Science.gov

Sample records for multilayer interface anisotropy

  1. The role of symmetry-breaking-induced interface anisotropy in [Fe/Pt]{sub n} multilayer films

    SciTech Connect

    Li Zhenghua; Xie Hailong; Liu Xi; Bai Jianmin; Wei Fulin; Wei Dan; Yoshimura, S.; Saito, H.; Liu Xiaoxi

    2011-04-01

    The FePt films were deposited with [Fe/Pt]{sub n} multilayer structure on preheated Corning 1737F glass substrate using pure Fe and Pt target in a CMS-18 sputtering system. The dependence of FePt's texture and magnetic properties on the multilayer structure was investigated. The XRD patterns indicate that (111) texture is dominant for all [Fe/Pt]{sub n} (n = 8, 16, 20, 32) multilayer films. However, the measured M-H loops show that the perpendicular anisotropy is greatly enhanced in samples with n = 16, 20, and 32. The origin of the increased perpendicular anisotropy of [Fe/Pt]{sub n} multilayer films is related to the contributions of the interfaces, which will be analyzed using the micromagnetic models, with careful discussions of the crystalline and interface anisotropies. Finally, it is confirmed that the Fe/Pt interfaces favor the perpendicular orientation in the multilayer structure.

  2. Precise control of interface anisotropy during deposition of Co/Pd multilayers

    SciTech Connect

    Barton, C. W. Thomson, T.; Slater, T. J. A.; Haigh, S. J.; Rowan-Robinson, R. M.; Atkinson, D.

    2014-11-28

    We demonstrate the control of perpendicular magnetic anisotropy (PMA) in multilayer films without modification of either the microstructure or saturation magnetization by tuning the Ar{sup +} ion energy using remote plasma sputtering. We show that for [Co/Pd]{sub 8} multilayer films, increasing the Ar{sup +} ion energy results in a strong decrease in PMA through an increase in interfacial roughness determined by X-ray reflectivity measurements. X-ray diffraction and transmission electron microscope image data show that the microstructure is independent of Ar{sup +} energy. This opens a different approach to the in-situ deposition of graded exchange springs and for control of the polarizing layer in hybrid spin transfer torque devices.

  3. Magnetisation reversal in anisotropy graded Co/Pd multilayers

    SciTech Connect

    Barton, C. W. Thomson, T.

    2015-08-14

    We demonstrate high precision controllability of the magnetization reversal nucleation process in [Co/Pd]{sub 8} multilayer films consisting of two sets of bilayers with high and low perpendicular anisotropy, respectively. The anisotropy of the entire film is set by the degree of Co/Pd interfacial mixing during deposition which provides fine control of the anisotropy of an individual bilayer in the multilayer stack. The relative number of each type of bilayer is used to select the magnetisation reversal behavior such that changing one bilayer changes the properties of the entire multilayer through anisotropy averaging. A simple extension to the sputtering protocol would provide multilayer films with fully graded anisotropy, while maintaining a constant saturation magnetization opening new possibilities for the creation of highly engineered multilayer structures for spin torque devices and future magnetic recording media.

  4. Engineering spin-orbit torque in Co/Pt multilayers with perpendicular magnetic anisotropy

    SciTech Connect

    Huang, Kuo-Feng; Wang, Ding-Shuo; Lai, Chih-Huang; Lin, Hsiu-Hau

    2015-12-07

    To address thermal stability issues for spintronic devices with a reduced size, we investigate spin-orbit torque in Co/Pt multilayers with strong perpendicular magnetic anisotropy. Note that the spin-orbit torque arises from the global imbalance of the spin currents from the top and bottom interfaces for each Co layer. By inserting Ta or Cu layers to strengthen the top-down asymmetry, the spin-orbit torque efficiency can be greatly modified without compromised perpendicular magnetic anisotropy. Above all, the efficiency builds up as the number of layers increases, realizing robust thermal stability and high spin-orbit-torque efficiency simultaneously in the multilayers structure.

  5. Perpendicular Magnetic Anisotropy of Tb/Fe and Gd/Fe Multilayers Studied with Torque Magnetometer

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ataur

    Perpendicular magnetic anisotropy (PMA) of multilayers critically depend on the magnetic and structural ordering of the interface. To study the effect of interface on PMA, Tb/Fe and Gd/Fe multilayers with varying Fe (0.8-9.0 nm) and Gd (0.5-2.8 nm) or Tb (0.3-6.3 nm) layer thicknesses were fabricated by planar magnetron sputtering. The magnetometer results of spin orientation clearly reveals that samples with Gd or Tb layer thickness of more than 1.2 nm display no PMA, regardless of the Fe layer thickness. Tb/Fe and Gd/Fe multilayers with thin (<1.2 nm) Tb or Gd layers display large PMA, but no PMA is observed when the Fe layer thickness is increased to 4.0 nm and higher. The bulk magnetization and anisotropy energy constant of the samples are found to increase with increasing Fe layer thickness. Torque measurement also reveals that there are two distinctly different axes of spin alignment at different energy. Tb/Fe and Gd/Fe multilayers with similar composition reveal similar magnetic and structural characteristics, and it may imply that single-ion-anisotropy of rare-earth element, which is quite large for Tb ions and very small for Gd ions, may not be the dominating cause of PMA in Td/Fe and Gd/Fe multilayers. A detailed explanation of the results will be provided based on exchange interaction at the interface.

  6. Variable variance Preisach model for multilayers with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Franco, A. F.; Gonzalez-Fuentes, C.; Morales, R.; Ross, C. A.; Dumas, R.; Åkerman, J.; Garcia, C.

    2016-08-01

    We present a variable variance Preisach model that fully accounts for the different magnetization processes of a multilayer structure with perpendicular magnetic anisotropy by adjusting the evolution of the interaction variance as the magnetization changes. We successfully compare in a quantitative manner the results obtained with this model to experimental hysteresis loops of several [CoFeB/Pd ] n multilayers. The effect of the number of repetitions and the thicknesses of the CoFeB and Pd layers on the magnetization reversal of the multilayer structure is studied, and it is found that many of the observed phenomena can be attributed to an increase of the magnetostatic interactions and subsequent decrease of the size of the magnetic domains. Increasing the CoFeB thickness leads to the disappearance of the perpendicular anisotropy, and such a minimum thickness of the Pd layer is necessary to achieve an out-of-plane magnetization.

  7. Unidirectional superscattering by multilayered cavities of effective radial anisotropy

    PubMed Central

    Liu, Wei; Lei, Bing; Shi, Jianhua; Hu, Haojun

    2016-01-01

    We achieve unidirectional forward superscattering by multilayered spherical cavities which are effectively radially anisotropic. It is demonstrated that, relying on the large effective anisotropy, the electric and magnetic dipoles can be tuned to spectrally overlap in such cavities, which satisfies the Kerker’s condition of simultaneous backward scattering suppression and forward scattering enhancement. We show that such scattering pattern shaping can be obtained in both all-dielectric and plasmonic multilayered cavities at different spectral positions, and believe that the mechanism we have revealed provides extra freedom for scattering shaping, which may play a significant role in many scattering related applications and also in optoelectronic devices made up of intrinsically anisotropic two dimensional materials. PMID:27708398

  8. Ferromagnetic resonance measurements of (Co/Ni/Co/Pt) multilayers with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Sbiaa, R.; Shaw, J. M.; Nembach, H. T.; Bahri, M. Al; Ranjbar, M.; Åkerman, J.; Piramanayagam, S. N.

    2016-10-01

    Multilayers of [Co/Ni(t)/Co/Pt]×8 with varying Ni thickness were investigated for possible use as a free layer in magnetic tunnel junctions and spintronics devices. The thickness t of the Ni sub-layer was varied from 0.3 nm to 0.9 nm and the resulting magnetic properties were compared with (Co/Ni) and (Co/Pt) multilayers. As determined from magnetic force microscopy, magnetometry and ferromagnetic resonance measurements, all multilayers exhibited perpendicular magnetic anisotropy. Compared with (Co/Pt) multilayers, the sample with t of 0.9 nm showed almost the same anisotropy field of μ 0 H k   =  1.15 T but the damping constant was 40% lower. These characteristics make these multilayers attractive for spin torque based magnetoresistive devices with perpendicular anisotropy.

  9. Interfacial electronic structure-modulated magnetic anisotropy in Ta/CoFeB/MgO/Ta multilayers

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Wang, Kai You; Wu, Zheng Long; Jiang, Shao Long; Yang, Guang; Liu, Yang; Teng, Jiao; Yu, Guang Hua

    2014-09-01

    We have observed several unexpected phenomena when a trace amount of Fe atoms is deposited onto the CoFeB/MgO interface in Ta/CoFeB/MgO/Ta multilayers. With the nominal thickness of the introduced Fe atoms (tFe) varying from 0 to 0.1 Å, the effective magnetic anisotropy energy (Keff) of annealed multilayers is remarkably enhanced from 1.28 × 106 erg/cm3 to 2.14 × 106 erg/cm3. As tFe further increasing, the Keff decreases and even becomes negative when tFe > 1 Å, indicating the change from perpendicular magnetic anisotropy to in-plane magnetic anisotropy. The analysis by X-ray photoelectron spectrometer reveals that the Fe atoms at annealed CoFeB/MgO interface show different electronic structures as tFe increasing, which combine with O atoms to form FeOx (x < 1), Fe2O3, and Fe3O4, respectively, leading to modulation of Fe 3d-O 2p orbital hybridization and thus the Keff. On the other hand, we find that the introduction of Fe atoms also helps to reduce the multilayers' magnetic damping.

  10. Interfacial electronic structure-modulated magnetic anisotropy in Ta/CoFeB/MgO/Ta multilayers

    SciTech Connect

    Chen, Xi; Jiang, Shao Long; Yang, Guang; Liu, Yang; Teng, Jiao; Yu, Guang Hua; Wang, Kai You; Wu, Zheng Long

    2014-09-01

    We have observed several unexpected phenomena when a trace amount of Fe atoms is deposited onto the CoFeB/MgO interface in Ta/CoFeB/MgO/Ta multilayers. With the nominal thickness of the introduced Fe atoms (t{sub Fe}) varying from 0 to 0.1 Å, the effective magnetic anisotropy energy (K{sub eff}) of annealed multilayers is remarkably enhanced from 1.28 × 10{sup 6 }erg/cm{sup 3} to 2.14 × 10{sup 6 }erg/cm{sup 3}. As t{sub Fe} further increasing, the K{sub eff} decreases and even becomes negative when t{sub Fe} > 1 Å, indicating the change from perpendicular magnetic anisotropy to in-plane magnetic anisotropy. The analysis by X-ray photoelectron spectrometer reveals that the Fe atoms at annealed CoFeB/MgO interface show different electronic structures as t{sub Fe} increasing, which combine with O atoms to form FeO{sub x} (x < 1), Fe{sub 2}O{sub 3}, and Fe{sub 3}O{sub 4}, respectively, leading to modulation of Fe 3d-O 2p orbital hybridization and thus the K{sub eff}. On the other hand, we find that the introduction of Fe atoms also helps to reduce the multilayers' magnetic damping.

  11. Interlayer exchange coupling between [Pd/Co] multilayers and CoFeB/MgO layers with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Jung, J. H.; Lim, S. H.; Lee, S. R.

    2012-12-01

    Interlayer exchange coupling between [Pd/Co] multilayers and CoFeB/MgO layers with perpendicular magnetic anisotropy (PMA) is investigated as functions of the thicknesses of the Ru spacer and CoFeB layer. The dependence of the coupling behavior on the Ru thickness is similar to that of in-plane anisotropy systems. However, one feature is that the PMA is strengthened through interlayer exchange coupling, as indicated by the fact that PMA of the interface-based CoFeB/MgO structure forms for a thick magnetic layer (1.4 nm). Another observation is the conversion from perpendicular to in-plane anisotropy with thick Ru spacers with almost zero exchange coupling strength.

  12. Corrosion protected, multi-layer fuel cell interface

    DOEpatents

    Feigenbaum, Haim; Pudick, Sheldon; Wang, Chiu L.

    1986-01-01

    An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. The multi-layer configuration for the interface comprises a non-cupreous metal-coated metallic element to which is film-bonded a conductive layer by hot pressing a resin therebetween. The multi-layer arrangement provides bridging electrical contact.

  13. Impact of buffer layer and Pt thickness on the interface structure and magnetic properties in (Co/Pt) multilayers

    NASA Astrophysics Data System (ADS)

    Bersweiler, M.; Dumesnil, K.; Lacour, D.; Hehn, M.

    2016-08-01

    The influence of Pt thickness on the interface structure (roughness / intermixing) and magnetic properties has been investigated for (Co / Pt) multilayers sputtered on a Pt or a thin oxide (MgO or AlO x ) buffer layer. When Pt thickness increases from 1.2 nm–2.2 nm, we observe that the effective anisotropy increases with the Pt thickness, simultaneously with the decrease of roughness, i.e. the occurrence of sharper interfaces. Perpendicular magnetic anisotropy (PMA) is still achieved on the oxide buffer layers, but with a lower effective anisotropy correlated to more perturbed interfaces. The detailed analysis of the saturation magnetization shows that: (i) M s is significantly enhanced in the case of rough/intermixed interfaces, which is attributed to and discussed in the framework of Pt induced polarization, (ii) the change in volume dipolar anisotropy is the main factor responsible for the reduction of K eff for systems grown on oxides. Beyond the major role of volume dipolar contribution that reduces PMA, a supplemental positive contribution promoting PMA can be invoked for rough interfaces and large M s (deposit on oxide). This contribution is consistent with a dipolar surface anisotropy term and increases for rough interfaces, in contrast to the Néel surface anisotropy. These opposite variations may interestingly lead to an enhanced anisotropy in (Co / Pt) stackings grown on oxides compared to systems deposited on Pt, i.e. with sharper interfaces.

  14. Impact of buffer layer and Pt thickness on the interface structure and magnetic properties in (Co/Pt) multilayers

    NASA Astrophysics Data System (ADS)

    Bersweiler, M.; Dumesnil, K.; Lacour, D.; Hehn, M.

    2016-08-01

    The influence of Pt thickness on the interface structure (roughness / intermixing) and magnetic properties has been investigated for (Co / Pt) multilayers sputtered on a Pt or a thin oxide (MgO or AlO x ) buffer layer. When Pt thickness increases from 1.2 nm-2.2 nm, we observe that the effective anisotropy increases with the Pt thickness, simultaneously with the decrease of roughness, i.e. the occurrence of sharper interfaces. Perpendicular magnetic anisotropy (PMA) is still achieved on the oxide buffer layers, but with a lower effective anisotropy correlated to more perturbed interfaces. The detailed analysis of the saturation magnetization shows that: (i) M s is significantly enhanced in the case of rough/intermixed interfaces, which is attributed to and discussed in the framework of Pt induced polarization, (ii) the change in volume dipolar anisotropy is the main factor responsible for the reduction of K eff for systems grown on oxides. Beyond the major role of volume dipolar contribution that reduces PMA, a supplemental positive contribution promoting PMA can be invoked for rough interfaces and large M s (deposit on oxide). This contribution is consistent with a dipolar surface anisotropy term and increases for rough interfaces, in contrast to the Néel surface anisotropy. These opposite variations may interestingly lead to an enhanced anisotropy in (Co / Pt) stackings grown on oxides compared to systems deposited on Pt, i.e. with sharper interfaces.

  15. Perpendicular magnetic anisotropy in Ta/Co2FeAl/MgO multilayers

    NASA Astrophysics Data System (ADS)

    Gabor, M. S.; Petrisor, T.; Tiusan, C.; Petrisor, T.

    2013-08-01

    In this paper, we demonstrate the stabilization of perpendicular magnetic anisotropy (PMA) in Ta/Co2FeAl/MgO multilayers sputtered on thermally oxidized Si(100) substrates. The magnetic analysis points out that these films show significant interfacial anisotropy even in the as-deposited state, KS=0.67 erg/cm2, enough to provide PMA for the as-deposited films with thicknesses below 1.5 nm. Moreover, the interfacial anisotropy is enhanced by thermal annealing up to 300 °C. The presence of a magnetic dead layer, whose thickness increases with annealing temperature, was also identified.

  16. Multilayer Coextrusion Reveals Slip at Polymer-polymer Interfaces

    NASA Astrophysics Data System (ADS)

    Zhao, Rui; Macosko, Christopher W.

    2000-03-01

    De Gennes (1992) suggested that loss of entanglement in the interfacial region between two incompatible polymers causes slip at interfaces. Goveas and Fredrickson (1998) developed a quantitative model for the lowering of interfacial viscosity. However, to date there appears to be no quantitative experimental evidence for interfacial slip. We coextruded polypropylene and polystyrene with closely matched viscosities into multilayers with 2,32 and 128 layers. Pressure drop of the coextruded multilayer melts through a slit die was measured. The data showed a 40reduction when the number of layers increased from 2 to 128, which indicates interfacial slip. The steady shear viscosity of the multilayer sample was also measured in parallel plates. When the shear stress was higher than a critical value, the viscosity of the multilayers was lower than either of the components. The interfacial viscosity was estimated, and 40 times reduction was observed. Diblock copolymer which spanned the interfaces was shown to able to suppress interfacial slip.

  17. Strain-assisted magnetization reversal in Co/Ni multilayers with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Gopman, D. B.; Dennis, C. L.; Chen, P. J.; Iunin, Y. L.; Finkel, P.; Staruch, M.; Shull, R. D.

    2016-06-01

    Multifunctional materials composed of ultrathin magnetic films with perpendicular magnetic anisotropy combined with ferroelectric substrates represent a new approach toward low power, fast, high density spintronics. Here we demonstrate Co/Ni multilayered films with tunable saturation magnetization and perpendicular anisotropy grown directly on ferroelectric PZT [Pb(Zr0.52Ti0.48)O3] substrate plates. Electric fields up to ±2 MV/m expand the PZT by 0.1% and generate at least 0.02% in-plane compression in the Co/Ni multilayered film. Modifying the strain with a voltage can reduce the coercive field by over 30%. We also demonstrate that alternating in-plane tensile and compressive strains (less than 0.01%) can be used to propagate magnetic domain walls. This ability to manipulate high anisotropy magnetic thin films could prove useful for lowering the switching energy for magnetic elements in future voltage-controlled spintronic devices.

  18. Strain-assisted magnetization reversal in Co/Ni multilayers with perpendicular magnetic anisotropy.

    PubMed

    Gopman, D B; Dennis, C L; Chen, P J; Iunin, Y L; Finkel, P; Staruch, M; Shull, R D

    2016-01-01

    Multifunctional materials composed of ultrathin magnetic films with perpendicular magnetic anisotropy combined with ferroelectric substrates represent a new approach toward low power, fast, high density spintronics. Here we demonstrate Co/Ni multilayered films with tunable saturation magnetization and perpendicular anisotropy grown directly on ferroelectric PZT [Pb(Zr0.52Ti0.48)O3] substrate plates. Electric fields up to ±2 MV/m expand the PZT by 0.1% and generate at least 0.02% in-plane compression in the Co/Ni multilayered film. Modifying the strain with a voltage can reduce the coercive field by over 30%. We also demonstrate that alternating in-plane tensile and compressive strains (less than 0.01%) can be used to propagate magnetic domain walls. This ability to manipulate high anisotropy magnetic thin films could prove useful for lowering the switching energy for magnetic elements in future voltage-controlled spintronic devices. PMID:27297638

  19. Strain-assisted magnetization reversal in Co/Ni multilayers with perpendicular magnetic anisotropy

    PubMed Central

    Gopman, D. B.; Dennis, C. L.; Chen, P. J.; Iunin, Y. L.; Finkel, P.; Staruch, M.; Shull, R. D.

    2016-01-01

    Multifunctional materials composed of ultrathin magnetic films with perpendicular magnetic anisotropy combined with ferroelectric substrates represent a new approach toward low power, fast, high density spintronics. Here we demonstrate Co/Ni multilayered films with tunable saturation magnetization and perpendicular anisotropy grown directly on ferroelectric PZT [Pb(Zr0.52Ti0.48)O3] substrate plates. Electric fields up to ±2 MV/m expand the PZT by 0.1% and generate at least 0.02% in-plane compression in the Co/Ni multilayered film. Modifying the strain with a voltage can reduce the coercive field by over 30%. We also demonstrate that alternating in-plane tensile and compressive strains (less than 0.01%) can be used to propagate magnetic domain walls. This ability to manipulate high anisotropy magnetic thin films could prove useful for lowering the switching energy for magnetic elements in future voltage-controlled spintronic devices. PMID:27297638

  20. Anisotropy of heat conduction in Mo/Si multilayers

    SciTech Connect

    Medvedev, V. V.; Yakshin, A. E.; Kruijs, R. W. E. van de; Bijkerk, F.; Yang, J.; Schmidt, A. J.; Zoethout, E.

    2015-08-28

    This paper reports on the studies of anisotropic heat conduction phenomena in Mo/Si multilayers with individual layer thicknesses selected to be smaller than the mean free path of heat carriers. We applied the frequency-domain thermoreflectance technique to characterize the thermal conductivity tensor. While the mechanisms of the cross-plane heat conduction were studied in detail previously, here we focus on the in-plane heat conduction. To analyze the relative contribution of electron transport to the in-plane heat conduction, we applied sheet-resistance measurements. Results of Mo/Si multilayers with variable thickness of the Mo layers indicate that the net in-plane thermal conductivity depends on the microstructure of the Mo layers.

  1. Anisotropy of heat conduction in Mo/Si multilayers

    NASA Astrophysics Data System (ADS)

    Medvedev, V. V.; Yang, J.; Schmidt, A. J.; Yakshin, A. E.; van de Kruijs, R. W. E.; Zoethout, E.; Bijkerk, F.

    2015-08-01

    This paper reports on the studies of anisotropic heat conduction phenomena in Mo/Si multilayers with individual layer thicknesses selected to be smaller than the mean free path of heat carriers. We applied the frequency-domain thermoreflectance technique to characterize the thermal conductivity tensor. While the mechanisms of the cross-plane heat conduction were studied in detail previously, here we focus on the in-plane heat conduction. To analyze the relative contribution of electron transport to the in-plane heat conduction, we applied sheet-resistance measurements. Results of Mo/Si multilayers with variable thickness of the Mo layers indicate that the net in-plane thermal conductivity depends on the microstructure of the Mo layers.

  2. Co2FeAl films with perpendicular magnetic anisotropy in multilayer structure

    NASA Astrophysics Data System (ADS)

    Li, X. Q.; Xu, X. G.; Yin, S. Q.; Zhang, D. L.; Miao, J.; Jiang, Y.

    2011-01-01

    We have fabricated Co2FeAl (CFA) films with perpendicular magnetic anisotropy (PMA) in a (Co2FeAl/Ni)6 multilayer structure. The effects of underlayer Cu thickness (tCu), Co2FeAl thickness (tCFA) and Ni thickness (tNi) on the magnetic properties have been studied. The PMA is realized with a large anisotropy energy density K = 3.7×106 ergs/cm3, a high squareness Mr/Ms = 1 and a small perpendicular coercivity Hc = 60 Oe, while tCu, tCFA and tNi are 9 nm, 0.2 nm and 0.6 nm respectively. The PMA remains after 300 °C annealing, which demonstrates better thermal stability of the (Co2FeAl/Ni)6 multilayer than that of (Co/Ni)n.

  3. Anomalous evolution of interfaces in Fe/Ag magnetic multilayer

    NASA Astrophysics Data System (ADS)

    Sharma, Gagan; Gupta, Ranjeeta; Kumar, Dileep; Gupta, Ajay

    2013-12-01

    Interfaces greatly influence the magnetic properties of multilayer nanostructures. In the present work, the x-ray standing wave (XSW) technique along with conversion electron Mössbauer spectroscopy have been used to study the evolution of interfaces in Fe/Ag system as a function of thermal annealing. The XSW technique has sufficient depth resolution so as to determine the concentration profiles of Fe across the two interfaces, namely Fe-on-Ag and Ag-on-Fe independently. In as-deposited Ag/Fe/Ag trilayer, Fe-on-Ag interface has a substantially higher roughness of 1.3 nm as compared to 0.9 nm of Ag-on-Fe interface. It is shown that the observed difference in the roughness of the two interfaces is due to a substantial intermixing between Fe and Ag occurring preferentially at Fe-on-Ag interface. With thermal annealing, the two interfaces exhibit opposite behaviour; while Fe-on-Ag interface exhibits an initial sharpening, Ag-on-Fe interface exhibits a monotonous broadening. Two competing processes occur at the interfaces, (i) interface sharpening as a result of de-mixing, driven by a large positive heat of mixing between Fe and Ag and (ii) increase in topological roughness due to increased thermal agitation. This results in a non-monotonous variation in the roughness of Fe-on-Ag interface. At sufficiently high temperature the layered structure is completely destroyed, leading to formation of Fe and Ag nanoparticles.

  4. Magneto-transport anisotropy in epitaxially grown hybrid MnAs/GaAs multilayer

    SciTech Connect

    Song, J. H.; Cui, Y.; Lee, J. J.; Ketterson, J. B.

    2015-05-07

    Using molecular-beam epitaxy, we grew a MnAs/GaAs multilayer on a GaAs(100) substrate and compared its magneto-transport characteristics to those of a single-layer MnAs thin film. The crystal orientation of the MnAs layers in both samples was type-B. M–H measurements revealed two-fold symmetric magnetic anisotropy on the surface with the easy and hard direction of magnetization. When the current flowed along the hard direction, the MnAs/GaAs multilayer exhibited negative magnetoresistance below Curie temperature; when the current flowed along the easy direction, it turned positive. We suggest that this peculiar anisotropic magneto-transport behavior in the multilayer originated from two-dimensional carrier confinement and spin-orbit coupling.

  5. Perpendicular magnetic anisotropy and structural properties of NiCu/Cu multilayers

    NASA Astrophysics Data System (ADS)

    Ruotolo, A.; Bell, C.; Leung, C. W.; Blamire, M. G.

    2004-07-01

    Perpendicular magnetic anisotropy (PMA) was studied at low temperature (T=30 K) in dc-magnetron sputtered Ni60Cu40/Cu multilayers. PMA has been observed in many multilayer structures for ferromagnetic layer thicknesses less than a certain thickness t⊥. In general cases t⊥ is less than a few nanometers, making such structures unsuitable for low-cost fabrication techniques. Our results show a strong perpendicular easy direction of magnetization for NiCu layer thickness between 4.2 nm and 34 nm. The thickness t⊥ at which the multilayers change the preferential orientation from perpendicular to in-plane is estimated to be 55 nm. Structural studies show that the low magnetostatic energy density is likely to be the main reason for the large t⊥ value obtained in this system.

  6. Spin-triplet supercurrent in Co/Ni multilayer Josephson junctions with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Gingrich, E. C.; Quarterman, P.; Wang, Yixing; Loloee, R.; Pratt, W. P., Jr.; Birge, Norman O.

    2012-12-01

    We have measured spin-triplet supercurrent in Josephson junctions of the form S/F'/F/F'/S, where S is superconducting Nb, F' is a thin Ni layer with in-plane magnetization, and F is a Ni/[Co/Ni]n multilayer with out-of-plane magnetization. The supercurrent in these junctions decays very slowly with F-layer thickness and is much larger than in similar junctions not containing the two F' layers. Those two features are the characteristic signatures of spin-triplet supercurrent, which is maximized by the orthogonality of the magnetizations in the F and F' layers. Magnetic measurements confirm the out-of-plane anisotropy of the Co/Ni multilayers. These samples have their critical current optimized in the as-prepared state, which will be useful for future applications.

  7. Manipulation of superparamagnetic beads on patterned Au/Co/Au multilayers with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Jarosz, A.; Holzinger, D.; Urbaniak, M.; Ehresmann, A.; Stobiecki, F.

    2016-08-01

    The magnetophoresis of water-suspended 4 μm-diameter superparamagnetic beads above topographically patterned, sputter deposited Ti(4 nm)/Au(60 nm)/[Co(0.7 nm)/Au(1 nm)] × 3 multilayers with perpendicular magnetic anisotropy was investigated. The results impressively demonstrate that the magnetic stray field landscape above the stripe structure when superimposed with an external, slowly rotating, field enables the directed transport of magnetic beads across the stripe panel with velocities up to 12 μm s-1.

  8. Tuning the perpendicular magnetic anisotropy of co-based layers in multilayered systems.

    PubMed

    Angelakeris, M; Papaioannou, E Th; Poulopoulos, P; Kopsidis, M; Kalogirou, O; Flevaris, N K

    2010-09-01

    The combination of Pt with Co either in alloy or in multilayer form is widely studied among the potential magnetic media for ultrahigh density magnetic recording. On the other hand the combination of Co with Cr in alloy form is currently providing commercial magnetic media. In an effort to further exploit and benefit from both systems, we fabricated Co(1-x)Cr(x)/Pt multilayers with two adjustable parameters. The first one is the Cr concentration on CoCr layer (x = 0, 5, 30), which modulates segregation effects on Co grains, thus tunes macroscopic magnetic features such as saturation magnetization and coercive field. The second one is the small layer thickness (< or = 0.6 nm) that affects interlayer coupling, perpendicular magnetic anisotropy and magnetization enhancement through spin polarization of Pt atoms in a ferromagnetic environment. The X-ray diffraction patterns verified the existence of multilayered structures following a preferable face-centered-cubic stacking. The Pt thickness and Cr concentration are found to significantly affect the macroscopic magnetic behavior. It is remarkable the fact that, samples present perpendicular anisotropy that scales with Pt thickness and temperature, even in the case of significant Cr concentration (30% in the alloy) when ferromagnetic behavior is expected to diminish according to relevant studies in alloys and in bulk films. Such an effect may be attributed to spin-polarization of Pt interlayers and was evidenced by X-ray magnetic circular dichroism. The spin-polarization of Pt is also the drive for the strong magneto-optic enhancement in the ultra-violet region between 4.5 and 5 eV shown by magnetooptic Kerr spectroscopy. PMID:21133152

  9. Assessment of Layer Thickness and Interface Quality in CoP Electrodeposited Multilayers.

    PubMed

    Lucas, Irene; Ciudad, David; Plaza, Manuel; Ruiz-Gómez, Sandra; Aroca, Claudio; Pérez, Lucas

    2016-07-27

    The magnetic properties of CoP electrodeposited alloys can be easily controlled by layering the alloys and modulating the P content of the different layers by using pulse plating in the electrodeposition process. However, because of its amorphous nature, the study of the interface quality, which is a limitation for the optimization of the soft magnetic properties of these alloys, becomes a complex task. In this work, we use Rutherford backscattering spectroscopy (RBS) to determine that electrodeposited Co0.74P0.26/Co0.83P0.17 amorphous multilayers with layers down to 20 nm-thick are composed by well-defined layers with interfacial roughness below 3 nm. We have also determined, using magnetostriction measurements, that 4 nm is the lower limitation for the layer thickness. Below this thickness, the layers are mixed and the magnetic behavior of the multilayered films is similar to that shown by single layers, thus going from in-plane to out-of-plane magnetic anisotropy. Therefore, these results establish the range in which the magnetic properties of these alloys can be controlled by layering. PMID:27381897

  10. Perpendicular magnetic anisotropy in granular multilayers of CoPd alloyed nanoparticles

    NASA Astrophysics Data System (ADS)

    Vivas, L. G.; Rubín, J.; Figueroa, A. I.; Bartolomé, F.; García, L. M.; Deranlot, C.; Petroff, F.; Ruiz, L.; González-Calbet, J. M.; Pascarelli, S.; Brookes, N. B.; Wilhelm, F.; Chorro, M.; Rogalev, A.; Bartolomé, J.

    2016-05-01

    Co-Pd multilayers obtained by Pd capping of pre-deposited Co nanoparticles on amorphous alumina are systematically studied by means of high-resolution transmission electron microscopy, x-ray diffraction, extended x-ray absorption fine structure, SQUID-based magnetometry, and x-ray magnetic circular dichroism. The films are formed by CoPd alloyed nanoparticles self-organized across the layers, with the interspace between the nanoparticles filled by the non-alloyed Pd metal. The nanoparticles show atomic arrangements compatible with short-range chemical order of L 10 strucure type. The collective magnetic behavior is that of ferromagnetically coupled particles with perpendicular magnetic anisotropy, irrespective of the amount of deposited Pd. For increasing temperature three magnetic phases are identified: hard ferromagnetic with strong coercive field, soft-ferromagnetic as in an amorphous asperomagnet, and superparamagnetic. Increasing the amount of Pd in the system leads to both magnetic hardness increment and higher transition temperatures. Magnetic total moments of 1.77(4) μB and 0.45(4) μB are found at Co and Pd sites, respectively, where the orbital moment of Co, 0.40(2) μB, is high, while that of Pd is negligible. The effective magnetic anisotropy is the largest in the capping metal series (Pd, Pt, W, Cu, Ag, Au), which is attributed to the interparticle interaction between de nanoparticles, in addition to the intraparticle anisotropy arising from hybridization between the 3 d -4 d bands associated to the Co and Pd chemical arrangement in a L 10 structure type.

  11. Effects of surface and interface energies on the bending behavior of nanoscale multilayered beams

    NASA Astrophysics Data System (ADS)

    Wang, K. F.; Wang, B. L.

    2013-12-01

    A modified continuum model of the nanoscale multilayered beams is established by incorporating surface and interface energies. Through the principle of minimum potential energy, the governing equations and boundary conditions are obtained. The closed-form solutions are presented and the overall Young's modulus of the beam is studied. The surface and interface energies are found to have a major influence on the bending behavior and the overall Young's modulus of the beam. The effect of surface and interface energies on the overall Young's modulus depends on the boundary condition of the beam, the values of the surface/interface elasticity constants and the initial surface/interface energy of the system. The results can be used to guide the determinations of the surface/interface elasticity properties and the initial surface/interface energies of the nanoscale multilayered materials through nanoscale beam bending experiments.

  12. Cumulative interface roughness and magnetization in antiferromagnetically coupled NiCo/Cu multilayers

    NASA Astrophysics Data System (ADS)

    Meng, X.; Bian, X.; Abdouche, R.; Muir, W. B.; Stroem-Olsen, J. O.; Altounian, Z.; Sutton, M.

    1994-11-01

    Cumulative interface roughness and its influence on the magnetization process in antiferromagnetically coupled (Ni80Co20/Cu) x N multilayers is studied. In these multilayers, Cu and Ni80Co20 thicknesses are fixed at 20 and 15 A, respectively, in order to obtain the antiferromagnetic coupling at the second oscillation peak of giant magnetoresistance (GMR) versus Cu thickness. Low-angle x-ray reflectivity measurements show that cumulative interface roughness increases with increasing bilayer number N. In-plane magnetization hysteresis measured with both superconducting quantum interference device (SQUID) and surface magneto-optic Kerr effect (SMOKE) magnetometers are compared. When the cumulative interface roughness is significant, SMOKE hysteresis loops, which are sensitive to the top 5 or 6 magnetic layers, display nonlinear plateau region at small fields. Comparison of low-angle x-ray, and SMOKE results show that interfaces of relatively high quality in top layers only exist for sputtered multilayer with N less than 10.

  13. Oxygen tracer diffusion along interfaces of strained Y2O3/YSZ multilayers.

    PubMed

    Aydin, Halit; Korte, Carsten; Rohnke, Marcus; Janek, Jürgen

    2013-02-14

    Heterophase boundaries can offer fast transport paths in solid electrolyte materials. In recent studies an enhancement of the ionic conductivity was indeed observed in micro-/nanoscaled Y(2)O(3)-stabilised ZrO(2) (YSZ) composites and hetero multilayers of thin films. As space charge regions can be neglected due to high charger carrier concentrations, we assume that strain and microstructural changes at the heterophase boundaries are responsible for the observed conductivity effects. In order to obtain independent information on the role of heterophase boundaries for fast transport in strained solid electrolytes, systematic measurements of the (18)O-tracer diffusion coefficient in nanoscaled YSZ/Y(2)O(3) multilayers were performed. Multilayer samples were prepared by Pulsed Laser Deposition (PLD) on (0001) Al(2)O(3) substrates and characterised by X-Ray Diffraction (XRD), Scanning Electron Microscopy (HRSEM) and Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). To separate interface and bulk transport from the total oxygen diffusivity of the multilayer system, the (average) thickness of the YSZ-layers in the multilayers was varied from 45 nm to 12 nm. Upon decreasing the thickness of the YSZ layers, respectively increasing the density of parallel interfaces, the total diffusion coefficient of the multilayer system is increased by a factor of 2 compared to bulk YSZ. The experimental results agree well with formerly published data for ionic conductivity measurements. They also support a negligible contribution of partial electronic conductivity in the multilayer.

  14. Enhanced perfume surface delivery to interfaces using surfactant surface multilayer structures.

    PubMed

    Brabury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig

    2016-01-01

    Enhanced surface delivery and retention of perfumes at interfaces are the keys to their more effective and efficient deployment in a wide range of home and personal care related formulations. It has been previously demonstrated that the addition of multivalent counterions, notably Ca(2+), induces multilayer adsorption at the air-water interface for the anionic surfactant, sodium dodecyl-6-benzenesulfonate, LAS-6. Neutron reflectivity, NR, measurements are reported here which demonstrate that such surfactant surface multilayer structures are a potentially promising vehicle for enhanced delivery of perfumes to interfaces. The data show that the incorporation of the model perfumes, phenylethanol, PE, and linalool, LL, into the surface multilayer structure formed by LAS-6/Ca(2+) results in the surface structures being retained up to relatively high perfume mole fractions. Furthermore the amount of perfume at the surface is enhanced by at least an order of magnitude, compared to that co-adsorbed with a surfactant monolayer.

  15. Enhanced perfume surface delivery to interfaces using surfactant surface multilayer structures.

    PubMed

    Brabury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig

    2016-01-01

    Enhanced surface delivery and retention of perfumes at interfaces are the keys to their more effective and efficient deployment in a wide range of home and personal care related formulations. It has been previously demonstrated that the addition of multivalent counterions, notably Ca(2+), induces multilayer adsorption at the air-water interface for the anionic surfactant, sodium dodecyl-6-benzenesulfonate, LAS-6. Neutron reflectivity, NR, measurements are reported here which demonstrate that such surfactant surface multilayer structures are a potentially promising vehicle for enhanced delivery of perfumes to interfaces. The data show that the incorporation of the model perfumes, phenylethanol, PE, and linalool, LL, into the surface multilayer structure formed by LAS-6/Ca(2+) results in the surface structures being retained up to relatively high perfume mole fractions. Furthermore the amount of perfume at the surface is enhanced by at least an order of magnitude, compared to that co-adsorbed with a surfactant monolayer. PMID:26409782

  16. Exploring interface morphology of a deeply buried layer in periodic multilayer

    NASA Astrophysics Data System (ADS)

    Das, Gangadhar; Khooha, Ajay; Singh, A. K.; Srivastava, A. K.; Tiwari, M. K.

    2016-06-01

    Long-term durability of a thin film device is strongly correlated with the nature of interface structure associated between different constituent layers. Synthetic periodic multilayer structures are primarily employed as artificial X-ray Bragg reflectors in many applications, and their reflection efficiency is predominantly dictated by the nature of the buried interfaces between the different layers. Herein, we demonstrate the applicability of the combined analysis approach of the X-ray reflectivity and grazing incidence X-ray fluorescence measurements for the reliable and precise determination of a buried interface structure inside periodic X-ray multilayer structures. X-ray standing wave field (XSW) generated under Bragg reflection condition is used to probe the different constituent layers of the W- B4C multilayer structure at 10 keV and 12 keV incident X-ray energies. Our results show that the XSW assisted fluorescence measurements are markedly sensitive to the location and interface morphology of a buried layer structure inside a periodic multilayer structure. The cross sectional transmission electron microscopy results obtained on the W-B4C multilayer structure provide a deeper look on the overall reliability and accuracy of the XSW method. The method described here would also be applicable for nondestructive characterization of a wide range of thin film based semiconductor and optical devices.

  17. First principles investigation of magnetocrystalline anisotropy at Full Heusler / MgO interfaces

    NASA Astrophysics Data System (ADS)

    Vadapoo, Rajasekarakumar; Hallal, Ali; Chshiev, Mairbek

    2014-03-01

    Magnetic tunnel junctions with perpendicular magnetic anisotropy (PMA) have the potential for realizing next generation high density nonvolatile memories and logic devices. The origin of high PMA in these interfaces has been explained by orbital hybridizations at interface along with spin-orbit interactions. Here we present a systematic study of PMA in Heusler alloy [X2YZ]/ MgO interfaces using first principle methods with X =Co, YZ =FeAl, MnGe and MnSi. Among the interfaces studied, we found that Co terminated interface of Co2FeAl/MgO gives rise to PMA value of 1.2erg/cm2 in agreement with recent experimental observations. On the contrary, FeAl terminated interfaces of the same structure shows in-plane magnetic anisotropy (IMA). We also found that the most of PMA contribution originates from dyz and dz2 orbitals of Co atoms at the interface. Finally, Co2MnGe and Co2MnSi structures tend to favor IMA for any termination.

  18. Antiparallel interface coupling evidenced by negative rotatable anisotropy in IrMn/NiFe bilayers

    SciTech Connect

    Schafer, D.; Grande, P. L.; Pereira, L. G.; Azevedo, G. M.; Harres, A.; Geshev, J.; Sousa, M. A. de; Pelegrini, F.

    2015-06-07

    Negative rotatable anisotropy is estimated via ferromagnetic resonance measurements in as-made, annealed, and ion-irradiated IrMn{sub 3}/Ni{sub 81}Fe{sub 19} bilayers. Opposite to previous observations, inverse correlation between rotatable anisotropy and coercivity is observed. The exchange-bias field, determined from hysteresis loop measurements, is higher than that obtained from ferromagnetic resonance for all samples. The results are discussed in terms of majority antiparallel coupling and magnetic-field-induced transitions from antiparallel to parallel states of uncompensated spins at ferromagnet/antiferromagnet interface. We affirm that an observation of negative rotatable anisotropy evidences antiparallel coupling even in systems presenting conventional exchange bias.

  19. Interface stress development in the Cu/Ag nanostructured multilayered film during the tensile deformation

    SciTech Connect

    Su, R.; Nie, Z. H.; Zhang, Q. H.; Li, X. J.; Li, L. E-mail: ydwang@mail.neu.edu.cn; Zhou, X. T.; Wang, Y. D. E-mail: ydwang@mail.neu.edu.cn; Wu, Y. D.; Hui, X. D.; Wang, M. G.

    2014-12-01

    Cu/Ag nanostructured multilayered films (NMFs) with different stacking sequences were investigated by synchrotron X-ray diffraction during the tensile deformations for interface stress study. The lattice strains were carefully traced and the stress partition, which usually occurs in the multiphase bulk metallic materials during plastic deformations, was first quantitatively analyzed in the NMFs here. The interface stress of the Cu/Ag NMFs was carefully analyzed during the tensile deformation and the results revealed that the interface stress was along the loading direction and exhibited three-stage evolution. This tensile interface stress has a detrimental effect on the deformation, leading to the early fracture of the NMFs.

  20. Designing a stronger interface through graded structures in amorphous/nanocrystalline ZrCu/Cu multilayered films

    NASA Astrophysics Data System (ADS)

    Chang, C. H.; Hsieh, C. H.; Huang, J. C.; Wang, C.; Liao, Y. C.; Hsueh, C. H.; Du, X. H.; Wang, Z. K.; Wang, X.

    2016-06-01

    Many multilayered nano-structures appear to fail due to brittle matter along the interfaces. In order to toughen them, in this study, the microstructure and interface strength of multilayered thin films consisting of amorphous ZrCu and nanocrystalline Cu (with sharp or graded interfaces) are examined and analyzed. The interface possesses a gradient nature in terms of composition, nanocrystalline phase size and volume fraction. The bending results extracted from the nano-scaled cantilever bending samples demonstrate that multilayered films with graded interfaces would have a much higher interface bending strength/strain/modulus, and an overall improvement upgrade of more than 50%. The simple graded interface design of multilayered thin films with improved mechanical properties can offer much more promising performance in structural and functional applications for MEMS or optical coating.

  1. Formation of Magnetic Anisotropy by Lithography

    PubMed Central

    Kim, Si Nyeon; Nam, Yoon Jae; Kim, Yang Doo; Choi, Jun Woo; Lee, Heon; Lim, Sang Ho

    2016-01-01

    Artificial interface anisotropy is demonstrated in alternating Co/Pt and Co/Pd stripe patterns, providing a means of forming magnetic anisotropy using lithography. In-plane hysteresis loops measured along two principal directions are explained in depth by two competing shape and interface anisotropies, thus confirming the formation of interface anisotropy at the Co/Pt and Co/Pd interfaces of the stripe patterns. The measured interface anisotropy energies, which are in the range of 0.2–0.3 erg/cm2 for both stripes, are smaller than those observed in conventional multilayers, indicating a decrease in smoothness of the interfaces when formed by lithography. The demonstration of interface anisotropy in the Co/Pt and Co/Pd stripe patterns is of significant practical importance, because this setup makes it possible to form anisotropy using lithography and to modulate its strength by controlling the pattern width. Furthermore, this makes it possible to form more complex interface anisotropy by fabricating two-dimensional patterns. These artificial anisotropies are expected to open up new device applications such as multilevel bits using in-plane magnetoresistive thin-film structures. PMID:27216420

  2. Formation of Magnetic Anisotropy by Lithography.

    PubMed

    Kim, Si Nyeon; Nam, Yoon Jae; Kim, Yang Doo; Choi, Jun Woo; Lee, Heon; Lim, Sang Ho

    2016-01-01

    Artificial interface anisotropy is demonstrated in alternating Co/Pt and Co/Pd stripe patterns, providing a means of forming magnetic anisotropy using lithography. In-plane hysteresis loops measured along two principal directions are explained in depth by two competing shape and interface anisotropies, thus confirming the formation of interface anisotropy at the Co/Pt and Co/Pd interfaces of the stripe patterns. The measured interface anisotropy energies, which are in the range of 0.2-0.3 erg/cm(2) for both stripes, are smaller than those observed in conventional multilayers, indicating a decrease in smoothness of the interfaces when formed by lithography. The demonstration of interface anisotropy in the Co/Pt and Co/Pd stripe patterns is of significant practical importance, because this setup makes it possible to form anisotropy using lithography and to modulate its strength by controlling the pattern width. Furthermore, this makes it possible to form more complex interface anisotropy by fabricating two-dimensional patterns. These artificial anisotropies are expected to open up new device applications such as multilevel bits using in-plane magnetoresistive thin-film structures. PMID:27216420

  3. Cr/B4C multilayer mirrors: Study of interfaces and X-ray reflectance

    NASA Astrophysics Data System (ADS)

    Burcklen, C.; Soufli, R.; Dennetiere, D.; Polack, F.; Capitanio, B.; Gullikson, E.; Meltchakov, E.; Thomasset, M.; Jérome, A.; de Rossi, S.; Delmotte, F.

    2016-03-01

    We present an experimental study of the effect of layer interfaces on the x-ray reflectance in Cr/B4C multilayer interference coatings with layer thicknesses ranging from 0.7 nm to 5.4 nm. The multilayers were deposited by magnetron sputtering and by ion beam sputtering. Grazing incidence x-ray reflectometry, soft x-ray reflectometry, and transmission electron microscopy reveal asymmetric multilayer structures with a larger B4C-on-Cr interface, which we modeled with a 1-1.5 nm thick interfacial layer. Reflectance measurements in the vicinity of the Cr L2,3 absorption edge demonstrate fine structure that is not predicted by simulations using the currently tabulated refractive index (optical constants) values for Cr.

  4. Cr/B4C multilayer mirrors: Study of interfaces and X-ray reflectance

    DOE PAGESBeta

    Burcklen, C.; Soufli, R.; Gullikson, E.; Meltchakov, E.; Dennetiere, D.; Polack, F.; Capitanio, B.; Thomasset, M.; Jerome, A.; de Rossi, S.; et al

    2016-03-24

    Here, we present an experimental study of the effect of layer interfaces on the x-ray reflectance in Cr/B4C multilayer interference coatings with layer thicknesses ranging from 0.7 nm to 5.4 nm. The multilayers were deposited by magnetron sputtering and by ion beam sputtering. Grazing incidence x-ray reflectometry, soft x-ray reflectometry, and transmission electron microscopy reveal asymmetric multilayer structures with a larger B4C-on-Cr interface, which we modeled with a 1–1.5 nm thick interfacial layer. Reflectance measurements in the vicinity of the Cr L2,3 absorption edge demonstrate fine structure that is not predicted by simulations using the currently tabulated refractive index (opticalmore » constants) values for Cr.« less

  5. Effect of MgO/Fe Interface Oxidation State on Electric-Field Modulation of Interfacial Magnetic Anisotropy

    NASA Astrophysics Data System (ADS)

    Guan, X. W.; Cheng, X. M.; Wang, S.; Huang, T.; Xue, K. H.; Miao, X. S.

    2016-06-01

    The impact of the MgO/Fe interface oxidation state on the electric-field-modified magnetic anisotropy in MgO/Fe has been revealed by density functional calculations. It is shown that the influence of the interface oxidation is strong enough to dominate the effect of the electric field on the magnetic anisotropy of MgO/Fe-based films. The magnetoelectric coefficients are calculated to be positive for the ideal and overoxidized MgO/Fe interface, but an abnormal negative value emerges in the underoxidized case. By analyzing the interface states based on density of states and band structures, we demonstrate that the considerably different electronic structures of the three oxidized MgO/Fe interfaces lead to the strong discrepancy in the electric-field modulation of the interfacial magnetic anisotropy. These results are of considerable interest in the area of electric-field-controlled magnetic anisotropy and switching.

  6. Ferroelectric control of magnetocrystalline anisotropy at cobalt/poly(vinylidene fluoride) interfaces.

    PubMed

    Lukashev, Pavel V; Paudel, Tula R; López-Encarnación, Juan M; Adenwalla, Shireen; Tsymbal, Evgeny Y; Velev, Julian P

    2012-11-27

    Electric field control of magnetization is one of the promising avenues for achieving high-density energy-efficient magnetic data storage. Ferroelectric materials can be especially useful for that purpose as a source of very large switchable electric fields when interfaced with a ferromagnet. Organic ferroelectrics, such as poly(vinylidene fluoride) (PVDF), have an additional advantage of being weakly bonded to the ferromagnet, thus minimizing undesirable effects such as interface chemical modification and/or strain coupling. In this work we use first-principles density functional calculations of Co/PVDF heterostructures to demonstrate the effect of ferroelectric polarization of PVDF on the interface magnetocrystalline anisotropy that controls the magnetization orientation. We show that switching of the polarization direction alters the magnetocrystalline anisotropy energy of the adjacent Co layer by about 50%, driven by the modification of the screening charge induced by ferroelectric polarization. The effect is reduced with Co oxidation at the interface due to quenching the interface magnetization. Our results provide a new insight into the mechanism of the magnetoelectric coupling at organic ferroelectric/ferromagnet interfaces and suggest ways to achieve the desired functionality in practice. PMID:23039083

  7. Analysis of buried interfaces in multilayer mirrors using grazing incidence extreme ultraviolet reflectometry near resonance edges.

    PubMed

    Sertsu, M G; Nardello, M; Giglia, A; Corso, A J; Maurizio, C; Juschkin, L; Nicolosi, P

    2015-12-10

    Accurate measurements of optical properties of multilayer (ML) mirrors and chemical compositions of interdiffusion layers are particularly challenging to date. In this work, an innovative and nondestructive experimental characterization method for multilayers is discussed. The method is based on extreme ultraviolet (EUV) reflectivity measurements performed on a wide grazing incidence angular range at an energy near the absorption resonance edge of low-Z elements in the ML components. This experimental method combined with the underlying physical phenomenon of abrupt changes of optical constants near EUV resonance edges enables us to characterize optical and structural properties of multilayers with high sensitivity. A major advantage of the method is to perform detailed quantitative analysis of buried interfaces of multilayer structures in a nondestructive and nonimaging setup. Coatings of Si/Mo multilayers on a Si substrate with period d=16.4  nm, number of bilayers N=25, and different capping structures are investigated. Stoichiometric compositions of Si-on-Mo and Mo-on-Si interface diffusion layers are derived. Effects of surface oxidation reactions and carbon contaminations on the optical constants of capping layers and the impact of neighboring atoms' interactions on optical responses of Si and Mo layers are discussed. PMID:26836858

  8. Analysis of buried interfaces in multilayer mirrors using grazing incidence extreme ultraviolet reflectometry near resonance edges.

    PubMed

    Sertsu, M G; Nardello, M; Giglia, A; Corso, A J; Maurizio, C; Juschkin, L; Nicolosi, P

    2015-12-10

    Accurate measurements of optical properties of multilayer (ML) mirrors and chemical compositions of interdiffusion layers are particularly challenging to date. In this work, an innovative and nondestructive experimental characterization method for multilayers is discussed. The method is based on extreme ultraviolet (EUV) reflectivity measurements performed on a wide grazing incidence angular range at an energy near the absorption resonance edge of low-Z elements in the ML components. This experimental method combined with the underlying physical phenomenon of abrupt changes of optical constants near EUV resonance edges enables us to characterize optical and structural properties of multilayers with high sensitivity. A major advantage of the method is to perform detailed quantitative analysis of buried interfaces of multilayer structures in a nondestructive and nonimaging setup. Coatings of Si/Mo multilayers on a Si substrate with period d=16.4  nm, number of bilayers N=25, and different capping structures are investigated. Stoichiometric compositions of Si-on-Mo and Mo-on-Si interface diffusion layers are derived. Effects of surface oxidation reactions and carbon contaminations on the optical constants of capping layers and the impact of neighboring atoms' interactions on optical responses of Si and Mo layers are discussed.

  9. Exchange coupling in hybrid anisotropy magnetic multilayers quantified by vector magnetometry

    SciTech Connect

    Morrison, C. Miles, J. J.; Thomson, T.; Anh Nguyen, T. N.; Fang, Y.; Dumas, R. K.; Åkerman, J.

    2015-05-07

    Hybrid anisotropy thin film heterostructures, where layers with perpendicular and in-plane anisotropy are separated by a thin spacer, are novel materials for zero/low field spin torque oscillators and bit patterned media. Here, we report on magnetization reversal and exchange coupling in a archetypal Co/Pd (perpendicular)-NiFe (in-plane) hybrid anisotropy system studied using vector vibrating sample magnetometry. This technique allows us to quantify the magnetization reversal in each individual magnetic layer, and measure of the interlayer exchange as a function of non-magnetic spacer thickness. At large (>1 nm) spacer thicknesses Ruderman-Kittel-Kasuya-Yosida-like exchange dominates, with orange-peel coupling providing a significant contribution only for sub-nm spacer thickness.

  10. Exchange coupling in hybrid anisotropy magnetic multilayers quantified by vector magnetometry

    NASA Astrophysics Data System (ADS)

    Morrison, C.; Miles, J. J.; Anh Nguyen, T. N.; Fang, Y.; Dumas, R. K.; Åkerman, J.; Thomson, T.

    2015-05-01

    Hybrid anisotropy thin film heterostructures, where layers with perpendicular and in-plane anisotropy are separated by a thin spacer, are novel materials for zero/low field spin torque oscillators and bit patterned media. Here, we report on magnetization reversal and exchange coupling in a archetypal Co/Pd (perpendicular)-NiFe (in-plane) hybrid anisotropy system studied using vector vibrating sample magnetometry. This technique allows us to quantify the magnetization reversal in each individual magnetic layer, and measure of the interlayer exchange as a function of non-magnetic spacer thickness. At large (>1 nm) spacer thicknesses Ruderman-Kittel-Kasuya-Yosida-like exchange dominates, with orange-peel coupling providing a significant contribution only for sub-nm spacer thickness.

  11. The effect of interfaces on the stability and mechanical properties of polycrystalline multilayers

    NASA Astrophysics Data System (ADS)

    Lewis, Alexis Catherine

    In this work, the effects of the structure and free energies of solid-solid interfaces on the microstructural stability and mechanical properties of polycrystalline multilayered materials were examined. In polycrystalline multilayers, the ratio of grain boundary energy to interfacial free energy determines the microstructural stability of the system. In immiscible elemental systems ("A/B" multilayers), the layer having the higher grain boundary energy (typically the layer with the higher melting temperature) tends to be the less stable layer, and is more likely to pinch off or break down at high temperatures. In metal/intermetallic systems ("A/ABx" multilayers), the elemental ("A") layer tends to be less stable than the intermetallic layer. The effects of relative crystallographic orientation on stability of individual grain triple junctions are described. Understanding interfacial free energy is critical to the design of stable polycrystalline multilayers. This work describes the first equilibrium biaxial zero-creep measurements of interfacial free energy, which were performed on Ag/Ni multilayers. Solid-solid interfaces control the plastic deformation behavior of polycrystalline multilayers as well. Plastic deformation in Cu/Nb multilayers was studied in detail. Dislocation-controlled plasticity and grain boundary strengthening was observed both at room temperature and at elevated temperatures. A pronounced reduction in this effect was observed as temperature increased and as strain rates decreased. Creep rates and time-dependent plastic deformation mechanisms were also studied in the Cu/Nb system. Over a range of grain sizes from 0.5 microns to 5.0 microns, two distinct creep regimes were observed at 600°C. Power Law creep dominates at high stresses. At low stresses, the dependence of creep rate on grain size indicates that an interface-controlled creep mechanism is operating. The rate of generation and annihilation of vacancies at the grain boundaries and

  12. Microstructure-interface-property relationships in nanometer-period x-ray multilayers

    SciTech Connect

    Nguyen, Tai Dung

    1996-12-01

    The microstructure - interface - property relationships in nanometer-period x-ray multilayer mirrors (W/C, WC/C, Cr/C, CrC/C, Cu/C, Ru/C, and Ru/B{sub 4}C) were studied using cross-sectional high resolution TEM and x-ray scattering. Microstructural and morphological evolution of as-prepared multilayers, and their behavior under thermal activation were discussed in terms of the materials thermodynamic and kinetic properties. Effects of the microstructural and the morphological evolution in reactive- component (W-C, Cr-C, and Ru-B{sub 4}C) and conjugate-component (Ru-C and Cu-C) multilayers on the normal incidence reflectance and long term stability of the mirrors are presented.

  13. Two-mode Ginzburg-Landau theory of crystalline anisotropy for fcc-liquid interfaces

    NASA Astrophysics Data System (ADS)

    Wu, Kuo-An; Lin, Shang-Chun; Karma, Alain

    2016-02-01

    We develop a Ginzburg-Landau (GL) theory for fcc crystal-melt systems at equilibrium by employing two sets of order parameters that correspond to amplitudes of density waves of principal reciprocal lattice vectors and amplitudes of density waves of a second set of reciprocal lattice vectors. The choice of the second set of reciprocal lattice vectors is constrained by the condition that this set must form closed triangles with the principal reciprocal lattice vectors in reciprocal space to make the fcc-liquid transition first order. The capillary anisotropy of fcc-liquid interfaces is investigated by GL theory with amplitudes of <111 > and <200 > density waves. Furthermore, we explore the dependence of the anisotropy of the excess free energy of the solid-liquid interface on density waves of higher-order reciprocal lattice vectors such as <311 > by extending the two-mode GL theory with an additional mode. The anisotropy calculated using GL theory with input parameters from molecular dynamics (MD) simulations for fcc Ni is compared to that measured in MD simulations.

  14. Ferroelectric control of the magnetocrystalline anisotropy of the Fe/BaTiO(3)(001) interface.

    PubMed

    Lukashev, Pavel V; Burton, J D; Jaswal, Sitaram S; Tsymbal, Evgeny Y

    2012-06-01

    Density-functional calculations are employed to investigate the effect of ferroelectric polarization of BaTiO(3) on the magnetocrystalline anisotropy of the Fe /BaTiO(3)(001) interface. It is found that the interface magnetocrystalline anisotropy energy changes from 1.33 to 1.02 erg cm (-2) when the ferroelectric polarization is reversed. This strong magnetoelectric coupling is explained in terms of the changing population of the Fe 3d orbitals at the Fe/BaTiO(3) interface driven by polarization reversal. Our results indicate that the electronically assisted magnetoelectric effects at the ferromagnetic/ferroelectric interfaces may be a viable alternative to the strain mediated coupling in related heterostructures and the electric field-induced effects on the interface magnetic anisotropy in ferromagnet/dielectric structures. PMID:22551672

  15. Defect Interactions at Metal/Ceramic Interfaces in Thin Film Multilayers

    SciTech Connect

    Misra, Amit

    2012-06-14

    Summary of metal-ceramic multilayer deformation: (1) In nanolayered Al/TiN, Al layers grow in a twin orientation with the underlying TiN/Al layers favored by N-terminated TiN layers; (2) The shear strength of Al/TiN interface varies significantly depending on whether the interface is Ti or N terminated; (3) 2 nm Al - 2 TiN multilayers exhibit unusual mechanical properties as revealed by compression testing - (a) High maximum flow strength of 4.5 GPa, which is significantly higher than hardness (6 GPa) divided by a factor of 3, (b) Extraordinarily high strain hardening rates in Al nanolayers (16-35 GPa, {approx} E/2 to E/4), (c) Co-deformability of the TiN nanolayers with Al (confirmed by TEM on nanoindents) to plastic strains in excess of 5%.

  16. Enhanced orbital magnetic moments in magnetic heterostructures with interface perpendicular magnetic anisotropy.

    PubMed

    Ueno, Tetsuro; Sinha, Jaivardhan; Inami, Nobuhito; Takeichi, Yasuo; Mitani, Seiji; Ono, Kanta; Hayashi, Masamitsu

    2015-01-01

    We have studied the magnetic layer thickness dependence of the orbital magnetic moment in magnetic heterostructures to identify contributions from interfaces. Three different heterostructures, Ta/CoFeB/MgO, Pt/Co/AlOx and Pt/Co/Pt, which possess significant interface contribution to the perpendicular magnetic anisotropy, are studied as model systems. X-ray magnetic circular dichroism spectroscopy is used to evaluate the relative orbital moment, i.e. the ratio of the orbital to spin moments, of the magnetic elements constituting the heterostructures. We find that the relative orbital moment of Co in Pt/Co/Pt remains constant against its thickness whereas the moment increases with decreasing Co layer thickness for Pt/Co/AlOx, suggesting that a non-zero interface orbital moment exists for the latter system. For Ta/CoFeB/MgO, a non-zero interface orbital moment is found only for Fe. X-ray absorption spectra shows that a particular oxidized Co state in Pt/Co/AlOx, absent in other heterosturctures, may give rise to the interface orbital moment in this system. These results show element specific contributions to the interface orbital magnetic moments in ultrathin magnetic heterostructures. PMID:26456454

  17. Atomistic simulations of dislocation-interface interactions in the Cu-Ni multilayer system

    NASA Astrophysics Data System (ADS)

    Rao, S. I.; Hazzledine, P. M.

