Sample records for multilayer dielectric diffraction

  1. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, Michael D.; Britten, Jerald A.; Nguyen, Hoang T.; Boyd, Robert; Shore, Bruce W.

    1999-01-01

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described.

  2. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, M.D.; Britten, J.A.; Nguyen, H.T.; Boyd, R.; Shore, B.W.

    1999-05-25

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described. 7 figs.

  3. Optimization design and laser damage threshold analysis of pulse compression multilayer dielectric gratings

    NASA Astrophysics Data System (ADS)

    Fan, Shuwei; Bai, Liang; Chen, Nana

    2016-08-01

    As one of the key elements of high-power laser systems, the pulse compression multilayer dielectric grating is required for broader band, higher diffraction efficiency and higher damage threshold. In this paper, the multilayer dielectric film and the multilayer dielectric gratings(MDG) were designed by eigen matrix and optimized with the help of generic algorithm and rigorous coupled wave method. The reflectivity was close to 100% and the bandwith were over 250nm, twice compared to the unoptimized film structure. The simulation software of standing wave field distribution within MDG was developed and the electric field of the MDG was calculated. And the key parameters which affected the electric field distribution were also studied.

  4. Numerical method of applying shadow theory to all regions of multilayered dielectric gratings in conical mounting.

    PubMed

    Wakabayashi, Hideaki; Asai, Masamitsu; Matsumoto, Keiji; Yamakita, Jiro

    2016-11-01

    Nakayama's shadow theory first discussed the diffraction by a perfectly conducting grating in a planar mounting. In the theory, a new formulation by use of a scattering factor was proposed. This paper focuses on the middle regions of a multilayered dielectric grating placed in conical mounting. Applying the shadow theory to the matrix eigenvalues method, we compose new transformation and improved propagation matrices of the shadow theory for conical mounting. Using these matrices and scattering factors, being the basic quantity of diffraction amplitudes, we formulate a new description of three-dimensional scattering fields which is available even for cases where the eigenvalues are degenerate in any region. Some numerical examples are given for cases where the eigenvalues are degenerate in the middle regions.

  5. Nano-indentation and laser-induced damage testing in optical multilayer-dielectric gratings [Nanomechanics and laser-induced damage in optical multilayer dielectric gratings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehrotra, K.; Corning Research & Development Corp., Coming, NY; Taylor, B. N.

    Here, we demonstrate how a nanomechanical test can be used to generate metrics to complement laser-induced–damage testing (LIDT) measurements and show that differences in optical performance of the gratings (arising from changes in cleaning process and/or fabrication methods) can be related to their mechanical reliability. Data are presented on LIDT measurements in diffractive gratings of silica deposited on optical multilayers. The nano-indentation response of the diffraction gratings is measured in a new mode that allows for the extraction of a measurable metric characterizing the brittleness of the gratings, as well as their ductility. We show that lower LIDT’s are positivelymore » correlated with an increased grating brittleness, and therefore identify a nanomechanical approach to describe LIDT’s. We present extensive numerical simulations of nano-indentation tests and identify different deformation modes including stretching, shear concentration, and bending as precursors to mechanical failure in the nano-indentation test. The effects of geometrical inhomogeneities on enhanced stress generation in these gratings are specifically examined and addressed.« less

  6. Nano-indentation and laser-induced damage testing in optical multilayer-dielectric gratings [Nanomechanics and laser-induced damage in optical multilayer dielectric gratings

    DOE PAGES

    Mehrotra, K.; Corning Research & Development Corp., Coming, NY; Taylor, B. N.; ...

    2017-03-16

    Here, we demonstrate how a nanomechanical test can be used to generate metrics to complement laser-induced–damage testing (LIDT) measurements and show that differences in optical performance of the gratings (arising from changes in cleaning process and/or fabrication methods) can be related to their mechanical reliability. Data are presented on LIDT measurements in diffractive gratings of silica deposited on optical multilayers. The nano-indentation response of the diffraction gratings is measured in a new mode that allows for the extraction of a measurable metric characterizing the brittleness of the gratings, as well as their ductility. We show that lower LIDT’s are positivelymore » correlated with an increased grating brittleness, and therefore identify a nanomechanical approach to describe LIDT’s. We present extensive numerical simulations of nano-indentation tests and identify different deformation modes including stretching, shear concentration, and bending as precursors to mechanical failure in the nano-indentation test. The effects of geometrical inhomogeneities on enhanced stress generation in these gratings are specifically examined and addressed.« less

  7. Stress insensitive multilayer chip inductor with ferrite core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishwas, B.; Madhuri, W., E-mail: madhuriw12@gmail.com; Rao, N. Madhusudan

    2015-06-24

    Mg{sub 0.25}Cu{sub 0.25}Zn{sub 0.5}Fe{sub 2}O{sub 4} is synthesized by sol gel auto combustion technique. The obtained ferrite powder is finally sintered in a microwave furnace at 850°C. Multilayer chip inductor (MLCI) of two layers is prepared by screen printing technique. The sintered ferrite is characterized by X-ray diffraction. The frequency response of dielectric constant is studied in the frequency range of 100Hz to 5MHz. Dielectric polarization is discussed in the light of Maxwell-Wagner interfacial polarization. The prepared MLCI is studied for stress sensitivity in the range of 0 to 8 MPa.

  8. Reflection characterization of nano-sized dielectric structure in Morpho butterfly wings

    NASA Astrophysics Data System (ADS)

    Zhu, Dong

    2017-10-01

    Morpho butterflies living in Central and South America are well-known for their structural-colored blue wings. The blue coloring originates from the interaction of light with nano-sized dielectric structures that are equipped on the external surface of scales covering over their wings. The high-accuracy nonstandard finite-difference time domain (NS-FDTD) method is used to investigate the reflection characterization from the nanostructures. In the NS-FDTD calculation, a computational model is built to mimic the actual tree-like multilayered structures wherever possible using the hyperbolic tangent functions. It is generally known that both multilayer interference and diffraction grating phenomena can occur when light enters the nano-sized multilayered structure. To answer the question that which phenomenon is mainly responsible for the blue coloring, the NS-FDTD calculation is performed under various incidence angles at wavelengths from 360 to 500 nm. The calculated results at one incident wavelength under different incidence angles are visualized in a two-dimensional mapping image, where horizontal and vertical axes are incidence and reflection angles, respectively. The images demonstrate a remarkable transition from a ring-like pattern at shorter wavelengths to a retro-reflection pattern at longer wavelengths. To clarify the origin of the pattern transition, the model is separated into several simpler parts and compared their mapping images with the theoretical diffraction calculations. It can be concluded that the blue coloring at longer wavelengths is mainly caused by the cooperation of multilayer interference and retro-reflection while the effect of diffraction grating is predominant at shorter wavelengths.

  9. Short pulse laser stretcher-compressor using a single common reflective grating

    DOEpatents

    Erbert, Gaylen V.; Biswal, Subrat; Bartolick, Joseph M.; Stuart, Brent C.; Telford, Steve

    2004-05-25

    The present invention provides an easily aligned, all-reflective, aberration-free pulse stretcher-compressor in a compact geometry. The stretcher-compressor device is a reflective multi-layer dielectric that can be utilized for high power chirped-pulse amplification material processing applications. A reflective grating element of the device is constructed: 1) to receive a beam for stretching of laser pulses in a beam stretcher beam path and 2) to also receive stretched amplified pulses to be compressed in a compressor beam path through the same (i.e., common) reflective multilayer dielectric diffraction grating. The stretched and compressed pulses are interleaved about the grating element to provide the desired number of passes in each respective beam path in order to achieve the desired results.

  10. Subwavelength resolution from multilayered structure (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cheng, Bo Han; Jen, Yi-Jun; Liu, Wei-Chih; Lin, Shan-wen; Lan, Yung-Chiang; Tsai, Din Ping

    2016-10-01

    Breaking optical diffraction limit is one of the most important issues needed to be overcome for the demand of high-density optoelectronic components. Here, a multilayered structure which consists of alternating semiconductor and dielectric layers for breaking optical diffraction limitation at THz frequency region are proposed and analyzed. We numerically demonstrate that such multilayered structure not only can act as a hyperbolic metamaterial but also a birefringence material via the control of the external temperature (or magnetic field). A practical approach is provided to control all the diffraction signals toward a specific direction by using transfer matrix method and effective medium theory. Numerical calculations and computer simulation (based on finite element method, FEM) are carried out, which agree well with each other. The temperature (or magnetic field) parameter can be tuned to create an effective material with nearly flat isofrequency feature to transfer (project) all the k-space signals excited from the object to be resolved to the image plane. Furthermore, this multilayered structure can resolve subwavelength structures at various incident THz light sources simultaneously. In addition, the resolution power for a fixed operating frequency also can be tuned by only changing the magnitude of external magnetic field. Such a device provides a practical route for multi-functional material, photolithography and real-time super-resolution image.

  11. Improvement of contact grating device for efficient terahertz wave generation using bi-angular filter

    NASA Astrophysics Data System (ADS)

    Nagashima, Keisuke; Tsubouchi, Masaaki; Ochi, Yoshihiro; Maruyama, Momoko

    2018-03-01

    We have proposed an improved contact grating device for generating terahertz waves efficiently and have succeeded in developing the device with a very high diffraction efficiency and a wide spectral width. This device has a bi-angular filter and a Fabry-Perot-type structure, which are composed of dielectric multilayers. The bi-angular filter is designed to reflect the 0th-order wave and transmit the-1st-order diffraction wave. Numerical calculations indicate that the new device has a maximum diffraction efficiency over 99% and a spectral width of approximately 20 nm. We measured a high efficiency of 90% over a broad spectral range using a fabricated device.

  12. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1996-01-01

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  13. Superconducting nanowire single-photon detectors with non-periodic dielectric multilayers.

    PubMed

    Yamashita, Taro; Waki, Kentaro; Miki, Shigehito; Kirkwood, Robert A; Hadfield, Robert H; Terai, Hirotaka

    2016-10-24

    We present superconducting nanowire single-photon detectors (SSPDs) on non-periodic dielectric multilayers, which enable us to design a variety of wavelength dependences of optical absorptance by optimizing the dielectric multilayer. By adopting a robust simulation to optimize the dielectric multilayer, we designed three types of SSPDs with target wavelengths of 500 nm, 800 nm, and telecom range respectively. We fabricated SSPDs based on the optimized designs for 500 and 800 nm, and evaluated the system detection efficiency at various wavelengths. The results obtained confirm that the designed SSPDs with non-periodic dielectric multilayers worked well. This versatile device structure can be effective for multidisciplinary applications in fields such as the life sciences and remote sensing that require high efficiency over a precise spectral range and strong signal rejection at other wavelengths.

  14. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1996-01-02

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation. 4 figs.

  15. The Study of Electrical Properties for Multilayer La2O3/Al2O3 Dielectric Stacks and LaAlO3 Dielectric Film Deposited by ALD.

    PubMed

    Feng, Xing-Yao; Liu, Hong-Xia; Wang, Xing; Zhao, Lu; Fei, Chen-Xi; Liu, He-Lei

    2017-12-01

    The capacitance and leakage current properties of multilayer La 2 O 3 /Al 2 O 3 dielectric stacks and LaAlO 3 dielectric film are investigated in this paper. A clear promotion of capacitance properties is observed for multilayer La 2 O 3 /Al 2 O 3 stacks after post-deposition annealing (PDA) at 800 °C compared with PDA at 600 °C, which indicated the recombination of defects and dangling bonds performs better at the high-k/Si substrate interface for a higher annealing temperature. For LaAlO 3 dielectric film, compared with multilayer La 2 O 3 /Al 2 O 3 dielectric stacks, a clear promotion of trapped charges density (N ot ) and a degradation of interface trap density (D it ) can be obtained simultaneously. In addition, a significant improvement about leakage current property is observed for LaAlO 3 dielectric film compared with multilayer La 2 O 3 /Al 2 O 3 stacks at the same annealing condition. We also noticed that a better breakdown behavior for multilayer La 2 O 3 /Al 2 O 3 stack is achieved after annealing at a higher temperature for its less defects.

  16. ZrO2 Layer Thickness Dependent Electrical and Dielectric Properties of BST/ZrO2/BST Multilayer Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, S. K.; Misra, D.; Agrawal, D. C.

    2011-01-01

    Recently, high K materials play an important role in microelectronic devices such as capacitors, memory devices, and microwave devices. Now a days ferroelectric barium strontium titanate [Ba{sub x}Sr{sub 1-x}TiO{sub 3}, (BST)] thin film is being actively investigated for applications in dynamic random access memories (DRAM), field effect transistor (FET), and tunable devices because of its properties such as high dielectric constant, low leakage current, low dielectric loss, and high dielectric breakdown strength. Several approaches have been used to optimize the dielectric and electrical properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found thatmore » inserting a ZrO{sub 2} layer in between two BST layers results in a significant reduction in dielectric constant, loss tangent, and leakage current in the multilayer thin films. Also it is shown that the properties of multilayer structure are found to depend strongly on the sublayer thicknesses. In this work the effect of ZrO{sub 2} layer thickness on the dielectric, ferroelectric as well as electrical properties of BST/ZrO{sub 2}/BST multilayer structure is studied. The multilayer Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3}/ZrO{sub 2}/Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} film is deposited by a sol-gel process on the platinized Si substrate. The thickness of the middle ZrO{sub 2} layer is varied while keeping the top and bottom BST layer thickness as fixed. It is observed that the dielectric constant, dielectric loss tangent, and leakage current of the multilayer films reduce with the increase of ZrO{sub 2} layer thickness and hence suitable for memory device applications. The ferroelectric properties of the multilayer film also decrease with the ZrO{sub 2} layer thickness.« less

  17. Multifunctional Hybrid Multilayer Gate Dielectrics with Tunable Surface Energy for Ultralow-Power Organic and Amorphous Oxide Thin-Film Transistors.

    PubMed

    Byun, Hye-Ran; You, Eun-Ah; Ha, Young-Geun

    2017-03-01

    For large-area, printable, and flexible electronic applications using advanced semiconductors, novel dielectric materials with excellent capacitance, insulating property, thermal stability, and mechanical flexibility need to be developed to achieve high-performance, ultralow-voltage operation of thin-film transistors (TFTs). In this work, we first report on the facile fabrication of multifunctional hybrid multilayer gate dielectrics with tunable surface energy via a low-temperature solution-process to produce ultralow-voltage organic and amorphous oxide TFTs. The hybrid multilayer dielectric materials are constructed by iteratively stacking bifunctional phosphonic acid-based self-assembled monolayers combined with ultrathin high-k oxide layers. The nanoscopic thickness-controllable hybrid dielectrics exhibit the superior capacitance (up to 970 nF/cm 2 ), insulating property (leakage current densities <10 -7 A/cm 2 ), and thermal stability (up to 300 °C) as well as smooth surfaces (root-mean-square roughness <0.35 nm). In addition, the surface energy of the hybrid multilayer dielectrics are easily changed by switching between mono- and bifunctional phosphonic acid-based self-assembled monolayers for compatible fabrication with both organic and amorphous oxide semiconductors. Consequently, the hybrid multilayer dielectrics integrated into TFTs reveal their excellent dielectric functions to achieve high-performance, ultralow-voltage operation (< ± 2 V) for both organic and amorphous oxide TFTs. Because of the easily tunable surface energy, the multifunctional hybrid multilayer dielectrics can also be adapted for various organic and inorganic semiconductors, and metal gates in other device configurations, thus allowing diverse advanced electronic applications including ultralow-power and large-area electronic devices.

  18. Study of all-angle negative refraction of light in metal-dielectric-metal multilayered structures based on generalized formulas of reflection and refraction

    NASA Astrophysics Data System (ADS)

    Chen, Jiangwei; Liu, Jun; Xu, Weidong

    2017-09-01

    In this paper, refraction behaviors of light in both metal single-layered film and metal-dielectric-metal multilayered films are investigated based on the generalized formulas of reflection and refraction. The obtained results, especially, dependence of power refractive index on incident angles for a light beam traveling through a metal-dielectric-metal multilayered structure, are well consistent with the experimental observations. Our work may offer a new angle of view to understand the all-angle negative refraction of light in metal-dielectric-metal multilayered structures, and provide a convenient approach to optimize the devised design and address the issue on making the perfect lens.

  19. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alessi, David A.; Rosso, Paul A.; Nguyen, Hoang T.

    Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. As a result, combining this technique with low absorption multilayer dielectric gratings developed in ourmore » group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.« less

  20. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers

    DOE PAGES

    Alessi, David A.; Rosso, Paul A.; Nguyen, Hoang T.; ...

    2016-12-26

    Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. As a result, combining this technique with low absorption multilayer dielectric gratings developed in ourmore » group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.« less

  1. Direct and Inverse Techniques of Guided-Mode Resonance Filters Designs

    NASA Technical Reports Server (NTRS)

    Tibuleac, Sorin; Magnusson, Robert; Maldonado, Theresa A.; Zuffada, Cinzia

    1997-01-01

    Guided-mode resonances arise in single or multilayer waveguides where one or more homogeneous layers are replaced by diffraction gratings (Fig. 1.) The diffractive element enables an electromagnetic wave incident on a waveguide grating to be coupled to the waveguide modes supportable by the structure in the absence of the modulation (i.e. the difference between the high and low dielectric constants of the grating) at specific values of the wavelength and incident angle. The periodic modulation of the guide makes the structure leaky, preventing sustained propagation of modes in the waveguide and coupling the waves out into the substrate and cover. As the wavelength is varied around resonance a rapid variation in the intensities of the external propagating waves occurs. By selecting a grating period small enough to eliminate the higher-order propagating waves, an increase in the zero-order intensities up to 100% can result. The pronounced frequency selectivity of guided-mode resonances in dielectric waveguide gratings can be applied to design high-efficiency reflection and transmission filters [1-3].

  2. Low voltage electrowetting lenticular lens by using multilayer dielectric structure

    NASA Astrophysics Data System (ADS)

    Lee, Junsik; Kim, Junoh; Kim, Cheoljoong; Shin, Dooseub; Koo, Gyohyun; Sim, Jee Hoon; Won, Yong Hyub

    2017-02-01

    Lenticular type multi-view display is one of the most popular ways for implementing three dimensional display. This method has a simple structure and exhibits a high luminance. However, fabricating the lenticular lens is difficult because it requires optically complex calculations. 2D-3D conversion is also impossible due to the fixed shape of the lenticular lens. Electrowetting based liquid lenticular lens has a simple fabrication process compared to the solid lenticular lens and the focal length of the liquid lenticular lens can be changed by applying the voltage. 3D and 2D images can be observed with a convex and a flat lens state respectively. Despite these advantages, the electrowetting based liquid lenticular lens demands high driving voltage and low breakdown voltage with a single dielectric layer structure. A certain degree of thickness of the dielectric layer is essential for a uniform operation and a low degradation over time. This paper presents multilayer dielectric structure which results in low driving voltage and the enhanced dielectric breakdown. Aluminum oxide (Al2O3), silicon oxide (SiO2) and parylene C were selected as the multilayer insulators. The total thickness of the dielectric layer of all samples was the same. This method using the multilayer dielectric structure can achieve the lower operating voltage than when using the single dielectric layer. We compared the liquid lenticular lens with three kinds of the multilayer dielectric structure to one with the parylene C single dielectric layer in regard to operational characteristics such as the driving voltage and the dielectric breakdown.

  3. Nanostructure multilayer dielectric materials for capacitors and insulators

    DOEpatents

    Barbee, Jr., Troy W.; Johnson, Gary W.

    1998-04-21

    A capacitor is formed of at least two metal conductors having a multilayer dielectric and opposite dielectric-conductor interface layers in between. The multilayer dielectric includes many alternating layers of amorphous zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3). The dielectric-conductor interface layers are engineered for increased voltage breakdown and extended service life. The local interfacial work function is increased to reduce charge injection and thus increase breakdown voltage. Proper material choices can prevent electrochemical reactions and diffusion between the conductor and dielectric. Physical vapor deposition is used to deposit the zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3) in alternating layers to form a nano-laminate.

  4. Nanostructure multilayer dielectric materials for capacitors and insulators

    DOEpatents

    Barbee, T.W. Jr.; Johnson, G.W.

    1998-04-21

    A capacitor is formed of at least two metal conductors having a multilayer dielectric and opposite dielectric-conductor interface layers in between. The multilayer dielectric includes many alternating layers of amorphous zirconium oxide (ZrO{sub 2}) and alumina (Al{sub 2}O{sub 3}). The dielectric-conductor interface layers are engineered for increased voltage breakdown and extended service life. The local interfacial work function is increased to reduce charge injection and thus increase breakdown voltage. Proper material choices can prevent electrochemical reactions and diffusion between the conductor and dielectric. Physical vapor deposition is used to deposit the zirconium oxide (ZrO{sub 2}) and alumina (Al{sub 2}O{sub 3}) in alternating layers to form a nano-laminate. 1 fig.

  5. Effects of Interphase Modification and Biaxial Orientation on Dielectric Properties of Poly(ethylene terephthalate)/Poly(vinylidene fluoride-co-hexafluoropropylene) Multilayer Films.

    PubMed

    Yin, Kezhen; Zhou, Zheng; Schuele, Donald E; Wolak, Mason; Zhu, Lei; Baer, Eric

    2016-06-01

    Recently, poly(vinylidene fluoride) (PVDF)-based multilayer films have demonstrated enhanced dielectric properties, combining high energy density and high dielectric breakdown strength from the component polymers. In this work, further enhanced dielectric properties were achieved through interface/interphase modulation and biaxial orientation for the poly(ethylene terephthalate)/poly(methyl methacrylate)/poly(vinylidene fluoride-co-hexafluoropropylene) [PET/PMMA/P(VDF-HFP)] three-component multilayer films. Because PMMA is miscible with P(VDF-HFP) and compatible with PET, the interfacial adhesion between PET and P(VDF-HFP) layers should be improved. Biaxial stretching of the as-extruded multilayer films induced formation of highly oriented fibrillar crystals in both P(VDF-HFP) and PET, resulting in improved dielectric properties with respect to the unstretched films. First, the parallel orientation of PVDF crystals reduced the dielectric loss from the αc relaxation in α crystals. Second, biaxial stretching constrained the amorphous phase in P(VDF-HFP) and thus the migrational loss from impurity ions was reduced. Third, biaxial stretching induced a significant amount of rigid amorphous phase in PET, further enhancing the breakdown strength of multilayer films. Due to the synergistic effects of improved interfacial adhesion and biaxial orientation, the PET/PMMA/P(VDF-HFP) 65-layer films with 8 vol % PMMA exhibited optimal dielectric properties with an energy density of 17.4 J/cm(3) at breakdown and the lowest dielectric loss. These three-component multilayer films are promising for future high-energy-density film capacitor applications.

  6. Novel techniques for optical sensor using single core multi-layer structures for electric field detection

    NASA Astrophysics Data System (ADS)

    Ali, Amir R.; Kamel, Mohamed A.

    2017-05-01

    This paper studies the effect of the electrostriction force on the single optical dielectric core coated with multi-layers based on whispering gallery mode (WGM). The sensing element is a dielectric core made of polymeric material coated with multi-layers having different dielectric and mechanical properties. The external electric field deforming the sensing element causing shifts in its WGM spectrum. The multi-layer structures will enhance the body and the pressure forces acting on the core of the sensing element. Due to the gradient on the dielectric permittivity; pressure forces at the interface between every two layers will be created. Also, the gradient on Young's modulus will affect the overall stiffness of the optical sensor. In turn the sensitivity of the optical sensor to the electric field will be increased when the materials of each layer selected properly. A mathematical model is used to test the effect for that multi-layer structures. Two layering techniques are considered to increase the sensor's sensitivity; (i) Pressure force enhancement technique; and (ii) Young's modulus reduction technique. In the first technique, Young's modulus is kept constant for all layers, while the dielectric permittivity is varying. In this technique the results will be affected by the value dielectric permittivity of the outer medium surrounding the cavity. If the medium's dielectric permittivity is greater than that of the cavity, then the ascending ordered layers of the cavity will yield the highest sensitivity (the core will have the smallest dielectric permittivity) to the applied electric field and vice versa. In the second technique, Young's modulus is varying along the layers, while the dielectric permittivity has a certain constant value per layer. On the other hand, the descending order will enhance the sensitivity in the second technique. Overall, results show the multi-layer cavity based on these techniques will enhance the sensitivity compared to the typical polymeric optical sensor.

  7. 152 W average power Tm-doped fiber CPA system.

    PubMed

    Stutzki, Fabian; Gaida, Christian; Gebhardt, Martin; Jansen, Florian; Wienke, Andreas; Zeitner, Uwe; Fuchs, Frank; Jauregui, Cesar; Wandt, Dieter; Kracht, Dietmar; Limpert, Jens; Tünnermann, Andreas

    2014-08-15

    A high-power thulium (Tm)-doped fiber chirped-pulse amplification system emitting a record compressed average output power of 152 W and 4 MW peak power is demonstrated. This result is enabled by utilizing Tm-doped photonic crystal fibers with mode-field diameters of 35 μm, which mitigate detrimental nonlinearities, exhibit slope efficiencies of more than 50%, and allow for reaching a pump-power-limited average output power of 241 W. The high-compression efficiency has been achieved by using multilayer dielectric gratings with diffraction efficiencies higher than 98%.

  8. Electromagnetic scattering from two-dimensional thick material junctions

    NASA Technical Reports Server (NTRS)

    Ricoy, M. A.; Volakis, John L.

    1990-01-01

    The problem of the plane wave diffraction is examined by an arbitrary symmetric two dimensional junction, where Generalized Impedance Boundary Conditions (GIBCs) and Generalized Sheet Transition Conditions (GSTCs) are employed to simulate the slabs. GIBCs and GSTCs are constructed for multilayer planar slabs of arbitrary thickness and the resulting GIBC/GSTC reflection coefficients are compared with exact counterparts to evaluate the GIBCs/GSTCs. The plane wave diffraction by a multilayer material slab recessed in a perfectly conducting ground plane is formulated and solved via the Generalized Scattering Matrix Formulation (GDMF) in conjunction with the dual integral equation approach. Various scattering patterns are computed and validated with exact results where possible. The diffraction by a material discontinuity in a thick dielectric/ferrite slab is considered by modelling the constituent slabs with GSTCs. A non-unique solution in terms of unknown constants is obtained, and these constants are evaluated for the recessed slab geometry by comparison with the solution obtained therein. Several other simplified cases are also presented and discussed. An eigenfunction expansion method is introduced to determine the unknown solution constants in the general case. This procedure is applied to the non-unique solution in terms of unknown constants; and scattering patterns are presented for various slab junctions and compared with alternative results where possible.

  9. Theory and practical considerations of multilayer dielectric thin-film stacks in Ag-coated hollow waveguides.

    PubMed

    Bledt, Carlos M; Melzer, Jeffrey E; Harrington, James A

    2014-02-01

    This analysis explores the theory and design of dielectric multilayer reflection-enhancing thin film stacks based on high and low refractive index alternating layers of cadmium sulfide (CdS) and lead sulfide (PbS) on silver (Ag)-coated hollow glass waveguides (HGWs) for low loss transmission at midinfrared wavelengths. The fundamentals for determining propagation losses in such multilayer thin-film-coated Ag hollow waveguides is thoroughly discussed, and forms the basis for further theoretical analysis presented in this study. The effects on propagation loss resulting from several key parameters of these multilayer thin film stacks is further explored in order to bridge the gap between results predicted through calculation under ideal conditions and deviations from such ideal models that often arise in practice. In particular, the effects on loss due to the number of dielectric thin film layers deposited, deviation from ideal individual layer thicknesses, and surface roughness related scattering losses are presented and thoroughly investigated. Through such extensive theoretical analysis the level of understanding of the underlying loss mechanisms of multilayer thin-film Ag-coated HGWs is greatly advanced, considerably increasing the potential practical development of next-generation ultralow-loss mid-IR Ag/multilayer dielectric-coated HGWs.

  10. All-Dielectric Multilayer Cylindrical Structures for Invisibility Cloaking

    PubMed Central

    Mirzaei, Ali; Miroshnichenko, Andrey E.; Shadrivov, Ilya V.; Kivshar, Yuri S.

    2015-01-01

    We study optical response of all-dielectric multilayer structures and demonstrate that the total scattering of such structures can be suppressed leading to optimal invisibility cloaking. We use experimental material data and a genetic algorithm to reduce the total scattering by adjusting the material and thickness of various layers for several types of dielectric cores at telecommunication wavelengths. Our approach demonstrates 80-fold suppression of the total scattering cross-section by employing just a few dielectric layers. PMID:25858295

  11. Microfabricated bragg waveguide

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu; Hadley, G. Ronald

    2004-10-19

    A microfabricated Bragg waveguide of semiconductor-compatible material having a hollow core and a multilayer dielectric cladding can be fabricated by integrated circuit technologies. The microfabricated Bragg waveguide can comprise a hollow channel waveguide or a hollow fiber. The Bragg fiber can be fabricated by coating a sacrificial mandrel or mold with alternating layers of high- and low-refractive-index dielectric materials and then removing the mandrel or mold to leave a hollow tube with a multilayer dielectric cladding. The Bragg channel waveguide can be fabricated by forming a trench embedded in a substrate and coating the inner wall of the trench with a multilayer dielectric cladding. The thicknesses of the alternating layers can be selected to satisfy the condition for minimum radiation loss of the guided wave.

  12. Compositionally Graded Multilayer Ceramic Capacitors.

    PubMed

    Song, Hyun-Cheol; Zhou, Jie E; Maurya, Deepam; Yan, Yongke; Wang, Yu U; Priya, Shashank

    2017-09-27

    Multilayer ceramic capacitors (MLCC) are widely used in consumer electronics. Here, we provide a transformative method for achieving high dielectric response and tunability over a wide temperature range through design of compositionally graded multilayer (CGML) architecture. Compositionally graded MLCCs were found to exhibit enhanced dielectric tunability (70%) along with small dielectric losses (<2.5%) over the required temperature ranges specified in the standard industrial classifications. The compositional grading resulted in generation of internal bias field which enhanced the tunability due to increased nonlinearity. The electric field tunability of MLCCs provides an important avenue for design of miniature filters and power converters.

  13. Multilayer manipulated diffraction in flower beetles Torynorrhina flammea: intraspecific structural colouration variation

    NASA Astrophysics Data System (ADS)

    Song, C. X.; Liu, F.; Hao, Y. H.; Hu, X. H.; Zhang, Y. F.; Liu, X. H.

    2014-10-01

    We report that the intraspecific structural colouration variation of the beetle Torynorrhina flammea is a result of diffraction shifting manipulated by a multilayer sub-structure contained in a three-dimensional (3D) photonic architecture. With a perpendicularly 2D quasiperiodic diffraction grating inserted into the multilayer, the 3D photonic structure gives rise to anticrossing bandgaps of diffraction from the coupling of grating and multilayer bands. The angular dispersion of diffraction induced by the multilayer band shift behaves normally, in contrast to the ‘ultranegative’ behaviour controlled by the quasiperiodic grating. In addition, the diffraction wavelength is more sensitive to the multilayer periodicity than the diffraction grating constant, which explains the ‘smart’ biological selection of T. flammea in its intraspecific colouration variation from red to green to blue. The elucidated mechanism could be advantageous for the potential exploration of novel dispersive optical elements.

  14. Alkali resistant optical coatings for alkali lasers and methods of production thereof

    DOEpatents

    Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C

    2014-11-18

    In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.

  15. Compositionally Graded Multilayer Ceramic Capacitors

    DOE PAGES

    Song, Hyun-Cheol; Zhou, Jie E.; Maurya, Deepam; ...

    2017-09-27

    Multilayer ceramic capacitors (MLCC) are widely used in consumer electronics. In this paper, we provide a transformative method for achieving high dielectric response and tunability over a wide temperature range through design of compositionally graded multilayer (CGML) architecture. Compositionally graded MLCCs were found to exhibit enhanced dielectric tunability (70%) along with small dielectric losses (<2.5%) over the required temperature ranges specified in the standard industrial classifications. The compositional grading resulted in generation of internal bias field which enhanced the tunability due to increased nonlinearity. The electric field tunability of MLCCs provides an important avenue for design of miniature filters andmore » power converters.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lereu, Aude L.; Zerrad, M.; Passian, Ali

    In photonics, the field concentration and enhancement have been major objectives for achieving size reduction and device integration. Plasmonics offers resonant field confinement and enhancement, but ultra-sharp optical resonances in all-dielectric multi-layer thin films are emerging as a powerful contestant. Thus, applications capitalizing upon stronger and sharper optical resonances and larger field enhancements could be faced with a choice for the superior platform. Here in this paper, we present a comparison between plasmonic and dielectric multi-layer thin films for their resonance merits. We show that the remarkable characteristics of the resonance behavior of optimized dielectric multi-layers can outweigh those ofmore » their metallic counterpart.« less

  17. Material optimization of multi-layered enhanced nanostructures

    NASA Astrophysics Data System (ADS)

    Strobbia, Pietro

    The employment of surface enhanced Raman scattering (SERS)-based sensing in real-world scenarios will offer numerous advantages over current optical sensors. Examples of these advantages are the intrinsic and simultaneous detection of multiple analytes, among many others. To achieve such a goal, SERS substrates with throughput and reproducibility comparable to commonly used fluorescence sensors have to be developed. To this end, our lab has discovered a multi-layer geometry, based on alternating films of a metal and a dielectric, that amplifies the SERS signal (multi-layer enhancement). The advantage of these multi-layered structures is to amplify the SERS signal exploiting layer-to-layer interactions in the volume of the structures, rather than on its surface. This strategy permits an amplification of the signal without modifying the surface characteristics of a substrate, and therefore conserving its reproducibility. Multi-layered structures can therefore be used to amplify the sensitivity and throughput of potentially any previously developed SERS sensor. In this thesis, these multi-layered structures were optimized and applied to different SERS substrates. The role of the dielectric spacer layer in the multi-layer enhancement was elucidated by fabricating spacers with different characteristics and studying their effect on the overall enhancement. Thickness, surface coverage and physical properties of the spacer were studied. Additionally, the multi-layered structures were applied to commercial SERS substrates and to isolated SERS probes. Studies on the dependence of the multi-layer enhancement on the thickness of the spacer demonstrated that the enhancement increases as a function of surface coverage at sub-monolayer thicknesses, due to the increasing multi-layer nature of the substrates. For fully coalescent spacers the enhancement decreases as a function of thickness, due to the loss of interaction between proximal metallic films. The influence of the physical properties of the spacer on the multi-layer enhancement were also studied. The trends in Schottky barrier height, interfacial potential and dielectric constant were isolated by using different materials as spacers (i.e., TiO2, HfO2, Ag 2O and Al2O3). The results show that the bulk dielectric constant of the material can be used to predict the relative magnitude of the multi-layer enhancement, with low dielectric constant materials performing more efficiently as spacers. Optimal spacer layers were found to be ultrathin coalescent films (ideally a monolayer) of low dielectric constant materials. Finally, multi-layered structures were observed to be employable to amplify SERS in drastically different substrate geometries. The multi-layered structures were applied to disposable commercial SERS substrates (i.e., Klarite). This project involved the regeneration of the used substrates, by stripping and redepositing the gold coating layer, and their amplification, by using the multi-layer geometry. The latter was observed to amplify the sensitivity of the substrates. Additionally, the multi-layered structures were applied to probes dispersed in solution. Such probes were observed to yield stronger SERS signal when optically trapped and to reduce the background signal. The application of the multi-layered structures on trapped probes, not only further amplified the SERS signal, but also increased the maximum number of applicable layers for the structures.

  18. Surface plasmons and Bloch surface waves: Towards optimized ultra-sensitive optical sensors

    DOE PAGES

    Lereu, Aude L.; Zerrad, M.; Passian, Ali; ...

    2017-07-07

    In photonics, the field concentration and enhancement have been major objectives for achieving size reduction and device integration. Plasmonics offers resonant field confinement and enhancement, but ultra-sharp optical resonances in all-dielectric multi-layer thin films are emerging as a powerful contestant. Thus, applications capitalizing upon stronger and sharper optical resonances and larger field enhancements could be faced with a choice for the superior platform. Here in this paper, we present a comparison between plasmonic and dielectric multi-layer thin films for their resonance merits. We show that the remarkable characteristics of the resonance behavior of optimized dielectric multi-layers can outweigh those ofmore » their metallic counterpart.« less

  19. Incident-angle-controlled semitransparent colored perovskite solar cells with improved efficiency exploiting a multilayer dielectric mirror.

    PubMed

    Lee, Kyu-Tae; Jang, Ji-Yun; Park, Sang Jin; Ok, Song Ah; Park, Hui Joon

    2017-09-28

    See-through perovskite solar cells with high efficiency and iridescent colors are demonstrated by employing a multilayer dielectric mirror. A certain amount of visible light is used for wide color gamut semitransparent color generation, which can be easily tuned by changing an angle of incidence, and a wide range of visible light is efficiently reflected back toward a photoactive layer of the perovskite solar cells by the dielectric mirror for highly efficient light-harvesting performance, thus achieving 10.12% power conversion efficiency. We also rigorously examine how the number of pairs in the multilayer dielectric mirror affects optical properties of the colored semitransparent perovskite solar cells. The described approach can open the door to a large number of applications such as building-integrated photovoltaics, self-powered wearable electronics and power-generating color filters for energy-efficient display systems.

  20. The possibility of giant dielectric materials for multilayer ceramic capacitors.

    PubMed

    Ishii, Tatsuya; Endo, Makoto; Masuda, Kenichiro; Ishida, Keisuke

    2013-02-11

    There have been numerous reports on discovery of giant dielectric permittivity materials called internal barrier layer capacitor in the recent years. We took particular note of one of such materials, i.e., BaTiO 3 with SiO 2 coating. It shows expressions of giant electric permittivity when processed by spark plasma sintering. So we evaluated various electrical characteristics of this material to find out whether it is applicable to multilayer ceramic capacitors. Our evaluation revealed that the isolated surface structure is the sole cause of expressions of giant dielectric permittivity.

  1. A General Reliability Model for Ni-BaTiO3-Based Multilayer Ceramic Capacitors

    NASA Technical Reports Server (NTRS)

    Liu, Donhang

    2014-01-01

    The evaluation of multilayer ceramic capacitors (MLCCs) with Ni electrode and BaTiO3 dielectric material for potential space project applications requires an in-depth understanding of their reliability. A general reliability model for Ni-BaTiO3 MLCC is developed and discussed. The model consists of three parts: a statistical distribution; an acceleration function that describes how a capacitor's reliability life responds to the external stresses, and an empirical function that defines contribution of the structural and constructional characteristics of a multilayer capacitor device, such as the number of dielectric layers N, dielectric thickness d, average grain size, and capacitor chip size A. Application examples are also discussed based on the proposed reliability model for Ni-BaTiO3 MLCCs.

  2. A General Reliability Model for Ni-BaTiO3-Based Multilayer Ceramic Capacitors

    NASA Technical Reports Server (NTRS)

    Liu, Donhang

    2014-01-01

    The evaluation for potential space project applications of multilayer ceramic capacitors (MLCCs) with Ni electrode and BaTiO3 dielectric material requires an in-depth understanding of the MLCCs reliability. A general reliability model for Ni-BaTiO3 MLCCs is developed and discussed in this paper. The model consists of three parts: a statistical distribution; an acceleration function that describes how a capacitors reliability life responds to external stresses; and an empirical function that defines the contribution of the structural and constructional characteristics of a multilayer capacitor device, such as the number of dielectric layers N, dielectric thickness d, average grain size r, and capacitor chip size A. Application examples are also discussed based on the proposed reliability model for Ni-BaTiO3 MLCCs.

  3. Analytic theory of alternate multilayer gratings operating in single-order regime.

    PubMed

    Yang, Xiaowei; Kozhevnikov, Igor V; Huang, Qiushi; Wang, Hongchang; Hand, Matthew; Sawhney, Kawal; Wang, Zhanshan

    2017-07-10

    Using the coupled wave approach (CWA), we introduce the analytical theory for alternate multilayer grating (AMG) operating in the single-order regime, in which only one diffraction order is excited. Differing from previous study analogizing AMG to crystals, we conclude that symmetrical structure, or equal thickness of the two multilayer materials, is not the optimal design for AMG and may result in significant reduction in diffraction efficiency. The peculiarities of AMG compared with other multilayer gratings are analyzed. An influence of multilayer structure materials on diffraction efficiency is considered. The validity conditions of analytical theory are also discussed.

  4. Dielectric Properties of BST/(Y 2O 3) x(ZrO 2) 1-x/BST Trilayer Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, Santosh K.; Misra, D.

    2011-01-31

    Thin films of Ba1-xSrxTiO3 (BST) are being actively investigated for applications in dynamic random access memories (DRAM) because of their properties such as high dielectric constant, low leakage current, and high dielectric breakdown strength. Various approaches have been used to improve the dielectric properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found that inserting a ZrO2 layer in between two BST layers results in a significant reduction in dielectric constant as well as dielectric loss. In this work the effect of Y2O3 doped ZrO2 on the dielectric properties of BST/ZrO2/BST trilayer structure ismore » studied. The structure Ba0.8Sr0.2TiO3/(Y2O3)x(ZrO2)1-x/Ba0.8Sr0.2TiO3 is deposited by a sol-gel process on platinized Si substrate. The composition (x) of the middle layer is varied while keeping the total thickness of the trilayer film constant. The dielectric constant of the multilayer film decreases with the increase of Y2O3 amount in the film whereas there is a slight variation in dielectric loss. In Y2O3 doped multilayer thin films, the dielectric loss is lower in comparison to other films and also there is good frequency stability in the loss in the measured frequency range and hence very suitable for microwave device applications.« less

  5. Low temperature-fired Ni-Cu-Zn ferrite nanoparticles through auto-combustion method for multilayer chip inductor applications

    PubMed Central

    2012-01-01

    Ferrite nanoparticles of basic composition Ni0.7-xZnxCu0.3Fe2O4 (0.0 ≤ x ≤ 0.2, x = 0.05) were synthesized through auto-combustion method and were characterized for structural properties using X-ray diffraction [XRD], scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy [FT-IR]. XRD analysis of the powder samples sintered at 600°C for 4 h showed the cubic spinel structure for ferrites with a narrow size distribution from 28 to 32 nm. FT-IR showed two absorption bands (v1 and v2) that are attributed to the stretching vibration of tetrahedral and octahedral sites. The effect of Zn doping on the electrical properties was studied using dielectric and impedance spectroscopy at room temperature. The dielectric parameters (ε', ε″, tanδ, and σac) show their maximum value for 10% Zn doping. The dielectric constant and loss tangent decrease with increasing frequency of the applied field. The results are explained in the light of dielectric polarization which is similar to the conduction phenomenon. The complex impedance shows that the conduction process in grown nanoparticles takes place predominantly through grain boundary volume. PACS: 75.50.Gg; 78.20; 77.22.Gm. PMID:22316055

  6. THz - ToF Optical Layer Analysis (OLA) to determine optical properties of dielectric materials

    NASA Astrophysics Data System (ADS)

    Spranger, Holger; Beckmann, Jörg

    2017-02-01

    Electromagnetic waves with frequencies between 0.1 and 10 THz are described as THz-radiation (T-ray). The ability to penetrate dielectric materials makes T-rays attractive to reveal discontinuities in polymer and ceramic materials. THz-Time Domain Spectroscopy Systems (THz-TDS) are available on the market today which operates with THz-pulses transmitted and received by optically pumped semiconductor antennas. In THz-TDS the travelling time (ToF) and shape of the pulse is changed if it interacts with the dielectric material and its inherent discontinuities. A tomogram of the object under the test can be reconstructed from time of flight diffraction (ToFD) scans if a synthetic focusing aperture (SAFT) algorithm is applied. The knowledge of the base materials shape and optical properties is essential for a proper reconstruction result. To obtain these properties a model is assumed which describes the device under the test as multilayer structure composed of thin layers with different dielectric characteristics. The Optical Layer Analysis (OLA) is able to fulfill these requirements. A short description why the optical properties are crucial for meaningful SAFT reconstruction results will be given first. Afterwards the OLA will be derived and applied on representative samples to discuss and evaluate its benefits and limits.

  7. Infrared metamaterial by RF magnetron sputtered ZnO/Al:ZnO multilayers

    NASA Astrophysics Data System (ADS)

    Santiago, Kevin C.; Mundle, Rajeh; White, Curtis; Bahoura, Messaoud; Pradhan, Aswini K.

    2018-03-01

    Hyperbolic metamaterials create artificial anisotropy using metallic wires suspended in dielectric media or alternating layers of a metal and dielectric (Type I or Type II). In this study we fabricated ZnO/Al:ZnO (AZO) multilayers by the RF magnetron sputtering deposition technique. Our fabricated multilayers satisfy the requirements for a type II hyperbolic metamaterial. The optical response of individual AZO and ZnO films, as well as the multilayered film were investigated via UV-vis-IR transmittance and spectroscopic ellipsometry. The optical response of the multilayered system is calculated using the nonlocal-corrected Effective Medium Approximation (EMA). The spectroscopic ellipsometry data of the multilayered system was modeled using a uniaxial material model and EMA model. Both theoretical and experimental studies validate the fabricated multilayers undergo a hyperbolic transition at a wavelength of 2.2 μm. To our knowledge this is the first AZO/ZnO type II hyperbolic metamaterial system fabricated by magnetron sputtering deposition method.

  8. Design and fabrication of far ultraviolet filters based on π-multilayer technology in high-k materials

    PubMed Central

    Wang, Xiao-Dong; Chen, Bo; Wang, Hai-Feng; He, Fei; Zheng, Xin; He, Ling-Ping; Chen, Bin; Liu, Shi-Jie; Cui, Zhong-Xu; Yang, Xiao-Hu; Li, Yun-Peng

    2015-01-01

    Application of π-multilayer technology is extended to high extinction coefficient materials, which is introduced into metal-dielectric filter design. Metal materials often have high extinction coefficients in far ultraviolet (FUV) region, so optical thickness of metal materials should be smaller than that of the dielectric material. A broadband FUV filter of 9-layer non-periodic Al/MgF2 multilayer was successfully designed and fabricated and it shows high reflectance in 140–180 nm, suppressed reflectance in 120–137 nm and 181–220 nm. PMID:25687255

  9. Stronger multilayer acrylic dielectric elastomer actuators with silicone gel coatings

    NASA Astrophysics Data System (ADS)

    Lau, Gih-Keong; La, Thanh-Giang; Sheng-Wei Foong, Ervin; Shrestha, Milan

    2016-12-01

    Multilayer dielectric elastomer actuators (DEA) perform worst off than single-layer DEAs due to higher susceptibility to electro-thermal breakdown. This paper presents a hot-spot model to predict the electro-thermal breakdown field of DEAs and its dependence on thermal insulation. To inhibit the electrothermal breakdown, silicone gel coating was applied as barrier coating to multilayer acrylic DEA. The gel coating helps suppress the electro-thermally induced puncturing of DEA membrane at the hot spot. As a result, the gel-coated DEAs, in either a single layer or a multilayer stack, can produce 30% more isometric stress change as compared to those none-coated. These gel-coated acrylic DEAs show great potential to make stronger artificial muscles.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Hyun-Cheol; Zhou, Jie E.; Maurya, Deepam

    Multilayer ceramic capacitors (MLCC) are widely used in consumer electronics. In this paper, we provide a transformative method for achieving high dielectric response and tunability over a wide temperature range through design of compositionally graded multilayer (CGML) architecture. Compositionally graded MLCCs were found to exhibit enhanced dielectric tunability (70%) along with small dielectric losses (<2.5%) over the required temperature ranges specified in the standard industrial classifications. The compositional grading resulted in generation of internal bias field which enhanced the tunability due to increased nonlinearity. The electric field tunability of MLCCs provides an important avenue for design of miniature filters andmore » power converters.« less

  11. Effect of Temperature on Formation and Stability of Shallow Trap at a Dielectric Interface of the Multilayer

    NASA Astrophysics Data System (ADS)

    Rogti, F.

    2015-12-01

    Space-charge behavior at dielectric interfaces in multilayer low-density polyethylene (LDPE) and fluorinated ethylene propylene (FEP) subjected to a direct-current (DC) field has been investigated as a function of temperature using the pulsed electroacoustic technique. A sandwich structure constituted by two nonidentical LDPE/FEP dielectric films was used to study the charging propensity of electrode/dielectric and dielectric/dielectric interfaces. The time dependence of the space-charge distribution was subsequently recorded at four temperatures, 20°C, 25°C, 40°C, and 60°C, under field (polarization) and short-circuit (depolarization) conditions. The experimental results demonstrate that temperature plays a significant role in the space-charge dynamics at the dielectric interface. It affects the charge injection, increases the charge mobility and electrical conductivity, and increases the density of shallow traps and trap filling. It is found that traps formed during polarization at high temperature do not remain stable after complete discharge of the multidielectric structure and when poled at low temperatures.

  12. Multilayer polymer dielectric films for hollow glass waveguides

    NASA Astrophysics Data System (ADS)

    Kendall, Wesley; Harrington, James A.

    2018-02-01

    Hollow glass waveguides (HGWs) have been extensively investigated for the transmission of broadband, high-power radiation, particularly in the mid-infrared. One area of particular interest is the deposition of dielectric thin films within the hollow core of the HGW in order to reduce the losses at desired wavelengths. By implementing a thin film multilayer structure with high index mismatch between adjacent films, it is possible to dramatically improve the losses of the waveguides due to the thin film interference effect. Existing multilayer film research has utilized heavy metal halides, which although provide considerable index contrast, are toxic and unsuitable for clinical applications in which they are often used. Polymer dielectric thin films provide desirable optical properties for HGWs but are hindered by solvent compatibility in the deposition procedure. This work demonstrates implementation of a polymer multilayer dielectric thin film stack within a HGW, using ChemoursTM Teflon AF (n = 1.29) as the low-index material and polystyrene (n = 1.59) as the high-index material. These two polymers were deposited using liquid phase techniques within a HGW; the absorption spectra of waveguide as each layer was deposited on was analyzed in the mid-IR with an FTIR, and straight and bending losses were measured on a CO2 laser. Appreciable losses were realized with the addition of the second polymer film and the interference bands red-shifted with the second layer, suggesting the successful creation of the multilayer structure.

  13. Guided-mode resonance reflection and transmission filters in the optical and microwave spectral ranges

    NASA Astrophysics Data System (ADS)

    Tibuleac, Sorin

    In this dissertation, new reflection and transmission filters are developed and characterized in the optical and microwave spectral regions. These guided-mode resonance (GMR) filters are implemented by integrating diffraction gratings into classical thin-film multilayers to produce high efficiency filter response and low sidebands extended over a large spectral range. Diffraction from phase-shifted gratings and gratings with different periods is analyzed using rigorous coupled-wave theory yielding a new approach to filter linewidth broadening, line-shaping, and multi-line filters at normal incidence. New single-grating transmission filters presented have narrow linewidth, high peak transmittance, and low sideband reflectance. A comparison with classical thin-film filters shows that GMR devices require significantly fewer layers to obtain narrow linewidth and high peak response. All-dielectric microwave frequency- selective surfaces operating in reflection or transmission are shown to be realizable with only a few layers using common microwave materials. Single-layer and multilayer waveguide gratings operating as reflection and transmission filters, respectively, were built and tested in the 4-20 GHz frequency range. The presence of GMR notches and peaks is clearly established by the experimental results, and their spectral location and lineshape found to be in excellent agreement with the theoretical predictions. A new computer program using genetic algorithms and rigorous coupled-wave analysis was developed for optimization of multilayer structures containing homogeneous and diffractive layers. This program was utilized to find GMR filters possessing features not previously known. Thus, numerous examples of transmission filters with peaks approaching 100%, narrow linewidths (~0.03%), and low sidebands have been found in structures containing only 1-3 layers. A new type of GMR device integrating a waveguide grating with subwavelength period on the endface of an optical fiber is developed for high-resolution biomedical or chemical sensors and spectral filtering applications. Diffraction gratings with submicron periods exhibiting high efficiencies have been recorded for the first time on coated and uncoated endfaces of single-mode and multimode fibers. Guided-mode resonance transmittance notches of ~18% were experimentally obtained with structures consisting of photoresist gratings on thin films of Si3N4 deposited on optical fiber endfaces.

  14. Ferroelectric properties of PZT/BFO multilayer thin films prepared using the sol-gel method.

    PubMed

    Jo, Seo-Hyeon; Lee, Sung-Gap; Lee, Young-Hie

    2012-01-05

    In this study, Pb(Zr0.52Ti0.48)O3/BiFeO3 [PZT/BFO] multilayer thin films were fabricated using the spin-coating method on a Pt(200 nm)/Ti(10 nm)/SiO2(100 nm)/p-Si(100) substrate alternately using BFO and PZT metal alkoxide solutions. The coating-and-heating procedure was repeated several times to form the multilayer thin films. All PZT/BFO multilayer thin films show a void-free, uniform grain structure without the presence of rosette structures. The relative dielectric constant and dielectric loss of the six-coated PZT/BFO [PZT/BFO-6] thin film were approximately 405 and 0.03%, respectively. As the number of coatings increased, the remanent polarization and coercive field increased. The values for the BFO-6 multilayer thin film were 41.3 C/cm2 and 15.1 MV/cm, respectively. The leakage current density of the BFO-6 multilayer thin film at 5 V was 2.52 × 10-7 A/cm2.

  15. High thermal conductivity lossy dielectric using co-densified multilayer configuration

    DOEpatents

    Tiegs, Terry N.; Kiggans, Jr., James O.

    2003-06-17

    Systems and methods are described for loss dielectrics. A method of manufacturing a lossy dielectric includes providing at least one high dielectric loss layer and providing at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer and then densifying together. The systems and methods provide advantages because the lossy dielectrics are less costly and more environmentally friendly than the available alternatives.

  16. Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, Justin E.; Qiu, S. Roger; Stolz, Christopher J.

    2011-03-20

    Femtosecond laser machining is used to create mitigation pits to stabilize nanosecond laser-induced damage in multilayer dielectric mirror coatings on BK7 substrates. In this paper, we characterize features and the artifacts associated with mitigation pits and further investigate the impact of pulse energy and pulse duration on pit quality and damage resistance. Our results show that these mitigation features can double the fluence-handling capability of large-aperture optical multilayer mirror coatings and further demonstrate that femtosecond laser macromachining is a promising means for fabricating mitigation geometry in multilayer coatings to increase mirror performance under high-power laser irradiation.

  17. Robust optimization of the laser induced damage threshold of dielectric mirrors for high power lasers.

    PubMed

    Chorel, Marine; Lanternier, Thomas; Lavastre, Éric; Bonod, Nicolas; Bousquet, Bruno; Néauport, Jérôme

    2018-04-30

    We report on a numerical optimization of the laser induced damage threshold of multi-dielectric high reflection mirrors in the sub-picosecond regime. We highlight the interplay between the electric field distribution, refractive index and intrinsic laser induced damage threshold of the materials on the overall laser induced damage threshold (LIDT) of the multilayer. We describe an optimization method of the multilayer that minimizes the field enhancement in high refractive index materials while preserving a near perfect reflectivity. This method yields a significant improvement of the damage resistance since a maximum increase of 40% can be achieved on the overall LIDT of the multilayer.

  18. A new method for achieving enhanced dielectric response over a wide temperature range

    DOE PAGES

    Maurya, Deepam; Sun, Fu -Chang; Pamir Alpay, S.; ...

    2015-10-19

    We report a novel approach for achieving high dielectric response over a wide temperature range. In this approach, multilayer ceramic heterostructures with constituent compositions having strategically tuned Curie points (TC) were designed and integrated with varying electrical connectivity. Interestingly, these multilayer structures exhibited different dielectric behavior in series and parallel configuration due to variations in electrical boundary conditions resulting in the differences in the strength of the electrostatic coupling. The results are explained using nonlinear thermodynamic model taking into account electrostatic interlayer interaction. We believe that present work will have huge significance in design of high performance ceramic capacitors.

  19. Tunable positive and negative refraction of infrared radiation in graphene-dielectric multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, R. Z.; Zhang, Z. M., E-mail: zhuomin.zhang@me.gatech.edu

    2015-11-09

    Graphene-dielectric multilayers consisting of alternating layers of atom-thick graphene and nanometer-scale dielectric films exhibit characteristics of hyperbolic metamaterials, in which one positive and one negative permittivity are defined for orthogonal directions. Negative permittivity for electric field polarized in the direction parallel to the conductive graphene sheets gives rise to a negative angle of refraction and low-loss transmission for the side-incidence perspective proposed in this work. The Poynting vector tracing demonstrates the switching between positive and negative refraction in the mid-infrared region by tuning the chemical potential of graphene. This adjustable dual-mode metamaterial holds promise for infrared imaging applications.

  20. A new method for achieving enhanced dielectric response over a wide temperature range

    PubMed Central

    Maurya, Deepam; Sun, Fu-Chang; Pamir Alpay, S.; Priya, Shashank

    2015-01-01

    We report a novel approach for achieving high dielectric response over a wide temperature range. In this approach, multilayer ceramic heterostructures with constituent compositions having strategically tuned Curie points (TC) were designed and integrated with varying electrical connectivity. Interestingly, these multilayer structures exhibited different dielectric behavior in series and parallel configuration due to variations in electrical boundary conditions resulting in the differences in the strength of the electrostatic coupling. The results are explained using nonlinear thermodynamic model taking into account electrostatic interlayer interaction. We believe that present work will have huge significance in design of high performance ceramic capacitors. PMID:26477391

  1. Multilayer Lead-Free Ceramic Capacitors with Ultrahigh Energy Density and Efficiency.

    PubMed

    Li, Jinglei; Li, Fei; Xu, Zhuo; Zhang, Shujun

    2018-06-26

    The utilization of antiferroelectric (AFE) materials is thought to be an effective approach to enhance the energy density of dielectric capacitors. However, the high energy dissipation and inferior reliability that are associated with the antiferroelectric-ferroelectric phase transition are the main issues that restrict the applications of antiferroelectric ceramics. Here, simultaneously achieving high energy density and efficiency in a dielectric ceramic is proposed by combining antiferroelectric and relaxor features. Based on this concept, a lead-free dielectric (Na 0.5 Bi 0.5 )TiO 3 -x(Sr 0.7 Bi 0.2 )TiO 3 (NBT-xSBT) system is investigated and the corresponding multilayer ceramic capacitors (MLCCs) are fabricated. A record-high energy density of 9.5 J cm -3 , together with a high energy efficiency of 92%, is achieved in NBT-0.45SBT multilayer ceramic capacitors, which consist of ten dielectric layers with the single-layer thickness of 20 µm and the internal electrode area of 6.25 mm 2 . Furthermore, the newly developed capacitor exhibits a wide temperature usage range of -60 to 120 °C, with an energy-density variation of less than 10%, and satisfactory cycling reliability, with degradation of less than 8% over 10 6 cycles. These characteristics demonstrate that the NBT-0.45SBT multilayer ceramic is a promising candidate for high-power energy storage applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Characterizing dielectric tensors of anisotropic materials from a single measurement

    NASA Astrophysics Data System (ADS)

    Smith, Paula Kay

    Ellipsometry techniques look at changes in polarization states to measure optical properties of thin film materials. A beam reflected from a substrate measures the real and imaginary parts of the index of the material represented as n and k, respectively. Measuring the substrate at several angles gives additional information that can be used to measure multilayer thin film stacks. However, the outstanding problem in standard ellipsometry is that it uses a limited number of incident polarization states (s and p). This limits the technique to isotropic materials. The technique discussed in this paper extends the standard process to measure anisotropic materials by using a larger set of incident polarization states. By using a polarimeter to generate several incident polarization states and measure the polarization properties of the sample, ellipsometry can be performed on biaxial materials. Use of an optimization algorithm in conjunction with biaxial ellipsometry can more accurately determine the dielectric tensor of individual layers in multilayer structures. Biaxial ellipsometry is a technique that measures the dielectric tensors of a biaxial substrate, single-layer thin film, or multi-layer structure. The dielectric tensor of a biaxial material consists of the real and imaginary parts of the three orthogonal principal indices (n x + ikx, ny +iky and nz + i kz) as well as three Euler angles (alpha, beta and gamma) to describe its orientation. The method utilized in this work measures an angle-of-incidence Mueller matrix from a Mueller matrix imaging polarimeter equipped with a pair of microscope objectives that have low polarization properties. To accurately determine the dielectric tensors for multilayer samples, the angle-of-incidence Mueller matrix images are collected for multiple wavelengths. This is done in either a transmission mode or a reflection mode, each incorporates an appropriate dispersion model. Given approximate a priori knowledge of the dielectric tensor and film thickness, a Jones reflectivity matrix is calculated by solving Maxwell's equations at each surface. Converting the Jones matrix into a Mueller matrix provides a starting point for optimization. An optimization algorithm then finds the best fit dielectric tensor based on the measured angle-of-incidence Mueller matrix image. This process can be applied to polarizing materials, birefringent crystals and the multilayer structures of liquid crystal displays. In particular, the need for such accuracy in liquid crystal displays is growing as their applications in industry evolve.

  3. Laser bandwidth interlock capable of single pulse detection and rejection

    DOEpatents

    Armstrong, James P; Telford, Steven James; Lanning, Rodney Kay; Bayramian, Andrew James

    2012-10-09

    A pulse of laser light is switched out of a pulse train and spatially dispersed into its constituent wavelengths. The pulse is collimated to a suitable size and then diffracted by high groove density multilayer dielectric gratings. This imparts a different angle to each individual wavelength so that, when brought to the far field with a lens, the colors have spread out in a linear arrangement. The distance between wavelengths (resolution) can be tailored for the specific laser and application by altering the number of times the beam strikes the diffraction gratings, the groove density of the gratings and the focal length of the lens. End portions of the linear arrangement are each directed to a respective detector, which converts the signal to a 1 if the level meets a set-point, and a 0 if the level does not. If both detectors produces a 1, then the pulse train is allowed to propagate into an optical system.

  4. Ferroelectric properties of PZT/BFO multilayer thin films prepared using the sol-gel method

    PubMed Central

    2012-01-01

    In this study, Pb(Zr0.52Ti0.48)O3/BiFeO3 [PZT/BFO] multilayer thin films were fabricated using the spin-coating method on a Pt(200 nm)/Ti(10 nm)/SiO2(100 nm)/p-Si(100) substrate alternately using BFO and PZT metal alkoxide solutions. The coating-and-heating procedure was repeated several times to form the multilayer thin films. All PZT/BFO multilayer thin films show a void-free, uniform grain structure without the presence of rosette structures. The relative dielectric constant and dielectric loss of the six-coated PZT/BFO [PZT/BFO-6] thin film were approximately 405 and 0.03%, respectively. As the number of coatings increased, the remanent polarization and coercive field increased. The values for the BFO-6 multilayer thin film were 41.3 C/cm2 and 15.1 MV/cm, respectively. The leakage current density of the BFO-6 multilayer thin film at 5 V was 2.52 × 10-7 A/cm2. PMID:22221519

  5. The investigation of large field of view eyepiece with multilayer diffractive optical element

    NASA Astrophysics Data System (ADS)

    Fan, Changjiang

    2014-11-01

    In this paper, a light-small hybrid refractive/diffractive eyepiece for HMD is designed, which introduces a multilayer Diffractive Optical Element for the first time. This eyepiece optical system has a 22mm eye relief and 8mm exit pupil with 60° FOV. The multilayer DOE overcomes the difficulties of single-layer DOE and double-layer DOE using in the optical system, and improve the image contrast and the performance significantly due to the diffraction efficiency of the multilayer DOE is lager than 90% in wide waveband and large FOV range. The material of multilayer DOE are FCD1 for first layer, FD6 for second layer, PS for the filler layer. Moreover, the weight of the eyepiece system is only 8g, and the diameter of lens is 16mm. The MTF performance can satisfy the requirement of display with VGA resolution. Besides, the lateral color and distortion are 4.8% and 10μm, respectively. The properties of the helmet eyepiece system are excellent.

  6. The radiation from slots in truncated dielectric-covered surfaces

    NASA Technical Reports Server (NTRS)

    Hwang, Y. M.; Kouyoumjian, R. G.; Pathak, P. H.

    1974-01-01

    A theoretical approach based on the geometrical theory of diffraction is used to study the electromagnetic radiation from a narrow slot in a dielectric-covered perfectly-conducting surface terminated at an edge. The total far-zone field is composed of a geometrical optics field and a diffracted field. The geometrical optics field is the direct radiation from the slot to the field point. The slot also generates surface waves which are incident at the termination of the dielectric cover, where singly-diffracted rays and reflected surface waves are excited. The diffraction and reflection coefficients are obtained from the canonical problem of the diffraction of a surface wave by a right-angle wedge where the dielectric-covered surface is approximated by an impedance surface. This approximation is satisfactory for a very thin cover; however, the radiation from its vertical and faces cannot be neglected in treating the thicker dielectric cover. This is taken into account by using a Kirchhoff-type approximation, which contributes a second term to the diffraction coefficient previously obtained. The contributions from the geometrical optics field, the singly-diffracted rays and all significant multiply-diffracted rays are summed to give the total radiation. Calculated and measured patterns are found to be in good agreement.

  7. Low Voltage Electrowetting-on-Dielectric Platform using Multi-Layer Insulators

    PubMed Central

    Lin, Yan-You; Evans, Randall D.; Welch, Erin; Hsu, Bang-Ning; Madison, Andrew C.; Fair, Richard B.

