NASA Astrophysics Data System (ADS)

    Monteiro, Sergio Neves; Louro, Luis Henrique Leme; Trindade, Willian; Elias, Carlos Nelson; Ferreira, Carlos Luiz; de Sousa Lima, Eduardo; Weber, Ricardo Pondé; Miguez Suarez, João Carlos; da Silva Figueiredo, André Ben-Hur; Pinheiro, Wagner Anacleto; da Silva, Luis Carlos; Lima, Édio Pereira

    2015-10-01

    The performance of a novel multilayered armor in which the commonly used plies of aramid fabric layer were replaced by an equal thickness layer of distinct curaua fiber-reinforced composites with epoxy or polyester matrices was assessed. The investigated armor, in addition to its polymeric layer (aramid fabric or curaua composite), was also composed of a front Al2O3 ceramic tile and backed by an aluminum alloy sheet. Ballistic impact tests were performed with actual 7.62 caliber ammunitions. Indentation in a clay witness, simulating human body behind the back layer, attested the efficacy of the curaua-reinforced composite as an armor component. The conventional aramid fabric display a similar indentation as the curaua/polyester composite but was less efficient (deeper indentation) than the curaua/epoxy composite. This advantage is shown to be significant, especially in favor of the lighter and cheaper epoxy composite reinforced with 30 vol pct of curaua fiber, as possible substitute for aramid fabric in multilayered ballistic armor for individual protection. Scanning electron microscopy revealed the mechanism associated with the curaua composite ballistic performance.

  7. Desktop aligner for fabrication of multilayer microfluidic devices

    PubMed Central

    Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping

    2015-01-01

    Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm−1. To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices. PMID:26233409

  8. Desktop aligner for fabrication of multilayer microfluidic devices

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping

    2015-07-01

    Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm-1. To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices.

  9. Multilayer Electroactive Polymer Composite Material

    NASA Technical Reports Server (NTRS)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2011-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  10. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1996-01-23

    A high performance capacitor is described which is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200--300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The ``notepad`` capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  11. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1995-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  12. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1995-05-09

    A high performance capacitor is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The notepad capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  13. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1996-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  14. Fabrication of Transparent Multilayer Circuits by Inkjet Printing.

    PubMed

    Jiang, Jieke; Bao, Bin; Li, Mingzhu; Sun, Jiazhen; Zhang, Cong; Li, Yang; Li, Fengyu; Yao, Xi; Song, Yanlin

    2016-02-17

    Conductive microcables embedded in a transparent film are fabricated by inkjet printing silver-nanoparticle ink into a liquid poly(dimethylsiloxane) (PDMS) precursor substrate. By controlling the spreading of the ink droplet and the rheological properties of the liquid substrate, transparent multilayer circuits composed of high-resolution embedded cables are achieved using a commercial inkjet printer. This facile strategy provides a new avenue for inkjet printing of highly integrated and transparent electronics.

  15. Thermal performance of multilayer insulations. [gas evacuation characteristics of three selected multilayer insulation composites

    NASA Technical Reports Server (NTRS)

    Keller, C. W.; Cunnington, G. R.; Glassford, A. P.

    1974-01-01

    Experimental and analytical studies were conducted in order to extend previous knowledge of the thermal performance and gas evacuation characteristics of three selected multilayer insulation (MLI) composites. Flat plate calorimeter heat flux measurements were obtained for 20- and 80- shield specimens using three representative layer densities over boundary temperatures ranging from 39 K (70 R) to 389 K (700 R). Laboratory gas evacuation tests were performed on representative specimens of each MLI composite after initially purging them with helium, nitrogen, or argon gases. In these tests, the specimens were maintained at temperatures between 128 K (230 R) and 300 K (540 R). Based on the results of the laboratory-scale tests, a composite MLI system consisting of 112 unperforated, double-aluminized Mylar reflective shields and 113 water preconditioned silk net spacer pairs was fabricated and installed on a 1.22-m-(4-ft-) diameter calorimeter tank.

  16. Method for fabricating beryllium-based multilayer structures

    DOEpatents

    Skulina, Kenneth M.; Bionta, Richard M.; Makowiecki, Daniel M.; Alford, Craig S.

    2003-02-18

    Beryllium-based multilayer structures and a process for fabricating beryllium-based multilayer mirrors, useful in the wavelength region greater than the beryllium K-edge (111 .ANG. or 11.1 nm). The process includes alternating sputter deposition of beryllium and a metal, typically from the fifth row of the periodic table, such as niobium (Nb), molybdenum (Mo), ruthenium (Ru), and rhodium (Rh). The process includes not only the method of sputtering the materials, but the industrial hygiene controls for safe handling of beryllium. The mirrors made in accordance with the process may be utilized in soft x-ray and extreme-ultraviolet projection lithography, which requires mirrors of high reflectivity (>60%) for x-rays in the range of 60-140 .ANG. (60-14.0 nm).

  17. Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase II. Part 2; Ballistic Impact Testing

    NASA Technical Reports Server (NTRS)

    Revilock, D. M.; Pereira, J. M.

    2009-01-01

    This report summarizes the ballistic impact testing that was conducted to provide validation data for the development of numerical models of blade-out events in fabric containment systems. The ballistic impact response of two different fiber materials - Kevlar(TradeName) 49 and Zylon(TradeName) AS (as spun) was studied by firing metal projectiles into dry woven fabric specimens using a gas gun. The shape, mass, orientation, and velocity of the projectile were varied and recorded. In most cases, the tests were designed so the projectile would perforate the specimen, allowing measurement of the energy absorbed by the fabric. The results for both Zylon and Kevlar presented here represent a useful set of data for the purposes of establishing and validating numerical models to predict the response of fabrics under conditions that simulate those of a jet engine blade-release situation. In addition, some useful empirical observations were made regarding the effects of projectile orientation and the relative performance of the different fabric materials.

  18. Fabrication of multilayered vascular tissues using microfluidic agarose hydrogel platforms.

    PubMed

    Kinoshita, Keita; Iwase, Masaki; Yamada, Masumi; Yajima, Yuya; Seki, Minoru

    2016-11-01

    Vascular tissues fabricated in vitro are useful tools for studying blood vessel-related cellular physiologies and for constructing relatively large 3D tissues. An efficient strategy for fabricating vascular tissue models with multilayered, branched, and thick structures through the in situ hydrogel formation in fluidic channels is proposed. First, an aqueous solution of RGD-alginate containing smooth muscle cells (SMCs) is introduced into channel structures made of agarose hydrogel, forming a cell-embedding Ca-alginate hydrogel layer with a thickness of several hundred micrometers on the channel surface because of the Ca(2+) ions diffused from the agarose hydrogel matrix. Next, endothelial cells (ECs) are introduced and cultured for up to seven days to form hierarchically organized, multilayered vascular tissues. The factors affecting the thickness of the Ca-alginate hydrogel layer, and prepared several types of microchannels with different morphologies are examined. The fabricated vascular tissue models are easily recovered from the channel by simply detaching the agarose hydrogel plates. In addition, the effect of O2 tension (20 or 80%) on the viability and elastin production of SMCs during the perfusion culture is evaluated. This technique would pave a new way for vascular tissue engineering because it enables the facile production of morphologically in vivo vascular tissue-like structures that can be employed for various biomedical applications.

  19. Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase II. Part 3; Material Model Development and Simulation of Experiments

    NASA Technical Reports Server (NTRS)

    Simmons, J.; Erlich, D.; Shockey, D.

    2009-01-01

    A team consisting of Arizona State University, Honeywell Engines, Systems & Services, the National Aeronautics and Space Administration Glenn Research Center, and SRI International collaborated to develop computational models and verification testing for designing and evaluating turbine engine fan blade fabric containment structures. This research was conducted under the Federal Aviation Administration Airworthiness Assurance Center of Excellence and was sponsored by the Aircraft Catastrophic Failure Prevention Program. The research was directed toward improving the modeling of a turbine engine fabric containment structure for an engine blade-out containment demonstration test required for certification of aircraft engines. The research conducted in Phase II began a new level of capability to design and develop fan blade containment systems for turbine engines. Significant progress was made in three areas: (1) further development of the ballistic fabric model to increase confidence and robustness in the material models for the Kevlar(TradeName) and Zylon(TradeName) material models developed in Phase I, (2) the capability was improved for finite element modeling of multiple layers of fabric using multiple layers of shell elements, and (3) large-scale simulations were performed. This report concentrates on the material model development and simulations of the impact tests.

  20. Sputter deposition system for controlled fabrication of multilayers

    SciTech Connect

    Di Nardo, R.P.; Takacs, P.Z.; Majkrzak, C.F.; Stefan, P.M.

    1985-06-01

    A detailed description of a sputter deposition system constructed specifically for the fabrication of x-ray and neutron multilayer monochromators and supermirrors is given. One of the principal design criteria is to maintain precise control of film thickness and uniformity over large substrate areas. Regulation of critical system parameters is fully automated so that response to feedback control information is rapid and complicated layer thickness sequences can be deposited accurately and efficiently. The use of either dc or rf magnetron sources makes it possible to satisfy the diverse material requirements of both x-ray and neutron optics.

  1. WSi2/Si multilayer sectioning by reactive ion etching for multilayer Laue lens fabrication

    NASA Astrophysics Data System (ADS)

    Bouet, N.; Conley, R.; Biancarosa, J.; Divan, R.; Macrander, A. T.

    2010-09-01

    Reactive ion etching (RIE) has been employed in a wide range of fields such as semiconductor fabrication, MEMS (microelectromechanical systems), and refractive x-ray optics with a large investment put towards the development of deep RIE. Due to the intrinsic differing chemistries related to reactivity, ion bombardment, and passivation of materials, the development of recipes for new materials or material systems can require intense effort and resources. For silicon in particular, methods have been developed to provide reliable anisotropic profiles with good dimensional control and high aspect ratios1,2,3, high etch rates, and excellent material to mask etch selectivity. A multilayer Laue lens4 is an x-ray focusing optic, which is produced by depositing many layers of two materials with differing electron density in a particular stacking sequence where the each layer in the stack satisfies the Fresnel zone plate law. When this stack is sectioned to allow side-illumination with radiation, the diffracted exiting radiation will constructively interfere at the focal point. Since the first MLLs were developed at Argonne in the USA in 20064, there have been published reports of MLL development efforts in Japan5, and, very recently, also in Germany6. The traditional technique for sectioning multilayer Laue lens (MLL) involves mechanical sectioning and polishing7, which is labor intensive and can induce delamination or structure damage and thereby reduce yield. If a non-mechanical technique can be used to section MLL, it may be possible to greatly shorten the fabrication cycle, create more usable optics from the same amount of deposition substrate, and perhaps develop more advanced structures to provide greater stability or flexibility. Plasma etching of high aspect-ratio multilayer structures will also expand the scope for other types of optics fabrication (such as gratings, zone plates, and so-on). However, well-performing reactive ion etching recipes have been developed

  2. Fabrication of Multilayer-Type Mn-Si Thermoelectric Device

    NASA Astrophysics Data System (ADS)

    Kajitani, T.; Ueno, T.; Miyazaki, Y.; Hayashi, K.; Fujiwara, T.; Ihara, R.; Nakamura, T.; Takakura, M.

    2014-06-01

    This research aims to develop a direct-contact manganese silicon p/ n multilayer-type thermoelectric power generation block. p-type MnSi1.74 and n-type Mn0.7Fe0.3Si1.68 ball-milled powders with diameter of about 10 μm or less were mixed with polyvinyl butyl alcohol diluted with methylbenzene at pigment volume concentration of approximately 70%. The doctor-blade method produced 45- μm-thick p- and n-type pigment plates. The insulator, i.e., powdered glass, was mixed with cellulose to form insulator slurry. Lamination of manganese silicide pigment layers and screen-printed insulator layers was carried out to fabricate multilayer direct-contact thermoelectric devices. Hot pressing and spark plasma sintering were carried out at 450°C and 900°C, respectively. Four to 30 thermoelectric (TE) p/ n pairs were fabricated in a 10 mm × 10 mm × 10 mm sintered TE block. The maximum output was 11.7 mW/cm2 at a temperature difference between 20°C and 700°C, which was about 1/85 of the ideal power generation estimated from the thermoelectric data of the bulk MnSi1.74 and Mn0.7Fe0.3Si1.68 materials. A power generation test using an engine test bench was also carried out.

  3. Exploration of Multilayer Concepts for Oxidation Protection of Carbon- Carbon Composites

    DTIC Science & Technology

    1993-02-01

    Microstructural Evaluations 14 Compliant Layer Properties 18 Oxidation Results 19 CONCLUSIONS 21I SUMMARY AND RECOMMENDATIONS 23 REFERENCES 25 I APPENDIX \\ 26...ABSTRACT The development of multilayer coating concepts for oxidation protection of carbon-carbon composites is the subject of this work. Property ...components. Since elevated temperature properties were lacking for many components, the study was relegated to fabrication and assessment rather than

  4. Patterned Microstructure Fabrication: Polyelectrolyte Complexes vs Polyelectrolyte Multilayers

    PubMed Central

    Gai, Meiyu; Frueh, Johannes; Kudryavtseva, Valeriya L.; Mao, Rui; Kiryukhin, Maxim V.; Sukhorukov, Gleb B.

    2016-01-01

    Polyelectrolyte complexes (PEC) are formed by mixing the solutions of oppositely charged polyelectrolytes, which were hitherto deemed “impossible” to process, since they are infusible and brittle when dry. Here, we describe the process of fabricating free-standing micro-patterned PEC films containing array of hollow or filled microchambers by one-step casting with small applied pressure and a PDMS mould. These structures are compared with polyelectrolyte multilayers (PEM) thin films having array of hollow microchambers produced from a layer-by-layer self-assembly of the same polyelectrolytes on the same PDMS moulds. PEM microchambers “cap” and “wall” thickness depend on the number of PEM bilayers, while the “cap” and “wall” of the PEC microchambers can be tuned by varying the applied pressure and the type of patterned mould. The proposed PEC production process omits layering approaches currently employed for PEMs, reducing the production time from ~2 days down to 2 hours. The error-free structured PEC area was found to be significantly larger compared to the currently-employed microcontact printing for PEMs. The sensitivity of PEC chambers towards aqueous environments was found to be higher compared to those composed of PEM. PMID:27830831

  5. Fabrication, characterization, and biological assessment of multilayer laminin γ2 DNA coatings on titanium surfaces

    PubMed Central

    Yang, Guoli; Zhang, Jing; Dong, Wenjing; Liu, Li; Shi, Jue; Wang, Huiming

    2016-01-01

    The purpose of this work was to fabricate a multilayer laminin γ2 DNA coating on a titanium surface and evaluate its biological properties. A multilayer laminin γ2 DNA coating was fabricated on titanium using a layer-by-layer assembly technique. The rate of coating degradation was evaluated by detecting the amount of cDNA remaining. Surface analysis using X-ray photoelectron spectroscopy, atomic force microscopy, and surface contact angle measurements revealed the multilayer structure to consist of cationic lipid and confirmed that a laminin γ2 DNA layer could be fabricated on titanium via the layer-by-layer assembly process. The transfection efficiency was highest for five layers in the multilayer structure. HEK293 cells cultured on the multilayer films displayed significantly higher adhesion activity than the control group. The expression of laminin γ2 and the co-localization of integrin β4 and plectin were more obvious in HN4 cells cultured on the multilayer laminin γ2 DNA coating, while weak immunoreactivities were observed in the control group. We concluded that the DNA-loaded multilayer provided a surface with good biocompatibility and that the multilayer laminin γ2 DNA coating might be effective in improving cell adhesion and the formation of hemidesmosomes on titanium surfaces. PMID:26996815

  6. Fabrication of multilayered nanofluidic membranes through silicon templates

    NASA Astrophysics Data System (ADS)

    Varricchio, Stefano S. G.; Cyrille, Hibert; Arnaud, Bertsch; Philippe, Renaud

    2015-12-01

    We present a new fabrication method for solid-state nanoporous membranes based on sacrificial template structures made of silicon. The process consists of creating membranes by evaporating thin-films on sacrificial templates which, after their selective removal, opens the nanopores and releases the free-standing membranes. This way it is possible to define the geometry of the pore by design and to build the membrane by stacking thin-films of various materials through evaporation. Such a membrane with controlled porosity, pore geometry, thickness and nano-channel composition provides new opportunities for selective chemical functionalization, gating, electrical sensing or electrical stimulation inside the nanopore.

  7. Novel electrochemical sensors with electrodes based on multilayers fabricated by layer-by-layer synthesis and their analytical potential

    NASA Astrophysics Data System (ADS)

    Ermakov, S. S.; Nikolaev, K. G.; Tolstoy, V. P.

    2016-08-01

    The results of studies on layer-by-layer synthesis of multilayers on the electrode surface in order to design electrochemical sensors for the determination of concentrations of inorganic, organic and bioorganic compounds are summarized and analyzed. The principle of the method is discoursed and the key advantages of the approach are highlighted, such as the possibility of single layer synthesis with specified thickness and composition under mild conditions with further fabrication of multilayers. Charge transfer conditions in the layers on the electrode surface between the analyte molecules and electrode redox centres and the operating conditions for the optimal electrode are considered. The role of electrocatalysts and intermediates of these processes is noted. Particular attention is devoted to the methods for synthesis of gold nanoparticles with different diameters. Analytical characteristics for electrochemical sensors are presented and application prospects of the layer-by-layer synthesis to electrode fabrication are discussed. The bibliography includes 241 references.

  8. Multilayer composite material and method for evaporative cooling

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    2002-01-01

    A multilayer composite material and method for evaporative cooling of a person employs an evaporative cooling liquid that changes phase from a liquid to a gaseous state to absorb thermal energy. The evaporative cooling liquid is absorbed into a superabsorbent material enclosed within the multilayer composite material. The multilayer composite material has a high percentage of the evaporative cooling liquid in the matrix. The cooling effect can be sustained for an extended period of time because of the high percentage of phase change liquid that can be absorbed into the superabsorbent. Such a composite can be used for cooling febrile patients by evaporative cooling as the evaporative cooling liquid in the matrix changes from a liquid to a gaseous state to absorb thermal energy. The composite can be made with a perforated barrier material around the outside to regulate the evaporation rate of the phase change liquid. Alternatively, the composite can be made with an imperveous barrier material or semipermeable membrane on one side to prevent the liquid from contacting the person's skin. The evaporative cooling liquid in the matrix can be recharged by soaking the material in the liquid. The multilayer composite material can be fashioned into blankets, garments and other articles.

  9. A multilayer approach to fabricate bioactive glass coatings on Ti alloys

    SciTech Connect

    Gomez-Vega, J.M.; Saiz, E.; Tomsia, A.P.; Marshall, G.W.; Marshall, S.J.

    1998-12-01

    Glasses in the system Si-Ca-Na-Mg-P-K-O with thermal expansion coefficients close to that of Ti6Al4V were used to coat the titanium alloy by a simple enameling technique. Firings were done in air at temperatures between 800 and 840 C and times up to 1 minute. Graded compositions were obtained by firing multilayered glass coatings. Hydroxyapatite (HA) particles were mixed with the glass powder and the mixture was placed on the outer surface of the coatings to render them more bioactive. Coatings with excellent adhesion to the substrate and able to form apatite when immersed in a simulated body fluid (SBF) can be fabricated by this methodology.

  10. Fabrication of multilayered Ge nanocrystals embedded in SiO xGeN y films

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Green, Martin A.; Conibeer, Gavin; Cho, Eun-Chel; Huang, Yidan; Perez-Wurfl, Ivan; Flynn, Chris

    2008-09-01

    Multilayered Ge nanocrystals embedded in SiO xGeN y films have been fabricated on Si substrate by a (Ge + SiO 2)/SiO xGeN y superlattice approach, using a rf magnetron sputtering technique with a Ge + SiO 2 composite target and subsequent thermal annealing in N 2 ambient at 750 °C for 30 min. X-ray diffraction (XRD) measurement indicated the formation of Ge nanocrystals with an average size estimated to be 5.4 nm. Raman scattering spectra showed a peak of the Ge-Ge vibrational mode downward shifted to 299.4 cm -1, which was caused by quantum confinement of phonons in the Ge nanocrystals. Transmission electron microscopy (TEM) revealed that Ge nanocrystals were confined in (Ge + SiO 2) layers. This superlattice approach significantly improved both the size uniformity of Ge nanocrystals and their uniformity of spacing on the 'Z' growth direction.

  11. Design, Fabrication and Characterization of Multilayered Chiral Metamaterials in Visible Frequency

    NASA Astrophysics Data System (ADS)

    Hung, Jenny

    In this thesis I report the design and fabrication of well aligned repeatable multilayered gold and silver chiral metamaterials of high uniformity in the 100nm scale which show significant circular dichroism in the visible range. Two layered Dolmen structure, two layered 3-4-5 right-angled-triangle structure and three layered 'V' structure are successfully fabricated, allowing possible applications in wave-plates and circular polarizers. These samples are produced by an e-beam direct write technique with a precise multi-layer alignment control and a lift-off process. The experimental results are well matched with simulations using a finite-integration technique from CST microwave studio. None of the structures show circular dichroism upon first layer fabrication due to the achiral property of single layer, except for the single layer 3-4-5 right-angled-triangle structure which processes 2-D chirality. All the multilayered structures exhibit circular dichroism showing qualitatively the same shape upon opposite incident direction because of the handedness of structures; and with deviations due to the presence of the substrate and buffer layers. For the 'V' structure within the first three layers the CD increases with number of layers, unveiling the importance between 3-D chirality and optical activity. The mastering of alignment technique is important for successful fabrication of multilayered optical metamaterials. This project achieves precise multi-layer alignment control which is difficult and challenging.

  12. Fabrication and characterization of ultra-high resolution multilayer-coated blazed gratings

    SciTech Connect

    Voronov,, Dmitriy; Anderson, Erik; Cambie, Rossana; Dhuey, Scott; Gullikson, Eric; Salmassi, Farhad; Yashchuk, Tony; Padmore, Howard

    2011-07-26

    Multilayer coated blazed gratings with high groove density are the most promising candidate for ultra-high resolution soft x-ray spectroscopy. They combine the ability of blazed gratings to concentrate almost all diffraction energy in a desired high diffraction order with high reflectance soft x-ray multilayers. However in order to realize this potential, the grating fabrication process should provide a near perfect groove profile with an extremely smooth surface of the blazed facets. Here we report on successful fabrication and testing of ultra-dense saw-tooth substrates with 5,000 and 10,000 lines/mm.

  13. Interlocked fabric and laminated fabric Kevlar 49/epoxy composites

    SciTech Connect

    Guess, T.R.; Reedy, E.D. Jr.

    1988-01-01

    The mechanical behavior of a novel interlocked fabric reinforced Kevlar 49/epoxy composite has been measured and compared to those of a laminated Kevlar 49 fabric composite (which served as a reference material). Both composites were 5.0 mm thick, contained the same 50% in-plane fiber volume fraction and were fabricated in a similar manner using the same Dow DER 332 epoxy, Jeffamine T403-hardened resin system. The reference material (Material 1) was reinforced with seven plies of Dupont style 1033 Kevlar 49 fabric. A photomicrograph of a section polished parallel to one of the fiber directions is shown. The interlocked fabric was designed and woven for Sandia National Laboratories by Albany International Research Co., Dedham, MA. The main design criterion was to duplicate a sewn through-the-thickness fabric used in preliminary studies. The interlocked fabric composite (Material 2) contains roughly 4% by volume of through-the-thickness fiber reinforcement for the purpose of improving interlaminar strength. A photomicrograph of a section showing the warp-aligned binder yarns interlocking the six fabric plies together is shown. 2 refs., 8 figs.

  14. Fabrication of multilayer-PDMS based microfluidic device for bio-particles concentration detection.

    PubMed

    Masrie, Marianah; Majlis, Burhanuddin Yeop; Yunas, Jumril

    2014-01-01

    This paper discusses the process technology to fabricate multilayer-Polydimethylsiloxane (PDMS) based microfluidic device for bio-particles concentration detection in Lab-on-chip system. The micro chamber and the fluidic channel were fabricated using standard photolithography and soft lithography process. Conventional method by pouring PDMS on a silicon wafer and peeling after curing in soft lithography produces unspecific layer thickness. In this work, a multilayer-PDMS method is proposed to produce a layer with specific and fixed thickness micron size after bonding that act as an optimum light path length for optimum light detection. This multilayer with precise thickness is required since the microfluidic is integrated with optical transducer. Another significant advantage of this method is to provide excellent bonding between multilayer-PDMS layer and biocompatible microfluidic channel. The detail fabrication process were illustrated through scanning electron microscopy (SEM) and discussed in this work. The optical signal responses obtained from the multilayer-PDMS microfluidic channel with integrated optical transducer were compared with those obtained with the microfluidic channel from a conventional method. As a result, both optical signal responses did not show significant differences in terms of dispersion of light propagation for both media.

  15. Method of making multilayered titanium ceramic composites

    DOEpatents

    Fisher, II, George T.; Hansen, Jeffrey S.; Oden, Laurance L.; Turner, Paul C.; Ochs, Thomas L.

    1998-01-01

    A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body follwed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet.

  16. Method of making multilayered titanium ceramic composites

    DOEpatents

    Fisher, G.T. II; Hansen, J.S.; Oden, L.L.; Turner, P.C.; Ochs, T.L.

    1998-08-25

    A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body followed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet. 3 figs.

  17. Method of making multilayered titanium ceramic composites

    DOEpatents

    Fisher, George T., II; Hansen; Jeffrey S.; Oden; Laurance L.; Turner; Paul C.; Ochs; Thomas L.

    1998-08-25

    A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body follwed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet.

  18. Space fabrication demonstration system composite beam cap fabricator

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A detailed design for a prototype, composite beam cap fabricator was established. Inputs to this design included functional tests and system operating requirements. All required materials were procured, detail parts were fabricated, and one composite beam cap forming machine was assembled. The machine was demonstrated as a stand-alone system. Two 12-foot-long beam cap members were fabricated from laminates graphite/polysulfane or an equivalent material. One of these members, which as structurally tested in axial compression, failed at 490 pounds.

  19. Stress and free vibration analyses of multilayered composite plates

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Burton, W. Scott

    1989-01-01

    This paper presents a two-phase computational procedure for the accurate prediction of vibration frequencies, stresses, and deformations in simply supported bidirectional multilayered composite plates. The range of applicability of this procedure in terms of the plate's parameters is determined, and the potential of the proposed procedure for use in conjunction with large-scale finite element modeling of composite structures is discussed. It is shown that the use of the shear correction factors calculated by this procedure extends the range of the validity of the first-order shear deformation theory, used in the first phase of the procedure, to fairly thick multilayered plates with the h/L1 ratio of the order of 0.3.

  20. Modifying of Cotton Fabric Surface with Nano-ZnO Multilayer Films by Layer-by-Layer Deposition Method

    NASA Astrophysics Data System (ADS)

    Uğur, Şule S.; Sarıışık, Merih; Aktaş, A. Hakan; Uçar, M. Çiğdem; Erden, Emre

    2010-07-01

    ZnO nanoparticle-based multilayer nanocomposite films were fabricated on cationized woven cotton fabrics via layer-by-layer molecular self-assembly technique. For cationic surface charge, cotton fabrics were pretreated with 2,3-epoxypropyltrimethylammonium chloride (EP3MAC) by pad-batch method. XPS and SEM were used to examine the deposited nano-ZnO multilayer films on the cotton fabrics. The nano-ZnO films deposited on cotton fabrics exhibited excellent antimicrobial activity against Staphylococcus aureus bacteria. The results also showed that the coated fabrics with nano-ZnO multilayer films enhanced the protection of cotton fabrics from UV radiation. Physical tests (tensile strength of weft and warp yarns, air permeability and whiteness values) were performed on the fabrics before and after the treatment with ZnO nanoparticles to evaluate the effect of layer-by-layer (LbL) process on cotton fabrics properties.

  1. Modifying of Cotton Fabric Surface with Nano-ZnO Multilayer Films by Layer-by-Layer Deposition Method

    PubMed Central

    2010-01-01

    ZnO nanoparticle–based multilayer nanocomposite films were fabricated on cationized woven cotton fabrics via layer-by-layer molecular self-assembly technique. For cationic surface charge, cotton fabrics were pretreated with 2,3-epoxypropyltrimethylammonium chloride (EP3MAC) by pad-batch method. XPS and SEM were used to examine the deposited nano-ZnO multilayer films on the cotton fabrics. The nano-ZnO films deposited on cotton fabrics exhibited excellent antimicrobial activity against Staphylococcus aureus bacteria. The results also showed that the coated fabrics with nano-ZnO multilayer films enhanced the protection of cotton fabrics from UV radiation. Physical tests (tensile strength of weft and warp yarns, air permeability and whiteness values) were performed on the fabrics before and after the treatment with ZnO nanoparticles to evaluate the effect of layer-by-layer (LbL) process on cotton fabrics properties. PMID:20596450

  2. Magnetic resonance in ferromagnetic films, multilayers and nanoparticle composites

    NASA Astrophysics Data System (ADS)

    Noginova, Natalia; Bates, Brittany; Greene, Nicole

    2014-03-01

    Incorporation of magnetic materials into metamaterial systems provides an opportunity to tune microwave permeability with external magnetic field. We studied magnetically dependent microwave properties of polymer composites with iron oxide nanoparticles, ferromagnetic films and ferromagnetic/dielectric multilayers. We show that the permeability of such systems can be magnetically tuned from positive to negative values in the range of ferromagnetic resonance, strongly affecting wave propagation. Strong changes in mu-metal permeability in low field range provides an additional possibility of tuning.

  3. Elastic properties of woven fabric reinforced composites

    NASA Technical Reports Server (NTRS)

    Ramnath, V.

    1985-01-01

    An analytical model for the realistic representation of a woven fabric reinforced composite is presented in this paper. The approach uses a variable cross-section geometric model in order to achieve geometric compatibility at the yarn cross-over regions. Admissible displacement and stress fields are used to determine bounds on the fabric elastic properties. The approach adopted enables the determination of the complete three-dimensional woven fabric composite properties. The in-plane fabric properties obtained through this approach have been compared with results obtained from other approaches existing in the literature. Also, comparisons made with available experimental data indicate good agreement.

  4. Preparation and analysis of multilayer composites based on polyelectrolyte complexes

    NASA Astrophysics Data System (ADS)

    Petrova, V. A.; Orekhov, A. S.; Chernyakov, D. D.; Baklagina, Yu. G.; Romanov, D. P.; Kononova, S. V.; Volod'ko, A. V.; Ermak, I. M.; Klechkovskaya, V. V.; Skorik, Yu. A.

    2016-11-01

    A method for preparing multilayer film composites based on chitosan has been developed by the example of polymer pairs: chitosan-hyaluronic acid, chitosan-alginic acid, and chitosan-carrageenan. The structure of the composite films is characterized by X-ray diffractometry and scanning electron microscopy. It is shown that the deposition of a solution of hyaluronic acid, alginic acid, or carrageenan on a chitosan gel film leads to the formation of a polyelectrolyte complex layer at the interface, which is accompanied by the ordering of chitosan chains in the surface region; the microstructure of this layer depends on the nature of contacting polymer pairs.

  5. Investigation of fatigue strength of multilayer advanced fiber composites

    NASA Technical Reports Server (NTRS)

    Thornton, H. R.; Kozik, T. J.

    1974-01-01

    The analytical characterization of a multilayer fiber composite plate (without hole) was accomplished for both static and dynamic loading conditions using the finite difference technique. Thornel 300/5208 composites with and without holes were subjected to static and tensile fatigue testing. Five (5) fiber orientations were submitted to test. Tensile fatigue testing also included three (3) loading conditions and two (2) frequencies. The low-cycle test specimens demonstrated a shorter tensile fatigue life than the high-cycle test specimens. Failure surfaces demonstrated effect of testing conditions. Secondary failure mechanisms, such as: delamination, fiber breakage, and edge fiber delamination were present. Longitudinal delamination between plies also occurred in these specimens.

  6. Thermal Performance of a Customized Multilayer Insulation (MLI). Design and Fabrication of Test Facility Hardware

    NASA Technical Reports Server (NTRS)

    Leonhard, K. E.

    1975-01-01

    The design, fabrication, and assembly of hardware for testing the performance of a customized multilayer insulation are discussed. System components described include the thermal payload simulator, the modified cryoshroud, and a tank back pressure control device designed to maintain a constant liquid boiling point during the thermal evaluation of the multilayer insulation. The thermal payload simulator will provide a constant temperature surface in the range of 20.5 to 417K (37 to 750R) for the insulated tank to view. The cryoshroud was modified to establish a low temperature black body cavity while limiting liquid hydrogen usage to a minimum feasible rate.

  7. Fabrication of gold patterns via multilayer transfer printing and electroless plating.

    PubMed

    Basarir, Fevzihan

    2012-03-01

    Gold patterns were fabricated on Si wafer substrate via multilayer transfer printing of polyelectrolytes, followed by selective deposition of gold nanoparticles (AuNPs) and then electroless plating of gold. First, PDMS stamp was coated with (PAH)(1)/(PSS/PDAC)(10) multilayer system, followed by transfer printing on the piranha cleaned fresh Si wafer substrate. Next, the substrate was dipped in AuNP solution for deposition of the nanoparticles on PAH layer. Then, the substrate was subjected to electroless plating to obtain the gold patterns. Very clean and precise gold patterns with electrical conductivity of 2.5 × 10(5) Ω(-1) cm(-1) were obtained.

  8. Optimization of multilayered composite pressure vessels using exact elasticity solution

    SciTech Connect

    Adali, S.; Verijenko, V.E.; Tabakov, P.Y.; Walker, M.

    1995-11-01

    An approach for the optimal design of thick laminated cylindrical pressure vessels is given. The maximum burst pressure is computed using an exact elasticity solution and subject to the Tsai-Wu failure criterion. The design method is based on an accurate 3-D stress analysis. Exact elasticity solutions are obtained using the stress function approach where the radial, circumferential and shear stresses are determined taking the closed ends of the cylindrical shell into account. Design optimization of multilayered composite pressure vessels are based on the use of robust multidimensional methods which give fast convergence. Two methods are used to determine the optimum ply angles, namely, iterative and gradient methods. Numerical results are given for optimum fiber orientation of each layer for thick and thin-walled multilayered pressure vessels.

  9. Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid)/poly(L-lactic acid) and self-assembly of polyelectrolytes

    PubMed Central

    Yang, Gesheng; Pastorino, Laura

    2016-01-01

    Summary The enantiomers poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) were alternately adsorbed directly on calcium carbonate (CaCO3) templates and on poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) multilayer precursors in order to fabricate a novel layer-by-layer (LBL) assembly. A single layer of poly(L-lysine) (PLL) was used as a linker between the (PDLA/PLLA)n stereocomplex and the cores with and without the polymeric (PSS/PAH)n/PLL multilayer precursor (PEM). Nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) were used to characterize the chemical composition and molecular weight of poly(lactic acid) polymers. Both multilayer structures, with and without polymeric precursor, were firstly fabricated and characterized on planar supports. A quartz crystal microbalance (QCM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and ellipsometry were used to evaluate the thickness and mass of the multilayers. Then, hollow, spherical microcapsules were obtained by the removal of the CaCO3 sacrificial template. The chemical composition of the obtained microcapsules was confirmed by differential scanning calorimetry (DSC) and wide X-ray diffraction (WXRD) analyses. The microcapsule morphology was evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier for sustained release. PMID:26925356

  10. Control and automation of multilayered integrated microfluidic device fabrication.

    PubMed

    Kipper, Sarit; Frolov, Ludmila; Guy, Ortal; Pellach, Michal; Glick, Yair; Malichi, Asaf; Knisbacher, Binyamin A; Barbiro-Michaely, Efrat; Avrahami, Dorit; Yavets-Chen, Yehuda; Levanon, Erez Y; Gerber, Doron

    2017-01-31

    Integrated microfluidics is a sophisticated three-dimensional (multi layer) solution for high complexity serial or parallel processes. Fabrication of integrated microfluidic devices requires soft lithography and the stacking of thin-patterned PDMS layers. Precise layer alignment and bonding is crucial. There are no previously reported standards for alignment of the layers, which is mostly performed using uncontrolled processes with very low alignment success. As a result, integrated microfluidics is mostly used in academia rather than in the many potential industrial applications. We have designed and manufactured a semiautomatic Microfluidic Device Assembly System (μDAS) for full device production. μDAS comprises an electrooptic mechanical system consisting of four main parts: optical system, smart media holder (for PDMS), a micropositioning xyzθ system and a macropositioning XY mechanism. The use of the μDAS yielded valuable information regarding PDMS as the material for device fabrication, revealed previously unidentified errors, and enabled optimization of a robust fabrication process. In addition, we have demonstrated the utilization of the μDAS technology for fabrication of a complex 3 layered device with over 12 000 micromechanical valves and an array of 64 × 64 DNA spots on a glass substrate with high yield and high accuracy. We increased fabrication yield from 25% to about 85% with an average layer alignment error of just ∼4 μm. It also increased our protein expression yields from 80% to over 90%, allowing us to investigate more proteins per experiment. The μDAS has great potential to become a valuable tool for both advancing integrated microfluidics in academia and producing and applying microfluidic devices in the industry.

  11. Thermoplastic elastomers for microfluidics: towards a high-throughput fabrication method of multilayered microfluidic devices.

    PubMed

    Roy, Emmanuel; Galas, Jean-Christophe; Veres, Teodor

    2011-09-21

    Multilayer soft lithography of polydimethylsiloxane (PDMS) is a well-known method for the fabrication of complex fluidic functions. With advantages and drawbacks, this technique allows fabrication of valves, pumps and micro-mixers. However, the process is inadequate for industrial applications. Here, we report a rapid prototyping technique for the fabrication of multilayer microfluidic devices, using a different and promising class of polymers. Using styrenic thermoplastic elastomers (TPE), we demonstrate a rapid technique for the fabrication and assembly of pneumatically driven valves in a multilayer microfluidic device made completely from thermoplastics. This material solution is transparent, biocompatible and as flexible as PDMS, and has high throughput thermoforming processing characteristics. We established a proof of principle for valving and mixing with three different grades of TPE using an SU-8 master mold. Specific viscoelastic properties of each grade allow us to report enhanced bonding capabilities from room temperature bonding to free pressure thermally assisted bonding. In terms of microfabrication, beyond classically embossing means, we demonstrate a high-throughput thermoforming method, where TPE molding experiments have been carried out without applied pressure and vacuum assistance within an overall cycle time of 180 s. The quality of the obtained thermoplastic systems show robust behavior and an opening/closing frequency of 5 Hz.

  12. Method to fabricate layered material compositions

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu

    2004-11-02

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  13. Method to fabricate layered material compositions

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu

    2002-01-01

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  14. Numerical simulation of multi-layered textile composite reinforcement forming

    SciTech Connect

    Wang, P.; Hamila, N.; Boisse, P.

    2011-05-04

    One important perspective in aeronautics is to produce large, thick or/and complex structural composite parts. The forming stage presents an important role during the whole manufacturing process, especially for LCM processes (Liquid Composites Moulding) or CFRTP (Continuous Fibre Reinforcements and Thermoplastic resin). Numerical simulations corresponding to multi-layered composite forming allow the prediction for a successful process to produce the thick parts, and importantly, the positions of the fibres after forming to be known. This paper details a set of simulation examples carried out by using a semi-discrete shell finite element made up of unit woven cells. The internal virtual work is applied on all woven cells of the element taking into account tensions, in-plane shear and bending effects. As one key problem, the contact behaviours of tool/ply and ply/ply are described in the numerical model. The simulation results not only improve our understanding of the multi-layered composite forming process but also point out the importance of the fibre orientation and inter-ply friction during formability.

  15. Numerical simulation of multi-layered textile composite reinforcement forming

    NASA Astrophysics Data System (ADS)

    Wang, P.; Hamila, N.; Boisse, P.

    2011-05-01

    One important perspective in aeronautics is to produce large, thick or/and complex structural composite parts. The forming stage presents an important role during the whole manufacturing process, especially for LCM processes (Liquid Composites Moulding) or CFRTP (Continuous Fibre Reinforcements and Thermoplastic resin). Numerical simulations corresponding to multi-layered composite forming allow the prediction for a successful process to produce the thick parts, and importantly, the positions of the fibres after forming to be known. This paper details a set of simulation examples carried out by using a semi-discrete shell finite element made up of unit woven cells. The internal virtual work is applied on all woven cells of the element taking into account tensions, in-plane shear and bending effects. As one key problem, the contact behaviours of tool/ply and ply/ply are described in the numerical model. The simulation results not only improve our understanding of the multi-layered composite forming process but also point out the importance of the fibre orientation and inter-ply friction during formability.

  16. Fabrication of multilayered thin films via spin-assembly

    DOEpatents

    Chiarelli, Peter A.; Robinson, Jeanne M.; Casson, Joanna L.; Johal, Malkiat S.; Wang, Hsing-Lin

    2007-02-20

    An process of forming multilayer thin film heterostructures is disclosed and includes applying a solution including a first water-soluble polymer from the group of polyanionic species, polycationic species and uncharged polymer species onto a substrate to form a first coating layer on the substrate, drying the first coating layer on the substrate, applying a solution including a second water-soluble polymer from the group of polyanionic species, polycationic species and uncharged polymer species onto the substrate having the first coating layer to form a second coating layer on the first coating layer wherein the second water-soluble polymer is of a different material than the first water-soluble polymer, and drying the second coating layer on the first coating layer so as to form a bilayer structure on the substrate. Optionally, one or more additional applying and drying sequences can be repeated with a water-soluble polymer from the group of polyanionic species, polycationic species and uncharged polymer species, so that a predetermined plurality of layers are built up upon the substrate.

  17. Design and fabrication of silicon-based linear polarizer with multilayer nanogratings operating in infrared region

    NASA Astrophysics Data System (ADS)

    Lin, Yu; Hu, Jingpei; Cao, Bing; Wang, Miao; Wang, Chinhua

    2017-01-01

    We have proposed and experimentally demonstrated a silicon-based linear polarizer with multilayer nanogratings working in 3 to 5 μm of an infrared region. A dielectric grating is first fabricated in a low-refractive index thin layer on a Si-substrate and then double-layer metallic gratings are formed by evaporating a metallic film onto the dielectric grating. With the designed structure of multilayer nanogratings coupled with a low-refractive-index dielectric layer on the high-refractive index silicon substrate, both high transverse magnetic transmission (TMT) and high extinction ratio (ER) can be effectively achieved across 3- to 5-μm range in the infrared band without the complicated metallic ion etching process that is required in conventional nanowire grids. An ER of 40 dB and TMT of averagely higher than 80% were obtained experimentally from a linear polarizer with a multilayer grating of 280-nm period. The Si-based multilayer grating structure shows possibilities of implementing polarization in a fashion of relatively easy-fabrication, semiconductor process compatible, and high performance.

  18. Composite fabrication via resin transfer molding technology

    SciTech Connect

    Jamison, G.M.; Domeier, L.A.

    1996-04-01

    The IMPReS (Integrated Modeling and Processing of Resin-based Structures) Program was funded in FY95 to consolidate, evaluate and enhance Sandia`s capabilities in the design and fabrication of composite structures. A key driver of this and related programs was the need for more agile product development processes and for model based design and fabrication tools across all of Sandia`s material technologies. A team of polymer, composite and modeling personnel was assembled to benchmark Sandia`s existing expertise in this area relative to industrial and academic programs and to initiate the tasks required to meet Sandia`s future needs. RTM (Resin Transfer Molding) was selected as the focus composite fabrication technology due to its versatility and growing use in industry. Modeling efforts focused on the prediction of composite mechanical properties and failure/damage mechanisms and also on the uncured resin flow processes typical of RTM. Appropriate molds and test composites were fabricated and model validation studies begun. This report summarizes and archives the modeling and fabrication studies carried out under IMPReS and evaluates the status of composite technology within Sandia. It should provide a complete and convenient baseline for future composite technology efforts within Sandia.

  19. Nondestructive characterization of woven fabric ceramic composites

    SciTech Connect

    Hsu, D.K.; Saini, V.; Liaw, P.K.; Yu, N.; Miriyala, N.; McHargue, C.J.; Snead, L.L.; Lowden, R.A.

    1995-10-01

    Woven fabric ceramic composites fabricated by the chemical vapor infiltration method are susceptible to high void content and inhomogeneity. The condition of such materials may be characterized nondestructively with ultrasonic methods. In this work, longitudinal and shear waves were used in the quantitative determination of elastic constants of Nicalon{trademark}/SiC composites as a function of volume percent of porosity. Elastic stiffness constants were obtained for both the in-plane and out-of-plane directions with respect to fiber fabric. The effect of porosity on the modulus of woven fabric composites was also modeled and compared to the measured results. Scan images based on the amplitude and time-of-flight of radio frequency (RF) ultrasonic pulses were used for evaluating the material homogeneity for the purpose of optimizing the manufacturing process and for correlation with the mechanical testing results.

  20. Free form fabrication of thermoplastic composites

    SciTech Connect

    Kaufman, S.G.; Spletzer, B.L.; Guess, T.R.

    1998-02-01

    This report describes the results of composites fabrication research sponsored by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories. They have developed, prototyped, and demonstrated the feasibility of a novel robotic technique for rapid fabrication of composite structures. Its chief innovation is that, unlike all other available fabrication methods, it does not require a mold. Instead, the structure is built patch by patch, using a rapidly reconfigurable forming surface, and a robot to position the evolving part. Both of these components are programmable, so only the control software needs to be changed to produce a new shape. Hence it should be possible to automatically program the system to produce a shape directly from an electronic model of it. It is therefore likely that the method will enable faster and less expensive fabrication of composites.

  1. Fabrication of multi-layered absorption structure for high quantum efficiency photon detectors

    SciTech Connect

    Fujii, Go; Fukuda, Daiji; Numata, Takayuki; Yoshizawa, Akio; Tsuchida, Hidemi; Fujino, Hidetoshi; Ishii, Hiroyuki; Itatani, Taro; Zama, Tatsuya; Inoue, Shuichiro

    2009-12-16

    We report on some efforts to improve a quantum efficiency of titanium-based optical superconducting transition edge sensors using the multi-layered absorption structure for maximizing photon absorption in the Ti layer. Using complex refractive index values of each film measured by a Spectroscopic Ellipsometry, we designed and optimized by a simulation code. An absorption measurement of fabricated structure was in good agreement with the design and was higher than 99% at optimized wavelength of 1550 nm.

  2. Multilayer Phase-Only Diffraction Gratings: Fabrication andApplication to EUV Optics

    SciTech Connect

    Salmassi, Farhad; Gullikson, Eric M.; Anderson, Erik H.; Naulleau, Patrick P.

    2007-05-01

    The use of phase-only diffractive devices has long played an important role in advanced optical systems in varying fields. Such devices include gratings, diffractive and holographic optical elements, diffractive lenses, and phase-shift masks for advanced lithography. Extending such devices to the increasingly important regime of extreme ultraviolet (EUV) wavelengths, however, is not trivial. Here, we present an effective fabrication and etch process enabling high-resolution patterning of Mo/Si multilayers for use in EUV phase devices, providing another method for fabrication of high numerical aperture diffractive devices or high-resolution EUV phase shift masks.

  3. WSi2/Si Multilayer Sectioning by Reactive Ion Etching for Multilayer Laue Lens Fabrication

    SciTech Connect

    Bouet, N.; Conley, R.; Biancarosaa, J.; Divanc, R.; Macrander, A. T.

    2010-08-01

    SPIE Conference paper/talk presentation: Introduction: Reactive ion etching (RIE) has been employed in a wide range of fields such as semiconductor fabrication, MEMS (microelectromechanical systems), and refractive x-ray optics with a large investment put towards the development of deep RIE. Due to the intrinsic differing chemistries related to reactivity, ion bombardment, and passivation of materials, the development of recipes for new materials or material systems can require intense effort and resources. For silicon in particular, methods have been developed to provide reliable anisotropic profiles with good dimensional control and high aspect ratios1,2,3, high etch rates, and excellent material to mask etch selectivity...

  4. Static fracture behavior of multilayered alumina-zirconia composites

    NASA Astrophysics Data System (ADS)

    Moon, Robert John

    The techniques for evaluating the static fracture behavior of monolithic materials are well established. Applying these same techniques to evaluate the fracture behavior of multilayered and/or gradient composites requires consideration of the changing microstructural influence on fracture. In the current study, single-edge-V-notched-beam (SEVNB) testing was used to evaluate the R-curve behavior of multilayered gradient alumina-zirconia composites. Crack initiation and extension from the V-notch tip were observed via in situ optical microscopy. The V-notch tip was positioned near specific microstructural features within the composite and during loading short cracks (5 to 75 mum) were initiated from the V-notch tip and extended stably in ˜10 mum increments. The influence of gradient microstructures, layer-layer interfaces, platelike alumina additions, residual stresses, and the direction of crack propagation on the resulting R-curves were investigated. The fracture mechanics weight function was used to estimate the fracture behavior based on the stress distribution (applied bending stress and residual stresses). The results were compared to the measured R-curves and the weight function analysis was observed to underestimate the measured KR. These differences were likely due to bridging stresses within the samples that were not accounted for in the weight function analysis. Initial attempts to account for bridging stress within the weight function analysis were in good agreement with the measured R-curves for the monolithic sample and for the samples having a step-wise change in residual stress. However, the same bridging function was not applicable for the samples having a composition gradient within each layer.

  5. Electrical properties of polypropylene-based composites controlled by multilayered distribution of conductive particles.

    PubMed

    Gao, Wanli; Zheng, Yu; Shen, Jiabin; Guo, Shaoyun

    2015-01-28

    Materials consisting of alternating layers of pure polypropylene (PP) and carbon black filled polypropylene (PPCB) were fabricated in this work. The electrical behaviors of the multilayered composites were investigated from two directions: (1) Parallel to interfaces. The confined layer space allowed for a more compact connection between CB particles, while the conductive pathways tended to be broken up with increasing number of layers leading to a distinct enhancement of the electrical resistivity due to the separation of insulated PP layers. (2) Vertical to interfaces. The alternating assemblies of insulated and conductive layers like a parallel-plate capacitor made the electrical conductivity become frequency dependent. Following the layer multiplication process, the dielectric permittivity was significantly enhanced due to the accumulation of electrical charges at interfaces. Thus, as a microwave was incident on the dielectric medium, the interfacial polarization made the main contribution to inherent dissipation of microwave energy, so that the absorbing peak became strengthened when the material had more layers. Furthermore, the layer interfaces in the multilayered system were also effective to inhibit the propagation of cracks in the stretching process, leading to a larger elongation at the break than that of the PP/CB conventional system, which provided a potential route to fabricate electrical materials with optimal mechanical properties.

  6. Fabrication and Characterization of SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Lach, Cynthia L.; Cano, Robert J.

    2001-01-01

    Results from an effort to fabrication shape memory alloy hybrid composite (SMAHC) test specimens and characterize the material system are presented in this study. The SMAHC specimens are conventional composite structures with an embedded SMA constituent. The fabrication and characterization work was undertaken to better understand the mechanics of the material system, address fabrication issues cited in the literature, and provide specimens for experimental validation of a recently developed thermomechanical model for SMAHC structures. Processes and hardware developed for fabrication of the SMAHC specimens are described. Fabrication of a SMA14C laminate with quasi-isotropic lamination and ribbon-type Nitinol actuators embedded in the 0' layers is presented. Beam specimens are machined from the laminate and are the focus of recent work, but the processes and hardware are readily extensible to more practical structures. Results of thermomechanical property testing on the composite matrix and Nitinol ribbon are presented. Test results from the Nitinol include stress-strain behavior, modulus versus temperature. and constrained recovery stress versus temperature and thermal cycle. Complex thermomechanical behaviors of the Nitinol and composite matrix are demonstrated, which have significant implications for modeling of SMAHC structures.

  7. Fabrication of angleply carbon-aluminum composites

    NASA Technical Reports Server (NTRS)

    Novak, R. C.

    1974-01-01

    A study was conducted to fabricate and test angleply composite consisting of NASA-Hough carbon base monofilament in a matrix of 2024 aluminum. The effect of fabrication variables on the tensile properties was determined, and an optimum set of conditions was established. The size of the composite panels was successfully scaled up, and the material was tested to measure tensile behavior as a function of temperature, stress-rupture and creep characteristics at two elevated temperatures, bending fatigue behavior, resistance to thermal cycling, and Izod impact response.

  8. Design and Fabrication of Ni/Ti Multilayer for Neutron Supermirror

    NASA Astrophysics Data System (ADS)

    Zhang, Zhong; Wang, Zhan-Shan; Zhu, Jing-Tao; Wang, Feng-Li; Wu, Yong-Rong; Qin, Shu-Ji; Chen, Ling-Yan

    2006-10-01

    In the applications of neutron guides and focusing devices, by using the Ni/Ti multilayer supermirrors (SM), the neutron flux is significantly enhanced, because the critical reflective angle of supermirrors increases m times compared to the one of natural bulk Ni. We design and fabricate the Ni/Ti multilayer supermirrors by considering the effect of the interfacial imperfection, such as interface roughness and diffusion, and by using the direct current magnetron sputtering technology. The reflective performances of these supermirrors are measured on a V14 neutron beam line at the Berlin Neutron Scattering Centre (BENSC), Germany. The measurement data suggest that the critical angles of the supermirrors are 1.5 and 2.2 times that of bulk Ni, respectively.

  9. Fabrication and spin tests of composite flywheels

    NASA Astrophysics Data System (ADS)

    Hamamoto, A.; Inutake, T.; Kogai, K.

    Energy storage flywheels consisting of carbon fiber epoxy composite rims and aluminum or carbon fabric cloth epoxy composite hubs were designed, fabricated and tested. The composite rims were 38O mm in outer diameter and 300 mm in inner diameter with a thickness of 25 mm. The test rotor with a aluminum hub was spun to maximum peripheral speed of 982 m/s on burst test. This corresponds to an energy density, based upon total rotor weight, of approximately 71 Wh/kg. Another rotor, made use of a four rims configuration, was tested to 800 m/s successfully with no damage and no dynamic problem. The energy stored in the rotor is more than 500 Wh and the energy density is about 55 Wh/kg at that speed. The rotor with a composite hub was tested to the peripheral speed of 820 m/s. It was restricted by rotor dynamic problems.

  10. Composite multilayer insulations for thermal protection of aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.; Pitts, William C.

    1989-01-01

    Composite flexible multilayer insulation systems (MLI), consisting of alternating layers of metal foil and scrim cloth or insulation quilted together using ceramic thread, were evaluated for thermal performance and compared with a silica fibrous (baseline) insulation system. The systems studied included: (1) alternating layers of aluminoborosilicate (ABS) scrim cloth and stainless steel foil, with silica, ABS, or alumina insulation; (2) alternating layers of scrim cloth and aluminum foil, with silica or ABS insulation; (3) alternating layers of aluminum foil and silica or ABS insulation; and (4) alternating layers of aluminum-coated polyimide placed on the bottom of the silica insulation. The MLIs containing aluminum were the most efficient, measuring as little as half the backface temperature increase of the baseline system.

  11. CAD for 4-step braided fabric composites

    SciTech Connect

    Pandey, R.; Hahn, H.T.

    1994-12-31

    A general framework is provided to predict thermoelastic properties of three dimensional 4-step braided fabric composites. Three key steps involved are (1) the development of a CAD model for yarn architecture, (2) the extraction of a unit cell (3) the prediction of the thermoelastic properties based on micromechanics. Main features of each step are summarized and experimental correlations are provided in the paper.

  12. Electro-Mechanical Properties of Multilayer Graphene-Based Polymeric Composite Obtained through a Capillary Rise Method

    PubMed Central

    Acquarelli, Chiara; Paliotta, Licia; Tamburrano, Alessio; De Bellis, Giovanni; Sarto, Maria Sabrina

    2016-01-01

    A new sensor made of a vinyl-ester polymer composite filled with multilayer graphene nanoplatelets (MLG) is produced through an innovative capillary rise method for application in strain sensing and structural health monitoring. The new sensor is characterized by high stability of the piezoresistive response under quasi-static consecutive loading/unloading cycles and monotonic tests. This is due to the peculiarity of the fabrication process that ensures a smooth and clean surface of the sensor, without the presence of filler agglomerates acting as micro- or macro-sized defects in the composite. PMID:27792153

  13. Nanointaglio fabrication of optical lipid multilayer diffraction gratings with applications in biosensing

    NASA Astrophysics Data System (ADS)

    Lowry, Troy Warren

    The dynamic self-organization of lipids in biological systems is a highly regulated process that enables the compartmentalization of living systems at microscopic and nanoscopic levels. Exploiting the self-organization and innate biofunctionality of lyotropic liquid crystalline phospholipids, a novel nanofabrication process called "nanointaglio" was invented in order to rapidly and scalably integrate lipid nanopatterns onto the surface. The work presented here focuses on using nanointaglio fabricated lipid diffraction micro- and nanopatterns for the development of new sensing and bioactivity studies. The lipids are patterned as diffraction gratings for sensor functionality. The lipid multilayer gratings operate as nanomechanical sensor elements that are capable of transducing molecular binding to fluid lipid multilayers into optical signals in a label free manner due to shape changes in the lipid nanostructures. To demonstrate the label free detection capabilities, lipid nanopatterns are shown to be suitable for the integration of chemically different lipid multilayer gratings into a sensor array capable of distinguishing vapors by means of an optical nose. Sensor arrays composed of six different lipid formulations are integrated onto a surface and their optical response to three different vapors (water, ethanol and acetone) in air as well as pH under water is monitored as a function of time. Principal component analysis of the array response results in distinct clustering, indicating the suitability of the arrays for distinguishing these analytes. Importantly, the nanointaglio process used is capable of producing lipid gratings out of different materials with sufficiently uniform heights for the fabrication of an optical nose. A second main application is demonstrated for the study of membrane binding proteins. Although in vitro methods for assaying the catalytic activity of individual enzymes are well established, quantitative methods for assaying the kinetics of

  14. Method for fabricating laminated uranium composites

    DOEpatents

    Chapman, L.R.

    1983-08-03

    The present invention is directed to a process for fabricating laminated composites of uranium or uranium alloys and at least one other metal or alloy. The laminated composites are fabricated by forming a casting of the molten uranium with the other metal or alloy which is selectively positioned in the casting and then hot-rolling the casting into a laminated plate in or around which the casting components are metallurgically bonded to one another to form the composite. The process of the present invention provides strong metallurgical bonds between the laminate components primarily since the bond disrupting surface oxides on the uranium or uranium alloy float to the surface of the casting to effectively remove the oxides from the bonding surfaces of the components.

  15. Fabrication of aluminum-carbon composites

    NASA Technical Reports Server (NTRS)

    Novak, R. C.

    1973-01-01

    A screening, optimization, and evaluation program is reported of unidirectional carbon-aluminum composites. During the screening phase both large diameter monofilament and small diameter multifilament reinforcements were utilized to determine optimum precursor tape making and consolidation techniques. Difficulty was encountered in impregnating and consolidating the multifiber reinforcements. Large diameter monofilament reinforcement was found easier to fabricate into composites and was selected to carry into the optimization phase in which the hot pressing parameters were refined and the size of the fabricated panels was scaled up. After process optimization the mechanical properties of the carbon-aluminum composites were characterized in tension, stress-rupture and creep, mechanical fatigue, thermal fatigue, thermal aging, thermal expansion, and impact.