    2000-09-01

    Experimental results show that a nanolayered composite structure made of two kinds of metals strengthens dramatically as the layer thickness is reduced. In epitaxial systems, this strengthening has been attributed to the modulus, lattice parameter, gamma surface and slip-plane mismatches between adjacent layers. The modulus mismatch (the Koehler barrier) introduces a force between a dislocation and its image in the interface. The lattice parameter mismatch generates oscillating coherency stresses and van der Merwe misfit dislocations at or near the interfaces, which interact with mobile dislocations. The gamma surface (chemical) mismatch introduces a localized force on gliding dislocations due to core energy changes at or near the interfaces. Slip-plane misorientations across the interfaces require mobile screw dislocations to cross-slip for slip transmission and other dislocations to leave a difference dislocation at the interface. In this paper, atomistic simulations using the embedded-atom method are used to study the four components of dislocation-interface interactions in epitaxial Cu-Ni multilayers in a systematic fashion. The interaction of misfit dislocations with mobile dislocations is modelled using continuum theory. In thick Cu-Ni bilayers, the Koehler barrier is almost independent of interface orientation and dislocation character and is equal to 0.01mu 0.015mu but, when the layer thickness is comparable with the core width of a dislocation, the Koehler barrier falls rapidly (from 0.01mu at a wavelength of 10 nm to 0.004mu at 1.75 nm). This behaviour is in accordance with available experimental observations in the literature on the yield of epitaxial Cu-Ni multilayered systems. The gamma surface mismatch or chemical strengthening component of the blocking strength of Cu-Ni interfaces to (a/2)𘜎¢ screw dislocations is 0.003mu, a factor of three lower than the Koehler stress. Coherency stresses, apart from exerting direct forces on dislocations

  18. Formation of intermetallics at the interface of explosively welded Ni-Al multilayered composites during annealing

    NASA Astrophysics Data System (ADS)

    Ogneva, T. S.; Lazurenko, D. V.; Bataev, I. A.; Mali, V. I.; Esikov, M. A.; Bataev, A. A.

    2016-04-01

    The Ni-Al multilayer composite was fabricated using explosive welding. The zones of mixing of Ni and Al are observed at the composite interfaces after the welding. The composition of these zones is inhomogeneous. Continuous homogeneous intermetallic layers are formed at the interface after heat treatment at 620 °C during 5 h These intermetallic layers consist of NiAl3 and Ni2Al3 phases. The presence of mixed zones significantly accelerates the growth rate of intermetallic phases at the initial stages of heating.

  19. Multi-layer and multi-component intercalation at the graphene/Ir(111) interface

    NASA Astrophysics Data System (ADS)

    Bazarnik, Maciej; Decker, Régis; Brede, Jens; Wiesendanger, Roland

    2015-09-01

    We present a scanning tunneling microscopy study of Fe and Co intercalated at the graphene-Ir(111) interface. In the case of Fe, we investigate the morphology of the surface with respect to the annealing temperature, which activates the intercalation, and as a function of coverage. By increasing the coverage we show that it is possible to intercalate multilayers at the interface. Finally, we demonstrate that the successive intercalation of Co and Fe for the same sample leads to distinct adjacent intercalation areas.

  20. Microscopic thin film optical anisotropy imaging at the solid-liquid interface.

    PubMed

    Miranda, Adelaide; De Beule, Pieter A A

    2016-04-01

    Optical anisotropy of thin films has been widely investigated through ellipsometry, whereby typically an optical signal is averaged over a ∼1 cm(2) elliptical area that extends with increasing angle-of-incidence (AOI). Here, we report on spectroscopic imaging ellipsometry at the solid-liquid interface applied to a supported lipid bilayer (SLB). We detail how a differential spectrally resolved ellipsometry measurement, between samples with and without optically anisotropic thin film on an absorbing substrate, can be applied to recover in and out of plane refractive indices of the thin film with known film thickness, hence determining the thin film optical anisotropy. We also present how optimal wavelength and AOI settings can be determined ensuring low parameter cross correlation between the refractive indices to be determined from a differential measurement in Δ ellipsometry angle. Furthermore, we detail a Monte Carlo type analysis that allows one to determine the minimal required optical ellipsometry resolution to recover a given thin film anisotropy. We conclude by presenting a new setup for a spectroscopic imaging ellipsometry based on fiber supercontinuum laser technology, multi-wavelength diode system, and an improved liquid cell design, delivering a 5 ×-10 × ellipsometric noise reduction over state-of-the-art. We attribute this improvement to increased ellipsometer illumination power and a reduced light path in liquid through the use of a water dipping objective. PMID:27131681

  1. Microscopic thin film optical anisotropy imaging at the solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Miranda, Adelaide; De Beule, Pieter A. A.

    2016-04-01

    Optical anisotropy of thin films has been widely investigated through ellipsometry, whereby typically an optical signal is averaged over a ˜1 cm2 elliptical area that extends with increasing angle-of-incidence (AOI). Here, we report on spectroscopic imaging ellipsometry at the solid-liquid interface applied to a supported lipid bilayer (SLB). We detail how a differential spectrally resolved ellipsometry measurement, between samples with and without optically anisotropic thin film on an absorbing substrate, can be applied to recover in and out of plane refractive indices of the thin film with known film thickness, hence determining the thin film optical anisotropy. We also present how optimal wavelength and AOI settings can be determined ensuring low parameter cross correlation between the refractive indices to be determined from a differential measurement in Δ ellipsometry angle. Furthermore, we detail a Monte Carlo type analysis that allows one to determine the minimal required optical ellipsometry resolution to recover a given thin film anisotropy. We conclude by presenting a new setup for a spectroscopic imaging ellipsometry based on fiber supercontinuum laser technology, multi-wavelength diode system, and an improved liquid cell design, delivering a 5 ×-10 × ellipsometric noise reduction over state-of-the-art. We attribute this improvement to increased ellipsometer illumination power and a reduced light path in liquid through the use of a water dipping objective.

  2. Interface characterization of B4C-based multilayers by X-ray grazing-incidence reflectivity and diffuse scattering.

    PubMed

    Jiang, Hui; Wang, Zhanshan; Zhu, Jingtao

    2013-05-01

    B4C-based multilayers have important applications for soft to hard X-rays. In this paper, X-ray grazing-incidence reflectivity and diffuse scattering, combining various analysis methods, were used to characterize the structure of B4C-based multilayers including layer thickness, density, interfacial roughness, interdiffusion, correlation length, etc. Quantitative results for W/B4C, Mo/B4C and La/B4C multilayers were compared. W/B4C multilayers show the sharpest interfaces and most stable structures. The roughness replications of La/B4C and Mo/B4C multilayers are not strong, and oxidations and structure expansions are found in the aging process. This work provides guidance for future fabrication and characterization of B4C-based multilayers.

  3. First-principles study of the Fe | MgO(0 0 1) interface: magnetic anisotropy.

    PubMed

    Bose, Thomas; Cuadrado, Ramon; Evans, Richard F L; Chepulskii, Roman V; Apalkov, Dmytro; Chantrell, Roy W

    2016-04-20

    We present a systematic first-principles study of Fe | MgO bilayer systems emphasizing the influence of the iron layer thickness on the geometry, the electronic structure and the magnetic properties. Our calculations ensure the unconstrained structural relaxation at scalar relativistic level for various numbers of iron layers placed on the magnesium oxide substrate. Our results show that due to the formation of the interface the electronic structure of the interface iron atoms is significantly modified involving charge transfer within the iron subsystem. In addition, we find that the magnetic anisotropy energy increases from 1.9 mJ m(-2) for 3 Fe layers up to 3.0 mJ m(-2) for 11 Fe layers. PMID:26987845

  4. Anatomy of electric field control of perpendicular magnetic anisotropy at Fe/MgO interfaces

    NASA Astrophysics Data System (ADS)

    Ibrahim, F.; Yang, H. X.; Hallal, A.; Dieny, B.; Chshiev, M.

    2016-01-01

    The charge-mediated effect of electric field on the perpendicular magnetic anisotropy (PMA) of Fe/MgO interfaces is investigated using first-principles calculations. We present an approach by discussing this effect in relation to the intrinsic dipole field existing at the Fe/MgO interface. A firm correlation between the PMA and the interfacial dipole is established and further verified in the absence of an applied electric field. The on-site projected PMA analysis not only elucidates that the effect of electric field on the PMA extends beyond the interfacial Fe layer, but also shows that the second Fe layer carries the largest contribution to the effect. This observation is interpreted in relation to the orbital hybridization changes induced by applying an electric field.

  5. Contribution of individual interfaces in the MgO/Co/Pd trilayer to perpendicular magnetic anisotropy upon annealing

    SciTech Connect

    Kim, Minseok; Kim, Sanghoon; Ko, Jungho; Hong, Jongill

    2015-03-09

    The contribution of each interface of the MgO/Co/Pd trilayer to the perpendicular magnetic anisotropy (PMA) was studied by changing chemical and crystalline structures through annealing. We found that volumetric anisotropy in the MgO/Co/Pd trilayer was significantly increased due to enhanced magnetoelastic anisotropy caused by stress built up most likely at the MgO/Co interface during annealing. When the trilayer was annealed at 400 °C, the alloy formation at the Co/Pd interface additionally increased the volumetric anisotropy. Our x-ray magnetic circular dichroism study supported that those structural modifications led to an increase in the orbital moment through spin-orbit coupling (SOC) along the film normal two times larger than that of the as-deposited trilayer, thereby enhancing PMA greatly. Our experimental results prove that the Co/Pd interface, rather than the MgO/Co interface, plays an essential role in inducing strong PMA in the trilayer. The precise investigation of annealing effect on both volumetric and interfacial anisotropies can provide a methodological solution to improve the SOC of the trilayer that can serve as the core unit of spintronic devices.

  6. Enhanced mobility electrons at the monolayer / multilayer MoS2 homo-interface

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Lenferink, E. J.; Stanev, T.; Stern, N. P.

    2015-03-01

    Energy band alignment at interface of heterostructures can give rise to non-trivial local electronic structure and charge states with low dimensionality. In transition metal dichalcogenides (TMDCs), the optical band gap depends on the number of 2D crystal layers, transitioning from 1.29 eV in bulk to 1.88 eV for a monolayer of MoS2, for example, and providing the possibility to create unusual charge state at the monolayer/multilayer homo-interface. Here, we examine the boundaries between MoS2 monolayers and multilayers using scanning photocurrent microscopy and gate-dependent transport. Enhanced photocurrent and conductance were observed at the 1D homo-interface, which can be explained as accumulated carriers in the bent-band region of the junction. Our heterojunction modeling suggests a high local carrier density and enhanced mobility at the homo-interface. Our work presents an opportunity to achieve a 1D electron state in a homojunction and a pathway to break the mobility limit of TMDC monolayer transistors. This work was supported by the Institute for Sustainability and Energy at Northwestern and the U.S. Department of Energy (DE-SC0012130). N.P.S. acknowledges support as an Alfred P. Sloan Research Fellow.

  7. Employing soft x-ray resonant magnetic scattering to study domain sizes and anisotropy in Co/Pd multilayers

    NASA Astrophysics Data System (ADS)

    Bagschik, Kai; Frömter, Robert; Bach, Judith; Beyersdorff, Björn; Müller, Leonard; Schleitzer, Stefan; Berntsen, Magnus Hârdensson; Weier, Christian; Adam, Roman; Viefhaus, Jens; Schneider, Claus Michael; Grübel, Gerhard; Oepen, Hans Peter

    2016-10-01

    It is demonstrated that the magnetic diffraction pattern of the isotropic disordered maze pattern is well described utilizing a gamma distribution of domain sizes in a one-dimensional model. From the analysis, the mean domain size and the shape parameter of the distribution are obtained. The model reveals an average domain size that is significantly different from the value that is determined from the peak position of the structure factor in reciprocal space. As a proof of principle, a wedge-shaped (Cot Å/Pd10 Å)8 multilayer film, that covers the thickness range of the spin-reorientation transition, has been used. By means of soft x-ray resonant magnetic scattering (XRMS) and imaging techniques the thickness-driven evolution of the magnetic properties of the cobalt layers is explored. It is shown that minute changes of the domain pattern concerning domain size and geometry can be investigated and analyzed due to the high sensitivity and lateral resolution of the XRMS technique. The latter allows for the determination of the magnetic anisotropies of the cobalt layers within a thickness range of a few angstroms.

  8. Developing multi-layer mirror technology near 45 nm using Sc/Si interfaces

    SciTech Connect

    Nilsen, J; Jankowski, A; Friedman, L; Walton, C C

    2004-02-12

    Given the existing X-ray laser sources near 45 nm it would be useful to produce efficient X-ray optics in the 35 to 50 nm wavelength range that could be utilized in new applications. In this work we are developing the process to stabilize the interfaces of nanolaminate structures using materials such as Sc and Si. These materials will enable us to develop new multi-layer mirror technology that can be used in the wavelength range near 45 nm. To obtain this objective, the interfacial structure and reaction kinetics must first be well understood and then controlled for design applications. In this work we fabricate several Sc/Si multi-layer mirrors with and without a B{sub 4}C barrier layer. The structure and reflectivity of the mirrors are analyzed.

  9. Characteristics of laser ultrasound interaction with multi-layered dissimilar metals adhesive interface by numerical simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Kuanshuang; Zhou, Zhenggan; Zhou, Jianghua; Sun, Guangkai

    2015-10-01

    The characteristics of laser-generated ultrasonic wave interaction with multi-layered dissimilar metals adhesive interface are investigated by finite element method (FEM). The physical model of laser-generated ultrasonic wave in the multi-layered dissimilar metals adhesive structure is built. The surface temperature evolution with different laser power densities is analyzed to obtain the parameters of pulsed laser with thermoelastic regime. The differences of laser ultrasonic waves with different center frequencies measured at the center of laser irradiation would verify the interfacial features of adhesive structures. The optimum frequency range and probe point would be beneficial for the detection of the small void defect. The numerical results indicate that the different frequency range and probe points would evidently influence the identification and quantitative characterization of the small void defect. The research findings would lay a foundation for testing interfacial integrity.

  10. Dependence of interface roughness and diffuseness of Cu-Co electrodeposited multilayers on electrochemical additives

    NASA Astrophysics Data System (ADS)

    Merkourakis, Spyridon; Hÿtch, Martin J.; Chassaing, Elisabeth; Walls, Michael G.; Leprince-Wang, Yamin

    2003-09-01

    We examine the effect of two organic additives, sds and saccharin, and also the effect of the solution pH on the interface properties of Cu/Co nanolayers, produced by pulsed electrodeposition from a single aqueous bath. Quantitative Fresnel fringe transmission electron microscopy is applied to cross-sectional samples of the layers. The widths of their respective interfaces as well as the widths of individual Cu and Co layers are determined via comparison with computer simulations. These initial results are further numerically treated to yield information about the separate contributions of interdiffusion and roughness to total interface widths. Conclusions on the behavior of these organic additives are considered in the light of the giant magnetoresistance properties of the multilayers, as reported in previous work.

  11. Elastic strains at interfaces in InAs/AlSb multilayer structures for quantum cascade lasers

    SciTech Connect

    Nicolai, J.; Gatel, Ch.; Warot-Fonrose, B.; Ponchet, A.; Teissier, R.; Baranov, A. N.; Magen, C.

    2014-01-20

    InAs/AlSb multilayers similar to those used in quantum cascade lasers have been grown by molecular beam epitaxy on (001) InAs substrates. Elastic strain is investigated by high resolution transmission electron microscopy. Thin interfacial regions with lattice distortions significantly different from the strain of the AlSb layers themselves are revealed from the geometrical phase analysis. Strain profiles are qualitatively compared to the chemical contrast of high angle annular dark field images obtained by scanning transmission electron microscopy. The strain and chemical profiles are correlated with the growth sequences used to form the interfaces. Tensile strained AlAs-like interfaces tend to form predominantly due to the high thermal stability of AlAs. Strongly asymmetric interfaces, AlAs-rich and (Al, In)Sb, respectively, can also be achieved by using appropriate growth sequences.

  12. Fiber/matrix interfaces for SiC/SiC composites: Multilayer SiC coatings

    SciTech Connect

    Halverson, H.; Curtin, W.A.

    1996-08-01

    Tensile tests have been performed on composites of CVI SiC matrix reinforced with 2-d Nicalon fiber cloth, with either pyrolitic carbon or multilayer CVD SiC coatings [Hypertherm High-Temperature Composites Inc., Huntington Beach, CA.] on the fibers. To investigate the role played by the different interfaces, several types of measurements are made on each sample: (i) unload-reload hysteresis loops, and (ii) acoustic emission. The pyrolitic carbon and multilayer SiC coated materials are remarkably similar in overall mechanical responses. These results demonstrate that low-modulus, or compliant, interface coatings are not necessary for good composite performance, and that complex, hierarchical coating structures may possibly yield enhanced high-temperature performance. Analysis of the unload/reload hysteresis loops also indicates that the usual {open_quotes}proportional limit{close_quotes} stress is actually slightly below the stress at which the 0{degrees} load-bearing fibers/matrix interfaces slide and are exposed to atmosphere.

  13. Phase constitution and interface structure of nano-sized Ag-Cu/AlN multilayers: Experiment and ab initio modeling

    SciTech Connect

    Pigozzi, Giancarlo; Janczak-Rusch, Jolanta; Passerone, Daniele; Antonio Pignedoli, Carlo; Patscheider, Joerg; Jeurgens, Lars P. H.; Antusek, Andrej; Parlinska-Wojtan, Magdalena; Bissig, Vinzenz

    2012-10-29

    Nano-sized Ag-Cu{sub 8nm}/AlN{sub 10nm} multilayers were deposited by reactive DC sputtering on {alpha}-Al{sub 2}O{sub 3}(0001) substrates. Investigation of the phase constitution and interface structure of the multilayers evidences a phase separation of the alloy sublayers into nanosized grains of Ag and Cu. The interfaces between the Ag grains and the quasi-single-crystalline AlN sublayers are semi-coherent, whereas the corresponding Cu/AlN interfaces are incoherent. The orientation relationship between Ag and AlN is constant throughout the entire multilayer stack. These observations are consistent with atomistic models of the interfaces as obtained by ab initio calculations.

  14. Analytic Element Modeling of Steady Interface Flow in Multilayer Aquifers Using AnAqSim.

    PubMed

    Fitts, Charles R; Godwin, Joshua; Feiner, Kathleen; McLane, Charles; Mullendore, Seth

    2015-01-01

    This paper presents the analytic element modeling approach implemented in the software AnAqSim for simulating steady groundwater flow with a sharp fresh-salt interface in multilayer (three-dimensional) aquifer systems. Compared with numerical methods for variable-density interface modeling, this approach allows quick model construction and can yield useful guidance about the three-dimensional configuration of an interface even at a large scale. The approach employs subdomains and multiple layers as outlined by Fitts (2010) with the addition of discharge potentials for shallow interface flow (Strack 1989). The following simplifying assumptions are made: steady flow, a sharp interface between fresh- and salt water, static salt water, and no resistance to vertical flow and hydrostatic heads within each fresh water layer. A key component of this approach is a transition to a thin fixed minimum fresh water thickness mode when the fresh water thickness approaches zero. This allows the solution to converge and determine the steady interface position without a long transient simulation. The approach is checked against the widely used numerical codes SEAWAT and SWI/MODFLOW and a hypothetical application of the method to a coastal wellfield is presented.

  15. Interface Coupling in Twisted Multilayer Graphene by Resonant Raman Spectroscopy of Layer Breathing Modes.

    PubMed

    Wu, Jiang-Bin; Hu, Zhi-Xin; Zhang, Xin; Han, Wen-Peng; Lu, Yan; Shi, Wei; Qiao, Xiao-Fen; Ijiäs, Mari; Milana, Silvia; Ji, Wei; Ferrari, Andrea C; Tan, Ping-Heng

    2015-07-28

    Raman spectroscopy is the prime nondestructive characterization tool for graphene and related layered materials. The shear (C) and layer breathing modes (LBMs) are due to relative motions of the planes, either perpendicular or parallel to their normal. This allows one to directly probe the interlayer interactions in multilayer samples. Graphene and other two-dimensional (2d) crystals can be combined to form various hybrids and heterostructures, creating materials on demand with properties determined by the interlayer interaction. This is the case even for a single material, where multilayer stacks with different relative orientations have different optical and electronic properties. In twisted multilayer graphene there is a significant enhancement of the C modes due to resonance with new optically allowed electronic transitions, determined by the relative orientation of the layers. Here we show that this applies also to the LBMs, which can be now directly measured at room temperature. We find that twisting has a small effect on LBMs, quite different from the case of the C modes. This implies that the periodicity mismatch between two twisted layers mostly affects shear interactions. Our work shows that ultralow-frequency Raman spectroscopy is an ideal tool to uncover the interface coupling of 2d hybrids and heterostructures.

  16. Human collagen-based multilayer scaffolds for tendon-to-bone interface tissue engineering.

    PubMed

    Kim, Beob Soo; Kim, Eun Ji; Choi, Ji Suk; Jeong, Ji Hoon; Jo, Chris Hyunchul; Cho, Yong Woo

    2014-11-01

    The natural tendon-to-bone region has a gradient in structure and composition, which is translated into a spatial variation of chemical, physical, and biological properties. This unique transitional tissue between bone and tendon is not normally recreated during natural bone-to-tendon healing. In this study, we have developed a human collagen-based multilayer scaffold mimicking the tendon-to-bone region. The scaffold consists of four different layers with the following composition gradient: (a) a tendon layer composed of collagen; (b) an uncalcified fibrocartilage layer composed of collagen and chondroitin sulfate; (c) a calcified fibrocartilage layer composed of collagen and less apatite; (d) a bone layer composed of collagen and apatite. The chemical, physical, and mechanical properties of the scaffold were characterized by a scanning electron microscope, porosimeter, universal tensile machine, Fourier transform infrared spectrometer, energy dispersive X-ray analysis apparatus, and thermogravimetric analysis apparatus. The multilayer scaffold provided a gradual transition of the physical, chemical, and mechanical environment and supported the adhesion and proliferation of human fibroblasts, chondrocytes, and osteoblasts toward each corresponding matrix. Overall, our results suggest the feasibility of a human collagen-based multilayer scaffold for regeneration of hard-to-soft interface tissues.

  17. Phonon-interface scattering in multilayer graphene on an amorphous support.

    PubMed

    Sadeghi, Mir Mohammad; Jo, Insun; Shi, Li

    2013-10-01

    The recent studies of thermal transport in suspended, supported, and encased graphene just began to uncover the richness of two-dimensional phonon physics, which is relevant to the performance and reliability of graphene-based functional materials and devices. Among the outstanding questions are the exact causes of the suppressed basal-plane thermal conductivity measured in graphene in contact with an amorphous material, and the layer thickness needed for supported or embedded multilayer graphene (MLG) to recover the high thermal conductivity of graphite. Here we use sensitive in-plane thermal transport measurements of graphene samples on amorphous silicon dioxide to show that full recovery to the thermal conductivity of the natural graphite source has yet to occur even after the MLG thickness is increased to 34 layers, considerably thicker than previously thought. This seemingly surprising finding is explained by long intrinsic scattering mean free paths of phonons in graphite along both basal-plane and cross-plane directions, as well as partially diffuse scattering of MLG phonons by the MLG-amorphous support interface, which is treated by an interface scattering model developed for highly anisotropic materials. Based on the phonon transmission coefficient calculated from reported experimental thermal interface conductance results, phonons emerging from the interface consist of a large component that is scattered across the interface, making rational choice of the support materials a potential approach to increasing the thermal conductivity of supported MLG.

  18. Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling

    NASA Astrophysics Data System (ADS)

    Liao, Z.; Huijben, M.; Zhong, Z.; Gauquelin, N.; Macke, S.; Green, R. J.; van Aert, S.; Verbeeck, J.; van Tendeloo, G.; Held, K.; Sawatzky, G. A.; Koster, G.; Rijnders, G.

    2016-04-01

    Controlled in-plane rotation of the magnetic easy axis in manganite heterostructures by tailoring the interface oxygen network could allow the development of correlated oxide-based magnetic tunnelling junctions with non-collinear magnetization, with possible practical applications as miniaturized high-switching-speed magnetic random access memory (MRAM) devices. Here, we demonstrate how to manipulate magnetic and electronic anisotropic properties in manganite heterostructures by engineering the oxygen network on the unit-cell level. The strong oxygen octahedral coupling is found to transfer the octahedral rotation, present in the NdGaO3 (NGO) substrate, to the La2/3Sr1/3MnO3 (LSMO) film in the interface region. This causes an unexpected realignment of the magnetic easy axis along the short axis of the LSMO unit cell as well as the presence of a giant anisotropic transport in these ultrathin LSMO films. As a result we possess control of the lateral magnetic and electronic anisotropies by atomic-scale design of the oxygen octahedral rotation.

  19. Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling.

    PubMed

    Liao, Z; Huijben, M; Zhong, Z; Gauquelin, N; Macke, S; Green, R J; Van Aert, S; Verbeeck, J; Van Tendeloo, G; Held, K; Sawatzky, G A; Koster, G; Rijnders, G

    2016-04-01

    Controlled in-plane rotation of the magnetic easy axis in manganite heterostructures by tailoring the interface oxygen network could allow the development of correlated oxide-based magnetic tunnelling junctions with non-collinear magnetization, with possible practical applications as miniaturized high-switching-speed magnetic random access memory (MRAM) devices. Here, we demonstrate how to manipulate magnetic and electronic anisotropic properties in manganite heterostructures by engineering the oxygen network on the unit-cell level. The strong oxygen octahedral coupling is found to transfer the octahedral rotation, present in the NdGaO3 (NGO) substrate, to the La2/3Sr1/3MnO3 (LSMO) film in the interface region. This causes an unexpected realignment of the magnetic easy axis along the short axis of the LSMO unit cell as well as the presence of a giant anisotropic transport in these ultrathin LSMO films. As a result we possess control of the lateral magnetic and electronic anisotropies by atomic-scale design of the oxygen octahedral rotation. PMID:26950593

  20. Verification of antiferromagnetic exchange coupling at room temperature using polar magneto-optic Kerr effect in thin EuS/Co multilayers with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Goschew, A.; Scott, M.; Fumagalli, P.

    2016-08-01

    We report on magneto-optic Kerr measurements in polar geometry carried out on a series of thin Co/EuS multilayers on suitable Co/Pd-multilayer substrates. Thin Co/EuS multilayers of a few nanometers individual layer thickness usually have their magnetization in plane. Co/Pd multilayers introduce a perpendicular magnetic anisotropy in the Co/EuS layers deposited on top, thus making it possible to measure magneto-optic signals in the polar geometry in remanence in order to study exchange coupling. Magneto-optic Kerr-effect spectra and hysteresis loops were recorded in the visible and ultraviolet photon-energy range at room temperature. The EuS contribution to the magneto-optic signal is extracted at 4.1 eV by combining hysteresis loops measured at different photon energies with polar magneto-optic Kerr-effect spectra recorded in remanence and in an applied magnetic field of 2.2 T. The extracted EuS signal shows clear signs of antiferromagnetic coupling of the Eu magnetic moments to the Co layers. This implies that the ordering temperature of at least a fraction of the EuS layers is above room temperature proving that magneto-optic Kerr-effect spectroscopy can be used here as a quasi-element-specific method.

  1. Enhancement of electric-field-induced change of magnetic anisotropy by interface engineering of MgO magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Bonaedy, Taufik; Choi, Jun Woo; Jang, Chaun; Min, Byoung-Chul; Chang, Joonyeon

    2015-06-01

    Electric-field-induced modification of magnetic anisotropy is studied using tunnel magnetoresistance of the Co40Fe40B20/ MgO/ Co40Fe40B20 and Co40Fe40B20/ Hf (0.08 nm)/ MgO/ Co40Fe40B20 magnetic tunnel junctions. In both systems, the interfacial perpendicular magnetic anisotropy is increased with increasing electron density at the MgO interface. A quantitative comparison between the two systems reveals that the change of magnetic anisotropy energy with electric field is significantly enhanced in Co40Fe40B20/ Hf/ MgO/ Co40Fe40B20 compared to Co40Fe40B20/ MgO/ Co40Fe40B20. The sub-monolayer Hf insertion at the Co40Fe40B20/MgO interface turns out to be critical to the enhanced electric field control of the magnetic anisotropy, indicating the interface sensitive nature of the effect.

  2. Formation of strained interfaces in AlSb/InAs multilayers grown by molecular beam epitaxy for quantum cascade lasers

    SciTech Connect

    Nicolaï, J.; Warot-Fonrose, B.; Gatel, C. Ponchet, A.; Teissier, R.; Baranov, A. N.; Magen, C.

    2015-07-21

    Structural and chemical properties of InAs/AlSb interfaces have been studied by transmission electron microscopy. InAs/AlSb multilayers were grown by molecular beam epitaxy with different growth sequences at interfaces. The out-of-plane strain, determined using high resolution microscopy and geometrical phase analysis, has been related to the chemical composition of the interfaces analyzed by high angle annular dark field imaging. Considering the local strain and chemistry, we estimated the interface composition and discussed the mechanisms of interface formation for the different growth sequences. In particular, we found that the formation of the tensile AlAs-type interface is spontaneously favored due to its high thermal stability compared to the InSb-type interface. We also showed that the interface composition could be tuned using an appropriate growth sequence.

  3. Salts drive controllable multilayered upright assembly of amyloid-like peptides at mica/water interface

    PubMed Central

    Dai, Bin; Kang, Seung-gu; Huynh, Tien; Lei, Haozhi; Castelli, Matteo; Hu, Jun; Zhang, Yi; Zhou, Ruhong

    2013-01-01

    Surface-assisted self-assembly of amyloid-like peptides has received considerable interest in both amyloidosis research and nanotechnology in recent years. Despite extensive studies, some controlling factors, such as salts, are still not well understood, even though it is known that some salts can promote peptide self-assemblies through the so-called “salting-out” effect. However, they are usually noncontrollable, disordered, amorphous aggregates. Here, we show via a combined experimental and theoretical approach that a conserved consensus peptide NH2-VGGAVVAGV-CONH2 (GAV-9) (from representative amyloidogenic proteins) can self-assemble into highly ordered, multilayered nanofilaments, with surprising all-upright conformations, under high-salt concentrations. Our atomic force microscopy images also demonstrate that the vertical stacking of multiple layers is highly controllable by tuning the ionic strength, such as from 0 mM (monolayer) to 100 mM (mainly double layer), and to 250 mM MgCl2 (double, triple, quadruple, and quintuple layers). Our atomistic molecular dynamics simulations then reveal that these individual layers have very different internal nanostructures, with parallel β-sheets in the first monolayer but antiparallel β-sheets in the subsequent upper layers due to their different microenvironment. Further studies show that the growth of multilayered, all-upright nanostructures is a common phenomenon for GAV-9 at the mica/water interface, under a variety of salt types and a wide range of salt concentrations. PMID:23650355

  4. Salts drive controllable multilayered upright assembly of amyloid-like peptides at mica/water interface.

    PubMed

    Dai, Bin; Kang, Seung-gu; Huynh, Tien; Lei, Haozhi; Castelli, Matteo; Hu, Jun; Zhang, Yi; Zhou, Ruhong

    2013-05-21

    Surface-assisted self-assembly of amyloid-like peptides has received considerable interest in both amyloidosis research and nanotechnology in recent years. Despite extensive studies, some controlling factors, such as salts, are still not well understood, even though it is known that some salts can promote peptide self-assemblies through the so-called "salting-out" effect. However, they are usually noncontrollable, disordered, amorphous aggregates. Here, we show via a combined experimental and theoretical approach that a conserved consensus peptide NH2-VGGAVVAGV-CONH2 (GAV-9) (from representative amyloidogenic proteins) can self-assemble into highly ordered, multilayered nanofilaments, with surprising all-upright conformations, under high-salt concentrations. Our atomic force microscopy images also demonstrate that the vertical stacking of multiple layers is highly controllable by tuning the ionic strength, such as from 0 mM (monolayer) to 100 mM (mainly double layer), and to 250 mM MgCl2 (double, triple, quadruple, and quintuple layers). Our atomistic molecular dynamics simulations then reveal that these individual layers have very different internal nanostructures, with parallel β-sheets in the first monolayer but antiparallel β-sheets in the subsequent upper layers due to their different microenvironment. Further studies show that the growth of multilayered, all-upright nanostructures is a common phenomenon for GAV-9 at the mica/water interface, under a variety of salt types and a wide range of salt concentrations. PMID:23650355

  5. Self-consistent iteration procedure in analyzing reflectivity and spectroscopic ellipsometry data of multilayered materials and their interfaces

    SciTech Connect

    Asmara, T. C.; Rusydi, A.; Santoso, I.

    2014-12-15

    For multilayered materials, reflectivity depends on the complex dielectric function of all the constituent layers, and a detailed analysis is required to separate them. Furthermore, for some cases, new quantum states can occur at the interface which may change the optical properties of the material. In this paper, we discuss various aspects of such analysis, and present a self-consistent iteration procedure, a versatile method to extract and separate the complex dielectric function of each individual layer of a multilayered system. As a case study, we apply this method to LaAlO{sub 3}/SrTiO{sub 3} heterostructure in which we are able to separate the effects of the interface from the LaAlO{sub 3} film and the SrTiO{sub 3} substrate. Our method can be applied to other complex multilayered systems with various numbers of layers.

  6. Anomalous epitaxial stability of (001) interfaces in ZrN/SiNx multilayers

    NASA Astrophysics Data System (ADS)

    Ghafoor, Naureen; Lind, Hans; Tasnádi, Ferenc; Abrikosov, Igor A.; Odén, Magnus

    2014-04-01

    Isostructural stability of B1-NaCl type SiN on (001) and (111) oriented ZrN surfaces is studied theoretically and experimentally. The ZrN/SiNx/ZrN superlattices with modulation wavelength of 3.76 nm (dSiNx˜0.4 nm) were grown by dc-magnetron sputtering on MgO(001) and MgO(111). The results indicate that 0.4 nm thin SiNx layers utterly influence the preferred orientation of epitaxial growth: on MgO(001) cube-on-cube epitaxy of ZrN/SiNx superlattices were realized whereas multilayers on MgO(111) surface exhibited an unexpected 002 texture with a complex fourfold 90°-rotated in-plane preferred orientation. Density functional theory calculations confirm stability of a (001) interface with respect to a (111) which explains the anomaly.

  7. Spin orbit torques and Dzyaloshinskii-Moriya interaction in dual-interfaced Co-Ni multilayers.

    PubMed

    Yu, Jiawei; Qiu, Xuepeng; Wu, Yang; Yoon, Jungbum; Deorani, Praveen; Besbas, Jean Mourad; Manchon, Aurelien; Yang, Hyunsoo

    2016-01-01

    We study the spin orbit torque (SOT) and Dzyaloshinskii-Moriya interaction (DMI) in the dual-interfaced Co-Ni perpendicular multilayers. Through the combination of top and bottom layer materials (Pt, Ta, MgO and Cu), SOT and DMI are efficiently manipulated due to an enhancement or cancellation of the top and bottom contributions. However, SOT is found to originate mostly from the bulk of a heavy metal (HM), while DMI is more of interfacial origin. In addition, we find that the direction of the domain wall (DW) motion can be either along or against the electron flow depending on the DW tilting angle when there is a large DMI. Such an abnormal DW motion induces a large assist field required for hysteretic magnetization reversal. Our results provide insight into the role of DMI in SOT driven magnetization switching, and demonstrate the feasibility of achieving desirable SOT and DMI for spintronic devices. PMID:27601317

  8. Spin orbit torques and Dzyaloshinskii-Moriya interaction in dual-interfaced Co-Ni multilayers

    PubMed Central

    Yu, Jiawei; Qiu, Xuepeng; Wu, Yang; Yoon, Jungbum; Deorani, Praveen; Besbas, Jean Mourad; Manchon, Aurelien; Yang, Hyunsoo

    2016-01-01

    We study the spin orbit torque (SOT) and Dzyaloshinskii-Moriya interaction (DMI) in the dual-interfaced Co-Ni perpendicular multilayers. Through the combination of top and bottom layer materials (Pt, Ta, MgO and Cu), SOT and DMI are efficiently manipulated due to an enhancement or cancellation of the top and bottom contributions. However, SOT is found to originate mostly from the bulk of a heavy metal (HM), while DMI is more of interfacial origin. In addition, we find that the direction of the domain wall (DW) motion can be either along or against the electron flow depending on the DW tilting angle when there is a large DMI. Such an abnormal DW motion induces a large assist field required for hysteretic magnetization reversal. Our results provide insight into the role of DMI in SOT driven magnetization switching, and demonstrate the feasibility of achieving desirable SOT and DMI for spintronic devices. PMID:27601317

  9. Spin orbit torques and Dzyaloshinskii-Moriya interaction in dual-interfaced Co-Ni multilayers

    NASA Astrophysics Data System (ADS)

    Yu, Jiawei; Qiu, Xuepeng; Wu, Yang; Yoon, Jungbum; Deorani, Praveen; Besbas, Jean Mourad; Manchon, Aurelien; Yang, Hyunsoo

    2016-09-01

    We study the spin orbit torque (SOT) and Dzyaloshinskii-Moriya interaction (DMI) in the dual-interfaced Co-Ni perpendicular multilayers. Through the combination of top and bottom layer materials (Pt, Ta, MgO and Cu), SOT and DMI are efficiently manipulated due to an enhancement or cancellation of the top and bottom contributions. However, SOT is found to originate mostly from the bulk of a heavy metal (HM), while DMI is more of interfacial origin. In addition, we find that the direction of the domain wall (DW) motion can be either along or against the electron flow depending on the DW tilting angle when there is a large DMI. Such an abnormal DW motion induces a large assist field required for hysteretic magnetization reversal. Our results provide insight into the role of DMI in SOT driven magnetization switching, and demonstrate the feasibility of achieving desirable SOT and DMI for spintronic devices.

  10. Structure of Sm-Co/Fe-Co multilayer films with in-plane magnetic anisotropies prepared on MgO(110) single-crystal substrates

    NASA Astrophysics Data System (ADS)

    Ohtake, Mitsuru; Hotta, Yusuke; Yamada, Makoto; Suzuki, Ataru; Futamoto, Masaaki; Kirino, Fumiyoshi; Inaba, Nobuyuki

    2016-02-01

    Sm17Co83/Fe65Co35 (at. %) multilayer films are prepared on MgO(110) substrates at 500 °C by ultra-high vacuum molecular beam epitaxy. The film crystallographic properties during formation are investigated by in-situ reflection high-energy electron diffraction. The 1st Fe-Co layer epitaxially grows on the substrate with two variants whose orientations are rotated around the film normal by 180° each other. The 1st Sm-Co layer formed on the 1st Fe-Co layer involves a small volume of amorphous phase in addition to epitaxial (11bar00)) crystal of RT5 structure with the c-axis lying in the film plane. The crystallographic quality of 2nd Fe-Co layer is inferior to that of 1st Fe-Co layer. The 2nd Sm-Co layer is composed of polycrystal and amorphous phases. The crystallographic properties of Sm-Co and Fe-Co layers are delicately influenced by those of lower layers. The Sm-Co/Fe-Co multilayer films involving Sm-Co(11bar00)RT5 epitaxial crystal show in-plane uniaxial magnetic anisotropies reflecting the magnetocrystalline anisotropy of SmCo5 crystal. The coercivity increases with increasing the volume of Sm-Co(11bar00)RT5 crystal.

  11. Interaction of optical and interface phonons and their anisotropy in GaAs/AlAs superlattices: Experiment and calculations

    SciTech Connect

    Volodin, V. A.; Sachkov, V. A.; Sinyukov, M. P.

    2015-05-15

    The angular anisotropy of interface phonons and their interaction with optical phonons in (001) GaAs/AlAs superlattices are calculated and experimentally studied. Experiments were performed by Raman light scattering in different scattering geometries for phonons with the wave vector directed normally to the superlattice and along its layers. Phonon frequencies were calculated by the extended Born method taking the Coulomb interaction into account in the rigid-ion approximation. Raman scattering spectra were calculated in the Volkenshtein bond-polarizability approximation. Calculations confirmed that the angular anisotropy of phonons observed in experiments appears due to interaction (mixing) of optical phonons, in which atoms are mainly displaced normally to superlattices, with interface phonons (TO-IF modes). In the scattering geometry, when the wave vector lies in the plane of superlattice layers, the mixed TO-IF modes are observed under nonresonance conditions. The Raman spectra for TO-IF modes depend on the mixing of atoms at heteroboundaries.

  12. Fast contact of solid-liquid interface created high strength multi-layered cellulose hydrogels with controllable size.

    PubMed

    He, Meng; Zhao, Yanteng; Duan, Jiangjiang; Wang, Zhenggang; Chen, Yun; Zhang, Lina

    2014-02-12

    Novel onion-like and multi-layered tubular cellulose hydrogels were constructed, for the first time, from the cellulose solution in a 7% NaOH/12% urea aqueous solvent by changing the shape of the gel cores. In our findings, the contacting of the cellulose solution with the surface of the agarose gel rod or sphere loaded with acetic acid led to the close chain packing to form immediately a gel layer, as a result of the destruction of the cellulose inclusion complex by acid through inducing the cellulose self-aggregation. Subsequently, multi-layered cellulose hydrogels were fabricated via a multi-step interrupted gelation process. The size, layer thickness and inter-layer space of the multi-layered hydrogels could be controlled by adjusting the cellulose concentrations, the gel core diameter and the contacting time of the solid-liquid interface. The multi-layered cellulose hydrogels displayed good architectural stability and solvent resistance. Moreover, the hydrogels exhibited high compressive strength and excellent biocompatibility. L929 cells could adhere and proliferate on the surface of the layers and in interior space, showing great potential as tissue engineering scaffolds and cell culture carrier. This work opens up a new avenue for the construction of the high strength multi-layered cellulose hydrogels formed from inner to outside via a fast contact of solid-liquid interface. PMID:24405277

  13. Anisotropy of the solid–liquid interface properties of the Ni–Zr B33 phase from molecular dynamics simulation

    SciTech Connect

    Wilson, S. R.; Mendelev, M. I.

    2015-01-08

    Solid–liquid interface (SLI) properties of the Ni–Zr B33 phase were determined from molecular dynamics simulations. In order to perform these measurements, a new semi-empirical potential for Ni–Zr alloy was developed that well reproduces the material properties required to model SLIs in the Ni50.0Zr50.0 alloy. In particular, the developed potential is shown to provide that the solid phase emerging from the liquid Ni50.0Zr50.0alloy is B33 (apart from a small fraction of point defects), in agreement with the experimental phase diagram. The SLI properties obtained using the developed potential exhibit an extraordinary degree of anisotropy. It is observed that anisotropies in both the interfacial free energy and mobility are an order of magnitude larger than those measured to date in any other metallic compound. Moreover, the [0 1 0] interface is shown to play a significant role in the observed anisotropy. Our data suggest that the [0 1 0] interface simultaneously corresponds to the lowest mobility, the lowest free energy and the highest stiffness of all inclinations in B33 Ni–Zr. This finding can be understood by taking into account a rather complicated crystal structure in this crystallographic direction.

  14. Anisotropy of the solid–liquid interface properties of the Ni–Zr B33 phase from molecular dynamics simulation

    DOE PAGESBeta

    Wilson, S. R.; Mendelev, M. I.

    2015-01-08

    Solid–liquid interface (SLI) properties of the Ni–Zr B33 phase were determined from molecular dynamics simulations. In order to perform these measurements, a new semi-empirical potential for Ni–Zr alloy was developed that well reproduces the material properties required to model SLIs in the Ni50.0Zr50.0 alloy. In particular, the developed potential is shown to provide that the solid phase emerging from the liquid Ni50.0Zr50.0alloy is B33 (apart from a small fraction of point defects), in agreement with the experimental phase diagram. The SLI properties obtained using the developed potential exhibit an extraordinary degree of anisotropy. It is observed that anisotropies in bothmore » the interfacial free energy and mobility are an order of magnitude larger than those measured to date in any other metallic compound. Moreover, the [0 1 0] interface is shown to play a significant role in the observed anisotropy. Our data suggest that the [0 1 0] interface simultaneously corresponds to the lowest mobility, the lowest free energy and the highest stiffness of all inclinations in B33 Ni–Zr. This finding can be understood by taking into account a rather complicated crystal structure in this crystallographic direction.« less

  15. Enhancement of soft X-ray reflectivity and interface stability in nitridated Pd/Y multilayer mirrors.

    PubMed

    Xu, Dechao; Huang, Qiushi; Wang, Yiwen; Li, Pin; Wen, Mingwu; Jonnard, Philippe; Giglia, Angelo; Kozhevnikov, Igor V; Wang, Kun; Zhang, Zhong; Wang, Zhanshan

    2015-12-28

    Pd/Y multilayer mirrors operating in the soft X-ray region are characterized by a high theoretical reflectance, reaching 65% at normal incidence in the 8-12 nm wavelength range. However, a severe intermixing of neighboring Pd and Y layers results in an almost total disappearance of the interfaces inside the multilayer structures fabricated by direct current magnetron sputtering and thus a dramatic reflectivity decrease. Based on grazing incidence X-ray reflectometry and X-ray photoelectron spectroscopy, we demonstrate that the stability of the interfaces in Pd/Y multilayer structures can be essentially improved by adding a small amount of nitrogen (4-8%) to the working gas (Ar). High resolution transmission electron microscopy shows that the interlayer width is only 0.9 nm and 0.6 nm for Y(N)-on-Pd(N) and Pd(N)-on-Y(N) interfaces, respectively. A well-defined crystalline texture of YN (200) is observed on the electron diffraction pattern. As a result, the measured reflectance of the Pd(N)/Y(N) multilayer achieves 30% at λ = 9.3 nm. The peak reflectivity value is limited by the remaining interlayers and the formation of the YN compound inside the yttrium layers, resulting in an increased absorption.

  16. Enhancement of soft X-ray reflectivity and interface stability in nitridated Pd/Y multilayer mirrors.

    PubMed

    Xu, Dechao; Huang, Qiushi; Wang, Yiwen; Li, Pin; Wen, Mingwu; Jonnard, Philippe; Giglia, Angelo; Kozhevnikov, Igor V; Wang, Kun; Zhang, Zhong; Wang, Zhanshan

    2015-12-28

    Pd/Y multilayer mirrors operating in the soft X-ray region are characterized by a high theoretical reflectance, reaching 65% at normal incidence in the 8-12 nm wavelength range. However, a severe intermixing of neighboring Pd and Y layers results in an almost total disappearance of the interfaces inside the multilayer structures fabricated by direct current magnetron sputtering and thus a dramatic reflectivity decrease. Based on grazing incidence X-ray reflectometry and X-ray photoelectron spectroscopy, we demonstrate that the stability of the interfaces in Pd/Y multilayer structures can be essentially improved by adding a small amount of nitrogen (4-8%) to the working gas (Ar). High resolution transmission electron microscopy shows that the interlayer width is only 0.9 nm and 0.6 nm for Y(N)-on-Pd(N) and Pd(N)-on-Y(N) interfaces, respectively. A well-defined crystalline texture of YN (200) is observed on the electron diffraction pattern. As a result, the measured reflectance of the Pd(N)/Y(N) multilayer achieves 30% at λ = 9.3 nm. The peak reflectivity value is limited by the remaining interlayers and the formation of the YN compound inside the yttrium layers, resulting in an increased absorption. PMID:26831970

  17. Deterioration of the coercivity due to the diffusion induced interface layer in hard/soft multilayers

    PubMed Central

    Si, Wenjing; Zhao, G. P.; Ran, N.; Peng, Y.; Morvan, F. J.; Wan, X. L.

    2015-01-01

    Hard/soft permanent magnets have aroused many interests in the past two decades because of their potential in achieving giant energy products as well as their rich variety of magnetic behaviors. Nevertheless, the experimental energy products are much smaller than the theoretical ones due to the much smaller coercivity measured in the experiments. In this paper, the deterioration of the coercivity due to the interface atomic diffusion is demonstrated based on a three dimensional (3D) micromagnetic software (OOMMF) and a formula derived for the pinning field in a hard/soft multilayer, which can be applied to both permanent magnets and exchange-coupled-composite (ECC) media. It is found that the formation of the interface layer can decrease the coercivity by roughly 50%, which is responsible for the observed smaller coercivity in both composite and single-phased permanent magnets. A method to enhance the coercivity in these systems is proposed based on the discussions, consistent with recent experiments where excellent magnetic properties are achieved. PMID:26586226

  18. Interfacial Dzyaloshinskii-Moriya interaction, surface anisotropy energy, and spin pumping at spin orbit coupled Ir/Co interface

    NASA Astrophysics Data System (ADS)

    Kim, Nam-Hui; Jung, Jinyong; Cho, Jaehun; Han, Dong-Soo; Yin, Yuxiang; Kim, June-Seo; Swagten, Henk J. M.; You, Chun-Yeol

    2016-04-01

    The interfacial Dzyaloshinskii-Moriya interaction (iDMI), surface anisotropy energy, and spin pumping at the Ir/Co interface are experimentally investigated by performing Brillouin light scattering. Contrary to previous reports, we suggest that the sign of the iDMI at the Ir/Co interface is the same as in the case of the Pt/Co interface. We also find that the magnitude of the iDMI energy density is relatively smaller than in the case of the Pt/Co interface, despite the large strong spin-orbit coupling (SOC) of Ir. The saturation magnetization and the perpendicular magnetic anisotropy (PMA) energy are significantly improved due to a strong SOC. Our findings suggest that an SOC in an Ir/Co system behaves in different ways for iDMI and PMA. Finally, we determine the spin pumping effect at the Ir/Co interface, and it increases the Gilbert damping constant from 0.012 to 0.024 for 1.5 nm-thick Co.

  19. Effect of the number of interfaces on the magnetic properties of [SnO{sub 2}/Cu-Zn ferrite] multilayer

    SciTech Connect

    Saipriya, S.; Kurian, Joji; Singh, R.

    2012-04-01

    The [SnO{sub 2}/Cu-Zn ferrite (CZF)]{sub n} (n = 5, 10, 15, and 20) multilayer (ML) were deposited by rf-magnetron sputtering to study their magnetic properties. The magnetization and ferromagnetic resonance (FMR) measurements were undertaken to understand the effect of interfaces on the magnetic properties of these ML. FMR signal line shape changes from asymmetric to symmetric as n increases. The FMR signal peak to peak intensity, FMR linewidth, effective and saturation magnetization and coercivity exhibit oscillations as a function of n. In the parallel configuration the resonance field increases with increase in n, presumably due to the decrease in the active layer to dead layer thickness ratio. The interlayer coupling is strong in the ML with n = 5 leading to the formation of spin waves. The ML interlayer coupling and anisotropy decreases with increasing n. The oscillatory behavior of the magnetic properties can be ascribed to the nonmonotonic variations in the structure and the geometry of the interfaces.

  20. Effect of MgO/Co interface and Co/MgO interface on the spin dependent transport in perpendicular Co/Pt multilayers

    SciTech Connect

    Zhang, J. Y.; Liu, Y. W.; Zhao, Z. D.; Chen, X.; Feng, C.; Yu, G. H. E-mail: ghyu@mater.ustb.edu.cn; Yang, G.; Wang, S. G. E-mail: ghyu@mater.ustb.edu.cn; Wu, Z. L.; Zhang, S. L.

    2014-10-28

    Effect of the metal/oxide interface on spin-dependent transport properties in perpendicular [Co/Pt]{sub 3} multilayers was investigated. The saturation Hall resistivity (ρ{sub xy}) is significantly increased by 45% with 1.4 nm thick CoO layer inserted at the top Co/MgO interface; whereas it is increased only 25% with 1 nm thick CoO layer at the bottom MgO/Co interface. The interfacial structures characterized by X-ray photoelectron spectroscopy show that the MgO/Co interface and Co/MgO interface including chemical states play a dominant role on spin-dependent transport, leading to different anomalous Hall behavior.

  1. Polyelectrolyte multilayer-assisted fabrication of non-periodic silicon nanocolumn substrates for cellular interface applications

    NASA Astrophysics Data System (ADS)

    Lee, Seyeong; Kim, Dongyoon; Kim, Seong-Min; Kim, Jeong-Ah; Kim, Taesoo; Kim, Dong-Yu; Yoon, Myung-Han

    2015-08-01

    Recent advances in nanostructure-based biotechnology have resulted in a growing demand for vertical nanostructure substrates with elaborate control over the nanoscale geometry and a high-throughput preparation. In this work, we report the fabrication of non-periodic vertical silicon nanocolumn substrates via polyelectrolyte multilayer-enabled randomized nanosphere lithography. Owing to layer-by-layer deposited polyelectrolyte adhesives, uniformly-separated polystyrene nanospheres were securely attached on large silicon substrates and utilized as masks for the subsequent metal-assisted silicon etching in solution. Consequently, non-periodic vertical silicon nanocolumn arrays were successfully fabricated on a wafer scale, while each nanocolumn geometric factor, such as the diameter, height, density, and spatial patterning, could be fully controlled in an independent manner. Finally, we demonstrate that our vertical silicon nanocolumn substrates support viable cell culture with minimal cell penetration and unhindered cell motility due to the blunt nanocolumn morphology. These results suggest that vertical silicon nanocolumn substrates may serve as a useful cellular interface platform for performing a statistically meaningful number of cellular experiments in the fields of biomolecular delivery, stem cell research, etc.Recent advances in nanostructure-based biotechnology have resulted in a growing demand for vertical nanostructure substrates with elaborate control over the nanoscale geometry and a high-throughput preparation. In this work, we report the fabrication of non-periodic vertical silicon nanocolumn substrates via polyelectrolyte multilayer-enabled randomized nanosphere lithography. Owing to layer-by-layer deposited polyelectrolyte adhesives, uniformly-separated polystyrene nanospheres were securely attached on large silicon substrates and utilized as masks for the subsequent metal-assisted silicon etching in solution. Consequently, non-periodic vertical

  2. Improving the EUV reflectivity of Mg/SiC multilayers by inserting Zr barrier layers at the SiC-on-Mg interfaces

    NASA Astrophysics Data System (ADS)

    Huang, Shuiping; Ji, Bei; Zhou, Jun; Li, Haochuan; Zhu, Jingtao

    2016-10-01

    In Mg/SiC multilayer deposition, the SiC-on-Mg interfaces were found to be much more diffused than the Mg-on-SiC interfaces. By inserting Zr barrier layers at the SiC-on-Mg interfaces, the diffusion at interface can be suppressed. The Mg/SiC multilayers were deposited by magnetron sputtering method, and were characterized by X-ray reflectometry and reflectometer of National Synchrotron Radiation Laboratory of China, respectively. Results show that 0.5-nm-thick Zr barrier layers can dramatically reduce the interdiffusion at the SiC-on-Mg interfaces.

  3. Formation of multilayered magnetic nanotracks with perpendicular anisotropy via deoxidization using ion irradiation on ultraviolet-imprinted intaglio nanostructures

    SciTech Connect

    Cho, Eikhyun; Shin, Sang Chul; Han, Jungjin; Shim, Jongmyeong; Shin, Ryung; Kang, Shinill; Kim, Sanghoon; Hong, Jongill

    2015-01-26

    We proposed a method to fabricate perpendicular magnetic nanotracks in the cobalt oxide/palladium multilayer films using UV-nanoimprinting lithography and low-energy hydrogen-ion irradiation. This is a method to magnetize UV-imprinted intaglio nanotracks via low-energy hydrogen ion irradiation, resulting the irradiated region are magnetically separated from the non-irradiated region. Multilayered magnetic nanotracks with a line width of 140 nm, which were fabricated by this parallel process without additional dry etching process, exhibited a saturation magnetization of 290 emu cm{sup −3} and a coercivity of 2 kOe. This study demonstrates a cost-effective mass production of multilayered perpendicular magnetic nanotracks and offers the possibility to achieve high density storage and memory devices.

  4. Interface structure in nanoscale multilayers near continuous-to-discontinuous regime

    NASA Astrophysics Data System (ADS)

    Pradhan, P. C.; Majhi, A.; Nayak, M.; Mangla Nand, Rajput, P.; Shukla, D. K.; Biswas, A.; Rai, S. K.; Jha, S. N.; Bhattacharyya, D.; Phase, D. M.; Sahoo, N. K.

    2016-07-01

    Interfacial atomic diffusion, reaction, and formation of microstructure in nanoscale level are investigated in W/B4C multilayer (ML) system as functions of thickness in ultrathin limit. Hard x-ray reflectivity (XRR) and x-ray diffuse scattering in conjunction with x-ray absorption near edge spectroscopy (XANES) in soft x-ray and hard x-ray regimes and depth profiling x-ray photoelectron spectroscopy (XPS) have been used to precisely evaluate detailed interfacial structure by systematically varying the individual layer thickness from continuous-to-discontinuous regime. It is observed that the interfacial morphology undergoes an unexpected significant modification as the layer thickness varies from continuous-to-discontinuous regime. The interfacial atomic diffusion increases, the physical density of W layer decreases and that of B4C layer increases, and further more interestingly the in-plane correlation length decreases substantially as the layer thickness varies from continuous-to-discontinuous regime. This is corroborated using combined XRR and x-ray diffused scattering analysis. XANES and XPS results show formation of more and more tungsten compounds at the interfaces as the layer thickness decreases below the percolation threshold due to increase in the contact area between the elements. The formation of compound enhances to minimize certain degree of disorder at the interfaces in the discontinuous region that enables to maintain the periodic structure in ML. The degree of interfacial atomic diffusion, interlayer interaction, and microstructure is correlated as a function of layer thickness during early stage of film growth.

  5. Polyelectrolyte multilayer-assisted fabrication of non-periodic silicon nanocolumn substrates for cellular interface applications.

    PubMed

    Lee, Seyeong; Kim, Dongyoon; Kim, Seong-Min; Kim, Jeong-Ah; Kim, Taesoo; Kim, Dong-Yu; Yoon, Myung-Han

    2015-09-21

    Recent advances in nanostructure-based biotechnology have resulted in a growing demand for vertical nanostructure substrates with elaborate control over the nanoscale geometry and a high-throughput preparation. In this work, we report the fabrication of non-periodic vertical silicon nanocolumn substrates via polyelectrolyte multilayer-enabled randomized nanosphere lithography. Owing to layer-by-layer deposited polyelectrolyte adhesives, uniformly-separated polystyrene nanospheres were securely attached on large silicon substrates and utilized as masks for the subsequent metal-assisted silicon etching in solution. Consequently, non-periodic vertical silicon nanocolumn arrays were successfully fabricated on a wafer scale, while each nanocolumn geometric factor, such as the diameter, height, density, and spatial patterning, could be fully controlled in an independent manner. Finally, we demonstrate that our vertical silicon nanocolumn substrates support viable cell culture with minimal cell penetration and unhindered cell motility due to the blunt nanocolumn morphology. These results suggest that vertical silicon nanocolumn substrates may serve as a useful cellular interface platform for performing a statistically meaningful number of cellular experiments in the fields of biomolecular delivery, stem cell research, etc.

  6. Thermally enhanced perpendicular magnetic anisotropy behaviors of ultrathin [Co/Pd]{sub n} multilayers via NiO{sub x} capping layer

    SciTech Connect

    Chung, Woo Seong; Lee, Ja Bin; An, Gwang Guk; Yang, Seung Mo; Kim, Jae Hong; Hong, Jin Pyo

    2015-06-01

    We report the enhanced perpendicular magnetic anisotropy (PMA) features of ultrathin [Co/Pd]{sub 3} multilayers (MLs) employing a NiO{sub x} insertion layer at high annealing temperatures. Thermally enhanced PMA in [Co/Pd]{sub 3}/NiO{sub x} (capping layer) MLs were achieved at a specific capping layer thickness, while no PMA responses were observed for a NiO{sub x} (buffer layer)/[Co/Pd]{sub 3} ML, regardless of NiO{sub x} thickness. X-ray diffraction observations, including rocking curves, identified the relatively different crystalline characteristics of the NiO{sub x} capping and buffer layers. Origin of the enhanced PMAs of [Co/Pd]{sub 3} MLs containing a NiO{sub x} capping layer is described based on the NiO{sub x} capping effect possibly providing additional Co/Oxide i-PMA under high-temperature annealing.

  7. Multilayer films with sharp, stable interfaces for use in EUV and soft X-ray application

    DOEpatents

    Barbee, Jr., Troy W.; Bajt, Sasa

    2002-01-01

    The reflectivity and thermal stability of Mo/Si (molybdenum/silicon) multilayer films, used in soft x-ray and extreme ultraviolet region, is enhanced by deposition of a thin layer of boron carbide (e.g., B.sub.4 C) between alternating layers of Mo and Si. The invention is useful for reflective coatings for soft X-ray and extreme ultraviolet optics, multilayer for masks, coatings for other wavelengths and multilayers for masks that are more thermally stable than pure Mo/Si multilayers

  8. Mechanical performance of Hi-Nicalon/CVI-SiC composites with multilayer SiC/C interfaces

    SciTech Connect

    Halverson, H.G.; Carter, R.H.; Curtin, W.A.

    1997-12-01

    The mechanical properties and interfacial characteristics of new SiC/SiC ceramic composites, composed of Hi-Nicalon fibers in a CVI-SiC matrix and having a variety of multilayer SiC/C coatings between the fibers and the matrix, are studied in detail to elucidate the roles of the coatings and fibers. Axial tension tests and unload/reload hysteresis loop measurements are performed to determine mechanical performance. All materials exhibit the strong and tough behavior characteristic of good ceramic composites, with all multilayer variants performing quite similarly. SEM microscopy demonstrates that matrix cracks penetrate through the multilayers and debond at the fiber/inner-coating interface. Analysis of the hysteretic behavior leads to values for interfacial sliding resistance {tau} {approx} 11 ksi and interfacial toughness {Gamma}{sub i} {approx} 2 J/m{sup 2} that are nearly independent of multilayer structure, and are similar to values obtained for standard pyrolitic carbon interfaces. These results all indicate debonding at the fiber surface for all coating structures, which provides a common roughness, {tau}, and {Gamma}{sub i}. Analysis of fiber fracture mirrors provides an estimate of the in-situ strength of the fibers and demonstrates the high strength retention of the Hi-Nicalon fibers. The in-situ fiber strengths are combined with the measured pullout lengths to obtain an independent determination of {tau} = 8.5 ksi that agrees well with the value found from the hysteretic behavior. Predictions of composite strength using the derived fiber strengths agree well with the measured value although the predicted failure strain is too large. This study demonstrates that Hi-Nicalon fiber/CVI-SiC composites perform well for a wide range of multilayer interface structures and that the interfaces present relatively high values of {tau} and {Gamma}{sub i}, both of which are beneficial to strength and toughness. The small carbon layer thicknesses in these multilayer

  9. Highly (001) oriented L1{sub 0}-CoPt/TiN multilayer films on glass substrates with perpendicular magnetic anisotropy

    SciTech Connect

    An, Hongyu; Sannomiya, Takumi; Muraishi, Shinji; Nakamura, Yoshio; Shi, Ji; Xie, Qian; Zhang, Zhengjun; Wang, Jian

    2015-03-15

    To obtain strong perpendicular magnetic anisotropy (PMA) based on L1{sub 0} structure for magnetic storage devices, costly single crystalline substrates are generally required to achieve (001) texture. Recently, various studies also have focused on depositing different kinds of seed layers on glass or other amorphous substrates to promote (001) preferred orientation of L1{sub 0} CoPt and FePt. TiN is a very promising seed layer material because of its cubic crystalline structure (similar to MgO) and excellent diffusion barring property even at high temperatures. In the present work, highly (001) oriented L1{sub 0}-CoPt/TiN multilayer films have been successfully deposited on glass substrates. After annealing at 700 °C, the film exhibits PMA, and a strong (001) peak is detected from the x-ray diffraction profiles, indicating the ordering transformation of CoPt layers from fcc (A1) to L1{sub 0} structure. It also is found that alternate deposition of cubic TiN and CoPt effectively improves the crystallinity and (001) preferred orientation of CoPt layers. This effect is verified by the substantial enhancement of (001) reflection and PMA with increasing the period number of the multilayer films.

  10. Effect of metal-to-metal interface states on the electric-field modified magnetic anisotropy in MgO/Fe/non-magnetic metal

    NASA Astrophysics Data System (ADS)

    Guan, X. W.; Cheng, X. M.; Huang, T.; Wang, S.; Xue, K. H.; Miao, X. S.

    2016-04-01

    The impact of metal-to-metal interface on electric-field modified magnetic anisotropy in MgO/Fe/non-magnetic metal (Ta, Pt, Au) is revealed by density functional calculations. We demonstrate that the contribution from the metal-to-metal interface can be strong enough to dominate the electric field effect on magnetic anisotropy of Fe/MgO-based films, and the strain could also effectively tune the electric field effect. By analyzing the interface states by density of states and band structures, the dependence of the magnetoelectric effect on metal-to-metal interface is elucidated. These results are of considerable interest in the area of electric field controlled magnetic anisotropy and switching.