    2010-01-01

    A low voltage, two-level-metal, and multi-layer insulator electrowetting-on-dielectric (EWD) platform is presented. Dispensing 300pl droplets from 140nl closed on-chip reservoirs was accomplished with as little as 11.4V solely through EWD forces, and the actuation threshold voltage was 7.2V with a 1Hz voltage switching rate between electrodes. EWD devices were fabricated with a multilayer insulator consisting of 135nm sputtered tantalum pentoxide (Ta2O5) and 180nm parylene C coated with 70nm of CYTOP. Furthermore, the minimum actuation threshold voltage followed a previously published scaling model for the threshold voltage, VT, which is proportional to (t/εr)1/2, where t and εr are the insulator thickness and dielectric constant respectively. Device threshold voltages are compared for several insulator thicknesses (200nm, 500nm, and 1µm), different dielectric materials (parylene C and tantalum pentoxide), and homogeneous versus heterogeneous compositions. Additionally, we used a two-level-metal fabrication process, which enables the fabrication of smaller and denser electrodes with high interconnect routing flexibility. We also have achieved low dispensing and actuation voltages for scaled devices with 30pl droplets. PMID:20953362

  8. Computational Modeling of Bloch Surface Waves in One-Dimensional Periodic and Aperiodic Multilayer Structures

    NASA Astrophysics Data System (ADS)

    Koju, Vijay

    Photonic crystals and their use in exciting Bloch surface waves have received immense attention over the past few decades. This interest is mainly due to their applications in bio-sensing, wave-guiding, and other optical phenomena such as surface field enhanced Raman spectroscopy. Improvement in numerical modeling techniques, state of the art computing resources, and advances in fabrication techniques have also assisted in growing interest in this field. The ability to model photonic crystals computationally has benefited both the theoretical as well as experimental communities. It helps the theoretical physicists in solving complex problems which cannot be solved analytically and helps to acquire useful insights that cannot be obtained otherwise. Experimentalists, on the other hand, can test different variants of their devices by changing device parameters to optimize performance before fabrication. In this dissertation, we develop two commonly used numerical techniques, namely transfer matrix method, and rigorous coupled wave analysis, in C++ and MATLAB, and use two additional software packages, one open-source and another commercial, to model one-dimensional photonic crystals. Different variants of one-dimensional multilayered structures such as perfectly periodic dielectric multilayers, quasicrystals, aperiodic multilayer are modeled, along with one-dimensional photonic crystals with gratings on the top layer. Applications of Bloch surface waves, along with new and novel aperiodic dielectric multilayer structures that support Bloch surface waves are explored in this dissertation. We demonstrate a slow light configuration that makes use of Bloch Surface Waves as an intermediate excitation in a double-prism tunneling configuration. This method is simple compared to the more usual techniques for slowing light using the phenomenon of electromagnetically induced transparency in atomic gases or doped ionic crystals operated at temperatures below 4K. Using a semi-numerical approach, we show that a 1D photonic crystal, a multilayer structure composed of alternating layers of TiO2 and SiO2 , can be used to slow down light by a factor of up to 400. The results also show that better control of the speed of light can be achieved by changing the number of bilayers and the air-gap thickness appropriately. The existence of Bloch surface waves in periodic dielectric multilayer structures with a surface defect is well-known. Not yet recognized is that quasi-crystals and aperiodic dielectric multilayers can also support Bloch-like surface waves. We numerically show the excitation of Bloch-like surface waves in Fibonacci quasi-crystals, Thue-Morse aperiodic dielectric multilayers using the prism coupling method. We report improved surface electric field intensity and penetration depth of Bloch-like surface waves in the air side in such structures compared to their periodic counterparts. Bloch surface waves have also demonstrated significant potential in the field of bios-ensing technology. We further extend our study into a new type of multilayer structure based on Maximal-length sequence, which is a pseudo random sequence. We study the characteristics of Bloch surface waves in a 32 layered Maximal-length sequence multilayer and perform angular, as well as spectral sensitivity analysis for refractive index change detection. We demonstrate numerically that Maximal-length sequence multilayers significantly enhance the sensitivity of Bloch surface waves. Another type of structure that support Bloch surface waves are dielectric multilayer structures with a grating profile on the top-most layer. The grating profile adds an additional degree of freedom to the phase matching conditions for Bloch surface wave excitation. In such structures, the conditions for Bloch surface wave coupling can also be achieved by rotating both polar and azimuthal angles. The generation of Bloch surface waves as a function of azimuthal angle have similar characteristics to conventional grating coupled Bloch surface waves. However, azimuthal generated Bloch surface waves have enhanced angular sensitivity compared to conventional polar angle coupled modes, which makes them appropriate for detecting tiny variations in surface refractive index due to the addition of nano-particles such as protein molecules.

  9. Multilayer diffraction at 104 keV

    NASA Technical Reports Server (NTRS)

    Krieger, Allen S.; Blake, Richard L.; Siddons, D. P.

    1993-01-01

    We have measured the diffraction peak of a W:Si synthetic multilayer reflector at 104 keV using the High Energy Bonse-Hart Camera at the X-17B hard X-ray wiggler beam line of the National Synchrotron Light Source at Brookhaven National Laboratory. The characteristics of the diffraction peak are described and compared to theory.

  10. Refraction effects in soft x-ray multilayer blazed gratings.

    PubMed

    Voronov, D L; Salmassi, F; Meyer-Ilse, J; Gullikson, E M; Warwick, T; Padmore, H A

    2016-05-30

    A 2500 lines/mm Multilayer Blazed Grating (MBG) optimized for the soft x-ray wavelength range was fabricated and tested. The grating coated with a W/B4C multilayer demonstrated a record diffraction efficiency in the 2nd blazed diffraction order in the energy range from 500 to 1200 eV. Detailed investigation of the diffraction properties of the grating demonstrated that the diffraction efficiency of high groove density MBGs is not limited by the normal shadowing effects that limits grazing incidence x-ray grating performance. Refraction effects inherent in asymmetrical Bragg diffraction were experimentally confirmed for MBGs. The refraction affects the blazing properties of the MBGs and results in a shift of the resonance wavelength of the gratings and broadening or narrowing of the grating bandwidth depending on diffraction geometry. The true blaze angle of the MBGs is defined by both the real structure of the multilayer stack and by asymmetrical refraction effects. Refraction effects can be used as a powerful tool in providing highly efficient suppression of high order harmonics.

  11. Eigenmodes of Multilayer Slit Structures

    NASA Astrophysics Data System (ADS)

    Kovalenko, A. N.

    2017-12-01

    We generalize the high-efficiency numerical-analytical method of calculating the eigenmodes of a microstrip line, which was proposed in [1], to multilayer slit structures. The obtained relationships make it possible to allow for the multilayer nature of the medium on the basis of solving the electrodynamic problem for a two-layer structure. The algebraic models of a single line and coupled slit lines in a multilayer dielectric medium are constructed. The matrix elements of the system of linear algebraic equations, which is used to determine the expansion coefficients of the electric field inside the slits in a Chebyshev basis, are converted to rapidly convergent series. The constructed models allow one to use computer simulation to obtain numerical results with high speed and accuracy, regardless of the number of dielectric layers. The presented results of a numerical study of the method convergence confirm high efficiency of the method.

  12. High efficient light absorption and nanostructure-dependent birefringence of a metal-dielectric symmetrical layered structure

    NASA Astrophysics Data System (ADS)

    Jen, Yi-Jun; Jhang, Yi-Ciang; Liu, Wei-Chih

    2017-08-01

    A multilayer that comprises ultra-thin metal and dielectric films has been investigated and applied as a layered metamaterial. By arranging metal and dielectric films alternatively and symmetrically, the equivalent admittance and refractive index can be tailored separately. The tailored admittance and refractive index enable us to design optical filters with more flexibility. The admittance matching is achieved via the admittance tracing in the normalized admittance diagram. In this work, an ultra-thin light absorber is designed as a multilayer composed of one or several cells. Each cell is a seven-layered film stack here. The design concept is to have the extinction as large as possible under the condition of admittance matching. For a seven-layered symmetrical film stack arranged as Ta2O5 (45 nm)/ a-Si (17 nm)/ Cr (30 nm)/ Al (30 nm)/ Cr (30 nm)/ a-Si (17 nm)/ Ta2O5 (45 nm), its mean equivalent admittance and extinction coefficient over the visible regime is 1.4+0.2i and 2.15, respectively. The unit cell on a transparent BK7 glass substrate absorbs 99% of normally incident light energy for the incident medium is glass. On the other hand, a transmission-induced metal-dielectric film stack is investigated by using the admittance matching method. The equivalent anisotropic property of the metal-dielectric multilayer varied with wavelength and nanostructure are investigated here.

  13. Structural elucidation and magnetic behavior evaluation of Cu-Cr doped BaCo-X hexagonal ferrites

    NASA Astrophysics Data System (ADS)

    Azhar Khan, Muhammad; Hussain, Farhat; Rashid, Muhammad; Mahmood, Asif; Ramay, Shahid M.; Majeed, Abdul

    2018-04-01

    Ba2-xCuxCo2CryFe28-yO46 (x = 0.0, 0.1, 0.2, 0.3, 0.4, y = 0.0, 0.2, 0.4, 0.6, 0.8) X-type hexagonal ferrites were synthesized via micro-emulsion route. The techniques which were applied to characterize the prepared samples are as follows: X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Dielectric measurements and vibrating sample magnetometer (VSM). The structural parameters i.e. lattice constant (a, c), cell volume (V), X-ray density, bulk density and crystallite size of all the prepared samples were obtained using XRD analysis. The lattice parameters 'a' and 'c' increase from 5.875 Å to 5.934 Å and 83.367 Å to 83.990 Å respectively. The crystallite size of investigated samples lies in the range of 28-32 nm. The magnetic properties of all samples have been calculated by vibrating sample magnetometer (VSM) analysis. The increase in coercivity (Hc) was observed with the increase of doping contents. It was observed that the coercivity (Hc) of all prepared samples is inversely related to the crystalline size which reflects that all materials are super-paramagnetic. The dielectric parameters i.e. dielectric constant, dielectric loss, tangent loss etc were obtained in the frequency range of 1 MHz-3 GHz and followed the Maxwell-Wagner's model. The significant variation the dielectric parameters are observed with increasing frequency. The maximum Q value is obtained at ∼2 GHz due to which these materials are used for high frequency multilayer chip inductors.

  14. Transfer matrix approach for the Kerr and Faraday rotation in layered nanostructures.

    PubMed

    Széchenyi, Gábor; Vigh, Máté; Kormányos, Andor; Cserti, József

    2016-09-21

    To study the optical rotation of the polarization of light incident on multilayer systems consisting of atomically thin conductors and dielectric multilayers we present a general method based on transfer matrices. The transfer matrix of the atomically thin conducting layer is obtained using the Maxwell equations. We derive expressions for the Kerr (Faraday) rotation angle and for the ellipticity of the reflected (transmitted) light as a function of the incident angle and polarization of the light. The method is demonstrated by calculating the Kerr (Faraday) angle for bilayer graphene in the quantum anomalous Hall state placed on the top of dielectric multilayers. The optical conductivity of the bilayer graphene is calculated in the framework of a four-band model.

  15. Alternate Multilayer Gratings with Enhanced Diffraction Efficiency in the 500-5000 eV Energy Domain

    NASA Astrophysics Data System (ADS)

    Polack, François; Lagarde, Bruno; Idir, Mourad; Cloup, Audrey Liard; Jourdain, Erick; Roulliay, Marc; Delmotte, Franck; Gautier, Julien; Ravet-Krill, Marie-Françoise

    2007-01-01

    An alternate multilayer (AML) grating is a 2 dimensional diffraction structure formed on an optical surface, having a 0.5 duty cycle in the in-plane and in the in-depth direction. It can be made by covering a shallow depth laminar grating with a multilayer stack. We show here that their 2D structure confer AML gratings a high angular and energetic selectivity and therefore enhanced diffraction properties, when used in grazing incidence. In the tender X-ray range (500eV - 5000 eV) they behave much like blazed gratings. Over 15% efficiency has been measured on a 1200 lines/mm Mo/Si AML grating in the 1.2 - 1.5 keV energy range. Computer simulations show that selected multilayer materials such as Cr/C should allow diffraction efficiency over 50% at photon energies over 3 keV.

  16. Electrostatically assisted fabrication of silver-dielectric core/shell nanoparticles thin film capacitor with uniform metal nanoparticle distribution and controlled spacing.

    PubMed

    Li, Xue; Niitsoo, Olivia; Couzis, Alexander

    2016-03-01

    An electrostatically-assisted strategy for fabrication of thin film composite capacitors with controllable dielectric constant (k) has been developed. The capacitor is composed of metal-dielectric core/shell nanoparticle (silver/silica, Ag@SiO2) multilayer films, and a backfilling polymer. Compared with the simple metal particle-polymer mixtures where the metal nanoparticles (NP) are randomly dispersed in the polymer matrix, the metal volume fraction in our capacitor was significantly increased, owing to the densely packed NP multilayers formed by the electrostatically assisted assembly process. Moreover, the insulating layer of silica shell provides a potential barrier that reduces the tunneling current between neighboring Ag cores, endowing the core/shell nanocomposites with a stable and relatively high dielectric constant (k) and low dielectric loss (D). Our work also shows that the thickness of the SiO2 shell plays a dominant role in controlling the dielectric properties of the nanocomposites. Control over metal NP separation distance was realized not only by variation the shell thickness of the core/shell NPs but also by introducing a high k nanoparticle, barium strontium titanate (BST) of relatively smaller size (∼8nm) compared to 80-160nm of the core/shell Ag@SiO2 NPs. The BST assemble between the Ag@SiO2 and fill the void space between the closely packed core/shell NPs leading to significant enhancement of the dielectric constant. This electrostatically assisted assembly method is promising for generating multilayer films of a large variety of NPs over large areas at low cost. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. On-chip copper-dielectric interference filters for manufacturing of ambient light and proximity CMOS sensors.

    PubMed

    Frey, Laurent; Masarotto, Lilian; D'Aillon, Patrick Gros; Pellé, Catherine; Armand, Marilyn; Marty, Michel; Jamin-Mornet, Clémence; Lhostis, Sandrine; Le Briz, Olivier

    2014-07-10

    Filter technologies implemented on CMOS image sensors for spectrally selective applications often use a combination of on-chip organic resists and an external substrate with multilayer dielectric coatings. The photopic-like and near-infrared bandpass filtering functions respectively required by ambient light sensing and user proximity detection through time-of-flight can be fully integrated on chip with multilayer metal-dielectric filters. Copper, silicon nitride, and silicon oxide are the materials selected for a technological proof-of-concept on functional wafers, due to their immediate availability in front-end semiconductor fabs. Filter optical designs are optimized with respect to specific performance criteria, and the robustness of the designs regarding process errors are evaluated for industrialization purposes.

  18. Method for characterizing mask defects using image reconstruction from X-ray diffraction patterns

    DOEpatents

    Hau-Riege, Stefan Peter [Fremont, CA

    2007-05-01

    The invention applies techniques for image reconstruction from X-ray diffraction patterns on the three-dimensional imaging of defects in EUVL multilayer films. The reconstructed image gives information about the out-of-plane position and the diffraction strength of the defect. The positional information can be used to select the correct defect repair technique. This invention enables the fabrication of defect-free (since repaired) X-ray Mo--Si multilayer mirrors. Repairing Mo--Si multilayer-film defects on mask blanks is a key for the commercial success of EUVL. It is known that particles are added to the Mo--Si multilayer film during the fabrication process. There is a large effort to reduce this contamination, but results are not sufficient, and defects continue to be a major mask yield limiter. All suggested repair strategies need to know the out-of-plane position of the defects in the multilayer.

  19. van der Waals torque and force between dielectrically anisotropic layered media.

    PubMed

    Lu, Bing-Sui; Podgornik, Rudolf

    2016-07-28

    We analyse van der Waals interactions between a pair of dielectrically anisotropic plane-layered media interacting across a dielectrically isotropic solvent medium. We develop a general formalism based on transfer matrices to investigate the van der Waals torque and force in the limit of weak birefringence and dielectric matching between the ordinary axes of the anisotropic layers and the solvent. We apply this formalism to study the following systems: (i) a pair of single anisotropic layers, (ii) a single anisotropic layer interacting with a multilayered slab consisting of alternating anisotropic and isotropic layers, and (iii) a pair of multilayered slabs each consisting of alternating anisotropic and isotropic layers, looking at the cases where the optic axes lie parallel and/or perpendicular to the plane of the layers. For the first case, the optic axes of the oppositely facing anisotropic layers of the two interacting slabs generally possess an angular mismatch, and within each multilayered slab the optic axes may either be the same or undergo constant angular increments across the anisotropic layers. In particular, we examine how the behaviors of the van der Waals torque and force can be "tuned" by adjusting the layer thicknesses, the relative angular increment within each slab, and the angular mismatch between the slabs.

  20. Polarization Coupling in Ferroelectric Multilayers as a Function of Interface Charge Concentration

    NASA Astrophysics Data System (ADS)

    Okatan, Mahmut; Mantese, Joseph; Alpay, Pamir

    2009-03-01

    Intriguing properties of multilayered and graded ferroelectrics follow from the electrostatic and electromechanical interactions. The strength of the interlayer coupling depends on the concentration of interfacial defects with short-range local electrostatic fields. Defects may locally relax polarization differences and thus reduce the commensurate bound charge concentration at the interlayer interfaces. In this talk, we develop a theoretical analysis based on non-linear thermodynamics coupled with basic electrostatic relations to understand the role of charge compensation at the interlayer interfaces. The results show multilayered ferroelectrics with systematic variations in the composition may display a colossal dielectric response depending upon the interlayer electrostatic interactions. It is expected that other properties such as the pyroelectric and piezoelectric response will yield concomitant increases through the dielectric permittivity.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samant, Saumil P.; Grabowski, Christopher A.; Kisslinger, Kim

    Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (E BD) and dielectric permittivity (ε r) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher E BD over that ofmore » component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show ~50% enhancement in E BD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in E BD is attributed to the “barrier effect”, where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in E BD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. This approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samant, Saumil P.; Grabowski, Christopher A.; Kisslinger, Kim

    Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (E BD) and dielectric permittivity (ε r) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher E BD over that ofmore » component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS- b-PMMA system show ~50% enhancement in E BD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in E BD is attributed to the “barrier effect”, where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in E BD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. Lastly, this approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.« less

  3. Nonlinear pulse propagation in one-dimensional metal-dielectric multilayer stacks: ultrawide bandwidth optical limiting.

    PubMed

    Scalora, Michael; Mattiucci, Nadia; D'Aguanno, Giuseppe; Larciprete, MariaCristina; Bloemer, Mark J

    2006-01-01

    We numerically study the nonlinear optical properties of metal-dielectric photonic band gap structures in the pulsed regime. We exploit the high chi3 of copper metal to induce nonlinear effects such as broadband optical limiting, self-phase modulation, and unusual spectral narrowing of high intensity pulses. We show that in a single pass through a typical, chirped multilayer stack nonlinear transmittance and peak powers can be reduced by nearly two orders of magnitude compared to low light intensity levels across the entire visible range. Chirping dielectric layer thickness dramatically improves the linear transmittance through the stack and achieves large fields inside the copper to access the large nonlinearity. At the same time, the linear properties of the stack block most of the remaining electromagnetic spectrum.

  4. A uniform GTD analysis of the EM diffraction by a thin dielectric/ferrite half-plane and related configurations

    NASA Technical Reports Server (NTRS)

    Rojas, Roberto G.

    1985-01-01

    A uniform geometrical theory of diffraction (UTD) solution is developed for the problem of the diffraction by a thin dielectric/ferrite half plane when it is excited by a plane, cylindrical, or surface wave field. Both transverse electric and transverse magnetic cases are considered. The solution of this problem is synthesized from the solutions to the related problems of EM diffraction by configurations involving perfectly conducting electric and magnetic walls covered by a dielectric/ferrite half-plane of one half the thickness of the original half-plane.

  5. A General Strategy to Achieve Colossal Permittivity and Low Dielectric Loss Through Constructing Insulator/Semiconductor/Insulator Multilayer Structures

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Sun, Yalong; Zheng, Fengang; Tse, Mei-Yan; Sun, Qingbo; Liu, Yun; Hao, Jianhua

    2018-06-01

    In this work, we propose a route to realize high-performance colossal permittivity (CP) by creating multilayer structures of insulator/semiconductor/insulator. To prove the new concept, we made heavily reduced rutile TiO2 via annealing route in Ar/H2 atmosphere. Dielectric studies show that the maximum dielectric permittivity ( 3.0 × 104) of our prepared samples is about 100 times higher than that ( 300) of conventional TiO2. The minimum dielectric loss is 0.03 (at 104-105 Hz). Furthermore, CP is almost independent of the frequency (100-106 Hz) and the temperature (20-350 K). We suggest that the colossal permittivity is attributed to the high carrier concentration of the inner TiO2 semiconductor, while the low dielectric loss is due to the presentation of the insulator layer on the surface of TiO2. The method proposed here can be expanded to other material systems, such as semiconductor Si sandwiched by top and bottom insulator layers of Ga2O3.

  6. Aminosilane multilayer formed on a single-crystalline diamond surface with controlled nanoscopic hardness and bioactivity by a wet process.

    PubMed

    Amemiya, Yosuke; Hatakeyama, Akiko; Shimamoto, Nobuo

    2009-01-06

    Diamond could be an excellent support for nanodevices utilizing biomolecules if it is covered with a polymer layer immobilizing a variety of biomolecules. We report a wet method to form a 3-aminopropyltriethoxysilane (APTES) multilayer with a controlled hardness, roughness, and capacity for immobilizing protein. The method is feasible in typical biochemical laboratories where biomolecules are prepared. Atomic force microscopy (AFM) revealed that the surface geometries and nanoscopic hardness of the multilayers on an oxygen-terminated single-crystalline diamond surface depended on the dielectric constant of the solvent; the smaller the constant, the harder the layer. The hard multilayers had holes and APTES aggregates on the surfaces, while less hard ones had homogeneous surfaces with rare holes and little aggregates. The secondary deposition of APTES in a solvent with a large dielectric constant on a hard multilayer removed the holes, and further treatment of the multilayer in acidic ethanol solution diminished the aggregates. Such a surface can immobilize streptavidin with enough specificity against nonspecific adsorption using a combination of polyethylene glycol reagents. The results of a scratching test and nanoindentation test with AFM provided consistent results, suggesting some universality of the scratching test independent of the tip structure of the cantilever. The mechanism of formation of multilayers on the diamond surface and their binding to it is discussed.

  7. Nonvolatile memory characteristics of organic thin film transistors using poly(2-hydroxyethyl methacrylate)-based polymer multilayer dielectric

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Chih; Su, Yan-Kuin; Yu, Hsin-Chieh; Huang, Chun-Yuan; Huang, Tsung-Syun

    2011-10-01

    A wide hysteresis width characteristic (memory window) was observed in the organic thin film transistors (OTFTs) using poly(2-hydroxyethyl methacrylate) (PHEMA)-based polymer multilayers. In this study, a strong memory effect was also found in the pentacene-based OTFTs and the electric characteristics were improved by introducing PHEMA/poly(methyl methacrylate) (PMMA)/PHEMA trilayer to replace the conventional PHEMA monolayer or PMMA/PHEMA and PHEMA/PMMA bilayer as the dielectric layers of OTFTs. The memory effect was originated from the electron trapping and slow polarization of the dielectrics. The hydroxyl (-OH) groups inside the polymer dielectric were the main charge storage sites of the electrons. This charge-storage phenomenon could lead to a wide flat-band voltage shift (memory window, △VFB = 22 V) which is essential for the OTFTs' memory-related applications. Moreover, the fabricated transistors also exhibited significant switchable channel current due to the charge-storage and slow charge relaxation.

  8. Properties of multilayer filters

    NASA Technical Reports Server (NTRS)

    Baumeister, P. W.

    1973-01-01

    New methods were investigated of using optical interference coatings to produce bandpass filters for the spectral region 110 nm to 200 nm. The types of filter are: triple cavity metal dielectric filters; all dielectric reflection filters; and all dielectric Fabry Perot type filters. The latter two types use thorium fluoride and either cryolite films or magnesium fluoride films in the stacks. The optical properties of the thorium fluoride were also measured.

  9. Fabrication and characterization of WO3/Ag/WO3 multilayer transparent anode with solution-processed WO3 for polymer light-emitting diodes

    PubMed Central

    2012-01-01

    The dielectric/metal/dielectric multilayer is suitable for a transparent electrode because of its high-optical and high-electrical properties; however, it is fabricated by an expensive and inefficient multistep vacuum process. We present a WO3/Ag/WO3 (WAW) multilayer transparent anode with solution-processed WO3 for polymer light-emitting diodes (PLEDs). This WAW multilayer not only has high transmittance and low resistance but also can be easily and rapidly fabricated. We devised a novel method to deposit a thin WO3 layer by a solution process in an air environment. A tungstic acid solution was prepared from an aqueous solution of Na2WO4 and then converted to WO3 nanoparticles (NPs) by a thermal treatment. Thin WO3 NP layers form WAW multilayer with a thermal-evaporated Ag layer, and they improve the transmittance of the WAW multilayer because of its high transmittance and refractive index. Moreover, the surface of the WO3 layer is homogeneous and flat with low roughness because of the WO3 NP generation from the tungstic acid solution without aggregation. We performed optical simulation and experiments, and the optimized WAW multilayer had a high transmittance of 85% with a sheet resistance of 4 Ω/sq. Finally, PLEDs based on the WAW multilayer anode achieved a maximum luminance of 35,550 cd/m2 at 8 V, and this result implies that the solution-processed WAW multilayer is appropriate for use as a transparent anode in PLEDs. PMID:22587669

  10. Fabrication and characterization of WO3/Ag/WO3 multilayer transparent anode with solution-processed WO3 for polymer light-emitting diodes.

    PubMed

    Jeon, Kangmin; Youn, Hongseok; Kim, Seongbeom; Shin, Seongbeom; Yang, Minyang

    2012-05-15

    The dielectric/metal/dielectric multilayer is suitable for a transparent electrode because of its high-optical and high-electrical properties; however, it is fabricated by an expensive and inefficient multistep vacuum process. We present a WO3/Ag/WO3 (WAW) multilayer transparent anode with solution-processed WO3 for polymer light-emitting diodes (PLEDs). This WAW multilayer not only has high transmittance and low resistance but also can be easily and rapidly fabricated. We devised a novel method to deposit a thin WO3 layer by a solution process in an air environment. A tungstic acid solution was prepared from an aqueous solution of Na2WO4 and then converted to WO3 nanoparticles (NPs) by a thermal treatment. Thin WO3 NP layers form WAW multilayer with a thermal-evaporated Ag layer, and they improve the transmittance of the WAW multilayer because of its high transmittance and refractive index. Moreover, the surface of the WO3 layer is homogeneous and flat with low roughness because of the WO3 NP generation from the tungstic acid solution without aggregation. We performed optical simulation and experiments, and the optimized WAW multilayer had a high transmittance of 85% with a sheet resistance of 4 Ω/sq. Finally, PLEDs based on the WAW multilayer anode achieved a maximum luminance of 35,550 cd/m2 at 8 V, and this result implies that the solution-processed WAW multilayer is appropriate for use as a transparent anode in PLEDs.

  11. Directed Self-Assembly of Block Copolymers for High Breakdown Strength Polymer Film Capacitors.

    PubMed

    Samant, Saumil P; Grabowski, Christopher A; Kisslinger, Kim; Yager, Kevin G; Yuan, Guangcui; Satija, Sushil K; Durstock, Michael F; Raghavan, Dharmaraj; Karim, Alamgir

    2016-03-01

    Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (EBD) and dielectric permittivity (εr) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher EBD over that of component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show ∼50% enhancement in EBD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in EBD is attributed to the "barrier effect", where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in EBD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. This approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.

  12. Directed self-assembly of block copolymers for high breakdown strength polymer film capacitors

    DOE PAGES

    Samant, Saumil P.; Grabowski, Christopher A.; Kisslinger, Kim; ...

    2016-03-04

    Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (E BD) and dielectric permittivity (ε r) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher E BD over that ofmore » component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS- b-PMMA system show ~50% enhancement in E BD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in E BD is attributed to the “barrier effect”, where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in E BD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. Lastly, this approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.« less

  13. Origin of colossal dielectric response of CaCu3Ti4O12 studied by using CaTiO3/CaCu3Ti4O12/CaTiO3 multilayer thin films

    NASA Astrophysics Data System (ADS)

    Mitsugi, Masakazu; Asanuma, Shutaro; Uesu, Yoshiaki; Fukunaga, Mamoru; Kobayashi, Wataru; Terasaki, Ichiro

    2007-06-01

    To elucidate the origin of the colossal dielectric response (CDR) of CaCu3Ti4O12 (CCTO), multilayer thin films of CCTO interposed in insulating CaTiO3 (CTO) were synthesized using a pulsed laser deposition technique. The capacitance C of CTO/CCTO/CTO films with different layer thicknesses is measured. After removing the capacitance of CTO by extrapolating C to zero CTO thickness, the real part of dielectric constant of CCTO is estimated to be 329-435, which is much smaller than the reported value for CCTO thin films. This fact indicates that the CDR of CCTO is extrinsic and originates from an internal barrier layer capacitor.

  14. High Transparent and Conductive TiO2/Ag/TiO2 Multilayer Electrode Films Deposited on Sapphire Substrate

    NASA Astrophysics Data System (ADS)

    Loka, Chadrasekhar; Moon, Sung Whan; Choi, YiSik; Lee, Kee-Sun

    2018-03-01

    Transparent conducting oxides attract intense interests due to its diverse industrial applications. In this study, we report sapphire substrate-based TiO2/Ag/TiO2 (TAT) multilayer structure of indium-free transparent conductive multilayer coatings. The TAT thin films were deposited at room temperature on sapphire substrates and a rigorous analysis has been presented on the electrical and optical properties of the films as a function of Ag thickness. The optical and electrical properties were mainly controlled by the Ag mid-layer thickness of the TAT tri-layer. The TAT films showed high luminous transmittance 84% at 550 nm along with noteworthy low electrical resistance 3.65 × 10-5 Ω-cm and sheet resistance of 3.77 Ω/square, which is better are than those of amorphous ITO films and any sapphire-based dielectric/metal/dielectric multilayer stack. The carrier concentration of the films was increased with respect to Ag thickness. We obtained highest Hackke's figure of merit 43.97 × 10-3 Ω-1 from the TAT multilayer thin film with a 16 nm thick Ag mid-layer.

  15. Finite element analysis of multilayer DEAP stack-actuators

    NASA Astrophysics Data System (ADS)

    Kuhring, Stefan; Uhlenbusch, Dominik; Hoffstadt, Thorben; Maas, Jürgen

    2015-04-01

    Dielectric elastomers (DE) are thin polymer films belonging to the class of electroactive polymers (EAP). They are coated with compliant and conductive electrodes on each side, which make them performing a relative high amount of deformation with considerable force generation under the influence of an electric field. Because the realization of high electric fields with a limited voltage level requests single layer polymer films to be very thin, novel multilayer actuators are utilized to increase the absolute displacement and force. In case of a multilayer stack-actuator, many actuator films are mechanically stacked in series and electrically connected in parallel. Because there are different ways to design such a stack-actuator, this contribution considers an optimization of some design parameters using the finite element analysis (FEA), whereby the behavior and the actuation of a multilayer dielectric electroactive polymer (DEAP) stack-actuator can be improved. To describe the material behavior, first different material models are compared and necessary material parameters are identified by experiments. Furthermore, a FEA model of a DEAP film is presented, which is expanded to a multilayer DEAP stack-actuator model. Finally, the results of the FEA are discussed and conclusions for design rules of optimized stack-actuators are outlined.

  16. Thermal conductivity measurement of amorphous dielectric multilayers for phase-change memory power reduction

    NASA Astrophysics Data System (ADS)

    Fong, S. W.; Sood, A.; Chen, L.; Kumari, N.; Asheghi, M.; Goodson, K. E.; Gibson, G. A.; Wong, H.-S. P.

    2016-07-01

    In this work, we investigate the temperature-dependent thermal conductivities of few nanometer thick alternating stacks of amorphous dielectrics, specifically SiO2/Al2O3 and SiO2/Si3N4. Experiments using steady-state Joule-heating and electrical thermometry, while using a micro-miniature refrigerator over a wide temperature range (100-500 K), show that amorphous thin-film multilayer SiO2/Si3N4 and SiO2/Al2O3 exhibit through-plane room temperature effective thermal conductivities of about 1.14 and 0.48 W/(m × K), respectively. In the case of SiO2/Al2O3, the reduced conductivity is attributed to lowered film density (7.03 → 5.44 × 1028 m-3 for SiO2 and 10.2 → 8.27 × 1028 m-3 for Al2O3) caused by atomic layer deposition of thin-films as well as a small, finite, and repeating thermal boundary resistance (TBR) of 1.5 m2 K/GW between dielectric layers. Molecular dynamics simulations reveal that vibrational mismatch between amorphous oxide layers is small, and that the TBR between layers is largely due to imperfect interfaces. Finally, the impact of using this multilayer dielectric in a dash-type phase-change memory device is studied using finite-element simulations.

  17. Adhesion promoters for large scale fabrication of dielectric elastomer stack transducers (DESTs) made of pre-fabricated dielectric films

    NASA Astrophysics Data System (ADS)

    Grotepaß, T.; Förster-Zügel, F.; Mößinger, H.; Schlaak, H. F.

    2015-04-01

    Multilayer dielectric elastomer stack transducers (DESTs) are a promising new transducer technology with many applications in different industry sectors, like medical devices, human-machine-interaction, etc. Stacked dielectric elastomer transducers show larger thickness contraction driven by lower voltages than transducers made from a single dielectric layer. Traditionally multilayered DESTs are produced by repeatedly cross-linking a liquid elastomeric pre-polymer into the required shape. Our recent research focusses on a novel fabrication method for large scale stack transducers with a surface area over 200 x 300 mm by processing pre-fabricated elastomeric thin films of less than 50 μm thicknesses. The thin films are provided as two- or three-layer composites, where the elastomer is sandwiched between one or two sacrificial liners. Separating the elastomeric film from the residual layers and assembling them into dielectric elastomer stack transducers poses many challenges concerning adhesion, since the dielectric film merely separates from the liner if the adhesive forces between them are overcome. Conversely, during the assembly of a dielectric elastomer stack transducer, adhesive forces have to be established between two elastomeric layers or between the dielectric and the electrode layer. The very low Young's modulus of at least one adhesion partner requires suitable means of increasing the adhesive forces between the different adhesive layers of a dielectric elastomer stack transducer to prevent a delamination of the transducer during its lifetime. This work evaluates different surface activation treatments - corona, low-pressure plasma and UV-light - and their applicability in the production of large scale DESTs made from pre-fabricated elastomeric films.

  18. Performance of multilayer coated diffraction gratings in the EUV

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva A. M.; Thomas, Roger J.; Gum, Jeffrey S.; Condor, Charles E.

    1990-01-01

    The effect of multilayer coating application on the performance of a diffraction grating in the EUV spectral region was evaluated by examining the performance of a 3600-line/mm and a 1200-line/mm replica blazed gratings, designed for operation in the 300-A spectral region in first order. A ten-layer IrSi multilayer optimized for 304 A was deposited using electron-beam evaporation. The grating efficiency was measured on the SURF II calibration beamline in a chamber designed for calibrating the solar EUV rocket telescope and spectrograph multilayer coatings. A significant (by a factor of about 7) enhancement in grating efficiency in the 300-A region was demonstrated.

  19. Method of fabricating reflection-mode EUV diffraction elements

    DOEpatents

    Naulleau, Patrick P.

    2002-01-01

    Techniques for fabricating a well-controlled, quantized-level, engineered surface that serves as substrates for EUV reflection multilayer overcomes problems associated with the fabrication of reflective EUV diffraction elements. The technique when employed to fabricate an EUV diffraction element that includes the steps of: (a) forming an etch stack comprising alternating layers of first and second materials on a substrate surface where the two material can provide relative etch selectivity; (b) creating a relief profile in the etch stack wherein the relief profile has a defined contour; and (c) depositing a multilayer reflection film over the relief profile wherein the film has an outer contour that substantially matches that of the relief profile. For a typical EUV multilayer, if the features on the substrate are larger than 50 nm, the multilayer will be conformal to the substrate. Thus, the phase imparted to the reflected wavefront will closely match that geometrically set by the surface height profile.

  20. III-V semiconductor nanoresonators-a new strategy for passive, active, and nonlinear all-dielectric metamaterials

    DOE PAGES

    Liu, Sheng; Keeler, Gordon A.; Reno, John L.; ...

    2016-06-10

    We demonstrate 2D and multilayer dielectric metamaterials made from III–V semiconductors using a monolithic fabrication process. The resulting structures could be used to recompress chirped femtosecond optical pulses and in a variety of other optical applications requiring low loss. Moreover, these III–V all-dielectric metamaterials could enable novel active applications such as efficient nonlinear frequency converters, light emitters, detectors, and modulators.

  1. Electrocaloric Refrigeration for Superconductors

    DTIC Science & Technology

    1977-02-01

    Dielectric properties 40 3.3.2. Relation to capacitance thermometer manufacturing . . 42 3.4. SrTiO, Glass-Ceramic Multilayer Samples 42 3.4.1...Experimental Methods 66 3.6.1. Dielectric properties 66 3.6.2. Thermodynamic properties 7 0 3.6.3. Thermal conductivity. .... 80 3.7...Discussion of Experimental Results 143 3.8.1. Dielectric Troperties 143 3.8.2. Thermal Properties 150 3.8.3. Recommendations for further work

  2. Microwave synthesis of noncentrosymmetric BaTiO3 truncated nanocubes for charge storage applications.

    PubMed

    Swaminathan, V; Pramana, Stevin S; White, T J; Chen, L; Chukka, Rami; Ramanujan, R V

    2010-11-01

    Truncated nanocubes of barium titanate (BT) were synthesized using a rapid, facile microwave-assisted hydrothermal route. Stoichiometric composition of pellets of nanocube BT powders was prepared by two-stage microwave process. Characterization by powder XRD, Rietveld refinement, SEM, TEM, and dielectric and polarization measurements was performed. X-ray diffraction revealed a polymorphic transformation from cubic Pm3̅m to tetragonal P4mm after 15 min of microwave irradiation, arising from titanium displacement along the c-axis. Secondary electron images were examined for nanocube BT synthesis and annealed at different timings. Transmission electron microscopy showed a narrow particle size distribution with an average size of 70 ± 9 nm. The remanence and saturation polarization were 15.5 ± 1.6 and 19.3 ± 1.2 μC/cm(2), respectively. A charge storage density of 925 ± 47 nF/cm(2) was obtained; Pt/BT/Pt multilayer ceramic capacitor stack had an average leakage current density of 5.78 ± 0.46 × 10(-8) A/cm(2) at ±2 V. The significance of this study shows an inexpensive and facile processing platform for synthesis of high-k dielectric for charge storage applications.

  3. Space domain analysis of micro-IDG structure

    NASA Astrophysics Data System (ADS)

    Izzat, Narian; Pennock, Steve R.; Rozzi, Tullio

    1994-06-01

    The Microstrip Loaded Inset Dielectric Waveguide has been proposed as a transmission medium alternative to microstrip, and as a useful antenna medium at X-band and millimetric frequencies. In the present analysis we consider the case where a multi-layer, multi-conductor microstrip circuit may be housed within Inset Dielectric Waveguide.

  4. Laser-induced damage of intrinsic and extrinsic defects by picosecond pulses on multilayer dielectric coatings for petawatt-class lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negres, Raluca A.; Carr, Christopher W.; Laurence, Ted A.

    2016-08-01

    Here, we describe a damage testing system and its use in investigating laser-induced optical damage initiated by both intrinsic and extrinsic precursors on multilayer dielectric coatings suitable for use in high-energy, large-aperture petawatt-class lasers. We employ small-area damage test methodologies to evaluate the intrinsic damage resistance of various coatings as a function of deposition methods and coating materials under simulated use conditions. In addition, we demonstrate that damage initiation by raster scanning at lower fluences and growth threshold testing are required to probe the density of extrinsic defects, which will limit large-aperture optics performance.

  5. A route for efficient non-resonance cloaking by using multilayer dielectric coating

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohui; Semouchkina, Elena

    2013-03-01

    An approach for designing transmission cloaks by using ordinary dielectrics instead of meta- and plasmonic materials is proposed and demonstrated by the development of a multi-layer cloak for hiding cylindrical objects larger than the wavelengths of incident radiation. The parameters of the cloak layers were found by using the Genetic Algorithm-based optimization procedure, which employed the reciprocal of total scattering cross width of the cloaked target, derived from the solution of the Helmholtz equation, as the fitness function. The proposed cloak demonstrated better cloaking efficiency than did a similarly sized metamaterial cloak designed by using the transformation optics relations.

  6. Phase Modulator with Terahertz Optical Bandwidth Formed by Multi-Layered Dielectric Stack

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S. (Inventor); Fork, Richard L. (Inventor)

    2005-01-01

    An optical phase modulator includes a bandpass multilayer stack, formed by a plurality of dielectric layers, preferably of GaAs and AlAs, and having a transmission function related to the refractive index of the layers of the stack, for receiving an optical input signal to be phase modulated. A phase modulator device produces a nonmechanical change in the refractive index of each layer of the stack by, e.g., the injection of free carrier, to provide shifting of the transmission function so as to produce phase modulation of the optical input signal and to thereby produce a phase modulated output signal.

  7. Spectrum splitting using multi-layer dielectric meta-surfaces for efficient solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Yao, Yuhan; Liu, He; Wu, Wei

    2014-06-01

    We designed a high-efficiency dispersive mirror based on multi-layer dielectric meta-surfaces. By replacing the secondary mirror of a dome solar concentrator with this dispersive mirror, the solar concentrator can be converted into a spectrum-splitting photovoltaic system with higher energy harvesting efficiency and potentially lower cost. The meta-surfaces are consisted of high-index contrast gratings (HCG). The structures and parameters of the dispersive mirror (i.e. stacked HCG) are optimized based on finite-difference time-domain and rigorous coupled-wave analysis method. Our numerical study shows that the dispersive mirror can direct light with different wavelengths into different angles in the entire solar spectrum, maintaining very low energy loss. Our approach will not only improve the energy harvesting efficiency, but also lower the cost by using single junction cells instead of multi-layer tandem solar cells. Moreover, this approach has the minimal disruption to the existing solar concentrator infrastructures.

  8. Lithographically-generated 3D lamella layers and their structural color

    NASA Astrophysics Data System (ADS)

    Zhang, Sichao; Chen, Yifang; Lu, Bingrui; Liu, Jianpeng; Shao, Jinhai; Xu, Chen

    2016-04-01

    Inspired by the structural color from the multilayer nanophotonic structures in Morpho butterfly wing scales, 3D lamellae layers in dielectric polymers (polymethyl methacrylate, PMMA) with n ~ 1.5 were designed and fabricated by standard top-down electron beam lithography with one-step exposure followed by an alternating development/dissolution process of PMMA/LOR (lift-off resist) multilayers. This work offers direct proof of the structural blue/green color via lithographically-replicated PMMA/air multilayers, analogous to those in real Morpho butterfly wings. The success of nanolithography in this work for the 3D lamellae structures in dielectric polymers not only enables us to gain deeper insight into the mysterious blue color of the Morpho butterfly wings, but also breaks through the bottleneck in technical development toward broad applications in gas/liquid sensors, 3D meta-materials, coloring media, and infrared imaging devices, etc.

  9. Characterization of ion beam sputtered deposited W/Si multilayers by grazing incidence x-ray diffraction and x-ray reflectivity technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhawan, Rajnish, E-mail: rajnish@rrcat.gov.in; Rai, Sanjay

    2016-05-23

    W/Si multilayers four samples have been deposited on silicon substrate using ion beam sputtering system. Thickness of tungsten (W) varies from around 10 Å to 40 Å while the silicon (Si) thickness remains constant at around 30 Å in multilayers [W-Si]{sub x4}. The samples have been characterized by grazing incidence X-ray diffraction (GIXRD) and X-ray reflectivity technique (XRR). GIXRD study shows the crystalline behaviour of W/Si multilayer by varying W thickness and it is found that above 20 Å the W film transform from amorphous to crystalline phase and X-ray reflectivity data shows that the roughnesses of W increases onmore » increasing the W thicknesses in W/Si multilayers.« less

  10. Surface plasmon polariton Akhmediev Breather in a dielectric-metal-dielectric geometry with subwavelength thickness

    NASA Astrophysics Data System (ADS)

    Devi, Koijam Monika; Porsezian, K.; Sarma, Amarendra K.

    2018-05-01

    We report Akhmediev Breather solutions in a nonlinear multilayer structure comprising of a metal sandwiched between two semi-infinite dielectric layers with subwavelength thickness. These nonlinear solutions inherit the properties of Surface plasmon polaritons and its dynamics is governed by the Nonlinear Schrodinger equation. The breather evolution is studied for specific values of nonlinear and dispersion parameters. An experimental scheme to observe these breathers is also proposed.

  11. Multi-layered nanocomposite dielectrics for high density organic memory devices

    NASA Astrophysics Data System (ADS)

    Kang, Moonyeong; Chung, Kyungwha; Baeg, Kang-Jun; Kim, Dong Ha; Kim, Choongik

    2015-01-01

    We fabricated organic memory devices with metal-pentacene-insulator-silicon structure which contain double dielectric layers comprising 3D pattern of Au nanoparticles (Au NPs) and block copolymer (PS-b-P2VP). The role of Au NPs is to charge/discharge carriers upon applied voltage, while block copolymer helps to form highly ordered Au NP patterns in the dielectric layer. Double-layered nanocomposite dielectrics enhanced the charge trap density (i.e., trapped charge per unit area) by Au NPs, resulting in increase of the memory window (ΔVth).

  12. High-efficiency spectral purity filter for EUV lithography

    DOEpatents

    Chapman, Henry N [Livermore, CA

    2006-05-23

    An asymmetric-cut multilayer diffracts EUV light. A multilayer cut at an angle has the same properties as a blazed grating, and has been demonstrated to have near-perfect performance. Instead of having to nano-fabricate a grating structure with imperfections no greater than several tens of nanometers, a thick multilayer is grown on a substrate and then cut at an inclined angle using coarse and inexpensive methods. Effective grating periods can be produced this way that are 10 to 100 times smaller than those produced today, and the diffraction efficiency of these asymmetric multilayers is higher than conventional gratings. Besides their ease of manufacture, the use of an asymmetric multilayer as a spectral purity filter does not require that the design of an EUV optical system be modified in any way, unlike the proposed use of blazed gratings for such systems.

  13. Fabrication of wedged multilayer Laue lenses

    DOE PAGES

    Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; ...

    2015-01-01

    We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack.more » This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.« less

  14. Nanostructured Anodic Multilayer Dielectric Stacked Metal-Insulator-Metal Capacitors.

    PubMed

    Karthik, R; Kannadassan, D; Baghini, Maryam Shojaei; Mallick, P S

    2015-12-01

    This paper presents the fabrication of Al2O3/TiO2/Al2O3 metal-insulator-metal (MIM) capacitor using anodization technique. High capacitance density of > 3.5 fF/μm2, low quadratic voltage coefficient of capacitance of < 115 ppm/V2 and a low leakage current density of 4.457 x 10(-11) A/cm2 at 3 V are achieved which are suitable for analog and mixed signal applications. We found that the anodization voltage played a major role in electrical and structural properties of the thin film. This work suggests that the anodization method can offer crystalline multilayer dielectric stack required for high performance MIM capacitor.

  15. Multi-layer coating of SiO2 nanoparticles to enhance light absorption by Si solar cells

    NASA Astrophysics Data System (ADS)

    Nam, Yoon-Ho; Um, Han-Don; Park, Kwang-Tae; Shin, Sun-Mi; Baek, Jong-Wook; Park, Min-Joon; Jung, Jin-Young; Zhou, Keya; Jee, Sang-Won; Guo, Zhongyi; Lee, Jung-Ho

    2012-06-01

    We found that multi-layer coating of a Si substrate with SiO2 dielectric nanoparticles (NPs) was an effective method to suppress light reflection by silicon solar cells. To suppress light reflection, two conditions are required for the coating: 1) The difference of refractive indexes between air and Si should be alleviated, and 2) the quarter-wavelength antireflection condition should be satisfied while avoiding intrinsic absorption loss. Light reflection was reduced due to destructive interference at certain wavelengths that depended on the layer thickness. For the same thickness dielectric layer, smaller NPs enhanced antireflectance more than larger NPs due to a decrease in scattering loss by the smaller NPs.

  16. Multilayer thin films with compositional PbZr0.52Ti0.48O3/Bi1.5Zn1.0Nb1.5O7 layers for tunable applications

    PubMed Central

    Yu, Shihui; Li, Lingxia; Zhang, Weifeng; Sun, Zheng; Dong, Helei

    2015-01-01

    The dielectric properties and tunability of multilayer thin films with compositional PbZr0.52Ti0.48O3/Bi1.5Zn1.0Nb1.5O7 (PZT/BZN) layers (PPBLs) fabricated by pulsed laser deposition on Pt/TiO2/SiO2/Si substrate have been investigated. Dielectric measurements indicate that the PZT/BZN bilayer thin films exhibit medium dielectric constant of about 490, low loss tangent of 0.017, and superior tunable dielectric properties (tunability = 49.7% at 500 kV/cm) at a PZT/BZN thickness ratio of 3, while the largest figure of merit is obtained as 51.8. The thickness effect is discussed with a series connection model of bilayer capacitors, and the calculated dielectric constant and loss tangent are obtained. Furthermore, five kinds of thin–film samples comprising single bilayers, two, three, four and five PPBLs were also elaborated with the final same thickness. The four PPBLs show the largest dielectric constant of ~538 and tunability of 53.3% at a maximum applied bias field of 500 kV/cm and the lowest loss tangent of ~0.015, while the largest figure of merit is 65.6. The results indicate that four PPBLs are excellent candidates for applications of tunable devices. PMID:25960043

  17. Transition from two-dimensional photonic crystals to dielectric metasurfaces in the optical diffraction with a fine structure

    PubMed Central

    Rybin, Mikhail V.; Samusev, Kirill B.; Lukashenko, Stanislav Yu.; Kivshar, Yuri S.; Limonov, Mikhail F.

    2016-01-01

    We study experimentally a fine structure of the optical Laue diffraction from two-dimensional periodic photonic lattices. The periodic photonic lattices with the C4v square symmetry, orthogonal C2v symmetry, and hexagonal C6v symmetry are composed of submicron dielectric elements fabricated by the direct laser writing technique. We observe surprisingly strong optical diffraction from a finite number of elements that provides an excellent tool to determine not only the symmetry but also exact number of particles in the finite-length structure and the sample shape. Using different samples with orthogonal C2v symmetry and varying the lattice spacing, we observe experimentally a transition between the regime of multi-order diffraction, being typical for photonic crystals to the regime where only the zero-order diffraction can be observed, being is a clear fingerprint of dielectric metasurfaces characterized by effective parameters. PMID:27491952

  18. Spacer layer thickness dependent structural and magnetic properties of Co/Si multilayers

    NASA Astrophysics Data System (ADS)

    Roy, Ranjan; Singh, Dushyant; Kumar, M. Senthil

    2018-05-01

    In this article, the study of high resolution x-ray diffraction and magnetization of sputter deposited Co/Si multilayer is reported. Multilayers are prepared at ambient temperature by dc magnetron sputtering. Structural properties are studied by high resolution x-ray diffraction. Magnetic properties are studied at room temperature by vibrating sample magnetometer. Structural properties show that the Co layer is polycrystalline and the Si layer is amorphous. The magnetization study indicates that the samples are soft ferromagnetic in nature. The study of magnetization also shows that the easy axis of magnetization lies in the plane of the film.

  19. Laboratory and In-Flight In-Situ X-ray Imaging and Scattering Facility for Materials, Biotechnology and Life Sciences

    NASA Technical Reports Server (NTRS)

    2003-01-01

    We propose a multifunctional X-ray facility for the Materials, Biotechnology and Life Sciences Programs to visualize formation and behavior dynamics of materials, biomaterials, and living organisms, tissues and cells. The facility will combine X-ray topography, phase micro-imaging and scattering capabilities with sample units installed on the goniometer. This should allow, for the first time, to monitor under well defined conditions, in situ, in real time: creation of imperfections during growth of semiconductors, metal, dielectric and biomacromolecular crystals and films, high-precision diffraction from crystals within a wide range of temperatures and vapor, melt, solution conditions, internal morphology and changes in living organisms, tissues and cells, diffraction on biominerals, nanotubes and particles, radiation damage, also under controlled formation/life conditions. The system will include an ultrabright X-ray source, X-ray mirror, monochromator, image-recording unit, detectors, and multipurpose diffractometer that fully accommodate and integrate furnaces and samples with other experimental environments. The easily adjustable laboratory and flight versions will allow monitoring processes under terrestrial and microgravity conditions. The flight version can be made available using a microsource combined with multilayer or capillary optics.

  20. Summary Report of the Summer Conference DARPA-Materials Research Council Held in La Jolla, California on 10 July thru 4 August 1989

    DTIC Science & Technology

    1989-08-04

    ceramic substrate and a multilayer thin film metal (copper) and polymer ( polyimide ) overlays. 73 The MCM technology was pioneered by IBM, which has made...packaging. The first is the use of polymeric dielectric layers such as polyimides . In fact, the current MCP’s 3 being developed for the DoD use... polyimide dielectrics. Nonetheless, much work remains to be done before these organic dielectrics can be regarded as Isatisfactory. Polyimides have a

  1. Heat resistive dielectric multi-layer micro-mirror array in epitaxial lateral overgrowth gallium nitride.

    PubMed

    Huang, Chen-Yang; Ku, Hao-Min; Liao, Wei-Tsai; Chao, Chu-Li; Tsay, Jenq-Dar; Chao, Shiuh

    2009-03-30

    Ta2O5 / SiO2 dielectric multi-layer micro-mirror array (MMA) with 3mm mirror size and 6mm array period was fabricated on c-plane sapphire substrate. The MMA was subjected to 1200 degrees C high temperature annealing and remained intact with high reflectance in contrast to the continuous multi-layer for which the layers have undergone severe damage by 1200 degrees C annealing. Epitaxial lateral overgrowth (ELO) of gallium nitride (GaN) was applied to the MMA that was deposited on both sapphire and sapphire with 2:56 mm GaN template. The MMA was fully embedded in the ELO GaN and remained intact. The result implies that our MMA is compatible to the high temperature growth environment of GaN and the MMA could be incorporated into the structure of the micro-LED array as a one to one micro backlight reflector, or as the patterned structure on the large area LED for controlling the output light.

  2. Conductive, magnetic and structural properties of multilayer films

    NASA Astrophysics Data System (ADS)

    Kotov, L. N.; Turkov, V. K.; Vlasov, V. S.; Lasek, M. P.; Kalinin, Yu E.; Sitnikov, A. V.

    2013-12-01

    Composite-semiconductor and composite-dielectric multilayer films were obtained by the ion beam sputtering method in the argon and hydrogen atmospheres with compositions: {[(Co45-Fe45-Zr10)x(Al2O3)y]-[α-Si]}120, {[(Co45-Ta45-Nb10)x(SiO2)y]-[SiO2]}56, {[(Co45-Fe45-Zr10)x(Al2O3)y]-[α-Si:H]}120. The images of surface relief and distribution of the dc current on composite layer surface were obtained with using of atomic force microscopy (AFM). The dependencies of specific electric resistance, ferromagnetic resonance (FMR) fields and width of line on metal (magnetic) phase concentration x and nanolayers thickness of multilayer films were obtained. The characteristics of FMR depend on magnetic interaction among magnetic granules in the composite layers and between the layers. These characteristics depend on the thickness of composite and dielectric or semiconductor nanolayers. The dependences of electric microwave losses on the x and alternating field frequency were investigated.

  3. Piezoelectric polymer multilayer on flexible substrate for energy harvesting.

    PubMed

    Zhang, Lei; Oh, Sharon Roslyn; Wong, Ting Chong; Tan, Chin Yaw; Yao, Kui

    2013-09-01

    A piezoelectric polymer multilayer structure formed on a flexible substrate is investigated for mechanical energy harvesting under bending mode. Analytical and numerical models are developed to clarify the effect of material parameters critical to the energy harvesting performance of the bending multilayer structure. It is shown that the maximum power is proportional to the square of the piezoelectric stress coefficient and the inverse of dielectric permittivity of the piezoelectric polymer. It is further found that a piezoelectric multilayer with thinner electrodes can generate more electric energy in bending mode. The effect of improved impedance matching in the multilayer polymer on energy output is remarkable. Comparisons between piezoelectric ceramic multilayers and polymer multilayers on flexible substrate are discussed. The fabrication of a P(VDF-TrFE) multilayer structure with a thin Al electrode layer is experimentally demonstrated by a scalable dip-coating process on a flexible aluminum substrate. The results indicate that it is feasible to produce a piezoelectric polymer multilayer structure on flexible substrate for harvesting mechanical energy applicable for many low-power electronics.

  4. Polarization-dependent diffraction in all-dielectric, twisted-band structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kardaś, Tomasz M.; Jagodnicka, Anna; Wasylczyk, Piotr, E-mail: pwasylcz@fuw.edu.pl

    2015-11-23

    We propose a concept for light polarization management: polarization-dependent diffraction in all-dielectric microstructures. Numerical simulations of light propagation show that with an appropriately configured array of twisted bands, such structures may exhibit zero birefringence and at the same time diffract two circular polarizations with different efficiencies. Non-birefringent structures as thin as 3 μm have a significant difference in diffraction efficiency for left- and right-hand circular polarizations. We identify the structural parameters of such twisted-band matrices for optimum performance as circular polarizers.

  5. Method of manufacturing flexible metallic photonic band gap structures, and structures resulting therefrom

    DOEpatents

    Gupta, Sandhya; Tuttle, Gary L.; Sigalas, Mihail; McCalmont, Jonathan S.; Ho, Kai-Ming

    2001-08-14

    A method of manufacturing a flexible metallic photonic band gap structure operable in the infrared region, comprises the steps of spinning on a first layer of dielectric on a GaAs substrate, imidizing this first layer of dielectric, forming a first metal pattern on this first layer of dielectric, spinning on and imidizing a second layer of dielectric, and then removing the GaAs substrate. This method results in a flexible metallic photonic band gap structure operable with various filter characteristics in the infrared region. This method may be used to construct multi-layer flexible metallic photonic band gap structures. Metal grid defects and dielectric separation layer thicknesses are adjusted to control filter parameters.

  6. X-ray diffraction study of laser-driven solid-state diffusional mixing and new phase formation in Ni-Pt multilayers [X-ray diffraction study of laser-driven solid-state diffusional mixing and new phase formation

    DOE PAGES

    Kelly, B. G.; Loether, A.; Unruh, K. M.; ...

    2017-02-01

    An in situ optical pump and x-ray probe technique has been utilized to study photoinitiated solid-state diffusion in a Ni-Pt multilayer system. Hard x-ray diffraction has been used to follow the systematic growth of the NiPt alloy as a function of laser intensity and total energy deposited. It is observed that new phase growth can be driven in as little as one laser pulse, and that repeated photoexcitation can completely convert the entire multilayer structure into a single metallic alloy. In conclusion, the data suggest that lattice strain relaxation takes place prior to atomic diffusion and the formation of amore » NiPt alloy.« less

  7. X-ray diffraction study of laser-driven solid-state diffusional mixing and new phase formation in Ni-Pt multilayers [X-ray diffraction study of laser-driven solid-state diffusional mixing and new phase formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, B. G.; Loether, A.; Unruh, K. M.

    An in situ optical pump and x-ray probe technique has been utilized to study photoinitiated solid-state diffusion in a Ni-Pt multilayer system. Hard x-ray diffraction has been used to follow the systematic growth of the NiPt alloy as a function of laser intensity and total energy deposited. It is observed that new phase growth can be driven in as little as one laser pulse, and that repeated photoexcitation can completely convert the entire multilayer structure into a single metallic alloy. In conclusion, the data suggest that lattice strain relaxation takes place prior to atomic diffusion and the formation of amore » NiPt alloy.« less

  8. TM surface wave diffraction by a truncated dielectric slab recessed in a perfectly conducting surface. [considering flush mounted space shuttle antenna

    NASA Technical Reports Server (NTRS)

    Pathak, P. H.; Kouyoumjian, R. G.

    1974-01-01

    The diffraction of a TM sub o surface wave by a terminated dielectric slab which is flush mounted in a perfectly conducting surface is studied. The incident surface wave gives rise to waves reflected and diffracted by the termination; these reflected and diffracted fields may be expressed in terms of the geometrical theory of diffraction by introducing surface wave reflection and diffraction coefficients which are associated with the termination. In this investigation, the surface wave reflection and diffraction coefficients have been deduced from a formally exact solution to this canonical problem. The solution is obtained by a combination of the generalized scattering matrix technique and function theoretic methods.

  9. Multilayer optical dielectric coating

    DOEpatents

    Emmett, John L.

    1990-01-01

    A highly damage resistant, multilayer, optical reflective coating includes alternating layers of doped and undoped dielectric material. The doping levels are low enough that there are no distinct interfaces between the doped and undoped layers so that the coating has properties nearly identical to the undoped material. The coating is fabricated at high temperature with plasma-assisted chemical vapor deposition techniques to eliminate defects, reduce energy-absorption sites, and maintain proper chemical stoichiometry. A number of differently-doped layer pairs, each layer having a thickness equal to one-quarter of a predetermined wavelength in the material are combined to form a narrowband reflective coating for a predetermined wavelength. Broadband reflectors are made by using a number of narrowband reflectors, each covering a portion of the broadband.

  10. Thermally invariant dielectric coatings for micromirrors

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Talghader, Joseph J.

    2002-06-01

    Thermal expansion-induced curvature becomes a major effect in micromirrors as the mirror diameter exceeds 100 mum. Such mirrors are used for optical switching, scanning, and many other applications. By using multilayer coatings instead of a single metal reflector, one can use the mechanical properties of the multilayer to create mirrors with zero curvature across temperature. We demonstrate the fabrication of such thermally invariant mirrors using dielectric coatings. A semianalytic model based on free-plate elastic theory is developed that uses empirical parameters in place of the true thermal expansion coefficients of the coating materials. Micromirrors are demonstrated that maintain their design curvature to within lambda/60 for lambda = 633 nm across an operating range from 21 degC to 58 degC.

  11. Fatigue response of a PZT multilayer actuator under high-field electric cycling with mechanical preload

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Wereszczak, Andrew A.; Lin, Hua-Tay

    2009-01-01

    An electric fatigue test system was developed for evaluating the reliability of piezoelectric actuators with a mechanical loading capability. Fatigue responses of a lead zirconate titanate (PZT) multilayer actuator with a platethrough electrode configuration were studied under an electric field (1.7 times that of the coercive field of PZT material) and a concurrent mechanical preload (30.0 MPa). A total of 109 cycles was carried out. Variations in charge density and mechanical strain under the high electric field and constant mechanical loads were observed during the fatigue test. The dc and the first harmonic (at 10 Hz) dielectric and piezoelectric coefficients were subsequently characterized using fast Fourier transformation. Both the dielectric and the piezoelectric coefficients exhibited a monotonic decrease prior to 2.86×108 cycles under certain preloading conditions, and then fluctuated. Both the dielectric loss tangent and the piezoelectric loss tangent also fluctuated after a decrease. The results are interpreted and discussed with respect to domain wall activities, microdefects, and other anomalies.

  12. High Energy Density and High Temperature Multilayer Capacitor Films for Electric Vehicle Applications

    NASA Astrophysics Data System (ADS)

    Treufeld, Imre; Song, Michelle; Zhu, Lei; Baer, Eric; Snyder, Joe; Langhe, Deepak

    2015-03-01

    Multilayer films (MLFs) with high energy density and high temperature capability (>120 °C) have been developed at Case Western Reserve University. Such films offer a potential solution for electric car DC-link capacitors, where high ripple currents and high temperature tolerance are required. The current state-of-the-art capacitors used in electric cars for converting DC to AC use biaxially oriented polypropylene (BOPP), which can only operate at temperatures up to 85 °C requiring an external cooling system. The polycarbonate (PC)/poly(vinylidene fluoride) (PVDF) MLFs have a higher permittivity compared to that of BOPP (2.3), leading to higher energy density. They have good mechanical stability and reasonably low dielectric losses at 120 °C. Nonetheless, our preliminary dielectric measurements show that the MLFs exhibit appreciable dielectric losses (20%) at 120 °C, which would, despite all the other advantages, make them not suitable for practical applications. Our preliminary data showed that dielectric losses of the MLFs at 120 °C up to 400 MV/m and 1000 Hz originate mostly from impurity ionic conduction. This work is supported by the NSF PFI/BIC Program (IIP-1237708).

  13. Control of optical properties of metal-dielectric planar plasmonic nanostructures by adjusting their architecture in the case of TiAlN/Ag system

    NASA Astrophysics Data System (ADS)

    Wainstein, D. L.; Vakhrushev, V. O.; Kovalev, A. I.

    2017-05-01

    The multilayer Ag/(Ti34Al66)N metal-insulator-metal (MIM) heterostructures with different thicknesses of individual layers varied from several to several hundred nanometers were fabricated by DC-magnetron sputtering on the surfaces of Si single crystal wafers. The coatings structure was determined by STEM. The phase composition and crystallography of individual layers were studied by X-ray diffraction. The reflection indexes were measured in the photons energies range from 1 to 5 eV, or from 1240 to 248 nm. The spectroscopy of plasmon losses and plasmon microscopy allowed us to measure the plasmons losses characteristic energies and their surface distribution. The energies of plasmons peaks and their locations are strongly depending on Ag layers thickness in the MIM nanocomposite. The surface plasmon with energy about 4 eV was observed in the middle of 20 nm Ag layer. The plasmons were localized at the metal/dielectric interface for Ag layers 5 nm and less. The reflectance spectral profiles edges positions at long and short waves are correlated with plasmons energies and features of their spatial distribution. The MIMs based on the TiAlN/Ag can find applications as optical filters, photovoltaic energy conversion devices, etc.