  16. Continuous unidirectional fiber reinforced composites: Fabrication and testing

    NASA Technical Reports Server (NTRS)

    Weber, M. D.; Spiegel, F. X.; West, Harvey A.

    1994-01-01

    The study of the anisotropic mechanical properties of an inexpensively fabricated composite with continuous unidirectional fibers and a clear matrix was investigated. A method has been developed to fabricate these composites with aluminum fibers and a polymer matrix. These composites clearly demonstrate the properties of unidirectional composites and cost less than five dollars each to fabricate.

  17. Multilayered films fabricated from an oligoarginine-conjugated protein promote efficient surface-mediated protein transduction.

    PubMed

    Jewell, Christopher M; Fuchs, Stephen M; Flessner, Ryan M; Raines, Ronald T; Lynn, David M

    2007-03-01

    The conjugation of cationic protein transduction domains to proteins results in an increase in the extent to which proteins are internalized by cells. This investigation sought to determine whether the conjugation of a protein transduction domain to a functional protein could be used to facilitate the incorporation of the protein into multilayered polyelectrolyte films and, subsequently, whether these films could be used to promote surface-mediated protein transduction. We demonstrate that it is possible to fabricate multilayered assemblies 80 nm thick using sodium polystyrene sulfonate (SPS) and bovine pancreatic ribonuclease (RNase A) conjugated to the cationic protein transduction domain nonaarginine (R(9)) using an entirely aqueous layer-by-layer process. We demonstrate further that the conjugation of R(9) to RNase A permits the assembly of multilayered films under conditions that do not allow for the incorporation of the unmodified protein. This result suggests that R(9) functions as a cationic anchor and serves to increase the strength of electrostatic interactions with SPS and facilitate layer-by-layer assembly. We also demonstrate that RNase A-R(9)/SPS films dissolve rapidly in physiologically relevant media and that macroscopic objects coated with these materials can be used to mediate high levels of protein transduction in mammalian cells. These results suggest the basis of general methods that could contribute to the design of materials that permit spatial and temporal control over the delivery of therapeutic proteins to cells and tissues.

  18. Fabrication of multilayer passive electric components using inkjet printing and low temperature laser processing on polymer

    NASA Astrophysics Data System (ADS)

    Ko, Seung Hwan; Chung, Jaewon; Pan, Heng; Grigoropoulos, Costas P.; Poulikakos, Dimos

    2006-02-01

    The low temperature fabrication of passive electrical components (conductor, capacitor) on the flexible polymer substrate is presented in this paper. A drop-on-demand (DOD) ink-jetting system was used to print gold nano-particles suspended in Alpha-Terpineol solvent and PVP in PGMEA solvent to fabricate passive electrical components on flexible polymer substrate. Short pulsed laser ablation enabled finer electrical components to overcome limitation of inkjet process. Continuous Argon ion laser was irradiated locally to evaporate carrier solvent as well as to sinter gold nano-particles. In addition, a self alignment technique for PVP layer was demonstrated taking advantage of the deliberate modification of surface wetting characteristics. Finally, a new selective ablation of multilayered gold nanoparticle film was demonstrated using the ablation threshold difference for sintered and non sintered gold nanoparticles.

  19. Composite monolayer fabrication by an arc-spray process

    NASA Technical Reports Server (NTRS)

    Westfall, Leonard J.

    1988-01-01

    A single layer (monotape) technique for fabricating complex high-temperature tungsten-fiber-reinforced superalloy composites is proposed. The fabrication of sheets of arc-sprayed monotape 38 cm wide and 122 cm long has been demonstrated. Composites fabricated using the method are shown to have equal tensile strength and a cleaner matrix than composites fabricated from powder metal cloth monotapes, and the present technique is less expensive than the powder metal fabrication techniques.

  20. Fabrication of tungsten wire reinforced nickel-base alloy composites

    NASA Technical Reports Server (NTRS)

    Brentnall, W. D.; Toth, I. J.

    1974-01-01

    Fabrication methods for tungsten fiber reinforced nickel-base superalloy composites were investigated. Three matrix alloys in pre-alloyed powder or rolled sheet form were evaluated in terms of fabricability into composite monotape and multi-ply forms. The utility of monotapes for fabricating more complex shapes was demonstrated. Preliminary 1093C (2000F) stress rupture tests indicated that efficient utilization of fiber strength was achieved in composites fabricated by diffusion bonding processes. The fabrication of thermal fatigue specimens is also described.

  1. Design and fabrication of multilayer dielectric gratings for spectral beam combining

    NASA Astrophysics Data System (ADS)

    Cho, Hyun-Ju; Kim, Hyun-Tae; Lee, Yong-Soo

    2015-08-01

    Metal gratings are mostly used on low energy optics, but it has low laser damage threshold. Spectral beam combining is a method to make high power laser beam using diffraction gratings. Multilayer dielectric (MLD) high reflectance mirror is designed for high efficiency gratings using HfO2 and SiO2 for high laser damage threshold. On the top of the mirror, polarization dependent SiO2 grating structure is simulated by finite domain time division (FDTD) method at 1055nm for spectral beam combining. To estimate the far field diffraction characteristics, we first calculate near field electromagnetic wave properties at the substrate region and these are transformed to angular diffraction characteristics at about 1 meter apart from the grating. Multilayer dielectric mirror is deposited by electron beam evaporation method at the substrate temperature 250°C. Four types of high efficiency MLD gratings are selected and these are fabricated by lithography and reactive ion etching method. To fabricate the designed submicron structure, 4X stepper is used for pattern formation on the photo resistor. We use fused silica as a substrate and additional dummy silicon wafer substrates are used for grating structure confirmation using scanning electron microscope. The diffraction efficiencies are measured and these are compared with simulated results.

  2. Fabrication of graphite/polyimide composite structures.

    NASA Technical Reports Server (NTRS)

    Varlas, M.

    1972-01-01

    Selection of graphite/polyimide composite as a prime candidate for high-temperature structural applications involving long-duration temperature environments of 400 to 600 F. A variety of complex graphite/polyimide components has been fabricated, using a match-metal die approach developed for making fiber-reinforced resin composites. Parts produced include sections of a missile adapter skin flange, skin frame section, and I-beam and hat-section stringers, as well as unidirectional (0 deg) and plus or minus 45 deg oriented graphite/polyimide tubes in one-, two-, and six-inch diameters.

  3. Novel soft magnetic composites fabricated by electrodeposition

    NASA Astrophysics Data System (ADS)

    Yu, R. H.; Ren, L.; Basu, S.; Unruh, K. M.; Parvizi-Majidi, A.; Xiao, John Q.

    2000-05-01

    Soft magnetic composites have been fabricated by electrodepositing FeNi and FeCo onto W fibers with a diameter of 20 and 100 μm. Structural and compositional characterizations indicate that FeNi and FeCo-based composites are of fcc and bcc structure, respectively. The mechanical strengths are significantly improved depending on the volume fraction of W fibers. To further improve the mechanical properties of these composites, we have codeposited soft magnets and Al2O3 powders, resulting in an increase in Vickers hardness of more than 100%. Magnetic measurements show that as-deposited fibers are not magnetically soft. After proper thermal annealing, the samples exhibit excellent soft magnetic properties.

  4. Fabrication, characterization, and modeling of microvascular composites

    NASA Astrophysics Data System (ADS)

    Ryan, Thomas J.

    Composite laminates of glass fiber and epoxy pre-preg were fabricated with microvascular channels. The channels were created using polylactic acid (PLA) filament that evaporates at a temperature of 392 °F (200 °C) above the resin cure temperature of 250 °F (121 °C). After the composite is cured, the panel was removed from the oven and allowed to cool to room temperature. The panel is then reheated to 392 °F to vaporize the filament, leaving a cylindrical channel. A microvascular channel can be used for withdrawing heat, damage detection and self-healing. However, increasing the temperatures of the laminate above the cure temperature of the resin causes excess cross linking, potentially decreasing the mechanical properties. Tensile and flexural mechanical tests were performed on composite specimens and tensile tests were performed on neat resin specimens. A three-dimensional finite element model (FEM) was developed to study the progressive deformation and damage mechanics under tensile loading. The load carrying capacity of the microvascular composite was shown to decrease by 40% from a standard composite material. This paper will present the details of the fabrication, characterization and modeling techniques that were used in this study.

  5. Method of fabricating composite superconducting wire

    DOEpatents

    Strauss, Bruce P.; Reardon, Paul J.; Remsbottom, Robert H.

    1977-01-01

    An improvement in the method for preparing composite rods of superconducting alloy and normal metal from which multifilament composite superconducting wire is fabricated by bending longitudinally a strip of normal metal around a rod of superconductor alloy and welding the edges to form the composite rod. After the rods have preferably been provided with a hexagonal cross-sectional shape, a plurality of the rods are stacked into a normal metal extrusion can, sealed and worked to reduce the cross-sectional size and form multifilament wire. Diffusion barriers and high-electrical resistance barriers can easily be introduced into the wire by plating or otherwise coating the faces of the normal metal strip with appropriate materials.

  6. High-resolution electrohydrodynamic jet printing for the direct fabrication of 3D multilayer terahertz metamaterial of high refractive index

    NASA Astrophysics Data System (ADS)

    Teguh Yudistira, Hadi; Pradhipta Tenggara, Ayodya; Oh, Sang Soon; Nguyen, VuDat; Choi, Muhan; Choi, Choon-gi; Byun, Doyoung

    2015-04-01

    The fabrication of 3D metamaterials, such as multilayer structures, is of great interest in practical applications of the metamaterial. Here we present an electrohydrodynamic jet printing technique as a direct fabrication method of 3D multilayer metamaterial. By alignment of the nozzle movement, we could fabricate multiple layers of the metamaterial. Controlling an electrical pulse to make droplets on-demand, we fabricated a high refractive index metamaterial and compared the optical performances of a single layer and multiple layers, with 10 µm width and 5 µm gap of I-shaped meta-atoms on the polyimide substrate. The peak refractive index was 25.7 at 0.46 THz for a four-layer metamaterial.

  7. MOVPE of GaSb/InGaAsSb Multilayers and Fabrication of Dual Band Photodetectors

    NASA Technical Reports Server (NTRS)

    Xiao, Ye-Gao; Bhat, Ishwara; Refaat, Tamer F.; Abedin, M. Nurul; Shao, Qing-Hui

    2005-01-01

    Metalorganic vapor phase epitaxy (MOVPE) of GaSb/InGaAsSb multilayer thin films and fabrication of bias-selectable dual band photodetectors are reported. For the dual band photodetectors the short wavelength detector, or the upper p- GaSb/n-GaSb junction photodiode, is placed optically ahead of the long wavelength one, or the lower photodiode. The latter is based on latticed-matched In0.13Ga0.87As0.11Sb0.89 with bandgap near 0.6 eV. Specifically, high quality multilayer thin films are grown sequentially from top to bottom as p+-GaSb/p-GaSb/n-GaSb/n-InGaAsSb/p-InGaAsSb/p-GaSb on undoped p-type GaSb substrate, and as n-GaSb/p-GaSb/p-InGaAsSb/n-InGaAsSb/n-GaSb on Te-doped n-type GaSb substrate respectively. The multilayer thin films are characterized by optical microscope, atomic force microscope (AFM), electron microprobe analyses etc. The photodiode mesa steps are patterned by photolithography with wet chemical etching and the front metallization is carried out by e-beam evaporation with Pd/Ge/Au/Ti/Au to give ohmic contact on both n- and p-type Sb based layer surfaces. Dark I-V measurements show typical diode behavior for both the upper and lower photodiodes. The photoresponsivity measurements indicate that both the upper and lower photodiodes can sense the infrared illumination corresponding to their cutoff wavelengths respectively, comparable with the simulation results. More work is underway to bring the long wavelength band to the medium infrared wavelength region near 4 micrometers.

  8. Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates.

    PubMed

    Han, N R; Chen, Z C; Lim, C S; Ng, B; Hong, M H

    2011-04-11

    Microscopic split-ring-resonator (SRR) arrays are fabricated on 100 μm thick polyethylene naphthalate (PEN) films by femtosecond laser micro-lens array (MLA) lithography. The transmission properties of these metamaterials are characterized by THz Time Domain Spectroscopy (THz-TDS). Tunable resonance responses can be achieved by changing SRR structural design parameters. By stacking 2D PEN metamaterial films with different frequency responses together, a broadband THz filter with full width at half maximum (FWHM) of 0.38 THz is constructed. The bandwidth of the resonance response increases up to 4.2 times as compared to the bandwidths of single layer metamaterials. Numerical simulation reveals that SRR layers inside the multi-layer metamaterials are selectively excited towards specific frequencies within the broadband response. Meanwhile, more than one SRR layers respond to the chosen frequencies, resulting in the enhancement of the resonance properties. The multi-layer metamaterials provide a promising way to extend SRR based metamaterial operating region from narrowband to broadband with a tunable feature.

  9. A study on various fabrication routes for preparing multilayered cubic boron nitride films and sp(3)-like boron nitride films

    NASA Astrophysics Data System (ADS)

    Wong, Sing Fai

    Cubic boron nitride (cBN) has a sp3-bonded structure which leads to excellent mechanical properties. Though cBN-rich films have been successfully fabricated by many techniques, the adhesion of the films is still unsatisfactory due to the high stresses. The maximum sustainable thickness of cBN-rich films with good adhesion is widely reported to be around 200 nm, so many practical applications of cBN coatings are hindered. In this study, we designed a series of deposition schemes in a logical sequence, in order to explore whether stress can be released, or other structural forms of BN with potential applications can be made, and to gain more fundamental understanding on the growth mechanisms of various phases observed in the films. Various fabrication processes were employed according to the following sequence: (1) A single-step process. It was showed that the maximum tolerable thickness of the cBN-rich films prepared by our system (183nm) was compatible with the result in literatures (200nm). (2) A multilayered deposition process. A thick sp2-bonded boron nitride (sP2-BN) buffer layer which was relatively deformable was added, and hence some stresses were released so as to allow a 643nm-thick, 87vol.% cBN-rich layer with acceptable adhesion to grow on top. (3) An advanced multilayer process with subsequent annealing process. A zirconium layer was pre-deposited to remove the soft buffer layer after postannealing. The interface could be strengthened as the zirconium-boride/nitride was formed. (4) Ion assist deposition at unheated condition. Composite BN films containing sp3 nanoclusters embedded in a sp2-BN matrix were fabricated. The IR technique was not sensitive enough to detect spa nanoclusters, but their presence was verified by the results of other measurements. In particular, the sp3 content can be over 30vo1.%, with a hardness 20GPa. The influences of the assist beam energy and substrate temperature on the generation of the sp3 nanoclusters were investigated

  10. Polyelectrolyte multilayer-assisted fabrication of non-periodic silicon nanocolumn substrates for cellular interface applications

    NASA Astrophysics Data System (ADS)

    Lee, Seyeong; Kim, Dongyoon; Kim, Seong-Min; Kim, Jeong-Ah; Kim, Taesoo; Kim, Dong-Yu; Yoon, Myung-Han

    2015-08-01

    Recent advances in nanostructure-based biotechnology have resulted in a growing demand for vertical nanostructure substrates with elaborate control over the nanoscale geometry and a high-throughput preparation. In this work, we report the fabrication of non-periodic vertical silicon nanocolumn substrates via polyelectrolyte multilayer-enabled randomized nanosphere lithography. Owing to layer-by-layer deposited polyelectrolyte adhesives, uniformly-separated polystyrene nanospheres were securely attached on large silicon substrates and utilized as masks for the subsequent metal-assisted silicon etching in solution. Consequently, non-periodic vertical silicon nanocolumn arrays were successfully fabricated on a wafer scale, while each nanocolumn geometric factor, such as the diameter, height, density, and spatial patterning, could be fully controlled in an independent manner. Finally, we demonstrate that our vertical silicon nanocolumn substrates support viable cell culture with minimal cell penetration and unhindered cell motility due to the blunt nanocolumn morphology. These results suggest that vertical silicon nanocolumn substrates may serve as a useful cellular interface platform for performing a statistically meaningful number of cellular experiments in the fields of biomolecular delivery, stem cell research, etc.Recent advances in nanostructure-based biotechnology have resulted in a growing demand for vertical nanostructure substrates with elaborate control over the nanoscale geometry and a high-throughput preparation. In this work, we report the fabrication of non-periodic vertical silicon nanocolumn substrates via polyelectrolyte multilayer-enabled randomized nanosphere lithography. Owing to layer-by-layer deposited polyelectrolyte adhesives, uniformly-separated polystyrene nanospheres were securely attached on large silicon substrates and utilized as masks for the subsequent metal-assisted silicon etching in solution. Consequently, non-periodic vertical

  11. Composite material fabrication techniques. CRADA final report

    SciTech Connect

    Frame, B J; Paulauskas, F L; Miller, J; Parzych, W

    1996-09-30

    This report describes a low cost method of fabricating components for mockups and training simulators used in the transportation industry. This technology was developed jointly by the Oak Ridge National Laboratory (ORNL) and Metters Industries, Incorporated (MI) as part of a Cooperative Research and Development Agreement (CRADA) ORNL94-0288 sponsored by the Department of Energy (DOE) Office of Economic Impace and Diversity Minority Business Technology Transfer Consortium. The technology involves fabricating component replicas from fiberglass/epoxy composites using a resin transfer molding (RTM) process. The original components are used as masters to fabricate the molds. The molding process yields parts that duplicate the significant dimensional requirements of the original component while still parts that duplicate the significant dimensional requirements of the original component while still providing adequate strength and stiffness for use in training simulators. This technology permits MI to overcome an acute shortage in surplus military hardware available to them for use in manufacturing training simulators. In addition, the cost of the molded fiberglass components is expected to be less than that of procuring the original components from the military.

  12. Stretchable multilayer self-aligned interconnects fabricated using excimer laser photoablation and in situ masking

    NASA Astrophysics Data System (ADS)

    Lin, Kevin L.; Jain, Kanti

    2009-02-01

    Stretchable interconnects are essential to large-area flexible circuits and large-area sensor array systems, and they play an important role towards the realization of the realm of systems which include wearable electronics, sensor arrays for structural health monitoring, and sensor skins for tactile feedback. These interconnects must be reliable and robust for viability, and must be flexible, stretchable, and conformable to non-planar surfaces. This research describes the design, modeling, fabrication, and testing of stretchable interconnects on polymer substrates using metal patterns both as functional interconnect layers and as in-situ masks for excimer laser photoablation. Excimer laser photoablation is often used for patterning of polymers and thin-film metals. The fluences for photoablation of polymers are generally much lower than the threshold fluence for removal or damage of high-thermallyconductive metals; thus, metal thin films can be used as in-situ masks for polymers if the proper fluence is used. Selfaligned single-layer and multi-layer interconnects of various designs (rectilinear and 'meandering') have been fabricated, and certain 'meandering' interconnect designs can be stretched up to 50% uniaxially while maintaining good electrical conductivity and structural integrity. These results are compared with Finite Element Analysis (FEA) models and are observed to be in good accordance with them. This fabrication approach eliminates masks and microfabrication processing steps as compared to traditional fabrication approaches; furthermore, this technology is scalable for large-area sensor arrays and electronic circuits, adaptable for a variety of materials and interconnects designs, and compatible with MEMS-based capacitive sensor technology.

  13. Fabric geometry distortion during composites processing

    NASA Technical Reports Server (NTRS)

    Chen, Julie

    1994-01-01

    Waviness and tow misalignment are often cited as possible causes of data scatter and lower compression stiffness and strength in textile composites. Strength differences of as much as 40 percent have been seen in composites that appear to have the same basic material and structural properties -- i.e., yarn orientation, yarn size, interlacing geometry. Fabric geometry distortion has been suggested as a possible reason for this discrepancy, but little quantitative data or substantial evidence exists. The focus of this research is to contribute to the present understanding of the causes and effects of geometric distortion in textile composites. The initial part of the study was an attempt to gather qualitative information on a variety of textile structures. Existing and new samples confirmed that structures with a significant direction presence would be more susceptible to distortion due to the compaction process. Thus, uniweaves (fiber vol frac: 54-72 percent) biaxial braids (vf: 34-58 percent) demonstrated very little fabric geometry distortion. In stitched panels, only slight buckling of z-direction stitches was observed, primarily near the surface. In contrast, for structures with high compaction ratios -- e.g., large cylindrical yarns (2.5:1) orpowder towpreg (4:1) -- there were visible distortions where previously smooth and periodic undulations were transformed to abrupt changes in direction. A controlled study of the effect of forming pressure on distortion was conducted on type 162 glass plain weave fabrics. Panels (6 x 6 in) were produced via a resin infusion type setup, but with an EPON 815 epoxy resin. Pressures ranging from hand layup to 200 psi were used (vf: 34-54 percent). Photomicrographs indicated that at pressures up to 50 psi, large changes in thickness were due primarily to resin squeeze out. At higher pressures, when intimate contact was made between the layers, there was some tow flattening and in-plane shifting to optimize nesting. However

  14. COMMAND: A FORTRAN program for simplified composite analysis and design. [computerized design of multilayered composite panels

    NASA Technical Reports Server (NTRS)

    Vanderplaats, G. N.

    1976-01-01

    A FORTRAN program is presented for preliminary analysis and design of multilayered composite panels subjected to inplane loads. All plys are of the same material. The composite is assumed symmetric about the midplane, but need not be balanced. Failure criterion includes limit ply strains and lower bounds on composite inplane stiffnesses. Multiple load conditions are considered. The required input data is defined and examples are provided to aid the use in making the program operational. Average panel design times are two seconds on an IBM 360/67 computer. Results are compared with published literature. A complete FORTRAN listing of program COMAND is provided. In addition, the optimization program CONMIN is required for design.

  15. Polyelectrolyte multilayer-assisted fabrication of non-periodic silicon nanocolumn substrates for cellular interface applications.

    PubMed

    Lee, Seyeong; Kim, Dongyoon; Kim, Seong-Min; Kim, Jeong-Ah; Kim, Taesoo; Kim, Dong-Yu; Yoon, Myung-Han

    2015-09-21

    Recent advances in nanostructure-based biotechnology have resulted in a growing demand for vertical nanostructure substrates with elaborate control over the nanoscale geometry and a high-throughput preparation. In this work, we report the fabrication of non-periodic vertical silicon nanocolumn substrates via polyelectrolyte multilayer-enabled randomized nanosphere lithography. Owing to layer-by-layer deposited polyelectrolyte adhesives, uniformly-separated polystyrene nanospheres were securely attached on large silicon substrates and utilized as masks for the subsequent metal-assisted silicon etching in solution. Consequently, non-periodic vertical silicon nanocolumn arrays were successfully fabricated on a wafer scale, while each nanocolumn geometric factor, such as the diameter, height, density, and spatial patterning, could be fully controlled in an independent manner. Finally, we demonstrate that our vertical silicon nanocolumn substrates support viable cell culture with minimal cell penetration and unhindered cell motility due to the blunt nanocolumn morphology. These results suggest that vertical silicon nanocolumn substrates may serve as a useful cellular interface platform for performing a statistically meaningful number of cellular experiments in the fields of biomolecular delivery, stem cell research, etc.

  16. Fabrication of 200 nanometer period centimeter area hard x-ray absorption gratings by multilayer deposition

    PubMed Central

    Lynch, S K; Liu, C; Morgan, N Y; Xiao, X; Gomella, A A; Mazilu, D; Bennett, E E; Assoufid, L; de Carlo, F; Wen, H

    2012-01-01

    We describe the design and fabrication trials of x-ray absorption gratings of 200 nm period and up to 100:1 depth-to-period ratios for full-field hard x-ray imaging applications. Hard x-ray phase-contrast imaging relies on gratings of ultra-small periods and sufficient depth to achieve high sensitivity. Current grating designs utilize lithographic processes to produce periodic vertical structures, where grating periods below 2.0 μm are difficult due to the extreme aspect ratios of the structures. In our design, multiple bilayers of x-ray transparent and opaque materials are deposited on a staircase substrate, and mostly on the floor surfaces of the steps only. When illuminated by an x-ray beam horizontally, the multilayer stack on each step functions as a micro-grating whose grating period is the thickness of a bilayer. The array of micro-gratings over the length of the staircase works as a single grating over a large area when continuity conditions are met. Since the layers can be nanometers thick and many microns wide, this design allows sub-micron grating periods and sufficient grating depth to modulate hard x-rays. We present the details of the fabrication process and diffraction profiles and contact radiography images showing successful intensity modulation of a 25 keV x-ray beam. PMID:23066175

  17. Zone compensated multilayer laue lens and apparatus and method of fabricating the same

    SciTech Connect

    Conley, Raymond P.; Liu, Chian Qian; Macrander, Albert T.; Yan, Hanfei; Maser, Jorg; Kang, Hyon Chol; Stephenson, Gregory Brian

    2015-07-14

    A multilayer Laue Lens includes a compensation layer formed in between a first multilayer section and a second multilayer section. Each of the first and second multilayer sections includes a plurality of alternating layers made of a pair of different materials. Also, the thickness of layers of the first multilayer section is monotonically increased so that a layer adjacent the substrate has a minimum thickness, and the thickness of layers of the second multilayer section is monotonically decreased so that a layer adjacent the compensation layer has a maximum thickness. In particular, the compensation layer of the multilayer Laue lens has an in-plane thickness gradient laterally offset by 90.degree. as compared to other layers in the first and second multilayer sections, thereby eliminating the strict requirement of the placement error.

  18. Method of Fabricating a Composite Apparatus

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats (Inventor); Bryant, Robert G. (Inventor); Fox, Robert L. (Inventor); Hellbaum, Richard F. (Inventor); High, James W. (Inventor); Jalink, Antony, Jr. (Inventor)

    2007-01-01

    A method for fabricating a piezoelectric macro-fiber composite actuator comprises making a piezoelectric fiber sheet by providing a plurality of wafers of piezoelectric material, bonding the wafers together with an adhesive material to from a stack of alternating layers of piezoelectric material and adhesive material, and cutting through the stack in a direction substantially parallel to the thickness of the stack and across the alternating layers of piezoelectric material and adhesive material to provide at least one piezoelectric fiber sheet having two sides comprising a plurality of piezoelectric fibers in juxtaposition to the adhesive material. The method further comprises bonding two electrically conductive films to the two sides of the piezoelectric fiber sheet. At least one conductive film has first and second conductive patterns formed thereon which are electrically isolated from one another and in electrical contact with the piezoelectric fiber sheet.

  19. Apparatus for fabricating composite ceramic members

    DOEpatents

    Roy, P.; Simpson, J.L.; Aitken, E.A.

    1975-10-28

    Methods and apparatus for fabrication of composite ceramic members having particular application for measuring oxygen activities in liquid sodium are described. The method involves the simultaneous deposition of ThO$sub 2$: 15 percent Y$sub 2$O$sub 3$ on a sintered stabilized zirconia member by decomposition of gaseous ThCl$sub 4$ and YCl$sub 3$ and by reacting with oxygen gas. Means are provided for establishing an electrical potential gradient across the zirconia member whereby oxygen ions, from a source on one side of the member portion to be coated, are migrated to the opposite side where a reaction and said decomposition and deposition are effected.

  20. Method of Fabricating a Piezoelectric Composite Apparatus

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats (Inventor); Bryant, Robert (Inventor); Fox, Robert L. (Inventor); Hellbaum, Richard F. (Inventor); High, James W. (Inventor); Jalink, Antony, Jr. (Inventor); Little, Bruce D. (Inventor); Mirick, Paul H. (Inventor)

    2003-01-01

    A method for fabricating a piezoelectric macro-fiber composite actuator comprises providing a piezoelectric material that has two sides and attaching one side upon an adhesive backing sheet. The method further comprises slicing the piezoelectric material to provide a plurality of piezoelectric fibers in juxtaposition. A conductive film is then adhesively bonded to the other side of the piezoelectric material, and the adhesive backing sheet is removed. The conductive film has first and second conductive patterns formed thereon which are electrically isolated from one another and in electrical contact with the piezoelectric material. The first and second conductive patterns of the conductive film each have a plurality of electrodes to form a pattern of interdigitated electrodes. A second film is then bonded to the other side of the piezoelectric material. The second film may have a pair of conductive patterns similar to the conductive patterns of the first film.

  1. A green approach to constructing multilayered nanocoating for flame retardant treatment of polyamide 66 fabric from chitosan and sodium alginate.

    PubMed

    Kumar Kundu, Chanchal; Wang, Wei; Zhou, Shun; Wang, Xin; Sheng, Haibo; Pan, Ying; Song, Lei; Hu, Yuan

    2017-06-15

    Green polyelectrolytes including chitosan (CS), phytic acid (PA) and oxidized sodium alginate (OSA) were deposited on polyamide 66 (PA66) fabrics in a quadralayer (QL) fashion like (CS-PA-CS-OSA)n (where "n" denotes the number of quadra layers) via layer-by-layer (LbL) assembly to improve the flame retardant property. In the vertical burning test, the PA66 fabric with 10 and 15 QL depositions could stop the melt-dripping. Cone calorimetry results showed that a maximum reduction (24%) in the peak heat release rate was achieved for the PA66 fabric with 5 QL depositions. Thermogravimetric analysis indicated that the presence of the polyelectrolytes catalyzed the degradation pathway of virgin PA66 fabric where the initial decomposition temperature was reduced and the char yield was enhanced for all the coated fabrics significantly. Moreover, UV-vis spectroscopy demonstrated that the use of OSA could improve the durability of such a multilayered nanocoating.

  2. Investigating Deformation and Failure Mechanisms in Nanoscale Multilayer Metallic Composites

    SciTech Connect

    Zbib, Hussein M.; Bahr, David F.

    2014-10-22

    Over the history of materials science there are many examples of materials discoveries that have made superlative materials; the strongest, lightest, or toughest material is almost always a goal when we invent new materials. However, often these have been a result of enormous trial and error approaches. A new methodology, one in which researchers design, from the atoms up, new ultra-strong materials for use in energy applications, is taking hold within the science and engineering community. This project focused on one particular new classification of materials; nanolaminate metallic composites. These materials, where two metallic materials are intimately bonded and layered over and over to form sheets or coatings, have been shown over the past decade to reach strengths over 10 times that of their constituents. However, they are not yet widely used in part because while extremely strong (they don’t permanently bend), they are also not particularly tough (they break relatively easily when notched). Our program took a coupled approach to investigating new materials systems within the laminate field. We used computational materials science to explore ways to institute new deformation mechanisms that occurred when a tri-layer, rather than the more common bi-layer system was created. Our predictions suggested that copper-nickel or copper-niobium composites (two very common bi-layer systems) with layer thicknesses on the order of 20 nm and then layered 100’s of times, would be less tough than a copper-nickel-niobium metallic composite of similar thicknesses. In particular, a particular mode of permanent deformation, cross-slip, could be activated only in the tri-layer system; the crystal structure of the other bi-layers would prohibit this particular mode of deformation. We then experimentally validated this predication using a wide range of tools. We utilized a DOE user facility, the Center for Integrated Nanotechnology (CINT), to fabricate, for the first time, these

  3. Multilayer reactive foils: Fabrication, reaction characterization, and room-temperature joining

    NASA Astrophysics Data System (ADS)

    Reiss, Michael Eric

    The self-propagating reactive multilayer foils studied here were composed of alternating nanoscale layers of Al and Ni. The reactions associated with these foils can reach temperatures well over 1600°C with propagation velocities one the order of 1 to 10 m/s. In order to characterized these reactions, a high spatial resolution (50 micron), high temporal resolution (25 microsecond) and high temperature resolution ratio pyrometer with a range of 900°C to 2000°C, was designed and assembled. The pyrometer was optimized for use with the self-propagating reactive foil systems and was used in conjunction with an apparatus for measuring the propagation velocity of these reactive foils. The custom velocity and temperature devices were used to analyze the interrelationships between reaction velocity, maximum temperature, and activation energy in the Al-Ni reactive foil system. The results of this study indicate that final temperature and layer thickness may have opposing influences on reaction rate. The process of joining SiC to Ti-6-4 was investigated from the standpoint of using reactive foils as an in-situ heat source. Advances in reactive foil deposition techniques were made to facilitate the fabrication of thick foils (>100 micron). Room temperature reactive foil joining with no external heat source was demonstrated and preliminary studies on the substantial bond strength were performed. Finally, an investigation into the feasibility of fabricating reactive foils from layers of metal sheet was performed. The combined techniques of swaging and rolling were shown to be a promising method for the scale-up of reactive foil production, and reactive foils with properties similar to those of vapor deposited materials were be obtained via this process.

  4. Fabrication of surfaces with extremely high contact angle hysteresis from polyelectrolyte multilayer.

    PubMed

    Wang, Liming; Wei, Jingjing; Su, Zhaohui

    2011-12-20

    High contact angle hysteresis on polyelectrolyte multilayers (PEMs) ion-paired with hydrophobic perfluorooctanoate anions is reported. Both the bilayer number of PEMs and the ionic strength of deposition solutions have significant influence on contact angle hysteresis: higher ionic strength and greater bilayer number cause increased contact angle hysteresis values. The hysteresis values of ~100° were observed on smooth PEMs and pinning of the receding contact line on hydrophilic defects is implicated as the cause of hysteresis. Surface roughness can be used to further tune the contact angle hysteresis on the PEMs. A surface with extremely high contact angle hysteresis of 156° was fabricated when a PEM was deposited on a rough substrate coated with submicrometer scale silica spheres. It was demonstrated that this extremely high value of contact angle hysteresis resulted from the penetration of water into the rough asperities on the substrate. The same substrate hydrophobized by chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltriethoxysilane exhibits high advancing contact angle and low hysteresis.

  5. Fabrication of Optical Multilayer Devices from Porous Silicon Coatings with Closed Porosity by Magnetron Sputtering.

    PubMed

    Caballero-Hernández, Jaime; Godinho, Vanda; Lacroix, Bertrand; Jiménez de Haro, Maria C; Jamon, Damien; Fernández, Asunción

    2015-07-01

    The fabrication of single-material photonic-multilayer devices is explored using a new methodology to produce porous silicon layers by magnetron sputtering. Our bottom-up methodology produces highly stable amorphous porous silicon films with a controlled refractive index using magnetron sputtering and incorporating a large amount of deposition gas inside the closed pores. The influence of the substrate bias on the formation of the closed porosity was explored here for the first time when He was used as the deposition gas. We successfully simulated, designed, and characterized Bragg reflectors and an optical microcavity that integrates these porous layers. The sharp interfaces between the dense and porous layers combined with the adequate control of the refractive index and thickness allowed for excellent agreement between the simulation and the experiments. The versatility of the magnetron sputtering technique allowed for the preparation of these structures for a wide range of substrates such as polymers while also taking advantage of the oblique angle deposition to prepare Bragg reflectors with a controlled lateral gradient in the stop band wavelengths.

  6. Determining micro- and macro- geometry of fabric and fabric reinforced composites

    NASA Astrophysics Data System (ADS)

    Huang, Lejian

    Textile composites are made from textile fabric and resin. Depending on the weaving pattern, composite reinforcements can be characterized into two groups: uniform fabric and near-net shape fabric. Uniform fabric can be treated as an assembly of its smallest repeating pattern also called a unit cell; the latter is a single component with complex structure. Due to advantages of cost savings and inherent toughness, near-net shape fabric has gained great success in composite industries, for application such as turbine blades. Mechanical properties of textile composites are mainly determined by the geometry of the composite reinforcements. The study of a composite needs a computational tool to link fabric micro- and macro-geometry with the textile weaving process and composite manufacturing process. A textile fabric consists of a number of yarns or tows, and each yarn is a bundle of fibers. In this research, a fiber-level approach known as the digital element approach (DEA) is adopted to model the micro- and macro-geometry of fabric and fabric reinforced composites. This approach determines fabric geometry based on textile weaving mechanics. A solver with a dynamic explicit algorithm is employed in the DEA. In modeling a uniform fabric, the topology of the fabric unit cell is first established based on the weaving pattern, followed by yarn discretization. An explicit algorithm with a periodic boundary condition is then employed during the simulation. After its detailed geometry is obtained, the unit cell is then assembled to yield a fabric micro-geometry. Fabric micro-geometry can be expressed at both fiber- and yarn-levels. In modeling a near-net shape fabric component, all theories used in simulating the uniform fabric are kept except the periodic boundary condition. Since simulating the entire component at the fiber-level requires a large amount of time and memory, parallel program is used during the simulation. In modeling a net-shape composite, a dynamic molding

  7. Fabrication of Al2O3/TiO2 multilayer mirrors for water-window attosecond pulses

    NASA Astrophysics Data System (ADS)

    Tanaka, Yuji; Murata, Masaki; Kumagai, Hiroshi; Kobayashi, Ataru; Shinagawa, Tsutomu

    2010-02-01

    Novel metal-oxide multilayer mirrors for water-window wavelengths have been already studied and then fabricated by atomic layer deposition (ALD) or atomic layer epitaxy (ALE) methods which have the self-limiting nature of the surface reactions and can control thickness on an atomic scale over large areas. The reason why metal-oxide multilayer mirrors are effective in the water-window wavelength is that they can prevent the formation of various alloys at the interface resulting in scattering loss, and the absorption of oxygen in oxides is negligible at the wavelength. In this study, high and low refractive materials were chosen to be TiO2 and Al2O3 respectively, because they can be fabricated by ALD or ALE methods and Ti L-absorption edge is located at 2.73nm. We investigated the atomic-scale growth of these films and then found that the growth rates could be constant. Moreover, Al2O3/TiO2 multilayer mirrors were fabricated by the ALE method. As a result, the soft x-ray reflectivity of the 10-bilayer mirror was 1.54%, approximately.

  8. Joining and fabrication of metal-matrix composite materials

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Wiant, H. R.; Bales, T. T.

    1975-01-01

    Manufacturing technology associated with developing fabrication processes to incorporate metal-matrix composites into flight hardware is studied. The joining of composite to itself and to titanium by innovative brazing, diffusion bonding, and adhesive bonding is examined. The effects of the fabrication processes on the material properties and their influence on the design of YF-12 wing panels are discussed.

  9. Making Skew-Resistant Fabrics For Composite Layups

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1994-01-01

    Fabrics used in curved composite-material structures prevented from skewing during composite layup by weaving them in modified process in which warp and fill yarns bonded together at their points of contact. (Bonding concept may prove similarly beneficial for braided and knitted fabrics.) In modified weaving process, adhesives prevent excessive shifting of warp and fill yarns with respect to each other.

  10. Process for fabricating high reflectance-low stress Mo--Si multilayer reflective coatings

    DOEpatents

    Montcalm, Claude; Mirkarimi, Paul B.

    2001-01-01

    A high reflectance-low stress Mo--Si multilayer reflective coating particularly useful for the extreme ultraviolet (EUV) wavelength region. While the multilayer reflective coating has particular application for EUV lithography, it has numerous other applications where high reflectance and low stress multilayer coatings are utilized. Multilayer coatings having high near-normal incidence reflectance (R.gtoreq.65%) and low residual stress (.ltoreq.100 MPa) have been produced using thermal and non-thermal approaches. The thermal approach involves heating the multilayer coating to a given temperature for a given time after deposition in order to induce structural changes in the multilayer coating that will have an overall "relaxation" effect without reducing the reflectance significantly.

  11. Bone formation: The rules for fabricating a composite ceramic

    SciTech Connect

    Caplan, A.I. )

    1990-01-01

    Bone, teeth and shells are complex composite ceramics which are fabricated at low temperature by living organisms. The detailed understanding of this fabrication process is required if we are to attempt to mimic this low temperature assembly process. The guiding principles and major components are outlined with the intent of establishing non-vital fabrication schemes to form a complex composite ceramic consisting of an organix matrix inorganic crystalline phase. 19 refs.

  12. Fabrication and testing of fire resistant graphite composite panels

    NASA Technical Reports Server (NTRS)

    Roper, W. D.

    1986-01-01

    Eight different graphite composite panels were fabricated using four different resin matrices. The resin matrices included Hercules 71775, a blend of vinylpolystyrpyridine and bismaleimide, H795, a bismaleimide, Cycom 6162, a phenolic, and PSP 6022m, a polystyrylpyridine. Graphite panels were fabricated using fabric or unidirectional tape. Described are the processes for preparing these panels and some of their mechanical, thermal and flammability properties. Panel properties are compared with state-of-the-art epoxy fiberglass composite panels.

  13. Analytical and experimental analysis of stress concentration in notched multilayered composites with finite outer boundaries

    NASA Astrophysics Data System (ADS)

    Hufenbach, W.; Grüber, B.; Gottwald, R.; Lepper, M.; Zhou, B.

    2010-12-01

    A solution method for stress concentration problems of fibre- and textile-reinforced multilayered composites with account of the influence of a circular or elliptical cut-out and of the finite outer boundary of a composite plate is presented. The method is based on complex-valued displacement functions and conformal mappings in combination with the boundary collocation and least squares methods. This allows a layer-by-layer calculation of full stress, strain, and displacement fields in a generally multilayered anisotropic plate. To verify the calculation model, extensive experimental studies have been carried out. For all the combinations of multilayered GF/PP plates, laminate lay-ups, and notch and specimen dimensions investigated so far, a very good agreement between the analytical calculations and experimental results is found to exist.

  14. Performance Investigation of Multilayer MoS2 Thin-Film Transistors Fabricated via Mask-free Optically Induced Electrodeposition.

    PubMed

    Li, Meng; Liu, Na; Li, Pan; Shi, Jialin; Li, Guangyong; Xi, Ning; Wang, Yuechao; Liu, Lianqing

    2017-03-08

    Transition metal dichalcogenides, particularly MoS2, have recently received enormous interest in explorations of the physics and technology of nanodevice applications because of their excellent optical and electronic properties. Although monolayer MoS2 has been extensively investigated for various possible applications, its difficulty of fabrication renders it less appealing than multilayer MoS2. Moreover, multilayer MoS2, with its inherent high electronic/photonic state densities, has higher output driving capabilities and can better satisfy the ever-increasing demand for versatile devices. Here, we present multilayer MoS2 back-gate thin-film transistors (TFTs) that can achieve a relatively low subthreshold swing of 0.75 V/decade and a high mobility of 41 cm(2)·V(-1)·s(-1), which exceeds the typical mobility value of state-of-the-art amorphous silicon-based TFTs by a factor of 80. Ag and Au electrode-based MoS2 TFTs were fabricated by a convenient and rapid process. Then we performed a detailed analysis of the impacts of metal contacts and MoS2 film thickness on electronic performance. Our findings show that smoother metal contacts exhibit better electronic characteristics and that MoS2 film thickness should be controlled within a reasonable range of 30-40 nm to obtain the best mobility values, thereby providing valuable insights regarding performance enhancement for MoS2 TFTs. Additionally, to overcome the limitations of the conventional fabrication method, we employed a novel approach known as optically induced electrodeposition (OIE), which allows the flexible and precise patterning of metal films and enables rapid and mask-free device fabrication, for TFT fabrication.

  15. Optimisation of Fabric Reinforced Polymer Composites Using a Variant of Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Axinte, Andrei; Taranu, Nicolae; Bejan, Liliana; Hudisteanu, Iuliana

    2017-03-01

    Fabric reinforced polymeric composites are high performance materials with a rather complex fabric geometry. Therefore, modelling this type of material is a cumbersome task, especially when an efficient use is targeted. One of the most important issue of its design process is the optimisation of the individual laminae and of the laminated structure as a whole. In order to do that, a parametric model of the material has been defined, emphasising the many geometric variables needed to be correlated in the complex process of optimisation. The input parameters involved in this work, include: widths or heights of the tows and the laminate stacking sequence, which are discrete variables, while the gaps between adjacent tows and the height of the neat matrix are continuous variables. This work is one of the first attempts of using a Genetic Algorithm (GA) to optimise the geometrical parameters of satin reinforced multi-layer composites. Given the mixed type of the input parameters involved, an original software called SOMGA (Satin Optimisation with a Modified Genetic Algorithm) has been conceived and utilised in this work. The main goal is to find the best possible solution to the problem of designing a composite material which is able to withstand to a given set of external, in-plane, loads. The optimisation process has been performed using a fitness function which can analyse and compare mechanical behaviour of different fabric reinforced composites, the results being correlated with the ultimate strains, which demonstrate the efficiency of the composite structure.

  16. Multilayer ceramic oxide solid electrolyte for fuel cells and electrolysis cells and method for fabrication thereof

    NASA Technical Reports Server (NTRS)

    Schroeder, James E. (Inventor); Anderson, Harlan U. (Inventor)

    1990-01-01

    An unitary layered ceramic structure is disclosed which comprises co-sintered layers. The co-sintered structure comprises a sintered central layer of yttria stabilized zirconia (YSZ) which is about 8 mole percent yttria and having a density of at least about 95% of theoretical, and sintered outer layers of strontium lanthanum manganite (LSM) having the approximate molecular composition La.sub.0.8 Sr.sub.0.2 MnO.sub.3, having a density from about 50 to about 60% of theoretical, and having interconnected porosity from about 40 to 50% with an interconnected pore diameter from about one micron to about five microns. The sintered central layer is sandwiched by and bonded and sintered to the outer layers and is essentially free of significant amounts of manganese. A process for making the unitary composition-of-matter is also disclosed which involves tape casting a LSM tape and then on top thereof casting a YSZ tape. The process comprises presintering LSM powder at 1250.degree. F., crushing the presintered commercially available LSM powder, forming a slurry with the crushed LSM, a binder and solvent, tape casting the slurry and allowing the slurry to air dry. A mixture of commercially available submicron size particle YSZ powder is milled with a dispersant and solvent to disperse the YSZ particles thereby forming a dispersed YSZ slurry. The YSZ slurry is then tape cast on the dried LSM tape. If desired, a third layer of LSM can be cast on top of the dried YSZ layer. After drying the composite LSM/YSZ and LSM/YSZ/LSM tapes are fired at 1300.degree. C. No migration of manganese into the YSZ layer was observed with scanning electron microscope/edax in the sintered multilayer tape.

  17. Automated Fabrication Technologies for High Performance Polymer Composites

    NASA Technical Reports Server (NTRS)

    Shuart , M. J.; Johnston, N. J.; Dexter, H. B.; Marchello, J. M.; Grenoble, R. W.

    1998-01-01

    New fabrication technologies are being exploited for building high graphite-fiber-reinforced composite structure. Stitched fiber preforms and resin film infusion have been successfully demonstrated for large, composite wing structures. Other automatic processes being developed include automated placement of tacky, drapable epoxy towpreg, automated heated head placement of consolidated ribbon/tape, and vacuum-assisted resin transfer molding. These methods have the potential to yield low cost high performance structures by fabricating composite structures to net shape out-of-autoclave.

  18. Fabrication and applications of multi-layer graphene stack on transparent polymer

    NASA Astrophysics Data System (ADS)

    Krajewska, Aleksandra; Pasternak, Iwona; Sobon, Grzegorz; Sotor, Jaroslaw; Przewloka, Aleksandra; Ciuk, Tymoteusz; Sobieski, Jan; Grzonka, Justyna; Abramski, Krzysztof M.; Strupinski, Wlodek

    2017-01-01

    In this report, we demonstrate the preparation method of a multi-layer stack with a pre-defined number of graphene layers, which was obtained using chemical vapor deposition graphene deposited on a copper substrate and subsequently transferred onto a poly(methyl methacrylate) (PMMA) substrate. The prepared multi-layer stack can also be transferred onto an arbitrary substrate and in the end, the polymer can be removed, which in consequence significantly increases the range of possible graphene applications. The multi-layer character was confirmed by optical transmittance measurements and Raman spectroscopy, whereas the microstructure of the multi-layer graphene stack was investigated using Scanning Electron Microscopy. The electrical properties in the function of the number of graphene layers were assessed with standard Hall Effect measurements. Finally, we showed the practical application of the multi-layer graphene stack as a saturable absorber of a mode-locked Er-doped fiber laser.

  19. Fabrication of thromboresistant multilayer thin film on plasma treated poly (vinyl chloride) surface.

    PubMed

    Tan, Qinggang; Ji, Jian; Zhao, Feng; Fan, De-Zeng; Sun, Fu-Yu; Shen, Jia-Cong

    2005-07-01

    Layer-by-layer deposited anticoagulant multilayer films were prepared on ammonia plasma treated poly (vinyl chloride) (PVC). Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and contact angle results revealed the presence of -NH2 on the ammonia plasma treated PVC surfaces and the layer-by-layer self-assembly process. The stability of multilayer film was studied with the radio labeled method. The remainder bovine serum albumin (BSA) in cross-linked 5(heparin/BSA) multilayer films dipped in phosphate buffered saline (PBS, pH 7.4) was more than 90% in 40 days. The static platelet adhesion result indicated the anticoagulant multilayer films deposited on the plasma treated PVC reduced platelet adhesion drastically and no thrombus forming. The plasma recalcification time revealed that the multilayer modified surfaces greatly prolonged the plasma recalcification time. Such an easy processing and shape-independent method may have good potential for surface modification of cardiovascular devices.

  20. Multilayered film microreactors fabricated by a one-step thermal bonding technique with high reproducibility and their applications.

    PubMed

    Min, Kyoung-Ik; Kim, Jin-Oh; Kim, Heejin; Im, Do Jin; Kim, Dong-Pyo

    2016-03-21

    We report the versatile uses of multilayered polyimide (PI) film microreactors with various functions including pressure tolerance, three-dimensional mixing and multistep membrane emulsification. Such PI film microreactors were fabricated by a simple one-step thermal bonding technique with high reproducibility. Upon bonding at 300 °C for 1 hour, the thin and flexible film microdevices could withstand pressure up to 8.6 MPa and 16.3 MPa with PI adhesive film or fluoropolymer adhesive, respectively, due to differences in wettability. The hydrophilic and hydrophobic microchannel devices were used to generate monodisperse oil-in-water (O/W) and water-in-oil (W/O) droplets, and polymer micro/nanoparticles at a high generation frequency. A monolithic and chemical resistant film microreactor with a three-dimensional serpentine microchannel was used for the selective reduction of ester to aldehyde by efficient mixing and quenching in a flash chemistry manner, within a several 10(1) millisecond time scale. Furthermore, a novel multilayered film microreactor for organic-aqueous biphasic interfacial reactions was devised by embedding a membrane layer to induce chaotic mixing in both the interface and emulsified phase by flowing through multiple numbers of meshed structures along the hydrophobic channel. This simple and economic fabrication technique significantly facilitates mass production of multilayered film devices that could be useful as a platform for various microfluidic applications in chemistry and biology.

  1. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Fabrication and Characterization of Multi-layer Heat Mirror with Photocatalytic Properties

    NASA Astrophysics Data System (ADS)

    Tran, Le; Tuan, Tran; Huu, Nguyen Chi; Dac, Luu Ngoc Son; Minh, Hoang Nam; Dinh, Nguyen Quan

    2009-11-01

    A novel TiO2(5)/TiO2(buffer)/Ti(4)/Ag(3)/Ti(2)/TiO2(1) multi-layer film coating with corning glass is designed and fabricated by a dc magnetron sputtering method as a renovation of the well-known TiO2/Ti/Ag/Ti/TiO2 system in order to obtain a heat mirror system with photocatalytic properties due to sufficient thickness of the TiO2 layer. The outer TiO2 layer is fabricated in two steps, possibly claimed as two layers TiO2(5) and TiO2(buffer), among which the 70-nm-thick layer TiO2(buffer) deposited in poor oxygen effectively minimizes the oxidation toward its neighbor Ti(4) layer. The optimal total thickness of the TiO2(5) and TiO2(buffer) di-layer is found to be 300 nm to yield a highly photo-catalytic property of the film without affecting the optical properties considerably. This multi-layer film can transmit light of above 75-85% in the visible spectrum (380 <= λ <= 760 nm) and reflect radiation of above 90% in the infrared spectrum (λ >= 760 nm). Such multi-layer coatings are strongly recommended not only as promising transparent heat mirrors but also as photo-catalytic films for architectural window coatings.

  2. Increased Multilayer Fabrication and RF Characterization of a High-Density Stacked MIM Capacitor Based on Selective Etching

    SciTech Connect

    Tseng, VFG; Xie, HK

    2014-07-01

    This paper presents the fabrication and characterization of a high-density multilayer stacked metal-insulator-metal (MIM) capacitor based on a novel process of depositing the MIM multilayer on pillars followed by polishing and selective etching steps to form a stacked capacitor with merely three photolithography steps. In this paper, the pillars were made of glass to prevent substrate loss, whereas an oxide-nitride-oxide dielectric was employed for lower leakage, better voltage/frequency linearity, and better stress compensation. MIM capacitors with six dielectric layers were successfully fabricated, yielding capacitance density of 3.8 fF/mu m(2), maximum capacitance of 2.47 nF, and linear and quadratic voltage coefficients of capacitance below 21.2 ppm/V and 2.31 ppm/V-2. The impedance was measured from 40 Hz to 3 GHz, and characterized by an analytically derived equivalent circuit model to verify the radio frequency applicability. The multilayer stacking-induced plate resistance mismatch and its effect on the equivalent series resistance (ESR) and effective capacitance was also investigated, which can be counteracted by a corrected metal thickness design. A low ESR of 800 m Omega was achieved, whereas the self-resonance frequency was >760 MHz, successfully demonstrating the feasibility of this method to scale up capacitance densities for high-quality-factor, high-frequency, and large-value MIM capacitors.

  3. Cryogenic mechanical response of multilayer satin weave CFRP composites with cracks

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Shindo, Y.; Takeda, T.; Narita, F.

    2008-07-01

    We deal with the thermomechanical response of multilayer satin weave carbon-fiber-reinforced polymer (CFRP) laminates with internal and/or edge cracks and temperature-dependent material properties subjected to tensile loading at cryogenic temperatures. The composite material is assumed to be under the generalized plane strain. Cracks are located in the transverse fiber bundles and extend to the interfaces between two fiber bundles. A finite-element model is employed to study the influence of residual thermal stresses on the mechanical behavior of multilayer CFRP woven laminates with cracks. Numerical calculations are carried out, and Young's modulus and stress distributions near the crack tip are shown graphically.

  4. Fabrication of toroidal composite pressure vessels. Final report

    SciTech Connect

    Dodge, W.G.; Escalona, A.

    1996-11-24

    A method for fabricating composite pressure vessels having toroidal geometry was evaluated. Eight units were fabricated using fibrous graphite material wrapped over a thin-walled aluminum liner. The material was wrapped using a machine designed for wrapping, the graphite material was impregnated with an epoxy resin that was subsequently thermally cured. The units were fabricated using various winding patterns. They were hydrostatically tested to determine their performance. The method of fabrication was demonstrated. However, the improvement in performance to weight ratio over that obtainable by an all metal vessel probably does not justify the extra cost of fabrication.

  5. Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer

    PubMed Central

    Song, Jeong-Gyu; Ryu, Gyeong Hee; Lee, Su Jeong; Sim, Sangwan; Lee, Chang Wan; Choi, Taejin; Jung, Hanearl; Kim, Youngjun; Lee, Zonghoon; Myoung, Jae-Min; Dussarrat, Christian; Lansalot-Matras, Clement; Park, Jusang; Choi, Hyunyong; Kim, Hyungjun

    2015-01-01

    The effective synthesis of two-dimensional transition metal dichalcogenides alloy is essential for successful application in electronic and optical devices based on a tunable band gap. Here we show a synthesis process for Mo1−xWxS2 alloy using sulfurization of super-cycle atomic layer deposition Mo1−xWxOy. Various spectroscopic and microscopic results indicate that the synthesized Mo1−xWxS2 alloys have complete mixing of Mo and W atoms and tunable band gap by systematically controlled composition and layer number. Based on this, we synthesize a vertically composition-controlled (VCC) Mo1−xWxS2 multilayer using five continuous super-cycles with different cycle ratios for each super-cycle. Angle-resolved X-ray photoemission spectroscopy, Raman and ultraviolet–visible spectrophotometer results reveal that a VCC Mo1−xWxS2 multilayer has different vertical composition and broadband light absorption with strong interlayer coupling within a VCC Mo1−xWxS2 multilayer. Further, we demonstrate that a VCC Mo1−xWxS2 multilayer photodetector generates three to four times greater photocurrent than MoS2- and WS2-based devices, owing to the broadband light absorption. PMID:26204328

  6. Composite metal foil and ceramic fabric materials

    DOEpatents

    Webb, Brent J.; Antoniak, Zen I.; Prater, John T.; DeSteese, John G.

    1992-01-01

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed.

  7. Composite metal foil and ceramic fabric materials

    DOEpatents

    Webb, B.J.; Antoniak, Z.I.; Prater, J.T.; DeSteese, J.G.

    1992-03-24

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed. 11 figs.

  8. A finite element presentation of an optimum design for composite multilayered cylindrical pressure vessels with creep relaxation

    SciTech Connect

    Kolkailah, F.A.

    1993-12-31

    The subject of this paper is the application of the finite element analysis to an optimum design technique for a composite, multilayered cylindrical pressure vessels with creep relaxation. This optimum design technique enables the designer to calculate readily the stresses and displacements in each layer during the fabrication process or during the use of the cylinder. The finite element codes, CAEDS and SAP IV, were employed in this study. The comparisons of the finite element predictions with those obtained from the exact solution have shown reasonably good overall agreement. The decay in the interface pressures and the prestresses in each layer due to creep relaxation, as a function of time are obtained by employing power-function creep law. This study shows that in order to maintain the same level of maximum stress, either a gradually increasing external pressure should be applied or the vessel`s inside pressure should gradually be decreased.

  9. Multilayered composite proton exchange membrane and a process for manufacturing the same

    DOEpatents

    Santurri, Pasco R; Duvall, James H; Katona, Denise M; Mausar, Joseph T; Decker, Berryinne

    2015-05-05

    A multilayered membrane for use with fuel cells and related applications. The multilayered membrane includes a carrier film, at least one layer of an undoped conductive polymer electrolyte material applied onto the carrier film, and at least one layer of a conductive polymer electrolyte material applied onto the adjacent layer of polymer electrolyte material. Each layer of conductive polymer electrolyte material is doped with a plurality of nanoparticles. Each layer of undoped electrolyte material and doped electrolyte material may be applied in an alternating configuration, or alternatively, adjacent layers of doped conductive polymer electrolyte material is employed. The process for producing a multilayered composite membrane includes providing a carrier substrate and solution casting a layer of undoped conductive polymer electrolyte material and a layer of conductive polymer electrolyte material doped with nanoparticles in an alternating arrangement or in an arrangement where doped layers are adjacent to one another.

  10. Fabrication of thick multilayered steel structure using A516 Grade 70 by multipass friction stir welding †

    DOE PAGES

    Lim, Y. C.; Sanderson, S.; Mahoney, M.; ...

    2016-04-06

    Here, we fabricated a thick-sectioned multilayered steel structure by multipass friction stir welding on A516 Grade 70 steel. Tensile strength of the multilayered samples was comparable to that of the base metal. Failure was located in the base metal when a defect-free sample was tested. Charpy impact toughness was higher in the stir zone and heat affected zone than in the base metal. For higher microhardness values were found in the stir zone and heat affected zone than the base metal due to grain refinement and modification of the microstructures. As a result, improved mechanical properties compared to the basemore » metal were found in the weld zones of friction stir welded A516 Grade 70 steel.« less

  11. Nano-structure multilayer technology fabrication of high energy density capacitors for the power electronic building book

    SciTech Connect

    Barbee, T.W.; Johnson, G.W.; Wagner, A.V.