  11. Substrate- and interface-mediated photocrystallization in a-Se films and multi-layers

    NASA Astrophysics Data System (ADS)

    Lindberg, G. P.; Tallman, R. E.; Weinstein, B. A.; Abbaszadeh, S.; Karim, K. S.; Reznik, A.

    2012-02-01

    Photocrystallization in a-Se films and layered a-Se structures is studied by Raman scattering as a function of temperature for photon energies near or slightly below the band gap. The samples are ˜16.5 μm thick films of a-Se grown i) directly on glass, ii) on indium tin oxide (ITO) coated glass, iii) on glass that is spin coated with 800nm polymide, and iv) on a Capton sheet. A low As-concentration (< 0.2 %) is present in several of the a-Se films. We compare the results on these samples to prior findings on a-Se HARP targets, and on a polymer-encapsulated a-Se film [1]. We observe strong evidence that the interface between the a-Se film and the underlying substrate and/or multi-layers plays an important role in the onset time and growth rate of photocrystallized Se domains. In some samples a discontinuous increase in the onset time with increasing temperature occurs near the glass transition (˜310K), and there is a surprising ``dead zone'' of no crystallization in this region. Other samples merely show a minimum in the onset time at similar temperatures, but no discontinuity and no region where crystallization is absent. Soft intermediate layers appear to increase stability against crystallization in an overlying a-Se film. The competing effects of substrate shear strain and thermal driving forces on the photocrystallization process are considered to account for these findings. [4pt] [1] R.E. Tallman et. al. J. Non-crystalline Sols. 354, 4577-81 (2008)

  12. Interfacial Rheology of Hydrogen-Bonded Polymer Multilayers Assembled at Liquid Interfaces: Influence of Anchoring Energy and Hydrophobic Interactions.

    PubMed

    Le Tirilly, Sandrine; Tregouët, Corentin; Reyssat, Mathilde; Bône, Stéphane; Geffroy, Cédric; Fuller, Gerald; Pantoustier, Nadège; Perrin, Patrick; Monteux, Cécile

    2016-06-21

    We study the 2D rheological properties of hydrogen-bonded polymer multilayers assembled directly at dodecane-water and air-water interfaces using pendant drop/bubble dilation and the double-wall ring method for interfacial shear. We use poly(vinylpyrrolidone) (PVP) as a proton acceptor and a series of polyacrylic acids as proton donors. The PAA series of chains with varying hydrophobicity was fashioned from poly(acrylic acid), (PAA), polymethacrylic acid (PMAA), and a homemade hydrophobically modified polymer. The latter consisted of a PAA backbone covalently grafted with C12 moieties at 1% mol (referred to as PAA-1C12). Replacing PAA with the more hydrophobic PMAA provides a route for combining hydrogen bonding and hydrophobic interactions to increase the strength and/or the number of links connecting the polyacid chains to PVP. This systematic replacement allows for control of the ability of the monomer units inside the absorbed polymer layer to reorganize as the interface is sheared or compressed. Consequently, the interplay of hydrogen bonding and hydrophobic interactions leads to control of the resistance of the polymer multilayers to both shear and dilation. Using PAA-1C12 as the first layer improves the anchoring energy of a few monomers of the chain without changing the strength of the monomer-monomer contact in the complex layer. In this way, the layer does not resist shear but resists compression. This strategy provides the means for using hydrophobicity to control the interfacial dynamics of the complexes adsorbed at the interface of the bubbles and droplets that either elongate or buckle upon compression. Moreover, we demonstrate the pH responsiveness of these interfacial multilayers by adding aliquots of NaOH to the acidic water subphase surrounding the bubbles and droplets. Subsequent pH changes can eventually break the polymer complex, providing opportunities for encapsulation/release applications. PMID:27176147

  13. Synchrotron FTIR microscopy of Langmuir-Blodgett monolayers and polyelectrolyte multilayers at the solid-solid interface.

    PubMed

    Beattie, David A; Beaussart, Audrey; Mierczynska-Vasilev, Agnieszka; Harmer, Sarah L; Thierry, Benjamin; Puskar, Ljiljana; Tobin, Mark

    2012-01-24

    Synchrotron FTIR microscopy has been used to probe the structure of model boundary lubricant layers confined at the solid-solid interface. The combination of high brightness of the IR source and a novel contact geometry that uses a hemispherical internal reflection element as the means for light delivery has enabled the detection of <2.5 nm thin monolayer lubricant layers in the solid-solid contact, in addition to allowing for spectral acquisition from specific regions of the contact. Spectra of hydration water from within a confined polyelectrolyte multilayer film have also been acquired, highlighting the altered hydrogen bonding environment within the polymer layer. PMID:22225512

  14. Synchrotron FTIR microscopy of Langmuir-Blodgett monolayers and polyelectrolyte multilayers at the solid-solid interface.

    PubMed

    Beattie, David A; Beaussart, Audrey; Mierczynska-Vasilev, Agnieszka; Harmer, Sarah L; Thierry, Benjamin; Puskar, Ljiljana; Tobin, Mark

    2012-01-24

    Synchrotron FTIR microscopy has been used to probe the structure of model boundary lubricant layers confined at the solid-solid interface. The combination of high brightness of the IR source and a novel contact geometry that uses a hemispherical internal reflection element as the means for light delivery has enabled the detection of <2.5 nm thin monolayer lubricant layers in the solid-solid contact, in addition to allowing for spectral acquisition from specific regions of the contact. Spectra of hydration water from within a confined polyelectrolyte multilayer film have also been acquired, highlighting the altered hydrogen bonding environment within the polymer layer.

  15. Study of interface correlation in W/C multilayer structure by specular and non-specular grazing incidence X-ray reflectivity measurements

    NASA Astrophysics Data System (ADS)

    Biswas, A.; Maidul Haque, S.; Tripathi, S.; De, Rajnarayan; Rai, S.; Bhattacharyya, D.; Sahoo, N. K.

    2015-10-01

    W/C/W tri-layer thin film samples have been deposited on c-Si substrates in a home-built Ion Beam Sputtering system at 1.5 × 10-3 Torr Ar working pressure and 10 mA grid current. The tri-layer samples have been deposited at different Ar+ ion energies between 0.6 and 1.2 keV for W layer deposition and the samples have been characterized by specular and non-specular grazing incidence X-ray reflectivity (GIXR) measurements. By analyzing the GIXR spectra, various interface parameters have been obtained for both W-on-C and C-on-W interfaces and optimum Ar+ ion energy for obtaining interfaces with low imperfections has been found. Subsequently, multilayer W/C samples with 5-layer, 7-layer, 9-layer, and 13-layer have been deposited at this optimum Ar+ ion energy. By fitting the specular and diffused GIXR data of the multilayer samples with the parameters of each interface as fitting variables, different interface parameters, viz., interface width, in-plane correlation length, interface roughness, and interface diffusion have been estimated for each interface and their variation across the depth of the multilayers have been obtained. The information would be useful in realizing W/C multilayers for soft X-ray mirror application in the <100 Å wavelength regime. The applicability of the "restart of the growth at the interface" model in the case of these ion beam sputter deposited W/C multilayers has also been investigated in the course of this study.

  16. Origin of Colossal Ionic Conductivity in Oxide Multilayers: Interface Induced Sublattice Disorder

    SciTech Connect

    Pennycook, Timothy J; Beck, Matthew; Varga, Kalman; Varela del Arco, Maria; Pennycook, Stephen J; Pantelides, Sokrates T

    2010-01-01

    Oxide ionic conductors typically operate at high temperatures, which limits their usefulness. Colossal room-temperature ionic conductivity was recently discovered in multilayers of yttria-stabilized zirconia (YSZ) and SrTiO3. Here we report density-functional calculations that trace the origin of the effect to a combination of lattice-mismatch strain and O-sublattice incompatibility. Strain alone in bulk YSZ enhances O mobility at high temperatures by inducing extreme O disorder. In multilayer structures, O-sublattice incompatibility causes the same extreme disorder at room temperature.

  17. Study of interface correlation in W/C multilayer structure by specular and non-specular grazing incidence X-ray reflectivity measurements

    SciTech Connect

    Biswas, A. Bhattacharyya, D.; Sahoo, N. K.; Maidul Haque, S.; Tripathi, S.; De, Rajnarayan; Rai, S.

    2015-10-28

    W/C/W tri-layer thin film samples have been deposited on c-Si substrates in a home-built Ion Beam Sputtering system at 1.5 × 10{sup −3} Torr Ar working pressure and 10 mA grid current. The tri-layer samples have been deposited at different Ar{sup +} ion energies between 0.6 and 1.2 keV for W layer deposition and the samples have been characterized by specular and non-specular grazing incidence X-ray reflectivity (GIXR) measurements. By analyzing the GIXR spectra, various interface parameters have been obtained for both W-on-C and C-on-W interfaces and optimum Ar{sup +} ion energy for obtaining interfaces with low imperfections has been found. Subsequently, multilayer W/C samples with 5-layer, 7-layer, 9-layer, and 13-layer have been deposited at this optimum Ar{sup +} ion energy. By fitting the specular and diffused GIXR data of the multilayer samples with the parameters of each interface as fitting variables, different interface parameters, viz., interface width, in-plane correlation length, interface roughness, and interface diffusion have been estimated for each interface and their variation across the depth of the multilayers have been obtained. The information would be useful in realizing W/C multilayers for soft X-ray mirror application in the <100 Å wavelength regime. The applicability of the “restart of the growth at the interface” model in the case of these ion beam sputter deposited W/C multilayers has also been investigated in the course of this study.

  18. Perpendicularly magnetized spin filtering Cu/Ni multilayers

    SciTech Connect

    Shirahata, Yasuhiro; Wada, Eiji; Itoh, Mitsuru; Taniyama, Tomoyasu

    2014-01-20

    Spin filtering at perpendicular magnetized Cu/Ni multilayer/GaAs(001) interfaces is demonstrated at remanence using optical spin orientation method. [Cu(9 nm)/Ni(t{sub Ni} nm)]{sub n} multilayers are found to show a crossover from the in-plane to out-of-plane magnetic anisotropy at the Cu/Ni bilayer repetition n = 4 and the Ni layer thickness t{sub Ni} = 3. For a perpendicularly magnetized Cu/Ni multilayer/n-GaAs(001) interface, circular polarization dependent photocurrent shows a clear hysteretic behavior under optical spin orientation conditions as a function of magnetic field out-of-plane while the bias dependence exhibits a substantial peak at a forward bias, verifying that Cu/Ni multilayers work as an efficient spin filter in the remanent state.

  19. Capping layer-tailored interface magnetic anisotropy in ultrathin Co2FeAl films

    NASA Astrophysics Data System (ADS)

    Belmeguenai, M.; Gabor, M. S.; Petrisor, T.; Zighem, F.; Chérif, S. M.; Tiusan, C.

    2015-01-01

    Co2FeAl (CFA) thin films of various thicknesses (2 nm ≤ d ≤ 50 nm) have been grown on (001) MgO single crystal substrates and then capped with Cr, V, and Ta. Their magnetic and structural properties have been studied by x-ray diffraction (XRD), vibrating sample magnetometry, and broadband microstrip ferromagnetic resonance (MS-FMR). The XRD revealed that the films are epitaxial with the cubic [001] CFA axis normal to the substrate plane and that the chemical order varies from the B2 phase to the A2 phase when decreasing the thickness. The deduced lattice parameters showed that the Cr-capped films exhibit a larger tetragonal distortion, as compared with the films capped with V or Ta. The presence of magnetic dead layers has been observed in CFA samples capped with V and Ta but not in the case of the Cr-capped ones. The effective magnetization, deduced from the fit of MS-FMR measurements, increases (decreases) linearly with the CFA inverse thickness (1/d) for the Cr-capped (Ta-capped) films while it is constant for the V-capped ones. This allows quantifying the perpendicular surface anisotropy coefficients of -0.46 erg/cm2 and 0.74 erg/cm2 for Cr and Ta-capped films, respectively. Moreover, the fourfold and the uniaxial anisotropy fields, measured in these films, showed different trends with a respect to the CFA inverse thickness. This allows inferring that a non-negligible part of the fourfold magnetocrystalline term is of interfacial origin.

  20. Band alignment of ZnO/multilayer MoS2 interface determined by x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Xinke; Zhang, Yuan; Liu, Qiang; He, Jiazhu; Chen, Le; Li, Kuilong; Jia, Fang; Zeng, Yuxiang; Lu, Youming; Yu, Wenjie; Zhu, Deliang; Liu, Wenjun; Wu, Jing; He, Zhubing; Ang, Kah-Wee

    2016-08-01

    The energy band alignment between ZnO and multilayer (ML)-MoS2 was characterized using high-resolution x-ray photoelectron spectroscopy. The ZnO film was deposited using an atomic layer deposition tool, and ML-MoS2 was grown by chemical vapor deposition. A valence band offset (VBO) of 3.32 eV and a conduction band offset (CBO) of 1.12 eV were obtained for the ZnO/ML-MoS2 interface without any treatment. With CHF3 plasma treatment, a VBO and a CBO across the ZnO/ML-MoS2 interface were found to be 3.54 eV and 1.34 eV, respectively. With the CHF3 plasma treatment, the band alignment of the ZnO/ML-MoS2 interface has been changed from type II or staggered band alignment to type III or misaligned one, which favors the electron-hole pair separation. The band alignment difference is believed to be dominated by the down-shift in the core level of Zn 2p or the interface dipoles, which is caused by the interfacial layer rich in F.

  1. Large anomalous Hall effect in Pt interfaced with perpendicular anisotropy ferrimagnetic insulator

    NASA Astrophysics Data System (ADS)

    Tang, Chi; Sellappan, Pathikumar; Liu, Yawen; Garay, Javier; Shi, Jing; Shines Team

    We demonstrate the strain induced perpendicular magnetic anisotropy (PMA) in a ferrimagnetic insulator (FMI), Tm3Fe5O12 (TIG) and the first observation of large anomalous Hall effect (AHE) in TIG/Pt bilayers. Atomically flat TIG films were deposited by a laser molecular beam epitaxy system on (111)-orientated substituted gadolinium gallium garnet substrates. The strength of PMA could be effectively tuned by controlling the oxygen pressure during deposition. Sharp squared anomalous Hall hysteresis loops were observed in bilayers of TIG/Pt over a range of thicknesses of Pt, with the maximum AHE conductivity reaching 1 S/cm at room temperature. The AHE vanishes when a 5 nm Cu layer was inserted between Pt and TIG, strongly indicating the proximity-induced ferromagnetism in Pt. The large AHE in the bilayer structures demonstrates a potential use of PMA-FMI related heterostructures in spintronics. This work was supported as part of the SHINES, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # SC0012670.

  2. Quartz Crystal Microbalance Studies of Multilayer Glucagon Fibrillation at the Solid-Liquid Interface

    PubMed Central

    Hovgaard, Mads Bruun; Dong, Mingdong; Otzen, Daniel Erik; Besenbacher, Flemming

    2007-01-01

    We have used a quartz crystal microbalance with dissipation (QCM-D) to monitor the changes in layer thickness and viscoelastic properties accompanying multilayer amyloid deposition in situ for the first time. By means of atomic force microscope imaging, an unequivocal correlation is established between the interfacial nucleation and growth of glucagon fibrils and the QCM-D response. The combination of the two techniques allows us to study the temporal evolution of the interfacial fibrillation process. We have modeled the QCM-D data using an extension to the Kelvin-Voigt viscoelastic model. Three phases were observed in the fibrillation process: 1), a rigid multilayer of glucagon monomers forms and slowly rearranges; 2), this multilayer subsequently evolves into a dramatically more viscoelastic layer, containing a polymorphic network of micrometer-long fibrils growing from multiple nucleation sites; and 3), the fibrillar formation effectively stops as a result of the depletion of bulk-phase monomers, although the process can be continued without a lag phase by subsequent addition of fresh monomers. The robustness of the QCM-D technique, consolidated by complementary atomic force microscope studies, should make it possible to combine different components thought to be involved in the plaque formation process and thus build up realistic models of amyloid plaque formation in vitro. PMID:17513349

  3. Quartz crystal microbalance studies of multilayer glucagon fibrillation at the solid-liquid interface.

    PubMed

    Hovgaard, Mads Bruun; Dong, Mingdong; Otzen, Daniel Erik; Besenbacher, Flemming

    2007-09-15

    We have used a quartz crystal microbalance with dissipation (QCM-D) to monitor the changes in layer thickness and viscoelastic properties accompanying multilayer amyloid deposition in situ for the first time. By means of atomic force microscope imaging, an unequivocal correlation is established between the interfacial nucleation and growth of glucagon fibrils and the QCM-D response. The combination of the two techniques allows us to study the temporal evolution of the interfacial fibrillation process. We have modeled the QCM-D data using an extension to the Kelvin-Voigt viscoelastic model. Three phases were observed in the fibrillation process: 1), a rigid multilayer of glucagon monomers forms and slowly rearranges; 2), this multilayer subsequently evolves into a dramatically more viscoelastic layer, containing a polymorphic network of micrometer-long fibrils growing from multiple nucleation sites; and 3), the fibrillar formation effectively stops as a result of the depletion of bulk-phase monomers, although the process can be continued without a lag phase by subsequent addition of fresh monomers. The robustness of the QCM-D technique, consolidated by complementary atomic force microscope studies, should make it possible to combine different components thought to be involved in the plaque formation process and thus build up realistic models of amyloid plaque formation in vitro.

  4. Quantitative first-principles theory of interface absorption in multilayer heterostructures

    SciTech Connect

    Hachtel, Jordan A.; Sachan, Ritesh; Mishra, Rohan; Pantelides, Sokrates T.

    2015-08-31

    The unique chemical bonds and electronic states of interfaces result in optical properties that are different from those of the constituting bulk materials. In the nanoscale regime, the interface effects can be dominant and impact the optical response of devices. Using density functional theory (DFT), the interface effects can be calculated, but DFT is computationally limited to small systems. We describe a method to combine DFT with macroscopic methodologies to extract the interface effect on absorption in a consistent and quantifiable manner. The extracted interface effects are an independent parameter and can be applied to more complicated systems. We demonstrate, using NiSi{sub 2}/Si heterostructures, that by varying the relative volume fractions of interface and bulk, we can tune the spectral range of the heterostructure absorption.

  5. Rheology at the Interface and the Role of the Interphase in Reactive Functionalized Multilayer Polymers in Coextrusion Process

    NASA Astrophysics Data System (ADS)

    Lamnawar, Khalid; Maazouz, Abderrahim

    2008-07-01

    Coextrusion technologies are commonly used to produce multilayered composite sheets or films for a large range of applications from food packaging to optics. The contrast of rheological properties between layers can lead to interfacial instabilities during flow. Important theoretical and experimental advances regarding the stability of compatible and incompatible polymers have, during the last decades, been made using a mechanical approach. However, few research efforts have been dedicated to the physicochemical affinity between the neighboring layers. The present study deals with the influence of this affinity on interfacial instabilities for functionalized incompatible polymers. Polyamide (PA6)/polyethylene grafted with glycidyl methacrylate (PE-GMA) was used as a reactive system and PE/PA6 as a non reactive one. Two grades of polyamide (PA6) were used in order to change the viscosity and elasticity ratios between PE (or PE-GMA) and PA6. It was experimentally confirmed, in this case, that weak disturbance can be predicted by considering an interphase of non-zero thickness (corresponding to an interdiffusion/reaction zone) instead of a purely geometrical interface between the two reactive layers. According to the rheological investigations from previous work which the interphase effect can be probed, an experimental strategy was here formulated to optimize the process by listing the parameters that controlled the stability of the reactive multilayer flows. Hence, based on this analysis, guidelines for a stable coextrusion of reactive functionalized polymers can be provided coupling the classical parameters (viscosity, elasticity and layer ratios) and the physicochemical affinity at the polymer/polymer interface.

  6. Full-Heusler Co2FeSi alloy thin films with perpendicular magnetic anisotropy induced by MgO-interfaces

    NASA Astrophysics Data System (ADS)

    Takamura, Yota; Suzuki, Takahiro; Fujino, Yorinobu; Nakagawa, Shigeki

    2014-05-01

    A 100-nm-thick L21-ordered full-Heusler Co2FeSi (CFS) alloy film was fabricated using the facing targets sputtering (FTS) method at a substrate temperature TS of 300 °C. The degrees of L21- and B2-order for the film were 37% and 96%, respectively. In addition, full-Heusler CFS alloy thin films with perpendicular magnetic anisotropy (PMA) induced by the magnetic anisotropy of MgO-interfaces were also successfully fabricated using the FTS method. The CFS/MgO stacked layers exhibited PMA when the CFS layer had a thickness of 0.6 nm ≤ dCFS ≤ 1.0 nm. The PMA in these structures resulted from the CFS/MgO interfacial perpendicular magnetic anisotropy.

  7. In-plane anisotropy in two-dimensional electron gas at LaAlO3/SrTiO3(110) interface

    NASA Astrophysics Data System (ADS)

    Sheng-Chun, Shen; Yan-Peng, Hong; Cheng-Jian, Li; Hong-Xia, Xue; Xin-Xin, Wang; Jia-Cai, Nie

    2016-07-01

    A systematic study of the two-dimensional electron gas at LaAlO3/SrTiO3(110) interface reveals an anisotropy along two specific directions, [001] and . The anisotropy becomes distinct for the interface prepared under high oxygen pressure with low carrier density. Angular dependence of magnetoresistance shows that the electron confinement is stronger along the direction. Gate-tunable magnetoresistance reveals a clear in-plane anisotropy of the spin-orbit coupling, and the spin relaxation mechanism along both directions belongs to D’yakonov-Perel’ (DP) scenario. Moreover, in-plane anisotropic superconductivity is observed for the sample with high carrier density, the superconducting transition temperature is lower but the upper critical field is higher along the direction. This in-plane anisotropy could be ascribed to the anisotropic band structure along the two crystallographic directions. Project supported by the Ministry of Science and Technology of China (Grant Nos. 2013CB921701, 2013CBA01603, and 2014CB920903), the National Natural Science Foundation of China (Grant Nos. 10974019, 51172029, 91121012, 11422430, 11374035, 11474022, and 11474024), the Program for New Century Excellent Talents in the University of the Ministry of Education of China (Grant No. NCET-13-0054), and the Beijing Higher Education Young Elite Teacher Project, China (Grant No. YETP0238).

  8. Influence of the deposition-induced stress on the magnetic properties of magnetostrictive amorphous (Fe{sub 80}Co{sub 20}){sub 80}B{sub 20} multilayers with orthogonal anisotropy

    SciTech Connect

    Gonzalez-Guerrero, Miguel; Prieto, Jose Luis; Sanchez, Pedro; Aroca, Claudio

    2007-12-15

    In this work, we experimentally justify that the control of the mechanical stress induced during the deposition of sputtered amorphous magnetostrictive (Fe{sub 80}Co{sub 20}){sub 80}B{sub 20} allows a custom design of its magnetic properties. FeCoB multilayers have been sputtered on thermal oxide Si substrates with different buffer materials. The crystalline quality and the thermomechanical properties of the buffer layer influence both the coercive and the anisotropy field. Those buffer layers with both high rigidity and poor thermal conductivity do not allow the dissipation of energy of the incoming sputtered material. Therefore, the mechanical stresses related to the deposition process cannot be released, leading to magnetic layers with high easy-axis coercive field and low anisotropy field. This shows that the mechanical stresses accumulated during deposition are a key parameter for the control of coercivity.

  9. Correlation between Pd metal thickness and thermally stable perpendicular magnetic anisotropy features in [Co/Pd]{sub n} multilayers at annealing temperatures up to 500 °C

    SciTech Connect

    An, Gwang Guk; Lee, Ja Bin; Yang, Seung Mo; Yoon, Kap Soo; Kim, Jae Hong; Chung, Woo Seong; Hong, Jin Pyo

    2015-02-15

    We examine highly stable perpendicular magnetic anisotropy (PMA) features of [Co/Pd]{sub 10} multilayers (MLs) versus Pd thickness at various ex-situ annealing temperatures. Thermally stable PMA characteristics were observed up to 500 °C, confirming the suitability of these systems for industrial applications at this temperature. Experimental observations suggest that the choice of equivalent Co and Pd layer thicknesses in a ML configuration ensures thermally stable PMA features, even at higher annealing temperatures. X-ray diffraction patterns and cross-sectional transmission electron microscopy images were obtained to determine thickness, post-annealing PMA behavior, and to explore the structural features that govern these findings.

  10. Improving deep subwavelength imaging through terminal interface design of metallo-dielectric multilayered stacks

    NASA Astrophysics Data System (ADS)

    Hu, Jigang; Zhan, Qiwen; Chen, Junxue; Wang, Xiangxian; Lu, Yonghua; Ming, Hai

    2013-01-01

    Symmetric metallo-dielectric multilayered stacks (MDMS) are investigated to improve the spatial resolution of subwavelength imaging operated in canalization regime. Simulation results revealed that subwavelength imaging capability is very sensitive to the thickness and material of the MDMS terminal layers. Furthermore, the coupling and decoupling of the Bloch modes in MDMS, between the object and image space, strongly depend on the terminal layer parameters which can be tuned to achieve the optimal imaging improvement. In contrast to metal-dielectric periodic MDMS, using MDMS with the developed symmetric surface termination, subwavelength imaging with optimal intensity throughput and improved field spatial resolution (˜20.4%) can be obtained. Moreover, optical singularity, in the form of Poynting vector saddle point, has been found in the free space after lens exit for the two kinds of symmetric MDMS that exhibit improved superresolution imaging performance with 100% energy flux visibility. The improved subwavelength imaging capabilities, offered by this proposed termination design method, may find potential applications in the areas of biological imaging, sensing, and deep subwavelength lithography, and many others.

  11. The initial stages of Ge GaAs(100) interface formation studied by reflectance anisotropy spectroscopy and low-energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Power, J. R.; Weightman, P.; Cafolla, A. A.

    1998-05-01

    The initial stages of formation of the Ge-GaAs(100) interface, during monolayer Ge deposition and annealing are studied by reflectance anisotropy spectroscopy (RAS) and low-energy electron diffraction (LEED). Changes in the reflectance anisotropy spectra show that interface undergoes dramatic structural modification as it is annealed. After deposition of approximately 1 ML of Ge onto a room temperature GaAs(100)-(2×4) substrate followed by annealing, increased (1×2) ordering was observed up to an annealing temperature of 875 K, where a well-ordered (1×2) LEED pattern previously found to consist of Ge-Ga dimers X.-S. Wang, K. Self, V. Bressler-Hill, R. Mabouidian, W.H. Weinberg, Phys. Rev. B 49 (1994) 4775. was observed. Features are identified in the reflectance anisotropy spectra which are associated with Ge-Ga dimer formation. Upon deposition of a further 1.7 ML of Ge and annealing to 840 K, a (1×2) LEED pattern is still observed, but now with some disorder. The RA spectra for this surface displays large differences compared to the lower coverage (1×2) surface suggesting a different termination which we associate with As interdiffusion, in agreement with previous work [2].

  12. Effect of Microstructure on Magnetic Properties and Anisotropy Distributions in Co/Pd Thin Films and Nanostructures

    SciTech Connect

    Shaw, J.; Nembach, H; Silva, T; Russek, S; Geiss, R; Jones, C; Clark, N; Leo, T; Smith, D

    2009-01-01

    The structure of Co/Pd multilayers has a strong effect on the localized anisotropy distribution within a film and on the resulting switching properties of nanostructures fabricated from identical material. By varying the underlying seed layer in sputtered films, the microstructure can be controlled from being highly (111) textured to having a random grain orientation. We find a strong correlation between the lateral homogeneity of grain orientations and the localized anisotropy distribution in the material. X-ray diffraction and reflectivity indicate that the interface is better defined and more uniform in the textured case, consistent with the presence of a strong interfacelike anisotropy.

  13. Interface characterization of XUV multilayer reflectors using HRTEM (high-resolution transmission electron microscopy) and x-ray and XUV reflectance

    SciTech Connect

    Windt, D.L.; Hull, R.; Waskiewicz, W.K.; Kortright, J.B.

    1990-07-01

    We have examined the structure of XUV multilayer coatings using high-resolution transmission electron microscopy (HRTEM). Using a variety of techniques, we have measured the interface widths and the interface topography from the digitized TEM images, and have compared these results to x-ray and XUV reflectance measurements. We find that the structural parameters measured from the TEM images and those deduced from reflectance are consistent in light of the probable systematic errors associated with the measurement and interpretation techniques. 14 refs., 12 figs., 1 tab.

  14. Resonance reflection of elastic waves at the interface between two crystals with sliding contact: I. Plane waves in structures with arbitrary anisotropy

    SciTech Connect

    Alshits, V.I.; Darinskii, A.N.; Radovich, A.

    1995-05-01

    The theory of resonance reflection is formulated for elastic waves at the interface between two anisotropic media under conditions of sliding contact. The phenomenon under study arises in the close vicinity of a certain incidence angle for which the tangential wave vector component of the bulk wave is equal to the real part of the wave vector for the leaky mode. The relations presenting the behavior of wave-response parameters near the leaky mode resonance are derived for arbitrary crystal anisotropy. In particular, the behavior of reflection, transmission, and transformation of the bulk mode to the nonuniform one is discussed. 18 refs.

  15. Perpendicular magnetic anisotropy at the interface between ultrathin Fe film and MgO studied by angular-dependent x-ray magnetic circular dichroism

    SciTech Connect

    Okabayashi, J.; Koo, J. W.; Mitani, S.; Sukegawa, H.; Takagi, Y.; Yokoyama, T.

    2014-09-22

    Interface perpendicular magnetic anisotropy (PMA) in ultrathin Fe/MgO (001) has been investigated using angular-dependent x-ray magnetic circular dichroism (XMCD). We found that anisotropic orbital magnetic moments deduced from the analysis of XMCD contribute to the large PMA energies, whose values depend on the annealing temperature. The large PMA energies determined from magnetization measurements are related to those estimated from the XMCD and the anisotropic orbital magnetic moments through the spin-orbit interaction. The enhancement of anisotropic orbital magnetic moments can be explained mainly by the hybridization between the Fe 3d{sub z}{sup 2} and O 2p{sub z} states.

  16. High post-annealing stability for perpendicular [Co/Ni] n multilayers by preventing interfacial diffusion

    NASA Astrophysics Data System (ADS)

    Li, Xu-Jing; Jiang, Shao-Long; Zhang, Jing-Yan; Han, Gang; Liu, Qian-Qian; Liu, Yi-Wei; Wang, Dong-Wei; Feng, Chun; Li, Ming-Hua; Yu, Guang-Hua

    2016-05-01

    This paper reports that by introducing an appropriate thickness of Cu spacer at a Co/Ni interface, the perpendicular magnetic anisotropy of [Co/Cu/Ni] n multilayers can be maintained at the annealing temperature as high as 400 °C, implying high post-annealing stability. X-ray reflectivity results demonstrate that the multilayers with Cu spacer exhibit good multilayer structure, indicating the weak intermixing of Co and Ni, which is one important reason for the enhanced post-annealing stability of perpendicular magnetic anisotropy. The result is of great importance for out-of-plane magnetized spintronic devices which need to be combined with complementary metal-oxide semiconductors.

  17. Reduction of thermal conductivity in MnSi1.7 multi-layered thin films with artificially inserted Si interfaces

    NASA Astrophysics Data System (ADS)

    Kurosaki, Y.; Yabuuchi, S.; Nishide, A.; Fukatani, N.; Hayakawa, J.

    2016-08-01

    We report a lowered lattice thermal conductivity in nm-scale MnSi1.7/Si multilayers which were fabricated by controlling thermal diffusions of Mn and Si atoms. The thickness of the constituent layers is 1.5-5.0 nm, which is comparable to the phonon mean free path of both MnSi1.7 and Si. By applying the above nanostructures, we reduced the lattice thermal conductivity down to half that of bulk MnSi1.7/Si composite materials. The obtained value of 1.0 W/K m is the experimentally observed minimum in MnSi1.7-based materials without any heavy element doping and close to the minimum thermal conductivity. We attribute the reduced lattice thermal conductivity to phonon scattering at the MnSi1.7/Si interfaces in the multilayers.

  18. Interface Properties of Atomic-Layer-Deposited Al2O3 Thin Films on Ultraviolet/Ozone-Treated Multilayer MoS2 Crystals.

    PubMed

    Park, Seonyoung; Kim, Seong Yeoul; Choi, Yura; Kim, Myungjun; Shin, Hyunjung; Kim, Jiyoung; Choi, Woong

    2016-05-11

    We report the interface properties of atomic-layer-deposited Al2O3 thin films on ultraviolet/ozone (UV/O3)-treated multilayer MoS2 crystals. The formation of S-O bonds on MoS2 after low-power UV/O3 treatment increased the surface energy, allowing the subsequent deposition of uniform Al2O3 thin films. The capacitance-voltage measurement of Au-Al2O3-MoS2 metal oxide semiconductor capacitors indicated n-type MoS2 with an electron density of ∼10(17) cm(-3) and a minimum interface trap density of ∼10(11) cm(-2) eV(-1). These results demonstrate the possibility of forming a high-quality Al2O3-MoS2 interface by proper UV/O3 treatment, providing important implications for their integration into field-effect transistors.

  19. Structural and electronic properties of multilayer graphene on monolayer hexagonal boron nitride/nickel (111) interface system: A van der Waals density functional study

    NASA Astrophysics Data System (ADS)

    Yelgel, Celal

    2016-02-01

    The structural and electronic properties of multilayer graphene adsorbed on monolayer hexagonal boron nitride (h-BN)/Ni(111) interface system are investigated using the density functional theory with a recently developed non-local van der Waals density functional (rvv10). The most energetically favourable configuration for a monolayer h-BN/Ni(111) interface is found to be N atom atop the Ni atoms and B atom in fcc site with the interlayer distance of 2.04 Å and adsorption energy of 302 meV/BN. Our results show that increasing graphene layers on a monolayer h-BN/Ni(111) interface leads to a weakening of the interfacial interaction between the monolayer h-BN and Ni(111) surface. The adsorption energy of graphene layers on the h-BN/Ni(111) interface is found to be in the range of the 50-120 meV/C atom as the vertical distance from h-BN to the bottommost graphene layers decreases. With the adsorption of a multilayer graphene on the monolayer h-BN/Ni(111) interface system, the band gap of 0.12 eV and 0.25 eV opening in monolayer graphene and bilayer graphene near the K point is found with an upward shifting of the Fermi level. However, a stacking-sensitive band gap is opened in trilayer graphene. We obtain the band gap of 0.35 eV close to the K point with forming a Mexican hat band structure for ABC-stacked trilayer graphene.

  20. Formation of He-Rich Layers Observed by Neutron Reflectometry in the He-Ion-Irradiated Cr/W Multilayers: Effects of Cr/W Interfaces on the He-Trapping Behavior.

    PubMed

    Chen, Feida; Tang, Xiaobin; Huang, Hai; Li, Xinxi; Wang, Yan; Huang, Chaoqiang; Liu, Jian; Li, Huan; Chen, Da

    2016-09-21

    Cr/W multilayer nanocomposites were presented in the paper as potential candidate materials for the plasma facing components in fusion reactors. We used neutron reflectometry to measure the depth profile of helium in the multienergy He ions irradiated [Cr/W (50 nm)]3 multilayers. Results showed that He-rich layers with low neutron scattering potential energy form at the Cr/W interfaces, which is in great agreement with previous modeling results of other multilayers. This phenomenon provided a strong evidence for the He trapping effects of Cr/W interfaces and implied the possibility of using the Cr/W multilayer nanocomposites as great He-tolerant plasma facing materials. PMID:27589251

  1. Formation of He-Rich Layers Observed by Neutron Reflectometry in the He-Ion-Irradiated Cr/W Multilayers: Effects of Cr/W Interfaces on the He-Trapping Behavior.

    PubMed

    Chen, Feida; Tang, Xiaobin; Huang, Hai; Li, Xinxi; Wang, Yan; Huang, Chaoqiang; Liu, Jian; Li, Huan; Chen, Da

    2016-09-21

    Cr/W multilayer nanocomposites were presented in the paper as potential candidate materials for the plasma facing components in fusion reactors. We used neutron reflectometry to measure the depth profile of helium in the multienergy He ions irradiated [Cr/W (50 nm)]3 multilayers. Results showed that He-rich layers with low neutron scattering potential energy form at the Cr/W interfaces, which is in great agreement with previous modeling results of other multilayers. This phenomenon provided a strong evidence for the He trapping effects of Cr/W interfaces and implied the possibility of using the Cr/W multilayer nanocomposites as great He-tolerant plasma facing materials.

  2. Interface behavior of a multi-layer fluid configuration subject to acceleration in a microgravity environment, supplement 1. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Lyell, M. J.; Roh, Michael

    1991-01-01

    With the increasing opportunities for research in a microgravity environment, there arises a need for understanding fluid mechanics under such conditions. In particular, a number of material processing configurations involve fluid-fluid interfaces which may experience instabilities in the presence of external forcing. In a microgravity environment, these accelerations may be periodic or impulse-type in nature. This research investigates the behavior of a multi-layer idealized fluid configuration which is infinite in extent. The analysis is linear, and each fluid region is considered inviscid, incompressible, and immiscible. An initial parametric study of confiquration stability in the presence of a constant acceleration field is performed. The zero mean gravity limit case serves as the base state for the subsequent time-dependent forcing cases. A stability analysis of the multi-layer fluid system in the presence of periodic forcing is investigated. Floquet theory is utilized. A parameter study is performed, and regions of stability are identified. For the impulse-type forcing case, asymptotic stability is established for the configuration. Using numerical integration, the time response of the interfaces is determined.

  3. Capping layer-tailored interface magnetic anisotropy in ultrathin Co{sub 2}FeAl films

    SciTech Connect

    Belmeguenai, M. Zighem, F.; Chérif, S. M.; Gabor, M. S. Petrisor, T.; Tiusan, C.

    2015-01-14

    Co{sub 2}FeAl (CFA) thin films of various thicknesses (2 nm ≤ d ≤ 50 nm) have been grown on (001) MgO single crystal substrates and then capped with Cr, V, and Ta. Their magnetic and structural properties have been studied by x-ray diffraction (XRD), vibrating sample magnetometry, and broadband microstrip ferromagnetic resonance (MS-FMR). The XRD revealed that the films are epitaxial with the cubic [001] CFA axis normal to the substrate plane and that the chemical order varies from the B2 phase to the A2 phase when decreasing the thickness. The deduced lattice parameters showed that the Cr-capped films exhibit a larger tetragonal distortion, as compared with the films capped with V or Ta. The presence of magnetic dead layers has been observed in CFA samples capped with V and Ta but not in the case of the Cr-capped ones. The effective magnetization, deduced from the fit of MS-FMR measurements, increases (decreases) linearly with the CFA inverse thickness (1/d) for the Cr-capped (Ta-capped) films while it is constant for the V-capped ones. This allows quantifying the perpendicular surface anisotropy coefficients of −0.46 erg/cm{sup 2} and 0.74 erg/cm{sup 2} for Cr and Ta-capped films, respectively. Moreover, the fourfold and the uniaxial anisotropy fields, measured in these films, showed different trends with a respect to the CFA inverse thickness. This allows inferring that a non-negligible part of the fourfold magnetocrystalline term is of interfacial origin.

  4. Interatomic interactions at interfaces of multilayered nanostructures (Co45Fe45Zr10/ a-Si)40 and (Co45Fe45Zr10/SiO2)32

    NASA Astrophysics Data System (ADS)

    Domashevskaya, E. P.; Terekhov, V. A.; Turishchev, S. Yu.; Spirin, D. E.; Chernyshev, A. V.; Kalinin, Yu. E.; Sitnikov, A. V.

    2016-05-01

    The interatomic interaction and phase formation at interfaces between the metallic layers Co45Fe45Zr10 and nonmetallic interlayers of amorphous silicon or silicon dioxide in multilayered nanostructures (Co45Fe45Zr10/ a-Si)40 and (Co45Fe45Zr10/SiO2)32 have been investigated using ultrasoft X-ray emission spectroscopy (USXES) and X-ray diffractometry. The multilayered nanostructures have been fabricated by ion-beam sputtering of two targets onto the surface of a rotating glass-ceramic substrate. The investigations have demonstrated that, regardless of the expected composition of the interlayer (amorphous silicon or silicon dioxide), d-metal silicides, predominantly lower cobalt silicides, are formed at the metallic layer/interlayer interface. However, in this case, the thickness of silicide interfaces in the multilayered nanostructures with oxide interlayers (series O) has a significantly lower value of ˜0.1 nm, and, therefore, the central layer of the interlayers remains oxide. In the multilayered nanostructures with amorphous silicon interlayers almost all silicon is consumed in the formation of nonmagnetic silicide phases. When the thickness of this interlayer exceeds the thickness of the metallic layer, the multilayered nanostructures become nonmagnetic.

  5. Supramolecular control of the magnetic anisotropy in two-dimensional high-spin Fe arrays at a metal interface

    NASA Astrophysics Data System (ADS)

    Gambardella, Pietro; Stepanow, Sebastian; Dmitriev, Alexandre; Honolka, Jan; de Groot, Frank M. F.; Lingenfelder, Magalí; Gupta, Subhra Sen; Sarma, D. D.; Bencok, Peter; Stanescu, Stefan; Clair, Sylvain; Pons, Stéphane; Lin, Nian; Seitsonen, Ari P.; Brune, Harald; Barth, Johannes V.; Kern, Klaus

    2009-03-01

    Magnetic atoms at surfaces are a rich model system for solid-state magnetic bits exhibiting either classical or quantum behaviour. Individual atoms, however, are difficult to arrange in regular patterns. Moreover, their magnetic properties are dominated by interaction with the substrate, which, as in the case of Kondo systems, often leads to a decrease or quench of their local magnetic moment. Here, we show that the supramolecular assembly of Fe and 1,4-benzenedicarboxylic acid molecules on a Cu surface results in ordered arrays of high-spin mononuclear Fe centres on a 1.5nm square grid. Lateral coordination with the molecular ligands yields unsaturated yet stable coordination bonds, which enable chemical modification of the electronic and magnetic properties of the Fe atoms independently from the substrate. The easy magnetization direction of the Fe centres can be switched by oxygen adsorption, thus opening a way to control the magnetic anisotropy in supramolecular layers akin to that used in metallic thin films.

  6. Interface Properties of Atomic-Layer-Deposited Al2O3 Thin Films on Ultraviolet/Ozone-Treated Multilayer MoS2 Crystals.

    PubMed

    Park, Seonyoung; Kim, Seong Yeoul; Choi, Yura; Kim, Myungjun; Shin, Hyunjung; Kim, Jiyoung; Choi, Woong

    2016-05-11

    We report the interface properties of atomic-layer-deposited Al2O3 thin films on ultraviolet/ozone (UV/O3)-treated multilayer MoS2 crystals. The formation of S-O bonds on MoS2 after low-power UV/O3 treatment increased the surface energy, allowing the subsequent deposition of uniform Al2O3 thin films. The capacitance-voltage measurement of Au-Al2O3-MoS2 metal oxide semiconductor capacitors indicated n-type MoS2 with an electron density of ∼10(17) cm(-3) and a minimum interface trap density of ∼10(11) cm(-2) eV(-1). These results demonstrate the possibility of forming a high-quality Al2O3-MoS2 interface by proper UV/O3 treatment, providing important implications for their integration into field-effect transistors. PMID:27117229

  7. A multilayered sharp interface model of coupled freshwater and saltwater flow in coastal systems: model development and application

    USGS Publications Warehouse

    Essaid, H.I.

    1990-01-01

    The model allows for regional simulation of coastal groundwater conditions, including the effects of saltwater dynamics on the freshwater system. Vertically integrated freshwater and saltwater flow equations incorporating the interface boundary condition are solved within each aquifer. Leakage through confining layers is calculated by Darcy's law, accounting for density differences across the layer. The locations of the interface tip and toe, within grid blocks, are tracked by linearly extrapolating the position of the interface. The model has been verified using available analytical solutions and experimental results and applied to the Soquel-Aptos basin, Santa Cruz County, California. -from Author

  8. Effect of molecular orientation on monolayer and multilayer formations of fluorocarbon alcohol and fluorocarbon-α,ω-diol mixture at the hexane/water interface.

    PubMed

    Fukuhara, Ryushi; Tanida, Hajime; Nitta, Kiyofumi; Ina, Toshiaki; Uruga, Tomoya; Matsubara, Hiroki; Aratono, Makoto; Takiue, Takanori

    2014-10-30

    The effect of molecular orientation on the miscibility and structure of the adsorbed film of the 1H,1H,10H,10H-perfluorodecane-1,10-diol (FC10diol)-1H,1H,2H,2H-perfluorodecanol (FC10OH) mixture at the hexane/water interface were examined by interfacial tension and X-ray reflectivity measurements. The interfacial tension and X-ray reflectivity at the hexane solution/water interface were measured as a function of total molality m and composition of FC10OH in the mixture X2 under atmospheric pressure at 298.15 K. The interfacial pressure vs mean area per molecule curves showed that two kinds of condensed monolayers (C1 and C2) and multilayer (M) states appeared depending on m and X2. In the pure component systems, it was found that FC10OH forms condensed monolayer in which the molecules orient almost normally to the interface, and FC10diol orients parallel and is densely packed in the condensed monolayer and then piles spontaneously to form multilayer. In the mixed system, the phase diagram of adsorption indicated that FC10OH molecules are richer in C2 than in C1 state. The X-ray reflectivity measurements manifest that the condensed monolayer below X2 = 0.985 is heterogeneous in which the normal- and parallel-oriented domains coexist at the interface (C1 state), and that above X2 = 0.985 seems to be homogeneous with normal molecular orientation (C2 state). The structure of M state depends on those of condensed monolayers, on which the molecules pile spontaneously. The heterogeneous structure in C1 state is compared to that previously observed in the mixed system of FC10diol-FC12OH (1H,1H,2H,2H-perfluorododecanol), where FC12OH has longer fluorocarbon chain length than FC10OH and is discussed in terms of domain line tension.

  9. X-ray magnetic dichroism studies of magnetic multilayer systems

    NASA Astrophysics Data System (ADS)

    Antel, William Joseph, Jr.

    X-ray magnetic circular/linear dichoism (XMCD/XMLD) are powerful techniques used for element specific determination of magnetic moments. They are used with magneto-optic Kerr magnetometry (MOKE) and x-ray diffraction in the study of three different systems. The magnetic moments of Fe and Pt are determined as a function of Pt thickness in an Fe/Pt (001) multilayer. Additionally, MOKE is used to study the in plane anisotropy of the system. The ≈0.5 mB Pt induced moment is found to strongly effect the anisotropy of the system. A ferromagnetic rare-earth monopnictide, GdN, is studied as part of a Fe/GdN multilayer. XMCD is used to determine the moments of Gd and Fe in the system. It is demonstrated that it is possible to significantly enhance the Curie temperature of the GdN. Finally, the spin structure of antiferromagnetic FeMn is determined in an exchange biased FeMn/Co bilayer. It is found that four FeMn monolayers at the interface are aligned parallel to the Co in an alternating collinear spin arrangement. Beyond this the FeMn reverts to its bulk tetrahedral spin structure. Uncompensated Fe spins at the interface are the probable source of the exchange bias in this system. Lastly, a surface analysis chamber is built for the collection of angle-resolved Auger electron diffraction data.

  10. Investigation of frame mode unification and virtual channel multiplexing based on the multilayered satellite network OISLs interface

    NASA Astrophysics Data System (ADS)

    Deng, Boyu; Zhao, Shanghong; Li, Yongjun; Zhang, Xiwen; Cheng, Zhen

    2015-12-01

    In a multi-layered optical satellite network, a standardized data transmission is a reliable guarantee to efficiently process and transfer multi-service data for the space link. The transmission frame reframing unit (TFRU) is proposed to solve the problem of different service data having low transmission efficiency in the laser link. The TFRU uses a virtual channel (VC) technology to unify the format and rate of transmitted data using second encapsulation and VC scheduling for the service data. The Priority VC schedule algorithm is proposed to further improve multiplex efficiency. According to the principle of TFRU encapsulation and arrival rate of service data, the frame dynamic priority is defined by the VC priority and frame criticality. Furthermore, the Priority VC schedule specific method is provided. The simulation results show that the throughput increases to 3.0546 M, and the scheduling time delay reduces to 0.9183 s. Thus, the system performance has been greatly enhanced. The cache demands are satisfied because the laser terminal data transmission rate is larger than the sum of all service data rates. Using the dynamic schedule generated TFRU frames, the priority algorithm based on the TFRU ensures frame scheduling fairness in each VC.

  11. The formation of surface multilayers at the air-water interface from sodium diethylene glycol monoalkyl ether sulfate/AlCl3 solutions: the role of the alkyl chain length.

    PubMed

    Xu, Hui; Penfold, Jeffrey; Thomas, Robert K; Petkov, Jordan T; Tucker, Ian; Webster, John P R

    2013-10-15

    The influence of the alkyl chain length on surface multilayer formation at the air-water interface for the anionic surfactant sodium diethylene glycol monoalkyl ether sulfate, SAE2S, in the presence of Al(3+) multivalent counterions, in the form of AlCl3, is described. In the absence of electrolyte, the saturated monolayer adsorption is determined by the headgroup geometry and is independent of the alkyl chain length. In the presence of Al(3+) counterions, surface multilayer formation occurs, due to the strong SAE2S/Al(3+) binding and complexation. The neutron reflection data show that the alkyl chain length of the surfactant has a significant impact upon the evolution of the surface multilayer structure with surfactant and AlCl3 concentration. Increasing the alkyl chain length from decyl to tetradecyl results in the surface multilayer formation occurring at lower surfactant and AlCl3 concentrations. At the short alkyl chain lengths, decyl and dodecyl, the regions of multilayer formation with a small number of bilayers are increasingly extended with decreasing alkyl chain length. For the alkyl chain lengths of tetradecyl and hexadecyl, the surface behavior is further affected by decreases in the surfactant solubility in the presence of AlCl3, and this ultimately dominates the surface behavior at the longer alkyl chain lengths.

  12. Multilayer Dye Aggregation at Dye/TiO2 Interface via π…π Stacking and Hydrogen Bond and Its Impact on Solar Cell Performance: A DFT Analysis

    PubMed Central

    Zhang, Lei; Liu, Xiaogang; Rao, Weifeng; Li, Jingfa

    2016-01-01

    Multilayer dye aggregation at the dye/TiO2 interface of dye-sensitized solar cells is probed via first principles calculations, using p-methyl red azo dye as an example. Our calculations suggest that the multilayer dye aggregates at the TiO2 surface can be stabilized by π…π stacking and hydrogen bond interactions. Compared with previous two-dimensional monolayer dye/TiO2 model, the multilayer dye aggregation model proposed in this study constructs a three-dimensional multilayer dye/TiO2 interfacial structure, and provides a better agreement between experimental and computational results in dye coverage and dye adsorption energy. In particular, a dimer forms by π…π stacking interactions between two neighboring azo molecules, while one of them chemisorbs on the TiO2 surface; a trimer may form by introducing one additional azo molecule on the dimer through a hydrogen bond between two carboxylic acid groups. Different forms of multilayer dye aggregates, either stabilized by π…π stacking or hydrogen bond, exhibit varied optical absorption spectra and electronic properties. Such variations could have a critical impact on the performance of dye sensitized solar cells. PMID:27767196

  13. Interface study and performance of large layer pair ultra-short period W/B{sub 4}C X-ray multilayer

    SciTech Connect

    Pradhan, P. C. Nayak, M.; Mondal, P.; Lodha, G. S.

    2015-06-24

    The nature of interfaces in ultra short period W/B{sub 4}C multilayers (MLs) is studied using hard x-ray reflectivity and cross sectional transmission electron microscope. W/B{sub 4}C MLs are fabricated using magnetron sputtering system with systematic varying thickness of both W and B{sub 4}C layers from ∼5 to 30 Å keeping number of layer pairs fixed at 10. It is observed that in low period W/B{sub 4}C ML, as the layer thickness decreases, the interdiffusion plays a significant role because of the discontinuous nature of film. This gives variation of density and roughness of the layer as well as generates thickness errors in the ML structure due to volume changes which is originated by interdifusion process. Finally, W/B{sub 4}C MLs with large number of layer pairs (300) are fabricated with periodicity d= 20 Å which gives ∼54 % of reflectivity at energy 8.047 keV.

  14. Ion induced magnetization reorientation in Co/Pt multilayers for patterned media

    SciTech Connect

    Weller, D.; Baglin, J.E.E.; Kellock, A.J.; Hannibal, K.A.; Toney, M.F.; Kusinski, G.; Lang, S.; Best, M.E.; Terris, B.D.

    2000-01-01

    Co/Pt multilayer films with perpendicular magnetic anisotropy and large out-of-plane coercivities of 3.9 - 8.5 kOe have been found to undergo a spin reorientation transition from out-of-plane to in-plane upon irradiation with 700 keV nitrogen ions. X-ray reflectivity experiments show that the multilayer structure gets progressively disrupted with increasing ion dose, providing direct evidence for local atomic displacements at the Co/Pt interfaces. This effectively destroys the magnetic interface anisotropy, which was varied by about a factor of two, between KS@ 0.4 erg/cm2 and KS@ 0.85 erg/cm2 for two particular films. The dose required to initiate spin-reorientation, 6x1014 N+/cm2 and 1.5x1015 N+/cm2, respectively, scales with KS. It is roughly equal to the number of Co interface atoms per unit interface area contributing to KS.

  15. Magnetic characteristics of a high-layer-number NiFe/FeMn multilayer

    SciTech Connect

    Paterson, G. W. Gonçalves, F. J. T.; McFadzean, S.; Stamps, R. L.; O'Reilly, S.; Bowman, R.

    2015-11-28

    We report the static and dynamic magnetic characteristics of a high-layer-number NiFe/FeMn multilayer test structure with potential applications in broadband absorber and filter devices. To allow fine control over the absorption linewidths and to understand the mechanisms governing the resonances in a tailored structure similar to that expected to be used in real world applications, the multilayer was intentionally designed to have layer thickness and interface roughness variations. Magnetometry measurements show that the sample has complex hysteresis loops with features consistent with single ferromagnetic film reversals. Characterisation by transmission electron microscopy allows us to correlate the magnetic properties with structural features, including the film widths and interface roughnesses. Analysis of resonance frequencies from broadband ferromagnetic resonance measurements as a function of field magnitude and orientation provide values of the local exchange bias, rotatable anisotropy, and uniaxial anisotropy fields for specific layers in the stack and explain the observed mode softening. The linewidths of the multilayer are adjustable around the bias field, approaching twice that seen at larger fields, allowing control over the bandwidth of devices formed from the structure.

  16. Size dependent gold nanoparticle interaction at nano-micro interface using both monolayer and multilayer (tissue-like) cell models

    NASA Astrophysics Data System (ADS)

    Yohan, Darren; Yang, Celina; Lu, Xiaofeng; Chithrani, Devika B.

    2016-03-01

    Gold nanoparticles (GNPs) can be used as a model NP system to improve the interface between nanotechnology and medicine since their size and surface properties can be tailored easily. GNPs are being used as radiation dose enhancers and as drug carriers in cancer research. Hence, it is important to know the optimum NP size for uptake not only at monolayer level but also at tissue level. Once GNPs leave tumor vasculature, they enter the tumor tissue. Success of any therapeutic technique using NPs depends on how well NPs penetrate the tumor tissue and reach individual tumor cells. In this work, multicellular layers (MCLs) were grown to model the post-vascular tumor environment. GNPs of 20 nm and 50 nm diameters were used to elucidate the effects of size on the GNP penetration and distribution dynamics. Larger NPs (50 nm) were better at monolayer level, but smaller NPs (20 nm) were at tissue level. The MCLs exhibited a much more extensive extracellular matrix (ECM) than monolayer cell cultures. This increased ECM created a barrier for NP transport and ECM was also dependent on the tumor cell lines. Smaller NPs penetrated better compared to larger NPs. Transport of NPs was better in MDA-MB231 vs MCF-7. This MCL model tissue structures are better tools to optimize NP transport through tissue before using them in animal models. Based on our study, we believe that smaller NPs are better for improved outcome in future cancer therapeutics.

  17. The effects of neutron irradiation on shear properties at the monolayered PyC and the multilayered PyC/SiC interfaces of SiC/SiC composites

    SciTech Connect

    Nozawa, Takashi; Katoh, Yutai; Snead, Lance Lewis

    2007-01-01

    The effect of neutron irradiation on mechanical properties at the fiber/matrix interface of SiC/SiC composites was evaluated. The materials investigated were Hi-Nicalon Type-S fiber reinforced chemically vapor infiltrated SiC matrix composites with varied interphases: monolayered pyrolytic carbon (PyC) or multilayered PyC/SiC. The neutron fluence was 7.7 1025 n/m2 (E>0.1 MeV), and the irradiation temperature was 800 C. Interfacial shear properties were evaluated by the fiber push-out test method. A modified shear-lag model was applied to analyze the interfacial shear parameters. Test results indicate that the interfacial debond shear strength and the interfacial friction stress for the multilayer composites were significantly degraded by irradiation. Nevertheless, the multilayer composites retained sufficient interfacial shear properties so that overall composite strength after neutron irradiation was unaffected. The actual mechanism of interphase property decrease for the multilayer composites is unknown. The interfacial shear properties of the irradiated monolayer composites contrarily appear unaffected.

  18. Magnetic metallic multilayers

    SciTech Connect

    Hood, R.Q.

    1994-04-01

    Utilizing self-consistent Hartree-Fock calculations, several aspects of multilayers and interfaces are explored: enhancement and reduction of the local magnetic moments, magnetic coupling at the interfaces, magnetic arrangements within each film and among non-neighboring films, global symmetry of the systems, frustration, orientation of the various moments with respect to an outside applied field, and magnetic-field induced transitions. Magnetoresistance of ferromagnetic-normal-metal multilayers is found by solving the Boltzmann equation. Results explain the giant negative magnetoresistance encountered in these systems when an initial antiparallel arrangement is changed into a parallel configuration by an external magnetic field. The calculation depends on (1) geometric parameters (thicknesses of layers), (2) intrinsic metal parameters (number of conduction electrons, magnetization, and effective masses in layers), (3) bulk sample properties (conductivity relaxation times), (4) interface scattering properties (diffuse scattering versus potential scattering at the interfaces, and (5) outer surface scattering properties (specular versus diffuse surface scattering). It is found that a large negative magnetoresistance requires considerable asymmetry in interface scattering for the two spin orientations. Features of the interfaces that may produce an asymmetrical spin-dependent scattering are studied: varying interfacial geometric random roughness with no lateral coherence, correlated (quasi-periodic) roughness, and varying chemical composition of the interfaces. The interplay between these aspects of the interfaces may enhance or suppress the magnetoresistance, depending on whether it increases or decreases the asymmetry in the spin-dependent scattering of the conduction electrons.

  19. Vibroacoustical behaviour of multilayered heterogeneous plates with elastic support and interface condition: Application to the case of the double-deck French high- speed train

    NASA Astrophysics Data System (ADS)

    Chabaud, Thierry Rene

    1998-10-01

    Mass Transit has to meet specifications of increasing difficulty which put in the forefront areas which were before considered as secondary. In particular, passengers acoustic comfort has become a major criterion, reflecting the requirements for quality transportation. The present work has its origin in this specific context and more specially in the intention of FAIVELEY TRANSPORT, a Railway equipment supplier, to improve the acoustic behaviour of its products. The aim of this study is the comprehension of the physical phenomena of the noise transmission through the doors of the transport vehicles, from outside to inside. The Railway access doors are the main application of this work. The considered frequency range is low frequencies below 500 Hz. The final objective is to notably reduce the transmitted noise in order to improve the passengers' acoustic comfort inside the transport vehicles. To do this, we developed a model based on an analytical integro-modal approach, associated with a Rayleigh-Ritz approximation. The original aspect of this work is to develop a model of a vibrating structure which take into account its multilayered and heterogeneous aspects and its complex boundary and interface conditions (linear and punctual elastic stiffness). This model is the basis of a specific software for preliminary design studies (VANTAIL) which is able to indicate, with a parametric study, the contribution of each different part of the doors to the global vibroacoustic behaviour. An experimental study on an industrial structure (the access door of the double deck French high speed train) permits us to validate the developed software, to define its limits and to validate the proposed vibroacoustic treatments.

  20. Magnetic domain patterns on strong perpendicular magnetization of Co/Ni multilayers as spintronics materials: I. Dynamic observations.

    PubMed

    Suzuki, Masahiko; Kudo, Kazue; Kojima, Kazuki; Yasue, Tsuneo; Akutsu, Noriko; Diño, Wilson Agerico; Kasai, Hideaki; Bauer, Ernst; Koshikawa, Takanori

    2013-10-01

    Materials with perpendicular magnetic anisotropy can reduce the threshold current density of the current-induced domain wall motion. Co/Ni multilayers show strong perpendicular magnetic anisotropy and therefore it has become a highly potential candidate of current-induced domain wall motion memories. However, the details of the mechanism which stabilizes the strong perpendicular magnetization in Co/Ni multilayers have not yet been understood. In the present work, the evolution of the magnetic domain structure of multilayers consisting of pairs of 2 or 3 monolayers (ML) of Ni and 1 ML of Co on W(110) was investigated during growth with spin-polarized low-energy electron microscopy. An interesting phenomenon, that the magnetic domain structure changed drastically during growth, was revealed. In the early stages of the growth the magnetization alternated between in-plane upon Co deposition and out-of-plane upon Ni deposition. The change of the magnetization direction occurred within a range of less than 0.2 ML during Ni or Co deposition, with break-up of the existing domains followed by growth of new domains. The Ni and Co thickness at which the magnetization direction switched shifted gradually with the number of Co/Ni pairs. Above 3-4 Co/Ni pairs it stayed out-of-plane. The results indicate clearly that the Co-Ni interfaces play the important role of enhancing the perpendicular magnetic anisotropy.

  1. Square-loop cobalt/gold multilayers

    NASA Astrophysics Data System (ADS)

    Gambino, R. J.; Ruf, R. R.

    1990-05-01

    Multilayers of Co and Au with perpendicular hysteresis loop squareness ratios of ˜1 have been prepared by e-beam evaporation. These films have perpendicular anisotropy in the as-deposited condition in contrast to other work in which Co/Au multilayers, prepared by ion beam sputtering, showed perpendicular anisotropy only after annealing at 300 °C. The Faraday rotation of these square-loop multilayers is about 9×105 deg/cm of Co or 1×105 deg/cm of total thickness at a wavelength of 633 nm. These values indicate an enhancement of the Faraday rotation of Co at this wavelength by about a factor of 2. This may be a plasma-edge enhancement effect similar to that reported by Katayama et al. [Phys. Rev. Lett. 60, 1426 (1988)] in the Kerr effect of Fe/Au multilayers.

  2. Magnetic domain patterns on strong perpendicular magnetization of Co/Ni multilayers as spintronics materials: II. Numerical simulations.

    PubMed

    Kudo, Kazue; Suzuki, Masahiko; Kojima, Kazuki; Yasue, Tsuneo; Akutsu, Noriko; Diño, Wilson Agerico; Kasai, Hideaki; Bauer, Ernst; Koshikawa, Takanori

    2013-10-01

    Magnetic domains in ultrathin films form domain patterns, which strongly depend on the magnetic anisotropy. The magnetic anisotropy in Co/Ni multilayers changes with the number of layers. We provide a model to simulate the experimentally observed domain patterns. The model assumes a layer-dependent magnetic anisotropy. With the anisotropy parameter estimated from experimental data, we reproduce the magnetic domain patterns.