  14. Innovative soft magnetic multilayers with enhanced in-plane anisotropy and ferromagnetic resonance frequency for integrated RF passive devices

    NASA Astrophysics Data System (ADS)

    Falub, Claudiu V.; Bless, Martin; Hida, Rachid; MeduÅa, Mojmír; Ammann, Arnold

    2018-04-01

    We present an innovative, economical method for manufacturing soft magnetic materials that may pave the way for integrated thin film magnetic cores with dramatically improved properties. Soft magnetic multilayered thin films based on the Fe-28%Co20%B (at.%) and Co-4.5%Ta4%Zr (at.%) amorphous alloys are deposited on 8" bare Si and Si/200nm-thermal-SiO2 wafers in an industrial, high-throughput Evatec LLS EVO II magnetron sputtering system. The multilayers consist of stacks of alternating 80-nm-thick ferromagnetic layers and 4-nm-thick Al2O3 dielectric interlayers. Since in our dynamic sputter system the substrate cage rotates continuously, such that the substrates face different targets alternatively, each ferromagnetic sublayer in the multilayer consists of a fine structure comprising alternating CoTaZr and FeCoB nanolayers with very sharp interfaces. We adjust the thickness of these individual nanolayers between 0.5 and 1.5 nm by changing the cage rotation speed and the power of each gun, which is an excellent mode to engineer new, composite ferromagnetic materials. Using X-ray reflectometry (XRR) we reveal that the interfaces between the FeCoB and CoTaZr nanolayers are perfectly smooth with roughness of 0.2-0.3 nm. Kerr magnetometry and B-H looper measurements for the as-deposited samples show that the coercivity of these thin films is very low, 0.2-0.3 Oe, and gradually scales up with the thickness of FeCoB nanolayers, i.e. with the increase of the overall Fe content from 0 % (e.g. CoTaZr-based multilayers) to 52 % (e.g. FeCoB-based multilayers). We explain this trend in the random anisotropy model, based on considerations of grain size growth, as revealed by glancing angle X-ray diffraction (GAXRD), but also because of the increase of magnetostriction with the increase of Fe content as shown by B-H looper measurements performed on strained wafers. The unexpected enhancement of the in-plane anisotropy field from 18.3 Oe and 25.8 Oe for the conventional CoTaZr- and FeCoB-based multilayers, respectively, up to ˜48 Oe for the nanostructured multilayers with FeCoB/CoTaZr nano-bilayers is explained based on interface anisotropy contribution. These novel soft magnetic multilayers, with enhanced in-plane anisotropy, allow operation at higher frequencies, as revealed by broadband (between 100 MHz and 10 GHz) RF measurements that exhibit a classical Landau-Lifschitz-Gilbert (LLG) behavior.

  15. Integrated power passives

    NASA Technical Reports Server (NTRS)

    Xie, Huikai (Inventor); Ngo, Khai D. T. (Inventor)

    2013-01-01

    A multi-layer film-stack and method for forming the multilayer film-stack is given where a series of alternating layers of conducting and dielectric materials are deposited such that the conducting layers can be selectively addressed. The use of the method to form integratable high capacitance density capacitors and complete the formation of an integrated power system-on-a-chip device including transistors, conductors, inductors, and capacitors is also given.

  16. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: The effect of substrate on magnetic properties of Co/Cu multilayer nanowire arrays

    NASA Astrophysics Data System (ADS)

    Ren, Yong; Wang, Jian-Bo; Liu, Qing-Fang; Han, Xiang-Hua; Xue, De-Sheng

    2009-08-01

    Ordered Co/Cu multilayer nanowire arrays have been fabricated into anodic aluminium oxide templates with Ag and Cu substrate by direct current electrodeposition. This paper studies the morphology, structure and magnetic properties by transmission electron microscopy, selective area electron diffraction, x-ray diffraction, and vibrating sample magnetometer. X-ray diffraction patterns reveal that both as-deposited nanowire arrays films exhibit face-centred cubic structure. Magnetic measurements indicate that the easy magnetization direction of Co/Cu multilayer nanowire arrays films on Ag substrate is perpendicular to the long axis of nanowire, whereas the easy magnetization direction of the sample with Cu substrate is parallel to the long axis of nanowire. The change of easy magnetization direction attributed to different substrates, and the magnetic properties of the nanowire arrays are discussed.

  17. High proton conductivity in the molecular interlayer of a polymer nanosheet multilayer film.

    PubMed

    Sato, Takuma; Hayasaka, Yuta; Mitsuishi, Masaya; Miyashita, Tokuji; Nagano, Shusaku; Matsui, Jun

    2015-05-12

    High proton conductivity was achieved in a polymer multilayer film with a well-defined two-dimensional lamella structure. The multilayer film was prepared by deposition of poly(N-dodecylacryamide-co-acrylic acid) (p(DDA/AA)) monolayers onto a solid substrate using the Langmuir-Blodgett technique. Grazing-angle incidence X-ray diffraction measurement of a 30-layer film of p(DDA/AA) showed strong diffraction peaks in the out-of-plane direction at 2θ = 2.26° and 4.50°, revealing that the multilayer film had a highly uniform layered structure with a monolayer thickness of 2.0 nm. The proton conductivity of the p(DDA/AA) multilayer film parallel to the layer plane direction was 0.051 S/cm at 60 °C and 98% relative humidity with a low activation energy of 0.35 eV, which is comparable to perfluorosulfonic acid membranes. The high conductivity and low activation energy resulted from the formation of uniform two-dimensional proton-conductive nanochannels in the hydrophilic regions of the multilayer film. The proton conductivity of the multilayer film perpendicular to the layer plane was determined to be 2.1 × 10(-13) S/cm. Therefore, the multilayer film showed large anisotropic conductivity with an anisotropic ratio of 2.4 × 10(11).

  18. Extended asymmetric-cut multilayer X-ray gratings.

    PubMed

    Prasciolu, Mauro; Haase, Anton; Scholze, Frank; Chapman, Henry N; Bajt, Saša

    2015-06-15

    The fabrication and characterization of a large-area high-dispersion blazed grating for soft X-rays based on an asymmetric-cut multilayer structure is reported. An asymmetric-cut multilayer structure acts as a perfect blazed grating of high efficiency that exhibits a single diffracted order, as described by dynamical diffraction throughout the depth of the layered structure. The maximum number of grating periods created by cutting a multilayer deposited on a flat substrate is equal to the number of layers deposited, which limits the size of the grating. The size limitation was overcome by depositing the multilayer onto a substrate which itself is a coarse blazed grating and then polish it flat to reveal the uniformly spaced layers of the multilayer. The number of deposited layers required is such that the multilayer thickness exceeds the step height of the substrate structure. The method is demonstrated by fabricating a 27,060 line pairs per mm blazed grating (36.95 nm period) that is repeated every 3,200 periods by the 120-μm period substrate structure. This preparation technique also relaxes the requirements on stress control and interface roughness of the multilayer film. The dispersion and efficiency of the grating is demonstrated for soft X-rays of 13.2 nm wavelength.

  19. Studying Pulsed Laser Deposition conditions for Ni/C-based multi-layers

    NASA Astrophysics Data System (ADS)

    Bollmann, Tjeerd R. J.

    2018-04-01

    Nickel carbon based multi-layers are a viable route towards future hard X-ray and soft γ-ray focusing telescopes. Here, we study the Pulsed Laser Deposition growth conditions of such bilayers by Reflective High Energy Electron Diffraction, X-ray Reflectivity and Diffraction, Atomic Force Microscopy, X-ray Photoelectron Spectroscopy and cross-sectional Transmission Electron Microscopy analysis, with emphasis on optimization of process pressure and substrate temperature during growth. The thin multi-layers are grown on a treated SiO substrate resulting in Ni and C layers with surface roughnesses (RMS) of ≤0.2 nm. Small droplets resulting during melting of the targets surface increase the roughness, however, and cannot be avoided. The sequential process at temperatures beyond 300 °C results into intermixing between the two layers, being destructive for the reflectivity of the multi-layer.

  20. Miniaturized High-Temperature Superconducting/Dielectric Multilayer Filters for Satellite Communications

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    1997-01-01

    Most communication satellites contain well over a hundred filters in their payload. Current technology in typical satellite multiplexers use dual-mode cavity or dielectric resonator filters that are large (approx. 25 to 125 cu in) and heavy (up to 600 g). As the complexity of future advanced electronic systems for satellite communications increases, even more filters will be needed, requiring filter miniaturization without performance degradation. Such improvements in filter technology will enhance satellite performance. To reduce the size, weight, and cost of the multiplexers without compromising performance, the NASA Lewis Research Center is collaborating with industry to develop a new class of dual-mode multilayer filters consisting of YBa2Cu3O7-delta high-temperature superconducting (HTS) thin films on LaAlO3 substrates.

  1. Efficiency of a multilayer-Laue-lens with a 102 μm aperture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macrander, Albert T., E-mail: atm@anl.gov; Wojcik, Michael; Maser, Jorg

    2015-08-24

    A multilayer-Laue-lens (MLL) comprised of WSi{sub 2}/Al layers stacked to a full thickness of 102 μm was characterized for its diffraction efficiency and dynamical diffraction properties by x-ray measurements made in the far field. The achieved aperture roughly doubles the previous maximum reported aperture for an MLL, thereby doubling the working distance. Negative and positive first orders were found to have 14.2% and 13.0% efficiencies, respectively. A section thickness of 9.6 μm was determined from Laue-case thickness fringes in the diffraction data. A background gas consisting of 90% Ar and 10% N{sub 2} was used for sputtering. This material system wasmore » chosen to reduce grown-in stress as the multilayer is deposited. Although some regions of the full MLL exhibited defects, the presently reported results were obtained for a region devoid of defects. The data compare well to dynamical diffraction calculations with Coupled Wave Theory (CWT) which provided confirmation of the optical constants and densities assumed for the CWT calculations.« less

  2. Efficiency of a multilayer-Laue-lens with a 102 μm aperture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macrander, Albert T.; Kubec, Adam; Conley, Raymond

    2015-08-25

    A multilayer-Laue-lens (MLL) comprised of WSi 2/Al layers stacked to a full thickness of 102 microns was characterized for its diffraction efficiency and dynamical diffraction properties by x-ray measurements made in the far field. The achieved aperture roughly doubles the previous maximum reported aperture for an MLL, thereby doubling the working distance. Negative and positive first orders were found to have 14.2 % and 13.0 % efficiencies, respectively. A section thickness of 9.6 μm was determined from Laue-case thickness fringes in the diffraction data. A background gas consisting of 90 % Ar and 10 % N 2 was used formore » sputtering. This material system was chosen to reduce grown-in stress as the multilayer is deposited. Although some regions of the full MLL exhibited defects, the presently reported results were obtained for a region devoid of defects. The data compare well to dynamical diffraction calculations with Coupled Wave Theory (CWT) which provided confirmation of the optical constants and densities assumed for the CWT calculations.« less

  3. Transient Signal Distortion and Coupling in Multilayer Multiconductor MIC Microstrips

    DTIC Science & Technology

    1990-05-22

    cess.ar1 and identify by block number) I FIELD GROUP I $..)3-{; ’\\0-:: Transient signals, distortion, dispersion, microstrip J 1 i nes , multi...printed circuit design; complex microstrip structures {multiple lines and/or dielectric layers), coupling between lines, distortion of non -periodic...signals on complex structures, and a new method to control coupling on multilayer structures, as well as presenting numerical results for each of these

  4. Finite-size effects of hysteretic dynamics in multilayer graphene on a ferroelectric

    DOE PAGES

    Morozovska, Anna N.; Pusenkova, Anastasiia S.; Varenyk, Oleksandr V.; ...

    2015-06-11

    The origin and influence of finite-size effects on the nonlinear dynamics of space charge stored by multilayer graphene on a ferroelectric and resistivity of graphene channel were analyzed. In this paper, we develop a self-consistent approach combining the solution of electrostatic problems with the nonlinear Landau-Khalatnikov equations for a ferroelectric. The size-dependent behaviors are governed by the relations between the thicknesses of multilayer graphene, ferroelectric film, and the dielectric layer. The appearance of charge and electroresistance hysteresis loops and their versatility stem from the interplay of polarization reversal dynamics and its incomplete screening in an alternating electric field. These featuresmore » are mostly determined by the dielectric layer thickness. The derived analytical expressions for electric fields and space-charge-density distribution in a multilayer system enable knowledge-driven design of graphene-on-ferroelectric heterostructures with advanced performance. We further investigate the effects of spatially nonuniform ferroelectric domain structures on the graphene layers’ conductivity and predict its dramatic increase under the transition from multi- to single-domain state in a ferroelectric. Finally, this intriguing effect can open possibilities for the graphene-based sensors and explore the underlying physical mechanisms in the operation of graphene field-effect transistor with ferroelectric gating.« less

  5. Chemical and morphological characterization of III-V strained layered heterostructures

    NASA Astrophysics Data System (ADS)

    Gray, Allen Lindsay

    This dissertation describes investigations into the chemical and morphological characterization of III-V strained layered heterostructures by high-resolution x-ray diffraction. The purpose of this work is two-fold. The first was to use high-resolution x-ray diffraction coupled with transmission electron microscopy to characterize structurally a quaternary AlGaAsSb/InGaAsSb multiple quantum well heterostructure laser device. A method for uniquely determining the chemical composition of the strain quaternary quantum well, information previously thought to be unattainable using high resolution x-ray diffraction is thoroughly described. The misconception that high-resolution x-ray diffraction can separately find the well and barrier thickness of a multi-quantum well from the pendellosung fringe spacing is corrected, and thus the need for transmission electron microscopy is motivated. Computer simulations show that the key in finding the well composition is the intensity of the -3rd order satellite peaks in the diffraction pattern. The second part of this work addresses the evolution of strain relief in metastable multi-period InGaAs/GaAs multi-layered structures by high-resolution x-ray reciprocal space maps. Results are accompanied by transmission electron and differential contrast microscopy. The evolution of strain relief is tracked from a coherent "pseudomorphic" growth to a dislocated state as a function of period number by examining the x-ray diffuse scatter emanating from the average composition (zeroth-order) of the multi-layer. Relaxation is determined from the relative positions of the substrate with respect to the zeroth-order peak. For the low period number, the diffuse scatter from the multi-layer structure region arises from periodic, coherent crystallites. For the intermediate period number, the displacement fields around the multi-layer structure region transition to random coherent crystallites. At the higher period number, displacement fields of overlapping dislocations from relaxation of the random crystallites cause the initial stages of relaxation of the multi-layer structure. At the highest period number studied, relaxation of the multi-layer structure becomes bi-modal characterized by overlapping dislocations caused by mosaic block relaxation and periodically spaced misfit dislocations formed by 60°-type dislocations. The relaxation of the multi-layer structure has an exponential dependence on the diffuse scatter length-scale, which is shown to be a sensitive measure of the onset of relaxation.

  6. State of the art in silicon immersed gratings for space

    NASA Astrophysics Data System (ADS)

    van Amerongen, Aaldert; Krol, Hélène; Grèzes-Besset, Catherine; Coppens, Tonny; Bhatti, Ianjit; Lobb, Dan; Hardenbol, Bram; Hoogeveen, Ruud

    2017-11-01

    We present the status of our immersed diffraction grating technology, as developed at SRON and of their multilayer optical coatings as developed at CILAS. Immersion means that diffraction takes place inside the medium, in our case silicon. The high refractive index of the silicon medium boosts the resolution and the dispersion. Ultimate control over the groove geometry yields high efficiency and polarization control. Together, these aspects lead to a huge reduction in spectrometer volume. This has opened new avenues for the design of spectrometers operating in the short-wave-infrared wavelength band. Immersed grating technology for space application was initially developed by SRON and TNO for the short-wave-infrared channel of TROPOMI, built under the responsibility of SSTL. This space spectrometer will be launched on ESA's Sentinel 5 Precursor mission in 2015 to monitor pollution and climate gases in the Earth atmosphere. The TROPOMI immersed grating flight model has technology readiness level 8. In this program CILAS has qualified and implemented two optical coatings: first, an anti-reflection coating on the entrance and exit facet of the immersed grating prism, which reaches a very low value of reflectivity for a wide angular range of incidence of the transmitted light; second, a metal-dielectric absorbing coating for the passive facet of the prism to eliminate stray light inside the silicon prism. Dual Ion Beam Sputtering technology with in-situ visible and infrared optical monitoring guarantees the production of coatings which are nearly insensitive to temperature and atmospheric conditions. Spectral measurements taken at extreme temperature and humidity conditions show the reliability of these multi-dielectric and metal-dielectric functions for space environment. As part of our continuous improvement program we are presently developing new grating technology for future missions, hereby expanding the spectral range, the blaze angles and grating size, while optimizing performance parameters like stray light and wavefront error. The program aims to reach a technology readiness level of 5 for the newly developed technologies by the end of 2012. An outlook will be presented.

  7. Design guidelines for advanced LSI microcircuit packaging using thick film multilayer technology

    NASA Technical Reports Server (NTRS)

    Peckinpaugh, C. J.

    1974-01-01

    Ceramic multilayer circuitry results from the sequential build-up of two or more layers of pre-determined conductive interconnections separated by dielectric layers and fired at an elevated temperature to form a solidly fused structure. The resultant ceramic interconnect matrix is used as a base to mount active and passive devices and provide the necessary electrical interconnection to accomplish the desired electrical circuit. Many methods are known for developing multilevel conductor mechanisms such as multilayer printed circuits, welded wire matrices, flexible copper tape conductors, and thin and thick-film ceramic multilayers. Each method can be considered as a specialized field with each possessing its own particular set of benefits and problems. This design guide restricts itself to the art of design, fabrication and assembly of ceramic multilayer circuitry and the reliability of the end product.

  8. Methods and apparatus for vertical coupling from dielectric waveguides

    DOEpatents

    Yaacobi, Ami; Cordova, Brad Gilbert

    2014-06-17

    A frequency-chirped nano-antenna provides efficient sub-wavelength vertical emission from a dielectric waveguide. In one example, this nano-antenna includes a set of plasmonic dipoles on the opposite side of a SiYV.sub.4 waveguide from a ground plane. The resulting structure, which is less than half a wavelength long, emits a broadband beam (e.g., >300 nm) that can be coupled into an optical fiber. In some embodiments, a diffractive optical element with unevenly shaped regions of high- and low-index dielectric material collimates the broadband beam for higher coupling efficiency. In some cases, a negative lens element between the nano-antenna and the diffractive optical element accelerates the emitted beam's divergence (and improves coupling efficiency), allowing for more compact packaging. Like the diffractive optical element, the negative lens element includes unevenly shaped regions of high- and low-index dielectric material that can be designed to compensate for aberrations in the beam emitted by the nano-antenna.

  9. Interfacial and electrical properties of InGaAs metal-oxide-semiconductor capacitor with TiON/TaON multilayer composite gate dielectric

    NASA Astrophysics Data System (ADS)

    Wang, L. S.; Xu, J. P.; Liu, L.; Lu, H. H.; Lai, P. T.; Tang, W. M.

    2015-03-01

    InGaAs metal-oxide-semiconductor (MOS) capacitors with composite gate dielectric consisting of Ti-based oxynitride (TiON)/Ta-based oxynitride (TaON) multilayer are fabricated by RF sputtering. The interfacial and electrical properties of the TiON/TaON/InGaAs and TaON/TiON/InGaAs MOS structures are investigated and compared. Experimental results show that the former exhibits lower interface-state density (1.0 × 1012 cm-2 eV-1 at midgap), smaller gate leakage current (9.5 × 10-5 A/cm2 at a gate voltage of 2 V), larger equivalent dielectric constant (19.8), and higher reliability under electrical stress than the latter. The involved mechanism lies in the fact that the ultrathin TaON interlayer deposited on the sulfur-passivated InGaAs surface can effectively reduce the defective states and thus unpin the Femi level at the TaON/InGaAs interface, improving the electrical properties of the device.

  10. Giant dielectric constant dominated by Maxwell-Wagner relaxation in Al{sub 2}O{sub 3}/TiO{sub 2} nanolaminates synthesized by atomic layer deposition.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, W.; Auciello, O.; Premnath, R. N.

    2010-01-01

    Nanolaminates consisting of Al{sub 2}O{sub 3} and TiO{sub 2} oxide sublayers were synthesized by using atomic layer deposition to produce individual layers with atomic scale thickness control. The sublayer thicknesses were kept constant for each multilayer structure, and were changed from 50 to 0.2 nm for a series of different samples. Giant dielectric constant ({approx}1000) was observed when the sublayer thickness is less than 0.5 nm, which is significantly larger than that of Al{sub 2}O{sub 3} and TiO{sub 2} dielectrics. Detailed investigation revealed that the observed giant dielectric constant is originated from the Maxwell-Wagner type dielectric relaxation.

  11. Stabilization of solar films against hi temperature deactivation

    DOEpatents

    Jefferson, Clinton F.

    1984-03-20

    A multi-layer solar energy collector of improved stability comprising: (1) a solar absorptive film consisting essentially of copper oxide, cobalt oxide and manganese oxide; (2) a substrate of quartz, silicate glass or a stainless steel; and (3) an interlayer of platinum, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of platinum to obtain a stable conductor-dielectric tandem.

  12. Ultra-high density diffraction grating

    DOEpatents

    Padmore, Howard A.; Voronov, Dmytro L.; Cambie, Rossana; Yashchuk, Valeriy V.; Gullikson, Eric M.

    2012-12-11

    A diffraction grating structure having ultra-high density of grooves comprises an echellette substrate having periodically repeating recessed features, and a multi-layer stack of materials disposed on the echellette substrate. The surface of the diffraction grating is planarized, such that layers of the multi-layer stack form a plurality of lines disposed on the planarized surface of the structure in a periodical fashion, wherein lines having a first property alternate with lines having a dissimilar property on the surface of the substrate. For example, in one embodiment, lines comprising high-Z and low-Z materials alternate on the planarized surface providing a structure that is suitable as a diffraction grating for EUV and soft X-rays. In some embodiments, line density of between about 10,000 lines/mm to about 100,000 lines/mm is provided.

  13. Control of a chemical reaction (photodegradation of the p3ht polymer) with nonlocal dielectric environments

    PubMed Central

    Peters, V. N.; Tumkur, T. U.; Zhu, G.; Noginov, M. A.

    2015-01-01

    Proximity to metallic surfaces, plasmonic structures, cavities and other inhomogeneous dielectric environments is known to control spontaneous emission, energy transfer, scattering, and many other phenomena of practical importance. The aim of the present study was to demonstrate that, in spirit of the Marcus theory, the rates of chemical reactions can, too, be influenced by nonlocal dielectric environments, such as metallic films and metal/dielectric bilayer or multilayer structures. We have experimentally shown that metallic, composite metal/dielectric substrates can, indeed, control ordering as well as photodegradation of thin poly-3-hexylthiophene (p3ht) films. In many particular experiments, p3ht films were separated from metal by a dielectric spacer, excluding conventional catalysis facilitated by metals and making modification of the nonlocal dielectric environment a plausible explanation for the observed phenomena. This first step toward understanding of a complex relationship between chemical reactions and nonlocal dielectric environments is to be followed by the theory development and a broader scope of thorough experimental studies. PMID:26434679

  14. GTD analysis of airborne antennas radiating in the presence of lossy dielectric layers

    NASA Technical Reports Server (NTRS)

    Rojas-Teran, R. G.; Burnside, W. D.

    1981-01-01

    The patterns of monopole or aperture antennas mounted on a perfectly conducting convex surface radiating in the presence of a dielectric or metal plate are computed. The geometrical theory of diffraction is used to analyze the radiating system and extended here to include diffraction by flat dielectric slabs. Modified edge diffraction coefficients valid for wedges whose walls are lossy or lossless thin dielectric or perfectly conducting plates are developed. The width of the dielectric plates cannot exceed a quarter of a wavelength in free space, and the interior angle of the wedge is assumed to be close to 0 deg or 180 deg. Systematic methods for computing the individual components of the total high frequency field are discussed. The accuracy of the solutions is demonstrated by comparisons with measured results, where a 2 lambda by 4 lambda prolate spheroid is used as the convex surface. A jump or kink appears in the calculated pattern when higher order terms that are important are not included in the final solution. The most immediate application of the results presented here is in the modelling of structures such as aircraft which are composed of nonmetallic parts that play a significant role in the pattern.

  15. An All-Dielectric Coaxial Waveguide.

    PubMed

    Ibanescu; Fink; Fan; Thomas; Joannopoulos

    2000-07-21

    An all-dielectric coaxial waveguide that can overcome problems of polarization rotation and pulse broadening in the transmission of optical light is presented here. It consists of a coaxial waveguiding region with a low index of refraction, bounded by two cylindrical, dielectric, multilayer, omnidirectional reflecting mirrors. The waveguide can be designed to support a single mode whose properties are very similar to the unique transverse electromagnetic mode of a traditional metallic coaxial cable. The new mode has radial symmetry and a point of zero dispersion. Moreover, because the light is not confined by total internal reflection, the waveguide can guide light around very sharp corners.

  16. Structure and performance of dielectric films based on self-assembled nanocrystals with a high dielectric constant.

    PubMed

    Huang, Limin; Liu, Shuangyi; Van Tassell, Barry J; Liu, Xiaohua; Byro, Andrew; Zhang, Henan; Leland, Eli S; Akins, Daniel L; Steingart, Daniel A; Li, Jackie; O'Brien, Stephen

    2013-10-18

    Self-assembled films built from nanoparticles with a high dielectric constant are attractive as a foundation for new dielectric media with increased efficiency and range of operation, due to the ability to exploit nanofabrication techniques and emergent electrical properties originating from the nanoscale. However, because the building block is a discrete one-dimensional unit, it becomes a challenge to capture potential enhancements in dielectric performance in two or three dimensions, frequently due to surface effects or the presence of discontinuities. This is a recurring theme in nanoparticle film technology when applied to the realm of thin film semiconductor and device electronics. We present the use of chemically synthesized (Ba,Sr)TiO3 nanocrystals, and a novel deposition-polymerization technique, as a means to fabricate the dielectric layer. The effective dielectric constant of the film is tunable according to nanoparticle size, and effective film dielectric constants of up to 34 are enabled. Wide area and multilayer dielectrics of up to 8 cm(2) and 190 nF are reported, for which the building block is an 8 nm nanocrystal. We describe models for assessing dielectric performance, and distinct methods for improving the dielectric constant of a nanocrystal thin film. The approach relies on evaporatively driven assembly of perovskite nanocrystals with uniform size distributions in a tunable 7-30 nm size range, coupled with the use of low molecular weight monomer/polymer precursor chemistry that can infiltrate the porous nanocrystal thin film network post assembly. The intercrystal void space (low k dielectric volume fraction) is minimized, while simultaneously promoting intercrystal connectivity and maximizing volume fraction of the high k dielectric component. Furfuryl alcohol, which has good affinity to the surface of (Ba,Sr)TiO3 nanocrystals and miscibility with a range of solvents, is demonstrated to be ideal for the production of nanocomposites. The nanocrystal/furfuryl alcohol dispersions are suitable for the fabrication of thin films by chemical deposition techniques, including spin-coating, printing or a spraying process. To demonstrate the application of this technique to device fabrication, a multilayer capacitor with capacitance of 0.83 nF mm(-2) at 1 MHz is presented.

  17. Bloch surface waves confined in one dimension with a single polymeric nanofibre

    NASA Astrophysics Data System (ADS)

    Wang, Ruxue; Xia, Hongyan; Zhang, Douguo; Chen, Junxue; Zhu, Liangfu; Wang, Yong; Yang, Erchan; Zang, Tianyang; Wen, Xiaolei; Zou, Gang; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Lakowicz, Joseph R.

    2017-02-01

    Polymeric fibres with small radii (such as ≤125 nm) are delicate to handle and should be laid down on a solid substrate to obtain practical devices. However, placing these nanofibres on commonly used glass substrates prevents them from guiding light. In this study, we numerically and experimentally demonstrate that when the nanofibre is placed on a suitable dielectric multilayer, it supports a guided mode, a Bloch surface wave (BSW) confined in one dimension. The physical origin of this new mode is discussed in comparison with the typical two-dimensional BSW mode. Polymeric nanofibres are easily fabricated to contain fluorophores, which make the dielectric nanofibre and multilayer configuration suitable for developing a large range of new nanometric scale devices, such as processor-memory interconnections, devices with sensitivity to target analytes, incident polarization and multi-colour BSW modes.

  18. Revisiting the effective medium approximation in all-dielectric subwavelength multilayers: Breakdown and rebuilding

    NASA Astrophysics Data System (ADS)

    Lei, Xinrui; Mao, Lei; Lu, Yonghua; Wang, Pei

    2017-07-01

    Here, we present a comprehensive analysis of the effective medium approximation (EMA) breakdown in all-dielectric deep-subwavelength multilayers made of alternating layers by means of the transfer matrix method. We demonstrated that the approximation is invalid at the vicinity of the effective medium's critical angle for total internal reflection and obtained an analytical criterion for the breakdown of the EMA, which depends on the layer thickness, the incident angle, and the permittivity difference between the alternate layers. We rebuilt the EMA by adding higher-order correction onto the traditional effective permittivity. Furthermore, we found that the EMA breakdown that arises from the boundary effect cannot be repaired in the traditional homogenization strategy with only one layer of effective medium. By adding an artificial matched layer after the conventional effective layer, the boundary effect breakdown was neatly removed.

  19. Hard X-ray multilayer zone plate with 25-nm outermost zone width

    NASA Astrophysics Data System (ADS)

    Takano, H.; Sumida, K.; Hirotomo, H.; Koyama, T.; Ichimaru, S.; Ohchi, T.; Takenaka, H.; Kagoshima, Y.

    2017-06-01

    We have improved the performance of a previously reported multilayer zone plate by reducing its outermost zone width, using the same multilayer materials (MoSi2 and Si) and fabrication technique. The focusing performance was evaluated at the BL24XU of SPring-8 using 20-keV X-rays. The line spread function (LSF) in the focal plane was measured using a dark-field knife-edge scan method, and the point spread function was obtained from the LSF through a tomographic reconstruction principle. The spatial resolution was estimated to be 30 nm, which is in relatively good agreement with the calculated diffraction-limited value of 25 nm, while the measured diffraction efficiency of the +1st order was 24%.

  20. Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Ndiaye, C.; Zerrad, M.; Lereu, A. L.; Roche, R.; Dumas, Ph.; Lemarchand, F.; Amra, C.

    2013-09-01

    Dielectric optical thin films, as opposed to metallic, have been very sparsely explored as good candidates for absorption-based optical field enhancement. In such materials, the low imaginary part of the refractive index implies that absorption processes are usually not predominant. This leads to dielectric-based optical resonances mainly via waveguiding modes. We show here that when properly designed, a multi-layered dielectric thin films stack can give rise to optical resonances linked to total absorption. We report here, on such dielectric stack designed to possess a theoretical optical field enhancement above 1000. Using photon scanning tunneling microscopy, we experimentally evaluate the resulting field enhancement of the stack as well as the associated penetration depth. We thus demonstrate the capability of multi-dielectric stacks in generating giant optical field with tunable penetration depth (down to few dozens of nm).

  1. Monolithic ceramic capacitors for high reliability applications

    NASA Technical Reports Server (NTRS)

    Thornley, E. B.

    1981-01-01

    Monolithic multi-layer ceramic dielectric capacitors are widely used in high reliability applications in spacecraft, launch vehicles, and military equipment. Their relatively low cost, wide range of values, and package styles are attractive features that result in high usage in electronic circuitry in these applications. Design and construction of monolithic ceramic dielectric capacitors, defects that can lead to failure, and methods for defect detection that are being incorporated in military specifications are discussed.

  2. The Electromagnetic and Mechanical Properties of Structural Composites: A Theoretical and Experimental Design Study

    DTIC Science & Technology

    2014-08-22

    higher frequencies due to weaves with smaller unit cells. A second predicts the dielectric properties of unidirectional composite fabrics and laminates ...effective dielectric properties of composite laminates within the X- band (8-12 GHz). The circuit analog method becomes less accurate as the...architectures and to multilayered laminates . In this project, experimental validation from 4-50 GHz is provided for single layers of dry structural grade

  3. Long range wetting transparency on top of layered metal dielectric substrates

    DTIC Science & Technology

    2015-11-20

    multi-layered stacks were deposited onto glass substrates ( silica -based Micro cover glass , 22mmx22mm from VWR (48366-067), index of refraction n...necessarily endorsed by the United States Government. Long-range wetting transparency on top of layered metal-dielectric substrates M. A...as far as ~100 nm beneath the water/MgF2 interface. We refer to this phenomenon as long range wetting transparency . The latter effect cannot be

  4. Preparation of titanium dioxide films on etched aluminum foil by vacuum infiltration and anodizing

    NASA Astrophysics Data System (ADS)

    Xiang, Lian; Park, Sang-Shik

    2016-12-01

    Al2O3-TiO2 (Al-Ti) composite oxide films are a promising dielectric material for future use in capacitors. In this study, TiO2 films were prepared on etched Al foils by vacuum infiltration. TiO2 films prepared using a sol-gel process were annealed at various temperatures (450, 500, and 550 °C) for different time durations (10, 30, and 60 min) for 4 cycles, and then anodized at 100 V. The specimens were characterized using X-ray diffraction, field emission scanning electron microscopy, and field emission transmission electron microscopy. The results show that the tunnels of the specimens feature a multi-layer structure consisting of an Al2O3 outer layer, an Al-Ti composite oxide middle layer, and an aluminum hydrate inner layer. The electrical properties of the specimens, such as the withstanding voltage and specific capacitance, were also measured. Compared to specimens without TiO2 coating, the specific capacitances of the TiO2-coated specimens are increased. The specific capacitance of the anode Al foil with TiO2 coating increased by 42% compared to that of a specimen without TiO2 coating when annealed at 550 °C for 10 min. These composite oxide films could enhance the specific capacitance of anode Al foils used in dielectric materials.

  5. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1995-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  6. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1996-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  7. Diffraction properties of multilayer Laue lenses with an aperture of 102 µm and WSi 2/Al bilayers

    DOE PAGES

    Kubec, Adam; Kujala, Naresh; Conley, Raymond; ...

    2015-01-01

    Here, we report on the characterization of a multilayer Laue lens (MLL) with large acceptance, made of a novel WSi2/Al bilayer system. Fabrication of multilayers with large deposition thickness is required to obtain MLL structures with sufficient apertures capable of accepting the full lateral coherence length of x-rays at typical nanofocusing beamlines. To date, the total deposition thickness has been limited by stress-buildup in the multilayer. We were able to grow WSi2/Al with low grown-in stress, and asses the degree of stress reduction. X-ray diffraction experiments were conducted at beamline 1-BM at the Advanced Photon Source. We used monochromatic x-raysmore » with a photon energy of 12 keV and a bandwidth of ΔE/E=5.4 ∙ 10 -4. The MLL was grown with parallel layer interfaces, and was designed to have a large focal length of 9.6 mm. The mounted lens was 2.7 mm in width. We found and quantified kinks and bending of sections of the MLL. Sections with bending were found to partly have a systematic progression in the interface angles. We also observed kinking in some, but not all, areas. The measurements are compared with dynamic diffraction calculations made with Coupled Wave Theory. Finally our data are plotted showing the diffraction efficiency as a function of the external tilting angle of the entire mounted lens. This way of plotting the data was found to provide an overview into the diffraction properties of the whole lens, and enabled the following layer tilt analyses.« less

  8. High-Order Dielectric Metasurfaces for High-Efficiency Polarization Beam Splitters and Optical Vortex Generators

    NASA Astrophysics Data System (ADS)

    Guo, Zhongyi; Zhu, Lie; Guo, Kai; Shen, Fei; Yin, Zhiping

    2017-08-01

    In this paper, a high-order dielectric metasurface based on silicon nanobrick array is proposed and investigated. By controlling the length and width of the nanobricks, the metasurfaces could supply two different incremental transmission phases for the X-linear-polarized (XLP) and Y-linear-polarized (YLP) light with extremely high efficiency over 88%. Based on the designed metasurface, two polarization beam splitters working in high-order diffraction modes have been designed successfully, which demonstrated a high transmitted efficiency. In addition, we have also designed two vortex-beam generators working in high-order diffraction modes to create vortex beams with the topological charges of 2 and 3. The employment of dielectric metasurfaces operating in high-order diffraction modes could pave the way for a variety of new ultra-efficient optical devices.

  9. Increased Multilayer Fabrication and RF Characterization of a High-Density Stacked MIM Capacitor Based on Selective Etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tseng, VFG; Xie, HK

    2014-07-01

    This paper presents the fabrication and characterization of a high-density multilayer stacked metal-insulator-metal (MIM) capacitor based on a novel process of depositing the MIM multilayer on pillars followed by polishing and selective etching steps to form a stacked capacitor with merely three photolithography steps. In this paper, the pillars were made of glass to prevent substrate loss, whereas an oxide-nitride-oxide dielectric was employed for lower leakage, better voltage/frequency linearity, and better stress compensation. MIM capacitors with six dielectric layers were successfully fabricated, yielding capacitance density of 3.8 fF/mu m(2), maximum capacitance of 2.47 nF, and linear and quadratic voltage coefficientsmore » of capacitance below 21.2 ppm/V and 2.31 ppm/V-2. The impedance was measured from 40 Hz to 3 GHz, and characterized by an analytically derived equivalent circuit model to verify the radio frequency applicability. The multilayer stacking-induced plate resistance mismatch and its effect on the equivalent series resistance (ESR) and effective capacitance was also investigated, which can be counteracted by a corrected metal thickness design. A low ESR of 800 m Omega was achieved, whereas the self-resonance frequency was >760 MHz, successfully demonstrating the feasibility of this method to scale up capacitance densities for high-quality-factor, high-frequency, and large-value MIM capacitors.« less

  10. Stress evolution of Ge nanocrystals in dielectric matrices.

    PubMed

    Bahariqushchi, Rahim; Raciti, Rosario; Kasapoğlu, Ahmet Emre; Gür, Emre; Sezen, Meltem; Kalay, Eren; Mirabella, Salvatore; Aydinli, A

    2018-05-04

    Germanium nanocrystals (Ge NCs) embedded in single and multilayer silicon oxide and silicon nitride matrices have been synthesized using plasma enhanced chemical vapor deposition followed by conventional furnace annealing or rapid thermal processing in N 2 ambient. Compositions of the films were determined by Rutherford backscattering spectrometry and x-ray photoelectron spectroscopy. The formation of NCs under suitable process conditions was observed with high resolution transmission electron microscope micrographs and Raman spectroscopy. Stress measurements were done using Raman shifts of the Ge optical phonon line at 300.7 cm -1 . The effect of the embedding matrix and annealing methods on Ge NC formation were investigated. In addition to Ge NCs in single layer samples, the stress on Ge NCs in multilayer samples was also analyzed. Multilayers of Ge NCs in a silicon nitride matrix separated by dielectric buffer layers to control the size and density of NCs were fabricated. Multilayers consisted of SiN y :Ge ultrathin films sandwiched between either SiO 2 or Si 3 N 4 by the proper choice of buffer material. We demonstrated that it is possible to tune the stress state of Ge NCs from compressive to tensile, a desirable property for optoelectronic applications. We also observed that there is a correlation between the stress and the crystallization threshold in which the compressive stress enhances the crystallization, while the tensile stress suppresses the process.

  11. Stress evolution of Ge nanocrystals in dielectric matrices

    NASA Astrophysics Data System (ADS)

    Bahariqushchi, Rahim; Raciti, Rosario; Emre Kasapoğlu, Ahmet; Gür, Emre; Sezen, Meltem; Kalay, Eren; Mirabella, Salvatore; Aydinli, A.

    2018-05-01

    Germanium nanocrystals (Ge NCs) embedded in single and multilayer silicon oxide and silicon nitride matrices have been synthesized using plasma enhanced chemical vapor deposition followed by conventional furnace annealing or rapid thermal processing in N2 ambient. Compositions of the films were determined by Rutherford backscattering spectrometry and x-ray photoelectron spectroscopy. The formation of NCs under suitable process conditions was observed with high resolution transmission electron microscope micrographs and Raman spectroscopy. Stress measurements were done using Raman shifts of the Ge optical phonon line at 300.7 cm-1. The effect of the embedding matrix and annealing methods on Ge NC formation were investigated. In addition to Ge NCs in single layer samples, the stress on Ge NCs in multilayer samples was also analyzed. Multilayers of Ge NCs in a silicon nitride matrix separated by dielectric buffer layers to control the size and density of NCs were fabricated. Multilayers consisted of SiN y :Ge ultrathin films sandwiched between either SiO2 or Si3N4 by the proper choice of buffer material. We demonstrated that it is possible to tune the stress state of Ge NCs from compressive to tensile, a desirable property for optoelectronic applications. We also observed that there is a correlation between the stress and the crystallization threshold in which the compressive stress enhances the crystallization, while the tensile stress suppresses the process.

  12. Nanointaglio fabrication of optical lipid multilayer diffraction gratings with applications in biosensing

    NASA Astrophysics Data System (ADS)

    Lowry, Troy Warren

    The dynamic self-organization of lipids in biological systems is a highly regulated process that enables the compartmentalization of living systems at microscopic and nanoscopic levels. Exploiting the self-organization and innate biofunctionality of lyotropic liquid crystalline phospholipids, a novel nanofabrication process called "nanointaglio" was invented in order to rapidly and scalably integrate lipid nanopatterns onto the surface. The work presented here focuses on using nanointaglio fabricated lipid diffraction micro- and nanopatterns for the development of new sensing and bioactivity studies. The lipids are patterned as diffraction gratings for sensor functionality. The lipid multilayer gratings operate as nanomechanical sensor elements that are capable of transducing molecular binding to fluid lipid multilayers into optical signals in a label free manner due to shape changes in the lipid nanostructures. To demonstrate the label free detection capabilities, lipid nanopatterns are shown to be suitable for the integration of chemically different lipid multilayer gratings into a sensor array capable of distinguishing vapors by means of an optical nose. Sensor arrays composed of six different lipid formulations are integrated onto a surface and their optical response to three different vapors (water, ethanol and acetone) in air as well as pH under water is monitored as a function of time. Principal component analysis of the array response results in distinct clustering, indicating the suitability of the arrays for distinguishing these analytes. Importantly, the nanointaglio process used is capable of producing lipid gratings out of different materials with sufficiently uniform heights for the fabrication of an optical nose. A second main application is demonstrated for the study of membrane binding proteins. Although in vitro methods for assaying the catalytic activity of individual enzymes are well established, quantitative methods for assaying the kinetics of supramolecular remodeling such as vesicle formation from planar lipid bilayers or multilayers are needed to understand cellular self-organization. Presented next is a nanointaglio based method for quantitative measurements of lipid-protein interactions and its suitability for quantifying the membrane binding, inflation, and budding activity of the membrane-remodeling protein Sar1. Optical diffraction gratings composed of lipids are printed on surfaces using nanointaglio, resulting in lipid multilayer gratings. Exposure of lipid multilayer gratings to Sar1 results in the inflation of lipid multilayers into unilamellar structures, the kinetics of which can be detected in a label-free manner by monitoring the diffraction of white light through an optical microscope. Local variations in lipid multilayer volume on the surface can be used to vary substrate availability in a microarray format, allowing kinetic and thermodynamic data to be obtained from a single experiment without the need for varying enzyme concentration. A quantitative model is developed and fits to the data allow measurements of both binding affinity (KD) and kinetics (kon and koff). Importantly, this assay is uniquely capable of quantifying membrane remodeling. Upon Sar1 induced inflation of single bilayers from surface supported multilayers, the semi-cylindrical grating lines are observed to remodel into semi-spherical buds when a critical radius of curvature equal to 300 nm is reached, which is explained in terms of a Rayleigh type instability.

  13. Numerical modelling of a fibre reflection filter based on a metal–dielectric diffraction structure with an increased optical damage threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terentyev, V S; Simonov, V A

    2016-02-28

    Numerical modelling demonstrates the possibility of fabricating an all-fibre multibeam two-mirror reflection interferometer based on a metal–dielectric diffraction structure in its front mirror. The calculations were performed using eigenmodes of a double-clad single-mode fibre. The calculation results indicate that, using a metallic layer in the structure of the front mirror of such an interferometer and a diffraction effect, one can reduce the Ohmic loss by a factor of several tens in comparison with a continuous thin metallic film. (laser crystals and braggg ratings)

  14. {ital In-situ} x-ray investigation of hydrogen charging in thin film bimetallic electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jisrawi, N.M.; Wiesmann, H.; Ruckman, M.W.

    Hydrogen uptake and discharge by thin metallic films under potentiostatic control was studied using x-ray diffraction at the National Synchrotron Light Source (NSLS). The formation of metal-hydrogen phases in Pd, Pd-capped Nb and Pd/Nb multilayer electrode structures was deduced from x-ray diffraction data and correlated with the cyclic voltammetry (CV) peaks. The x-ray data was also used to construct a plot of the hydrogen concentration as a function of cell potential for a multilayered thin film. {copyright} {ital 1997 Materials Research Society.}

  15. Metastable and equilibrium phase formation in sputter-deposited Ti/Al multilayer thin films

    NASA Astrophysics Data System (ADS)

    Lucadamo, G.; Barmak, K.; Lavoie, C.; Cabral, C., Jr.; Michaelsen, C.

    2002-06-01

    The sequence and kinetics of metastable and equilibrium phase formation in sputter deposited multilayer thin films was investigated by combining in situ synchrotron x-ray diffraction (XRD) with ex situ electron diffraction and differential scanning calorimetry (DSC). The sequence included both cubic and tetragonal modifications of the equilibrium TiAl3 crystal structure. Values for the formation activation energies of the various phases in the sequence were determined using the XRD and DSC data obtained here, as well as activation energy data reported in the literature.

  16. Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Voronov, D. L.; Gawlitza, P.; Cambie, R.; Dhuey, S.; Gullikson, E. M.; Warwick, T.; Braun, S.; Yashchuk, V. V.; Padmore, H. A.

    2012-05-01

    Deposition of multilayers on saw-tooth substrates is a key step in the fabrication of multilayer blazed gratings (MBG) for extreme ultraviolet and soft x-rays. Growth of the multilayers can be perturbed by shadowing effects caused by the highly corrugated surface of the substrates, which results in distortion of the multilayer stack structure and degradation of performance of MBGs. To minimize the shadowing effects, we used an ion-beam sputtering machine with a highly collimated atomic flux to deposit Mo/Si multilayers on saw-tooth substrates. The sputtering conditions were optimized by finding a balance between smoothening and roughening processes in order to minimize degradation of the groove profile in the course of deposition and at the same time to keep the interfaces of a multilayer stack smooth enough for high efficiency. An optimal value of energy of 200 eV for sputtering Kr+ ions was found by deposition of test multilayers on flat substrates at a range of ion energies. Two saw-tooth substrates were deposited at energies of 200 eV and 700 eV for the sputtering ions. It was found that reduction of the ion energy improved the blazing performance of the MBG and resulted in a 40% gain in the diffraction efficiency due to better replication of the groove profile by the multilayer. As a result of the optimization performed, an absolute diffraction efficiency of 28.8% was achieved for the 2nd blaze order of the MBG with a groove density of 7350 lines/mm at a wavelength of 13.5 nm. Details of the growth behavior of the multilayers on flat and saw-tooth substrates are discussed in terms of the linear continuous model of film growth.

  17. Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voronov, D. L.; Cambie, R.; Dhuey, S.

    2012-05-01

    Deposition of multilayers on saw-tooth substrates is a key step in the fabrication of multilayer blazed gratings (MBG) for extreme ultraviolet and soft x-rays. Growth of the multilayers can be perturbed by shadowing effects caused by the highly corrugated surface of the substrates, which results in distortion of the multilayer stack structure and degradation of performance of MBGs. To minimize the shadowing effects, we used an ion-beam sputtering machine with a highly collimated atomic flux to deposit Mo/Si multilayers on saw-tooth substrates. The sputtering conditions were optimized by finding a balance between smoothening and roughening processes in order to minimizemore » degradation of the groove profile in the course of deposition and at the same time to keep the interfaces of a multilayer stack smooth enough for high efficiency. An optimal value of energy of 200 eV for sputtering Kr{sup +} ions was found by deposition of test multilayers on flat substrates at a range of ion energies. Two saw-tooth substrates were deposited at energies of 200 eV and 700 eV for the sputtering ions. It was found that reduction of the ion energy improved the blazing performance of the MBG and resulted in a 40% gain in the diffraction efficiency due to better replication of the groove profile by the multilayer. As a result of the optimization performed, an absolute diffraction efficiency of 28.8% was achieved for the 2nd blaze order of the MBG with a groove density of 7350 lines/mm at a wavelength of 13.5 nm. Details of the growth behavior of the multilayers on flat and saw-tooth substrates are discussed in terms of the linear continuous model of film growth.« less

  18. Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voronov, D. L.; Gawlitza, Peter; Cambie, Rossana

    2012-05-07

    Deposition of multilayers on saw-tooth substrates is a key step in the fabrication of multilayer blazed gratings (MBG) for extreme ultraviolet and soft x-rays. Growth of the multilayers can be perturbed by shadowing effects caused by the highly corrugated surface of the substrates, which results in distortion of the multilayer stack structure and degradation of performance of MBGs. In this study, to minimize the shadowing effects, we used an ion-beamsputtering machine with a highly collimated atomic flux to deposit Mo/Si multilayers on saw-tooth substrates. The sputtering conditions were optimized by finding a balance between smoothening and roughening processes in ordermore » to minimize degradation of the groove profile in the course of deposition and at the same time to keep the interfaces of a multilayer stack smooth enough for high efficiency. An optimal value of energy of 200 eV for sputtering Kr + ions was found by deposition of test multilayers on flat substrates at a range of ion energies. Two saw-tooth substrates were deposited at energies of 200 eV and 700 eV for the sputtering ions. It was found that reduction of the ion energy improved the blazing performance of the MBG and resulted in a 40% gain in the diffraction efficiency due to better replication of the groove profile by the multilayer. As a result of the optimization performed, an absolute diffraction efficiency of 28.8% was achieved for the 2nd blaze order of the MBG with a groove density of 7350 lines/mm at a wavelength of 13.5 nm. Lastly, details of the growth behavior of the multilayers on flat and saw-tooth substrates are discussed in terms of the linear continuous model of film growth.« less

  19. Investigation of optical properties of multilayer dielectric structures using prism-coupling technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolov, V I; Glebov, V N; Malyutin, A M

    2015-09-30

    A method based on resonant excitation of waveguide modes with a prism coupler is proposed for measuring the thickness and refractive index of thin-film layers in multilayer dielectric structures. The peculiarities of reflection of TE- and TM-polarised light beams from a structure comprising eleven alternating layers of zinc sulfide (ZnS) and magnesium barium fluoride (MgBaF{sub 4}), whose thicknesses are much less than the wavelength of light, are investigated. Using the mathematical model developed, we have calculated the coefficients of reflection of collimated TE and TM light beams from a multilayer structure and determined the optical constants and thicknesses of themore » structure layers. The refractive indices of the layers, obtained for TE and TM polarisation of incident light, are in good agreement. The thicknesses of ZnS and MgBaF{sub 4} layers, found for different polarisations, coincide with an accuracy of ±1%. Thus, we have demonstrated for the first time that the prism-coupling technique allows one to determine the optical properties of thin-film structures when the number of layers in the structure exceeds ten layers. (integrated optics)« less

  20. Dielectric multilayer beam splitter with differential phase shift on transmission and reflection for division-of-amplitude photopolarimeter.

    PubMed

    Yuan, Wenjia; Shen, Weidong; Zhang, Yueguang; Liu, Xu

    2014-05-05

    Dielectric multilayer beam splitter with differential phase shift on transmission and reflection for division-of-amplitude photopolarimeter (DOAP) was presented for the first time to our knowledge. The optimal parameters for the beam splitter are Tp = 78.9%, Ts = 21.1% and Δr - Δt = π/2 at 532nm at an angle of incidence of 45°. Multilayer anti-reflection coating with low phase shift was applied to reduce the backside reflection. Different design strategies that can achieve all optimal targets at the wavelength were tested. Two design methods were presented to optimize the differential phase shift. The samples were prepared by ion beam sputtering (IBS). The experimental results show good agreement with those of the design. The ellipsometric parameters of samples were measured in reflection (ψr, Δr) = (26.5°, 135.1°) and (28.2°, 133.5°), as well as in transmission (ψt, Δt) = (62.5°, 46.1°) and (63.5°, 46°) at 532.6nm. The normalized determinant of instrument matrix to evaluate the performance of samples is respectively 0.998 and 0.991 at 532.6nm.

  1. Bloch surface waves confined in one dimension with a single polymeric nanofibre

    PubMed Central

    Wang, Ruxue; Xia, Hongyan; Zhang, Douguo; Chen, Junxue; Zhu, Liangfu; Wang, Yong; Yang, Erchan; Zang, Tianyang; Wen, Xiaolei; Zou, Gang; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Lakowicz, Joseph R.

    2017-01-01

    Polymeric fibres with small radii (such as ≤125 nm) are delicate to handle and should be laid down on a solid substrate to obtain practical devices. However, placing these nanofibres on commonly used glass substrates prevents them from guiding light. In this study, we numerically and experimentally demonstrate that when the nanofibre is placed on a suitable dielectric multilayer, it supports a guided mode, a Bloch surface wave (BSW) confined in one dimension. The physical origin of this new mode is discussed in comparison with the typical two-dimensional BSW mode. Polymeric nanofibres are easily fabricated to contain fluorophores, which make the dielectric nanofibre and multilayer configuration suitable for developing a large range of new nanometric scale devices, such as processor–memory interconnections, devices with sensitivity to target analytes, incident polarization and multi-colour BSW modes. PMID:28155871

  2. Multilayer Transparent Top Electrode for Solution Processed Perovskite/Cu(In,Ga)(Se,S)2 Four Terminal Tandem Solar Cells.

    PubMed

    Yang, Yang Michael; Chen, Qi; Hsieh, Yao-Tsung; Song, Tze-Bin; Marco, Nicholas De; Zhou, Huanping; Yang, Yang

    2015-07-28

    Halide perovskites (PVSK) have attracted much attention in recent years due to their high potential as a next generation solar cell material. To further improve perovskites progress toward a state-of-the-art technology, it is desirable to create a tandem structure in which perovskite may be stacked with a current prevailing solar cell such as silicon (Si) or Cu(In,Ga)(Se,S)2 (CIGS). The transparent top electrode is one of the key components as well as challenges to realize such tandem structure. Herein, we develop a multilayer transparent top electrode for perovskite photovoltaic devices delivering an 11.5% efficiency in top illumination mode. The transparent electrode is based on a dielectric/metal/dielectric structure, featuring an ultrathin gold seeded silver layer. A four terminal tandem solar cell employing solution processed CIGS and perovskite cells is also demonstrated with over 15% efficiency.

  3. Polarization-independent absorption enhancement in a graphene square array with a cascaded grating structure.

    PubMed

    Wu, Jun

    2018-03-01

    The polarization-independent enhanced absorption effect of graphene in the near-infrared range is investigated. This is achieved by placing a graphene square array on top of a dielectric square array backed by a two-dimensional multilayer grating. Total optical absorption in graphene can be attributed to critical coupling, which is achieved through the combined effect of guided-mode resonance with the dielectric square array and the photonic band gap with the two-dimensional multilayer grating. To reveal the physical origin of such a phenomenon, the electromagnetic field distributions for both polarizations are illustrated. The designed graphene absorber exhibits near-unity polarization-independent absorption at resonance with an ultra-narrow spectrum. Moreover, the polarization-independent absorption can be tuned simply by changing the geometric parameters. The results may have promising potential for the design of graphene-based optoelectronic devices.

  4. X-Ray Performance of Multilayer Diffraction Diagnostics

    DTIC Science & Technology

    1989-11-13

    wafers to fused quartz and superpolished Zerodur were used. Multilayers were deposited onto Si wafer substrates nd cleaved to rectangular sections 3.2...except it was noted that for depositions made on the supersmooth quartz and Zerodur substrates that the multilayer surfaces were slightly smoother than...values from the multilavers deposited on supersmooth quartz and Zerodur substrates were noticeabLe Lower than the U/Si multilav;ers on silicon

  5. High-performance axicon lenses based on high-contrast, multilayer gratings

    NASA Astrophysics Data System (ADS)

    Doshay, Sage; Sell, David; Yang, Jianji; Yang, Rui; Fan, Jonathan A.

    2018-01-01

    Axicon lenses are versatile optical elements that can convert Gaussian beams to Bessel-like beams. In this letter, we demonstrate that axicons operating with high efficiencies and at large angles can be produced using high-contrast, multilayer gratings made from silicon. Efficient beam deflection of incident monochromatic light is enabled by higher-order optical modes in the silicon structure. Compared to diffractive devices made from low-contrast materials such as silicon dioxide, our multilayer devices have a relatively low spatial profile, reducing shadowing effects and enabling high efficiencies at large deflection angles. In addition, the feature sizes of these structures are relatively large, making the fabrication of near-infrared devices accessible with conventional optical lithography. Experimental lenses with deflection angles as large as 40° display field profiles that agree well with theory. Our concept can be used to design optical elements that produce higher-order Bessel-like beams, and the combination of high-contrast materials with multilayer architectures will more generally enable new classes of diffractive photonic structures.

  6. Design of a multilayer-based collimated plane-grating monochromator for tender X-ray range.

    PubMed

    Yang, Xiaowei; Wang, Hongchang; Hand, Matthew; Sawhney, Kawal; Kaulich, Burkhard; Kozhevnikov, Igor V; Huang, Qiushi; Wang, Zhanshan

    2017-01-01

    Collimated plane-grating monochromators (cPGMs), consisting of a plane mirror and plane diffraction grating, are essential optics in synchrotron radiation sources for their remarkable flexibility and good optical characteristics in the soft X-ray region. However, the poor energy transport efficiency of a conventional cPGM (single-layer-coated) degrades the source intensity and leaves reduced flux at the sample, especially for the tender X-ray range (1-4 keV) that covers a large number of K- and L-edges of medium-Z elements, and M-edges of high-Z elements. To overcome this limitation, the use of a multilayer-based cPGM is proposed, combining a multilayer-coated plane mirror with blazed multilayer gratings. With this combination, the effective efficiency of cPGMs can be increased by an order of magnitude compared with the conventional single-layer cPGMs. In addition, higher resolving power can be achieved with improved efficiency by increasing the blaze angle and working at higher diffraction order.

  7. Design of a multilayer-based collimated plane-grating monochromator for tender X-ray range

    PubMed Central

    Yang, Xiaowei; Wang, Hongchang; Hand, Matthew; Sawhney, Kawal; Kaulich, Burkhard; Kozhevnikov, Igor V.; Huang, Qiushi; Wang, Zhanshan

    2017-01-01

    Collimated plane-grating monochromators (cPGMs), consisting of a plane mirror and plane diffraction grating, are essential optics in synchrotron radiation sources for their remarkable flexibility and good optical characteristics in the soft X-ray region. However, the poor energy transport efficiency of a conventional cPGM (single-layer-coated) degrades the source intensity and leaves reduced flux at the sample, especially for the tender X-ray range (1–4 keV) that covers a large number of K- and L-edges of medium-Z elements, and M-edges of high-Z elements. To overcome this limitation, the use of a multilayer-based cPGM is proposed, combining a multilayer-coated plane mirror with blazed multilayer gratings. With this combination, the effective efficiency of cPGMs can be increased by an order of magnitude compared with the conventional single-layer cPGMs. In addition, higher resolving power can be achieved with improved efficiency by increasing the blaze angle and working at higher diffraction order. PMID:28009556

  8. Wafer-scale solution-derived molecular gate dielectrics for low-voltage graphene electronics

    NASA Astrophysics Data System (ADS)

    Sangwan, Vinod K.; Jariwala, Deep; Everaerts, Ken; McMorrow, Julian J.; He, Jianting; Grayson, Matthew; Lauhon, Lincoln J.; Marks, Tobin J.; Hersam, Mark C.

    2014-02-01

    Graphene field-effect transistors are integrated with solution-processed multilayer hybrid organic-inorganic self-assembled nanodielectrics (SANDs). The resulting devices exhibit low-operating voltage (2 V), negligible hysteresis, current saturation with intrinsic gain >1.0 in vacuum (pressure < 2 × 10-5 Torr), and overall improved performance compared to control devices on conventional SiO2 gate dielectrics. Statistical analysis of the field-effect mobility and residual carrier concentration demonstrate high spatial uniformity of the dielectric interfacial properties and graphene transistor characteristics over full 3 in. wafers. This work thus establishes SANDs as an effective platform for large-area, high-performance graphene electronics.

  9. Some Aspects of the Failure Mechanisms in BaTiO3-Based Multilayer Ceramic Capacitors

    NASA Technical Reports Server (NTRS)

    Liu, David Donhang; Sampson, Michael J.

    2012-01-01

    The objective of this presentation is to gain insight into possible failure mechanisms in BaTiO3-based ceramic capacitors that may be associated with the reliability degradation that accompanies a reduction in dielectric thickness, as reported by Intel Corporation in 2010. The volumetric efficiency (microF/cm3) of a multilayer ceramic capacitor (MLCC) has been shown to not increase limitlessly due to the grain size effect on the dielectric constant of ferroelectric ceramic BaTiO3 material. The reliability of an MLCC has been discussed with respect to its structure. The MLCCs with higher numbers of dielectric layers will pose more challenges for the reliability of dielectric material, which is the case for most base-metal-electrode (BME) capacitors. A number of MLCCs manufactured using both precious-metal-electrode (PME) and BME technology, with 25 V rating and various chip sizes and capacitances, were tested at accelerated stress levels. Most of these MLCCs had a failure behavior with two mixed failure modes: the well-known rapid dielectric wearout, and so-called 'early failures." The two failure modes can be distinguished when the testing data were presented and normalized at use-level using a 2-parameter Weibull plot. The early failures had a slope parameter of Beta >1, indicating that the early failures are not infant mortalities. Early failures are triggered due to external electrical overstress and become dominant as dielectric layer thickness decreases, accompanied by a dramatic reduction in reliability. This indicates that early failures are the main cause of the reliability degradation in MLCCs as dielectric layer thickness decreases. All of the early failures are characterized by an avalanche-like breakdown leakage current. The failures have been attributed to the extrinsic minor construction defects introduced during fabrication of the capacitors. A reliability model including dielectric thickness and extrinsic defect feature size is proposed in this presentation. The model can be used to explain the Intel-reported reliability degradation in MLCCs with respect to the reduction of dielectric thickness. It can also be used to estimate the reliability of a MLCC based on its construction and microstructure parameters such as dielectric thickness, average grain size, and number of dielectric layers. Measures for preventing early failures are also discussed in this document.

  10. Lead zirconate titanate thin films directly on copper electrodes for ferroelectric, dielectric and piezoelectric applications

    NASA Astrophysics Data System (ADS)

    Kingon, Angus I.; Srinivasan, Sudarsan

    2005-03-01

    Replacement of noble metal electrodes by base metals significantly lowers the cost of ferroelectric, piezoelectric and dielectric devices. Here, we demonstrate that it is possible to process lead zirconate (Pb(Zr0.52Ti0.48)O3, or PZT) thin films directly on base metal copper foils. We explore the impact of the oxygen partial pressure during processing, and demonstrate that high-quality films and interfaces can be achieved through control of the oxygen partial pressure within a narrow window predicted by thermodynamic stability considerations. This demonstration has broad implications, opening up the possibility of the use of low-cost, high-conductivity copper electrodes for a range of Pb-based perovskite materials, including PZT films in embedded printed circuit board applications for capacitors, varactors and sensors; multilayer PZT piezoelectric stacks; and multilayer dielectric and electrostrictive devices based on lead magnesium niobate-lead titanate. We also point out that the capacitors do not fatigue on repeated switching, unlike those with Pt noble metal electrodes. Instead, they appear to be fatigue-resistant, like capacitors with oxide electrodes. This may have implications for ferroelectric non-volatile memories.

  11. Nanoimprinted Hybrid Metal-Semiconductor Plasmonic Multilayers with Controlled Surface Nano Architecture for Applications in NIR Detectors

    PubMed Central

    Khosroabadi, Akram A.; Gangopadhyay, Palash; Hernandez, Steven; Kim, Kyungjo; Peyghambarian, Nasser; Norwood, Robert A.

    2015-01-01

    We present a proof of concept for tunable plasmon resonance frequencies in a core shell nano-architectured hybrid metal-semiconductor multilayer structure, with Ag as the active shell and ITO as the dielectric modulation media. Our method relies on the collective change in the dielectric function within the metal semiconductor interface to control the surface. Here we report fabrication and optical spectroscopy studies of large-area, nanostructured, hybrid silver and indium tin oxide (ITO) structures, with feature sizes below 100 nm and a controlled surface architecture. The optical and electrical properties of these core shell electrodes, including the surface plasmon frequency, can be tuned by suitably changing the order and thickness of the dielectric layers. By varying the dimensions of the nanopillars, the surface plasmon wavelength of the nanopillar Ag can be tuned from 650 to 690 nm. Adding layers of ITO to the structure further shifts the resonance wavelength toward the IR region and, depending on the sequence and thickness of the layers within the structure, we show that such structures can be applied in sensing devices including enhancing silicon as a photodetection material. PMID:28793489

  12. Work function measurement of multilayer electrodes using Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Peres, L.; Bou, A.; Cornille, C.; Barakel, D.; Torchio, P.