    1997-10-21

    Commercially available capacitors do not meet the specifications of the Power Electronic Building Block (PEBB) concept. We have applied our propriety nanostructure multilayer materials technology to the fabrication of high density capacitors designed to remove this impediment to PEBB progress. Our nanostructure multilayer capacitors will also be enabling technology in many industrial and military applications. Examples include transient suppression (snubber capacitors), resonant circuits, and DC filtering in PEBB modules. Additionally, weapon applications require compact energy storage for detonators and pulsed-power systems. Commercial applications run the gamut from computers to lighting to communications. Steady progress over the last five years has brought us to the threshold of commercial manufacturability. We have demonstrated a working dielectric energy density of > 11 J/cm3 in 20 nF devices designed for 1 kV operation.

  12. Fabrication of thick multilayered steel structure using A516 Grade 70 by multipass friction stir welding

    SciTech Connect

    Lim, Y. C.; Sanderson, S.; Mahoney, M.; Wang, Y.; Chen, J.; David, S. A.; Feng, Z.

    2016-04-06

    Here, we fabricated a thick-sectioned multilayered steel structure by multipass friction stir welding on A516 Grade 70 steel. Tensile strength of the multilayered samples was comparable to that of the base metal. Failure was located in the base metal when a defect-free sample was tested. Charpy impact toughness was higher in the stir zone and heat affected zone than in the base metal. For higher microhardness values were found in the stir zone and heat affected zone than the base metal due to grain refinement and modification of the microstructures. As a result, improved mechanical properties compared to the base metal were found in the weld zones of friction stir welded A516 Grade 70 steel.

  13. Quantitative Diagnostics of Multilayered Composite Structures with Ultrasonic Guided Waves

    DTIC Science & Technology

    2014-09-01

    secondary objective was to develop light, low Distribution A: Approved for Public Release; Distribution Unlimited profile interdigitated transducers...and S. Kuhr, "Design, fabrication, and characterization of single-element interdigital transducers for NDT applications," Sensors & Actuators, vol. 148

  14. Multilayer Electroactive Polymer Composite Material Comprising Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2009-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  15. Recent developments in multi-layer flat knitting technology for waste free production of complex shaped 3D-reinforcing structures for composites

    NASA Astrophysics Data System (ADS)

    Trümper, W.; Lin, H.; Callin, T.; Bollengier, Q.; Cherif, C.; Krzywinski, S.

    2016-07-01

    Constantly increasing prices for raw materials and energy as well as the current discourse on the reduction of CO2-emissions places a special emphasis on the advantages of lightweight constructions and its resource conserving production methods. Fibre-reinforced composites are already seeing a number of applications in automobile, energy and mechanical engineering. Future applications within the named areas require greater material and energy efficiency and therefore manufacturing methods for textile preforms and lightweight constructions enabling an optimal arrangement of the reinforcing fibres while in the same time limiting waste to a minimum. One manufacturing method for textile reinforced preforms fulfilling quite many of the named requirements is the multilayer weft knitting technology. Multilayer weft knitted fabrics containing straight reinforcing yarns at least in two directions. The arrangement of these yarns is fixed by the loop yarn. Used yarn material in each knitting row is adaptable e. g. according to the load requirements or for the local integration of sensors. Draping properties of these fabrics can be varied within a great range and through this enabling draping of very complex shaped 3D-preforms without wrinkles from just one uncut fabric. The latest developments at ITM are concentrating on the development of a full production chain considering the 3D-CAD geometry, the load analysis, the generation of machine control programs as well as the development of technology and machines to enable the manufacturing of innovative net shape 3D-multilayer weft knitted fabrics such as complex shaped spacer fabrics and tubular fabrics with biaxial reinforcement.

  16. Preparation of Chitosan/Polystyrene Sulfonate Multilayered Composite Metal Nanoparticles and Its Application.

    PubMed

    Xiong, Fangxin; Chen, Chunxiao; Liu, Shantang

    2016-06-01

    Metal-Chitosan (CTS) composite was first synthesized through the metal composition of chitosan (CTS) and metal ions. The formed composite was alternately deposited on the base with sodium polystyrene sulfonate (PSS) through a layer-by-layer self-assembling technique, followed by an in situ reduction by sodium borohydride to produce a polyelectrolyte nanocomposite thin film containing metal nanoparticles. Assembly, surface morphology and electrochemical properties of the composite membrane were analyzed by UV-visible absorption spectroscopy (UV-vis), atomic force microscopy (AFM) and cyclic voltammetry (CV). The UV-Vis results indicated that the absorbance of the multilayer film at the characteristic absorption peak increased as the membrane bilayers increased, in a good linear relationship, which demonstrated that the multilayer film was uniformly assembled on the base. AFM images showed that the surface of the multilayer thin-film composite had some degree of roughness and metal nanoparticles of 10-20 nm in size were generated on the membrane. The CV results indicated that the metal nanocomposite film had excellent electrocatalytic activity to glucose and had a potential for applications in electrochemical sensors.

  17. Laser-Generated Lamb Waves Propagation in Multilayered Plates Composed of Viscoelastic Fiber-reinforced Composite Materials

    NASA Astrophysics Data System (ADS)

    Sun, Hong-xiang; Zhang, Shu-yi; Yuan, Shou-qi; Guan, Yi-jun; Ge, Yong

    2016-07-01

    The propagation characteristics of laser-generated Lamb waves in multilayered fiber-reinforced composite plates with different fiber orientations and number of layers have been investigated quantitatively. Considering the viscoelasticity of the composite materials, we have set up finite element models for simulating the laser-generated Lamb waves in two types of the multilayered composite plates. In the first type, different fiber orientations are adopted. In the second one, different number of layers are considered. The results illustrate the occurrence of attenuation and dispersion, which is induced by the viscoelasticity and multilayer structure, respectively.

  18. Degradable Polymer Composites Fabricated from Starch and Alkyl Cyanoacrylate Monomer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Degradable polymer composites are fabricated from alkyl cyanoacrylate monomer and starch without special equipment. Alkyl cyanoacrylate, which is a major component of “super glue”, is a monomer that polymerizes at room temperature in the presence of initiators. During the fabrication of polymer com...

  19. The Design, Fabrication, and Testing of Composite Heat Exchange Coupons

    NASA Technical Reports Server (NTRS)

    Quade, Derek J.; Meador, Michael A.; Shin, Euy-Sik; Johnston, James C.; Kuczmarski, Maria A.

    2011-01-01

    Several heat exchanger (HX) test panels were designed, fabricated and tested at the NASA Glenn Research Center to explore the fabrication and performance of several designs for composite heat exchangers. The development of these light weight, high efficiency air-liquid test panels was attempted using polymer composites and carbon foam materials. The fundamental goal of this effort was to demonstrate the feasibility of the composite HX for various space exploration and thermal management applications including Orion CEV and Altair. The specific objectives of this work were to select optimum materials, designs, and to optimize fabrication procedures. After fabrication, the individual design concept prototypes were tested to determine their thermal performance and to guide the future development of full-size engineering development units (EDU). The overall test results suggested that the panel bonded with pre-cured composite laminates to KFOAM Grade L1 scored above the other designs in terms of ease of manufacture and performance.

  20. Piezoelectric Sol-Gel Composite Film Fabrication by Stencil Printing.

    PubMed

    Kaneko, Tsukasa; Iwata, Kazuki; Kobayashi, Makiko

    2015-09-01

    Piezoelectric films using sol-gel composites could be useful as ultrasonic transducers in various industrial fields. For sol-gel composite film fabrication, the spray coating technique has been used often because of its adaptability for various substrates. However, the spray technique requires multiple spray coating processes and heating processes and this is an issue of concern, especially for on-site fabrication in controlled areas. Stencil printing has been developed to solve this issue because this method can be used to fabricate thick sol-gel composite films with one coating process. In this study, PbTiO3 (PT)/Pb(Zr,Ti)O3 (PZT) films, PZT/PZT films, and Bi4Ti3O12 (BiT)/PZT films were fabricated by stencil printing, and PT/ PZT films were also fabricated using the spray technique. After fabrication, a thermal cycle test was performed for the samples to compare their ultrasonic performance. The sensitivity and signal-to-noise-ratio (SNR) of the ultrasonic response of PT/PZT fabricated by stencil printing were equivalent to those of PT/PZT fabricated by the spray technique, and better than those of other samples between room temperature and 300°C. Therefore, PT/PZT films fabricated by stencil printing could be a good candidate for nondestructive testing (NDT) ultrasonic transducers from room temperature to 300°C.

  1. Multilayer Coextrusion of Polymer Composites to Develop Organic Capacitors

    SciTech Connect

    Mondy, L.; Mrozek, R.; Rao, R.; Lenhart, J.; Bieg, L.; Spangler, S.; Stavig, M.; Schroeder, J.; Winter, M.; Diantonio, C.; Collins, R.

    2015-05-29

    Multilayer coextrusion is applied to produce a tape containing layers of alternating electrical properties to demonstrate the potential for using coextrusion to manufacture capacitors. To obtain the desired properties, we develop two filled polymer systems, one for conductive layers and one for dielectric layers. We describe numerical models used to help determine the material and processing parameters that impact processing and layer stability. These models help quantify the critical ratios of densities and viscosities of the two layers to maintain stable layers, as well as the effect of increasing the flow rate of one of the two materials. The conducting polymer is based on polystyrene filled with a blend of low-melting-point eutectic metal and nickel particulate filler, as described by Mrozek et al. (2010). The appropriate concentrations of fillers are determined by balancing measured conductivity with processability in a twin screw extruder. Based on results of the numerical models and estimates of the viscosity of emulsions and suspensions, a dielectric layer composed of polystyrene filled with barium titanate is formulated. Despite the fact that the density of the dielectric filler is less than the metallic filler of the conductive phase, as well as rheological measurements that later showed that the dielectric formulation is not an ideal match to the viscosity of the conductive material, the two materials can be successfully coextruded if the flow rates of the two materials are not identical. A measurable capacitance of the layered structure is obtained.

  2. Multilayer Coextrusion of Polymer Composites to Develop Organic Capacitors

    DOE PAGES

    Mondy, L.; Mrozek, R.; Rao, R.; ...

    2015-05-29

    Multilayer coextrusion is applied to produce a tape containing layers of alternating electrical properties to demonstrate the potential for using coextrusion to manufacture capacitors. To obtain the desired properties, we develop two filled polymer systems, one for conductive layers and one for dielectric layers. We describe numerical models used to help determine the material and processing parameters that impact processing and layer stability. These models help quantify the critical ratios of densities and viscosities of the two layers to maintain stable layers, as well as the effect of increasing the flow rate of one of the two materials. The conductingmore » polymer is based on polystyrene filled with a blend of low-melting-point eutectic metal and nickel particulate filler, as described by Mrozek et al. (2010). The appropriate concentrations of fillers are determined by balancing measured conductivity with processability in a twin screw extruder. Based on results of the numerical models and estimates of the viscosity of emulsions and suspensions, a dielectric layer composed of polystyrene filled with barium titanate is formulated. Despite the fact that the density of the dielectric filler is less than the metallic filler of the conductive phase, as well as rheological measurements that later showed that the dielectric formulation is not an ideal match to the viscosity of the conductive material, the two materials can be successfully coextruded if the flow rates of the two materials are not identical. A measurable capacitance of the layered structure is obtained.« less

  3. Influence of the Geometric Parameters on the Mechanical Behaviour of Fabric Reinforced Composite Laminates

    NASA Astrophysics Data System (ADS)

    Axinte, Andrei; Taranu, Nicolae; Bejan, Liliana

    2016-10-01

    A polymer fabric reinforced composite is a high performance material, which combines strength of the fibres with the flexibility and ductility of the matrix. For a better drapeability, the tows of fibres are interleaved, resulting the woven fabric, used as reinforcement. The complex geometric shape of the fabric is of paramount importance in establishing the deformability of the textile reinforced composite laminates. In this paper, an approach based on Classical Lamination Theory ( CLT), combined with Finite Element Methods ( FEM), using Failure Analysis and Internal Load Redistribution, is utilised, in order to compare the behaviour of the material under specific loads. The main goal is to analyse the deformability of certain types of textile reinforced composite laminates, using carbon fibre satin as reinforcement and epoxy resin as matrix. This is accomplished by studying the variation of the in-plane strains, given the fluctuation of several geometric parameters, namely the width of the reinforcing tow, the gap between two consecutive tows, the angle of laminae in a multi-layered configuration and the tows fibre volume fraction.

  4. Investigation on mechanical properties of basalt composite fabrics (experiment study)

    NASA Astrophysics Data System (ADS)

    Talebi Mazraehshahi, H.; Zamani, H.

    2010-06-01

    To fully appreciate the role and application of composite materials to structures, correct understanding of mechanical behaviors required for selection of optimum material. Fabric reinforced composites are composed of a matrix that is reinforced with pliable fabric, glass fabric is most popular reinforcement for different application specially in aircraft structure, although other fabric material are also used. At this study new fabric material called basalt with epoxy resin introduced and mechanical behaviors of this material investigated from view point of testing. For this study two type of fabric with different thickness used. Comparison between this composite reinforcement with popular reinforcement as carbon, glass, kevlar performed. To determine mechanical properties of epoxy based basalt fabric following test procedure performed : 1). Tensile testing according to ASTM D3039 in 0° and 90° direction to find ultimate strength in tension and shear, modulus of elasticity, elangation and ultimate strain. 2). Compression testing according to EN 2850 ultimate compression strength and maximum deformation under compression loading. 3). Shear testing according to ASTM D3518-94 to find in plane shear response of polymer matrix composites materials. 4). Predict flexural properties of sandwich construction which manufactured from basalt facing with PVC foam core according to ASTM C393-94. Material strength properties must be based on enough tests of material to meet the test procedure specifications [1]. For this reason six specimens were manufactured for testing and the tests were performed on them using an INSTRON machine model 5582. In the study, the effect of percent of resin in basalt reinforced composite was investigated. Also the weights of the ballast based composites with different percent of resin were measured with conventional composites. As the weight is an important parameter in aerospace industry when the designer wants to replace one material with

  5. Fabrication Routes for Continuous Fiber-Reinforced Ceramic Composites (CFCC)

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Bansal, Narottam P.

    1998-01-01

    The primary approaches used for fabrication of continuous fiber-reinforced ceramic composite (CFCC) components have been reviewed. The CFCC fabrication issues related to fiber, interface, and matrix have been analyzed. The capabilities, advantages and limitations of the five matrix-infiltration routes have been compared and discussed. Today, the best fabrication route for the CFCC end-user is not clear and compromises need to be made depending on the details of the CFCC application. However, with time, this problem should be reduced as research continues to develop advanced CFCC constituents and fabrication routes.

  6. Fabrication Routes for Continuous Fiber-Reinforced Ceramic Composites (CFCC)

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Bansal, Narottam P.

    1998-01-01

    The primary approaches used for fabrication of continuous fiber-reinforced ceramic composite (CFCC) components have been reviewed. The CFCC fabrication issues related to fiber, interface, and matrix have been analyzed. The capabilities. advantages and limitations of the five matrix-infiltration routes have been compared and discussed. Today. the best fabrication route for the CFCC end-user is not clear and compromises need to be made depending on the details of the CFCC application. However, with time, this problem should be reduced as research continues to develop advanced CFCC constituents and fabrication routes.

  7. A blanket design, apparatus, and fabrication techniques for the mass production of multilayer insulation blankets for the Superconducting Super Collider

    SciTech Connect

    Gonczy, J.D.; Boroski, W.N.; Niemann, R.C.; Otavka, J.G.; Ruschman, M.K.; Schoo, C.J.

    1989-09-01

    The multilayer insulation (MLI) system for the Superconducting Super Collider (SSC) consists of full cryostat length assemblies of aluminized polyester film fabricated in the form of blankets and installed as blankets to the 4.5K cold mass and the 20K and 80K thermal radiation shields. Approximately 40,000 MLI blankets will be required in the 10,000 cryogenic devices comprising the SSC accelerator. Each blanket is nearly 17 meters long and 1.8 meters wide. This paper reports the blanket design, an apparatus, and the fabrication method used to mass produce pre-fabricated MLI blankets. Incorporated in the blanket design are techniques which automate quality control during installation of the MLI blankets in the SSC cryostat. The apparatus and blanket fabrication method insure consistency in the mass produced blankets by providing positive control of the dimensional parameters which contribute to the thermal performance of the MLI blanket. By virtue of the fabrication process, the MLI blankets have inherent features of dimensional stability three-dimensional uniformity, controlled layer density, layer-to-layer registration, interlayer cleanliness, and interlayer material to accommodate thermal contraction differences. 11 refs., 6 figs., 1 tab.

  8. Photorefractive polymer composites fabricated by injection molding

    NASA Astrophysics Data System (ADS)

    Herlocker, J. A.; Fuentes-Hernandez, C.; Wang, J. F.; Peyghambarian, N.; Kippelen, B.; Zhang, Q.; Marder, S. R.

    2002-02-01

    We report on the fabrication of bulk samples of photorefractive polymers using the injection molding technique. The photorefractive properties of these materials are evaluated by four-wave mixing and two-beam coupling experiments. Samples with good optical quality, high diffraction efficiency, and net optical gain are obtained.

  9. Fabrication and characterization of micro-structures created by direct laser writing in multi-layered chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Schwarz, Casey M.; Grabill, Chris N.; Gleason, Benn; Richardson, Gerald D.; Lewis, Anna M.; Vyas, Aadit; Rivero-Baleine, Clara; Richardson, Kathleen A.; Pogrebnyakov, Alexej; Mayer, Theresa S.; Kuebler, Stephen M.

    2015-03-01

    Arsenic trisulfide (As2S3) is a chalcogenide (ChG) material with excellent infrared (IR) transparency (620 nm to 11 μm), low phonon energies, and large nonlinear refractive indices. These properties directly relate to commercial and industrial applications including sensors, photonic waveguides, and acousto-optics. Multi-photon exposure can be used to photopattern thermally deposited As2S3 ChG glassy films of molecular clusters. Immersing the photo-patterned cross-linked material into a polar-solvent removes the unexposed material leaving behind a structure that is a negative-tone replica of the photo-pattern. Nano-structure arrays that were photo-patterned in single-layered As2S3 films through multi-photon direct laser writing (DLW) resulted in the production of nano-beads as a consequence of a standing wave effect. To overcome this effect, an anti-reflective (AR) layer of arsenic triselenide (As2Se3) was thermally deposited between the silicon substrate and the As2S3 layer, creating a multi-layered film. The chemical composition of the unexposed and photo-exposed multi-layered film was examined through Raman spectroscopy. Nano-structure arrays were photopatterned in the multi-layered film and the resulting structure, morphology, and chemical composition were characterized, compared to results from the single-layered film, and correlated with the conditions of the thermal deposition, patterned irradiation, and etch processing.

  10. Fabrication of graphene flakes composed of multi-layer graphene sheets using a thermal plasma jet system

    NASA Astrophysics Data System (ADS)

    Kim, Juhan; Heo, Soo Bong; Hoi Gu, Geun; Suh, Jung Sang

    2010-03-01

    We have developed a method to fabricate graphene flakes composed of high quality multi-layer graphene sheets using a thermal plasma jet system. A carbon atomic beam was generated by injecting ethanol into Ar plasma continuously; the beam then flowed through a carbon tube attached to the anode. Graphene was made by epitaxial growth where a carbon atomic beam, having the proper energy, collided with a graphite plate. The graphene fabricated was very pure and showed a relatively good crystalline structure. We have demonstrated that the number of layers of graphene sheets could be controlled by controlling the rate of ethanol injection. Our process is a continuous process with a relatively high yield (~8%).

  11. Fabrication of engineered heart tissue grafts from alginate/collagen barium composite microbeads.

    PubMed

    Bai, X P; Zheng, H X; Fang, R; Wang, T R; Hou, X L; Li, Y; Chen, X B; Tian, W M

    2011-08-01

    Cardiac tissue engineering holds great promise for the treatment of myocardial infarction. However, insufficient cell migration into the scaffolds used and inflammatory reactions due to scaffold biodegradation remain as issues to be addressed. Engineered heart tissue (EHT) grafts fabricated by means of a cell encapsulation technique provide cells with a tissue-like environment, thereby potentially enhancing cellular processes such as migration, proliferation, and differentiation, and tissue regeneration. This paper presents a study on the fabrication and characterization of EHT grafts from novel alginate/collagen composite microbeads by means of cell encapsulation. Specifically, the microbeads were fabricated from alginate and collagen by barium ion cross-linking, with neonatal rat cardiomyocytes encapsulated in the composite microbeads during the fabrication of the EHT grafts. To evaluate the suitablity of these EHT grafts for heart muscle repair, the growth of cardiac cells in the microbeads was examined by means of confocal microscopy and staining with DAPI and F-actin. The EHT grafts were analyzed by scanning electron microscopy and transmission electron microscopy, and the contractile function of the EHT grafts monitored using a digital video camera at different time points. The results show the proliferation of cardiac cells in the microbeads and formation of interconnected multilayer heart-like tissues, the presence of well-organized and dense cell structures, the presence of intercalated discs and spaced Z lines, and the spontaneous synchronized contractility of EHT grafts (at a rate of 20-30 beats min(-1) after two weeks in culture). Taken together, these observations demonstrate that the novel alginate/collagen composite microbeads can provide a tissue-like microenvironment for cardiomyocytes that is suitable for fabricating native heart-like tissues.

  12. A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering.

    PubMed

    Shao, Weili; He, Jianxin; Han, Qiming; Sang, Feng; Wang, Qian; Chen, Li; Cui, Shizhong; Ding, Bin

    2016-10-01

    To engineer bone tissue, a scaffold with good biological properties should be provided to approximate the hierarchical structure of collagen fibrils in natural bone. In this study, we fabricated a novel scaffold consisting of multilayer nanofiber fabrics (MLNFFs) by weaving nanofiber yarns of polylactic acid (PLA) and Tussah silk fibroin (TSF). The yarns were fabricated by electrospinning, and we found that spinnability, as well as the mechanical properties of the resulting scaffold, was determined by the ratio between polylactic acid and Tussah silk fibroin. In particular, a 9:1 mixture can be spun continuously into nanofiber yarns with narrow diameter distribution and good mechanical properties. Accordingly, woven scaffolds based on this mixture had excellent mechanical properties, with Young's modulus 417.65MPa and tensile strength 180.36MPa. For nonwoven scaffolds fabricated from the same materials, the Young's modulus and tensile strength were 2- and 4-fold lower, respectively. Woven scaffolds also supported adhesion and proliferation of mouse mesenchymal stem cells, and promoted biomineralization via alkaline phosphatase and mineral deposition. Finally, the scaffolds significantly enhanced the formation of new bone in damaged femoral condyle in rabbits. Thus, the scaffolds are potentially suitable for bone tissue engineering because of biomimetic architecture, excellent mechanical properties, and good biocompatibility.

  13. Fabrication of polytetrafluoroethylene/carbon fiber composites using radiation crosslinking

    NASA Astrophysics Data System (ADS)

    Oshima, Akihiro; Udagawa, Akira; Tanaka, Shigeru

    2001-07-01

    A fabrication method for fiber-reinforced plastic (FRP) composites based on carbon fibers and polytetrafluoroethylene (PTFE) which was crosslinked by electron beam (EB) irradiation under specific conditions was studied. Though the fabricated composite showed high mechanical properties compared with a ready-made PTFE composite (non-crosslinked PTFE with 5˜20 wt% filler), mechanical properties of laminated panels were a bit poor compared with those of usual FRP. It was found that the toughness of the PTFE matrix is poor in the composite. On the other hand, the one-ply sheet of carbon fibers and crosslinked PTFE composite showed good mechanical properties for sheet-shape materials. The wettability of the obtained crosslinked PTFE composite is hardly changed by crosslinking and reinforcement.

  14. Method for Fabricating Composite Structures Using Continuous Press Forming

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1997-01-01

    A method for fabricating composite structures at a low-cost. moderate-to-high production rate. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform and debulking the partially debulked preform to form a net-shape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length and electron-beam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates. resulting in lower cost and high structural performance.

  15. Method for Fabricating Composite Structures Using Pultrusion Processing

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    2000-01-01

    A method for fabricating composite structures at a low-cost, moderate-to-high production rate. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform and debulking the partially debulked preform to form a net-shape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length and electron-beam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates, resulting in lower cost and high structural performance.

  16. Method for Fabricating Composite Structures Using Pultrusion Processing

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    2000-01-01

    A method for fabricating composite structures at a low-cost, moderate-to-high production rate. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform and debulking the partially debulked preform to form a netshape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length and electronbeam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates, resulting in lower cost and high structural performance.

  17. Frequency control of sol-gel composite films fabricated by stencil printing for nondestructive testing applications

    NASA Astrophysics Data System (ADS)

    Kaneko, Tsukasa; Kibe, Taiga; Kimoto, Keisuke; Nishimura, Ryota; Kobayashi, Makiko

    2016-07-01

    Ultrasonic transducers made of sol-gel composites have been developed for nondestructive testing (NDT) applications in various industrial fields. Stencil printing of sol-gel composite films has been developed for the reduction of fabrication time and cost. However, it was necessary to develop low frequency (<10 MHz) ultrasonic transducers for inspecting industrial structures under severe high-temperature conditions, because high-frequency components suffer attenuation effect caused by high temperature. To realize this, increasing the thickness of Pb(Zr,Ti)O3 (PZT)/PZT films fabricated by stencil printing was attempted in this study. The samples were fabricated by single-layer stencil printing with a thick stencil mask and multilayer pure stencil printing with prespraying and postspraying. The film thicknesses were 150-185 µm, and the center frequencies of ultrasonic responses were 6.0-6.4 MHz. Throughout three thermal cycles of up to 370 K, the ultrasonic performance was stable, and the frequency characteristics were not markedly different from the beginning to the end of the test. Therefore, low-frequency ultrasonic transducers were successfully manufactured using a stencil-printing-based technique.

  18. The mechanical deformation mechanisms in knitted fabric composites

    SciTech Connect

    Kelay, M.S.; Bader, D.L.; Reed, P.E.

    1994-12-31

    Knitted fabric composites have certain advantages over woven composites, particularly in their ability to conform to complicated contours. As a consequence, they demonstrate inferior mechanical characteristics compared to woven materials as a direct result of the presence of bent fibers. Such a knitted fabric composite made from, for example, glass fibers in a polyurethane matrix, can be used as an orthopaedic splinting bandage for immobilizing fractures of the upper and lower limbs. Relatively little research has been reported on knitted fabric composites was initiated. It was observed that knit patterns, type of fiber, size of fibers used, size of loops, coatings and lay-up procedure were all variables that could affect the structure/property relationship of knitted fabric composites. Tensile testing with optical measurement of strain was performed on knitted substrate and coated bandages in both course and wale directions. Results indicated that the knitted fabrics function as link mechanisms at the microscopic level, with knitted loops straightening and bending before the individual elements of the knitted yarn take up significant load and material deformation. Theoretical modeling of the glass knit structure, in both course and wale directions, agrees well with experimental testing.

  19. Mass Conservation in Modeling Moisture Diffusion in Multi-Layer Carbon Composite Structures

    NASA Technical Reports Server (NTRS)

    Nurge, Mark A.; Youngquist, Robert C.; Starr, Stanley O.

    2009-01-01

    Moisture diffusion in multi-layer carbon composite structures is difficult to model using finite difference methods due to the discontinuity in concentrations between adjacent layers of differing materials. Applying a mass conserving approach at these boundaries proved to be effective at accurately predicting moisture uptake for a sample exposed to a fixed temperature and relative humidity. Details of the model developed are presented and compared with actual moisture uptake data gathered over 130 days from a graphite epoxy composite sandwich coupon with a Rohacell foam core.

  20. Multilayered Glass Fibre-reinforced Composites In Rotational Moulding

    NASA Astrophysics Data System (ADS)

    Chang, W. C.; Harkin-Jones, E.; Kearns, M.; McCourt, M.

    2011-05-01

    The potential of multiple layer fibre-reinforced mouldings is of growing interest to the rotational moulding industry because of their cost/performance ratio. The particular problem that arises when using reinforcements in this process relate to the fact that the process is low shear and good mixing of resin and reinforcement is not optimum under those conditions. There is also a problem of the larger/heavier reinforcing agents segregating out of the powder to lay up on the inner part surface. In this study, short glass fibres were incorporated and distributed into a polymer matrix to produce fibre-reinforced polymer composites using the rotational moulding process and characterised in terms of morphology and mechanical properties.

  1. Multilayered Glass Fibre-reinforced Composites In Rotational Moulding

    SciTech Connect

    Chang, W. C.; Harkin-Jones, E.; Kearns, M.; McCourt, M.

    2011-05-04

    The potential of multiple layer fibre-reinforced mouldings is of growing interest to the rotational moulding industry because of their cost/performance ratio. The particular problem that arises when using reinforcements in this process relate to the fact that the process is low shear and good mixing of resin and reinforcement is not optimum under those conditions. There is also a problem of the larger/heavier reinforcing agents segregating out of the powder to lay up on the inner part surface. In this study, short glass fibres were incorporated and distributed into a polymer matrix to produce fibre-reinforced polymer composites using the rotational moulding process and characterised in terms of morphology and mechanical properties.

  2. Fabrication and characterisation of protein fibril-elastomer composites.

    PubMed

    Oppenheim, Tomas; Knowles, Tuomas P J; Lacour, Stéphanie P; Welland, Mark E

    2010-04-01

    Protein fibrils are emerging as a novel class of functional bionanomaterials. In this paper we make use of their rigidity by combining lysozyme fibrils with a silicone elastomer and demonstrating that at a filling ratio of 10%, the protein fibril composite is at minimum 2 times stiffer than a CNT elastomeric composite of the same filling ratio. We also show that when the elastomer is patterned such that the lysozyme fibrils can be spatially modulated within the elastomer, anisotropic moduli varying by a factor of 2 is produced. By using shear mixing as the fabrication process, the modulus of a 2 wt.% insulin fibril composite is equivalent to a CNT composite with the same filling ratio. In conclusion, we have presented the fabrication and mechanical characterisation of a class of elastomer/protein fibril composite material.

  3. Fabrication of sensitive enzymatic biosensor based on multi-layered reduced graphene oxide added PtAu nanoparticles-modified hybrid electrode

    PubMed Central

    Hossain, Md Faruk; Park, Jae Y.

    2017-01-01

    A highly sensitive amperometric glucose sensor was developed by immobilization of glucose oxidase (GOx) onto multi-layer reduced graphene oxide (MRGO) sheets decorated with platinum and gold flower-like nanoparticles (PtAuNPs) modified Au substrate electrode. The fabricated MRGO/PtAuNPs modified hybrid electrode demonstrated high electrocatalytic activities toward oxidation of H2O2, to which it had a wide linear response that ranged from 0.5 to 8 mM (R2 = 0.997), and high sensitivity of 506.25 μA/mMcm2. Furthermore, glucose oxidase-chitosan composite and cationic polydiallyldimethylammonium chloride (PDDA) were assembled by a casting method on the surface of MRGO/PtAuNPs modified electrode. This as-fabricated hybrid biosensor electrode exhibited high electrocatalytic activity for the detection of glucose in PBS. It demonstrated good analytical properties in terms of a low detection limit of 1 μM (signal-to-noise ratio of 3), short response time (3 s), high sensitivity (17.85 μA/mMcm2), and a wide linear range (0.01–8 mM) for glucose sensing. These results reveal that the newly developed sensing electrode offers great promise for new type enzymatic biosensor applications. PMID:28333943

  4. Effect of Annealing Temperature and Time on Microstructure and Mechanical Properties of Multilayered Steel Composite Sheets

    NASA Astrophysics Data System (ADS)

    Cao, R.; Yu, X.; Feng, Z.; Ojima, M.; Inoue, J.; Koseki, T.

    2016-12-01

    Multilayered composite steels consisting of alternating layers of martensitic phase and austenitic phase exhibit an excellent combination of strength and elongation compared with conventional advanced high-strength steels. The deformation processes underlying these properties are of considerable interest. In this article, microstructure, grain size, and phase are characterized by scanning electron microscopy (SEM) and electron backscattering diffraction. The hardness of each layer is analyzed by a microindentation hardness testing system. Finally, the deformation and failure processes in multilayered steel are investigated by in-situ SEM. The hardness results indicate that various hardening modes occur in the soft austenitic layer and the hard martensitic layer. In- situ SEM results combined with microstructure analysis and hardness results reveal that annealing temperature and annealing time have a significant impact on final microstructure, fracture behavior, strength, hardness, and ductility.

  5. Fabrication and quality assurance processes for superhybrid composite fan blades

    NASA Technical Reports Server (NTRS)

    Lark, R. F.; Chamis, C. C.

    1986-01-01

    The feasibility of fabricating full-scale fan blades from superhybrid composites (SHC) for use large, commercial gas turbine engines was evaluated. The type of blade construction selected was a metal-spar/SHC-shell configuration, in which the outer shell was adhesively bonded to a short, internal, titanium spar. Various aspects of blade fabrication, inspection, and quality assurance procedures developed in the investigation are described. It is concluded that the SHC concept is feasible for the fabrication of prototype, full-scale, metal-spar/SHC-shell fan blades that have good structural properties and meet dimensional requirements.

  6. Fabrication and quality assurance processes for superhybrid composite fan blades

    NASA Technical Reports Server (NTRS)

    Lark, R. F.; Chamis, C. C.

    1983-01-01

    The feasibility of fabricating full-scale fan blades from superhybrid composites (SHC) for use large, commercial gas turbine engines was evaluated. The type of blade construction selected was a metal-spar/SHC-shell configuration, in which the outer shell was adhesively bonded to a short, internal, titanium spar. Various aspects of blade fabrication, inspection, and quality assurance procedures developed in the investigation are described. It is concluded that the SHC concept is feasible for the fabrication of prototype, full-scale, metal-spar/SHC-shell fan blades that have good structural properties and meet dimensional requirements.

  7. Space fabrication: Graphite composite truss welding and cap forming subsystems

    NASA Technical Reports Server (NTRS)

    Jenkins, L. M.; Browning, D. L.

    1980-01-01

    An automated beam builder for the fabrication of space structures is described. The beam builder forms a triangular truss 1.3 meters on a side. Flat strips of preconsolidated graphite fiber fabric in a polysulfone matrix are coiled in a storage canister. Heaters raise the material to forming temperature then the structural cap section is formed by a series of rollers. After cooling, cross members and diagonal tension cords are ultrasonically welded in place to complete the truss. The stability of fabricated structures and composite materials is also examined.

  8. Space fabrication: Graphite composite truss welding and cap forming subsystems

    NASA Astrophysics Data System (ADS)

    Jenkins, L. M.; Browning, D. L.

    1980-02-01

    An automated beam builder for the fabrication of space structures is described. The beam builder forms a triangular truss 1.3 meters on a side. Flat strips of preconsolidated graphite fiber fabric in a polysulfone matrix are coiled in a storage canister. Heaters raise the material to forming temperature then the structural cap section is formed by a series of rollers. After cooling, cross members and diagonal tension cords are ultrasonically welded in place to complete the truss. The stability of fabricated structures and composite materials is also examined.

  9. Fabricating porous materials using interpenetrating inorganic-organic composite gels

    DOEpatents

    Seo, Dong-Kyun; Volosin, Alex

    2016-06-14

    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite material can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.

  10. Microstructure Evolution and Mechanical and Corrosion Behavior of Accumulative Roll Bonded Mg-2%Zn/Al-7075 Multilayered Composite

    NASA Astrophysics Data System (ADS)

    Anne, Gajanan; Ramesh, M. R.; Shivananda Nayaka, H.; Arya, Shashi Bhushan; Sahu, Sandeep

    2017-02-01

    Multilayered composite of Mg-2%Zn/Al-7075 was developed by accumulative roll bonding (ARB) of wrought Mg-2%Zn and aluminum 7075 alloy. The Mg-2%Zn/Al-7075 multilayered composite exhibited density of 2295 kg/m3 and an average grain size of 1 and 1.3 μm in Mg-2%Zn and Al-7075 layers, respectively. A thorough microstructural characterization was performed on the composites by scanning electron microscope, electron backscatter diffraction (EBSD), transmission electron microscope and phase analysis by x-ray diffraction. In addition, mechanical properties were evaluated by microhardness and tensile tests. Corrosion behavior of the multilayered composite was examined using electrochemical polarization test. EBSD analysis showed the presence of ultrafine grains with high-angle grain boundaries. The composite exhibited a significant improvement in ultimate tensile strength ( 1.82 times) and elongation ( 1.5 times) as compared with Mg-2%Zn alloy, after four-pass ARB process.

  11. Interfacial reactions in titanium/SCS fiber composites during fabrication

    NASA Technical Reports Server (NTRS)

    Warrier, S. G.; Lin, R. Y.

    1993-01-01

    The objectrive of the study was to determine the effect of titanium concentration and different pyrocarbon fiber coatings on the morphology and the extent of fiber-matrix reactions in Ti/SiC composites fabricated by rapid infrared forming (RIF). It is found that the extent of fiber-matrix reactions in Ti/SiC composites fabricated by the RIF technique is noticeably affected by both an increase in Ti content and by the processing temperature. Uncoated SiC fibers extensively react with the titanium alloy matrix at 1200 C, whereas no reaction occurs when coated SiC fibers are used.

  12. Method for fabricating composite carbon foam

    DOEpatents

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    2001-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  13. Fabrication of ceramic composites: Forced CVI

    SciTech Connect

    Besmann, T.M.; McLaughin, J.C.; Lin, Hua-Tay

    1994-10-01

    Forced chemical vapor infiltration (CVI) is being developed as an efficient means for producing thick-wall ceramic matrix components. Recent efforts focussed on process scale-up, modeling and the properties of the resultant material. Disks 24.6 cm in diameter and 1.27 cm thick have been produced. Composites of Nicalon{trademark} fibers and SiC matrix have exhibited 480 MPa strength in flexure.

  14. Fabrication of Carbon Nanotube - Chromium Carbide Composite Through Laser Sintering

    NASA Astrophysics Data System (ADS)

    Liu, Ze; Gao, Yibo; Liang, Fei; Wu, Benxin; Gou, Jihua; Detrois, Martin; Tin, Sammy; Yin, Ming; Nash, Philip; Tang, Xiaoduan; Wang, Xinwei

    2016-03-01

    Ceramics often have high hardness and strength, and good wear and corrosion resistance, and hence have many important applications, which, however, are often limited by their poor fracture toughness. Carbon nanotubes (CNTs) may enhance ceramic fracture toughness, but hot pressing (which is one typical approach of fabricating CNT-ceramic composites) is difficult to apply for applications that require localized heat input, such as fabricating composites as surface coatings. Laser beam may realize localized material sintering with little thermal effect on the surrounding regions. However, for the typical ceramics for hard coating applications (as listed in Ref.[1]), previous work on laser sintering of CNT-ceramic composites with mechanical property characterizations has been very limited. In this paper, research work has been reported on the fabrication and characterization of CNT-ceramic composites through laser sintering of mixtures of CNTs and chromium carbide powders. Under the studied conditions, it has been found that laser-sintered composites have a much higher hardness than that for plasma-sprayed composites reported in the literature. It has also been found that the composites obtained by laser sintering of CNTs and chromium carbide powder mixtures have a fracture toughness that is ~23 % higher than the material obtained by laser sintering of chromium carbide powders without CNTs.

  15. Fabrication and characterization of WO3/Ag/WO3 multilayer transparent anode with solution-processed WO3 for polymer light-emitting diodes

    PubMed Central

    2012-01-01

    The dielectric/metal/dielectric multilayer is suitable for a transparent electrode because of its high-optical and high-electrical properties; however, it is fabricated by an expensive and inefficient multistep vacuum process. We present a WO3/Ag/WO3 (WAW) multilayer transparent anode with solution-processed WO3 for polymer light-emitting diodes (PLEDs). This WAW multilayer not only has high transmittance and low resistance but also can be easily and rapidly fabricated. We devised a novel method to deposit a thin WO3 layer by a solution process in an air environment. A tungstic acid solution was prepared from an aqueous solution of Na2WO4 and then converted to WO3 nanoparticles (NPs) by a thermal treatment. Thin WO3 NP layers form WAW multilayer with a thermal-evaporated Ag layer, and they improve the transmittance of the WAW multilayer because of its high transmittance and refractive index. Moreover, the surface of the WO3 layer is homogeneous and flat with low roughness because of the WO3 NP generation from the tungstic acid solution without aggregation. We performed optical simulation and experiments, and the optimized WAW multilayer had a high transmittance of 85% with a sheet resistance of 4 Ω/sq. Finally, PLEDs based on the WAW multilayer anode achieved a maximum luminance of 35,550 cd/m2 at 8 V, and this result implies that the solution-processed WAW multilayer is appropriate for use as a transparent anode in PLEDs. PMID:22587669

  16. Chiral braided and woven composites: design, fabrication, and electromagnetic characterization

    NASA Astrophysics Data System (ADS)

    Wheeland, Sara; Bayatpur, Farhad; Amirkhizi, Alireza V.; Nemat-Nasser, Sia

    2011-04-01

    This work presents a new chiral composite composed of copper wires braided with Kevlar and nylon to form conductive coils integrated among structural fiber. To create a fabric, these braids were woven with plain Kevlar fiber. This yielded a composite with all coils possessing the same handedness, producing a chiral material. The electromagnetic response of this fabric was first simulated using a finite element full-wave simulation. For the electromagnetic measurement, the sample was placed between two lens-horn antennas connected to a Vector Network Analyzer. The frequency response of the sample was scanned between 5.5 and 8GHz. The measured scattering parameters were then compared to those of the simulated model. The measured parameters agreed well with the simulation results, showing a considerable chirality within the measured frequency band. The new composite combines the strength and durability of traditional composites with an electromagnetic design to create a multifunctional material.

  17. Fabrication and characterization of AZ91/CNT magnesium matrix composites

    NASA Astrophysics Data System (ADS)

    Park, Yong-Ha; Park, Yong-Ho; Park, Ik-Min; Oak, Jeong-jung; Kimura, Hisamichi; Cho, Kyung-Mox

    2008-12-01

    Carbon Nano Tube (CNT) reinforced AZ91 metal matrix composites (MMC) were fabricated by the squeeze infiltrated method. Properties of magnesium alloys have been improved by impurity reduction, surface treatment and alloy design, and thus the usage for the magnesium alloys has been extended recently. However there still remain barriers for the adaption of magnesium alloys for engineering materials. In this study, we report light-weight, high strength heat resistant magnesium matrix composites. Microstructural study and tensile test were performed for the squeeze infiltrated magnesium matrix composites. The wear properties were characterized and the possibility for the application to automotive power train and engine parts was investigated. It was found that the squeeze infiltration technique is a proper method to fabricate magnesium matrix composites reducing casting defects such as pores and matrix/reinforcement interface separation etc. Improved tensile and mechanical properties were obtained with CNT reinforcing magnesium alloys

  18. Process for fabricating composite material having high thermal conductivity

    DOEpatents

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    2001-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  19. Plasma assisted fabrication of multi-layer graphene/nickel hybrid film as enhanced micro-supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Ding, Q.; Li, W. L.; Zhao, W. L.; Wang, J. Y.; Xing, Y. P.; Li, X.; Xue, T.; Qi, W.; Zhang, K. L.; Yang, Z. C.; Zhao, J. S.

    2017-03-01

    A facile synthesis strategy has been developed for fabricating multi-layer graphene/nickel hybrid film as micro-supercapacitor electrodes by using plasma enhanced chemical vapor deposition. The as-presented method is advantageous for rapid graphene growth at relatively low temperature of 650 °C. In addition, after pre-treating for the as-deposited nickel film by using argon plasma bombardment, the surface-to-volume ratio of graphene film on the treated nickel substrate is effectively increased by the increasing of surface roughness. This is demonstrated by the characterization results from transmission electron microscopy, scanning electron microscope and atomic force microscopy. Moreover, the electrochemical performance of the resultant graphene/nickel hybrid film as micro-supercapacitor working electrode was investigated by cyclic voltammetry and galvanostatic charge/discharge measurements. It was found that the increase of the surface-to-volume ratio of graphene/nickel hybrid film improved the specific capacitance of 10 times as the working electrode of micro-supercapacitor. Finally, by using comb columnar shadow mask pattern, the micro-supercapacitor full cell device was fabricated. The electrochemical performance measurements of the micro-supercapacitor devices indicate that the method presented in this study provides an effective way to fabricate micro-supercapacitor device with enhanced energy storage property.

  20. Sialon ceramic compositions and methods of fabrication

    DOEpatents

    O'Brien, Michael H.; Park, Blair H.

    1994-01-01

    A method of fabricating a SiAlON ceramic body includes: a) combining quantities of Si.sub.3 N.sub.4, Al.sub.2 O.sub.3 and CeO.sub.2 to produce a mixture; b) forming the mixture into a desired body shape; c) heating the body to a densification temperature of from about 1550.degree. C. to about 1850.degree. C.; c) maintaining the body at the densification temperature for a period of time effective to densify the body; d) cooling the densified body to a devitrification temperature of from about 1200.degree. C. to about 1400.degree. C.; and e) maintaining the densified body at the devitrification temperature for a period of time effective to produce a .beta.'-SiAlON crystalline phase in the body having elemental or compound form Ce incorporated in the .beta.'-SiAlON crystalline phase. Further, a SiAlON ceramic body comprises: a) an amorphous phase; and b) a crystalline phase, the crystalline phase comprising .beta.'-SiAlON having lattice substituted elemental or compound form Ce.

  1. Fabrication and temperature-dependent magnetic properties of one-dimensional multilayer Au–Ni–Au–Ni–Au nanowires

    SciTech Connect

    Ishrat, S.; Maaz, K.; Lee, Kyu-Joon; Jung, Myung-Hwa; Kim, Gil-Ho

    2014-02-15

    Multilayer Au–Ni–Au–Ni–Au nanowires with a controlled diameter of ∼100 nm were synthesized by electrochemical deposition in porous alumina templates. The length of each Ni-segment was controlled up to ∼230 nm, while the length of the Au segment sandwiched between two Ni segments was ∼180 nm. X-ray diffraction patterns and energy-dispersive X-ray spectra confirmed the formation of purely crystalline nanowires. The magnetic properties of the multilayer Au–Ni–Au–Ni–Au nanowires were investigated in the temperature range 2–300 K. Room-temperature magnetic hysteresis confirmed the ferromagnetic nature of the nanowires. The plot of coercivity as a function of temperature (from 2 to 300 K) followed law applicable for ferromagnetic nanostructures. The magnetization tended to increase as the temperature decreased, following the modified Bloch's law similar to ferromagnetic nanoparticles. - Graphical abstract: (a) SEM image of Au–Ni–Au–Ni–Au nanowire with 230 nm Ni segment length and 180 nm Au sandwiched between Ni segments (b) Kneller's law (c) Bloch's law Display Omitted - Highlights: • Electrochemical fabrication of Au–Ni–Au–Ni–Au nanowires in alumina templates. • Formation of beadlike structure of Ni segments. • Coercivity versus T follows Kneller's law for ferromagnetic materials. • Magnetization as a function of temperature follows the modified Bloch's law.

  2. Intumescent all-polymer multilayer nanocoating capable of extinguishing flame on fabric

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fabric was treated with flame-retardant coatings composed of poly (sodium phosphate), PSP, which acts as the acid source, and poly (allylamine), PAAm, which is used as the blowing agent, prepared via layer-by-layer (LbL) assembly. By applying these thin coating on fabric, after-glow is elimi...

  3. Steady-state heat conduction in multilayered composite plates and shells

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Burton, W. S.

    1991-01-01

    A study is made of a predictor-corrector procedure for the accurate determination of the temperature and heat flux distributions in thick multilayered composite plates and shells. A linear through-the-thickness temperature distribution is used in the predictor phase. The functional dependence of temperature on the thickness coordinate is then calculated a posteriori and used in the corrector phase. Extensive numerical results are presented for linear steady-state heat conduction problems, showing the effects of variation in the geometric and lamination parameters on the accuracy of the thermal response predictions of the predictor-corrector approach. Both antisymmetrically laminated anisotropic plates and multilayered orthotropic cylinders are considered. The solutions are assumed to be periodic in the surface coordinates. For each problem the standard of comparison is taken to be the analytic three-dimensional solution based on treating each layer as a homogeneous anisotropic medium. The potential of the predictor-corrector approach for predicting the thermal response of multilayered plates and shells with complicated geometry is discussed.

  4. Nanoparticles with tunable shape and composition fabricated by nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Alayo, Nerea; Conde-Rubio, Ana; Bausells, Joan; Borrisé, Xavier; Labarta, Amilcar; Batlle, Xavier; Pérez-Murano, Francesc

    2015-11-01

    Cone-like and empty cup-shaped nanoparticles of noble metals have been demonstrated to provide extraordinary optical properties for use as optical nanoanntenas or nanoresonators. However, their large-scale production is difficult via standard nanofabrication methods. We present a fabrication approach to achieve arrays of nanoparticles with tunable shape and composition by a combination of nanoimprint lithography, hard-mask definition and various forms of metal deposition. In particular, we have obtained arrays of empty cup-shaped Au nanoparticles showing an optical response with distinguishable features associated with the excitations of localized surface plasmons. Finally, this route avoids the most common drawbacks found in the fabrication of nanoparticles by conventional top-down methods, such as aspect ratio limitation, blurring, and low throughput, and it can be used to fabricate nanoparticles with heterogeneous composition.

  5. Freeform fabrication of polymer-matrix composite structures

    SciTech Connect

    Kaufman, S.G.; Spletzer, B.L.; Guess, T.L.

    1997-05-01

    The authors have developed, prototyped, and demonstrated the feasibility of a novel robotic technique for rapid fabrication of composite structures. Its chief innovation is that, unlike all other available fabrication methods, it does not require a mold. Instead, the structure is built patch by patch, using a rapidly reconfigurable forming surface, and a robot to position the evolving part. Both of these components are programmable, so only the control software needs to be changed to produce a new shape. Hence it should be possible to automatically program the system to produce a shape directly from an electronic model of it. It is therefore likely that the method will enable faster and less expensive fabrication of composites.

  6. Processes for fabricating composite reinforced material

    DOEpatents

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2015-11-24

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  7. Mechanically fastened joints in woven fabric composites

    NASA Technical Reports Server (NTRS)

    Wilson, D. W.; Bozarth, M. J.; Pipes, R. B.

    1983-01-01

    Strength analysis for composite bolted joints involves the mating of a stress analysis with an appropriate mode specific failure criterion for each of the primary failure modes. The stress analysis and failure criteria are independent of each other and can be manipulated separately in order to optimize the strength analysis package formed by their coupling. Material properties tests were conducted on rubber toughened graphite-epoxy material to measure the basic strength and stiffness in the warp and fill directions and in shear. Test matrices are summarized for investigations of laminate configuration, stacking sequence, fastener diameter, edge distance, fastener half spacing, laminate thickness, and fastener torque. A three dimensional finite element analysis computer program was written and failure criteria for net tension, shearout, and bearing were determined.

  8. Using template/hotwire cutting to demonstrate moldless composite fabrication

    NASA Technical Reports Server (NTRS)

    Coleman, J. Mario

    1990-01-01

    The objective of this experiment is to provide a simple, inexpensive composite fabrication technique which can be easily performed with a minimum of equipment and facilities. This process eliminates expensive female molds and uses only male molds which are easily formed from foam blocks. Once the mold is shaped, it is covered with fiberglass and becomes a structural component of the product.

  9. Fabrication and flexural strength of multi-layer alumina with aligned acicular pores

    NASA Astrophysics Data System (ADS)

    Park, Dong-Soo; Lee, Myoung-Won; Kim, Hai-Doo; Jung, Yeon-Gil

    2004-07-01

    Multi-layer alumina with alternating dense and porous layers with aligned acicular pores was successfully prepared by tape casting the slurry with chopped carbon fibers followed by pressureless sintering. As the content of the chopped carbon fiber increased, the open porosity was increased, in part due to impingement among the carbon fibers inside the sample. The three-point flexural strength of the sample with total porosity of 11% was approximately 80% that of a dense sample. However, a sample with a porous layer with 5% chopped carbon fiber exhibited only 60% flexural strength of the dense sample, in part due to a low degree of alignment among the chopped fibers.

  10. Application of Reactive Ion Etching to the Fabrication of Microstructure on Mo/Si Multilayer

    NASA Astrophysics Data System (ADS)

    Le, Zi-chun; L, Dreeskornfeld; S, Rahn; R, Segler; U, Kleineberg; U, Heinzmann

    1999-09-01

    Mo/Si multilayer mirrors (30 periods, doublelayer thickness 7 nm) with the AZ-PF514 resist pattern whose smallest lines and spaces structure was 0.5 μm were etched by reactive ion etching (RIE) in a fluorinated plasma. The etch rate, selectivity and etch profile were investigated as a function of the gas mixture, pressure, and plasma rf power. The groove depth and the etch profile were investigated by an atomic force microscope before RIE, after RIE and after resist removal.

  11. Polyelectrolytes Multilayers to Modulate Cell Adhesion: A Study of the Influence of Film Composition and Polyelectrolyte Interdigitation on the Adhesion of the A549 Cell Line.

    PubMed

    Muzzio, Nicolás E; Pasquale, Miguel A; Gregurec, Danijela; Diamanti, Eleftheria; Kosutic, Marija; Azzaroni, Omar; Moya, Sergio E

    2016-04-01

    Polyelectrolyte multilayers (PEMs) with different polycation/polyanion pairs are fabricated by the layer-by-layer technique employing synthetic, natural, and both types of polyelectrolytes. The impact of the chemical composition of PEMs on cell adhesion is assessed by studying cell shape, spreading area, focal contacts, and cell proliferation for the A549 cell line. Cells exhibit good adhesion on PEMs containing natural polycations and poly(sodium 4-styrenesulfonate) (PSS) as polyanion, but limited adhesion is observed on PEMs fabricated from both natural polyelectrolytes. PEMs are then assembled, depositing a block of natural polyelectrolytes on top of a stiffer block with PSS as polyanion. Cell adhesion is enhanced on top of the diblock PEMs compared to purely natural PEMs. This fact could be explained by the interdigitation between polyelectrolytes from the two blocks. Diblock PEM assembly provides a simple means to tune cell adhesion on biocompatible PEMs.

  12. Influence of annealing on magnetic, relaxation and structural properties of composite and multilayer films.

    PubMed

    Kotov, L N; Vlasov, V S; Turkov, V K; Kalinin, Y E; Sitnikov, A V

    2012-02-01

    This work is devoted to the research of influence of annealing to ferromagnetic resonance (FMR) properties of films of the A, B series with the compositions of (Co45-Fe45-Zr10)x(Al2O3)y, multilayer films of the D series with compositions {[(Co45-Fe45-Zr10)x(Al2O3)y]-[alpha-Si]}120 and revealing their relationship with the nanostructure characteristics. The films were obtained in an argon atmosphere (the A, D series) and with addition of oxygen (the B series). All samples were deposited on substrates by the ion-beam sputtering method and were annealed. The resonant fields and width of ferromagnetic resonance (FMR) line were measured before and after annealing. The changes in the FMR field and width of the line at varying temperatures of annealing for the composite and multilayer films are analyzed in the work. The character of changes in the structural characteristics of films at different annealing temperatures is determined.

  13. Fiber/matrix interfaces for SiC/SiC composites: Multilayer SiC coatings

    SciTech Connect

    Halverson, H.; Curtin, W.A.

    1996-08-01

    Tensile tests have been performed on composites of CVI SiC matrix reinforced with 2-d Nicalon fiber cloth, with either pyrolitic carbon or multilayer CVD SiC coatings [Hypertherm High-Temperature Composites Inc., Huntington Beach, CA.] on the fibers. To investigate the role played by the different interfaces, several types of measurements are made on each sample: (i) unload-reload hysteresis loops, and (ii) acoustic emission. The pyrolitic carbon and multilayer SiC coated materials are remarkably similar in overall mechanical responses. These results demonstrate that low-modulus, or compliant, interface coatings are not necessary for good composite performance, and that complex, hierarchical coating structures may possibly yield enhanced high-temperature performance. Analysis of the unload/reload hysteresis loops also indicates that the usual {open_quotes}proportional limit{close_quotes} stress is actually slightly below the stress at which the 0{degrees} load-bearing fibers/matrix interfaces slide and are exposed to atmosphere.

  14. Precise Determination of Thicknesses of Multilayer Polyethylene Composite Materials by Terahertz Time-Domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Palka, Norbert; Krimi, Soufiene; Ospald, Frank; Miedzinska, Danuta; Gieleta, Roman; Malek, Marcin; Beigang, Rene

    2015-06-01

    The multilayer structure of an ultra-high molecular weight polyethylene (UHMWPE) composite material was investigated in the terahertz (THz) spectral range by means of time-domain spectroscopy (TDS) technique. Such structures consist of many alternating layers of fibers, each being perpendicular to the other and each having a thickness of about 50 μm. Refractive indices of two composite samples and of a sample composed of four single layers (plies) having the same fiber orientation were determined for two orthogonal orientations of the electric field in a transmission TDS system. The birefringence of a single layer was measured, and the origin of this phenomenon is discussed. Using the TDS system in reflection, the formation of many pulses shifted in time was observed originating from reflections from interfaces of successive layers caused by the periodic modulation of the refractive index along the propagation of the THz radiation. This phenomenon is theoretically described and simulated by means of a transfer matrix method (TMM). A time-domain fitting procedure was used to determine thicknesses of all layers of the composite material. The reconstructed waveform based on the optimized thicknesses shows very good agreement with the measured waveform, with typical differences between measurements and simulations between 3 and 7 μm (depending on the sample). As a result, we were able to determine the thicknesses of all layers of two multilayer (~200 plies) structures by means of the reflection TDS technology with high accuracy.

  15. Nonlinear analysis for high-temperature multilayered fiber composite structures. M.S. Thesis; [turbine blades

    NASA Technical Reports Server (NTRS)

    Hopkins, D. A.

    1984-01-01

    A unique upward-integrated top-down-structured approach is presented for nonlinear analysis of high-temperature multilayered fiber composite structures. Based on this approach, a special purpose computer code was developed (nonlinear COBSTRAN) which is specifically tailored for the nonlinear analysis of tungsten-fiber-reinforced superalloy (TFRS) composite turbine blade/vane components of gas turbine engines. Special features of this computational capability include accounting of; micro- and macro-heterogeneity, nonlinear (stess-temperature-time dependent) and anisotropic material behavior, and fiber degradation. A demonstration problem is presented to mainfest the utility of the upward-integrated top-down-structured approach, in general, and to illustrate the present capability represented by the nonlinear COBSTRAN code. Preliminary results indicate that nonlinear COBSTRAN provides the means for relating the local nonlinear and anisotropic material behavior of the composite constituents to the global response of the turbine blade/vane structure.

  16. Fabricating fiber-reinforced composite posts.

    PubMed

    Manhart, Jürgen

    2011-03-01

    Endodontic posts do not increase the strength of the remaining tooth structure in endodontically treated teeth. On the contrary, depending on the post design employed (tapered versus parallel-sided), the root can be weakened relative to the amount of tooth removed during preparation. In many cases, if there has been a high degree of damage to the clinical crown, conservative preparation for an anatomic tapered (biomimetic) post with the incorporation of a ferrule on solid tooth structure is necessary to protect the reaming root structure as well as for the long-term retention of the composite resin core and the definitive restoration. Adhesively luted endodontic posts reinforced with glass or quartz fiber lead to better homogeneous tension distribution when loaded than rigid metal or zirconium oxide ceramic posts. Fiber-reinforced posts also possess advantageous optical properties over metal or metal oxide post systems. The clinician should realize that there are admittedly substantial differences in the mechanical loading capacity of the different fiber-reinforced endodontic posts and should be aware of such differences in order to research and select a suitable post system for use.