  3. Multi-Layer, Sharp-Interface Models of Pore Pressure Buildup within the Illinois Basin due to Basin-Wide CO2 Injection

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Person, M. A.; Gable, C. W.; Celia, M. A.; Nordbotten, J. M.; Bandilla, K.; Elliot, T. R.; Rupp, J.; Ellett, K. M.; Bowen, B.; Pickett, W.; Woolsey, E. E.

    2011-12-01

    We recently developed and applied a new parallel, multi-layer, finite-element model to the Illinois Basin in order to assess the spatial extent and magnitude of pore pressure increases resulting from the annual projected injection of 100 million metric tons of CO2. One focus of this work is to assess the potential for inducing a seismic event associated with low effective stress conditions around CO2 injection wells in the southern Illinois Basin where Mt Simon permeability is relatively low (< 50 mD). We used a sharp-interface formulation to represent a CO2, freshwater, and brine transport within each layer. A simple parallelization scheme was used in which fluid transport in each layer is solved on a separate processor. The layers are linked at the after each time step through vertical fluxes of fresh and saline water across their respective confining units. This model was validated, in part, by comparison to computed pore pressure distributions from a published 8-layer test case. Our Illinois Basin model represents spatial variations in porosity using a modified form of Athy's law. Permeability is logarithmically related to porosity so that permeability. Principal reservoirs represented in our model include the Mt. Simon Formation, the Knox Dolomite, Ordovician carbonates, Silurian-Devonian and Mississippian-Pennsylvanian sandstone/carbonates units. Key confining unit represented include the Eau Claire, Maquoketa, and New Albany Shales. A limited number of low-permeability faults were also included in the model. The permeability of fault elements were set to between 10-100 times lower than surrounding sediments. We calibrated our model using historical freshwater pumping data from the Chicago area (128 million gallons per day of H2O) as well as the salinity distribution across the Illinois Basin. We found that incorporating a stream network which included the Rock River near Chicago was important in reproducing pre-development head patterns in the Cambro

  4. Ultrasonic NDE of Multilayered Structures

    SciTech Connect

    Quarry, M J; Fisher, K A; Lehman, S K

    2005-02-14

    This project developed ultrasonic nondestructive evaluation techniques based on guided and bulk waves in multilayered structures using arrays. First, a guided wave technique was developed by preferentially exciting dominant modes with energy in the layer of interest via an ultrasonic array. Second, a bulk wave technique uses Fermat's principle of least time as well as wave-based properties to reconstruct array data and image the multilayered structure. The guided wave technique enables the inspection of inaccessible areas of a multilayered structure without disassembling it. Guided waves propagate using the multilayer as a waveguide into the inaccessible areas from an accessible position. Inspecting multi-layered structures with a guided wave relies on exciting modes with sufficient energy in the layer of interest. Multilayered structures are modeled to determine the possible modes and their distribution of energy across the thickness. Suitable modes were determined and excited by designing arrays with the proper element spacing and frequency. Bulk wave imaging algorithms were developed to overcome the difficulties of multiple reflections and refractions at interfaces. Reconstruction algorithms were developed to detect and localize flaws. A bent-ray algorithm incorporates Fermat's principle to correct time delays in the ultrasonic data that result from the difference in wave speeds in each layer and refractions at the interfaces. A planar wave-based algorithm was developed using the Green function for the multilayer structure to enhance focusing on reception for improved imaging.

  5. Tuning of in-plane optical anisotropy by inserting ultra-thin InAs layer at interfaces in (001)-grown GaAs/AlGaAs quantum wells

    SciTech Connect

    Yu, J. L.; Cheng, S. Y.; Lai, Y. F.; Zheng, Q.

    2015-01-07

    The in-plane optical anisotropy (IPOA) in (001)-grown GaAs/AlGaAs quantum wells (QWs) with different well widths varying from 2 nm to 8 nm has been studied by reflectance difference spectroscopy. Ultra-thin InAs layers with thickness ranging from 0.5 monolayer (ML) to 1.5 ML have been inserted at GaAs/AlGaAs interfaces to tune the asymmetry in the QWs. It is demonstrated that the IPOA can be accurately tailored by the thickness of the inserted ultra-thin InAs layer at the interfaces. Strain-induced IPOA has also been extracted by using a stress apparatus. We find that the intensity of the strain-induced IPOA decreases with the thickness of the inserted InAs layer, while that of the interface-induced IPOA increases with the thickness of the InAs layer. Theoretical calculations based on 6 band k ⋅ p theory have been carried out, and good agreements with experimental results are obtained. Our results demonstrate that, the IPOA of the QWs can be greatly and effectively tuned by inserting an ultra-thin InAs layer with different thicknesses at the interfaces of QWs, which does not significantly influence the transition energies and the transition probability of QWs.

  6. Seed influence on the ferromagnetic resonance response of Co/Ni multilayers

    SciTech Connect

    Sabino, Maria Patricia Rouelli Tran, Michael; Hin Sim, Cheow; Ji Feng, Ying; Eason, Kwaku

    2014-05-07

    The effect of Pd and Ru seed layers on the magnetic properties of [Co/Ni]{sub N} multilayers with varying number of bilayer repeats N is investigated using vector network analyzer ferromagnetic resonance. The effective anisotropy field H{sub Keff} is found to increase with N for Ru seed, but decreases for Pd until N = 15. As N is increased beyond 15, H{sub Keff} decreases for both seeds. In contrast, the damping parameter α decreases with N regardless of the seed, showing a 1/N dependence. Taking spin pumping into account, the intrinsic damping α{sub 0} for both Pd and Ru seeds reduce to α{sub 0} ≈ 0.01. These results demonstrate that there can be a strong influence of the seed/Co interface on anisotropy, especially for sufficiently low N, but not necessarily on α{sub 0}.

  7. Effects of local field and inherent strain in reflectance anisotropy spectra of AIIIBV semiconductors with naturally oxidized surfaces

    NASA Astrophysics Data System (ADS)

    Berkovits, V. L.; Kosobukin, V. A.; Gordeeva, A. B.

    2015-12-01

    Reflectance anisotropy (RA) spectra of naturally oxidized (001) surfaces of GaAs and InAs crystals are measured for photon energies from 1.5 up to 5.5 eV. The differential high-accuracy RA spectra reveal features substantially different from those caused by either a reconstruction of clean surface or a built-in near-surface electric field. Models of atomic structure with anisotropic transition layers of excess arsenic atoms specific for GaAs(001)/oxide and InAs(001)/oxide interfaces are proposed. In conformity with these models, a general theory of reflectance anisotropy is developed for semiconductor/oxide interfaces within the Green's function technique. The theory takes into account the combined effect of local field due to interface dipoles and of intrinsic near-surface strain of the crystal. Measured RA spectra are analyzed in the model of valence-bond dipoles occupying a rectangular lattice in a multilayer medium. Comparing the measured and calculated spectra, we conclude that RA spectra of oxidized GaAs(001) and InAs(001) surfaces are simultaneously influenced by interface and near-surface anisotropies. The former is responsible for the broad-band spectral features which are associated with polarizability of the valence bonds attached to As atoms at the crystal/oxide interface. The near-surface anisotropy is due to inherent uniaxial straining the near-surface region of crystal. The effect of strain on RA spectra is experimentally and theoretically substantiated for GaAs crystal wafers undergone a uniaxial applied stress. Basically, this work results in the following. It establishes the physical nature of different levels of RA spectra observed in a majority of papers, but never analyzed. It demonstrates how the studied features of RA spectra could be applied for optical characterization of strained interfaces and atomic layers.

  8. Magnetic properties of a Pt/Co2FeAl/MgO structure with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Qi; Xu, Xiao-Guang; Wang, Sheng; Wu, Yong; Zhang, De-Lin; Miao, Jun; Jiang, Yong

    2012-10-01

    Microstructures and magnetic properties of Ta/Pt/Co2FeAl (CFA)/MgO multilayers are studied to understand perpendicular magnetic anisotropy (PMA) of half-metallic full-Heusler alloy films. PMA is realized in a 2.5-nm CFA film with B2-ordered structure observed by a high resolution transmission electron microscope. It is demonstrated that a high quality interface between the ferromagnetic layer and oxide layer is not essential for PMA. The conversions between in-plane anisotropy and PMA are investigated to study the dependence of magnetic moment on temperature. At the intersection points, the decreasing slope of the saturation magnetization (Ms) changes because of the conversions. The dependence of Ms on the annealing temperature and MgO thickness is also studied.

  9. Thermal stability and degradation mechanism of NiFe/Cu giant magnetoresistance multilayer systems

    NASA Astrophysics Data System (ADS)

    Hecker, M.; Tietjen, D.; Schneider, C. M.; Cramer, N.; Malkinski, L.; Camley, R. E.; Celinski, Z.

    2002-05-01

    Ni80Fe20/Cu multilayers show large giant magnetoresistance (GMR) at low magnetic saturation fields. The GMR signal is known to degrade irreversibly at elevated temperatures. Clarification of the relevant deterioration mechanisms refines our basic understanding of the GMR effect and may help to improve the thermal stability of devices. We therefore investigated structural, transport, and magnetic properties of sputtered Ni80Fe20/Cu multilayers in the as-deposited state and after different anneals (up to 600 °C) by x-ray techniques, transport measurements, ferromagnetic resonance (FMR), and magneto-optical Kerr effect (MOKE). Multilayers with the second maximum of the antiferromagnetic (afm) coupling showed a sharp drop of the GMR at about 250 °C. The changes of the transport properties were associated with a series of structural alterations. These ranged from grain growth and defect reduction through texture sharpening and stress evolution up to the onset of interdiffusion. Interdiffusion changed the NiFe layer composition and the interface structure and finally caused layer intermixing with a loss of the former multilayer structure. Further insight into the magnetic behavior was gained from FMR and MOKE measurements, from which we determined the in-plane magnetic anisotropies, the strength of the afm coupling (bilinear and biquadratic), and the homogeneity of the layer magnetization as a function of the annealing temperature.

  10. Cobalt-Based Hard Magnets, Thin Films and Multilayers

    NASA Astrophysics Data System (ADS)

    Gao, Chuan

    1991-02-01

    Co-based magnetic materials including bulk, thin film and magnetic multilayers have been studied. The purpose of the first part of this work is to study a Co -based transition metal alloy to be processed to result in significant enhancement of its magnetic properties (coercivity, magnetization, and energy product) in the absence rare earths. CoZr(Hf)BSi alloys have been studied. Rapidly quenched Co_ {78}Zr_{16}B_3Si_3 and Co_{76}Hf_ {76}B_3Si_3 showed the highest coercivity (6.7 kOe and 6.5 kOe respectively). This is the highest room temperature coercivity reported in a non -rare-earth containing magnet up to now. This system has excellent thermal stability. Co-based thin film alloys were also studied and we obtain coercivities as high as 700 Oe for sputtered thin films. This lies in between the maximum value obtained for as-cast bulk alloys (50 Oe) and rapidly quenched alloys (6.7 kOe). Multilayers were studied with the objective of determining the effect of interfaces on the magnetic properties of Co alloys. Multilayers of the form Co/Cu, Co_{95}B _5/Cu and Co/Al were studied and the interface anisotropy was found to favor a magnetization perpendicular to the film. Very thin magnetic layers led to very small coercivities since the size of magnetic domains was restricted. We also noted some interesting layer-layer magnetic interactions. Finally some unusual magnetization reversal behavior was noted in which the magnetic moment goes to zero and reverses before the applied field goes to zero.

  11. Fabrication of liquid-infused surfaces using reactive polymer multilayers: principles for manipulating the behaviors and mobilities of aqueous fluids on slippery liquid interfaces.

    PubMed

    Manna, Uttam; Lynn, David M

    2015-05-20

    The design of slippery liquid-infused porous surfaces (SLIPS) using nanoporous and chemically reactive polymer multilayers is reported. This approach permits fabrication of slippery anti-fouling coatings on complex surfaces and provides new means to manipulate the mobilities of contacting aqueous fluids. The results expand the range of tools that can be used to manipulate the behaviors of SLIPS and open the door to new applications of this emerging class of soft materials.

  12. Fabrication of liquid-infused surfaces using reactive polymer multilayers: principles for manipulating the behaviors and mobilities of aqueous fluids on slippery liquid interfaces.

    PubMed

    Manna, Uttam; Lynn, David M

    2015-05-20

    The design of slippery liquid-infused porous surfaces (SLIPS) using nanoporous and chemically reactive polymer multilayers is reported. This approach permits fabrication of slippery anti-fouling coatings on complex surfaces and provides new means to manipulate the mobilities of contacting aqueous fluids. The results expand the range of tools that can be used to manipulate the behaviors of SLIPS and open the door to new applications of this emerging class of soft materials. PMID:25854608

  13. MoRu/Be multilayers for extreme ultraviolet applications

    DOEpatents

    Bajt, Sasa C.; Wall, Mark A.

    2001-01-01

    High reflectance, low intrinsic roughness and low stress multilayer systems for extreme ultraviolet (EUV) lithography comprise amorphous layers MoRu and crystalline Be layers. Reflectance greater than 70% has been demonstrated for MoRu/Be multilayers with 50 bilayer pairs. Optical throughput of MoRu/Be multilayers can be 30-40% higher than that of Mo/Be multilayer coatings. The throughput can be improved using a diffusion barrier to make sharper interfaces. A capping layer on the top surface of the multilayer improves the long-term reflectance and EUV radiation stability of the multilayer by forming a very thin native oxide that is water resistant.

  14. Band alignment of HfO{sub 2}/multilayer MoS{sub 2} interface determined by x-ray photoelectron spectroscopy: Effect of CHF{sub 3} treatment

    SciTech Connect

    Liu, Xinke; He, Jiazhu; Tang, Dan; Jia, Fang; Lu, Youming Zhu, Deliang; Liu, Wenjun; Cao, Peijiang; Han, Sun; Liu, Qiang; Wen, Jiao; Yu, Wenjie; Pan, Jisheng; He, Zhubing; Ang, Kah-Wee

    2015-09-07

    The energy band alignment between HfO{sub 2}/multilayer (ML)-MoS{sub 2} was characterized using high-resolution x-ray photoelectron spectroscopy. The HfO{sub 2} was deposited using an atomic layer deposition tool, and ML-MoS{sub 2} was grown by chemical vapor deposition. A valence band offset (VBO) of 1.98 eV and a conduction band offset (CBO) of 2.72 eV were obtained for the HfO{sub 2}/ML-MoS{sub 2} interface without any treatment. With CHF{sub 3} plasma treatment, a VBO and a CBO across the HfO{sub 2}/ML-MoS{sub 2} interface were found to be 2.47 eV and 2.23 eV, respectively. The band alignment difference is believed to be dominated by the down-shift in the core level of Hf 4d and up-shift in the core level of Mo 3d, or the interface dipoles, which caused by the interfacial layer in rich of F.

  15. First-principles calculations of the magnetic anisotropic constants of Co-Pd multilayers: Effect of stacking faults

    NASA Astrophysics Data System (ADS)

    Wu, G.; Khoo, K. H.; Jhon, M. H.; Meng, H.; Lua, S. Y. H.; Sbiaa, R.; Gan, C. K.

    2012-07-01

    Using first-principles density functional theory calculations with spin-orbit coupling, we systematically investigate the magnetic anisotropic energy (MAE) of ConPdm (n+m=5) magnetic multilayers. We consider the influences of the relative atomic weight of Co, wCo, stacking fault, and external stress on the MAE. We find that out-of-plane lattice constant, saturation magnetization, and magnetic moments are almost linearly correlated with wCo. The magnetic anisotropic constant (MAC) curve of ConPdm without stacking fault shows a near-linear dependence on wCo that agrees with our derived effective MAC Kueff which includes shape, magneto-crystalline, and magneto-elastic contributions. We also show that the contributions from Pd layers to both the total magnetic moments and magnetic anisotropy are significant. The stress anisotropy due to the substrate has a weak effect on the MAC. However the stacking fault has a strong effect on the MAC. When the Co layer is thin, a Co-Pd interface without stacking fault is necessary for higher Kueff. However, when the Co layer is thick, creating stacking faults inside the Co region may produce a larger Kueff. Our study suggests the ways to increase the perpendicular magnetic anisotropy in Co-Pd multilayer systems and subsequently leads to the development of novel magnetic recording devices.

  16. Effects of local field and inherent strain in reflectance anisotropy spectra of A{sup III}B{sup V} semiconductors with naturally oxidized surfaces

    SciTech Connect

    Berkovits, V. L.; Kosobukin, V. A.; Gordeeva, A. B.

    2015-12-28

    Reflectance anisotropy (RA) spectra of naturally oxidized (001) surfaces of GaAs and InAs crystals are measured for photon energies from 1.5 up to 5.5 eV. The differential high-accuracy RA spectra reveal features substantially different from those caused by either a reconstruction of clean surface or a built-in near-surface electric field. Models of atomic structure with anisotropic transition layers of excess arsenic atoms specific for GaAs(001)/oxide and InAs(001)/oxide interfaces are proposed. In conformity with these models, a general theory of reflectance anisotropy is developed for semiconductor/oxide interfaces within the Green's function technique. The theory takes into account the combined effect of local field due to interface dipoles and of intrinsic near-surface strain of the crystal. Measured RA spectra are analyzed in the model of valence-bond dipoles occupying a rectangular lattice in a multilayer medium. Comparing the measured and calculated spectra, we conclude that RA spectra of oxidized GaAs(001) and InAs(001) surfaces are simultaneously influenced by interface and near-surface anisotropies. The former is responsible for the broad-band spectral features which are associated with polarizability of the valence bonds attached to As atoms at the crystal/oxide interface. The near-surface anisotropy is due to inherent uniaxial straining the near-surface region of crystal. The effect of strain on RA spectra is experimentally and theoretically substantiated for GaAs crystal wafers undergone a uniaxial applied stress. Basically, this work results in the following. It establishes the physical nature of different levels of RA spectra observed in a majority of papers, but never analyzed. It demonstrates how the studied features of RA spectra could be applied for optical characterization of strained interfaces and atomic layers.

  17. Artificial multilayers and nanomagnetic materials

    PubMed Central

    SHINJO, Teruya

    2013-01-01

    The author has been actively engaged in research on nanomagnetic materials for about 50 years. Nanomagnetic materials are comprised of ferromagnetic systems for which the size and shape are controlled on a nanometer scale. Typical examples are ultrafine particles, ultrathin films, multilayered films and nano-patterned films. In this article, the following four areas of the author’s studies are described. (1) Mössbauer spectroscopic studies of nanomagnetic materials and interface magnetism. (2) Preparation and characterization of metallic multilayers with artificial superstructures. (3) Giant magnetoresistance (GMR) effect in magnetic multilayers. (4) Novel properties of nanostructured ferromagnetic thin films (dots and wires). A subject of particular interest in the author’s research was the artificially prepared multilayers consisting of metallic elements. The motivation to initiate the multilayer investigation is described and the physical properties observed in the artificial multilayers are introduced. The author’s research was initially in the field of pure physical science and gradually extended into applied science. His achievements are highly regarded not only from the fundamental point of view but also from the technological viewpoint. PMID:23391605

  18. Amorphous FeCoSiB for exchange bias coupled and decoupled magnetoelectric multilayer systems: Real-structure and magnetic properties

    SciTech Connect

    Hrkac, V.; Strobel, J.; Kienle, L.; Lage, E.; Köppel, G.; McCord, J.; Quandt, E.; Meyners, D.

    2014-10-07

    The effect of field annealing for exchanged biased multilayer films is studied with respect to the resultant structural and magnetic film properties. The presented multilayer stacks comprise repeating sequences of Ta/Cu/(1 1 1) textured antiferromagnetic Mn₇₀Ir₃₀ /amorphous ferromagnetic Fe₇₀.₂Co₇.₈Si₂B₁₀. Within the ferromagnetic layers crystalline filaments are observed. An additional Ta layer between the antiferromagnet and ferromagnet is used in order to investigate and separate the influence of the common Mn₇₀Ir₃₀/Fe₇₀.₂Co₇.₈Si₁₂B₁₀ interface on the occurring filaments and structural changes. In situ and ex situ transmission electron microscopy is used for a comprehensive structure characterization of multilayer stacks for selected temperature stages. Up to 250 °C, the multilayers are structurally unaltered and preserve the as-deposited condition. A deliberate increase to 350 °C exhibits different crystallization processes for the films, depending on the presence of crystal nuclei within the amorphous ferromagnetic layer. The influence of volume-to-surface ratio of the multilayer stacks to the crystallization process is emphasized by the comparison of in situ and ex situ investigations as the respective specimen thickness is changed. Complementary magnetic studies reveal a defined exchange bias obtained at the first annealing step and a decrease of total anisotropy field with partial crystallization after the subsequent annealing at 350 °C.

  19. Elastic anisotropy of crystals

    NASA Astrophysics Data System (ADS)

    Kube, Christopher M.

    2016-09-01

    An anisotropy index seeks to quantify how directionally dependent the properties of a system are. In this article, the focus is on quantifying the elastic anisotropy of crystalline materials. Previous elastic anisotropy indices are reviewed and their shortcomings discussed. A new scalar log-Euclidean anisotropy measure AL is proposed, which overcomes these deficiencies. It is based on a distance measure in a log-Euclidean space applied to fourth-rank elastic tensors. AL is an absolute measure of anisotropy where the limiting case of perfect isotropy yields zero. It is a universal measure of anisotropy applicable to all crystalline materials. Specific examples of strong anisotropy are highlighted. A supplementary material (ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-6-041609) provides an anisotropy table giving the values of AL for 2,176 crystallite compounds.

  20. Improved Reflectance and Stability of Mo/Si Multilayers

    SciTech Connect

    Bajt, S.; Almeda, J.; Naree, T.; Clift, M.; Folta, A.; Kauffman, B.; Spiller, E.

    2001-10-22

    Commercial EUV lithographic systems require multilayers with higher reflectance and better stability then that published to date. Interface-engineered Mo/Si multilayers with 70% reflectance at 13.5 nm wavelength (peak width of 0.545 nm) and 71% at 12.7 nm wavelength (peak width of 0.49 nm) were developed. These results were achieved with 50 bilayers. These new multilayers consist of Mo and Si layers separated by thin boron carbide layers. Depositing boron carbide on interfaces leads to reduction in silicide formation on the Mo-on-Si interfaces. Bilayer contraction is reduced by 30% implying that there is less intermixing of Mo and Si to form silicide. As a result the Mo-on-Si interfaces are sharper in interface-engineered multilayers than in standard Mo/Si multilayers. The optimum boron carbide thicknesses have been determined and appear to be different for Mo-on-Si and Si-on-Mo interfaces. The best results were obtained with 0.4 nm thick boron carbide layer on the Mo-on-Si interface and 0.25 nm thick boron carbide layer on the Si-on-Mo interface. Increase in reflectance is consistent with multilayers with sharper and smoother interfaces. A significant improvement in oxidation resistance of EUV multilayers has been achieved with ruthenium terminated Mo/Si multilayers. The best capping layer design consists of a Ru layer separated from the last Si layer by a boron carbide layer. This design achieves high reflectance and the best oxidation resistance in a water vapor (i.e. oxidation) environment. Electron beam exposures of 4.5 hours in the presence of 5x10{sup -7} torr water vapor partial pressure show no measurable reflectance loss and no increase in the oxide thickness of Ru terminated multilayers. Longer exposures in different environments are necessary to test lifetime stability of many years.

  1. Magnetic multilayer structure

    DOEpatents

    Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.

    2016-07-05

    A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.

  2. Growth-surface-driven anisotropy and spontaneous layering in vapor-deposited alloy films

    NASA Astrophysics Data System (ADS)

    Shapiro, Alexander Leon

    Perpendicular magnetic anisotropy (PMA) developed on the growth surface has been studied in a number of vapor-deposited alloy film systems. Epitaxial (100), (110), (100) and polycrystalline CoXPt1-X ,CoX Pt1-X 1-YSiY, and NiXPt1-X alloy films have been deposited by co-evaporation over a range of growth temperatures from -50°C to 800°C. Growth induced PMA is reported in samples deposited at temperatures between 200--400°C. This PMA is closely correlated with evidence for clustering of the magnetic species. A model of the magnetic species clustered into thin platelets, with the interfaces between the platelets and the Pt matrix providing the source of PMA, is presented. Magnetic moment and Magneto-Optic Kerr Effect (MOKE) results support an interpretation of interfaces, like spontaneous incoherent multilayer fragments, perpendicular to the growth direction. Deposition rate experiments show that surface atomic mobility plays an important role in the development of platelets and PMA. Results from annealing experiments indicate that anisotropy and clustering are not bulk equilibrium phenomena, but are trapped into the growing surface. The presence of surface atomic mobility then at intermediate deposition temperatures along with a lack of bulk atomic mobility allow platelets on the surface to be trapped into the bulk by succeeding deposition layers. Studies of ternary Co-Pt-Si alloys, in which Si acts to slow surface atomic mobility, confirm that the mobility of adatoms on the surface is critical to the formation of platelet structures and PMA. The clustering and PMA found in Ni-Pt alloys remove magnetic interaction as a source of platelet formation, leading to surface segregation and reconstruction as likely to be critical to the development of PMA. The lack of clustering and anisotropy seen in (100) oriented NiPt films is correlated with a non-flat surface reconstruction which disrupts the formation of platelets.

  3. Optimization of the random multilayer structure to break the random-alloy limit of thermal conductivity

    SciTech Connect

    Wang, Yan; Gu, Chongjie; Ruan, Xiulin

    2015-02-16

    A low lattice thermal conductivity (κ) is desired for thermoelectrics, and a highly anisotropic κ is essential for applications such as magnetic layers for heat-assisted magnetic recording, where a high cross-plane (perpendicular to layer) κ is needed to ensure fast writing while a low in-plane κ is required to avoid interaction between adjacent bits of data. In this work, we conduct molecular dynamics simulations to investigate the κ of superlattice (SL), random multilayer (RML) and alloy, and reveal that RML can have 1–2 orders of magnitude higher anisotropy in κ than SL and alloy. We systematically explore how the κ of SL, RML, and alloy changes relative to each other for different bond strength, interface roughness, atomic mass, and structure size, which provides guidance for choosing materials and structural parameters to build RMLs with optimal performance for specific applications.

  4. Magnetoelectric coupling at the interface of BiFeO3/La0.7Sr0.3MnO3 multilayers

    SciTech Connect

    Calderon, M. J.; Liang, Shuhua; Yu, Rong; Salafranca, Juan; Scalapino, D. J.; Dong, Shuai; Yunoki, Seiji; Brey, L.; Moreo, Adriana; Dagotto, Elbio R

    2011-01-01

    Electric-field controlled exchange bias in a heterostructure composed of the ferromagnetic manganite La0.7Sr0.3MO3 and the ferroelectric antiferromagnetic BiFeO3 has recently been demonstrated experimentally. By means of a model Hamiltonian, we provide a possible explanation for the origin of this magnetoelectric coupling. We find, in agreement with experimental results, a net ferromagnetic moment at the BiFeO3 interface. The induced ferromagnetic moment is the result of the competition between the eg-electron double exchange and the t2g-spin antiferromagnetic superexchange that dominates in bulk BiFeO3. The balance of these simultaneous ferromagnetic and antiferromagnetic tendencies is strongly affected by the interfacial electronic charge density, which, in turn, can be controlled by the BiFeO3 ferroelectric polarization.

  5. A multilayer sonic film

    NASA Astrophysics Data System (ADS)

    Munteanu, L.; Chiroiu, V.; Sireteanu, T.; Dumitriu, D.

    2015-10-01

    A non-periodic multilayer film was analyzed to show that, despite its non-periodicity, the film exhibits full band-gaps and localized modes at its interfaces, as well as in the sonic composites. The film consists of alternating layers of two different materials that follow a triadic Cantor sequence. The Cantor structure shows extremely low thresholds for subharmonic generation of ultrasonic waves, compared with homogeneous and periodic structures. The coupling between the extended-mode (phonon) and the localized-mode (fracton) vibration regimes explains the generation of full band-gaps, for which there are no propagating Lamb waves. The large enhancement of the nonlinear interaction results from a more favorable frequency and spatial matching of coupled modes. A full band-gap that excludes Love waves is also analyzed.

  6. Multilayer optical dielectric coating

    DOEpatents

    Emmett, John L.

    1990-01-01

    A highly damage resistant, multilayer, optical reflective coating includes alternating layers of doped and undoped dielectric material. The doping levels are low enough that there are no distinct interfaces between the doped and undoped layers so that the coating has properties nearly identical to the undoped material. The coating is fabricated at high temperature with plasma-assisted chemical vapor deposition techniques to eliminate defects, reduce energy-absorption sites, and maintain proper chemical stoichiometry. A number of differently-doped layer pairs, each layer having a thickness equal to one-quarter of a predetermined wavelength in the material are combined to form a narrowband reflective coating for a predetermined wavelength. Broadband reflectors are made by using a number of narrowband reflectors, each covering a portion of the broadband.

  7. Magnetic surface anisotropy

    NASA Astrophysics Data System (ADS)

    Rado, George T.

    1992-02-01

    Selected aspects of magnetic surface anisotropy are reviewed. The emphasis is on methods for deducing reliable surface anisotropy values from experiments such as ferromagnetic resonance at microwave frequencies and Brillouin scattering at optical frequencies. The methods used are the "general exchange boundary condition method" and the "effective volume anisotropy method". The essence of the former is the supplementing of the equation of motion of the magnetization with the general exchange boundary condition whereas the latter consists of using the "stratagem" of effective volume anisotropy. We find that use of the general exchange boundary condition method is not only preferable in principle but often actually necessary to prevent the prediction of wrong surface anisotropy values and to permit the prediction of some observable Brillouin shifts.

  8. Status and limitations of multilayer x-ray interference structures

    SciTech Connect

    Kortright, J.B.

    1996-03-01

    Trends in the performance of x-ray multilayer interference structures with periods ranging from 9 to 130 {angstrom} are reviewed. Analysis of near-normal incidence reflectance data vs photon energy reveals that the effective interface with {sigma} in a static Debye-Waller model, describing interdiffusion and roughness, decreases as the multilayer period decreases, and reaches a lower limit of roughly 2 {angstrom}. Specular reflectance and diffuse scattering from uncoated and multilayer-coated substrates having different roughness suggest that this lower limit results largely from substrate roughness. The increase in interface width with period thus results from increasing roughness of interdiffusion as the layer thickness increases.

  9. Characterization of Mo/Si multilayer growth on stepped topographies

    SciTech Connect

    Boogaard, A. J. R. vcan den; Louis, E.; Zoethout, E.; Goldberg, K. A.; Bijkerk, F.

    2011-08-31

    Mo/Si multilayer mirrors with nanoscale bilayer thicknesses have been deposited on stepped substrate topographies, using various deposition angles. The multilayer morphology at the stepedge region was studied by cross section transmission electron microscopy. A transition from a continuous- to columnar layer morphology is observed near the step-edge, as a function of the local angle of incidence of the deposition flux. Taking into account the corresponding kinetics and anisotropy in layer growth, a continuum model has been developed to give a detailed description of the height profiles of the individual continuous layers. Complementary optical characterization of the multilayer system using a microscope operating in the extreme ultraviolet wavelength range, revealed that the influence of the step-edge on the planar multilayer structure is restricted to a region within 300 nm from the step-edge.

  10. Ultra-thin multilayer capacitors.

    SciTech Connect

    Renk, Timothy Jerome; Monson, Todd C.

    2009-06-01

    The fabrication of ultra-thin lanthanum-doped lead zirconium titanate (PLZT) multilayer ceramic capacitors (MLCCs) using a high-power pulsed ion beam was studied. The deposition experiments were conducted on the RHEPP-1 facility at Sandia National Laboratories. The goal of this work was to increase the energy density of ceramic capacitors through the formation of a multilayer device with excellent materials properties, dielectric constant, and standoff voltage. For successful device construction, there are a number of challenging requirements including achieving correct stoichiometric and crystallographic composition of the deposited PLZT, as well as the creation of a defect free homogenous film. This report details some success in satisfying these requirements, although 900 C temperatures were necessary for PLZT perovskite phase formation. These temperatures were applied to a previously deposited multi-layer film which was then post-annealed to this temperature. The film exhibited mechanical distress attributable to differences in the coefficient of thermal expansion (CTE) of the various layers. This caused significant defects in the deposited films that led to shorts across devices. A follow-on single layer deposition without post-anneal produced smooth layers with good interface behavior, but without the perovskite phase formation. These issues will need to be addressed in order for ion beam deposited MLCCs to become a viable technology. It is possible that future in-situ heating during deposition may address both the CTE issue, and result in lowered processing temperatures, which in turn could raise the probability of successful MLCC formation.

  11. In-Plane Optical Anisotropy of Layered Gallium Telluride.

    PubMed

    Huang, Shengxi; Tatsumi, Yuki; Ling, Xi; Guo, Huaihong; Wang, Ziqiang; Watson, Garrett; Puretzky, Alexander A; Geohegan, David B; Kong, Jing; Li, Ju; Yang, Teng; Saito, Riichiro; Dresselhaus, Mildred S

    2016-09-27

    Layered gallium telluride (GaTe) has attracted much attention recently, due to its extremely high photoresponsivity, short response time, and promising thermoelectric performance. Different from most commonly studied two-dimensional (2D) materials, GaTe has in-plane anisotropy and a low symmetry with the C2h(3) space group. Investigating the in-plane optical anisotropy, including the electron-photon and electron-phonon interactions of GaTe is essential in realizing its applications in optoelectronics and thermoelectrics. In this work, the anisotropic light-matter interactions in the low-symmetry material GaTe are studied using anisotropic optical extinction and Raman spectroscopies as probes. Our polarized optical extinction spectroscopy reveals the weak anisotropy in optical extinction spectra for visible light of multilayer GaTe. Polarized Raman spectroscopy proves to be sensitive to the crystalline orientation of GaTe, and shows the intricate dependences of Raman anisotropy on flake thickness, photon and phonon energies. Such intricate dependences can be explained by theoretical analyses employing first-principles calculations and group theory. These studies are a crucial step toward the applications of GaTe especially in optoelectronics and thermoelectrics, and provide a general methodology for the study of the anisotropy of light-matter interactions in 2D layered materials with in-plane anisotropy. PMID:27529802

  12. In-Plane Optical Anisotropy of Layered Gallium Telluride.

    PubMed

    Huang, Shengxi; Tatsumi, Yuki; Ling, Xi; Guo, Huaihong; Wang, Ziqiang; Watson, Garrett; Puretzky, Alexander A; Geohegan, David B; Kong, Jing; Li, Ju; Yang, Teng; Saito, Riichiro; Dresselhaus, Mildred S

    2016-09-27

    Layered gallium telluride (GaTe) has attracted much attention recently, due to its extremely high photoresponsivity, short response time, and promising thermoelectric performance. Different from most commonly studied two-dimensional (2D) materials, GaTe has in-plane anisotropy and a low symmetry with the C2h(3) space group. Investigating the in-plane optical anisotropy, including the electron-photon and electron-phonon interactions of GaTe is essential in realizing its applications in optoelectronics and thermoelectrics. In this work, the anisotropic light-matter interactions in the low-symmetry material GaTe are studied using anisotropic optical extinction and Raman spectroscopies as probes. Our polarized optical extinction spectroscopy reveals the weak anisotropy in optical extinction spectra for visible light of multilayer GaTe. Polarized Raman spectroscopy proves to be sensitive to the crystalline orientation of GaTe, and shows the intricate dependences of Raman anisotropy on flake thickness, photon and phonon energies. Such intricate dependences can be explained by theoretical analyses employing first-principles calculations and group theory. These studies are a crucial step toward the applications of GaTe especially in optoelectronics and thermoelectrics, and provide a general methodology for the study of the anisotropy of light-matter interactions in 2D layered materials with in-plane anisotropy.

  13. Growth of Co Nanomagnet Arrays with Enhanced Magnetic Anisotropy

    PubMed Central

    Fernández, Laura; Ilyn, Maxim; Magaña, Ana; Vitali, Lucia; Ortega, José Enrique

    2016-01-01

    A trigon structure formed by submonolayer gadolinium deposition onto Au(111) is revealed as a robust growth template for Co nanodot arrays. Scanning Tunneling Microscopy and X‐Ray Magnetic Circular Dichroism measurements evidence that the Co nanoislands behave as independent magnetic entities with an out‐of‐plane easy axis of anisotropy and enhanced magnetic anisotropy values, as compared to other self‐organized Co nanodot superlattices. The large strain induced by the lattice mismatch at the interface between Co and trigons is discussed as the main reason for the increased magnetic anisotropy of the nanoislands.

  14. Growth of Co Nanomagnet Arrays with Enhanced Magnetic Anisotropy

    PubMed Central

    Fernández, Laura; Ilyn, Maxim; Magaña, Ana; Vitali, Lucia; Ortega, José Enrique

    2016-01-01

    A trigon structure formed by submonolayer gadolinium deposition onto Au(111) is revealed as a robust growth template for Co nanodot arrays. Scanning Tunneling Microscopy and X‐Ray Magnetic Circular Dichroism measurements evidence that the Co nanoislands behave as independent magnetic entities with an out‐of‐plane easy axis of anisotropy and enhanced magnetic anisotropy values, as compared to other self‐organized Co nanodot superlattices. The large strain induced by the lattice mismatch at the interface between Co and trigons is discussed as the main reason for the increased magnetic anisotropy of the nanoislands. PMID:27711268

  15. Multilayer Insulation Material Guidelines

    NASA Technical Reports Server (NTRS)

    Finckenor, M. M.; Dooling, D.

    1999-01-01

    Multilayer Insulation Material Guidelines provides data on multilayer insulation materials used by previous spacecraft such as Spacelab and the Long-Duration Exposure Facility and outlines other concerns. The data presented in the document are presented for information only. They can be used as guidelines for multilayer insulation design for future spacecraft provided the thermal requirements of each new design and the environmental effects on these materials are taken into account.

  16. Fabrication of multilayer nanowires

    NASA Astrophysics Data System (ADS)

    Kaur, Jasveer; Singh, Avtar; Kumar, Davinder; Thakur, Anup; Kaur, Raminder

    2016-05-01

    Multilayer nanowires were fabricated by potentiostate ectrodeposition template synthesis method into the pores of polycarbonate membrane. In present work layer by layer deposition of two different metals Ni and Cu in polycarbonate membrane having pore size of 600 nm were carried out. It is found that the growth of nanowires is not constant, it varies with deposition time. Scanning electron microscopy (SEM) is used to study the morphology of fabricated multilayer nanowires. An energy dispersive X-ray spectroscopy (EDS) results confirm the composition of multilayer nanowires. The result shows that multilayer nanowires formed is dense.

  17. Mobility anisotropy in monolayer black phosphorus due to scattering by charged impurities

    NASA Astrophysics Data System (ADS)

    Liu, Yue; Low, Tony; Ruden, P. Paul

    2016-04-01

    We explore the charged-impurity-scattering-limited mobility of electrons and holes in monolayer black phosphorus (BP), a highly anisotropic material. Taking full account of the anisotropic electronic structure in effective mass approximation, the zero-temperature momentum relaxation time and the charge carrier mobility are calculated based on the Boltzmann transport equation. For carrier densities accessible in experiments, we obtain anisotropy ratios of 3-4. These results are somewhat larger than mobility anisotropy ratios determined experimentally for multilayer BP samples, but due to the complex dependence of the scattering rates on the anisotropy, they are strikingly smaller than the effective mass ratios.

  18. Mechanisms of Ag as a surfactant in giant magnetoresistance multilayer growth and thermal stability

    NASA Astrophysics Data System (ADS)

    An, Yukai; Zhang, Hongdi; Dai, Bo; Mai, Zhenhong; Cai, Jianwang; Wu, Zhonghua

    2006-07-01

    The mechanisms played by Ag as a surfactant in giant magnetoresistance multilayers were investigated using interface sensitive x-ray anomalous scattering techniques. Analysis on [Cu/Ni70Co30]20 and [Cu/Ag/Ni70Co30]20 multilayers revealed that 6Å thick NiCu and 6Å thick CuNi3Co intermixing regions are formed at the Ni70Co30-on-Cu interfaces of undoped and Ag-doped multilayers, respectively. The Cu-on-Ni70Co30 interfaces in both multilayers are sharp. Annealing causes severe diffusion across both types of interfaces in the undoped multilayer. But the interfaces in the Ag-doped multilayer do not change significantly upon annealing, except that Ag atoms diffuse into the whole Ni70Co30 layer and some parts of the Cu layer. The results suggest that addition of Ag during the deposition suppresses interfacial intermixing. X-ray diffuse scattering profiles show that the interfacial lateral correlation length of the Ag-doped multilayer is longer than that of the undoped multilayer and does not change significantly after annealing, suggesting that the addition of Ag gives rise to smoother interfaces and results in a good thermal stability.

  19. Magnetic properties of sputtered Permalloy/molybdenum multilayers

    SciTech Connect

    Romera, M.; Ciudad, D.; Maicas, M.; Aroca, C.

    2011-10-15

    In this work, we report the magnetic properties of sputtered Permalloy (Py: Ni{sub 80}Fe{sub 20})/molybdenum (Mo) multilayer thin films. We show that it is possible to maintain a low coercivity and a high permeability in thick sputtered Py films when reducing the out-of-plane component of the anisotropy by inserting thin film spacers of a non-magnetic material like Mo. For these kind of multilayers, we have found coercivities which are close to those for single layer films with no out-of-plane anisotropy. The coercivity is also dependent on the number of layers exhibiting a minimum value when each single Py layer has a thickness close to the transition thickness between Neel and Bloch domain walls.

  20. Film bonded fuel cell interface configuration

    DOEpatents

    Kaufman, Arthur; Terry, Peter L.

    1985-01-01

    An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. A multi-layer arrangement for the interface provides bridging electrical contact with a hot-pressed resin filling the void space.

  1. Anisotropy across Superplume Boundaries

    NASA Astrophysics Data System (ADS)

    Cottaar, S.; Romanowicz, B. A.

    2011-12-01

    Sdiff data sets are presented for paths that run parallel to the African and the Pacific superplume boundaries. Objective clustering of waveforms illustrates sharp changes across these boundaries. The African plume shows a sharp offset in travel times in the SHdiff phase, while a more gradual offset towards slower arrivals is seen in the case of the Pacific superplume. Additionally, Pdiff phases display no offset around the African plume and a weak one around the Pacific plume. Here we focus mainly on another striking feature observed in both cases: outside of the superplume the Sdiff particle motion is strongly elliptical, but becomes linear within the superplume (first noticed by To et al. 2005 in the African superplume case). For the African plume we argue that these observations of delayed SV at large distances (~120 degrees) are indicative of the occurrence of azimuthal anisotropy. The SV arrivals have similar polarity as SH, opposite from what their radiation pattern predicts. Azimuthal anisotropy causes SH energy to be converted to SV (Maupin, 1994), explaining the travel time, polarity and amplitude. Forward modeling through different isotropic and anisotropic models supports this statement, although there are trade-offs between direction and magnitude of azimuthal anisotropy. The strong elliptical particle motions are also observed outside the Pacific plume, but at shorter distances (95-105 degrees). Elliptical motions can occur in the absence of anisotropy when strong velocity deviations or layering occurs close to the CMB, which, based on velocity profiles with depth in global tomographic models would be more likely within the superplume rather than on the fast side. The elliptical particle motions here can be modelled with a simple transverse isotropic model with VSH>VSV, but azimuthal anisotropy cannot be ruled out. The complexities within the Pacific superplume, including strong amplitude drop and existence of a post-cursor, are likely caused by an

  2. Killing vectors and anisotropy

    SciTech Connect

    Krisch, J. P.; Glass, E. N.

    2009-08-15

    We consider an action that can generate fluids with three unequal stresses for metrics with a spacelike Killing vector. The parameters in the action are directly related to the stress anisotropies. The field equations following from the action are applied to an anisotropic cosmological expansion and an extension of the Gott-Hiscock cosmic string.

  3. A refined model for characterizing x-ray multilayers

    SciTech Connect

    Oren, A.L.; Henke, B.L.

    1987-12-01

    The ability to quickly and accurately characterize arbitrary multilayers is very valuable for not only can we use the characterizations to predict the reflectivity of a multilayer for any soft x-ray wavelength, we also can generalize the results to apply to other multilayers of the same type. In addition, we can use the characterizations as a means of evaluating various sputtering environments and refining sputtering techniques to obtain better multilayers. In this report we have obtained improved characterizations for sample molybdenum-silicon and vanadium-silicon multilayers. However, we only examined five crystals overall, so the conclusions that we could draw about the structure of general multilayers is limited. Research involving many multilayers manufactured under the same sputtering conditions is clearly in order. In order to best understand multilayer structures it may be necessary to further refine our model, e.g., adopting a Gaussian form for the interface regions. With such improvements we can expect even better agreement with experimental values and continued concurrence with other characterization techniques. 18 refs., 30 figs., 7 tabs.

  4. Technique for etching monolayer and multilayer materials

    DOEpatents

    Bouet, Nathalie C. D.; Conley, Raymond P.; Divan, Ralu; Macrander, Albert

    2015-10-06

    A process is disclosed for sectioning by etching of monolayers and multilayers using an RIE technique with fluorine-based chemistry. In one embodiment, the process uses Reactive Ion Etching (RIE) alone or in combination with Inductively Coupled Plasma (ICP) using fluorine-based chemistry alone and using sufficient power to provide high ion energy to increase the etching rate and to obtain deeper anisotropic etching. In a second embodiment, a process is provided for sectioning of WSi.sub.2/Si multilayers using RIE in combination with ICP using a combination of fluorine-based and chlorine-based chemistries and using RF power and ICP power. According to the second embodiment, a high level of vertical anisotropy is achieved by a ratio of three gases; namely, CHF.sub.3, Cl.sub.2, and O.sub.2 with RF and ICP. Additionally, in conjunction with the second embodiment, a passivation layer can be formed on the surface of the multilayer which aids in anisotropic profile generation.

  5. Tuning of the nucleation field in nanowires with perpendicular magnetic anisotropy

    SciTech Connect

    Kimling, Judith; Gerhardt, Theo; Kobs, Andre; Vogel, Andreas; Peter Oepen, Hans; Merkt, Ulrich; Meier, Guido; Wintz, Sebastian; Im, Mi-Young; Fischer, Peter

    2013-04-28

    We report on domain nucleation in nanowires consisting of Co/Pt multilayers with perpendicular magnetic anisotropy that are patterned by electron-beam lithography, sputter deposition, and lift-off processing. It is found that the nucleation field can be tuned by changing the geometry of the wire ends. A reduction of the nucleation field by up to 60% is achieved when the wire ends are designed as tips. This contrasts with the behavior of wires with in-plane anisotropy where the nucleation field increases when triangular-pointed ends are used. In order to clarify the origin of the reduction of the nucleation field, micromagnetic simulations are employed. The effect cannot be explained by the lateral geometrical variation but is attributable to a local reduction of the perpendicular anisotropy caused by shadowing effects due to the resist mask during sputter deposition of the multilayer.

  6. Multifunctional lipid multilayer stamping.

    PubMed

    Nafday, Omkar A; Lowry, Troy W; Lenhert, Steven

    2012-04-10

    Nanostructured lipid multilayers on surfaces are a promising biofunctional nanomaterial. For example, surface-supported lipid multilayer diffraction gratings with optical properties that depend on the microscale spacing of the grating lines and the nanometer thickness of the lipid multilayers have been fabricated previously by dip-pen nanolithography (DPN), with immediate applications as label-free biosensors. The innate biocompatibility of such gratings makes them promising as biological sensor elements, model cellular systems, and construction materials for nanotechnology. Here a method is described that combines the lateral patterning capabilities and scalability of microcontact printing with the topographical control of nanoimprint lithography and the multimaterial integration aspects of dip-pen nanolithography in order to create nanostructured lipid multilayer arrays. This approach is denoted multilayer stamping. The distinguishing characteristic of this method is that it allows control of the lipid multilayer thickness, which is a crucial nanoscale dimension that determines the optical properties of lipid multilayer nanostructures. The ability to integrate multiple lipid materials on the same surface is also demonstrated by multi-ink spotting onto a polydimethoxysilane stamp, as well as higher-throughput patterning (on the order of 2 cm(2) s(-1) for grating fabrication) and the ability to pattern lipid materials that could not previously be patterned with high resolution by lipid DPN, for example, the gel-phase phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or the steroid cholesterol. PMID:22307810

  7. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, Michael D.; Britten, Jerald A.; Nguyen, Hoang T.; Boyd, Robert; Shore, Bruce W.

    1999-01-01

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described.

  8. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, M.D.; Britten, J.A.; Nguyen, H.T.; Boyd, R.; Shore, B.W.

    1999-05-25

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described. 7 figs.

  9. Emergence of noncollinear anisotropies from interfacial magnetic frustration in exchange-bias systems.

    SciTech Connect

    Jimenez, E.; Camarero, J.; Sort, J.; Nogues, J.; Mikuszeit, N.; Garcia-Martin, J. M.; Hoffmann, A.; Dieny, B.; Miranda, R.; Univ. Autonoma de Madrid; Univ. Autonoma de Barcelona; Inst. de Microelectronica de Madrid; SPINTEC

    2009-01-01

    Exchange bias, referred to the interaction between a ferromagnet (FM) and an antiferromagnet (AFM), is a fundamental interfacial magnetic phenomenon, which is key to current and future applications. The effect was discovered half a century ago, and it is well established that the spin structures at the FM/AFM interface play an essential role. However, currently, ad hoc phenomenological anisotropies are often postulated without microscopic justification or sufficient experimental evidence to address magnetization-reversal behavior in exchange-bias systems. We advance toward a detailed microscopic understanding of the magnetic anisotropies in exchange-bias FM/AFM systems by showing that symmetry-breaking anisotropies leave a distinct fingerprint in the asymmetry of the magnetization reversal and we demonstrate how these emerging anisotropies are correlated with the intrinsic anisotropy. Angular and vectorial resolved Kerr hysteresis loops from FM/AFM bilayers with varying degree of ferromagnetic anisotropy reveal a noncollinear anisotropy, which becomes important for ferromagnets with vanishing intrinsic anisotropy. Numerical simulations show that this anisotropy naturally arises from the inevitable spin frustration at an atomically rough FM/AFM interface. As a consequence, we show in detail how the differences observed for different materials during magnetization reversal can be understood in general terms as originating from the interplay between interfacial frustration and intrinsic anisotropies. This understanding will certainly open additional avenues to tailor future advanced magnetic materials.

  10. Pinned orbital moments – A new contribution to magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Audehm, P.; Schmidt, M.; Brück, S.; Tietze, T.; Gräfe, J.; Macke, S.; Schütz, G.; Goering, E.

    2016-05-01

    Reduced dimensionality and symmetry breaking at interfaces lead to unusual local magnetic configurations, such as glassy behavior, frustration or increased anisotropy. The interface between a ferromagnet and an antiferromagnet is such an example for enhanced symmetry breaking. Here we present detailed X-ray magnetic circular dichroism and X-ray resonant magnetic reflectometry investigations on the spectroscopic nature of uncompensated pinned magnetic moments in the antiferromagnetic layer of a typical exchange bias system. Unexpectedly, the pinned moments exhibit nearly pure orbital moment character. This strong orbital pinning mechanism has not been observed so far and is not discussed in literature regarding any theory for local magnetocrystalline anisotropy energies in magnetic systems. To verify this new phenomenon we investigated the effect at different temperatures. We provide a simple model discussing the observed pure orbital moments, based on rotatable spin magnetic moments and pinned orbital moments on the same atom. This unexpected observation leads to a concept for a new type of anisotropy energy.

  11. Achieving perpendicular anisotropy in half-metallic Heusler alloys for spin device applications

    SciTech Connect

    Munira, Kamaram; Romero, Jonathon; Butler, William H.

    2014-05-07

    Various full Heusler alloys are interfaced with MgO and the magnetic properties of the Heusler-MgO junctions are studied. Next to MgO, the cubic Heusler system distorts to a tetragonal one, thereby inducing an anisotropy. The half-metallicity and nature of anisotropy (in-plane or perpendicular) in the Heusler-MgO system is governed mostly by the interface Heusler layers. There is a trend that Mn-O bonding near the MgO-Heusler junction results in perpendicular anisotropy. The ability to remain half-metallic and have perpendicular anisotropy makes some of these alloys potential candidates as free-layers in Spin Transfer Torque Random Access Memory (STT-RAM) devices, particularly, Cr{sub 2}MnAs-MgO system with MnAs interface layers and Co{sub 2}MnSi-MgO system with Mn{sub 2} interface layers.

  12. Achieving perpendicular anisotropy in half-metallic Heusler alloys for spin device applications

    NASA Astrophysics Data System (ADS)

    Munira, Kamaram; Romero, Jonathon; Butler, William H.

    2014-05-01

    Various full Heusler alloys are interfaced with MgO and the magnetic properties of the Heusler-MgO junctions are studied. Next to MgO, the cubic Heusler system distorts to a tetragonal one, thereby inducing an anisotropy. The half-metallicity and nature of anisotropy (in-plane or perpendicular) in the Heusler-MgO system is governed mostly by the interface Heusler layers. There is a trend that Mn-O bonding near the MgO-Heusler junction results in perpendicular anisotropy. The ability to remain half-metallic and have perpendicular anisotropy makes some of these alloys potential candidates as free-layers in Spin Transfer Torque Random Access Memory (STT-RAM) devices, particularly, Cr2MnAs-MgO system with MnAs interface layers and Co2MnSi-MgO system with Mn2 interface layers.

  13. Surfactant mediated growth of Ti/Ni multilayers

    SciTech Connect

    Gupta, Mukul; Amir, S. M.; Gupta, Ajay; Stahn, Jochen

    2011-03-07

    The surfactant mediated growth of Ti/Ni multilayers is studied. They were prepared using ion beam sputtering at different adatom energies. It was found that the interface roughness decreased significantly when the multilayers were sputtered with Ag as surfactant at an ion energy of 0.75 keV. On the other hand, when the ion energy was increased to 1 keV, it resulted in enhanced intermixing at the interfaces and no appreciable effect of Ag surfactant could be observed. On the basis of the obtained results, the influence of adatom energy on the surfactant mediated growth mechanism is discussed.

  14. Perpendicular magnetic anisotropy of amorphous [CoSiB/Pt]{sub N} thin films

    SciTech Connect

    Kim, T. W.; Choi, Y. H.; Lee, K. J.; Jung, M. H.; Yoon, J. B.; Cho, J. H.; You, C.-Y.

    2015-05-07

    Materials with perpendicular magnetic anisotropy (PMA) have been intensively studied for high-density nonvolatile memory such as spin-transfer-torque magnetic random access memory with low switching current density and high thermal stability. Compared with crystalline PMA multilayers, considerable works have been done on amorphous PMA multilayers because the amorphous materials are expected to have lower pinning site density as well as smaller domain wall width. This study is an overview of the PMA properties of amorphous [CoSiB/Pt]{sub N} multilayers with varying N, where the energy contribution is changed from domain wall energy to magnetostatic energy around N = 6. By measuring the field-induced domain wall motion, we obtain the creep exponent of μ = 1/4. These results in the amorphous PMA multilayers of [CoSiB/Pt]{sub N} demonstrate possible potential as a free layer for PMA-based memory devices.

  15. Perpendicular magnetic anisotropy of amorphous [CoSiB/Pt]N thin films

    NASA Astrophysics Data System (ADS)

    Kim, T. W.; Choi, Y. H.; Lee, K. J.; Yoon, J. B.; Cho, J. H.; You, C.-Y.; Jung, M. H.

    2015-05-01

    Materials with perpendicular magnetic anisotropy (PMA) have been intensively studied for high-density nonvolatile memory such as spin-transfer-torque magnetic random access memory with low switching current density and high thermal stability. Compared with crystalline PMA multilayers, considerable works have been done on amorphous PMA multilayers because the amorphous materials are expected to have lower pinning site density as well as smaller domain wall width. This study is an overview of the PMA properties of amorphous [CoSiB/Pt]N multilayers with varying N, where the energy contribution is changed from domain wall energy to magnetostatic energy around N = 6. By measuring the field-induced domain wall motion, we obtain the creep exponent of μ = 1/4. These results in the amorphous PMA multilayers of [CoSiB/Pt]N demonstrate possible potential as a free layer for PMA-based memory devices.

  16. Impact of orthogonal exchange coupling on magnetic anisotropy in antiferromagnetic oxides/ferromagnetic systems

    NASA Astrophysics Data System (ADS)

    Kuświk, Piotr; Lana Gastelois, Pedro; Głowiński, Hubert; Przybylski, Marek; Kirschner, Jürgen

    2016-10-01

    The influence of interface exchange coupling on magnetic anisotropy in the antiferromagnetic oxide/Ni system is investigated. We show how interfacial exchange coupling can be employed not only to pin the magnetization of the ferromagnetic layer but also to support magnetic anisotropy to orient the easy magnetization axis perpendicular to the film plane. The fact that this effect is only observed below the Néel temperature of all investigated antiferromagnetic oxides with significantly different magnetocrystalline anisotropies gives evidence that antiferromagnetic ordering is a source of the additional contribution to the perpendicular effective magnetic anisotropy.

  17. Impact of orthogonal exchange coupling on magnetic anisotropy in antiferromagnetic oxides/ferromagnetic systems.

    PubMed

    Kuświk, Piotr; Gastelois, Pedro Lana; Głowiński, Hubert; Przybylski, Marek; Kirschner, Jürgen

    2016-10-26

    The influence of interface exchange coupling on magnetic anisotropy in the antiferromagnetic oxide/Ni system is investigated. We show how interfacial exchange coupling can be employed not only to pin the magnetization of the ferromagnetic layer but also to support magnetic anisotropy to orient the easy magnetization axis perpendicular to the film plane. The fact that this effect is only observed below the Néel temperature of all investigated antiferromagnetic oxides with significantly different magnetocrystalline anisotropies gives evidence that antiferromagnetic ordering is a source of the additional contribution to the perpendicular effective magnetic anisotropy. PMID:27589202

  18. Automation Enhancement of Multilayer Laue Lenses

    SciTech Connect

    Lauer K. R.; Conley R.

    2010-12-01

    X-ray optics fabrication at Brookhaven National Laboratory has been facilitated by a new, state of the art magnetron sputtering physical deposition system. With its nine magnetron sputtering cathodes and substrate carrier that moves on a linear rail via a UHV brushless linear servo motor, the system is capable of accurately depositing the many thousands of layers necessary for multilayer Laue lenses. I have engineered a versatile and automated control program from scratch for the base system and many subsystems. Its main features include a custom scripting language, a fully customizable graphical user interface, wireless and remote control, and a terminal-based interface. This control system has already been successfully used in the creation of many types of x-ray optics, including several thousand layer multilayer Laue lenses.Before reaching the point at which a deposition can be run, stencil-like masks for the sputtering cathodes must be created to ensure the proper distribution of sputtered atoms. Quality of multilayer Laue lenses can also be difficult to measure, given the size of the thin film layers. I employ my knowledge of software and algorithms to further ease these previously painstaking processes with custom programs. Additionally, I will give an overview of an x-ray optic simulator package I helped develop during the summer of 2010. In the interest of keeping my software free and open, I have worked mostly with the multiplatform Python and the PyQt application framework, utilizing C and C++ where necessary.

  19. COBE anisotropy from supercluster gas

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.

    1992-01-01

    It is suggested that the microwave background anisotropy detected by the COBE DMR might be dominated not by the direct gravitational effect of primordial fluctuations in the last scattering surface, but by scattering off of moving electrons in optically thin, nearby superclusters. Hot diffuse clouds of ionized gas created during supercluster collapse produce Sunyaev-Zel'dovich and Doppler background anisotropy whose properties may closely mimic those of primordial anisotropy in current data. Strategies for and difficulties in separating the effects are discussed, based on the anisotropy spectrum, autocorrelation, correlation with galaxy catalogs, X-ray emission, and integrated spectral distortions.

  20. Giant Perpendicular Magnetic Anisotropy of Graphene-Co Heterostructures

    NASA Astrophysics Data System (ADS)

    Yang, Hongxin; Hallal, Ali; Chshiev, Mairbek; Spintec theory Team

    We report strongly enhanced perpendicular anisotropy (PMA) of Co films by graphene coating via ab-initio calculations. The results show that graphene coating can improve the surface anisotropy of Co film up to twice large of the bare Co case and keep the film effective anisotropy being out-of-plane till 25 Å of Co, in agreement with experiments. Our layer resolved analysis reveals that PMA of Co (Co/Gr) films mainly originates from the adjacent 3 Co layers close to surface (interface) and can be strongly influenced by graphene. Furthermore, orbital hybridization analysis uncovers the origin of the PMA enhancement which is due to graphene-Co bonding causing an inversion of Co 3dz 2 and 3dx 2 - y 2 Bloch states close to Fermi level. Finally, we propose to design Co-graphene heterostructures which possess a linearly increasing surface anisotropy and a constant effective anisotropy. These findings point towards a possible engineering graphene-Co junctions with giant anisotropy, which stands as a hallmark for future spintronic information processing. This work was supported by European Graphene Flagship, European Union-funded STREP project CONCEPT-GRAPHENE, French ANR Projects NANOSIM-GRAPHENE and NMGEM

  1. Fracturing of ductile anisotropic multilayers: influence of material strength

    NASA Astrophysics Data System (ADS)

    Gomez-Rivas, E.; Griera, A.; Llorens, M.-G.

    2015-01-01

    Fractures in rocks deformed under dominant ductile conditions typically form simultaneously with viscous flow. Material strength plays a fundamental role on fracture development in such cases, since fracture propagation can be strongly reduced by the high energy absorption of the material. Additionally, the degree and nature of anisotropy can influence the orientation and type of resulting fractures. In this study, four plasticine multilayer models have been deformed under coaxial boundary conditions to investigate the influence of strength and anisotropy on the formation of fracture networks. The experiments were made of different mixtures and presented two types of anisotropy: composite and composite-intrinsic. The transition from non-localised deformation to systems where fracture networks control deformation accommodation is determined by the ability of the material to dissipate the external work and relax the elastic strain during loading, either by viscous flow or by coeval flow and failure. Tension cracks grow in experiments with composite anisotropy, giving rise to a network of shear fractures when they collapse and coalesce with progressive deformation. The presence of an additional intrinsic anisotropy enhances the direct nucleation of shear fractures, whose propagation and final length depend on the rigidity of the medium. Material strength increases the fracture maximum displacement (dmax) to fracture length (L) ratio, and the resulting values are significantly higher than those from fractures in elastic-brittle rocks. This is associated with the low propagation rates of fractures in rocks undergoing ductile deformation.

  2. Fracturing of ductile anisotropic multilayers: influence of material strength

    NASA Astrophysics Data System (ADS)

    Gomez-Rivas, E.; Griera, A.; Llorens, M.-G.

    2015-05-01

    Fractures in rocks deformed under dominant ductile conditions typically form simultaneously with viscous flow. Material strength plays a fundamental role during fracture development in such systems, since fracture propagation can be strongly reduced if the material accommodates most of the deformation by viscous flow. Additionally, the degree and nature of anisotropy can influence the orientation and type of resulting fractures. In this study, four plasticine multilayer models have been deformed under coaxial boundary conditions to investigate the influence of strength and anisotropy on the formation of fracture networks. The experiments were made of different mixtures and had two types of anisotropy: composite and composite-intrinsic. The transition from non-localised deformation to systems where fracture networks control deformation accommodation is determined by the ability of the material to dissipate the external work and relax the elastic strain during loading either by viscous flow or by coeval flow and failure. Tension cracks grow in experiments with composite anisotropy, giving rise to a network of shear fractures when they collapse and coalesce with progressive deformation. The presence of an additional intrinsic anisotropy enhances the direct nucleation of shear fractures, the propagation and final length of which depend on the rigidity of the medium. Material strength increases the fracture maximum displacement (dmax) to fracture length (L) ratio, and the resulting values are significantly higher than those from fractures in elastic-brittle rocks. This can be related to the low propagation rates of fractures in rocks undergoing ductile deformation.