    2017-04-01

    The workfunction of dielectric|metal|dielectric transparent and conductive electrodes, promising candidates for replacing ITO in thin film solar cells, is measured by Kelvin probe force microscopy (KPFM). Measurement on commercial ITO gives a workfunction of 4.74 eV, which is in agreement with the values reported in the literature. Measurements are then performed on optically optimised multilayer electrodes fabricated on glass by e-beam evaporation, using three different dielectrics. For TiO2(37 nm)|Ag(13 nm)|TiO2(42 nm), SnO x (45 nm)|Ag(10 nm)|SnO x (45 nm), and ZnS(47 nm)|Ag(12 nm)|ZnS(42 nm), workfunctions of 4.83 eV, 4.75 eV, and 4.48 eV are measured respectively. These values suggest that these transparent and conductive electrodes are well adapted to extract photo-generated charge carriers in photovoltaic devices in which ITO is normally used. Furthermore, the KPFM technique proves to be an efficient and relatively fast way to determine the work function values of such electrodes.

  13. Incorporation of interfacial roughness into recursion matrix formalism of dynamical X-ray diffraction in multilayers and superlattices.

    PubMed

    Lobach, Ihar; Benediktovitch, Andrei; Ulyanenkov, Alexander

    2017-06-01

    Diffraction in multilayers in the presence of interfacial roughness is studied theoretically, the roughness being considered as a transition layer. Exact (within the framework of the two-beam dynamical diffraction theory) differential equations for field amplitudes in a crystalline structure with varying properties along its surface normal are obtained. An iterative scheme for approximate solution of the equations is developed. The presented approach to interfacial roughness is incorporated into the recursion matrix formalism in a way that obviates possible numerical problems. Fitting of the experimental rocking curve is performed in order to test the possibility of reconstructing the roughness value from a diffraction scan. The developed algorithm works substantially faster than the traditional approach to dealing with a transition layer (dividing it into a finite number of thin lamellae). Calculations by the proposed approach are only two to three times longer than calculations for corresponding structures with ideally sharp interfaces.

  14. Direct Magnetic Relief Recording Using As40S60: Mn-Se Nanocomposite Multilayer Structures.

    PubMed

    Stronski, A; Achimova, E; Paiuk, O; Meshalkin, A; Prisacar, A; Triduh, G; Oleksenko, P; Lytvyn, P

    2017-12-01

    Processes of holographic recording of surface relief structures using As 2 S 3 :Mn-Se multilayer nanostructures as registering media were studied in this paper. Optical properties of As 2 S 3 :Mn, Se layers, and As 2 S 3 :Mn-Se multilayer nanostructures were investigated. Values of optical bandgaps were obtained from Tauc dependencies. Surface relief diffraction gratings were recorded. Direct one-stage formation of surface relief using multilayer nanostructures is considered. For the first time, possibility of direct formation of magnetic relief simultaneous with surface relief formation under optical recording using As 2 S 3 :Mn-Se multilayer nanostructures is shown.

  15. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1995-05-09

    A high performance capacitor is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The notepad capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  16. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1996-01-23

    A high performance capacitor is described which is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200--300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The ``notepad`` capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  17. Controlled thermal expansion printed wiring boards based on liquid crystal polymer dielectrics

    NASA Technical Reports Server (NTRS)

    Knoll, Thomas E.; Blizard, Kent; Jayaraj, K.; Rubin, Leslie S.

    1994-01-01

    Dielectric materials based on innovative Liquid Crystal Polymers (LCP's) have been used to fabricate surface mount printed wiring boards (PWB's) with a coefficient of thermal expansion matched to leadless ceramic chip carriers. Proprietary and patented polymer processing technology has resulted in self reinforcing material with balanced in-plane mechanical properties. In addition, LCP's possess excellent electrical properties, including a low dielectric constant (less than 2.9) and very low moisture absorption (less than 0.02%). LCP-based multilayer boards processed with conventional drilling and plating processes show improved performance over other materials because they eliminate the surface flatness problems of glass or aramid reinforcements. Laser drilling of blind vias in the LCP dielectric provides a very high density for use in direct chip attach and area array packages. The material is ideally suited for MCM-L and PCMCIA applications fabricated with very thin dielectric layers of the liquid crystal polymer.

  18. Strong-interaction-mediated critical coupling at two distinct frequencies.

    PubMed

    Gupta, S Dutta

    2007-06-01

    I study a multilayered medium consisting of a metal-dielectric composite film, a spacer layer, and a dielectric Bragg reflector. I demonstrate a greater flexibility over the critical coupling phenomenon [Tischler et al., Opt. Lett. 31, 2045 (2006)], whereby nearly all the incident light energy is absorbed by the composite film through suppression of both transmission and reflection from the structure. For a larger volume fraction of the metal inclusions, strong light-matter coupling is shown to lead to almost total absorption at two distinct frequencies.

  19. Numerical simulation of reflective infrared absorber based on metal and dielectric nanorings

    NASA Astrophysics Data System (ADS)

    Wei, Dong; Zhang, Guizhong; Ding, Xin; Yao, Jianquan

    2018-04-01

    We propose a subwavelength micro-structure of /metal-ring/dielectric-ring/metal-substrate/ for infrared absorber, and numerically simulate its spectral reflectance in the infrared regime. Besides its pragmatic fabrication, this nanoring structure is characterized by excellent infrared reflectance, angle and polarization insensitivities and large tunability. Based upon the nanoring structure, a multilayered nanoring structure is demonstrated to be able to further tune the resonance wavelength. We also use an area-corrected plasmon polariton model to decipher the resonance wavelengths.

  20. The power of in situ pulsed laser deposition synchrotron characterization for the detection of domain formation during growth of Ba0.5Sr0.5TiO3 on MgO.

    PubMed

    Bauer, Sondes; Lazarev, Sergey; Molinari, Alan; Breitenstein, Andreas; Leufke, Philipp; Kruk, Robert; Hahn, Horst; Baumbach, Tilo

    2014-03-01

    A highly sophisticated pulsed laser deposition (PLD) chamber has recently been installed at the NANO beamline at the synchrotron facility ANKA (Karlsruhe, Germany), which allows for comprehensive studies on the PLD growth process of dielectric, ferroelectric and ferromagnetic thin films in epitaxial oxide heterostructures or even multilayer systems by combining in situ reflective high-energy diffraction with the in situ synchrotron high-resolution X-ray diffraction and surface diffraction methods. The modularity of the in situ PLD chamber offers the opportunity to explore the microstructure of the grown thin films as a function of the substrate temperature, gas pressure, laser fluence and target-substrate separation distance. Ba0.5Sr0.5TiO3 grown on MgO represents the first system that is grown in this in situ PLD chamber and studied by in situ X-ray reflectivity, in situ two-dimensional reciprocal space mapping of symmetric X-ray diffraction and acquisition of time-resolved diffraction profiles during the ablation process. In situ PLD synchrotron investigation has revealed the occurrence of structural distortion as well as domain formation and misfit dislocation which all depend strongly on the film thickness. The microstructure transformation has been accurately detected with a time resolution of 1 s. The acquisition of two-dimensional reciprocal space maps during the PLD growth has the advantage of simultaneously monitoring the changes of the crystalline structure as well as the formation of defects. The stability of the morphology during the PLD growth is demonstrated to be remarkably affected by the film thickness. A critical thickness for the domain formation in Ba0.5Sr0.5TiO3 grown on MgO could be determined from the acquisition of time-resolved diffraction profiles during the PLD growth. A splitting of the diffraction peak into two distinguishable peaks has revealed a morphology change due to modification of the internal strain during growth.

  1. Characterisation of phases in nanostructured, multilayered titanium alloys by analytical and high-resolution electron microscopy.

    PubMed

    Czyrska-Filemonowicz, A; Buffat, P A

    2009-01-01

    Surface processing of a Ti-6Al-4V alloy led to a complex multilayered microstructure containing several phases of the Ni-Ti-P-Al-O system, which improves the mechanical and tribological surface properties. The microstructure, chemical and phase compositions of the hard layer formed on the surface were investigated by LM, XRD, SEM as well as analytical/high-resolution TEM, STEM, EDS, electron diffraction and FIB. Phase identification based on electron diffraction, HRTEM and EDS microanalysis revealed the presence of several binary and ternary phases in the system Ti-Ni-P, sometimes with partial substitution of Ti by Al. However some phases, mainly nanoparticles, still remain not identified satisfactorily. Electron microscopy techniques used for identification of phases present in surface multilayers and some practical limits to their routine application are reminded here.

  2. High-Average-Power Diffraction Pulse-Compression Gratings Enabling Next-Generation Ultrafast Laser Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alessi, D.

    Pulse compressors for ultrafast lasers have been identified as a technology gap in the push towards high peak power systems with high average powers for industrial and scientific applications. Gratings for ultrashort (sub-150fs) pulse compressors are metallic and can absorb a significant percentage of laser energy resulting in up to 40% loss as well as thermal issues which degrade on-target performance. We have developed a next generation gold grating technology which we have scaled to the petawatt-size. This resulted in improvements in efficiency, uniformity and processing as compared to previous substrate etched gratings for high average power. This new designmore » has a deposited dielectric material for the grating ridge rather than etching directly into the glass substrate. It has been observed that average powers as low as 1W in a compressor can cause distortions in the on-target beam. We have developed and tested a method of actively cooling diffraction gratings which, in the case of gold gratings, can support a petawatt peak power laser with up to 600W average power. We demonstrated thermo-mechanical modeling of a grating in its use environment and benchmarked with experimental measurement. Multilayer dielectric (MLD) gratings are not yet used for these high peak power, ultrashort pulse durations due to their design challenges. We have designed and fabricated broad bandwidth, low dispersion MLD gratings suitable for delivering 30 fs pulses at high average power. This new grating design requires the use of a novel Out Of Plane (OOP) compressor, which we have modeled, designed, built and tested. This prototype compressor yielded a transmission of 90% for a pulse with 45 nm bandwidth, and free of spatial and angular chirp. In order to evaluate gratings and compressors built in this project we have commissioned a joule-class ultrafast Ti:Sapphire laser system. Combining the grating cooling and MLD technologies developed here could enable petawatt laser systems to operate at 50kW average power.« less

  3. Impacts of Annealing Conditions on the Flat Band Voltage of Alternate La2O3/Al2O3 Multilayer Stack Structures.

    PubMed

    Feng, Xing-Yao; Liu, Hong-Xia; Wang, Xing; Zhao, Lu; Fei, Chen-Xi; Liu, He-Lei

    2016-12-01

    The mechanism of flat band voltage (VFB) shift for alternate La2O3/Al2O3 multilayer stack structures in different annealing condition is investigated. The samples were prepared for alternate multilayer structures, which were annealed in different conditions. The capacitance-voltage (C-V) measuring results indicate that the VFB of samples shift negatively for thinner bottom Al2O3 layer, increasing annealing temperature or longer annealing duration. Simultaneously, the diffusion of high-k material to interfaces in different multilayer structures and annealing conditions is observed by X-ray photoelectron spectroscopy (XPS). Based on the dipole theory, a correlation between the diffusion effect of La towards bottom Al2O3/Si interface and VFB shift is found. Without changing the dielectric constant k of films, VFB shift can be manipulated by controlling the single-layer cycles and annealing conditions of alternate high-k multilayer stack.

  4. Preparation, Crystal Structure, Dielectric Properties, and Magnetic Behavior of Ba 2Fe 2Ti 4O 13

    NASA Astrophysics Data System (ADS)

    Vanderah, T. A.; Huang, Q.; Wong-Ng, W.; Chakoumakos, B. C.; Goldfarb, R. B.; Geyer, R. G.; Baker-Jarvis, J.; Roth, R. S.; Santoro, A.

    1995-11-01

    The preparation, crystal structure, dielectric properties, and magnetic behavior of the new compound Ba2Fe2Ti4O13 are reported. Structural studies carried out by single-crystal X-ray diffraction and neutron powder diffraction show that this phase is isostructural with K2Ti6O13 and Ba2ZnTi5O13 (C2/m (No. 12); a = 15.216(1), b = 3.8979(3), c = 9.1350(6) Å, β = 98.460(7)°; V = 535.90(8) Å3; Z = 2). The cations Fe3+ and Ti4+ are partially ordered among distorted octahedral sites with Ba2+ occupying eleven-coordinated polyhedra. Ba2Fe2Ti4O13 exhibits TE0 resonance near 10 GHz with a dielectric constant of ∼28 and a dielectric loss tangent of 2 × 10-3. The compound displays complex paramagnetic behavior with marked field dependence; the magnetization at 80 kA/m is several orders of magnitude smaller than that of most ferrites. Spin-glass effects have not been observed; however, weak collective interactions are clearly present. No magnetic ordering has been detected by neutron diffraction down to 13 K.

  5. Low temperature dielectric relaxation in ordinary perovskite ferroelectrics: enlightenment from high-energy x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Ochoa, D. A.; Levit, R.; Fancher, C. M.; Esteves, G.; Jones, J. L.; E García, J.

    2017-05-01

    Ordinary ferroelectrics exhibit a second order phase transition that is characterized by a sharp peak in the dielectric permittivity at a frequency-independent temperature. Furthermore, these materials show a low temperature dielectric relaxation that appears to be a common behavior of perovskite systems. Tetragonal lead zirconate titanate is used here as a model system in order to explore the origin of such an anomaly, since there is no consensus about the physical phenomenon involved in it. Crystallographic and domain structure studies are performed from temperature dependent synchrotron x-ray diffraction measurement. Results indicate that the dielectric relaxation cannot be associated with crystallographic or domain configuration changes. The relaxation process is then parameterized by using the Vogel-Fulcher-Tammann phenomenological equation. Results allow us to hypothesize that the observed phenomenon is due to changes in the dynamic behavior of the ferroelectric domains related to the fluctuation of the local polarization.

  6. Physics of X-ray Multilayer Structures: Summaries of Papers Presented at the Physics of X-ray Multilayer Structures Topical Meeting Held in Jackson Hole, Wyoming on March 2-5, 1992. (1992 Technical Digest Series Volume 7).

    DTIC Science & Technology

    1992-03-01

    Synchrotron Radiation Facility, France. A novel method for depositing large size multilayers is de - GRAND ROOM scribed. A plasma produced by distributed...explained by the uphill diffusion of metal Univ. Paris, France. The Born approximation is applied to de - atoms. (p. 27) scribe the diffractive properties of...D. G. TuAl Roughness evolution in films and multilayer struc- Steams, Lawrence Livermore National Laboratory. The de - tuns, M. G. Lagally, Univ

  7. Pit formation observed in a multilayer dielectric coating as a result of simulated space environmental exposure

    NASA Astrophysics Data System (ADS)

    Fuqua, Peter D.; Presser, Nathan; Barrie, James D.; Meshishnek, Michael J.; Coleman, Dianne J.

    2002-06-01

    Certain spaceborne telescope designs require that dielectric-coated lenses be exposed to the energetic electrons and protons associated with the space environment. Test coupons that were exposed to a simulated space environment showed extensive pitting as a result of dielectric breakdown. A typical pit was 50-100 mum at the surface and extended to the substrate material, in which a 10-mum-diameter melt region was found. Pitting was not observed on similar samples that had also been overcoated with a transparent conductive thin film. Measurement of the bidirectional reflectance distribution transfer function showed that pitting caused a fivefold to tenfold increase in the scattering of visible light.

  8. Multilayer Coextrusion of Polymer Composites to Develop Organic Capacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondy, L.; Mrozek, R.; Rao, R.

    Multilayer coextrusion is applied to produce a tape containing layers of alternating electrical properties to demonstrate the potential for using coextrusion to manufacture capacitors. To obtain the desired properties, we develop two filled polymer systems, one for conductive layers and one for dielectric layers. We describe numerical models used to help determine the material and processing parameters that impact processing and layer stability. These models help quantify the critical ratios of densities and viscosities of the two layers to maintain stable layers, as well as the effect of increasing the flow rate of one of the two materials. The conductingmore » polymer is based on polystyrene filled with a blend of low-melting-point eutectic metal and nickel particulate filler, as described by Mrozek et al. (2010). The appropriate concentrations of fillers are determined by balancing measured conductivity with processability in a twin screw extruder. Based on results of the numerical models and estimates of the viscosity of emulsions and suspensions, a dielectric layer composed of polystyrene filled with barium titanate is formulated. Despite the fact that the density of the dielectric filler is less than the metallic filler of the conductive phase, as well as rheological measurements that later showed that the dielectric formulation is not an ideal match to the viscosity of the conductive material, the two materials can be successfully coextruded if the flow rates of the two materials are not identical. A measurable capacitance of the layered structure is obtained.« less

  9. Multilayer Coextrusion of Polymer Composites to Develop Organic Capacitors

    DOE PAGES

    Mondy, L.; Mrozek, R.; Rao, R.; ...

    2015-05-29

    Multilayer coextrusion is applied to produce a tape containing layers of alternating electrical properties to demonstrate the potential for using coextrusion to manufacture capacitors. To obtain the desired properties, we develop two filled polymer systems, one for conductive layers and one for dielectric layers. We describe numerical models used to help determine the material and processing parameters that impact processing and layer stability. These models help quantify the critical ratios of densities and viscosities of the two layers to maintain stable layers, as well as the effect of increasing the flow rate of one of the two materials. The conductingmore » polymer is based on polystyrene filled with a blend of low-melting-point eutectic metal and nickel particulate filler, as described by Mrozek et al. (2010). The appropriate concentrations of fillers are determined by balancing measured conductivity with processability in a twin screw extruder. Based on results of the numerical models and estimates of the viscosity of emulsions and suspensions, a dielectric layer composed of polystyrene filled with barium titanate is formulated. Despite the fact that the density of the dielectric filler is less than the metallic filler of the conductive phase, as well as rheological measurements that later showed that the dielectric formulation is not an ideal match to the viscosity of the conductive material, the two materials can be successfully coextruded if the flow rates of the two materials are not identical. A measurable capacitance of the layered structure is obtained.« less

  10. Validated numerical simulation model of a dielectric elastomer generator

    NASA Astrophysics Data System (ADS)

    Foerster, Florentine; Moessinger, Holger; Schlaak, Helmut F.

    2013-04-01

    Dielectric elastomer generators (DEG) produce electrical energy by converting mechanical into electrical energy. Efficient operation requires homogeneous deformation of each single layer. However, by different internal and external influences like supports or the shape of a DEG the deformation will be inhomogeneous and hence negatively affect the amount of the generated electrical energy. Optimization of the deformation behavior leads to improved efficiency of the DEG and consequently to higher energy gain. In this work a numerical simulation model of a multilayer dielectric elastomer generator is developed using the FEM software ANSYS. The analyzed multilayer DEG consists of 49 active dielectric layers with layer thicknesses of 50 μm. The elastomer is silicone (PDMS) while the compliant electrodes are made of graphite powder. In the simulation the real material parameters of the PDMS and the graphite electrodes need to be included. Therefore, the mechanical and electrical material parameters of the PDMS are determined by experimental investigations of test samples while the electrode parameters are determined by numerical simulations of test samples. The numerical simulation of the DEG is carried out as coupled electro-mechanical simulation for the constant voltage energy harvesting cycle. Finally, the derived numerical simulation model is validated by comparison with analytical calculations and further simulated DEG configurations. The comparison of the determined results show good accordance with regard to the deformation of the DEG. Based on the validated model it is now possible to optimize the DEG layout for improved deformation behavior with further simulations.

  11. Energy considerations for a superlens based on metal/dielectric multilayers.

    PubMed

    Bloemer, Mark J; D'Aguanno, Giuseppe; Scalora, Michael; Mattiucci, Nadia; de Ceglia, Domenico

    2008-11-10

    We investigate the resolution and absorption losses of a Ag/GaP multilayer superlens. For a fixed source to image distance the resolution is independent of the position of the lens but the losses depend strongly on the lens placement. The absorption losses associated with the evanescent waves can be significantly larger than losses associated with the propagating waves especially when the superlens is close to the source. The interpretation of transmittance values greater than unity for evanescent waves is clarified with respect to the associated absorption losses.

  12. Thin film solar energy collector

    DOEpatents

    Aykan, Kamran; Farrauto, Robert J.; Jefferson, Clinton F.; Lanam, Richard D.

    1983-11-22

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  13. Switching from visibility to invisibility via Fano resonances: theory and experiment.

    PubMed

    Rybin, Mikhail V; Filonov, Dmitry S; Belov, Pavel A; Kivshar, Yuri S; Limonov, Mikhail F

    2015-03-05

    Subwavelength structures demonstrate many unusual optical properties which can be employed for engineering of a new generation of functional metadevices, as well as controlled scattering of light and invisibility cloaking. Here we demonstrate that the suppression of light scattering for any direction of observation can be achieved for a uniform dielectric object with high refractive index, in a sharp contrast to the cloaking with multilayered plasmonic structures suggested previously. Our finding is based on the novel physics of cascades of Fano resonances observed in the Mie scattering from a homogeneous dielectric rod. We observe this effect experimentally at microwaves by employing high temperature-dependent dielectric permittivity of a glass cylinder with heated water. Our results open a new avenue in analyzing the optical response of high-index dielectric nanoparticles and the physics of cloaking.

  14. Switching from Visibility to Invisibility via Fano Resonances: Theory and Experiment

    PubMed Central

    Rybin, Mikhail V.; Filonov, Dmitry S.; Belov, Pavel A.; Kivshar, Yuri S.; Limonov, Mikhail F.

    2015-01-01

    Subwavelength structures demonstrate many unusual optical properties which can be employed for engineering of a new generation of functional metadevices, as well as controlled scattering of light and invisibility cloaking. Here we demonstrate that the suppression of light scattering for any direction of observation can be achieved for a uniform dielectric object with high refractive index, in a sharp contrast to the cloaking with multilayered plasmonic structures suggested previously. Our finding is based on the novel physics of cascades of Fano resonances observed in the Mie scattering from a homogeneous dielectric rod. We observe this effect experimentally at microwaves by employing high temperature-dependent dielectric permittivity of a glass cylinder with heated water. Our results open a new avenue in analyzing the optical response of high-index dielectric nanoparticles and the physics of cloaking. PMID:25739324

  15. Terahertz antireflection coating enabled by a subwavelength metallic mesh capped with a thin dielectric film

    DOE PAGES

    Huang, Li; Chen, Hou -Tong; Zeng, Beibei; ...

    2016-03-30

    Metamaterials/metasurfaces have enabled unprecedented manipulation of electromagnetic waves. Here we present a new design of metasurface structure functioning as antireflection coatings. The structure consists of a subwavelength metallic mesh capped with a thin dielectric layer on top of a substrate. By tailoring the geometric parameters of the metallic mesh and the refractive index and thickness of the capping dielectric film, reflection from the substrate can be completely eliminated at a specific frequency. Compared to traditional methods such as coatings with single- or multi-layer dielectric films, the metasurface antireflection coatings are much thinner and the requirement of index matching is largelymore » lifted. Here, this approach is particularly suitable for antireflection coatings in the technically challenging terahertz frequency range and is also applicable in other frequency regimes.« less

  16. Graphene-based multilayer resonance structure to enhance the optical pressure on a Mie particle

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Abdollah; Mohammadnezhad, Mohammadbagher

    2016-04-01

    We theoretically investigate the optical force exerted on a Mie dielectric particle in the evanescent field of a graphene-based resonance multilayer structure using the arbitrary beam theory and the theory of multilayer films. The resonance structure consists of several thin films including a dielectric film (MgF2), a metal film (silver or gold), and several graphene layers which are located on a prism base. The effects of the metal film thickness and the number of graphene layers on the optical force are numerically investigated. The thickness of the metal layer and the number of graphene layers are optimized to reach the highest optical force. The numerical results show that an optimized composition of graphene and gold leads to a higher optical force compared to that of the graphene and silver. The optical force was enhanced resonantly by four orders of magnitude for the resonance structure containing graphene and a gold film and by three orders of magnitude for the structure containing graphene and a silver film compared to other similar resonance structures. We hope that the results presented in this paper can provide an excellent means of improving the optical manipulation of particles and enable the provision of effective optical tweezers, micromotors, and microaccelelators.

  17. Structures and phase transitions in a new ferroelectric -- pyridinium chlorochromate -- studied by X-ray diffraction, DSC and dielectric methods.

    PubMed

    Małuszyńska, Hanna; Czarnecki, Piotr; Czarnecka, Anna; Pająk, Zdzisław

    2012-04-01

    Pyridinium chlorochromate, [C(5)H(5)NH](+)[ClCrO(3)](-) (hereafter referred to as PyClCrO(3)), was studied by X-ray diffraction, differential scanning calorimetry (DSC) and dielectric methods. Studies reveal three reversible phase transitions at 346, 316 and 170 K with the following phase sequence: R ̅3m (I) → R3m (II) → Cm (III) → Cc (IV), c' = 2c. PyClCrO(3) is the first pyridinium salt in which all four phases have been successfully characterized by a single-crystal X-ray diffraction method. Structural results together with dielectric and calorimetric studies allow the classification of the two intermediate phases (II) and (III) as ferroelectric with the Curie point at 346 K, and the lowest phase (IV) as most probably ferroelectric. The ferroelectric hysteresis loop was observed only in phase (III). The high ionic conductivity hindered its observation in phase (II).

  18. Structural, optical, mechanical and dielectric studies of pure and doped L-Prolinium trichloroacetate single crystals.

    PubMed

    Renuka, N; Ramesh Babu, R; Vijayan, N; Vasanthakumar, Geetha; Krishna, Anuj; Ramamurthi, K

    2015-02-25

    In the present work, pure and metal substituted L-Prolinium trichloroacetate (LPTCA) single crystals were grown by slow evaporation method. The grown crystals were subjected to single crystal X-ray diffraction (XRD), powder X-ray diffraction, FTIR, UV-Visible-NIR, hardness, photoluminescence and dielectric studies. The dopant concentration in the crystals was measured by inductively coupled plasma (ICP) analysis. Single crystal X-ray diffraction studies of the pure and metal substituted LPTCA revealed that the grown crystals belong to the trigonal system. Ni(2+) and Co(2+) doping slightly altered the lattice parameters of LPTCA without affecting the basic structure of the crystal. FTIR spectral analysis confirms the presence of various functional groups in the grown crystals. The mechanical behavior of pure and doped crystals was analyzed by Vickers's microhardness test. The optical transmittance, dielectric and photoluminescence properties of the pure and doped crystals were analyzed. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Evidence of monotropic hexatic tilted smectic phase in the phase sequence of ferroelectric liquid crystal

    NASA Astrophysics Data System (ADS)

    Różycka, Anna; Deptuch, Aleksandra; Jaworska-Gołąb, Teresa; Węgłowska, Dorota; Marzec, Monika

    2018-02-01

    Physical properties of a new ferroelectric liquid crystal have been studied by complementary methods: differential scanning calorimetry, polarizing optical microscopy, dielectric and X-ray diffraction. It was found that next to enantiotropic ferroelectric smectic C* phase, the monotropic smectic phase appears at cooling. X-ray diffraction measurements allowed to identify this phase as hexatic tilted smectic. Temperature dependence of spontaneous polarization, tilt angle of molecules and switching time were found in both liquid crystalline phases at cooling. Based on the dielectric results, the dielectric processes were identified as Goldstone mode in the smectic C* phase, whereas as the bond-orientation-like phason and the bulk domain mode in the monotropic hexatic tilted smectic phase.

  20. Strong coupling of diffraction coupled plasmons and optical waveguide modes in gold stripe-dielectric nanostructures at telecom wavelengths.

    PubMed

    Thomas, Philip A; Auton, Gregory H; Kundys, Dmytro; Grigorenko, Alexander N; Kravets, Vasyl G

    2017-03-24

    We propose a hybrid plasmonic device consisting of a planar dielectric waveguide covering a gold nanostripe array fabricated on a gold film and investigate its guiding properties at telecom wavelengths. The fundamental modes of a hybrid device and their dependence on the key geometric parameters are studied. A communication length of 250 μm was achieved for both the TM and TE guided modes at telecom wavelengths. Due to the difference between the TM and TE light propagation associated with the diffractive plasmon excitation, our waveguides provide polarization separation. Our results suggest a practical way of fabricating metal-nanostripes-dielectric waveguides that can be used as essential elements in optoelectronic circuits.

  1. Strong coupling of diffraction coupled plasmons and optical waveguide modes in gold stripe-dielectric nanostructures at telecom wavelengths

    PubMed Central

    Thomas, Philip A.; Auton, Gregory H.; Kundys, Dmytro; Grigorenko, Alexander N.; Kravets, Vasyl G.

    2017-01-01

    We propose a hybrid plasmonic device consisting of a planar dielectric waveguide covering a gold nanostripe array fabricated on a gold film and investigate its guiding properties at telecom wavelengths. The fundamental modes of a hybrid device and their dependence on the key geometric parameters are studied. A communication length of 250 μm was achieved for both the TM and TE guided modes at telecom wavelengths. Due to the difference between the TM and TE light propagation associated with the diffractive plasmon excitation, our waveguides provide polarization separation. Our results suggest a practical way of fabricating metal-nanostripes-dielectric waveguides that can be used as essential elements in optoelectronic circuits. PMID:28338060

  2. Modeling of Interface and Internal Disorder Applied to XRD Analysis of Ag-Based Nano-Multilayers.

    PubMed

    Ariosa, Daniel; Cancellieri, Claudia; Araullo-Peters, Vicente; Chiodi, Mirco; Klyatskina, Elizaveta; Janczak-Rusch, Jolanta; Jeurgens, Lars P H

    2018-06-20

    Multilayered structures are a promising route to tailor electronic, magnetic, optical, and/or mechanical properties and durability of functional materials. Sputter deposition at room temperature, being an out-of-equilibrium process, introduces structural defects and confers to these nanosystems an intrinsic thermodynamical instability. As-deposited materials exhibit a large amount of internal atomic displacements within each constituent block as well as severe interface roughness between different layers. To access and characterize the internal multilayer disorder and its thermal evolution, X-ray diffraction investigation and analysis are performed systematically at differently grown Ag-Ge/aluminum nitride (AlN) multilayers (co-deposited, sequentially deposited with and without radio frequency (RF) bias) samples and after high-temperature annealing treatment. We report here on model calculations based on a kinematic formalism describing the displacement disorder both within the multilayer blocks and at the interfaces to reproduce the experimental X-ray diffraction intensities. Mixing and displacements at the interface are found to be considerably reduced after thermal treatment for co- and sequentially deposited Ag-Ge/AlN samples. The application of a RF bias during the deposition causes the highest interface mixing and introduces random intercalates in the AlN layers. X-ray analysis is contrasted to transmission electron microscopy pictures to validate the approach.

  3. Base-Metal Electrode-Multilayer Ceramic Capacitors: Past, Present and Future Perspectives

    NASA Astrophysics Data System (ADS)

    Kishi, Hiroshi; Mizuno, Youichi; Chazono, Hirokazu

    2003-01-01

    Multilayer ceramic capacitor (MLCC) production and sales figures are the highest among fine-ceramic products developed in the past 30 years. The total worldwide production and sales reached 550 billion pieces and 6 billion dollars, respectively in 2000. In the course of progress, the development of base-metal electrode (BME) technology played an important role in expanding the application area. In this review, the recent progress in MLCCs with BME nickel (Ni) electrodes is reviewed from the viewpoint of nonreducible dielectric materials. Using intermediate-ionic-size rare-earth ion (Dy2O3, Ho2O3, Er2O3, Y2O3) doped BaTiO3 (ABO3)-based dielectrics, highly reliable Ni-MLCCs with a very thin layer below 2 μm in thickness have been developed. The effect of site occupancy of rare-earth ions in BaTiO3 on the electrical properties and microstructure of nonreducible dielectrics is studied systematically. It appears that intermediate-ionic-size rare-earth ions occupy both A- and B-sites in the BaTiO3 lattice and effectively control the donor/acceptor dopant ratio and microstructural evolution. The relationship between the electrical properties and the microstructure of Ni-MLCCs is also presented.

  4. Development of an Ultra-Wideband Circularly Polarized Multiple Layer Dielectric Rod Antenna Design

    NASA Astrophysics Data System (ADS)

    Wainwright, Gregory D.

    This dissertations focuses on the development of a novel Ultra-Wideband (UWB) circularly polarized dielectric rod antenna (CPDRA) which yields a constant gain, pattern, and phase center. These properties are important in many applications. Within radar systems a constant phase center is desirable to avoid errors within downrange and crossrange measurements. In a reflector antenna the illumination, spillover, and phase efficiencies will remain the same over an ultra-wideband. Lastly, near field probes require smooth amplitude and phase patterns over frequency to avoid errors during the calibration process of the antenna under test. In this dissertation a novel CP feeding network has been developed for an ultra-wideband dielectric rod antenna. Circularly-polarized antennas have a major advantage over its linearly-polarized counterpart in that the polarization mismatch loss caused by misalignment between the polarizations of the incident fields and antenna can be avoided. This is important in satellite communications and broadcasts where signal propagation through the ionosphere can experience Faraday Rotation. A circularly polarized antenna is also helpful in mobile radar and communication systems where the receiving antennas orientation is not fixed. Previous research on UWB dielectric rod antenna designs has focused on Dual linear feeds. Each polarization within the dual linear feed is excited by a pair of linear launcher arms fed with a 0°-180° hybrid balun. The proposed CPDRA design does not require the 0°-180° hybrid baluns or 0°-90° hybrid for achieving CP operation. These hybrids will increase the antennas size, weight, cost, and reduce operational bandwidth. A design technique has been developed for an UWB multilayer dielectric waveguide used in a CPDRA antenna. This design technique uses near-field Electric field data from inside the waveguide, in conjunction with a genetic algorithm optimization to yield a wideband waveguide with a near field amplitude distribution that scales with frequency. A multilayered dielectric waveguide presents many fabrication challenges. The thermal expansion rates, moisture absorption rates, and vibration properties differ within the various dielectric materials used. Therefore, the development of a wideband waveguide using one material with a low dielectric constant would be advantages since 3-D printing technology can be utilized. In this dissertation novel TE01 and TM01 mode suppressors have been developed using only a single dielectric material.

  5. Residual stress within nanoscale metallic multilayer systems during thermal cycling

    DOE PAGES

    Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; ...

    2015-09-21

    Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects ofmore » both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.« less

  6. Highly conductive transparent organic electrodes with multilayer structures for rigid and flexible optoelectronics.

    PubMed

    Guo, Xiaoyang; Liu, Xingyuan; Lin, Fengyuan; Li, Hailing; Fan, Yi; Zhang, Nan

    2015-05-27

    Transparent electrodes are essential components for optoelectronic devices, such as touch panels, organic light-emitting diodes, and solar cells. Indium tin oxide (ITO) is widely used as transparent electrode in optoelectronic devices. ITO has high transparency and low resistance but contains expensive rare elements, and ITO-based devices have poor mechanical flexibility. Therefore, alternative transparent electrodes with excellent opto-electrical performance and mechanical flexibility will be greatly demanded. Here, organics are introduced into dielectric-metal-dielectric structures to construct the transparent electrodes on rigid and flexible substrates. We show that organic-metal-organic (OMO) electrodes have excellent opto-electrical properties (sheet resistance of below 10 Ω sq(-1) at 85% transmission), mechanical flexibility, thermal and environmental stabilities. The OMO-based polymer photovoltaic cells show performance comparable to that of devices based on ITO electrodes. This OMO multilayer structure can therefore be used to produce transparent electrodes suitable for use in a wide range of optoelectronic devices.

  7. Mitigating intrinsic defects and laser damage using pulsetrain-burst (>100 MHz) ultrafast laser processing

    NASA Astrophysics Data System (ADS)

    McKinney, Luke; Frank, Felix; Graper, David; Dean, Jesse; Forrester, Paul; Rioblanc, Maxence; Nantel, Marc; Marjoribanks, Robin

    2005-09-01

    Ultrafast-laser micromachining has promise as an approach to trimming and 'healing' small laser-produced damage sites in laser-system optics--a common experience in state-of-the-art high-power laser systems. More-conventional approaches currently include mechanical micromachining, chemical modification, and treatment using cw and long-pulse lasers. Laser-optics materials of interest include fused silica, multilayer dielectric stacks for anti-reflection coatings or high-reflectivity mirrors, and inorganic crystals such as KD*P, used for Pockels cells and frequency-doubling. We report on novel efforts using ultrafast-laser pulsetrain-burst processing (microsecond bursts at 133 MHz) to mitigate damage in fused silica, dielectric coatings, and KD*P crystals. We have established the characteristics of pulsetrain-burst micromachining in fused silica, multilayer mirrors, and KD*P, and determined the etch rates and morphology under different conditions of fluence-delivery. From all of these, we have begun to identify new means to optimize the laser-repair of optics defects and damage.

  8. Generation of individually modulated femtosecond pulse string by multilayer volume holographic gratings.

    PubMed

    Yan, Xiaona; Gao, Lirun; Yang, Xihua; Dai, Ye; Chen, Yuanyuan; Ma, Guohong

    2014-10-20

    A scheme to generate individually modulated femtosecond pulse string by multilayer volume holographic grating (MVHG) is proposed. Based on Kogelnik's coupled-wave theory and matrix optics, temporal and spectral expressions of diffracted field are given when a femtosecond pulse is diffracted by a MVHG. It is shown that the number of diffracted sub-pulses in the pulse string equals to the number of grating layers of the MVHG, peak intensity and duration of each diffracted sub-pulse depend on thickness of the corresponding grating layer, whereas pulse interval between adjacent sub-pulses is related to thickness of the corresponding buffer layer. Thus by modulating parameters of the MVHG, individually modulated femtosecond pulse string can be acquired. Based on Bragg selectivity of the volume grating and phase shift provided by the buffer layers, we give an explanation on these phenomena. The result is useful to design MVHG-based devices employed in optical communications, pulse shaping and processing.

  9. The influence of tissue layering on microwave thermographic measurements.

    PubMed

    Hawley, M S; Conway, J; Anderson, A P; Cudd, P A

    1988-01-01

    Non-invasive thermal imaging and temperature measurement by microwave radiometry has been investigated for medical diagnostic applications and monitoring hyperthermia treatment of cancer, in the context of heterogeneous body structure. The temperature measured by a radiometer is a function of the emission and propagation of microwaves in tissue and the receiving characteristics of the radiometric probe. Propagation of microwaves in lossy media was analysed by a spectral diffraction approach. Extension of this technique via a cascade transmission line model provides an efficient algorithm for predicting the field patterns of aperture antennas contacting multi-layered tissue. A coherent radiative transfer analysis was used to relate the field pattern of a radiating antenna to its receiving characteristics when used as a radiometer probe, leading to a method for simulating radiometric data. Measurements and simulations were used to assess the effect of overlying fat layers upon radiometer response to temperature hot spots in muscle-type media. Results suggest that dielectric layering in tissue greatly influences measured temperatures and should be accounted for in the interpretation of radiometric data.

  10. Effect of elevated substrate temperature deposition on the mechanical losses in tantala thin film coatings

    NASA Astrophysics Data System (ADS)

    Vajente, G.; Birney, R.; Ananyeva, A.; Angelova, S.; Asselin, R.; Baloukas, B.; Bassiri, R.; Billingsley, G.; Fejer, M. M.; Gibson, D.; Godbout, L. J.; Gustafson, E.; Heptonstall, A.; Hough, J.; MacFoy, S.; Markosyan, A.; Martin, I. W.; Martinu, L.; Murray, P. G.; Penn, S.; Roorda, S.; Rowan, S.; Schiettekatte, F.; Shink, R.; Torrie, C.; Vine, D.; Reid, S.; Adhikari, R. X.

    2018-04-01

    Brownian thermal noise in dielectric multilayer coatings limits the sensitivity of current and future interferometric gravitational wave detectors. In this work we explore the possibility of improving the mechanical losses of tantala, often used as the high refractive index material, by depositing it on a substrate held at elevated temperature. Promising results have been previously obtained with this technique when applied to amorphous silicon. We show that depositing tantala on a hot substrate reduced the mechanical losses of the as-deposited coating, but subsequent thermal treatments had a larger impact, as they reduced the losses to levels previously reported in the literature. We also show that the reduction in mechanical loss correlates with increased medium range order in the atomic structure of the coatings using x-ray diffraction and Raman spectroscopy. Finally, a discussion is included on our results, which shows that the elevated temperature deposition of pure tantala coatings does not appear to reduce mechanical loss in a similar way to that reported in the literature for amorphous silicon; and we suggest possible future research directions.

  11. Method and Apparatus for Monitoring the Integrity of a Geomembrane Liner using time Domain Reflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, John L.

    1998-11-09

    Leaks are detected in a multi-layered geomembrane liner by a two-dimensional time domain reflectometry (TDR) technique. The TDR geomembrane liner is constructed with an electrically conductive detection layer positioned between two electrically non-conductive dielectric layers, which are each positioned between the detection layer and an electrically conductive reference layer. The integrity of the TDR geomembrane liner is determined by generating electrical pulses within the detection layer and measuring the time delay for any reflected electrical energy caused by absorption of moisture by a dielectric layer.

  12. Method and apparatus for monitoring the integrity of a geomembrane liner using time domain reflectometry

    DOEpatents

    Morrison, John L [Idaho Falls, ID

    2001-04-24

    Leaks are detected in a multi-layered geomembrane liner by a two-dimensional time domain reflectometry (TDR) technique. The TDR geomembrane liner is constructed with an electrically conductive detection layer positioned between two electrically non-conductive dielectric layers, which are each positioned between the detection layer and an electrically conductive reference layer. The integrity of the TDR geomembrane liner is determined by generating electrical pulses within the detection layer and measuring the time delay for any reflected electrical energy caused by absorption of moisture by a dielectric layer.

  13. RBS Depth Profiling Analysis of (Ti, Al)N/MoN and CrN/MoN Multilayers.

    PubMed

    Han, Bin; Wang, Zesong; Devi, Neena; Kondamareddy, K K; Wang, Zhenguo; Li, Na; Zuo, Wenbin; Fu, Dejun; Liu, Chuansheng

    2017-12-01

    (Ti, Al)N/MoN and CrN/MoN multilayered films were synthesized on Si (100) surface by multi-cathodic arc ion plating system with various bilayer periods. The elemental composition and depth profiling of the films were investigated by Rutherford backscattering spectroscopy (RBS) using 2.42 and 1.52 MeV Li 2+ ion beams and different incident angles (0°, 15°, 37°, and 53°). The microstructures of (Ti, Al)N/MoN multilayered films were evaluated by X-ray diffraction. The multilayer periods and thickness of the multilayered films were characterized by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) and then compared with RBS results.

  14. Preparation for B4C/Mo2C multilayer deposition of alternate multilayer gratings with high efficiency in the 0.5-2.5 keV energy range

    NASA Astrophysics Data System (ADS)

    Choueikani, Fadi; Delmotte, Franck; Bridou, Françoise; Lagarde, Bruno; Mercere, Pascal; Otero, Edwige; Ohresser, Philippe; Polack, François

    2013-03-01

    This paper presents a study of B4C/Mo2C multilayers mirrors with the aim of using it in the achievement of Alternate MultiLayer (AML) grating. Such component allows a high efficiency in the 500-2500 eV energy range for the DEIMOS beamline. Multilayers were deposited on silicon substrate. They are characterized by reflectometry under grazing incidence. Numerical adjustments were performed with a model of two layers in the period without any interfacial. A prototype of AML grating was fabricated and characterized. The efficiency of the first order of diffraction was worth 15% at 1700 eV.

  15. High-resolution nondestructive testing of multilayer dielectric materials using wideband microwave synthetic aperture radar imaging

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hee; James, Robin; Narayanan, Ram M.

    2017-04-01

    Fiber Reinforced Polymer or Plastic (FRP) composites have been rapidly increasing in the aerospace, automotive and marine industry, and civil engineering, because these composites show superior characteristics such as outstanding strength and stiffness, low weight, as well as anti-corrosion and easy production. Generally, the advancement of materials calls for correspondingly advanced methods and technologies for inspection and failure detection during production or maintenance, especially in the area of nondestructive testing (NDT). Among numerous inspection techniques, microwave sensing methods can be effectively used for NDT of FRP composites. FRP composite materials can be produced using various structures and materials, and various defects or flaws occur due to environmental conditions encountered during operation. However, reliable, low-cost, and easy-to-operate NDT methods have not been developed and tested. FRP composites are usually produced as multilayered structures consisting of fiber plate, matrix and core. Therefore, typical defects appearing in FRP composites are disbondings, delaminations, object inclusions, and certain kinds of barely visible impact damages. In this paper, we propose a microwave NDT method, based on synthetic aperture radar (SAR) imaging algorithms, for stand-off imaging of internal delaminations. When a microwave signal is incident on a multilayer dielectric material, the reflected signal provides a good response to interfaces and transverse cracks. An electromagnetic wave model is introduced to delineate interface widths or defect depths from the reflected waves. For the purpose of numerical analysis and simulation, multilayered composite samples with various artificial defects are assumed, and their SAR images are obtained and analyzed using a variety of high-resolution wideband waveforms.

  16. Progressive magnetic softening of ferromagnetic layers in multilayer ferromagnet-nonmagnet systems and the role of granularity

    NASA Astrophysics Data System (ADS)

    Sahu, Siddharth S.; Siva, Vantari; Pradhan, Paresh C.; Nayak, Maheswar; Senapati, Kartik; Sahoo, Pratap K.

    2017-06-01

    We report a study of the structural and magnetic behavior of the topmost magnetic layer in a ferromagnet-nonmagnet (Co-Au) multilayer system. Glancing angle X-ray diffraction measurements performed on a series of multilayers showed a gradual decrease in the grain size of the topmost magnetic layer with the increasing number of bilayers. Concurrently, the magnetic hardness and magneto-crystalline anisotropy of the top Co layer were found to decrease, as observed by magneto-optical Kerr effect measurements. This magnetic softening has been discussed in the light of Herzer's random anisotropy model. Micromagnetic simulations of the multilayer system also corroborated these observations.

  17. Morphological, Raman, electrical and dielectric properties of rare earth doped X-type hexagonal ferrites

    NASA Astrophysics Data System (ADS)

    Majeed, Abdul; Khan, Muhammad Azhar; ur Raheem, Faseeh; Ahmad, Iftikhar; Akhtar, Majid Niaz; Warsi, Muhammad Farooq

    2016-12-01

    The influence of rare-earth metals (La, Nd, Gd, Tb, Dy) on morphology, Raman, electrical and dielectric properties of Ba2NiCoRExFe28-xO46 ferrites were studied. The scanning electron microscopy (SEM) exhibited the platelet like structure of these hexagonal ferrites. The surface morphology indicated the formation of ferrite grains in the nano-regime scale. The bands obtained at lower wave number may be attributed to the metal-oxygen vibration at octahedral site which confirm the development of hexagonal phase of these ferrites. The resonance peaks were observed in dielectric constant, dielectric loss factor and quality factor versus frequency graphs. These dielectric parameters indicate that these ferrites nano-materials are potential candidates in the high frequency applications. The enhancement in DC electric resistivity from 2.48×108 to 1.20×109 Ω cm indicates that the prepared materials are beneficial for decreasing the eddy current losses at high frequencies and for the fabrication of multilayer chip inductor (MLCI) devices.

  18. Trends in Dielectric Etch for Microelectronics Processing

    NASA Astrophysics Data System (ADS)

    Hudson, Eric A.

    2003-10-01

    Dielectric etch technology faces many challenges to meet the requirements for leading-edge microelectronics processing. The move to sub 100-nm device design rules increases the aspect ratios of certain features, imposes tighter restrictions on etched features' critical dimensions, and increases the density of closely packed arrays of features. Changes in photolithography are driving transitions to new photoresist materials and novel multilayer resist methods. The increasing use of copper metallization and low-k interlayer dielectric materials has introduced dual-damascene integration methods, with specialized dielectric etch applications. A common need is the selective removal of multiple layers which have very different compositions, while maintaining close control of the etched features' profiles. To increase productivity, there is a growing trend toward in-situ processing, which allows several films to be successively etched during a single pass through the process module. Dielectric etch systems mainly utilize capacitively coupled etch reactors, operating with medium-density plasmas and low gas residence time. Commercial technology development increasingly relies upon plasma diagnostics and modeling to reduce development cycle time and maximize performance.

  19. Internal Electrostatic Discharge Monitor - IESDM

    NASA Technical Reports Server (NTRS)

    Kim, Wousik; Goebel, Dan M.; Jun, Insoo; Garrett, Henry B.

    2011-01-01

    A document discusses an innovation designed to effectively monitor dielectric charging in spacecraft components to measure the potential for discharge in order to prevent damage from internal electrostatic discharge (IESD). High-energy electrons penetrate the structural materials and shielding of a spacecraft and then stop inside dielectrics and keep accumulating. Those deposited charges generate an electric field. If the electric field becomes higher than the breakdown threshold (approx. =2 x 10(exp 5) V/cm), discharge occurs. This monitor measures potentials as a function of dielectric depth. Differentiation of potential with respect to the depth yields electric field. Direct measurement of the depth profile of the potential in a dielectric makes real-time electronic field evaluation possible without simulations. The IESDM has been designed to emulate a multi-layer circuit board, to insert very thin metallic layers between the dielectric layers. The conductors serve as diagnostic monitoring locations to measure the deposited electron-charge and the charge dynamics. Measurement of the time-dependent potential of the metal layers provides information on the amount of charge deposited in the dielectrics and the movement of that charge with time (dynamics).

  20. Center for dielectric studies

    NASA Astrophysics Data System (ADS)

    Cross, L. E.; Newnham, R. E.; Biggers, J. V.

    1984-05-01

    This report focuses upon the parts of the Center program which have drawn most extensively upon Navy funds. In the basic study of polarization processes in high K dielectrics, major progress has been made in understanding the mechanisms in relaxor ferroelectric in the perovskite structure families. A new effort is also being mounted to obtain more precise evaluation of the internal stress effects in fine grained barium titanate. Related to reliability, studies of the effects of induced macro-defects are described, and preparation for the evaluation of space charge by internal potential distribution measurements discussed. To develop new processing methods for very thin dielectric layers, a new type of single barrier layer multilayer is discussed, and work on the thermal evaporation of oriented crystalline antimony sulphur iodide describe.

  1. Investigation of optical pump on dielectric tunability in PZT/PT thin film by THz spectroscopy.

    PubMed

    Ji, Jie; Luo, Chunya; Rao, Yunkun; Ling, Furi; Yao, Jianquan

    2016-07-11

    The dielectric spectra of single-layer PbTiO3 (PT), single-layer PbZrxTi1-xO3 (PZT) and multilayer PZT/PT thin films under an external optical field were investigated at room temperature by time-domain terahertz (THz) spectroscopy. Results showed that the real part of permittivity increased upon application of an external optical field, which could be interpreted as hardening of the soft mode and increasing of the damping coefficient and oscillator strength. Furthermore, the central mode was observed in the three films. Among the dielectric property of the three thin films studied, the tunability of the PZT/PT superlattice was the largest.

  2. Tunable graphene-based hyperbolic metamaterial operating in SCLU telecom bands.

    PubMed

    Janaszek, Bartosz; Tyszka-Zawadzka, Anna; Szczepański, Paweł

    2016-10-17

    The tunability of graphene-based hyperbolic metamaterial structure operating in SCLU telecom bands is investigated. For the first time it has been shown that for the proper design of a graphene/dielectric multilayer stack, the HMM Type I, Epsilon-Near-Zero and Type II regimes are possible by changing the biasing potential. Numerical results reveal the effect of structure parameters such as the thickness of the dielectric layer as well as a number of graphene sheets in a unit cell (i.e., dielectric/graphene bilayer) on the tunability range and shape of the dispersion characteristics (i.e., Type I/ENZ/Type II) in SCLU telecom bands. This kind of materials could offer a technological platform for novel devices having various applications in optical communications technology.

  3. An Improved Solution for Integrated Array Optics in Quasi-Optical mm and Submm Receivers: the Hybrid Antenna

    NASA Technical Reports Server (NTRS)

    Buttgenbach, Thomas H.

    1993-01-01

    The hybrid antenna discussed here is defined as a dielectric lens-antenna as a special case of an extended hemi-spherical dielectric lens that is operated in the diffraction limited regime. It is a modified version of the planar antenna on a lens scheme developed by Rutledge. The dielectric lens-antenna is fed by a planar-structure antenna, which is mounted on the flat side of the dielectric lens-antenna using it as a substrate, and the combination is termed a hybrid antenna. Beam pattern and aperture efficiency measurements were made at millimeter and submillimeter wavelengths as a function of extension of the hemi- spherical lens and different lens sizes. An optimum extension distance is found experimentally and numerically for which excellent beam patterns and simultaneously high aperture efficiencies can be achieved. At 115 GHz the aperture efficiency was measured to be (76 4 +/- 6) % for a diffraction limited beam with sidelobes below -17 dB. Results of a single hybrid antenna with an integrated Superconductor-Insulator-Superconductor (SIS) detector and a broad-band matching structure at submillimeter wavelengths are presented. The hybrid antenna is diffraction limited, space efficient in an array due to its high aperture efficiency, and is easily mass produced, thus being well suited for focal plane heterodyne receiver arrays.

  4. Accurate image-charge method by the use of the residue theorem for core-shell dielectric sphere

    NASA Astrophysics Data System (ADS)

    Fu, Jing; Xu, Zhenli

    2018-02-01

    An accurate image-charge method (ICM) is developed for ionic interactions outside a core-shell structured dielectric sphere. Core-shell particles have wide applications for which the theoretical investigation requires efficient methods for the Green's function used to calculate pairwise interactions of ions. The ICM is based on an inverse Mellin transform from the coefficients of spherical harmonic series of the Green's function such that the polarization charge due to dielectric boundaries is represented by a series of image point charges and an image line charge. The residue theorem is used to accurately calculate the density of the line charge. Numerical results show that the ICM is promising in fast evaluation of the Green's function, and thus it is useful for theoretical investigations of core-shell particles. This routine can also be applicable for solving other problems with spherical dielectric interfaces such as multilayered media and Debye-Hückel equations.

  5. Anomaly of Transmission Properties in Pre-Cantor Dielectric Multilayers

    NASA Astrophysics Data System (ADS)

    Kaino, Keimei; Sonoda, Jun

    2008-02-01

    Using the transmission-line theory, we investigate wave propagation in a pre-Cantor multilayer. Transmission spectra of the low stages of pre-Cantor media show good agreement with those of numerical calculation of Maxwell's equations using the FDTD method. Numerical results obtained using the FDTD method show that the electric field at the midpoint of the nth stage pre-Cantor medium has sharp resonance and broad attenuation at transmission bands that are newly generated in attenuation bands of the (n-1)th stage. Using an expression of transmittance of the high stage of pre-Cantor multilayer, we show that the transmittance t becomes a two-valued function of t = 0/1 and the collection of points for t = 1 is a power set of positive integers whose cardinal number is 3ℵ0.

  6. The structure study of thin semiconductor and dielectric films by diffraction of synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Yurjev, G. S.; Fainer, N. I.; Maximovskiy, E. A.; Kosinova, M. L.; Sheromov, M. A.; Rumyantsev, Yu. M.

    1998-02-01

    The structure of semiconductor and dielectric thin (100-300 nm) films was studied by diffraction of synchrotron radiation. The diffraction experiments were performed at both the station "Anomalous scattering" of the storage ring synchrotron facility VEPP-3 and DRON-4 diffractometer. The structure of CdS thin films grown on fused silica, single Si(100) and InP(100) substrates was investigated. The structure of Cu 2S thin films grown on fused silica, single Si(100) substrates and CdS/Si(100)-heterostructure was studied. The structure study was performed on Si 3N 4 films grown on GaAs(100) substrates. The structure of thin BN layers grown on single Si(100) substrates was studied. It was established that structural parameters of above-mentioned thin films coincide on the parameters of JCPDS International Centre for Diffraction Data.

  7. Low temperature dielectric relaxation in ordinary perovskite ferroelectrics: enlightenment from high-energy x-ray diffraction

    DOE PAGES

    Ochoa, D. A.; Levit, R.; Fancher, C. M.; ...

    2017-04-05

    We report that ordinary ferroelectrics exhibit a second order phase transition that is characterized by a sharp peak in the dielectric permittivity at a frequency-independent temperature. Furthermore, these materials show a low temperature dielectric relaxation that appears to be a common behavior of perovskite systems. Tetragonal lead zirconate titanate is used here as a model system in order to explore the origin of such an anomaly, since there is no consensus about the physical phenomenon involved in it. Crystallographic and domain structure studies are performed from temperature dependent synchrotron x-ray diffraction measurement. Results indicate that the dielectric relaxation cannot bemore » associated with crystallographic or domain configuration changes. The relaxation process is then parameterized by using the Vogel–Fulcher–Tammann phenomenological equation. Finally, results allow us to hypothesize that the observed phenomenon is due to changes in the dynamic behavior of the ferroelectric domains related to the fluctuation of the local polarization.« less

  8. Evolutionary optimization of compact dielectric lens for farfield sub-wavelength imaging

    PubMed Central

    Zhang, Jingjing

    2015-01-01

    The resolution of conventional optical lenses is limited by diffraction. For decades researchers have made various attempts to beat the diffraction limit and realize subwavelength imaging. Here we present the approach to design modified solid immersion lenses that deliver the subwavelength information of objects into the far field, yielding magnified images. The lens is composed of an isotropic dielectric core and anisotropic or isotropic dielectric matching layers. It is designed by combining a transformation optics forward design with an inverse design scheme, where an evolutionary optimization procedure is applied to find the material parameters for the matching layers. Notably, the total radius of the lens is only 2.5 wavelengths and the resolution can reach λ/6. Compared to previous approaches based on the simple discretized approximation of a coordinate transformation design, our method allows for much more precise recovery of the information of objects, especially for those with asymmetric shapes. It allows for the far-field subwavelength imaging at optical frequencies with compact dielectric devices. PMID:26017657

  9. Micromechanical Properties of Nanostructured Clay-Oxide Multilayers Synthesized by Layer-by-Layer Self-Assembly.

    PubMed

    Hou, Dongwei; Zhang, Guoping; Pant, Rohit Raj; Wei, Zhongxin; Shen, Shuilong

    2016-11-08

    Clay-based nanostructured multilayers, such as clay-polymer multilayers and clay-oxide multilayers, have attracted growing attention owing to their remarkable mechanical properties and promising application in various fields. In this paper, synthesis of a new kind of nanostructured clay-oxide multilayers by layer-by-layer self-assembly was explored. Nano-mechanical characterization of 18 clay-based multilayer samples, prepared under as-deposited (i.e., air-dried) and annealing conditions at 400 °C/600 °C with different precursor cations and multilayer structure, were carried out using nanoindentation testing, atomic force microscopy (AFM), and X-ray diffraction (XRD). The influencing factors, including as-deposited and annealing conditions and clay concentrations on the mechanical properties were analyzed. Results show that all of the multilayers exhibit high bonding strength between interlayers. Higher modulus and hardness of clay-based multilayers were obtained with lower clay concentrations than that with higher clay concentrations. Different relationships between the modulus and hardness and the annealing temperature exist for a specific type of clay-oxide multilayer. This work offers the basic and essential knowledge on design of clay-based nanostructured multilayers by layer-by-layer self-assembly.

  10. Correlations of structural, magnetic, and dielectric properties of undoped and doped CaCu3Ti4O12

    NASA Astrophysics Data System (ADS)

    Krohns, S.; Lu, J.; Lunkenheimer, P.; Brizé, V.; Autret-Lambert, C.; Gervais, M.; Gervais, F.; Bourée, F.; Porcher, É. F.; Loidl, A.

    2009-11-01

    The present work reports synthesis, as well as a detailed and careful characterization of structural, magnetic, and dielectric properties of differently tempered undoped and doped CaCu3Ti4O12 (CCTO) ceramics. For this purpose, neutron and X-ray powder diffraction, SQUID measurements, and dielectric spectroscopy have been performed. Mn-, Fe-, and Ni-doped CCTO ceramics were investigated in great detail to document the influence of low-level doping with 3d metals on the antiferromagnetic structure and dielectric properties. In the light of possible magnetoelectric coupling in these doped ceramics, the dielectric measurements were also carried out in external magnetic fields up to 7 T. At low temperatures the dielectric constant shows a minor but significant dependence on the applied magnetic field. Undoped CCTO is well-known for its colossal dielectric constant in a broad frequency and temperature range. With the present extended characterization of doped as well as undoped CCTO, we want to address the question why doping with only 1% Mn or 0.5% Fe decreases the room-temperature dielectric constant of CCTO by a factor of ~100 with a concomitant reduction of the conductivity, whereas 0.5% Ni doping changes the dielectric properties only slightly. In addition, diffraction experiments and magnetic investigations were undertaken to check for possible correlations of the magnitude of the colossal dielectric constants with structural details or with magnetic properties like the magnetic ordering, the Curie-Weiss temperatures, or the paramagnetic moment. It is revealed, that while the magnetic ordering temperature and the effective moment of all investigated CCTO ceramics are rather similar, there is a dramatic influence of doping and tempering time on the Curie-Weiss constant.

  11. X ray reflection masks: Manufacturing, characterization and first tests

    NASA Astrophysics Data System (ADS)

    Rahn, Stephen

    1992-09-01

    SXPL (Soft X-ray Projection Lithography) multilayer mirrors are characterized, laterally structured and then used as reflection masks in a projecting lithography procedure. Mo/Si-multilayer mirrors with a 2d in the region of 14 nm were characterized by Cu-k(alpha) grazing incidence as well as soft X-ray normal incidence reflectivity measurements. The multilayer mirrors were patterned by reactive ion etching with CF4 using a photoresist as etch mask, thus producing X-ray reflection masks. The masks were tested at the synchrotron radiation laboratory of the electron accelerator ELSA. A double crystal X-ray monochromator was modified so as to allow about 0.5 sq cm of the reflection mask to be illuminated by white synchrotron radiation. The reflected patterns were projected (with an energy of 100 eV) onto a resist and structure sizes down to 8 micrometers were nicely reproduced. Smaller structures were distorted by Fresnel-diffraction. The theoretically calculated diffraction images agree very well with the observed images.

  12. Influence of Ag substitution on structural and dielectric properties of TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ali, T.; Ahmed, Ateeq; Siddique, M. Naseem; Aftab, Tabish; Tripathi, P.

    2018-04-01

    In this paper, we report the structural, electrical and dielectric properties of Ag-substituted TiO2 nanoparticles synthesized by sol-gel method. The X-ray diffraction (XRD) spectra revealed that the synthesized nanoparticles are pure and crystalline in nature and showing tetragonal anatase phase of TiO2. TEM micrograph shows that shapes of the nanoparticles are non-spherical. We have also studied the dielectric properties and in relation to it the dielectric constants, dielectric loss and A.C. conductivity have been studied as the function of frequency and composition of iron. The above theory may be explained by `Maxwell Wagner Model'.

  13. High-efficiency, broad band, high-damage threshold high-index gratings for femtosecond pulse compression.

    PubMed

    Canova, Frederico; Clady, Raphael; Chambaret, Jean-Paul; Flury, Manuel; Tonchev, Svtelen; Fechner, Renate; Parriaux, Olivier

    2007-11-12

    High efficiency, broad-band TE-polarization diffraction over a wavelength range centered at 800 nm is obtained by high index gratings placed on a non-corrugated mirror. More than 96% efficiency wide band top-hat diffraction efficiency spectra, as well as more than 1 J/cm(2) damage threshold under 50 fs pulses are demonstrated experimentally. This opens the way to high-efficiency Chirped Pulse Amplification for high average power laser machining by means of all-dielectric structures as well as for ultra-short high energy pulses by means of metal-dielectric structures.

  14. Correlation Between Material Properties of Ferroelectric Thin Films and Design Parameters for Microwave Device Applications: Modeling Examples and Experimental Verification

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; VanKeuls, Fred W.; Subramanyam, Guru; Mueller, Carl H.; Romanofsky, Robert R.; Rosado, Gerardo

    2000-01-01

    The application of thin ferroelectric films for frequency and phase agile components is the topic of interest of many research groups worldwide. Consequently, proof-of-concepts (POC) of different tunable microwave components using either (HTS, metal)/ferroelectric thin film/dielectric heterostructures or (thick, thin) film "flip-chip" technology have been reported. Either as ferroelectric thin film characterization tools or from the point of view of circuit implementation approach, both configurations have their respective advantages and limitations. However, we believe that because of the progress made so far using the heterostructure (i.e., multilayer) approach, and due to its intrinsic features such as planar configuration and monolithic integration, a study on the correlation of circuit geometry aspects and ferroelectric material properties could accelerate the insertion of this technology into working systems. In this paper, we will discuss our study performed on circuits based on microstrip lines at frequencies above 10 GHz, where the multilayer configuration offers greater ease of insertion due to circuit's size reduction. Modeled results of relevant circuit parameters such as the characteristic impedance, effective dielectric constant, and attenuation as a function of ferroelectric film's dielectric constant, tans, and thickness, will be presented for SrTiO3 and Ba(x)Sr(1-x)TiO3 ferroelectric films. A comparison between the modeled and experimental data for some of these parameters will be presented.

  15. Structural and dielectric studies on Ag doped nano ZnSnO3

    NASA Astrophysics Data System (ADS)

    Deepa, K.; Angel, S. Lilly; Rajamanickam, N.; Jayakumar, K.; Ramachandran, K.