  17. Room temperature fabrication of dielectric Bragg reflectors composed of a CaF2/ZnS multilayered coating.

    PubMed

    Muallem, Merav; Palatnik, Alex; Nessim, Gilbert D; Tischler, Yaakov R

    2015-01-14

    We describe the design, fabrication, and characterization of mechanically stable, reproducible, and highly reflecting distributed Bragg reflectors (DBR) composed of thermally evaporated thin films of calcium fluoride (CaF2) and zinc sulfide (ZnS). CaF2 and ZnS were chosen as the low and high refractive index components of the multilayer DBR structures, with n = 1.43 and n = 2.38 respectively, because neither material requires substrate heating during the deposition process in order to produce optical quality thin films. DBRs consisting of seven pairs of CaF2 and ZnS layers, were fabricated with thicknesses of 96 and 58 nm, respectively, as characterized by high-resolution scanning electron microscopy (HR-SEM), and exhibited a center wavelength of λc = 550 nm and peak reflectance exceeding 99%. The layers showed good adhesion to each other and to the glass substrate, resulting in mechanically stable DBR coatings. Complete optical microcavities consisting of two such DBR coatings and a CaF2 spacer layer between them could be fabricated in a single deposition run. Optically, these structures exhibited a resonator quality factor of Q > 160. When a CaF2/ZnS DBR was grown, without heating the substrate during deposition, on top of a thin film containing the fluorescent dye Rhodamine 6G, the fluorescence intensity showed no degradation compared to an uncoated film, in contrast to a MgF2/ZnS DBR coating grown with substrate heating which showed a 92% reduction in signal. The ability to fabricate optical quality CaF2/ZnS DBRs without substrate heating, as introduced here, can therefore enable formation of low-loss high-reflectivity coatings on top of more delicate heat-sensitive materials such as organics and other nanostructured emitters, and hence facilitate the development of nanoemitter-based microcavity device applications.

  18. Fabrication and testing of prestressed composite rotor blade spar specimens

    NASA Technical Reports Server (NTRS)

    Gleich, D.

    1974-01-01

    Prestressed composite spar specimens were fabricated and evaluated by crack propagation and ballistic penetration tests. The crack propagation tests on flawed specimens showed that the prestressed composite spar construction significantly suppresses crack growth. Damage from three high velocity 30 caliber projectile hits was confined to three small holes in the ballistic test specimen. No fragmentation or crack propagation was observed indicating good ballistic damage resistance. Rotor attachment approaches and improved structural performance configurations were identified. Design theory was verified by tests. The prestressed composite spar configuration consisted of a compressively prestressed high strength ARDEFORM 301 stainless steel liner overwrapped with pretensioned S-994 fiberglass.

  19. Fabrication of surface self-lubricating composites of aluminum alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Zhang, Dong; Le, Yongkang; Li, Lian; Ou, Bin

    2008-12-01

    Porous aluminum anodic oxide films fabricated by anodizing in phosphoric acid electrolyte containing organic acid were investigated. By controlling its microstructure, a macroporous and thick alumina template were obtained. Surface self-lubricating composites were prepared by taking ultra-sonic impregnation in PTFE latex and the relative subsequent heat treatment technology. The studies on the tribological behavior of the surface self-lubricating composite indicated that the tribological properties of aluminum surface can be improved obviously. Compared with the surface coating of hard-anodization, the friction coefficient of self-lubricating composite can be effectively reduced from the 0.575 to 0.166.

  20. Industry to Education Technical Transfer Program & Composite Materials. Composite Materials Course. Fabrication I Course. Fabrication II Course. Composite Materials Testing Course. Final Report.

    ERIC Educational Resources Information Center

    Massuda, Rachel

    These four reports provide details of projects to design and implement courses to be offered as requirements for the associate degree program in composites and reinforced plastics technology. The reports describe project activities that led to development of curricula for four courses: composite materials, composite materials fabrication I,…

  1. Nano-fabricated superconducting radio-frequency composites, method for producing nano-fabricated superconducting rf composites

    DOEpatents

    Norem, James H.; Pellin, Michael J.

    2013-06-11

    Superconducting rf is limited by a wide range of failure mechanisms inherent in the typical manufacture methods. This invention provides a method for fabricating superconducting rf structures comprising coating the structures with single atomic-layer thick films of alternating chemical composition. Also provided is a cavity defining the invented laminate structure.

  2. Development and fabrication of bismaleimide-graphite composites

    NASA Technical Reports Server (NTRS)

    Stenzenberger, H.; Herzog, M.; Roemer, W.; Scheiblich, R.

    1979-01-01

    The successful fabrication of high temperature resistant composites depends mainly on the processability of the resin binder matrix. For two new bismaleimide type resins the processing of graphite fabric prepregs to composites is described. One resin coded M 751 has to be processed from N-Methylpyrrolidone, the other resin evaluated is a so-called hot melt solvent-less system. Commercial T300/3000 Graphite fabrics were used as reinforcement. The M 751 - Resin is a press grade material and laminates are therefore moulded in high pressure conditions (400 N/sq cm). The solvent-less resin system H 795 is an autoclave grade material and can be cured at 40 N/sq cm. The cure cycles for both the press grade and the autoclave grade material (Fiberite W 143 fabric prepregs) are provided and the mechanical properties of laminates at low (23 C) and high (232 C) temperatures were measured. For comparison, the neat resin flexural properties are also presented. The water absorption for the neat resins and the graphite fabric laminates after a 1000 hour period was evaluated.

  3. Ultrasonic detection and identification of fabrication defects in composites

    NASA Technical Reports Server (NTRS)

    Long, Edward R., Jr.; Kullerd, Susan M.; Johnston, Patrick H.; Madaras, Eric I.

    1991-01-01

    Methods for deliberate fabrication of porosity into carbon/epoxy composite panels and the influence of three-dimensional stitching on the detection of porosity were investigated. Two methods of introducing porosity were investigated. Porosity was simulated by inclusion of glass microspheres, and a more realistic form of porosity was introduced by using low pressure during consolidation. The panels were ultrasonically scanned and the frequency slope of the ultrasonic attenuation coefficient was used to evaluate the two forms of porosity. The influence of stitching on the detection of porosity was studied using panels which were resin transfer molded from stitched plies of knitted carbon fabric and epoxy resin.

  4. Fabrication of tandem solar cells with all-solution processed multilayer structure using non-peripherally substituted octahexyl tetrabenzotriazaporphyrins

    NASA Astrophysics Data System (ADS)

    Dao, Quang-Duy; Fujii, Akihiko; Ozaki, Masanori

    2016-03-01

    An effective way to improve the power conversion efficiencies (PCEs) of organic solar cells is to use a tandem structure, in which two organic solar cells with different absorption characteristics are linked to use a wider range of the solar spectrum. Herein, we report the fabrication of tandem solar cells with an all-solution processed multilayer structure utilizing a conventional structure composed of non-peripherally substituted octahexyl tetrabenzotriazaporphyrins and poly(3-hexylthiophene) (P3HT) as donors in the back and front cells, respectively. A transparent ZnO layer functions in electron transport for the front cell and as a stable foundation for the fabrication of the back cell to complete the tandem cell architecture. As a result, the tandem cell exhibited a relatively high open-circuit voltage of 1.4 V. Furthermore, by vapor-annealing treatment, the crystallization of the P3HT-conjugated polymer was improved and a PCE of 3.2% was achieved for the tandem cell with 5-min vapor-annealing treatment.

  5. Design, fabrication and test of Load Bearing multilayer insulation to support a broad area cooled shield

    NASA Astrophysics Data System (ADS)

    Dye, S. A.; Johnson, W. L.; Plachta, D. W.; Mills, G. L.; Buchanan, L.; Kopelove, A. B.

    2014-11-01

    Improvements in cryogenic propellant storage are needed to achieve reduced or Zero Boil Off of cryopropellants, critical for long duration missions. Techniques for reducing heat leak into cryotanks include using passive multi-layer insulation (MLI) and vapor cooled or actively cooled thermal shields. Large scale shields cannot be supported by tank structural supports without heat leak through the supports. Traditional MLI also cannot support shield structural loads, and separate shield support mechanisms add significant heat leak. Quest Thermal Group and Ball Aerospace, with NASA SBIR support, have developed a novel Load Bearing multi-layer insulation (LBMLI) capable of self-supporting thermal shields and providing high thermal performance. We report on the development of LBMLI, including design, modeling and analysis, structural testing via vibe and acoustic loading, calorimeter thermal testing, and Reduced Boil-Off (RBO) testing on NASA large scale cryotanks. LBMLI uses the strength of discrete polymer spacers to control interlayer spacing and support the external load of an actively cooled shield and external MLI. Structural testing at NASA Marshall was performed to beyond maximum launch profiles without failure. LBMLI coupons were thermally tested on calorimeters, with superior performance to traditional MLI on a per layer basis. Thermal and structural tests were performed with LBMLI supporting an actively cooled shield, and comparisons are made to the performance of traditional MLI and thermal shield supports. LBMLI provided a 51% reduction in heat leak per layer over a previously tested traditional MLI with tank standoffs, a 38% reduction in mass, and was advanced to TRL5. Active thermal control using LBMLI and a broad area cooled shield offers significant advantages in total system heat flux, mass and structural robustness for future Reduced Boil-Off and Zero Boil-Off cryogenic missions with durations over a few weeks.

  6. Modeling and optimization of adjustable multifrequency axially polarized multilayer composite cylindrical transducer

    NASA Astrophysics Data System (ADS)

    Wang, Jianjun; Shi, Zhifei; Song, Gangbing

    2015-04-01

    A novel adjustable multifrequency axially polarized multilayer composite cylindrical transducer is developed in this paper. The transducer is composed of two parts: an actuator part and a sensor part. Each part is considered as a multilayer piezoelectric/elastic composite structure. The actuator part is utilized to actuate the transducer, while the senor part is used to adjust its dynamic characteristics through connecting to an external electric resistance. Based on the plane stress assumption, the radial vibration of this new kind of transducer is analyzed, and its input electric admittance is derived analytically. Comparisons with the earlier works are conducted to validate the theoretical solution. Furthermore, numerical analysis is performed to study the effects of the external electric resistance on the transducer’s dynamic characteristics, such as resonance and anti-resonance frequencies, as well as the corresponding electromechanical coupling factor. Numerical results show that the multifrequency cylindrical transducer can be designed through adjusting the external electric resistance and the ratio of piezoelectric layer numbers between the actuator part and the sensor part. In addition, the optimized transducer can be proposed at the matching electric resistance. The proposed cylindrical transducer plays an important role in designing the cymbal transducer, which can be used in underwater sound projectors and ultrasonic radiators.

  7. LOW COST MULTI-LAYER FABRICATION METHOD FOR SOLID OXIDE FUEL CELLS

    SciTech Connect

    Christopher Milliken; Robert Ruhl; Jennifer Hillman

    2002-06-01

    Technology Management, Inc has evaluated the practical fabrication advantages and potential economic impact of a multi-pass screen printing process on the costs of fabricating planar solid oxide fuel cell stacks. During this program, multiple catalyzed binder systems were considered. Preliminary screening experiments resulted in four systems being selected for further evaluation. Inks were formulated using these binders in combination with at least three fuel cell materials (anode, cathode, and seal material). Reactivity of the binder with catalyst and fuel cell materials was evaluated. Cell tests indicated that the catalyzed binders did not negatively impact cell performance. Tests were conducted demonstrating single cell performance comparable with standard cell fabrication technology. Tailored patterns were also demonstrated. Economic evaluation indicated that a significant reduction in cost could be achieved, primarily through reduced capital equipment needs.

  8. Design and fabrication of integrally damped composite fan blades

    NASA Astrophysics Data System (ADS)

    Kosmatka, John B.; Appuhn, Geoffrey

    1999-06-01

    The design, analysis, and fabrication methods of embedding small viscoelastic damping patches into scaled composite fan blades is presented, where the goal is to improve the blade fatigue characteristics by increasing the damping in the chord-wise modes. This discussion concentrates on improving the damping levels in a research composite shell/titanium spar fan blade, developed by NASA-Lewis and Pratt and Whitney. First, the geometry and material definition of the existing composite fan blade are presented. Second, methods for sizing and locating the damping patch are presented based upon the modal strain energy method. The layered damping patch is composed of outer layers of a TEDLAR (or KAPTON) barrier film, which encompasses a viscoelastic damping material and loose- weave scrim cloth (creep protection). Two different patch sizes and locations are discussed to provide maximum damping as well as optimal damping. Finally, procedures are outlined for fabricating the integrally damped composite fan blades. Fabricated blades will be tested at the NASA-Lewis vacuum facility.

  9. Fabrication of an Electrically-Resistive, Varistor-Polymer Composite

    PubMed Central

    Ahmad, Mansor Bin; Fatehi, Asma; Zakaria, Azmi; Mahmud, Shahrom; Mohammadi, Sanaz A.

    2012-01-01

    This study focuses on the fabrication and electrical characterization of a polymer composite based on nano-sized varistor powder. The polymer composite was fabricated by the melt-blending method. The developed nano-composite was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FeSEM), and energy-dispersive X-ray spectroscopy (EDAX). The XRD pattern revealed the crystallinity of the composite. The XRD study also showed the presence of secondary phases due to the substitution of zinc by other cations, such as bismuth and manganese. The TEM picture of the sample revealed the distribution of the spherical, nano-sized, filler particles throughout the matrix, which were in the 10–50 nm range with an average of approximately 11 nm. The presence of a bismuth-rich phase and a ZnO matrix phase in the ZnO-based varistor powder was confirmed by FeSEM images and EDX spectra. From the current-voltage curves, the non-linear coefficient of the varistor polymer composite with 70 wt% of nano filler was 3.57, and its electrical resistivity after the onset point was 861 KΩ. The non-linear coefficient was 1.11 in the sample with 100 wt% polymer content. Thus, it was concluded that the composites established a better electrical non-linearity at higher filler amounts due to the nano-metric structure and closer particle linkages. PMID:23443085

  10. Fabrication and adsorption properties of hybrid fly ash composites

    NASA Astrophysics Data System (ADS)

    Gao, Mengfan; Ma, Qingliang; Lin, Qingwen; Chang, Jiali; Ma, Hongzhu

    2017-02-01

    In order to realize the utilization of fly ash (FA) as industrial solid waste better, high-efficient inorganic/organic hybrid composite adsorbents derived from (Ca(OH)2/Na2FeO4) modified FA (MF) was fabricated. The hydrophilic cationic polymer (P(DMDAAC-co-AAM) or hydrophobic modifier (KH-570) were used. The prepared composites were characterized by X-ray fluorescence spectroscopy, energy dispersive spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller, Fourier transform infrared spectroscopy, thermogravimetry, and contact angle test. The adsorption of cationic composites MF/P(DMDAAC-co-AAM) towards Orange II in wastewater was investigated. The results show that: adsorption amount of 24.8 mg/g with 2000 mg/L of composites, 50 mg/L Orange II, original pH (6-8), at 40 min and room temperature, was obtained. Meanwhile, oil adsorption ratio Q(g/g) of hydrophobic composites MF/KH-570 was also evaluated. The maximum Q of 17.2 g/g to kerosene was obtained at 40 min. The isotherm and kinetics of these two adsorption processes were also studied. The results showed that the fabricated MF composites modified with hydrophilic or hydrophobic group can be used to adsorb dye in wastewater or oil effectively.

  11. Enhanced pervaporation performance of multi-layer PDMS/PVDF composite membrane for ethanol recovery from aqueous solution.

    PubMed

    Zhan, Xia; Li, Jiding; Huang, Junqi; Chen, Cuixian

    2010-01-01

    Multi-layer PDMS/PVDF composite membrane with an alternative PDMS/PVDF/non-woven-fiber/PVDF/PDMS configuration was prepared in this paper. The porous PVDF substrate was obtained by casting PVDF solution on both sides of non-woven fiber with immersion precipitation phase inversion method. Polydimethylsiloxane (PDMS) was then cured by phenyltrimethoxylsilane (PTMOS) and coated onto the surface of porous PVDF substrate one layer by the other to obtain multi-layer PDMS/PVDF composite membrane. The multi-layer composite membrane was used for ethanol recovery from aqueous solution by pervaporation, and exhibited enhanced separation performance compared with one side PDMS/PVDF composite membranes, especially in the low ethanol concentration range. The maximum separation factor of multi-layer PDMS/PVDF composite membrane was obtained at 60 degrees C, and the total flux increased exponentially along with the increase of temperature. The composite membrane gave the best pervaporation performance with a separation factor of 15, permeation rate of 450 g/m(2)h with a 5 wt.% ethanol concentration at 60 degrees C.

  12. Beam Scanning Antenna with Wideband Broadside Radiation Based on Multilayered Substrate Integrated Waveguide Composite Right/Left-Handed Structure

    NASA Astrophysics Data System (ADS)

    Zhang, Qin; Wu, Guo-cheng; Wang, Guang-ming; Liang, Jian-gang; Gao, Xiang-jun

    2017-01-01

    In this paper, a novel multilayered substrate integrated waveguide (SIW) composite right/left-handed (CRLH) structure is proposed to design beam scanning antenna for wideband broadside radiation. The unit cell of the SIW-CRLH structure is formed by spiral interdigital fingers etched on the upper ground of SIW, and a parasitic patch beneath the slot, has a continuous change of phase constant from negative to positive value within its passband. The proposed beam scanning antenna, which consists of consists of 15 identical elementary cells of the SIW-CRLH, is simulated, fabricated and measured. According to the measured results, the proposed antenna not only realizes a continuous main beam scanning from backward -78° to forward +80° within the operating frequency range from 8.25 to 12.2 GHz, but also obtains the measured broadside gain of 11.5 dB with variation of 1.0 dB over the frequency range of 8.8-9.25 GHz (4.99 %). Besides, compared with the same works in the references, this one has the most wonderful performance.

  13. Fabrication of robust multilayer films by triggering the coupling reaction between phenol and primary amine groups with visible light irradiation

    NASA Astrophysics Data System (ADS)

    Yu, You; Zhang, Hui; Cui, Shuxun

    2011-09-01

    We prepared robust cross-linked (x-linked) multilayer films under visible light irradiation with the catalysis of a Ru(ii) complex. The x-linking is achieved by the coupling reaction between phenol group and primary amine group within the self-assembled multilayer films that were prepared beforehand. Three kinds of polymers, i.e., poly(4-vinylphenol), poly(allylamine) and poly(ethyleneimine), were selected as the model system to illustrate the concept of this strategy. Upon visible light irradiation, the chemical stability of the x-linked films towards solution etching was greatly enhanced. In previous studies, horseradish peroxidase (HRP) is often utilized to catalyze the C-C, C-O and C-N coupling structures, which is useful to prepare polymers, capsules and bulk hydrogels. We also tried to prepare the x-linked films by the catalysis of HRP. The comparison of the two methods suggests that the Ru(ii) complex method is more ideal for fabricating x-linked films. In addition, the photo-triggered chemical reaction within the films was confirmed by the solid-state 13C NMR, XPS and FT-IR measurements. Without UV light irradiation or thermal treatment, this strategy brings many advantages. It is anticipated that this approach can be easily extended to the applications of the biological related fields in the future.We prepared robust cross-linked (x-linked) multilayer films under visible light irradiation with the catalysis of a Ru(ii) complex. The x-linking is achieved by the coupling reaction between phenol group and primary amine group within the self-assembled multilayer films that were prepared beforehand. Three kinds of polymers, i.e., poly(4-vinylphenol), poly(allylamine) and poly(ethyleneimine), were selected as the model system to illustrate the concept of this strategy. Upon visible light irradiation, the chemical stability of the x-linked films towards solution etching was greatly enhanced. In previous studies, horseradish peroxidase (HRP) is often utilized to

  14. Fabrication of Mo/Cu Multilayer and Bilayer Transition Edge Sensors

    SciTech Connect

    Ali, Z A; Drury, O B; Cunningham, M F; Chesser, J M; Barbee Jr., T W; Friedrich, S

    2004-09-30

    We are developing cryogenic high-resolution x-ray, {gamma}-ray and neutron spectrometers based on superconducting Mo/Cu transition edge sensors. Here we discuss the sensor design for different applications, present the photolithographic fabrication techniques, and outline future detector development to increase spectrometer sensitivity.

  15. Iosipescu shear properties of graphite fabric/epoxy composite laminates

    NASA Technical Reports Server (NTRS)

    Walrath, D. E.; Adams, D. F.

    1985-01-01

    The Iosipescu shear test method is used to measure the in-plane and interlaminar shear properties of four T300 graphite fabric/934 epoxy composite materials. Different weave geometries tested include an Oxford weave, a 5-harness satin weave, an 8-harness satin weave, and a plain weave with auxiliary warp yarns. Both orthogonal and quasi-isotropic layup laminates were tested. In-plane and interlaminar shear properties are obtained for laminates of all four fabric types. Overall, little difference in shear properties attributable to the fabric weave pattern is observed. The auxiliary warp material is significantly weaker and less stiff in interlaminar shear parallel to its fill direction. A conventional strain gage extensometer is modified to measure shear strains for use with the Iosipescu shear test. While preliminary results are encouraging, several design iterations failed to produce a reliable shear transducer prototype. Strain gages are still the most reliable shear strain transducers for use with this test method.

  16. Fabrication of Composite Material Using Gettou Fiber by Injection Molding

    NASA Astrophysics Data System (ADS)

    Setsuda, Roy; Fukumoto, Isao; Kanda, Yasuyuki

    This study investigated the mechanical properties of composite using gettou (shell ginger) fiber as reinforcement fabricated from injection molding. Gettou fiber is a natural fiber made from gettou, a subtropical plant that is largely abundant in Okinawa, Japan. We used the stem part of gettou plant and made the gettou fiber by crushing the stem. The composite using gettou fiber contributed to low shrinkage ratio, high bending strength and high flexural modulus. The mechanical strength of composite using long gettou fiber showed higher value than composite using short gettou fiber. Next, because gettou is particularly known for its anti-mold characteristic, we investigated the characteristic in gettou plastic composite. The composite was tested against two molds: aspergillius niger and penicillium funiculosum. The 60% gettou fiber plastic composite was found to satisfy the JISZ2801 criterion. Finally, in order to predict the flexural modulus of composite using gettou fiber by Halpin-Tsai equation, the tensile elastic modulus of single gettou fiber was measured. The tendency of the experimental results of composite using gettou fiber was in good agreement with Halpin-Tsai equation.

  17. Supercapacitors based on carbon nanotube fuzzy fabric structural composites

    NASA Astrophysics Data System (ADS)

    Alresheedi, Bakheet Awad

    Supercapacitors used in conjunction with batteries offer a solution to energy storage and delivery problems in systems where high power output is required, such as in fully electric cars. This project aimed to enhance current supercapacitor technology by fabricating activated carbon on a substrate consisting of carbon nanotubes (CNTs) grown on a carbon fiber fabric (fuzzy fabric). The fuzzy surface of CNTs lowers electrical resistance and increases porosity, resulting in a flexible fabric with high specific capacitance. Experimental results confirm that the capacitance of activated carbon fabricated on the fuzzy fiber composite is significantly higher than when activated carbon is formed simply on a bare carbon fiber substrate, indicating the usefulness of CNTs in supercapacitor technology. The fabrication of the fuzzy fiber based carbon electrode was fairly complex. The processing steps included composite curing, stabilization, carbonization and activation. Ratios of the three basic ingredients for the supercapacitor (fiber, CNT and polymer matrix) were investigated through experimentation and Grey relational analysis. The aim of Grey relational analysis was to examine factors that affect the overall performance of the supercapacitor. It is based on finding relationships in both independent and interrelated data series (parameters). Using this approach, it was determined that the amount of CNTs on the fiber surface plays a major role in the capacitor properties. An increased amount of CNTs increases the surface area and electrical conductivity of the substrate, while also reducing the required time of activation. Technical advances in the field of Materials and Structures are usually focused on attaining superior performance while reducing weight and cost. To achieve such combinations, multi-functionality has become essential; namely, to reduce weight by imparting additional functions simultaneously to a single material. In this study, a structural composite with

  18. Influence of constituent properties and geometric form on behavior of woven fabric reinforced composites

    NASA Technical Reports Server (NTRS)

    Pipes, R. B.; Wilson, D. W.

    1984-01-01

    Th potential for woven fabric composite forms to increase the interlaminar strength and toughness properties of laminated composite septems is studied. Experimental and analytical studies were performed on a z-axis fabric.

  19. Effect of a ductility layer on the tensile strength of TiAl-based multilayer composite sheets prepared by EB-PVD

    SciTech Connect

    Zhang, Rubing; Zhang, Yaoyao; Liu, Qiang; Chen, Guiqing; Zhang, Deming

    2014-09-15

    TiAl/Nb and TiAl/NiCoCrAl laminate composite sheets with a thickness of 0.4–0.6 mm and dimensions of 150 mm × 100 mm were successfully fabricated by electron beam physical vapor deposition. The microstructures of the sheets were examined, and their mechanical properties were compared with those of TiAl monolithic sheet produced by electron beam physical vapor deposition. Tensile testing was performed at room temperature and 750 °C, and the fracture surfaces were examined by scanning electron microscopy. Among the three microlaminate sheets, the TiAl/NiCoCrAl micro-laminate sheet had the best comprehensive properties at room temperature, and the TiAl/Nb micro-laminate sheet showed the ideal high-temperature strength and plasticity at 750 °C. The result was discussed in terms of metal strengthening mechanism. - Highlights: • TiAl-based multilayer foils was fabricated successfully by using EB-PVD method; • The tensile properties and micro-fracture morphologies of the sheet were investigated; • The deformation behavior of the multilayer foils was discussed.

  20. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    SciTech Connect

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  1. Surface Modification and Characterisation of Silk Fibroin Fabric Produced by the Layer-by-Layer Self-Assembly of Multilayer Alginate/Regenerated Silk Fibroin

    PubMed Central

    Shen, Gaotian; Hu, Xingyou; Guan, Guoping; Wang, Lu

    2015-01-01

    Silk-based medical products have a long history of use as a material for surgical sutures because of their desirable mechanical properties. However, silk fibroin fabric has been reported to be haemolytic when in direct contact with blood. The layer-by-layer self-assembly technique provides a method for surface modification to improve the biocompatibility of silk fibroin fabrics. Regenerated silk fibroin and alginate, which have excellent biocompatibility and low immunogenicity, are outstanding candidates for polyelectrolyte deposition. In this study, silk fabric was degummed and positively charged to create a silk fibroin fabric that could undergo self-assembly. The multilayer self-assembly of the silk fibroin fabric was achieved by alternating the polyelectrolyte deposition of a negatively charged alginate solution (pH = 8) and a positively charged regenerated silk fibroin solution (pH = 2). Finally, the negatively charged regenerated silk fibroin solution (pH = 8) was used to assemble the outermost layer of the fabric so that the surface would be negatively charged. A stable structural transition was induced using 75% ethanol. The thickness and morphology were characterised using atomic force microscopy. The properties of the self-assembled silk fibroin fabric, such as the bursting strength, thermal stability and flushing stability, indicated that the fabric was stable. In addition, the cytocompatibility and haemocompatibility of the self-assembled silk fibroin fabrics were evaluated. The results indicated that the biocompatibility of the self-assembled multilayers was acceptable and that it improved markedly. In particular, after the self-assembly, the fabric was able to prevent platelet adhesion. Furthermore, other non-haemolytic biomaterials can be created through self-assembly of more than 1.5 bilayers, and we propose that self-assembled silk fibroin fabric may be an attractive candidate for anticoagulation applications and for promoting endothelial cell

  2. Nanosilica-Chitosan Composite Coating on Cotton Fabrics

    NASA Astrophysics Data System (ADS)

    Maharani, Dina Kartika; Kartini, Indriana; Aprilita, Nurul Hidayat

    2010-10-01

    Nanosilica-chitosan composite coating on cotton fabrics has been prepared by sol-gel method. The sol-gel procedure allows coating of material on nanometer scale, which several commonly used coating procedure cannot achieve. In addition, sol-gel coating technique can be applied to system without disruption of their structure functionaly. The coating were produced via hidrolysis and condensation of TEOS and GPTMS and then mixed with chitosan. The composite coating on cotton fabrics were characterized with X-Ray Diffraction and Scanning Electron microscopy (SEM) method. The result showed that the coating not changed or disrupted the cotton stucture. The coating result in a clear transparent thin layer on cotton surface. The nanocomposite coating has new applications in daily used materials, especially those with low heat resistance, such as textiles and plastics, and as an environmentally friendly water-repellent substitute for fluorine compounds.

  3. Analysis of woven fabrics for reinforced composite materials

    NASA Technical Reports Server (NTRS)

    Dow, Norris F.; Ramnath, V.; Rosen, B. Walter

    1987-01-01

    The use of woven fabrics as reinforcements for composites is considered. Methods of analysis of properties are reviewed and extended, with particular attention paid to three-dimensional constructions having through-the-thickness reinforcements. Methodology developed is used parametrically to evaluate the performance potential of a wide variety of reinforcement constructions including hybrids. Comparisons are made of predicted and measured properties of representative composites having biaxial and triaxial woven, and laminated tape lay-up reinforcements. Overall results are incorporated in advanced weave designs.

  4. Slurry-based fabrication of chopped fiberglass composite preforms

    SciTech Connect

    Moore, G.A.; Johnson, R.W.; Landon, M.D.; Stoots, C.M.; Anderson, J.L.

    1995-12-01

    A water-based process for the fabrication of chopped fiberglass preforms is being developed in collaboration with the Automotive Composite Consortium (ACC) and The Budd Company. This slurry process uses hydraulic pressure to form highly compacted fiberglass preforms on contoured, perforated metal screens. The preforms will be used in the development of structural automotive composites. A key objective is to produce preforms having uniform areal density. Computational simulation of variable open area screens, and areal density mapping using a gamma densitometer are discussed.

  5. Estimation of Complex Permittivity of Composite Multilayer Material at Microwave Frequency Using Waveguide Measurements

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar D.; Dudley, Kenneth

    2003-01-01

    A simple method is presented to estimate the complex dielectric constants of individual layers of a multilayer composite material. Using the MatLab Optimization Tools simple MatLab scripts are written to search for electric properties of individual layers so as to match the measured and calculated S-parameters. A single layer composite material formed by using materials such as Bakelite, Nomex Felt, Fiber Glass, Woven Composite B and G, Nano Material #0, Cork, Garlock, of different thicknesses are tested using the present approach. Assuming the thicknesses of samples unknown, the present approach is shown to work well in estimating the dielectric constants and the thicknesses. A number of two layer composite materials formed by various combinations of above individual materials are tested using the present approach. However, the present approach could not provide estimate values close to their true values when the thicknesses of individual layers were assumed to be unknown. This is attributed to the difficulty in modelling the presence of airgaps between the layers while doing the measurement of S-parameters. A few examples of three layer composites are also presented.

  6. Evaluation of Double-Vacuum-Bag Process For Composite Fabrication

    NASA Technical Reports Server (NTRS)

    Hou, T. H.; Jensen, B. J.

    2004-01-01

    A non-autoclave vacuum bag process using atmospheric pressure alone that eliminates the need for external pressure normally supplied by an autoclave or a press is an attractive method for composite fabrication. This type of process does not require large capital expenditures for tooling and processing equipment. In the molding cycle (temperature/pressure profile) for a given composite system, the vacuum application point has to be carefully selected to achieve the final consolidated laminate net shape and resin content without excessive resin squeeze-out. The traditional single-vacuum- bag (SVB) process is best suited for molding epoxy matrix based composites because of their superior flow and the absence of reaction by-products or other volatiles. Other classes of materials, such as polyimides and phenolics, generate water during cure. In addition, these materials are commonly synthesized as oligomers using solvents to facilitate processability. Volatiles (solvents and reaction byproducts) management therefore becomes a critical issue. SVB molding, without additional pressure, normally fails to yield void-free quality composites for these classes of resin systems. A double-vacuum- bag (DVB) process for volatile management was envisioned, designed and built at the NASA Langley Research Center. This experimental DVB process affords superior volatiles management compared to the traditional SVB process. Void-free composites are consistently fabricated as measured by C-scan and optical photomicroscopy for high performance polyimide and phenolic resins.

  7. Fabrication of Fiber-Reinforced Celsian Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Setlock, John A.

    2000-01-01

    A method has been developed for the fabrication of small diameter, multifilament tow fiber reinforced ceramic matrix composites. Its application has been successfully demonstrated for the Hi-Nicalon/celsian system. Strong and tough celsian matrix composites, reinforced with BN/SiC-coated Hi-Nicalon fibers, have been fabricated by infiltrating the fiber tows with the matrix slurry, winding the tows on a drum, cutting and stacking of the prepreg tapes in the desired orientation, and hot pressing. The monoclinic celsian phase in the matrix was produced in situ, during hot pressing, from the 0.75BaO-0.25SrO-Al2O3-2SiO2 mixed precursor synthesized by solid state reaction from metal oxides. Hot pressing resulted in almost fully dense fiber-reinforced composites. The unidirectional composites having approx. 42 vol% of fibers exhibited graceful failure with extensive fiber pullout in three-point bend tests at room temperature. Values of yield stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 percent, respectively, and ultimate strengths of 900 +/- 60 MPa were observed. The Young's modulus of the composites was measured to be 165 +/- 5 GPa.

  8. Fabrication of optical multilayer for two-color phase plate in super-resolution microscope

    SciTech Connect

    Iketaki, Yoshinori; Kitagawa, Katsuichi; Hidaka, Kohjiro; Kato, Naoki; Hirabayashi, Akira; Bokor, Nandor

    2014-07-15

    In super-resolution microscopy based on fluorescence depletion, the two-color phase plate (TPP) is an indispensable optical element, which can independently control the phase shifts for two beams of different color, i.e., the pump and erase beams. By controlling a phase shift of the erase beam through the TPP, the erase beam can be modulated into a doughnut shape, while the pump beam maintains the initial Gaussian shape. To obtain a reliable optical multiplayer (ML) for the TPP, we designed a ML with only two optical layers by performing numerical optimization. The measured phase shifts generated by the fabricated ML using interferometry correspond to the design values. The beam profiles in the focal plane are also consistent with theoretical results. Although the fabricated ML consists of only two optical layers, the ML can provide a suitable phase modulation function for the TPP in a practical super-resolution microscope.

  9. Fabrication of optical multilayer for two-color phase plate in super-resolution microscope.

    PubMed

    Iketaki, Yoshinori; Kitagawa, Katsuichi; Hidaka, Kohjiro; Kato, Naoki; Hirabayashi, Akira; Bokor, Nandor

    2014-07-01

    In super-resolution microscopy based on fluorescence depletion, the two-color phase plate (TPP) is an indispensable optical element, which can independently control the phase shifts for two beams of different color, i.e., the pump and erase beams. By controlling a phase shift of the erase beam through the TPP, the erase beam can be modulated into a doughnut shape, while the pump beam maintains the initial Gaussian shape. To obtain a reliable optical multiplayer (ML) for the TPP, we designed a ML with only two optical layers by performing numerical optimization. The measured phase shifts generated by the fabricated ML using interferometry correspond to the design values. The beam profiles in the focal plane are also consistent with theoretical results. Although the fabricated ML consists of only two optical layers, the ML can provide a suitable phase modulation function for the TPP in a practical super-resolution microscope.

  10. Application of Pi Preform Composite Joints in Fabrication of NASA Composite Crew Module Demonstration Structure

    NASA Technical Reports Server (NTRS)

    Higgins, John E.; Pelham, Larry

    2008-01-01

    This paper will describe unique and extensive use of pre-woven and impregnated pi cross-sections in fabrication of a carbon composite demonstration structure for the Composite Crew Module (CCM) Program. The program is managed by the NASA Safety and Engineering Center with participants from ten NASA Centers and AFRL. Multiple aerospace contractors are participating in the design development, tooling and fabrication effort as well. The goal of the program is to develop an agency wide design team for composite habitable spacecraft. The specific goals for this development project are: a) To gain hands on experience in design, building and testing a composite crew module. b) To validate key assumptions by resolving composite spacecraft design details through fabrication and testing of hardware. This paper will focus on the design and fabrication issues supporting selection of the Lockheed Martin patented Pi pre-form to provide sound composite joints a numerous locations in the structure. This abstract is based on Preliminary Design data. The final design will continue to evolve through the fall of 2007 with fabrication mostly completed by conference date.

  11. Fabrication and characterization of bioactive wollastonite/PHBV composite scaffolds.

    PubMed

    Li, Haiyan; Chang, Jiang

    2004-11-01

    Composite scaffolds of polyhydroxybutyrate-polyhydroxyvalerate (PHBV) with bioactive wollastonite were fabricated by a compression moulding, thermal processing, and salt particulate leaching method. Structure and mechanical properties of the scaffolds were determined. The bioactivity of the composites was evaluated by soaking in a simulated body fluid (SBF), and the formation of the hydroxyapatite (HAp) layer was determined by Scanning Electron Microscope (SEM) and Energy-Dispersive Spectrometer (EDS). The results showed that the wollastonite/PHBV composites were bioactive as it induced the formation of HAp on the surface of the composite scaffolds after soaking in SBF for 14 days. In addition, the measurements of the water contact angles suggested that incorporation of wollastonite into PHBV could improve the hydrophilicity of the composites and the enhancement was dependent on the wollastonite content. Furthermore, the pH and ion concentration changes of SBF solutions with composite scaffolds showed that the composites released Ca and Si ions, which could neutralize the acidic by-products of the PHBV and stabilize the pH of the SBF solutions between 7.2 and 7.8 within a 3-week soaking period. All of these results suggest that the incorporation of wollastonite was a useful approach to obtain composite scaffolds with improved properties.

  12. Improved thermoelectric power output from multilayered polyethylenimine doped carbon nanotube based organic composites

    SciTech Connect

    Hewitt, Corey A.; Montgomery, David S.; Barbalace, Ryan L.; Carlson, Rowland D.; Carroll, David L.

    2014-05-14

    By appropriately selecting the carbon nanotube type and n-type dopant for the conduction layers in a multilayered carbon nanotube composite, the total device thermoelectric power output can be increased significantly. The particular materials chosen in this study were raw single walled carbon nanotubes for the p-type layers and polyethylenimine doped single walled carbon nanotubes for the n-type layers. The combination of these two conduction layers leads to a single thermocouple Seebeck coefficient of 96 ± 4 μVK{sup −1}, which is 6.3 times higher than that previously reported. This improved Seebeck coefficient leads to a total power output of 14.7 nW per thermocouple at the maximum temperature difference of 50 K, which is 44 times the power output per thermocouple for the previously reported results. Ultimately, these thermoelectric power output improvements help to increase the potential use of these lightweight, flexible, and durable organic multilayered carbon nanotube based thermoelectric modules in low powered electronics applications, where waste heat is available.

  13. Transverse shear stresses and their sensitivity coefficients in multilayered composite panels

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Kim, Yong H.; Peters, Jeanne M.

    1994-01-01

    A computational procedure is presented for the accurate determination of transverse shear stresses and their sensitivity coefficients in flat multilayered composite panels subjected to mechanical and thermal loads. The sensitivity coefficients measure the sensitivity of the transverse shear stresses to variations in the different lamination and material parameters of the panel. The panel is discretized by using either a three-field mixed finite element model based on a two-dimensional first- order shear deformation plate theory or a two-field degenerate solid element with each of the displacement components having a linear variation throughout the thickness of the laminate. The evaluation of transverse shear stresses can be conveniently divided into two phases. The first phase consists of using a superconvergent recovery technique for evaluating the in-plane stresses in the different layers. In the second phase, the transverse shear stresses are evaluated by using piecewise integration, in the thickness direction, of the three-dimensional equilibrium equations. The same procedure is used for evaluating the sensitivity coefficients of the transverse shear stresses. The effectiveness of the computational procedure is demonstrated by means of numerical examples of multilayered cross-ply panels subjected to transverse loading, uniform temperature change, and uniform temperature gradient through the thickness of the panel. In each case the standard of the comparison is taken to be the exact solution of the three dimensional thermoelasticity equations of the panel.

  14. Investigation of Lamb elastic waves in anisotropic multilayered composites applying the Green's matrix.

    PubMed

    Karmazin, Alexander; Kirillova, Evgenia; Seemann, Wolfgang; Syromyatnikov, Pavel

    2011-01-01

    This article presents a numerical study of dispersion characteristics of some symmetric and antisymmetric composites modelled as multilayered packets of layers with arbitrary anisotropy of each layer. The authors introduce a subsidiary boundary problem of three-dimensional elasticity theory for the system of partial differential equations describing the harmonic oscillations of the composite caused by a surface load. The problem reduces to a boundary problem for ordinary differential equations by employing the Fourier transform. An algorithm of constructing the Fourier transform of the Green's matrix of the given boundary problem is presented. The wave numbers of Lamb waves propagating in composites, their phase velocity surfaces and group wave surfaces are presented through the poles of the transform of the Green's matrix. The authors obtain the dispersion curves for different directions and frequencies and investigate the dispersion curves and surfaces of wave numbers, phase velocities and group wave surfaces for various composites. The numerical results are then compared with the results obtained by applying other methods.

  15. Low Temperature Thermal Conductivity of Woven Fabric Glass Fibre Composites

    NASA Astrophysics Data System (ADS)

    Kanagaraj, S.; Pattanayak, S.

    2004-06-01

    Fibre reinforced composites are replacing conventional materials due to its compatible and superior properties at low temperatures. Transverse thermal conductivity of plain fabric E-glass/Epoxy composites with the fibre concentrations of 32.5%, 35.2%, 39.2% and 48.9% has been studied in a GM-refrigerator based experimental setup using guarded hotplate technique. Experiments are carried out with the sets of stability criteria. This paper presents the investigation of the influence of the fibre concentration and temperature on the thermal conductivity of fabric composites from 30 K to 300K. It is observed from the experimental results that thermal conductivity increases with the increase of temperature and also with fibre concentration with different rate in different temperature range. The series model has been used to predict the thermal conductivity and compared with the experimental results. It is observed that below the crossover temperature of the composites, which varies from 150-225K depending upon their fibre concentration, the experimental results are within 10% with that of predicted values. The possible causes of variation are analyzed. The physical phenomenon behind the temperature dependence of thermal conductivity is discussed in detail.

  16. Low Temperature Thermal Conductivity of Woven Fabric Glass Fibre Composites

    SciTech Connect

    Kanagaraj, S.; Pattanayak, S.

    2004-06-28

    Fibre reinforced composites are replacing conventional materials due to its compatible and superior properties at low temperatures. Transverse thermal conductivity of plain fabric E-glass/Epoxy composites with the fibre concentrations of 32.5%, 35.2%, 39.2% and 48.9% has been studied in a GM-refrigerator based experimental setup using guarded hotplate technique. Experiments are carried out with the sets of stability criteria. This paper presents the investigation of the influence of the fibre concentration and temperature on the thermal conductivity of fabric composites from 30 K to 300K. It is observed from the experimental results that thermal conductivity increases with the increase of temperature and also with fibre concentration with different rate in different temperature range. The series model has been used to predict the thermal conductivity and compared with the experimental results. It is observed that below the crossover temperature of the composites, which varies from 150-225K depending upon their fibre concentration, the experimental results are within 10% with that of predicted values. The possible causes of variation are analyzed. The physical phenomenon behind the temperature dependence of thermal conductivity is discussed in detail.

  17. Structural state and magnetic properties of multilayer-graphene/Fe composites

    NASA Astrophysics Data System (ADS)

    Teplykh, A. E.; Bogdanov, S. G.; Gerasimov, E. G.; Terent'ev, P. B.; Korolev, A. V.; Fedorov, V. E.; Makotchenko, V. G.; Naumov, N. G.; Campbell, B. J.; Pirogov, A. N.

    2016-02-01

    Results are given of measurements of X-ray and neutron diffraction, small-angle neutron scattering, and field dependences of the magnetization for nanocomposites formed by multilayer graphene and iron particles. Four samples have been investigated that differed in the content of Fe as follows: 0.75, 30, 45, and 70 wt %. The calculations of the X-ray diffraction and neutron diffraction patterns show that the size of graphene particles is about 4 nm, and the size of the iron domains of coherent scattering is no less than 50 nm. The content of the Fe particles in the composites has been estimated based on the data of the measurements of neutron diffraction, small-angle neutron scattering, and magnetization. The values of the iron concentration obtained by different methods differ quite significantly. The difference is caused by the specific character of the methods of measurements.

  18. Investigation on stress distribution of multilayered composite structure (MCS) using infrared thermographic technique

    NASA Astrophysics Data System (ADS)

    Liu, Junyan; Gong, Jinlong; Liu, Liqiang; Qin, Lei; Wang, Yang

    2013-11-01

    In this paper, the thermoelastic stress analysis (TSA) on a multilayered composite structure (MCS) was investigated by means of lock-in thermographic image technique (LITI). The application of thermoelastic stress analysis on MCS becomes particularly complicated due to consisting of different material components, which determines the different thermoelastic coupling response depended on material thermal-physical property. The thermoelastic coupling constants (TCC) of GFRP, medium-carbon steel and foam were obtained through thermomechanical calibration experiments, respectively. An artificial neural network was proposed to determine the component of MCS. Comparisons between finite element analysis (FEA) and LITI measurement are reported. It is found that the stress distribution of MCS can be evaluated with good accuracies using LITI measurement.

  19. An Investigation on Low Velocity Impact Response of Multilayer Sandwich Composite Structures

    PubMed Central

    Jedari Salami, S.; Sadighi, M.; Shakeri, M.; Moeinfar, M.

    2013-01-01

    The effects of adding an extra layer within a sandwich panel and two different core types in top and bottom cores on low velocity impact loadings are studied experimentally in this paper. The panel includes polymer composite laminated sheets for faces and the internal laminated sheet called extra layer sheet, and two types of crushable foams are selected as the core material. Low velocity impact tests were carried out by drop hammer testing machine to the clamped multilayer sandwich panels with expanded polypropylene (EPP) and polyurethane rigid (PUR) in the top and bottom cores. Local displacement of the top core, contact force and deflection of the sandwich panel were obtained for different locations of the internal sheet; meanwhile the EPP and PUR were used in the top and bottom cores alternatively. It was found that the core material type has made significant role in improving the sandwich panel's behavior compared with the effect of extra layer location. PMID:24453804

  20. Fabrication of composite spray powders using reaction synthesis

    SciTech Connect

    Shaw, K.G.; McCoy, K.P.; Trogolo, J.A.

    1994-12-31

    Intermetallic composite powders including up to 30 volume percent ceramic reinforcing phase have been fabricated without using binders by reaction synthesis. The mechanics of the process are discussed as related to the necessary reaction ignition condition. A detailed mechanism of the reaction and incorporation of the reinforcing phase is presented based on electron microscopy and thermodynamic calculations. The structure of NiAl-Al{sub 2}O{sub 3} composite powders and plasma sprayed coatings are reported. it is shown that uniform lamellar intermetallic composites with sub-micrometer features may be formed by spraying these powders using a single gun geometry. These materials may be useful in the formation of functionally gradient intermetallic-ceramic structures.

  1. Mirrors fabricated with slightly oxidized C/C composites

    NASA Astrophysics Data System (ADS)

    Wang, Yongjie; Xu, Liang; Ding, Jiaoteng; Xie, Yongjie; Ma, Zhen

    2016-10-01

    Up to now, traditional materials, such as glass, metal and SiC ceramic, gradually begin to be unsatisfied development of the future mirrors. Designable carbon fiber reinforced composites became optimized material for large aperture lightweight mirrors. Carbon/carbon composites exhibit low thermal expansion and no moisture-absorption expansion problem, therefore, they get particular attention in the space reflector field. Ni was always employed as optical layer in the mirror, however, the coating behaved poor bond with substrate and often peeled off during optical processing. In order to solve this problem, slight oxidation was carried on the C/C composites before Ni plated. The Ni coating exhibited stronger coherence and better finish performance. Finally, a 100mm diameter plane mirror was successful fabricated.

  2. Contrast Enhancement of MicroCT Scans to Aid 3D Modelling of Carbon Fibre Fabric Composites

    NASA Astrophysics Data System (ADS)

    Djukic, Luke P.; Pearce, Garth M.; Herszberg, Israel; Bannister, Michael K.; Mollenhauer, David H.

    2013-12-01

    This paper presents a methodology for volume capture and rendering of plain weave and multi-layer fabric meso-architectures within a consolidated, cured laminate. Micro X-ray Computed Tomography (MicroCT) is an excellent tool for the non-destructive visualisation of material microstructures however the contrast between tows and resin is poor for carbon fibre composites. Firstly, this paper demonstrates techniques to improve the contrast of the microCT images by introducing higher density materials such as gold, iodine and glass into the fabric. Two approaches were demonstrated to be effective for enhancing the differentiation between the tows in the reconstructed microCT visualisations. Secondly, a method of generating three-dimensional volume models of woven composites using microCT scan data is discussed. The process of generating a model is explained from initial manufacture with the aid of an example plain weave fabric. These methods are to be used in the finite element modelling of three-dimensional fabric preforms in future work.

  3. Fabrication and characterization of magnetic nanoparticle composite membranes

    NASA Astrophysics Data System (ADS)

    Cruickshank, Akeem Armand

    To effectively and accurately deliver drugs within the human body, both new designs and components for implantable micropumps are being studied. Designs must ensure high biocompatibility, drug compatibility, accuracy and small power consumption. The focus of this thesis was to fabricate a prototype magnetic nanoparticle membrane for eventual incorporation into a biomedical pump and then determine the relationship between this membrane deflection and applied pneumatic or magnetic force. The magnetic nanoparticle polymer composite (MNPC) membranes in this study were composed of crosslinked polydimethylsiloxane (PDMS) and iron oxide nanoparticles (IONPs). An optimal iron oxide fabrication route was identified and particle size in each batch was approximately 24.6 nm. Once these nanoparticles were incorporated into a membrane (5 wt. %), the nanoparticle formed agglomerates with an average diameter of 2.26 +/-1.23 microm. Comparisons between the 0 and 5 wt. % loading of particles into the membranes indicated that the elastic modulus of the composite decreased with increasing particle concentration. The pressure- central deflection of the membranes could not be predicated by prior models and variation between magnetic and pneumatic pressure-deflection curves was quantified. Attempts to fabricate membranes with above 5 wt. % nanoparticles were not successful (no gelation). Fourier Transform Infrared (FTIR) spectroscopy results suggest that excess oleic acid on the nanoparticles prior to mixing might have prevented crosslinking.

  4. Fabricating Composite-Material Structures Containing SMA Ribbons

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Cano, Roberto J.; Lach, Cynthia L.

    2003-01-01

    An improved method of designing and fabricating laminated composite-material (matrix/fiber) structures containing embedded shape-memory-alloy (SMA) actuators has been devised. Structures made by this method have repeatable, predictable properties, and fabrication processes can readily be automated. Such structures, denoted as shape-memory-alloy hybrid composite (SMAHC) structures, have been investigated for their potential to satisfy requirements to control the shapes or thermoelastic responses of themselves or of other structures into which they might be incorporated, or to control noise and vibrations. Much of the prior work on SMAHC structures has involved the use SMA wires embedded within matrices or within sleeves through parent structures. The disadvantages of using SMA wires as the embedded actuators include (1) complexity of fabrication procedures because of the relatively large numbers of actuators usually needed; (2) sensitivity to actuator/ matrix interface flaws because voids can be of significant size, relative to wires; (3) relatively high rates of breakage of actuators during curing of matrix materials because of sensitivity to stress concentrations at mechanical restraints; and (4) difficulty of achieving desirable overall volume fractions of SMA wires when trying to optimize the integration of the wires by placing them in selected layers only.

  5. Sub-nanoliter nuclear magnetic resonance coils fabricated with multilayer soft lithography

    NASA Astrophysics Data System (ADS)

    Lam, Matthew H. C.; Homenuke, Mark A.; Michal, Carl A.; Hansen, Carl L.

    2009-09-01

    We describe the fabrication and characterization of sub-nanoliter volume nuclear magnetic resonance (NMR) transceiver coils that are easily amenable to integration within PDMS-based microfluidics. NMR coils were constructed by the injection of liquid metal into solenoidal cavities created around a microchannel using consecutive replica molding and bonding of PDMS layers. This construction technique permits the integration of NMR coils with solenoidal, toroidal or other three-dimensional geometries within highly integrated microfluidic systems and are one step toward NMR-based chemical screening and analysis on chip. The current proof-of-principle implementation displays limited sensitivity and resolution due to the conductivity and magnetic susceptibilities of the construction materials. However, NMR measurements and finite-element simulations made with the current device geometry indicate that optimization of these materials will allow for the collection of spectra from sub-millimolar concentration samples in less than 1 nL of solution.

  6. Fabrication and application of porous silicon multilayered microparticles in sustained drug delivery

    NASA Astrophysics Data System (ADS)

    Maniya, Nalin H.; Patel, Sanjaykumar R.; Murthy, Z. V. P.

    2015-09-01

    In the present study, the ability of porous silicon (PSi) based distributed Bragg reflector (DBR) microparticles for sustained and observable delivery of the antiviral agent acyclovir (ACV) is demonstrated. DBR was fabricated by electrochemical etching of single crystal silicon wafers and ultrasonic fractured to prepare microparticles. The hydrogen-terminated native surface of DBR microparticles was modified by thermal oxidation and thermal hydrosilylation. Particles were loaded with ACV and drug release experiments were conducted in phosphate buffered saline. Drug loading and surface chemistry of particles were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. Drug release profiles from PSi DBR particles show sustained release behavior from all three studied surface chemistries. Drug release from particles was also monitored from change in color of particles.

  7. Fabrication of interface-modified ramp-edge junction on YBCO ground plane with multilayer structure

    NASA Astrophysics Data System (ADS)

    Wakana, H.; Adachi, S.; Kamitani, A.; Sugiyama, H.; Sugano, T.; Horibe, M.; Ishimaru, Y.; Tarutani, Y.; Tanabe, K.

    2003-10-01

    We examined the fabrication conditions to obtain high-quality ramp-edge Josephson junctions on a liquid-phase-epitaxy YBa 2Cu 3O y (LPE-YBCO) ground plane, in particular, focusing on the fabrication of a suitable insulating layer on the ground plane and the post-annealing conditions to load oxygen to the ground plane. A (LaAlO 3) 0.3-(SrAl 0.5Ta 0.5O 3) 0.7 (LSAT) insulating film on the ground planes exhibited a conductance ranging from 10 -4 to 10 -8 S after deposition of an upper superconducting film, suggesting existence of some leak paths through the LSAT insulating layer. By introducing approximately 30 nm thick SrTiO 3 (STO) buffer layers on both side of the LSAT insulating layer. We reproducibly obtained a conductance lower than 10 -8 S. The dielectric constant of the STO/LSAT/STO layer was 32, which was slightly larger than that of the single LSAT layer. It was found that a very slow cooling rate of 1.0 °C/h in oxygen was needed to fully oxidize the ground plane through the STO/LSAT/STO insulating layers, while the oxidation time could be effectively reduced by introducing via holes in the insulating layer at an interval of 200 μm. Ramp-edge junctions on LPE-YBCO ground planes with STO/LSAT/STO insulating layers exhibited a 1 σ-spread in Ic of 8% for 100-junction series-arrays and a sheet inductance of 0.7 pH/□ at 4.2 K.

  8. Structural and optical properties of Al-Tb/SiO2 multilayers fabricated by electron beam evaporation

    NASA Astrophysics Data System (ADS)

    Blázquez, O.; López-Vidrier, J.; López-Conesa, L.; Busquets-Masó, M.; Estradé, S.; Peiró, F.; Hernández, S.; Garrido, B.

    2016-10-01

    Light emitting Al-Tb/SiO2 nanomultilayers (NMLs) for optoelectronic applications have been produced and characterized. The active layers were deposited by electron beam evaporation onto crystalline silicon substrates, by alternatively evaporating nanometric layers of Al, Tb, and SiO2. After deposition, all samples were submitted to an annealing treatment for 1 h in N2 atmosphere at different temperatures, ranging from 700 to 1100 °C. Transmission electron microscopy confirmed the NML structure quality, and by complementing the measurements with electron energy-loss spectroscopy, the chemical composition of the multilayers was determined at the nanoscopic level. The average composition was also measured by X-ray photoelectron spectroscopy (XPS), revealing that samples containing Al are highly oxidized. Photoluminescence experiments exhibit narrow emission lines ascribed to Tb3+ ions in all samples (both as-deposited and annealed ones), together with a broadband related to SiO2 defects. The Tb-related emission intensity in the sample annealed at 1100 °C is more than one order of magnitude higher than identical samples without Al. These effects have been ascribed to the higher matrix quality, less SiO2 defects emitting, and a better Tb3+ configuration in the SiO2 matrix thanks to the higher oxygen content favored by the incorporation of Al atoms, as revealed by XPS experiments.

  9. Method of Fabricating Chopped-Fiber Composite Piston

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1999-01-01

    A three-dimensional piston molding is fabricated from a mixture of chopped, carbon tow filaments of variable length, which are prepregged with carbonaceous organic resins and/or pitches and molded by conventional molding processes into a near net shape, to form a carbon-fiber reinforced organic-matrix composite part. Continuous reinforcement in the form of carbon-carbon composite tapes or pieces of fabric can be also laid in the mold before or during the charging of the mold with the chopped-fiber mixture, to enhance the strength in the crown and wrist-pin areas. The molded chopped-fiber reinforced organic-matrix composite parts are then pyrolized in an inert atmosphere, to convert the organic matrix materials to carbon. These pyrolized parts are then densified by reimpregnation with resins or pitches, which are subsequently carbonized. Densification is also accomplished by direct infiltration with carbon by vapor deposition processes. Once the desired density has been achieved, the piston molds are machined to final piston dimensions, and piston ring grooves are added. To prevent oxidation and/or to seal the piston surface or near surface, the chopped-fiber piston is coated with ceramic and/or metallic sealants: and/or coated with a catalyst.

  10. Preparation, Fabrication, and Evaluation of Advanced Polymeric and Composite Materials

    NASA Technical Reports Server (NTRS)

    Orwoll, Robert A.

    1997-01-01

    The thesis titles are given below: physical and mechanical behavior of amorphous poly(arylene ether-co-imidasole)s and poly(arylene ether-co-imidasole) modification epoxies; the requirements of patentability as applied to the chemical arts; fabrication of thermoplastic polymer composite ribbon; blend of reactive diluents with phenylethynyl-terminated arylene ether oligomers; the synthesis, characterization, and application of ether-containing polyimides; the synthesis of reflective and electrically conductive polyimide films via an in-situ self-metalization procedure using silver (I) complexes; the thermal cure of phenylethynyl terminated polyimides and selected model compounds; and the synthesis, characterization, and molecular modeling of cyclic arylene ether oligomers.