  3. Attosecond broadband multilayer mirrors for the water window spectral range

    NASA Astrophysics Data System (ADS)

    Guggenmos, A.; Radünz, S.; Rauhut, R.; Hofstetter, M.; Venkatesan, S.; Wochnik, A.; Scheu, C.; Gullikson, E.; Fischer, S.; Nickel, B.; Kleineberg, U.

    2014-09-01

    Recent advances in the development of attosecond soft X-ray sources ranging into the `water window' spectral range, between the carbon 1s and oxygen 1s states (284 eV - 543 eV), are also driving the development of suited broadband multilayer optics for attosecond beam steering and dispersion management. The relatively low intensity of current High Harmonic Generation (HHG) soft X-ray sources calls for an efficient use of photons, thus the development of low-loss multilayer optics is of uttermost importance. Here, we report about the realization of atomically smooth interfaces in broadband CrSc multilayer mirrors by an optimized ion beam deposition and assisted interface polishing process.

  4. Micromorphology, microstructure and magnetic properties of sputtered garnet multilayers

    SciTech Connect

    Marcelli, R.; Padeletti, G.; Gambacorti, N.; Simeone, M.G.; Fiorani, D.

    1998-12-31

    The growth technique, the micromorphological and microstructural characterization by means of atomic force microscopy (AFM) and secondary ions mass spectrometry (SIMS) as well as the magnetic properties of a novel class of magnetic multilayers, based on radio frequency (RF) sputtered thin amorphous garnet films, are presented. One, three and five thin film multilayers composed by amorphous pure yttrium iron garnet (a:YIG) and amorphous gadolinium gallium garnet (a:GGG) have been grown on GGG single crystal substrates. The multilayer interfaces have been found to be comparable in both, the three and five-layers structure. Low field susceptibility measurements, showed a paramagnetic behavior for the single layer YIG film. For the three and five layers samples, irreversibility effects were observed, giving evidence of magnetic clusters at the interface YIG/GGG.

  5. Multilayer silicene: clear evidence

    NASA Astrophysics Data System (ADS)

    De Padova, Paola; Generosi, Amanda; Paci, Barbara; Ottaviani, Carlo; Quaresima, Claudio; Olivieri, Bruno; Salomon, Eric; Angot, Thierry; Le Lay, Guy

    2016-09-01

    One year after the publication of the seminal paper on monolayer 3 × 3 reconstructed silicene grown on a silver (111) substrate, evidence of the synthesis of epitaxial √3 × √3 reconstructed multilayer silicene hosting Dirac fermions was presented. Although a general consensus was immediately reached in the former case, in the latter, the mere existence of multilayer silicene was questioned and strongly debated. Here, we demonstrate by means of a comprehensive x-ray crystallographic study that multilayer silicene is effectively realized upon growth at rather low growth temperatures (∼200 °C), while three-dimensional growth of silicon crystallites takes place at higher temperatures, (∼300 °C). This transition to bulk-like silicon perfectly explains the various data presented and discussed in the literature and solves their conflicting interpretations.

  6. Multilayered Graphene in Microwaves

    NASA Astrophysics Data System (ADS)

    Kuzhir, P.; Volynets, N.; Maksimenko, S.; Kaplas, T.; Svirko, Yu.

    2013-05-01

    We report on the experimental study of electromagnetic (EM) properties of multilayered graphene in Ka-band synthesized by catalytic chemical vapor deposition (CVD) process in between nanometrically thin Cu catalyst film and dielectric (SiO2) substrate. The quality of the produced multilayered graphene samples were monitored by Raman spectroscopy. The thickness of graphene films was controlled by atomic force microscopy (AFM) and was found to be a few nanometers (up to 5 nm). We discovered, that the fabricated graphene provided remarkably high EM shielding efficiency caused by absorption losses at the level of 35-43% of incident power. Being highly conductive at room temperature, multi-layer graphene emerges as a promising material for manufacturing ultrathin microwave coatings to be used in aerospace applications.

  7. Control of Multilayer Networks

    PubMed Central

    Menichetti, Giulia; Dall’Asta, Luca; Bianconi, Ginestra

    2016-01-01

    The controllability of a network is a theoretical problem of relevance in a variety of contexts ranging from financial markets to the brain. Until now, network controllability has been characterized only on isolated networks, while the vast majority of complex systems are formed by multilayer networks. Here we build a theoretical framework for the linear controllability of multilayer networks by mapping the problem into a combinatorial matching problem. We found that correlating the external signals in the different layers can significantly reduce the multiplex network robustness to node removal, as it can be seen in conjunction with a hybrid phase transition occurring in interacting Poisson networks. Moreover we observe that multilayer networks can stabilize the fully controllable multiplex network configuration that can be stable also when the full controllability of the single network is not stable. PMID:26869210

  8. Naturally Produced Co/CoO Nanocrystalline Magnetic Multilayers: Structure and Inverted Hysteresis.

    PubMed

    Santarossa, Francesca; Pappas, Spiridon D; Delimitis, Andreas; Sousanis, Andreas; Poulopoulos, Panagiotis

    2016-05-01

    Cobalt-based multilayers with excellent sequencing are grown via radiofrequency magnetron sputtering with the use of one Co target and natural oxidation. The Co layers are continuous, fully textured {111} and have the face centered cubic structure. At the end of deposition of each Co layer air is let to flow into the vacuum chamber via a fine (leak) valve. The top of Co is oxidized. The oxidized layers consist of cubic CoO crystallites. Near the film surface hexagonal Co(OH)2 is also detected. Magneto-optical Kerr effect hysteresis loops show in-plane magnetized films. The magnetic saturation field in the out-of-plane measurements is large exceeding 12 kOe. This observation supports indirectly the fact that Co is face centered cubic; if it was c-axis textured hexagonal the magnetocrystalline anisotropy would be large resulting in smaller values of the saturation field. As the Co-layer thickness decreases the in-plane loops show reduced remanence, slow approach to magnetic saturation and the out-of-plane loops show inverted hysteresis and/or crossing loop features with sizeable remanence. The effects are discussed with respect to the enhanced orbital magnetic moment of Co and the antiferromagnetic coupling between Co spins at the Co/CoO interface. PMID:27483852

  9. Naturally Produced Co/CoO Nanocrystalline Magnetic Multilayers: Structure and Inverted Hysteresis.

    PubMed

    Santarossa, Francesca; Pappas, Spiridon D; Delimitis, Andreas; Sousanis, Andreas; Poulopoulos, Panagiotis

    2016-05-01

    Cobalt-based multilayers with excellent sequencing are grown via radiofrequency magnetron sputtering with the use of one Co target and natural oxidation. The Co layers are continuous, fully textured {111} and have the face centered cubic structure. At the end of deposition of each Co layer air is let to flow into the vacuum chamber via a fine (leak) valve. The top of Co is oxidized. The oxidized layers consist of cubic CoO crystallites. Near the film surface hexagonal Co(OH)2 is also detected. Magneto-optical Kerr effect hysteresis loops show in-plane magnetized films. The magnetic saturation field in the out-of-plane measurements is large exceeding 12 kOe. This observation supports indirectly the fact that Co is face centered cubic; if it was c-axis textured hexagonal the magnetocrystalline anisotropy would be large resulting in smaller values of the saturation field. As the Co-layer thickness decreases the in-plane loops show reduced remanence, slow approach to magnetic saturation and the out-of-plane loops show inverted hysteresis and/or crossing loop features with sizeable remanence. The effects are discussed with respect to the enhanced orbital magnetic moment of Co and the antiferromagnetic coupling between Co spins at the Co/CoO interface.

  10. Hybrid magnetoresistance in Pt-based multilayers: Effect originated from strong interfacial spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Meng, Kangkang; Xiao, Jiaxing; Wu, Yong; Miao, Jun; Xu, Xiaoguang; Zhao, Jianhua; Jiang, Yong

    2016-02-01

    The hybrid magnetoresistance (MR) behaviors in Pt/Co90Fe10/Pt, Mn1.5Ga/Pt and Mn1.5Ga/Pt/Co90Fe10/Pt multilayers have been investigated. Both planer Hall effect (PHE) and angle-dependent MR in Pt/Co90Fe10/Pt revealed the combination of spin Hall MR (SMR) and normal anisotropic MR (AMR), indicating the large contribution of strong spin-orbit coupling (SOC) at the interfaces. When Pt contacted with perpendicular magnetic anisotropy (PMA) metal Mn1.5Ga, the strong interfacial SOC modified the effective anomalous Hall effect. The MR in Mn1.5Ga/Pt/Co90Fe10/Pt is not a simple combination of SMR and AMR, but ascribed to the complicated domain wall scattering and strong interfacial SOC when Pt is sandwiched by the in-plane magnetized Co90Fe10 and the PMA Mn1.5Ga.

  11. Light dosimetry for focused and defocused beam irradiation in multi-layered tissue models

    NASA Astrophysics Data System (ADS)

    Petrova, Kremena S.; Stoykova, Elena V.

    2006-09-01

    Treatment of acupuncture points, trigger points, joint inflammations in low level laser therapy as well as various applications of lasers for treatment of soft tissues in dental medicine, require irradiation by a narrow converging laser beam. The aim of this study is to compare light delivery produced by focused or defocused narrow beam irradiation in a multi-layered skin tissue model at increasing depth of the target. The task is solved by 3-D Monte-Carlo simulation for matched and mismatched refractive indices at the tissue/ambient medium interface. The modeled light beams have a circular cross-section at the tissue entrance with uniform or Gaussian intensity distribution. Three are the tissue models used in simulation : i) a bloodless skin layer; ii) a bloodless skin layer with embedded scattering object; iii) a skin layer with small blood vessels of varying size, which are modeled as infinite cylinders parallel to the tissue surface located at different depths. Optical properties (absorption coefficient, scattering coefficient, anisotropy factor, g, and index of refraction) of different tissue constituents are chosen from the literature.

  12. Hybrid magnetoresistance in Pt-based multilayers: Effect originated from strong interfacial spin-orbit coupling

    PubMed Central

    Meng, Kangkang; Xiao, Jiaxing; Wu, Yong; Miao, Jun; Xu, Xiaoguang; Zhao, Jianhua; Jiang, Yong

    2016-01-01

    The hybrid magnetoresistance (MR) behaviors in Pt/Co90Fe10/Pt, Mn1.5Ga/Pt and Mn1.5Ga/Pt/Co90Fe10/Pt multilayers have been investigated. Both planer Hall effect (PHE) and angle-dependent MR in Pt/Co90Fe10/Pt revealed the combination of spin Hall MR (SMR) and normal anisotropic MR (AMR), indicating the large contribution of strong spin-orbit coupling (SOC) at the interfaces. When Pt contacted with perpendicular magnetic anisotropy (PMA) metal Mn1.5Ga, the strong interfacial SOC modified the effective anomalous Hall effect. The MR in Mn1.5Ga/Pt/Co90Fe10/Pt is not a simple combination of SMR and AMR, but ascribed to the complicated domain wall scattering and strong interfacial SOC when Pt is sandwiched by the in-plane magnetized Co90Fe10 and the PMA Mn1.5Ga. PMID:26843035

  13. Exchange bias properties of [Co/CoO]{sub n} multilayers

    SciTech Connect

    Oeztuerk, M.; S Latin-Small-Letter-Dotless-I n Latin-Small-Letter-Dotless-I r, E.; Demirci, E.; Erkovan, M.; Oeztuerk, O.; Akdogan, N.

    2012-11-01

    In this study, the exchange bias properties of four polycrystalline multilayer stack samples of antiferromagnetic (AF) CoO and ferromagnetic (FM) Co in the form of [CoO/Co]{sub n} with n = 1, 2, 3, and 5 are reported. The samples were grown on top of Si (001) substrates by using magnetron sputtering method. X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) were used to determine the structural properties of the samples. XPS measurements of cobalt oxide layer revealed the coexistence of different phases in cobalt oxide as CoO and Co{sub 3}O{sub 4}, the latter of which lowers the blocking temperature. The blocking temperature is also affected by the finite size scaling effects observed in AF layers. In-plane ferromagnetic resonance (FMR) measurements revealed uniaxial in-plane magnetic anisotropy for the samples. Low temperature vibrating sample magnetometer measurements provided exchange bias with a stepwise character. Observed steps are believed to be due to magnetization reversals of individual FM layers with varying thicknesses, each of which is pinned through two interfaces from above and below with two AFM layers, except the uppermost FM Co layer with a single AFM neighbor.

  14. First-principle description of magnonic PdnFem multilayers

    SciTech Connect

    Manchanda, P; Sahota, PK; Skomski, R; Kumar, PSA; Kashyap, A

    2011-04-01

    Ab-initio calculations are used to determine the parameters that determine magnonic band structure of PdnFem multilayers (n = 2, m <= 8). We obtain the layer-resolved magnetization, the exchange coupling, and the magnetic anisotropy of the Pd-Fe structures. The Fe moment is 3.0 mu(B) close to the Pd layers and 2.2 mu(B) in the middle of the Fe layers. An intriguing but not usually considered aspect is that the elemental Pd is nonmagnetic, similar to Cu spacer layers in other multilayer systems. This leads to a pre-asymptotic ferromagnetic coupling through the Pd (about 40 mJ/m(2)). Furthermore, the Pd acquires a small moment due to spin polarization by neighboring Fe atoms, which translates into magnetic anisotropy. The anisotropies are large, in the range typical for L1(0) structures, which is beneficial for high-frequency applications. (C) 2011 American Institute of Physics. [doi:10.1063/1.3556763

  15. Development of High Reflective Multilayer Mirrors at “Water Window” Wavelengths in IPOE

    NASA Astrophysics Data System (ADS)

    Li, Haochuan; Zhu, Jingtao; Wang, Zhanshan

    Some X-ray sources for laboratory near "water window" wavelengths have been developed. High reflective multilayer mirrors are required. In this wavelength region, Cr/Sc, Cr/Ti, Cr/V and Cr/C are promising for high reflective multilayer mirror. The layer thickness is typically about 1.0 nm. We have deposited Cr/C and Cr/Sc multilayers for λ=4.48 nm and reflectance of 15.2 % was obtained for Cr/C at near normal incidence. We also show that the interface of Cr/Ti multilayers can be significantly improved by inserting B4C as diffusion barrier layer. In this report, high-reflective multilayer mirrors with and without barrier layer were deposited by using magnetron sputtering method. The reflective properties of the multilayer mirror were measured by using synchrotron radiation.

  16. Anisotropy and AVO from walkaways

    SciTech Connect

    Leaney, W.S.

    1994-12-31

    A multi-offset VSP or ``walkaway`` is a wide aperture borehole seismic experiment ideal for studying angle-dependent wave propagation. In this paper, two aspects of elastic wave propagation are studied with walkaways: anisotropy (transverse isotropy) and AVO (amplitude variation with offset). Anisotropy is measured from walkaway data using extracted vertical and horizontal phase slownesses. Results are shown for a Java Sea walkaway data set and tabulated for walkaways from different locations. The anisotropy measurements are classified using Schoenberg`s parameters of ellipticity and anellipticity. Shale anisotropy is found to be significant and variable. Anisotropic AVO is studied on Ostrander`s shale-sand model and through the computation of anisotropic ray-trace synthetics. The ratio of ellipticity to anellipticity is found to be a good measure of shale anisotropy in the context of AVO. Depending on the ``flavor`` of shale anisotropy, AVO can be significantly reduced or exaggerated. The AVO response of a reservoir sequence can also be measured (as opposed to modeled) with a properly designed walkaway. The results of processing a walkaway for AVO are shown. Such a seismic experiment is arguably the best way to determine the AVO response of a reservoir or reservoir sequence. Together, these two new applications of walkaways -- to measure anisotropy and AVO -- can be used to: (1) Establish the viability of using AVO to map a reservoir. (2) Reduce the risk involved with the added cost of AVO studies. (3) Improve the reliability of AVO interpretations.

  17. High temperature interface superconductivity

    DOE PAGESBeta

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, wemore » conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  18. High temperature interface superconductivity

    NASA Astrophysics Data System (ADS)

    Gozar, A.; Bozovic, I.

    2016-02-01

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both 'passive' hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  19. Magnetic properties of epitaxial and polycrystalline Fe/Si multilayers

    SciTech Connect

    Chaiken, A.; Michel, R.P.; Wang, C.T.

    1995-08-01

    Fe/Si multilayers with antiferromagnetic interlayer coupling have been grown via ion-beam sputtering on both glass and single-crystal substrates. X-ray diffraction measurements show that both sets of films have crystalline iron silicide spacer layers and a periodic composition modulation. Films grown on glass have smaller crystallite sizes than those grown on single-crystal substrates and have a significant remanent magnetization. Films grown on single-crystal substrates have a smaller remanence. The observation of magnetocrystalline anisotropy in hysteresis loops and (hkl) peaks in x-ray diffraction demonstrates that the films grown on MgO and Ge are epitaxial. The smaller remanent magnetization in Fe/Si multilayers with better crystallinity suggests that the remanence is not intrinsic.

  20. Process for making film-bonded fuel cell interfaces

    DOEpatents

    Kaufman, Arthur; Terry, Peter L.

    1990-07-03

    An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. A multi-layer arrangement for the interface provides bridging electrical contact with a hot-pressed resin filling the void space.

  1. Effective electromagnetic shielding in multilayer printed circuit boards

    NASA Astrophysics Data System (ADS)

    Wiles, K. G.; Moe, J. L.

    Multilayer printed circuit boards have proven to be recurrent abettors of electromagnetic coupling problems created by the incessantly faster response times in integrated circuit technologies. Coupling within multilayer boards has not only inhibited meeting certain EMI requirements but has also precipitated 'self-inflicted' malfunctions commonly experienced during development of avionic systems. A recent avionic system, interfacing two asynchronous processors through a fourteen-layer motherboard, permitted coupling through ground plane connector apertures of sufficient amplitude and duration as to cause unintentional intercommunication and system malfunctions. The coupling mechanism and ground plane modifications which reduced this coupling by 40 dB and eliminated the incompatibility are discussed in this paper

  2. Anisotropy in solid inflation

    SciTech Connect

    Bartolo, Nicola; Matarrese, Sabino; Ricciardone, Angelo; Peloso, Marco E-mail: sabino.matarrese@pd.infn.it E-mail: angelo.ricciardone@pd.infn.it

    2013-08-01

    In the model of solid / elastic inflation, inflation is driven by a source that has the field theoretical description of a solid. To allow for prolonged slow roll inflation, the solid needs to be extremely insensitive to the spatial expansion. We point out that, because of this property, the solid is also rather inefficient in erasing anisotropic deformations of the geometry. This allows for a prolonged inflationary anisotropic solution, providing the first example with standard gravity and scalar fields only which evades the conditions of the so called cosmic no-hair conjecture. We compute the curvature perturbations on the anisotropic solution, and the corresponding phenomenological bound on the anisotropy. Finally, we discuss the analogy between this model and the f(φ)F{sup 2} model, which also allows for anisotropic inflation thanks to a suitable coupling between the inflaton φ and a vector field. We remark that the bispectrum of the curvature perturbations in solid inflation is enhanced in the squeezed limit and presents a nontrivial angular dependence, as had previously been found for the f(φ)F{sup 2} model.

  3. Anisotropy in rotating drums

    NASA Astrophysics Data System (ADS)

    Povall, Timothy; McBride, Andrew; Govender, Indresan

    2015-11-01

    An anisotropic relationship between the stress and the strain rate has been observed in two-dimensional simulations of rotating drums. The objective of this work is to investigate the structure of the constitutive relation using three-dimensional discrete-element-method simulations of a rotating drum containing identical rigid spheres for a range of rotational speeds. Anisotropy is quantified from the alignment of the stress and strain rate tensors, with the strain rate computed using a least-squares fit. It is shown that in certain regions there is a strong anisotropic relationship, regardless of the speed of rotation. The effective friction coefficient is examined in order to determine the phase space in which the μ (I) rheology is valid. Lastly, a depth-averaged approach through the flowing layer is employed to determine the relationship between the velocity tangential to the equilibrium surface and the height of the flowing layer. A power-law relationship that approaches linear at high speeds is observed. Supported by NRF/DST Scarce Skills (South Africa).

  4. Design and development of multilayer vascular graft

    NASA Astrophysics Data System (ADS)

    Madhavan, Krishna

    2011-07-01

    Vascular graft is a widely-used medical device for the treatment of vascular diseases such as atherosclerosis and aneurysm as well as for the use of vascular access and pediatric shunt, which are major causes of mortality and morbidity in this world. Dysfunction of vascular grafts often occurs, particularly for grafts with diameter less than 6mm, and is associated with the design of graft materials. Mechanical strength, compliance, permeability, endothelialization and availability are issues of most concern for vascular graft materials. To address these issues, we have designed a biodegradable, compliant graft made of hybrid multilayer by combining an intimal equivalent, electrospun heparin-impregnated poly-epsilon-caprolactone nanofibers, with a medial equivalent, a crosslinked collagen-chitosan-based gel scaffold. The intimal equivalent is designed to build mechanical strength and stability suitable for in vivo grafting and to prevent thrombosis. The medial equivalent is designed to serve as a scaffold for the activity of the smooth muscle cells important for vascular healing and regeneration. Our results have shown that genipin is a biocompatible crosslinker to enhance the mechanical properties of collagen-chitosan based scaffolds, and the degradation time and the activity of smooth muscle cells in the scaffold can be modulated by the crosslinking degree. For vascular grafting and regeneration in vivo, an important design parameter of the hybrid multilayer is the interface adhesion between the intimal and medial equivalents. With diametrically opposite affinities to water, delamination of the two layers occurs. Physical or chemical modification techniques were thus used to enhance the adhesion. Microscopic examination and graft-relevant functional characterizations have been performed to evaluate these techniques. Results from characterization of microstructure and functional properties, including burst strength, compliance, water permeability and suture

  5. High reflectance and low stress Mo2C/Be multilayers

    DOEpatents

    Bajt, Sasa; Barbee, Jr., Troy W.

    2001-01-01

    A material for extreme ultraviolet (EUV) multilayers that will reflect at about 11.3 nm, have a high reflectance, low stress, and high thermal and radiation stability. The material consists of alternating layers of Mo.sub.2 C and Be deposited by DC magnetron sputtering on a substrate, such as silicon. In one example a Mo.sub.2 C/Be multilayer gave 65.2% reflectance at 11.25 nm measured at 5 degrees off normal incidence angle, and consisted of 70 bilayers with a deposition period of 5.78 nm, and was deposited at 0.83 mTorr argon (Ar) sputtering pressure, with the first and last layers being Be. The stress of the multilayer is tensile and only +88 MPa, compared to +330 MPa of a Mo/Be multilayers of the same thickness. The Mo.sub.2 C/Be multilayer was capped with carbon which produced an increase in reflectivity of about 7% over a similar multilayer with no carbon capping material, thus raising the reflectivity from 58.3% to over 65%. The multilayers were formed using either Mo.sub.2 C or Be as the first and last layers, and initial testing has shown the formation of beryllium carbide at the interfaces between the layers which both stabilizes and has a smoothing effect, and appear to be smoother than the interfaces in Mo/Be multilayers.

  6. Multilayers of zinc-blende half-metals with semiconductors

    NASA Astrophysics Data System (ADS)

    Mavropoulos, Ph; Galanakis, I.; Dederichs, P. H.

    2004-06-01

    We report on first-principles calculations for multilayers of zinc-blende half-metallic ferromagnets CrAs and CrSb with III-V and II-VI semiconductors, in the [001] orientation. We examine the ideal and tetragonalized structures, as well as the case of an intermixed interface. We find that, as a rule, half-metallicity can be conserved throughout the heterostructures, provided that the character of the local coordination and bonding is not disturbed. We describe a mechanism operative at the interfaces with semiconductors that can also give a non-integer spin moment per interface transition atom, and derive a simple rule for evaluating it.

  7. Evolution of magnetic properties and domain structures in Co/Ni multilayers

    NASA Astrophysics Data System (ADS)

    Su, Xianpeng; Jin, Tianli; Wang, Ying; Ren, Yang; Wang, Lianwen; Bai, Jianmin; Cao, Jiangwei

    2016-11-01

    Co/Ni multilayers with different layer thicknesses and repetition numbers were fabricated by magnetron sputtering. The films with appropriate Co and Ni layer thicknesses show strong perpendicular magnetic anisotropy. The results of magnetic force microscopy indicate that the films show a maze domain in the demagnetization state and that the domain width decreases with increasing layer thickness and repetition number. The magnetostatic and domain wall energies of the film stack were calculated on the basis of an irregular maze domain pattern. The results suggest that the magnetostatic energy is the main reason for the variation of the domain width in Co/Ni multilayers.

  8. Anatomy and Giant Enhancement of the Perpendicular Magnetic Anisotropy of Cobalt-Graphene Heterostructures

    NASA Astrophysics Data System (ADS)

    Yang, Hongxin; Vu, Anh Duc; Hallal, Ali; Rougemaille, Nicolas; Coraux, Johann; Chen, Gong; Schmid, Andreas K.; Chshiev, Mairbek

    2016-01-01

    We report strongly enhanced perpendicular magnetic anisotropy (PMA) of Co films by graphene coating from both first-principles and experiments. Our calculations show that graphene can dramatically boost the surface anisotropy of Co films up to twice the value of its pristine counterpart and can extend the out-of-plane effective anisotropy up to unprecedented thickness of 25~\\AA. These findings are supported by our experiments on graphene coating on Co films grown on Ir substrate. Furthermore, we report layer-resolved and orbital-hybridization-resolved anisotropy analysis which help understanding the physical mechanisms of PMA and more practically can help design structures with giant PMA. As an example, we propose super-exchange stabilized Co-graphene heterostructures with a robust out-of-plane constant effective PMA and linearly increasing interfacial anisotropy as a function of film thickness. These findings point towards possibilities to engineer graphene/ferromagnetic metal heterostructures with giant magnetic anisotropy more than 20 times larger compared to conventional multilayers, which constitutes a hallmark for future graphene and traditional spintronic technologies.

  9. Perpendicular magnetic anisotropy in Ta|Co{sub 40}Fe{sub 40}B{sub 20}|MgAl{sub 2}O{sub 4} structures and perpendicular CoFeB|MgAl{sub 2}O{sub 4}|CoFeB magnetic tunnel junction

    SciTech Connect

    Tao, B. S.; Li, D. L.; Yuan, Z. H.; Liu, H. F.; Ali, S. S.; Feng, J. F.; Wei, H. X.; Han, X. F.; Liu, Y.; Zhao, Y. G.; Zhang, Q.; Guo, Z. B.; Zhang, X. X.

    2014-09-08

    Magnetic properties of Co{sub 40}Fe{sub 40}B{sub 20} (CoFeB) thin films sandwiched between Ta and MgAl{sub 2}O{sub 4} layers have been systematically studied. For as-grown state, Ta/CoFeB/MgAl{sub 2}O{sub 4} structures exhibit good perpendicular magnetic anisotropy (PMA) with interface anisotropy K{sub i} = 1.22 erg/cm{sup 2}, which further increases to 1.30 erg/cm{sup 2} after annealing, while MgAl{sub 2}O{sub 4}/CoFeB/Ta multilayer shows in-plane magnetic anisotropy and must be annealed in order to achieve PMA. For bottom CoFeB layer, the thickness window for PMA is from 0.6 to 1.0 nm, while that for top CoFeB layer is between 0.8 and 1.4 nm. Perpendicular magnetic tunnel junctions (p-MTJs) with a core structure of CoFeB/MgAl{sub 2}O{sub 4}/CoFeB have also been fabricated and tunneling magnetoresistance ratio of about 36% at room temperature and 63% at low temperature have been obtained. The intrinsic excitations in the p-MTJs have been identified by inelastic electron-tunneling spectroscopy.

  10. Orientational anisotropy and interfacial transport in polycrystals

    NASA Astrophysics Data System (ADS)

    Moghadam, M. M.; Rickman, J. M.; Harmer, M. P.; Chan, H. M.

    2016-04-01

    Interfacial diffusion is governed to a large degree by geometric parameters that are determined by crystallographic orientation. In this study, we assess the impact of orientational anisotropy on mass transport at internal interfaces, focusing on the role of preferred crystallographic orientation (i.e., texture) on mass diffusion in a polycrystal. More specifically, we perform both numerical and analytical studies of steady-state diffusion for polycrystals having various grain-orientation distributions. By relating grain misorientation to grain-boundary energies and, via the Borisov relation, to the diffusivity, we link microstructure variability to kinetics. Our aim is to correlate shape features of the orientation distribution, such as the location and shapes of peaks, with the calculated effective diffusivity. Finally, we discuss the role of crystallographic constraints, such as those associated with grain junctions, in determining the effective diffusivity of a polycrystal.

  11. Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: ferroelectric control of magnetism.

    PubMed

    Duan, Chun-Gang; Jaswal, S S; Tsymbal, E Y

    2006-07-28

    An unexplored physical mechanism which produces a magnetoelectric effect in ferroelectric-ferromagnetic multilayers is studied based on first-principles calculations. Its origin is a change in bonding at the ferroelectric-ferromagnet interface that alters the interface magnetization when the electric polarization reverses. Using Fe/BaTiO3 multilayers as a representative model, we show a sizable difference in magnetic moments of Fe and Ti atoms at the two interfaces dissimilar by the orientation of the local electric dipole moments. The predicted magnetoelectric effect opens a new direction to control magnetic properties of thin-film layered structures by electric fields. PMID:16907608

  12. Role of magnetic anisotropy in spin-filter junctions

    SciTech Connect

    Chopdekar, R.V.; Wong, F.; Nelson-Cheeseman, B.B.; Liberati, M.; Arenholz, E.; Suzuki, Y.

    2011-01-10

    We have fabricated oxide-based spin-filter junctions in which we demonstrate that magnetic anisotropy can be used to tune the transport behavior of spin-filter junctions. We have demonstrated spin-filtering behavior in La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/CoCr{sub 2}O{sub 4}/Fe{sub 3}O{sub 4} and La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/MnCr{sub 2}O{sub 4}/Fe{sub 3}O{sub 4} junctions where the interface anisotropy plays a significant role in determining transport behavior. Detailed studies of chemical and magnetic structure at the interfaces indicate that abrupt changes in magnetic anisotropy across the nonisostructural interface is the cause of the significant suppression of junction magnetoresistance in junctions with MnCr{sub 2}O{sub 4} barrier layers.

  13. Structural origins of diamagnetic anisotropy in proteins.

    PubMed Central

    Worcester, D L

    1978-01-01

    Magnetic anisotropy in proteins and polypeptides can be attributed to the diamagnetic anisotropy of the planar peptide bonds. The alpha helix in particular has large anisotropy due to the axial alignment of the peptide bonds. The regular arrangements of the peptide bonds in beta pleated sheet and collagen structures also produce substantial anisotropy, but less than for alpha helix. The anisotropy permits orientation of small structures of these types in magnetic fields of several kilogauss. PMID:281695

  14. Mitigation of substrate defects in reticles using multilayer buffer layers

    DOEpatents

    Mirkarimi, Paul B.; Bajt, Sasa; Stearns, Daniel G.

    2001-01-01

    A multilayer film is used as a buffer layer to minimize the size of defects on a reticle substrate prior to deposition of a reflective coating on the substrate. The multilayer buffer layer deposited intermediate the reticle substrate and the reflective coating produces a smoothing of small particles and other defects on the reticle substrate. The reduction in defect size is controlled by surface relaxation during the buffer layer growth process and by the degree of intermixing and volume contraction of the materials at the multilayer interfaces. The buffer layers are deposited at near-normal incidence via a low particulate ion beam sputtering process. The growth surface of the buffer layer may also be heated by a secondary ion source to increase the degree of intermixing and improve the mitigation of defects.

  15. Solid-Supported Lipid Multilayers under High Hydrostatic Pressure.

    PubMed

    Nowak, Benedikt; Paulus, Michael; Nase, Julia; Salmen, Paul; Degen, Patrick; Wirkert, Florian J; Honkimäki, Veijo; Tolan, Metin

    2016-03-22

    In this work, the structure of solid-supported lipid multilayers exposed to increased hydrostatic pressure was studied in situ by X-ray reflectometry at the solid-liquid interface between silicon and an aqueous buffer solution. The layers' vertical structure was analyzed up to a maximum pressure of 4500 bar. The multilayers showed phase transitions from the fluid into different gel phases. With increasing pressure, a gradual filling of the sublayers between the hydrophilic head groups with water was observed. This process was inverted when the pressure was decreased, yielding finally smaller water layers than those in the initial state. As is commonly known, water has an abrasive effect on lipid multilayers by the formation of vesicles. We show that increasing pressure can reverse this process so that a controlled switching between multi- and bilayers is possible. PMID:26927365

  16. Boron containing multilayer coatings and method of fabrication

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1997-01-01

    Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition.

  17. Resolving and Tuning Mechanical Anisotropy in Black Phosphorus via Nanomechanical Multimode Resonance Spectromicroscopy.

    PubMed

    Wang, Zenghui; Jia, Hao; Zheng, Xu-Qian; Yang, Rui; Ye, G J; Chen, X H; Feng, Philip X-L

    2016-09-14

    Black phosphorus (P) has emerged as a layered semiconductor with a unique crystal structure featuring corrugated atomic layers and strong in-plane anisotropy in its physical properties. Here, we demonstrate that the crystal orientation and mechanical anisotropy in free-standing black P thin layers can be precisely determined by spatially resolved multimode nanomechanical resonances. This offers a new means for resolving important crystal orientation and anisotropy in black P device platforms in situ beyond conventional optical and electrical calibration techniques. Furthermore, we show that electrostatic-gating-induced straining can continuously tune the mechanical anisotropic effects on multimode resonances in black P electromechanical devices. Combined with finite element modeling (FEM), we also determine the Young's moduli of multilayer black P to be 116.1 and 46.5 GPa in the zigzag and armchair directions, respectively. PMID:27505636

  18. Resolving and Tuning Mechanical Anisotropy in Black Phosphorus via Nanomechanical Multimode Resonance Spectromicroscopy.

    PubMed

    Wang, Zenghui; Jia, Hao; Zheng, Xu-Qian; Yang, Rui; Ye, G J; Chen, X H; Feng, Philip X-L

    2016-09-14

    Black phosphorus (P) has emerged as a layered semiconductor with a unique crystal structure featuring corrugated atomic layers and strong in-plane anisotropy in its physical properties. Here, we demonstrate that the crystal orientation and mechanical anisotropy in free-standing black P thin layers can be precisely determined by spatially resolved multimode nanomechanical resonances. This offers a new means for resolving important crystal orientation and anisotropy in black P device platforms in situ beyond conventional optical and electrical calibration techniques. Furthermore, we show that electrostatic-gating-induced straining can continuously tune the mechanical anisotropic effects on multimode resonances in black P electromechanical devices. Combined with finite element modeling (FEM), we also determine the Young's moduli of multilayer black P to be 116.1 and 46.5 GPa in the zigzag and armchair directions, respectively.

  19. Resolving and Tuning Mechanical Anisotropy in Black Phosphorus via Nanomechanical Multimode Resonance Spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Zenghui; Jia, Hao; Zheng, Xu-Qian; Yang, Rui; Ye, G. J.; Chen, X. H.; Feng, Philip X.-L.

    2016-09-01

    Black phosphorus (P) has emerged as a layered semiconductor with a unique crystal structure featuring corrugated atomic layers and strong in-plane anisotropy in its physical properties. Here, we demonstrate that the crystal orientation and mechanical anisotropy in free-standing black P thin layers can be precisely determined by spatially resolved multimode nanomechanical resonances. This offers a new means for resolving important crystal orientation and anisotropy in black P device platforms in situ beyond conventional optical and electrical calibration techniques. Furthermore, we show that electrostatic-gating-induced straining can continuously tune the mechanical anisotropic effects on multimode resonances in black P electromechanical devices. Combined with finite element modeling (FEM), we also determine the Young's moduli of multilayer black P to be 116.1 and 46.5 GPa in the zigzag and armchair directions, respectively.

  20. Negative dependence of surface magnetocrystalline anisotropy energy on film thickness in Co33Fe67 alloy

    NASA Astrophysics Data System (ADS)

    Wang, De-Lai; Cui, Ming-Qi; Yang, Dong-Liang; Dong, Jun-Cai; Xu, Wei

    2016-10-01

    In this work, the magnetocrystalline anisotropy energy (MAE) on the surface of Fe33Co67 alloy film is extracted from x-ray magnetic linear dichroism (XMLD) experiments. The result indicates that the surface MAE value is negatively correlated with thickness. Through spectrum calculations and analysis, we find that besides the thickness effect, another principal possible cause may be the shape anisotropy resulting from the presence of interface roughness. These two factors lead to different electron structures on the fermi surface with different exchange fields, which produces different spin-orbit interaction anisotropies. Project supported by the National Natural Science Foundation of China (Grant Nos. 11075176 and 11375131).

  1. Studies of the magnetic structure at the ferromagnet - antiferromagnet interface

    SciTech Connect

    Scholl, A.; Nolting, F.; Stohr, J.; Luning, J.; Seo, J.W.; Locquet, J.-P.; Anders, S.; Ohldag, H.; Padmore, H.A.

    2001-01-02

    Antiferromagnetic layers are a scientifically challenging component in magneto-electronic devices such as magnetic sensors in hard disk heads, or magnetic RAM elements. In this paper we show that photo-electron emission microscopy (PEEM) is capable of determining the magnetic structure at the interface of ferromagnets and antiferromagnets with high spatial resolution (down to 20 nm). Dichroism effects at the L edges of the magnetic 3d transition metals, using circularly or linearly polarized soft x-rays from a synchrotron source, give rise to a magnetic image contrast. Images, acquired with the PEEM2 experiment at the Advanced Light Source, show magnetic contrast for antiferromagnetic LaFeO{sub 3}, microscopically resolving the magnetic domain structure in an antiferromagnetically ordered thin film for the first time. Magnetic coupling between LaFeO{sub 3} and an adjacent Co layer results in a complete correlation of their magnetic domain structures. From field dependent measurements a unidirectional anisotropy resulting in a local exchange bias of up to 30 Oe in single domains could be deduced. The elemental specificity and the quantitative magnetic sensitivity render PEEM a perfect tool to study magnetic coupling effects in multi-layered thin film samples.

  2. Ion polished Cr/Sc attosecond multilayer mirrors for high water window reflectivity

    DOE PAGESBeta

    Guggenmos, Alexander; Radünz, Stefan; Rauhut, Roman; Hofstetter, Michael; Venkatesan, Sriram; Wochnik, Angela; Gullikson, Eric M.; Fischer, Stefan; Nickel, Bert; Scheu, Christina; et al

    2014-01-20

    Recent advances in the development of attosecond soft X-ray sources ranging into the water window spectral range, between the 1s states of carbon and oxygen (284 eV–543 eV), are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. The relatively low intensity of current High Harmonic Generation (HHG) soft X-ray sources calls for an efficient use of photons, thus the development of low-loss multilayer optics is of uttermost importance. Here, we report about the realization of broadband Cr/Sc attosecond multilayer mirrors with nearly atomically smooth interfaces by an optimized ion beam deposition and assistedmore » interface polishing process. This yields to our knowledge highest multilayer mirror reflectivity at 300 eV near normal incidence. The results are verified by transmission electron microscopy (TEM) and soft/hard X-ray reflectometry.« less

  3. Ion polished Cr/Sc attosecond multilayer mirrors for high water window reflectivity

    SciTech Connect

    Guggenmos, Alexander; Radünz, Stefan; Rauhut, Roman; Hofstetter, Michael; Venkatesan, Sriram; Wochnik, Angela; Gullikson, Eric M.; Fischer, Stefan; Nickel, Bert; Scheu, Christina; Kleineberg, Ulf

    2014-01-20

    Recent advances in the development of attosecond soft X-ray sources ranging into the water window spectral range, between the 1s states of carbon and oxygen (284 eV–543 eV), are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. The relatively low intensity of current High Harmonic Generation (HHG) soft X-ray sources calls for an efficient use of photons, thus the development of low-loss multilayer optics is of uttermost importance. Here, we report about the realization of broadband Cr/Sc attosecond multilayer mirrors with nearly atomically smooth interfaces by an optimized ion beam deposition and assisted interface polishing process. This yields to our knowledge highest multilayer mirror reflectivity at 300 eV near normal incidence. The results are verified by transmission electron microscopy (TEM) and soft/hard X-ray reflectometry.

  4. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1996-01-01

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  5. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1996-01-02

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation. 4 figs.

  6. Perpendicular magnetic anisotropy in the Heusler alloy Co2TiSi/GaAs(001) hybrid structure

    NASA Astrophysics Data System (ADS)

    Dau, M. T.; Jenichen, B.; Herfort, J.

    2015-05-01

    Investigation of the thickness dependence of the magnetic anisotropy in B2-type Co2TiSi films on GaAs(001), shows a pronounced perpendicular magnetic anisotropy at 10 K for thicknesses up to 13.5 nm. We have evidenced that the interfacial anisotropy induced by interface clusters has a strong influence on the perpendicular magnetic anisotropy of this hybrid structure, especially at temperatures lower than the blocking temperature of the clusters (28 K). However, as this influence can be ruled out at higher temperatures, the perpendicular magnetic anisotropy which is found to persist up to room-temperature can be ascribed to the magnetic properties of the Co2TiSi films. For thicknesses larger than 15.0 nm, we observe an alignment of the magnetic easy axis parallel to the sample surface, which is most likely due to the shape anisotropy and the film structure.

  7. Wrapped Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Dye, Scott A.

    2015-01-01

    New NASA vehicles, such as Earth Departure Stage (EDS), Orion, landers, and orbiting fuel depots, need improved cryogenic propellant transfer and storage for long-duration missions. Current cryogen feed line multilayer insulation (MLI) performance is 10 times worse per area than tank MLI insulation. During each launch, cryogenic piping loses approximately 150,000 gallons (equivalent to $300,000) in boil-off during transfer, chill down, and ground hold. Quest Product Development Corp., teaming with Ball Aerospace, developed an innovative advanced insulation system, Wrapped MLI (wMLI), to provide improved thermal insulation for cryogenic feed lines. wMLI is high-performance multilayer insulation designed for cryogenic piping. It uses Quest's innovative discrete-spacer technology to control layer spacing/ density and reduce heat leak. The Phase I project successfully designed, built, and tested a wMLI prototype with a measured heat leak 3.6X lower than spiral-wrapped conventional MLI widely used for piping insulation. A wMLI prototype had a heat leak of 7.3 W/m2, or 27 percent of the heat leak of conventional MLI (26.7 W/m2). The Phase II project is further developing wMLI technology with custom, molded polymer spacers and advancing the product toward commercialization via a rigorous testing program, including developing advanced vacuuminsulated pipe for ground support equipment.

  8. Wrapped Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Dye, Scott A.

    2015-01-01

    New NASA vehicles, such as Earth Departure Stage (EDS), Orion, landers, and orbiting fuel depots, need improved cryogenic propellant transfer and storage for long-duration missions. Current cryogen feed line multilayer insulation (MLI) performance is 10 times worse per area than tank MLI insulation. During each launch, cryogenic piping loses approximately 150,000 gallons (equivalent to $300,000) in boil-off during transfer, chill down, and ground hold. Quest Product Development Corp., teaming with Ball Aerospace, developed an innovative advanced insulation system, Wrapped MLI (wMLI), to provide improved thermal insulation for cryogenic feed lines. wMLI is high-performance multilayer insulation designed for cryogenic piping. It uses Quest's innovative discrete-spacer technology to control layer spacing/ density and reduce heat leak. The Phase I project successfully designed, built, and tested a wMLI prototype with a measured heat leak 3.6X lower than spiral-wrapped conventional MLI widely used for piping insulation. A wMLI prototype had a heat leak of 7.3 W/sq m, or 27 percent of the heat leak of conventional MLI (26.7 W/sq m). The Phase II project is further developing wMLI technology with custom, molded polymer spacers and advancing the product toward commercialization via a rigorous testing program, including developing advanced vacuuminsulated pipe for ground support equipment.

  9. Ultrahard Multilayer Coatings

    SciTech Connect

    Chrzan, D.C.; Dugger, M.; Follstaedt, D.M.; Friedman, Lawrence H.; Friedmann, T.A.; Knapp, J.A.; McCarty, K.F.; Medlin, D.L.; Mirkarimi, P.B.; Missert, N.; Newcomer, P.P.; Sullivan, J.P.; Tallant, D.R.

    1999-05-01

    We have developed a new multilayer a-tC material that is thick stress-free, adherent, low friction, and with hardness and stiffness near that of diamond. The new a-tC material is deposited by J pulsed-laser deposition (PLD) at room temperature, and fully stress-relieved by a short thermal anneal at 600°C. A thick multilayer is built up by repeated deposition and annealing steps. We measured 88 GPa hardness, 1100 GPa Young's modulus, and 0.1 friction coefficient (under high load). Significantly, these results are all well within the range reported for crystalline diamond. In fact, this material, if considered separate from crystalline diamond, is the 2nd hardest material known to man. Stress-free a-tC also has important advantages over thin film diamond; namely, it is smooth, processed at lower temperature, and can be grown on a much broader range of substrates. This breakthrough will enable a host of applications that we are actively pursuing in MEMs, sensors, LIGA, etc.

  10. Spin-wave dynamics of magnetic heterostructures: Application to Dy/Y multilayers

    SciTech Connect

    Haraldsen, Jason T; Fishman, Randy Scott

    2010-01-01

    We examine the spin-wave (SW) dynamics of Dy/Y multilayers in order to separate the dynamical contribution of the Dy-Y interface from that of bulk Dy. The SW frequencies and intensities of bulk Dy are determined analytically. When the Dy layers in a multilayer geometry are decoupled, the SW dispersion relations are discontinuous with discrete excitations. With a RKKY interaction coupling through the Y spacer, the discrete excitations become dispersive and the main SW branches split due to the multilayer geometry. Regardless of the strength of the intermediate RKKY interaction, the dispersion signature of the bulk remains.

  11. Deformation-induced nanoscale mixing reactions in Cu/Ni and Ag/Pd multilayers

    SciTech Connect

    Wang, Z.; Perepezko, J. H.

    2013-11-04

    During the repeated cold rolling of Cu/Ni and Ag/Pd multilayers, a solid solution forms at the interfaces as nanoscale layer structure with a composition that replicates the overall multilayer composition. The interfacial mixing behavior was investigated by means of X-ray diffraction and scanning transmission electron microscopy. During deformation induced reaction, the intermixing behavior of the Cu/Ni and Ag/Pd multilayers is in contrast to thermally activated diffusion behavior. This distinct behavior can provide new kinetic pathways and offer opportunities for microstructure control that cannot be achieved by thermal processing.

  12. Amiba Observation of CMB Anisotropies

    NASA Astrophysics Data System (ADS)

    Ng, Kin-Wang

    2003-03-01

    The Array for Microwave Background Anisotropies (AMiBA), a 13-element dual-channel 85-105 GHz interferometer array with full polarization capabilities, is being built to search for high redshift clusters of galaxies via the Sunyaev-Zel'dovich effect as well as to probe the polarization properties of the cosmic microwave background (CMB). We discuss several important issues in the observation of the CMB anisotropies such as observing strategy, l space resolution and mosaicing, optimal estimation of the power spectra, and ground pickup removal.

  13. Thermally induced magnetization switching in Gd/Fe multilayers

    NASA Astrophysics Data System (ADS)

    Xu, C.; Ostler, T. A.; Chantrell, R. W.

    2016-02-01

    A theoretical model of Gd/Fe multilayers is constructed using the atomistic spin dynamics formalism. By varying the thicknesses and number of layers we have shown that a strong dependence of the energy required for thermally induced magnetization switching (TIMS) is present; with a larger number of interfaces, lower energy is required. The results of the layer resolved dynamics show that the reversal process of the multilayered structures, similar to that of a GdFeCo alloy, is driven by the antiferromagnetic interaction between the transition-metal and rare-earth components. Finally, while the presence of the interface drives the reversal process, we show here that the switching process does not initiate at the surface but from the layers furthest from it, a departure from the alloy behavior which expands the classes of material types exhibiting TIMS.

  14. Nanostructure multilayer dielectric materials for capacitors and insulators

    DOEpatents

    Barbee, Jr., Troy W.; Johnson, Gary W.

    1998-04-21

    A capacitor is formed of at least two metal conductors having a multilayer dielectric and opposite dielectric-conductor interface layers in between. The multilayer dielectric includes many alternating layers of amorphous zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3). The dielectric-conductor interface layers are engineered for increased voltage breakdown and extended service life. The local interfacial work function is increased to reduce charge injection and thus increase breakdown voltage. Proper material choices can prevent electrochemical reactions and diffusion between the conductor and dielectric. Physical vapor deposition is used to deposit the zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3) in alternating layers to form a nano-laminate.

  15. Nanostructure multilayer dielectric materials for capacitors and insulators

    DOEpatents

    Barbee, T.W. Jr.; Johnson, G.W.

    1998-04-21

    A capacitor is formed of at least two metal conductors having a multilayer dielectric and opposite dielectric-conductor interface layers in between. The multilayer dielectric includes many alternating layers of amorphous zirconium oxide (ZrO{sub 2}) and alumina (Al{sub 2}O{sub 3}). The dielectric-conductor interface layers are engineered for increased voltage breakdown and extended service life. The local interfacial work function is increased to reduce charge injection and thus increase breakdown voltage. Proper material choices can prevent electrochemical reactions and diffusion between the conductor and dielectric. Physical vapor deposition is used to deposit the zirconium oxide (ZrO{sub 2}) and alumina (Al{sub 2}O{sub 3}) in alternating layers to form a nano-laminate. 1 fig.

  16. Realizing topological stability of magnetic helices in exchange-coupled multilayers for all-spin-based system

    NASA Astrophysics Data System (ADS)

    Fust, Sergej; Mukherjee, Saumya; Paul, Neelima; Stahn, Jochen; Kreuzpaintner, Wolfgang; Böni, Peter; Paul, Amitesh

    2016-09-01

    Topologically stabilized spin configurations like helices in the form of planar domain walls (DWs) or vortex-like structures with magnetic functionalities are more often a theoretical prediction rather than experimental realization. In this paper we report on the exchange coupling and helical phase characteristics within Dy-Fe multilayers. The magnetic hysteresis loops with temperature show an exchange bias field of around 1.0 kOe at 10 K. Polarized neutron reflectivity reveal (i) ferrimagnetic alignment of the layers at low fields forming twisted magnetic helices and a more complicated but stable continuous helical arrangement at higher fields (ii) direct evidence of helices in the form of planar 2π-DWs within both layers of Fe and Dy. The helices within the Fe layers are topologically stabilized by the reasonably strong induced in-plane magnetocrystalline anisotropy of Dy and the exchange coupling at the Fe-Dy interfaces. The helices in Dy are plausibly reminiscent of the helical ordering at higher temperatures induced by the field history and interfacial strain. Stability of the helical order even at large fields have resulted in an effective modulation of the periodicity of the spin-density like waves and subsequent increase in storage energy. This opens broad perspectives for future scientific and technological applications in increasing the energy density for systems in the field of all-spin-based engineering which has the potential for energy-storing elements on nanometer length scales.

  17. Realizing topological stability of magnetic helices in exchange-coupled multilayers for all-spin-based system

    PubMed Central

    Fust, Sergej; Mukherjee, Saumya; Paul, Neelima; Stahn, Jochen; Kreuzpaintner, Wolfgang; Böni, Peter; Paul, Amitesh

    2016-01-01

    Topologically stabilized spin configurations like helices in the form of planar domain walls (DWs) or vortex-like structures with magnetic functionalities are more often a theoretical prediction rather than experimental realization. In this paper we report on the exchange coupling and helical phase characteristics within Dy-Fe multilayers. The magnetic hysteresis loops with temperature show an exchange bias field of around 1.0 kOe at 10 K. Polarized neutron reflectivity reveal (i) ferrimagnetic alignment of the layers at low fields forming twisted magnetic helices and a more complicated but stable continuous helical arrangement at higher fields (ii) direct evidence of helices in the form of planar 2π-DWs within both layers of Fe and Dy. The helices within the Fe layers are topologically stabilized by the reasonably strong induced in-plane magnetocrystalline anisotropy of Dy and the exchange coupling at the Fe-Dy interfaces. The helices in Dy are plausibly reminiscent of the helical ordering at higher temperatures induced by the field history and interfacial strain. Stability of the helical order even at large fields have resulted in an effective modulation of the periodicity of the spin-density like waves and subsequent increase in storage energy. This opens broad perspectives for future scientific and technological applications in increasing the energy density for systems in the field of all-spin-based engineering which has the potential for energy-storing elements on nanometer length scales. PMID:27677227

  18. Interfacial oxygen migration and its effect on the magnetic anisotropy in Pt/Co/MgO/Pt films

    SciTech Connect

    Chen, Xi; Feng, Chun E-mail: ghyu@mater.ustb.edu.cn; Liu, Yang; Jiang, Shaolong; Hua Li, Ming; Hua Yu, Guang E-mail: ghyu@mater.ustb.edu.cn; Long Wu, Zheng; Yang, Feng

    2014-02-03

    This paper reports the interfacial oxygen migration effect and its induced magnetic anisotropy evolution in Pt/Co/MgO/Pt films. During depositing the MgO layer, oxygen atoms from the MgO combine with the neighboring Co atoms, leading to the formation of CoO at the Co/MgO interface. Meanwhile, the films show in-plane magnetic anisotropy (IMA). After annealing, most of the oxygen atoms in CoO migrate back to the MgO layer, resulting in obvious improvement of Co/MgO interface and the enhancement of effective Co-O orbital hybridization. These favor the evolution of magnetic anisotropy from IMA to perpendicular magnetic anisotropy (PMA). The oxygen migration effect is achieved by the redox reaction at the Co/MgO interface. On the contrary, the transfer from IMA to PMA cannot be observed in Pt/Co/Pt films due to the lack of interfacial oxygen migration.

  19. Nucleation and Growth of Bubbles in He Ion Implanted V/Ag Multilayers

    SciTech Connect

    Wei, Q. M.; Wang, Y. Q.; Nastasi, Michael; Misra, A.

    2011-11-18

    Microstructures of He ion-implanted pure Ag, pure V and polycrystalline V/Ag multilayers with individual layer thickness ranging from 1 nm to 50 nm were investigated by transmission electron microscopy (TEM). The bubbles in the Ag layer were faceted and larger than the non-faceted bubbles in the V layer under the same implantation conditions for both pure metals and multilayers. The substantially higher single defects surviving the spike phase and lower mobility of trapped He in bcc than those in fcc could account for this difference. For multilayers, the bubbles nucleate at interfaces but grow preferentially in Ag layers due to high mobility of trapped He in fcc Ag. In addition, the He concentration above which bubbles can be detected in defocused TEM images increases with decreasing layer thickness, from 0 for pure Ag to 4–5 at. % for 1 nm V/1 nm Ag multilayers. In contrast, the bubble size decreases with decreasing layer thickness, from approximately 4 nm in diameter in pure Ag to 1 nm in the 1 nm V/1 nm Ag multilayers. Elongated bubbles confined in the Ag layer by the V–Ag interfaces were observed in 1 nm multilayers. These observations show that bubble nucleation and growth can be suppressed to high He concentrations in nanoscale composites with interfaces that have high He solubility.

  20. Second order anisotropy contribution in perpendicular magnetic tunnel junctions

    PubMed Central

    Timopheev, A. A.; Sousa, R.; Chshiev, M.; Nguyen, H. T.; Dieny, B.

    2016-01-01

    Hard-axis magnetoresistance loops were measured on perpendicular magnetic tunnel junction pillars of diameter ranging from 50 to 150 nm. By fitting these loops to an analytical model, the effective anisotropy fields in both free and reference layers were derived and their variations in temperature range between 340 K and 5 K were determined. It is found that a second-order anisotropy term of the form −K2cos4θ must be added to the conventional uniaxial –K1cos2θ term to explain the experimental data. This higher order contribution exists both in the free and reference layers. At T = 300 K, the estimated −K2/K1 ratios are 0.1 and 0.24 for the free and reference layers, respectively. The ratio is more than doubled at low temperatures changing the ground state of the reference layer from “easy-axis” to “easy-cone” regime. The easy-cone regime has clear signatures in the shape of the hard-axis magnetoresistance loops. The existence of this higher order anisotropy was also confirmed by ferromagnetic resonance experiments on FeCoB/MgO sheet films. It is of interfacial nature and is believed to be due to spatial fluctuations at the nanoscale of the first order anisotropy parameter at the FeCoB/MgO interface. PMID:27246631

  1. Second order anisotropy contribution in perpendicular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Timopheev, A. A.; Sousa, R.; Chshiev, M.; Nguyen, H. T.; Dieny, B.

    2016-06-01

    Hard-axis magnetoresistance loops were measured on perpendicular magnetic tunnel junction pillars of diameter ranging from 50 to 150 nm. By fitting these loops to an analytical model, the effective anisotropy fields in both free and reference layers were derived and their variations in temperature range between 340 K and 5 K were determined. It is found that a second-order anisotropy term of the form ‑K2cos4θ must be added to the conventional uniaxial –K1cos2θ term to explain the experimental data. This higher order contribution exists both in the free and reference layers. At T = 300 K, the estimated ‑K2/K1 ratios are 0.1 and 0.24 for the free and reference layers, respectively. The ratio is more than doubled at low temperatures changing the ground state of the reference layer from “easy-axis” to “easy-cone” regime. The easy-cone regime has clear signatures in the shape of the hard-axis magnetoresistance loops. The existence of this higher order anisotropy was also confirmed by ferromagnetic resonance experiments on FeCoB/MgO sheet films. It is of interfacial nature and is believed to be due to spatial fluctuations at the nanoscale of the first order anisotropy parameter at the FeCoB/MgO interface.

  2. Pinned orbital moments – A new contribution to magnetic anisotropy

    PubMed Central

    Audehm, P.; Schmidt, M.; Brück, S.; Tietze, T.; Gräfe, J.; Macke, S.; Schütz, G.; Goering, E.

    2016-01-01

    Reduced dimensionality and symmetry breaking at interfaces lead to unusual local magnetic configurations, such as glassy behavior, frustration or increased anisotropy. The interface between a ferromagnet and an antiferromagnet is such an example for enhanced symmetry breaking. Here we present detailed X-ray magnetic circular dichroism and X-ray resonant magnetic reflectometry investigations on the spectroscopic nature of uncompensated pinned magnetic moments in the antiferromagnetic layer of a typical exchange bias system. Unexpectedly, the pinned moments exhibit nearly pure orbital moment character. This strong orbital pinning mechanism has not been observed so far and is not discussed in literature regarding any theory for local magnetocrystalline anisotropy energies in magnetic systems. To verify this new phenomenon we investigated the effect at different temperatures. We provide a simple model discussing the observed pure orbital moments, based on rotatable spin magnetic moments and pinned orbital moments on the same atom. This unexpected observation leads to a concept for a new type of anisotropy energy. PMID:27151436

  3. Pinned orbital moments - A new contribution to magnetic anisotropy.

    PubMed

    Audehm, P; Schmidt, M; Brück, S; Tietze, T; Gräfe, J; Macke, S; Schütz, G; Goering, E

    2016-01-01

    Reduced dimensionality and symmetry breaking at interfaces lead to unusual local magnetic configurations, such as glassy behavior, frustration or increased anisotropy. The interface between a ferromagnet and an antiferromagnet is such an example for enhanced symmetry breaking. Here we present detailed X-ray magnetic circular dichroism and X-ray resonant magnetic reflectometry investigations on the spectroscopic nature of uncompensated pinned magnetic moments in the antiferromagnetic layer of a typical exchange bias system. Unexpectedly, the pinned moments exhibit nearly pure orbital moment character. This strong orbital pinning mechanism has not been observed so far and is not discussed in literature regarding any theory for local magnetocrystalline anisotropy energies in magnetic systems. To verify this new phenomenon we investigated the effect at different temperatures. We provide a simple model discussing the observed pure orbital moments, based on rotatable spin magnetic moments and pinned orbital moments on the same atom. This unexpected observation leads to a concept for a new type of anisotropy energy. PMID:27151436

  4. Multilayer heterostructures of magnetic Heusler and binary compounds from first principles

    NASA Astrophysics Data System (ADS)

    Garoufalis, Christos; Galanakis, Iosif

    2016-03-01

    Employing first-principles state-of-the-art electronic structure calculations, we study a series of multilayer heterostructures composed of ferro/ferrimagnetic half-metallic Heusler compounds and binary compounds presenting perpendicular magnetic anisotropy. We relax these heterostructures and study both their electronic and magnetic properties. In most studied cases the Heusler spacer keeps a large value of spin-polarization at the Fermi level even for ultrathin films which attends the maximum value of 100% in the case of the Mn2VSi/MnSi multilayer. Our results pave the way both experimentally and theoretically towards the growth of such multilayer heterostructures and their incorporation in spintronic/magnetoelectronic devices.

  5. Grazing-incidence x-ray scattering from stepped interfaces in AlAs/GaAs superlattices

    NASA Astrophysics Data System (ADS)

    Kondrashkina, E. A.; Stepanov, S. A.; Opitz, R.; Schmidbauer, M.; Köhler, R.; Hey, R.; Wassermeier, M.; Novikov, D. V.

    1997-10-01

    The features of surface and interface roughness in crystalline AlAs/GaAs superlattices grown by molecular beam epitaxy on vicinal (001) GaAs substrates are studied by grazing-incidence x-ray scattering (GIXS). The effects of different growth modes [step-flow or two-dimensional- (2D-) nucleation], different substrate preparations, and growth interruptions on the roughness are investigated. The results of GIXS are compared with atomic force microscopy (AFM) images of sample surfaces. For samples grown in the step-flow mode, both of the methods display a distinct anisotropy in the lateral size of roughness along the substrate miscut direction and perpendicular to it. The lateral correlation lengths given by GIXS correspond to the size of step bunches observed by AFM, while individual steps are resolved by AFM only. GIXS reveals also a strong interface-interface correlation or inheritance of roughness for all the samples which is not accessible by AFM. Moreover, the angle of inclination of the direction of this inheritance from the surface normal is found to be dependent on the growth conditions. Two effects in the skew inheritance have been observed by means of 2D mapping of GIXS in the reciprocal space: (i) in the direction of substrate miscut the angle of skew inheritance inverted its sign, (ii) in the direction perpendicular to the miscut a strongly skew inheritance appeared as an effect of growth interruptions. Conclusions concerning the improvement of GIXS experiments applied to the studies of multilayers are derived.

  6. Anisotropy of machine building materials

    NASA Technical Reports Server (NTRS)

    Ashkenazi, Y. K.

    1981-01-01

    The results of experimental studies of the anisotropy of elastic and strength characteristics of various structural materials, including pressure worked metals and alloys, laminated fiberglass plastics, and laminated wood plastics, are correlated and classified. Strength criteria under simple and complex stresses are considered as applied to anisotropic materials. Practical application to determining the strength of machine parts and structural materials is discussed.

  7. Tactile display with dielectric multilayer elastomer actuatorsq

    NASA Astrophysics Data System (ADS)

    Matysek, Marc; Lotz, Peter; Schlaak, Helmut F.