    2018-04-01

    Undoped and Ag-doped nano Zinc Stannate (ZSO) ternary oxide were prepared by co-precipitation method. The crystallographic, morphological and optical properties of the synthesized nanoparticles were studied using X-ray diffraction (XRD) and UV-Visible spectroscopy (UV-Vis) and Scanning electron microscopy (SEM). The electrical properties of the synthesized samples were studied by dielectric measurements. Higher concentration Ag doped ZSO nanoparticles exhibit higher dielectric constant at low frequency.

  16. Thermally tunable VO2-SiO2 nanocomposite thin-film capacitors

    NASA Astrophysics Data System (ADS)

    Sun, Yifei; Narayanachari, K. V. L. V.; Wan, Chenghao; Sun, Xing; Wang, Haiyan; Cooley, Kayla A.; Mohney, Suzanne E.; White, Doug; Duwel, Amy; Kats, Mikhail A.; Ramanathan, Shriram

    2018-03-01

    We present a study of co-sputtered VO2-SiO2 nanocomposite dielectric thin-film media possessing continuous temperature tunability of the dielectric constant. The smooth thermal tunability is a result of the insulator-metal transition in the VO2 inclusions dispersed within an insulating matrix. We present a detailed comparison of the dielectric characteristics of this nanocomposite with those of a VO2 control layer and of VO2/SiO2 laminate multilayers of comparable overall thickness. We demonstrated a nanocomposite capacitor that has a thermal capacitance tunability of ˜60% between 25 °C and 100 °C at 1 MHz, with low leakage current. Such thermally tunable capacitors could find potential use in applications such as sensing, thermal cloaks, and phase-change energy storage devices.

  17. Slotted rectangular waveguide with dielectric sandwich structure inside

    NASA Astrophysics Data System (ADS)

    Abdullin, R. R.; Sokolov, R. I.

    2018-03-01

    This paper continues the series of works devoted to the investigation of leaky-wave antenna based on layered rectangular waveguide with periodic transverse slots in broad face. Previously developed wavenumber calculation technique has been adapted for analysis of slotted sandwich waveguide with three layers at least. The paper provides the numerical results of velocity factor dependencies for partially filled slotted rectangular waveguide containing a dielectric slab in the middle position inside or an air gap between two dielectric slabs. Additionally, dispersion properties are also considered for multilayer waveguide with linear laws combinations of thickness and permittivity. This allows recognizing the trends to develop new prospective antennas with complex patterns of tilt angle change. All numerical results obtained are confirmed with the in-situ measurements of transmission coefficient phase.

  18. Compact multilayer film structure for angle insensitive color filtering.

    PubMed

    Yang, Chenying; Shen, Weidong; Zhang, Yueguang; Li, Kan; Fang, Xu; Zhang, Xing; Liu, Xu

    2015-03-19

    Here we report a compact multilayer film structure for angle robust color filtering, which is verified by theoretical calculations and experiment results. The introduction of the amorphous silicon in the proposed unsymmetrical resonant cavity greatly reduces the angular sensitivity of the filters, which is confirmed by the analysis of the phase shift within the structure. The temperature of the substrate during the deposition is expressly investigated to obtain the best optical performance with high peak reflectance and good angle insensitive color filtering by compromising the refractive index of dielectric layer and the surface roughness of the multilayer film. And the outlayer of the structure, worked as the anti-reflection layer, have an enormous impact on the filtering performance. This method, described in this paper, can have enormous potential for diverse applications in display, colorful decoration, anti-counterfeiting and so forth.

  19. Identifying the perfect absorption of metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Duan, G.; Schalch, J.; Zhao, X.; Zhang, J.; Averitt, R. D.; Zhang, X.

    2018-01-01

    We present a detailed analysis of the conditions that result in unity absorption in metamaterial absorbers to guide the design and optimization of this important class of functional electromagnetic composites. Multilayer absorbers consisting of a metamaterial layer, dielectric spacer, and ground plane are specifically considered. Using interference theory, the dielectric spacer thickness and resonant frequency for unity absorption can be numerically determined from the functional dependence of the relative phase shift of the total reflection. Further, using transmission line theory in combination with interference theory we obtain analytical expressions for the unity absorption resonance frequency and corresponding spacer layer thickness in terms of the bare resonant frequency of the metamaterial layer and metallic and dielectric losses within the absorber structure. These simple expressions reveal a redshift of the unity absorption frequency with increasing loss that, in turn, necessitates an increase in the thickness of the dielectric spacer. The results of our analysis are experimentally confirmed by performing reflection-based terahertz time-domain spectroscopy on fabricated absorber structures covering a range of dielectric spacer thicknesses with careful control of the loss accomplished through water absorption in a semiporous polyimide dielectric spacer. Our findings can be widely applied to guide the design and optimization of the metamaterial absorbers and sensors.

  20. Nondestructive defect detection in laser optical coatings

    NASA Astrophysics Data System (ADS)

    Marrs, C. D.; Porteus, J. O.; Palmer, J. R.

    1985-03-01

    Defects responsible for laser damage in visible-wavelength mirrors are observed at nondamaging intensities using a new video microscope system. Studies suggest that a defect scattering phenomenon combined with lag characteristics of video cameras makes this possible. Properties of the video-imaged light are described for multilayer dielectric coatings and diamond-turned metals.

  1. Comparison of Multilayer Dielectric Thin Films for Future Metal-Insulator-Metal Capacitors: Al2O3/HfO2/Al2O3 versus SiO2/HfO2/SiO2

    NASA Astrophysics Data System (ADS)

    Park, Sang-Uk; Kwon, Hyuk-Min; Han, In-Shik; Jung, Yi-Jung; Kwak, Ho-Young; Choi, Woon-Il; Ha, Man-Lyun; Lee, Ju-Il; Kang, Chang-Yong; Lee, Byoung-Hun; Jammy, Raj; Lee, Hi-Deok

    2011-10-01

    In this paper, two kinds of multilayered metal-insulator-metal (MIM) capacitors using Al2O3/HfO2/Al2O3 (AHA) and SiO2/HfO2/SiO2 (SHS) were fabricated and characterized for radio frequency (RF) and analog mixed signal (AMS) applications. The experimental results indicate that the AHA MIM capacitor (8.0 fF/µm2) is able to provide a higher capacitance density than the SHS MIM capacitor (5.1 fF/µm2), while maintaining a low leakage current of about 50 nA/cm2 at 1 V. The quadratic voltage coefficient of capacitance, α gradually decreases as a function of stress time under constant voltage stress (CVS). The parameter variation of SHS MIM capacitors is smaller than that of AHA MIM capacitors. The effects of CVS on voltage linearity and time-dependent dielectric breakdown (TDDB) characteristics were also investigated.

  2. Active voltage contrast imaging of cross-sectional surface of multilayer ceramic capacitor using helium ion microscopy

    NASA Astrophysics Data System (ADS)

    Sakai, C.; Ishida, N.; Masuda, H.; Nagano, S.; Kitahara, M.; Ogata, Y.; Fujita, D.

    2016-08-01

    We studied active voltage contrast (AVC) imaging using helium ion microscopy (HIM). We observed secondary electron (SE) images of the cross-sectional surface of multilayer ceramic capacitors (MLCCs) with and without a voltage applied to the internal electrodes. When no voltage was applied, we obtained an image reflecting the material contrast between the Ni internal electrode region and the BaTiO3 dielectric region of the cross-sectional surface of the MLCC. When a voltage was applied, the electrical potential difference between the grounded and the positively biased internal electrodes affected the contrast (voltage contrast). Moreover, attenuation of the SE intensity from the grounded to the positively biased internal electrodes was observed in the dielectric region. Kelvin probe force microscopy (KPFM) measurements of the contact potential difference (CPD) were performed on the same sample. By using the AVC image from the HIM observation and the CPD image from the KPFM measurement, we could quantitatively evaluate the electrical potential. We think that the results of this study will lead to an expansion in the number of applications of HIM.

  3. Multilayer capacitor suitable for substrate integration and multimegahertz filtering

    DOEpatents

    Ngo, Khai D. T.

    1990-01-01

    A multilayer capacitor comprises stacked, spaced-apart electrodes of sheet form, dielectric layers between the electrodes, and first and second groups of spaced-apart conductive vias extending transversely of the sheet-form electrodes and through aligned holes in the dielectric layers. Alternate electrodes are instantaneously positive, and the remaining electrodes are instantaneously negative. Each via of the first group is electrically connected to the positive electrodes and passes insulatingly through the negative electrodes. Similarly, each via of the second group is electrically connected to the negative electrodes and passes insulatingly through the positive electrodes. Each via has, in the plane of the electrodes, a cross-sectional form in the shape of an elongated rib of greater length than width. The elongated ribs of the first group are disposed in a first plurality of rows with their lengths in spaced-apart, aligned relationship, and the ribs of the second group are disposed in a second plurality of rows with their lengths in spaced-apart, aligned relationship. The first plurality of rows is disposed substantially orthogonally with respect to the second plurality of rows.

  4. Estimation of Complex Permittivity of Composite Multilayer Material at Microwave Frequency Using Waveguide Measurements

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar D.; Dudley, Kenneth

    2003-01-01

    A simple method is presented to estimate the complex dielectric constants of individual layers of a multilayer composite material. Using the MatLab Optimization Tools simple MatLab scripts are written to search for electric properties of individual layers so as to match the measured and calculated S-parameters. A single layer composite material formed by using materials such as Bakelite, Nomex Felt, Fiber Glass, Woven Composite B and G, Nano Material #0, Cork, Garlock, of different thicknesses are tested using the present approach. Assuming the thicknesses of samples unknown, the present approach is shown to work well in estimating the dielectric constants and the thicknesses. A number of two layer composite materials formed by various combinations of above individual materials are tested using the present approach. However, the present approach could not provide estimate values close to their true values when the thicknesses of individual layers were assumed to be unknown. This is attributed to the difficulty in modelling the presence of airgaps between the layers while doing the measurement of S-parameters. A few examples of three layer composites are also presented.

  5. Effect of neodymium substitution on the electric and dielectric properties of Mn-Ni-Zn ferrite

    NASA Astrophysics Data System (ADS)

    Agami, W. R.

    2018-04-01

    Ferrite samples of Mn0.5Ni0.1Zn0.4NdxFe2-xO4 (x = 0.0, 0.01, 0.02, 0.05, 0.075 and 0.1) have been prepared by usual ceramic method. The temperature and composition dependences of the dc electric resistivity (ρdc) were studied. The frequency and composition dependences of the ac electric resistivity (ρac) and dielectric parameters (dielectric constant ε' and dielectric loss ε'') have been investigated. ρdc was found to decrease with temperature for all samples while it increases with increasing Nd3+ concentration. On the other hand, ρac and the dielectric properties were found to decrease with increasing the frequency while ρac increases and both ε' and ε'' decrease with increasing Nd3+ concentration. These results were explained by the Maxwell-Wagner two-layer model and Koops's theory. The improvement in dc and ac electric resistivities shows that these prepared materials are valid for decreasing the eddy current losses at high frequencies, so they can be used in the fabrication of multilayer chip inductor (MLCI) devices.

  6. High diffraction efficiency of three-layer diffractive optics designed for wide temperature range and large incident angle.

    PubMed

    Mao, Shan; Cui, Qingfeng; Piao, Mingxu; Zhao, Lidong

    2016-05-01

    A mathematical model of diffraction efficiency and polychromatic integral diffraction efficiency affected by environment temperature change and incident angle for three-layer diffractive optics with different dispersion materials is put forward, and its effects are analyzed. Taking optical materials N-FK5 and N-SF1 as the substrates of multilayer diffractive optics, the effect on diffraction efficiency and polychromatic integral diffraction efficiency with intermediate materials POLYCARB is analyzed with environment temperature change as well as incident angle. Therefore, three-layer diffractive optics can be applied in more wide environmental temperature ranges and larger incident angles for refractive-diffractive hybrid optical systems, which can obtain better image quality. Analysis results can be used to guide the hybrid imaging optical system design for optical engineers.

  7. Dielectric properties of (CuO, CaO2, and BaO)y/CuTl-1223 composites

    NASA Astrophysics Data System (ADS)

    Mumtaz, M.; Kamran, M.; Nadeem, K.; Jabbar, Abdul; Khan, Nawazish A.; Saleem, Abida; Tajammul Hussain, S.; Kamran, M.

    2013-07-01

    We synthesized (CuO, CaO2, and BaO)y/Cu0.5Tl0.5Ba2Ca2Cu3O10-δ (y = 0, 5%, 10%, 15%) composites by solid-state reaction and characterized them by x-ray diffraction, scanning electron microscopy, dc-resistivity, and Fourier transform infrared spectroscopy. Frequency and temperature dependent dielectric properties, such as real and imaginary parts of the dielectric constant, dielectric loss, and ac-conductivity of these composites were studied by capacitance and conductance measurements as a function of frequency (10 kHz to 10 MHz) and temperature (78 to 300 K). X-ray diffraction analysis reveals that the characteristic behavior of the superconductor phase and the structure of Cu0.5Tl0.5Ba2Ca2Cu3O10-δ are nearly undisturbed by doping with nanoparticles. Scanning electron microscopy images show the improvement in the intergranular linking between the superconducting grains occurring with increasing nanoparticle concentration. Microcracks are healed up with these nanoparticles, and superconducting volume fraction is also increased. Dielectric properties of these composites strongly depend on the frequency and temperature. Zero resistivity critical temperature and dielectric properties show opposite trends with the addition of nanoparticles to the Cu0.5Tl0.5Ba2Ca2Cu3O10-δ superconductor matrix.

  8. Transmission function properties for multi-layered structures: application to super-resolution.

    PubMed

    Mattiucci, N; D'Aguanno, G; Scalora, M; Bloemer, M J; Sibilia, C

    2009-09-28

    We discuss the properties of the transmission function in the k-space for a generic multi-layered structure. In particular we analytically demonstrate that a transmission greater than one in the evanescent spectrum (amplification of the evanescent modes) can be directly linked to the guided modes supported by the structure. Moreover we show that the slope of the phase of the transmission function in the propagating spectrum is inversely proportional to the ability of the structure to compensate the diffraction of the propagating modes. We apply these findings to discuss several examples where super-resolution is achieved thanks to the simultaneous availability of the amplification of the evanescent modes and the diffraction compensation of the propagating modes.

  9. Improvement of laser molecular beam epitaxy grown SrTiO3 thin film properties by temperature gradient modulation growth

    NASA Astrophysics Data System (ADS)

    Li, Jin Long; Hao, J. H.; Li, Y. R.

    2007-09-01

    Oxygen diffusion at the SrTiO3/Si interface was analyzed. A method called temperature gradient modulation growth was introduced to control oxygen diffusion at the interface of SrTiO3/Si. Nanoscale multilayers were grown at different temperatures at the initial growing stage of films. Continuous growth of SrTiO3 films was followed to deposit on the grown sacrificial layers. The interface and crystallinity of SrTiO3/Si were investigated by in situ reflection high energy electron diffraction and x-ray diffraction measurements. It has been shown that the modulated multilayers may help suppress the interfacial diffusion, and therefore improve SrTiO3 thin film properties.

  10. Stress analysis of ZrO2/SiO2 multilayers deposited on different substrates with different thickness periods

    NASA Astrophysics Data System (ADS)

    Shao, Shuying; Shao, Jianda; He, Hongbo; Fan, Zhengxiu

    2005-08-01

    The effects of repeating thickness periods on stress are studied in ZrO2/SiO2 multilayers deposited by electron-beam evaporation on BK7 glass and fused-silica substrates. The results show that the residual stress is compressive and decreases with an increase of the periods of repeating thickness in the ZrO2/SiO2 multilayers. At the same time, the residual stress in multilayers deposited on BK7 glass is less than that of samples deposited on fused silica. The variation of the microstructure examined by x-ray diffraction shows that microscopic deformation does not correspond to macroscopic stress, which may be due to variation of the interface stress.

  11. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition.

    PubMed

    Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong

    2012-12-21

    In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications.

  12. Structural, optical and dielectric properties of graphene oxide

    NASA Astrophysics Data System (ADS)

    Bhargava, Richa; Khan, Shakeel

    2018-05-01

    The Modified Hummers method has been used to synthesize Graphene oxide nanoparticles. Microstructural analyses were carried out by X-ray diffraction and Fourier transform infrared spectroscopy. Optical properties were studied by UV-visible spectroscopy in the range of 200-700 nm. The energy band gap was calculated with the help of Tauc relation. The frequency dependence of dielectric constant and dielectric loss were studied over a range of the frequency 75Hz to 5MHz at room temperature. The dispersion in dielectric constant can be explained with the help of Maxwell-Wagner model in studied nanoparticles.

  13. Perfect coupling of light to a periodic dielectric/metal/dielectric structure

    NASA Astrophysics Data System (ADS)

    Wang, Zhengling; Li, Shiqiang; Chang, R. P. H.; Ketterson, John B.

    2014-07-01

    Using the finite difference time domain method, it is demonstrated that perfect coupling can be achieved between normally incident light and a periodic dielectric/metal/dielectric structure. The structure serves as a diffraction grating that excites modes related to the long range surface plasmon and short range surface plasmon modes that propagate on continuous metallic films. By optimizing the structural dimensions, perfect coupling is achieved between the incident light and these modes. A high Q of 697 and an accompanying ultrasharp linewidth of 0.8 nm are predicted for a 10 nm silver film for optimal conditions.

  14. Structural, dielectric and impedance studies of polycrystalline La0.6Dy0.2Ca0.2MnO3

    NASA Astrophysics Data System (ADS)

    Nandan, K. R.; Kumar, A. Ruban

    2017-05-01

    Polycrystalline materials of Dy doped La1-xCaxMnO3 were prepared by Sol-Gel technique using citric acid as a chelating agent at 900°C. The compound was analyzed by powder X-ray diffraction technique and confirmed to be single phased orthorhombic perovskite structure with space group Pnma. From the dielectric and impedance studies confirmed the existence of dielectric relaxation and presence of space charge were observed from the dielectric constant and impedance plots respectively and confirms the existence of relaxation due to oxygen vacancy. Cole-cole plot confirms the presence of dielectric relaxation and grain contribution in the synthesized sample.

  15. Large-area soft x-ray projection lithography using multilayer mirrors structured by RIE

    NASA Astrophysics Data System (ADS)

    Rahn, Steffen; Kloidt, Andreas; Kleineberg, Ulf; Schmiedeskamp, Bernt; Kadel, Klaus; Schomburg, Werner K.; Hormes, F. J.; Heinzmann, Ulrich

    1993-01-01

    SXPL (soft X-ray projection lithography) is one of the most promising applications of X-ray reflecting optics using multilayer mirrors. Within our collaboration, such multilayer mirrors were fabricated, characterized, laterally structured and then used as reflection masks in a projecting lithography procedure. Mo/Si-multilayer mirrors were produced by electron beam evaporation in UHV under thermal treatment with an in-situ X-ray controlled thickness in the region of 2d equals 14 nm. The reflectivities measured at normal incidence reached up to 54%. Various surface analysis techniques have been applied in order to characterize and optimize the X-ray mirrors. The multilayers were patterned by reactive ion etching (RIE) with CF(subscript 4), using a photoresist as the etch mask, thus producing X-ray reflection masks. The masks were tested in the synchrotron radiation laboratory of the electron accelerator ELSA at the Physikalisches Institut of Bonn University. A double crystal X-ray monochromator was modified so as to allow about 0.5 cm(superscript 2) of the reflection mask to be illuminated by white synchrotron radiation. The reflected patterns were projected (with an energy of 100 eV) onto the resist (Hoechst AZ PF 514), which was mounted at an average distance of about 7 mm. In the first test-experiments, structure sizes down to 8 micrometers were nicely reproduced over the whole of the exposed area. Smaller structures were distorted by Fresnel-diffraction. The theoretically calculated diffraction images agree very well with the observed images.

  16. Structure and magnetism in Co/X, Fe/Si, and Fe/(FeSi) multilayers

    NASA Astrophysics Data System (ADS)

    Franklin, Michael Ray

    Previous studies have shown that magnetic behavior in multilayers formed by repeating a bilayer unit comprised of a ferromagnetic layer and a non-magnetic spacer layer can be affected by small structural differences. For example, a macroscopic property such as giant magnetoresistance (GMR) is believed to depend significantly upon interfacial roughness. In this study, several complimentary structural probes were used to carefully characterize the structure of several sputtered multilayer systems-Co/Ag, Co/Cu, Co/Mo, Fe/Si, and Fe//[FeSi/]. X-ray diffraction (XRD) studies were used to examine the long-range structural order of the multilayers perpendicular to the plane of the layers. Transmission electron diffraction (TED) studies were used to probe the long-range order parallel to the layer plane. X-ray Absorption Fine Structure (XAFS) studies were used to determine the average local structural environment of the ferromagnetic atoms. For the Co/X systems, a simple correlation between crystal structure and saturation magnetization is discovered for the Co/Mo system. For the Fe/X systems, direct evidence of an Fe-silicide is found for the /[FeSi/] spacer layer but not for the Si spacer layer. Additionally, differences were observed in the magnetic behavior between the Fe in the nominally pure Fe layer and the Fe contained in the /[FeSi/] spacer layers.

  17. Bloch surface wave structures for high sensitivity detection and compact waveguiding

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Umar; Corbett, Brian

    2016-01-01

    Resonant propagating waves created on the surface of a dielectric multilayer stack, called Bloch surface waves (BSW), can be designed for high sensitivity monitoring of the adjacent refractive index as an alternative platform to the metal-based surface plasmon resonance (SPR) sensing. The resonant wavelength and polarization can be designed by engineering of the dielectric layers unlike the fixed resonance of SPR, while the wide bandwidth low loss of dielectrics permits sharper resonances, longer propagation lengths and thus their use in waveguiding devices. The transparency of the dielectrics allows the excitation and monitoring of surface-bound fluorescent molecules. We review the recent developments in this technology. We show the advantages that can be obtained by using high index contrast layered structures. Operating at 1550 nm wavelengths will allow the BSW sensors to be implemented in the silicon photonics platform where active waveguiding can be used in the realization of compact planar integrated circuits for multi-parameter sensing.

  18. Thin Film Multilayer Conductor/Ferroelectric Tunable Microwave Components for Communication Applications

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Romanofsky, Robert R.; VanKeuls, Frederick W.; Mueller, Carl H.; Treece, Randolph E.; Rivkin, Tania V.

    1997-01-01

    High Temperature Superconductor/Ferroelectric (HTS/FE ) thin film multilayered structures deposited onto dielectric substrates are currently being investigated for use in low loss, tunable microwave components for satellite and ground based communications. The main goal for this technology is to achieve maximum tunability while keeping the microwave losses as low as possible, so as to avoid performance degradation when replacing conventional technology (e.g., filters and oscillators) with HTS/FE components. Therefore, for HTS/FE components to be successfully integrated into current working systems, full optimization of the material and electrical properties of the ferroelectric films, without degrading those of the HTS film; is required. Hence, aspects such as the appropriate type of ferroelectric and optimization of the deposition conditions (e.g., deposition temperature) should be carefully considered. The tunability range as well as the microwave losses of the desired varactor (i.e., tunable component) are also dependent on the geometry chosen (e.g., parallel plate capacitor, interdigital capacitor, coplanar waveguide, etc.). In addition, the performance of the circuit is dependent on the location of the varactor in the circuit and the biasing circuitry. In this paper, we will present our results on the study of the SrTiO3/YBa2Cu3O(7-delta)/LaAl03 (STO/YBCO/LAO) and the Ba(x)Sr(1-x)TiO3/YBa2Cu3O(7-delta)/LaAl03(BSTO/YBCO/ILAO) HTS/FE multilayered structures. We have observed that the amount of variation of the dielectric constant upon the application of a dc electric field is closely related to the microstructure of the film. The largest tuning of the STO/YBCO/LAO structure corresponded to single-phased, epitaxial STO films deposited at 800 C and with a thickness of 500 nm. Higher temperatures resulted in interfacial degradation and poor film quality, while lower deposition temperatures resulted in films with lower dielectric constants, lower tunabilities, and higher losses. For STO/LAO multilayer structures having STO film of similar quality we have observed that interdigital capacitor configurations allow for higher tunabilities and lower losses than parallel plate configurations, but required higher dc voltage. Results on the use of these geometries in working microwave components such as filters and stabilizing resonators for local oscillators (LO) will be discussed.

  19. Processes for multi-layer devices utilizing layer transfer

    DOEpatents

    Nielson, Gregory N; Sanchez, Carlos Anthony; Tauke-Pedretti, Anna; Kim, Bongsang; Cederberg, Jeffrey; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2015-02-03

    A method includes forming a release layer over a donor substrate. A plurality of devices made of a first semiconductor material are formed over the release layer. A first dielectric layer is formed over the plurality of devices such that all exposed surfaces of the plurality of devices are covered by the first dielectric layer. The plurality of devices are chemically attached to a receiving device made of a second semiconductor material different than the first semiconductor material, the receiving device having a receiving substrate attached to a surface of the receiving device opposite the plurality of devices. The release layer is etched to release the donor substrate from the plurality of devices. A second dielectric layer is applied over the plurality of devices and the receiving device to mechanically attach the plurality of devices to the receiving device.

  20. Evidence of interfacial charge trapping mechanism in polyaniline/reduced graphene oxide nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, Rakibul; Brun, Jean-François; Roussel, Frederick, E-mail: frederick.roussel@univ-lille1.fr

    Relaxation mechanisms in polyaniline (PANI)/Reduced Graphene Oxide (RGO) nanocomposites are investigated using broad band dielectric spectroscopy. The multilayered nanostructural features of the composites and the intimate interactions between PANI and RGO are evidenced by field emission scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. Increasing the RGO fraction in the composites results in a relaxation process observed at a frequency of ca. 5 kHz. This mechanism is associated with an electrical charge trapping phenomenon occurring at the PANI/RGO interfaces. The dielectric relaxation processes are interpreted according to the Sillars approach and the results are consistent with the presence ofmore » conducting prolate spheroids (RGO) embedded into a polymeric matrix (PANI). Dielectric permittivity data are analyzed within the framework of the Kohlrausch-William-Watts model, evidencing a Debye-like relaxation process.« less

  1. Area X-ray or UV camera system for high-intensity beams

    DOEpatents

    Chapman, Henry N.; Bajt, Sasa; Spiller, Eberhard A.; Hau-Riege, Stefan , Marchesini, Stefano

    2010-03-02

    A system in one embodiment includes a source for directing a beam of radiation at a sample; a multilayer mirror having a face oriented at an angle of less than 90 degrees from an axis of the beam from the source, the mirror reflecting at least a portion of the radiation after the beam encounters a sample; and a pixellated detector for detecting radiation reflected by the mirror. A method in a further embodiment includes directing a beam of radiation at a sample; reflecting at least some of the radiation diffracted by the sample; not reflecting at least a majority of the radiation that is not diffracted by the sample; and detecting at least some of the reflected radiation. A method in yet another embodiment includes directing a beam of radiation at a sample; reflecting at least some of the radiation diffracted by the sample using a multilayer mirror; and detecting at least some of the reflected radiation.

  2. Phase transformation in SiOx/SiO₂ multilayers for optoelectronics and microelectronics applications.

    PubMed

    Roussel, M; Talbot, E; Pratibha Nalini, R; Gourbilleau, F; Pareige, P

    2013-09-01

    Due to the quantum confinement, silicon nanoclusters (Si-ncs) embedded in a dielectric matrix are of prime interest for new optoelectronics and microelectronics applications. In this context, SiO(x)/SiO₂ multilayers have been prepared by magnetron sputtering and subsequently annealed to induce phase separation and Si clusters growth. The aim of this paper is to study phase separation processes and formation of nanoclusters in SiO(x)/SiO₂ multilayers by atom probe tomography. Influences of the silicon supersaturation, annealing temperature and SiO(x) and SiO₂ layer thicknesses on the final microstructure have been investigated. It is shown that supersaturation directly determines phase separation regime between nucleation/classical growth and spinodal decomposition. Annealing temperature controls size of the particles and interface with the surrounding matrix. Layer thicknesses directly control Si-nc shapes from spherical to spinodal-like structures. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Fabrication of artificially stacked ultrathin ZnS/MgF2 multilayer dielectric optical filters.

    PubMed

    Kedawat, Garima; Srivastava, Subodh; Jain, Vipin Kumar; Kumar, Pawan; Kataria, Vanjula; Agrawal, Yogyata; Gupta, Bipin Kumar; Vijay, Yogesh K

    2013-06-12

    We report a design and fabrication strategy for creating an artificially stacked multilayered optical filters using a thermal evaporation technique. We have selectively chosen a zinc sulphide (ZnS) lattice for the high refractive index (n = 2.35) layer and a magnesium fluoride (MgF2) lattice as the low refractive index (n = 1.38) layer. Furthermore, the microstructures of the ZnS/MgF2 multilayer films are also investigated through TEM and HRTEM imaging. The fabricated filters consist of high and low refractive 7 and 13 alternating layers, which exhibit a reflectance of 89.60% and 99%, respectively. The optical microcavity achieved an average transmittance of 85.13% within the visible range. The obtained results suggest that these filters could be an exceptional choice for next-generation antireflection coatings, high-reflection mirrors, and polarized interference filters.

  4. Effects of Various Passivation Layers on Electrical Properties of Multilayer MoS₂ Transistors.

    PubMed

    Ma, Jiyeon; Yoo, Geonwook

    2018-09-01

    So far many of research on transition metal dichalcogenides (TMDCs) are based on a bottomgate device structure due to difficulty with depositing a dielectric film on top of TMDs channel layer. In this work, we study different effects of various passivation layers on electrical properties of multilayer MoS2 transistors: spin-coated CYTOP, SU-8, and thermal evaporated MoOX. The SU-8 passivation layer alters device performance least significantly, and MoOX induces positive threshold voltage shift of ~8.0 V due to charge depletion at the interface, and the device with CYTOP layer exhibits decreased field-effect mobility by ~50% due to electric dipole field effect of C-F bonds in the end groups. Our results imply that electrical properties of the multilayer MoS2 transistors can be modulated using a passivation layer, and therefore a proper passivation layer should be considered for MoS2 device structures.

  5. Micromachined Thin-Film Sensors for SOI-CMOS Co-Integration

    NASA Astrophysics Data System (ADS)

    Laconte, Jean; Flandre, D.; Raskin, Jean-Pierre

    Co-integration of sensors with their associated electronics on a single silicon chip may provide many significant benefits regarding performance, reliability, miniaturization and process simplicity without significantly increasing the total cost. Micromachined Thin-Film Sensors for SOI-CMOS Co-integration covers the challenges and interests and demonstrates the successful co-integration of gas flow sensors on dielectric membrane, with their associated electronics, in CMOS-SOI technology. We firstly investigate the extraction of residual stress in thin layers and in their stacking and the release, in post-processing, of a 1 μm-thick robust and flat dielectric multilayered membrane using Tetramethyl Ammonium Hydroxide (TMAH) silicon micromachining solution.

  6. Ni-BaTiO3-Based Base-Metal Electrode (BME) Ceramic Capacitors for Space Applications

    NASA Technical Reports Server (NTRS)

    Liu, Donhang; Fetter, Lula; Meinhold, Bruce

    2015-01-01

    A multi-layer ceramic capacitor (MLCC) is a high-temperature (1350C typical) co-fired ceramic monolithic that is composed of many layers of alternately stacked oxide-based dielectric and internal metal electrodes. To make the dielectric layers insulating and the metal electrode layers conducting, only highly oxidation-resistant precious metals, such as platinum, palladium, and silver, can be used for the co-firing of insulating MLCCs in a regular air atmosphere. MLCCs made with precious metals as internal electrodes and terminations are called precious-metal electrode (PME) capacitors. Currently, all military and space-level applications only address the use of PME capacitors.

  7. Optimized multilayered wideband absorbers with graded fractal FSS

    NASA Astrophysics Data System (ADS)

    Vinoy, K. J.; Jose, K. A.; Varadan, Vijay K.; Varadan, Vasundara V.

    2001-08-01

    Various approaches have been followed for the reduction of radar cross section (RCS), especially of aircraft and missiles. In this paper we present the use of multiple layers of FSS-like fractal geometries printed on dielectric substrates for the same goal. The experimental results shown here indicate 15 dB reduction in the reflection of a flat surface, by the use of this configuration with low loss dielectrics. An extensive optimization scheme is required for extending the angle coverage as well as the bandwidth of the absorber. A brief investigation of such a scheme involving genetic algorithm for this purpose is also presented here.

  8. Spectral tailoring of nanoscale EUV and soft x-ray multilayer optics

    NASA Astrophysics Data System (ADS)

    Huang, Qiushi; Medvedev, Viacheslav; van de Kruijs, Robbert; Yakshin, Andrey; Louis, Eric; Bijkerk, Fred

    2017-03-01

    Extreme ultraviolet and soft X-ray (XUV) multilayer optics have experienced significant development over the past few years, particularly on controlling the spectral characteristics of light for advanced applications like EUV photolithography, space observation, and accelerator- or lab-based XUV experiments. Both planar and three dimensional multilayer structures have been developed to tailor the spectral response in a wide wavelength range. For the planar multilayer optics, different layered schemes are explored. Stacks of periodic multilayers and capping layers are demonstrated to achieve multi-channel reflection or suppression of the reflective properties. Aperiodic multilayer structures enable broadband reflection both in angles and wavelengths, with the possibility of polarization control. The broad wavelength band multilayer is also used to shape attosecond pulses for the study of ultrafast phenomena. Narrowband multilayer monochromators are delivered to bridge the resolution gap between crystals and regular multilayers. High spectral purity multilayers with innovated anti-reflection structures are shown to select spectrally clean XUV radiation from broadband X-ray sources, especially the plasma sources for EUV lithography. Significant progress is also made in the three dimensional multilayer optics, i.e., combining micro- and nanostructures with multilayers, in order to provide new freedom to tune the spectral response. Several kinds of multilayer gratings, including multilayer coated gratings, sliced multilayer gratings, and lamellar multilayer gratings are being pursued for high resolution and high efficiency XUV spectrometers/monochromators, with their advantages and disadvantages, respectively. Multilayer diffraction optics are also developed for spectral purity enhancement. New structures like gratings, zone plates, and pyramids that obtain full suppression of the unwanted radiation and high XUV reflectance are reviewed. Based on the present achievement of the spectral tailoring multilayer optics, the remaining challenges and opportunities for future researches are discussed.

  9. Multilayer Anti-Reflective Coating Development for PMMA Fresnel Lenses

    DTIC Science & Technology

    2010-06-07

    been sputter deposited on UV transparent polymethylmethacrylate (UVT-PMMA) windows. The amorphous coatings are deposited using reactive sputtering in a...SUBJECT TERMS Anti-reflective coatings, Fresnel lens, polymethylmethacrylate , PMMA 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...high quality dielectric materials deposited on a variety of substrates including polymethylmethacrylate (PMMA)  Highly amorphous films achieved

  10. Tunable UV Filters

    NASA Technical Reports Server (NTRS)

    Bruner, Marilyn E. (Principal Investigator); Rosenberg, William A.

    1996-01-01

    This report describes an investigation intended to determine the practical short wavelength limit for Fabry-Perot etalons operating in the far ultraviolet. This portion of the investigation includes a design study of multilayer dielectric reflector coatings that would be required by such an etalon. Results of the study indicate that etalons may be made to operate at wavelengths as short as 121 nm.

  11. 500 C Electronic Packaging and Dielectric Materials for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Chen, Liang-yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.

    2016-01-01

    High-temperature environment operable sensors and electronics are required for exploring the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high temperature electronics, and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by these high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed. High-temperature environment operable sensors and electronics are required for probing the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and eventual applications of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high electronics and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed.

  12. Improvement of mechanical and tribological properties in steel surfaces by using titanium-aluminum/titanium-aluminum nitride multilayered system

    NASA Astrophysics Data System (ADS)

    Ipaz, L.; Caicedo, J. C.; Esteve, J.; Espinoza-Beltran, F. J.; Zambrano, G.

    2012-02-01

    Improvement of mechanical and tribological properties on AISI D3 steel surfaces coated with [Ti-Al/Ti-Al-N]n multilayer systems deposited in various bilayer periods (Λ) via magnetron co-sputtering pulsed d.c. method, from a metallic binary target; has been studied in this work exhaustively. The multilayer coatings were characterized in terms of structural, chemical, morphological, mechanical and tribological properties by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy, nanoindentation, pin-on-disc and scratch tests, respectively. The failure mode mechanisms were studied by optical microscopy. Results from X-ray diffraction analysis revealed that the crystal structure of TiAl/TiAlN multilayer coatings has a tetragonal and FCC NaCl-type lattice structures for Ti-Al and Ti-Al-N, respectively, i.e., it was found to be non-isostructural multilayers. An enhancement of both hardness and elastic modulus up to 29 GPa and 260 GPa, respectively, was observed as the bilayer periods (Λ) in the coatings were decreased. The sample with a bilayer period (Λ) of 25 nm and bilayer number n = 100 showed the lowest friction coefficient (∼0.28) and the highest critical load (45 N), corresponding to 2.7 and 1.5 times better than those values for the coating deposited with n = 1, respectively. These results indicate an enhancement of mechanical, tribological and adhesion properties, comparing to the [Ti-Al/Ti-Al-N]n multilayer systems with 1 bilayer at 26%, 63% and 33%, respectively. This enhancement in hardness and toughness for multilayer coatings could be attributed to the different mechanisms for layer formation with nanometric thickness such as the novel Ti-Al/Ti-Al-N effect and the number of interfaces that act as obstacles for the crack deflection and dissipation of crack energy.

  13. Characterization of TiN/B-C-N multilayers by transmission electron microscopy, ion beam backscattering, and low angle x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kung, H.; Fayeulle, S.; Nastasi, M.

    1997-10-01

    The effects of Ar ion irradiation on the structure and stability of multilayered DC sputtered thin films of TiN/B-C-N have been studied. An increase of the bilayer repeat length to a maximum of 12.8% and departure of nitrogen from the film was observed indicating the interdiffusion between TiN and B-C-N layers. For the highest dose (5 {times} 10{sup 16} ions/cm{sup 2}) the multilayered structure partly disappears. The various mechanisms are discussed in terms of stress-driven diffusion and viscous flow of atoms.

  14. Achieving diffraction-limited nanometer-scale X-ray point focus with two crossed multilayer Laue lenses: alignment challenges

    DOE PAGES

    Yan, Hanfei; Huang, Xiaojing; Bouet, Nathalie; ...

    2017-10-16

    In this article, we discuss misalignment-induced aberrations in a pair of crossed multilayer Laue lenses used for achieving a nanometer-scale x-ray point focus. We thoroughly investigate the impacts of two most important contributions, the orthogonality and the separation distance between two lenses. We find that misalignment in the orthogonality results in astigmatism at 45º and other inclination angles when coupled with a separation distance error. Theoretical explanation and experimental verification are provided. We show that to achieve a diffraction-limited point focus, accurate alignment of the azimuthal angle is required to ensure orthogonality between two lenses, and the required accuracy ismore » scaled with the ratio of the focus size to the aperture size.« less

  15. EUV phase-shifting masks and aberration monitors

    NASA Astrophysics Data System (ADS)

    Deng, Yunfei; Neureuther, Andrew R.

    2002-07-01

    Rigorous electromagnetic simulation with TEMPEST is used to examine the use of phase-shifting masks in EUV lithography. The effects of oblique incident illumination and mask patterning by ion-mixing of multilayers are analyzed. Oblique incident illumination causes streamers at absorber edges and causes position shifting in aerial images. The diffraction waves between ion-mixed and pristine multilayers are observed. The phase-shifting caused by stepped substrates is simulated and images show that it succeeds in creation of phase-shifting effects. The diffraction process at the phase boundary is also analyzed. As an example of EUV phase-shifting masks, a coma pattern and probe based aberration monitor is simulated and aerial images are formed under different levels of coma aberration. The probe signal rises quickly as coma increases as designed.

  16. Effect of Bi doping on morphotropic phase boundary and dielectric properties of PZT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Shraddha; Acharya, Smita, E-mail: saha275@yahoo.com

    2016-05-23

    In our present attempt, Pb{sub (1-x)}Bi{sub x}Zr{sub 0.52}Ti{sub 0.48}O{sub 3} [PBZT] {where x = 0, 0.05, 0.1} is synthesized by sol-gel route. Effect of Bi addition on structure, sinterability and dielectric properties are observed. The presence of morphotropic phase boundary (coexistence of tetragonal and rhombohedral symmetry) is confirmed by X-ray diffraction. Enhancement of sinterability after Bi doping is observed through a systematic sintering program. Frequency and temperature dependent dielectric constant are studied. Bi doping in PZT is found to enhance room temperature dielectric constant. However, at high temperature the dielectric constant of pure PZT is more than that of dopedmore » PZT.« less

  17. Dielectric properties of nematic liquid crystal doped with Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Maleki, A.; Ara, M. H. Majles; Saboohi, F.

    2017-04-01

    The influence of Fe3O4 nanoparticles (NPs) on dielectric properties of planar and homeotropic oriented nematic liquid crystals (NLCs) were studied during the temperature interval of 298-322 °K. It was found that the dielectric permittivity was considerably increased by adding NPs mass percentages. The structural characterization of the synthesized NPs with the scale 14-18 nm has been analyzed by the X-ray diffraction and field-emission scanning electron microscopy results. The obtained dielectric anisotropy (?) and mean dielectric (?) have shown an immense increment in the value of 1% and 10% wt. NPs doped NLCs, respectively. These results were assigned to the strong dipole-dipole interaction between the superparamagnetic particles and the surrounding liquid crystal molecules.

  18. Investigation of multiferroic behavior on flakes-like BiFeO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheikh, Javed R.; Gaikwad, Vishwajit M.; Acharya, Smita A., E-mail: saha275@yahoo.com

    2016-05-23

    In present work, multiferroic BiFeO{sub 3} was synthesized by hydrothermal route. The rhombohedral structure was confirmed X-ray diffraction pattern and data fitted with Reitveld refinement using Full-Prof software suite. SEM micrograph shows flake like morphology. Frequency and temperature dependence of dielectric constant and dielectric loss were studied and detected enhancement in dielectric constant. The magnetic measurement indicates antiferromagnetic nature of BFO. P-E curve shows ferroelectic hysteresis loop with remanent polarization (2Pr) 0.3518 µC/cm{sup 2}. The dielectric anomaly observed near T{sub N} can be assigned to magnetoelectric coupling which is useful in device application.

  19. Neutron and electron diffraction studies of La(Zn1/2Ti1/2)O3 perovskite.

    PubMed

    Ubic, Rick; Hu, Yi; Abrahams, Isaac

    2006-08-01

    The crystallography and microwave dielectric properties of La(Zn(1/2)Ti(1/2))O(3) (LZT) ceramics prepared via the mixed-oxide route were investigated in this study. While samples were largely single phase, small amounts of ZnO impurity were detected in sintered pellets. Observed reflections in electron and neutron diffraction patterns indicate that the symmetry of LZT is P2(1)/n. The B site is ordered on {110} or pseudocubic {111}, but the presence of the pseudocubic 1/2(111) reflection is in itself insufficient to indicate the existence of such order. Rietveld refinements of the neutron diffraction data yield an excellent fit for such a model. The structure is highly twinned, with variants related through common {211} composition planes and 90 degrees rotations about <011>. The microwave dielectric properties measured were epsilon(r) = 34, Qf = 36,090 and tau(f) = -70 MK(-1).

  20. Localized temperature stability in Low Temperature Cofired Ceramics (LTCC).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Steven Xunhu; Hsieh, Lung-Hwa.

    2012-04-01

    The base dielectrics of commercial low temperature cofired ceramics (LTCC) systems have a temperature coefficient of resonant frequency ({tau}{sub f}) in the range -50 {approx} -80 ppm/C. In this research we explored a method to realize zero or near zero {tau}{sub f} resonators by incorporating {tau}{sub f} compensating materials locally into a multilayer LTCC structure. To select composition for {tau}{sub f} adjustment, {tau}{sub f} compensating materials with different amount of titanates were formulated, synthesized, and characterized. Chemical interactions and physical compatibility between the {tau}{sub f} modifiers and the host LTCC dielectrics were investigated. Studies on stripline (SL) resonator panels withmore » multiple compensating dielectrics revealed that: 1) compositions using SrTiO{sub 3} provide the largest {tau}{sub f} adjustment among titanates, 2) the {tau}{sub f} compensation is proportional to the amount of SrTiO{sub 3} in compensating materials, as well as the thickness of the compensating layer, and 3) the most effective {tau}{sub f} compensation is achieved when the compensating dielectric is integrated next to the SL. Using the effective dielectric constant of a heterogeneous layered dielectric structure, results from Method of Momentum (MoM) electromagnetic simulations are consistent with the experimental observations.« less

  1. Dielectric properties and microstructures for various MLCCs coated with additives

    NASA Astrophysics Data System (ADS)

    Oh, Min Wook; Yeo, Dong Hun; Shin, Hyo Soon; Jeong, Dae Yong

    2013-12-01

    As electronic devices become smaller and have higher capacity, dielectric thin films are being used in the development of multilayer ceramic capacitors (MLCCs). Smaller BaTiO3 dielectric particles should be used to obtain the thickness of low dielectric layers. Further, MLCC properties are achieved through the uniform addition of various additives, but the existing method of adding nano additives has limitations. As such, this study evaluated the dielectric properties of BaTiO3 pellets after using the liquid coating method to add additives such as Dy, Mg, Mn, Cr, and Si to 150 nm BaTiO3 dielectric powder. Mn, Cr, and Si ions were each fixed at 0.1, 0.1, and 0.65 mol-%. Sintering was performed in a reducing atmosphere, and the microstructure and the dielectric properties were evaluated while varying Dy from 0.5 to 1.0 mol-% and Mg from 1.0 to 2.0 mol-%. Grain growth was observed for higher amounts of Dy, but were suppressed for higher amounts of Mg. With regards to changes in particle size, both the permittivity and the temperature coefficient of capacitance (TCC) increased with increasing particle size. The permittivity was highest for Si=0.65, Mn=0.1, Cr=0.1 Dy=0.75, and Mg=2.0 mol-%. These levels also satisfied the TCC properties of X7R. In the microstructure, the core-shell was the most developed.

  2. Integration of Multi-Functional Oxide Thin Film Heterostructures with III-V Semiconductors

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Shafiqur

    Integration of multi-functional oxide thin films with semiconductors has attracted considerable attention in recent years due to their potential applications in sensing and logic functionalities that can be incorporated in future system-on-a-chip devices. III-V semiconductor, for example, GaAs, have higher saturated electron velocity and mobility allowing transistors based on GaAs to operate at a much higher frequency with less noise compared to Si. In addition, because of its direct bandgap a number of efficient optical devices are possible and by oxide integrating with other III-V semiconductors the wavelengths can be made tunable through hetero-engineering of the bandgap. This study, based on the use of SrTiO3 (STO) films grown on GaAs (001) substrates by molecular beam epitaxy (MBE) as an intermediate buffer layer for the hetero-epitaxial growth of ferromagnetic La0.7Sr 0.3MnO3 (LSMO) and room temperature multiferroic BiFeO 3 (BFO) thin films and superlattice structures using pulsed laser deposition (PLD). The properties of the multilayer thin films in terms of growth modes, lattice spacing/strain, interface structures and texture were characterized by the in-situ reflection high energy electron diffraction (RHEED). The crystalline quality and chemical composition of the complex oxide heterostructures were investigated by a combination of X-ray diffraction (XRD) and X-ray photoelectron absorption spectroscopy (XPS). Surface morphology, piezo-response with domain structure, and ferroelectric switching observations were carried out on the thin film samples using a scanning probe microscope operated as a piezoresponse force microscopy (PFM) in the contact mode. The magnetization measurements with field cooling exhibit a surprising increment in magnetic moment with enhanced magnetic hysteresis squareness. This is the effect of exchange interaction between the antiferromagnetic BFO and the ferromagnetic LSMO at the interface. The integration of BFO materials with LSMO on GaAs substrate also facilitated the demonstration of resistive random access memory (ReRAM) devices which can be faster with lower energy consumption compared to present commercial technologies. Ferroelectric switching observations using piezoresponse force microscopy show polarization switching demonstrating its potential for read-write operation in NVM devices. The ferroelectric and electrical characterization exhibit strong resistive switching with low SET/RESET voltages. Furthermore, a prototypical epitaxial field effect transistor based on multiferroic BFO as the gate dielectric and ferromagnetic LSMO as the conducting channel was also demonstrated. The device exhibits a modulation in channel conductance with high ON/OFF ratio. The measured nanostructure and physical-compositional results from the multilayer are correlated with their corresponding dielectric, piezoelectric, and ferroelectric properties. These results provide an understanding of the heteroepitaxial growth of ferroelectric (FE)-antiferromagnetic (AFM) BFO on ferromagnetic LSMO as a simple thin film or superlattice structure, integrated on STO buffered GaAs (001) with full control over the interface structure at the atomic-scale. This work also represents the first step toward the realization of magnetoelectronic devices integrated with GaAs (001).

  3. Sharp focusing of laser light by multilayer cylinders with circular cross-section

    NASA Astrophysics Data System (ADS)

    Kozlova, E. S.

    2018-04-01

    In this paper, the focusing of laser light at 532 nm by dielectric cylinders with a metal shells is studied by using COMSOL Multiphysics. The analysis of cylinder design which proposed multilayered shell shows that a microcylinder with a gold-silver (or silver-gold) shell can improve the focusing process, especially in the case of TM polarization. The microcylinder with thin internal silver layer of 1 nm and outside gold layer of 9 nm focus TE-polarized light to nanojet with maximal intensity of 5.65 a.u., full width and full length at half maximum of intensity of of 0.39λ and 0.72λ, respectively.

  4. A method for building low loss multi-layer wiring for superconducting microwave devices

    NASA Astrophysics Data System (ADS)

    Dunsworth, A.; Barends, R.; Chen, Yu; Chen, Zijun; Chiaro, B.; Fowler, A.; Foxen, B.; Jeffrey, E.; Kelly, J.; Klimov, P. V.; Lucero, E.; Mutus, J. Y.; Neeley, M.; Neill, C.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Neven, H.; Martinis, John M.; Megrant, A.

    2018-02-01

    Complex integrated circuits require multiple wiring layers. In complementary metal-oxide-semiconductor processing, these layers are robustly separated by amorphous dielectrics. These dielectrics would dominate energy loss in superconducting integrated circuits. Here, we describe a procedure that capitalizes on the structural benefits of inter-layer dielectrics during fabrication and mitigates the added loss. We use a deposited inter-layer dielectric throughout fabrication and then etch it away post-fabrication. This technique is compatible with foundry level processing and can be generalized to make many different forms of low-loss wiring. We use this technique to create freestanding aluminum vacuum gap crossovers (airbridges). We characterize the added capacitive loss of these airbridges by connecting ground planes over microwave frequency λ/4 coplanar waveguide resonators and measuring resonator loss. We measure a low power resonator loss of ˜3.9 × 10-8 per bridge, which is 100 times lower than that of dielectric supported bridges. We further characterize these airbridges as crossovers, control line jumpers, and as part of a coupling network in gmon and fluxmon qubits. We measure qubit characteristic lifetimes (T1s) in excess of 30 μs in gmon devices.

  5. Low-dimensional ordering and fluctuations in methanol-{beta}-hydroquinone clathrate studied by x-ray and neutron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rheinstaedter, Maikel C.; Enderle, Mechthild; Kloepperpieper, Axel

    2005-01-01

    Methanol-{beta}-hydroquinone clathrate has been established as a model system for dielectric ordering and fluctuations and is conceptually close to magnetic spin systems. In x-ray and neutron diffraction experiments, we investigated the ordered structure, the one-dimensional (1D) and the three-dimensional critical scattering in the paraelectric phase, and the temperature dependence of the lattice constants. Our results can be explained by microscopic models of the methanol pseudospin in the hydroquinone cage network, in consistency with previous dielectric investigations. A coupling of the 1D fluctuations to local strains leads to an anomalous temperature dependence of the 1D lattice parameter in the paraelectric regime.

  6. Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks.

    PubMed

    Sergeant, Nicholas P; Pincon, Olivier; Agrawal, Mukul; Peumans, Peter

    2009-12-07

    Spectral control of the emissivity of surfaces is essential in applications such as solar thermal and thermophotovoltaic energy conversion in order to achieve the highest conversion efficiencies possible. We investigated the spectral performance of planar aperiodic metal-dielectric multilayer coatings for these applications. The response of the coatings was optimized for a target operational temperature using needle-optimization based on a transfer matrix approach. Excellent spectral selectivity was achieved over a wide angular range. These aperiodic metal-dielectric stacks have the potential to significantly increase the efficiency of thermophotovoltaic and solar thermal conversion systems. Optimal coatings for concentrated solar thermal conversion were modeled to have a thermal emissivity <7% at 720K while absorbing >94% of the incident light. In addition, optimized coatings for solar thermophotovoltaic applications were modeled to have thermal emissivity <16% at 1750K while absorbing >85% of the concentrated solar radiation.

  7. Structure and dielectric properties of (Ba0.7Sr0.3)1- x Na x (Ti0.9Sn0.1)1- x Nb x O3 ceramics

    NASA Astrophysics Data System (ADS)

    Ghoudi, Hanen; Chkoundali, Souad; Aydi, Abdelhedi; Khirouni, Kamel

    2017-11-01

    (Ba0.7Sr0.3)1- x Na x (Ti0.9Sn0.1)1- x Nb x O3 ceramics with compositions x = 0.6, 0.7, 0.8 and 0.9 were synthesized using the solid-state reaction method. These ceramics were examined by X-ray diffraction and dielectric measurements over a broad temperature and frequency ranges. X-ray diffraction patterns revealed a single-perovskite phase crystallized in a cubic structure, for x < 0.8, and in tetragonal, for x ≥ 0.8, with Pm3m and P4mm spaces groups, respectively. Two types of behaviors, classical ferroelectric or relaxor, were observed depending on the x composition. It is noted that temperatures T C (the Curie temperature) or T m (the temperature of maximum permittivity) rise when x increases and the relaxor character grows more significantly when x composition decreases. To analyze the dielectric relaxation degree of relaxor, various models were considered. It was proven that an exponential function could well describe the temperature dependence of the static dielectric constant and relaxation time.

  8. Temperature dependent x-ray diffraction and dielectric studies of multiferroic GaFeO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajeev; Mall, Ashish Kumar, E-mail: ashishm@iitk.ac.in; Gupta, Rajeev

    2016-05-06

    Polycrystalline GaFeO{sub 3} (GFO) samples were synthesized by sol-gel method. The structural and dielectric properties of GaFeO{sub 3} ceramic have been investigated by a combination of XRD and permittivity measurement. The X-ray diffraction spectra shows single phase orthorhombically distorted perovskite structure with Pc2{sub 1}n symmetry over a wide range of temperature 300 K to 600 K, with no evidence of any phase transition. Refined lattice parameters (a, b, c and V) increases with increasing temperature. Temperature dependent dielectric properties were investigated in the frequency range from 100Hz–5MHz. Impedance spectroscopy study on the sample showed that the dielectric constant and acmore » conductivity with frequency increases on increasing the temperature. Cole-Cole plots suggest that the response from grain is dominant at low temperature whereas grain boundary response overcomes as temperature increases. The relaxation activation energy (calculated from Cole-Cole plots) value is found to be 0.32 eV for the grain boundary. We believe that the oxygen ion vacancies play an important role in conduction processes at higher temperatures.« less

  9. Cross-sectional transmission electron microscopic study of irradiation induced nano-crystallization of nickel in a W/Ni multilayer.

    PubMed

    Bagchi, Sharmistha; Lalla, N P

    2008-06-11

    The present study reports the cross-sectional transmission electron microscopic investigations of swift heavy ion-irradiation induced nano-size recrystallization of Ni in a nearly immiscible W/Ni multilayer structure. Multilayer structures (MLS) of [W(25 Å)/Ni(25 Å)](10BL) were grown on Si-(100) substrate by the ion-beam sputtering technique. The as-synthesized MLS were subjected to 120 MeV-Au(9+) ion-irradiation to a fluence of ∼5 × 10(13) ions cm(-2). Wide-angle x-ray diffraction studies of pristine as well as irradiated W/Ni multilayers show deterioration of the superlattice structure, whereas x-ray reflectivity (XRR) measurement reveals a nearly unaffected microstructure after irradiation. Analysis of the XRR data using 'Parratt's formalism' does show a significant increase of W/Ni interface roughness. Cross-sectional transmission electron microscopy (TEM) studies carried out in diffraction and imaging modes (including bright-field and dark-field imaging), show that at high irradiation dose the intralayer microstructure of Ni becomes nano-crystalline (1-2 nm). During these irradiation induced changes of the intralayer microstructure, the interlayer definition of the W and Ni layers still remains intact. The observed nano-recrystallization of Ni has been attributed to competition between low miscibility of the W/Ni interface and the ion-beam induced mixing kinetics.

  10. Localized temperature stability of low temperature cofired ceramics

    DOEpatents

    Dai, Steven Xunhu

    2013-11-26

    The present invention is directed to low temperature cofired ceramic modules having localized temperature stability by incorporating temperature coefficient of resonant frequency compensating materials locally into a multilayer LTCC module. Chemical interactions can be minimized and physical compatibility between the compensating materials and the host LTCC dielectrics can be achieved. The invention enables embedded resonators with nearly temperature-independent resonance frequency.

  11. Design and characterization of terahertz-absorbing nano-laminates of dielectric and metal thin films.

    PubMed

    Bolakis, C; Grbovic, D; Lavrik, N V; Karunasiri, G

    2010-07-05

    A terahertz-absorbing thin-film stack, containing a dielectric Bragg reflector and a thin chromium metal film, was fabricated on a silicon substrate for applications in bi-material terahertz (THz) sensors. The Bragg reflector is to be used for optical readout of sensor deformation under THz illumination. The THz absorption characteristics of the thin-film composite were measured using Fourier transform infrared spectroscopy. The absorption of the structure was calculated both analytically and by finite element modeling and the two approaches agreed well. Finite element modeling provides a convenient way to extract the amount of power dissipation in each layer and is used to quantify the THz absorption in the multi-layer stack. The calculation and the model were verified by experimentally characterizing the multi-layer stack in the 3-5 THz range. The measured and simulated absorption characteristics show a reasonably good agreement. It was found that the composite film absorbed about 20% of the incident THz power. The model was used to optimize the thickness of the chromium film for achieving high THz absorption and found that about 50% absorption can be achieved when film thickness is around 9 nm.

  12. Active voltage contrast imaging of cross-sectional surface of multilayer ceramic capacitor using helium ion microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, C., E-mail: SAKAI.Chikako@nims.go.jp; Ishida, N.; Masuda, H.

    2016-08-01

    We studied active voltage contrast (AVC) imaging using helium ion microscopy (HIM). We observed secondary electron (SE) images of the cross-sectional surface of multilayer ceramic capacitors (MLCCs) with and without a voltage applied to the internal electrodes. When no voltage was applied, we obtained an image reflecting the material contrast between the Ni internal electrode region and the BaTiO{sub 3} dielectric region of the cross-sectional surface of the MLCC. When a voltage was applied, the electrical potential difference between the grounded and the positively biased internal electrodes affected the contrast (voltage contrast). Moreover, attenuation of the SE intensity from themore » grounded to the positively biased internal electrodes was observed in the dielectric region. Kelvin probe force microscopy (KPFM) measurements of the contact potential difference (CPD) were performed on the same sample. By using the AVC image from the HIM observation and the CPD image from the KPFM measurement, we could quantitatively evaluate the electrical potential. We think that the results of this study will lead to an expansion in the number of applications of HIM.« less

  13. VUV thin films, chapter 7

    NASA Technical Reports Server (NTRS)

    Zukic, Muamer; Torr, Douglas G.

    1993-01-01

    The application of thin film technology to the vacuum ultraviolet (VUV) wavelength region from 120 nm to 230 nm has not been fully exploited in the past because of absorption effects which complicate the accurate determination of the optical functions of dielectric materials. The problem therefore reduces to that of determining the real and imaginary parts of a complex optical function, namely the frequency dependent refractive index n and extinction coefficient k. We discuss techniques for the inverse retrieval of n and k for dielectric materials at VUV wavelengths from measurements of their reflectance and transmittance. Suitable substrate and film materials are identified for application in the VUV. Such applications include coatings for the fabrication of narrow and broadband filters and beamsplitters. The availability of such devices open the VUV regime to high resolution photometry, interferometry and polarimetry both for space based and laboratory applications. This chapter deals with the optics of absorbing multilayers, the determination of the optical functions for several useful materials, and the design of VUV multilayer stacks as applied to the design of narrow and broadband reflection and transmission filters and beamsplitters. Experimental techniques are discussed briefly, and several examples of the optical functions derived for selected materials are presented.

  14. Single resonance monolithic Fabry-Perot filters formed by volume Bragg gratings and multilayer dielectric mirrors

    NASA Astrophysics Data System (ADS)

    Lumeau, Julien; Koc, Cihan; Mokhun, Oleksiy; Smirnov, Vadim; Lequime, Michel; Glebov, Leonid B.

    2012-02-01

    High efficiency reflecting volume Bragg gratings (VBGs) recorded in PTR glass plates have shown un-preceded performances that make them very good candidates for narrowband spectral filtering with sub-nanometer spectral widths. However, decreasing the bandwidth to value below 30-50 pm is very challenging as it requires increasing the thickness of the RBG to more than 15-20 mm. To overcome this limitation, we propose a new approach which is a monolithic Fabry-Perot cavity which consists from a reflecting VBG with a multilayer dielectric mirror (MDM) deposited on its surface. A VBG with a grating vector perpendicular to its surface and a MDM produce a Fabry-Perot resonator with a single transmission band inside of the reflection spectrum of the VBG. We present a theoretical description of this new class of filters that allow achieving a single ultra-narrowband resonance associated with several hundred nanometers rejection band. Then we show the methods for designing and fabricating such filter. Finally, we present the steps that we followed in order to fabricate a first prototype for 852 nm and 1062 nm region that demonstrates a 30 pm bandwidth, 90+% transmission at resonance and a good agreement with theoretical simulation.

  15. Optical Properties of Metal-Dielectric Structures Based on Photon-Crystal Opal Matrices

    NASA Astrophysics Data System (ADS)

    Vanin, A. I.; Lukin, A. E.; Romanov, S. G.; Solovyev, V. G.; Khanin, S. D.; Yanikov, M. V.

    2018-04-01

    Optical properties of novel metal-dielectric nanocomposite materials based on opal matrices have been investigated. The position of optical resonances of nanocomposites, obtained by embedding of silver into the opal matrix by the electrothermodiffusion method, is explained by the Bragg diffraction, and an asymmetric form of resonance curves is attributed to the Fano resonance. An anomalous transmission and absorption of light by hybrid plasmon-photonic layered heterostructures, which is apparently associated with excitation of surface plasmon-polaritons, propagating along "metal-dielectric" interfaces, was revealed.

  16. Structural and dielectric properties of Zn1-xAlxO nanoparticles

    NASA Astrophysics Data System (ADS)

    Giri, N.; Mondal, A.; Sarkar, S.; Ray, R.

    2018-05-01

    Aluminium doped ZnO (AZO) nano-crystalline sample has been synthesized using chemical precipitation method with different doping concentrations. Detailed structural and morphological investigations of Zn1-xAlxO have been carried out using X-ray diffraction (XRD) and FE-SEM, respectively. Dependence of grain size of AZO with dopant concentration has been studied. Ac conductivity, dielectric constant and dielectric loss of Zn1-xAlxO (0 ≤ x ≤ 0.1) are investigated as a function of frequency (ω) and doping concentration (x) at room temperature.

  17. Nanotwin and phase transformation in tetragonal Pb(Fe1/2Nb1/2)1-xTixO3 single crystal

    NASA Astrophysics Data System (ADS)

    Tu, C.-S.; Tseng, C.-T.; Chien, R. R.; Schmidt, V. Hugo; Hsieh, C.-M.

    2008-09-01

    This work is a study of phase transformation in (001)-cut Pb(Fe1/2Nb1/2)1-xTixO3 (x =48%) single crystals by means of dielectric permittivity, domain structure, and in situ x-ray diffraction. A first-order T(TNT)-C(TNT) phase transition was observed at the Curie temperature TC≅518 K upon zero-field heating. T, TNT, and C are tetragonal, tetragonal nanotwin, and cubic phases, respectively. T(TNT) and C(TNT) indicate that minor TNT domains reside in the T and C matrices. Nanotwins, which can cause broad diffraction peak, remain above TC≅518 K and give an average microscopic cubic symmetry in the polarizing microscopy. Colossal dielectric permittivity (>104) was observed above room temperature with strong frequency dispersion. This study suggests that nanotwins can play an important role in relaxor ferroelectric crystals while phase transition takes place. The Fe ion is a potential candidate as a B-site dopant for enhancing dielectric permittivity.

  18. Influence of nanogold additives on phase formation, microstructure and dielectric properties of perovskite BaTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Nonkumwong, Jeeranan; Ananta, Supon; Srisombat, Laongnuan

    2015-06-01

    The formation of perovskite phase, microstructure and dielectric properties of nanogold-modified barium titanate (BaTiO3) ceramics was examined as a function of gold nanoparticle contents by employing a combination of X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray, Archimedes principle and dielectric measurement techniques. These ceramics were fabricated from a simple mixed-oxide method. The amount of gold nanoparticles was found to be one of the key factors controlling densification, grain growth and dielectric response in BaTiO3 ceramics. It was found that under suitable amount of nanogold addition (4 mol%), highly dense perovskite BaTiO3 ceramics with homogeneous microstructures of refined grains (~0.5-3.1 μm) and excellence dielectric properties can be produced.