  11. Nano-Al{sub 2}O{sub 3} multilayer film deposition on cotton fabrics by layer-by-layer deposition method

    SciTech Connect

    Ugur, Sule S.; Sariisik, Merih; Aktas, A. Hakan

    2011-08-15

    Highlights: {yields} Cationic charges were created on the cotton fibre surfaces with 2,3-epoxypropyltrimethylammonium chloride. {yields} Al{sub 2}O{sub 3} nanoparticles were deposited on the cotton fabrics by layer-by-layer deposition. {yields} The fabrics deposited with the Al{sub 2}O{sub 3} nanoparticles exhibit better UV-protection and significant flame retardancy properties. {yields} The mechanical properties were improved after surface film deposition. -- Abstract: Al{sub 2}O{sub 3} nanoparticles were used for fabrication of multilayer nanocomposite film deposition on cationic cotton fabrics by electrostatic self-assembly to improve the mechanical, UV-protection and flame retardancy properties of cotton fabrics. Cotton fabric surface was modified with a chemical reaction to build-up cationic charge known as cationization. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy and Scanning Electron Microscopy were used to verify the presence of deposited nanolayers. Air permeability, whiteness value, tensile strength, UV-transmittance and Limited Oxygen Index properties of cotton fabrics were analyzed before and after the treatment of Al{sub 2}O{sub 3} nanoparticles by electrostatic self-assemblies. It was proved that the flame retardancy, tensile strength and UV-transmittance of cotton fabrics can be improved by Al{sub 2}O{sub 3} nanoparticle additive through electrostatic self-assembly process.

  12. Optimal fabrication processes for unidirectional metal-matrix composites: A computational simulation

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Murthy, P. L. N.; Morel, M.

    1990-01-01

    A method is proposed for optimizing the fabrication process of unidirectional metal matrix composites. The temperature and pressure histories are optimized such that the residual microstresses of the composite at the end of the fabrication process are minimized and the material integrity throughout the process is ensured. The response of the composite during the fabrication is simulated based on a nonlinear micromechanics theory. The optimal fabrication problem is formulated and solved with non-linear programming. Application cases regarding the optimization of the fabrication cool-down phases of unidirectional ultra-high modulus graphite/copper and silicon carbide/titanium composites are presented.

  13. Optimal fabrication processes for unidirectional metal-matrix composites - A computational simulation

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Murthy, P. L. N.; Morel, M.

    1990-01-01

    A method is proposed for optimizing the fabrication process of unidirectional metal matrix composites. The temperature and pressure histories are optimized such that the residual microstresses of the composite at the end of the fabrication process are minimized and the material integrity throughout the process is ensured. The response of the composite during the fabrication is simulated based on a nonlinear micromechanics theory. The optimal fabrication problem is formulated and solved with nonlinear programming. Application cases regarding the optimization of the fabrication cool-down phases of unidirectional ultra-high modulus graphite/copper and silicon carbide/titanium composites are presented.

  14. Synthesis of CoFe/Al2O3 composite nanoparticles as the impedance matching layer of wideband multilayer absorber

    NASA Astrophysics Data System (ADS)

    Zhen, L.; Gong, Y. X.; Jiang, J. T.; Xu, C. Y.; Shao, W. Z.; Liu, P.; Tang, J.

    2011-04-01

    CoFe/Al2O3 composite nanoparticles were successfully prepared by hydrogen-thermally reducing cobalt aluminum ferrite. Compared with CoFe alloy nanoparticles, the permeability of CoFe/Al2O3 composite nanoparticles was remarkably enhanced and an improved impedance characteristic was achieved due to the introduction of insulated Al2O3. A multilayer absorber with CoFe/Al2O3 composite nanoparticles as the impedance matching layer and CoFe nanoflake as the dissipation layer was designed by using genetic algorithm, in which an ultrawide operation frequency bandwidth over 2.5-18 GHz was obtained. The microwave absorption performance in both normal and oblique incident case was evaluated by using electromagnetic simulator. The backward radar cross-section (RCS) was decreased at least 10 dB over a wide frequency range by covering the multilayer absorber on the surface of perfect electrical conductive plate.

  15. Fabrication of cationic chitin nanofiber/alginate composite materials.

    PubMed

    Sato, Koki; Tanaka, Kohei; Takata, Yusei; Yamamoto, Kazuya; Kadokawa, Jun-Ichi

    2016-10-01

    We have already found that an amidinated chitin, which was prepared by the reaction of a partially deacetylated chitin with N,N-dimethylacetamide dimethyl acetal, was converted into an amidinium chitin bicarbonate with nanofiber morphology by CO2 gas bubbling and ultrasonic treatments in water. In this study, we performed the fabrication of composite materials of such cationic chitin nanofibers with an anionic polysaccharide, sodium alginate, by ion exchange. When the amidinium chitin bicarbonate nanofiber aqueous dispersion was added to an aqueous solution of sodium alginate, the composite material was agglomerated, which was isolated by centrifugation, filtration, and lyophilization, to form a manipulatable sheet. The morphology of the resulting sheet at nano-scale was evaluated by SEM measurement.

  16. Fabrication and electromagnetic properties of fe nanofibers composites

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Bok; Hong, Sung-Jin; Yi, Jin-Woo; Lee, Sang-Kwan; Choa, Yong-Ho; Kim, Jin-Bong

    2012-02-01

    In order to develop electromagnetic (EM) wave absorbing materials in the giga-hertz (GHz) frequency range, Fe nanofibers have been prepared by multi-nozzle electrospinning process (ESP) and heat treatments. The effects of applied voltage and feed rate on the morphology of electrospun PVP/Fe salt nanofibers have been studied in the electrospinning process. The average diameter and the standard deviation of electrospun nanofibers tend to decrease with the increase of the applied voltage and the decrease of the feed rate, respectively. Through the heat treatments of calcination and H2 reduction, as-spun PVP/Fe salt has been stepwise transformed into Fe2O3, Fe3O4, and Fe phases. To evaluate the EM characteristic of the prepared Fe nanofibers, epoxy matrix composites containing Fe nanofibers of 10 and 30 wt% have been fabricated. The Fe nanofibers have improved the EM characteristics of composites as compared to those of nano-sized metallic particles.

  17. Wrapping process for fabrication of A-15 superconducting composite wires

    DOEpatents

    Suenaga, M.; Klamut, C.J.; Luhman, T.S.

    1980-08-15

    A method for fabricating superconducting wires wherein a billet of copper containing filaments of niobium or vanadium is rolled to form a strip which is wrapped about a tin-alloy core to form a composite. The alloy is a tin-copper alloy for niobium filaments and a gallium-copper alloy for vanadium filaments. The composite is then drawn down to a desired wire size and heat treated. During the heat treatment process, the tin in the bronze reacts with the niobium to form the superconductor niobium tin. In the case where vanadium is used, the gallium in the gallium bronze reacts with the vanadium to form the superconductor vanadium gallium. This new process eliminates the costly annealing steps, external tin plating and drilling of bronze ingots required in a number of prior art processes.

  18. Fabrication of dopamine-modified hyaluronic acid/chitosan multilayers on titanium alloy by layer-by-layer self-assembly for promoting osteoblast growth

    NASA Astrophysics Data System (ADS)

    Zhang, Xinming; Li, Zhaoyang; Yuan, Xubo; Cui, Zhenduo; Yang, Xianjin

    2013-11-01

    The bare inert surface of titanium (Ti) alloy typically causes early failures in implants. Layer-by-layer self-assembly is one of the simple methods for fabricating bioactive multilayer coatings on titanium implants. In this study, a dopamine-modified hyaluronic acid/chitosan (DHA/CHI) bioactive multilayer was built on the surface of Ti-24Nb-2Zr (TNZ) alloy. Zeta potential oscillated between -2 and 17 mV for DHA- and CHI-ending layers during the assembly process, respectively. The DHA/CHI multilayer considerably decreased the contact angle and dramatically improved the wettability of TNZ alloy. Atomic force microscopy results revealed a rough surface on the original TNZ alloy, while the surface became smoother and more homogeneous after the deposition of approximately 5 bilayers (TNZ/(DHA/CHI)5). X-ray photoelectron spectroscopy analysis indicated that the TNZ/(DHA/CHI)5 sample was completely covered by polyelectrolytes. Pre-osteoblast MC3T3-E1 cells were cultured on the original TNZ alloy and TNZ/(DHA/CHI)5 to evaluate the effects of DHA/CHI multilayer on osteoblast proliferation in vitro. The proliferation of osteoblasts on TNZ/(DHA/CHI)5 was significantly higher than that on the original TNZ alloy. The results of this study indicate that the proposed technique improves the biocompatibility of TNZ alloy and can serve as a potential modification method in orthopedic applications.

  19. Rapid Fabrication of Carbide Matrix/Carbon Fiber Composites

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Bernander, Robert E.

    2007-01-01

    Composites of zirconium carbide matrix material reinforced with carbon fibers can be fabricated relatively rapidly in a process that includes a melt infiltration step. Heretofore, these and other ceramic matrix composites have been made in a chemical vapor infiltration (CVI) process that takes months. The finished products of the CVI process are highly porous and cannot withstand temperatures above 3,000 F (approx.1,600 C). In contrast, the melt-infiltration-based process takes only a few days, and the composite products are more nearly fully dense and have withstood temperatures as high as 4,350 F (approx.2,400 C) in a highly oxidizing thrust chamber environment. Moreover, because the melt- infiltration-based process takes much less time, the finished products are expected to cost much less. Fabrication begins with the preparation of a carbon fiber preform that, typically, is of the size and shape of a part to be fabricated. By use of low-temperature ultraviolet-enhanced chemical vapor deposition, the carbon fibers in the preform are coated with one or more interfacial material(s), which could include oxides. The interfacial material helps to protect the fibers against chemical attack during the remainder of the fabrication process and against oxidation during subsequent use; it also enables slippage between the fibers and the matrix material, thereby helping to deflect cracks and distribute loads. Once the fibers have been coated with the interfacial material, the fiber preform is further infiltrated with a controlled amount of additional carbon, which serves as a reactant for the formation of the carbide matrix material. The next step is melt infiltration. The preform is exposed to molten zirconium, which wicks into the preform, drawn by capillary action. The molten metal fills most of the interstices of the preform and reacts with the added carbon to form the zirconium carbide matrix material. The zirconium does not react with the underlying fibers because they

  20. Frictionless Contact of Multilayered Composite Half Planes Containing Layers With Complex Eigenvalues

    NASA Technical Reports Server (NTRS)

    Zhang, Wang; Binienda, Wieslaw K.; Pindera, Marek-Jerzy

    1997-01-01

    A previously developed local-global stiffness matrix methodology for the response of a composite half plane, arbitrarily layered with isotropic, orthotropic or monoclinic plies, to indentation by a rigid parabolic punch is further extended to accommodate the presence of layers with complex eigenvalues (e.g., honeycomb or piezoelectric layers). First, a generalized plane deformation solution for the displacement field in an orthotropic layer or half plane characterized by complex eigenvalues is obtained using Fourier transforms. A local stiffness matrix in the transform domain is subsequently constructed for this class of layers and half planes, which is then assembled into a global stiffness matrix for the entire multilayered half plane by enforcing continuity conditions along the interfaces. Application of the mixed boundary condition on the top surface of the half plane indented by a rigid punch results in an integral equation for the unknown pressure in the contact region. The integral possesses a divergent kernel which is decomposed into Cauchy-type and regular parts using the asymptotic properties of the local stiffness matrix and a relationship between Fourier and finite Hilbert transform of the contact pressure. The solution of the resulting singular integral equation is obtained using a collocation technique based on the properties of orthogonal polynomials developed by Erdogan and Gupta. Examples are presented that illustrate the important influence of low transverse properties of layers with complex eigenvalues, such as those exhibited by honeycomb, on the load versus contact length response and contact pressure distributions for half planes containing typical composite materials.

  1. Shape and Stress Sensing of Multilayered Composite and Sandwich Structures Using an Inverse Finite Element Method

    NASA Technical Reports Server (NTRS)

    Cerracchio, Priscilla; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander

    2013-01-01

    The marked increase in the use of composite and sandwich material systems in aerospace, civil, and marine structures leads to the need for integrated Structural Health Management systems. A key capability to enable such systems is the real-time reconstruction of structural deformations, stresses, and failure criteria that are inferred from in-situ, discrete-location strain measurements. This technology is commonly referred to as shape- and stress-sensing. Presented herein is a computationally efficient shape- and stress-sensing methodology that is ideally suited for applications to laminated composite and sandwich structures. The new approach employs the inverse Finite Element Method (iFEM) as a general framework and the Refined Zigzag Theory (RZT) as the underlying plate theory. A three-node inverse plate finite element is formulated. The element formulation enables robust and efficient modeling of plate structures instrumented with strain sensors that have arbitrary positions. The methodology leads to a set of linear algebraic equations that are solved efficiently for the unknown nodal displacements. These displacements are then used at the finite element level to compute full-field strains, stresses, and failure criteria that are in turn used to assess structural integrity. Numerical results for multilayered, highly heterogeneous laminates demonstrate the unique capability of this new formulation for shape- and stress-sensing.

  2. High Temperature Resin/Carbon Nanotube Composite Fabrication

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Watson, Kent A.; Sun, Keun J.; Criss, Jim M.; Siochi, Emilie J.; Connell, John W.

    2006-01-01

    For the purpose of incorporating multifunctionality into advanced composites, blends of phenylethynyl terminated imides-330 (PETI-330) and multi-walled carbon nanotubes (MWCNTs) were prepared, characterized and fabricated into moldings. PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight percent by dry mixing the components in a ball mill. The resulting powders were characterized for degree of mixing, thermal and rheological properties. Based on the characterization results, PETI-330/MWCNT samples were scaled up to approximately 300 g and used to fabricate moldings by injecting the mixtures at 260-280 deg C into a stainless steel tool followed by curing for 1 h at 371 deg C. The tool was designed to impart a degree of shear during the injection process in an attempt to achieve some alignment of the MWCNTs in the flow direction. Obtained moldings were subsequently characterized for thermal, mechanical, and electrical properties. The degree of dispersion and alignment of MWCNTs were investigated using high-resolution scanning electron microscopy. The preparation and preliminary characterization of PETI-330/MWCNT composites will be discussed.

  3. Polycaprolactone/starch composite: Fabrication, structure, properties, and applications.

    PubMed

    Ali Akbari Ghavimi, Soheila; Ebrahimzadeh, Mohammad H; Solati-Hashjin, Mehran; Abu Osman, Noor Azuan

    2015-07-01

    Interests in the use of biodegradable polymers as biomaterials have grown. Among the different polymeric composites currently available, the blend of starch and polycaprolactone (PCL) has received the most attention since the 1980s. Novamont is the first company that manufactured a PCL/starch (SPCL) composite under the trademark Mater-Bi®. The properties of PCL (a synthetic, hydrophobic, flexible, expensive polymer with a low degradation rate) and starch (a natural, hydrophilic, stiff, abundant polymer with a high degradation rate) blends are interesting because of the composite components have completely different structures and characteristics. PCL can adjust humidity sensitivity of starch as a biomaterial; while starch can enhance the low biodegradation rate of PCL. Thus, by appropriate blending, SPCL can overcome important limitations of both PCL and starch components and promote controllable behavior in terms of mechanical properties and degradation which make it suitable for many biomedical applications. This article reviewed the different fabrication and modification methods of the SPCL composite; different properties such as structural, physical, and chemical as well as degradation behavior; and different applications as biomaterials.

  4. Interpenetrating phase ceramic/polymer composite coatings: Fabrication and characterization

    NASA Astrophysics Data System (ADS)

    Craig, Bradley Dene

    The goals of this thesis research were to fabricate interpenetrating phase composite (IPC) ceramic/polymer coatings and to investigate the effect of the interconnected microstructure on the physical and wear properties of the coatings. IPC coatings with an interpenetrating phase microstructure were successfully fabricated by first forming a porous ceramic with an interconnected microstructure using a chemical bonding route (mainly reacting alpha-alumina (0.3 mum) with orthophosphoric acid to form a phosphate bond). Porosity within these ceramic coatings was easily controlled between 20 and 50 vol. % by phosphoric acid addition, and was measured by a new porosity measurement technique (thermogravimetric volatilization of liquids, or TVL) which was developed. The resulting ceramic preforms were infiltrated with a UV and thermally curable cycloaliphatic epoxide resin and cured. This fabrication route resulted in composite coatings with thicknesses ranging from ˜1mum to 100 mum with complete filling of open pore space. The physical properties of the composite coatings, including microhardness, flexural modulus and wear resistance, were evaluated as a function of processing variables, including orthophosphoric acid content and ceramic phase firing temperature, which affected the microstructure and interparticulate bonding between particles in the coatings. For example, microhardness increased from ˜30 on the Vicker's scale to well over 200 as interparticulate bonding was increased in the ceramic phase. Additionally, Taber wear resistance in the best TPC coatings was found to approach that of fully-densified alumina under certain conditions. Several factors were found to influence the wear mechanism in the IPC coating materials. Forming strong connections between ceramic particles led to up to an order of magnitude increase in the wear resistance. Additionally, coating microhardness and ceramic/polymer interfacial strength were studied and found to be important in

  5. Layer-by-Layer Assembled Architecture of Polyelectrolyte Multilayers and Graphene Sheets on Hollow Carbon Spheres/Sulfur Composite for High-Performance Lithium-Sulfur Batteries.

    PubMed

    Wu, Feng; Li, Jian; Su, Yuefeng; Wang, Jing; Yang, Wen; Li, Ning; Chen, Lai; Chen, Shi; Chen, Renjie; Bao, Liying

    2016-09-14

    In the present work, polyelectrolyte multilayers (PEMs) and graphene sheets are applied to sequentially coat on the surface of hollow carbon spheres/sulfur composite by a flexible layer-by-layer (LBL) self-assembly strategy. Owing to the strong electrostatic interactions between the opposite charged materials, the coating agents are very stable and the coating procedure is highly efficient. The LBL film shows prominent impact on the stability of the cathode by acting as not only a basic physical barrier, and more importantly, an ion-permselective film to block the polysulfides anions by Coulombic repulsion. Furthermore, the graphene sheets can help to stabilize the polyelectrolytes film and greatly reduce the inner resistance of the electrode by changing the transport of the electrons from a "point-to-point" mode to a more effective "plane-to-point'' mode. On the basis of the synergistic effect of the PEMs and graphene sheets, the fabricated composite electrode exhibits very stable cycling stability for over 200 cycles at 1 A g(-1), along with a high average Coulombic efficiency of 99%. With the advantages of rapid and controllable fabrication of the LBL coating film, the multifunctional architecture developed in this study should inspire the design of other lithium-sulfur cathodes with unique physical and chemical properties.

  6. Investigation of magnetostrictive/piezoelectric multilayer composite with a giant zero-biased magnetoelectric effect

    NASA Astrophysics Data System (ADS)

    Lu, Caijiang; Li, Ping; Wen, Yumei; Yang, Aichao; He, Wei; Zhang, Jitao; Yang, Jin; Wen, Jing; Zhu, Yong; Yu, Miao

    2013-11-01

    In this paper, we investigate the resonance magnetoelectric (ME) effect in the middle supported multilayer composites consisting of high-permeability Fe-based nanocrystalline soft magnetic alloy Fe73.5Cu1Nb3Si13.5B9 (FeCuNbSiB), Nickel (Ni), and piezoelectric Pb(Zr1- x Ti x )O3 (PZT). The coupling effect between positive magnetostrictive FeCuNbSiB and negative magnetostrictive Ni results in the build-in magnetic bias due to their different magnetic permeability and coercivity. As a result, a giant resonance ME voltage coefficient ( α ME, r ) at zero DC magnetic bias field ( H dc) and multi-peaks of α ME, r for FeCuNbSiB/Ni/PZT/Ni/FeCuNbSiB composite are observed. The experimental results show that the giant zero-biased α ME, r strongly depends on the thickness of FeCuNbSiB ribbon. The maximum zero-biased α ME, r is up to 86 V/cm Oe for FeCuNbSiB/Ni/PZT/Ni/FeCuNbSiB with four-layer FeCuNbSiB ribbons, which is ˜500 times higher than that of the previously reported NKNLS-NZF/Ni/NKNLS-NZF trilayer composite. Compared with the peak α ME, r and the optimum H dc of Ni/PZT/Ni composite, the largest peak α ME, r of FeCuNbSiB/Ni/PZT/Ni/FeCuNbSiB composite with four-layer FeCuNbSiB ribbons increases ˜185 %, and the optimum H dc decreases ˜300 Oe, respectively. Based on the nonlinear magnetostrictive constitutive relation and the magnetoelectric equivalent circuit, a theoretical model of α ME, r versus H dc is built under free boundary conditions. Calculated zero-biased α ME, r and α ME, r versus H dc are in good agreement with the experimental data. This laminate composite shows promising applications for high-sensitivity power-free magnetic field sensors, zero-biased ME transducers and small-size energy harvesters.

  7. Fabrication, Modelling and Application of Conductive Polymer Composites

    NASA Astrophysics Data System (ADS)

    Price, Aaron David

    Electroactive polymers (EAP) are an emerging branch of smart materials that possess the capability to change shape in the presence of an electric field. Opportunities for the advancement of knowledge were identified in the branch of EAP consisting of inherently electrically conductive polymers. This dissertation explores methods by which the unique properties of composite materials having conductive polymers as a constituent may be exploited. Chapter 3 describes the blending of polyaniline with conventional thermoplastics. Processing these polyblends into foams yielded a porous conductive material. The effect of blend composition and processing parameters on the resulting porous morphology and electrical conductivity was investigated. These findings represent the first systematic study of porous conductive polymer blends. In Chapter 4, multilayer electroactive polymer actuators consisting of polypyrrole films electropolymerized on a passive polymer membrane core were harnessed as actuators. The membrane is vital in the transport of ionic species and largely dictates the stiffness of the layered configuration. The impact of the mechanical properties of the membrane on the actuation response of polypyrrole-based trilayer bending actuators was investigated. Candidate materials with distinct morphologies were identified and their mechanical properties were evaluated. These results indicated that polyvinylidene difluoride membranes were superior to the other candidates. An electrochemical synthesis procedure was proposed, and the design of a novel polymerization vessel was reported. These facilities were utilized to prepare actuators under a variety of synthesis conditions to investigate the impact of conductive polymer morphology on the electromechanical response. Characterization techniques were implemented to quantitatively assess physical and electrochemical properties of the layered composite. Chapter 5 proposes a new unified multiphysics model that captures the

  8. Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling.

    PubMed

    Mayer, Marcel; Keskinbora, Kahraman; Grévent, Corinne; Szeghalmi, Adriana; Knez, Mato; Weigand, Markus; Snigirev, Anatoly; Snigireva, Irina; Schütz, Gisela

    2013-05-01

    Fresnel zone plates (FZPs) recently showed significant improvement by focusing soft X-rays down to ~10 nm. In contrast to soft X-rays, generally a very high aspect ratio FZP is needed for efficient focusing of hard X-rays. Therefore, FZPs had limited success in the hard X-ray range owing to difficulties of manufacturing high-aspect-ratio zone plates using conventional techniques. Here, employing a method of fabrication based on atomic layer deposition (ALD) and focused ion beam (FIB) milling, FZPs with very high aspect ratios were prepared. Such multilayer FZPs with outermost zone widths of 10 and 35 nm and aspect ratios of up to 243 were tested for their focusing properties at 8 keV and shown to focus hard X-rays efficiently. This success was enabled by the outstanding layer quality thanks to ALD. Via the use of FIB for slicing the multilayer structures, desired aspect ratios could be obtained by precisely controlling the thickness. Experimental diffraction efficiencies of multilayer FZPs fabricated via this combination reached up to 15.58% at 8 keV. In addition, scanning transmission X-ray microscopy experiments at 1.5 keV were carried out using one of the multilayer FZPs and resolved a 60 nm feature size. Finally, the prospective of different material combinations with various outermost zone widths at 8 and 17 keV is discussed in the light of the coupled wave theory and the thin-grating approximation. Al2O3/Ir is outlined as a promising future material candidate for extremely high resolution with a theoretical efficiency of more than 20% for as small an outermost zone width as 10 nm at 17 keV.

  9. Concurrent tailoring of fabrication process and interphase layer to reduce residual stresses in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, C. C.; Morel, M.

    1991-01-01

    A methodology is presented to reduce the residual matrix stresses in continuous fiber metal matrix composites (MMC) by optimizing the fabrication process and interphase layer characteristics. The response of the fabricated MMC was simulated based on nonlinear micromechanics. Application cases include fabrication tailoring, interphase tailoring, and concurrent fabrication-interphase optimization. Two composite systems, silicon carbide/titanium and graphite/copper, are considered. Results illustrate the merits of each approach, indicate that concurrent fabrication/interphase optimization produces significant reductions in the matrix residual stresses and demonstrate the strong coupling between fabrication and interphase tailoring.

  10. Economical Fabrication of Thick-Section Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Babcock, Jason; Ramachandran, Gautham; Williams, Brian; Benander, Robert

    2010-01-01

    A method was developed for producing thick-section [>2 in. (approx.5 cm)], continuous fiber-reinforced ceramic matrix composites (CMCs). Ultramet-modified fiber interface coating and melt infiltration processing, developed previously for thin-section components, were used for the fabrication of CMCs that were an order of magnitude greater in thickness [up to 2.5 in. (approx.6.4 cm)]. Melt processing first involves infiltration of a fiber preform with the desired interface coating, and then with carbon to partially densify the preform. A molten refractory metal is then infiltrated and reacts with the excess carbon to form the carbide matrix without damaging the fiber reinforcement. Infiltration occurs from the inside out as the molten metal fills virtually all the available void space. Densification to <5 vol% porosity is a one-step process requiring no intermediate machining steps. The melt infiltration method requires no external pressure. This prevents over-infiltration of the outer surface plies, which can lead to excessive residual porosity in the center of the part. However, processing of thick-section components required modification of the conventional process conditions, and the means by which the large amount of molten metal is introduced into the fiber preform. Modification of the low-temperature, ultraviolet-enhanced chemical vapor deposition process used to apply interface coatings to the fiber preform was also required to accommodate the high preform thickness. The thick-section CMC processing developed in this work proved to be invaluable for component development, fabrication, and testing in two complementary efforts. In a project for the Army, involving SiC/SiC blisk development, nominally 0.8 in. thick x 8 in. diameter (approx. 2 cm thick x 20 cm diameter) components were successfully infiltrated. Blisk hubs were machined using diamond-embedded cutting tools and successfully spin-tested. Good ply uniformity and extremely low residual porosity (<2

  11. Solid Freeform Fabrication of Composite-Material Objects

    NASA Technical Reports Server (NTRS)

    Wang, C. Jeff; Yang, Jason; Jang, Bor Z.

    2005-01-01

    Composite solid freeform fabrication (C-SFF) or composite layer manufacturing (CLM) is an automated process in which an advanced composite material (a matrix reinforced with continuous fibers) is formed into a freestanding, possibly complex, three-dimensional object. In CLM, there is no need for molds, dies, or other expensive tooling, and there is usually no need for machining to ensure that the object is formed to the desired net size and shape. CLM is a variant of extrusion-type rapid prototyping, in which a model or prototype of a solid object is built up by controlled extrusion of a polymeric or other material through an orifice that is translated to form patterned layers. The second layer is deposited on top of the first layer, the third layer is deposited on top of the second layer, and so forth, until the stack of layers reaches the desired final thickness and shape. The elements of CLM include (1) preparing a matrix resin in a form in which it will solidify subsequently, (2) mixing the fibers and matrix material to form a continuous pre-impregnated tow (also called "towpreg"), and (3) dispensing the pre-impregnated tow from a nozzle onto a base while moving the nozzle to form the dispensed material into a patterned layer of controlled thickness. When the material deposited into a given layer has solidified, the material for the next layer is deposited and patterned similarly, and so forth, until the desired overall object has been built up as a stack of patterned layers. Preferably, the deposition apparatus is controlled by a computer-aided design (CAD) system. The basic CLM concept can be adapted to the fabrication of parts from a variety of matrix materials. It is conceivable that a CLM apparatus could be placed at a remote location on Earth or in outer space where (1) spare parts are expected to be needed but (2) it would be uneconomical or impractical to store a full inventory of spare parts. A wide variety of towpregs could be prepared and stored on

  12. Enamel inspired nano-composite fabrication through amelogenin supramolecular assembly

    PubMed Central

    Fan, Yuwei; Sun, Zhi; Wang, Rizhi; Abbott, Christopher; Moradian-Oldak, Janet

    2007-01-01

    Fabricating the structures similar to dental enamel through the in vitro preparation method is of great interest in the field of dentistry and material science. Developing enamel is composed of calcium phosphate mineral, water, and enamel matrix proteins, mainly amelogenins. To prepare a material mimicking such composition a novel approach of simultaneously assembling amelogenin and calcium phosphate precipitates by electrolytic deposition was established. It was found that recombinant full-length amelogenin (rP172) self-assembled into nanochain structures during electrolytic deposition (following increase in solution pH), and had significant effect on the induction of the parallel bundles of calcium phosphate nanocrystals, grown on semiconductive silicon wafer surface. When a truncated amelogenin (rP148) was used; no nano-chain assembly was observed, neither parallel bundles were formed. The coating obtained in the presence of rP172 had improved elastic modulus and hardness when compared to the coating incorporated with rP148. Our data suggest that the formation of organized bundles in amelogenin-apatite composites is mainly driven by amelogenin nanochain assembly and highlights the potential of such composite for future application as dental restorative materials. PMID:17382381

  13. An evaluation of composites fabricated from powder epoxy towpreg

    NASA Technical Reports Server (NTRS)

    Hartness, J. Timothy; Greene, Tim

    1992-01-01

    BASF has developed a unique process for applying powdered resin systems to continuous reinforcement fibers in order to produce flexible towpreg material. Evaluation of three powder epoxy resins using this towpregging process is in progress under NASA contract NAS1-18834. Shell RSS-1952, Dow CET-3, and 3M PR 500 powder epoxy systems have been successfully towpregged with G30-500 6K carbon fiber. Both neat resin and basic unidirectional composite properties have been developed to compare performance. Cure cycles for each system have also been developed for repeatable fabrication of high-quality composite laminates. Evaluations of the powder towpreg material for use in textiles processes such as weaving and braiding are underway. Traditional 8-harness weaving has been successfully performed with one system (PR500/G30-500) to date, with some basic composite properties generated. Ongoing work will demonstrate scaleup of the towpregging process for higher throughput, as well as evaluation of the powder towpreg material in advanced preforming processes such as 3-D braiding and weaving. An outline and figures summarize the research results.

  14. Nanostructured Multilayer Composite Coatings on Ceramic Cutting Tools for Finishing Treatment of High-Hardness Quenched Steels

    NASA Astrophysics Data System (ADS)

    Vereshchaka, A. A.; Batako, A. D.; Sotova, E. S.; Vereshchaka, A. S.

    2016-01-01

    The functional role of nanostructured multilayer composite coatings (NMCC) deposited on the operating surfaces of replaceable faceted cutting inserts (CI) from cutting ceramics based on aluminum oxides with additives of titanium carbides is studied. It is shown that the developed NMCC not only raise substantially the endurance of the ceramic tools under high-speed dry treatment of quenched steels but also improve the quality and accuracy of processing of the parts and the ecological parameters of the cutting process.

  15. Mechanical performance of Hi-Nicalon/CVI-SiC composites with multilayer SiC/C interfaces

    SciTech Connect

    Halverson, H.G.; Carter, R.H.; Curtin, W.A.

    1997-12-01

    The mechanical properties and interfacial characteristics of new SiC/SiC ceramic composites, composed of Hi-Nicalon fibers in a CVI-SiC matrix and having a variety of multilayer SiC/C coatings between the fibers and the matrix, are studied in detail to elucidate the roles of the coatings and fibers. Axial tension tests and unload/reload hysteresis loop measurements are performed to determine mechanical performance. All materials exhibit the strong and tough behavior characteristic of good ceramic composites, with all multilayer variants performing quite similarly. SEM microscopy demonstrates that matrix cracks penetrate through the multilayers and debond at the fiber/inner-coating interface. Analysis of the hysteretic behavior leads to values for interfacial sliding resistance {tau} {approx} 11 ksi and interfacial toughness {Gamma}{sub i} {approx} 2 J/m{sup 2} that are nearly independent of multilayer structure, and are similar to values obtained for standard pyrolitic carbon interfaces. These results all indicate debonding at the fiber surface for all coating structures, which provides a common roughness, {tau}, and {Gamma}{sub i}. Analysis of fiber fracture mirrors provides an estimate of the in-situ strength of the fibers and demonstrates the high strength retention of the Hi-Nicalon fibers. The in-situ fiber strengths are combined with the measured pullout lengths to obtain an independent determination of {tau} = 8.5 ksi that agrees well with the value found from the hysteretic behavior. Predictions of composite strength using the derived fiber strengths agree well with the measured value although the predicted failure strain is too large. This study demonstrates that Hi-Nicalon fiber/CVI-SiC composites perform well for a wide range of multilayer interface structures and that the interfaces present relatively high values of {tau} and {Gamma}{sub i}, both of which are beneficial to strength and toughness. The small carbon layer thicknesses in these multilayer

  16. Fabrication and Testing of Ceramic Matrix Composite Rocket Propulsion Components

    NASA Technical Reports Server (NTRS)

    Effinger, Michael; Clinton, R. G., Jr.; Dennis, Jay; Elam, Sandy; Genge, Gary; Eckel, Andy; Jaskowiak, Matha; Kiser, J. Doug; Lang, Jerry

    1999-01-01

    The National Aeronautics and Space Administration (NASA) is pursuing using ceramic matrix composites (CMC) as primary structural components for advanced rocket engines. This endeavor is due to the requirement of increasing safety by two orders of magnitude and reducing costs from $10,000/lb to $1,000/lb both within ten years. Out year goals are even more aggressive. Safety gains, through using CMCS, will be realized by increasing temperature margins, tolerance for extreme thermal transients, and damping capability of components and systems, by using components with lower weight and thermal conductivity, etc. Gains in cost reduction, through using CMCS, are anticipated by enabling higher performance systems, using lighter weight components and systems, enabling 100 mission reusability without system refurbishment, greatly reducing cooling requirements and erosion rates, selecting safe fabrication processes that are ideally cost competitive with metal processes at low volume production, etc. This philosophy contrasts the previous philosophy of rocket engine development focused largely on achieving the highest performance with metals and ablatives -- cost and safety were not the focal point of the initial design. Rocket engine components currently being pursued, largely C/SiC and SiC/SiC, include blisks or rotors, 10 foot by 8 foot nozzle ramps, gas generators, thrust chambers, and upperstage nozzles. The Simplex Turbopump CMC blisk effort has just successfully completed a 4.5 year development and test program. The other components mentioned are in the design or fabrication stage. Although the temperature limits of the CMC materials are not quantified in a realistic environment yet, CMC materials are projected to be the only way to achieve significant safety risks mitigation and cost reductions simultaneously. We, the end-users, material fabricators, technology facilitators, and government organizations are charged with developing and demonstrating a much safer and a

  17. Multilayered piezomagnetic/piezoelectric composites with periodic interfacial cracks subject to in-plane loading

    NASA Astrophysics Data System (ADS)

    Tian, Wenxiang; Zhong, Zheng; Li, Yaochen

    2016-01-01

    A two-dimensional fracture problem of periodically distributed interfacial cracks in multilayered piezomagnetic/piezoelectric composites is studied under in-plane magnetic or electric loading. The magnetic permittivity of the piezoelectric material and the dielectric constant of the piezomagnetic material are considered. A system of singular integral equations of the second kind with a Cauchy kernel is obtained by means of Fourier transform and further solved by using Jacobi polynomials. The problem is solved in the real domain by constructing real fundamental solutions. The primary interfacial fracture mechanic parameters, such as the stress intensity factors (SIFs), the electric displacement intensity factors (EDIFs), the magnetic induction intensity factors (MIIFs) and the energy release rates (ERRs) are then obtained. It is found that a magnetic or electric loading normal to the crack surfaces can lead to a mixture of mode I and mode II type stress singularities at the crack tips. Numerical results show that increasing the thickness of the active layer will favor the crack initiation. Inversely, increasing the thickness of the passive layer will retard the crack initiation. Furthermore, the results indicate that the crack initiation can be inhibited by adjusting the direction of the applied magnetic or electric loading.

  18. Crack Driving Forces in a Multilayered Coating System for Ceramic Matrix Composite Substrates

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Zhu, Dongming; Miller, Robert A.

    2005-01-01

    The effects of the top coating thickness, modulus and shrinkage strains on the crack driving forces for a baseline multilayer Yttria-Stabilized-Zirconia/Mullite/Si thermal and environment barrier coating (TEBC) system for SiC/SiC ceramic matrix composite substrates are determined for gas turbine applications. The crack driving forces increase with increasing modulus, and a low modulus thermal barrier coating material (below 10 GPa) will have no cracking issues under the thermal gradient condition analyzed. Since top coating sintering increases the crack driving forces with time, highly sintering resistant coatings are desirable to maintain a low tensile modulus and maintain a low crack driving force with time. Finite element results demonstrated that an advanced TEBC system, such as ZrO2/HfO2, which possesses improved sintering resistance and high temperature stability, exhibited excellent durability. A multi-vertical cracked structure with fine columnar spacing is an ideal strain tolerant coating capable of reducing the crack driving forces to an acceptable level even with a high modulus of 50 GPa.

  19. Characterization of multi-layered impact damage in polymer matrix composites using lateral thermography

    NASA Astrophysics Data System (ADS)

    Whitlow, Travis; Sathish, Shamachary

    2017-02-01

    Polymer matrix composites (PMCs) are increasingly being integrated into aircraft structures. However, these components are susceptible to impact related delamination, which, on aircrafts, can occur due to a number of reasons during aircraft use and maintenance. Quantifying impact damage is an important aspect for life-management of aircraft and requires in-depth knowledge of the damage zone on a ply-by-ply level. Traditionally, immersion ultrasound has provided relative high resolution images of impact damage. Ultrasonic time-of-flight data can be used to determine the front surface delamination depth and an approximation of the delaminated area. However, such inspections require the material to be immersed in water and can be time consuming. The objective of this work is to develop a quick and robust methodology to non-destructively characterize multi-layered impact damage using lateral thermography. Initial results suggest lateral heat flow is sensitive to the depth of impact damage. The anticipated outcome of this project is to estimate the extent of through-thickness impact damage. Initial results are shown and future efforts are discussed.

  20. Improved inhomogeneous finite elements for fabric reinforced composite mechanics analysis

    NASA Technical Reports Server (NTRS)

    Foye, R. L.

    1992-01-01

    There is a need to do routine stress/failure analysis of fabric reinforced composite microstructures to provide additional confidence in critical applications and guide materials development. Conventional methods of 3-D stress analysis are time consuming to set up, run and interpret. A need exists for simpler methods of modeling these structures and analyzing the models. The principal difficulty is the discrete element mesh generation problem. Inhomogeneous finite elements are worth investigating for application to these problems because they eliminate the mesh generation problem. However, there are penalties associated with these elements. Their convergence rates can be slow compared to homogeneous elements. Also, there is no accepted method for obtaining detailed stresses in the constituent materials of each element. This paper shows that the convergence rate can be significantly improved by a simple device which substitutes homogeneous elements for the inhomogeneous ones. The device is shown to work well in simple one and two dimensional problems. However, demonstration of the application to more complex two and three dimensional problems remains to be done. Work is also progressing toward more realistic fabric microstructural geometries.

  1. Fabrication, characterization, and modeling of piezoelectric fiber composites

    NASA Astrophysics Data System (ADS)

    Lin, Xiujuan; Zhou, Kechao; Button, Tim W.; Zhang, Dou

    2013-07-01

    Piezoelectric fiber composites (PFCs) with interdigitated electrodes have attracted increasing interest in a variety of industrial, commercial, and aerospace markets due to their unique flexibility, adaptability, and improved transverse actuation performance. Viscous plastic processing technique was utilized for the fabrication of PFCs with customized feature sizes. The assembly parameters showed great influence on the performance of PFCs, which was verified by the finite element analysis. The cracks were identified in the fibers underneath the electrode finger after several millions cycles due to the stress and electric field concentration. The electrode finger width was an important structural parameter and showed great influence on the actuation performance and the stress distribution in the PFCs. The finite element analysis revealed that wider electrode finger would be beneficial for reducing the risk of materials failure with slight influence on the actuation performance.

  2. Scalable fabrication of immunosensors based on carbon nanotube polymer composites.

    PubMed

    Mendoza, Ernest; Orozco, Jahir; Jiménez-Jorquera, Cecilia; González-Guerrero, Ana B; Calle, Ana; Lechuga, Laura M; Fernández-Sánchez, César

    2008-02-20

    In this work we present the fabrication and characterization of immunosensors based on polystyrene (PS)-multiwalled carbon nanotube (MWCNT) composites. The electrochemical properties of the sensors have been investigated and show that the surface area is increased upon addition of the MWCNT-PS layer. Furthermore, a plasma activation process is used to partially remove the PS and expose the MWCNTs. This results in a huge increase in the electrochemical area and opens up the possibility of binding biomolecules to the MWCNT wall. The MWCNTs have been functionalized covalently with a model antibody (rabbit IgG). The biosensors have been tested using amperometric techniques and show detection limits comparable to standard techniques such as ELISA.

  3. A model-based, Bayesian characterization of subsurface corrosion parameters in composite multi-layered structures

    NASA Astrophysics Data System (ADS)

    Reed, Heather; Hoppe, Wally

    2016-02-01

    Thermographic NDE approaches to detect subsurface corrosion defects of multi-layered structures with composite top layers have proven difficult due to the fact that the thermal conductivity of composite materials is larger in lateral directions (the plane parallel to the surface) than in the through-thickness directions. This causes heat to dissipate faster laterally than through the thickness when a heat source is applied to the surface of the structure, making it difficult for subsurface damage effects to manifest on the surface, where the heat source and inspection typically occur. To address this, a heat induction approach is presented that excites the damaged, metallic bottom layer directly by Joule heating, resulting in more observable damage effects on the surface than what could be expected for traditional thermographic methods on this type of structure. To characterize the subsurface damage parameters (defect location, diameter, and depth), Bayesian inversion of numerically-simulated noisy data, using a high-fidelity, coupled electromagnetic-heat transfer model is employed. Stochastic estimation methods such as Markov chain Monte Carlo (MCMC) allow for quantification of uncertainty surrounding the damage parameters, which is important as this directly translates into uncertainty surrounding the component reliability. However, because thousands of high-fidelity finite element models are computationally costly to evaluate, as is typical in most MCMC methods, the use of Bayesian inversion is rarely feasible in real-time. To address this, a projection-based reduced order modeling (ROM) tracking and interpolation scheme is formulated within the MCMC sampling method for the multi-physics problem, resulting in significant speedup of solution time with little loss of accuracy, enabling near-real time stochastic estimation of damage.

  4. Recommendations on Composite Socket Fabrication Based Upon Experimental Results

    DTIC Science & Technology

    2009-06-20

    Background 1 Socket Fabrication 1 Vacuum Assisted Resin Transfer Molding ( VARTM ) 3 Socket Manufacturing versus Traditional VARTM 4 Flat Panel Testing...Sockets are fabricated using techniques which are similar to Vacuum Assisted Resin Transfer Molding ( VARTM ). A discussion of socket fabrication...traditional VARTM processing, and the important differences between the two, will provide an important background. Socket Fabrication A positive mold is

  5. Effect of molecular composition of heparin and cellulose sulfate on multilayer formation and cell response.

    PubMed

    Aggarwal, Neha; Altgärde, Noomi; Svedhem, Sofia; Zhang, Kai; Fischer, Steffen; Groth, Thomas

    2013-11-12

    Here, the layer-by-layer method was applied to assemble films from chitosan paired with either heparin or a semisynthetic cellulose sulfate (CS) that possessed a higher sulfation degree than heparin. Ion pairing was exploited during multilayer formation at pH 4, while hydrogen bonding is likely to occur at pH 9. Effects of polyanions and pH value during layer formation on multilayers properties were studied by surface plasmon resonance ("dry layer mass"), quartz crystal microbalance with dissipation monitoring ("wet layer mass"), water contact angle, and zeta potential measurements. Bioactivity of multilayers was studied regarding fibronectin adsorption and adhesion/proliferation of C2C12 myoblast cells. Layer growth and dry mass were higher for both polyanions at pH 4 when ion pairing occurred, while it decreased significantly with heparin at pH 9. By contrast, CS as polyanion resulted also in high layer growth and mass at pH 9, indicating a much stronger effect of hydrogen bonding between chitosan and CS. Water contact angle and zeta potential measurements indicated a more separated structure of multilayers from chitosan and heparin at pH 4, while CS led to a more fuzzy intermingled structure at both pH values. Cell behavior was highly dependent on pH during multilayer formation with heparin as polyanion and was closely related to fibronectin adsorption. By contrast, CS and chitosan did not show such dependency on pH value, where adhesion and growth of cells was high. Results of this study show that CS is an attractive candidate for multilayer formation that does not depend so strongly on pH during multilayer formation. In addition, such multilayer system also represents a good substrate for cell interactions despite the rather soft structure. As previous studies have shown specific interaction of CS with growth factors, multilayers from chitosan and CS may be of great interest for different biomedical applications.

  6. Apparatus and process for freeform fabrication of composite reinforcement preforms

    NASA Technical Reports Server (NTRS)

    Yang, Junsheng (Inventor); Wu, Liangwei (Inventor); Liu, Junhai (Inventor); Jang, Bor Z. (Inventor)

    2001-01-01

    A solid freeform fabrication process and apparatus for making a three-dimensional reinforcement shape. The process comprises the steps of (1) operating a multiple-channel material deposition device for dispensing a liquid adhesive composition and selected reinforcement materials at predetermined proportions onto a work surface; (2) during the material deposition process, moving the deposition device and the work surface relative to each other in an X-Y plane defined by first and second directions and in a Z direction orthogonal to the X-Y plane so that the materials are deposited to form a first layer of the shape; (3) repeating these steps to deposit multiple layers for forming a three-dimensional preform shape; and (4) periodically hardening the adhesive to rigidize individual layers of the preform. These steps are preferably executed under the control of a computer system by taking additional steps of (5) creating a geometry of the shape on the computer with the geometry including a plurality of segments defining the preform shape and each segment being preferably coded with a reinforcement composition defining a specific proportion of different reinforcement materials; (6) generating programmed signals corresponding to each of the segments in a predetermined sequence; and (7) moving the deposition device and the work surface relative to each other in response to these programmed signals. Preferably, the system is also operated to generate a support structure for any un-supported feature of the 3-D preform shape.

  7. Effects of channel structure consisting of ZnO/Al2O3 multilayers on thin-film transistors fabricated by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Cui, Guodong; Han, Dedong; Dong, Junchen; Cong, Yingying; Zhang, Xiaomi; Li, Huijin; Yu, Wen; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2017-04-01

    By applying a novel active layer comprising ZnO/Al2O3 multilayers, we have successfully fabricated fully transparent high-performance thin-film transistors (TFTs) with a bottom gate structure by atomic layer deposition (ALD) at low temperature. The effects of various ZnO/Al2O3 multilayers were studied to improve the morphological and electrical properties of the devices. We found that the ZnO/Al2O3 multilayers have a significant impact on the performance of the TFTs, and that the TFTs with the ZnO/15-cycle Al2O3/ZnO structure exhibit superior performance with a low threshold voltage (V TH) of 0.9 V, a high saturation mobility (μsat) of 145 cm2 V‑1 s‑1, a steep subthreshold swing (SS) of 162 mV/decade, and a high I on/I off ratio of 3.15 × 108. The enhanced electrical properties were explained by the improved crystalline nature of the channel layer and the passivation effect of the Al2O3 layer.

  8. Study on quasiperiodic Ta/Al multilayer films by x-ray diffraction

    SciTech Connect

    Peng, R.W.; Hu, A.; Jiang, S.S. )

    1991-11-11

    Quasiperiodic (Fibonacci) Ta/Al multilayer films with Ta(110) and Al(111) textures were fabricated by magnetron sputtering. The structure of the multilayers was characterized in detail by x-ray diffraction. The diffraction peaks at low and high angles can be indexed by the projection method from the high-dimension periodic structure. The experimental results were in good agreement with the numerical calculation using the model for the compositionally modulated multilayers. The diffraction spectrum of the quasiperiodic Ta/Al multilayers is totally different from that of periodic structure, and the possible application of Fibonacci films as optical elements in a soft x-ray region is discussed.

  9. Controle de la fabrication des composites par injection sur renforts

    NASA Astrophysics Data System (ADS)

    Lebel, Francois

    Liquid Composite Molding (LCM) is an increasingly used class of processes to manufacture high performance composites. A multiscale study is presented in this thesis in order to better understand the fundamental physics of impregnation and air entrapment phenomena in dual scale fibrous reinforcements and thus propose practical solutions for process control engineers. First of all, an experimental setup is developed to study the saturation of fibrous reinforcements, at the macroscopic scale, during the Resin Transfer Molding (RTM). This setup is used to determine some key parameters of the part filling step and industrial post-filling strategies (mold bleeding and consolidation) that control the impregnation quality of fibrous reinforcements. These key parameters are identified using three series of experiments. These parameters are the flow front velocity, the inlet mold pressure and the bleeding flow rate. The analyses in these three series of experiments are based on an ASTM standard procedure for void content determination in the composite parts by carbonization (also called loss on ignition (LOI)). These three series of experiments have related a posteriori the key parameters of LCM processes to phenomena of void formation, migration and dissolution in composite parts made of E-glass non crimp fabric (NCF) and vinyl ester resin. The second part of this thesis aims to investigate, at the mesoscopic and microscopic scale, the impregnation mechanisms of fibrous reinforcements during LCM processes. This analysis focuses more specifically on wicking phenomenon in fiber tows and in fibrous laminates, namely here stacks of non crimp fabric plies. This experimental study is carried out to better understand the physics which explain that the impregnation velocity is one of the key parameters that control the quality of composite parts manufactured by LCM processes. This analysis also aims to identify the structural features of fiber tows and fibrous reinforcements that

  10. Design, fabrication, and characterization of laminated hydroxyapatite-polysulfone composites

    NASA Astrophysics Data System (ADS)

    Wilson, Clifford Adams, II

    There exists a need to develop devices that can be used to replace hard tissues, such as bone, in load-bearing areas of the body. An ideal hard tissue replacement device is one that stimulates growth of natural tissues, and is slowly resorbed by the body. The implant is also required to have elastic modulus, strength, and toughness values similar to the tissues being replaced. Hydroxyapatite (HA) is the primary mineral phase of bone and has the potential for use in biomedical applications because it stimulates cell growth and is resorbable. Unfortunately, HA is a relatively low strength, low toughness material, which limits its application to only low load-bearing regions of the body. In order to apply HA to greater load-bearing areas of the body, strength and toughness must be improved through the formation of a composite structure. The goal of this study to show that a composite structure formed from HA and a biocompatible polymer can be fabricated with strength and toughness values that are within the range necessary for load-bearing biomedical applications. Therefore, Polysulfone-HA composites were developed and tested. Polysulfone (PSu) is a hard, glassy polymer that has been shown to be biocompatible. Composites were fabricated through a combination of tape casting, solvent casting, and lamination. Monolithic HA and laminate specimens were tested in biaxial flexure. A unique laminate theory solution was developed to characterize stress distributions for laminates. Failure loads, failure stress, work of fracture, and apparent toughness were compared for the laminates against monolithic HA specimens. Initial testing results showed that laminates had a failure stress of 60 +/- 10, which is a 170% improvement over the 22 +/- 2 MPa failure stress for monolithic HA. The work of fracture was improved by 5500% from 11 +/- 2 for the monolithic HA to 612 +/- 240 for the laminates. Work of fracture values gave the laminates an apparent fracture toughness of 7.2 MPa•m1

  11. Design, fabrication, and testing of nanostructured carbons and composites

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyong

    cubic, spherical and tetrapod shapes were also synthesized. In addition, new methods were developed to assemble nanocomposites of bifunctional catalyst components. These materials were designed for the potential direct conversion of synthesis gas to clean liquid fuels. Coatings of zeolite and cobalt nanoparticles were fabricated on 3DOM promoted zirconia. The 3DOM zirconia-based nanocomposites were characterized by a wide variety of techniques to illustrate their morphologies, internal structures, chemical compositions, porosity, and crystallographic phases.

  12. Magnetically soft, high-moment, high-resistivity thin films using discontinuous metal/native oxide multilayers

    NASA Astrophysics Data System (ADS)

    Beach, G. S. D.; Berkowitz, A. E.; Parker, F. T.; Smith, David J.

    2001-07-01

    Multilayers consisting of discontinuous metal layers with native oxide surfaces have been fabricated using CoxFe100-x alloys ranging in composition from pure Co to pure Fe. For the Fe-containing compositions, the composites are magnetically soft with resistivities in the range of 100 to 2000 μΩ cm. Mössbauer spectroscopy indicates a magnetically ordered Fe-oxide component, and the magnetic moment of the oxide phase for pure Fe/native oxide multilayers has been determined.

  13. Effect of polymer microsphere incorporation on impact performance of STF cotton fabric composite

    NASA Astrophysics Data System (ADS)

    Suhaimi, M. S.; Mohamed, R.; Faiza, M. A.

    2010-05-01

    Liquid body armor system is recently being used compared to conventional body armor due to its lightweight, highly flexibility and reduced layered fabric. Shear thickening fluid (STF) system comprising of Polymer Microsphere (PMS) and solvent media are exploited in this study. Polymer Microsphere (eg: PMS) in solvent media varies with viscosity upon different PMS composition with and without surfactant. Fabrication of STF fabric system using Cotton laminate were performed using hand lay up with fixed areal density of 40% PMS content. Impact performance was evaluated using knife pendulum impact tester. Impact strength was found to increase with incorporation of STF system. STF addition significantly improves stab resistance of fabric. There were improvements of impact energy absorption for cotton fabric at different volume of STF used with 3 layers. For the three layer systems, impact performance showed improvement of 27.62% using 4ml of STF compared to use of 8ml of STF (12.44% impact improvement). For Cotton STF fabric composite, the effectiveness of the penetration was raised upon higher fabric layers. Overall, the STF-Cotton fabric composite are totally failure during testing, because of the cotton fabric is a fabric, which has very low strength. The addition of STF onto the cotton fabric system will not make the fabric becomes highly impact resistance.

  14. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, Michael D.; Britten, Jerald A.; Nguyen, Hoang T.; Boyd, Robert; Shore, Bruce W.

    1999-01-01

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described.

  15. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, M.D.; Britten, J.A.; Nguyen, H.T.; Boyd, R.; Shore, B.W.

    1999-05-25

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described. 7 figs.

  16. Fabrication of a Schottky diode with transfer-free deposition of multilayer graphene on n-GaN by solid-phase reaction

    NASA Astrophysics Data System (ADS)

    Sahab Uddin, Md.; Ueno, Kazuyoshi

    2017-04-01

    Transfer-free deposition of multilayer graphene (MLG) on n-GaN by a solid-phase reaction was demonstrated for the first time for the fabrication of a Schottky diode. To improve the crystallinity and uniformity of MLG films, a new approach of heat sputtering for the deposition of amorphous carbon (C) and cobalt (Co) as catalyst layers has been investigated. The characteristics obtained by Raman spectroscopy and scanning electron microscopy (SEM) measurements revealed that the crystallinity and uniformity of MLG films were improved significantly by employing heat sputtering rather than conventional room-temperature sputtering. MLG–GaN Schottky diodes were fabricated with optimized deposition of MLG on n-GaN. The Schottky barrier height determined on the basis of the thermionic emission theory using current–voltage (I–V) data was 0.75 eV. The reverse leakage current was found to be of the order of 10‑7 A/mm2. The obtained results indicate the MLG fabrication on n-GaN by our proposed method might have potential applications in the fabrication of Schottky diodes.

  17. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1996-01-01

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  18. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1996-01-02

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation. 4 figs.

  19. Structural design and fabrication techniques of composite unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Hunt, Daniel Stephen

    Popularity of unmanned aerial vehicles has grown substantially in recent years both in the private sector, as well as for government functions. This growth can be attributed largely to the increased performance of the technology that controls these vehicles, as well as decreasing cost and size of this technology. What is sometimes forgotten though, is that the research and advancement of the airframes themselves are equally as important as what is done with them. With current computer-aided design programs, the limits of design optimization can be pushed further than ever before, resulting in lighter and faster airframes that can achieve longer endurances, higher altitudes, and more complex missions. However, realization of a paper design is still limited by the physical restrictions of the real world and the structural constraints associated with it. The purpose of this paper is to not only step through current design and manufacturing processes of composite UAVs at Oklahoma State University, but to also focus on composite spars, utilizing and relating both calculated and empirical data. Most of the experience gained for this thesis was from the Cessna Longitude project. The Longitude is a 1/8 scale, flying demonstrator Oklahoma State University constructed for Cessna. For the project, Cessna required dynamic flight data for their design process in order to make their 2017 release date. Oklahoma State University was privileged enough to assist Cessna with the mission of supporting the validation of design of their largest business jet to date. This paper will detail the steps of the fabrication process used in construction of the Longitude, as well as several other projects, beginning with structural design, machining, molding, skin layup, and ending with final assembly. Also, attention will be paid specifically towards spar design and testing in effort to ease the design phase. This document is intended to act not only as a further development of current

  20. Correlations between structure, composition and electrical properties of tungsten/tungsten oxide periodic multilayers sputter deposited by gas pulsing

    NASA Astrophysics Data System (ADS)

    Potin, Valérie; Cacucci, Arnaud; Martin, Nicolas

    2017-01-01

    W/WOx multilayered thin films have been deposited by DC reactive sputtering using the reactive gas pulsing process. It is implemented to produce regular alternations of metal-oxide compounds at the nanometric scale. Structure and growth have been investigated by high resolution transmission electron microscopy, scanning transmission electron microscopy, X-ray energy dispersive spectroscopy and electron energy loss spectroscopy. Regularity of tungsten-based alternations, quality of interfaces as well as oxygen presence through the multilayered structure have been determined and linked to the growth conditions. Chemical information was obtained from the energy dispersive X-ray spectroscopy and low-loss electron energy loss spectroscopy. As they can be related to the chemical composition of the periodic layers, the position and the broadening of the bulk plasmon peak were studied. For the smallest periods (<10 nm), the presence of oxygen has been pointed out in the metal-rich layer whereas for the thickest ones (100 nm), pure metal is only present. Finally, relationships have been established between in situ growth conditions, structural and chemical parameters and electrical properties in periodic multilayers.

  1. A Fully Contained Resin Infusion Process for Fiber-Reinforced Polymer Composite Fabrication and Repair

    DTIC Science & Technology

    2013-01-01

    Assisted Resin Transfer Molding ( VARTM ) process is applicable for fiber-reinforced polymer (FRP) composite fabrication and repair. However, VARTM in...scenario is a fully enclosed VARTM system that limits the need for laboratory or manufacturing equipment. The Bladder-Bag VARTM (BBVARTM) technique...composite fabrication, VARTM , composite repair, in-field repair 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER

  2. A parameter study on the biaxial behavior of flexible fabric composites

    SciTech Connect

    Mitra, A.; Luo, S.Y.

    1994-12-31

    The nonlinear behavior of flexible fabric composite under large bi-axial deformation is attributed by many factors, including the ratio of biaxial loads, the crimps of the yarns, the thickness of the composite, and the properties of the yarn and the matrix. A parameter study has been conducted to evaluate the significance of these factors on the stress-strain relations of flexible fabric composites.