    2009-03-01

    Tactile perception is the human sensation of surface textures through the vibrations generated by stroking a finger over the surface. The skin responds to several distributed physical quantities. Perhaps the most important are high-frequency vibrations, pressure distributions (static shape) and thermal properties. The integration of tactile displays in man-machine interfaces promises a more intuitive handling. For this reason many tactile displays are developed using different technologies. We present several state-of-the-art tactile displays based on different types of dielectric elastomer actuators to clarify the advantages of our matrix display based on multilayer technology. Using this technology perpendicular and hexagonal arrays of actuator elements (tactile stimulators) can be integrated into a PDMS substrate. Element diameters down to 1 mm allow stimuli at the range of the human two-point-discrimination threshold. Driving the elements by column and row addressing enables various stimulation patterns with a reduced number of feeding lines. The transient analysis determines charging times of the capacitive actuators depending on actuator geometry and material parameters. This is very important to ensure an adequate dynamic characteristic of the actuators to stimulate the human skin by vibrations. The suitability of multilayer dielectric elastomer actuators for actuation in tactile displays has been determined. Beside the realization of a static tactile display - where multilayer DEA are integrated as drives for movable contact pins - we focus on the direct use of DEA as a vibrotactile display. Finally, we present the scenario and achieved results of a recognition threshold test. Even relative low voltages in the range of 800 V generate vibrations with 100% recognition ratio within the group of participants. Furthermore, the frequency dependent characteristic of the determined recognition threshold confirms with established literature.

  8. Multilayer graphene condenser microphone

    NASA Astrophysics Data System (ADS)

    Todorović, Dejan; Matković, Aleksandar; Milićević, Marijana; Jovanović, Djordje; Gajić, Radoš; Salom, Iva; Spasenović, Marko

    2015-12-01

    Vibrating membranes are the cornerstone of acoustic technology, forming the backbone of modern loudspeakers and microphones. Acoustic performance of a condenser microphone is derived mainly from the membrane’s size, surface mass and achievable static tension. The widely studied and available nickel has been a dominant membrane material for professional microphones for several decades. In this paper we introduce multilayer graphene as a membrane material for condenser microphones. The graphene device outperforms a high end commercial nickel-based microphone over a significant part of the audio spectrum, with a larger than 10 dB enhancement of sensitivity. Our experimental results are supported with numerical simulations, which also show that a 300 layer thick graphene membrane under maximum tension would offer excellent extension of the frequency range, up to 1 MHz.

  9. WSi2/Si multilayer sectioning by reactive ion etching for multilayer Laue lens fabrication

    NASA Astrophysics Data System (ADS)

    Bouet, N.; Conley, R.; Biancarosa, J.; Divan, R.; Macrander, A. T.

    2010-09-01

    for only a small number of materials, and even less recipes exist for concurrent etching of more than one element so a fully material specific process needs to be developed. In this paper, sectioning of WSi2/Si multilayers for MLL fabrication using fluorinated gases is investigated. The main goals were to demonstrate the feasibility of this technique, achievement of high anisotropy, adequate sidewall roughness control and high etching rates. We note that this development for MLL sidewalls should be distinguished from work on improving aspect ratios in traditional Fresnel zone plates. Aspect ratios for MLL sidewalls are not similarly constrained.

  10. A functional protein retention and release multilayer with high stability

    NASA Astrophysics Data System (ADS)

    Nie, Kun; An, Qi; Zhang, Yihe

    2016-04-01

    Effective and robust interfacial protein retention lies at the heart of the fabrication of protein-based functional interfaces, which is potentially applicable in catalysis, medical therapy, antifouling, and smart devices, but remains challenging due to the sensitive nature of proteins. This study reports a general protein retention strategy to spatial-temporally confine various types of proteins at interfacial regions. The proteins were preserved in mesoporous silica nanoparticles embedded in covalently woven multilayers. It is worth noting that the protein retention strategy effectively preserves the catalytic capabilities of the proteins, and the multilayer structure is robust enough to withstand the bubbling catalytic reactions and could be repeatedly used due to conservation of proteins. The spatiotemporal retention of proteins could be adjusted by varying the number of capping layers. Furthermore, we demonstrate that the protein-loaded interfacial layers could not only be used to construct catalytic-active interfaces, but also be integrated as the power-generating unit to propel a macroscopic floating device.Effective and robust interfacial protein retention lies at the heart of the fabrication of protein-based functional interfaces, which is potentially applicable in catalysis, medical therapy, antifouling, and smart devices, but remains challenging due to the sensitive nature of proteins. This study reports a general protein retention strategy to spatial-temporally confine various types of proteins at interfacial regions. The proteins were preserved in mesoporous silica nanoparticles embedded in covalently woven multilayers. It is worth noting that the protein retention strategy effectively preserves the catalytic capabilities of the proteins, and the multilayer structure is robust enough to withstand the bubbling catalytic reactions and could be repeatedly used due to conservation of proteins. The spatiotemporal retention of proteins could be adjusted by

  11. Integrated Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Dye, Scott

    2009-01-01

    Integrated multilayer insulation (IMLI) is being developed as an improved alternative to conventional multilayer insulation (MLI), which is more than 50 years old. A typical conventional MLI blanket comprises between 10 and 120 metallized polymer films separated by polyester nets. MLI is the best thermal- insulation material for use in a vacuum, and is the insulation material of choice for spacecraft and cryogenic systems. However, conventional MLI has several disadvantages: It is difficult or impossible to maintain the desired value of gap distance between the film layers (and consequently, it is difficult or impossible to ensure consistent performance), and fabrication and installation are labor-intensive and difficult. The development of IMLI is intended to overcome these disadvantages to some extent and to offer some additional advantages over conventional MLI. The main difference between IMLI and conventional MLI lies in the method of maintaining the gaps between the film layers. In IMLI, the film layers are separated by what its developers call a micro-molded discrete matrix, which can be loosely characterized as consisting of arrays of highly engineered, small, lightweight, polymer (typically, thermoplastic) frames attached to, and placed between, the film layers. The term "micro-molded" refers to both the smallness of the frames and the fact that they are fabricated in a process that forms precise small features, described below, that are essential to attainment of the desired properties. The term "discrete" refers to the nature of the matrix as consisting of separate frames, in contradistinction to a unitary frame spanning entire volume of an insulation blanket.

  12. The microwave background anisotropies: observations.

    PubMed

    Wilkinson, D

    1998-01-01

    Most cosmologists now believe that we live in an evolving universe that has been expanding and cooling since its origin about 15 billion years ago. Strong evidence for this standard cosmological model comes from studies of the cosmic microwave background radiation (CMBR), the remnant heat from the initial fireball. The CMBR spectrum is blackbody, as predicted from the hot Big Bang model before the discovery of the remnant radiation in 1964. In 1992 the cosmic background explorer (COBE) satellite finally detected the anisotropy of the radiation-fingerprints left by tiny temperature fluctuations in the initial bang. Careful design of the COBE satellite, and a bit of luck, allowed the 30 microK fluctuations in the CMBR temperature (2.73 K) to be pulled out of instrument noise and spurious foreground emissions. Further advances in detector technology and experiment design are allowing current CMBR experiments to search for predicted features in the anisotropy power spectrum at angular scales of 1 degrees and smaller. If they exist, these features were formed at an important epoch in the evolution of the universe--the decoupling of matter and radiation at a temperature of about 4,000 K and a time about 300,000 years after the bang. CMBR anisotropy measurements probe directly some detailed physics of the early universe. Also, parameters of the cosmological model can be measured because the anisotropy power spectrum depends on constituent densities and the horizon scale at a known cosmological epoch. As sophisticated experiments on the ground and on balloons pursue these measurements, two CMBR anisotropy satellite missions are being prepared for launch early in the next century.

  13. Exchange anisotropy, engineered coercivity and spintronics in atomically engineered L1{sub 0} heterostructures

    SciTech Connect

    Krishnan, Kannan M

    2011-08-30

    undisturbed. As a result, the method is unsuitable for epitaxial growth, since the latter often involves growth at elevated temperatures higher than the glass transition temperature of the resist. Therefore, a mask transfer NIL process was developed to grow epitaxial nanostructure arrays at elevated temperatures where organic resists are rendered unstable. In the case of the metal/oxide heterostructures, the domain structure of the metal is carefully modulated by that of the underlying oxide, opening the possibility of carrying out novel experiments to study spin-dependent domain-wall scattering and quantify domain wall resistance in mesoscopic geometries. Utilizing state-of-the-art characterization methods, using synchrotron radiation and electron holography, we addressed the critical role of all aspects of the microstructure, at relevant length scales, in determining these specific magnetic properties. Two significant highlights of this project were the use of photoemission electron microscopy (PEEM) work to elucidate their asymmetric magnetization reversal mechanism and the use of element-specific X-ray magnetic reflectivity and x-ray resonant scattering to probe buried interfaces, both of importance in understanding the fundamental physics of exchange bias. In the latter case, a complex magnetic interfacial configuration in Fe/MnPd, consisting of a 2-monolayer-thick induced ferromagnetic region, and pinned uncompensated Mn moments that reach far deeper (~13 Å), both in the antiferromagnet, were found. Such epitaxial EB samples also show in-plane reorientation transitions, determined by the competition between the interface exchange coupling and the intrinsic uniaxial energies, and is driven by the temperature, as well as the thickness of MnPd and Fe layers. Complementing these results, work on multilayers show that perpendicular EB arise from a complex interplay between unidirectional anisotropy at the terminating FM/AFM interface, the perpendicular anisotropy of the FM

  14. Simulation of EUV multilayer mirror buried defects

    NASA Astrophysics Data System (ADS)

    Brukman, Matthew J.; Deng, Yunfei; Neureuther, Andrew R.

    2000-07-01

    A new interface has been created to link existing deposition/etching and electromagnetic simulation software, allowing the user to program deposition and etching conditions and then find the reflective properties of the resultant structure. The application studied in this paper is the problem of three-dimensional defects which become buried during fabrication of multilayer mirrors for extreme ultraviolet lithography. The software link reads in surface information in the form of linked triangles, determines all nodes within the triangles, and then creates nodes lying between triangles of different layers to create a 3- dimensional inhomogeneous matrix containing the materials' indices of refraction. This allows etching and depositions to be input into SAMPLE-3D, a multi-surface topology to be generated, and then the electromagnetic properties of the structure to be assessed with TEMPEST. This capability was used to study substrate defects in multilayer mirrors by programming a defect and then sputter-depositing some forty layers on top of the defect. Specifically examined was how the topography depended on sputter conditions and determined the defects' impact on the mirrors' imaging properties. While this research was focused on application to EUV lithography, the general technique may be extended to other optical processes such as alignment and mask defects.

  15. Finite element analysis of multilayer coextrusion.

    SciTech Connect

    Hopkins, Matthew Morgan; Schunk, Peter Randall; Baer, Thomas A.; Mrozek, Randy A.; Lenhart, Joseph Ludlow; Rao, Rekha Ranjana; Collins, Robert; Mondy, Lisa Ann

    2011-09-01

    Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.

  16. Thickness Dependent Magnetoelastic Effects and Perpendicular Magnetic Anisotropy in the Ta/CoFeB/MgO system

    NASA Astrophysics Data System (ADS)

    Stiehl, Gregory; Gowtham, Praveen; Ralph, Daniel; Buhrman, Robert

    2015-03-01

    We report the observation of strong thickness-dependent in-plane magnetoelastic coupling in Ta/CoFeB(x =0.7-2 nm)/MgO multilayers. Measurements are made using a four-point bend test strain fixture, revealing the emergence of large effective surface and volume magnetoelastic couplings after post-deposition annealing. When such surface and volume magnetoelastic interactions are included in the standard Neel model of surface anisotropy, they provide a natural explanation for the nonmonotonic Keffteff vs teff curves measured for CoFeB films in the thickness range that yields perpendicular magnetic anisotropy (PMA). The large magnitude of the magnetoelastic coupling terms suggest that enhanced control of thin film strains could be used to beneficially manipulate the PMA in CoFeB/MgO magnetic tunnel junctions and other thin film multilayer nanostructures.

  17. Multilayer coatings on flexible substrates

    SciTech Connect

    Martin, P.M.; Affinito, J.D.; Gross, M.E.; Coronado, C.A.; Bennett, W.D.; Stewart, D.C.

    1995-04-01

    Thin-film optical and non-optical multilayer coatings are deposited onto flexible substrates using a vacuum web coater developed at Pacific Northwest Laboratory. The coater`s primary application is rapid prototyping of multilayer (1) polymer coatings, (2) polymer/metal coatings, (3) ceramic/metal coatings, and (4) hybrid polymer, ceramic, and metal coatings. The coater is fully automated and incorporates polymer evaporation and extrusion heads, high-rate magnetron sputtering cathodes, and e-beam evaporation sources. Polymer electrolytes are deposited by extrusion techniques. Flexible plastic, metal, and ceramic substrates can be coated using roll-to-roll or closed-loop configurations. Examples of multilayer optical coatings demonstrated to date are solar reflectors, heat mirrors, Fabry-Perot filters, and alpha particle sensors. Nonoptical coatings include multilayer magnetic metal/ceramic and lamellar composites.

  18. Controlling light with plasmonic multilayers

    NASA Astrophysics Data System (ADS)

    Orlov, Alexey A.; Zhukovsky, Sergei V.; Iorsh, Ivan V.; Belov, Pavel A.

    2014-06-01

    Recent years have seen a new wave of interest in layered media - namely, plasmonic multilayers - in several emerging applications ranging from transparent metals to hyperbolic metamaterials. In this paper, we review the optical properties of such subwavelength metal-dielectric multilayered metamaterials and describe their use for light manipulation at the nanoscale. While demonstrating the recently emphasized hallmark effect of hyperbolic dispersion, we put special emphasis to the comparison between multilayered hyperbolic metamaterials and more broadly defined plasmonic-multilayer metamaterials A number of fundamental electromagnetic effects unique to the latter are identified and demonstrated. Examples include the evolution of isofrequency contour shape from elliptical to hyperbolic, all-angle negative refraction, and nonlocality-induced optical birefringence. Analysis of the underlying physical causes, which are spatial dispersion and optical nonlocality, is also reviewed. These recent results are extremely promising for a number of applications ranging from nanolithography to optical cloaking.

  19. Multilayered Magnetic Gelatin Membrane Scaffolds

    PubMed Central

    Samal, Sangram K.; Goranov, Vitaly; Dash, Mamoni; Russo, Alessandro; Shelyakova, Tatiana; Graziosi, Patrizio; Lungaro, Lisa; Riminucci, Alberto; Uhlarz, Marc; Bañobre-López, Manuel; Rivas, Jose; Herrmannsdörfer, Thomas; Rajadas, Jayakumar; De Smedt, Stefaan; Braeckmans, Kevin; Kaplan, David L.; Dediu, V. Alek

    2016-01-01

    A versatile approach for the design and fabrication of multilayer magnetic scaffolds with tunable magnetic gradients is described. Multilayer magnetic gelatin membrane scaffolds with intrinsic magnetic gradients were designed to encapsulate magnetized bioagents under an externally applied magnetic field for use in magnetic-field-assisted tissue engineering. The temperature of the individual membranes increased up to 43.7 °C under an applied oscillating magnetic field for 70 s by magnetic hyperthermia, enabling the possibility of inducing a thermal gradient inside the final 3D multilayer magnetic scaffolds. On the basis of finite element method simulations, magnetic gelatin membranes with different concentrations of magnetic nanoparticles were assembled into 3D multilayered scaffolds. A magnetic-gradient-controlled distribution of magnetically labeled stem cells was demonstrated in vitro. This magnetic biomaterial–magnetic cell strategy can be expanded to a number of different magnetic biomaterials for various tissue engineering applications. PMID:26451743

  20. Photonics of fullerene-conducting polymer composites and multilayered structures: new results and prospects

    NASA Astrophysics Data System (ADS)

    Yoshino, Katsumi; Yoshimoto, Kenji; Tada, Kazuya; Araki, Hishashi; Kawai, Tsuyoshi; Ozaki, Masanori; Zakhidov, Anvar A.

    1995-12-01

    The general features of charge transfer processes fullerene/conducting polymer (CP) systems, such as energetics of photoinduced charge transfer (PCT) between C60 and CP (pi) - electronic states, geometry of (pi) -(pi) overlapping and the role of self-trapping effects to polaronic states on C60 and CP chains on the PCT dynamics are analyzed. Persistent photoconductivity and electroluminescence quenching recently found in C60/CP composites additionally to photoconductivity enhancement and photoluminescence quenching observed earlier, indicate that photogenerated C60 radicals may be extremely long living in CP matrices, due to multicharging of C60 as suggested by us accompanied with deep self-trapping to polaron/bipolaron states. The anisotropy of PCT is proposed to arise due to orientational modulation of overlapping between polaronic rings on C60 and CP which strongly suppresses back recombination. The strategy to increase the efficiency of C60CP donor-acceptor (DA) photocells by improving PCT is analyzed, particularly considering multilayered structures with polarization barriers at interfaces, and increased intralayer mobilities of carriers. To increase the efficiency of photons collection in photocells we suggest three layered D-M-A structures, with molecular 'photon pump' layers strongly absorbing photons. The prospects for novel photonic applications of various C60CP systems, such as NLO devices and photomodulated field effect transistors (FETs) are discussed and illustrated by the newest results. New results on superconductivity of C60/CP upon alkali metal doping are presented, and exciting possibilities for novel superconducting phases in this system are discussed.

  1. Time-Dependent Thermally-Driven Interfacial Flows in Multilayered Fluid Structures

    NASA Technical Reports Server (NTRS)

    Haj-Hariri, Hossein; Borhan, A.

    1996-01-01

    A computational study of thermally-driven convection in multilayered fluid structures will be performed to examine the effect of interactions among deformable fluid-fluid interfaces on the structure of time-dependent flow in these systems. Multilayered fluid structures in two models configurations will be considered: the differentially heated rectangular cavity with a free surface, and the encapsulated cylindrical liquid bridge. An extension of a numerical method developed as part of our recent NASA Fluid Physics grant will be used to account for finite deformations of fluid-fluid interfaces.

  2. Strengthening mechanism of super-hard nanoscale Cu/Al multilayers with negative enthalpy of mixing

    NASA Astrophysics Data System (ADS)

    Zhou, Q.; Li, S.; Huang, P.; Xu, K. W.; Wang, F.; Lu, T. J.

    2016-09-01

    We present unusual high hardness (up to 7.7 GPa) achieved in Cu/Al multilayers relative to monolithic Cu and Al films (˜2 GPa and ˜1 GPa, respectively). Nanotwins and stacking faults (SFs) were proposed to be the main contributors of hardness enhancement, especially when h < 5 nm. Using molecular dynamics simulations of deposition, we demonstrated that intermixing near Cu/Al interface was paramount in stabilizing the SFs in both Cu and Al layers. Our experimental results indicated that the high strength caused by layer intermixing was in sharp contrast to the general belief that only sharp interface structures could strengthen the multilayers.

  3. Temperature dependence of perpendicular magnetic anisotropy in CoFeB thin films

    NASA Astrophysics Data System (ADS)

    Fu, Yu; Barsukov, I.; Li, Jing; Gonçalves, A. M.; Kuo, C. C.; Farle, M.; Krivorotov, I. N.

    2016-04-01

    We study perpendicular magnetic anisotropy in thin films of Ta/Co20Fe60B20/MgO by ferromagnetic resonance and find a linear temperature dependence for the first and second order uniaxial terms from 5 to 300 K. Our data suggest the possible hybridization of Fe-O orbitals at the CoFeB/MgO interface for the origin of the first order anisotropy. However, we also find that non-interfacial contributions to the anisotropy are present. An easy-cone anisotropy is found for the entire temperature range in the narrow region of film thicknesses around the spin reorientation transition 1.2-1.35 nm.

  4. Multilayer thermal barrier coating systems

    DOEpatents

    Vance, Steven J.; Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.

    2000-01-01

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  5. Finite element modeling of multilayered structures of fish scales.

    PubMed

    Chandler, Mei Qiang; Allison, Paul G; Rodriguez, Rogie I; Moser, Robert D; Kennedy, Alan J

    2014-12-01

    The interlinked fish scales of Atractosteus spatula (alligator gar) and Polypterus senegalus (gray and albino bichir) are effective multilayered armor systems for protecting fish from threats such as aggressive conspecific interactions or predation. Both types of fish scales have multi-layered structures with a harder and stiffer outer layer, and softer and more compliant inner layers. However, there are differences in relative layer thickness, property mismatch between layers, the property gradations and nanostructures in each layer. The fracture paths and patterns of both scales under microindentation loads were different. In this work, finite element models of fish scales of A. spatula and P. senegalus were built to investigate the mechanics of their multi-layered structures under penetration loads. The models simulate a rigid microindenter penetrating the fish scales quasi-statically to understand the observed experimental results. Study results indicate that the different fracture patterns and crack paths observed in the experiments were related to the different stress fields caused by the differences in layer thickness, and spatial distribution of the elastic and plastic properties in the layers, and the differences in interface properties. The parametric studies and experimental results suggest that smaller fish such as P. senegalus may have adopted a thinner outer layer for light-weighting and improved mobility, and meanwhile adopted higher strength and higher modulus at the outer layer, and stronger interface properties to prevent ring cracking and interface cracking, and larger fish such as A. spatula and Arapaima gigas have lower strength and lower modulus at the outer layers and weaker interface properties, but have adopted thicker outer layers to provide adequate protection against ring cracking and interface cracking, possibly because weight is less of a concern relative to the smaller fish such as P. senegalus. PMID:25300062

  6. Finite element modeling of multilayered structures of fish scales.

    PubMed

    Chandler, Mei Qiang; Allison, Paul G; Rodriguez, Rogie I; Moser, Robert D; Kennedy, Alan J

    2014-12-01

    The interlinked fish scales of Atractosteus spatula (alligator gar) and Polypterus senegalus (gray and albino bichir) are effective multilayered armor systems for protecting fish from threats such as aggressive conspecific interactions or predation. Both types of fish scales have multi-layered structures with a harder and stiffer outer layer, and softer and more compliant inner layers. However, there are differences in relative layer thickness, property mismatch between layers, the property gradations and nanostructures in each layer. The fracture paths and patterns of both scales under microindentation loads were different. In this work, finite element models of fish scales of A. spatula and P. senegalus were built to investigate the mechanics of their multi-layered structures under penetration loads. The models simulate a rigid microindenter penetrating the fish scales quasi-statically to understand the observed experimental results. Study results indicate that the different fracture patterns and crack paths observed in the experiments were related to the different stress fields caused by the differences in layer thickness, and spatial distribution of the elastic and plastic properties in the layers, and the differences in interface properties. The parametric studies and experimental results suggest that smaller fish such as P. senegalus may have adopted a thinner outer layer for light-weighting and improved mobility, and meanwhile adopted higher strength and higher modulus at the outer layer, and stronger interface properties to prevent ring cracking and interface cracking, and larger fish such as A. spatula and Arapaima gigas have lower strength and lower modulus at the outer layers and weaker interface properties, but have adopted thicker outer layers to provide adequate protection against ring cracking and interface cracking, possibly because weight is less of a concern relative to the smaller fish such as P. senegalus.

  7. Magnetic anisotropy in single clusters

    NASA Astrophysics Data System (ADS)

    Jamet, Matthieu; Wernsdorfer, Wolfgang; Thirion, Christophe; Dupuis, Véronique; Mélinon, Patrice; Pérez, Alain; Mailly, Dominique

    2004-01-01

    The magnetic measurements on single cobalt and iron nanoclusters containing almost 1000 atoms are presented. Particles are directly buried within the superconducting film of a micro-SQUID (superconducting quantum interference device) which leads to the required sensitivity. The angular dependence of the switching field in three dimensions turns out to be in good agreement with a uniform rotation of cluster magnetization. The Stoner and Wohlfarth model yields therefore an estimation of magnetic anisotropy in a single cluster. In particular, uniaxial, biaxial, and cubic contributions can be separated. Results are interpreted on the basis of a simple atomic model in which clusters are assimilated to “giant spins.” We present an extension of the Néel model to clusters in order to estimate surface anisotropy. In the case of cobalt, this last contribution dominates and numerical simulations allow us to get the morphology of the investigated clusters.

  8. [Cosmic Microwave Background (CMB) Anisotropies

    NASA Astrophysics Data System (ADS)

    Silk, Joseph

    1998-01-01

    One of the main areas of research is the theory of cosmic microwave background (CMB) anisotropies and analysis of CMB data. Using the four year COBE data we were able to improve existing constraints on global shear and vorticity. We found that, in the flat case (which allows for greatest anisotropy), (omega/H)0 less than 10-7, where omega is the vorticity and H is the Hubble constant. This is two orders of magnitude lower than the tightest, previous constraint. We have defined a new set of statistics which quantify the amount of non-Gaussianity in small field cosmic microwave background maps. By looking at the distribution of power around rings in Fourier space, and at the correlations between adjacent rings, one can identify non-Gaussian features which are masked by large scale Gaussian fluctuations. This may be particularly useful for identifying unresolved localized sources and line-like discontinuities. Levin and collaborators devised a method to determine the global geometry of the universe through observations of patterns in the hot and cold spots of the CMB. We have derived properties of the peaks (maxima) of the CMB anisotropies expected in flat and open CDM models. We represent results for angular resolutions ranging from 5 arcmin to 20 arcmin (antenna FWHM), scales that are relevant for the MAP and COBRA/SAMBA space missions and the ground-based interferometer. Results related to galaxy formation and evolution are also discussed.

  9. [Cosmic Microwave Background (CMB) Anisotropies

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1998-01-01

    One of the main areas of research is the theory of cosmic microwave background (CMB) anisotropies and analysis of CMB data. Using the four year COBE data we were able to improve existing constraints on global shear and vorticity. We found that, in the flat case (which allows for greatest anisotropy), (omega/H)0 less than 10(exp -7), where omega is the vorticity and H is the Hubble constant. This is two orders of magnitude lower than the tightest, previous constraint. We have defined a new set of statistics which quantify the amount of non-Gaussianity in small field cosmic microwave background maps. By looking at the distribution of power around rings in Fourier space, and at the correlations between adjacent rings, one can identify non-Gaussian features which are masked by large scale Gaussian fluctuations. This may be particularly useful for identifying unresolved localized sources and line-like discontinuities. Levin and collaborators devised a method to determine the global geometry of the universe through observations of patterns in the hot and cold spots of the CMB. We have derived properties of the peaks (maxima) of the CMB anisotropies expected in flat and open CDM models. We represent results for angular resolutions ranging from 5 arcmin to 20 arcmin (antenna FWHM), scales that are relevant for the MAP and COBRA/SAMBA space missions and the ground-based interferometer. Results related to galaxy formation and evolution are also discussed.

  10. Multilayer microfluidic PEGDA hydrogels.

    PubMed

    Cuchiara, Michael P; Allen, Alicia C B; Chen, Theodore M; Miller, Jordan S; West, Jennifer L

    2010-07-01

    Development of robust 3D tissue analogs in vitro is limited by passive, diffusional mass transport. Perfused microfluidic tissue engineering scaffolds hold the promise to improve mass transport limitations and promote the development of complex, metabolically dense, and clinically relevant tissues. We report a simple and robust multilayer replica molding technique in which poly(dimethylsiloxane) (PDMS) and poly(ethylene glycol) diacrylate (PEGDA) are serially replica molded to develop microfluidic PEGDA hydrogel networks embedded within independently fabricated PDMS housings. We demonstrate the ability to control solute-scaffold effective diffusivity as a function of solute molecular weight and hydrogel concentration. Within cell laden microfluidic hydrogels, we demonstrate increased cellular viability in perfused hydrogel systems compared to static controls. We observed a significant increase in cell viability at all time points greater than zero at distances up to 1 mm from the perfused channel. Knowledge of spatiotemporal mass transport and cell viability gradients provides useful engineering design parameters necessary to maximize overall scaffold viability and metabolic density. This work has applications in the development of hydrogels as in vitro diagnostics and ultimately as regenerative medicine based therapeutics.

  11. Multilayer graphene rubber nanocomposites

    NASA Astrophysics Data System (ADS)

    Schartel, Bernhard; Frasca, Daniele; Schulze, Dietmar; Wachtendorf, Volker; Krafft, Bernd; Morys, Michael; Böhning, Martin; Rybak, Thomas

    2016-05-01

    Multilayer Graphene (MLG), a nanoparticle with a specific surface of BET = 250 m2/g and thus made of only approximately 10 graphene sheets, is proposed as a nanofiller for rubbers. When homogenously dispersed, it works at low loadings enabling the replacement of carbon black (CB), increase in efficiency, or reduction in filler concentration. Actually the appropriate preparation yielded nanocomposites in which just 3 phr are sufficient to significantly improve the rheological, curing and mechanical properties of different rubbers, as shown for Chlorine-Isobutylene-Isoprene Rubber (CIIR), Nitrile-Butadiene Rubber (NBR), Natural Rubber (NR), and Styrene-Butadiene Rubber (SBR). A mere 3 phr of MLG tripled the Young's modulus of CIIR, an effect equivalent to 20 phr of carbon black. Similar equivalents are observed for MLG/CB mixtures. MLG reduces gas permeability, increases thermal and electrical conductivities, and retards fire behavior. The later shown by the reduction in heat release rate in the cone calorimeter. The higher the nanofiller concentration is (3 phr, 5 phr, and 10 phr was investigated), the greater the improvement in the properties of the nanocomposites. Moreover, the MLG nanocomposites improve stability of mechanical properties against weathering. An increase in UV-absorption as well as a pronounced radical scavenging are proposed and were proved experimentally. To sum up, MLG is interesting as a multifunctional nanofiller and seems to be quite ready for rubber development.

  12. Reflectance, Optical Properties, and Stability of Molybdenum/Strontium and Molybdenum/Yttrium Multilayer Mirrors

    SciTech Connect

    Kjornrattanawanich, B

    2002-09-01

    yttrium layers, respectively. Based on the optical properties, multilayers with higher oxygen content should have higher absorption. However, the 25%-oxygen multilayer had less interface roughness and thus had higher reflectance than the 0%-oxygen sample. The 39%-oxygen multilayer had the highest absorption and roughness, thus had the lowest reflectance among three samples. The optical and structural properties of the multilayers are competing in the reflectance results.

  13. Exchange anisotropy and micromagnetic properties of PtMn/NiFe bilayers

    NASA Astrophysics Data System (ADS)

    Pokhil, Taras; Linville, Eric; Mao, Sining

    2001-06-01

    Magnetic microstructure, exchange induced uniaxial and unidirectional anisotropy and structural transformation have been studied in PtMn/NiFe bilayer films and small elements as a function of annealing time. The relationship between the fcc-fct ordering phase transformation in PtMn and the development of exchange induced magnetic properties in PtMn/NiFe bilayers is complicated by the fact that the transformation occurs throughout the entire volume of the PtMn film, while the exchange between the layers is predominantly an interface effect. Consequently, the development of the exchange anisotropy should depend primarily on the character of the structural transformation at the interface between PtMn and NiFe. The purpose of this article is to correlate the volume phase transformation in PtMn to the development of exchange anisotropy and micromagnetic behavior in PtMn/NiFe bilayers. The interface structure can be inferred from the anisotropy and micromagnetic measurements, leading to a model that explains the relationship between the volume and interface transformation structures in PtMn, and magnetic properties of the bilayers. The structure and magnetic properties were characterized by x-ray diffraction, vibrating sample magnetometry, and magnetic force microscopy.

  14. Ultra-high efficiency multilayer blazed gratings through deposition kinetic control

    SciTech Connect

    Voronov, D. L.; Anderson, Erik H.; Gullikson, Eric M.; Salmassi, Farhad; Warwick, Tony; Yashchuk, Valeriy V.; Padmore, Howard A.

    2012-05-07

    Diffraction efficiency of multilayer coated blazed gratings (MBG) strongly depends on the perfection of the saw-tooth-shaped layers in the overall composite structure. Growth of multilayers on saw-tooth substrates should be carefully optimized in order to reduce groove profile distortion and at the same time to avoid significant roughening of multilayer interfaces. In this work we report on a new way to optimize growth of sputter-deposited Mo/Si multilayers on saw-tooth substrates through variation of the sputtering gas pressure. Lastly, a new record for diffraction efficiency of 44% was achieved for a optimized MBG with groove density of 5250 lines/mm at the wavelength of 13.1 nm.

  15. Measurement of residual stress in a multi-layer semiconductor heterostructure by micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Qiu, Wei; Cheng, Cui-Li; Liang, Ren-Rong; Zhao, Chun-Wang; Lei, Zhen-Kun; Zhao, Yu-Cheng; Ma, Lu-Lu; Xu, Jun; Fang, Hua-Jun; Kang, Yi-Lan

    2016-07-01

    Si-based multilayer structures are widely used in current microelectronics. During their preparation, some inhomogeneous residual stress is induced, resulting in competition between interface mismatching and surface energy and even leading to structure failure. This work presents a methodological study on the measurement of residual stress in a multi-layer semiconductor heterostructure. Scanning electron microscopy (SEM), micro-Raman spectroscopy (MRS), and transmission electron microscopy (TEM) were applied to measure the geometric parameters of the multilayer structure. The relationship between the Raman spectrum and the stress/strain on the [100] and [110] crystal orientations was determined to enable surface and cross-section residual stress analyses, respectively. Based on the Raman mapping results, the distribution of residual stress along the depth of the multi-layer heterostructure was successfully obtained.

  16. Theory of magnetoelectric effect in multilayer nanocomposites on a substrate: Resonant bending-mode response

    NASA Astrophysics Data System (ADS)

    Krantz, Matthias C.; Gerken, Martina

    2013-05-01

    Resonant bending-mode magnetoelectric (ME) coefficients of magnetostrictive-piezoelectric multilayer cantilevers are calculated analytically using a model developed for arbitrary multilayers on a substrate. Without quality factor effects the ME coefficient maxima in the four-dimensional parameter space of layer numbers, layer sequences, piezoelectric volume fractions, and substrate thicknesses are found to be essentially constant for nonzero substrate thickness. Global maxima occur for bilayers without substrates. Vanishing magnetoelectric response regions result from voltage cancellation in piezoelectric layers or absence of bending-mode excitation. They are determined by the neutral plane position in the multilayer stack. With Q-factor effects dominated by viscous air damping ME coefficients strongly increase with cantilever thickness primarily due to increasing resonance frequencies. The results yield a layer specific prediction of ME coefficients, resonance frequencies, and Q-factors in arbitrary multilayers and thus distinction of linear-coupling and Q-factor effects from exchange interaction, interface, or nonlinear ME effects.

  17. Ferromagnetic resonance study of composite Co/Ni - FeCoB free layers with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Devolder, T.; Liu, E.; Swerts, J.; Couet, S.; Lin, T.; Mertens, S.; Furnemont, A.; Kar, G.; De Boeck, J.

    2016-10-01

    We study the properties of composite free layers with perpendicular anisotropy. The free layers are made of a soft FeCoB layer ferromagnetically coupled by a variable spacer (Ta, W, Mo) to a very anisotropic [Co/Ni] multilayer embodied in a magnetic tunnel junction meant for spin torque memory applications. For this we use broadband ferromagnetic resonance to follow the field dependence of the acoustical and optical excitation of the composite free layer in both in-plane and out-of-plane applied fields. The modeling provides the interlayer exchange coupling, the anisotropies, and the damping factors. The popular Ta spacer is outperformed by W and even more by Mo, which combines the strongest interlayer exchange coupling without sacrificing anisotropies, damping factors, and transport properties.

  18. Multilayer perceptron for nonlinear programming.

    SciTech Connect

    Reifman, J.; Feldman, E. E.; Reactor Analysis

    2002-08-01

    A new method for solving nonlinear programming problems within the framework of a multilayer neural network perceptron is proposed. The method employs the Penalty Function method to transform a constrained optimization problem into a sequence of unconstrained optimization problems and then solves the sequence of unconstrained optimizations of the transformed problem by training a series of multilayer perceptrons. The neural network formulation is represented in such a way that the multilayer perceptron prediction error to be minimized mimics the objective function of the unconstrained problem, and therefore, the minimization of the objective function for each unconstrained optimization is attained by training a single perceptron. The multilayer perceptron allows for the transformation of problems with two-sided bounding constraints on the decision variables x, e.g., a{<=}x{sub n}{<=}b, into equivalent optimization problems in which these constraints do not explicitly appear. Hence, when these are the only constraints in the problem, the transformed problem is constraint free (i.e., the transformed objective function contains no penalty terms) and is solved by training a multilayer perceptron only once. In addition, we present a new Penalty Function method for solving nonlinear programming problems that is parameter free and guarantees that feasible solutions are obtained when the optimal solution is on the boundary of the feasible region. Simulation results, including an example from operations research, illustrate the proposed methods.

  19. Ferromagnetic/Superconducting Multilayers

    NASA Astrophysics Data System (ADS)

    Bader, S. D.

    1998-03-01

    Although it is well known that magnetism influences superconductivity, the converse issue has been less well explored. Recent theoretical predictions for ferromagnetic/ superconducting/ ferromagnetic trilayers exhibiting interlayer magnetic coupling in the normal state indicate that the coupling should be suppressed below the superconducting transition temperature.(C.A. R. Sá de Melo, Phys. Rev. Lett. 79), 1933 (1997); O. Sipr, B.L. Györffy, J. Phys. Cond. Matt. 7, 5239 (1995). To realize such a situation, a requirement (when the magnetic layers are thick) is that the superconducting layer thickness must simultaneously be less than the range over which the magnetic interlayer coupling decays, but greater than the superconducting coherence length. This introduces serious materials constraints. The present work describes initial explorations of three sputtered multilayer systems in an attempt to observe coupling of the ferromagnetic layers across a superconducting spacer:((a) J.E. Mattson, R.M. Osgood III, C.D. Potter, C.H. Sowers, and S.D. Bader, J. Vac. Sci. Technol. A 15), 1774 (1997); (b) J.E. Mattson, C.D. Potter, M.J. Conover, C.H. Sowers, and S.D. Bader, Phys. Rev. B 55, 70 (1997), and (c) R.M. Osgood III, J.E. Pearson, C.H. Sowers, and S.D. Bader, submitted (1997). (a) Ni/Nb, (b) Fe_4N/NbN, and (c) GdN/NbN. In these systems we have retained thinner superconducting layers than had been achieved previously, but interlayer magnetic coupling is not observed even in the normal state. For Ni/Nb the interfacial Ni loses its moment, which also reduces the superconducting pair-breaking. GdN is an insulating ferromagnet, so itinerancy is sacrificed, and, probably as a result of this, no coupling is observed. Each system gives rise to interesting and anisotropic superconducting properties. Thus, although the goal remains elusive, our search highlights the challenges and opportunities.

  20. Unfolding single- and multilayers

    NASA Astrophysics Data System (ADS)

    Llorens, Maria-Gema; Bons, Paul D.; Griera, Albert; Gomez-Rivas, Enrique

    2014-05-01

    When planar structures (e.g. sedimentary layers, veins, dykes, cleavages, etc.) are subjected to deformation, they have about equal chances to be shortened or stretched. The most common shortening and stretching structures are folds and boudinage, respectively. However, boudinage requires additional deformation mechanisms apart from viscous flow, like formation of fractures or strain localization. When folded layers are subjected to extension, they could potentially unfold back to straight layers. Although probably not uncommon, this would be difficult to recognize. Open questions are whether folded layers can unfold, what determines their mechanical behaviour and how we can recognize them in the field. In order to approach these questions, we present a series of numerical experiments that simulate stretching of previously folded single- and multi-layers in simple shear, using the two dimensional numerical modelling platform ELLE, including the finite element module BASIL that calculates viscous deformation. We investigate the parameters that affect a fold train once it rotates into the extensional field. The results show that the unfolding process strongly depends on the viscosity contrast between the layer and matrix (Llorens et al., 2013). Layers do not completely unfold when they experience softening before or during the stretching process or when other neighbouring competent layers prevent them from unfolding. The foliation refraction patterns are the main indicators of unfolded folds. Additionally, intrafolial folds and cusp-like folds adjacent to straight layers, as well as variations in fold amplitudes and limb lengths of irregular folds can also be used as indicators of stretching of a layer after shortening and folding. References: Llorens, M-.G., Bons, P.D., Griera, A. and Gomez-Rivas, E. 2013. When do folds unfold during progressive shear?. Geology, 41, 563-566.

  1. Sectioning of multilayers to make a multilayer Laue lens

    SciTech Connect

    Kang, Hyon Chol; Stephenson, G. Brian; Liu Chian; Conley, Ray; Khachatryan, Ruben; Wieczorek, Michael; Macrander, Albert T.; Yan Hanfei; Maser, Joerg; Hiller, Jon; Koritala, Rachel

    2007-04-15

    We report a process to fabricate multilayer Laue lenses (MLL's) by sectioning and thinning multilayer films. This method can produce a linear zone plate structure with a very large ratio of zone depth to width (e.g., >1000), orders of magnitude larger than can be attained with photolithography. Consequently, MLL's are advantageous for efficient nanofocusing of hard x rays. MLL structures prepared by the technique reported here have been tested at an x-ray energy of 19.5 keV, and a diffraction-limited performance was observed. The present article reports the fabrication techniques that were used to make the MLL's.

  2. Energetic ion bombarded Fe/Al multilayers

    SciTech Connect

    Al-Busaidy, M.S.; Crapper, M.D.

    2006-05-15

    The utility of ion-assisted deposition is investigated to explore the possibility of counteracting the deficiency of back-reflected current of Ar neutrals in the case of lighter elements such as Al. A range of energetically ion bombarded Fe/Al multilayers sputtered with applied surface bias of 0, -200, or -400 V were deposited onto Si(111) substrates in an argon atmosphere of 4 mTorr using a computer controlled dc magnetron sputtering system. Grazing incidence reflectivity and rocking curve scans by synchrotron x rays of wavelength of 1.38 A were used to investigate the structures of the interfaces produced. Substantial evidence has been gathered to suggest the gradual suppression of interfacial mixing and reduction in interfacial roughness with increases of applied bias. The densification of the Al microstructure was noticeable and may be a consequence of resputtering attributable to the induced ion bombardment. The average interfacial roughnesses were calculated for the 0, -200, and -400 V samples to be 7{+-}0.5, 6{+-}0.5, and 5{+-}0.5 A respectfully demonstrating a 30% improvement in interface quality. Data from rocking curve scans point to improved long-range correlated roughness in energetically deposited samples. The computational code based on the recursive algorithm developed by Parratt [Phys. Rev. 95, 359 (1954)] was successful in the simulation of the specular reflectivity curves.

  3. A topological multilayer model of the human body.

    PubMed

    Barbeito, Antonio; Painho, Marco; Cabral, Pedro; O'Neill, João

    2015-11-04

    Geographical information systems deal with spatial databases in which topological models are described with alphanumeric information. Its graphical interfaces implement the multilayer concept and provide powerful interaction tools. In this study, we apply these concepts to the human body creating a representation that would allow an interactive, precise, and detailed anatomical study. A vector surface component of the human body is built using a three-dimensional (3-D) reconstruction methodology. This multilayer concept is implemented by associating raster components with the corresponding vector surfaces, which include neighbourhood topology enabling spatial analysis. A root mean square error of 0.18 mm validated the three-dimensional reconstruction technique of internal anatomical structures. The expansion of the identification and the development of a neighbourhood analysis function are the new tools provided in this model.

  4. Structural reducibility of multilayer networks

    NASA Astrophysics Data System (ADS)

    de Domenico, Manlio; Nicosia, Vincenzo; Arenas, Alexandre; Latora, Vito

    2015-04-01

    Many complex systems can be represented as networks consisting of distinct types of interactions, which can be categorized as links belonging to different layers. For example, a good description of the full protein-protein interactome requires, for some organisms, up to seven distinct network layers, accounting for different genetic and physical interactions, each containing thousands of protein-protein relationships. A fundamental open question is then how many layers are indeed necessary to accurately represent the structure of a multilayered complex system. Here we introduce a method based on quantum theory to reduce the number of layers to a minimum while maximizing the distinguishability between the multilayer network and the corresponding aggregated graph. We validate our approach on synthetic benchmarks and we show that the number of informative layers in some real multilayer networks of protein-genetic interactions, social, economical and transportation systems can be reduced by up to 75%.

  5. Dielectric singularity in hyperbolic metamaterials: the inversion point of coexisting anisotropies.

    PubMed

    Caligiuri, V; Dhama, R; Sreekanth, K V; Strangi, G; De Luca, A

    2016-01-01

    Hyperbolic Metamaterials are artificially engineered materials whose optical properties can be specifically tailored to manifest an extremely high level of anisotropy. Due to this remarkable anisotropy they represent a unique opportunity to realize effective bulk meta-structure with extraordinary optical properties in the visible range. A simultaneous dielectric singularity in the in plane permittivity, with respect to the propagation direction, has to lead to a complete sign inversion of the same permittivity for that specific visible frequency. Such a drastic phase change has been theoretically highlighted in the past as the major challenge to be overcome in order to unlock many remarkable optical properties not present artificial optical systems. In this paper we experimentally demonstrate the realization of a metal-dielectric multilayer structure showing an inversion point of coexisting anisotropies at a specified wavelength in the visible range, rising from the particular design and fabrication process. Theoretical models and numerical simulations are in very good agreement with experimental data. Ellipsometrical experiments and optical modeling demonstrate the drastic type I/type II transition. Supercollimation effect has been achieved at the inversion point of the coexisting extreme anisotropies, whereas at the epsilon near zero and pole frequency the perfect lens behavior has been observed. PMID:26833022

  6. Dielectric singularity in hyperbolic metamaterials: the inversion point of coexisting anisotropies

    NASA Astrophysics Data System (ADS)

    Caligiuri, V.; Dhama, R.; Sreekanth, K. V.; Strangi, G.; de Luca, A.

    2016-02-01

    Hyperbolic Metamaterials are artificially engineered materials whose optical properties can be specifically tailored to manifest an extremely high level of anisotropy. Due to this remarkable anisotropy they represent a unique opportunity to realize effective bulk meta-structure with extraordinary optical properties in the visible range. A simultaneous dielectric singularity in the in plane permittivity, with respect to the propagation direction, has to lead to a complete sign inversion of the same permittivity for that specific visible frequency. Such a drastic phase change has been theoretically highlighted in the past as the major challenge to be overcome in order to unlock many remarkable optical properties not present artificial optical systems. In this paper we experimentally demonstrate the realization of a metal-dielectric multilayer structure showing an inversion point of coexisting anisotropies at a specified wavelength in the visible range, rising from the particular design and fabrication process. Theoretical models and numerical simulations are in very good agreement with experimental data. Ellipsometrical experiments and optical modeling demonstrate the drastic type I/type II transition. Supercollimation effect has been achieved at the inversion point of the coexisting extreme anisotropies, whereas at the epsilon near zero and pole frequency the perfect lens behavior has been observed.

  7. Dielectric singularity in hyperbolic metamaterials: the inversion point of coexisting anisotropies

    PubMed Central

    Caligiuri, V.; Dhama, R.; Sreekanth, K. V.; Strangi, G.; De Luca, A.

    2016-01-01

    Hyperbolic Metamaterials are artificially engineered materials whose optical properties can be specifically tailored to manifest an extremely high level of anisotropy. Due to this remarkable anisotropy they represent a unique opportunity to realize effective bulk meta-structure with extraordinary optical properties in the visible range. A simultaneous dielectric singularity in the in plane permittivity, with respect to the propagation direction, has to lead to a complete sign inversion of the same permittivity for that specific visible frequency. Such a drastic phase change has been theoretically highlighted in the past as the major challenge to be overcome in order to unlock many remarkable optical properties not present artificial optical systems. In this paper we experimentally demonstrate the realization of a metal-dielectric multilayer structure showing an inversion point of coexisting anisotropies at a specified wavelength in the visible range, rising from the particular design and fabrication process. Theoretical models and numerical simulations are in very good agreement with experimental data. Ellipsometrical experiments and optical modeling demonstrate the drastic type I/type II transition. Supercollimation effect has been achieved at the inversion point of the coexisting extreme anisotropies, whereas at the epsilon near zero and pole frequency the perfect lens behavior has been observed. PMID:26833022

  8. Magnetic Anisotropy in the Radula of Chiton

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Gao; Qian, Xia; Liu, Wei; Liu, Chuan-Lin; Zhan, Wen-Shan

    2000-07-01

    Radular teeth of chitons were studied by using magnetic torque-meter and transmission electron microscopy (TEM). The magnetic torque curves give clear evidence of presence of strong uni-axial magnetic anisotropy. The easy axis is along the length direction of tongue-like radula. The TEM pattern shows that long chip-like magnetite nano-scaled particles packed in the radular teeth with both uni-axial shape anisotropy and magneto-crystalline anisotropy.

  9. Variance Anisotropy in Kinetic Plasmas

    NASA Astrophysics Data System (ADS)

    Parashar, Tulasi N.; Oughton, Sean; Matthaeus, William H.; Wan, Minping

    2016-06-01

    Solar wind fluctuations admit well-documented anisotropies of the variance matrix, or polarization, related to the mean magnetic field direction. Typically, one finds a ratio of perpendicular variance to parallel variance of the order of 9:1 for the magnetic field. Here we study the question of whether a kinetic plasma spontaneously generates and sustains parallel variances when initiated with only perpendicular variance. We find that parallel variance grows and saturates at about 5% of the perpendicular variance in a few nonlinear times irrespective of the Reynolds number. For sufficiently large systems (Reynolds numbers) the variance approaches values consistent with the solar wind observations.

  10. Exploration of perpendicular magnetic anisotropy material system for application in spin transfer torque - Random access memory

    NASA Astrophysics Data System (ADS)

    Natarajarathinam, Anusha

    Perpendicular magnetic anisotropy (PMA) materials have unique advantages when used in magnetic tunnel junctions (MTJ) which are the most critical part of spin-torque transfer random access memory devices (STT-RAMs) that are being researched intensively as future non-volatile memory technology. They have high magnetoresistance which improves their sensitivity. The STT-RAM has several advantages over competing technologies, for instance, low power consumption, non-volatility, ultra-fast read and write speed and high endurance. In personal computers, it can replace SRAM for high-speed applications, Flash for non-volatility, and PSRAM and DRAM for high-speed program execution. The main aim of this research is to identify and optimize the best perpendicular magnetic anisotropy (PMA) material system for application to STT-RAM technology. Preliminary search for perpendicular magnetic anisotropy (PMA) materials for pinned layer for MTJs started with the exploration and optimization of crystalline alloys such as Co50Pd50 alloy, Mn50Al50 and amorphous alloys such as Tb21Fe72Co7 and are first presented in this work. Further optimization includes the study of Co/[Pd/Pt]x multilayers (ML), and the development of perpendicular synthetic antiferromagnets (SAF) utilizing these multilayers. Focused work on capping and seed layers to evaluate interfacial perpendicular anisotropy in free layers for pMTJs is then discussed. Optimization of the full perpendicular magnetic tunnel junction (pMTJ) includes the CoFeB/MgO/CoFeB trilayer coupled to a pinned/pinning layer with perpendicular Co/[Pd/Pt]x SAF and a thin Ta seeded CoFeB free layer. Magnetometry, simulations, annealing studies, transport measurements and TEM analysis on these samples will then be presented.

  11. Influence of capping layers on CoFeB anisotropy and damping

    SciTech Connect

    Natarajarathinam, A.; Tadisina, Z. R.; Gupta, S.; Mewes, T.; Watts, S.; Chen, E.

    2012-09-01

    Magnetic behavior of CoFeB at various thicknesses ranging from 2 nm to 8 nm capped with different materials, such as MgO, Ta, Ru, and V have been studied. The films were sputter-deposited and subsequently characterized by magnetometry and broadband ferromagnetic resonance (FMR). There are magnetically dead layers at the interface observed with Ru and Ta capping layers, while MgO and V have almost no effect on the magnetization of the CoFeB. As the ferromagnetic layer is made thinner, the effective magnetization decreases, indicating an interfacial perpendicular anisotropy. Particularly in the case of MgO, V/Ru, and V/Ta capping layers, interfacial perpendicular anisotropy is induced in CoFeB, and the Gilbert damping parameter is also reduced. The origin of this perpendicular magnetic anisotropy (PMA) is understood to be caused by the interface anisotropy between the free layer and the capping layer. The effect of post-deposition annealing and CoFeB thickness on the anisotropy and damping of V/Ta capped samples are reported. Doping CoFeB with vanadium (V) greatly reduced the 4{pi}M{sub s} and 4{pi}M{sub eff} values, resulting in an effective increase in the PMA.

  12. Engineering skyrmions in transition-metal multilayers for spintronics.

    PubMed

    Dupé, B; Bihlmayer, G; Böttcher, M; Blügel, S; Heinze, S

    2016-01-01

    Magnetic skyrmions are localized, topologically protected spin structures that have been proposed for storing or processing information due to their intriguing dynamical and transport properties. Important in terms of applications is the recent discovery of interface stabilized skyrmions as evidenced in ultra-thin transition-metal films. However, so far only skyrmions at interfaces with a single atomic layer of a magnetic material were reported, which greatly limits their potential for application in devices. Here we predict the emergence of skyrmions in [4d/Fe2/5d]n multilayers, that is, structures composed of Fe biatomic layers sandwiched between 4d and 5d transition-metal layers. In these composite structures, the exchange and the Dzyaloshinskii-Moriya interactions that control skyrmion formation can be tuned separately by the two interfaces. This allows engineering skyrmions as shown based on density functional theory and spin dynamics simulations. PMID:27257020

  13. Engineering skyrmions in transition-metal multilayers for spintronics

    NASA Astrophysics Data System (ADS)

    Dupé, B.; Bihlmayer, G.; Böttcher, M.; Blügel, S.; Heinze, S.

    2016-06-01

    Magnetic skyrmions are localized, topologically protected spin structures that have been proposed for storing or processing information due to their intriguing dynamical and transport properties. Important in terms of applications is the recent discovery of interface stabilized skyrmions as evidenced in ultra-thin transition-metal films. However, so far only skyrmions at interfaces with a single atomic layer of a magnetic material were reported, which greatly limits their potential for application in devices. Here we predict the emergence of skyrmions in [4d/Fe2/5d]n multilayers, that is, structures composed of Fe biatomic layers sandwiched between 4d and 5d transition-metal layers. In these composite structures, the exchange and the Dzyaloshinskii-Moriya interactions that control skyrmion formation can be tuned separately by the two interfaces. This allows engineering skyrmions as shown based on density functional theory and spin dynamics simulations.

  14. Size dependent strengthening mechanisms in sputtered Fe/W multilayers

    NASA Astrophysics Data System (ADS)

    Li, Nan; Yu, K. Y.; Lee, J.; Wang, H.; Zhang, X.

    2010-05-01

    We investigate size dependent strengthening mechanisms in sputtered Fe/W multilayers with individual layer thickness, h, varying from 1 to 200 nm. Microstructure analyses reveal that Fe/W has incoherent bcc/bcc interface when h is greater than 5 nm. When h decreases to 1-2.5 nm, the interface becomes semicoherent, and Fe and W show significant lattice distortions comparing to their bulk counterpart due to interface constraint. The layer thickness dependent drastic variations in x-ray diffraction profiles are simulated well by using an analytical model. Film hardness increases with decreasing h, and approaches a maximum value of 12.5 GPa when h is 1 nm. The layer thickness dependent film hardnesses are compared with analytical models. Koehler's image force plays a major role in determining the maximum strength of composites at smaller h.

  15. The mechanical behavior of nanoscale metallic multilayers: A survey

    NASA Astrophysics Data System (ADS)

    Zhou, Q.; Xie, J. Y.; Wang, F.; Huang, P.; Xu, K. W.; Lu, T. J.

    2015-06-01

    The mechanical behavior of nanoscale metallic multilayers (NMMs) has attracted much attention from both scientific and practical views. Compared with their monolithic counterparts, the large number of interfaces existing in the NMMs dictates the unique behavior of this special class of structural composite materials. While there have been a number of reviews on the mechanical mechanism of microlaminates, the rapid development of nanotechnology brought a pressing need for an overview focusing exclusively on a property-based definition of the NMMs, especially their size-dependent microstructure and mechanical performance. This article attempts to provide a comprehensive and up-to-date review on the microstructure, mechanical property and plastic deformation physics of NMMs. We hope this review could accomplish two purposes: (1) introducing the basic concepts of scaling and dimensional analysis to scientists and engineers working on NMM systems, and (2) providing a better understanding of interface behavior and the exceptional qualities the interfaces in NMMs display at atomic scale.

  16. Engineering skyrmions in transition-metal multilayers for spintronics

    PubMed Central

    Dupé, B.; Bihlmayer, G.; Böttcher, M.; Blügel, S.; Heinze, S.

    2016-01-01

    Magnetic skyrmions are localized, topologically protected spin structures that have been proposed for storing or processing information due to their intriguing dynamical and transport properties. Important in terms of applications is the recent discovery of interface stabilized skyrmions as evidenced in ultra-thin transition-metal films. However, so far only skyrmions at interfaces with a single atomic layer of a magnetic material were reported, which greatly limits their potential for application in devices. Here we predict the emergence of skyrmions in [4d/Fe2/5d]n multilayers, that is, structures composed of Fe biatomic layers sandwiched between 4d and 5d transition-metal layers. In these composite structures, the exchange and the Dzyaloshinskii–Moriya interactions that control skyrmion formation can be tuned separately by the two interfaces. This allows engineering skyrmions as shown based on density functional theory and spin dynamics simulations. PMID:27257020

  17. Engineering skyrmions in transition-metal multilayers for spintronics.

    PubMed

    Dupé, B; Bihlmayer, G; Böttcher, M; Blügel, S; Heinze, S

    2016-06-03

    Magnetic skyrmions are localized, topologically protected spin structures that have been proposed for storing or processing information due to their intriguing dynamical and transport properties. Important in terms of applications is the recent discovery of interface stabilized skyrmions as evidenced in ultra-thin transition-metal films. However, so far only skyrmions at interfaces with a single atomic layer of a magnetic material were reported, which greatly limits their potential for application in devices. Here we predict the emergence of skyrmions in [4d/Fe2/5d]n multilayers, that is, structures composed of Fe biatomic layers sandwiched between 4d and 5d transition-metal layers. In these composite structures, the exchange and the Dzyaloshinskii-Moriya interactions that control skyrmion formation can be tuned separately by the two interfaces. This allows engineering skyrmions as shown based on density functional theory and spin dynamics simulations.

  18. Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering

    SciTech Connect

    Voronov, D. L.; Gawlitza, Peter; Cambie, Rossana; Dhuey, Scott; Gullikson, Eric M.; Warwick, Tony; Braun, Stefan; Yashchuk, Valeriy V.; Padmore, Howard A.

    2012-05-07

    Deposition of multilayers on saw-tooth substrates is a key step in the fabrication of multilayer blazed gratings (MBG) for extreme ultraviolet and soft x-rays. Growth of the multilayers can be perturbed by shadowing effects caused by the highly corrugated surface of the substrates, which results in distortion of the multilayer stack structure and degradation of performance of MBGs. In this study, to minimize the shadowing effects, we used an ion-beamsputtering machine with a highly collimated atomic flux to deposit Mo/Si multilayers on saw-tooth substrates. The sputtering conditions were optimized by finding a balance between smoothening and roughening processes in order to minimize degradation of the groove profile in the course of deposition and at the same time to keep the interfaces of a multilayer stack smooth enough for high efficiency. An optimal value of energy of 200 eV for sputtering Kr+ ions was found by deposition of test multilayers on flat substrates at a range of ion energies. Two saw-tooth substrates were deposited at energies of 200 eV and 700 eV for the sputtering ions. It was found that reduction of the ion energy improved the blazing performance of the MBG and resulted in a 40% gain in the diffraction efficiency due to better replication of the groove profile by the multilayer. As a result of the optimization performed, an absolute diffraction efficiency of 28.8% was achieved for the 2nd blaze order of the MBG with a groove density of 7350 lines/mm at a wavelength of 13.5 nm. Lastly, details of the growth behavior of the multilayers on flat and saw-tooth substrates are discussed in terms of the linear continuous model of film growth.

  19. Anomalous Nernst Effect with Magnetocrystalline Anisotropy (110)

    NASA Astrophysics Data System (ADS)

    Chesman, Carlos; Costa Neto, Jose; Department of Physics-UFRN Team

    2014-03-01

    When a ferromagnetic material is submitted to a temperature gradient and the magnetic field generates voltage on the edges of the samples, this is called the Anomalous Nernst Effect (ANE). The Heusler alloys that currently exhibit this effect are the most promising for spintronics and spin caloritronics. In this study we perform a theoretical investigation of voltage curves associated to the ANE, when the material displays magnetocrystalline anisotropy for experimental results in two configurations, ANE versus applied magnetic field and planar angle variations of ANE. We analyzed three types of magnetocrystalline anisotropy: cubic anisotropy (100) with C4 symmetry, uniaxial anisotropy with C2 symmetry and cubic anisotropy (110). The aim was to prove that cubic anisotropy (110) is equivalent to anisotropy (100) combined with uniaxial anisotropy. Theoretical fitting of experimental ANE data demonstrates this total equivalence and that a new interpretation with the use of cubic anisotropy (110) may be due to the atomic arrangement of the so-called full-Heusler. Comparative analyses of Co2FeAl and Co2MnGe alloys will be presented. CNPq, CAPES, FAPERN.

  20. Cold rolling induced alloying behaviors in metallic multilayers

    NASA Astrophysics Data System (ADS)

    Wang, Zhe

    Phase transformation and atomic scale intermixing induced by deformation are important and fundamental issues in the mechanical alloying processes. Repeated cold rolling and folding experiments were performed on the metallic multilayers in order to study the deformation driven behaviors. Various binary systems such as isomorphous, eutectic and thermodynamically immiscible systems were studied. Moreover, monometallic Pd, Pt and Fe were selected in order to study the deformation driven recrystallization behavior. In Cu/Ni multilayers, the composition of the solid solution is revealed by an oscillation in the composition profile across the multilayers, which is different from the smoothly varying profile due to thermally activated diffusion. During the reaction, Cu mixed into Ni preferentially compared to Ni mixing into Cu, which is also in contrast to the thermal diffusion behavior. During the cold rolling of multilayers of Ni and V, deformation induces phase transformation and an interfacial mixing with suppression of nucleation of intermetallic phases. The results also demonstrate that between pure Ni and V layers a metastable fcc solid solution phase forms in Ni70V30, a metastable bcc solid solution phase forms in Ni30V70 and metastable fcc and bcc solid solution phases form in Ni57V43. Compared to the stored energy due to dislocation and interfaces, the excess chemical free energy from the interfacial mixing is the largest portion of total stored energy from deformation, which represents a form of mechanochemical transduction. The difference in the intermixing behaviors between Cu/Ni and Ni/V systems is due to that the systems have different heat of mixing and interface characters. Deformation of Cu/Fe multilayers yields a smooth and monotonic variation in the composition profile. From the local composition consumption it is revealed that that Fe mixes into Cu preferentially than Cu mixing into Fe. The room temperature deformation driven recrystallization was

  1. Electric field distribution and the reduction of laser damage in multilayers.

    PubMed

    Arnon, O; Baumeister, P

    1980-06-01

    The characteristic matrix method is used to compute the electric field distribution in a multilayer. The use of optically inhomogeneous films is suggested to lessen discontinuity in the material properties and in the absorption distribution at interfaces between the high-index and the low-index layers, thereby enhancing the laser damage threshold.

  2. Fluctuation-driven anisotropy in effective pair interactions between nanoparticles: Thiolated gold nanoparticles in ethane

    SciTech Connect

    Jabes, B. Shadrack; Yadav, Hari O. S.; Chakravarty, Charusita; Kumar, Sanat K.