  19. A comparison of LIDT behavior of metal-dielectric mirrors in ns and ps pulse regime at 1030 nm with regard to the coating technology

    NASA Astrophysics Data System (ADS)

    Škoda, Václav; Vanda, Jan; Uxa, Štěpán

    2017-11-01

    Several sets of mirror samples with multilayer system Ta2O5/SiO2 on silver metal layer were manufactured using either PVD or IAD coating technology. Both BK7 and fused silica substrates were used for preparation of samples. Laserinduced- damage-threshold (LIDT) of metal-dielectric mirrors was tested using a laser apparatus working at 1030 nm wavelength, in ns and ps pulse length domains in S-on-1 test mode. The measured damage threshold values at 45 deg angle of incidence and P-polarization were compared for different pulse length, substrate materials and coating technology.

  20. Large dielectric constant in zirconia polypyrrole hybrid nanocomposites.

    PubMed

    Dey, Ashis; De, S K

    2007-06-01

    Zirconia nanoparticles have been synthesized by a novel two-reverse emulsion technique and combined with polypyrrole (PPY) to form ZrO2-PPY nanocomposites. Complex impedance and dielectric permittivity of ZrO2-PPY nanocomposite have been investigated as a function of frequency and temperature for different compositions. The composite samples are characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy. The composites reveal ordered semiconducting behaviour. Polypyrrole is the major component in electrical transport process of the samples. A very large dielectric constant of about 12,000 at room temperature has been observed. The colossal dielectric constant is mainly dominated by interfacial polarization due to Maxwell-Wagner relaxation effect. Two completely separate groups of dielectric relaxation have been observed. The low frequency dielectric relaxation arises from surface defect states of zirconia nanoparticles. The broad peak at high frequency is due to Maxwell-Wagner type polarization.

  1. Studies on the structural, optical and dielectric properties of samarium coordinated with salicylic acid single crystal

    NASA Astrophysics Data System (ADS)

    Singh, Harjinder; Slathia, Goldy; Gupta, Rashmi; Bamzai, K. K.

    2018-04-01

    Samarium coordinated with salicylic acid was successfully grown as a single crystal by low temperature solution technique using mixed solvent of methanol and water in equal ratio. Structural characterization was carried out by single crystal X-ray diffraction analysis and it crystallizes in centrosymmetric space group P121/c1. FTIR and UV-Vis-NIR spectroscopy confirmed the compound formation and help to determine the mode of binding of the ligand to the rare earth-metal ion. Dielectric constant and dielectric loss have been measured over the frequency range 100 Hz - 30MHz. The decrease in dielectric constant with increases in frequency is due to the transition from interfacial polarization to dipolar polarization. The small value of dielectric constant at higher frequency ensures that the crystal is good candidate for NLO devices. Dielectric loss represents the resistive nature of the material.

  2. Facile synthesis of Ni/NiO@GO nanocomposites and its enhanced dielectric constant

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Giri, N.; Mondal, A.; Ray, R.

    2018-05-01

    Ni/NiO embedded Graphene Oxide (GO): Ni/NiO@GO is synthesized by citric acid assisted Pechini-type method. Structural and morphological characterizations are performed by X-ray powdered diffraction (XRD), field emission scanning electron microscopy (FESEM) and tunneling electron microscopy (TEM). Defects in GO sheets are probed by RAMAN spectroscopy. The temperature variation of dielectric constant (ɛR) and dielectric loss (tan δ) are investigated in the temperature range 300 - 400 K. Decoration of GO with Ni/NiO nanoparticles enhances its ɛR by˜55 times. Moreover, its dielectric constant measured at 5 MHz is found to be˜430 times to that of Ni/NiO along with the reduction of dielectric loss by a factor˜0.5. The enhanced dielectric constant makes the composite Ni/NiO@GO a potential candidate for using in ecologically friendly energy storage devices.

  3. Broadband high-efficiency dielectric metasurfaces for the visible spectrum

    PubMed Central

    Devlin, Robert C.; Khorasaninejad, Mohammadreza; Chen, Wei Ting; Oh, Jaewon; Capasso, Federico

    2016-01-01

    Metasurfaces are planar optical elements that hold promise for overcoming the limitations of refractive and conventional diffractive optics. Original dielectric metasurfaces are limited to transparency windows at infrared wavelengths because of significant optical absorption and loss at visible wavelengths. Thus, it is critical that new materials and nanofabrication techniques be developed to extend dielectric metasurfaces across the visible spectrum and to enable applications such as high numerical aperture lenses, color holograms, and wearable optics. Here, we demonstrate high performance dielectric metasurfaces in the form of holograms for red, green, and blue wavelengths with record absolute efficiency (>78%). We use atomic layer deposition of amorphous titanium dioxide with surface roughness less than 1 nm and negligible optical loss. We use a process for fabricating dielectric metasurfaces that allows us to produce anisotropic, subwavelength-spaced dielectric nanostructures with shape birefringence. This process is capable of realizing any high-efficiency metasurface optical element, e.g., metalenses and axicons. PMID:27601634

  4. Short range ferromagnetic, magneto-electric, and magneto-dielectric effect in ceramic Co{sub 3}TeO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Harishchandra, E-mail: singh85harish@gmail.com, E-mail: singh85harish@rrcat.gov.in; Ghosh, Haranath; Indus Synchrotrons Utilization Division, Raja Ramanna Center for Advanced Technology, Indore 452013

    2016-01-28

    We report observation of magneto-electric and magneto-dielectric couplings along with short range ferromagnetic order in ceramic Cobalt Tellurate (Co{sub 3}TeO{sub 6}, CTO) using magnetic, structural, dielectric, pyroelectric, and polarization studies. DC magnetization along with dielectric constant measurements indicate a coupling between magnetic order and electrical polarization. A strong anomaly in the dielectric constant at ∼17.4 K in zero magnetic field indicates spontaneous electric polarization, consistent with a recent neutron diffraction study. Observation of weak short range ferromagnetic order at lower temperatures is attributed to the Griffiths-like ferromagnetism. Furthermore, magnetic field dependence of the ferroelectric transition follows earlier theoretical predictions, applicable tomore » single crystal CTO. Finally, combined dielectric, pyroelectric, and polarization measurements suggest that the ground state of CTO may possess spontaneous symmetry breaking in the absence of magnetic field.« less

  5. Investigation on plasmonic responses in multilayered nanospheres including asymmetry and spatial nonlocal effects

    NASA Astrophysics Data System (ADS)

    Dong, Tianyu; Shi, Yi; Liu, Hui; Chen, Feng; Ma, Xikui; Mittra, Raj

    2017-12-01

    In this work, we present a rigorous approach for analyzing the optical response of multilayered spherical nano-particles comprised of either plasmonic metal or dielectric, when there is no longer radial symmetry and when nonlocality is included. The Lorenz-Mie theory is applied, and a linearized hydrodynamic Drude model as well as the general nonlocal optical response model for the metals are employed. Additional boundary conditions, viz., the continuity of normal components of polarization current density and the continuity of first-order pressure of free electron density, respectively, are incorporated when handling interfaces involving metals. The application of spherical addition theorems, enables us to express a spherical harmonic about one origin to spherical harmonics about a different origin, and leads to a linear system of equations for the inward- and outward-field modal coefficients for all the layers in the nanoparticle. Scattering matrices at interfaces are obtained and cascaded to obtain the expansion coefficients, to yield the final solution. Through extensive modelling of stratified concentric and eccentric metal-involved spherical nanoshells illuminating by a plane wave, we show that, within a nonlocal description, significant modifications of plasmonic response appear, e.g. a blue-shift in the extinction / scattering spectrum and a broadening spectrum of the resonance. In addition, it has been demonstrated that core-shell nanostructures provide an option for tunable Fano-resonance generators. The proposed method shows its capability and flexibility to analyze the nonlocal response of eccentric hybrid metal-dielectric multilayer structures as well as adjoined metal-involved nanoparticles, even when the number of layers is large.

  6. Extreme ultraviolet performance of a multilayer coated high density toroidal grating

    NASA Technical Reports Server (NTRS)

    Thomas, Roger J.; Keski-Kuha, Ritva A. M.; Neupert, Werner M.; Condor, Charles E.; Gum, Jeffrey S.

    1991-01-01

    The performance of a multilayer coated diffraction grating has been evaluated at EUV wavelengths both in terms of absolute efficiency and spectral resolution. The application of ten-layer Ir/Si multilayer coating to a 3600-lines/mm blazed toroidal replica grating produced a factor of 9 enhancement in peak efficiency near the design wavelength of about 30 nm in first order, without degrading its excellent quasistigmatic spectral resolution. The measured EUV efficiency peaked at 3.3 percent and was improved over the full spectral range between 25 and 35 nm compared with the premultilayer replica which had a standard gold coating. In addition, the grating's spectral resolution of greater than 5000 was maintained.

  7. Proposal for a multilayer read-only-memory optical disk structure.

    PubMed

    Ichimura, Isao; Saito, Kimihiro; Yamasaki, Takeshi; Osato, Kiyoshi

    2006-03-10

    Coherent interlayer cross talk and stray-light intensity of multilayer read-only-memory (ROM) optical disks are investigated. From results of scalar diffraction analyses, we conclude that layer separations above 10 microm are preferred in a system using a 0.85 numerical aperture objective lens in terms of signal quality and stability in focusing control. Disk structures are optimized to prevent signal deterioration resulting from multiple reflections, and appropriate detectors are determined to maintain acceptable stray-light intensity. In the experiment, quadrilayer and octalayer high-density ROM disks are prepared by stacking UV-curable films onto polycarbonate substrates. Data-to-clock jitters of < or = 7% demonstrate the feasibility of multilayer disk storage up to 200 Gbytes.

  8. Structural and magnetic properties of granular CoPd multilayers

    NASA Astrophysics Data System (ADS)

    Vivas, L. G.; Figueroa, A. I.; Bartolomé, F.; Rubín, J.; García, L. M.; Deranlot, C.; Petroff, F.; Ruiz, L.; González-Calbet, J. M.; Brookes, N. B.; Wilhelm, F.; Rogalev, A.; Bartolomé, J.

    2016-02-01

    Multilayers of bimetallic CoPd alloyed and assembled nanoparticles, prepared by room temperature sequential sputtering deposition on amorphous alumina, were studied by means of high-resolution transmission electron microscopy, x-ray diffraction, SQUID-based magnetometry and x-ray magnetic circular dichroism. Alloying between Co and Pd in these nanoparticles gives rise to a high perpendicular magnetic anisotropy. Their magnetic properties are temperature dependent: at low temperature, the multilayers are ferromagnetic with a high coercive field; at intermediate temperature the behavior is of a soft-ferromagnet, and at higher temperature, the perpendicular magnetic anisotropy in the nanoparticles disappears. The magnetic orbital moment to spin moment ratio is enhanced compared with Co bare nanoparticles and Co fcc bulk.

  9. Control of resonant wavelength from organic light-emitting materials by use of a Fabry-Perot microcavity structure.

    PubMed

    Jung, Boo Young; Kim, Nam Young; Lee, Changhee; Hwangbo, Chang Kwon; Seoul, Chang

    2002-06-01

    We report the fabrication of Fabry-Perot microcavity structures with the organic light-emitting material tris-(8-hydroxyquinoline) aluminum (Alq3) and derive their optical properties by measuring their photoluminescence (PL) and absorption. Silver and a TiO2-SiO2 multilayer were used as metal and dielectric reflectors, respectively, in a Fabry-Perot microcavity structure. Three types of microcavity were prepared: type A consisted of [air[Ag[Alq3]Ag]glass]; type B, of [air[dielectric[Alq3]dielectric]glass]; and type C, of [air[Ag[Alq2]dielectric]glass]. A bare Alq3 film of [air[Alq3]glass] had its PL peak near 514 nm, and its full width at half-maximum (FWHM) was 80 nm. The broad FWHM of a bare Alq3 film was reduced to 15-27.5, 7-10.5, and 16-16.6 nm for microcavity types A, B, and C, respectively. Also, we could control the PL peak of the microcavity structure by changing the spacer thickness, the amount of phase change on reflection, and the angle of incidence.

  10. Evaluation of electrical properties of Cr/CrN nano-multilayers for electronic applications.

    PubMed

    Marulanda, D M; Olaya, J J; Patiño, E J

    2011-06-01

    The electrical properties of Cr/CrN nano-multilayers produced by Unbalanced Magnetron Sputtering have been studied as a function of bilayer period and total thickness. Two groups of multilayers were produced: in the first group the bilayer period varied between 20 nm, 100 nm and 200 nm with total thickness of 1 microm, and in the second group the bilayer period varied between 25 nm, 50 nm and 100 nm and a total thickness of 100 nm. X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were used in order to investigate the microstructure characteristics of the multilayers, and the Four Point Probe (FPP) method was used to evaluate in-plane and transverse electrical resistivity. XRD results show (111) and (200) orientations for all the CrN coatings and the presence of a multilayer structure was confirmed through SEM studies. Transverse electrical resistivity results show that this property is strongly dependent on the bilayer period.

  11. Formation of (Ti,Al)N/Ti{sub 2}AlN multilayers after annealing of TiN/TiAl(N) multilayers deposited by ion beam sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolique, V.; Jaouen, M.; Cabioc'h, T.

    2008-04-15

    By using ion beam sputtering, TiN/TiAl(N) multilayers of various modulation wavelengths ({lambda}=8, 13, and 32 nm) were deposited onto silicon substrates at room temperature. After annealing at 600 deg. C in vacuum, one obtains for {lambda}=13 nm a (Ti,Al)N/Ti{sub 2}AlN multilayer as it is evidenced from x-ray diffraction, high resolution transmission electron microscopy, and energy filtered electron imaging experiments. X-ray photoelectron spectroscopy (XPS) experiments show that the as-deposited TiAl sublayers contain a noticeable amount of nitrogen atoms which mean concentration varies with the period {lambda}. They also evidenced the diffusion of aluminum into TiN sublayers after annealing. Deduced from thesemore » observations, we propose a model to explain why this solid-state phase transformation depends on the period {lambda} of the multilayer.« less

  12. Dark-field transmission electron microscopy and the Debye-Waller factor of graphene

    PubMed Central

    Hubbard, William A.; White, E. R.; Dawson, Ben; Lodge, M. S.; Ishigami, Masa; Regan, B. C.

    2014-01-01

    Graphene's structure bears on both the material's electronic properties and fundamental questions about long range order in two-dimensional crystals. We present an analytic calculation of selected area electron diffraction from multi-layer graphene and compare it with data from samples prepared by chemical vapor deposition and mechanical exfoliation. A single layer scatters only 0.5% of the incident electrons, so this kinematical calculation can be considered reliable for five or fewer layers. Dark-field transmission electron micrographs of multi-layer graphene illustrate how knowledge of the diffraction peak intensities can be applied for rapid mapping of thickness, stacking, and grain boundaries. The diffraction peak intensities also depend on the mean-square displacement of atoms from their ideal lattice locations, which is parameterized by a Debye-Waller factor. We measure the Debye-Waller factor of a suspended monolayer of exfoliated graphene and find a result consistent with an estimate based on the Debye model. For laboratory-scale graphene samples, finite size effects are sufficient to stabilize the graphene lattice against melting, indicating that ripples in the third dimension are not necessary. PMID:25242882

  13. Dark-field transmission electron microscopy and the Debye-Waller factor of graphene.

    PubMed

    Shevitski, Brian; Mecklenburg, Matthew; Hubbard, William A; White, E R; Dawson, Ben; Lodge, M S; Ishigami, Masa; Regan, B C

    2013-01-15

    Graphene's structure bears on both the material's electronic properties and fundamental questions about long range order in two-dimensional crystals. We present an analytic calculation of selected area electron diffraction from multi-layer graphene and compare it with data from samples prepared by chemical vapor deposition and mechanical exfoliation. A single layer scatters only 0.5% of the incident electrons, so this kinematical calculation can be considered reliable for five or fewer layers. Dark-field transmission electron micrographs of multi-layer graphene illustrate how knowledge of the diffraction peak intensities can be applied for rapid mapping of thickness, stacking, and grain boundaries. The diffraction peak intensities also depend on the mean-square displacement of atoms from their ideal lattice locations, which is parameterized by a Debye-Waller factor. We measure the Debye-Waller factor of a suspended monolayer of exfoliated graphene and find a result consistent with an estimate based on the Debye model. For laboratory-scale graphene samples, finite size effects are sufficient to stabilize the graphene lattice against melting, indicating that ripples in the third dimension are not necessary.

  14. Design and fabrication of sub-wavelength anti-reflection grating

    NASA Astrophysics Data System (ADS)

    Zou, Wenlong; Li, Chaoming; Chen, Xinrong; Cai, Zhijian; Wu, Jianhong

    2018-01-01

    In the high power laser system, the reflection of optical surface has a strong impact on the efficiency for luminous energy utilization. Fresnel reflection can be effectively suppressed by antireflection film. For that, the anti-reflection film is one of the important optical elements in high power laser system. The common preparation methods of anti-reflection film include monolayer film, multilayer film and sub-wavelength grating. The effectiveness of monolayer is unsatisfactory, and its application spectrum bandwidth is very narrow. The preparation process of multilayer film is complex and it is very expensive. The emerging technology of fabrication anti-reflection film is sub-wavelength grating. The zero order transmission diffraction efficiency depends on the period, etching depth and duty cycle of the grating. The structure parameters of antireflection grating were designed and optimized under small angle incidence of 351nm based on rigorous coupled wave analysis method. The impaction of zero order reflection diffraction and zero order transmission diffraction efficiency on period, duty cycle and etching depth of grating was discussed in detail in this paper. The sub-wavelength anti-reflection grating was fabricated by holographic and ion etching method.

  15. A Preliminary Attempt at Sintering an Ultrafine Alumina Powder Using Microwaves

    DTIC Science & Technology

    1994-09-01

    and unusual properties [Ref. B4]. Dielectric properties of individual ceramic phases differ depending on parameters such as compositicn...useful parameter is an estimate of the amount of power dissipated into a dielectric with a known effective loss factor. For a high frequency electric...cavities, and their influence in ceramic samples must be considered. Therefore scattering, diffraction, interference, and reflection and refraction

  16. Dielectric studies on struvite urinary crystals, a gateway to the new treatment modality for urolithiasis

    NASA Astrophysics Data System (ADS)

    Rajan, Reshma; Raj, N. Arunai Nambi; Madeswaran, S.; Babu, D. Rajan

    2015-09-01

    Struvite or magnesium ammonium phosphate hexahydrate (MAPH) are biological crystals, found in the kidney, which are formed due to the infection caused by urea splitting bacteria in the urinary tract. The struvite crystals observe different morphologies and were developed using single diffusion gel growth technique. The crystalline nature and its composition were studied from different characterization techniques like X-ray Diffraction (XRD) and FTIR. The dielectric behavior of the developed crystal was studied by varying temperature and at different frequencies. The parameters like dielectric constant, dielectric loss, ac conductivity, ac resistivity, impedance and admittance of the struvite crystals were calculated. The studies proved that the dielectric loss or dissipation heat is high in lower frequencies at normal body temperature, which develops a plasma state in the stones and in turn leads to the disintegration of urinary stones. The dielectric nature of the stones leads to the dielectric therapy, which will be a gateway for future treatment modality for urolithiasis.

  17. Planar techniques for fabricating X-ray diffraction gratings and zone plates

    NASA Technical Reports Server (NTRS)

    Smith, H. I.; Anderson, E. H.; Hawryluk, A. M.; Schattenburg, M. L.

    1984-01-01

    The state of current planar techniques in the fabrication of Fresnel zone plates and diffraction gratings is reviewed. Among the fabrication techniques described are multilayer resist techniques; scanning electron beam lithography; and holographic lithography. Consideration is also given to: X-ray lithography; ion beam lithography; and electroplating. SEM photographs of the undercut profiles obtained in a type AZ 135OB photoresistor by holographic lithography are provided.

  18. Three Dimensional Transient Analysis of Microstrip Circuits in Multilayered Anisotropic Media

    DTIC Science & Technology

    1991-11-14

    dimensions, resonance is possible within the low gigahertz frequency range. Because the effects of diffraction during proximity-print x-ray lithography ...facilitate lead passage. The simulation results, comparing radi- paksgo and sourcl ation from a gasketed and ungasketed heatsink with an dMD TPI as... lithography are of critical importance, a number of previous researchers have attempted to calculate the diffraction patterns and minimum achievable

  19. Effect of substrate material selection on polychromatic integral diffraction efficiency for multilayer diffractive optics in oblique incident situation

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Cui, Qingfeng; Piao, Mingxu

    2018-05-01

    The effect of substrate material selection for multilayer diffractive optical elements (MLDOEs) on polychromatic integral diffraction efficiency (PIDE) is studied in the oblique incident situation. A mathematical model of substrate material selection is proposed to obtain the high PIDE with large incident angle. The extended expression of the microstructure heights with consideration of incident angle is deduced to calculate the PIDE difference Δ η bar(λ) for different substrate material combinations. The smaller value of Δ η bar(λ) indicates the more optimal substrate material combination in a wide incident angle range. Based on the deduced mathematical model, different MLDOEs are analyzed in visible and infrared wavebands. The results show that the three-layer DOEs can be applied in larger incident angle situation than the double-layer DOEs in visible waveband. When the two substrate materials are the same, polycarbonate (PC) is more reasonable than poly(methyl methacrylate) (PMMA) as the middle filling optical material for the three-layer DOEs. In the infrared waveband, the PIDE decreases in the LWIR are obviously smaller than that in the MWIR for the same substrate material combination, and the PIDE cannot be calculated when the incident angle larger than critical angle. The analysis results can be used to guide the hybrid optical system design with MLDOEs.

  20. Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens

    DOE PAGES

    Dennis, Brian S.; Czaplewski, David A.; Haftel, Michael I.; ...

    2015-08-12

    Passive optical elements can play key roles in photonic applications such as plasmonic integrated circuits. Here we experimentally demonstrate passive gap-plasmon focusing and routing in two-dimensions. This is accomplished using a high numerical-aperture metal-dielectric-metal lens incorporated into a planar-waveguide device. Fabrication via metal sputtering, oxide deposition, electron- and focused-ion- beam lithography, and argon ion-milling is reported on in detail. Diffraction-limited focusing is optically characterized by sampling out-coupled light with a microscope. The measured focal distance and full-width-half-maximum spot size agree well with the calculated lens performance. The surface plasmon polariton propagation length is measured by sampling light from multiple out-couplermore » slits.« less

  1. Growth and characterization of diammonium copper disulphate hexahydrate single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siva Sankari, R.; Perumal, Rajesh Narayana, E-mail: r.shankarisai@gmail.com

    2014-03-01

    Graphical abstract: Diammonium copper disulphate hexahydrate (DACS) is one of the most promising inorganic dielectric crystals with exceptional mechanical properties. Good quality crystals of DACS were grown by using solution method in a period of 30 days. The grown crystals were subjected to single crystal X-ray diffraction analysis in order to establish their crystalline nature. Thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis were performed for the crystal. Several solid state physical parameters have been determined for the grown crystals. The dielectric constant and the dielectric loss and AC conductivity of the grown crystal were studied as a functionmore » of frequency and temperature has been calculated and plotted. - Highlights: • Diammonium copper disulphate is grown for the first time and CCDC number obtained. • Thermal analysis is done to see the stability range of the crystals. • Band gap and UV cut off wavelength of the crystal are determined to be 2.4 eV and 472.86 nm, respectively. • Dielectric constant, dielectric loss and AC conductivity are plotted as a function of applied field. - Abstract: Diammonium copper disulphate hexahydrate is one of the most promising inorganic crystals with exceptional dielectric properties. A good quality crystal was harvested in a 30-day period using solution growth method. The grown crystal was subjected to various characterization techniques like single crystal X-ray diffraction analysis, thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis. Unit cell dimensions of the grown crystal have been identified from XRD studies. Functional groups of the title compounds have been identified from FTIR studies. Thermal stability of the samples was checked by TG/DTA studies. Band gap of the crystal was calculated. The dielectric constant and dielectric loss were studied as a function of frequency of the applied field. AC conductivity was plotted as a function of temperature.« less

  2. Manufacturing Methods and Technology for Microwave Stripline Circuits

    DTIC Science & Technology

    1982-02-26

    to the dielectric material so It does not peel during the etching and subsequent processing. The copper cladding requirements were defined by MIL-F...the B-stage,giv- ing acceptable peel strengths per the military requirements. For PTFE sub- strata printed wiring boards that are laminated using a...examining multilayers for measles and delaminations, and analytically by performing peel tests and glass transition temperatures. "STRIPLINE

  3. Herpin effective media resonant underlayers and resonant overlayer designs for ultra-high NA interference lithography.

    PubMed

    Bourke, Levi; Blaikie, Richard J

    2017-12-01

    Dielectric waveguide resonant underlayers are employed in ultra-high NA interference photolithography to effectively double the depth of field. Generally a single high refractive index waveguiding layer is employed. Here multilayer Herpin effective medium methods are explored to develop equivalent multilayer waveguiding layers. Herpin equivalent resonant underlayers are shown to be suitable replacements provided at least one layer within the Herpin trilayer supports propagating fields. In addition, a method of increasing the intensity incident upon the photoresist using resonant overlayers is also developed. This method is shown to greatly enhance the intensity within the photoresist making the use of thicker, safer, non-absorbing, low refractive index matching liquids potentially suitable for large-scale applications.

  4. Characteristics of high-k gate dielectric formed by the oxidation of sputtered Hf/Zr/Hf thin films on the Si substrate

    NASA Astrophysics Data System (ADS)

    Kim, H. D.; Roh, Y.; Lee, J. E.; Kang, H.-B.; Yang, C.-W.; Lee, N.-E.

    2004-07-01

    We have investigated the effects of high temperature annealing on the physical and electrical properties of multilayered high-k gate oxide [HfSixOy/HfO2/intermixed-layer(IL)/ZrO2/intermixed-layer(IL)/HfO2] in metal-oxide-semiconductor device. The multilayered high-k films were formed after oxidizing the Hf/Zr/Hf films deposited directly on the Si substrate. The subsequent N2 annealing at high temperature (>= 700 °C) not only results in the polycrystallization of the multilayered high-k films, but also causes the diffusion of Zr. The latter transforms the HfSixOy/HfO2/IL/ZrO2/IL/HfO2 film into the Zr-doped HfO2 film, and improves electrical properties in general. However, the thin SiOx interfacial layer starts to form if annealing temperature increases over 700 °C, deteriorating the equivalent oxide thickness. .

  5. Annealing effect on the structural and dielectric properties of hematite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Chahal, Surjeet; Singh, Dharamvir; Kumar, Ashok; Kumar, Parmod; Asokan, K.

    2018-05-01

    In the present work, we have synthesized hematite (α-Fe2O3) nanoparticles by sol-gel method and sintered them at different temperatures (200 °C, 400 °C and 800 °C for six hours). The samples were then characterized using versatile characterization techniques such as X-ray diffraction (XRD), dielectric measurement and temperature dependent resistivity (RT) for their structural, dielectric and electrical properties. XRD measurements infer that intensity of peak increases with an increase in temperature resulting an increase in crystallite size. Temperature dependent resistivity also shows decrease in the resistivity of the samples. Furthermore, the dielectric measurements correspond to the increase in the dielectric constant. Based on these observations, it can be inferred that sintering temperature plays an important role in tailoring the various physical properties of hematite nanoparticles.

  6. Studies of ferroelectric and dielectric properties of pure and doped barium titanate prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Bisen, Supriya; Mishra, Ashutosh; Jarabana, Kanaka M.

    2016-05-01

    In this work, Barium Titanate (BaTiO3) powders were synthesized via Sol-Gel auto combustion method using citric acid as a chelating agent. We study the behavior of ferroelectric and dielectric properties of pure and doped BaTiO3 on different concentration. To understand the phase and structure of the powder calcined at 900°C were characterized by X-ray Diffraction shows that tetragonal phase is dominant for pure and doped BTO and data fitted by Rietveld Refinement. Electric and Dielectric properties were characterized by P-E Hysteresis and Dielectric measurement. In P-E measurement ferroelectric loop tracer applied for different voltage. The temperature dependant dielectric constant behavior was observed as a function of frequency recorded on hp-Hewlett Packard 4192A, LF impedance, 5Hz-13Hz analyzer.

  7. Dielectric Relaxation Behavior and AC Electrical Conductivity Study of 2-(1,2-Dihydro-7-Methyl-2-Oxoquinoline-5-yl) Malononitrile (DMOQMN)

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; El-Zaidia, E. F. M.; Darwish, A. A. A.; Salem, G. F.

    2017-02-01

    Dielectric relaxation and alternative current conductivity of a new organic compound 2-(1,2-dihydro-7-methyl-2-oxoquinoline-5-yl) malononitrile (DMOQMN) have been investigated. X-ray diffraction (XRD) at room temperature reveals that DMOQMN samples have a polycrystalline structure of the triclinic system. The analysis of the dielectric constant and dielectric loss index suggested the dominant polarization is performed and the Maxwell-Wagner-Sillar type polarization is dominating at low frequency and high temperature. These results have been confirmed by the XRD and dielectric modulus. The estimated relaxation time and the activation energy are 9 × 10-13 s and 0.43 eV, respectively. Our results indicated that the conduction mechanism of DMOQMN is controlled by the correlation barrier hopping (CBH) model.

  8. Multilayered sandwich-like architecture containing large-scale faceted Al–Cu–Fe quasicrystal grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Dongxia; He, Zhanbing, E-mail: hezhanbing@ustb.edu.cn

    Faceted quasicrystals are structurally special compared with traditional crystals. Although the application of faceted quasicrystals has been expected, wide-scale application has not occurred owing to the limited exposure of the facets. Using a facile method of heat treatment, we synthesize a multilayered sandwich-like structure with each layer composed of large-scale pentagonal-dodecahedra of Al–Cu–Fe quasicrystals. Moreover, there are channels between the adjacent Al–Cu–Fe layers that serve to increase the exposure of the facets of quasicrystals. Scanning electron microscopy, transmission electron microscopy, and X-ray diffraction are used to characterize the multilayered architecture, and the generation mechanisms of this special structure are alsomore » discussed. - Highlights: • A multilayered sandwich-like structure is produced by a facile method. • Each layer is covered by large-scale faceted Al–Cu–Fe quasicrystals. • There are channels between the adjacent Al–Cu–Fe layers.« less

  9. Poly(vinyl acetate)/clay nanocomposite materials for organic thin film transistor application.

    PubMed

    Park, B J; Sung, J H; Park, J H; Choi, J S; Choi, H J

    2008-05-01

    Nanocomposite materials of poly(vinyl acetate) (PVAc) and organoclay were fabricated, in order to be utilized as dielectric materials of the organic thin film transistor (OTFT). Spin coating condition of the nanocomposite solution was examined considering shear viscosity of the composite materials dissolved in chloroform. Intercalated structure of the PVAc/clay nanocomposites was characterized using both wide-angle X-ray diffraction and TEM. Fracture morphology of the composite film on silicon wafer was also observed by SEM. Dielectric constant (4.15) of the nanocomposite materials shows that the PVAc/clay nanocomposites are applicable for the gate dielectric materials.

  10. Crystal growth, structure analysis and characterisation of 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sankari, R. Siva, E-mail: sivasankari.sh@act.edu.in; Perumal, Rajesh Narayana

    2014-04-24

    Single crystal of dielectric material 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid has been grown by slow evaporation solution growth method. The grown crystal was harvested in 25 days. The crystal structure was analyzed by Single crystal X - ray diffraction. UV-vis-NIR analysis was performed to examine the optical property of the grown crystal. The thermal property of the grown crystal was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The dielectric measurements were carried out and the dielectric constant was calculated and plotted at all frequencies.

  11. Effect of La3+ Substitution on Electric, Dielectric and Magnetic Properties of Cobalt Nano-Ferrite

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Singh, M.

    2011-07-01

    Ultrafine particles of CoLaxFe2-xO4 (x = 0, 0.20) were prepared by using co-precipitation method. X-ray diffraction studies show that the samples have cubic spinel structure and average crystallite size of x = 0 and x = 0.2 are 49.84 nm and 27.73 nm respectively. Dielectric and magnetic properties have been studied by impedance analyzer and magnetic properties of the ferrite system were studied using VSM respectively. La3+ ions modulate significantly the electric, dielectric and magnetic properties of cobalt spinel ferrites.

  12. High frequency scattering from a thin lossless dielectric slab. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Burgener, K. W.

    1979-01-01

    A solution for scattering from a thin dielectric slab is developed based on geometrical optics and the geometrical theory of diffraction with the intention of developing a model for a windshield of a small private aircraft for incorporation in an aircraft antenna code. Results of the theory are compared with experimental measurements and moment method calculations showing good agreement. Application of the solution is also addressed.

  13. Magnetic and dielectric behavior of chromium substituted Co-Mg ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Jadoun, Priya; Jyoti, Prashant, B. L.; Dolia, S. N.; Bhatnagar, D.; Saxena, V. K.

    2016-05-01

    The chromium doped Co-Mg ferrite with composition Co0.5Mg0.5Cr0.2Fe1.8O4 has been synthesized using sol-gel auto combustion method. The crystal structure has been analyzed by X-ray diffraction (XRD) technique. XRD pattern reveals the formation of single phase cubic spinel structure. The magnetic measurements show ferromagnetic behavior at room temperature and large coercivity is observed on cooling down the temperature to 20 K. Dielectric constant (ɛ') and dielectric loss tangent (tan δ) have been determined at room temperature as a function of frequency in the frequency range 75 kHz to 80 MHz. The decrease in dielectric constant with increasing frequency attributes to Maxwell Wagner model and conduction mechanism in ferrites.

  14. Low temperature sintered giant dielectric permittivity CaCu3Ti4O12 sol-gel synthesized nanoparticle capacitors

    NASA Astrophysics Data System (ADS)

    Puli, Venkata Sreenivas; Adireddy, Shiva; Kothakonda, Manish; Elupula, Ravinder; Chrisey, Douglas B.

    This paper reports on synthesis of polycrystalline complex perovskite CaCu3Ti4O12 (as CCTO) ceramic powders prepared by a sol-gel auto combustion method at different sintering temperatures and sintering times, respectively. The effect of sintering time on the structure, morphology, dielectric and electrical properties of CCTO ceramics is investigated. Tuning the electrical properties via different sintering times is demonstrated for ceramic samples. X-ray diffraction (XRD) studies confirm perovskite-like structure at room temperature. Abnormal grain growth is observed for ceramic samples. Giant dielectric permittivity was realized for CCTO ceramics. High dielectric permittivity was attributed to the internal barrier layer capacitance (IBLC) model associated with the Maxwell-Wagner (MW) polarization mechanism.

  15. A novel method of fabricating laminated silicone stack actuators with pre-strained dielectric layers

    NASA Astrophysics Data System (ADS)

    Hinitt, Andrew D.; Conn, Andrew T.

    2014-03-01

    In recent studies, stack based Dielectric Elastomer Actuators (DEAs) have been successfully used in haptic feedback and sensing applications. However, limitations in the fabrication method, and materials used to con- struct stack actuators constrain their force and displacement output per unit volume. This paper focuses on a fabrication process enabling a stacked elastomer actuator to withstand the high tensile forces needed for high power applications, such as mimetics for mammalian muscle contraction (i.e prostheses), whilst requiring low voltage for thickness-mode contractile actuation. Spun elastomer layers are bonded together in a pre-strained state using a conductive adhesive filler, forming a Laminated Inter-Penetrating Network (L-IPN) with repeatable and uniform electrode thickness. The resulting structure utilises the stored strain energy of the dielectric elas- tomer to compress the cured electrode composite material. The method is used to fabricate an L-IPN example, which demonstrated that the bonded L-IPN has high tensile strength normal to the lamination. Additionally, the uniformity and retained dielectric layer pre-strain of the L-IPN are confirmed. The described method is envisaged to be used in a semi-automated assembly of large-scale multi-layer stacks of pre-strained dielectric layers possessing a tensile strength in the range generated by mammalian muscle.

  16. X-ray diffraction, dielectric, conduction and Raman studies in Na{sub 0.925}Bi{sub 0.075}Nb{sub 0.925}Mn{sub 0.075}O{sub 3} ceramic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaker, Chiheb; Laboratoire de Physique de la Matiere Condensee; Gagou, Y.

    2012-02-15

    Ceramic with composition Na{sub 0.925}Bi{sub 0.075}Nb{sub 0.925}Mn{sub 0.075}O{sub 3} (NNBM0075) was synthesized by high temperature solid state reaction technique. It was studied using X-ray diffraction (XRD), dielectric measurements and Raman spectroscopy. The sample crystallizes in orthorhombic perovskite structure with space group Pbma at room temperature. Dielectric properties of the ceramic was investigated in a broad range of temperatures (-150 to 450 deg. C) and frequencies (0.1-10{sup 3} kHz), and show two different anomalies connected to the symmetry change and electrical conductivity. Dielectric frequency dispersion phenomena in the NNBM0075 ceramic was analyzed by impedance spectroscopy in the temperature range from 55more » to 425 deg. C. The Cole-Cole analysis based on electrical circuit and least square method was used to characterize the conduction phenomenon. A separation of the grain and grain boundary properties was achieved using an equivalent circuit model. The different parameters of this circuit were determined using impedance studies. Four conduction ranges, with different activation energies, were determined using the Arrhenius model. Raman spectra were studied as a function of temperatures and confirmed the X-ray and dielectric results. This composition is of interest for applications due to his physical properties and environmentally friendly character.« less

  17. Design and analysis of a fast, two-mirror soft-x-ray microscope

    NASA Technical Reports Server (NTRS)

    Shealy, D. L.; Wang, C.; Jiang, W.; Jin, L.; Hoover, R. B.

    1992-01-01

    During the past several years, a number of investigators have addressed the design, analysis, fabrication, and testing of spherical Schwarzschild microscopes for soft-x-ray applications using multilayer coatings. Some of these systems have demonstrated diffraction limited resolution for small numerical apertures. Rigorously aplanatic, two-aspherical mirror Head microscopes can provide near diffraction limited resolution for very large numerical apertures. The relationships between the numerical aperture, mirror radii and diameters, magnifications, and total system length for Schwarzschild microscope configurations are summarized. Also, an analysis of the characteristics of the Head-Schwarzschild surfaces will be reported. The numerical surface data predicted by the Head equations were fit by a variety of functions and analyzed by conventional optical design codes. Efforts have been made to determine whether current optical substrate and multilayer coating technologies will permit construction of a very fast Head microscope which can provide resolution approaching that of the wavelength of the incident radiation.

  18. Imaging Arrays With Improved Transmit Power Capability

    PubMed Central

    Zipparo, Michael J.; Bing, Kristin F.; Nightingale, Kathy R.

    2010-01-01

    Bonded multilayer ceramics and composites incorporating low-loss piezoceramics have been applied to arrays for ultrasound imaging to improve acoustic transmit power levels and to reduce internal heating. Commercially available hard PZT from multiple vendors has been characterized for microstructure, ability to be processed, and electroacoustic properties. Multilayers using the best materials demonstrate the tradeoffs compared with the softer PZT5-H typically used for imaging arrays. Three-layer PZT4 composites exhibit an effective dielectric constant that is three times that of single layer PZT5H, a 50% higher mechanical Q, a 30% lower acoustic impedance, and only a 10% lower coupling coefficient. Application of low-loss multilayers to linear phased and large curved arrays results in equivalent or better element performance. A 3-layer PZT4 composite array achieved the same transmit intensity at 40% lower transmit voltage and with a 35% lower face temperature increase than the PZT-5 control. Although B-mode images show similar quality, acoustic radiation force impulse (ARFI) images show increased displacement for a given drive voltage. An increased failure rate for the multilayers following extended operation indicates that further development of the bond process will be necessary. In conclusion, bonded multilayer ceramics and composites allow additional design freedom to optimize arrays and improve the overall performance for increased acoustic output while maintaining image quality. PMID:20875996

  19. Small, fast, and tough: Shrinking down integrated elastomer transducers

    NASA Astrophysics Data System (ADS)

    Rosset, Samuel; Shea, Herbert R.

    2016-09-01

    We review recent progress in miniaturized dielectric elastomer actuators (DEAs), sensors, and energy harvesters. We focus primarily on configurations where the large strain, high compliance, stretchability, and high level of integration offered by dielectric elastomer transducers provide significant advantages over other mm or μm-scale transduction technologies. We first present the most active application areas, including: tunable optics, soft robotics, haptics, micro fluidics, biomedical devices, and stretchable sensors. We then discuss the fabrication challenges related to miniaturization, such as thin membrane fabrication, precise patterning of compliant electrodes, and reliable batch fabrication of multilayer devices. We finally address the impact of miniaturization on strain, force, and driving voltage, as well as the important effect of boundary conditions on the performance of mm-scale DEAs.

  20. Characterization facility for magneto-optic media and systems

    NASA Technical Reports Server (NTRS)

    Mansuripur, M.; Fu, H.; Gadetsky, S.; Sugaya, S.; Wu, T. H.; Zambuto, J.; Gerber, R.; Goodman, T.; Erwin, J. K.

    1993-01-01

    Objectives of this research are: (1) to measure the hysteresis loop, Kerr rotation angle, anisotropy energy profile, Hall voltage, and magnetoresistance of thin-film magneto-optic media using our loop-tracer; (2) measure the wavelength-dependence of the Kerr rotation angle, Theta(sub k), and ellipticity, epsilon(sub k), for thin-film media using our magneto-optic Kerr spectrometer (MOKS); (3) measure the dielectric tensor of thin-film and multilayer samples using our variable-angle magneto-optic ellipsometer (VAMOE); (4) measure the hysteresis loop, coercivity, remanent magnetization, saturation magnetization, and anisotropy energy constant for thin film magnetic media using vibrating sample magnetometry; (5) observe small magnetic domains and investigate their interaction with defects using magnetic force microscopy; (6) perform static read/write/erase experiments on thin-film magneto-optic media using our static test station; (7) integrate the existing models of magnetization, magneto-optic effects, coercivity, and anisotropy in an interactive and user-friendly environment, and analyze the characterization data obtained in the various experiments, using this modeling package; (8) measure focusing- and tracking-error signals on a static testbed, determine the 'feedthrough' for various focusing schemes, investigate the effects of polarization and birefringence, and compare the results with diffraction-based calculations; and (9) measure the birefringence of optical disk substrates using two variable angle ellipsometers.

  1. Corrugated grating on organic multilayer Bragg reflector

    NASA Astrophysics Data System (ADS)

    Jaquet, Sylvain; Scharf, Toralf; Herzig, Hans Peter

    2007-08-01

    Polymeric multilayer Bragg structures are combined with diffractive gratings to produce artificial visual color effects. A particular effect is expected due to the angular reflection dependence of the multilayer Bragg structure and the dispersion caused by the grating. The combined effects can also be used to design particular filter functions and various resonant structures. The multilayer Bragg structure is fabricated by spin-coating of two different low-cost polymer materials in solution on a cleaned glass substrate. These polymers have a refractive index difference of about 0.15 and permit multilayer coatings without interlayer problems. Master gratings of different periods are realized by laser beam interference and replicated gratings are superimposed on the multilayer structure by soft embossing in a UV curing glue. The fabrication process requires only polymer materials. The obtained devices are stable and robust. Angular dependent reflection spectrums for the visible are measured. These results show that it is possible to obtain unexpected reflection effects. A rich variety of color spectra can be generated, which is not possible with a single grating. This can be explained by the coupling of transmission of grating orders and the Bragg reflection band. A simple model permits to explain some of the spectral vs angular dependence of reflected light.

  2. Structure and tribological behavior of Pb-Ti/MoS2 nanoscaled multilayer films deposited by magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Li, Hao; Xie, Mingling; Zhang, Guangan; Fan, Xiaoqiang; Li, Xia; Zhu, Minhao; Wang, Liping

    2018-03-01

    The Pb-Ti/MoS2 nanoscaled multilayer films with different bilayer period were deposited by unbalanced magnetron sputtering system. The morphology, microstructure, mechanical and tribological properties of the films were investigated. It was found that the film changed from multilayer structure to composite structure as the bilayer period decreased from 25 nm to 6 nm, due to the diffusion effect. The multilayer film showed a pronounced (002) diffraction peak, the growth of the MoS2 platelets below the interface were affected by Pb and Ti, and the c-axis of MoS2 platelets were inclined to the substrate at an angle of -30° to 30°. The hardness of the film ranged from 5.9 to 7.2 GPa depending on the bilayer period. The tribological behavior of the films was performed under vacuum, and the friction coefficient were typically below 0.25. Furthermore, the nanoscale multilayer film with a bilayer period of 20 nm exhibits much better mechanical and tribological properties than pure MoS2. The result indicates that the nanoscale multilayer is a design methodology for developing high basal plane oriented and vacuum solid lubricating MoS2 based materials.

  3. Effect of SiO2/B2O3 Ratio on the Crystallization Behavior and Dielectric Properties of Barium Strontium Titanate Glass-Ceramics Prepared by Sol-Gel Process

    NASA Astrophysics Data System (ADS)

    Chen, Yongzhou; Zhang, Yong; Song, Xiaozhen; Shen, Ziqin; Zhang, Tianyuan

    2018-05-01

    Ferroelectric glass-ceramics, with a basic composition 90 wt.% (Ba0.65Sr0.35)TiO3-10 wt.% (B2O3-nSiO2) (n = 0.5, 1, 3, 5) were synthesized by the sol-gel method and their phase development and dielectric properties were investigated by differential thermal analysis, x-ray diffraction, field emission scanning electron microscopy, dielectric temperature curves and impedance spectroscopy. From the differential thermal analysis, glass transition and crystallization behavior can be observed. From the x-ray diffraction study, two crystalline phases (Ba,Sr)TiO3 and Ba2TiSi2O8 were formed over the entire composition range of the glass-ceramics. In addition, the main crystal phase has undergone a transformation from (Ba,Sr)TiO3 to Ba2TiSi2O8 with the increase of n. A typical structure in which the crystal phase was surrounded by a glassy matrix has been observed in the scanning electron microscope images. As a result of temperature dependent dielectric property measurements, the dielectric constant increased obviously with the increase of n from 0.5 to 1. Further increasing n led to a reduction of the dielectric constant, which is in coincidence with the variation of the intensity of (Ba,Sr)TiO3 phase with n. According to the impedance spectroscopy analysis and the activation energy calculation, the relaxation peak in both Z″ and M″ data should be attributed to the crystal-glass interface, and the change of conduction mechanism with the increase of SiO2/B2O3 ratio may be attributed to the corresponding transition of the main crystal phase.

  4. Detection and electrical characterization of hidden layers using time-domain analysis of terahertz reflections

    NASA Astrophysics Data System (ADS)

    Geltner, I.; Hashimshony, D.; Zigler, A.

    2002-07-01

    We use a time-domain analysis method to characterize the outer layer of a multilayer structure regardless of the inner ones, thus simplifying the characterization of all the layers. We combine this method with THz reflection spectroscopy to detect nondestructively a hidden aluminum oxide layer under opaque paint and to measure its conductivity and high-frequency dielectric constant in the THz range.

  5. A comparative study on top-gated and bottom-gated multilayer MoS2 transistors with gate stacked dielectric of Al2O3/HfO2.

    PubMed

    Zou, Xiao; Xu, Jingping; Huang, Hao; Zhu, Ziqang; Wang, Hongjiu; Li, Borui; Liao, Lei; Fang, Guojia

    2018-06-15

    Top-gated and bottom-gated transistors with multilayer MoS 2 channel fully encapsulated by stacked Al 2 O 3 /HfO 2 (9 nm/6 nm) were fabricated and comparatively studied. Excellent electrical properties are demonstrated for the TG transistors with high on-off current ratio of 10 8 , high field-effect mobility of 10 2 cm 2 V -1 s -1 , and low subthreshold swing of 93 mV dec -1 . Also, enhanced reliability has been achieved for the TG transistors with threshold voltage shift of 10 -3 -10 -2 V MV -1 cm -1 after 6 MV cm -1 gate-biased stressing. All improvement for the TG device can be ascribed to the formed device structure and dielectric environment. Degradation of the performance for the BG transistors should be attributed to reduced gate capacitance density and deteriorated interface properties related to vdW gap with a thickness about 0.4 nm. So, the TG transistor with MoS 2 channel fully encapsulated by stacked Al 2 O 3 /HfO 2 is a promising way to fabricate high-performance ML MoS 2 field-effect transistors for practical electron device applications.

  6. Laser-induced damage threshold tests of ultrafast multilayer dielectric coatings in various environmental conditions relevant for operation of ELI beamlines laser systems

    NASA Astrophysics Data System (ADS)

    Ďurák, Michal; Velpula, Praveen Kumar; Kramer, Daniel; Cupal, Josef; Medřík, Tomáš; Hřebíček, Jan; Golasowski, Jiří; Peceli, Davorin; Kozlová, Michaela; Rus, Bedřich

    2017-01-01

    Increasing the laser-induced damage resistance of optical components is one of the major challenges in the development of Peta-watt (PW) class laser systems. The extreme light infrastructure (ELI) beamlines project will provide ultrafast laser systems with peak powers up to 10 PW available every minute and PW class beams at 10 Hz complemented by a 5-TW, 1-kHz beamline. Sustainable performance of PW class laser systems relies on the durability of the employed optical components. As part of an effort to evaluate the damage resistance of components utilized in ELI beamlines systems, damage thresholds of several optical multilayer dielectric coatings were measured with different laser parameters and in different environments. Three coatings were tested with 10 Hz and 1 kHz pulse repetition rates, and the effect of a cleaning treatment on their damage resistance was examined. To explore the damage threshold behavior at different vacuum levels, one coating was subject to tests at various residual gas pressures. No change of damage threshold in a high vacuum with respect to ambient pressure was recorded. The effect of the cleaning treatment was found to be inconsistent, suggesting that development of the optimal cleaning treatment for a given coating requires consideration of its specific properties.

  7. A comparative study on top-gated and bottom-gated multilayer MoS2 transistors with gate stacked dielectric of Al2O3/HfO2

    NASA Astrophysics Data System (ADS)

    Zou, Xiao; Xu, Jingping; Huang, Hao; Zhu, Ziqang; Wang, Hongjiu; Li, Borui; Liao, Lei; Fang, Guojia

    2018-06-01

    Top-gated and bottom-gated transistors with multilayer MoS2 channel fully encapsulated by stacked Al2O3/HfO2 (9 nm/6 nm) were fabricated and comparatively studied. Excellent electrical properties are demonstrated for the TG transistors with high on–off current ratio of 108, high field-effect mobility of 102 cm2 V‑1 s‑1, and low subthreshold swing of 93 mV dec–1. Also, enhanced reliability has been achieved for the TG transistors with threshold voltage shift of 10‑3–10‑2 V MV–1 cm–1 after 6 MV cm‑1 gate-biased stressing. All improvement for the TG device can be ascribed to the formed device structure and dielectric environment. Degradation of the performance for the BG transistors should be attributed to reduced gate capacitance density and deteriorated interface properties related to vdW gap with a thickness about 0.4 nm. So, the TG transistor with MoS2 channel fully encapsulated by stacked Al2O3/HfO2 is a promising way to fabricate high-performance ML MoS2 field-effect transistors for practical electron device applications.

  8. Direct Observation of Surface Potential Distribution in Insulation Resistance Degraded Acceptor-Doped BaTiO3 Multilayered Ceramic Capacitors

    NASA Astrophysics Data System (ADS)

    Hong, Kootak; Lee, Tae Hyung; Suh, Jun Min; Park, Jae-Sung; Kwon, Hyung-Soon; Choi, Jaeho; Jang, Ho Won

    2018-05-01

    Insulation resistance (IR) degradation in BaTiO3 is a key issue for developing miniaturized multilayer ceramic capacitors (MLCCs) with high capacity. Despite rapid progress in BaTiO3-based MLCCs, the mechanism of IR degradation is still controversial. In this study, we demonstrate the Al doping effect on IR degradation behavior of BaTiO3 MLCCs by electrical measurements and scanning Kelvin probe microscopy (SKPM). As the Al doping concentration in BaTiO3 increases, IR degradation of MLCCs seems to be suppressed from electrical characterization results. However, SKPM results reveal that the conductive regions near the cathode become lager with Al doping after IR degradation. The formation of conducting regions is attributed to the migration of oxygen vacancies, which is the origin of IR degradation in BaTiO3, in dielectric layers. These results imply that acceptor doping in BaTiO3 solely cannot suppress the IR degradation in MLCC even though less asymmetric IR characteristics and IR degradation in MLCCs with higher Al doping concentration are observed from electrical characterization. Our results strongly suggest that observing the surface potential distribution in IR degraded dielectric layers using SKPM is an effective method to unravel the mechanism of IR degradation in MLCCs.

  9. Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, Brian S.; Czaplewski, David A.; Haftel, Michael I.

    2015-01-01

    Passive optical elements can play key roles in photonic applications such as plasmonic integrated circuits. Here we experimentally demonstrate passive gap-plasmon focusing and routing in two-dimensions. This is accomplished using a high numerical-aperture metal-dielectric-metal lens incorporated into a planar-waveguide device. Fabrication via metal sputtering, oxide deposition, electron-and focused-ion-beam lithography, and argon ion-milling is reported on in detail. Diffraction-limited focusing is optically characterized by sampling out-coupled light with a microscope. The measured focal distance and full-width-half-maximum spot size agree well with the calculated lens performance. The surface plasmon polariton propagation length is measured by sampling light from multiple out-coupler slits. (C)more » 2015 Optical Society of America« less

  10. Frequency dependent dielectric properties of combustion synthesized Dy2Ti2O7 pyrochlore oxide

    NASA Astrophysics Data System (ADS)

    Jeyasingh, T.; Saji, S. K.; Kavitha, V. T.; Wariar, P. R. S.

    2018-05-01

    Nanocrystalline pyrochlore material Dysprosium Titanate (Dy2Ti2O7) has been synthesized through a single step optimized combustion route. The phase purity and phase formation of the combustion product has been characterized using X-Ray diffraction analysis (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) analysis. X-Ray diffraction analysis (XRD) reveal that Dy2Ti2O7 is highly crystalline in nature with cubic structure in the Fd3m space group. The microstructures and average particle size of the prepared nanopowder were examined by High Resolution Transmission Electron Microscopy (HR-TEM). The optical band gap of the Dy2Ti2O7 nanoparticles is determined from the absorption spectrum, was attributed to direct allowed transitions through optical band gap of 3.98 eV. The frequency dependent dielectric measurements have been carried out on the sintered pellet in the frequency range 1 Hz-10 MHz. The measured value of dielectric constant (ℇ') was ˜ 43 and loss tangent (tan δ) was 4×10-3 at 1 MHz, at room temperature.

  11. Variation of Strontium (Sr) in the Ferroelectric Material Barium Strontium Titanate (Ba1-xSrxTiO3) by Co precipitation Method

    NASA Astrophysics Data System (ADS)

    Subarwanti, Y.; Safitri, R. D.; Supriyanto, A.; Iriani, Y.; Jamaludin, A.

    2017-02-01

    Barium Strontium Titanate (BST) have been made with variation strontium (Sr) 10%, 30% and 50% by co-precipitation method. This study aims to determine influence addition Sr against the crystal structure, crystallite size, lattice parameter, grain size and dielectric constant. Samples have been made by co-precipitation method and then the samples were sintered by furnace at 1100°C with holding time 4 hours. Characterization of BST use X-Ray Diffraction instrument, Scanning Electron Microscopy and Resistance Capacitance Inductance (RCL meter). Based on result obtained, the larger Sr content cause the diffraction angle shift to the right (the greater) and crystallinity increasing. But, the value of dielectric constant, crystallite size and grain size decreasing with additional Sr content. Measurement of dielectric constant (K) performed in the frequency range 1 kHz to 100 kHz and the highest value at Sr content 0.1 i.e. 258.35. The addition of Sr content 30% and 50% change the crystal structure from tetragonal to cubic which has paraelectric phase.

  12. Reversible Phase Transition with Ultralarge Dielectric Relaxation Behaviors in Succinimide Lithium(I) Hybrids.

    PubMed

    Tang, Yun-Zhi; Wang, Bin; Zhou, Hai-Tao; Chen, Shao-Peng; Tan, Yu-Hui; Wang, Chang-Feng; Yang, Chang-Shan; Wen, He-Rui

    2018-02-05

    Dielectric relaxations have widely applied on high permittivity capacitors, dielectric switches, ferroelectrics, pyroelectrics, and electrical insulating materials. However, few investigations of large dielectric relaxation behaviors on organic-inorganic hybrid materials have been documented before. Here we present a novel two-dimensional succinimide lithium(I) hybrid compound, [Li(PDD) 2 ClO 4 ] n , 1, (PDD = 2,5-pyrrolidinedione = succinimide) which shows reversible phase transition behavior in the vicinity of 228 K accompanied by an unusual symmetry breaking from I4 1 /amd to C2/c. X-ray single crystal diffractions analysis indicates the twist motion of pyrrolidine heterocycles, and order-disorder motion of ClO 4 - anions triggered the reversible phase transition. By means of an intuitive crystallographic model (rattling ion model), we further illustrated the mechanism of the interesting reversible phase transition. Particularly, 1 shows ultralarge dielectric relaxation behavior in the vicinity of the phase transition by its dielectric constant dependence on temperatures and frequencies as well as its Cole-Cole relation.

  13. Increase of dielectric constant in PVDF by incorporating La{sub 1.8}Sr{sub 0.2}NiO{sub 4} into its matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajnish, E-mail: rajnish@iitp.ac.in; Goswami, Ashwin M., E-mail: ashwin.nanoplast@gmail.com; Kar, Manoranjan, E-mail: mano-iitg@yahoo.com

    2016-05-06

    To obtain the material with high dielectric constant and high dielectric strength for the technological applications, nanocomposite of Lanthanum Strontium Nickelete (La{sub 1.8}Sr{sub 0.2}NiO{sub 4}) as nanofiller and polyvinylidene fluoride (PVDF) as polymer matrix has been prepared. The different nanofiler weight concentration varies from 2-8 weight percent. X-ray diffraction technique confirms the phase formation of nanocomposite. Differential scanning calorimeter (DSC) has been employed to study the percentage of crystallinity and Impedance measurement has been carried out to study the dielectric constant. DSC analysis shows decreasing trend of crystallinity whereas impedance analysis gives increasing dielectric constant with increasing La{sub 1.8}Sr{sub 0.2}NiO{submore » 4} concentration in the nanocomposite. Also, these materials can be used as insulator in the transformer as the strength and dielectric behavior of present composite meets the technological requirements.« less

  14. Effect of Pentacene-dielectric Affinity on Pentacene Thin Film Growth Morphology in Organic Field-effect Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Kim; M Jang; H Yang

    2011-12-31

    Organic field-effect transistors (OFETs) are fabricated by depositing a thin film of semiconductor on the functionalized surface of a SiO{sub 2} dielectric. The chemical and morphological structures of the interface between the semiconductor and the functionalized dielectric are critical for OFET performance. We have characterized the effect of the affinity between semiconductor and functionalized dielectric on the properties of the semiconductor-dielectric interface. The crystalline microstructure/nanostructure of the pentacene semiconductor layers, grown on a dielectric substrate that had been functionalized with either poly(4-vinyl pyridine) or polystyrene (to control hydrophobicity), and grown under a series of substrate temperatures and deposition rates, weremore » characterized by X-ray diffraction, photoemission spectroscopy, and atomic force microscopy. By comparing the morphological features of the semiconductor thin films with the device characteristics (field-effect mobility, threshold voltage, and hysteresis) of the OFET devices, the effect of affinity-driven properties on charge modulation, charge trapping, and charge carrier transport could be described.« less

  15. Characterization of dielectric properties of nanocellulose from wood and algae for electrical insulator applications.

    PubMed

    Le Bras, David; Strømme, Maria; Mihranyan, Albert

    2015-05-07

    Cellulose is one of the oldest electrically insulating materials used in oil-filled high-power transformers and cables. However, reports on the dielectric properties of nanocellulose for electrical insulator applications are scarce. The aim of this study was to characterize the dielectric properties of two nanocellulose types from wood, viz., nanofibrillated cellulose (NFC), and algae, viz., Cladophora cellulose, for electrical insulator applications. The cellulose materials were characterized with X-ray diffraction, nitrogen gas and moisture sorption isotherms, helium pycnometry, mechanical testing, and dielectric spectroscopy at various relative humidities. The algae nanocellulose sample was more crystalline and had a lower moisture sorption capacity at low and moderate relative humidities, compared to NFC. On the other hand, it was much more porous, which resulted in lower strength and higher dielectric loss than for NFC. It is concluded that the solid-state properties of nanocellulose may have a substantial impact on the dielectric properties of electrical insulator applications.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahesh, P., E-mail: pamu@iitg.ernet.in; Subhash, T., E-mail: pamu@iitg.ernet.in; Pamu, D., E-mail: pamu@iitg.ernet.in

    We report the dielectric properties of (K{sub 0.5}Na{sub 0.5})NbO{sub 3} ceramics doped with x wt% of Dy{sub 2}O{sub 3} (x= 0.0-1.5 wt%) using the broadband dielectric spectroscopy. The X-ray diffraction studies showed the formation of perovskite structure signifying that Dy{sub 2}O{sub 3} diffuse into the KNN lattice. Samples doped with x > 0.5 wt% exhibit smaller grain size and lower relative densities. The dielectric properties of KNN ceramics doped with Dy{sub 2}O{sub 3} are enhanced by increasing the Dy{sup 3+} content; among the compositions studied, x = 0.5 wt% exhibited the highest dielectric constant and lowest loss at 1MHz overmore » the temperature range of 30°C to 400°C. All the samples exhibit maximum dielectric constant at the Curie temperature (∼ 326°C) and a small peak in the dielectric constant at around 165°C is due to a structural phase transition.« less

  17. Structural, ac conductivity and dielectric properties of 3-formyl chromone

    NASA Astrophysics Data System (ADS)

    Ali, H. A. M.

    2017-07-01

    The structure for the powder of 3-formyl chromone was examined by X-ray diffraction technique in the 2θ° range ( 4° - 60° . The configuration of Al/3-formyl chromone/Al samples was designed. The electrical and dielectric properties were studied as a function of frequency (42- 5 × 106 Hz) and temperature (298-408K). The ac conductivity data of bulk of 3-formyl chromone varies as a power law with the frequency at different temperatures. The predominant mechanism for ac conduction was deduced. The ac conductivity shows a thermally activated process at different frequencies. The dielectric constant and dielectric loss were determined using the capacitance and dissipation factor measurements at different temperatures. The dielectric loss shows a peak of relaxation time that shifted to higher frequency with an increase in the temperature. The activation energy of the relaxation process was estimated.

  18. Structural, dielectric and magnetic studies of magnetoelectric trirutile Fe{sub 2}TeO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaushik, S. D., E-mail: sdkaushik@csr.res.in; Sahu, B.; Mohapatra, S. R.

    2016-05-23

    We have investigated structural, magnetic and dielectric properties of Fe{sub 2}TeO{sub 6} which is a magnetoelectric antiferromagnet with the trirutile lattice. Rietveld analysis of room temperature X-ray diffraction data shows the phase purity of the sample with tetragonal trirutile structure (space group P4{sub 2}/mnm). The DC susceptibility measurement performed on polycrystalline powders exhibits antiferromagnetic ordering below transition temperature ~ 210K. The employment of Curie-Weiss law to inverse magnetic susceptibility only in the temperature range 350-260 K indicates the magnetic ordering starts developing before the transition temperature. The temperature dependent dielectric measurements show an intrinsic behavior of dielectric constant below 150more » K while a continuous increase in dielectric constant with temperature above 150 K may be attributed to a small increase in electrical conduction, known commonly in the literatures.« less

  19. From Flexible and Stretchable Meta-Atom to Metamaterial: A Wearable Microwave Meta-Skin with Tunable Frequency Selective and Cloaking Effects

    PubMed Central

    Yang, Siming; Liu, Peng; Yang, Mingda; Wang, Qiugu; Song, Jiming; Dong, Liang

    2016-01-01

    This paper reports a flexible and stretchable metamaterial-based “skin” or meta-skin with tunable frequency selective and cloaking effects in microwave frequency regime. The meta-skin is composed of an array of liquid metallic split ring resonators (SRRs) embedded in a stretchable elastomer. When stretched, the meta-skin performs as a tunable frequency selective surface with a wide resonance frequency tuning range. When wrapped around a curved dielectric material, the meta-skin functions as a flexible “cloaking” surface to significantly suppress scattering from the surface of the dielectric material along different directions. We studied frequency responses of multilayer meta-skins to stretching in a planar direction and to changing the spacing between neighboring layers in vertical direction. We also investigated scattering suppression effect of the meta-skin coated on a finite-length dielectric rod in free space. This meta-skin technology will benefit many electromagnetic applications, such as frequency tuning, shielding, and scattering suppression. PMID:26902969

  20. Hidden symmetries in N-layer dielectric stacks

    NASA Astrophysics Data System (ADS)

    Liu, Haihao; Shoufie Ukhtary, M.; Saito, Riichiro

    2017-11-01

    The optical properties of a multilayer system with arbitrary N layers of dielectric media are investigated. Each layer is one of two dielectric media, with a thickness one-quarter the wavelength of light in that medium, corresponding to a central frequency f 0. Using the transfer matrix method, the transmittance T is calculated for all possible 2 N sequences for small N. Unexpectedly, it is found that instead of 2 N different values of T at f 0 (T 0), there are only (N/2+1) discrete values of T 0, for even N, and (N + 1) for odd N. We explain this high degeneracy in T 0 values by finding symmetry operations on the sequences that do not change T 0. Analytical formulae were derived for the T 0 values and their degeneracies as functions of N and an integer parameter for each sequence we call ‘charge’. Additionally, the bandwidth at f 0 and filter response of the transmission spectra are investigated, revealing asymptotic behavior at large N.