  3. Multilayer-WS{sub 2}:ferroelectric composite for ultrafast tunable metamaterial-induced transparency applications

    SciTech Connect

    Yang, Xiaoyu; Yang, Jinghuan; Zhu, Yu; Yang, Hong; Hu, Xiaoyong Gong, Qihuang

    2015-08-24

    An ultrafast and low-power all-optical tunable metamaterial-induced transparency is realized, using polycrystalline barium titanate doped gold nanoparticles and multilayer tungsten disulfide microsheets as nonlinear optical materials. Large nonlinearity enhancement is obtained associated with quantum confinement effect, local-field effect, and reinforced interaction between light and multilayer tungsten disulfide. Low threshold pump intensity of 20 MW/cm{sup 2} is achieved. An ultrafast response time of 85 ps is maintained because of fast carrier relaxation dynamics in nanoscale crystal grains of polycrystalline barium titanate. This may be useful for the study of integrated photonic devices based on two-dimensional materials.

  4. High-performance multilayer composite membranes with mussel-inspired polydopamine as a versatile molecular bridge for CO2 separation.

    PubMed

    Li, Panyuan; Wang, Zhi; Li, Wen; Liu, Yanni; Wang, Jixiao; Wang, Shichang

    2015-07-22

    It is desirable to develop high-performance composite membranes for efficient CO2 separation in CO2 capture process. Introduction of a highly permeable polydimethylsiloxane (PDMS) intermediate layer between a selective layer and a porous support has been considered as a simple but efficient way to enhance gas permeance while maintaining high gas selectivity, because the introduced intermediate layer could benefit the formation of an ultrathin defect-free selective layer owing to the circumvention of pore penetration phenomenon. However, the selection of selective layer materials is unfavorably restricted because of the low surface energy of PDMS. Various highly hydrophilic membrane materials such as amino group-rich polyvinylamine (PVAm), a representative facilitated transport membrane material for CO2 separation, could not be facilely coated over the surface of the hydrophobic PDMS intermediate layer uniformly. Inspired by the hydrophilic nature and strong adhesive ability of polydopamine (PDA), PDA was therefore selected as a versatile molecular bridge between hydrophobic PDMS and hydrophilic PVAm. The PDA coating endows a highly compatible interface between both components with a large surface energy difference via multiple-site cooperative interactions. The resulting multilayer composite membrane with a thin facilitated transport PVAm selective layer exhibits a notably enhanced CO2 permeance (1887 GPU) combined with a slightly improved CO2/N2 selectivity (83), as well as superior structural stability. Similarly, the multilayer composite membrane with a hydrophilic CO2-philic Pebax 1657 selective layer was also developed for enhanced CO2 separation performance.

  5. Modification of the composite multi-layer oxide ceramic coating on meteoroid shielding element by compression plasma flow

    NASA Astrophysics Data System (ADS)

    Astashinski, V. M.; Khramtsov, P. P.; Hryshchanka, U. M.; Chernik, M. Yu; Vasetskij, V. A.; Shikh, I. A.; Doroshko, M. V.; Makhnach, A. I.

    2016-11-01

    The aim of this work is investigation of the influence of high-energy plasma impact on composite multi-layer coating (NiAl as a sublayer and Al2O3 as a top coat) on meteoroid shielding element. In order to reach this goal qausi-stationary plasma accelerator with impulse gas feeding was used. Experiments were conducted with use of helium and hydrogen gas mixture and nitrogen as plasma forming substance. Plasma accelerator generates plasma jet with electron temperature ≈ 150 kK and electron density (2.5-4) × 1016 cm-3. Visual examination, photography and spectral measurements were made through special vacuum chamber optical windows.

  6. Fabrication of composite propfan blades for a cruise missile wind tunnel model

    NASA Technical Reports Server (NTRS)

    Fite, E. Brian

    1993-01-01

    This report outlines the procedures that were employed in fabricating prototype graphite-epoxy composite prop fan blades. These blades were used in wind tunnel tests that investigated prop fan propulsion system interactions with a missile airframe in order to study the feasibility of an advanced-technology-propfan-propelled missile. Major phases of the blade fabrication presented include machining of the master blade, mold fabrication, ply cutting and assembly, blade curing, and quality assurance. Specifically, four separate designs were fabricated, 18 blades of each geometry, using the same fabrication technique for each design.

  7. Multilayer sulfur-resistant composite metal membranes and methods of making and repairing the same

    SciTech Connect

    Way, J. Douglas; Hatlevik, Oyvind

    2014-07-15

    The invention relates to thin, hydrogen-permeable, sulfur-resistant membranes formed from multi-layers of palladium or palladium-alloy coatings on porous, ceramic or metal supports, methods of making these membranes, methods of repairing layers of these membranes and devices that incorporate these membranes.

  8. Polydimethylsiloxane-based conducting composites and their applications in microfluidic chip fabrication

    PubMed Central

    Gong, Xiuqing; Wen, Weijia

    2009-01-01

    This paper reviews the design and fabrication of polydimethylsiloxane (PDMS)-based conducting composites and their applications in microfluidic chip fabrication. Owing to their good electrical conductivity and rubberlike elastic characteristics, these composites can be used variously in soft-touch electronic packaging, planar and three-dimensional electronic circuits, and in-chip electrodes. Several microfluidic components fabricated with PDMS-based composites have been introduced, including a microfluidic mixer, a microheater, a micropump, a microdroplet controller, as well as an all-in-one microfluidic chip. PMID:19693388

  9. Dopant ink composition and method of fabricating a solar cell there from

    DOEpatents

    Loscutoff, Paul; Wu, Kahn; Molesa, Steven Edward

    2015-03-31

    Dopant ink compositions and methods of fabricating solar cells there from are described. A dopant ink composition may include a cross-linkable matrix precursor, a bound dopant species, and a solvent. A method of fabricating a solar cell may include delivering a dopant ink composition to a region above a substrate. The dopant ink composition includes a cross-linkable matrix precursor, a bound dopant species, and a solvent. The method also includes baking the dopant ink composition to remove a substantial portion of the solvent of the dopant ink composition, curing the baked dopant ink composition to cross-link a substantial portion of the cross-linkable matrix precursor of the dopant ink composition, and driving dopants from the cured dopant ink composition toward the substrate.

  10. New approaches towards novel composite and multilayer membranes for intermediate temperature-polymer electrolyte fuel cells and direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Branco, Carolina Musse; Sharma, Surbhi; de Camargo Forte, Maria Madalena; Steinberger-Wilckens, Robert

    2016-06-01

    This review analyses the current and existing literature on novel composite and multilayer membranes for Polymer Electrolyte Fuel Cell applications, including intermediate temperature polymer electrolyte fuel cell (IT-PEFC) and direct methanol fuel cell (DMFC) systems. It provides a concise scrutiny of the vast body of literature available on organic and inorganic filler based polymer membranes and links it to the new emerging trend towards novel combinations of multilayered polymer membranes for applications in DMFC and IT-PEFC. The paper carefully explores the advantages and disadvantages of the most common preparation techniques reported for multilayered membranes such as hot-pressing, casting and dip-coating and also summarises various other fresh and unique techniques employed for multilayer membrane preparation.

  11. Surface modification of cotton fabrics for antibacterial application by coating with AgNPs-alginate composite.

    PubMed

    Zahran, M K; Ahmed, Hanan B; El-Rafie, M H

    2014-08-08

    In recent years nano-sized particles have been focused on bacteriostasis. We investigated antimicrobial activities by applying AgNPs-alginate composite on cotton fabric, using a simple one-step rapid synthetic route by reduction of silver nitrate using alkali hydrolyzed alginate solution which acts as both reducing and capping agent. FTIR spectra, color coordinates, silver content, silver release percent and SEM images of treated fabric samples confirmed the successful physical deposition of AgNPs-alginate composite on the fabric. The treated fabrics demonstrated an excellent antibacterial activity against the tested bacteria, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. A slight decrease in the antibacterial feature of the cotton fabrics was observed after successive washings. However, an efficient antibacterial activity still remained on the fabrics.

  12. Interfacial reactions in SiC{sub p}/Al composite fabricated by pressureless infiltration

    SciTech Connect

    Lee, K.B.; Kwon, H.

    1997-04-15

    Metal matrix composites (MMCs) reinforced by ceramic phases have been fabricated by various techniques including powder metallurgy, casting, etc. Recently Lanxide corporation developed the DIMOX and PRIMEX processes for fabricating ceramic- and metal-matrix composites, respectively. The PRIMEX process is an innovative technique for fabricating MMCs by the spontaneous infiltration of molten AL alloy containing Mg into a ceramic filler or preform under nitrogen atmosphere in pressureless state without the aid of vacuum or externally applied pressure. Although there were many patents on MMC fabrication by the above pressureless infiltration technique, however, few works on the resulting microstructures and their effects on mechanical properties were reported. Thus, in this study, the effects on interfacial reactions occurring during the fabrication of SiC{sub p}AL composite by the pressureless infiltration technique on microstructures and hardness have been investigated.

  13. Concurrent micromechanical tailoring and fabrication process optimization for metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Morel, M.; Saravanos, D. A.; Chamis, Christos C.

    1990-01-01

    A method is presented to minimize the residual matrix stresses in metal matrix composites. Fabrication parameters such as temperature and consolidation pressure are optimized concurrently with the characteristics (i.e., modulus, coefficient of thermal expansion, strength, and interphase thickness) of a fiber-matrix interphase. By including the interphase properties in the fabrication process, lower residual stresses are achievable. Results for an ultra-high modulus graphite (P100)/copper composite show a reduction of 21 percent for the maximum matrix microstress when optimizing the fabrication process alone. Concurrent optimization of the fabrication process and interphase properties show a 41 percent decrease in the maximum microstress. Therefore, this optimization method demonstrates the capability of reducing residual microstresses by altering the temperature and consolidation pressure histories and tailoring the interphase properties for an improved composite material. In addition, the results indicate that the consolidation pressures are the most important fabrication parameters, and the coefficient of thermal expansion is the most critical interphase property.

  14. Combined micromechanical and fabrication process optimization for metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Morel, M.; Saravanos, D. A.; Chamis, C. C.

    1991-01-01

    A method is presented to minimize the residual matrix stresses in metal matrix composites. Fabrication parameters such as temperature and consolidation pressure are optimized concurrently with the characteristics (i.e., modulus, coefficient of thermal expansion, strength, and interphase thickness) of a fiber-matrix interphase. By including the interphase properties in the fabrication process, lower residual stresses are achievable. Results for an ultra-high modulus graphite (P100)/copper composite show a reduction of 21 percent for the maximum matrix microstress when optimizing the fabrication process alone. Concurrent optimization of the fabrication process and interphase properties show a 41 percent decrease in the maximum microstress. Therefore, this optimization method demonstrates the capability of reducing residual microstresses by altering the temperature and consolidation pressure histories and tailoring the interphase properties for an improved composite material. In addition, the results indicate that the consolidation pressures are the most important fabrication parameters, and the coefficient of thermal expansion is the most critical interphase property.

  15. Fabrication and optimization of nano-structured composites for energy storage

    NASA Astrophysics Data System (ADS)

    Carrington, Kenneth Russell

    This dissertation is focused on the development and characterization of a novel class of solid-state nano-structured composites for hydrogen storage based on silica aerogel. It is organized sequentially around experiments conducted to fabricate, optimize and characterize silica aerogel and the composites for hydrogen storage. First, the basics of nano-structured media, silica aerogel technology and solid-state hydrogen storage are introduced. Next, the fabrication and optimization of silica aerogel for hydrogen storage is described in detail. The key result is that varying fabrication parameters can improve the physical properties of the resultant silica aerogel in the context of hydrogen storage. The fabrication of solid-state nano-structured composites using chemical vapor infiltration is then discussed. A series of experiments is used to parameterize the fabrication process, which results in a collection of parameters that minimize variation and structural damage in the composites. Silica aerogel and the composites are then physically characterized using transmission electron microscopy, X-ray diffraction and porosimetry in order to investigate their nano-structuring. An overview of hydrogen storage characterization and two innovations that improve the accuracy and efficiency of hydrogen storage characterization of low-bulk density media like silica aerogel and the composites are then presented. Finally, the innovations are applied to silica aerogel and the composites to characterize their hydrogen storage performance. Silica aerogel and the composites are found to outperform the most common benchmark in physisorption media, and one composite in particular shows unique hydrogen storage performance.

  16. Design, fabrication, test, and evaluation of a prototype 150-foot long composite wind turbine blade

    NASA Technical Reports Server (NTRS)

    Gewehr, H. W.

    1979-01-01

    The design, fabrication, testing, and evaluation of a prototype 150 foot long composite wind turbine blade is described. The design approach and material selection, compatible with low cost fabrication methods and objectives, are highlighted. The operating characteristics of the blade during rotating and nonrotating conditions are presented. The tensile, compression, and shear properties of the blade are reported. The blade fabrication, tooling, and quality assurance are discussed.

  17. Calculation of the relative uniformity coefficient on the green composites reinforced with cotton and hemp fabric

    NASA Astrophysics Data System (ADS)

    Baciu, Florin; Hadǎr, Anton; Sava, Mihaela; Marinel, Stǎnescu Marius; Bolcu, Dumitru

    2016-06-01

    In this paper it is studied the influence of discontinuities on elastic and mechanical properties of green composite materials (reinforced with fabric of cotton or hemp). In addition, it is studied the way variations of the volume f the reinforcement influences the elasticity modulus and the tensile strength for the studied composite materials. In order to appreciate the difference in properties between different areas of the composite material, and also the dimensions of the defective areas, we have introduced a relative uniformity coefficient with which the mechanical behavior of the studied composite is compared with a reference composite. To validate the theoretical results we have obtained we made some experiments, using green composites reinforced with fabric, with different imperfection introduced special by cutting the fabric.

  18. Fabrication, characterization, and biological assessment of multilayer DNA coatings on sandblasted-dual acid etched titanium surface.

    PubMed

    Liu, Li; Song, Li-Na; Yang, Guo-Li; Zhao, Shi-Fang; He, Fu-Ming

    2011-06-01

    As local gene therapy has received attention, immobilizing functional gene onto irregular oral implant surface has become an advanced challenge. Electrostatic layer-by-layer (LBL) assembly technique could achieve this goal and allow local and efficient administration of genes to the target cells. In this study, multilayers of cationic lipid/plasmid DNA (pEGFP-C1) complex (LDc) and anionic hyaluronic acid were assembled onto sandblasted-dual acid etched titanium disks by the LBL technique. Surface characteristics of the coatings were performed by x-ray photospectroscopy (XPS), contact angle measurements, and scanning electron microscopy (SEM). The cell biological characteristics of the coatings were evaluated by in vitro experiments. SEM results demonstrated that the porous titanium surface was gradually flattened with the increase of the multilayer. The XPS survey indicated that the N element was found from the coating. The coating degradation and pEGFP-C1 releasing kinetics showed that the more assembled layer numbers were, the larger the amount of DNA released in the first 30 h. MC3T3-E1 cells were cultured directly on the DNA-loaded surface. Higher enhanced green fluorescent protein (EGFP) expression efficiency was achieved by increasing the number of layers when cells were cultured after 24 or 72 h. The MC3T3-E1 cell viability on the surface of multilayer DNA coatings was significantly higher than that on control porous titanium surface. It was concluded that the approach established by the LBL technique had great potential in immobilizing gene coatings onto the porous titanium surface and subsequently influenced the function of the cultured cell.

  19. Full-wave model and numerical study of electromagnetic plane wave scattering by multilayered, fiber-based periodic composites

    NASA Astrophysics Data System (ADS)

    Li, C. Y.; Lesselier, D.; Zhong, Y.

    2015-07-01

    The present work aims at building up a full-wave computational model of electromagnetic nondestructive testing of composite materials produced by stacking up dielectric slabs one over the other. In each such dielectric slab, a periodic array of infinite cylindrical fibers is embedded. Electromagnetic scattering of such a multilayered, fiber-based periodic composite is investigated here for an obliquely incident plane wave, the plane of incidence of which differs from the plane orthogonal to the fibers' axes. Full-wave field representations are given first by multipole and plane wave expansions. Mode matching at boundaries between layers then yields the propagating matrices, which are applied to connect reflection and transmission coefficients of the longitudinal field components. Power reflection and transmission coefficients are obtained from time-averaged Poynting vectors. Numerical experiments with comparisons with known results illustrate the accuracy of the model proposed.

  20. Development, fabrication and evaluation of composite thermal engine insulation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Foil enclosure configurations of 10 variations were fabricated and evaluated. A discussion of the thermal protection system panel design includes: (1) description of 3DSX/foil concept, (2) design environment, (3) material selection, (4) fabrication enclosure, (5) structural design, (6) thermal sizing, and (7) weight analysis. The structural design study includes foil evaluation, venting pressure loads, thermomechanical behavior, and enclosure venting (burst) pressure tests. Results of experimental demonstrations of performance and reuse capabilities are given for both thermal and acoustic testing.

  1. Multi-functional and durable nanofiber-fabric layered composite for protective application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multifunctional and durable nanofiber-fabric-layered composite (NFLC) material was prepared by depositing electrospun Ag/PAN hybrid nanofibers onto a Nylon/cotton 50: 50 fabric substrate. The NFLCs showed excellent aerosol barrier efficiency and good air/moisture permeability. In addition, they sh...

  2. Composite Properties of RTM370 Polyimide Fabricated by Vacuum Assisted Resin Transfer Molding (VARTM)

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Criss, James M.; Mintz, Eric A.; Shonkwiler, Brian; McCorkle, Linda S.

    2011-01-01

    RTM370 imide resin based on 2,3,3?,4?-biphenyl dianhydride (a-BPDA), 3,4'-oxydianinline (3,4'-ODA) with the 4-phenylethynylphthalic (PEPA) endcap has been shown to exhibit a high cured T(sub g) (370 C) and low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h. Previously, RTM370 resin has been successfully fabricated into composites reinforced with T650-35 carbon fabrics by resin transfer molding (RTM). RTM370 composites exhibit excellent mechanical properties up to 327?C (620?F), and outstanding property retention after aging at 288?C (550?F) for 1000 h. In this work, RTM370 composites were fabricated by vacuum assisted resin transfer molding (VARTM), using vacuum bags on a steel plate. The mechanical properties of RTM370 composites fabricated by VARTM are compared to those prepared by RTM.

  3. Polyimide Composites Properties of RTM370 Fabricated by Vacuum Assisted Resins Transfer Molding (VARTM)

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Criss, Jim M.; Mintz, Eric A.

    2011-01-01

    RTM370 imide resin based on 2,3,3 ,4 -biphenyl dianhydride ( a-BPDA), 3,4 -oxydianinline (3,4 -ODA) with 4-phenylethynylphthalic (PEPA) endcap has shown to exhibit high Tg (370 C) and low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h. Previously, RTM370 resin has been fabricated into composites with T650-35 carbon fabrics by resin transfer molding (RTM) successfully. RTM370 composites exhibit excellent mechanical properties up to 327 C (620 F), and outstanding property retention after aging at 288 C (550 F) for 1000 hrs. In this presentation, RTM 370 composites will be fabricated by vacuum assisted resins transfer molding (VARTM), using vacuum bags without mold. The mechanical properties of RTM370 composites fabricated by VARTM will be compared to those of RTM370 made by RTM.

  4. Investigation into the fabrication of a composite top attack recoilless rifle

    NASA Technical Reports Server (NTRS)

    Miner, Kevin R.

    1990-01-01

    The fabrication of a lightweight, expendable recoilless rifle using composite materials was investigated. Filament winding and braiding were successfully employed in the construction of several of these shoulder-fired weapons.

  5. Characterisation of tequila according to their major volatile composition using multilayer perceptron neural networks.

    PubMed

    Ceballos-Magaña, Silvia G; de Pablos, Fernando; Jurado, José Marcos; Martín, María Jesús; Alcázar, Ángela; Muñiz-Valencia, Roberto; Gonzalo-Lumbreras, Raquel; Izquierdo-Hornillos, Roberto

    2013-02-15

    Differentiation of silver, gold, aged and extra-aged tequila using 1-propanol, ethyl acetate, 2-methyl-1-propanol, 3-methyl-1-butanol and 2-methyl-1-butanol and furan derivatives like 5-(hydroxymethyl)-2-furaldehyde and 2-furaldehyde has been carried out. The content of 1-propanol, ethyl acetate, 2-methyl-1-propanol, 3-methyl-1-butanol and 2-methyl-1-butanol was determined by means of head space solid phase microextraction gas chromatography mass-spectrometry. 5-(Hydroxymethyl)-2-furaldehyde and 2-furaldehyde were determined by high performance liquid chromatography with diode array detection. Kruskal-Wallis test was used to highlight significant differences between types of tequila. Principal component analysis was applied as visualisation technique. Linear discriminant analysis and multilayer perceptron artificial neural networks were used to construct classification models. The best classification performance was obtained when multilayer perceptron model was applied.

  6. Magnetizing reversal in multilayer hard-soft composites SmCo5-FeCo

    NASA Astrophysics Data System (ADS)

    Belemuk, A. M.; Chui, S. T.

    2011-04-01

    We studied the demagnetization curves and the energy product of multilayers of hard (SmCo5) and soft (FeCo) magnetic material with finite temperature Monte Carlo simulation. Different from previous studies, the easy axis of the hard phase is perpendicular to the layers, as is discovered experimentally. We perform simulations with and without the dipolar interaction and find a significant difference in the coercive field and the energy product at high temperatures.

  7. Mechanical and wet tribological properties of carbon fabric/phenolic composites with different weave filaments counts

    NASA Astrophysics Data System (ADS)

    Wenbin, Li; Jianfeng, Huang; Jie, Fei; Liyun, Cao; Chunyan, Yao

    2015-10-01

    Carbon fabric/phenolic composites with different weave filaments counts were prepared by dip-coating and hot-press techniques, and then their mechanical and wet tribological properties were investigated based on the analysis of the three-dimensional surface profiles and the pore structures. Results show that the mechanical properties (elastic modulus, flexural modulus, tensile modulus, flexural strength and tensile strength) of the 3K carbon fabric/phenolic composites (Composite A) are better than that of the 12K carbon fabric/phenolic composites (Composite B). Fractured surfaces observation suggests that the dominant tensile failure mechanism is fiber breakage for Composite A and matrix fracture for Composite B. Compared with Composite B, Composite A possesses high friction coefficient in different loads and at different sliding speeds, and the friction coefficient of Composite A is more sensitive to load and sliding speed. The wear rate of Composite B is 39% greater than that of Composite A and the wear features of worn surfaces demonstrate the excellent wear resistance for Composite A. Based on the observation of worn surface, the wear mechanisms are presented.

  8. Fabrication of Compositionally and Topographically Complex Robust Tissue Forms by 3D-Electrochemical Compaction of Collagen

    PubMed Central

    Younesi, Mousa; Islam, Anowarul; Kishore, Vipuil; Panit, Stefi; Akkus, Ozan

    2015-01-01

    Collagen solutions are phase-transformed to mechanically robust shell structures with curviplanar topographies using electrochemically induced pH gradients. The process enables rapid layer-by-layer deposition of collagen-rich mixtures over the entire field simultaneously to obtain compositionally diverse multilayered structures. In-plane tensile strength and modulus of the electrocompacted collagen sheet samples were 5200 -fold and 2300 -fold greater than that of uncompacted collagen samples. Out of plane compression tests showed 27 -fold and fold increase in compressive stress and 46 -fold increase in compressive modulus compared to uncompacted collagen sheets. Cells proliferated 4.9 times faster, and cellular area spread was 2.7 times greater on compacted collagen sheets. Electrocompaction also resulted in 2.9 times greater focal adhesion area than on regular collagen hydrogel. The reported improvements in the cell-matrix interactions with electrocompaction would serve to expedite the population of electrocompacted collagen scaffolds by cells. The capacity of the method to fabricate nonlinear curved topographies with compositional heterogeneous layers is demonstrated by sequential deposition of collagenhydroxyapatite layer over a collagen layer. The complex curved topography of the nasal structure is replicated by the electrochemical compaction method. The presented electrochemical compaction process is an enabling modality which holds significant promise for reconstruction of a wide spectrum of topographically complex systems such as joint surfaces, craniofacial defects, ears, nose or urogenital forms. PMID:26069162

  9. Electrodeposition efficiency of Co and Cu in the fabrication of multilayer nanowires by polymeric track-etched templates.

    PubMed

    Pullini, D; Busquets-Mataix, D

    2011-03-01

    Co/Cu-multilayer nanowires can be exploited to develop magnetoresistive sensors. One of the easiest methods for their production is filling nanoporous templates by pulsed-electrodeposition (PED) from a single bath. Multiple parameters effecting the growth of these nano-objects must be controlled to tailor their properties. In this study, the deposition efficiency of Co/Cu-multilayer nanowires produced in nanoporous-polymeric membranes is assessed, and the influence of the space confinement produced by the nanopores themselves on the continuous and pulsed-electrodeposition is evaluated. The growth dependence on some of the most significant process parameters has been investigated. It is shown here that, for each species, when depositing Co and Cu separately, a decrease of current efficiency is observed when the charge density is increased and the pore diameter is reduced; on the contrary, in the Co/Cu-PED, changing the degree of polarization for each deposition step of the different metals results in a sensible reduction of this effect.

  10. Fabrication of oriented poly-L-lysine/bacteriorhodopsin-embedded purple membrane multilayer structure for enhanced photoelectric response.

    PubMed

    Li, Rui; Cui, Xiaoqiang; Hu, Weihua; Lu, Zhisong; Li, Chang Ming

    2010-04-01

    A poly-L-lysine (PLL)/bacteriorhodopsin-embedded purple membrane (bR-PM) multilayer film has been successfully constructed by a layer-by-layer (LbL) assembly process to enhance the photoelectric response of bR. The assembly conditions were investigated and optimized. The PLL/bR-PM adsorption process was in situ studied by surface plasmon resonance and the growth of multilayer was further characterized by UV-vis absorption spectroscopy. The results indicate that the amount of adsorbed bR-PM vs. the assembled layer number exhibits linear relationship. The atomic force microscopy images of sequentially assembled PLL/bR-PM bilayers show that the patch structure of bR-PM in the structure is well preserved and the roughness increases with increase of the bilayer number. The peak photocurrent generated from PLL/bR-PM film increases with increase of the PLL/bR-PM bilayers until achieving a maximum value. The photocurrent of bR-PM from the film through PLL assembler is higher than those assembled by other polycations, thus rendering a new platform to effectively enhance the bR photoelectric responses.

  11. Fabrication and efficiency measurement of a Mo/C/Si/C three material system multilayer Laue lens

    NASA Astrophysics Data System (ADS)

    Kubec, A.; Maser, J.; Formánek, P.; Franke, V.; Braun, S.; Gawlitza, P.; Leson, A.; Macrander, A.

    2017-03-01

    In this letter, we report on the manufacturing of a multilayer Laue lens (MLL) consisting of a multilayer stack with three materials: molybdenum and silicon as the absorber and spacer layer, respectively, and carbon as transition layers. The design has four layers per period: Mo/C/Si/C. It yields 6000 zones and provides an aperture of 50 μm. This allows the MLL structure to accept a large portion of the coherent part of the beam and to achieve a small spot size. The MLL deposition was made by magnetron sputtering at the Fraunhofer IWS, and the sectioning was done by laser cutting and subsequent focused ion beam milling to a thickness that provides a good efficiency for a photon energy of 12 keV. The diffraction efficiency as a function of the tilting angle has been measured at beamline 1-BM of the Advanced Photon Source. An efficiency of almost 40% has been achieved. This shows that the material system performs well compared to MLLs made of two-materials and that it is in excellent agreement with the numerically calculated efficiency for a comparable molybdenum/silicon bilayer system lens. We conclude that the three material system offers high efficiencies and is advantageous for stress reduction in MLLs.

  12. Single-Walled Carbon Nanotubes Functionalized with Carboxylic Acid for Fabricating Polymeric Composite Microstructures.

    PubMed

    Otuka, Adriano José Galvani; Tribuzi, Vinicius; Cardoso, Marcos Roberto; de Almeida, Gustavo Foresto Brito; Zanatta, Antonio Ricardo; Corrêa, Daniel Souza; Mendonça, Cleber Renato

    2015-12-01

    Carbon nanotube composites are promising materials for mechanical and electrical applications. However, methodologies to incorporate carbon nanotubes in polymeric matrices are on high demand, especially for fabricating devices in the micro-nanoscale. In this paper we show the fabrication of 3D polymeric microstructures with functionalized single-walled carbon nanotubes (SWCNT), by means of two-photon polymerization (2PP). We used a range of SWCNT concentrations (0.01-1 wt%) in the resin to fabricate the composite material. Scanning electron microscopy images show the fabricated microstructures surface quality. Raman spectroscopy was used to confirm the presence and evaluate the distribution of SWCNT in the microstructures. Atomic force microscopy was used to evaluate the mechanical properties of the fabricated microstructures.

  13. Fabrication and flexural properties of Tyranno-SA/SiC composites with carbon interlayer by CVI

    NASA Astrophysics Data System (ADS)

    Araki, H.; Yang, W.; Suzuki, H.; Hu, Q.; Busabok, C.; Noda, T.

    2004-08-01

    Strength reliability and thermal stability of SiC/SiC composites are important as structural candidates for nuclear fusion reactor. Several CVI-Tyranno-SA (plain-woven)/SiC composites were fabricated and the flexural strength and the effects of the high temperature heat treatment in vacuum were investigated. The flexural strength and statistical properties of the as-fabricated composites showed a dependence on composite density. The highest average strength, 640 ± 69 MPa, with the highest Weibull modulus, m=12.2, was obtained by the composite with the highest density among the several composites. No significant change of the strength of the composite was noticed against heat treatment at temperature up to 1973 K in vacuum of ˜3 × 10 -4 Pa for 1 h, beyond which the strength decreased with the increasing of the heat treatment temperature.

  14. Design and Fabrication of E-Glass /carbon/graphite epoxy hybrid composite leaf spring

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, T.; Raja, M.; Jothi Prakash, V. M.; Gnanavel, C.

    2017-03-01

    The Automobile Industry has shown increase interest for replacement of steel leaf spring with that of composite leaf spring. Substituting composite materials for conventional metallic materials has many advantages because of higher specific stiffness, strength and fatigue resistance etc. This work deals with the replacement of conventional steel leaf spring with a hybrid Composite leaf spring using E -Glass/Carbon/Graphite/Epoxy. The hybrid composite is obtained by introducing more than one fiber in the reinforcement phase. The hybrid composite is fabricated by the vacuum bag technique. The result shows that introduction of carbon and graphite fiber in the reinforcement phase increases the stiffness of the composite.

  15. Accuracy of critical-temperature sensitivity coefficients predicted by multilayered composite plate theories

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Burton, Scott

    1992-01-01

    An assessment is made of the accuracy of the critical-temperature sensitivity coefficients of multilayered plates predicted by different modeling approaches, based on two-dimensional shear-deformation theories. The sensitivity coefficients considered measure the sensitivity of the critical temperatures to variations in different lamination and material parameters of the plate. The standard of comparison is taken to be the sensitivity coefficients obtained by the three-dimensional theory of thermoelasticity. Numerical studies are presented showing the effects of variation in the geometric and lamination parameters of the plate on the accuracy of both the sensitivity coefficients and the critical temperatures predicted by the different modeling approaches.

  16. Application of an Instrumental and Computational Approach for Improving the Vibration Behavior of Structural Panels Using a Lightweight Multilayer Composite

    PubMed Central

    Sánchez, Alberto; García, Manuel; Sebastián, Miguel Angel; Camacho, Ana María

    2014-01-01

    This work presents a hybrid (experimental-computational) application for improving the vibration behavior of structural components using a lightweight multilayer composite. The vibration behavior of a flat steel plate has been improved by the gluing of a lightweight composite formed by a core of polyurethane foam and two paper mats placed on its faces. This composite enables the natural frequencies to be increased and the modal density of the plate to be reduced, moving about the natural frequencies of the plate out of excitation range, thereby improving the vibration behavior of the plate. A specific experimental model for measuring the Operating Deflection Shape (ODS) has been developed, which enables an evaluation of the goodness of the natural frequencies obtained with the computational model simulated by the finite element method (FEM). The model of composite + flat steel plate determined by FEM was used to conduct parametric study, and the most influential factors for 1st, 2nd and 3rd mode were identified using a multifactor analysis of variance (Multifactor-ANOVA). The presented results can be easily particularized for other cases, as it may be used in cycles of continuous improvement as well as in the product development at the material, piece, and complete-system levels. PMID:24618779

  17. Effect of the raw material composition of fabrics on the Limiting Oxygen Index (LOI)

    NASA Technical Reports Server (NTRS)

    Jeler, S.; Ceric, B.

    1986-01-01

    The raw material composition of fabrics is one of the most important factors for LOI value. LOI value was determined in samples of varying composition composed of cellulose, protein, and synthetic fibers and their mixtures, based on ASTM D 2863-76. Cellulose fibers and their mixtures exhibited the lowest value, while synthetic fibers had the highest LOI value.

  18. Fabrication process scale-up and optimization for a boron-aluminum composite radiator

    NASA Technical Reports Server (NTRS)

    Okelly, K. P.

    1973-01-01

    Design approaches to a practical utilization of a boron-aluminum radiator for the space shuttle orbiter are presented. The program includes studies of laboratory composite material processes to determine the feasibility of a structural and functional composite radiator panel, and to estimate the cost of its fabrication. The objective is the incorporation of boron-aluminum modulator radiator on the space shuttle.

  19. Fabrication and evaluation of low fiber content alumina fiber/aluminum composites

    NASA Technical Reports Server (NTRS)

    Hack, J. E.; Strempek, G. C.

    1980-01-01

    The mechanical fabrication of low volume percent fiber, polycrystalline alumina fiber reinforced aluminum composites was accomplished. Wire preform material was prepared by liquid-metal infiltration of alumina fiber bundles. The wires were subsequently encapsulated with aluminum foil and fabricated into bulk composite material by hot-drawing. Extensive mechanical, thermal and chemical testing was conducted on preform and bulk material to develop a process and material data base. In addition, a preliminary investigation of mechanical forming of bulk alumina fiber reinforced aluminum composite material was conducted.

  20. Deformation textures of aluminum in a multilayered Ti/Al/Nb composite severely deformed by accumulative roll bonding

    SciTech Connect

    Qu, Peng Zhou, Liming Acoff, Viola L.

    2015-09-15

    The accumulative roll bonding process was carried out to produce multilayered Ti/Al/Nb composites up to four cycles. Scanning electron microscopy, transmission electron microscopy electron backscattered diffraction and nanoindentation were employed to investigate the microstructural and texture evolution. A homogenous distribution of Ti/Nb necking layers in Al matrix was achieved after four ARB cycles. Grain refinement was observed to increase with increasing number of ARB cycles. The fraction of high-angle grain boundaries as also increased. Strong recrystallization texture appeared for high number of ARB cycles due to the adiabatic heat that occurs during ARB processing. The shear band at the Ti/Al interface reduced the intensity of the cold rolling fiber textures of Al. There was no evidence of shear component from the orientation distribution function results.

  1. Feasibility and Manufacturing Considerations of Hemp Textile Fabric Utilized in Pre-Impregnated Composites

    NASA Astrophysics Data System (ADS)

    Osusky, Gregory

    This study investigates the fabrication and mechanical properties of semicontinuous, hemp fiber reinforced thermoset composites. This research determines if off-the-shelf refined woven hemp fabric is suitable as composite reinforcement using resin pre-impregnated method. Industrial hemp was chosen for its low cost, low resource input as a crop, supply chain from raw product to refined textile and biodegradability potential. Detail is placed on specimen fabrication considerations. Lab testing of tension and compression is conducted and optimization considerations are examined. The resulting composite is limited in mechanical properties as tested. This research shows it is possible to use woven hemp reinforcement in pre-impregnated processed composites, but optimization in mechanical properties is required to make the process commercially practical outside niche markets.

  2. Hemp reinforced composites: surface treatment, manufacturing method and fabric type effects

    SciTech Connect

    Cicala, G.; Cristaldi, G.; Recca, G.

    2010-06-02

    Hemp mats and weaved fabrics were used as received and after surface treatment as reinforcement for composites. Mercerization and amino silane surface treatments improved fibre/matrix adhesion and, as results, the mechanical properties of the composites were also improved. However, if surface treatment was too severe degradation of the mechanical properties of the single fibre was observed and this resulted in a reinforcing efficiency loss. Weaved fabrics obtained from twisted fibres in unidirectional and 0/90 deg. architecture were used. The use of weaved fabrics lead to high improvements of composite mechanical properties despite the absence of fibre's surface treatment. The specimens manufactured by LRTM (Light Resin Transfer Moulding) showed enhanced mechanical properties compared to specimens made by hand lay up. Mechanical models were also used to predict the mechanical properties of the composites.

  3. Nondestructive characterization of as-fabricated composite ceramic panels

    SciTech Connect

    Green, W. H.; Brennan, R. E.

    2011-06-23

    Decreasing the weight of protective systems, while minimizing the decrease in ballistic performance, is an ongoing goal of the Army. Ceramic materials are currently combined with other materials in these types of structures in order to decrease weight without losing ballistic performance. This includes structures in which the ceramic material is confined in some way and in which the ceramic material is completely encapsulated. Confinement or encapsulation of ceramic material within a structure generally adds complexity and cost. Relatively simple panel specimens fabricated with ceramic tiles on aluminum backings and side confinement using steel were evaluated using nondestructive methods, including x-ray computed tomography and ultrasonic testing. The nondestructive evaluation results will be discussed and compared, including the detectability and mapping of fabrication features.

  4. Effect of Sericin on Mechanical Behavior of Composite Material Reinforced by Silk Woven Fabric

    NASA Astrophysics Data System (ADS)

    Kimura, Teruo; Ino, Haruhiro; Hanada, Koji; Katori, Sigetaka

    Recent, attention has been given to shift from glass fibers and carbon fibers to natural fibers for FRP composites for the goal of protecting the environment. This paper concerned with the application of silk fabric for composite materials. Polypropylene (PP) was used for the matrix material and the silk fabric composites were molded using a compression molding method. Especially, the effect of sericin on mechanical behaviors of composite materials was discussed. Good adhesion between silk and PP was obtained by removing the sericin existing around the fibroin. The tensile modulus of composite decreased with decreasing the sericin because of the flexibility of silk fibers without sericin. In particular, the higher Izod impact value was obtained for the composites containing the silk fibers without sericin.

  5. The texture-structure relationship in Ti-Al-Nb multilayered composites processed by accumulative roll bonding

    NASA Astrophysics Data System (ADS)

    Zhou, Liming

    Multilayered Ti/Al/Nb composites were processed by the accumulative roll bonding (ARB) process using elemental foils of titanium, aluminum, and niobium. The rolled multilayered composites (MLCs) were prepared by ARB process up to two ARB cycles. The microstructure and texture evolution of the Ti, Al, and Nb in the MLCs were studied utilizing X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with electron backscattered diffraction (EBSD). The characterizations of crystallographic texture and microstructure were conducted using a creative approach; a layer by layer method on the rolling plane. Texture evolution in the MLCs produced by symmetric rolling and asymmetric rolling was also studied in a layer by layer manner. In addition to studying the texture evolution of the Nb in the MLCs produced by the ARB process, the Bingham distribution was used to model the orientation distribution function (ODF) by employing MTEX, a quantitative texture analysis toolbox for Matlab RTM. This provided a bridge for the gap between experiments and Bingham modeling in terms of the crystallographic texture. As the numbers of ARB cycles increased, the microstructures tended to be heterogeneous through the thickness. Also, the texture development of the mating layers in the MLCs exhibited multiple texture domination rather than random. Furthermore, the developed textures of the layers in the MLCs during the ARB process were significantly different from that produced by conventional rolling. The characteristic textures formed in the MLCs subjected to the ARB process implied that the partial recrystallization and recovery occurred as a result of the adiabatic heat. The shear and compressive strain distributions were inhomogeneous through the thickness. Thus, the texture developments of the layers in the MLCs suggested a strong locational dependence. Where, the surface and the middle layers tended to form textures attributed to the shear, while, the transitory layers

  6. Analysis of woven and braided fabric reinforced composites

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.

    1994-01-01

    A general purpose micromechanics analysis that discretely models the yarn architecture within the textile repeating unit cell, was developed to predict overall, three dimensional, thermal and mechanical properties. This analytical technique was implemented in a user-friendly, personal computer-based, windows compatible code called Textile Composite Analysis for Design (TEXCAD). TEXCAD was used to analyze plain, 5-harness satin, and 8-harness satin weave composites along with 2-D braided and 2x2, 2-D triaxial braided composites. The calculated overall stiffnesses correlated well with available 3-D finite element results and test data for both the woven and the braided composites. Parametric studies were performed to investigate the effects of yarn size on the yarn crimp and the overall thermal and mechanical constants for plain weave composites. The effects of braid angle were investigated for the 2-D braided composites. Finally, the effects of fiber volume fraction on the yarn undulations and the thermal and mechanical properties of 2x2, 2-D triaxial braided composites were also investigated.

  7. Ultra-thin multilayer capacitors.

    SciTech Connect

    Renk, Timothy Jerome; Monson, Todd C.

    2009-06-01

    The fabrication of ultra-thin lanthanum-doped lead zirconium titanate (PLZT) multilayer ceramic capacitors (MLCCs) using a high-power pulsed ion beam was studied. The deposition experiments were conducted on the RHEPP-1 facility at Sandia National Laboratories. The goal of this work was to increase the energy density of ceramic capacitors through the formation of a multilayer device with excellent materials properties, dielectric constant, and standoff voltage. For successful device construction, there are a number of challenging requirements including achieving correct stoichiometric and crystallographic composition of the deposited PLZT, as well as the creation of a defect free homogenous film. This report details some success in satisfying these requirements, although 900 C temperatures were necessary for PLZT perovskite phase formation. These temperatures were applied to a previously deposited multi-layer film which was then post-annealed to this temperature. The film exhibited mechanical distress attributable to differences in the coefficient of thermal expansion (CTE) of the various layers. This caused significant defects in the deposited films that led to shorts across devices. A follow-on single layer deposition without post-anneal produced smooth layers with good interface behavior, but without the perovskite phase formation. These issues will need to be addressed in order for ion beam deposited MLCCs to become a viable technology. It is possible that future in-situ heating during deposition may address both the CTE issue, and result in lowered processing temperatures, which in turn could raise the probability of successful MLCC formation.

  8. Method for Fabricating Composite Structures Including Continuous Press Forming and Pultrusion Processing

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1995-01-01

    A method for fabricating composite structures at a low-cost, moderate-to-high production rate is disclosed. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply, and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform, and debulking the partially debulked preform to form a netshape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length, and electron-beam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates, resulting in lower cost and high structural performance.

  9. Composite panels based on woven sandwich-fabric preforms

    NASA Astrophysics Data System (ADS)

    van Vuure, Aart Willem

    A new type of sandwich material was investigated, based on woven sandwich-fabric preforms. Because of the integrally woven nature of the sandwich-fabric the skin-core debonding resistance of panels and structures based on the preform is very high. As the sandwich-fabrics are produced by a large scale textile weaving process (velvet weaving or distance weaving) and already a preform of a sandwich is available, the cost of the final panel or structure can potentially stay limited. Most attention in this work is focussed on the mechanical performance of sandwich-fabric panels. The high skin-core debonding resistance was verified and also indications were found of a good damage tolerance. Both unfoamed and foamed panels were evaluated and compared with existing sandwich panels. Microstructural parameters investigated for unfoamed cores are pile length, pile density, woven pile angles, degree of pile stretching, tilt angles of the piles induced during panel production and resin content and distribution. For foamed panels it is especially the foam density which has an important influence. There appears to be a synergistic effect between piles and foam in the sandwich core, leading to very acceptable mechanical properties. For panels for (semi) structural applications, foaming is almost indispensable once the panel thickness is higher than about 15 mm. To understand the behaviour of foamed panels, attention was paid to the modelling of the mechanics of pure foam. The foam microstructure was modelled with the model of an anisotropic tetrakaidecahedron. The mechanical properties of unfoamed panels were modelled with the help of finite elements. A detailed geometrical description of the core layout was made which was incorporated into a preprocessing program for a finite element code. Attention is paid to the production of panels based on the woven preforms. A newly developed Adhesive Foil Stretching process was investigated. Also the foaming of panels was studied. A lot of

  10. Method of Fabricating NASA-Standard Macro-Fiber Composite Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    High, James W.; Wilkie, W. Keats

    2003-01-01

    The NASA Macro-Fiber Composite actuator is a flexible piezoelectric composite device designed for controlling vibrations and shape deformations in high performance aerospace structures. A complete method for fabricating the standard NASA Macro-Fiber Composite actuator is presented in this document. When followed precisely, these procedures will yield devices with electromechanical properties identical to the standard actuator manufactured by NASA Langley Research Center.

  11. Development of a method for fabricating metallic matrix composite shapes by a continuous mechanical process

    NASA Technical Reports Server (NTRS)

    Divecha, A. P.

    1974-01-01

    Attempts made to develop processes capable of producing metal composites in structural shapes and sizes suitable for space applications are described. The processes must be continuous and promise to lower fabrication costs. Special attention was given to the aluminum boride (Al/b) composite system. Results show that despite adequate temperature control, the consolidation characteristics did not improve as expected. Inadequate binder removal was identified as the cause responsible. An Al/c (aluminum-graphite) composite was also examined.

  12. Failure analysis of woven and braided fabric reinforced composites

    SciTech Connect

    Naik, R.A.

    1994-09-01

    A general purpose micromechanics analysis that discretely models the yarn architecture within the textile repeating unit cell was developed to predict overall, three dimensional, thermal and mechanical properties, damage initiation and progression, and strength. This analytical technique was implemented in a user-friendly, personal computer-based, menu-driven code called Textile Composite Analysis for Design (TEXCAD). TEXCAD was used to analyze plain weave and 2x2, 2-D triaxial braided composites. The calculated tension, compression, and shear strengths correlated well with available test data for both woven and braided composites. Parametric studies were performed on both woven and braided architectures to investigate the effects of parameters such as yarn size, yarn spacing, yarn crimp, braid angle, and overall fiber volume fraction on the strength properties of the textile composite.

  13. Failure analysis of woven and braided fabric reinforced composites

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.

    1994-01-01

    A general purpose micromechanics analysis that discretely models the yarn architecture within the textile repeating unit cell was developed to predict overall, three dimensional, thermal and mechanical properties, damage initiation and progression, and strength. This analytical technique was implemented in a user-friendly, personal computer-based, menu-driven code called Textile Composite Analysis for Design (TEXCAD). TEXCAD was used to analyze plain weave and 2x2, 2-D triaxial braided composites. The calculated tension, compression, and shear strengths correlated well with available test data for both woven and braided composites. Parametric studies were performed on both woven and braided architectures to investigate the effects of parameters such as yarn size, yarn spacing, yarn crimp, braid angle, and overall fiber volume fraction on the strength properties of the textile composite.

  14. Influence of weave structures on the tribological properties of hybrid Kevlar/PTFE fabric composites

    NASA Astrophysics Data System (ADS)

    Gu, Dapeng; Yang, Yulin; Qi, Xiaowen; Deng, Wei; Shi, Lei

    2012-09-01

    The existing research of the woven fabric self-lubricating liner mainly focus on the tribological performance improvements and the service life raised by changing different fiber type combinations, adding additive modification, and performing fiber surface modification. As fabric composites, the weave structures play an important role in the mechanical and tribological performances of the liners. However, hardly any literature is available on the friction and wear behavior of such composites with different weave structures. In this paper, three weave structures (plain, twill 1/3 and satin 8/5) of hybrid Kevlar/PTFE fabric composites are selected and pin-on-flat linear reciprocating wear studies are done on a CETR tester under different pressures and different frequencies. The relationship between the tensile strength and the wear performance are studied. The morphologies of the worn surfaces under the typical test conditions are analyzed by means of scanning electron microscopy (SEM). The analysis results show that at 10 MPa, satin 8/5 performs the best in friction-reduction and antiwear performance, and plain is the worst. At 30 MPa, however, the antiwear performance is reversed and satin 8/5 does not even complete the 2 h wear test at 16 Hz. There is no clear evidence proving that the tensile strength has an influence on the wear performance. So the different tribological performance of the three weave structures of fabric composites may be attributed to the different PTFE proportions in the fabric surface and the different wear mechanisms. The fabric composites are divided into three regions: the lubrication region, the reinforced region and the bonding region. The major mechanisms are fatigue wear and the shear effects of the friction force in the lubrication region. In the reinforced region fiber-matrix de-bonding and fiber breakage are involved. The proposed research proposes a regional wear model and further indicates the wear process and the wear mechanism

  15. Fabrication of Piezoelectric Ceramic/Polymer Composites by Injection Molding

    DTIC Science & Technology

    1993-04-15

    performed in polymer-lined containers using aged I zirconia media to minimize contamination. No evidence of contamination from milling was found in any of...several 50mm square solid polyurethane matrix composites were prepared and poled by both the3 contact method and corona poling. The as-encapsulated...composites were corona poled by Prof. Ahmad Safari at Rutgers University. No electrodes were required for corona poling. The poling conditions were: 70 C

  16. Fabrication of macroporous films with closed honeycomb-like pores from exponentially growing layer-by-layer assembled polyelectrolyte multilayers.

    PubMed

    Chen, Xiaoling; Sun, Junqi

    2014-08-01

    We report an innovative method for the fabrication of macroporous films with closed honeycomb-like pores of several micrometers by post-treatment of micrometer-thick poly(acrylic acid) (PAA)/poly(allylamine hydrochloride) (PAH) films. The precursor PAA/PAH films are fabricated by exponential layer-by-layer assembly of PAA and PAH, which produces PAA/PAH films with highly interpenetrated structures. We disclose that the high mobility of PAA and PAH, which originates from the highly interpenetrated film structures, allows a large-scale phase separation to take place upon post-treatment to produce micrometer-sized honeycomb pores. These macroporous PAA/PAH films can be conveniently released from substrates to produce free-standing films with satisfactory mechanical stability.

  17. Fabrication and Structure Characterization of Alumina-Aluminum Interpenetrating Phase Composites

    NASA Astrophysics Data System (ADS)

    Dolata, Anna J.

    2016-08-01

    Alumina-Aluminum composites with interpenetrating networks structure belong to advanced materials with potentially better properties when compared with composites reinforced by particles or fibers. The paper presents the experimental results of fabrication and structure characterization of Al matrix composites locally reinforced via Al2O3 ceramic foam. The composites were obtained using centrifugal infiltration of porous ceramics by liquid aluminum alloy. Both scanning electron microscopy (SEM + EDS) and x-ray tomography were used to determine the structure of foams and composites especially in reinforced areas. The quality of castings, degree of pore filling in ceramic foams by Al alloy, and microstructure in area of interface were assessed.

  18. The role of rapid solidification processing in the fabrication of fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Locci, Ivan E.; Noebe, Ronald D.

    1989-01-01

    Advanced composite processing techniques for fiber reinforced metal matrix composites require the flexibility to meet several widespread objectives. The development of uniquely desired matrix microstructures and uniformly arrayed fiber spacing with sufficient bonding between fiber and matrix to transmit load between them without degradation to the fiber or matrix are the minimum requirements necessary of any fabrication process. For most applications these criteria can be met by fabricating composite monotapes which are then consolidated into composite panels or more complicated components such as fiber reinforced turbine blades. Regardless of the end component, composite monotapes are the building blocks from which near net shape composite structures can be formed. The most common methods for forming composite monotapes are the powder cloth, foil/fiber, plasma spray, and arc spray processes. These practices, however, employ rapid solidification techniques in processing of the composite matrix phase. Consequently, rapid solidification processes play a vital and yet generally overlooked role in composite fabrication. The future potential of rapid solidification processing is discussed.

  19. Fabrication and EM shielding properties of electrospining PANi/MWCNT/PEO fibrous membrane and its composite

    NASA Astrophysics Data System (ADS)

    Zhang, Zhichun; Jiang, Xueyong; Liu, Yanju; Leng, Jinsong

    2012-04-01

    In this paper, Polyaniline-based fibrous membranes were fabricated with multi-walled carbon nanotubes and polyethylene oxide (PEO) by the electrospinning method. And then PANi/PEO/MWCNT fibrous membranes reinforced epoxy based nanocomposite was then fabricated. The morphology and electrical properties of PANi /MWCNT /PEO fibrous membrane was characterized by scanning electron microscope (SEM). The morphologies of the membranes indicate that the electrospining method can fabricate well nano structures fibrous membrane. The EM properties of the composite reinforced with the electrospining fibrous membrane were measured by vector network analyzer. The results show that the permittivity real, image parts and permeability real part of the composite increase by filling with PANI/PEO and PANI/CNT/PEO membrane. The EM shielding and absorb performance is base on the dielectric dissipation. And different membranes made of different materials show different EM parameter, and different EM shielding performance, which can be used to the EM shielding and stealth material design and fabrication.

  20. Polyester fabric coated with Ag/ZnO composite film by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaohong; Xu, Wenzheng; Huang, Fenglin; Chen, Dongsheng; Wei, Qufu

    2016-12-01

    Ag/ZnO composite film was successfully deposited on polyester fabric by using direct current (DC) magnetron sputtering and radio frequency (RF) magnetron reaction sputtering techniques with pure silver (Ag) and zinc (Zn) targets. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used to examine the deposited film on the fabric. It was found that the zinc film coated on Ag film before RF reactive sputtering could protect the silver film from oxidation. Anti-ultraviolet property and antistatic property of the coated samples using different magnetron sputtering methods were also investigated. The experimental results showed that Ag film was oxidized into in Ag2O film in high vacuum oxygen environment. The deposition of Zn film on the surface of the fabric coated with Ag film before RF reactive sputtering, could successfully obtained Ag/ZnO composite film, and also generated structural color on the polyester fabric.

  1. Surface protection of graphite fabric/PMR-15 composites subjected to thermal oxidation

    NASA Technical Reports Server (NTRS)

    Hanson, M. P.; Serafini, T. T.

    1985-01-01

    Graphite fabric/PMR-15 laminates develop matrix cracks during long-term exposure in air at temperatures in the range of 500 to 600 F. This study was performed to demonstrate the effectiveness of incorporating graphite mat surface plies as a means of reducing the developing of matrix cracks. Celion 3000 graphite fabric/PMR-15 laminates were fabricated with graphite or graphite mat/325-mesh boron powder surface plies. Laminates without mat surface plies were also fabricated for control purposes. Composite flexural strength, flexural modulus, and interlaminar shear strength were determined at 288 C before and after long-term exposure (up to 1500 hr) in air at 316 C. The results of this study showed that the incorporation of graphite mat surface plies reduces matrix cracking and improves the elevated temperature mechanical property retention characteristics of the composites.

  2. Axiomatic Design and Fabrication of Composite Structures - Applications in Robots, Machine Tools, and Automobiles

    NASA Astrophysics Data System (ADS)

    Lee, Dai Gil; Suh, Nam Pyo

    2005-11-01

    The idea that materials can be designed to satisfy specific performance requirements is relatively new. With high-performance composites, however, the entire process of designing and fabricating a part can be worked out before manufacturing. The purpose of this book is to present an integrated approach to the design and manufacturing of products from advanced composites. It shows how the basic behavior of composites and their constitutive relationships can be used during the design stage, which minimizes the complexity of manufacturing composite parts and reduces the repetitive "design-build-test" cycle. Designing it right the first time is going to determine the competitiveness of a company, the reliability of the part, the robustness of fabrication processes, and ultimately, the cost and development time of composite parts. Most of all, it should expand the use of advanced composite parts in fields that use composites only to a limited extent at this time. To achieve these goals, this book presents the design and fabrication of novel composite parts made for machine tools and other applications like robots and automobiles. This book is suitable as a textbook for graduate courses in the design and fabrication of composites. It will also be of interest to practicing engineers learning about composites and axiomatic design. A CD-ROM is included in every copy of the book, containing Axiomatic CLPT software. This program, developed by the authors, will assist readers in calculating material properties from the microstructure of the composite. This book is part of the Oxford Series on Advanced Manufacturing.

  3. Crash-Energy Absorbing Composite Structure and Method of Fabrication

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris (Inventor); Carden, Huey D. (Inventor)

    1998-01-01

    A stand-alone, crash-energy absorbing structure and fabrication method are provided. A plurality of adjoining rigid cells are each constructed of resin-cured fiber reinforcement and are arranged in a geometric configuration. The geometric configuration of cells is integrated by means of continuous fibers wrapped thereabout in order to maintain the cells in the geometric configuration. The cured part results in a net shape, stable structure that can function on its own with no additional reinforcement and can withstand combined loading while crushing in a desired direction.

  4. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    SciTech Connect

    Besmann, T.M.; McLaughlin, J.C.; Probst, K.J.; Anderson, T.J.; Starr, T.L.

    1997-12-01

    Silicon carbide-based heat exchanger tubes are of interest to energy production and conversion systems due to their excellent high temperature properties. Fiber-reinforced SiC is of particular importance for these applications since it is substantially tougher than monolithic SiC, and therefore more damage and thermal shock tolerant. This paper reviews a program to develop a scaled-up system for the chemical vapor infiltration of tubular shapes of fiber-reinforced SiC. The efforts include producing a unique furnace design, extensive process and system modeling, and experimental efforts to demonstrate tube fabrication.

  5. Fabrication of SiC whiskers and composites

    SciTech Connect

    Hurley, G.F.; Shalek, P.D.; Gac, F.D.; Petrovic, J.J.

    1984-01-01

    The Los Alamos Structural Ceramics Program is a multi-faceted program with an overall objective of producing superior strength and fracture toughness in ceramic bodies for load bearing applications. One phase of the program is pursuing the development of silicon carbide whiskers which are used to prepare ceramic matrix composites. The purpose of this work is to investigate strengthening and toughening mechanisms in ceramic composites. In the following we describe some elements of the whisker development program in which we are endeavoring better to characterize the whisker growth process in order to scale up its production potential. We have used these whiskers in the preparation of four types of ceramic matrix representative of a range of materials. The nature and reasons for choosing these materials are described. Composites have been prepared by dry-blending followed by hot pressing which yields high density bodies. In addition we are beginning an investigation of wet processing (slip casting) to produce a silicon-silicon carbide body which will be reaction sintered in nitrogen. Composites of glass-, hot pressed silicon nitride -, and molybdenum disilicide - silicon carbide whiskers have been tested in flexure to determine strength and fracture toughness. Results have been promising, with substantial toughening exhibited in all systems, and strengthening in the glass and MoSi/sub 2/ composites. The reaction bonded silicon nitride is not yet to the testing stage.

  6. Fabrication Of Carbon-Boron Reinforced Dry Polymer Matrix Composite Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L.; Cano, Roberto J.; Treasure, Monte; Shahood, Thomas W.