    2014-10-21

    Fluctuations within the ligand shell of a nanoparticle give rise to a significant degree of anisotropy in effective pair interactions for low grafting densities [B. Bozorgui, D. Meng, S. K. Kumar, C. Chakravarty, and A. Cacciuto, Nano Lett. 13, 2732 (2013)]. Here, we examine the corresponding fluctuation-driven anisotropy for gold nanocrystals densely passivated with short ligands. In particular, we consider gold nanocrystals capped by alkylthiols, both in vacuum and in ethane solvent at high density. As in the preceding study, we show that the anisotropy in the nanoparticle pair potential can be quantified by an angle-dependent correction term to the isotropic potential of mean force (PMF). We find that the anisotropy of the ligand shells is distance dependent, and strongly influenced by ligand interdigitation effects as well as expulsion of ligand chains from the interparticle region at short distances. Such fluctuation-driven anisotropy can be significant for alkylthiol-coated gold nanoparticles, specially for longer chain lengths, under good solvent conditions. The consequences of such anisotropy for self-assembly, specially as a function of grafting density, solvent quality and at interfaces, should provide some interesting insights in future work. Our results clearly show that an isotropic two-body PMF cannot adequately describe the thermodynamics and assembly behavior of nanoparticles in this dense grafting regime and inclusion of anisotropic effects, as well as possibly many-body interactions, is necessary. Extensions of this approach to other passivated nanoparticle systems and implications for self-assembly are considered.

  3. Correction method for the self-absorption effects in fluorescence extended X-ray absorption fine structure on multilayer samples.

    PubMed

    Li, Wen Bin; Yang, Xiao Yue; Zhu, Jing Tao; Tu, Yu Chun; Mu, Bao Zhong; Yu, Hai Sheng; Wei, Xiang Jun; Huang, Yu Ying; Wang, Zhan Shan

    2014-05-01

    A novel correction method for self-absorption effects is proposed for extended X-ray absorption fine structure (EXAFS) detected in the fluorescence mode on multilayer samples. The effects of refraction and multiple reflection at the interfaces are fully considered in this correction method. The correction is performed in k-space before any further data analysis, and it can be applied to single-layer or multilayer samples with flat surfaces and without thickness limit when the model parameters for the samples are known. The validity of this method is verified by the fluorescence EXAFS data collected for a Cr/C multilayer sample measured at different experimental geometries. PMID:24763646

  4. Thermal flux limited electron Kapitza conductance in copper-niobium multilayers

    SciTech Connect

    Cheaito, Ramez; Gaskins, John T.; Duda, John C.; Hopkins, Patrick E.; Hattar, Khalid; Beechem, Thomas E.; Ihlefeld, Jon F.; Piekos, Edward S.; Yadav, Ajay K.; Baldwin, Jon K.; Misra, Amit

    2015-03-02

    We study the interplay between the contributions of electron thermal flux and interface scattering to the Kapitza conductance across metal-metal interfaces through measurements of thermal conductivity of copper-niobium multilayers. Thermal conductivities of copper-niobium multilayer films of period thicknesses ranging from 5.4 to 96.2 nm and sample thicknesses ranging from 962 to 2677 nm are measured by time-domain thermoreflectance over a range of temperatures from 78 to 500 K. The Kapitza conductances between the Cu and Nb interfaces in multilayer films are determined from the thermal conductivities using a series resistor model and are in good agreement with the electron diffuse mismatch model. Our results for the thermal boundary conductance between Cu and Nb are compared to literature values for the thermal boundary conductance across Al-Cu and Pd-Ir interfaces, and demonstrate that the interface conductance in metallic systems is dictated by the temperature derivative of the electron energy flux in the metallic layers, rather than electron mean free path or scattering processes at the interface.

  5. Thermal flux limited electron Kapitza conductance in copper-niobium multilayers

    NASA Astrophysics Data System (ADS)

    Cheaito, Ramez; Hattar, Khalid; Gaskins, John T.; Yadav, Ajay K.; Duda, John C.; Beechem, Thomas E.; Ihlefeld, Jon F.; Piekos, Edward S.; Baldwin, Jon K.; Misra, Amit; Hopkins, Patrick E.

    2015-03-01

    We study the interplay between the contributions of electron thermal flux and interface scattering to the Kapitza conductance across metal-metal interfaces through measurements of thermal conductivity of copper-niobium multilayers. Thermal conductivities of copper-niobium multilayer films of period thicknesses ranging from 5.4 to 96.2 nm and sample thicknesses ranging from 962 to 2677 nm are measured by time-domain thermoreflectance over a range of temperatures from 78 to 500 K. The Kapitza conductances between the Cu and Nb interfaces in multilayer films are determined from the thermal conductivities using a series resistor model and are in good agreement with the electron diffuse mismatch model. Our results for the thermal boundary conductance between Cu and Nb are compared to literature values for the thermal boundary conductance across Al-Cu and Pd-Ir interfaces, and demonstrate that the interface conductance in metallic systems is dictated by the temperature derivative of the electron energy flux in the metallic layers, rather than electron mean free path or scattering processes at the interface.

  6. Thermal flux limited electron Kapitza conductance in copper-niobium multilayers

    SciTech Connect

    Cheaito, Ramez; Hattar, Khalid Mikhiel; Gaskins, John T.; Yadav, Ajay K.; Duda, John C.; Beechem, III, Thomas Edwin; Ihlefeld, Jon; Piekos, Edward S.; Baldwin, Jon K.; Misra, Amit; Hopkins, Patrick E.

    2015-03-05

    The interplay between the contributions of electron thermal flux and interface scattering to the Kapitza conductance across metal-metal interfaces through measurements of thermal conductivity of copper-niobium multilayers was studied. Thermal conductivities of copper-niobium multilayer films of period thicknesses ranging from 5.4 to 96.2 nm and sample thicknesses ranging from 962 to 2677 nm are measured by time-domain thermoreflectance over a range of temperatures from 78 to 500 K. The Kapitza conductances between the Cu and Nb interfaces in multilayer films are determined from the thermal conductivities using a series resistor model and are in good agreement with the electron diffuse mismatch model. The results for the thermal boundary conductance between Cu and Nb are compared to literature values for the thermal boundary conductance across Al-Cu and Pd-Ir interfaces, and demonstrate that the interface conductance in metallic systems is dictated by the temperature derivative of the electron energy flux in the metallic layers, rather than electron mean free path or scattering processes at the interface.

  7. Thermal flux limited electron Kapitza conductance in copper-niobium multilayers

    DOE PAGESBeta

    Cheaito, Ramez; Hattar, Khalid Mikhiel; Gaskins, John T.; Yadav, Ajay K.; Duda, John C.; Beechem, III, Thomas Edwin; Ihlefeld, Jon; Piekos, Edward S.; Baldwin, Jon K.; Misra, Amit; et al

    2015-03-05

    The interplay between the contributions of electron thermal flux and interface scattering to the Kapitza conductance across metal-metal interfaces through measurements of thermal conductivity of copper-niobium multilayers was studied. Thermal conductivities of copper-niobium multilayer films of period thicknesses ranging from 5.4 to 96.2 nm and sample thicknesses ranging from 962 to 2677 nm are measured by time-domain thermoreflectance over a range of temperatures from 78 to 500 K. The Kapitza conductances between the Cu and Nb interfaces in multilayer films are determined from the thermal conductivities using a series resistor model and are in good agreement with the electron diffusemore » mismatch model. The results for the thermal boundary conductance between Cu and Nb are compared to literature values for the thermal boundary conductance across Al-Cu and Pd-Ir interfaces, and demonstrate that the interface conductance in metallic systems is dictated by the temperature derivative of the electron energy flux in the metallic layers, rather than electron mean free path or scattering processes at the interface.« less

  8. Ferroelectric switching induced magnetic anisotropy in Fe/BaTiO3 bilayers

    NASA Astrophysics Data System (ADS)

    Duan, Chun-Gang; Jaswal, S. S.; Tsymbal, E. Y.

    2007-03-01

    Ferromagnetic/ferroelectric heterostructures have recently attracted significantly interest due to their potential applications in multifunctional electronic devices. We have recently predicted a magnetoelectric effect at the Fe/BaTiO3 interface induced by ferroelectric polarization reversal [1]. In this report, calculations are being carried out on the magnetic anisotropy of Fe/BaTiO3 films. Preliminary results show that the ferroelectric switching of the BaTiO3 has appreciable effect on the magnetic anisotropy of magnetic Fe films. This should be of interest in multiferroic device applications. [1] Chun-gang Duan, S. S. Jaswal, E. Y. Tsymbal, Phys. Rev. Lett. 97, 047201 (2006).

  9. Pressure anisotropy generation in a magnetized plasma configuration with a shear flow velocity

    NASA Astrophysics Data System (ADS)

    De Camillis, S.; Cerri, S. S.; Califano, F.; Pegoraro, F.

    2016-04-01

    The nonlinear evolution of the Kelvin Helmholtz instability in a magnetized plasma with a perpendicular flow close to, or in, the supermagnetosonic regime can produce a significant parallel-to-perpendicular pressure anisotropy. This anisotropy, localized inside the flow shear region, can make the configuration unstable either to the mirror or to the firehose instability and, in general, can affect the development of the KHI. The interface between the solar wind and the Earth’s magnetospheric plasma at the magnetospheric equatorial flanks provides a relevant setting for the development of this complex nonlinear dynamics.

  10. Plastic Deformation Modes of CuZr/Cu Multilayers

    PubMed Central

    Cui, Yan; Abad, Oscar Torrents; Wang, Fei; Huang, Ping; Lu, Tian-Jian; Xu, Ke-Wei; Wang, Jian

    2016-01-01

    We synthesized CuZr/Cu multilayers and performed nanoindentation testing to explore the dependence of plastic deformation modes on the thickness of CuZr layers. The Cu layers were 18 nm thick and the CuZr layers varied in thickness from 4 nm to 100 nm. We observed continuous plastic co-deformation in the 4 nm and 10 nm CuZr − 18 nm Cu multilayers and plastic-induced shear instability in thick CuZr layers (>20 nm). The plastic co-deformation is ascribed to the nucleation and interaction of shear transformation zones in CuZr layers at the adjacent interfaces, while the shear instability is associated with the nucleation and propagation of shear bands in CuZr layers. Shear bands are initialized in the CuZr layers due to the accumulated glide dislocations along CuZr-Cu interfaces, and propagate into adjacent Cu layers via slips on {111} plane non-parallel to the interface. Due to crystallographic constraint of the Cu layers, shear bands are approximately parallel to {111} plane in the Cu layer. PMID:26984537

  11. Design of radiation resistant metallic multilayers for advanced nuclear systems

    SciTech Connect

    Zhernenkov, Mikhail E-mail: gills@bnl.gov; Gill, Simerjeet E-mail: gills@bnl.gov; Stanic, Vesna; DiMasi, Elaine; Kisslinger, Kim; Ecker, Lynne; Baldwin, J. Kevin; Misra, Amit; Demkowicz, M. J.

    2014-06-16

    Helium implantation from transmutation reactions is a major cause of embrittlement and dimensional instability of structural components in nuclear energy systems. Development of novel materials with improved radiation resistance, which is of the utmost importance for progress in nuclear energy, requires guidelines to arrive at favorable parameters more efficiently. Here, we present a methodology that can be used for the design of radiation tolerant materials. We used synchrotron X-ray reflectivity to nondestructively study radiation effects at buried interfaces and measure swelling induced by He implantation in Cu/Nb multilayers. The results, supported by transmission electron microscopy, show a direct correlation between reduced swelling in nanoscale multilayers and increased interface area per unit volume, consistent with helium storage in Cu/Nb interfaces in forms that minimize dimensional changes. In addition, for Cu/Nb layers, a linear relationship is demonstrated between the measured depth-dependent swelling and implanted He density from simulations, making the reflectivity technique a powerful tool for heuristic material design.

  12. Multilayer High-Gradient Insulators

    SciTech Connect

    Harris, J R

    2006-08-16

    Multilayer High-Gradient Insulators are vacuum insulating structures composed of thin, alternating layers of dielectric and metal. They are currently being developed for application to high-current accelerators and related pulsed power systems. This paper describes some of the High-Gradient Insulator research currently being conducted at Lawrence Livermore National Laboratory.

  13. Multilayer Composite Pressure Vessels

    NASA Technical Reports Server (NTRS)

    DeLay, Tom

    2005-01-01

    A method has been devised to enable the fabrication of lightweight pressure vessels from multilayer composite materials. This method is related to, but not the same as, the method described in gMaking a Metal- Lined Composite-Overwrapped Pressure Vessel h (MFS-31814), NASA Tech Briefs, Vol. 29, No. 3 (March 2005), page 59. The method is flexible in that it poses no major impediment to changes in tank design and is applicable to a wide range of tank sizes. The figure depicts a finished tank fabricated by this method, showing layers added at various stages of the fabrication process. In the first step of the process, a mandrel that defines the size and shape of the interior of the tank is machined from a polyurethane foam or other suitable lightweight tooling material. The mandrel is outfitted with metallic end fittings on a shaft. Each end fitting includes an outer flange that has a small step to accommodate a thin layer of graphite/epoxy or other suitable composite material. The outer surface of the mandrel (but not the fittings) is covered with a suitable release material. The composite material is filament- wound so as to cover the entire surface of the mandrel from the step on one end fitting to the step on the other end fitting. The composite material is then cured in place. The entire workpiece is cut in half in a plane perpendicular to the axis of symmetry at its mid-length point, yielding two composite-material half shells, each containing half of the foam mandrel. The halves of the mandrel are removed from within the composite shells, then the shells are reassembled and bonded together with a belly band of cured composite material. The resulting composite shell becomes a mandrel for the subsequent steps of the fabrication process and remains inside the final tank. The outer surface of the composite shell is covered with a layer of material designed to be impermeable by the pressurized fluid to be contained in the tank. A second step on the outer flange of

  14. First Principles Modeling of Metal/Ceramic Multilayer Nano-heterostructures.

    SciTech Connect

    Yadav, Satyesh K.; Wang, Jian; Misra, Amit; Liu, Xiang-Yang; Ramprasad, Ramamurthy

    2012-07-31

    Nanoscaled multilayer films composed of metals and ceramics have been explored for their potential applications as ductile, yet strong, materials. It is believed that at the nanoscale, the interfaces between the two materials constituting the multilayer assume an increasingly important role in determining the properties, as they comprise a more significant volume fraction of the multilayer with decreasing layer thickness. In this ab initio work, density functional theory was used to calculate the ideal shear strengths of pure Al, pure TiN, the Al/TiN interfacial region, and Al/TiN multilayers. The ideal shear strength of the Al/TiN interface was found to vary from very low (on the order of the ideal shear strength of Al) to very high (on the order of the ideal shear strength of TiN), depending on whether the TiN at the interface was Ti- or N-terminated, respectively. The results suggest that the shear properties of Al/TiN depend strongly on the chemistry of the interface, Al:N versus Al:Ti terminations. Nevertheless, for the Al/TiN multilayers, the ideal shear strength was limited by shear in the Al layer away from the interface, even when the individual layer thickness is less than a nanometer. Further we found an unusual structural rotation of bulk single-crystal Al under uniaxial compressive strains. It was found that under strains either along the <11-2> or the <111> directions, beyond a critical stress of about 13 GPa, the Al crystal can rotate through shear in the Shockley partial direction (i.e.,<11-2>) on the {l_brace}111{r_brace} plane, in an attempt to relieve internal stresses. This phenomenon reveals a possible mechanism leading to the onset of homogeneous dislocation nucleation in Al under high uniaxial compressions.

  15. Chiral magnetism at oxide interfaces

    NASA Astrophysics Data System (ADS)

    Randeria, Mohit

    2014-03-01

    There are tantalizing hints of magnetism at the n-type LaAlO3/SrTiO3 interface, but the experimental evidence remains controversial in view of some of the differences between different samples and probes. I will argue that if magnetism exists at interfaces, symmetry arguments imply chiral interactions that lead to a spiral ground state in zero external field and skyrmion crystals for H ≠ 0 . I will next present a microscopic model that provides a possible mechanism for the formation of local moments. I will show that the coupling of these moments to itinerant electrons leads to ferromagnetic double exchange together with Dzyaloshinskii-Moriya (DM) interactions and an easy-plane ``compass'' anisotropy, which arise from Rashba spin-orbit coupling (SOC) due to the lack of inversion symmetry at the interface. The compass term, often ignored in the literature on chiral magnetism, is shown to play a crucial role in determining the magnetic ground state. I will compare our results with existing torque magnetometry data on LAO/STO and try to reconcile it with scanning SQUID magnetometry. Finally, I will present the phase diagram in a field and show that easy-plane anisotropy stabilizes an unexpectedly large skyrmion crystal phase and describe its properties. (Work done in collaboration with Sumilan Banerjee, Onur Erten, Daniel Kestner and James Rowland). Supported by DOE-BES DE-SC0005035, NSF-DMR-1006532 and NSF MRSEC DMR-0820414.

  16. Structure analysis of layer-by-layer multilayer films of colloidal particles

    NASA Astrophysics Data System (ADS)

    Batys, Piotr; Nosek, Magdalena; Weroński, Paweł

    2015-03-01

    We have mimicked the layer-by-layer self-assembling process of monodisperse colloidal particles at a solid-liquid interface using the extended random sequential adsorption model of hard spheres. We have studied five multilayer structures of similar thickness, each created at a different single-layer surface coverage. For each multilayer, we have determined its particle volume fraction as a function of distance from the interface. Additionally, we have characterized the film structure in terms of 2D and 3D pair-correlation functions. We have found that the coverage of about 0.3 is optimal for producing a uniform, constant-porosity multilayer in a minimum number of adsorption cycles. The single-layer coverage has also a significant effect on the primary maximum of 2D radial distribution function. In the case of multilayer with the coverage lower than 0.30 the 2D pair-correlation functions of even layers exhibit maxima decreasing with the increase in the layer number. We have verified our theoretical predictions experimentally. We have used fluorescence microscopy to determine the 2D pair-correlation functions for the second, third, and fourth layers of multilayer formed of micron-sized spherical latex particles. We have found a good agreement between our theoretical and experimental results, which confirms the validity of the extended RSA model.

  17. Anisotropy in solar wind plasma turbulence.

    PubMed

    Oughton, S; Matthaeus, W H; Wan, M; Osman, K T

    2015-05-13

    A review of spectral anisotropy and variance anisotropy for solar wind fluctuations is given, with the discussion covering inertial range and dissipation range scales. For the inertial range, theory, simulations and observations are more or less in accord, in that fluctuation energy is found to be primarily in modes with quasi-perpendicular wavevectors (relative to a suitably defined mean magnetic field), and also that most of the fluctuation energy is in the vector components transverse to the mean field. Energy transfer in the parallel direction and the energy levels in the parallel components are both relatively weak. In the dissipation range, observations indicate that variance anisotropy tends to decrease towards isotropic levels as the electron gyroradius is approached; spectral anisotropy results are mixed. Evidence for and against wave interpretations and turbulence interpretations of these features will be discussed. We also present new simulation results concerning evolution of variance anisotropy for different classes of initial conditions, each with typical background solar wind parameters.

  18. Layer-Resolved Magnetic Moments in Ni/Pt Multilayers

    NASA Astrophysics Data System (ADS)

    Wilhelm, F.; Poulopoulos, P.; Ceballos, G.; Wende, H.; Baberschke, K.; Srivastava, P.; Benea, D.; Ebert, H.; Angelakeris, M.; Flevaris, N. K.; Niarchos, D.; Rogalev, A.; Brookes, N. B.

    2000-07-01

    The magnetic moments in Ni/Pt multilayers are thoroughly studied by combining experimental and ab initio theoretical techniques. SQUID magnetometry probes the samples' magnetizations. X-ray magnetic circular dichroism separates the contribution of Ni and Pt and provides a layer-resolved magnetic moment profile for the whole system. The results are compared to band-structure calculations. Induced Pt magnetic moments localized mostly at the interface are revealed. No magnetically ``dead'' Ni layers are found. The magnetization per Ni volume is slightly enhanced compared to bulk NiPt alloys.

  19. Modelling of the Peltier effect in magnetic multilayers

    NASA Astrophysics Data System (ADS)

    Juarez-Acosta, Isaac; Olivares-Robles, Miguel A.; Bosu, Subrojati; Sakuraba, Yuya; Kubota, Takahide; Takahashi, Saburo; Takanashi, Koki; Bauer, Gerrit E. W.

    2016-02-01

    We model the charge, spin, and heat currents in ferromagnetic metal|normal metal|normal metal trilayer structures in the two current model, taking into account bulk and interface thermoelectric properties as well as Joule heating. The results include the temperature distribution as well as resistance-current curves that reproduce the observed shifted parabolic characteristics. Thin tunneling barriers can enhance the apparent Peltier cooling. The model agrees with the experimental results for wide multilayer pillars, but the giant effects observed for diameters ≲100 nm are still under discussion.

  20. Mono- and multilayers of molecular spoked carbazole wheels on graphite

    PubMed Central

    Aggarwal, A Vikas; Kalle, Daniel; Höger, Sigurd

    2014-01-01

    Summary Self-assembled monolayers of a molecular spoked wheel (a shape-persistent macrocycle with an intraannular spoke/hub system) and its synthetic precursor are investigated by scanning tunneling microscopy (STM) at the liquid/solid interface of 1-octanoic acid and highly oriented pyrolytic graphite. The submolecularly resolved STM images reveal that the molecules indeed behave as more or less rigid objects of certain sizes and shapes – depending on their chemical structures. In addition, the images provide insight into the multilayer growth of the molecular spoked wheels (MSWs), where the first adlayer acts as a template for the commensurate adsorption of molecules in the second layer. PMID:25550744

  1. Statistical anisotropy from inflationary magnetogenesis

    NASA Astrophysics Data System (ADS)

    Giovannini, Massimo

    2016-02-01

    Provided the quantum fluctuations are amplified in the presence of a classical gauge field configuration the resulting curvature perturbations exhibit a mild statistical anisotropy which should be sufficiently weak not to conflict with current observational data. The curvature power spectra induced by weakly anisotropic initial states are computed here for the first time when the electric and the magnetic gauge couplings evolve at different rates as it happens, for instance, in the relativistic theory of van der Waals interactions. After recovering the results valid for coincident gauge couplings, the constraints imposed by the isotropy and the homogeneity of the initial states are discussed. The obtained bounds turn out to be more stringent than naively expected and cannot be ignored when discussing the underlying magnetogenesis scenarios.

  2. Texture induced microwave background anisotropies

    SciTech Connect

    Borrill, Julian; Copeland, Edmund J.; Liddle, Andrew R.; Stebbins, Albert; Veeraraghavan, Shoba

    1994-03-01

    We use numerical simulations to calculate the cosmic microwave background anisotropy induced by the evolution of a global texture field, with special emphasis on individual textures. Both spherically symmetric and general configurations are analyzed, and in the latter case we consider field configurations which exhibit unwinding events and also ones which do not. We compare the results given by evolving the field numerically under both the expanded core (XCORE) and non-linear sigma model (NLSM) approximations with the analytic predictions of the NLSM exact solution for a spherically symmetric self-similar (SSSS) unwinding. We find that the random unwinding configuration spots' typical peak height is 60-75\\% and angular size typically only 10% of those of the SSSS unwinding, and that random configurations without an unwinding event nonetheless may generate indistinguishable hot and cold spots. A brief comparison is made with other work.

  3. High-index-contrast multilayer hollow waveguides for mid-IR laser delivery

    NASA Astrophysics Data System (ADS)

    Melzer, Jeffrey E.; Kendall, Wesley Y.; Harrington, James A.

    2016-03-01

    Hollow glass waveguides (HGWs) have been researched extensively for the efficient transmission of radiation over a broad spectral range spanning from the visible region to the far-IR. One such HGW film structure consists of a metallic substrate with overlaying multilayer dielectric thin film stack of alternating high and low refractive index films. The optical properties of such multilayer thin film stacks are well established and provide a method for developing photonic bandgap fibers with exceptionally low attenuation losses at a desired wavelength. Transmission losses can be minimized in multilayer waveguides through two main approaches; either maximizing the number of alternating layer pairs or maximizing the index contrast between adjacent films. In practice, it has been shown that for liquid-phase deposition-based procedures, the former approach leads to compounding surface and interface roughness, negating the low-loss advantage of a multilayer waveguide. Thus, this research focuses on maximizing index contrast between adjacent dielectrics in an attempt to minimize the number of films required to achieve acceptable transmission characteristics both in theory and in practice. In this study, multilayer waveguides are fabricated using three dielectric materials: silver iodide, lead sulfide, and cyclic olefin copolymer. Through exploitation of their high index contrast, these materials are used to develop low-film-count multilayer waveguides designed for enhanced transmission at both Er:YAG and CO2 laser wavelengths.

  4. High efficiency carbon-based multilayers for LAMP at 250 eV

    NASA Astrophysics Data System (ADS)

    Wen, Mingwu; Huang, Qiushi; She, Rui; Jiang, Li; Zhang, Zhong; Wang, Zhanshan; Feng, Hua; Spiga, Daniele; Giglia, Angelo

    2015-09-01

    X-ray reflection near the Brewster's angle by multilayer mirrors can be used to detect the polarization from X-ray sources. The photon emission spectra from some isolated neutron stars and AGN/blazars etc. show that their emission is peaked at low energies near 250eV, which is just below carbon K-absorption edge. The Lightweight Asymmetry and Magnetism Probe (LAMP) is proposed as a micro-satellite mission dedicated for astronomical X-ray polarimetry working at 250 eV and is currently under early phase study. Co/C multilayers are selected and designed at the energy near 250eV with a grazing incident angle of 45°. The carbon layer thickness ratio is optimized to get the highest integral reflectivity which means larger effective signals in the astrophysics observation. The multilayer coatings were manufactured by direct current magnetron sputtering on D263 glasses and electroformed nickels and characterized using Grazing incidence X-ray reflectometry at 8keV. Reactive sputtering with 4%, 6% and 8% nitrogen were used to improve the Co/C multilayer interfaces respectively. Reflectivity for s-polarization and p-polarization light was measured at BEAR beamline in Elettra synchtron facility. Co/C multilayer deposited with 6% nitrogen exhibits the best performance comparing to other multilayers with different nitrogen content.

  5. Multilayers at the surface of solutions of exogenous lung surfactant: direct observation by neutron reflection.

    PubMed

    Follows, D; Tiberg, F; Thomas, R K; Larsson, M

    2007-02-01

    Pharmacy-grade exogenous lung surfactant preparations of bovine and porcine origin, dispersed in physiological electrolyte solution have been studied. The organization and dynamics at the air/water interface at physiological temperature was analysed by neutron reflection. The results show that a well-defined surface phase is formed, consisting of a multilayer structure of lipid/protein bilayers alternating with aqueous layers, with a repetition period of about 70 A and correlation depths of 3 to >25 bilayers, depending on electrolyte composition and time. The experimental surfactant concentration of 0.15% (w/w) is far below that used in therapeutic application of exogenous surfactants and it is therefore likely that similar multilayer structures are also formed at the alveolar surface in the clinical situation during surfactant substitution therapy. Lung surfactant preparations in dry form swell in aqueous solution towards a limit of about 60% (w/w) of water, forming a lamellar liquid-crystalline phase above about 34 degrees C, which disperses into lamellar bodies at higher water concentrations. The lamellar spacings in the surface multilayers at the air/water interface are smaller than those in the saturated limit even though they are in contact with much greater water concentrations. The surface multilayers are laterally disordered in a way that is consistent with fragments of Lalpha-phase lamellae. The near surface layers of the multilayer structure have a significant protein content (only SP-B and SP-C are present in the preparations). The results demonstrate that a multilayer structure can be formed in exogenous surfactant even at very low concentrations and indicate that multilayers need to be incorporated into present interpretations of in vitro studies of similar lung surfactant preparations, which are largely based on monolayer models.

  6. Shale seismic anisotropy vs. compaction trend

    NASA Astrophysics Data System (ADS)

    Pervukhina, M.

    2015-12-01

    Shales comprise more than 60% of sedimentary rocks and form natural seals above hydrocarbon reservoirs. Their sealing capacity is also used for storage of nuclear wastes. Shales are notorious for their strong elastic anisotropy, so-called, vertical transverse isotropy or VTI. This VTI anisotropy is of practical importance as it is required for correct surface seismic data interpretation, seismic to well tie and azimuth versus offset analysis. A number of competing factors are responsible for VTI anisotropy in shales, namely, (1) micro-scale elastic anisotropy of clay particles, (2) anisotropic orientation distribution function of clay particles, (3) anisotropic orientation of pores and organic matter. On the contrary, silt (non-clay mineralogy grains with size between 0.06 -0.002 mm) is known to reduce elastic anisotropy of shales. Methods developed for calculations of anisotropy in polycrystalline materials can be used to estimate elastic anisotropy of shales from orientation distribution function (ODF) of clay platelets if elastic properties of individual clay platelets are known. Unfortunately, elastic properties of individual clay platelets cannot be directly measured. Recently, elastic properties of properties of individual clay platelets with different mineralogy were calculated from first principles based on density functional theory. In this work we use these elastic properties of individual platelets of muscovite, illite-smectite and kaolinite to obtain correlations between elastic anisotropy and Legendre coefficients W200 and W400 of different ODFs. Comparison of the Legendre coefficients calculated for more than 800 shales from depths 0 - 6 km (www.rockphysicists.org/data) with those of compaction ODFs shows that compaction has no first order effect on elastic anisotropy. Thus, elastic anisotropy is to large extent determined by factors other than compaction processes, such as depositional environment, chemical composition of fluid, silt fraction, etc.

  7. Joint perpendicular anisotropy and strong interlayer exchange coupling in systems with thin vanadium spacers

    SciTech Connect

    Devolder, T. Le Goff, A.; Eimer, S.; Adam, J.-P.

    2015-04-28

    We study the influence of the insertion of a vanadium spacer layer between an FeCoB layer and a [Co/Ni] multilayer in an MgO substrate-based system mimicking the reference system of a perpendicular anisotropy magnetic tunnel junction. The anisotropy of the [Co/Ni] multilayer gradually improves with the vanadium thicknesses t, up to an optimized state for t = 8 Å, with little influence of the thermal annealing. The interlayer exchange coupling is ferromagnetic and very strong for t≤6 Å. It can be adjusted by thermal treatment at t = 8 Å from no coupling in the as-grown state to more than 2 mJ/m{sup 2} after 250 °C annealing. For this spacer thickness, the magnetic properties are consistent with the occurrence of a bcc (001) to an fcc (111) crystalline structure transition at the vanadium spacer. The remaining interlayer exchange coupling at t = 8 Å is still substantially higher than the one formerly obtained with a Tantalum spacer, which holds promise for further optimization of the reference layers of tunnel junctions meant for magnetic random access memories.

  8. Pd/B4C/Y multilayer coatings for extreme ultraviolet applications near 10  nm wavelength.

    PubMed

    Windt, David L; Gullikson, Eric M

    2015-06-20

    A new extreme ultraviolet (EUV) multilayer coating has been developed comprising Pd and Y layers with thin B4C barrier layers at each interface, for normal incidence applications near 10 nm wavelength. Periodic, nonperiodic, and dual-stack coatings have been investigated and compared with similar structures comprising either Mo/Y or Pd/B4C bilayers. We find that Pd/B4C/Y multilayers provide higher reflectance than either Mo/Y or Pd/B4C, with much lower film stress than Pd/B4C. We have also investigated the performance of periodic multilayers comprising repetitions of Pd/Y, Ru/Y, or Ru/B4C/Y, as well as Pd/B4C multilayers deposited using reactive sputtering with an Ar:N2 gas mixture in order to reduce stress: these material combinations were all found to provide poor EUV performance. The temporal stability of a periodic Pd/B4C/Y multilayer stored in air was investigated over a period of 16 months, and a slight reduction in peak reflectance was observed. Periodic Pd/B4C/Y multilayers were also found to be thermally stable up to 100°C; at higher temperatures (200°C and 300°C) we observe a slight reduction in peak reflectance and a slight increase in multilayer period. High-resolution transmission electron microscopy and selected area diffraction of an as-deposited Pd/B4C/Y film indicates a fully amorphous structure, with interfaces that are both smoother and more abrupt than those observed in a comparable Pd/B4C multilayer in which the Pd layers are polycrystalline. The new Pd/B4C/Y multilayers are suitable for normal-incidence imaging and spectroscopy applications, including solar physics, plasma physics, high-brightness EUV light sources, and others. PMID:26193039

  9. Modeling of Indentation Damage in Single and Multilayer Coatings

    NASA Astrophysics Data System (ADS)

    Chen, J.; Bull, S. J.

    In many coating applications damage resistance is controlled by the mechanical properties of the coating, interface and substrate. As coatings become thinner and more complex, with multilayer and graded architectures now in widespread use, it is very important to obtain the mechanical properties (such as hardness, elastic modulus, fracture toughness, etc.) of individual coating layers for use in design calculations and have failure-related design criteria which are valid for such multilayer systems. Nanoindentation testing is often the only viable approach to assess the damage mechanisms and properties of very thin coatings (< 1 µm) since it can operate at the required scale and provides fingerprint of the indentation response of the coating/substrate system. Finite element analysis of indentation load displacement curves can be used to extract materials properties for design; as coating thicknesses decrease it is observed that the yield strength required to fit the curves increases and scale-dependent materials properties are essential for design. Similarly the assessment of fracture response of very thin coatings requires modeling of the indentation stress field and how it is modified by plasticity during the indentation cycle. An FE approach using a cohesive zone model has been used to assess the locus of failure and demonstrates the complexity of adhesive failure around indentations for multilayer coatings.

  10. Structural transformations in Sc/Si multilayers irradiated by EUVlasers

    SciTech Connect

    Voronov, D.L.; Zubarev, E.N.; Pershyn, Y.P.; Sevryukova, V.A.; Kondratenko, V.V.; Vinogradov, A.V.; Artioukov, I.A.; Uspenskiy, Y.A.; Grisham, M.; Vaschenko, G.; Menoni, C.S.; Rocca, J.J.

    2007-08-21

    Multilayer mirrors for the extreme ultraviolet (EUV) are keyelements for numerous applications of coherent EUV sources such as newtabletop lasers and free-electron lasers. However the field ofapplications is limited by the radiation and thermal stability of themultilayers. Taking into account the growing power of EUV sources thestability of the optics becomes crucial. To overcome this problem it isnecessary to study the degradation of multilayers and try to increasetheir temporal and thermal stability. In this paper we report the resultsof detailed study of structural changes in Sc/Simultilayers when exposedto intense EUV laser pulses. Various types of surface damage such asmelting, boiling, shockwave creation and ablation were observed asirradiation fluencies increase. Cross-sectional TEM study revealed thatthe layer structure was completely destroyed in the upper part ofmultilayer, but still survived below. The layers adjacent tothe substrateremained intact even through the multilayer surface melted down, thoughthe structure of the layers beneath the molten zone was noticeablychanged. The layer structure in this thermally affected zone is similarto that of isothermally annealed samples. All stages of scandium silicideformation such as interdiffusion, solid-state amorphization, silicidecrystallization, etc., are present in the thermally affected zone. Itindicates a thermal nature of the damage mechanism. The tungstendiffusion barriers were applied to the scandium/silicon interfaces. Itwas shown that the barriers inhibited interdiffusion and increased thethermal stability of Sc/Si mirrors.

  11. Electric field induced morphological transitions in polyelectrolyte multilayers.

    PubMed

    Cho, Chungyeon; Jeon, Ju-Won; Lutkenhaus, Jodie; Zacharia, Nicole S

    2013-06-12

    In this work, the morphological transitions in weak polyelectrolyte (PE) multilayers (PEMs) assembled from linear poly(ethylene imine) (LPEI) and poly(acrylic acid) (PAA) upon application of an electric field were studied. Exposure to an electric field results in the creation of a porous structure, which can be ascribed to local changes in pH from the hydrolysis of water and subsequent structural rearrangements of the weak PE constituents. Depending on the duration of application of the field, the porous transition gradually develops into a range of structures and pore sizes. It was discovered that the morphological transition of the LbL films starts at the multilayer-electrode interface and propagates through the film. First an asymmetrical structure forms, consisting of microscaled pores near the electrode and nanoscaled pores near the surface in contact with the electrolyte solution. At longer application of the field the porous structures become microscaled throughout. The results revealed in this study not only demonstrate experimental feasibility for controlling variation in pore size and porosity of multilayer films but also deepens the understanding of the mechanism of the porous transition. In addition, electrical potential is used to release small molecules from the PEMs.

  12. Electric field induced morphological transitions in polyelectrolyte multilayers.

    PubMed

    Cho, Chungyeon; Jeon, Ju-Won; Lutkenhaus, Jodie; Zacharia, Nicole S

    2013-06-12

    In this work, the morphological transitions in weak polyelectrolyte (PE) multilayers (PEMs) assembled from linear poly(ethylene imine) (LPEI) and poly(acrylic acid) (PAA) upon application of an electric field were studied. Exposure to an electric field results in the creation of a porous structure, which can be ascribed to local changes in pH from the hydrolysis of water and subsequent structural rearrangements of the weak PE constituents. Depending on the duration of application of the field, the porous transition gradually develops into a range of structures and pore sizes. It was discovered that the morphological transition of the LbL films starts at the multilayer-electrode interface and propagates through the film. First an asymmetrical structure forms, consisting of microscaled pores near the electrode and nanoscaled pores near the surface in contact with the electrolyte solution. At longer application of the field the porous structures become microscaled throughout. The results revealed in this study not only demonstrate experimental feasibility for controlling variation in pore size and porosity of multilayer films but also deepens the understanding of the mechanism of the porous transition. In addition, electrical potential is used to release small molecules from the PEMs. PMID:23683121

  13. Irradiation-enhanced reactivity of multilayer Al/Ni nanomaterials.

    PubMed

    Manukyan, Khachatur V; Tan, Wanpeng; deBoer, Richard J; Stech, Edward J; Aprahamian, Ani; Wiescher, Michael; Rouvimov, Sergei; Overdeep, Kyle R; Shuck, Christopher E; Weihs, Timothy P; Mukasyan, Alexander S

    2015-06-01

    We have investigated the effect of accelerated ion beam irradiation on the structure and reactivity of multilayer sputter deposited Al/Ni nanomaterials. Carbon and aluminum ion beams with different charge states and intensities were used to irradiate the multilayer materials. The conditions for the irradiation-assisted self-ignition of the reactive materials and corresponding ignition thresholds for the beam intensities were determined. We discovered that relatively short (40 min or less) ion irradiations enhance the reactivity of the Al/Ni nanomaterials, that is, significantly decrease the thermal ignition temperatures (Tig) and ignition delay times (τig). We also show that irradiation leads to atomic mixing at the Al/Ni interfaces with the formation of an amorphous interlayer, in addition to the nucleation of small (2-3 nm) Al3Ni crystals within the amorphous regions. The amorphous interlayer is thought to enhance the reactivity of the multilayer energetic nanomaterial by increasing the heat of the reaction and by speeding the intermixing of the Ni and the Al. The small Al3Ni crystals may also enhance reactivity by facilitating the growth of this Al-Ni intermetallic phase. In contrast, longer irradiations decrease reactivity with higher ignition temperatures and longer ignition delay times. Such changes are also associated with growth of the Al3Ni intermetallic and decreases in the heat of reaction. Drawing on this data set, we suggest that ion irradiation can be used to fine-tune the structure and reactivity of energetic nanomaterials. PMID:25915560

  14. Boron containing multilayer coatings and method of fabrication

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1997-09-23

    Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition. 6 figs.

  15. Magnetic anisotropy, damping, and interfacial spin transport in Pt/LSMO bilayers

    DOE PAGESBeta

    Lee, H. K.; Barsukov, I.; Swartz, A. G.; Kim, B.; Yang, L.; Hwang, H. Y.; Krivorotov, I. N.

    2016-05-16

    In this paper, we report ferromagnetic resonance measurements of magnetic anisotropy and damping in epitaxial La0.7Sr0.3MnO3 (LSMO) and Pt capped LSMO thin films on SrTiO3 (001) substrates. The measurements reveal large negative perpendicular magnetic anisotropy and a weaker uniaxial in-plane anisotropy that are unaffected by the Pt cap. The Gilbert damping of the bare LSMO films is found to be low α = 1.9(1) × 10-3, and two-magnon scattering is determined to be significant and strongly anisotropic. The Pt cap increases the damping by 50% due to spin pumping, which is also directly detected via inverse spin Hall effect inmore » Pt. Our research demonstrates efficient spin transport across the Pt/LSMO interface.« less

  16. Three-dimensional spin mapping of antiferromagnetic nanopyramids having spatially alternating surface anisotropy at room temperature.

    PubMed

    Wang, Kangkang; Smith, Arthur R

    2012-11-14

    Antiferromagnets play a key role in modern spintronic devices owing to their ability to modify the switching behavior of adjacent ferromagnets via the exchange bias effect. Consequently, detailed measurements of the spin structure at antiferromagnetic interfaces and surfaces are highly desirable, not only for advancing technologies but also for enabling new insights into the underlying physics. Here using spin-polarized scanning tunneling microscopy at room-temperature, we reveal in three-dimensions an orthogonal spin structure on antiferromagnetic compound nanopyramids. Contrary to expected uniaxial anisotropy based on bulk properties, the atomic terraces are found to have alternating in-plane and out-of-plane magnetic anisotropies. The observed layer-wise alternation in anisotropy could have strong influences on future nanoscale spintronic applications.

  17. Magnetic anisotropy, damping, and interfacial spin transport in Pt/LSMO bilayers

    NASA Astrophysics Data System (ADS)

    Lee, H. K.; Barsukov, I.; Swartz, A. G.; Kim, B.; Yang, L.; Hwang, H. Y.; Krivorotov, I. N.

    2016-05-01

    We report ferromagnetic resonance measurements of magnetic anisotropy and damping in epitaxial La0.7Sr0.3MnO3 (LSMO) and Pt capped LSMO thin films on SrTiO3 (001) substrates. The measurements reveal large negative perpendicular magnetic anisotropy and a weaker uniaxial in-plane anisotropy that are unaffected by the Pt cap. The Gilbert damping of the bare LSMO films is found to be low α = 1.9(1) × 10-3, and two-magnon scattering is determined to be significant and strongly anisotropic. The Pt cap increases the damping by 50% due to spin pumping, which is also directly detected via inverse spin Hall effect in Pt. Our work demonstrates efficient spin transport across the Pt/LSMO interface.

  18. Influence of controlled surface oxidation on the magnetic anisotropy of Co ultrathin films

    SciTech Connect

    Di, N.; Maroun, F. Allongue, P.; Kubal, J.; Zeng, Z.; Greeley, J.

    2015-03-23

    We studied the influence of controlled surface-limited oxidation of electrodeposited epitaxial Co(0001)/Au(111) films on their magnetic anisotropy energy using real time in situ magneto optical Kerr effect and density functional theory (DFT) calculations. We investigated the Co first electrochemical oxidation step which we demonstrate to be completely reversible and determined the structure of this oxide layer. We show that the interface magnetic anisotropy of the Co film increases by 0.36 erg/cm{sup 2} upon Co surface oxidation. We performed DFT calculations to determine the different surface structures in a wide potential range as well as the charge transfer at the Co surface. Our results suggest that the magnetic anisotropy change is correlated with a positive charge increase of 0.54 e{sup −} for the Co surface atom upon oxidation.

  19. Structure of lipid multilayers via drop casting of aqueous liposome dispersions.

    PubMed

    Sironi, Beatrice; Snow, Tim; Redeker, Christian; Slastanova, Anna; Bikondoa, Oier; Arnold, Thomas; Klein, Jacob; Briscoe, Wuge H

    2016-05-01

    Understanding the structure of solid supported lipid multilayers is crucial to their application as a platform for novel materials. Conventionally, they are prepared from drop casting or spin coating of lipids dissolved in organic solvents, and lipid multilayers prepared from aqueous media and their structural characterisation have not been reported previously, due to their extremely low lipid solubility (i.e.∼10(-9) M) in water. Herein, using X-ray reflectivity (XRR) facilitated by a "bending mica" method, we have studied the structural characteristics of dioleoylphosphatidylcholine (DOPC) multilayers prepared via drop casting aqueous small unilamellar and multilamellar vesicle or liposome (i.e. SUV and MLV) dispersions on different surfaces, including mica, positively charged polyethylenimine (PEI) coated mica, and stearic trimethylammonium iodide (STAI) coated mica which exposes a monolayer of hydrocarbon tails. We suggest that DOPC liposomes served both as a delivery matrix where an appreciable lipid concentration in water (∼25 mg mL(-1) or 14 mM) was feasible, and as a structural precursor where the lamellar structure was readily retained on the rupture of the vesicles at the solid surface upon solvent evaporation to facilitate rapid multilayer formation. We find that multilayers on mica from MLVs exhibited polymorphism, whereas the SUV multilayers were well ordered and showed stronger stability against water. The influence of substrate chemistry (i.e. polymer coating, charge and hydrophobicity) on the multilayer structure is discussed in terms of lipid-substrate molecular interactions determining the bilayer packing proximal to the solid-liquid interface, which then had a templating effect on the structure of the bilayers distal from the interface, resulting in the overall different multilayer structural characteristics on different substrates. Such a fundamental understanding of the correlation between the physical parameters that characterise liposomes

  20. Exchange coupling in metallic multilayers with a top FeRh layer

    NASA Astrophysics Data System (ADS)

    Yamada, S.; Tanikawa, K.; Hirayama, J.; Kanashima, T.; Taniyama, T.; Hamaya, K.

    2016-05-01

    We study magnetic properties of metallic multilayers with FeRh/ferromagnet interfaces grown by low-temperature molecular beam epitaxy. Room-temperature coercivity of the ferromagnetic layers is significantly enhanced after the growth of FeRh, proving the existence of the exchange coupling between the antiferromagnetic FeRh layer and the ferromagnetic layer. However, exchange bias is not clearly observed probably due to the presence of disordered structures, which result from the lattice strain at the FeRh/ferromagnet interfaces due to the lattice mismatch. We infer that the lattice matched interface between FeRh and ferromagnetic layers is a key parameter for controlling magnetic switching fields in such multilayer systems.

  1. Development of Ni-based multilayers for future focusing soft gamma ray telescopes

    NASA Astrophysics Data System (ADS)

    Girou, David A.; Massahi, Sonny; Sleire, Erlend K.; Jakobsen, Anders C.; Christensen, Finn E.

    2015-09-01

    Ni-based multilayers are a possible solution to extend the upper energy range of hard X-ray focusing telescopes currently limited at ≈79:4 keV by the Pt-K absorption edge. In this study 10 bilayers multilayers with a constant bilayer thickness were coated with the DC magnetron sputtering facility at DTU Space, characterized at 8 keV using X-ray reectometry and fitted using the IMD software. Ni/C multilayers were found to have a mean interface roughness ≈ 1:5 times lower than Ni/B4C multilayers. Reactive sputtering with ≈ 76% of Ar and ≈ 24% of N2 reduced the mean interface roughness by a factor of ≈ 1:7. It also increased the coating rate of C by a factor of ≈ 3:1 and lead to a coating process going ≈ 1:6 times faster. Honeycomb collimation proved to limit the increase in mean interface roughness when the bilayer thickness increases at the price of a coating process going ≈ 1:9 times longer than with separator plates. Finally a Ni/C 150 bilayers depth-graded mutilayer was coated with reactive sputtering and honeycomb collimation and then characterized from 10 keV to 150 keV. It showed 10% reectance up to 85 keV.

  2. In situ study of heavy ion irradiation response of immiscible Cu/Fe multilayers

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, N.; Bufford, D. C.; Li, J.; Hattar, K.; Wang, H.; Zhang, X.

    2016-07-01

    Recent studies show that immiscible metallic multilayers with incoherent interfaces can effectively reduce defect density in ion irradiated metals by providing active defect sinks that capture and annihilate radiation induced defect clusters. Although it is anticipated that defect density within the layers should vary as a function of distance to the layer interface, there is, to date, little in situ TEM evidence to validate this hypothesis. In this study monolithic Cu films and Cu/Fe multilayers with individual layer thickness, h, of 100 and 5 nm were subjected to in situ Cu ion irradiation at room temperature to nominally 1 displacement-per-atom inside a transmission electron microscope. Rapid formation and propagation of defect clusters were observed in monolithic Cu, whereas fewer defects with smaller dimensions were generated in Cu/Fe multilayers with smaller h. Furthermore in situ video shows that the cumulative defect density in Cu/Fe 100 nm multilayers indeed varies, as a function of distance to the layer interfaces, supporting a long postulated hypothesis.

  3. GMR in multilayered nanowires electrodeposited in track-etched polyester and polycarbonate membranes

    NASA Astrophysics Data System (ADS)

    Nasirpouri, F.; Southern, P.; Ghorbani, M.; Iraji zad, A.; Schwarzacher, W.

    2007-01-01

    Commercially available track-etched polyester membranes were used as templates to electrodeposit Co-Ni-Cu/Cu multilayered nanowires, giving room-temperature current perpendicular to plane (CPP) giant magnetoresistance (GMR) values of up to ˜12%. In contrast to similar nanowires electrodeposited in track-etched polycarbonate membranes, the GMR obtained in multilayered nanowires electrodeposited in the polyester membranes increased with decreasing Cu-layer thickness tCu, for tCu in the 2-7 nm range, indicating a lack of ferromagnetic coupling through pinholes, etc. Transmission electron micrographs showed clear evidence for smooth, parallel layer interfaces in the nanowires.

  4. Magnetic Nano-skyrmion Lattice Observed in a Si-Wafer-Based Multilayer System.

    PubMed

    Schlenhoff, Anika; Lindner, Philipp; Friedlein, Johannes; Krause, Stefan; Wiesendanger, Roland; Weinl, Michael; Schreck, Matthias; Albrecht, Manfred

    2015-06-23

    Growth, electronic properties, and magnetic properties of an Fe monolayer (ML) on an Ir/YSZ/Si(111) multilayer system have been studied using spin-polarized scanning tunneling microscopy. Our experiments reveal a magnetic nano-skyrmion lattice, which is fully equivalent to the magnetic ground state that has previously been observed for the Fe ML on Ir(111) bulk single crystals. In addition, the experiments indicate that the interface-stabilized skyrmion lattice is robust against local atomic lattice distortions induced by multilayer preparation.

  5. Zinc-blende CrAs/GaAs multilayers grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Akinaga, H.; Mizuguchi, M.

    2004-12-01

    The epitaxial growth of zinc-blende CrAs/GaAs multilayers has been achieved by using the molecular-beam epitaxy method. The crystallographic quality was evaluated by reflection high-energy electron diffraction (RHEED) and cross-sectional transmission electron microscopy (TEM). The increase of the substrate temperature during growth up to 300 °C brings the RHEED pattern to a streak, in contrast to the case at 200 °C. TEM images show the atomically flat surface and interface of the multilayer.

  6. Modelling migration in multilayer systems by a finite difference method: the spherical symmetry case

    NASA Astrophysics Data System (ADS)

    Hojbotǎ, C. I.; Toşa, V.; Mercea, P. V.

    2013-08-01

    We present a numerical model based on finite differences to solve the problem of chemical impurity migration within a multilayer spherical system. Migration here means diffusion of chemical species in conditions of concentration partitioning at layer interfaces due to different solubilities of the migrant in different layers. We detail here the numerical model and discuss the results of its implementation. To validate the method we compare it with cases where an analytic solution exists. We also present an application of our model to a practical problem in which we compute the migration of caprolactam from the packaging multilayer foil into the food.

  7. Control of normal chirality at hexagonal interfaces

    SciTech Connect

    Haraldsen, Jason T; Fishman, Randy Scott

    2010-01-01

    We study the net chirality created by the Dzyaloshinkii-Moriya interaction (DMI) at the boundary between hexagonal layers of magnetic and non-magnetic materials. It is shown that another mechanism besides elastic torsion is required to understand the change in chirality observed in Dy/Y multilayers during field-cooling. The paper shows that due to the overlap between magnetic and non-magnetic atoms, interfacial steps may produce a DMI normal to the interface in magnetic heterostructures.

  8. Structural and magnetic properties of Co68Fe24Zr8/Al2O3 multilayers

    NASA Astrophysics Data System (ADS)

    Lidbaum, Hans; Raanaei, Hossein; Papaioannou, Evangelos Th.; Leifer, Klaus; Hjörvarsson, Björgvin

    2010-02-01

    The structural and magnetic properties of Co68Fe24Zr8/Al2O3 multilayers grown by using magnetron sputtering were investigated with X-ray reflectivity, transmission electron microscopy and magneto-optical Kerr effect. The Co68Fe24Zr8 form amorphous islands when the nominal thickness of the Co68Fe24Zr8 layers is 10 Å, exhibiting an isotropic superparamagnetic behavior. Continuous layers with mostly a nano-crystalline structure are instead formed when the nominal thickness of the Co68Fe24Zr8 layers is increased to 20 Å. The continuous layers exhibit random, in-plane, magnetic anisotropy resulting from the growth process. However, induced uniaxial anisotropy is obtained when growing the sample in the presence of an applied magnetic field, regardless of the combination of amorphous and nano-crystalline material.

  9. Nanorods of Co/Pd multilayers fabricated by glancing angle deposition for advanced media

    SciTech Connect

    Su, Hao; Gupta, Subhadra; Natarajarathinam, Anusha

    2013-05-28

    Perpendicular anisotropy magnetic nanorods composed of Co/Pd multilayers have been successfully fabricated by glancing angle deposition (GLAD) in a planetary sputtering system. Co and Pd layer thickness, ratio, and bilayer number were optimized for both normal and GLAD depositions. Scanning electron micrographs estimated the nanorods to be about 12 nm in diameter. M-H loops showed that the coercivity for the GLAD nanorods increased from 1.3 kOe for the normally deposited continuous films to 2.9 kOe for the GLAD nanorod array, a 123% increase.

  10. Primordial anisotropies in gauged hybrid inflation

    SciTech Connect

    Abolhasani, Ali Akbar; Emami, Razieh; Firouzjahi, Hassan E-mail: emami@ipm.ir

    2014-05-01

    We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent δN mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations.

  11. Ferromagnetic resonance of an heterogeneous multilayer system with interlayer exchange coupling: an accessible model

    NASA Astrophysics Data System (ADS)

    Franco, A. F.; Landeros, P.

    2016-09-01

    We present a general model for the coupled magnetic resonances of an exchange interacting multilayer system, which can be implemented without complex analytical calculations or numerical simulations. The model allows one to study the spin wave modes of a multilayer structure with any number of layers, accounting for individual uniaxial and cubic anisotropies, and (static and dynamic) demagnetizing and external fields as well, assuming that only the interlayer exchange coupling mechanism is relevant between such magnetic layers. This scheme is applied to recent measurements of a NiFe/CoFe bilayer, and to studying the influence of the strength of ferromagnetic and antiferromagnetic exchange interactions and the applied field orientation on the spin wave modes and intensities of the ferromagnetic resonance response. We find that the acoustic oscillation mode tends to stabilize in frequency if the magnetizations of the layers are parallel to each other, while the optical mode stabilizes when the magnetizations are antiparallel. Furthermore, we find that each oscillation mode is governed by either the NiFe or the CoFe. The modes swap the governing layer as the perpendicular field increases, inducing a gap between their frequencies, which appears to be proportional to the exchange coupling. Finally, we find that the field linewidth of the bilayer due to Gilbert damping has a dependence on the frequency very similar to the linear dependence of the linewidth in single layers. The theoretical scheme presented here can be further used to explore magnetization dynamics in different multilayer architectures—such as exchange springs, structures with perpendicular magnetic anisotropy, and complex compositions of layer stacks—and can be useful as a basis to study multilayers with chiral and dipolar interactions.

  12. The Stereoscopic Anisotropy Develops During Childhood

    PubMed Central

    Serrano-Pedraza, Ignacio; Herbert, William; Villa-Laso, Laura; Widdall, Michael; Vancleef, Kathleen; Read, Jenny C. A.

    2016-01-01

    Purpose Human vision has a puzzling stereoscopic anisotropy: horizontal depth corrugations are easier to detect than vertical depth corrugations. To date, little is known about the function or the underlying mechanism responsible for this anisotropy. Here, we aim to find out whether this anisotropy is independent of age. To answer this, we compare detection thresholds for horizontal and vertical depth corrugations as a function of age. Methods The depth corrugations were defined solely by the horizontal disparity of random dot patterns. The disparities depicted a horizontal or vertical sinusoidal depth corrugation of spatial frequency 0.1 cyc/deg. Detection thresholds were obtained using Bayesian adaptive staircases from a total of 159 subjects aged from 3 to 73 years. For each participant we computed the anisotropy index, defined as the log10-ratio of the detection threshold for vertical corrugations divided by that for horizontal. Results Anisotropy index was highly variable between individuals but was positive in 87% of the participants. There was a significant correlation between anisotropy index and log-age (r = 0.21, P = 0.008) mainly driven by a significant difference between children and adults. In 67 children aged 3 to 13 years, the mean anisotropy index was 0.34 ± 0.38 (mean ± SD, meaning that vertical thresholds were on average 2.2 times the horizontal ones), compared with 0.59 ± 0.55 in 84 adults aged 18 to 73 years (vertical 3.9 times horizontal). This was mainly driven by a decline in the sensitivity to vertical corrugations. Children had poorer stereoacuity than adults, but had similar sensitivity to adults for horizontal corrugations and were actually more sensitive than adults to vertical corrugations. Conclusions The fact that adults show stronger stereo anisotropy than children raises the possibility that visual experience plays a critical role in developing and strengthening the stereo anisotropy. PMID:26962692

  13. Multilayer weighted social network model

    NASA Astrophysics Data System (ADS)

    Murase, Yohsuke; Török, János; Jo, Hang-Hyun; Kaski, Kimmo; Kertész, János

    2014-11-01

    Recent empirical studies using large-scale data sets have validated the Granovetter hypothesis on the structure of the society in that there are strongly wired communities connected by weak ties. However, as interaction between individuals takes place in diverse contexts, these communities turn out to be overlapping. This implies that the society has a multilayered structure, where the layers represent the different contexts. To model this structure we begin with a single-layer weighted social network (WSN) model showing the Granovetterian structure. We find that when merging such WSN models, a sufficient amount of interlayer correlation is needed to maintain the relationship between topology and link weights, while these correlations destroy the enhancement in the community overlap due to multiple layers. To resolve this, we devise a geographic multilayer WSN model, where the indirect interlayer correlations due to the geographic constraints of individuals enhance the overlaps between the communities and, at the same time, the Granovetterian structure is preserved.

  14. Casting Of Multilayer Ceramic Tapes

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1991-01-01

    Procedure for casting thin, multilayer ceramic membranes, commonly called tapes, involves centrifugal casting at accelerations of 1,800 to 2,000 times normal gravitational acceleration. Layers of tape cast one at a time on top of any previous layer or layers. Each layer cast from slurry of ground ceramic suspended in mixture of solvents, binders, and other components. Used in capacitors, fuel cells, and electrolytic separation of oxygen from air.

  15. EUV metrology of multilayer optics

    SciTech Connect

    Ray-Chaudhuri, A.K.; Stulen, R.H.; Ng, W.; Cerrina, F.; Spector, S.; Tan, Z.; Bjorkholm, J.; Tennant, D.

    1994-11-01

    EUV metrology is central to the successful commercialization of EUV projection lithography. Metrology carried out at the EUV wavelength of 13 nm enables a gain of {approximately}50 in precision when translated from visible light wavelengths. It also uniquely measures wavefront errors due to lateral variations in the inherent phase shift upon reflection from the multilayer coating. The authors present the development of two metrology techniques: EUV Foucault and Ronchi tests.

  16. Mechanical anisotropy of the Yucca Mountain tuffs

    SciTech Connect

    Price, R.H.; Boyd, P.J.; Martin, R.J.; Haupt, R.W.; Noel, J.S.

    1991-12-31

    Three series of measurements were performed on oriented cores of several Yucca Mountain tuffs to determine the importance of mechanical anisotropy in the intact rock. Outcrop and drillhole samples were tested for acoustic velocities, linear compressibilities, and strengths in different orientations. The present data sets are preliminary, but suggest the tuffs are transversely anisotropic for these mechanical properties. The planar fabric that produces the anisotropy is believed to be predominantly the result of the preferred orientation of shards and pumice fragments. The potential of significant anisotropy has direct relevance to the formulation of constitutive formulation and the analyses of an underground opening within the Yucca Mountain.

  17. Magnetic properties of ultrathin discontinuous Co/Pt multilayers: Comparison with short-range ordered and isotropic CoPt3 films

    NASA Astrophysics Data System (ADS)

    Charilaou, M.; Bordel, C.; Berche, P.-E.; Maranville, B. B.; Fischer, P.; Hellman, F.

    2016-06-01

    Magnetic properties of thin Co/Pt multilayers have been investigated in order to study the dependence of magnetization M , uniaxial anisotropy Ku, and Curie temperature TC on the multilayer thickness, composition, and structure. A comparison between epitaxial submonolayer multilayers and epitaxial fcc CoPt3 alloy films with large perpendicular magnetic anisotropy (PMA) attributed to growth-induced Co clustering reveals significant differences in the temperature dependence of magnetization M (T ) , despite the presence of thin planar Co platelets in both cases. Even the thinnest discontinuous multilayered structure shows a Langevin-like M (T ) , while the alloy films with PMA show a broadened and enhanced M (T ) indicating a distribution of environments, including monolayer Co platelets separated by only 1-2 layers of Pt. These differences have been reproduced in Monte Carlo simulations, and are shown to be due to different distributions of Co-Co and Co-Pt nearest neighbors. The relatively uniform Co-Co coordination of even a discontinuous rough multilayer produces a Langevin-like M (T ) , whereas the broader distribution associated with platelets in the PMA films results in a nearly linear T dependence of M .

  18. Ground state and constrained domain walls in Gd /Fe multilayers

    NASA Astrophysics Data System (ADS)

    Van Aken, Bas B.; Prieto, José L.; Mathur, Neil D.

    2005-03-01

    The magnetic ground state of antiferromagnetically coupled Gd /Fe multilayers and the evolution of in-plane domain walls is modeled with micromagnetics. The twisted state is characterized by a rapid decrease of the interface angle with increasing magnetic field. We found that for certain ratios MFe:MGd, the twisted state is already present at low fields. However, the magnetic ground state is not only determined by the ratio MFe:MGd but also by the thicknesses of the layers; that is by the total moments of the layer. The dependence of the magnetic ground state is explained by the amount of overlap of the domain walls at the interface. Thicker layers suppress the Fe-aligned and the Gd-aligned state in favor of the twisted state. On the other hand, ultrathin layers exclude the twisted state, since wider domain walls cannot form in these ultrathin layers.

  19. Interfacial effects in Fe/4d TM multilayers (abstract)

    SciTech Connect

    Tomaz, M.A.; Antel, W.J., Jr.; Harp, G.R.; OBrien, W.L.

    1997-04-01

    We have studied Fe/TM multilayers (TM=Mo, Nb, Ru, Rh, Pd) using x-ray magnetic circular dischroism, magneto-optical Kerr effect, and x-ray diffraction. A diverse set of magnetic behaviors emerges from the analysis. We focus on the behavior which can be attributed to the existence of a physical interface between different chemical species. In particular, we have measured an enhanced Fe moment in some cases (TM=Ru, Mo, Rh, Pd) yet not in others (TM=Nb). These results will be discussed, including the relative orbital and spin moments and the effects of alloying at the interface. The measured induced moments in the TM layer will be presented as well where applicable. {copyright} {ital 1997 American Institute of Physics.}

  20. Interphase Strain Gradients in Multilayered Steel Composite from Microdiffraction

    NASA Astrophysics Data System (ADS)

    Barabash, Rozaliya I.; Barabash, Oleg M.; Ojima, Mayumi; Yu, Zhenzhen; Inoue, Junya; Nambu, Shoichi; Koseki, Toshihiko; Xu, Ruqing; Feng, Zhili

    2014-01-01

    Multilayered steel composites consisting of alternating martensite and austenite layers and exhibiting a combination of high strength and ductility were successfully fabricated. To understand the microplasticity mechanisms responsible for such exceptional mechanical behavior, 3D X-ray microscopy with a submicron beam size was employed to probe the stress/strain distribution within the top two layers during incremental tensile loading. The 3D depth-dependent strain gradients were monitored in situ near the martensite/austenite interfaces as a function of the load level. It was observed that the strain gradients redistributed during loading. Specifically, large compressive strains developed in the top martensite layer transverse to the loading direction, while small tensile strains were found across the layer interface into the underneath austenite layer.