  1. Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks.

    PubMed

    Scalora, Michael; D'Aguanno, Giuseppe; Mattiucci, Nadia; Bloemer, Mark J; de Ceglia, Domenico; Centini, Marco; Mandatori, Antonio; Sibilia, Concita; Akozbek, Neset; Cappeddu, Mirko G; Fowler, Mark; Haus, Joseph W

    2007-01-22

    We numerically demonstrate negative refraction of the Poynting vector and sub-wavelength focusing in the visible part of the spectrum using a transparent multilayer, metallo-dielectric photonic band gap structure. Our results reveal that in the wavelength regime of interest evanescent waves are not transmitted by the structure, and that the main underlying physical mechanisms for sub-wavelength focusing are resonance tunneling, field localization, and propagation effects. These structures offer several advantages: tunability and high transmittance (50% or better) across the visible and near IR ranges; large object-image distances, with image planes located beyond the range where the evanescent waves have decayed. From a practical point of view, our findings point to a simpler way to fabricate a material that exhibits negative refraction and maintains high transparency across a broad wavelength range. Transparent metallo-dielectric stacks also provide an opportunity to expand the exploration of wave propagation phenomena in metals, both in the linear and nonlinear regimes.

  2. A novel approach for the fine tuning of resonance frequency of patch antenna

    NASA Astrophysics Data System (ADS)

    Mathur, Monika; Singh, Ghanshyam; Bhatnagar, S. K.

    2013-01-01

    When a patch antenna is fabricated, dimensions of the patch may be slightly different from the designed values due to tolerances in the fabrication process. This alters the resonance frequency of the antenna. To overcome this problem this paper presents a new design approach for fine tuning the resonance frequency by dielectric constant engineering. This approach is especially suited to low temperature co-fired ceramic (LTCC) and similar processes where the antenna dielectric is composed of several layers. Composite dielectric constant of this multilayer structure is altered in such a way that the resonant frequency is set back to the designed value. It has been verified that for proposed micro strip antenna (MSA) design, the frequency-area curve follows a quadratic relation with a variable R (Ratio of cavity area to the patch area). This mathematical model is true up to R 1.27. After this saturation effects set in and the curve follows a straight line behavior.≡

  3. Investigation of ITO free transparent conducting polymer based electrode

    NASA Astrophysics Data System (ADS)

    Sharma, Vikas; Sapna, Sachdev, Kanupriya

    2016-05-01

    The last few decades have seen a significant improvement in organic semiconductor technology related to solar cell, light emitting diode and display panels. The material and structure of the transparent electrode is one of the major concerns for superior performance of devices such as OPV, OLED, touch screen and LCD display. Commonly used ITO is now restricted due to scarcity of indium, its poor mechanical properties and rigidity, and mismatch of energy levels with the active layer. Nowadays DMD (dielectric-metal-dielectric) structure is one of the prominent candidates as alternatives to ITO based electrode. We have used solution based spin coated polymer layer as the dielectric layer with silver thin film embedded in between to make a polymer-metal-polymer (PMP) structure for TCE applications. The PMP structure shows low resistivity (2.3 x 10-4Ω-cm), high carrier concentration (2.9 x 1021 cm-3) and moderate transparency. The multilayer PMP structure is characterized with XRD, AFM and Hall measurement to prove its suitability for opto-electronic device applications.

  4. Intrinsic and extrinsic dielectric responses of CaCu3Ti4O12 thin films

    NASA Astrophysics Data System (ADS)

    Rubinger, C. P. L.; Moreira, R. L.; Ribeiro, G. M.; Matinaga, F. M.; Autier Laurent, S.; Mercey, B.; Lobo, R. P. S. M.

    2011-10-01

    CaCu3Ti4O12 thin films were epitaxially grown on (001) LaAlO3 substrates by pulsed laser deposition under optimized growth conditions. The crystal structure and sample morphology were characterized by x-ray diffraction, AFM, TEM, ellipsometry, and Raman spectroscopy. The dielectric responses of the films were investigated in a large temperature range (5 to 375 K) by infrared reflectivity and impedance spectroscopies. The films exhibited a colossal dielectric response, with the dielectric permittivity reaching 104 at 100 Hz. The results obtained in a broad frequency range allowed us to investigate the behavior of intrinsic and extrinsic dielectric responses of this material. The room temperature centrosymmetrical cubic structure remains stable down to 5 K, though softening of the lower frequency infrared phonon modes indicates an incipient ferroelectric character. The radio frequency dielectric response reveals two relaxations of extrinsic origin, a primary higher frequency relaxation responsible for the colossal dielectric behavior and a secondary one of lower frequency. The activation energies of these processes are compatible with the presence of shallow defect levels created by oxygen vacancies.

  5. Calcination temperature effect on the microstructure and dielectric properties of M-type strontium hexagonal ferrites

    NASA Astrophysics Data System (ADS)

    Mohammed, J.; Sharma, Jyoti; Kumar, Sachin; Trudel, T. T. Carol; Srivastava, A. K.

    2017-07-01

    M-type hexagonal ferrites have found wide application in electronics industry due to the possibility of tuning properties such as dielectric properties. An improved dielectric property is useful in high frequency application. In this paper, we studied the effect of calcination temperature on structural and dielectric properties of Al-Mn substituted M-type strontium hexagonal ferrites with chemical composition Sr1-xAlxFe12-yMnyO19 (x=0.3 and y=0.6) synthesized by sol-gel auto-combustion method. The prepared sample was sintered at four different temperatures (T=750°C, 850°C, 950°C and 1050°C) for 5 hours. Characterisations of the synthesized samples were carried out using X-ray diffraction (XRD), impedance analyser, field emission electron microscope (FE-SEM) and energy dispersive X-ray (EDX) spectroscopy. The dielectric properties were explained on the basis of Koop's phenomenological theory and Maxwell Wagner theory. The sample calcinated at 750°C shows the highest value of dielectric constant and AC conductivity whereas that calcinated at 1050°C exhibit the lowest dielectric losses.

  6. Impedance analysis and dielectric response of anatase TiO2 nanoparticles codoped with Mn and Co ions

    NASA Astrophysics Data System (ADS)

    Kumar, Anand; Kashyap, Manish K.; Sabharwal, Namita; Kumar, Sarvesh; Kumar, Ashok; Kumar, Parmod; Asokan, K.

    2017-11-01

    In order to elucidate the effect of transition metal (TM) doping, the impedance and dielectric responses of Co and/or Mn-doped TiO2 nanocrystalline powder samples with 3% doping concentration synthesized via sol gel technique, have been analyzed. X-ray diffraction (XRD) analysis confirms the formation of tetragonal TiO2 anatase phase for all studied samples without any extra impurity phase peaks. The variation in the grain size measured from field emission scanning electron microscope (FESEM) measurements for all the samples are in accordance with the change in crystallite size as obtained from XRD. The DC resistivity for pure TiO2 nanoparticles is the highest while codoped samples exhibit low resistivity. The temperature dependent dielectric constant and dielectric loss possess step like enhancement and show the relaxation behavior. At room temperature, the dielectric function and dielectric loss decrease rapidly with increase in frequency and become almost constant at the higher frequencies. Such a decrease in dielectric loss is suitable for energy storage devices.

  7. Dielectric Properties of Ca0.7Bi0.3Ti0.7Cr0.3O3 (CBTC)-CaCu3Ti4O12 (CCTO) Composite

    NASA Astrophysics Data System (ADS)

    Mallmann, E. J. J.; Silva, M. A. S.; Sombra, A. S. B.; Botelho, M. A.; Mazzetto, S. E.; de Menezes, A. S.; Almeida, A. F. L.; Fechine, P. B. A.

    2015-01-01

    The main object of this work is to study two materials with giant dielectric constants: CaCu3Ti4O12 (CCTO) and Ca0.7Bi0.3Ti0.7Cr0.3O3 (CBTC). CBTC1- x -CCTO x composites were also obtained to create a new dielectric material with dielectric properties between these two phases. Structural properties were studied by x-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy and dielectric measurements. CCTO showed a cubic phase and CBTC an orthorhombic phase. An interesting result was that the dielectric constant ( K) did not follow the rule of the mixture of Lichtnecker, and this happened due to the presence of other phases of its crystalline structure, which decreases the value of K when compared to the predicted values of Lichtnecker. It was also found that the dielectric properties of the composite are very promising for use in microelectronics, according to the miniaturization factor, which is crucial for those applications.

  8. Evidence for existence of functional monoclinic phase in sodium niobate based solid solution by powder neutron diffraction

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Jauhari, Mrinal; Mittal, R.; Krishna, P. S. R.; Reddy, V. R.; Chaplot, S. L.

    2018-04-01

    We have carried out systematic temperature-dependent neutron diffraction measurements in conjunction with dielectric spectroscopy from 6 to 300 K for sodium niobate based compounds (1-x) NaNbO3-xBaTiO3 (NNBTx). The dielectric constant is measured as a function of both temperature and frequency. It shows an anomaly at different temperatures in cooling and heating cycles and exhibits a large thermal hysteresis of ˜150 K for the composition x = 0.03. The dielectric constant is found to be dispersive in nature and suggests a relaxor ferroelectric behavior. In order to explore structural changes as a function of temperature, we analyzed the powder neutron diffraction data for the compositions x = 0.03 and 0.05. Drastic changes are observed in the powder profiles near 2θ ˜ 30.6°, 32.1°, and 34.6° in the diffraction pattern below 200 K during cooling and above 190 K in heating cycles, respectively. The disappearance of superlattice reflection and splitting in main perovskite peaks provide a signature for structural phase transition. We observed stabilization of a monoclinic phase (Cc) at low temperature. This monoclinic phase is believed to provide a flexible polarization rotation and considered to be directly linked to the high performance piezoelectricity in materials. The thermal hysteresis for composition x = 0.03 is larger than that for x = 0.05. This suggests that the addition of BaTiO3 to NaNbO3 suppresses the thermal hysteresis. It is also observed that the structural phase transition temperature decreases upon increasing the dopant concentration.

  9. Inkjet printed graphene-based field-effect transistors on flexible substrate

    NASA Astrophysics Data System (ADS)

    Monne, Mahmuda Akter; Enuka, Evarestus; Wang, Zhuo; Chen, Maggie Yihong

    2017-08-01

    This paper presents the design and fabrication of inkjet printed graphene field-effect transistors (GFETs). The inkjet printed GFET is fabricated on a DuPont Kapton FPC Polyimide film with a thickness of 5 mill and dielectric constant of 3.9 by using a Fujifilm Dimatix DMP-2831 materials deposition system. A layer by layer 3D printing technique is deployed with an initial printing of source and drain by silver nanoparticle ink. Then graphene active layer doped with molybdenum disulfide (MoS2) monolayer/multilayer dispersion, is printed onto the surface of substrate covering the source and drain electrodes. High capacitance ion gel is adopted as the dielectric material due to the high dielectric constant. Then the dielectric layer is then covered with silver nanoparticle gate electrode. Characterization of GFET has been done at room temperature (25°C) using HP-4145B semiconductor parameter analyzer (Hewlett-Packard). The characterization result shows for a voltage sweep from -2 volts to 2 volts, the drain current changes from 949 nA to 32.3 μA and the GFET achieved an on/off ratio of 38:1, which is a milestone for inkjet printed flexible graphene transistor.

  10. BaTiO3/PVDF Nanocomposite Film with High Energy Storage Density

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohui

    2016-03-01

    A gradated multilayer BaTiO3/poly(vinylidenefluoride) thin film structure is presented to achieve both a higher breakdown strength and a superior energy-storage capability. Key to the process is the sequential deposition of uniform dispersions of the single component source, which generate a blended PVDF-BTO-PVDF structure prior to full evaporation of solvent, and thermal treatment of the dielectric. The result is like sandwich structure with partial 0-3 character. The central layer designed to provide the high electric displacement, is composed of high volume fraction 6-10 nm BTO nanocrystals produced by a TEG-sol method. The outer layers of the structure are predominantly PVDF, with a significantly lower volume fraction of BTO, taking advantage of the higher dielectric strength for pure PVDF at the electrode-nanocomposite interface. The film is mechanically flexible, and can be removed from the substrate, with total thicknesses in the range 1.2 - 1.5 μm. Parallel plate capacitance devices improved dielectric performances, compared to reported values for BTO-PVDF 0-3 nanocomposites, with a maximal discharged energy density of 19.4J/cm3 and dielectric breakdown strengths of up to 495 kV/mm.

  11. Development of Coatings for Radar Absorbing Materials at X-band

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Singh, Samarjit

    2018-03-01

    The present review gives a brief account on some of the technical features of radar absorbing materials (RAMs). The paper has been presented with a concentrated approach towards the material aspects for achieving enhanced radar absorption characteristics for its application as a promising candidate in stealth technology and electromagnetic interference (EMI) minimization problems. The effect of metal particles doping/dispersion in the ferrites and dielectrics has been discussed for obtaining tunable radar absorbing characteristics. A short theoretical overview on the development of absorber materials, implementation of genetic algorithm (GA) in multi-layering and frequency selective surfaces (FSSs) based multi-layer has also been presented for the development of radar absorbing coatings for achieving better absorption augmented with broadband features in order to counter the radar detection systems.

  12. Near-field heat transfer between graphene/hBN multilayers

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Guizal, Brahim; Zhang, Zhuomin M.; Fan, Shanhui; Antezza, Mauro

    2017-06-01

    We study the radiative heat transfer between multilayer structures made by a periodic repetition of a graphene sheet and a hexagonal boron nitride (hBN) slab. Surface plasmons in a monolayer graphene can couple with hyperbolic phonon polaritons in a single hBN film to form hybrid polaritons that can assist photon tunneling. For periodic multilayer graphene/hBN structures, the stacked metallic/dielectric array can give rise to a further effective hyperbolic behavior, in addition to the intrinsic natural hyperbolic behavior of hBN. The effective hyperbolicity can enable more hyperbolic polaritons that enhance the photon tunneling and hence the near-field heat transfer. However, the hybrid polaritons on the surface, i.e., surface plasmon-phonon polaritons, dominate the near-field heat transfer between multilayer structures when the topmost layer is graphene. The effective hyperbolic regions can be well predicted by the effective medium theory (EMT), thought EMT fails to capture the hybrid surface polaritons and results in a heat transfer rate much lower compared to the exact calculation. The chemical potential of the graphene sheets can be tuned through electrical gating and results in an additional modulation of the heat transfer. We found that the near-field heat transfer between multilayer structures does not increase monotonously with the number of layers in the stack, which provides a way to control the heat transfer rate by the number of graphene layers in the multilayer structure. The results may benefit the applications of near-field energy harvesting and radiative cooling based on hybrid polaritons in two-dimensional materials.

  13. Multilayer Dielectric Transmissive Optical Phase Modulator

    NASA Technical Reports Server (NTRS)

    Keys, Andrew Scott; Fork, Richard Lynn

    2004-01-01

    A multilayer dielectric device has been fabricated as a prototype of a low-loss, low-distortion, transmissive optical phase modulator that would provide as much as a full cycle of phase change for all frequency components of a transmitted optical pulse over a frequency band as wide as 6.3 THz. Arrays of devices like this one could be an alternative to the arrays of mechanically actuated phase-control optics (adaptive optics) that have heretofore been used to correct for wave-front distortions in highly precise optical systems. Potential applications for these high-speed wave-front-control arrays of devices include agile beam steering, optical communications, optical metrology, optical tracking and targeting, directional optical ranging, and interferometric astronomy. The device concept is based on the same principle as that of band-pass interference filters made of multiple dielectric layers with fractional-wavelength thicknesses, except that here there is an additional focus on obtaining the desired spectral phase profile in addition to the device s spectral transmission profile. The device includes a GaAs substrate, on which there is deposited a stack of GaAs layers alternating with AlAs layers, amounting to a total of 91 layers. The design thicknesses of the layers range from 10 nm to greater than 1 micrometer. The number of layers and the thickness of each layer were chosen in a computational optimization process in which the wavelength dependences of the indices of refraction of GaAs and AlAs were taken into account as the design was iterated to maximize the transmission and minimize the group-velocity dispersion for a wavelength band wide enough to include all significant spectral components of the pulsed optical signal to be phase modulated.

  14. Enhanced dielectric properties due to space charge-induced interfacial polarization in multilayer polymer films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xinyue; Tseng, Jung-Kai; Treufeld, Imre

    We report that with the recent advancement of power electronics, polymer film capacitors have become increasingly important. However, the low temperature rating (up to 85 °C) and low energy density (5 J cm -3 at breakdown) of state-of-the-art biaxially oriented polypropylene (BOPP) films have been limiting factors for advanced power electronics. Based on our recent work, multilayer films (MLFs), which consist of a high energy density polymer [e.g., poly(vinylidene fluoride) (PVDF)] and a high breakdown/low loss polymer [e.g., polycarbonate (PC)], have shown potential to achieve high energy density (13–17 J cm -3), enhanced breakdown strength, high temperature tolerance, and lowmore » loss simultaneously. In this study, the dielectric properties of PC/PVDF 50/50 32- and 256-layer (32L and 256L) films were investigated. The breakdown strength of the 32L film was as high as 800 MV m -1 at room temperature, as compared to 600 MV m -1 of PVDF and 750 MV m-1 of PC. The temperature rating of the 32L film reached 120 °C, higher than that of BOPP. In addition, it was observed that the 32L film with thicker PC layers exhibited a higher breakdown strength and a lower DC conductivity than the 256L film with thinner PC layers at elevated temperatures. These differences were attributed to the difference in the interfacial polarization of space charges, which was further verified by thermally stimulated depolarization current spectroscopy. In conclusion, we conclude that interfacial polarization endows MLFs with the desirable dielectric properties for next generation film capacitors.« less

  15. Enhanced dielectric properties due to space charge-induced interfacial polarization in multilayer polymer films

    DOE PAGES

    Chen, Xinyue; Tseng, Jung-Kai; Treufeld, Imre; ...

    2017-09-15

    We report that with the recent advancement of power electronics, polymer film capacitors have become increasingly important. However, the low temperature rating (up to 85 °C) and low energy density (5 J cm -3 at breakdown) of state-of-the-art biaxially oriented polypropylene (BOPP) films have been limiting factors for advanced power electronics. Based on our recent work, multilayer films (MLFs), which consist of a high energy density polymer [e.g., poly(vinylidene fluoride) (PVDF)] and a high breakdown/low loss polymer [e.g., polycarbonate (PC)], have shown potential to achieve high energy density (13–17 J cm -3), enhanced breakdown strength, high temperature tolerance, and lowmore » loss simultaneously. In this study, the dielectric properties of PC/PVDF 50/50 32- and 256-layer (32L and 256L) films were investigated. The breakdown strength of the 32L film was as high as 800 MV m -1 at room temperature, as compared to 600 MV m -1 of PVDF and 750 MV m-1 of PC. The temperature rating of the 32L film reached 120 °C, higher than that of BOPP. In addition, it was observed that the 32L film with thicker PC layers exhibited a higher breakdown strength and a lower DC conductivity than the 256L film with thinner PC layers at elevated temperatures. These differences were attributed to the difference in the interfacial polarization of space charges, which was further verified by thermally stimulated depolarization current spectroscopy. In conclusion, we conclude that interfacial polarization endows MLFs with the desirable dielectric properties for next generation film capacitors.« less

  16. Investigation of terbium scandate as an alternative gate dielectric in fully depleted transistors

    NASA Astrophysics Data System (ADS)

    Roeckerath, M.; Lopes, J. M. J.; Özben, E. Durǧun; Urban, C.; Schubert, J.; Mantl, S.; Jia, Y.; Schlom, D. G.

    2010-01-01

    Terbium scandate thin films were deposited by e-gun evaporation on (100) silicon substrates. Rutherford backscattering spectrometry and x-ray diffraction studies revealed homogeneous chemical compositions of the films. A dielectric constant of 26 and CV-curves with small hystereses were measured as well as low leakage current densities of <1 nA/cm2. Fully depleted n-type field-effect transistors on thin silicon-on-insulator substrates with terbium scandate gate dielectrics were fabricated with a gate-last process. The devices show inverse subthreshold slopes of 80 mV/dec and a carrier mobility for electrons of 225 cm2/V•s was extracted.

  17. Manipulating Stress in Cu/low-k Dielectric Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C Murray; P Besser; E Ryan

    The interaction of x-rays with organic dielectric materials, which alters their mechanical properties, affects values of stress generated within encapsulated Cu structures. In particular, the evolution of stress within submicron Cu interconnect structures encapsulated by an organosilicate glass can be investigated in situ using synchrotron-based x-ray diffraction. The overall geometry of the composite, along with the amount of irradiation, dictates the change in stress of the Cu features. A quantitative comparison of these findings to mechanical modeling results reveals two modes of modification within the dielectric film: a densification that changes the effective eigenstrain followed by an increase in elasticmore » modulus.« less

  18. Manipulating stress in Cu/low-k dielectric nanocomposites

    NASA Astrophysics Data System (ADS)

    Murray, Conal E.; Besser, Paul R.; Ryan, E. Todd; Jordan-Sweet, Jean L.

    2011-04-01

    The interaction of x-rays with organic dielectric materials, which alters their mechanical properties, affects values of stress generated within encapsulated Cu structures. In particular, the evolution of stress within submicron Cu interconnect structures encapsulated by an organosilicate glass can be investigated in situ using synchrotron-based x-ray diffraction. The overall geometry of the composite, along with the amount of irradiation, dictates the change in stress of the Cu features. A quantitative comparison of these findings to mechanical modeling results reveals two modes of modification within the dielectric film: a densification that changes the effective eigenstrain followed by an increase in elastic modulus.

  19. Dielectric and transport properties of CaTiO3

    NASA Astrophysics Data System (ADS)

    Bhadala, Falguni; Suthar, Lokesh; Roy, M.; Jha, Vikash Kumar

    2018-05-01

    The ceramic sample of CaTiO3 (CTO) has been prepared by standard high temperature solid state reaction method using high purity oxides. The formation of the compound as well as structural analysis has been carried out by X-ray diffraction method. The dielectric constant and dielectric loss as a function of frequency (20kHz-10MHz) and temperature (RT-490K) have been measured. The dc conductivity has been measured and activation energy was calculated using the Arrhenius relation. The Enthalpy change (ΔH), Specific heat and Weight-loss of the compound have been measured using DTA/TGA techniques. The results are discussed in detail.

  20. Study of the structure and dielectric relaxation behavior of Pb(Ni 1/3Nb 2/3)-PbTiO 3 ferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Lei, Chao; Chen, Kepi; Zhang, Xiaowen; Wang, Jun

    2002-08-01

    Relaxor-type ferroelectric ceramics, (1- x)Pb(Ni 1/3Nb 2/3)O 3- xPbTiO 3 ( x=0.28-0.42) were synthesized by the columbite precursor method. The phase structure and dielectric properties were investigated. X-ray diffraction results demonstrate that a region with both pseudocubic and tetragonal phase in existence lies in the composition range x=0.34-0.38, which is the morphotropic phase boundary (MPB). Examination of the dielectric behavior indicates that the ceramics exhibit abnormal high dielectric constant near the MPB composition. In addition, the transformation of (1- x)PNN- xPT from relaxor to normal ferroelectric behavior with the PT content increasing is successive.

  1. Giant dielectric permittivity and weak ferromagnetic behavior in Bi{sub 0.5}La{sub 0.5}Fe{sub 0.5}Cr{sub 0.5}O{sub 3} ceramic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tirupathi, Patri; Raju, K.; Peetla, Naresh

    A pervoskite (Bi{sub 0.5}La{sub 0.5})(Fe{sub 0.5}Cr{sub 0.5})O{sub 3} (BLFC) nanoparticles were synthesized by high energy ball milling. Rietveld refined X-ray diffraction studies revealed that this compound shows orthorhombic structure with Pbnm space group. The dielectric studies were investigated in wide frequency (10{sup 2}-10{sup 6}) range indicating giant dielectric permittivity behavior similar to LaFeO{sub 3} ceramic. The noted dielectric loss relaxation frequency dependent is as following the Arrhenius law can be ascribed as polaronic conduction. Further, magnetic transition at around 337 K and coexistence of weak ferromagnetic and antiferromagnetic behavior is observed below magnetic transition.

  2. Film growth and structure design in the barium oxide-strontium oxide-titanium dioxide system

    NASA Astrophysics Data System (ADS)

    Fisher, Patrick J.

    This thesis describes the growth and characterization of thin films in the SrO-BaO-TiO2 system. The films are grown by molecular beam cpitaxy (MBE) and pulsed laser deposition (PLD) on ceramic substrates, and characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), reflection-high energy electron diffraction (RHEED), and transmission electron microscopy (TEM). Films are grown with varied global and initial local stoichiometries, with the goal of determining the stability of specific cation organizations. Simple oxides, TiO2 (anatase) and SrO (rock salt) were grown on oxide substrates using MBE. Growth conditions, including substrate material, substrate temperature, O3 flux, and metal flux, are varied in each case. It is observed that the growth morphology of anatase is highly dependent on the ozone flux, with fluxes of 1.00 sccm and greater resulting in flat anatase surfaces. Increased roughness at higher substrate was determined to be a result of rutile inclusions. Growth oscillations are observed in the RHEED intensity for both TiO2 and SrO in overlapping regions of growth space, indicating 2D growth modes. Varied shuttering sequences were used during MBE growth of perovskites: globally non-stoichiometric films, as well as locally non-stoichiometric but globally stoichiometric perovskite. Films were grown within a (SrO) m(TiO2)n framework, where growth cycles involved m monolayers of SrO followed by n monolayers of TiO2. XRD results indicate that Ruddlesden-Popper defects, that is, rock salt double layers, enable incorporation of all levels of Sr excess, whereas excess Ti is observed to incorporate into the perovskite structure only at extreme excesses. A series of films with m equal to n were grown; that is, multiple monolayers of SrO deposited followed by multiple monolayers of TiO2. These initially locally non-stoichiometric arrangements interreact to form highly crystalline perovskite, even with layer thicknesses of up to 33 monolayers. The Ba0.6Sr0.4TiO3 films were characterized for their microwave dielectric properties, and were found to have high dielectric constants (epsilonr ˜1300 in each case, implying high tunabilities) but high tan delta values as well. The mechanisms by which the perovskite structure incorporates cation excesses is discussed, and it is argued that two probable mechanisms, one involving plane-sharing of Ti and Sr cations and the other involving rock salt multilayers, also enable the observed transport necessary for multilayer reaction. Working under the argument that these mechanisms involve low-energy architectures, a novel homologous series of phases based on rock salt multilayers is grown using monotayer control: the SrmTiO2+ m series, with each TiO2 monolayer followed by m SrO monolayers (m = 1-5). The phases in this series were characterized structurally, and an in-plane contraction was observed between the m = 2 and m = 3 phases, which is argued to be a relaxation of the SrO monolayers. Considering Ti-excess organizations, the BaTi2O5 structure is grown and observed to nucleate over a narrow window of growth conditions and substrates. LaAlO 3(100) promotes the nucleation of anatasc and ejection of perovskite; SrTiO3(100) promotes the nucleation of perovskite and ejection of TiO2; importantly, MgO(100) promotes the nucleation (010)-oriented BaTi2O5 growing with multiple domains. A BaTi2 O5 buffer layer was then used to promote the inclusion of Sr into (Ba,SOTi205 epilayers. Sr incorporation into a perovskite-related structure was observed to occur over the full range of (Ba,Sr)Ti2O 5 compositions.

  3. Damage mechanisms of MoN/SiN multilayer optics for next-generation pulsed XUV light sources.

    PubMed

    Sobierajski, R; Bruijn, S; Khorsand, A R; Louis, E; van de Kruijs, R W E; Burian, T; Chalupsky, J; Cihelka, J; Gleeson, A; Grzonka, J; Gullikson, E M; Hajkova, V; Hau-Riege, S; Juha, L; Jurek, M; Klinger, D; Krzywinski, J; London, R; Pelka, J B; Płociński, T; Rasiński, M; Tiedtke, K; Toleikis, S; Vysin, L; Wabnitz, H; Bijkerk, F

    2011-01-03

    We investigated the damage mechanism of MoN/SiN multilayer XUV optics under two extreme conditions: thermal annealing and irradiation with single shot intense XUV pulses from the free-electron laser facility in Hamburg - FLASH. The damage was studied "post-mortem" by means of X-ray diffraction, interference-polarizing optical microscopy, atomic force microscopy, and scanning transmission electron microscopy. Although the timescale of the damage processes and the damage threshold temperatures were different (in the case of annealing it was the dissociation temperature of Mo2N and in the case of XUV irradiation it was the melting temperature of MoN) the main damage mechanism is very similar: molecular dissociation and the formation of N2, leading to bubbles inside the multilayer structure.

  4. Imaging Research With Non-Periodic Multilayers for Inertial Confinement Fusion Diagnostic Experiments

    NASA Astrophysics Data System (ADS)

    L. Wang, F.; Mu, B. Z.; Wang, Z. S.; Gu, C. S.; Zhang, Z.; Qin, S. J.; Chen, L. Y.

    A grazing Kirkpatrick-Baez (K-B) microscope was designed for hard x-ray (8keV; Cu Ka radiation) imaging in Inertial Confinement Fusion (ICF) diagnostic experiments. Ray tracing software was used to simulate optical system performance. The optimized theoretical resolution of K-B microscope was about 2 micron and better than 10 micron in 200 micron field of view. Tungsten and boron carbide were chosen as multilayer materials and the multilayer was deposited onto the silicon wafer substrate and the reflectivity was measured by x-ray diffraction (XRD). The reflectivity of supermirror was about 20 % in 0.3 % of bandwidth. 8keV Cu target x-ray tube source was used in x-ray imaging experiments and the magnification of 1x and 2x x-ray images were obtained.

  5. Design of near-field irregular diffractive optical elements by use of a multiresolution direct binary search method.

    PubMed

    Li, Jia-Han; Webb, Kevin J; Burke, Gerald J; White, Daniel A; Thompson, Charles A

    2006-05-01

    A multiresolution direct binary search iterative procedure is used to design small dielectric irregular diffractive optical elements that have subwavelength features and achieve near-field focusing below the diffraction limit. Designs with a single focus or with two foci, depending on wavelength or polarization, illustrate the possible functionalities available from the large number of degrees of freedom. These examples suggest that the concept of such elements may find applications in near-field lithography, wavelength-division multiplexing, spectral analysis, and polarization beam splitters.

  6. Specific features of the atomic structure of metallic layers of multilayered (CoFeZr/SiO2)32 and (CoFeZr/ a-Si)40 nanostructures with different interlayers

    NASA Astrophysics Data System (ADS)

    Domashevskaya, E. P.; Guda, A. A.; Chernyshev, A. V.; Sitnikov, V. G.

    2017-02-01

    Multilayered nanostructures (MN) were prepared by ion-beam successive sputtering from two targets, one of which was a metallic Co45Fe45Zr10 alloy plate and another target was a quartz (SiO2) or silicon plate on the surface of a rotating glass-ceramic substrate in an argon atmosphere. The Co and Fe K edges X-ray absorption fine structure of XANES in the (CoFeZr/SiO2)32 sample with oxide interlayers was similar to XANES of metallic Fe foil. This indicated the existence in metallic layers of multilayered CoFeZr nanocrystals with a local environment similar to the atomic environment in solid solutions on the base of bcc Fe structure, which is also confirmed by XRD data. XANES near the Co and Fe K edges absorption in another multilayered nanostructure with silicon interlayers (CoFeZr/ a-Si)40 differs from XANES of MN with dielectric SiO2 interlayer, which demonstrates a dominant influence of the Fe-Si and Co-Si bonds in the local environment of 3 d Co and Fe metals when they form CoFeSi-type silicide phases in thinner bilayers of this MN.

  7. Evaluation of Multilayer Mask Concept for Respo 21

    DTIC Science & Technology

    1991-12-01

    faceseal was envisioned to be made from a stretchy rubber -like material that could be pre-formed into a trough-like geometry that would follow the...sampled to match the proportions of age categories and racial/ethnic groups found in the active duty Army of June, 1988. The anthropometric data...base dielectric gel encapsulated in a thin Kraton (synthetic rubber ) skin. 5.12.3.3 High Protection Early review of the preliminary design of the

  8. Variable laser attenuator

    DOEpatents

    Foltyn, Stephen R.

    1988-01-01

    The disclosure relates to low loss, high power variable attenuators comprng one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength.

  9. Optomechanical Coatings for High-Power Mirrors and Adaptive Optics

    DTIC Science & Technology

    2009-03-24

    micromirror under illumination is to increase the reflectance of the mirror. A multi-layer dielectric mirror becomes a necessity at moderate to high energies...structure. This technique was successfully demonstrated on a micromirror array fabricated by Sandia National Laboratory. Fig. 2-(1) shows the curvature of...a micromirror roughly 500 1-1m in diameter under varying laser illumination, with and without a 3-pair DBR mirror designed and fabricated by our

  10. Towards colorless transparent organic transistors: potential of benzothieno[3,2-b]benzothiophene-based wide-gap semiconductors.

    PubMed

    Moon, Hanul; Cho, Hyunsu; Kim, Mincheol; Takimiya, Kazuo; Yoo, Seunghyup

    2014-05-21

    Colorless, highly transparent organic thin-film transistors (TOTFTs) with high performance are realized based on benzothieno[3,2-b]benzothiophene (BTBT) derivatives that simultaneously exhibit a wide energy gap and high transport properties. Multilayer transparent source/drain electrodes maintain the transparency, and ultrathin fluoropolymer dielectric layers enable stable, low-voltage operation of the proposed TOTFTs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Organic Electronic Devices Using Crosslinked Polyelectrolyte Multilayers as an Ultra-Thin Dielectric Material

    DTIC Science & Technology

    2006-09-01

    energy band diagram illustrating the allowed energies for valence and conducting electrons. The dashes within the band gap (Eg) represent localized ...allowed energies for valence and conducting electrons. The dashes within the band gap (Eg) represent localized electron energy states, or traps, that...been observed with the formation of alternating bond lengths along the backbone.43 The localization of the π-electrons while forming the shorter double

  12. A Reliability Model for Ni-BaTiO3-Based (BME) Ceramic Capacitors

    NASA Technical Reports Server (NTRS)

    Liu, Donhang

    2014-01-01

    The evaluation of multilayer ceramic capacitors (MLCCs) with base-metal electrodes (BMEs) for potential NASA space project applications requires an in-depth understanding of their reliability. The reliability of an MLCC is defined as the ability of the dielectric material to retain its insulating properties under stated environmental and operational conditions for a specified period of time t. In this presentation, a general mathematic expression of a reliability model for a BME MLCC is developed and discussed. The reliability model consists of three parts: (1) a statistical distribution that describes the individual variation of properties in a test group of samples (Weibull, log normal, normal, etc.), (2) an acceleration function that describes how a capacitors reliability responds to external stresses such as applied voltage and temperature (All units in the test group should follow the same acceleration function if they share the same failure mode, independent of individual units), and (3) the effect and contribution of the structural and constructional characteristics of a multilayer capacitor device, such as the number of dielectric layers N, dielectric thickness d, average grain size r, and capacitor chip size S. In general, a two-parameter Weibull statistical distribution model is used in the description of a BME capacitors reliability as a function of time. The acceleration function that relates a capacitors reliability to external stresses is dependent on the failure mode. Two failure modes have been identified in BME MLCCs: catastrophic and slow degradation. A catastrophic failure is characterized by a time-accelerating increase in leakage current that is mainly due to existing processing defects (voids, cracks, delamination, etc.), or the extrinsic defects. A slow degradation failure is characterized by a near-linear increase in leakage current against the stress time; this is caused by the electromigration of oxygen vacancies (intrinsic defects). The two identified failure modes follow different acceleration functions. Catastrophic failures follow the traditional power-law relationship to the applied voltage. Slow degradation failures fit well to an exponential law relationship to the applied electrical field. Finally, the impact of capacitor structure on the reliability of BME capacitors is discussed with respect to the number of dielectric layers in an MLCC unit, the number of BaTiO3 grains per dielectric layer, and the chip size of the capacitor device.

  13. Reactive multilayers fabricated by vapor deposition. A critical review

    DOE PAGES

    Adams, D. P.

    2014-10-02

    The reactive multilayer thin films are a class of energetic materials that continue to attract attention for use in joining applications and as igniters. Generally composed of two reactants, these heterogeneous solids can be stimulated by an external source to promptly release stored chemical energy in a sudden emission of light and heat. In our critical review article, results from recent investigations of these materials are discussed. Discussion begins with a brief description of the vapor deposition techniques that provide accurate control of layer thickness and film composition. More than 50 reactive film compositions have been reported to date, withmore » most multilayers fabricated by magnetron sputter deposition or electron-beam evaporation. In later sections, we review how multilayer ignition threshold, reaction rate, and total heat are tailored via thin film design. For example, planar multilayers with nanometer-scale periodicity exhibit rapid, self-sustained reactions with wavefront velocities up to 100 m/s. Numeric and analytical models have elucidated many of the fundamental processes that underlie propagating exothermic reactions while demonstrating how reaction rates vary with multilayer design. Recent, time-resolved diffraction and imaging studies have further revealed the phase transformations and the wavefront dynamics associated with propagating chemical reactions. Many reactive multilayers (e.g., Co/Al) form product phases that are consistent with published equilibrium phase diagrams, yet a few systems, such as Pt/Al, develop metastable products. The final section highlights current and emerging applications of reactive multilayers. Examples include reactive Ni(V)/Al and Pd/Al multilayers which have been developed for localized soldering of heat-sensitive components.« less

  14. Development of a flat-field spectrometer with a wideband Ni/C multilayer grating in the 1–3.5 keV range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imazono, Takashi

    2016-07-27

    To develop a flat-field spectrometer with coverage of the 1–3.5 keV range, a wideband Ni/C multilayer grating was invented. The multilayer consists of two kinds of layer structures. One is a conventional periodic multilayer of thickness D{sub 1} = 5.6 nm, Ni thickness ratio to the multilayer period γ{sub 1} = 0.5 and the number of layers N{sub 1} = 79. Both the first and last layers are Ni. The other is a C/Ni bilayer of D{sub 2} = 8.4 nm, γ{sub 2} = 0.53 and N{sub 2} = 2. The first layer is C and then Ni. The aperiodicmore » multilayer from the topmost C/Ni bilayer was coated on a laminar-type grating having an effective grating constant of 1/2400 mm, groove depth of 2.8 nm, and duty ratio (land width/groove period) of 0.5. In a preliminary experiment, the diffraction efficiency was in excess of 0.8% in the energy range of 2.1-3.3 keV and the maximum of 5.4% at 3.1 keV at a constant angle of incidence of 88.54°, which is considerably higher than that of an Au-coated grating before deposition of the multilayer.« less

  15. Is there radar evidence for liquid water on Mars?

    NASA Technical Reports Server (NTRS)

    Roth, L. E.

    1984-01-01

    The hypothesis that an extraordinary radar smoothness of a lunar target suggests that ground moisture is rest on the assumption that on the penetration-depth scale, the dielectric constant be an isotropic quantity. In other words, the planet's surface should have no vertical structure. Results of modeling exercises (based on the early lunar two-layer models) conducted to simulate the behavior of radar reflectivity, at S-band, over Solis Lacus, without manipulating the dielectric constant of the base layer (i.e., without adding moisture) are summarized. More sophisticated, explicit, rather than iterative multi-layer models involving dust, duricrust, mollisol, and permafrost are under study. It is anticipated that a paradoxical situation will be reached when each improvement in the model introduces additional ambiguities into the data interpretation.

  16. Multi-Layer SnSe Nanoflake Field-Effect Transistors with Low-Resistance Au Ohmic Contacts

    NASA Astrophysics Data System (ADS)

    Cho, Sang-Hyeok; Cho, Kwanghee; Park, No-Won; Park, Soonyong; Koh, Jung-Hyuk; Lee, Sang-Kwon

    2017-05-01

    We report p-type tin monoselenide (SnSe) single crystals, grown in double-sealed quartz ampoules using a modified Bridgman technique at 920 °C. X-ray powder diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) measurements clearly confirm that the grown SnSe consists of single-crystal SnSe. Electrical transport of multi-layer SnSe nanoflakes, which were prepared by exfoliation from bulk single crystals, was conducted using back-gated field-effect transistor (FET) structures with Au and Ti contacts on SiO2/Si substrates, revealing that multi-layer SnSe nanoflakes exhibit p-type semiconductor characteristics owing to the Sn vacancies on the surfaces of SnSe nanoflakes. In addition, a strong carrier screening effect was observed in 70-90-nm-thick SnSe nanoflake FETs. Furthermore, the effect of the metal contacts to multi-layer SnSe nanoflake-based FETs is also discussed with two different metals, such as Ti/Au and Au contacts.

  17. Magnetic-optical bifunctional CoPt3/Co multilayered nanowire arrays

    NASA Astrophysics Data System (ADS)

    Su, Yi-Kun; Yan, Zhi-Long; Wu, Xi-Ming; Liu, Huan; Ren, Xiao; Yang, Hai-Tao

    2015-10-01

    CoPt3/Co multilayered nanowire (NW) arrays are synthesized by pulsed electrodeposition into nanoporous anodic aluminum oxide (AAO) templates. The electrochemistry deposition parameters are determined by cyclic voltammetry to realize the well control of the ratio of Co to Pt and the length of every segment. The x-ray diffraction (XRD) patterns show that both Co and CoPt3 NWs exhibit face-centered cubic (fcc) structures. In the UV-visible absorption spectra, CoPt3/Co NW arrays show a red-shift with respect to pure CoPt3NWs. Compared with the pure Co nanowire arrays, the CoPt3/Co multilayered nanowire arrays show a weak shape anisotropy and well-modulated magnetic properties. CoPt3/Co multilayered nanowires are highly encouraging that new families of bimetallic nanosystems may be developed to meet the needs of nanomaterials in emerging multifunctional nanotechnologies. Project supported by the National Natural Science Foundation of China (Grant Nos. 51472165, 51471185, and 11274370).

  18. Design and fabrication of a metamaterial gradient index diffraction grating at infrared wavelengths.

    PubMed

    Tsai, Yu-Ju; Larouche, Stéphane; Tyler, Talmage; Lipworth, Guy; Jokerst, Nan M; Smith, David R

    2011-11-21

    We demonstrate the design, fabrication and characterization of an artificially structured, gradient index metamaterial with a linear index variation of Δn ~ 3.0. The linear gradient profile is repeated periodically to form the equivalent of a blazed grating, with the gradient occurring across a spatial distance of 61 μm. The grating, which operates at a wavelength of 10.6 μm, is composed of non-resonant, progressively modified "I-beam" metamaterial elements and approximates a linear phase shift gradient using 61 distinguishable phase levels. The grating structure consists of four layers of lithographically patterned metallic I-beam elements separated by dielectric layers of SiO(2). The index gradient is confirmed by comparing the measured magnitudes of the -1, 0 and +1 diffracted orders to those obtained from full wave simulations incorporating all material properties of the metals and dielectrics of the structures. The large index gradient has the potential to enable compact infrared diffractive and gradient index optics, as well as more exotic transformation optical media. © 2011 Optical Society of America

  19. Impedance spectroscopic and dielectric properties of nanosized Y2/3Cu3Ti4O12 ceramic

    NASA Astrophysics Data System (ADS)

    Sharma, Sunita; Yadav, Shiv Sundar; Singh, M. M.; Mandal, K. D.

    2014-11-01

    Yttrium Copper Titanate (Y2/3Cu3Ti4O12) nanoceramic is structurally analogous to CaCu3Ti4O12 (CCTO). X-ray diffraction (XRD) of Y2/3Cu3Ti4O12 (YCTO) shows the presence of all normal peaks of CCTO. SEM micrograph exhibits the presence of bimodal grains of size ranging from 1-2 μm. Bright field TEM image clearly displays nanocrystalline particle which is supported by presence of a few clear rings in the corresponding selected area electron diffraction (SAED) pattern. It exhibits a high value of dielectric constant (ɛ‧ = 8434) at room temperature and 100 Hz frequency with characteristic relaxation peaks. Impedance and modulus studies revealed the presence of temperature-dependent Maxwell-Wagner type of relaxation in the ceramic.

  20. Structural, dielectric and impedance spectroscopic studies of Ni0.5Zn0.5-xLixFe2O4 nanocrystalline ferrites

    NASA Astrophysics Data System (ADS)

    Venkatesh, Davuluri; Ramesh, K. V.

    2017-09-01

    Nanocrystalline lithium substituted Ni-Zn ferrites with composition Ni0.5Zn0.5-xLixFe2O4 (x = 0.00-0.25 in steps of 0.05) were synthesized by the citrate gel auto-combustion method and were sintered at 1000∘C for 4 h in air atmosphere. The structural, dielectric, impedance spectroscopic and magnetic properties were studied by using X-ray diffraction, impedance analyzer and vibrating sample magnetometer respectively. The X-ray diffraction patterns confirm that all samples exhibit a single phase cubic spinel structure. Suitable cation distribution for all compositions has been proposed by using the X-ray diffraction line intensity calculations and the theoretical lattice parameter for each composition was observed in close agreement with the experimental ones and thereby supporting the proposed distribution. An increase in the saturation magnetization was observed up to x = 0.10 level of Li+ substitution and thereafter magnetization reduced for higher concentrations to the highest level of Li+ substitution. The dielectric constant and the DC resistivity of Ni-Zn-Li ferrites were noticed to decrease with increase in the Li+ ion concentration. The impedance spectroscopic studies by using the Cole-Cole plots were studied in order to obtain the relaxation time, grain resistance and grain capacitance. AC conductivity initially remained almost independent of frequency for lower frequencies and thereafter for higher frequencies the AC conductivity increased with increase of Lithium concentration.

  1. Optical fiber endface biosensor based on resonances in dielectric waveguide gratings

    NASA Astrophysics Data System (ADS)

    Wawro, Debra D.; Tibuleac, Sorin; Magnusson, Robert; Liu, Hanli

    2000-05-01

    A new fiber optic sensor integrating dielectric diffraction gratings and thin films on optical fiber endfaces is prosed for biomedical sensing applications. This device utilizes a resonant dielectric waveguide grating structure fabricated on an optical fiber endface to probe reactions occurring in a sensing layer deposited on its surface. The operation of this sensor is based upon a fundamental resonance effect that occurs in waveguide gratings. An incident broad- spectrum signal is guided within an optical fiber and is filtered to reflect or transmit a desired spectral band by the diffractive thin film structure on its endface. Slight changes in one or more parameters of the waveguide grating, such as refractive index or thickness, can result in a responsive shift of the reflected or transmitted spectral peak that can be detected with spectroscopic instruments. This new sensor concept combines improved sensitivity and accuracy with attractive features found separately in currently available fiber optic sensors, such as large dynamic range, small sensing proximity, real time operation, and remote sensing. Diffractive elements of this type consisting of a photoresist grating on a Si3N4 waveguide have been fabricated on multimode optical fiber endfaces with 100 micrometers cores. Preliminary experimental tests using a tunable Ti:sapphire laser indicate notches of 18 percent in the transmission spectrum of the fiber endface guided-mode resonance devices. A theoretical analysis of the device performance capabilities is presented and applied to evaluate the feasibility and potential advantages of this bioprobe.

  2. Metasurface-based angle-selective multichannel acoustic refractor

    NASA Astrophysics Data System (ADS)

    Liu, Bingyi; Jiang, Yongyuan

    2018-05-01

    We theoretically study the angle-selective refractions of an impedance-matched acoustic gradient-index metasurface, which is integrated with a rigid bar array of a deep subwavelength period. An interesting refraction order appears under the all-angle incidence despite the existence of a critical angle, and notably, the odevity of the phase-discretization level apparently selects the transmitted diffraction orders. We utilize the strategy of multilayered media design to realize a three-channel acoustic refractor, which shows good promise for constructing multifunctional diffractive acoustic elements for acoustic communication.

  3. Micro X-ray diffraction analysis of thin films using grazing-exit conditions.

    PubMed

    Noma, T; Iida, A

    1998-05-01

    An X-ray diffraction technique using a hard X-ray microbeam for thin-film analysis has been developed. To optimize the spatial resolution and the surface sensitivity, the X-ray microbeam strikes the sample surface at a large glancing angle while the diffracted X-ray signal is detected with a small (grazing) exit angle. Kirkpatrick-Baez optics developed at the Photon Factory were used, in combination with a multilayer monochromator, for focusing X-rays. The focused beam size was about 10 x 10 micro m. X-ray diffraction patterns of Pd, Pt and their layered structure were measured. Using a small exit angle, the signal-to-background ratio was improved due to a shallow escape depth. Under the grazing-exit condition, the refraction effect of diffracted X-rays was observed, indicating the possibility of surface sensitivity.

  4. Enhanced carrier mobility of multilayer MoS2 thin-film transistors by Al2O3 encapsulation

    NASA Astrophysics Data System (ADS)

    Kim, Seong Yeoul; Park, Seonyoung; Choi, Woong

    2016-10-01

    We report the effect of Al2O3 encapsulation on the carrier mobility and contact resistance of multilayer MoS2 thin-film transistors by statistically investigating 70 devices with SiO2 bottom-gate dielectric. After Al2O3 encapsulation by atomic layer deposition, calculation based on Y-function method indicates that the enhancement of carrier mobility from 24.3 cm2 V-1 s-1 to 41.2 cm2 V-1 s-1 occurs independently from the reduction of contact resistance from 276 kΩ.μm to 118 kΩ.μm. Furthermore, contrary to the previous literature, we observe a negligible effect of thermal annealing on contact resistance and carrier mobility during the atomic layer deposition of Al2O3. These results demonstrate that Al2O3 encapsulation is a useful method of improving the carrier mobility of multilayer MoS2 transistors, providing important implications on the application of MoS2 and other two-dimensional materials into high-performance transistors.

  5. FDTD-based quantitative analysis of terahertz wave detection for multilayered structures.

    PubMed

    Tu, Wanli; Zhong, Shuncong; Shen, Yaochun; Zhou, Qing; Yao, Ligang

    2014-10-01

    Experimental investigations have shown that terahertz pulsed imaging (TPI) is able to quantitatively characterize a range of multilayered media (e.g., biological issues, pharmaceutical tablet coatings, layered polymer composites, etc.). Advanced modeling of the interaction of terahertz radiation with a multilayered medium is required to enable the wide application of terahertz technology in a number of emerging fields, including nondestructive testing. Indeed, there have already been many theoretical analyses performed on the propagation of terahertz radiation in various multilayered media. However, to date, most of these studies used 1D or 2D models, and the dispersive nature of the dielectric layers was not considered or was simplified. In the present work, the theoretical framework of using terahertz waves for the quantitative characterization of multilayered media was established. A 3D model based on the finite difference time domain (FDTD) method is proposed. A batch of pharmaceutical tablets with a single coating layer of different coating thicknesses and different refractive indices was modeled. The reflected terahertz wave from such a sample was computed using the FDTD method, assuming that the incident terahertz wave is broadband, covering a frequency range up to 3.5 THz. The simulated results for all of the pharmaceutical-coated tablets considered were found to be in good agreement with the experimental results obtained using a commercial TPI system. In addition, we studied a three-layered medium to mimic the occurrence of defects in the sample.

  6. Design of a normal incidence multilayer imaging x-ray microscope.

    PubMed

    Shealy, D L; Gabardi, D R; Hoover, R B; Walker, A B; Lindblom, J F; Barbee, T W

    1989-01-01

    Normal incidence multilayer Cassegrain x-ray telescopes were flown on the Stanford/MSFC Rocket X-Ray Spectroheliograph. These instruments produced high spatial resolution images of the Sun and conclusively demonstrated that doubly reflecting multilayer x-ray optical systems are feasible. The images indicated that aplanatic imaging soft x-ray /EUV microscopes should be achievable using multilayer optics technology. We have designed a doubly reflecting normal incidence multilayer imaging x-ray microscope based on the Schwarzschild configuration. The Schwarzschild microscope utilizes two spherical mirrors with concentric radii of curvature which are chosen such that the third-order spherical aberration and coma are minimized. We discuss the design of the microscope and the results of the optical system ray trace analysis which indicates that diffraction-limited performance with 600 Å spatial resolution should be obtainable over a 1 mm field of view at a wavelength of 100 Å. Fabrication of several imaging soft x-ray microscopes based upon these designs, for use in conjunction with x-ray telescopes and laser fusion research, is now in progress. High resolution aplanatic imaging x-ray microscopes using normal incidence multilayer x-ray mirrors should have many important applications in advanced x-ray astronomical instrumentation, x-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  7. Quantification of Protein-Induced Membrane Remodeling Kinetics In Vitro with Lipid Multilayer Gratings

    PubMed Central

    Lowry, Troy W.; Hariri, Hanaa; Prommapan, Plengchart; Kusi-Appiah, Aubrey; Vafai, Nicholas; Bienkiewicz, Ewa A.; Van Winkle, David H.; Stagg, Scott M.

    2016-01-01

    The dynamic self-organization of lipids in biological systems is a highly regulated process that enables the compartmentalization of living systems at micro- and nanoscopic scales. Consequently, quantitative methods for assaying the kinetics of supramolecular remodeling such as vesicle formation from planar lipid bilayers or multilayers are needed to understand cellular self-organization. Here, a new nanotechnology-based method for quantitative measurements of lipid–protein interactions is presented and its suitability for quantifying the membrane binding, inflation, and budding activity of the membrane-remodeling protein Sar1 is demonstrated. Lipid multilayer gratings are printed onto surfaces using nanointaglio and exposed to Sar1, resulting in the inflation of lipid multilayers into unilamellar structures, which can be observed in a label-free manner by monitoring the diffracted light. Local variations in lipid multilayer volume on the surface is used to vary substrate availability in a microarray format. A quantitative model is developed that allows quantification of binding affinity (KD) and kinetics (kon and koff). Importantly, this assay is uniquely capable of quantifying membrane remodeling. Upon Sar1-induced inflation of single bilayers from surface supported multilayers, the semicylindrical grating lines are observed to remodel into semispherical buds when a critical radius of curvature is reached. PMID:26649649

  8. Effects of interfaces on the thermal conductivity in Si/Si0.75Ge0.25 multilayer with varying Au layers

    NASA Astrophysics Data System (ADS)

    Hu, Yangsen; Wu, Zhenghua; Ye, Fengjie; Hu, Zhiyu

    2018-02-01

    The manoeuvre of thermal transport property across multilayer films with inserted metal layers through controlling the metal-nonmetal interfaces is of fundamental interest. In this work, amorphous Si/Si0.75Ge0.25 multilayer films inserted with varying Au layers were fabricated by magnetron sputtering. The structure and sharp interface of multilayers films were characterized by low angle x-ray diffraction (LAXRD), grazing incidence small angle x-ray scattering (GISAXS) and scanning electron microscopy (SEM). A differential 3ω method was applied to measure the effective thermal conductivity. The measurements show that thermal conductivity has changed as varying Au layers. Thermal conductivity increased from 0.94 to 1.31 Wm-1K-1 while Si0.75Ge0.25 layer was replaced by different Au layers, which was attributed to the strong electron-phonon coupling and interface thermal resistance in a metal-nonmetal multilayered system. Theoretical calculation combined with experimental results indicate that the thermal conductivity of the multilayer film could be facilely controlled by introducing different number of nanoconstructed metal-nonmetal interfaces, which provide a more insightful understanding of the thermal transport manipulation mechanism of the thin film system with inserting metal layers.

  9. Mechanical and corrosive behavior of Ti/TiN multilayer films with different modulation periods

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Leng, Y. X.; Qi, F.; Tao, T.; Huang, N.

    2007-04-01

    Ti/TiN multilayer films with different periods Λ (Λ = λTiN + λTi) were synthesized on 17-4PH stainless steel and silicon wafer using unbalanced magnetron sputtering. The microstructure of the films was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The mechanical properties such as hardness, sliding wear behavior and adhesion were analyzed by means of micro-hardness, ball-on-disc and scratch tests. The anodic polarization characteristics were measured in a 3% NaCl solution at room temperature to examine the corrosion resistance. Moreover, the corrosion resistance in a 350 °C water vapor ambience also was analyzed. XRD revealed a gradual TiNx transition layer between Ti and TiN. The SEM results confirmed the periodicity of the Ti/TiN multilayer films. The hardness and wear resistance of the Ti/TiN multilayer films increased with decrease of the modulation period. The adhesion strength between Ti/TiN multilayer films and 17-4PH substrate was improved with proper modulation period. The Ti/TiN multilayer films can for a corrosion protective coating on 17-4PH stainless steel in 3% NaCl solution, however the corrosion resistance at 350 °C vapor ambience decreased for the period Λ below 200 nm.

  10. Preparation, structural and dielectric characteristics of Y0.5La0.95PO4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Raina, Bindu; Verma, Seema; Gupta, Vandana; Bamzai, K. K.

    2018-05-01

    Nanoparticles of yttrium substituted lanthanum phosphate having formulae Y0.5La0.95PO4 were successfully prepared through co-precipitation method. The phase, purity and crystallinity of 5% yttrium substituted lanthanum phosphate (Y: LaP 5%) powder was characterized by X-ray diffraction technique which suggests the sample belonging to monoclinic monazite crystal system. The spherical morphology with partial agglomeration having grain size in the nano scale range was observed with transmission electron microscopy. FTIR analysis depicts the presence of water molecule along with the phosphate group. The electrical properties of the grown composition show dependence of dielectric constant and dielectric loss on frequency and temperature. The continuous decrease in dielectric constant with increase in frequency suggests that the conduction mechanism is due to hopping of the charge carriers from one site to another.

  11. Magnetic and dielectric behavior of chromium substituted Co-Mg ferrite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jadoun, Priya, E-mail: priya4jadoun@gmail.com; Jyoti,; Prashant, B. L.

    The chromium doped Co-Mg ferrite with composition Co{sub 0.5}Mg{sub 0.5}Cr{sub 0.2}Fe{sub 1.8}O{sub 4} has been synthesized using sol-gel auto combustion method. The crystal structure has been analyzed by X-ray diffraction (XRD) technique. XRD pattern reveals the formation of single phase cubic spinel structure. The magnetic measurements show ferromagnetic behavior at room temperature and large coercivity is observed on cooling down the temperature to 20 K. Dielectric constant (ε’) and dielectric loss tangent (tan δ) have been determined at room temperature as a function of frequency in the frequency range 75 kHz to 80 MHz. The decrease in dielectric constant with increasing frequency attributesmore » to Maxwell Wagner model and conduction mechanism in ferrites.« less

  12. Influence of Sn doping in BaSnxTi1-xO3 ceramics on microstructural and dielectric properties

    NASA Astrophysics Data System (ADS)

    Ansari, Mohd. Azaj; Sreenivas, K.

    2018-05-01

    BaSnxTi1-x O3 solid solutions with varying Sn content (x = 0.00, 0.05, 0.15, 0.25) prepared by solid state reaction method have been studied for their structural and dielectric properties. X-ray diffraction and Raman spectroscopic analysis show composition induced modifications in the crystallographic structure, and with increasing Sn content the structure changes from tetragonal to cubic structure. The tetragonal distortion decreases with increasing Sn, and the structure becomes purely cubic for x =0.25. Changes in the structure are reflected in the temperature dependent dielectric properties. For increasing Sn content the peak dielectric constant is found to increase and the phase transition temperature (Tc) decreases to lower temperature. The purely cubic structure with x=0.25 shows a diffused phased transition.

  13. Acid-Group-Content-Dependent Proton Conductivity Mechanisms at the Interlayer of Poly(N-dodecylacrylamide-co-acrylic acid) Copolymer Multilayer Nanosheet Films.

    PubMed

    Sato, Takuma; Tsukamoto, Mayu; Yamamoto, Shunsuke; Mitsuishi, Masaya; Miyashita, Tokuji; Nagano, Shusaku; Matsui, Jun

    2017-11-14

    The effect of the content of acid groups on the proton conductivity at the interlayer of polymer-nanosheet assemblies was investigated. For that purpose, amphiphilic poly(N-dodecylacrylamide-co-acrylic acid) copolymers [p(DDA/AA)] with varying contents of AA were synthesized by free radical polymerization. Surface pressure (π)-area (A) isotherms of these copolymers indicated that stable polymer monolayers are formed at the air/water interface for AA mole fraction (n) ≤ 0.49. In all cases, a uniform dispersion of the AA groups in the polymer monolayer was observed. Subsequently, polymer monolayers were transferred onto solid substrates using the Langmuir-Blodgett (LB) technique. X-ray diffraction (XRD) analyses of the multilayer films showed strong Bragg diffraction peaks, suggesting a highly uniform lamellar structure for the multilayer films. The proton conductivity of the multilayer films parallel to the direction of the layer planes were measured by impedance spectroscopy, which revealed that the conductivity increased with increasing values of n. Activation energies for proton conduction of ∼0.3 and 0.42 eV were observed for n ≥ 0.32 and n = 0.07, respectively. Interestingly, the proton conductivity of a multilayer film with n = 0.19 did not follow the Arrhenius equation. These results were interpreted in terms of the average distance between the AA groups (l AA ), and it was concluded that, for n ≥ 0.32, an advanced 2D hydrogen bonding network was formed, while for n = 0.07, l AA is too long to form such hydrogen bonding networks. The l AA for n = 0.19 is intermediate to these extremes, resulting in the formation of hydrogen bonding networks at low temperatures, and disruption of these networks at high temperatures due to thermally induced motion. These results indicate that a high proton conductivity with low activation energy can be achieved, even under weakly acidic conditions, by arranging the acid groups at an optimal distance.

  14. Structure and Properties of Azobenzene Thin-Films

    NASA Astrophysics Data System (ADS)

    Allen, R. A.

    1987-09-01

    Available from UMI in association with The British Library. A number of monomer and polymer materials, all containing the azobenzene group, have been deposited as Langmuir-Blodgett (LB) multilayers and their structures and physical properties studied. LB films of two monomeric materials exhibited liquid crystal phase changes that were investigated by optical microscopy and X-ray diffraction. Multilayers built up from one of the materials exhibited a phase change upon aging and this demonstrated that the LB technique had produced a structure that was not the equilibrium state. A monomer material possessing a fluorocarbon chain was found to initially deposit as an LB film in a Z-type manner, but changed to Y-type deposition with increasing multilayer thickness. A correlation was observed between this behaviour and the surface potential changes that were brought about when deposition took place on an aluminium substrate. The feasibility of building up alternating multilayers of monomer and polymer materials was demonstrated. Combining these two classes of material in the same LB film may confer on it the mechanical durability of the polymers and the highly ordered structure and potentially interesting physical properties of the monomer. The structures developed here may prove to have high second harmonic generation capabilities. Polymer materials were built up into relatively thick Y-type LB multilayers and studied by X-ray diffraction. Only poorly defined layered structures were found. Polymer materials were also cast into thin films from the melt and from solution. One of the compounds developed a high degree of anisotropy in its structure after exposure to linearly polarised white light. A birefringence of up to Deltan = 0.21 was measured. In contrast, LB films formed from the same material could not be ordered in the same manner and this appeared to result from the very close packing that takes place in such structures.

  15. Heterogeneous multi-layered IF steel with simultaneous high strength and good ductility

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Jiang, Xiaojuan; Wang, Yuhui; Chen, Qiang; Chen, Zhen; Zhang, Yonghong; Huang, Tianlin; Wu, Guilin

    2017-07-01

    Multi-layered IF steel samples were designed and fabricated by hot compression followed by cold forging of an alternating stack of cold-rolled and annealed IF steel sheets, with an aim to improve the strength of the material without losing much ductility. A very good combination of strength and ductility was achieved by proper annealing after deformation. Microstructural analysis by electron back-scatter diffraction revealed that the good combination of strength and ductility is related to a characteristic hierarchical structure that is characterized by layered and lamella structures with different length scales.

  16. Investigations on Sm- and Nb-SUBSTITUTED PZT Ceramics

    NASA Astrophysics Data System (ADS)

    Prakash, Chandra; Juneja, J. K.

    In the present paper, we report the effect of Samarium substitution and Niobium doping on the properties of a PZT(52:48). The properties studied are: structural, dielectric and ferroelectric. The samples with chemical formula Pb0.99Sm0.01Zr0.52Ti0.48O3 were prepared by solid-state dry ceramic method. Small amount (0.5 wt%) of Nb2O5 was also added. X-ray diffraction (XRD) analysis showed formation of a single phase with tetragonal structure. Dielectric properties were studied as a function of temperature and frequency. Transition temperature, Tc, was determined from dielectric constant versus temperature plot. The material shows well-defined ferroelectric (PE) hysteresis loop.

  17. Structural, optical and dielectric properties of pure and chromium (Cr) doped nickel oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Gupta, Jhalak; Ahmed, Arham S.

    2018-05-01

    The pure and Cr doped nickel oxide (NiO) nanoparticles have been synthesized by cost effective co-precipitation method having nickel nitrate as initial precursor. The synthesized samples were characterized by X-Ray diffraction (XRD), UV-Visible Spectroscopy(UV-Vis) and LCR meter for structural, optical and dielectric properties respectively. The crystallite size of pure nickel oxide nanoparticles characterized by XRD using Debye Scherer's formula was found to be 21.7nm and the same decreases on increasing Cr concentration whereas optical and dielectric properties were analyzed by UV-Vis and LCR meter respectively. The energy band gaps were determined by UV-Vis using Tauc relation.