    1999-01-01

    Future generation aerospace vehicles will require specialized hybrid material forms for component structure fabrication. For this reason, high temperature composite prepregs in both dry and wet forms are being developed at NASA Langley Research Center (LaRC). In an attempt to improve compressive properties of carbon fiber reinforced composites, a hybrid carbon-boron tape was developed and used to fabricate composite laminates which were subsequently cut into flexural and compression specimens and tested. The hybrid material, given the designation HYCARB, was fabricated by modifying a previously developed process for the manufacture of dry polymer matrix composite (PMC) tape at LaRC. In this work, boron fibers were processed with IM7/LaRC(TradeMark)IAX poly(amide acid) solution-coated prepreg to form a dry hybrid tape for Automated Tow Placement (ATP). Boron fibers were encapsulated between two (2) layers of reduced volatile, low fiber areal weight poly(amide acid) solution-coated prepreg. The hybrid prepreg was then fully imidized and consolidated into a dry tape suitable for ATP. The fabrication of a hybrid boron material form for tow placement aids in the reduction of the overall manufacturing cost of boron reinforced composites, while realizing the improved compression strengths. Composite specimens were press-molded from the hybrid material and exhibited excellent mechanical properties.

  7. Facile Method to Fabricate Highly Thermally Conductive Graphite/PP Composite with Network Structures.

    PubMed

    Feng, Changping; Ni, Haiying; Chen, Jun; Yang, Wei

    2016-08-03

    Thermally conductive polymer composites have aroused significant academic and industrial interest for several decades. Herein, we report a novel fabrication method of graphite/polypropylene (PP) composites with high thermal conductivity in which graphite flakes construct a continuous thermally conductive network. The thermal conductivity coefficient of the graphite/PP composites is markedly improved to be 5.4 W/mK at a graphite loading of 21.2 vol %. Such a great improvement of the thermal conductivity is ascribed to the occurrence of orientations of crystalline graphite flakes with large particles around PP resin particles and the formation of a perfect thermally conductive network. The model of Hashin-Shtrikman (HS) is adopted to interpret the outstanding thermally conductive property of the graphite/PP composites. This work provides a guideline for the easy fabrication of thermally conductive composites with network structures.

  8. Wet-filament winding fabrication of thick carbon fiber/polycyanate resin composite

    SciTech Connect

    Frame, B.J.; Dodge, W.G.

    1997-06-01

    Polycyanate resins offer advantages as composite matrices because of their high thermal stability, low outgassing, low water absorption and radiation resistance. This report describes the fabrication of a thick (nominal 1 in.) hoop-wound composite cylinder that is manufactured by the wet-filament winding method using Toray T1000G carbon fiber and YLA RS-14 polycyanate resin as the constituent materials. An analytical model used to evaluate the fabrication process, estimate composite residual stresses and provide input toward mandrel design is presented and the construction of the mandrel used to wet-wind the cylinder is described. The composite cylinder quality is evaluated by dimensional inspection and measurements of density and composition.

  9. Advancement in conductive cotton fabrics through in situ polymerization of polypyrrole-nanocellulose composites.

    PubMed

    Hebeish, A; Farag, S; Sharaf, S; Shaheen, Th I

    2016-10-20

    Current research was undertaking with a view to innovate a new approach for development of conductive - coated textile materials through coating cotton fabrics with nanocellulose/polypyrrole composites. The study was designed in order to have a clear understanding of the role of nanocellulose as well as modified composite thereof under investigation. It is anticipated that incorporation of nanocellulose in the pyrrole/cotton fabrics/FeCl3/H2O system would form an integral part of the composites with mechanical, electrical or both properties. Three different nanocellulosic substrates are involved in the oxidation polymerization reaction of polypyrrole (Ppy) in presence of cotton fabrics. Polymerization was subsequently carried out by admixing at various ratios of FeCl3 and pyrrole viz. Ppy1, Ppy2 and pp3. The conductive, mechanical and thermal properties of cotton fabrics coated independently with different nanocellulose/polypyrrole were investigated. FTIR, TGA, XRD, SEM and EDX were also used for further characterization. Results signify that, the conductivity of cotton fabrics increases exponentially with increasing the dose of pyrrole and oxidant irrespective of nanocellulose substrate used. While, the mechanical properties of cotton fabrics are not significantly affected by the oxidant treatment.

  10. Translaminar Fracture Toughness of a Composite Wing Skin Made of Stitched Warp-knit Fabric

    NASA Technical Reports Server (NTRS)

    Masters, John E.

    1997-01-01

    A series of tests were conducted to measure the fracture toughness of carbon/epoxy composites. The composites were made from warp-knit carbon fabric and infiltrated with epoxy using a resin-film-infusion process. The fabric, which was designed by McDonnell Douglas for the skin of an all-composite subsonic transport wing, contained fibers in the 0 deg, +/-45 deg, and 90 deg directions. Layers of fabric were stacked and stitched together with Kevlar yarn to form a 3-dimensional preform. Three types of test specimens were evaluated: compact tension, center notch tension, and edge notch tension. The effects of specimen size and crack length on fracture toughness were measured for each specimen type. These data provide information on the effectiveness of the test methods and on general trends in the material response. The scope of the investigation was limited by the material that was available.

  11. Fabrication of facing tiles for floors from kaolin ash composites

    SciTech Connect

    Sirazhiddinov, N.A.; Irkakhodzhaeva, A.P.; Kasimova, G.A.

    1994-09-01

    Many enterprises in the ceramics industry are increasingly widely using different production wastes, fuel slag in particular, due to the limited ability to ensure standardized raw materials. We attempted to investigate the use of ash slag from the Angrensk Thermoelectric Power Plant (TEPP) in composites with kaolin - waste from coal concentration for the Angrensk coal pit.

  12. Arc spray fabrication of metal matrix composite monotape

    NASA Technical Reports Server (NTRS)

    Westfall, L. J. (Inventor)

    1985-01-01

    Arc metal spraying is used to spray liquid metal onto an array of high strength fibers that were previously wound onto a large drum contained inside a controlled atmosphere chamber. This chamber is first evacuated to remove gaseous contaminants and then backfilled with a neutral gas up to atmospheric pressure. This process is used to produce a large size metal matrix composite monotape.

  13. Wedged multilayer Laue Lens.

    SciTech Connect

    Conley, R.; Liu, C.; Qian, J.; Kewish, C. M.; Macrander, A. T.; Yan, H.; Kang, H. C.; Maser, J.; Stephenson, G. B.

    2008-05-01

    A multilayer Laue lens (MLL) is an x-ray focusing optic fabricated from a multilayer structure consisting of thousands of layers of two different materials produced by thin-film deposition. The sequence of layer thicknesses is controlled to satisfy the Fresnel zone plate law and the multilayer is sectioned to form the optic. An improved MLL geometry can be created by growing each layer with an in-plane thickness gradient to form a wedge, so that every interface makes the correct angle with the incident beam for symmetric Bragg diffraction. The ultimate hard x-ray focusing performance of a wedged MLL has been predicted to be significantly better than that of a nonwedged MLL, giving subnanometer resolution with high efficiency. Here, we describe a method to deposit the multilayer structure needed for an ideal wedged MLL and report our initial deposition results to produce these structures.

  14. Processing and Characterization of Peti Composites Fabricated by High Temperature Vartm (Section)

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Cano, Roberto J.; Watson, Kent A.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Smith, Joseph G., Jr.; Loos, Alfred C.; Heider, Dirk

    2011-01-01

    The use of composites as primary structures on aerospace vehicles has increased dramatically over the past decade, but so have the production costs associated with their fabrication. For certain composites, high temperature vacuum assisted resin transfer molding (HT-VARTM) can offer reduced fabrication costs compared to conventional autoclave techniques. The process has been successfully used with phenylethynyl terminated imide (PETI) resins developed by NASA Langley Research Center (LaRC). In the current study, three PETI resins have been used to make test specimens using HT-VARTM. Based on previous work at NASA LaRC, larger panels with a quasi-isotropic lay-up were fabricated. The resultant composite specimens exhibited void contents of 3% by volume depending on the type of carbon fabric preform used. Mechanical properties of the panels were determined at both room and elevated temperatures. Fabric permeability characterizations and limited process modeling efforts were carried out to determine infusion times and composite panel size limitations. In addition, new PETI based resins were synthesized specifically for HT-VARTM.

  15. An infiltration/cure model for manufacture of fabric composites by the resin infusion process

    NASA Technical Reports Server (NTRS)

    Weideman, Mark H.; Loos, Alfred C.; Dexter, H. Benson; Hasko, Gregory H.

    1992-01-01

    A 1-D infiltration/cure model was developed to simulate fabrication of advanced textile composites by the resin film infusion process. The simulation model relates the applied temperature and pressure processing cycles, along with the experimentally measured compaction and permeability characteristics of the fabric preforms, to the temperature distribution, the resin degree of cure and viscosity, and the infiltration flow front position as a function of time. The model also predicts the final panel thickness, fiber volume fraction, and resin mass for full saturation as a function of compaction pressure. Composite panels were fabricated using the RTM (Resin Transfer Molding) film infusion technique from knitted, knitted/stitched, and 2-D woven carbon preforms and Hercules 3501-6 resin. Fabric composites were fabricated at different compaction pressures and temperature cycles to determine the effects of the processing on the properties. The composites were C-scanned and micrographed to determine the quality of each panel. Advanced cure cycles, developed from the RTM simulation model, were used to reduce the total cure cycle times by a factor of 3 and the total infiltration times by a factor of 2.

  16. Fabrication and characterization of nanoclay modified PMR type polyimide composites reinforced with 3D woven basalt fabric

    NASA Astrophysics Data System (ADS)

    Xie, Jianfei; Qiu, Yiping

    2009-07-01

    Nanoclay modified PMR type polyimide composites were prepared from 3D orthogonal woven basalt fiber performs and nanoclay modified polyimide matrix resin, which derived from methylene dianiline (MDA), dimethyl ester of 3,3',4,4'- oxydiphthalic acid (ODPE), monomethyl ester of cis-5-norbornene-endo-2,3-dicarboxylic acid (NE) and nanoclay. The Na+-montmorillonite was organically treated using a 1:1 molar ratio mixture of dodecylamine (C12) and MDA. The rheological properties of neat B-stage PMR polyimide and 2% clay modified B-stage PMR polyimide were investigated. Based on the results obtained from the rheological tests, a two step compression molding process can be established for the composites. In the first step, the 3D fabric preforms were impregnated with polyimide resin in a vacuum oven and heated up for degassing the volatiles and by-products. In the second step, composites were compressed. The internal structure of the composites was observed by a microscope. Incorporation of 2% clay showed an improvement in the Tg and stiffness of the PMR polyimide. The resulting composites exhibited high thermal stability and good mechanical properties.

  17. Heme protein assisted dispersion of gold nanoparticle multilayers on chips: from stabilization to high-density double-stranded DNAs fabricated in situ for protein/DNA binding.

    PubMed

    Li, Yu-Ting; Li, Chun-Wei; Sung, Wang-Chou; Chen, Shu-Hui

    2009-05-15

    Heme proteins in general are shown to be an effective linking agent in stabilizing gold nanoparticles (AuNPs) and thus facilitate the fabrication of three-dimensional (3D) AuNP multilayers on a chip, resulting in a higher coating density than that on polymer linker anchored surfaces for analytical applications. With the use of electron spectroscopy for chemical analysis (ESCA) measurements, a lower oxidation state of Au(0) and dramatic changes among multiple chemical states of N1s are detected upon coating AuNPs with heme proteins but not detected upon coating AuNPs with non-heme proteins. Thus, we propose that the stabilization power arises from pi-conjugation between AuNPs and the heme group. We also propose that such conjugation must be facilitated by the exposure of the heme group through a conformational change of the protein as well as interactions of other functional groups with AuNPs to bring the heme moiety to a close face-to-face distance with the AuNPs. A high-density double-stranded DNA (dsDNA) composed of a sequence of estrogen response element (ERE) is then fabricated on heme protein anchored chips. An in situ hybridization and tracking method is developed based on hybridization-induced fluorescence restoration associated with AuNPs and assists in the subsequent detection of DNA/protein binding on the same chip. The AuNP ERE chips are shown to have high sensitivity and specificity for quantitative detection of ERE binding with its two transcription factor isoforms, estrogen receptors alpha and beta (ERalpha and ERbeta), in cell lysates with reduced reagents and reaction time.

  18. Water-based chitosan/melamine polyphosphate multilayer nanocoating that extinguishes fire on polyester-cotton fabric.

    PubMed

    Leistner, Marcus; Abu-Odeh, Anas A; Rohmer, Sarah C; Grunlan, Jaime C

    2015-10-05

    Polyester-cotton (PECO) blends are widely used in the textile industry because they combine the softness of cotton and the strength and durability of polyester. Unfortunately, both fiber types share the disadvantage of being flammable. The layer-by-layer coating technique was used to deposit a highly effective flame retardant (melamine polyphosphate) from water onto polyester-cotton fabric. Soluble melamine and sodium hexametaphosphate form this water-insoluble flame retardant during the coating procedure. This unique nanocoating imparts self-extinguishing properties to PECO with only 12% relative coating weight. Vertical flame testing, pyrolysis combustion flow calorimetry (PCFC), thermogravimetric analysis (TGA), and scanning electron microscopy were used to evaluate the quality of the coating as well as its flame retardant performance. A combination of both condensed and gas-phase activity appears to be the reason for this effective flame retardancy. Degradation pathways of both cotton and polyester are affected by the applied coating, as shown by PCFC and TGA. Use of environmentally benign and non-toxic chemicals, and the ease of layer-by-layer deposition, making this coating an industrially feasible alternative to render polyester-cotton fabric self-extinguishing.

  19. Design and fabrication of a composite wind turbine blade

    NASA Technical Reports Server (NTRS)

    Brown, R. A.; Haley, R. G.

    1980-01-01

    The design considerations are described which led to the combination of materials used for the MOD-I wind turbine generator rotor and to the fabrication processes which were required to accomplish it. It is noted that the design problem was to create a rotor for a 2500 kW wind turbine generator. The rotor was to consist of two blades, each with a length of 97.5 feet and a weight of less than 21,000 pounds. The spanwise frequency is 1.17-1.45 Hz, and the chordwise frequency 2.80-2.98 Hz. The design life of the blade is 30 years, or 4.35 x 10 to the 8th cycles. The structures of the spars and trailing edges are described, and the adhesive bonding system is discussed.

  20. Graphite/epoxy composite stiffened panel fabrication development

    NASA Technical Reports Server (NTRS)

    Palmer, R. J.

    1984-01-01

    This report describes the manufacturing development procedures used to fabricate a series of carbon/epoxy panels with integrally molded stiffeners. Panel size was started at 6 inches by 18 inches and one stiffener and increased to 30 inches by 60 inches and six integral stiffeners. Stiffener concepts were optimized for minimum weight (or mass) to carry stress levels from 1500 lbs/inch to 25,000 lbs/inch compression load. Designs were created and manufactured with a stiffener configuration of integrally molded hat, J, I, sine wave I, solid blade, and honeycomb blade shapes. Successful and unsuccessful detail methods of tooling, lay-up methods, and bagging methods are documented. Recommendations are made for the best state-of-the-art manufacturing technique developed for type of stiffener construction.

  1. Flexible aerogel composite for mechanical stability and process of fabrication

    DOEpatents

    Coronado, Paul R.; Poco, John F.

    1999-01-01

    A flexible aerogel and process of fabrication. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4-5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.

  2. Flexible aerogel composite for mechanical stability and process of fabrication

    DOEpatents

    Coronado, Paul R.; Poco, John F.

    2000-01-01

    A flexible aerogel and process of fabrication. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4-5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.

  3. Nanocrystalline-Si-dot multi-layers fabrication by chemical vapor deposition with H-plasma surface treatment and evaluation of structure and quantum confinement effects

    SciTech Connect

    Kosemura, Daisuke Mizukami, Yuki; Takei, Munehisa; Numasawa, Yohichiroh; Ogura, Atsushi; Ohshita, Yoshio

    2014-01-15

    100-nm-thick nanocrystalline silicon (nano-Si)-dot multi-layers on a Si substrate were fabricated by the sequential repetition of H-plasma surface treatment, chemical vapor deposition, and surface oxidation, for over 120 times. The diameter of the nano-Si dots was 5–6 nm, as confirmed by both the transmission electron microscopy and X-ray diffraction analysis. The annealing process was important to improve the crystallinity of the nano-Si dot. We investigated quantum confinement effects by Raman spectroscopy and photoluminescence (PL) measurements. Based on the experimental results, we simulated the Raman spectrum using a phenomenological model. Consequently, the strain induced in the nano-Si dots was estimated by comparing the experimental and simulated results. Taking the estimated strain value into consideration, the band gap modulation was measured, and the diameter of the nano-Si dots was calculated to be 5.6 nm by using PL. The relaxation of the q ∼ 0 selection rule model for the nano-Si dots is believed to be important to explain both the phenomena of peak broadening on the low-wavenumber side observed in Raman spectra and the blue shift observed in PL measurements.

  4. Processing-structure-property relations in PEEK/carbon composites made from comingled fabric and prepreg

    SciTech Connect

    Vu-khanh, T.; Denault, J. )

    1991-10-01

    The effects of the conditions of the processing of PEEK/carbon prepregs and comingled fabric on the microstructure and mechanical characteristics of the resulting composites were investigated. Results showed that, in the comingled fabric system, the fiber/matrix adhesion depends on the molding temperature, the residence time at the melt temperature, and the cooling rate. Too high molding temperature resulted in degradation of the PEEK matrix, which affected the crystallization behavior of the composites, the fiber/matrix adhesion, and the matrix properties. This effect was most important in the case of comingled systems containing sized carbon fibers. 17 refs.

  5. Ballistic impact behaviour of woven fabric composite: Finite element analysis and experiments

    NASA Astrophysics Data System (ADS)

    Phadnis, V. A.; Pandya, K. S.; Naik, N. K.; Roy, A.; Silberschmidt, V. V.

    2013-07-01

    A mechanical behaviour of plain-weave E-glass fabric/epoxy laminate composite plate exposed to ballistic impact is studied using a finite-element (FE) code Abaqus/Explicit. A ply-level FE model is developed, where a fabric-reinforced ply is modelled as a homogeneous orthotropic elastic material with potential to sustain progressive stiffness degradation due to fiber/matrix cracking, and plastic deformation under shear loading. The model is implemented as a VUMAT user subroutine. Ballistic experiments were carried out to validate the FE model. A parametric study for varying panel thickness is performed to compare impact resistance of the studied composite.

  6. Multi-Scale Modeling the Mechanical Properties of Biaxial Weft Knitted Fabrics for Composite Applications

    NASA Astrophysics Data System (ADS)

    Abghary, Mohammad Javad; Nedoushan, Reza Jafari; Hasani, Hossein

    2016-11-01

    In this paper a multi-scale numerical model for simulating the mechanical behavior of biaxial weft knitted fabrics produced based on 1×1 rib structure is presented. Fabrics were produced on a modern flat knitting machine using polyester as stitch yarns and nylon as straight yarns. A macro constitutive equation was presented to model the fabric mechanical behavior as a continuum material. User defined material subroutines were provided to implement the constitutive behavior in Abaqus software. The constitutive equation needs remarkable tensile tests on the fabric as the inputs. To solve this drawbacks meso scale modeling of the fabric was used to predict stress-strain curves of the fabric in three different directions (course, wale and 45°). In these simulations only the yarn properties are needed. To evaluate the accuracy of the proposed macro and meso models, fabric tensile behavior in 22.5 and 67.5° directions were simulated by the calibrated macro model and compared with experimental results. Spherical deformation was also simulated by the multi scale model and compared with experimental results. The results showed that the multi-scale modeling can successfully predict the tensile and spherical deformation of the biaxial weft knitted fabric with least required experiments. This model will be useful for composite applications.

  7. Analysis of knitted fabric reinforced flexible composites and applications in thermoforming

    NASA Astrophysics Data System (ADS)

    Bekisli, Burak

    In this study, large deformation behavior of knitted fabric reinforced composites is investigated. In order to fully utilize the unique stretchability of knitted fabric reinforcements, elastomeric materials are used as the matrix material, resulting in "flexible composites" capable of reaching several hundred percent stretch before failing. These non-traditional composites are ideal candidates for many engineering applications where large deformation is desired, including energy/impact absorption and novel forming processes. A multi-level nonlinear finite element (FE) procedure is developed to analyze the deformation behavior of plain weft-knitted fabrics and the composites derived from these materials. The hierarchy of the model is composed of a 3D unit cell analysis (micro/meso-scale) and a 2D global analysis (macro scale). Using results from different numerical experiments performed in the micro/meso scale, a mechanical behavior database of knit fabric geometries is constructed, both for the uniaxial and biaxial stretch cases. Through an optimization procedure, these results are used to determine the mechanical properties of nonlinear truss elements needed for modeling in the macro scale. A hexagonal honeycomb structure, which closely resembles the knit fabric architecture, is formed using these nonlinear trusses. This truss structure is then used to efficiently model a large number of loops generally found in a fabric. Results from uniaxial experimental measurements are presented for knitted fabrics to validate the FE model. Appropriate hyperelastic material models are determined for the elastomeric matrix, using a curve fit to experimental data. Examples of raw fabric and composite deformation simulations in the global scale are presented in this study. Two types of composites are studied experimentally and numerically: (1) knitted fabric embedded in an elastomeric medium, and (2) the sandwich type composites with elastomeric skins and fabric core. The strain

  8. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    SciTech Connect

    Besmann, T.M.; Stinton, D.P.; Matlin, W.M.; Liaw, P.K.

    1996-08-01

    Processing equipment for the infiltration of fiber-reinforced composite tubes is being designed that incorporates improvements over the equipment used to infiltrate disks. A computer-controlled machine-man interface is being developed to allow for total control of all processing variables. Additionally, several improvements are being made to the furnace that will reduce the complexity and cost of the process. These improvements include the incorporation of free standing preforms, cast mandrels, and simpler graphite heating elements.

  9. Fabrication of a First Article Lightweight Composite Technology Demonstrator - Exospine

    DTIC Science & Technology

    2014-01-01

    Emerald Touch Inc. (Duncanville, TX) that is capable of bearing a full loading of a typical Soldier’s field gear. The demonstrator is constructed of a...to thank Mr. Robert Stratton (Stratton Composite Solutions, Marietta, GA) and Dr. Michael Glenn ( Emerald Touch Inc., Duncanville, TX) for their...paper is a registered trademark of Emerald Touch Inc., Keller, TX. vi INTENTIONALLY LEFT BLANK. 1 1

  10. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    SciTech Connect

    Besmann, T.M.; Matlin, W.M.; Stinton, D.P.; Liaw, P.K.

    1996-06-01

    Processing equipment for the infiltration of fiber-reinforced composite tubes is being designed that incorporates improvements over the equipment used to infiltrate disks. A computer-controlled machine-man interface is being developed to allow for total control of all processing variables. Additionally, several improvements are being made to the furnace that will reduce the complexity and cost of the process. These improvements include the incorporation of free standing preforms, cast mandrels, and simpler graphite heating elements.

  11. A Multi-scale Refined Zigzag Theory for Multilayered Composite and Sandwich Plates with Improved Transverse Shear Stresses

    NASA Technical Reports Server (NTRS)

    Iurlaro, Luigi; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander

    2013-01-01

    The Refined Zigzag Theory (RZT) enables accurate predictions of the in-plane displacements, strains, and stresses. The transverse shear stresses obtained from constitutive equations are layer-wise constant. Although these transverse shear stresses are generally accurate in the average, layer-wise sense, they are nevertheless discontinuous at layer interfaces, and thus they violate the requisite interlaminar continuity of transverse stresses. Recently, Tessler applied Reissner's mixed variational theorem and RZT kinematic assumptions to derive an accurate and efficient shear-deformation theory for homogeneous, laminated composite, and sandwich beams, called RZT(m), where "m" stands for "mixed". Herein, the RZT(m) for beams is extended to plate analysis, where two alternative assumptions for the transverse shear stresses field are examined: the first follows Tessler's formulation, whereas the second is based on Murakami's polynomial approach. Results for elasto-static simply supported and cantilever plates demonstrate that Tessler's formulation results in a powerful and efficient structural theory that is well-suited for the analysis of multilayered composite and sandwich panels.

  12. The rectorite/carbon composites: Fabrication, modification and adsorption.

    PubMed

    Feng, Zhitao; Liu, Dan; Ma, Xiaofei

    2016-02-01

    The rectorite (REC)/carbon composites (RECCs) were prepared with hydrothermal carbonization using starch as carbon source and REC as the template. RECCs were modified with carbon disulfide (CS2) to obtain RECC xanthate (RECCX) composites. The hydrothermal process introduced a large number of oxygen-containing groups by depositing carbon layers onto the surface of REC, and the CS2 modification brought xanthate groups into REC. The adsorption process of Pb(2+) was investigated. Compared with REC, both RECC and RECCX could absorb more Pb(2+). The oxygen-containing groups increased the Pb(2+) adsorption in RECC. With the increasing of CS2 dosages, the adsorption capacities of RECCXs obviously improved due to the formation of the chelation between Pb(2+) and xanthate groups. The kinetic adsorption and the isotherm data matched the pseudo-second-order model and the Langmuir model well. The maximum adsorption capacities could reach 225.7 and 431.0 mg/g for RECC and RECCX, respectively. RECCXs were competitive with other absorbents, because REC, carbon layers and xanthate groups in RECCX composites all contributed to the Pb(2+) adsorption. RECCX could be easily regenerated with ethylenediaminetetraacetic acid disodium salt (EDTA) solution.

  13. Processing and Characterization of PETI Composites Fabricated by High Temperature VARTM

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Cano, Roberto J.; Watson, Kent A.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Smith, Joseph G.; Loos, Alfred C.; Heider, Dirk

    2011-01-01

    The use of composites as primary structures on aerospace vehicles has increased dramatically over the past decade. As these advanced structures increase in size and complexity, their production costs have grown significantly. A major contributor to these manufacturing costs is the requirement of elevated processing pressures, during the thermal cure, to create fully consolidated composites. For certain composite parts, high temperature vacuum assisted resin transfer molding (HT-VARTM) can offer reduced fabrication costs compared to conventional autoclave techniques. The process has been successfully used with phenylethynyl terminated imide (PETI) resins developed by NASA LaRC. In the current study, two PETI resins, LARC(TradeMark) PETI-330 and LARC(TradeMark) PETI-8 have been used to make test specimens using HT-VARTM. Based on previous work at NASA LaRC, larger panels with a quasi-isotropic lay-up were fabricated. The resultant composite specimens exhibited void contents <3% by volume depending on the type of carbon fabric preform used. Mechanical properties of the panels were determined at both room and elevated temperatures. These included open-hole compressive (OHC) and short beam shear (SBS) properties. Limited process modeling efforts were carried out including infusion times, composite panel size limitations and fabric permeability characterization. Work has also been carried out to develop new PETI based resins specifically geared towards HT-VARTM. The results of this work are presented herein.

  14. Fabrication of novel multilayered thin films based on inclusion complex formation between amylose derivatives and guest polymers.

    PubMed

    Kida, Toshiyuki; Minabe, Takashi; Nakano, Suguru; Akashi, Mitsuru

    2008-09-02

    Novel types of layer-by-layer (LbL) assembly films were successfully fabricated onto a solid substrate through the inclusion complex formation between partially 2,3- O-methylated amyloses (MAs) and polytetrahydrofuran (PTHF). The formation of the LbL assembly films was confirmed by quartz crystal microbalance (QCM) analysis, atomic force microscopy (AFM) observation, and X-ray diffraction (XRD) measurement. The film formation was significantly affected by the methylation degree of amylose. When MAs with 8 and 20% methylation were used as hosts, the formation of LbL assembly films with PTHF was clearly observed. On the other hand, MAs with more than 33% methylation barely formed LbL assembly films with PTHF.

  15. The fabrication and characterization of biodegradable HA/PHBV nanoparticle-polymer composite scaffolds.

    PubMed

    Jack, Kevin S; Velayudhan, Shiny; Luckman, Paul; Trau, Matt; Grøndahl, Lisbeth; Cooper-White, Justin

    2009-09-01

    This study reports the fabrication and characterization of nano-sized hydroxyapatite (HA)/poly(hydroxyabutyrate-co-hydroxyvalerate) (PHBV) polymer composite scaffolds with high porosity and controlled pore architectures. These scaffolds were prepared using a modified thermally induced phase-separation technique. This investigation focuses on the effect of fabrication conditions on the overall pore architecture of the scaffolds and the dispersion of HA nanocrystals within the composite scaffolds. The morphologies, mechanical properties and in vitro bioactivity of the composite scaffolds were investigated. It was noted that the pore architectures could be manipulated by varying phase-separation parameters. The HA particles were dispersed in the pore walls of the scaffolds and were well bonded to the polymer. The introduction of HA greatly increased the stiffness and strength, and improved the in vitro bioactivity of the scaffolds. The results suggest these newly developed nano-HA/PHBV composite scaffolds may serve as an effective three-dimensional substrate in bone tissue engineering.

  16. Fabrication and Water Treatment Application of Carbon Nanotubes (CNTs)-Based Composite Membranes: A Review

    PubMed Central

    Ma, Lining; Dong, Xinfa; Chen, Mingliang; Zhu, Li; Wang, Chaoxian; Yang, Fenglin; Dong, Yingchao

    2017-01-01

    Membrane separation technology is widely explored for various applications, such as water desalination and wastewater treatment, which can alleviate the global issue of fresh water scarcity. Specifically, carbon nanotubes (CNTs)-based composite membranes are increasingly of interest due to the combined merits of CNTs and membrane separation, offering enhanced membrane properties. This article first briefly discusses fabrication and growth mechanisms, characterization and functionalization techniques of CNTs, and then reviews the fabrication methods for CNTs-based composite membranes in detail. The applications of CNTs-based composite membranes in water treatment are comprehensively reviewed, including seawater or brine desalination, oil-water separation, removal of heavy metal ions and emerging pollutants as well as membrane separation coupled with assistant techniques. Furthermore, the future direction and perspective for CNTs-based composite membranes are also briefly outlined. PMID:28335452

  17. Fabrication of Bone like Composites Material and Evaluation of its Ossiferous Ability

    NASA Astrophysics Data System (ADS)

    Hisamori, Noriyuki; Kimura, Megumi; Morisue, Hikaru; Matsumoto, Morio; Toyama, Yoshiaki

    Many kinds of materials are currently used as artificial bone substitutes. Hydroxyapatite (HA), the same as the main inorganic component of bone, is one of commonly used bio-ceramics and has excellent bioactivity and biocompatibility with hard tissues. However, it has problems as the bone filler or bone tissue-engineering scaffold due to low fracture toughness and low degradation rate. Recently, biodegradable materials for bone tissue have been developed to respond the requirement. Collagen, the same as the main organic component of bone, is biocompatible, biodegradable and promotes cell adhesion. A composites associated with HA is expected to have early osteoconduction and bone replacement ability. The present study was to fabricate bone-like composites consist of HA and collagen. Besides the ossiferous ability of the material in vivo is evaluated by using rabbits. Bone-like composites were successfully fabricated in this study, associating the collagen with HA. And the composites presented good osteoconductive and bone replacement potential.

  18. Composite material having high thermal conductivity and process for fabricating same

    DOEpatents

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    1998-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  19. Composite material having high thermal conductivity and process for fabricating same

    DOEpatents

    Colella, N.J.; Davidson, H.L.; Kerns, J.A.; Makowiecki, D.M.

    1998-07-21

    A process is disclosed for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost. 7 figs.

  20. SiAlON ceramic compositions and methods of fabrication

    DOEpatents

    O'Brien, M.H.; Park, B.H.

    1994-05-31

    A method of fabricating a SiAlON ceramic body includes: (a) combining quantities of Si[sub 3]N[sub 4], Al[sub 2]O[sub 3] and CeO[sub 2] to produce a mixture; (b) forming the mixture into a desired body shape; (c) heating the body to a densification temperature of from about 1,550 C to about 1,850 C; (d) maintaining the body at the densification temperature for a period of time effective to densify the body; (e) cooling the densified body to a devitrification temperature of from about 1,200 C to about 1,400 C; and (f) maintaining the densified body at the devitrification temperature for a period of time effective to produce a [beta][prime]-SiAlON crystalline phase in the body having elemental or compound form Ce incorporated in the [beta][prime]-SiAlON crystalline phase. Further, a SiAlON ceramic body comprises: (a) an amorphous phase; and (b) a crystalline phase, the crystalline phase comprising [beta][prime]-SiAlON having lattice substituted elemental or compound form Ce.

  1. Multilayered poly(vinylidene fluoride) composite membranes with improved interfacial compatibility: correlating pervaporation performance with free volume properties.

    PubMed

    An, Quanfu; Chen, Jung-Tsai; De Guzman, Manuel; Hung, Wei-Song; Lee, Kueir-Rarn; Lai, Juin-Yih

    2011-09-06

    A spin-coating process integrated with an ozone-induced graft polymerization technique was applied in this study. The purpose was to improve the poor interfacial compatibility between a selective layer of poly(2-hydroxyethyl methacrylate) (PHEMA) and the surface of a poly(vinylidene fluoride) (PVDF) substrate. The composite membranes thus fabricated were tested for their pervaporation performance in dehydrating an ethyl acetate/water mixture. Furthermore, the composite membranes were characterized by field emission scanning electron microscopy (FE-SEM) for morphological change observation and by Fourier transform infrared spectroscopy equipped with attenuated total reflectance (ATR-FTIR) for surface chemical composition analysis. Effects of grafting density and spin-coating speed on pervaporation performance were examined. The composite membrane pervaporation performance was elucidated by means of free volume and depth profile data obtained with the use of a variable monoenergy slow positron beam (VMSPB). Results indicated that a smaller free volume was correlated with a higher pervaporation performance of a composite membrane consisting of a selective layer of spin-coated PHEMA on a PHEMA-grafted PVDF substrate (S-PHEMA/PHEMA-g-PVDF). The composite membrane depth profile illustrated that an S-PHEMA layer spin-coated at a higher revolutions per minute (rpm) was thinner and denser than that at a lower rpm.

  2. Fabrication of Gelatin-Based Electrospun Composite Fibers for Anti-Bacterial Properties and Protein Adsorption.

    PubMed

    Gao, Ya; Wang, Yingbo; Wang, Yimin; Cui, Wenguo

    2016-10-21

    A major goal of biomimetics is the development of chemical compositions and structures that simulate the extracellular matrix. In this study, gelatin-based electrospun composite fibrous membranes were prepared by electrospinning to generate bone scaffold materials. The gelatin-based multicomponent composite fibers were fabricated using co-electrospinning, and the composite fibers of chitosan (CS), gelatin (Gel), hydroxyapatite (HA), and graphene oxide (GO) were successfully fabricated for multi-function characteristics of biomimetic scaffolds. The effect of component concentration on composite fiber morphology, antibacterial properties, and protein adsorption were investigated. Composite fibers exhibited effective antibacterial activity against Staphylococcus aureus and Escherichia coli. The study observed that the composite fibers have higher adsorption capacities of bovine serum albumin (BSA) at pH 5.32-6.00 than at pH 3.90-4.50 or 7.35. The protein adsorption on the surface of the composite fiber increased as the initial BSA concentration increased. The surface of the composite reached adsorption equilibrium at 20 min. These results have specific applications for the development of bone scaffold materials, and broad implications in the field of tissue engineering.

  3. Fabrication of Gelatin-Based Electrospun Composite Fibers for Anti-Bacterial Properties and Protein Adsorption

    PubMed Central

    Gao, Ya; Wang, Yingbo; Wang, Yimin; Cui, Wenguo

    2016-01-01

    A major goal of biomimetics is the development of chemical compositions and structures that simulate the extracellular matrix. In this study, gelatin-based electrospun composite fibrous membranes were prepared by electrospinning to generate bone scaffold materials. The gelatin-based multicomponent composite fibers were fabricated using co-electrospinning, and the composite fibers of chitosan (CS), gelatin (Gel), hydroxyapatite (HA), and graphene oxide (GO) were successfully fabricated for multi-function characteristics of biomimetic scaffolds. The effect of component concentration on composite fiber morphology, antibacterial properties, and protein adsorption were investigated. Composite fibers exhibited effective antibacterial activity against Staphylococcus aureus and Escherichia coli. The study observed that the composite fibers have higher adsorption capacities of bovine serum albumin (BSA) at pH 5.32–6.00 than at pH 3.90–4.50 or 7.35. The protein adsorption on the surface of the composite fiber increased as the initial BSA concentration increased. The surface of the composite reached adsorption equilibrium at 20 min. These results have specific applications for the development of bone scaffold materials, and broad implications in the field of tissue engineering. PMID:27775645

  4. Hydrofluoric acid-resistant composite window and method for its fabrication

    DOEpatents

    Ostenak, C.A.; Mackay, H.A.

    1985-07-18

    A hydrofluoric acid-resistant composite window and method for its fabrication are disclosed. The composite window comprises a window having first and second sides. The first side is oriented towards an environment containing hydrofluoric acid. An adhesive is applied to the first side. A layer of transparent hydrofluoric acid-resistant material, such as Mylar, is applied to the adhesive and completely covers the first side. The adhesive is then cured.

  5. Fabrication of T142 Tank Track Pads for Evaluation of a Rubber-Kevlar Composite Compound

    DTIC Science & Technology

    1982-06-01

    and has performed well. 1 A-54 compound, also known as "tri-blend", is based on a blend of natural rubber , butadiene - styrene rubber , and...TO RUBBER ADHESION Since the 1930’s, resorcinol-formaldehyde- latex (RFL) provide a solution to these problems. compositions have been used as primary...PERIOD COVERED Fabrication of T142 Tank Track Pads for Evaluation of a Rubber -Kevlar Composite FINAL Compound S. PERFORMING ORG. REPORT NUMBER 7. AUTHOR

  6. Fabrication and characterization of a flow-through nanoporous gold nanowire/AAO composite membrane

    NASA Astrophysics Data System (ADS)

    Liu, L.; Lee, W.; Huang, Z.; Scholz, R.; Gösele, U.

    2008-08-01

    The fabrication of a composite membrane of nanoporous gold nanowires and anodic aluminum oxide (AAO) is demonstrated by the electrodeposition of Au-Ag alloy nanowires into an AAO membrane, followed by selective etching of silver from the alloy nanowires. This composite membrane is advantageous for flow-through type catalytic reactions. The morphology evolution of the nanoporous gold nanowires as a function of the diameter of the Au-Ag nanowire 'precursors' is also investigated.

  7. Evaluation of carbon fiber composites fabricated using ionic liquid based epoxies for cryogenic fluid applications

    NASA Astrophysics Data System (ADS)

    Grugel, R. N.; Hastings, W. C.; Rabenberg, E.; Kaukler, W. F.; Henry, C.

    Utilizing tanks fabricated from fiber reinforced polymeric composites for storing cryogenic fluids such as liquid oxygen and liquid hydrogen is of great interest to NASA as considerable weight savings can be gained. Unfortunately such composites, especially at cryogenic temperatures, develop a mismatch that initiates detrimental delamination and crack growth, which promotes leaking. On-going work with ionic liquid-based epoxies appears promising in mitigating these detrimental effects. Some recent results are presented and discussed.

  8. Hydrofluoric acid-resistant composite window and method for its fabrication

    DOEpatents

    Ostenak, Carl A.; Mackay, Harold A.

    1987-01-01

    A hydrofluoric acid-resistant composite window and method for its fabrication are disclosed. The composite window comprises a window having first and second sides. The first side is oriented towards an environment containing hydrofluoric acid. An adhesive is applied to the first side. A layer of transparent hydrofluoric acid-resistant material, such as Mylar, is applied to the adhesive and completely covers the first side. The adhesive is then cured.

  9. Friction and Wear Behavior of Carbon Fabric-Reinforced Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Şahin, Y.; De Baets, Patrick

    2017-02-01

    Besides intrinsic material properties, weight/energy savings and wear performance play an important role in the selection of materials for any engineering application. The tribological behavior of carbon fabric-reinforced epoxy composites produced by molding technique was investigated using a reciprocating pin-on-plate configuration. It was shown that the wear rate considerably decreased (by a factor of approx. 8) with the introduction of the reinforcing carbon fabric into the epoxy matrix. It was observed that the wear rate of the tested composites increased with an increase in normal load. Moreover, the coefficient of friction for epoxy/steel and composites/steel tribo-pairs was also determined and decreased with increasing load. By means of scanning electron microscopy of the wear tracks, different wear mechanisms such as matrix wear, matrix fatigue and cracking, matrix debris formation for neat epoxy together with fabric/fiber thinning, fabric breakage and fabric/matrix debonding for the reinforced epoxy could be distinguished.

  10. Fabrication and characterization of carbon nanotube reinforced magnesium matrix composites

    NASA Astrophysics Data System (ADS)

    Mindivan, Harun; Efe, Arife; Kosatepe, A. Hadi; Kayali, E. Sabri

    2014-11-01

    In the present investigation, Mg chips are recycled to produce Mg-6 wt.% Al reinforced with 0.5, 1, 2 and 4 wt.% nanosized CNTs by mechanical ball milling, cold pressing and subsequently hot extrusion process without sintering step. The microstructure, mechanical properties and corrosion behavior of Mg/Al without CNT (base alloy) and composites were evaluated. The distribution of CNTs was analyzed using a Scanning Electron Microscopy (SEM) equipped with Energy Dispersive Spectroscopy (EDS) analyzer and a Wavelength Dispersive X-Ray Fluorescence spectrometer (WDXRF). Microstructural analysis revealed that the CNTs on the Mg chips were present throughout the extrusion direction and the uniform distribution of CNTs at the chip surface decreased with increase in the CNT content. The results of the mechanical and corrosion test showed that small addition of CNTs (0.5 wt.%) evidently improved the hardness and corrosion resistance of the composite by comparing with the base alloy, while increase in the CNT weight fraction in the initial mixture resulted in a significant decrease of hardness, compression strength, wear rate and corrosion resistance.

  11. An in situ oxidation route to fabricate graphene nanoplate-metal oxide composites

    SciTech Connect

    Chen Sheng; Zhu Junwu; Wang Xin

    2011-06-15

    We report our studies on an improved soft chemical route to directly fabricate graphene nanoplate-metal oxide (Ag{sub 2}O, Co{sub 3}O{sub 4}, Cu{sub 2}O and ZnO) composites from the in situ oxidation of graphene nanoplates. By virtue of H{sup +} from hydrolysis of the metal nitrate aqueous solution and NO{sub 3}{sup -}, only a small amount of functional groups were introduced, acting as anchor sites and consequently forming the graphene nanoplate-metal oxide composites. The main advantages of this approach are that it does not require cumbersome oxidation of graphite in advance and no need to reduce the composites due to the lower oxidation degree. The microstructures of as-obtained metal oxides on graphene nanoplates can be dramatically controlled by changing the reaction parameters, opening up the possibility for processing the optical and electrochemical properties of the graphene-based nanocomposites. - graphical abstract: An improved soft chemical route to directly fabricate graphene nanoplate-metal oxide composites is reported from the in situ oxidation of graphene nanoplates. Highlights: > An improved soft chemical route to directly fabricate graphene nanoplate-metal oxide composites. > The microstructures can be controlled by changing the reaction parameters. > It does not require oxidation of graphite in advance and no need to reduce the composites due to the lower oxidation degree.

  12. Fabrication of fluorescent composite hydrogel using in situ synthesis of upconversion nanoparticles.

    PubMed

    Dong, Yuqing; Lin, Min; Jin, Guorui; Il Park, Yong; Qiu, Mushu; Zhao, Ying; Yang, Hui; Li, Ang; Jian Lu, Tian

    2017-04-28

    Fluorescent composite hydrogels have found widespread applications, especially in spatial and temporal monitoring of in vivo hydrogel behaviors via the emitting optical signal. However, most existing fluorescent composite hydrogels suffer from limited capability of deep tissue imaging and complicated fabrication routes. We herein report a facile method for fabricating fluorescent composite hydrogels based on the in situ synthesis of NaYF4:Yb, Er upconversion nanoparticles (UCNPs). This approach employs polyacrylamide (PAAm) hydrogels as a template, where the interconnected pores within the hydrogel act as nanoreactors to confine the growth of nanocrystals. We then obtained a fluorescent composite hydrogel exhibiting upconversion fluorescence and enhanced mechanical properties. The fluorescence spectra show that the fluorescence intensity decreases with decreasing size of the UCNPs. We investigated the relationship between the optical properties of the fluorescent composite hydrogel and the incorporated UCNPs based on the morphology, size, and distribution of the UCNPs by using scanning electron microscopy and transmission electron microscopy. In addition, we demonstrated the applicability of the synthesized hydrogel for deep tissue imaging through an in vitro tissue penetration experiment. Compressive and dynamic rheological testing reveal enhanced mechanical properties with increasing UCNP concentration. The fabricated upconversion fluorescent composite hydrogel may pave the way for monitoring the in vivo behavior of biomimetic materials via deep tissue imaging.

  13. Mechanical and antibacterial properties of a nanocellulose-polypyrrole multilayer composite.

    PubMed

    Bideau, Benoit; Bras, Julien; Saini, Seema; Daneault, Claude; Loranger, Eric

    2016-12-01

    In this study, a composite film based on TEMPO-oxidized cellulose nanofibers (TOCN), polyvinyl alcohol (PVA) and polypyrrole (PPy) was synthesized in situ by a chemical polymerization, resulting in the induced absorption of PPy on the surface of the TOCN. The composite films were investigated with scanning electron microscopy, thermogravimetric analysis, contact angle measurements, mechanical tests, and evaluation of antibacterial properties. The developed composite has nearly identical Young modulus (3.4GPa), elongation (2.6%) and tensile stress (about 51MPa) to TOCN even if PPy, which as poor properties by itself, was incorporated. From the energy-dispersive X-ray spectroscopy (EDX) results, it was shown that PPy is mainly located on the composite surface. Results confirmed by an increase from 54.5 to 83° in contact angle, an increased heat protection (Thermogravimetric analysis) and a decrease in surface energy. The nanocomposites were also evaluated for antibacterial activity against bacteria occasionally found in food: Gram-positive Bacillus subtilis (B. subtilis) and Gram-negative bacteria Escherichia coli (E. coli). The results indicate that the nanocomposites are effective against all of the bacteria studied as shown by the decrease of 5.2logcolonyformingunits (CFU) for B. subtilis and 6.5logCFU for E. coli. Resulting in the total destruction of the studied bacteria. The perfect match between the resulting inhibition zone and the composite surface area has demonstrated that our composite was contact active with a slight leaching of PPy. Our composite was successful as an active packaging on meat (liver) as bacteria were killed by contact, thereby preventing the spread of possible diseases. While it has not been tested on bacteria found in medicine, TOCN/PVA-PPy film may be able to act as an active sterile packaging for surgical instruments.

  14. Application of In Situ Fiberization for fabrication of improved strain isolation pads and graphite epoxy composites

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Seibold, R. W.; Basiulis, D. I.

    1982-01-01

    The feasibility of applying the in situ fiberization process to the fabrication of strain isolation pads (SIP) for the Space Shuttle and to the fabrication of graphite-epoxy composites was evaluated. The ISF process involves the formation of interconnected polymer fiber networks by agitation of dilute polymer solutions under controlled conditions. High temperature polymers suitable for SIP use were fiberized and a successful fiberization of polychloro trifluoroethylene, a relatively high melting polymer, was achieved. Attempts to fiberize polymers with greater thermal stability were unsuccessful, apparently due to characteristics caused by the presence of aromaticity in the backbone of such materials. Graphite-epoxy composites were fabricated by interconnecting two dimensional arrays of graphite fiber with polypropylene IS fibers with subsequent epoxy resin impregnation. Mechanical property tests were performed on laminated panels of this material to evaluate intralaminar and interlaminar shear strength, and thus fracture toughness. Test results were generally unpromising.

  15. Finite element modeling and fabrication of an SMA-SMP shape memory composite actuator

    NASA Astrophysics Data System (ADS)

    Souri, Mohammad

    Shape memory alloys and polymers have been extensively researched recently because of their unique ability to recover large deformations. Shape memory polymers (SMPs) are able to recover large deformations compared to shape memory alloys (SMAs), although SMAs have higher strength and are able to generate more stress during recovery. This project focuses on procedure for fabrication and Finite Element Modeling (FEM) of a shape memory composite actuator. First, SMP was characterized to reveal its mechanical properties. Specifically, glass transition temperature, the effects of temperature and strain rate on compressive response and recovery properties of shape memory polymer were studied. Then, shape memory properties of a NiTi wire, including transformation temperatures and stress generation, were investigated. SMC actuator was fabricated by using epoxy based SMP and NiTi SMA wire. Experimental tests confirmed the reversible behavior of fabricated shape memory composites. (Abstract shortened by ProQuest.).

  16. Non-volatile copolymer compositions for fabricating gel element microarrays

    PubMed Central

    Golova, Julia B.; Chernov, Boris K.; Perov, Alexander N.; Reynolds, Jennifer; Linger, Yvonne L.; Kukhtin, Alexander; Chandler, Darrell P.

    2011-01-01

    By modifying polymer compositions and cross-linking reagents, we have developed a simple yet effective manufacturing strategy for copolymerized three-dimensional gel element arrays. A new gel-forming monomer (2-(hydroxyethyl) methacrylamide; HEMAA) was used that possesses low volatility and improves the stability of copolymerized gel element arrays to on-chip thermal cycling procedures relative to previously used monomers. Probe immobilization efficiency within the new polymer was 55%, equivalent to that obtained with acrylamide (AA) and methacrylamide (MA) monomers. Non-specific binding of single stranded targets was equivalent for all monomers. Increasing cross-linker chain length improved hybridization kinetics and end-point signal intensities relative to N,N-methylenebisacrylamide (Bis). The new copolymer formulation was successfully applied to a model orthopox array. Because HEMAA greatly simplifies gel element array manufacture, we expect it (in combination with new cross-linkers described herein) to find widespread application in microarray science. PMID:22033291

  17. Photoluminescent nanofiber composites, methods for fabrication, and related lighting devices

    DOEpatents

    Guzan, Kimberly A.; Mills, Karmann C.; Han, Li; Davis, James Lynn; Hoertz, Paul G.

    2015-08-04

    A photoluminescent nanofiber composite includes a nanofiber substrate, first luminescent particles, and second luminescent particles. The first luminescent particles are supported by the nanofibers and span at least a portion of a substrate surface, as a layer on the substrate surface, or with some particles located in a bulk of the substrate, or both. The second luminescent particles are disposed on the substrate. The second luminescent particles may be disposed directly on the substrate surface or on the first luminescent particles. The second luminescent particles may be deposited in a pattern of deposition units. The first and second luminescent particles are configured for emitting light of different respective wavelengths in response to excitation by a light beam. One or more surface treatment coatings may be provided at different locations.

  18. Fabrication and Characterization of Amorphous/Nanocrystalline Thin Film Composite

    NASA Astrophysics Data System (ADS)

    Newton, Benjamin S.

    Combining the absorption abilities of amorphous silicon and the electron transport capabilities of crystalline silicon would be a great advantage to not only solar cells but other semiconductor devices. In this work composite films were created using molecular beam epitaxy and electron beam deposition interchangeably as a method to create metallic precursors. Aluminum induced crystallization techniques were used to convert an amorphous silicon film with a capping layer of aluminum nanodots into a film composed of a mixture of amorphous silicon and nanocrystalline silicon. This layer was grown into the amorphous layer by cannibalizing a portion of the amorphous silicon material during the aluminum induced crystallization. Characterization was performed on films and metallic precursors utilizing SEM, TEM, ellipsometry and spectrophotometer.

  19. Fabrication and Testing of Ceramic Matrix Composite Rocket Propulsion Components

    NASA Technical Reports Server (NTRS)

    Effinger, M. R.; Clinton, R. C., Jr.; Dennis, J.; Elam, S.; Genge, G.; Eckel, A.; Jaskowiak, M. H.; Kiser, J. D.; Lang, J.

    2001-01-01

    NASA has established goals for Second and Third Generation Reusable Launch Vehicles. Emphasis has been placed on significantly improving safety and decreasing the cost of transporting payloads to orbit. Ceramic matrix composites (CMC) components are being developed by NASA to enable significant increases in safety and engineer performance, while reducing costs. The development of the following CMC components are being pursued by NASA: (1) Simplex CMC Blisk; (2) Cooled CMC Nozzle Ramps; (3) Cooled CMC Thrust Chambers; and (4) CMC Gas Generator. These development efforts are application oriented, but have a strong underpinning of fundamental understanding of processing-microstructure-property relationships relative to structural analyses, nondestructive characterization, and material behavior analysis at the coupon and component and system operation levels. As each effort matures, emphasis will be placed on optimizing and demonstrating material/component durability, ideally using a combined Building Block Approach and Build and Bust Approach.

  20. Thermo-elastic behavior of deformed woven fabric composites at elevated temperatures: Part 1

    SciTech Connect

    Vu-Khanh, T.; Liu, B.

    1994-12-31

    This paper presents the results of a study on the effects of temperature on the thermo-elastic properties of woven fabric composites. The thermo-mechanical behavior of woven fabric composites is characterized by a laminate composed of four fictional unidirectional plies, called the sub-plies model. The model allows determination of the thermo-elastic properties of deformed fabric composites (non-orthogonal structure) and direct use of layered shell elements in finite element codes. A special procedure is also proposed to measure the fiber undulation effect and to predict the on-axis thermo-elastic coefficients of the equivalent constituent plies. The thermo-elastic behavior at elevated temperature was investigated on graphite/epoxy fabric composites. Experimental measurements were carried out from 23 C to 177 C. The results revealed that the equivalent thermal expansion coefficients of the sub-plies remain almost constant over a wide range of temperature. However, the equivalent elastic moduli and Poison`s ratio of the sub-plies vary nonlinearly with temperature. Semiempirical equations based on the experimental data were also developed to predict the equivalent on-axis thermo-elastic properties of the fictional constituent plies in the sub-plies model as a function of temperature.

  1. A novel method to fabricate high permeance, high selectivity thin-film composite membranes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report a thin-film composite (TFC) membrane fabrication method based on transfer of a pre-formed, cured active layer onto a microporous support. This method can be used with supports of relatively high pore size and porosity, thus reducing mass transfer resistance from the support. Ethanol-select...

  2. Methods for fabrication of positional and compositionally controlled nanostructures on substrate

    DOEpatents

    Zhu, Ji; Grunes, Jeff; Choi, Yang-Kyu; Bokor, Jeffrey; Somorjai, Gabor

    2013-07-16

    Fabrication methods disclosed herein provide for a nanoscale structure or a pattern comprising a plurality of nanostructures of specific predetermined position, shape and composition, including nanostructure arrays having large area at high throughput necessary for industrial production. The resultant nanostracture patterns are useful for nanostructure arrays, specifically sensor and catalytic arrays.

  3. Novel fabrication techniques for low-mass composite structures in silicon particle detectors

    NASA Astrophysics Data System (ADS)

    Hartman, Neal; Silber, Joseph; Anderssen, Eric; Garcia-Sciveres, Maurice; Gilchriese, Murdock; Johnson, Thomas; Cepeda, Mario

    2013-12-01

    The structural design of silicon-based particle detectors is governed by competing demands of reducing mass while maximizing stability and accuracy. These demands can only be met by fiber reinforced composite laminates (CFRP). As detecting sensors and electronics become lower mass, the motivation to reduce structure as a proportion of overall mass pushes modern detector structures to the lower limits of composite ply thickness, while demanding maximum stiffness. However, classical approaches to composite laminate design require symmetric laminates and flat structures, in order to minimize warping during fabrication. This constraint of symmetry in laminate design, and a “flat plate” approach to fabrication, results in more massive structures. This study presents an approach to fabricating stable and accurate, geometrically complex composite structures by bonding warped, asymmetric, but ultra-thin component laminates together in an accurate tool, achieving final overall precision normally associated with planar structures. This technique has been used to fabricate a prototype “I-beam” that supports two layers of detecting elements, while being up to 20 times stiffer and up to 30% lower mass than comparable, independent planar structures (typically known as “staves”).

  4. Evaluation of magnetostrictive composite coated fabric as a fragment barrier material

    NASA Astrophysics Data System (ADS)

    Son, Kwon Joong; Fahrenthold, Eric P.

    2012-10-01

    Over the last decade a surge in fragment barrier research has led to investigation of numerous materials and material augmentations in the attempt to improve the ballistic performance of systems designed to protect personnel, vehicles or infrastructure from impact and blast loads. One widely studied material augmentation approach is the use of coatings, often polymers, to enhance the performance of protection systems constructed from metal, concrete, composite and fabric materials. In recent research the authors have conducted the first experimental study of the ballistic performance of fabrics coated with a magnetically responsive polymer. Zero field impact experiments on coated fabric targets showed a 61% increase in impact energy dissipation, although the coated targets were not competitive with neat fabrics on a protection per unit mass basis. Under an applied field of 110 kA m-1, the ballistic performance of the coated fabric was reduced. The reduction in performance may be attributed to a reduction in material damping and an increase in material modulus for the magnetostrictive component of the coating. Analysis of the coated fabric response to magnetic preloads suggests that coating tensile stresses and coating-fabric interface stresses induced by the applied field may also adversely affect ballistic performance.

  5. Indentation and overall compression behavior of multilayered thin-film composites. Effect of undulating layer geometry

    SciTech Connect

    Jamison, Ryan D.; Shen, Y. -L.

    2015-03-19

    Two finite element models are used to investigate the behavior of aluminum/silicon carbide thin-film layered composites with imperfect internal geometry when subjected to various loadings. In both models, undulating layers are represented by regular waveforms with various amplitudes, wavelengths, and phase offsets. First, uniaxial compressive loading of the composite is considered. The modulus and stress/strain response of the composite is sensitive to both loading direction and frequency of the undulation. Second, the nanoindentation response of the composite is investigated. The derived hardness and modulus are shown to be sensitive to the presence of undulating layers and the relative size of the indenter to the undulation. Undulating layers create bands of tensile and compressive stress in the indentation direction that are significantly different from the flat layers. The amount of equivalent plastic strain in the Al layers is increased by the presence of undulating layers. The correlations between the two forms of loading, and the implications to composite property measurement are carefully examined in this study.

  6. Indentation and overall compression behavior of multilayered thin-film composites. Effect of undulating layer geometry

    DOE PAGES

    Jamison, Ryan D.; Shen, Y. -L.

    2015-03-19

    Two finite element models are used to investigate the behavior of aluminum/silicon carbide thin-film layered composites with imperfect internal geometry when subjected to various loadings. In both models, undulating layers are represented by regular waveforms with various amplitudes, wavelengths, and phase offsets. First, uniaxial compressive loading of the composite is considered. The modulus and stress/strain response of the composite is sensitive to both loading direction and frequency of the undulation. Second, the nanoindentation response of the composite is investigated. The derived hardness and modulus are shown to be sensitive to the presence of undulating layers and the relative size ofmore » the indenter to the undulation. Undulating layers create bands of tensile and compressive stress in the indentation direction that are significantly different from the flat layers. The amount of equivalent plastic strain in the Al layers is increased by the presence of undulating layers. The correlations between the two forms of loading, and the implications to composite property measurement are carefully examined in this study.« less

  7. Highly conductive, multi-layer composite precursor composition to fuel cell flow field plate or bipolar plate

    DOEpatents

    Jang, Bor Z.; Zhamu, Aruna; Guo, Jiusheng

    2011-02-15

    This invention provides a moldable, multiple-layer composite composition, which is a precursor to an electrically conductive composite flow field plate or bipolar plate. In one preferred embodiment, the composition comprises a plurality of conductive sheets and a plurality of mixture layers of a curable resin and conductive fillers, wherein (A) each conductive sheet is attached to at least one resin-filler mixture layer; (B) at least one of the conductive sheets comprises flexible graphite; and (C) at least one resin-filler mixture layer comprises a thermosetting resin and conductive fillers with the fillers being present in a sufficient quantity to render the resulting flow field plate or bipolar plate electrically conductive with a conductivity no less than 100 S/cm and thickness-direction areal conductivity no less than 200 S/cm.sup.2.