  18. Improving the oxidation resistance and stability of Ag nanoparticles by coating with multilayered reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Li, Yahui; Zhang, Huayu; Wu, Bowen; Guo, Zhuo

    2017-12-01

    A kind of coating nanostructure, Ag nanoparticles coated with multilayered reduced graphene oxide (RGO), is fabricated by employing a three-step reduction method in an orderly manner, which is significantly different from the conventional structures that are simply depositing or doping with Ag nanoparticles on RGO via chemical reduction. The as-prepared nanostructure is investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected-area electronic diffraction (SEAD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The results show that the obtained Ag/RGO nanostructure is observed to be a perfect coating structure with well dispersed Ag particles, which is responsible for the remarkable oxidation resistance. The results of XPS spectra indicate the content of metallic Ag is far greater than that of Ag oxides despite of prolonged exposure to the air, which fully demonstrate the excellent stability of thus coating nanostructure.

  19. Dielectric relaxation and pinning phenomenon of (Sr,Pb)TiO3 ceramics for dielectric tunable device application.

    PubMed

    Huang, Xian-Xiong; Zhang, Tian-Fu; Tang, Xin-Gui; Jiang, Yan-Ping; Liu, Qiu-Xiang; Feng, Zu-Yong; Zhou, Qi-Fa

    2016-09-15

    The behavior of ferroelectric domain under applied electric field is very sensitive to point defects, which can lead to high temperature dielectric relaxation behaviors. In this work, the phases, dielectric properties and ferroelectric switching behavior of strontium lead titanate ceramics were investigated. The structural characterization is confirmed by X-ray diffraction. The high dielectric tunability and high figure of merit of ceramics, especially Sr0.7Pb0.3TiO3 (SPT), imply that SPT ceramics are promising materials for tunable capacitor applications. Oxygen vacancies induced dielectric relaxation phenomenon is observed. Pinched shape hysteresis loops appeared in low temperature, low electric field or high frequency, whereas these pinched hysteresis loops also can become normal by rising temperature, enhancing electric field or lowering frequency. The pinning and depinning effect can be ascribed to the interaction between oxygen vacancies and domain switching. A qualitative model and a quantitative model are used to explain this phenomenon. Besides, polarization and oxygen treated experiment can exert an enormous influence on pinning effect and the machanisms are also discussed in this work.

  20. High temperature dielectric studies of indium-substituted NiCuZn nanoferrites

    NASA Astrophysics Data System (ADS)

    Hashim, Mohd.; Raghasudha, M.; Shah, Jyoti; Shirsath, Sagar E.; Ravinder, D.; Kumar, Shalendra; Meena, Sher Singh; Bhatt, Pramod; Alimuddin; Kumar, Ravi; Kotnala, R. K.

    2018-01-01

    In this study, indium (In3+)-substituted NiCuZn nanostructured ceramic ferrites with a chemical composition of Ni0.5Cu0.25Zn0.25Fe2-xInxO4 (0.0 ≤ x ≤ 0.5) were prepared by chemical synthesis involving sol-gel chemistry. Single phased cubic spinel structure materials were prepared successfully according to X-ray diffraction and transmission electron microscopy analyses. The dielectric properties of the prepared ferrites were measured using an LCR HiTester at temperatures ranging from room temperature to 300 °C at different frequencies from 102 Hz to 5 × 106 Hz. The variations in the dielectric parameters ε‧ and (tanδ) with temperature demonstrated the frequency- and temperature-dependent characteristics due to electron hopping between the ions. The materials had low dielectric loss values in the high frequency range at all temperatures, which makes them suitable for high frequency microwave applications. A qualitative explanation is provided for the dependences of the dielectric constant and dielectric loss tangent on the frequency, temperature, and composition. Mӧssbauer spectroscopy was employed at room temperature to characterize the magnetic behavior.

  1. Scattering from thin dielectric straps surrounding a perfectly conducting structure

    NASA Technical Reports Server (NTRS)

    Al-Hekail, Zeyad; Gupta, Inder J.

    1989-01-01

    A method to calculate the electromagnetic scattered fields from a dielectric strap wrapped around convex, conducting structure is presented. A moment method technique is used to find the current excited within the strap by the incident plane wave. Then, Uniform Geometrical Theory of Diffraction (UTD) is used to compute the fields scattered by the strap. Reasonable agreement was obtained between the computed and the measured results. The results found in this study are useful in evaluating straps as a target support structure for scattering measurements.

  2. Thin film colossal dielectric constant oxide La2-xSrxNiO4: Synthesis, dielectric relaxation measurements, and electrode effects

    NASA Astrophysics Data System (ADS)

    Podpirka, Adrian; Ramanathan, Shriram

    2011-01-01

    We have successfully synthesized the colossal dielectric constant oxide La2-xSrxNiO4 in thin film form by reactive cosputtering from metallic targets and careful annealing protocols. Composition and phase purity was determined through energy dispersive spectra and x-ray diffraction, respectively. The dielectric constant exceeds values of over 20 000 up to 1 kHz and the activation energy for the frequency-independent conductivity plateau was extracted to be approximately 155 meV from 300 to 473 K, both in agreement with measurements conducted on bulk single crystals. However, unlike in single crystals, we observe early onset of relaxation in thin films indicating the crucial role of grain boundaries in influencing the dielectric response. ac conductivity at varying temperatures is analyzed within the framework of the universal dielectric law leading to an exponent of approximately 0.3, dependent on the electrode material. Impedance spectroscopy with electrodes of different work function (Pt, Pd, and Ag) was further carried out as a function of temperature and applied bias to provide mechanistic insights into the nature of the dielectric response.

  3. Dielectric Properties of PANI/CuO Nanocomposites

    NASA Astrophysics Data System (ADS)

    Ambalagi, Sharanabasamma M.; Devendrappa, Mahalesh; Nagaraja, Sannakki; Sannakki, Basavaraja

    2018-02-01

    The combustion method is used to prepare the Copper Oxide (CuO) nanoparticles. The nanocomposites of Polyaniline (PANI) by doping with copper oxide nanoparticles have synthesized at 10, 20, 30, 40 and 50 different weight percentages during the in-situ polymerization. The samples of nanocomposite of PANI-CuO were characterized by using X-Ray diffraction (XRD) technique. The physical properties such as dielectric constant, dielectric loss and A C conductivity of the nanocomposites are studied as a function of frequency in the range 5Hz-35MHz at room temperature. It is found that the dielectric constant decreases as the frequency increases. The dielectric constant it remains constant at higher frequencies and it is also observed that in particular frequency both the dielectric constant and dielectric loss are decreased as a weight percentage of CuO increased. In case of AC conductivity it is found that as the frequency increases the AC conductivity remains constant up to 3.56MHz and afterwards it increases as frequency increases. This is due to the increase in charge carriers through the hopping mechanism in the polymer nanocomposites. It is also observed that as a weight percentage of CuO increased the AC conductivity is also increasing at a particular frequency.

  4. Fatigue in artificially layered Pb(Zr,Ti)O3 ferroelectric films

    NASA Astrophysics Data System (ADS)

    Jiang, A. Q.; Scott, J. F.; Dawber, M.; Wang, C.

    2002-12-01

    We have performed fatigue tests on lead zirconate titanate (PZT) multilayers having stacks of Pb(Zr0.8Ti0.2)O3/Pb(Zr0.2Ti0.8)O3 with repeated distances of 12 formula groups. The results are compared with single-layer n-type (0.5 at. % Ta-doped) PZT films. We conclude that fatigue is dominated by space-charge layers in each case, but that in the multilayer such space charge accumulates at the layer interfaces, rather than at the electrode-dielectric interface. The model, which includes both drift and diffusion, is quantitative and yields a rate-limiting mobility of 6.9±0.9×10-12 cm2/V s, in excellent agreement with the oxygen vacancy mobility for perovskite oxides obtained from Zafar et al.

  5. Multilayer solar cell waveguide structures containing metamaterials

    NASA Astrophysics Data System (ADS)

    Hamouche, Houria.; Shabat, Mohammed. M.; Schaadt, Daniel M.

    2017-01-01

    Multilayer antireflection coating structures made from silicon and metamaterials are designed and investigated using the Transfer Matrix Method (TMM). The Transfer Matrix Method is a very useful algorithm for the analysis of periodic structures. We investigate in this paper two anti-reflection coating structures for silicon solar cells with a metamaterial film layer. In the first structure, the metamaterial film layer is sandwiched between a semi-infinite glass cover layer and a semi-infinite silicon substrate layer. The second structure consists of a four layers, a pair of metamaterial-dielectric layer with opposite real part of refractive indices, is placed between the two semi-infinite cover and substrate. We have simulated the absorptivity property of the structures for adjustable thicknesses by using MAPLE software. The absorptivity of the structures achieves greater than 80% for incident electromagnetic wave of transverse magnetic (TM) polarization.

  6. Electromagnetic reflection from multi-layered snow models

    NASA Technical Reports Server (NTRS)

    Linlor, W. I.; Jiracek, G. R.

    1975-01-01

    The remote sensing of snow-pack characteristics with surface installations or an airborne system could have important applications in water-resource management and flood prediction. To derive some insight into such applications, the electromagnetic response of multilayered snow models is analyzed in this paper. Normally incident plane waves at frequencies ranging from 1 MHz to 10 GHz are assumed, and amplitude reflection coefficients are calculated for models having various snow-layer combinations, including ice layers. Layers are defined by thickness, permittivity, and conductivity; the electrical parameters are constant or prescribed functions of frequency. To illustrate the effect of various layering combinations, results are given in the form of curves of amplitude reflection coefficients versus frequency for a variety of models. Under simplifying assumptions, the snow thickness and effective dielectric constant can be estimated from the variations of reflection coefficient as a function of frequency.

  7. X-ray absorption fine structure analysis of molybdenum added to BaTiO3-based ceramics used for multilayer ceramic capacitors

    NASA Astrophysics Data System (ADS)

    Ogata, Yoichiro; Shimura, Tetsuo; Ryu, Minoru; Iwazaki, Yoshiki

    2017-04-01

    The effect of slight molybdenum doping of perovskite-type BaTiO3-based ceramics on the reliability of a multilayer ceramic capacitor (MLCC) and on the valence state of molybdenum in the BaTiO3-based ceramics has been investigated by highly accelerated lifetime tests and X-ray absorption fine structure analysis. The molybdenum added to the BaTiO3-based ceramics is located at Ti sites and improves the highly accelerated lifetime and lowers the initial dielectric resistivity in MLCCs. Through sintering in a reducing atmosphere, which is an important process in the fabrication of BaTiO3-based MLCCs, the oxidation state of the molybdenum added could be adjusted from +6 to a value close to +4.

  8. Tunable angle absorption of hyperbolic metamaterials based on plasma photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Zheng; Ning, Renxia, E-mail: nrxxiner@hsu.edu.cn; Xu, Yuan

    2016-06-15

    We present the design of a multilayer structure of hyperbolic metamaterials based on plasma photonic crystals which composed of two kinds of traditional dielectric and plasma. The relative permittivity of hyperbolic metamaterials has been studied at certain frequency range. The absorption and reflection of the multilayer period structure at normal and oblique incident have been investigated by the transfer matrix method. We discussed that the absorption is affected by the thickness of material and the electron collision frequency γ of the plasma. The results show that an absorption band at the low frequency can be obtained at normal incident anglemore » and another absorption band at the high frequency can be found at a large incident angle. The results may be applied by logical gate, stealth, tunable angle absorber, and large angle filter.« less

  9. Fabrication and characterization of micromachined dielectric thin films and temperature sensors using thermoluminescence

    NASA Astrophysics Data System (ADS)

    Kim, Sangho Sam

    High-power laser technology has a number of applications, whether for the military (i.e., anti-missile weaponry) or for material processing, medical surgery, laser-induced nuclear fusion, and high-density data storage. However, external obstacles could cause a laser to problematically change its direction. Optical components such as mirrors already address this problem by deflecting a laser beam, but can be damaged easily due to the intensity of the laser. Therefore, this dissertation examines how to improve reliability of high power laser application systems by three significant standards. First, we demonstrate that an atomic layer deposition (ALD) of Al2O3 can stabilize novel dielectric optical mirrors composed of SiO2 nanorods, whose porosity makes it attractive for use as a low refractive index material. Such a deposition can stabilize material properties in dry versus humid atmospheres, where both the refractive index and coefficient of thermal expansion (CTE) vary dramatically. This encapsulation ability is demonstrated in dielectric multilayers as a Distributed Bragg Reflector (DBR). Second, we show that the difference in hydroxyl signatures of micromachined dielectric membranes can make detection of optical materials' laser damage more accurate. This signature difference, appearing as the decrease in post-laser absorption peaks associated with hydroxyl groups (OH), is measured by Fourier transform infrared spectroscopy and corresponds to regions of high fluence from a Nd:YAG laser. This detection technique will be useful to determine the lifespan of the optical components used in a high power laser. Third, we find that heterogeneous thermoluminescent (TL) multilayers composed of LiF:Mg,Ti and CaF2:Dy with Kapton as an interlayer can enhance reconstruction of laser heating events through thermal gradients that penetrate deep into a material, thereby preserving memory of the temperature history of the surface. Using the finite-difference time-domain method (FDTD) and the first order kinetics model of TL, we estimate dynamic heat transfer and then populate the final luminescent intensity. A thermal contact conductance between the critical layers is also introduced to better simulate experimental results, thereby resolving dynamic temperatures by hundreds of milliseconds.

  10. Ferroelectric-ferromagnetic multilayers: A magnetoelectric heterostructure with high output charge signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokhorenko, S.; Kohlstedt, H.; Pertsev, N. A., E-mail: pertsev.domain@mail.ioffe.ru

    2014-09-21

    Multiferroic composites and heterostructures comprising ferroelectric and ferromagnetic materials exhibit room-temperature magnetoelectric (ME) effects greatly exceeding those of single-phase magnetoelectrics known to date. Since these effects are mediated by the interfacial coupling between ferroic constituents, the ME responses may be enhanced by increasing the density of interfaces and improving their quality. A promising material system providing these features is a ferroelectric-ferromagnetic multilayer with epitaxial interfaces. In this paper, we describe theoretically the strain-mediated direct ME effect exhibited by free-standing multilayers composed of single-crystalline ferroelectric nanolayers interleaved by conducting ferromagnetic slabs. Using a nonlinear thermodynamic approach allowing for specific mechanical boundarymore » conditions of the problem, we first calculate the polarization states and dielectric properties of ferroelectric nanolayers in dependence on the lattice mismatch between ferroic constituents and their volume fractions. In these calculations, the ferromagnetic component is described by a model which combines linear elastic behavior with magnetic-field-dependent lattice parameters. Then the quasistatic ME polarization and voltage coefficients are evaluated using the theoretical strain sensitivity of ferroelectric polarization and measured effective piezomagnetic coefficients of ferromagnets. For Pb(Zr₀.₅Ti₀.₅)O₃-FeGaB and BaTiO₃-FeGaB multilayers, the ME coefficients are calculated numerically as a function of the FeGaB volume fraction and used to evaluate the output charge and voltage signals. It is shown that the multilayer geometry of a ferroelectric-ferromagnetic nanocomposite opens the way for a drastic enhancement of the output charge signal. This feature makes biferroic multilayers advantageous for the development of ultrasensitive magnetic-field sensors for technical and biomedical applications.« less

  11. Alternating current transport and dielectric relaxation of nanocrystalline graphene oxide

    NASA Astrophysics Data System (ADS)

    Zedan, I. T.; El-Menyawy, E. M.

    2018-07-01

    Graphene oxide (GO) has been synthesized from natural graphite using modified Hummer's method and is subjected to sonication for 1 h. X-ray diffraction (XRD) showed that the prepared GO has nanocrystalline structure with particle size of about 5 nm and high-resolution transmission electron microscope showed that it had a layered structure. The nanocrystalline GO powder was pressed as a disk and the alternating current (AC) electrical conductivity, σAC, and dielectric properties have been investigated in the frequency range 50Hz-5 MHz and temperature range 298-523K using parallel plate spectroscopic technique. Analysis of σ AC as a function of frequency shows that the relation follows Jonscher's universal law with frequency exponent decreases with increasing temperature in which the correlated barrier hopping model is applicable to describe the behavior. The dielectric constant and dielectric loss are studied as functions of frequency and temperature. The dielectric modulus formalism is used for describing the relaxation process in which the relaxation time and its activation energy were evaluated.

  12. HIGH-k GATE DIELECTRIC: AMORPHOUS Ta/La2O3 FILMS GROWN ON Si AT LOW PRESSURE

    NASA Astrophysics Data System (ADS)

    Bahari, Ali; Khorshidi, Zahra

    2014-09-01

    In the present study, Ta/La2O3 films (La2O3 doped with Ta2O5) as a gate dielectric were prepared using a sol-gel method at low pressure. Ta/La2O3 film has some hopeful properties as a gate dielectric of logic device. The structure and morphology of Ta/La2O3 films were studied using X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrical properties of films were performed using capacitance-voltage (C-V) and current density-voltage (J-V) measurements. The optical bandgap of samples was studied by UV-visible optical absorbance measurement. The optical bandgap, Eopt, is determined from the absorbance spectra. The obtained results show that Ta/La2O3 film as a good gate dielectric has amorphous structure, good thermal stability, high dielectric constant (≈ 25), low leakage current and wide bandgap (≈ 4.7 eV).

  13. Multiferroics BiMn1-xAlxO3 nanoparticles: Synthesis, characterization and evaluation of various structural, physical, electrical and dielectric parameters

    NASA Astrophysics Data System (ADS)

    Ahmad, Bashir; Raissat, Rabia; Mumtaz, Saleem; Ahmad, Zahoor; Sadiq, Imran; Ashiq, Muhammad Naeem; Najam-ul-Haq, Muhammad

    2017-07-01

    The aluminium substituted bismuth based manganates with nominal composition BiMn1-xAlxO3 (x = 0.0, 0.2, 0.4, 0.6 and 0.8) were prepared by the simple microemulsion method. The alteration in their structural, electrical and dielectric parameters due to Al substitution has been investigated. The X-ray diffraction analysis (XRD) confirms the formation of single phase orthorhombic with crystallite size ranges from 32 to 52 nm. The morphological features and particle size were determined by using scanning electron microscopy (SEM). The dc electrical resistivity increased from 6 × 108 to 8 × 109 Ω cm with the increase in substituent concentration. The dielectric constant, dielectric loss tangent and dielectric loss factor decreased with the increase in frequency. The increase in electrical resistivity makes the synthesized materials paramount over other materials and can be useful for technological applications in microwave devices.

  14. The contribution of 180° domain wall motion to dielectric properties quantified from in situ X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fancher, C. M.; Brewer, S.; Chung, C. C.

    2017-03-01

    The contribution of 180° domain wall motion to polarization and dielectric properties of ferroelectric materials has yet to be determined experimentally. In this paper, an approach for estimating the extent of (180°) domain reversal during application of electric fields is presented. We demonstrate this method by determining the contribution of domain reversal to polarization in soft lead zirconate titanate during application of strong electric fields. At the maximum applied field, domain reversal was determined to account for >80% of the measured macroscopic polarization. We also apply the method to quantify the contribution of domain reversal to the weak-field dielectric permittivitymore » of BaTiO 3. The results of this analysis determined that domain reversal accounts for up to ~70% of the macroscopic dielectric permittivity in BaTiO 3. These results demonstrate the predominance of domain reversal to high and low-field dielectric response in ferroelectric polycrystalline materials.« less

  15. Physical and electrical properties of SrTiO3 and SrZrO3

    NASA Astrophysics Data System (ADS)

    Fashren Muhamad, Norhizatol; Aina Maulat Osman, Rozana; Sobri Idris, Mohd; Yasin, Mohd Najib Mohd

    2017-11-01

    Perovskite type oxide strontium titanate (SrTiO3) and strontium zirconate (SrZrO3) ceramic powder has been synthesized using conventional solid state reaction method. The powders were mixed and ground undergone calcinations at 1400°C for 12 h and sintered at 1550°C for 5h. X-ray Diffraction exposes physical properties SrTiO3 which exhibit cubic phase (space group: pm-3m) at room temperature meanwhile SrZrO3 has Orthorhombic phase (space group: pnma). The electrical properties such as dielectric constant (ɛr), dielectric loss (tan δ), and conductivity (σ) were studied in variation temperature and frequency. High dielectric constant of SrTiO3 and SrZrO3 were observed at 10 kHz for both samples about 240 and 21 respectively at room temperature. The dielectric loss of SrTiO3 and SrZrO3 is very low loss value approximately 0.00076 and 0.67512 indicates very good dielectric.

  16. Soft X-ray multilayers produced by sputtering and molecular beam epitaxy (MBE) - Substrate and interfacial roughness

    NASA Astrophysics Data System (ADS)

    Kearney, Patrick A.; Slaughter, J. M.; Powers, K. D.; Falco, Charles M.

    1988-01-01

    Roughness measurements were made on uncoated silicon wafers and float glass using a WYKO TOPO-3D phase shifting interferometry, and the results are reported. The wafers are found to be slightly smoother than the flat glass. The effects of different cleaning methods and of the deposition of silicon 'buffer layers' on substrate roughness are examined. An acid cleaning method is described which gives more consistent results than detergent cleaning. Healing of the roughness due to sputtered silicon buffer layers was not observed on the length scale probed by the WYKO. Sputtered multilayers are characterized using both the WYKO interferometer and low-angle X-ray diffraction in order to yield information about the roughness of the top surface and of the multilayer interfaces. Preliminary results on film growth using molecular beam epitaxy are also presented.

  17. Replication of Optical Microstructures of Papilio palinurus through Biomimicry

    NASA Astrophysics Data System (ADS)

    Srinivasarao, Mohan; Crne, Matija; Sharma, Vivek; Blair, John; Park, Jung Ok; Summers, Christopher J.

    2009-03-01

    The coloration of animals in nature is sometimes based on their structure rather than pigments. Structural coloration based on diffraction, multilayer reflection, cholesteric analogues or photonic crystal-like structures is pervasive especially in the world of insects. The color of Papilio palinurus results from microbowl lined with a multilayer of air and chitin. The green color is the result of color mixing of the yellow light reflecting from the bottom of the bowl and the blue light reflecting from the sides of the bowl. We have used breath figure templated assembly as the starting point to mimic the structure of Papilio palinurus. We were able to produce microbowls which were then coated with a multilayer of alternating titanium oxide and aluminum oxide. The resulting structure exhibits the same color mixing as the original butterfly structure does.

  18. Preparation and Electrical Properties of La0.9Sr0.1TiO3+δ

    PubMed Central

    Li, Wenzhi; Ma, Zhuang; Gao, Lihong; Wang, Fuchi

    2015-01-01

    La1−xSrxTiO3+δ (LST) has been studied in many fields, especially in the field of microelectronics due to its excellent electrical performance. Our previous theoretical simulated work has suggested that LST has good dielectric properties, but there are rare reports about this, especially experimental reports. In this paper, LST was prepared using a solid-state reaction method. The X-rays diffraction (XRD), scanning electron microscope (SEM), broadband dielectric spectroscopy, impedance spectroscopy and photoconductive measurement were used to characterize the sample. The results show that the values of dielectric parameters (the relative dielectric constant εr and dielectric loss tanδ), dependent on temperature, are stable under 350 °C and the value of the relative dielectric constant and dielectric loss are about 52–88 and 6.5 × 10−3, respectively. Its value of conductivity increases with rise in temperature, which suggests its negative temperature coefficient of the resistance. In addition, the band gap of LST is about 3.39 eV, so it belongs to a kind of wide-band-gap semiconductor materials. All these indicate that LST has anti-interference ability and good dielectric properties. It could have potential applications as an electronic material. PMID:28787995

  19. Reliability of Multilayer Copper/Polyimide

    DTIC Science & Technology

    1993-11-01

    LOIS H. WALSH R eliability R esearch E ng ineer -, . .....................-------- - - Reliability Physics Branch i-1’ , ý, Ay cci~i• es "AL f, , or Dist...average of 925 hours The chamber "as operated at 85 C󈨙 10 r h All the samples showed initial dielectric constant values consistent w%,ith previous...19. Matsumoto, 0., Katagiri, T., Thin Solid Films, 146, 283 (1987) 20. Malladi , D.P., J Membrane Sci., 19, 209 (1984) 21. Schubert, P.J., Nevin, J.H

  20. Effects of vacuum exposure on stress and spectral shift of high reflective coatings

    NASA Astrophysics Data System (ADS)

    Stolz, C. J.; Taylor, J. R.; Eickelberg, W. K.; Lindh, J. D.

    1992-06-01

    The Atomic Vapor Laser Isotope Laser Separation (AVLIS) program operates the world's largest average power dye laser; the dye laser beams are combined, formatted, and transported in vacuum. The optical system is aligned at atmosphere, while the system must meet requirements in vacuum. Therefore, coating performance must be characterized in both atmosphere and vacuum. Changes in stress and spectral shift in ambient and vacuum environments are reported for conventional and dense multilayer dielectric coatings.

  1. An electronically tunable, first-order Fabry-Perot infrared filter

    NASA Astrophysics Data System (ADS)

    Knudtson, J. T.; Levy, D. S.; Herr, K. C.

    1995-04-01

    A tunable infrared filter capable of scanning from 8.2 to 12.8 micrometers has been designed, constructed and tested. It is a first order Fabry Perot interferometer with piezoelectrically driven cavity spacing. Multilayer dielectric coatings for the partially transmitting mirrors were designed to minimize the wavelength dependent phase change produced by reflection. The transmission bandwidth ranged from 2.8 to 4.0% across the tuning range. Continuous scanning at 20 Hz rates was demonstrated.

  2. Variable laser attenuator

    DOEpatents

    Foltyn, S.R.

    1987-05-29

    The disclosure relates to low loss, high power variable attenuators comprising one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength. 9 figs.

  3. The Investigation of 6mu Biaxially Oriented Polyethylene 2, 6, -Naphthalate As a Possible Dielectric For Pulse Power Capacitors

    NASA Technical Reports Server (NTRS)

    Yen, S. P. S.; Lowry, L.; Cygan, P. J.; Jow, T. R.

    1993-01-01

    The introduction of polythylene -2, 6-Naphthalate (PEN) semicrystalline film with thicknesses of 0.9mu, 1.5mu, 4.0Mu and community. Its unique chemical and high temparterure stability, as well as superior thermo-mechanical properties allow ultra thin ( 2mu) PEN film to be processed into miniature multilayer chip capacitors for surface mount technology (SMT) application that can be used with standard soldering techniques.

  4. Metal/Dielectric Multilayers for High Resolution Imaging

    DTIC Science & Technology

    2012-08-07

    of a silicon waveguide coated by thin metal film. The proposed PWG structure consists of narrow silicon waveguide clad by gold film without top...where the waveguide thickness is 220nm and the lower oxide cladding is 2μm. The device consists of main waveguide (of waveguide width WSOI=450nm...evaporation, where 3nm thick titanium was used as adhesion layer before 40nm gold deposition took place. Finally, the samples were spun coated with

  5. Improved Photon-Emission-Microscope System

    NASA Technical Reports Server (NTRS)

    Vu, Duc

    2006-01-01

    An improved photon-emission-microscope (PEM) instrumentation system has been developed for use in diagnosing failure conditions in semiconductor devices, including complex integrated circuits. This system is designed primarily to image areas that emit photons, at wavelengths from 400 to 1,100 nm, associated with device failures caused by leakage of electric current through SiO2 and other dielectric materials used in multilayer semiconductor structures. In addition, the system is sensitive enough to image areas that emit photons during normal operation.

  6. Cryogenic measurements of mechanical loss of high-reflectivity coating and estimation of thermal noise.

    PubMed

    Granata, Massimo; Craig, Kieran; Cagnoli, Gianpietro; Carcy, Cécile; Cunningham, William; Degallaix, Jérôme; Flaminio, Raffaele; Forest, Danièle; Hart, Martin; Hennig, Jan-Simon; Hough, James; MacLaren, Ian; Martin, Iain William; Michel, Christophe; Morgado, Nazario; Otmani, Salim; Pinard, Laurent; Rowan, Sheila

    2013-12-15

    We report on low-frequency measurements of the mechanical loss of a high-quality (transmissivity T<5 ppm at λ(0)=1064 nm, absorption loss <0.5 ppm) multilayer dielectric coating of ion-beam-sputtered fused silica and titanium-doped tantala in the 10-300 K temperature range. A useful parameter for the computation of coating thermal noise on different substrates is derived as a function of temperature and frequency.

  7. Second harmonic generation from metallo-dielectric multilayered structures in the plasmonic regime.

    PubMed

    Mattiucci, Nadia; D'Aguanno, Giuseppe; Bloemer, Mark J

    2010-11-08

    We present a theoretical study on second harmonic generation from metallo-dielectric multilayered structures in the plasmonic regime. In particular we analyze the behavior of structures made of Ag (silver) and MgF2 (magnesium-fluoride) due to the straightforward procedure to grow these materials with standard sputtering or thermal evaporation techniques. A systematic study is performed which analyzes four different kinds of elementary cells--namely (Ag/MgF2)N, (MgF2/Ag)N, (Ag/MgF2/Ag)N and (MgF2/Ag/MgF2)N--as function of the number of periods (N) and the thickness of the layers. We predict the conversion efficiency to be up to three orders of magnitude greater than the conversion efficiency found in the non-plasmonic regime and we point out the best geometries to achieve these conversion efficiencies. We also underline the role played by the short-range/long-range plasmons and leaky waves in the generation process. We perform a statistical study to demonstrate the robustness of the SH process in the plasmonic regime against the inevitable variations in the thickness of the layers. Finally, we show that a proper choice of the output medium can further improve the conversion efficiency reaching an enhancement of almost five orders of magnitude with respect to the non plasmonic regime.

  8. Design of a Binary Grating with Subwavelength Features that Acts as a Polarizing Beam Splitter.

    PubMed

    Pajewski, L; Borghi, R; Schettini, G; Frezza, F; Santarsiero, M

    2001-11-10

    A binary diffractive optical element, acting as a polarizing beam splitter, is proposed and analyzed. It behaves like a transmissive blazed grating, working on the first or the second diffraction order, depending on the polarization state of the incident radiation. The grating-phase profile required for both polarization states is obtained by means of suitably sized subwavelength groups etched in an isotropic dielectric medium. A rigorous electromagnetic analysis of the grating is presented, and numerical results concerning its performances in terms of diffraction efficiency as well as frequency and angular bandwidths are provided.

  9. Solid state parameters, structure elucidation, High Resolution X-Ray Diffraction (HRXRD), phase matching, thermal and impedance analysis on L-Proline trichloroacetate (L-PTCA) NLO single crystals.

    PubMed

    Kalaiselvi, P; Raj, S Alfred Cecil; Jagannathan, K; Vijayan, N; Bhagavannarayana, G; Kalainathan, S

    2014-11-11

    Nonlinear optical single crystal of L-Proline trichloroacetate (L-PTCA) was successfully grown by Slow Evaporation Solution Technique (SEST). The grown crystals were subjected to single crystal X-ray diffraction analysis to confirm the structure. From the single crystal XRD data, solid state parameters were determined for the grown crystal. The crystalline perfection has been evaluated using high resolution X-ray diffractometer. The frequencies of various functional groups were identified from FTIR spectral analysis. The percentage of transmittance was obtained from UV Visible spectral analysis. TGA-DSC measurements indicate the thermal stability of the crystal. The dielectric constant, dielectric loss and ac conductivity were measured by the impedance analyzer. The DC conductivity was calculated by the cole-cole plot method. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Integration of nanostructured planar diffractive lenses dedicated to near infrared detection for CMOS image sensors.

    PubMed

    Lopez, Thomas; Massenot, Sébastien; Estribeau, Magali; Magnan, Pierre; Pardo, Fabrice; Pelouard, Jean-Luc

    2016-04-18

    This paper deals with the integration of metallic and dielectric nanostructured planar lenses into a pixel from a silicon based CMOS image sensor, for a monochromatic application at 1.064 μm. The first is a Plasmonic Lens, based on the phase delay through nanoslits, which has been found to be hardly compatible with current CMOS technology and exhibits a notable metallic absorption. The second is a dielectric Phase-Fresnel Lens integrated at the top of a pixel, it exhibits an Optical Efficiency (OE) improved by a few percent and an angle of view of 50°. The third one is a metallic diffractive lens integrated inside a pixel, which shows a better OE and an angle of view of 24°. The last two lenses exhibit a compatibility with a spectral band close to 1.064 μm.

  11. Structural, mechanical, electrical and optical properties of a new lithium boro phthalate NLO crystal synthesized by a slow evaporation method

    NASA Astrophysics Data System (ADS)

    Mohanraj, K.; Balasubramanian, D.; Jhansi, N.

    2017-11-01

    A new non-linear optical (NLO) single crystal of lithium boro phthalate (LiBP) was grown by slow solvent evaporation technique. The powder sample was subjected to powder X-ray diffraction (PXRD) to find its crystalline nature and the crystal structure of the grown crystal was determined using single crystal X-ray (SXRD) diffraction analysis. The Fourier Transform Infrared (FTIR) spectrum was recorded for grown crystal to identify the various functional groups present in the compound. The mechanical property of the LiBP single crystal was studied using Vickers microhardness tester. The dielectric constant and dielectric loss measurements were carried out for the grown crystal at various temperatures. The grown crystal was subjected to UV-Visible Spectral Studies to analyze the linear optical behavior of the grown crystal. The Kurtz-Perry Powder technique was employed to measure the Second Harmonic Generation efficiency of the grown crystal.

  12. Physical properties of new binary antiferroelectric liquid crystal mixtures

    NASA Astrophysics Data System (ADS)

    Fitas, Jakub; Jaworska-Gołąb, Teresa; Deptuch, Aleksandra; Tykarska, Marzena; Kurp, Katarzyna; Żurowska, Magdalena; Marzec, Monika

    2018-02-01

    Three newly prepared binary mixtures exhibiting chiral tilted smectic phases have been studied using differential scanning calorimetry, dielectric spectroscopy and electro-optic method, as well as X-ray diffraction. Broad temperature range of ferroelectric and antiferroelectric phases was detected in these mixtures and temperature dependence of spontaneous polarization, tilt angle and switching time were measured for all of them. It's occurred that all of the studied mixtures are orthoconic antiferroelectric liquid crystals. Based on the X-ray diffraction results, the temperature dependence of layer thickness in the paraelectric, ferroelectric and antiferroelectric phases was found. By using dielectric spectroscopy, Goldstone mode was identified in the ferroelectric phase, while antiphase fluctuations of azimuthal angle have been found in the antiferroelectric phase. Based on the results of the complementary methods, the transition temperatures were found as well as the order of the para-ferroelectric phase transition was determined as non-continuous one with critical parameter β equal to ca. 0.25.

  13. Fabrication of dielectric elastomer stack transducers (DEST) by liquid deposition modeling

    NASA Astrophysics Data System (ADS)

    Klug, Florian; Solano-Arana, Susana; Mößinger, Holger; Förster-Zügel, Florentine; Schlaak, Helmut F.

    2017-04-01

    Established fabrication methods for dielectric elastomer stack transducers (DEST) are mostly based on twodimensional thin-film technology. Because of this, DEST are based on simple two-dimensionally structured shapes. For certain applications, like valves or Braille displays, these structures are suited well enough. However, a more flexible fabrication method allows for more complex actuator designs, which would otherwise require extra processing steps. Fabrication methods with the possibility of three-dimensional structuring allow e.g. the integration of electrical connections, cavities, channels, sensor and other structural elements during the fabrication. This opens up new applications, as well as the opportunity for faster prototype production of individually designed DEST for a given application. In this work, a manufacturing system allowing three dimensional structuring is described. It enables the production of multilayer and three-dimensional structured DEST by liquid deposition modelling. The system is based on a custom made dual extruder, connected to a commercial threeaxis positioning system. It allows a computer controlled liquid deposition of two materials. After tuning the manufacturing parameters the production of thin layers with at thickness of less than 50 μm, as well as stacking electrode and dielectric materials is feasible. With this setup a first DEST with dielectric layer thickness less than 50 μm is build successfully and its performance is evaluated.

  14. Long-range wetting transparency on top of layered metal-dielectric substrates

    NASA Astrophysics Data System (ADS)

    Noginov, M. A.; Barnakov, Yuri A.; Liberman, Vladimir; Prayakarao, Srujana; Bonner, Carl E.; Narimanov, Evgenii E.

    2016-06-01

    It has been recently shown that scores of physical and chemical phenomena (including spontaneous emission, scattering and Förster energy transfer) can be controlled by nonlocal dielectric environments provided by metamaterials with hyperbolic dispersion and simpler metal/dielectric structures. At this time, we have researched van der Waals interactions and experimentally studied wetting of several metallic, dielectric and composite multilayered substrates. We have found that the wetting angle of water on top of MgF2 is highly sensitive to the thickness of the MgF2 layer and the nature of the underlying substrate that could be positioned as far as ~100 nm beneath the water/MgF2 interface. We refer to this phenomenon as long range wetting transparency. The latter effect cannot be described in terms of the most basic model of dispersion van der Waals-London forces based on pair-wise summation of dipole-dipole interactions across an interface or a gap separating the two media. We infer that the experimentally observed gradual change of the wetting angle with increase of the thickness of the MgF2 layer can possibly be explained by the distance dependence of the Hamaker function (describing the strength of interaction), which originates from retardation of electromagnetic waves at the distances comparable to a wavelength.

  15. Long-range wetting transparency on top of layered metal-dielectric substrates.

    PubMed

    Noginov, M A; Barnakov, Yuri A; Liberman, Vladimir; Prayakarao, Srujana; Bonner, Carl E; Narimanov, Evgenii E

    2016-06-21

    It has been recently shown that scores of physical and chemical phenomena (including spontaneous emission, scattering and Förster energy transfer) can be controlled by nonlocal dielectric environments provided by metamaterials with hyperbolic dispersion and simpler metal/dielectric structures. At this time, we have researched van der Waals interactions and experimentally studied wetting of several metallic, dielectric and composite multilayered substrates. We have found that the wetting angle of water on top of MgF2 is highly sensitive to the thickness of the MgF2 layer and the nature of the underlying substrate that could be positioned as far as ~100 nm beneath the water/MgF2 interface. We refer to this phenomenon as long range wetting transparency. The latter effect cannot be described in terms of the most basic model of dispersion van der Waals-London forces based on pair-wise summation of dipole-dipole interactions across an interface or a gap separating the two media. We infer that the experimentally observed gradual change of the wetting angle with increase of the thickness of the MgF2 layer can possibly be explained by the distance dependence of the Hamaker function (describing the strength of interaction), which originates from retardation of electromagnetic waves at the distances comparable to a wavelength.

  16. Long-range wetting transparency on top of layered metal-dielectric substrates

    PubMed Central

    Noginov, M. A.; Barnakov, Yuri A.; Liberman, Vladimir; Prayakarao, Srujana; Bonner, Carl E.; Narimanov, Evgenii E.

    2016-01-01

    It has been recently shown that scores of physical and chemical phenomena (including spontaneous emission, scattering and Förster energy transfer) can be controlled by nonlocal dielectric environments provided by metamaterials with hyperbolic dispersion and simpler metal/dielectric structures. At this time, we have researched van der Waals interactions and experimentally studied wetting of several metallic, dielectric and composite multilayered substrates. We have found that the wetting angle of water on top of MgF2 is highly sensitive to the thickness of the MgF2 layer and the nature of the underlying substrate that could be positioned as far as ~100 nm beneath the water/MgF2 interface. We refer to this phenomenon as long range wetting transparency. The latter effect cannot be described in terms of the most basic model of dispersion van der Waals-London forces based on pair-wise summation of dipole-dipole interactions across an interface or a gap separating the two media. We infer that the experimentally observed gradual change of the wetting angle with increase of the thickness of the MgF2 layer can possibly be explained by the distance dependence of the Hamaker function (describing the strength of interaction), which originates from retardation of electromagnetic waves at the distances comparable to a wavelength. PMID:27324650

  17. Evaluation of the local homogeneity fluctuation of sinter of the small chip size MLCCs by means of mid-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Tsuzuku, Koichiro; Hagiwara, Tomoya; Takeoka, Shunsuke; Ikemoto, Yuka

    2008-05-01

    Vibration bands of dielectric ceramics appear at a mid-infrared (MIR) and those position and shape are changed owing to change environment of crystal lattice. Therefore, micro-focus MIR spectroscopy is a one of useful tool to evaluate very small size capacitor (e.g. smaller than 0.5 mm in chip size). Very small size multi-layer capacitor: MLCC are one of very important device to produce high quality electrical products such as cell phone, etc. Quality and reliability of MLCC are corresponding to not only average dielectric properties but also local fluctuation of them. Furthermore, local fluctuation of dielectric properties of MLCC could evaluate with MIR spectroscopy. It is possible to obtain a satisfied MIR spectrum from small size samples performed by a micro-focus spectrometer combined with synchrotron radiation as a high luminance light source at beam line BL43IR of SPring-8. From the above result, it is possible to evaluate the degree of homogeneity by comparing the shape change of Ti-O peak on IR spectra.

  18. Investigation of ITO free transparent conducting polymer based electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Vikas; Sapna,; Sachdev, Kanupriya

    2016-05-23

    The last few decades have seen a significant improvement in organic semiconductor technology related to solar cell, light emitting diode and display panels. The material and structure of the transparent electrode is one of the major concerns for superior performance of devices such as OPV, OLED, touch screen and LCD display. Commonly used ITO is now restricted due to scarcity of indium, its poor mechanical properties and rigidity, and mismatch of energy levels with the active layer. Nowadays DMD (dielectric-metal-dielectric) structure is one of the prominent candidates as alternatives to ITO based electrode. We have used solution based spin coatedmore » polymer layer as the dielectric layer with silver thin film embedded in between to make a polymer-metal-polymer (PMP) structure for TCE applications. The PMP structure shows low resistivity (2.3 x 10{sup −4}Ω-cm), high carrier concentration (2.9 x 10{sup 21} cm{sup −3}) and moderate transparency. The multilayer PMP structure is characterized with XRD, AFM and Hall measurement to prove its suitability for opto-electronic device applications.« less

  19. Nanoscale linear permittivity imaging based on scanning nonlinear dielectric microscopy

    NASA Astrophysics Data System (ADS)

    Hiranaga, Yoshiomi; Chinone, Norimichi; Cho, Yasuo

    2018-05-01

    A nanoscale linear permittivity imaging method based on scanning nonlinear dielectric microscopy (SNDM) was developed. The ∂C/∂z-mode SNDM (∂C/∂z-SNDM) technique described herein employs probe-height modulation to suppress disturbances originating from stray capacitance and to improve measurement stability. This method allows local permittivity distributions to be examined with extremely low noise levels (approximately 0.01 aF) by virtue of the highly sensitive probe. A cross-section of a multilayer oxide film was visualized using ∂C/∂z-SNDM as a demonstration, and numerical simulations of the response signals were conducted to gain additional insights. The experimental signal intensities were found to be in a good agreement with the theoretical values, with the exception of the background components, demonstrating that absolute sample permittivity values could be determined. The signal profiles near the boundaries between different dielectrics were calculated using various vibration amplitudes and the boundary transition widths were obtained. The beneficial aspects of higher-harmonic response imaging are discussed herein, taking into account assessments of spatial resolution and quantitation.

  20. Nanoscale linear permittivity imaging based on scanning nonlinear dielectric microscopy.

    PubMed

    Hiranaga, Yoshiomi; Chinone, Norimichi; Cho, Yasuo

    2018-05-18

    A nanoscale linear permittivity imaging method based on scanning nonlinear dielectric microscopy (SNDM) was developed. The ∂C/∂z-mode SNDM (∂C/∂z-SNDM) technique described herein employs probe-height modulation to suppress disturbances originating from stray capacitance and to improve measurement stability. This method allows local permittivity distributions to be examined with extremely low noise levels (approximately 0.01 aF) by virtue of the highly sensitive probe. A cross-section of a multilayer oxide film was visualized using ∂C/∂z-SNDM as a demonstration, and numerical simulations of the response signals were conducted to gain additional insights. The experimental signal intensities were found to be in a good agreement with the theoretical values, with the exception of the background components, demonstrating that absolute sample permittivity values could be determined. The signal profiles near the boundaries between different dielectrics were calculated using various vibration amplitudes and the boundary transition widths were obtained. The beneficial aspects of higher-harmonic response imaging are discussed herein, taking into account assessments of spatial resolution and quantitation.

  1. Thin-film decoupling capacitors for multi-chip modules

    NASA Astrophysics Data System (ADS)

    Dimos, D.; Lockwood, S. J.; Schwartz, R. W.; Rogers, M. S.

    Thin-film decoupling capacitors based on ferroelectric lead lanthanum zirconate titanate (PLZT) films are being developed for use in advanced packages, such as multi-chip modules. These thin-film decoupling capacitors are intended to replace multi-layer ceramic capacitors for certain applications, since they can be more fully integrated into the packaging architecture. The increased integration that can be achieved should lead to decreased package volume and improved high-speed performance, due to a decrease in interconnect inductance. PLZT films are fabricated by spin coating using metal carboxylate/alkoxide solutions. These films exhibit very high dielectric constants ((var epsilon) greater than or equal to 900), low dielectric losses (tan(delta) = 0.01), excellent insulation resistances (rho greater than 10(exp 13) (Omega)-cm at 125 C), and good breakdown field strengths (E(sub B) = 900 kV/cm). For integrated circuit applications, the PLZT dielectric is less than 1 micron thick, which results in a large capacitance/area (8-9 nF/sq mm). The thin-film geometry and processing conditions also make these capacitors suitable for direct incorporation onto integrated circuits and for packages that require embedded components.

  2. Polyelectrolyte-mediated assembly of copper-phthalocyanine tetrasulfonate multilayers and the subsequent production of nanoparticulate copper oxide thin films.

    PubMed

    Chickneyan, Zarui Sara; Briseno, Alejandro L; Shi, Xiangyang; Han, Shubo; Huang, Jiaxing; Zhou, Feimeng

    2004-07-01

    An approach to producing films of nanometer-sized copper oxide particulates, based on polyelectrolyte-mediated assembly of the precursor, copper(II)phthalocyanine tetrasulfonate (CPTS), is described. Multilayered CPTS and polydiallyldimethylammonium chloride (PDADMAC) were alternately assembled on different planar substrates via the layer-by-layer (LbL) procedure. The growth of CPTS multilayers was monitored by UV-visible spectrometry and quartz crystal microbalance (QCM) measurements. Both the UV-visible spectra and the QCM data showed that a fixed amount of CPTS could be attached to the substrate surface for a given adsorption cycle. Cyclic voltammograms at the CPTS/PDADMAC-covered gold electrode exhibited a decrease in peak currents with the layer number, indicating that the permeability of CPTS multilayers on the electrodes had diminished. When these CPTS multilayered films were calcined at elevated temperatures, uniform thin films composed of nanoparticulate copper oxide could be produced. Ellipsometry showed that the thickness of copper oxide nanoparticulate films could be precisely tailored by varying the thickness of CPTS multilayer films. The morphology and roughness of CPTS multilayer and copper oxide thin films were characterized by atomic force microscopy. X-ray diffraction (XRD) measurements indicated that these thin films contained both CuO and Cu2O nanoparticles. The preparation of such copper oxide thin films with the use of metal complex precursors represents a new route for the synthesis of inorganic oxide films with a controlled thickness.

  3. X-ray focusing with efficient high-NA multilayer Laue lenses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajt, Sasa; Prasciolu, Mauro; Fleckenstein, Holger

    Multilayer Laue lenses are volume diffraction elements for the efficient focusing of X-rays. With a new manufacturing technique that we introduced, it is possible to fabricate lenses of sufficiently high numerical aperture (NA) to achieve focal spot sizes below 10 nm. The alternating layers of the materials that form the lens must span a broad range of thicknesses on the nanometer scale to achieve the necessary range of X-ray deflection angles required to achieve a high NA. This poses a challenge to both the accuracy of the deposition process and the control of the materials properties, which often vary withmore » layer thickness. We introduced a new pair of materials—tungsten carbide and silicon carbide—to prepare layered structures with smooth and sharp interfaces and with no material phase transitions that hampered the manufacture of previous lenses. Using a pair of multilayer Laue lenses (MLLs) fabricated from this system, we achieved a two-dimensional focus of 8.4 × 6.8 nm 2 at a photon energy of 16.3 keV with high diffraction efficiency and demonstrated scanning-based imaging of samples with a resolution well below 10 nm. The high NA also allowed projection holographic imaging with strong phase contrast over a large range of magnifications. Furthermore, an error analysis indicates the possibility of achieving 1 nm focusing.« less

  4. X-ray focusing with efficient high-NA multilayer Laue lenses

    DOE PAGES

    Bajt, Sasa; Prasciolu, Mauro; Fleckenstein, Holger; ...

    2018-03-23

    Multilayer Laue lenses are volume diffraction elements for the efficient focusing of X-rays. With a new manufacturing technique that we introduced, it is possible to fabricate lenses of sufficiently high numerical aperture (NA) to achieve focal spot sizes below 10 nm. The alternating layers of the materials that form the lens must span a broad range of thicknesses on the nanometer scale to achieve the necessary range of X-ray deflection angles required to achieve a high NA. This poses a challenge to both the accuracy of the deposition process and the control of the materials properties, which often vary withmore » layer thickness. We introduced a new pair of materials—tungsten carbide and silicon carbide—to prepare layered structures with smooth and sharp interfaces and with no material phase transitions that hampered the manufacture of previous lenses. Using a pair of multilayer Laue lenses (MLLs) fabricated from this system, we achieved a two-dimensional focus of 8.4 × 6.8 nm 2 at a photon energy of 16.3 keV with high diffraction efficiency and demonstrated scanning-based imaging of samples with a resolution well below 10 nm. The high NA also allowed projection holographic imaging with strong phase contrast over a large range of magnifications. Furthermore, an error analysis indicates the possibility of achieving 1 nm focusing.« less

  5. Modification of Optical, Structural and Dielectric Properties of MeV Ions Irradiated PS/Cu Nanocomposites.

    PubMed

    Gavade, Chaitali; Singh, N L; Khanna, P K; Shah, Sunil

    2015-12-01

    In order to study structural, thermal, optical and dielectric behaviors of composites, the films of Cu/polystyrene nanocomposites were synthesized at different concentrations of Cu-nanoparticles. These polymer nanocomposites were irradiated with carbon (85 MeV) and silicon (120 MeV) ions at different fluences. The samples were characterized using different techniques viz: X-ray diffraction, UV-visible spectroscopy, differential scanning calorimetry, and impedance gain phase analyzer. A noticeable increase in the intensity of X-ray diffraction peaks was observed after irradiation with 120 MeV Si-ions, which may be attributed to radiation-induced cross-linking in polymer. Optical properties like band gap was estimated for pure polymer and nanocomposite films from their optical absorption spectra in the wavelength region 200-800 nm. It was found that the band gap value shifted to lower energy (from 4.38 eV to 3.40 eV) on doping with silver nanoparticles and also upon irradiation. Differential scanning calorimetry analysis revealed an increase in the glass transition temperature upon irradiation, which may be attributed to cross linking of polymer chain due to ion beam irradiation which is also corroborated with XRD analysis. Dependence of dielectric properties on frequency, ions and filler concentration was studied. The results revealed the enhancement in dielectric properties after doping nanoparticles and also upon irradiation. It was observed that the effect of Si-beam is more effectual than the C-beam because of large electronic energy loss of heavy ion.

  6. Protection layers on a superconducting microwave resonator toward a hybrid quantum system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jongmin, E-mail: jongmin.lee@sandia.gov; Sandia National Laboratories, Albuquerque, New Mexico 87123; Park, Dong Hun, E-mail: leomac@umd.edu

    2015-10-07

    We propose a protection scheme of a superconducting microwave resonator to realize a hybrid quantum system, where cold neutral atoms are coupled with a single microwave photon through magnetic dipole interaction at an interface inductor. The evanescent field atom trap, such as a waveguide/nanofiber atom trap, brings both surface-scattered photons and absorption-induced broadband blackbody radiation which result in quasiparticles and a low quality factor at the resonator. A proposed multiband protection layer consists of pairs of two dielectric layers and a thin nanogrid conductive dielectric layer above the interface inductor. We show numerical simulations of quality factors and reflection/absorption spectra,more » indicating that the proposed multilayer structure can protect a lumped-element microwave resonator from optical photons and blackbody radiation while maintaining a reasonably high quality factor.« less

  7. Analysis and Correction of Diffraction Effect on the B/A Measurement at High Frequencies

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Gong, Xiu-Fen; Liu, Xiao-Zhou; Kushibiki, Jun-ichi; Nishino, Hideo

    2004-01-01

    A numerical method is developed to analyse and to correct the diffraction effect in the measurement of acoustic nonlinearity parameter B/A at high frequencies. By using the KZK nonlinear equation and the superposition approach of Gaussian beams, an analytical model is derived to describe the second harmonic generation through multi-layer medium SiO2/liquid specimen/SiO2. Frequency dependence of the nonlinear characterization curve for water in 110-155 MHz is numerically and experimentally investigated. With the measured dip position and the new model, values of B/A for water are evaluated. The results show that the present method can effectively correct the diffraction effect in the measurement.

  8. Studies of ferroelectric and dielectric properties of pure and doped barium titanate prepared by sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisen, Supriya; Mishra, Ashutosh; Jarabana, Kanaka M.

    2016-05-23

    In this work, Barium Titanate (BaTiO{sub 3}) powders were synthesized via Sol-Gel auto combustion method using citric acid as a chelating agent. We study the behavior of ferroelectric and dielectric properties of pure and doped BaTiO{sub 3} on different concentration. To understand the phase and structure of the powder calcined at 900°C were characterized by X-ray Diffraction shows that tetragonal phase is dominant for pure and doped BTO and data fitted by Rietveld Refinement. Electric and Dielectric properties were characterized by P-E Hysteresis and Dielectric measurement. In P-E measurement ferroelectric loop tracer applied for different voltage. The temperature dependant dielectricmore » constant behavior was observed as a function of frequency recorded on hp-Hewlett Packard 4192A, LF impedance, 5Hz-13Hz analyzer.« less

  9. Frequency and temperature dependence of dielectric and ac electrical properties of NiFe2O4-ZnO multiferroic nanocomposite

    NASA Astrophysics Data System (ADS)

    Dutta, Papia; Mandal, S. K.; Dey, P.; Nath, A.

    2018-04-01

    We have presented the ac electrical properties and dielectric studies of 0.5 NiFe2O4 - 0.5 ZnO multiferroic nanocomposites prepared through low temperature "pyrophoric reaction process". Structural characterization has been carried out through X-ray diffraction technique, which shows the co-existence of both the phases of the nanocomposites. The ac electrical properties of nanocomposites have been studied employing impedance spectroscopy technique. The impedance value is found to increase with increase in magnetic field attributing the magnetostriction property of the composites. Dielectric constant is found to decrease with both the increase in magnetic fields and temperatures. Studies of dielectric constant reveal the Maxwell Wagner interfacial polarization at low frequency regime. Relaxation frequency as a function of magnetic fields and temperatures is found to shift towards the high frequency region.

  10. Study of multi-functionality of lanthanum ferrite (LaFeO{sub 3})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaikwad, Vishwajit M.; Uikey, Pankaj; Acharya, Smita A., E-mail: saha275@yahoo.com

    2015-06-24

    In the present work, multifunctional behaviors of LaFeO{sub 3} (LFO) are investigated by studying its dielectric and photocatalytic properties, respectively. LFO is synthesized by microwave-assisted co-precipitation route. Orthorhombic structure is confirmed by X-ray diffraction (XRD) and data is well fitted using Rietveld refinement by Full-Prof suite. Frequency and Temperature dependence dielectric behavior are systematically studied. The dielectric constant of LFO was found to be 2500 – 3000 with dissipation factor less than 5%. Photodegradation of toxic dye (Methylene Blue) using as-prepared LFO is also investigated. UV-visible absorption spectra are used to study the photodegradation behaviour. Photodegradation of methylene blue (MB)more » taken from textile industries by LFO are reported. The colossal value of dielectric constant of LFO exhibits high potential to use as room temperature capacitive component for device miniaturization in microelectronics as well as photodegradation ability shows good photocatalyst.« less

  11. Studies on metal-dielectric plasmonic structures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chettiar, Uday K.; Liu, Zhengtong; Thoreson, Mark D.

    2010-01-01

    The interaction of light with nanostructured metal leads to a number of fascinating phenomena, including plasmon oscillations that can be harnessed for a variety of cutting-edge applications. Plasmon oscillation modes are the collective oscillation of free electrons in metals under incident light. Previously, surface plasmon modes have been used for communication, sensing, nonlinear optics and novel physics studies. In this report, we describe the scientific research completed on metal-dielectric plasmonic films accomplished during a multi-year Purdue Excellence in Science and Engineering Graduate Fellowship sponsored by Sandia National Laboratories. A variety of plasmonic structures, from random 2D metal-dielectric films to 3Dmore » composite metal-dielectric films, have been studied in this research for applications such as surface-enhanced Raman sensing, tunable superlenses with resolutions beyond the diffraction limit, enhanced molecular absorption, infrared obscurants, and other real-world applications.« less

  12. Microwave dielectric properties of BaO-2CeO{sub 2}-nTiO{sub 2} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sreemoolanadhan, H.; Sebastian, M.T.; Ratheesh, R.

    2004-11-01

    The BaO-2CeO{sub 2}-nTiO{sub 2} ceramics with n=3, 4 and 5 have been prepared with CeO{sub 2} as starting material. The ceramics have been characterized using scanning electron microscopy, X-ray diffraction, Raman and X-ray photoelectron spectroscopy techniques. The microwave dielectric properties have been measured using standard dielectric resonator techniques. BaO-2CeO{sub 2}-3TiO{sub 2} (123), BaO-2CeO{sub 2}-4TiO{sub 2} (124) and BaO-2CeO{sub 2}-5TiO{sub 2} (125) ceramics showed dielectric constants of 38, 27 and 32, respectively. All the ceramics showed fairly good unloaded Q-factors. 124 and 125 compounds exhibited low {tau}f values, while 123 showed a high {tau}f value.

  13. Grain size dependence of dielectric relaxation in cerium oxide as high-k layer

    PubMed Central

    2013-01-01

    Cerium oxide (CeO2) thin films used liquid injection atomic layer deposition (ALD) for deposition and ALD procedures were run at substrate temperatures of 150°C, 200°C, 250°C, 300°C, and 350°C, respectively. CeO2 were grown on n-Si(100) wafers. Variations in the grain sizes of the samples are governed by the deposition temperature and have been estimated using Scherrer analysis of the X-ray diffraction patterns. The changing grain size correlates with the changes seen in the Raman spectrum. Strong frequency dispersion is found in the capacitance-voltage measurement. Normalized dielectric constant measurement is quantitatively utilized to characterize the dielectric constant variation. The relationship extracted between grain size and dielectric relaxation for CeO2 suggests that tuning properties for improved frequency dispersion can be achieved by controlling the grain size, hence the strain at the nanoscale dimensions. PMID:23587419

  14. Temperature-dependent ac conductivity and dielectric response of vanadium doped CaCu3Ti4O12 ceramic

    NASA Astrophysics Data System (ADS)

    Sen, A.; Maiti, U. N.; Thapa, R.; Chattopadhyay, K. K.

    2011-09-01

    Successful incorporation of vanadium dopant within the giant dielectric material CaCu 3Ti 4O12 (CCTO) through a conventional solid-state sintering process is achieved and its influence on the dielectric as well as electrical properties as a function of temperature and frequency is reported here. Proper crystalline phase formation together with dopant induced lattice constant shrinkage was confirmed through X-ray diffraction. The temperature dependence of the dielectric constant at different constant frequencies was investigated. We infer that the correlated barrier hopping (CBH) model is dominant in the conduction mechanism of the ceramic as per the temperature-dependent ac conductivity measurements. The electronic parameters such as density of the states at the Fermi level, N( E f) and hopping distance, R ω of the ceramic were also calculated using this model.

  15. Effect of Co doping on the structural and dielectric properties of ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ram, Mast, E-mail: Mastram1999@yahoo.com; Bala, Kanchan; Sharma, Hakikat

    This paper reports on the synthesis of Co doped Zn{sub 1-x}Co{sub x}O (x= 0.0, 0.01, 0.02, 0.03 and 0.05) nanoparticles by solution combustion method using urea as a fuel. The Structural and dielectric properties of the samples were studied. Crystallite sizes were obtained from X-ray diffraction (XRD) patterns whose values decreased with increase in Co concentration. The XRD study reveals that Co{sup 2+} ions substitute the Zn{sup 2+} ion without changing the wurtzite structure of pristine ZnO up to Co concentrations of 5%. The dielectric constants, dielectric loss (tanδ) and ac conductivity (σ{sub ac}) were studied as the function ofmore » frequency and composition, which have been explained by Maxwell-Wagner type interfacial polarization and discussed Koops phenomenological theory.« less

  16. Study of structural, spectroscopic and dielectric properties of multiferroic cadmium doped Samarium manganite synthesized by solid state reaction method

    NASA Astrophysics Data System (ADS)

    Gupta, Vandana; Raina, Bindu; Verma, Seema; Bamzai, K. K.

    2018-05-01

    Samarium manganite doped with cadmium having general formula Sm1-xCdxMnO3 for x = 0.05, 0.15 were synthesized by solid state reaction technique. These compositions were characterized by various techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and dielectric. XRD analysis confirms the single phase formation with pervoskites structure having orthorhombic phase. Densities were determined and compared with the results obtained by Archimedes principle. The scanning electron micrograph shows that the particle size distribution is almost homogeneous and spherical in shape. FTIR analysis confirms the presence of various atomic bonds within a molecule. A very large value of dielectric constant was observed at low frequencies due to the presence of grains and interfaces. The dielectric constant value decreases with increase in cadmium doping at samarium site.

  17. Manipulation of dielectric Rayleigh particles using highly focused elliptically polarized vector fields.

    PubMed

    Gu, Bing; Xu, Danfeng; Rui, Guanghao; Lian, Meng; Cui, Yiping; Zhan, Qiwen

    2015-09-20

    Generation of vectorial optical fields with arbitrary polarization distribution is of great interest in areas where exotic optical fields are desired. In this work, we experimentally demonstrate the versatile generation of linearly polarized vector fields, elliptically polarized vector fields, and circularly polarized vortex beams through introducing attenuators in a common-path interferometer. By means of Richards-Wolf vectorial diffraction method, the characteristics of the highly focused elliptically polarized vector fields are studied. The optical force and torque on a dielectric Rayleigh particle produced by these tightly focused vector fields are calculated and exploited for the stable trapping of dielectric Rayleigh particles. It is shown that the additional degree of freedom provided by the elliptically polarized vector field allows one to control the spatial structure of polarization, to engineer the focusing field, and to tailor the optical force and torque on a dielectric Rayleigh particle.

  18. A facile growth mechanism, structural, optical, dielectric and electrical properties of ZnSe nanosphere via hydrothermal process

    NASA Astrophysics Data System (ADS)

    Javed, Qurat-Ul-Ain; Baqi, Sabah; Abbas, Hussain; Bibi, Maryam

    2017-02-01

    Hydrothermal method was chosen as a convenient method to fabricate zinc selenide (ZnSe) nanoparticle materials. The prepared nanospheres were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), where its different properties were observed using UV-visible spectroscopy and LCR meter. It was found that the pure ZnSe nanoparticles have a Zinc blende structure with crystallite size 10.91 nm and in a spherical form with average diameter of 35 nm (before sonication) and 18 nm (after sonication) with wide band gap of 4.28 eV. It was observed that there is inverse relation of frequency with dielectric constant and dielectric loss while AC conductivity grows up by increasing frequency. Such nanostructures were determined to be effectively used in optoelectronic devices as UV detector and in those devices where high-dielectric constant materials are required.

  19. A novel multi-detection technique for three-dimensional reciprocal-space mapping in grazing-incidence X-ray diffraction.

    PubMed

    Schmidbauer, M; Schäfer, P; Besedin, S; Grigoriev, D; Köhler, R; Hanke, M

    2008-11-01

    A new scattering technique in grazing-incidence X-ray diffraction geometry is described which enables three-dimensional mapping of reciprocal space by a single rocking scan of the sample. This is achieved by using a two-dimensional detector. The new set-up is discussed in terms of angular resolution and dynamic range of scattered intensity. As an example the diffuse scattering from a strained multilayer of self-assembled (In,Ga)As quantum dots grown on GaAs substrate is presented.

  20. Analysis of 2D hyperbolic metamaterial dispersion by elementary excitation coupling

    NASA Astrophysics Data System (ADS)

    Vaianella, Fabio; Maes, Bjorn

    2016-04-01

    Hyperbolic metamaterials are examined for many applications thanks to the large density of states and extreme confinement of light they provide. For classical hyperbolic metal/dielectric multilayer structures, it was demon- strated that the properties originate from a specific coupling of the surface plasmon polaritons between the metal/dielectric interfaces. We show a similar analysis for 2D hyperbolic arrays of square (or rectangular) silver nanorods in a TiO2 host. In this case the properties derive from a specific coupling of the plasmons carried by the corners of the nanorods. The dispersion can be seen as the coupling of single rods for a through-metal connection of the corners, as the coupling of structures made of four semi-infinite metallic blocks separated by dielectric for a through-dielectric connection, or as the coupling of two semi-infinite rods for a through-metal and through-dielectric situation. For arrays of small square nanorods the elementary structure that explains the dispersion of the array is the single rod, and for arrays of large square nanorods it is four metallic corners. The medium size square nanorod case is more complicated, because the elementary structure can be one of the three basic designs, depending on the frequency and symmetry of the modes. Finally, we show that for arrays of rectangular nanorods the dispersion is explained by coupling of the two coupled rod structure. This work opens the way for a better understanding of a wide class of metamaterials via their elementary excitations.

Top