  8. Development and optimization of THz NDT on aeronautics composite multilayered structures

    NASA Astrophysics Data System (ADS)

    Vandewal, M.; Depauw, J.; Rombaut, K.; Beigang, R.; Jonuscheit, J.; Mounaix, P.; Sáez de Ocáriz, I.; Martínez Edo, R.; Priegue, A.; Sternberg, Y.

    2012-05-01

    The availability of light and robust structures has led to an increased use of composite materials in the aircraft industry. In order to verify and guarantee the high quality of the conventional and new composite elements, innovative approaches for non-destructive testing of these parts are required. The European research project "DOTNAC" proposes to develop a fast, high resolution, non-invasive and non-contact inspection system for assessing aeronautic composite parts during production using terahertz waves. Conventionally two categories of systems can be discussed: pulsed and continuous wave terahertz systems. Both will be realized and their respective potential as a non-destructive inspection tool will be evaluated against the performance of X-ray testing, ultrasound non-destructive testing, and infra-red imaging.

  9. Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites.

    PubMed

    Mamedov, Arif A; Kotov, Nicholas A; Prato, Maurizio; Guldi, Dirk M; Wicksted, James P; Hirsch, Andreas

    2002-11-01

    The mechanical failure of hybrid materials made from polymers and single-wall carbon nanotubes (SWNT) is primarily attributed to poor matrix-SWNT connectivity and severe phase segregation. Both problems can be successfully mitigated when the SWNT composite is made following the protocol of layer-by-layer assembly. This deposition technique prevents phase segregation of the polymer/SWNT binary system, and after subsequent crosslinking, the nanometre-scale uniform composite with SWNT loading as high as 50 wt% can be obtained. The free-standing SWNT/polyelectrolyte membranes delaminated from the substrate were found to be exceptionally strong with a tensile strength approaching that of hard ceramics. Because of the lightweight nature of SWNT composites, the prepared free-standing membranes can serve as components for a variety of long-lifetime devices.

  10. MODELING THE TRANSVERSE THERMAL CONDUCTIVITY OF 2-D SICF/SIC COMPOSITES MADE WITH WOVEN FABRIC

    SciTech Connect

    Youngblood, Gerald E; Senor, David J; Jones, Russell H

    2004-06-01

    The hierarchical two-layer (H2L) model describes the effective transverse thermal conductivity (Keff) of a 2D-SiCf/SiC composite plate made from stacked and infiltrated woven fabric layers in terms of constituent properties and microstructural and architectural variables. The H2L model includes the effects of fiber-matrix interfacial conductance, high fiber packing fractions within individual tows and the non-uniform nature of 2D fabric/matrix layers that usually include a significant amount of interlayer porosity. Previously, H2L model Keff-predictions were compared to measured values for two versions of 2D Hi-Nicalon/PyC/ICVI-SiC composite, one with a “thin” (0.11m) and the other with a “thick” (1.04m) pyrocarbon (PyC) fiber coating, and for a 2D Tyranno SA/”thin” PyC/FCVI-SIC composite. In this study, H2L model Keff-predictions were compared to measured values for a 2D-SiCf/SiC composite made using the ICVI-process with Hi-Nicalon type S fabric and a “thin” PyC fiber coating. The values of Keff determined for the latter composite were significantly greater than the Keff-values determined for the composites made with either the Hi-Nicalon or the Tyranno SA fabrics. Differences in Keff-values were expected for the different fiber types, but major differences also were due to observed microstructural and architectural variations between the composite systems, and as predicted by the H2L model.

  11. Mechanical Properties of Sisal/Coir Fiber Reinforced Hybrid Composites Fabricated by Cold Pressing Method

    NASA Astrophysics Data System (ADS)

    Akash; Sreenivasa Rao, K. V.; Venkatesha Gupta, N. S.; kumar, D. S. Arun

    2016-09-01

    Bio-composites have less density and are environmental friendly materials that require less energy during production and subsequent machining. This paper reports the mechanical and water absorption properties of sodium hydroxide (NaOH) treated sisal and coir fiber reinforced epoxy resin thermo set hybrid composites. The hybrid composites were prepared by traditional cold pressing method at room temperature with applied pressure of 410.4 kg/cm2 for 3 hours pressurization time. The mechanical properties were characterized according to ASTM standards. Hybrid composites with 40wt% of sisal and coir fiber were found to possess higher tensile strength of 48.2MPa and flexural strength of 76.68 MPa among the fabricated hybrid composite specimens. Absorption of water increases with increasing fiber volume. The experimental result also show that the sisal and coir fibers are promising reinforcement for use in low cost bio-composites which have high strength to weight ratio.

  12. Fabrication

    NASA Technical Reports Server (NTRS)

    Angel, Roger; Helms, Richard; Bilbro, Jim; Brown, Norman; Eng, Sverre; Hinman, Steve; Hull-Allen, Greg; Jacobs, Stephen; Keim, Robert; Ulmer, Melville

    1992-01-01

    What aspects of optical fabrication technology need to be developed so as to facilitate existing planned missions, or enable new ones? Throughout the submillimeter to UV wavelengths, the common goal is to push technology to the limits to make the largest possible apertures that are diffraction limited. At any one wavelength, the accuracy of the surface must be better than lambda/30 (rms error). The wavelength range is huge, covering four orders of magnitude from 1 mm to 100 nm. At the longer wavelengths, diffraction limited surfaces can be shaped with relatively crude techniques. The challenge in their fabrication is to make as large as possible a reflector, given the weight and volume constraints of the launch vehicle. The limited cargo diameter of the shuttle has led in the past to emphasis on deployable or erectable concepts such as the Large Deployable Reflector (LDR), which was studied by NASA for a submillimeter astrophysics mission. Replication techniques that can be used to produce light, low-cost reflecting panels are of great interest for this class of mission. At shorter wavelengths, in the optical and ultraviolet, optical fabrication will tax to the limit the most refined polishing methods. Methods of mechanical and thermal stabilization of the substrate will be severely stressed. In the thermal infrared, the need for large aperture is tempered by the even stronger need to control the telescope's thermal emission by cooled or cryogenic operation. Thus, the SIRTF mirror at 1 meter is not large and does not require unusually high accuracy, but the fabrication process must produce a mirror that is the right shape at a temperature of 4 K. Future large cooled mirrors will present more severe problems, especially if they must also be accurate enough to work at optical wavelengths. At the very shortest wavelengths accessible to reflecting optics, in the x-ray domain, the very low count fluxes of high energy photons place a premium on the collecting area. It is

  13. Fabrication

    NASA Astrophysics Data System (ADS)

    Angel, Roger; Helms, Richard; Bilbro, Jim; Brown, Norman; Eng, Sverre; Hinman, Steve; Hull-Allen, Greg; Jacobs, Stephen; Keim, Robert; Ulmer, Melville

    1992-08-01

    What aspects of optical fabrication technology need to be developed so as to facilitate existing planned missions, or enable new ones? Throughout the submillimeter to UV wavelengths, the common goal is to push technology to the limits to make the largest possible apertures that are diffraction limited. At any one wavelength, the accuracy of the surface must be better than lambda/30 (rms error). The wavelength range is huge, covering four orders of magnitude from 1 mm to 100 nm. At the longer wavelengths, diffraction limited surfaces can be shaped with relatively crude techniques. The challenge in their fabrication is to make as large as possible a reflector, given the weight and volume constraints of the launch vehicle. The limited cargo diameter of the shuttle has led in the past to emphasis on deployable or erectable concepts such as the Large Deployable Reflector (LDR), which was studied by NASA for a submillimeter astrophysics mission. Replication techniques that can be used to produce light, low-cost reflecting panels are of great interest for this class of mission. At shorter wavelengths, in the optical and ultraviolet, optical fabrication will tax to the limit the most refined polishing methods. Methods of mechanical and thermal stabilization of the substrate will be severely stressed. In the thermal infrared, the need for large aperture is tempered by the even stronger need to control the telescope's thermal emission by cooled or cryogenic operation. Thus, the SIRTF mirror at 1 meter is not large and does not require unusually high accuracy, but the fabrication process must produce a mirror that is the right shape at a temperature of 4 K. Future large cooled mirrors will present more severe problems, especially if they must also be accurate enough to work at optical wavelengths. At the very shortest wavelengths accessible to reflecting optics, in the x-ray domain, the very low count fluxes of high energy photons place a premium on the collecting area. It is

  14. Ultrathin, flexible, and transparent polymer multilayer composites for the protection of silver surfaces.

    PubMed

    Langecker, Jens; Ritter, Helene; Fichini, Audrey; Rupper, Patrick; Faller, Markus; Hanselmann, Barbara

    2012-02-01

    Silver coatings at the nanoscale became of high interest for the integration of electronic functionalities on all kinds of objects for daily use. In these thin coatings, corrosion is a big problem as it destroys these thin layers and leads to a loss of conductivity due to missing bulk material. For protection of thin silver coatings against H(2)S induced corrosion, we developed nanocoatings based on the covalent layer-by-layer technique. We prepared composites by subsequent deposition of polyamines like polyethylenimine (PEI) or polyallylamine (PAAm) and polyanhydrides like poly(maleic anhydride-alt-methyl vinyl ether) (Gantrez) or poly(styrene-co-maleic anhydride) (PSMA). For the tuning of the hydrophobicity, the layers were terminated by reaction with palmitoylic acid derivatives. Reflectivity measurements, contact angle measurements, and AFM measurements were made to investigate how the coatings affect the surface properties. All coatings show a lower reflectivity below 450 nm compared to pure silver, depending on the number of layers deposited. The addition of a palmitoylic derivative to the surface increases the hydrophobicity, but only in case of the Gantrez-PVAm-composite, this approach leads to real hydrophobicity, reaching contact angles above 90°. AFM measurements show a decrease of the roughness of the polymer coated surfaces compared to the pure metal surfaces. Corrosion tests in a H(2)S atmosphere show a good protective effect of the palmitoyl-terminated composites. Martindale abrasion tests on coated textiles reveal a good stability of the prepared polymer composites.

  15. Comparison of mechanical properties for polyamide 12 composite-based biomaterials fabricated by fused filament fabrication and injection molding

    NASA Astrophysics Data System (ADS)

    Rahim, Tuan Noraihan Azila Tuan; Abdullah, Abdul Manaf; Akil, Hazizan Md; Mohamad, Dasmawati

    2016-12-01

    The emergence of 3D printing technology known as fused filament fabrication (FFF) has offered the possibility of producing an anatomically accurate, patient specific implant with more affordable prices. The only weakness of this technology is related to incompatibility and lack of properties of current material to be applied in biomedical. Therefore, this study aims to develop a new, polymer composite-based biomaterial that exhibits a high processability using FFF technique, strong enough and shows acceptable biocompatibility, and safe for biomedical use. Polyamide 12 (PA12), which meets all these requirements was incorporated with two bioceramic fillers, zirconia and hydroxyapatite in order to improve the mechanical and bioactivity properties. The obtained mechanical properties were compared with injection-molded specimens and also a commercial biomedical product, HAPEXTM which is composed of hydroxyapatite and polyethylene. The yield strength and modulus of the PA12 composites increased steadily with increasing filler loading. Although the strength of printed PA12 composites were reduced compared with injection molded specimen, but still higher than HAPEXTM material. The higher surface roughness obtained by printed PA12 was expected to enhance the cell adhesion and provide better implant fixation.

  16. Feasibility study of applying an advanced composite structure technique to the fabrication of helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Gleich, D.

    1972-01-01

    The fabrication of helicopter rotary wings from composite materials is discussed. Two composite spar specimens consisting of compressively prestressed stainless steel liner over-wrapped with pretensioned fiberglass were constructed. High liner strength and toughness together with the prescribed prestresses and final sizing of the part are achieved by means of cryogenic stretch forming of the fiber wrapped composite spar at minus 320 F, followed by release of the forming pressure and warm up to room temperature. The prestresses are chosen to provide residual compression in the metal liner under operating loads.

  17. Computer-based manufacturing cost analysis for the fabrication of thermoplastic composite structures

    NASA Astrophysics Data System (ADS)

    Foley, Michael; Bernardon, Edward

    1990-01-01

    Advanced composite structures are very expensive to manufacture. Cost estimation techniques are useful as tools for increasing cost effectiveness in part design, in selecting materials, and in the design of automated systems and manufacturing processes. A computer-based cost estimation model has been developed for analyzing the manufacturing costs involved in the fabrication of thermoplastic composite structures. The model, described in detail in this paper, evaluates existing manual and automated techniques for manufacturing a thermoplastic composite skin. Cost analysis results and their relevance to increasing cost effectiveness are discussed.

  18. Affordable Fabrication and Properties of Silicon Carbide-Based Interpenetrating Phase Composites

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    1998-01-01

    An affordable processing technique for the fabrication of silicon carbide-based interpenetrating phase composites (IPCs) is presented. This process consists of the production of microporous carbon preforms and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture for which methods to control pore volume and pore size have been established. The process gives good control of microstructure and morphology of silicon carbide-based composite materials. Room and high temperature mechanical properties (flexural strength, compressive strength, and flexural creep) of low and high silicon-silicon carbide composites will be discussed.

  19. Fabrication of submicron structures in nanoparticle/polymer composite by holographic lithography and reactive ion etching

    NASA Astrophysics Data System (ADS)

    Zhang, A. Ping; He, Sailing; Kim, Kyoung Tae; Yoon, Yong-Kyu; Burzynski, Ryszard; Samoc, Marek; Prasad, Paras N.

    2008-11-01

    We report on the fabrication of nanoparticle/polymer submicron structures by combining holographic lithography and reactive ion etching. Silica nanoparticles are uniformly dispersed in a (SU8) polymer matrix at a high concentration, and in situ polymerization (cross-linking) is used to form a nanoparticle/polymer composite. Another photosensitive SU8 layer cast upon the nanoparticle/SU8 composite layer is structured through holographic lithography, whose pattern is finally transferred to the nanoparticle/SU8 layer by the reactive ion etching process. Honeycomb structures in a submicron scale are experimentally realized in the nanoparticle/SU8 composite.

  20. Microstructure evolution during annealing of TiAl/NiCoCrAl multilayer composite prepared by EB-PVD

    SciTech Connect

    Zhang, Rubing; Zhang, Deming; Chen, Guiqing; Wang, Yuesheng

    2014-07-01

    TiAl/NiCoCrAl laminate composite sheet with a thickness of 0.4–0.6 mm as well as a dimension of 150 mm × 100 mm was fabricated successfully by using electron beam physical vapor deposition (EB-PVD) method. The annealing treatment was processed at 1123 and 1323 K for 3 h in a high vacuum atmosphere, respectively. The phase composition and microstructure of TiAl/NiCoCrAl microlaminated sheet have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Based on the sheet characterization and results of the microstructure evolution during annealing treatment process, the diffusion mechanism of interfacial reaction in TiAl/NiCoCrAl microlaminate was investigated and discussed.

  1. Effect of mesh distortion on the accuracy of transverse shear stresses and their sensitivity coefficients in multilayered composites

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Kim, Yong H.

    1995-01-01

    A study is made of the effect of mesh distortion on the accuracy of transverse shear stresses and their first-order and second-order sensitivity coefficients in multilayered composite panels subjected to mechanical and thermal loads. The panels are discretized by using a two-field degenerate solid element, with the fundamental unknowns consisting of both displacement and strain components, and the displacement components having a linear variation throughout the thickness of the laminate. A two-step computational procedure is used for evaluating the transverse shear stresses. In the first step, the in-plane stresses in the different layers are calculated at the numerical quadrature points for each element. In the second step, the transverse shear stresses are evaluated by using piecewise integration, in the thickness direction, of the three-dimensional equilibrium equations. The same procedure is used for evaluating the sensitivity coefficients of transverse shear stresses. Numerical results are presented showing no noticeable degradation in the accuracy of the in-plane stresses and their sensitivity coefficients with mesh distortion. However, such degradation is observed for the transverse shear stresses and their sensitivity coefficients. The standard of comparison is taken to be the exact solution of the three-dimensional thermoelasticity equations of the panel.

  2. Fabrication of a smart air intake structure using shape memory alloy wire embedded composite

    NASA Astrophysics Data System (ADS)

    Jung, Beom-Seok; Kim, Min-Saeng; Kim, Ji-Soo; Kim, Yun-Mi; Lee, Woo-Yong; Ahn, Sung-Hoon

    2010-05-01

    Shape memory alloys (SMAs) have been actively studied in many fields utilizing their high energy density. Applying SMA wire-embedded composite to aerospace structures, such as air intake of jet engines and guided missiles, is attracting significant attention because it could generate a comparatively large actuating force. In this research, a scaled structure of SMA wire-embedded composite was fabricated for the air intake of aircraft. The structure was composed of several prestrained Nitinol (Ni-Ti) SMA wires embedded in ∩-shape glass fabric reinforced plastic (GFRP), and it was cured at room temperature for 72 h. The SMA wire-embedded GFRP could be actuated by applying electric current through the embedded SMA wires. The activation angle generated from the composite structure was large enough to make a smart air intake structure.

  3. Development of autoclavable polyimides. [fabrication procedures of high temperature resistant/fiber composite

    NASA Technical Reports Server (NTRS)

    Orell, M. K.; Sheppard, C. H.; Vaughan, R. W.; Jones, R. J.

    1974-01-01

    A poly(Diels-Alder) (PDA) resin approach was investigated as a means to achieve autoclavability of high temperature resistant resin/fiber composites under mild fabrication procedures. Low void content Type A-S graphite reinforced composites were autoclave fabricated from a PDA resin/fiber prepared from an acetone:methanol:dioxane varnish. Autoclave conditions were 477K (400F) and 0.7 MN/sq m (100 psi) for up to two hours duration. After postcure at temperatures up to 589K (600F), the composites demonstrated high initial mechanical properties at temperatures up to 561K (550F). The results from isothermal aging studies in air for 1000 hours indicated potential for long-term ( 1000 hours) use at 533K (500F) and shorter-term (up to 1000 hours) at 561K (550F).

  4. Fabrication and modification of metal nanocluster composites using ion and laser beams

    SciTech Connect

    Haglund, R.F. Jr.; Osborne, D.H. Jr.; Magruder, R.H. III; White, C.W.; Zuhr, R.A.; Townsend, P.D.; Hole, D.E.; Leuchtner, R.E.

    1994-12-01

    Metal nanocluster composites have attractive properties for applications in nonlinear optics. However, traditional fabrication techniques -- using melt-glass substrates -- are severely constrained by equilibrium thermodynamics and kinetics. This paper describes the fabrication of metal nanoclusters in both crystalline and glassy hosts by ion implantation and pulsed laser deposition. The size and size distribution of the metal nanoclusters can be modified by controlling substrate temperature during implantation, by subsequent thermal annealing, or by laser irradiation. The authors have characterized the optical response of the composites by absorption and third-order nonlinear-optical spectroscopies; electron and scanning-probe microscopies have been used to benchmark the physical characteristics of the composites. The outlook for controlling the structure and nonlinear optical response properties of these nanophase materials appears increasingly promising.

  5. Tissue-compliant neural implants from microfabricated carbon nanotube multilayer composite.

    PubMed

    Zhang, Huanan; Patel, Paras R; Xie, Zhixing; Swanson, Scott D; Wang, Xueding; Kotov, Nicholas A

    2013-09-24

    Current neural prosthetic devices (NPDs) induce chronic inflammation due to complex mechanical and biological reactions related, in part, to staggering discrepancies of mechanical properties with neural tissue. Relatively large size of the implants and traumas to blood-brain barrier contribute to inflammation reactions, as well. Mitigation of these problems and the realization of long-term brain interface require a new generation of NPDs fabricated from flexible materials compliant with the brain tissue. However, such materials will need to display hard-to-combine mechanical and electrical properties which are not available in the toolbox of classical neurotechnology. Moreover, these new materials will concomitantly demand different methods of (a) device micromanufacturing and (b) surgical implantation in brains because currently used processes take advantage of high stiffness of the devices. Carbon nanotubes (CNTs) serve as a promising foundation for such materials because of their record mechanical and electrical properties, but CNT-based tissue-compliant devices have not been realized yet. In this study, we formalize the mechanical requirements to tissue-compliant implants based on critical rupture strength of brain tissue and demonstrate that miniature CNT-based devices can satisfy these requirements. We fabricated them using MEMS-like technology and miniaturized them so that at least two dimensions of the electrodes would be comparable to brain tissue cells. The nanocomposite-based flexible neural electrodes were implanted into the rat motor cortex using a surgical procedure specifically designed for soft tissue-compliant implants. The post-surgery implant localization in the motor cortex was successfully visualized with magnetic resonance and photoacoustic imaging. In vivo functionality was demonstrated by successful registration of the low-frequency neural recording in the live brain of anesthetized rats. Investigation of inflammation processes around these

  6. Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Xue, D.; Shi, Y.

    2013-01-01

    A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.

  7. Bio-composites fabricated by sandwiching sisal fibers with polypropylene (PP)

    NASA Astrophysics Data System (ADS)

    Sosiati, H.; Nahyudin, A.; Fauzi, I.; Wijayanti, D. A.; Triyana, K.

    2016-04-01

    Sisal fibers reinforced polypropylene (PP) composites were successfully fabricated using sandwiching sisal fibers with PP sheets. The ratio of fiber and polymer matrix was 50:50 (wt. %). Untreated short and long sisal fibers, and alkali treated short sisal fibers in 6% NaOH at 100°C for 1 and 3 h were used as reinforcement or fillers. A small amount (3 wt. %) of maleic anhydride grafted polypropylene (MAPP) was added as a coupling agent. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the surface morphology and chemical composition of the fibers, respectively. Flexural test of sisal/PP composites was done according to ASTM D 790-02. The results showed that flexural strength of untreated long fiber reinforced composite is much higher than that of the untreated and alkali treated short fibers reinforced composites with and without the addition of MAPP. Alkalization related to fiber surface modification, fiber length/fiber orientation and a composite fabrication technique are important factors in contributing to the fiber distribution within the matrix, the bonding between the fiber and the matrix and the enhancement of flexural strength of the bio-composite.

  8. Fabrication and Mechanical Characterization of Water-Soluble Resin-Coated Natural Fiber Green Composites

    NASA Astrophysics Data System (ADS)

    Manabe, Ken-Ichi; Hayakawa, Tomoyuki

    In this study, water-soluble biodegradable resin was introduced as a coating agent to improve the interfacial strength and then to fabricate a high-performance green composite with polylactic acid (PLA) and hemp yarn. Dip coating was carried out for hemp yarn and the green composites were fabricated by hot processing. The coated green composite achieves a high tensile strength of 117 MPa even though the fiber volume fraction is less than 30%. Interfacial shear strength (IFSS) was measured by a single fiber pull-out test, and the effect of water-soluble resin on the tensile properties of the composites was evaluated. As a result, when using coated natural bundles, the IFSS value is smaller than when using noncoated natural bundles. On the basis of observations of the fractured surface of composites and initial yarns using a scanning electron microscope (SEM), the effect of the impregnation of water-soluble resin into the natural bundles on the tensile strength is discussed in detail. It is found that water-soluble resin is effective in improving the mechanical properties of the composite, although the interfacial strength between PLA and water-soluble resin was decreased, and as a result, the tensile strength of green composites increases by almost 20%.

  9. Fabrication, polarization, and characterization of PVDF matrix composites for integrated structural load sensing

    NASA Astrophysics Data System (ADS)

    Haghiashtiani, Ghazaleh; Greminger, Michael A.

    2015-04-01

    The focus of this work is to evaluate a new carbon fiber reinforced composite structure with integrated sensing capabilities. In this composite structure, the typical matrix material used for carbon fiber reinforced composites is replaced with the thermoplastic polyvinylidene difluoride (PVDF). Since PVDF has piezoelectric properties, it enables the structure to be used for integrated load sensing. In addition, the electrical conductivity property of the carbon fabric is harnessed to form the electrodes of the integrated sensor. In order to prevent the carbon fiber electrodes from shorting to each other, a thin Kevlar fabric layer is placed between the two carbon fiber electrode layers as a dielectric. The optimal polarization parameters were determined using a design of experiments approach. Once polarized, the samples were then used in compression and tensile tests to determine the effective d33 and d31 piezoelectric coefficients. The degree of polarization of the PVDF material was determined by relating the effective d33 coefficient of the composite to the achieved d33 of the PVDF component of the composite using a closed form expression. Using this approach, it was shown that optimal polarization of the composite material results in a PVDF component d33 of 3.2 pC N-1. Moreover, the Young’s modulus of the composite structure has been characterized.

  10. Distortion-free single point imaging of multi-layered composite sandwich panel structures.

    PubMed

    Marble, Andrew E; Mastikhin, Igor V; MacGregor, Rod P; Akl, Mohamad; LaPlante, Gabriel; Colpitts, Bruce G; Lee-Sullivan, Pearl; Balcom, Bruce J

    2004-05-01

    The results of a magnetic resonance imaging (MRI) investigation concerning the effects of an aluminum honeycomb sandwich panel on the B1 and B0 fields and on subsequent image quality are presented. Although the sandwich panel structure, representative of an aircraft composite material, distorts B0 and attenuates B1, distortion-free imaging is possible using single point (constant time) imaging techniques. A new expression is derived for the error caused by gradient field distortion due to the heterogeneous magnetic susceptibility within a sample and this error is shown not to cause geometric distortion in the image. The origin of the B0 distortion in the sample under investigation was also examined. The graphite-epoxy 'skin' of the panel is the principal source of the B0 distortion. Successful imaging of these structures sets the stage for the development of methods for detecting moisture ingress and degradation within composite sandwich structures.

  11. Air-coupled ultrasonic investigation of multi-layered composite materials.

    PubMed

    Kazys, R; Demcenko, A; Zukauskas, E; Mazeika, L

    2006-12-22

    Air-coupled ultrasonics is fine alternative for the immersion testing technique. Usually a through transmission and a pitch-catch arrangement of ultrasonic transducers are used. The pitch-catch arrangement is very attractive for non-destructive testing and evaluation of materials, because it allows one-side access to the object. However, this technique has several disadvantages. It is sensitive to specularly reflected and edge waves. A spatial resolution depends on a distance between the transducers. A new method for detection and visualisation of inhomogeneities in composite materials using one-side access air-coupled ultrasonic measurement technique is described. Numerical predictions of Lamb wave interaction with a defect in a composite material are carried out and the interaction mechanism is explained. Experimental measurements are carried out with different arrangements of the transducers. The proposed method enables detect delamination and impact type defects in honeycomb materials.

  12. Microstructure and biocompatibility of composite biomaterials fabricated from titanium and tricalcium phosphate by spark plasma sintering.

    PubMed

    Mondal, Dibakar; Nguyen, Linh; Oh, Ik-Hyun; Lee, Byong-Taek

    2013-05-01

    Important issues in developing hydroxyapatite (HAp)- and titanium (Ti)-based composite biomaterials for orthopedic or dental devices include the dissociation of HAp during fabrication and its influences in the microstructure and biocompatibility of the final composite. During the densification by sintering of HAp/Ti composites, Ti reacts with -OH freed from HAp to form TiO2 thus dissociated HAp into Ca3(PO4)2, CaO, CaTiO3, TiP, and so forth. To inhibit this reaction, composites were fabricated with Ti and 30, 50, and 70 vol % β-tricalcium phosphate (β-TCP) instead of HAp by spark plasma sintering at 1200°C. It has been observed that after sintering at 1200°C, Ti also reacted with TCP, but unlike HAp/Ti composites, the final TCP/Ti composites contained significant amounts of unreacted TCP and Ti phases. The initial 70 vol % TCP/Ti composite showed compressive strength of 388.5 MPa, Young's modulus of 3.23 GPa, and Vickers hardness of 361.9 HV after sintering. The in vitro cytotoxicity and proliferation of osteoblast cells on the composites surfaces showed that the addition of a higher amount of TCP with Ti was beneficial by increasing cell viability, cell-composite attachment and proliferation. Osteopontin and collagen type II protein expression from osteoblasts cultured onto the 70% TCP-Ti composite was also higher than other composites and pure Ti. In vivo study verified that within 3 months of implantation in an animal body, 70% TCP-Ti had an excellent bone-implant interface compared with a pure Ti metal implant.

  13. Identification of NDE Methods for Inspection Multi-Layer Ceramic Composite Armor

    DTIC Science & Technology

    2010-01-08

    composite armor The NDE methods under evaluation include: 1)-immersion phased array ultrasonics , 2)- through- transmission, direct-digital x-ray imaging...results in very long data acquisition times as compare to phased array scans. 5. Air Coupled Ultrasonic methods The last NDE method...include: 1)-immersion phased array ultrasonics , 2)- through-transmission, direct-digital x-ray imaging, 3)-non-contact scanning microwaves, 4)-air

  14. Photocatalytic activity of nanostructured {gamma}-Al{sub 2}O{sub 3}/TiO{sub 2} composite powder formed via a polyelectrolyte-multilayer-assisted sol-gel reaction

    SciTech Connect

    Logar, Manca; Kocjan, Andraz; Dakskobler, Ales

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer PEM assisted synthesis for {gamma}-Al{sub 2}O{sub 3}/TiO{sub 2} composite powder is developed. Black-Right-Pointing-Pointer Nanoparticulate TiO{sub 2} layer results in high specific surface area composite powder. Black-Right-Pointing-Pointer {gamma}-Al{sub 2}O{sub 3}/TiO{sub 2} composite powder exhibit enhanced photocatalytic activity. -- Abstract: Nanostructured, {gamma}-Al{sub 2}O{sub 3}/TiO{sub 2} composite powder was fabricated via an in situ, sol-gel reaction of titanium iso-propoxide in a self-assembled, polyelectrolyte multilayer (PEM) formed on the surface of high-specific-area, polycrystalline, {gamma}-Al{sub 2}O{sub 3} lamellas. The infiltration of the titanium precursor into the PEM, followed by the hydrolysis and condensation reactions with the water absorbed in the PEM after annealing, resulted in the formation of a nanostructured TiO{sub 2} layer on the surface of the {gamma}-Al{sub 2}O{sub 3} lamellas. Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were employed to evaluate the morphology, the chemical composition and the crystallinity of the {gamma}-Al{sub 2}O{sub 3}/TiO{sub 2} particles of the composite powder. The as-formed, nanostructured, {gamma}-Al{sub 2}O{sub 3}/TiO{sub 2} composite powder exhibited a 2.7-times-higher photo-activity in the near-UV region compared to commercially available TiO{sub 2} (Degusa P25), as monitored by the photo-decomposition of a methylene blue (MB) dye.

  15. Effects of short glass fibers on the mechanical properties of glass fiber fabric/PVC composites

    NASA Astrophysics Data System (ADS)

    Park, Su Bin; Lee, Joon Seok; Kim, Jong Won

    2017-03-01

    Fiber-reinforced composites using glass fiber and polyvinylchloride (PVC) have been used widely as architectural materials, electrical applications, automotive sector, and packing materials because of their reasonable price, chemical resistance, and dimensional stability. On the other hand, most of the composites are short fiber-reinforced PVC composites. In particular, in the case of fabric reinforced composites, undulated regions exist where there is only resin due to the characteristics of the weave construction, which causes a decrease in strength. In this paper, PVC was reinforced with chopped glass fibers with different lengths and contents to produce glass fiber fabric/PVC composites. The physical properties of the composites, such as thickness, density, volume fraction (V f), and void content (V c) were identified. The mechanical properties, including tensile strength, flexural strength, and interlaminar shear strength (ILSS) were also identified. A cross section of the composites was observed by scanning electron microscopy. Compared to the fabric reinforced composite without chopped glass fiber, the tensile strength was increased by 3.90% (from 316.15 MPa to 328.48 MPa at 5 wt.% chopped fibers with 3 mm length), flexural strength was increased by 7.15% (from 87.07 MPa to 93.30 MPa at 10 wt.% chopped fibers with 2 mm length), and ILSS was increased by 8.71% (from 7.34 MPa to 7.98 MPa at 10 wt.% chopped fibers with 1 mm length). Therefore, the critical fiber aspect ratio of chopped fiber works differently on each of the three mechanical properties.

  16. Fabrication of Thermoplastic Composite Laminates Having Film Interleaves By Automated Fiber Placement

    NASA Technical Reports Server (NTRS)

    Hulcher, A. B.; Tiwari, S. N.; Marchello, J. M.; Johnston, Norman J. (Technical Monitor)

    2001-01-01

    Experiments were carried out at the NASA Langley Research Center automated Fiber placement facility to determine an optimal process for the fabrication of composite materials having polymer film interleaves. A series of experiments was conducted to determine an optimal process for the composite prior to investigation of a process to fabricate laminates with polymer films. The results of the composite tests indicated that a well-consolidated, void-free laminate could be attained. Preliminary interleaf processing trials were then conducted to establish some broad guidelines for film processing. The primary finding of these initial studies was that a two-stage process was necessary in order to process these materials adequately. A screening experiment was then performed to determine the relative influence of the process variables on the quality of the film interface as determined by the wedge peel test method. Parameters that were found to be of minor influence on specimen quality were subsequently held at fixed values enabling a more rapid determination of an optimal process. Optimization studies were then performed by varying the remaining parameters at three film melt processing rates. The resulting peel data were fitted with quadratic response surfaces. Additional specimens were fabricated at levels of high peel strength as predicted by the regression models in an attempt to gage the accuracy of the predicted response and to assess the repeatability of the process. The overall results indicate that quality laminates having film interleaves can be successfully and repeatably fabricated by automated fiber placement.

  17. Improved Thermal Property of a Multilayered Graphite Nanoplatelets Filled Silicone Resin Composite

    NASA Astrophysics Data System (ADS)

    Lin, Jin; Zhang, Haiyan; Tang, Muyao; Tu, Wenying; Zhang, Xiubin

    2015-02-01

    We produced graphite nanoplatelets (GNP)/silicone resin composites at various loadings. The utilized GNPs were characterized by two-dimensional structure with high aspect ratio (~1810), and the GNP with approximately 10-30 nm thickness and 10-50 µm in length evenly dispersed throughout the resin matrix, which enables that GNPs effectively act as thermally conductive medium, thus contributed considerably to the formation of an efficient three-dimensional network for heat flow. The thermal conductivities of 5, 10, 15, and 20 wt.% GNP composite were 0.35, 1.02, 1.32, and 2.01 W/(m K), and were ca. 0.9, 4.7, 6.3, and 10.2 times higher than that of silicone resin at room temperature, respectively. The thermal conductivity decreased with elevated temperature in 25-200 °C, which was reminiscent at higher loading. Differential scanning calorimeter analysis showed that GNP addition increased the curing temperature of silicone resin from 90 to 119 °C, probably by hindering the free movement (mobility) of the silicone chains. The result showed that the GNP not only reduced the CTE but also improved the thermal stability of composite simultaneously.

  18. Fracture resistance of CAD/CAM-fabricated fiber-reinforced composite denture retainers.

    PubMed

    Nagata, Kohji; Wakabayashi, Noriyuki; Takahashi, Hidekazu; Vallittu, Pekka K; Lassila, Lippo V J

    2013-01-01

    The purpose of this study was to evaluate the fracture resistance of computer-aided design/computer-assisted manufacture (CAD/CAM)-fabricated fiber-reinforced composite (FRC) denture retainers. Distal extension dentures incorporating two telescopic retainers and two molar pontics, with or without fiberglass, were fabricated by CAD/CAM or by the conventional polymerization method. The dentures were subjected to a vertical load on the second molar pontic until fracture. Within each manufacturing method, embedment of the FRC increased the mean final fracture load, suggesting the reinforcing effect of fiberglass. The polymerized dentures with FRC showed greater mean final fracture load than the CAD/CAM dentures with FRC.

  19. MEMS-based fabrication of multiple-degree-of-freedom ionic polymer-metal composite actuators

    NASA Astrophysics Data System (ADS)

    Chen, Zheng; Tan, Xiaobo

    2010-04-01

    Ionic polymer-metal composites (IPMC) are soft actuation materials with promising applications in robotics and biomedical devices. In this paper, a MEMS-based approach is presented for monolithic, batch fabrication of IPMC pectoral fin actuators that are capable of complex deformation. Such an actuator consists of multiple, individually controlled IPMC regions that are mechanically coupled through compliant, passive regions. Prototypes of artificial pectoral fins have been fabricated with the proposed method, and sophisticated deformation modes, including bending, twisting, and cupping, have been demonstrated, which shows the promise of the pectoral fin in robotic fish applications.

  20. Fabrication of polyaniline/polyimide composite fibers with electrically conductive properties

    NASA Astrophysics Data System (ADS)

    Lv, Pengxia; Zhao, Yong; Liu, Fangfang; Li, Guomin; Dai, Xuemin; Ji, Xiangling; Dong, Zhixin; Qiu, Xuepeng

    2016-03-01

    A series of polyaniline/polyimide (PANi/PI) composite fibers was prepared via dry-jet wet spinning followed by in situ polymerization growth. The resultant composite fibers showed good mechanical properties with a tensile strength of 0.90 GPa, a tensile modulus of 6.79 GPa, and an elongation at break of 14.63%. Thermogravimetric and thermal mechanical analyses revealed that the composite fibers had considerably good thermal stabilities in air and nitrogen atmospheres, as well as good size stabilities at 50-150 °C. Current-voltage curves indicated the transformation from electric insulation to electrical conductivity along the fiber axial direction. The composite fibers exhibited a sensitive response to immersion in solutions with different pH values. This work provides a simple approach to fabricate PANi/PI composite fibers that could be applied in the antistatic textile and military industries.

  1. Measuring and modeling the thermal conductivities of three-dimensionally woven fabric composites

    NASA Astrophysics Data System (ADS)

    Schuster, J.; Heider, D.; Sharp, K.; Glowania, M.

    2009-03-01

    The effect of a three-dimensional fiber reinforcement on the out-of-plane thermal conductivity of composite materials is investigated. Composite preforms with different fibers in the thickness direction were fabricated. After in fusion by using a vacuum-assisted resin transfer molding process, their through-thickness thermal conductivities were evaluated. The measured thermal conductivities showed a significant increase compared with those of a typical laminated composite. Although the through-thickness thermal conductivity of the samples increased with through-thickness fiber volume fraction, its values did not match those predicted by the simple rule of mixtures. By using finite-element models to better under stand the behavior of the composite material, improvements in an existing analytical model were performed to predict the effective thermal conductivity as a function of material properties and in-contact thermal properties of the composite.

  2. MUSIC imaging method for electromagnetic inspection of composite multi-layers

    NASA Astrophysics Data System (ADS)

    Rodeghiero, Giacomo; Ding, Ping-Ping; Zhong, Yu; Lambert, Marc; Lesselier, Dominique

    2015-03-01

    A first-order asymptotic formulation of the electric field scattered by a small inclusion (with respect to the wavelength in dielectric regime or to the skin depth in conductive regime) embedded in composite material is given. It is validated by comparison with results obtained using a Method of Moments (MoM). A non-iterative MUltiple SIgnal Classification (MUSIC) imaging method is utilized in the same configuration to locate the position of small defects. The effectiveness of the imaging algorithm is illustrated through some numerical examples.

  3. Adjusting Measured Weight Loss of Aged Graphite Fabric/PMR-15 Composites

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.

    1998-01-01

    The purposes of this study were to evaluate the growth of the surface damage layer in polymer matrix composites (PMC's) fabricated with graphite fabric reinforcement and to determine the effects of the cut-surface degradation on the overall thermo-oxidative (TOS) stability of these materials. Four important conclusions were made about the TOS behavior of T650-35/PNIR- 15 fabric-reinforced composites: (1) Three stages of composite weight loss were seen on the plot of weight loss versus aging time; (2) the depth of the cut-edge damage is related to the composite thickness; (3) the actual weight loss realized by a mechanical test specimen that has had all the aging-induced cut-edge damage removed during the preparation process is significantly less than the weight loss measured using specimens with a high percentage of cut edges exposed to the damaging environment; and (4) an extrapolation of a section of the weight loss curve can be used to obtain a more correct estimate of the actual weight loss after extended periods of aging at elevated temperatures.

  4. Fabrication of low-cost Mod-0A wood-composite wind-turbine blades

    SciTech Connect

    Lark, R.F.; Gougeon, M.; Thomas, G.; Zuteck, M.

    1983-02-01

    A contract was awarded to Gougeon Brothers, Inc., by NASA Lewis Research Center, under Department of Energy sponsorship, for the development and fabrication of two 60-foot, low-cost wood composite blades for service on a 200-kW Mod-0A wind turbine machine. The contractural effort consisted of blade design and analysis and fabrication phases. This report provides a brief summary of the design and analysis phase, and an indepth review of the blade fabrication phase. The wood composite blades were fabricated by using epoxy resin-bonded laminates of Douglas fir veneers for the leading edge spar sections and honeycomb-cored birch plywood panels for the blade trailing edge or afterbody sections. The blade was joined to the wind turbine hub assembly by epoxy resin-bonded steel load takeoff studs. The wood composite blades were installed in the newest Mod-0A wind turbine test facility at Kukuku, Hawaii called Makini Huila (wind wheel) by the Hawaiians. The wood composite blades have successfully completed high power (average of 150 kW) operations for an 18-month period (nearly 8000 h) prior to replacement with another set of wood composite blades. The original set of blades were taken out of service because of the failure of the shank on one stud. An inspection of the blades at NASA Lewis showed that the shank failure was caused by a high stress concentration at a corrosion pit on the shank fillet radius which resulted in fatigue stresses in excess of the endurance limit. The remainder of the blade, including the embedded portion of the fractured stud, and the entire wood structure was found to be in excellent condition. All of the remaining studs, with the exception of four studs that showed an onset of corrosion, were also in excellent condition. The failed stud, as well as four of the corroded studs were successfully replaced with new studs. The blade is currently in a service-ready condition.

  5. CRADA/NFE-15-05779 Report: Fabrication of Large Area Printable Composite Magnets

    SciTech Connect

    Paranthaman, M. Parans

    2016-09-29

    The technical objective of this technical collaboration phase I proposal was to fabricate large area NdFeB composite magnets at the Oak Ridge National Laboratory Manufacturing Demonstration Facility (ORNL MDF). The goal was to distribute domestically produced isotropic and highly anisotropic high energy density magnetic particles throughout the composite structure in order to enable site specific placement of magnetic phases and minimize the generated waste associated with permanent magnet manufacturing. Big area additive manufacturing (BAAM) and magnet composite fabrication methods were used in this study. BAAM was used to fabricate 65 vol % isotropic MQP NdFeB magnets in nylon polymer matrix. BAAM magnet cylinder was sliced to two magnetic arc-shaped braces. The density of the small BAAM magnet pieces reached 4.1 g/cm3, and the room temperature magnetic properties are: Intrinsic coercivity Hci = 8.8 kOe, Remanence Br = 4.2 kG, and energy product (BH)max = 3.7 MGOe. Also, 1.5” x 1.5” composite magnets with anisotropic MQA NdFeB magnet in a resin were also fabricated under magnetic field. The unaligned sample had a density of 3.75 g/cm3. However, aligned sample possessed a density of 4.27 g/cm3. The magnetic properties didn’t degrade during this process. This study provides a pathway for preparing composite magnets for various magnetic applications.

  6. Low Cost Fabrication of Silicon Carbide Based Ceramics and Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.; Levine, S. R.

    1995-01-01

    A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC's) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.

  7. Facile Fabrication of Composite Membranes with Dual Thermo- and pH-Responsive Characteristics.

    PubMed

    Ma, Bing; Ju, Xiao-Jie; Luo, Feng; Liu, Yu-Qiong; Wang, Yuan; Liu, Zhuang; Wang, Wei; Xie, Rui; Chu, Liang-Yin

    2017-04-11

    Facile fabrication of novel functional membranes with excellent dual thermo- and pH-responsive characteristics has been achieved by simply designing dual-layer composite membranes. pH-Responsive poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymers and polystyrene blended with thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) nanogels are respectively used to construct the top layer and bottom layer of composite membranes. The stretching/coiling conformation changes of the P4VP chains around the pKa (~3.5-4.5) provide the composite membranes with extraordinary pH-responsive characteristics, and the volume phase transitions of PNIPAM nanogels at the pore/matrix interfaces in the bottom layer around the volume phase transition temperature (VPTT, ~33 oC) provide the composite membranes with great thermo-responsive characteristics. The microstructures, permeability performances and dual stimuli-responsive characteristics can be well tuned by adjusting the content of PNIPAM nanogels and the thickness of the PS-b-P4VP top layer. The water fluxes of the composite membranes can be changed in order of magnitude by changing the environment temperature and pH, and the dual thermo- and pH-responsive permeation performances of the composite membranes are satisfactorily reversible and reproducible. The membrane fabrication strategy in this work provides valuable guidance for further development of dual stimuli-responsive membranes or even multi stimuli-responsive membranes.

  8. Fabrication and characterization of aerosol-jet printed strain sensors for multifunctional composite structures

    NASA Astrophysics Data System (ADS)

    Zhao, Da; Liu, Tao; Zhang, Mei; Liang, Richard; Wang, Ben

    2012-11-01

    Traditional multifunctional composite structures are produced by embedding parasitic parts, such as foil sensors, optical fibers and bulky connectors. As a result, the mechanical properties of the composites, especially the interlaminar shear strength (ILSS), could be largely undermined. In the present study, we demonstrated an innovative aerosol-jet printing technology for printing electronics inside composite structures without degrading the mechanical properties. Using the maskless fine feature deposition (below 10 μm) characteristics of this printing technology and a pre-cure protocol, strain sensors were successfully printed onto carbon fiber prepregs to enable fabricating composites with intrinsic sensing capabilities. The degree of pre-cure of the carbon fiber prepreg on which strain sensors were printed was demonstrated to be critical. Without pre-curing, the printed strain sensors were unable to remain intact due to the resin flow during curing. The resin flow-induced sensor deformation can be overcome by introducing 10% degree of cure of the prepreg. In this condition, the fabricated composites with printed strain sensors showed almost no mechanical degradation (short beam shearing ILSS) as compared to the control samples. Also, the failure modes examined by optical microscopy showed no difference. The resistance change of the printed strain sensors in the composite structures were measured under a cyclic loading and proved to be a reliable mean strain gauge factor of 2.2 ± 0.06, which is comparable to commercial foil metal strain gauge.

  9. Steel bonded dense silicon nitride compositions and method for their fabrication

    DOEpatents

    Landingham, Richard L.; Shell, Thomas E.

    1987-01-01

    A two-stage bonding technique for bonding high density silicon nitride and other ceramic materials to stainless steel and other hard metals, and multilayered ceramic-metal composites prepared by the technique are disclosed. The technique involves initially slurry coating a surface of the ceramic material at about 1500.degree. C. in a vacuum with a refractory material and the stainless steel is then pressure bonded to the metallic coated surface by brazing it with nickel-copper-silver or nickel-copper-manganese alloys at a temperature in the range of about 850.degree. to 950.degree. C. in a vacuum. The two-stage bonding technique minimizes the temperature-expansion mismatch between the dissimilar materials.

  10. Steel bonded dense silicon nitride compositions and method for their fabrication

    DOEpatents

    Landingham, R.L.; Shell, T.E.

    1985-05-20

    A two-stage bonding technique for bonding high density silicon nitride and other ceramic materials to stainless steel and other hard metals, and multilayered ceramic-metal composites prepared by the technique are disclosed. The technique involves initially slurry coating a surface of the ceramic material at about 1500/sup 0/C in a vacuum with a refractory material and the stainless steel is then pressure bonded to the metallic coated surface by brazing it with nickel-copper-silver or nickel-copper-manganese alloys at a temperature in the range of about 850/sup 0/ to 950/sup 0/C in a vacuum. The two-stage bonding technique minimizes the temperature-expansion mismatch between the dissimilar materials.

  11. High-Strength Composite Fabric Tested at Structural Benchmark Test Facility

    NASA Technical Reports Server (NTRS)

    Krause, David L.

    2002-01-01

    Large sheets of ultrahigh strength fabric were put to the test at NASA Glenn Research Center's Structural Benchmark Test Facility. The material was stretched like a snare drum head until the last ounce of strength was reached, when it burst with a cacophonous release of tension. Along the way, the 3-ft square samples were also pulled, warped, tweaked, pinched, and yanked to predict the material's physical reactions to the many loads that it will experience during its proposed use. The material tested was a unique multi-ply composite fabric, reinforced with fibers that had a tensile strength eight times that of common carbon steel. The fiber plies were oriented at 0 and 90 to provide great membrane stiffness, as well as oriented at 45 to provide an unusually high resistance to shear distortion. The fabric's heritage is in astronaut space suits and other NASA programs.

  12. Improved Fabrication of Ceramic Matrix Composite/Foam Core Integrated Structures

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    2009-01-01

    The use of hybridized carbon/silicon carbide (C/SiC) fabric to reinforce ceramic matrix composite face sheets and the integration of such face sheets with a foam core creates a sandwich structure capable of withstanding high-heatflux environments (150 W/cm2) in which the core provides a temperature drop of 1,000 C between the surface and the back face without cracking or delamination of the structure. The composite face sheet exhibits a bilinear response, which results from the SiC matrix not being cracked on fabrication. In addition, the structure exhibits damage tolerance under impact with projectiles, showing no penetration to the back face sheet. These attributes make the composite ideal for leading edge structures and control surfaces in aerospace vehicles, as well as for acreage thermal protection systems and in high-temperature, lightweight stiffened structures. By tailoring the coefficient of thermal expansion (CTE) of a carbon fiber containing ceramic matrix composite (CMC) face sheet to match that of a ceramic foam core, the face sheet and the core can be integrally fabricated without any delamination. Carbon and SiC are woven together in the reinforcing fabric. Integral densification of the CMC and the foam core is accomplished with chemical vapor deposition, eliminating the need for bond-line adhesive. This means there is no need to separately fabricate the core and the face sheet, or to bond the two elements together, risking edge delamination during use. Fibers of two or more types are woven together on a loom. The carbon and ceramic fibers are pulled into the same pick location during the weaving process. Tow spacing may be varied to accommodate the increased volume of the combined fiber tows while maintaining a target fiber volume fraction in the composite. Foam pore size, strut thickness, and ratio of face sheet to core thickness can be used to tailor thermal and mechanical properties. The anticipated CTE for the hybridized composite is managed by

  13. Ultrasonic evaluation of mechanical properties of thick, multilayered, filament-wound composites

    NASA Technical Reports Server (NTRS)

    Kautz, H. E.

    1987-01-01

    A preliminary investigation is conducted to define capabilities and limitations of ultrasonic and acousto-ultrasonic measurements related to mechanical properties of filament wound graphite/epoxy composite structures. The structures studied are segments of filament wound cylinders formed of multiple layers of hoop and helical windings. The segments consist of 24 to 35 layers and range from 3.02 to 3.34 cm in wall thickness. The resultant structures are anisotropic, heterogeneous, porous, and highly attenuating to ultrasonic frequencies greater than 1 MHz. The segments represent structures to be used for Space Shuttle booster cases.Ultrasonic velocity and acousto-ultrasonic stress wave factor measurement approaches are discussed. Correlations among velocity, density, and porosity, and between the acousto-ultrasonic stress wave factor and interlaminar shear strength are presented.

  14. Ultrasonic evaluation of mechanical properties of thick, multilayered, filament wound composites

    NASA Technical Reports Server (NTRS)

    Kautz, H. E.

    1985-01-01

    A preliminary investigation is conducted to define capabilities and limitations of ultrasonic and acousto-ultrasonic measurements related to mechanical properties of filament wound graphite/epoxy composite structures. The structures studied are segments of filament wound cylinders formed of multiple layers of hoop and helical windings. The segments consist of 24 to 35 layers and range from 3.02 to 3.34 cm in wall thickness. The resultant structures are anisotropic, heterogeneous, porous, and highly attenuating to ultrasonic frequencies greater than 1 MHz. The segments represent structures to be used for space shuttle booster cases. Ultrasonic velocity and acousto-ultrasonic stress wave factor measurement approaches are discussed. Correlations among velocity, density, and porosity, and between the acousto-ultrasonic stress wave factor and interlaminar shear strength are presented.

  15. Microstructure evolution and magnetic properties of FeB/Pt multilayers and FeBPt composite films

    SciTech Connect

    Su, Hao; Schwarm, Samuel C.; Gupta, Subhadra; Martens, Richard L.

    2014-05-07

    Comparisons of microstructural evolution and magnetic properties were made of a FeB12/Pt10/[FeB1.2/Pt1]{sub 15}/Ta5 nm multilayered structure with a FeB12/Pt10/FeBPt33/Ta5 nm co-deposited structure. The Ta capping layer was used to protect the films from oxidation. Both these samples were sputtered in the same planetary deposition system onto thermally oxidized silicon substrates. They both represent layer-by-layer deposition, with the second type of deposition having atomically fine layers, more than an order of magnitude finer than the first type. The samples were annealed at a range of times, temperatures, and vacuum conditions. X-ray diffraction (XRD), transmission electron microscopy, and alternating gradient magnetometry were employed to characterize the structural and magnetic properties, respectively. Significant differences were observed between the two types of structures. A maximum coercivity of 8.9 kOe was seen for the atomically fine multilayer, about 10% more than that for the coarse multilayer. XRD analysis confirmed that both the coarse and fine multilayers were in the L1{sub 0} phase after annealing. Our results indicate that the co-deposited film, which is really composed of atomically fine multilayers, is superior to the coarse multilayered FeB/Pt for the formation of L1{sub 0}-phase FePt.

  16. Cotton fabric with plasma pretreatment and ZnO/Carboxymethyl chitosan composite finishing for durable UV resistance and antibacterial property.

    PubMed

    Wang, Chunxia; Lv, Jingchun; Ren, Yu; Zhou, Qingqing; Chen, Jiayi; Zhi, Tian; Lu, Zhenqian; Gao, Dawei; Ma, Zhipeng; Jin, Limin

    2016-03-15

    ZnO/carboxymethyl chitosan (ZnO/CMCS) composite was prepared and confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Ultraviolet-visible (UV-vis) spectroscopy, Scanning electron microscope (SEM), Transmission electron microscope (TEM). The combination of plasma pretreatment and ZnO/CMCS composite finishing was applied to provide durable UV resistance and antibacterial activity for cotton fabric. Cotton fabric was pretreated by cold oxygen plasma and the ZnO/CMCS composite finishing was carried out by pad-dry-cure. Cotton fabric was characterized by SEM, FTIR, UV resistance, antibacterial activity and Thermogravimetry (TG). SEM and FTIR analysis demonstrated the presence of ZnO/CMCS composite on cotton fabric and the increasing loading efficiency of ZnO/CMCS composite owing to plasma treatment. UV resistance and antibacterial activity of the finished cotton fabric were greatly improved, which increased with the increasing concentration of ZnO/CMCS composite. TG analysis indicated that the combined finishing of cotton fabric with plasma pretreatment and ZnO/CMCS composite could improve its thermal property. The finished cotton fabric exhibited an excellent laundering durability in UV resistance and antibacterial activity.

  17. A novel method of fabricating carbon nanotubes-polydimethylsiloxane composite electrodes for electrocardiography.

    PubMed

    Liu, Benyan; Chen, Yingmin; Luo, Zhangyuan; Zhang, Wenzan; Tu, Quan; Jin, Xun

    2015-01-01

    Polymer-based flexible electrodes are receiving much attention in medical applications due to their good wearing comfort. The current fabrication methods of such electrodes are not widely applied. In this study, polydimethylsiloxane (PDMS) and conductive additives of carbon nanotubes (CNTs) were employed to fabricate composite electrodes for electrocardiography (ECG). A three-step dispersion process consisting of ultrasonication, stirring, and in situ polymerization was developed to yield homogenous CNTs-PDMS mixtures. The CNTs-PDMS mixtures were used to fabricate CNTs-PDMS composite electrodes by replica technology. The influence of ultrasonication time and CNT concentration on polymer electrode performance was evaluated by impedance and ECG measurements. The signal amplitude of the electrodes prepared using an ultrasonication time of 12 h and CNT content of 5 wt% was comparable to that of commercial Ag/AgCl electrodes. The polymer electrodes were easily fabricated by conventional manufacturing techniques, indicating a potential advantage of reduced cost for mass production.

  18. Partially degradable film/fabric composites: textile scaffolds for liver cell culture.

    PubMed

    Karamuk, E; Mayer, J; Wintermantel, E; Akaike, T

    1999-09-01

    In this study, a composite scaffold combining textile superstructures and biomimetic glycopolymers is introduced, which may allow engineering of organotypic liver tissue in vitro. Woven poly(ethylene therephtalat) (PET) fabrics were coated on one side with a thin biodegradable polymer film (poly[D-L-lactic-co-glycolic acid] PLGA), in order to obtain a polar structure. The composite structure ensured the stability of the membrane during in vitro degradation, independently of mesh size. Matrix porosity increased when a polymer blend matrix was used. For hepatocyte culturing studies, the scaffolds were additionally coated with an artificial glycopolymer (poly[N-p-vinylbenzyl-D-lactoamide], PVLA) in order to improve cell attachment. It was observed that formation of aggregates depends on the scaffold geometry as well as on the pretreatment and medium conditions. After 4 days in culture, the pores of the fabric were filled with aggregates illustrating the possibility of immobilizing hepatocyte aggregates in well-defined spatial configurations on textile structures.

  19. Method for fabricating light weight carbon-bonded carbon fiber composites

    DOEpatents

    Wrenn, G.E. Jr.; Abbatiello, L.A.; Lewis, J. Jr.

    1987-06-17

    The invention is directed to the fabrication of ultralight carbon- bonded carbon fiber composites of densities in the range of about 0. 04 to 0.10 grams per cubic centimeter. The composites are fabricated by forming an aqueous slurry of carbonaceous fibers which include carbonized fibers and 0-50 weight percent fugitive fibers and a particulate thermosetting resin precursor. The slurry is brought into contact with a perforated mandrel and the water is drained from the slurry through the perforations at a controlled flow rate of about 0. 03 to 0.30 liters per minutes per square inch of a mandrel surface. The deposited billet of fibers and resin precursor is heated to cure the resin precursor to bind the fibers together, removed from the mandrel, and then the resin and fugitive fibers, if any, are carbonized.

  20. Comparison of the thermomechanical characteristics of porcher carbon fabric-based composites for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Molchanov, E. S.; Yudin, V. E.; Kydralieva, K. A.; Elokhovskii, V. Yu.

    2012-07-01

    Prepregs of fiber-reinforced plastics based on a PORCHER-43200 carbon twill-weave fabric and two types of binders — thermoreactive and thermoplastic — were fabricated using electrostatic spraying, followed by rolling the prepregs in temperature-controlled calenders. A solid epoxy olygomer with dicyandiamine as a hardener and Fortron® polyphenylene sulfide were used as the thermoreactive and thermoplastic binders. The thermomechanical properties of carbon-fiber-reinforced plastics processed from these prepregs, as well as commercial Sigranex® PREPREGCE8201-200-45 S prepregs as model ones, and composites manufactured from them were investigated for comparison. The latter ones are being used for the design of orthopaedic products. It is shown that the composites based on polyphenylene sulfide are characterized by higher values of flexural strength, flexural and shear moduli, and interlaminar fracture toughness ( G IC), the latter being the most important parameter.