  1. Creation of artificial skyrmions and antiskyrmions by anisotropy engineering.

    PubMed

    Zhang, S; Petford-Long, A K; Phatak, C

    2016-01-01

    Topologically non-trivial spin textures form a fundamental paradigm in solid-state physics and present unique opportunities to explore exciting phenomena such as the topological Hall effect. One such texture is a skyrmion, in which the spins can be mapped to point in all directions wrapping around a sphere. Understanding the formation of these spin textures, and their energetic stability, is crucial in order to control their behavior. In this work, we report on controlling the perpendicular anisotropy of continuous Co/Pt multilayer films with ion irradiation to form unique spin configurations of artificial skyrmions and antiskyrmions that are stabilized by their demagnetization energy. We elucidate their behavior using aberration-corrected Lorentz transmission electron microscopy. We also discuss the energetic stability of these structures studied through in-situ magnetizing experiments performed at room temperature, combined with micromagnetic simulations that successfully reproduce the spin textures and behavior. This research offers new opportunities towards creation of artificial skyrmion or antiskyrmion lattices that can be used to investigate not only fundamental properties of their interaction with electron currents but also technological applications such as artificial magnonic crystals. PMID:27507196

  2. Creation of artificial skyrmions and antiskyrmions by anisotropy engineering

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Petford-Long, A. K.; Phatak, C.

    2016-08-01

    Topologically non-trivial spin textures form a fundamental paradigm in solid-state physics and present unique opportunities to explore exciting phenomena such as the topological Hall effect. One such texture is a skyrmion, in which the spins can be mapped to point in all directions wrapping around a sphere. Understanding the formation of these spin textures, and their energetic stability, is crucial in order to control their behavior. In this work, we report on controlling the perpendicular anisotropy of continuous Co/Pt multilayer films with ion irradiation to form unique spin configurations of artificial skyrmions and antiskyrmions that are stabilized by their demagnetization energy. We elucidate their behavior using aberration-corrected Lorentz transmission electron microscopy. We also discuss the energetic stability of these structures studied through in-situ magnetizing experiments performed at room temperature, combined with micromagnetic simulations that successfully reproduce the spin textures and behavior. This research offers new opportunities towards creation of artificial skyrmion or antiskyrmion lattices that can be used to investigate not only fundamental properties of their interaction with electron currents but also technological applications such as artificial magnonic crystals.

  3. Creation of artificial skyrmions and antiskyrmions by anisotropy engineering

    PubMed Central

    Zhang, S.; Petford-Long, A. K.; Phatak, C.

    2016-01-01

    Topologically non-trivial spin textures form a fundamental paradigm in solid-state physics and present unique opportunities to explore exciting phenomena such as the topological Hall effect. One such texture is a skyrmion, in which the spins can be mapped to point in all directions wrapping around a sphere. Understanding the formation of these spin textures, and their energetic stability, is crucial in order to control their behavior. In this work, we report on controlling the perpendicular anisotropy of continuous Co/Pt multilayer films with ion irradiation to form unique spin configurations of artificial skyrmions and antiskyrmions that are stabilized by their demagnetization energy. We elucidate their behavior using aberration-corrected Lorentz transmission electron microscopy. We also discuss the energetic stability of these structures studied through in-situ magnetizing experiments performed at room temperature, combined with micromagnetic simulations that successfully reproduce the spin textures and behavior. This research offers new opportunities towards creation of artificial skyrmion or antiskyrmion lattices that can be used to investigate not only fundamental properties of their interaction with electron currents but also technological applications such as artificial magnonic crystals. PMID:27507196

  4. On anisotropy function in crystal growth simulations using Lattice Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Younsi, Amina; Cartalade, Alain

    2016-11-01

    In this paper, we present the ability of the Lattice Boltzmann (LB) equation, usually applied to simulate fluid flows, to simulate various shapes of crystals. Crystal growth is modeled with a phase-field model for a pure substance, numerically solved with a LB method in 2D and 3D. This study focuses on the anisotropy function that is responsible for the anisotropic surface tension between the solid phase and the liquid phase. The anisotropy function involves the unit normal vectors of the interface, defined by gradients of phase-field. Those gradients have to be consistent with the underlying lattice of the LB method in order to avoid unwanted effects of numerical anisotropy. Isotropy of the solution is obtained when the directional derivatives method, specific for each lattice, is applied for computing the gradient terms. With the central finite differences method, the phase-field does not match with its rotation and the solution is not any more isotropic. Next, the method is applied to simulate simultaneous growth of several crystals, each of them being defined by its own anisotropy function. Finally, various shapes of 3D crystals are simulated with standard and nonstandard anisotropy functions which favor growth in <100>-, <110>- and <111>-directions.

  5. Magneto-optical Kerr Effect Analysis of Magnetic Anisotropy in Soft Ferromagnets

    NASA Astrophysics Data System (ADS)

    Eggers, Tatiana M.

    The continued progress of modern information technology relies on understanding the infuence of magnetic anisotropy on magnetic thin fims. In this work, two sources of magnetic anisotropy are examined in two different soft ferromagnets: a uniaxial anisotropy induced during the fabrication of Ni80Fe 20 and exchange anisotropy, or exchange bias, which occurs at the interface of Ni77Fe14Cu5Mo4/Fe50Mn 50 bilayer. A home-built Magneto-optical Kerr effect magnetometer is used to measure the magnetic response of the soft ferromagnetic films and details of its construction are also discussed. A simple model of uniaxial anisotropy is described, then applied, to the uniaxial NiFe film and deviations from the model are critically analyzed. The exchange bias and coercive fields of NiFeCuMo/FeMn are reported for the first time and studied as a function of buffer layer material. The influence of the different buffer layer materials on the magnetization response of the bilayer is explained from a structural standpoint.

  6. Basic research needs and opportunities on interfaces in solar materials

    SciTech Connect

    Czanderna, A. W.; Gottschall, R. J.

    1981-04-01

    The workshop on research needs and recommended research programs on interfaces in solar energy conversion devices was held June 30-July 3, 1980. The papers deal mainly with solid-solid, solid-liquid, and solid-gas interfaces, sometimes involving multilayer solid-solid interfaces. They deal mainly with instrumental techniques of studying these interfaces so they can be optimized, so they can be fabricated with quality control and so changes with time can be forecast. The latter is required because a long lifetime (20 yrs is suggested) is necessary for economic reasons. Fifteen papers have been entered individually into EDB and ERA. (LTN)

  7. Optical component interface scatter characterization by selective polarization extinction.

    PubMed

    Georges, Gaëlle; Deumié, Carole; Amra, Claude

    2011-03-20

    A procedure for the selective extinction of the scattered light based on "null ellipsometry" [R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977)] is presented. The technique allows scattering measurement from individual layers of a multilayer component by extinguishing the scattered light from the other layer interfaces. The technique is easily applicable to multilayer components with nearly identical surface profiles at every interface and little significant bulk scattering. Analysis is provided to determine the conditions required to extinguish the light from the excluded interfaces isolating the scattered light from the desired interface. An analysis of sensitivity of the extinction conditions to experimental parameters and to layer optical thickness is also provided. Experimental data collected using the technique are compared with measurements made using a white-light optical surface profilometry.

  8. Multi-layer seal for electrochemical devices

    DOEpatents

    Chou, Yeong-Shyung [Richland, WA; Meinhardt, Kerry D [Kennewick, WA; Stevenson, Jeffry W [Richland, WA

    2010-11-16

    Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.

  9. Multi-layer seal for electrochemical devices

    DOEpatents

    Chou, Yeong-Shyung [Richland, WA; Meinhardt, Kerry D [Kennewick, WA; Stevenson, Jeffry W [Richland, WA

    2010-09-14

    Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.

  10. Study on x-ray multilayer monochromator

    NASA Astrophysics Data System (ADS)

    Zhou, Changxin; Li, Mao-Lian; Miao, Tongqun; Lu, Xilin; Ma, Lie; An, Qingxiang; Liang, Guoli

    1993-01-01

    At present natural crystal TLAP used usually is replaced by artificial coated with multilayer for X-ray fluorescence (XRF) spectral analysis. X-ray multilayer monochromator can be used for analyzing light elements such as F, Na, Mg etc. Diffraction intensity of the multilayer component is 5 times higher than that of TLAP. This paper describes operating principle, Fabrication method and technique of the X-ray multilayer monochromator and the components are used Model 3080 E sequential X-ray fluorescence spectroscope. The multilayer diffraction components are fabricated by means of coating alternatively multilayer with high and low electron density elements on single crystal silicon substrate by vapor deposition or sputtering. Gap between multilayers is d to be equivalent to lattice constant of crystal. Sample is excited to emit fluorescence with multi-wavelength when X-ray beam illuminates surface of the sample. Fluorescence emitted passes through collimator and incidences on multilayer diffraction component to be diffracted into various wavelengths which are corresponding some angles. Contents of elements in samples can be detected according to Bragg diffraction principle. Key technologies fabricating multilayer diffraction components are how to polish super-smooth surface substrate and to control d value of thickness of multilayer. Roughness of Si(111) substrate polished by us is up to 0.1 nm RMS. Gap d 2.5 nm between multilayers. It is very difficult to realize specification as mentioned above. Thicknesses of layers are controlled by quartz piezoelectric crystal and their monitor controlling errors is about 0.34 nm RMS. Ion sputtering device is adopted to improve surface finish and construct specialty of the layers. Finally we have developed multilayer diffraction components which have been used to analyze F, Na and Mg etc. by X-ray fluorescence spectroscope.

  11. Matrix methods applied to acoustic waves in multilayers

    NASA Astrophysics Data System (ADS)

    Adler, Eric L.

    1990-11-01

    Matrix methods for analyzing the electroacoustic characteristics of anisotropic piezoelectric multilayers are described. The conceptual usefulness of the methods is demonstrated in a tutorial fashion by examples showing how formal statements of propagation, transduction, and boundary-value problems in complicated acoustic layered geometries such as those which occur in surface acoustic wave (SAW) devices, in multicomponent laminates, and in bulk-wave composite transducers are simplified. The formulation given reduces the electroacoustic equations to a set of first-order matrix differential equations, one for each layer, in the variables that must be continuous across interfaces. The solution to these equations is a transfer matrix that maps the variables from one layer face to the other. Interface boundary conditions for a planar multilayer are automatically satisfied by multiplying the individual transfer matrices in the appropriate order, thus reducing the problem to just having to impose boundary conditions appropriate to the remaining two surfaces. The computational advantages of the matrix method result from the fact that the problem rank is independent of the number of layers, and from the availability of personal computer software that makes interactive numerical experimentation with complex layered structures practical.

  12. Magnetic anisotropy due to the Casimir effect

    SciTech Connect

    Metalidis, G.; Bruno, P.

    2010-02-15

    We consider the Casimir interaction between a ferromagnetic and a nonmagnetic mirror and show how the Casimir effect gives rise to a magnetic anisotropy in the ferromagnetic layer. The anisotropy is out of plane if the nonmagnetic plate is optically isotropic. If the nonmagnetic plate shows a uniaxial optical anisotropy (with optical axis in the plate plane), we find an in-plane magnetic anisotropy. In both cases, the energetically most favorable magnetization orientation is given by the competition between polar, longitudinal, and transverse contributions to the magneto-optical Kerr effect and will therefore depend on the interplate distance. Numerical results will be presented for a magnetic plate made out of Fe and nonmagnetic plates of Au (optically isotropic), quartz, calcite, and barium titanate (all uniaxially birefringent).

  13. SOLARMAX/Electron Pitch Angle Anisotropy Distributions

    NASA Technical Reports Server (NTRS)

    McKenzie, David L.; Anderson, Phillip C.

    2002-01-01

    This final research report summarizes the scientific work performed by The Aerospace Corporation on SOLARMAX/Electron Pitch Angle Anisotropy Distributions. The period of performance was from June 1, 2000 to December 31, 2001.

  14. Cellulose and the Control of Growth Anisotropy

    SciTech Connect

    Tobias I. Baskin

    2004-04-01

    The authors research aims to understand morphogenesis, focusing on growth anisotropy, a process that is crucial to make organs with specific and heritable shapes. For the award, the specific aims were to test hypotheses concerning how growth anisotropy is controlled by cell wall structure, particularly by the synthesis and alignment of cellulose microfibrils, the predominant mechanical element in the cell wall. This research has involved characterizing the basic physiology of anisotropic expansion, including measuring it at high resolution; and second, characterizing the relationship between growth anisotropy, and cellulose microfibrils. Important in this relationship and also to the control of anisotropic expansion are structures just inside the plasma membrane called cortical microtubules, and the research has also investigated their contribution to controlling anisotropy and microfibril alignment. In addition to primary experimental papers, I have also developed improved methods relating to these objectives as well as written relevant reviews. Major accomplishments in each area will now be described.

  15. Interlayer exchange coupling between layers with perpendicular and easy-plane magnetic anisotropies

    NASA Astrophysics Data System (ADS)

    Fallarino, Lorenzo; Sluka, Volker; Kardasz, Bartek; Pinarbasi, Mustafa; Berger, Andreas; Kent, Andrew D.

    2016-08-01

    Interlayer exchange coupling between layers with perpendicular and easy-plane magnetic anisotropies separated by a non-magnetic spacer is studied using ferromagnetic resonance. The samples consist of a Co/Ni multilayer with perpendicular magnetic anisotropy and a CoFeB layer with easy-plane anisotropy separated by a variable thickness Ru layer. At a fixed frequency, we show that there is an avoided crossing of layer ferromagnetic resonance modes providing direct evidence for interlayer coupling. The mode dispersions for different Ru thicknesses are fit to a Heisenberg-type model to determine the interlayer exchange coupling strength and layer properties. The resulting interlayer exchange coupling varies continuously from antiferromagnetic to ferromagnetic as a function of the Ru interlayer thickness. These results show that the magnetic layer single domain ground state consists of magnetizations that can be significantly canted with respect to the layer planes and the canting can be tuned by varying the Ru thickness and the layer magnetic characteristics, a capability of interest for applications in spin-transfer torque devices.

  16. Anisotropy of the electron g factor in quantum wells based on cubic semiconductors

    SciTech Connect

    Alekseev, P. S.

    2013-09-15

    A new mechanism for the spin splitting of electron levels in asymmetric quantum wells based on GaAs-type semiconductors relative to rotations of the magnetic field in the well plane is suggested. It is demonstrated that the anisotropy of the Zeeman splitting (linear in a magnetic field) arises in asymmetric quantum wells due to the interface spin-orbit terms in the electron Hamiltonian. In the case of symmetric quantum wells, it is shown that the anisotropy of the Zeeman splitting is a cubic function of the magnitude of the magnetic field, depends on the direction of the magnetic field in the interface plane as the fourth-order harmonic, and is governed by the spin-orbit term of the fourth order by the kinematic momentum in the electron Hamiltonian of a bulk semiconductor.

  17. Characterization of neutron induced damage effect in several types of metallic multilayer nanocomposites based on Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Chen, Feida; Tang, Xiaobin; Yang, Yahui; Huang, Hai; Liu, Jian; Chen, Da

    2015-09-01

    Metallic multilayer nanocomposites are known to have excellent interface self-healing performance when it comes to repairing irradiation damages, thus showing promise as structural materials for advanced nuclear power systems. The present study investigated the neutron irradiation displacement damage rate, spectra of the primary knocked-on atoms (PKAs) produced in the cascade collision, and the H/He ratio in four kinds of metallic multilayer nanocomposites (Cu/Nb, Ag/V, Fe/W, and Ti/Ta) versus neutrons' energy. Results suggest that the three neutron induced damage effects in all multilayer systems increased with the increasing of incident neutrons' energy. For fission reactor environment (1 MeV), multilayer's displacement damage rate is 5-10 × 1022 dpa/(n/cm2) and the mean PKAs energy is about 16 keV, without any noteworthy H/He produced. Fe/W multilayer seems very suitable among these four systems. For fusion reactor environment (14 MeV), the dominant damage effect varies in different multilayer systems. Fe/W multilayer has the lowest displacement damage under the same neutron flux but its gaseous transmutation production is the highest. Considering the displacement damage and transmutation, the irradiation resistance of Ag/V and Ti/Ta systems seems much greater than those of the other two.

  18. Velocity anisotropy in tidally limited star clusters

    NASA Astrophysics Data System (ADS)

    Tiongco, Maria A.; Vesperini, Enrico; Varri, Anna Lisa

    2016-02-01

    We explore the long-term evolution of the anisotropy in the velocity space of star clusters starting with different structural and kinematical properties. We show that the evolution of the radial anisotropy strength and its radial variation within a cluster contain distinct imprints of the cluster initial structural properties, dynamical history, and of the external tidal field of its host galaxy. Initially isotropic and compact clusters with small initial values of the ratio of the half-mass to Jacobi radius, rh/rJ, develop a strong radial anisotropy during their long-term dynamical evolution. Many clusters, if formed with small values of rh/rJ, should now be characterized by a significant radial anisotropy increasing with the distance from the cluster centre, reaching its maximum at a distance between 0.2 rJ and 0.4 rJ, and then becoming more isotropic or mildly tangentially anisotropic in the outermost regions. A similar radial variation of the anisotropy can also result from an early violent relaxation phase. In both cases, as a cluster continues its evolution and loses mass, the anisotropy eventually starts to decrease and the system evolves towards an isotropic velocity distribution. However, in order to completely erase the strong anisotropy developed by these compact systems during their evolution, they must be in the advanced stages of their evolution and lose a large fraction of their initial mass. Clusters that are initially isotropic and characterized by larger initial values of rh/rJ, on the other hand, never develop a significant radial anisotropy.

  19. Structural Transitions at Ionic Liquid Interfaces.

    PubMed

    Rotenberg, Benjamin; Salanne, Mathieu

    2015-12-17

    Recent advances in experimental and computational techniques have allowed for an accurate description of the adsorption of ionic liquids on metallic electrodes. It is now well-established that they adopt a multilayered structure and that the composition of the layers changes with the potential of the electrode. In some cases, potential-driven ordering transitions in the first adsorbed layer have been observed in experiments probing the interface on the molecular scale or by molecular simulations. This perspective gives an overview of the current understanding of such transitions and of their potential impact on the physical and (electro)chemical processes at the interface. In particular, peaks in the differential capacitance, slow dynamics at the interface, and changes in the reactivity have been reported in electrochemical studies. Interfaces between ionic liquids and metallic electrodes are also highly relevant for their friction properties, the voltage-dependence of which opens the way to exciting applications. PMID:26722704

  20. Design of grazing-incidence multilayer supermirrors for hard-x-ray reflectors.

    PubMed

    Joensen, K D; Voutov, P; Szentgyorgyi, A; Roll, J; Gorenstein, P; Høghøj, P; Christensen, F E

    1995-12-01

    Extremely broadband grazing-incidence multilayers for hard-x-ray reflection can be obtained by a gradual change of the layer thicknesses down through the structure. Existing approaches for designing similar neutron optics, called supermirrors, are shown to provide respectable performance when applied to x-ray multilayers. However, none of these approaches consider the effects of imperfect layer interfaces and absorption in the overlying layers. Adaptations of neutron designs that take these effects into account are presented, and a thorough analysis of two specific applications (a single hard-x-ray reflector and a hard-x-ray telescope) shows that an improved performance can be obtained. A multilayer whose bilayer thicknesses are given by a power law expression is found to provide the best solution; however, it is only slightly better than some of the adapted neutron designs.

  1. Stabilization of solid-supported phospholipid multilayer against water by gramicidin addition.

    PubMed

    Han, Won Bae; Kim, Yongdeok; An, Hyeun Hwan; Kim, Hee-Soo; Yoon, Chong Seung

    2014-03-20

    It was demonstrated that hydrophobicity of solid supported planar dipalmitoyl phosphatidylcholine (DPPC) phospholipid multilayer can be greatly increased by incorporating a transmembrane protein, gramicidin, into the DPPC membrane. The contact angle of deionized water droplet on the gramicidin-modified DPPC membrane increased from 0° (complete wetting) without gramicidin to 55° after adding 15 mol % gramicidin. The increased hydrophobicity of the gramicidin-modified DPPC membrane allowed the membrane to remain stable at the air/water interface as well as underwater. The Au nanoparticles deposited on the gramicidin-modified DPPC membrane reproduced the characteristic surface plasmon resonance peak after being kept underwater or in phosphate-buffered saline solution for 5 days, attesting to the membrane stability in an aqueous environment. The enhanced underwater stability of the lipid multilayer substantially broadens the potential application of the lipid multilayer which includes biosensing, enzymatic fuel cell, surface enhanced Raman spectroscopy substrate.

  2. Acoustic Anisotropy Measurement and Interpretation in Deviated Wells

    NASA Astrophysics Data System (ADS)

    Tang, X.; Patterson, D.

    2005-05-01

    A current trend in petroleum exploration and production is that more and more deviated/horizontal wells are drilled, especially in deep water reservoirs like Gulf of Mexico. The issue of anisotropy is particularly important for deviated wells penetrating the soft sedimentary rocks of the reservoirs. In sedimentary formations, shales can be highly anisotropic due to mineral alignment, and sands can also be anisotropic due to their sensitivity to formation stresses. Many acoustic anisotropy measurements using cross-dipole tools have been made in deviated wells. However, interpreting the acoustic anisotropy data can be quite complicated, especially in the presence of strong anisotropy. In a deviated well, the well trajectory is neither perpendicular to, nor parallel with, the formation bedding planes. Consequently, the measured anisotropy is not the true formation anisotropy, but an apparent anisotropy at a given well deviation. Besides, several anisotropy parameters (e.g., Thomsen parameters) are needed to characterize the formation anisotropy while the cross-dipole measures only one of them. Nevertheless, the variation of the anisotropy and its associated azimuth relative to the well trajectory contains the information about the anisotropy parameters. By analyzing the anisotropy data in conjunction with the well configuration, we can characterize the relationship among the anisotropy parameters. By combining the data with lithology, we can also distinguish stress-induced anisotropy from other sources of anisotropy. The result is an improved characterization of formation anisotropy and its geological environment.

  3. ANISOTROPY DETERMINATIONS IN EXCHANGE SPRING MAGNETS.

    SciTech Connect

    LEWIS,L.H.; HARLAND,C.L.

    2002-08-18

    Ferromagnetic nanocomposites, or ''exchange spring'' magnets, possess a nanoscaled microstructure that allows intergrain magnetic exchange forces to couple the constituent grains and alter the system's effective magnetic anisotropies. While the effects of the anisotropy alterations are clearly seen in macroscopic magnetic measurement, it is extremely difficult to determine the detailed effects of the system's exchange coupling, such as the interphase exchange length, the inherent domain wall widths or the effective anisotropies of the system. Clarification of these materials parameters may be obtained from the ''micromagnetic'' phenomenological model, where the assumption of magnetic reversal initiating in the magnetically-soft regions of the exchange-spring maqet is explicitly included. This approach differs from that typically applied by other researchers and allows a quantitative estimate of the effective anisotropies of an exchange spring system. Hysteresis loops measured on well-characterized nanocomposite alloys based on the composition Nd{sub 2}Fe{sub 14}B + {alpha}-Fe at temperatures above the spin reorientation temperature were analyzed within the framework of the micromagnetic phenomenological model. Preliminary results indicate that the effective anisotropy constant in the material is intermediate to that of bulk {alpha}-Fe and bulk Nd{sub 2}Fe{sub 14}B and increases with decreasing temperature. These results strongly support the idea that magnetic reversal in nanocomposite systems initiates in the lower-anisotropy regions of the system, and that the soft-phase regions become exchange-hardened by virtue of their proximity to the magnetically-hard regions.

  4. Theoretical study on wettability of graphene/water interface

    NASA Astrophysics Data System (ADS)

    Ishimoto, Takayoshi

    2015-12-01

    We analyzed the interaction energy between water clusters and graphene model compound by using density functional theory. The mono- and multi-layer interaction of water on graphene models are regarded as the low and high contact angles, which correspond to the wettability of interface, respectively. We clearly found the size dependency of water molecules on graphene model compound for the wettability.

  5. Perpendicular Resistance and Magnetoresistance of Cobalt/silver Multilayers

    NASA Astrophysics Data System (ADS)

    Lee, Shang-Fan

    The resistances of certain synthetic multilayer thin films composed of alternating layers of ferromagnetic (F) and non-magnetic (N) metals decrease significantly with increasing magnetic field--called Giant Magnetoresistance (MR). Both the F layers and the F/N interfaces serve as spin-dependent scattering sources of conduction elections, and a fundamental question involves the relative importance of bulk and interface scattering in giant MR. The MR is usually measured with the Current flowing In the layer Planes (CIP geometry). The resulting sample resistance (~eq0.01Omega ) needs only standard measuring techniques, but it is difficult to separate the bulk and interface contributions to the MR, because the currents are mixed by transmission of electrons across the interfaces. In contrast, the MR measured with the Current flowing Perpendicular to the layer Planes (CPP geometry) is harder to measure because a thin film has a small resistance (~eq 10^{-7}Omega) in the CPP geometry if it is not specially shaped with modern lithography techniques. But the separation of bulk from interface scattering should be more straightforward, since the current passes through the individual layers and interfaces sequentially. In this dissertation we show how to simultaneously measure the CPP and CIP MRs at 4K. We studied Co/Ag and Co/AgSn multilayers. The samples were made in a dc magnetron sputter deposition system with a computer controlled substrate positioning and masking apparatus. A SQUID based circuit with a high precision current comparator is used for the CPP MR measurements. We find that CPP MR > CIP MR. We also show how to analyze our CPP MR data. For Ag thicknesses 6nm and larger, and Co thicknesses 20nm and smaller, we find that a two channel series resistance model gives a good description of most of our CPP data. In this model, the spin up and spin down electrons are taken to carry current separately. A fit with no adjustable parameters showed that the resulting

  6. Performance of the Microwave Anisotropy Probe AST-201 Star Trackers

    NASA Technical Reports Server (NTRS)

    Ward, David K.; vanBezooijen, Roelof; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe (MAP) was launched to create a full-sky map of the cosmic microwave background. MAP incorporates two modified Lockheed Martin AST-201 (Autonomous Star Tracker) star trackers. The AST-201 employs an eight element radiation hardened lens assembly which is used to focus an image on a charge coupled device (CCD). The CCD image is then processed by a star identification algorithm which outputs a three-axis attitude. A CCD-shift algorithm called Time Delayed Integration (TDI) was also included in each star tracker. In order to provide some radiation effect filtering during MAP's three to five phasing loop passes through the Van Allen radiation belts, a simple pixel filtering scheme was implemented, rather than using a more complex, but more robust windowing algorithm. The trackers also include a fiber optic data interface. This paper details the ground testing that was accomplished on the MAP trackers.

  7. Orientational ordering and anisotropy in model polar clusters

    NASA Astrophysics Data System (ADS)

    Lu, Dongsheng; Singer, Sherwin J.

    1995-08-01

    Model polar clusters of Stockmayer (Lennard-Jones + point dipole) particles exhibit spontaneous breaking of orientational symmetry in a wide range of temperatures. The form of the orientational anisotropy best accommodates the tendency of polar particles to form chains of dipoles in head-to-tail arrangement. It persists through temperatures characteristic of solid-liquid coexistence for dipole strength μ*2=μ2/ɛσ3=1, and to about twice the range of solid-liquid coexistence temperatures for μ*2=3. These studies extend earlier work [H. B. Lavender, K. A. Iyer, and S. J. Singer, J. Chem. Phys. 101, 7856 (1994)] in which orientational order parameters for clusters are defined and the global orientational order was observed for much smaller clusters. In this work we also study orientational order with respect to the cluster liquid-vapor interface and find significant disagreement with density functional theory predictions.

  8. Magnetic anisotropy in pyroxene single crystals

    NASA Astrophysics Data System (ADS)

    Biedermann, Andrea Regina; Hirt, Ann Marie; Pettke, Thomas; Bender Koch, Christian

    2014-05-01

    Anisotropy of magnetic susceptibility (AMS) is often used as a proxy for the mineral fabric in a rock. This requires understanding the intrinsic magnetic anisotropy of the minerals that define the rock fabric. With their prismatic habit, pyroxenes describe the texture in mafic and ultramafic rocks. Magnetic anisotropy in pyroxene crystals often arises from both paramagnetic and ferromagnetic components that can be separated from high-field magnetic data. The paramagnetic component is related to the silicate lattice, whereas the ferromagnetic part arises from the magnetic properties of ferromagnetic inclusions that were further characterized by isothermal remanent magnetization measurements. These inclusions often have needle-like habit and are located on the well-defined cleavage planes within the pyroxenes. We characterize low-field and high-field AMS in pyroxene single crystals of diverse orthopyroxene and clinopyroxene minerals. In addition to the magnetic measurements, we analyzed their chemical composition and Fe2+/Fe3+ distribution. The anisotropy arising from inclusions in some augite crystals displays consistent principal susceptibility directions, whereas no preferred orientation is found in other crystals. The principal susceptibilities of the paramagnetic component can be related to the crystal lattice, with the intermediate susceptibility parallel to the b-axis, and minimum and maximum in the a-c-plane for diopside, augite and spodumene. The degree of anisotropy increases with iron concentration. Aegirine shows a different behavior; not only is its maximum susceptibility parallel to the c-axis, but the anisotropy degree is also lower in relation to its iron concentration. This possibly relates to a predominance of Fe3+ in aegirine, whereas Fe2+ is dominant in the other minerals. In orthopyroxene, the maximum susceptibility is parallel to the c-axis and the minimum is parallel to b. The degree of anisotropy increases linearly with iron concentration. The

  9. Hyperbolic interfaces.

    PubMed

    Giomi, Luca

    2012-09-28

    Fluid interfaces, such as soap films, liquid droplets, or lipid membranes, are known to give rise to several special geometries, whose complexity and beauty continue to fascinate us, as observers of the natural world, and challenge us as scientists. Here I show that a special class of surfaces of constant negative Gaussian curvature can be obtained in fluid interfaces equipped with an orientational ordered phase. These arise in various soft and biological materials, such as nematic liquid crystals, cytoskeletal assemblies, or hexatic colloidal suspensions. The purely hyperbolic morphology originates from the competition between surface tension, that reduces the area of the interface at the expense of increasing its Gaussian curvature, and the orientational elasticity of the ordered phase, that in turn suffers for the distortion induced by the underlying curvature. PMID:23030106

  10. Hyperbolic Interfaces

    NASA Astrophysics Data System (ADS)

    Giomi, Luca

    2012-09-01

    Fluid interfaces, such as soap films, liquid droplets, or lipid membranes, are known to give rise to several special geometries, whose complexity and beauty continue to fascinate us, as observers of the natural world, and challenge us as scientists. Here I show that a special class of surfaces of constant negative Gaussian curvature can be obtained in fluid interfaces equipped with an orientational ordered phase. These arise in various soft and biological materials, such as nematic liquid crystals, cytoskeletal assemblies, or hexatic colloidal suspensions. The purely hyperbolic morphology originates from the competition between surface tension, that reduces the area of the interface at the expense of increasing its Gaussian curvature, and the orientational elasticity of the ordered phase, that in turn suffers for the distortion induced by the underlying curvature.

  11. Induced spin-polarization of EuS at room temperature in Ni/EuS multilayers

    SciTech Connect

    Poulopoulos, P.; Goschew, A.; Straub, A.; Fumagalli, P.; Kapaklis, V.; Wolff, M.; Delimitis, A.; Wilhelm, F.; Rogalev, A.; Pappas, S. D.

    2014-03-17

    Ni/EuS multilayers with excellent multilayer sequencing are deposited via e-beam evaporation on the native oxide of Si(100) wafers at 4 × 10{sup −9} millibars. The samples have very small surface and interface roughness and show sharp interfaces. Ni layers are nanocrystalline 4–8 nm thick and EuS layers are 2–4 nm thick and are either amorphous or nanocrystalline. Unlike for Co/EuS multilayers, all Eu ions are in divalent (ferromagnetic) state. We show a direct antiferromagnetic coupling between EuS and Ni layers. At room temperature, the EuS layers are spin-polarized due to the proximity of Ni. Therefore, Ni/EuS is a candidate for room-temperature spintronics applications.

  12. Multilayer Laue Lens Sequence Compiler

    2005-10-01

    For the growth of a new kind of x-ray focusing optic called a multilayer Laue lens, a device is constructed in which each layer of alernating high-z and low-z is placed in the appropriate place according to the Fresnel zone plate law. This requires that each layer have a different layer thickness. Because each layer is grown using DC magnetron sputter deposition, these layer thicknesses are not only dictated by the zone plate law, butmore » are adjusted to account for various drifting in the growth chamber due to target erosion, etc.« less

  13. Multilayer Laue Lens Sequence Compiler

    SciTech Connect

    Conley, Roy; Liu, Chian

    2005-10-01

    For the growth of a new kind of x-ray focusing optic called a multilayer Laue lens, a device is constructed in which each layer of alernating high-z and low-z is placed in the appropriate place according to the Fresnel zone plate law. This requires that each layer have a different layer thickness. Because each layer is grown using DC magnetron sputter deposition, these layer thicknesses are not only dictated by the zone plate law, but are adjusted to account for various drifting in the growth chamber due to target erosion, etc.

  14. Impacts of Annealing Conditions on the Flat Band Voltage of Alternate La2O3/Al2O3 Multilayer Stack Structures.

    PubMed

    Feng, Xing-Yao; Liu, Hong-Xia; Wang, Xing; Zhao, Lu; Fei, Chen-Xi; Liu, He-Lei

    2016-12-01

    The mechanism of flat band voltage (VFB) shift for alternate La2O3/Al2O3 multilayer stack structures in different annealing condition is investigated. The samples were prepared for alternate multilayer structures, which were annealed in different conditions. The capacitance-voltage (C-V) measuring results indicate that the VFB of samples shift negatively for thinner bottom Al2O3 layer, increasing annealing temperature or longer annealing duration. Simultaneously, the diffusion of high-k material to interfaces in different multilayer structures and annealing conditions is observed by X-ray photoelectron spectroscopy (XPS). Based on the dipole theory, a correlation between the diffusion effect of La towards bottom Al2O3/Si interface and VFB shift is found. Without changing the dielectric constant k of films, VFB shift can be manipulated by controlling the single-layer cycles and annealing conditions of alternate high-k multilayer stack. PMID:27620192

  15. Impacts of Annealing Conditions on the Flat Band Voltage of Alternate La2O3/Al2O3 Multilayer Stack Structures.

    PubMed

    Feng, Xing-Yao; Liu, Hong-Xia; Wang, Xing; Zhao, Lu; Fei, Chen-Xi; Liu, He-Lei

    2016-12-01

    The mechanism of flat band voltage (VFB) shift for alternate La2O3/Al2O3 multilayer stack structures in different annealing condition is investigated. The samples were prepared for alternate multilayer structures, which were annealed in different conditions. The capacitance-voltage (C-V) measuring results indicate that the VFB of samples shift negatively for thinner bottom Al2O3 layer, increasing annealing temperature or longer annealing duration. Simultaneously, the diffusion of high-k material to interfaces in different multilayer structures and annealing conditions is observed by X-ray photoelectron spectroscopy (XPS). Based on the dipole theory, a correlation between the diffusion effect of La towards bottom Al2O3/Si interface and VFB shift is found. Without changing the dielectric constant k of films, VFB shift can be manipulated by controlling the single-layer cycles and annealing conditions of alternate high-k multilayer stack.

  16. Impacts of Annealing Conditions on the Flat Band Voltage of Alternate La2O3/Al2O3 Multilayer Stack Structures

    NASA Astrophysics Data System (ADS)

    Feng, Xing-Yao; Liu, Hong-Xia; Wang, Xing; Zhao, Lu; Fei, Chen-Xi; Liu, He-Lei

    2016-09-01

    The mechanism of flat band voltage (VFB) shift for alternate La2O3/Al2O3 multilayer stack structures in different annealing condition is investigated. The samples were prepared for alternate multilayer structures, which were annealed in different conditions. The capacitance-voltage (C-V) measuring results indicate that the VFB of samples shift negatively for thinner bottom Al2O3 layer, increasing annealing temperature or longer annealing duration. Simultaneously, the diffusion of high- k material to interfaces in different multilayer structures and annealing conditions is observed by X-ray photoelectron spectroscopy (XPS). Based on the dipole theory, a correlation between the diffusion effect of La towards bottom Al2O3/Si interface and VFB shift is found. Without changing the dielectric constant k of films, VFB shift can be manipulated by controlling the single-layer cycles and annealing conditions of alternate high- k multilayer stack.

  17. Surface viscoelastic properties of floating polyelectrolyte multilayers films: a capillary wave study.

    PubMed

    Safouane, M; Miller, R; Möhwald, H

    2005-12-01

    A capillary wave technique was used to study the viscoelastic properties of floating polyelectrolyte multilayers of (PSS/PAH)(n) at the air-water interface. Oppositely charged polyelectrolyte layers were adsorbed onto two different Langmuir monolayers, either the lipid dimethyldioctadecylammonium bromide (DODAB) or the block copolymer poly(styrene-b-sodium acrylate) (PS-b-PAA). The results allow to propose a schematic representation of the multilayers in three zones: Zone I as a precursor, representing the adhesion between the Langmuir monolayer and the bulk polyelectrolyte multilayer. Zone II forms a bulk or core zone of the multilayer. Zone III as an outer zone in direct contact with the aqueous phase. The results show an increase of the elasticity after the formation of four polyelectrolyte layers accompanied by an apparent negative viscosity. This behaviour was interpreted as a translation of elasticity dominance from zone I to zone II. The Young modulus of seven layers was in the same order of magnitude as observed for planar polyelectrolyte multilayer films.

  18. Multilayer optics and applications in EUV and x-ray region

    NASA Astrophysics Data System (ADS)

    Zhu, Jingtao; Huang, Qiushi; Li, Haochuan; Tu, Yuchun; Song, Zhuqing; Pan, Lei; Jiang, Li; Wang, Xiaoqiang; Wang, Fengli; Zhang, Zhong; Wang, Zhanshan; Chen, Lingyan

    2010-10-01

    For extreme ultraviolet (EUV) radiation and soft X-rays, real part of the refractive indices of all materials are very close to unity, coupled with high absorption, makes the realization of high-reflective mirrors (just like visible and infrared light) impossible. Multilayer is a nano-structure, alternating of low- and high-Z materials in a periodic way, which can greatly enhance the reflectivity via the interference of light reflected from interfaces, like crystal optics. Reflective mirrors, polarization elements, monochromators, etc, can be made basing on multi-layer structures. Zone plate is a powerful tool to focus the light beam for EUV and soft X-ray into nanometer scale, which is produced by electron beam etching method. However, for hard X-ray, the zone plate will has smaller width of outmost layer and larger aspect ratio, which is difficult to realize. Multilayer Laue lens (MLL) is a promising method to overcome these limitations. MLL is a novel linear zone plate which is produced by depositing the depth-graded multilayer, according to the zone plate law reversely, on flat substrate and then slicing and polishing it to an ideal aspect ratio. In this paper, some recent development of multilayer optics for EUV and X-ray regions in IPOE will be introduced.

  19. Multilayer optics and applications in EUV and x-ray region

    NASA Astrophysics Data System (ADS)

    Zhu, Jingtao; Huang, Qiushi; Li, Haochuan; Tu, Yuchun; Song, Zhuqing; Pan, Lei; Jiang, Li; Wang, Xiaoqiang; Wang, Fengli; Zhang, Zhong; Wang, Zhanshan; Chen, Lingyan

    2011-02-01

    For extreme ultraviolet (EUV) radiation and soft X-rays, real part of the refractive indices of all materials are very close to unity, coupled with high absorption, makes the realization of high-reflective mirrors (just like visible and infrared light) impossible. Multilayer is a nano-structure, alternating of low- and high-Z materials in a periodic way, which can greatly enhance the reflectivity via the interference of light reflected from interfaces, like crystal optics. Reflective mirrors, polarization elements, monochromators, etc, can be made basing on multi-layer structures. Zone plate is a powerful tool to focus the light beam for EUV and soft X-ray into nanometer scale, which is produced by electron beam etching method. However, for hard X-ray, the zone plate will has smaller width of outmost layer and larger aspect ratio, which is difficult to realize. Multilayer Laue lens (MLL) is a promising method to overcome these limitations. MLL is a novel linear zone plate which is produced by depositing the depth-graded multilayer, according to the zone plate law reversely, on flat substrate and then slicing and polishing it to an ideal aspect ratio. In this paper, some recent development of multilayer optics for EUV and X-ray regions in IPOE will be introduced.

  20. Steps, kinetic anisotropy, and long-wavelength instabilities in directional solidification.

    PubMed

    Grimm, H P; Davis, S H; McFadden, G B

    1999-05-01

    We consider the effect of anisotropic interface kinetics on long-wavelength instabilities during the directional solidification of a binary alloy having a vicinal interface. Linear theory predicts that a planar solidification front is stabilized under the effect of anisotropy as long as the segregation coefficient is small enough, whereas a novel instability appears at high rates of solidification. Furthermore, the neutral stability curve, indicating the values of the principal control parameter (here the morphological number) for which the growth rate of a sinusoidal perturbation of a given wavelength changes its sign, is shown to have up to three branches, two of them combining to form an isola for certain values of the control parameters. We identify conditions for which linear stability theory predicts the instability of the planar interface to long-wavelength traveling waves. A number of distinguished limits provide evolution equations that describe the resulting dynamical behavior of the crystal-melt interface and generalize previous work by Sivashinsky, Brattkus, and Davis and Riley and Davis. Bifurcation analysis and numerical computations for the derived evolution equations show that the anisotropy is able to promote the tendency to supercritical bifurcation, and also leads to the development of strongly preferred interface orientations for finite-amplitude deformations.

  1. Influence of crystallographic orientation and anisotropy on Kapitza conductance via classical molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Duda, J. C.; Kimmer, C. J.; Soffa, W. A.; Zhou, X. W.; Jones, R. E.; Hopkins, P. E.

    2012-11-01

    We investigate the influence of crystallographic orientation and anisotropy on local phonon density of states, phonon transmissivity, and Kapitza conductance at interfaces between Lennard-Jones solids via classical molecular dynamics simulations. In agreement with prior works, we find that the Kapitza conductance at an interface between two face-centered cubic materials is independent of crystallographic orientation. On the other hand, at an interface between a face-centered cubic material and a tetragonal material, the Kapitza conductance is strongly dependent on the relative orientation of the tetragonal material, albeit this dependence is subject to the overlap in vibrational spectra of the cubic and tetragonal materials. Furthermore, we show that interactions between acoustic phonons in the cubic material and optical phonons in the tetragonal material can lead to the interface exhibiting greater "thermal anisotropy" as compared to that of the constituent materials. Finally, it is noted that the relative match or mismatch between the Debye temperatures of two materials comprising an interface does not serve an accurate gauge of the efficiency of interfacial thermal transport when those materials have different crystal structures.

  2. A novel approach to analyze the optical second harmonic generation anisotropy at surfaces employing interference techniques. Example: the Au(110) electrode

    NASA Astrophysics Data System (ADS)

    Pettinger, Bruno; Bilger, Christoph

    1998-04-01

    Different sets of susceptibility coefficients a, b, c and d can reproduce the same second harmonic generation (SHG) anisotropy curve, but only one set corresponds to the electronic and geometric structure of the sample surface. A new approach, interference SHG anisotropy, is presented which is generally suitable to determine this physically relevant set of coefficients. It is applied to the study of the SHG anisotropy of the Au(110) electrode, which could not be analyzed hitherto. The distinct SHG response upon Br - adsorption indicates corresponding changes of the structural and electronic state of this interface.

  3. Magnetic anisotropy in Ta/CoFeB/MgO investigated by x-ray magnetic circular dichroism and first-principles calculation

    SciTech Connect

    Kanai, Shun; Tsujikawa, Masahito; Shirai, Masafumi; Miura, Yoshio; Matsukura, Fumihiro Ohno, Hideo

    2014-12-01

    We study the spin and orbital magnetic moments in Ta/Co{sub 0.4}Fe{sub 0.4}B{sub 0.2}/MgO by x-ray magnetic circular dichroism measurements as well as first-principles calculations, in order to clarify the origin of the perpendicular magnetic anisotropy. Both experimental and theoretical results show that orbital magnetic moment of Fe is more anisotropic than that of Co with respect to the magnetization direction. The anisotropy is larger for thinner CoFeB, indicating that Fe atoms at the interface with MgO contribute more than Co to the observed perpendicular magnetic anisotropy.

  4. Weak Elastic Anisotropy in a Cracked Rock

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Wong, T.

    2006-12-01

    Crack and textural fabrics have significant control over the development of mechanical anisotropy in a rock. Bedding in sedimentary rocks, cleavage in slates, preferred orientation of anisotropic minerals and anisotropic distribution of microcracks can all contribute to elastic anisotropy. Using Kachanov's (1992, 1993) formulation we analyzed the effects of an axisymmetric system of microcracks on seismic anisotropy. The elastic behavior of such a cracked rock is transversely isotropic, and its seismic properties can be characterized by the three Thomsen parameters. In this study we calculated the parameters ɛ, δ and γ under dry and saturated conditions. We derived analytic expressions for the model proposed by Sayers & Kachanov (1995), which assumes that the contribution from the fourth rank crack density tensor is negligible. This model predicts that the elliptic anisotropy condition ɛ=δ is obeyed in a dry rock. Guided by microstructural observations we adopted a two-parameter axisymmetric distribution to characterize the crack density, which predicts that δ and γ in a fluid saturated rock are related to ɛ in a nonlinear manner. All three Thomsen parameters are sensitively dependent on the crack density difference. While our model shows basic agreement with some of the laboratory data on seismic anisotropy in saturated shale, there are discrepancies which suggest that the petrofabric associated with preferred orientation of clay minerals and elastic anisotropy of the rock matrix may have considerable influence which should not be neglected in model. Preliminary comparison with borehole log data suggests rock physics tests which may be useful for interpreting the shear wave anisotropy observations.

  5. Multi-Layer E-Textile Circuits

    NASA Technical Reports Server (NTRS)

    Dunne, Lucy E.; Bibeau, Kaila; Mulligan, Lucie; Frith, Ashton; Simon, Cory

    2012-01-01

    Stitched e-textile circuits facilitate wearable, flexible, comfortable wearable technology. However, while stitched methods of e-textile circuits are common, multi-layer circuit creation remains a challenge. Here, we present methods of stitched multi-layer circuit creation using accessible tools and techniques.

  6. Method of making coherent multilayer crystals

    DOEpatents

    Schuller, Ivan K.; Falco, Charles M.

    1984-01-01

    A new material consisting of a coherent multilayer crystal of two or more elements where each layer is composed of a single element. Each layer may vary in thickness from about 2 .ANG. to 2500 .ANG.. The multilayer crystals are prepared by sputter deposition under conditions which slow the sputtered atoms to near substrate temperatures before they contact the substrate.

  7. Coherent multilayer crystals and method of making

    DOEpatents

    Schuller, I.K.; Falco, C.M.

    1980-10-30

    A new material is described consisting of a coherent multilayer crystal of two or more elements where each layer is composed of a single element. Each layer may vary in thickness from about 2 A to 2500 A. The multilayer crystals are prepared by sputter deposition under conditions which slow the sputtered atoms to near substrate temperatures before they contact the substrate.

  8. Minimized thermal conductivity in highly stable thermal barrier W/ZrO2 multilayers

    NASA Astrophysics Data System (ADS)

    Döring, Florian; Major, Anna; Eberl, Christian; Krebs, Hans-Ulrich

    2016-10-01

    Nanoscale thin-film multilayer materials are of great research interest since their large number of interfaces can strongly hinder phonon propagation and lead to a minimized thermal conductivity. When such materials provide a sufficiently small thermal conductivity and feature in addition also a high thermal stability, they would be possible candidates for high-temperature applications such as thermal barrier coatings. For this article, we have used pulsed laser deposition in order to fabricate thin multilayers out of the thermal barrier material ZrO2 in combination with W, which has both a high melting point and high density. Layer thicknesses were designed such that bulk thermal conductivity is governed by the low value of ZrO2, while ultrathin W blocking layers provide a high number of interfaces. By this phonon scattering, reflection and shortening of mean free path lead to a significant reduction in overall thermal conductivity even below the already low value of ZrO2. In addition to this, X-ray reflectivity measurements were taken showing strong Bragg peaks even after annealing such multilayers at 1300 K. Those results identify W/ZrO2 multilayers as desired thermally stable, low-conductivity materials.

  9. Damage from periorbital ageing to the multilayered structures and resilience of the skin in Chinese population

    PubMed Central

    Liao, Chuh-Kai; Tsai, Feng-Chou; Fong, Tsorng-Harn; Hu, Chien-Ming; Wei, Po-Li; Su, Ching-Hua

    2013-01-01

    Ageing dynamically disrupts the multilayered supporting components of the skin that are held together by cell adhesion molecules (CAMs). Skin specimens from 33 female Chinese patients undergoing lower blepharoplasty were divided into three age groups and examined by haematoxylin and eosin (H&E) staining, immunohistochemistry (IHC) and Elastica-van Gieson (EVG) stains, western blotting, surface electron microscopy (SEM) and biomechanical tension analysis. The SEM density (skin surface topology) showed a negative linear relationship with age. The triangular pattern of the skin surface in the younger group gradually broke down into quadrangular and irregular patterns in the older group. Collagens and elastic fibres in the dermis showed anisotropy and decreased density in the older groups compared with the younger group, especially in the papillary dermis. Anisotropy means that physical properties differ according to the direction of measurement. E-cadherin and integrin αv (whose functions are to bind epidermal and dermal elements respectively) increased and decreased, respectively, in the oldest group. Skin resilience decreased significantly in this group under repetitive stress. In conclusion, a loss of skin surface textures, integrin αv expressions, epidermal-dermal connections and dermal compactness led to the multilayered structure of the skin becoming separated. This in turn decreased resilience during ageing. These findings may therefore explain why aged skins cannot tolerate repetitive facial expressions, and why this action produces further dynamic wrinkles. PMID:23441675

  10. Figure correction of multilayer coated optics

    DOEpatents

    Chapman; Henry N. , Taylor; John S.

    2010-02-16

    A process is provided for producing near-perfect optical surfaces, for EUV and soft-x-ray optics. The method involves polishing or otherwise figuring the multilayer coating that has been deposited on an optical substrate, in order to correct for errors in the figure of the substrate and coating. A method such as ion-beam milling is used to remove material from the multilayer coating by an amount that varies in a specified way across the substrate. The phase of the EUV light that is reflected from the multilayer will be affected by the amount of multilayer material removed, but this effect will be reduced by a factor of 1-n as compared with height variations of the substrate, where n is the average refractive index of the multilayer.

  11. Multilayer Nanoporous Graphene Membranes for Water Desalination.

    PubMed

    Cohen-Tanugi, David; Lin, Li-Chiang; Grossman, Jeffrey C

    2016-02-10

    While single-layer nanoporous graphene (NPG) has shown promise as a reverse osmosis (RO) desalination membrane, multilayer graphene membranes can be synthesized more economically than the single-layer material. In this work, we build upon the knowledge gained to date toward single-layer graphene to explore how multilayer NPG might serve as a RO membrane in water desalination using classical molecular dynamic simulations. We show that, while multilayer NPG exhibits similarly promising desalination properties to single-layer membranes, their separation performance can be designed by manipulating various configurational variables in the multilayer case. This work establishes an atomic-level understanding of the effects of additional NPG layers, layer separation, and pore alignment on desalination performance, providing useful guidelines for the design of multilayer NPG membranes.

  12. Multilayer Nanoporous Graphene Membranes for Water Desalination.

    PubMed

    Cohen-Tanugi, David; Lin, Li-Chiang; Grossman, Jeffrey C

    2016-02-10

    While single-layer nanoporous graphene (NPG) has shown promise as a reverse osmosis (RO) desalination membrane, multilayer graphene membranes can be synthesized more economically than the single-layer material. In this work, we build upon the knowledge gained to date toward single-layer graphene to explore how multilayer NPG might serve as a RO membrane in water desalination using classical molecular dynamic simulations. We show that, while multilayer NPG exhibits similarly promising desalination properties to single-layer membranes, their separation performance can be designed by manipulating various configurational variables in the multilayer case. This work establishes an atomic-level understanding of the effects of additional NPG layers, layer separation, and pore alignment on desalination performance, providing useful guidelines for the design of multilayer NPG membranes. PMID:26806020

  13. Characterizing Seismic Anisotropy across the Peruvian Flat-Slab Subduction Zone: Shear Wave Splitting from PULSE

    NASA Astrophysics Data System (ADS)

    Eakin, C. M.; Long, M. D.; Beck, S. L.; Wagner, L. S.; Tavera, H.

    2013-12-01

    Although 10% of subduction zones worldwide today exhibit shallow or flat subduction, we are yet to fully understand how and why these slabs go flat. An excellent study location for such a problem is in Peru, where the largest region of flat-subduction currently exists, extending ~1500 km in length (from 3 °S to 15 °S) and ~300 km in width. Across this region we investigate the pattern of seismic anisotropy, an indicator for past and/or ongoing deformation in the upper mantle. To achieve this we conduct shear wave splitting analyzes at 40 broadband stations from the PULSE project (PerU Lithosphere and Slab Experiment). These stations were deployed for 2+ years across the southern half of the Peruvian flat-slab region. We present detailed shear wave splitting results for deep and teleseismic events, making use of a wide variety of available phases that sample the upper mantle directly beneath the stations (such as SKS, SKKS, PKS, sSKS, SKiKS, ScS and local/direct S). We analyze the variability of our results with respect to initial polarizations and ray paths, as well as spatial variability between stations as the underlying slab morphology changes. Preliminary results show predominately NW-SE fast polarizations (trench oblique to sub-parallel) over the flat-slab region east of Lima. These results are consistent with observations of more complex multi-layered anisotropy beneath a nearby permanent station (NNA). Further south, towards the transition to steeper subduction, the splitting pattern becomes increasingly dominated by null measurements. Over to the east however, beyond Cuzco, where the mantle wedge might begin to play a role, we record fast polarizations quasi-parallel to the local slab contours. We carefully evaluate the different possible source locations within the subduction zone for this seismic anisotropy and observe increasing evidence for distinct anisotropy within the slab as well as the sub-slab mantle.

  14. High reflectance Cr/V multilayer with B(4)C barrier layer for water window wavelength region.

    PubMed

    Huang, Qiushi; Fei, Jiani; Liu, Yang; Li, Pin; Wen, Mingwu; Xie, Chun; Jonnard, Philippe; Giglia, Angelo; Zhang, Zhong; Wang, Kun; Wang, Zhanshan

    2016-02-15

    To develop the high reflectance mirror for the short wavelength range of the water window region (λ=2.42-2.73  nm), Cr/V multilayers with B4C barrier layers are studied. The grazing incidence x-ray reflectometry results show that the multilayer interface widths are significantly reduced down to 0.21-0.31 nm, after the introduction of 0.1 nm B4C barrier layers at both interfaces. The [B4C/Cr/B4C/V] multilayer with a large number of bilayers of N=300 maintains the same small interface widths while the surface roughness is only 0.2 nm. According to the transmission electron microscope measurements, the layer structure improvement with barrier layers can be attributed to the suppression of the crystallization of vanadium inside the structure. Using the interface engineered multilayer, a maximum soft x-ray reflectance of 24.3% is achieved at λ=2.441  nm, under the grazing incidence of 42°. PMID:26872167

  15. Polyelectrolyte Multilayers in Tissue Engineering

    PubMed Central

    Detzel, Christopher J.; Larkin, Adam L.

    2011-01-01

    The layer-by-layer assembly of sequentially adsorbed, alternating polyelectrolytes has become increasingly important over the past two decades. The ease and versatility in assembling polyelectrolyte multilayers (PEMs) has resulted in numerous wide ranging applications of these materials. More recently, PEMs are being used in biological applications ranging from biomaterials, tissue engineering, regenerative medicine, and drug delivery. The ability to manipulate the chemical, physical, surface, and topographical properties of these multilayer architectures by simply changing the pH, ionic strength, thickness, and postassembly modifications render them highly suitable to probe the effects of external stimuli on cellular responsiveness. In the field of regenerative medicine, the ability to sequester growth factors and to tether peptides to PEMs has been exploited to direct the lineage of progenitor cells and to subsequently maintain a desired phenotype. Additional novel applications include the use of PEMs in the assembly of three-dimensional layered architectures and as coatings for individual cells to deliver tunable payloads of drugs or bioactive molecules. This review focuses on literature related to the modulation of chemical and physical properties of PEMs for tissue engineering applications and recent research efforts in maintaining and directing cellular phenotype in stem cell differentiation. PMID:21210759

  16. Impact on multilayered composite plates

    NASA Technical Reports Server (NTRS)

    Kim, B. S.; Moon, F. C.

    1977-01-01

    Stress wave propagation in a multilayer composite plate due to impact was examined by means of the anisotropic elasticity theory. The plate was modelled as a number of identical anisotropic layers and the approximate plate theory of Mindlin was then applied to each layer to obtain a set of difference-differential equations of motion. Dispersion relations for harmonic waves and correction factors were found. The governing equations were reduced to difference equations via integral transforms. With given impact boundary conditions these equations were solved for an arbitrary number of layers in the plate and the transient propagation of waves was calculated by means of a Fast Fourier Transform algorithm. The multilayered plate problem was extended to examine the effect of damping layers present between two elastic layers. A reduction of the interlaminar normal stress was significant when the thickness of damping layer was increased but the effect was mostly due to the softness of the damping layer. Finally, the problem of a composite plate with a crack on the interlaminar boundary was formulated.

  17. ANISOTROPY FACTORS FOR A 252Cf SOURCE

    SciTech Connect

    Veinot, K. G.; Bogard, James S

    2009-01-01

    A new 252Cf source has been procured for use at the Dosimetry Applications and Research (DOSAR) facility at the Oak Ridge National Laboratory (ORNL). This source was encapsulated by the Californium Facility at ORNL, however, the encapsulation differs from previous designs designated as SR-Cf-100. The new encapsulation, designated SR-Cf-3000, has a similar cylindrical radius to the previous generation, but is 1.6 cm longer. Since the encapsulation geometries differ the amount of internal scattering of neutrons will also differ leading to changes in anisotropy factors between the two designs. Additionally, the different encapsulations will affect the absorbed dose and dose equivalent delivered per neutron emitted by the source since both the quantity and energy distribution of the emitted neutrons will vary with irradiation angle. This work presents the fluence anisotropy factors for the SR-Cf-3000 series encapsulation as well as absorbed dose and dose equivalent values calculated for various angles of irradiation. The fluence anisotropy factors vary from a maximum of 1.037 to a minimum of 0.641 for irradiation angles perpendicular and parallel to the source axis, respectively. Anisotropy in absorbed dose varied from a maximum of 1.033 to a minimum of 0.676 while anisotropy of dose equivalent varied from 1.035 to 0.657.

  18. Anisotropy in solar wind plasma turbulence.

    PubMed

    Oughton, S; Matthaeus, W H; Wan, M; Osman, K T

    2015-05-13

    A review of spectral anisotropy and variance anisotropy for solar wind fluctuations is given, with the discussion covering inertial range and dissipation range scales. For the inertial range, theory, simulations and observations are more or less in accord, in that fluctuation energy is found to be primarily in modes with quasi-perpendicular wavevectors (relative to a suitably defined mean magnetic field), and also that most of the fluctuation energy is in the vector components transverse to the mean field. Energy transfer in the parallel direction and the energy levels in the parallel components are both relatively weak. In the dissipation range, observations indicate that variance anisotropy tends to decrease towards isotropic levels as the electron gyroradius is approached; spectral anisotropy results are mixed. Evidence for and against wave interpretations and turbulence interpretations of these features will be discussed. We also present new simulation results concerning evolution of variance anisotropy for different classes of initial conditions, each with typical background solar wind parameters. PMID:25848082

  19. Anisotropy-graded media: Magnetic characterization

    NASA Astrophysics Data System (ADS)

    Lu, Zhihong; Visscher, P. B.; Harrell, J. W.

    2008-04-01

    The concept of exchange-coupled media (each grain having a soft end whose exchange field helps to switch a hard end) has recently been generalized to allow a continuous gradation of anisotropy from soft to hard. We have recently shown that the "figure of merit" for such media ξ =2Eb/μ0MsHsw, proportional to the ratio of the energy barrier Eb to the switching field Hsw, cannot exceed 4 for any anisotropy profile K(r ). In the thin-wall limit (exchange constant A ≪KL2), it can be made to approach 4 by choosing a graded anisotropy K(z )∝z2. In developing such a medium, it is important to be able to experimentally probe the anisotropy distribution. In this paper, we study one method for doing this, the hard axis loop. In the absence of exchange, the second derivative of this loop gives the distribution directly; we show that even in the presence of realistic exchange, this remains approximately true and the anisotropy distribution can be extracted from the hard axis loop.

  20. Preferred orientation and elastic anisotropy in shales.

    SciTech Connect

    Lonardelli, I.; Wenk, H.-R.; Ren, Y.; Univ. of California at Berkeley

    2007-03-01

    Anisotropy in shales is becoming an important issue in exploration and reservoir geophysics. In this study, the crystallographic preferred orientation of clay platelets that contributes to elastic anisotropy was determined quantitatively by hard monochromatic X-ray synchrotron diffraction in two different shales from drillholes off the coast of Nigeria. To analyze complicated diffraction images with five different phases (illite/smectite, kaolinite, quartz, siderite, feldspar) and many overlapping peaks, we applied a methodology based on the crystallographic Rietveld method. The goal was to describe the intrinsic physical properties of the sample (phase composition, crystallographic preferred orientation, crystal structure, and microstructure) and compute macroscopic elastic properties by averaging single crystal properties over the orientation distribution for each phase. Our results show that elastic anisotropy resulting from crystallographic preferred orientation of the clay particles can be determined quantitatively. This provides a possible way to compare measured seismic anisotropy and texture-derived anisotropy and to estimate the contribution of the low-aspect ratio pores aligned with bedding.

  1. Anisotropy in solar wind plasma turbulence

    PubMed Central

    Oughton, S.; Matthaeus, W. H.; Wan, M.; Osman, K. T.

    2015-01-01

    A review of spectral anisotropy and variance anisotropy for solar wind fluctuations is given, with the discussion covering inertial range and dissipation range scales. For the inertial range, theory, simulations and observations are more or less in accord, in that fluctuation energy is found to be primarily in modes with quasi-perpendicular wavevectors (relative to a suitably defined mean magnetic field), and also that most of the fluctuation energy is in the vector components transverse to the mean field. Energy transfer in the parallel direction and the energy levels in the parallel components are both relatively weak. In the dissipation range, observations indicate that variance anisotropy tends to decrease towards isotropic levels as the electron gyroradius is approached; spectral anisotropy results are mixed. Evidence for and against wave interpretations and turbulence interpretations of these features will be discussed. We also present new simulation results concerning evolution of variance anisotropy for different classes of initial conditions, each with typical background solar wind parameters. PMID:25848082

  2. The expected anisotropy in solid inflation

    SciTech Connect

    Bartolo, Nicola; Ricciardone, Angelo; Peloso, Marco; Unal, Caner E-mail: peloso@physics.umn.edu E-mail: unal@physics.umn.edu

    2014-11-01

    Solid inflation is an effective field theory of inflation in which isotropy and homogeneity are accomplished via a specific combination of anisotropic sources (three scalar fields that individually break isotropy). This results in specific observational signatures that are not found in standard models of inflation: a non-trivial angular dependence for the squeezed bispectrum, and a possibly long period of anisotropic inflation (to drive inflation, the ''solid'' must be very insensitive to any deformation, and thus background anisotropies are very slowly erased). In this paper we compute the expected level of statistical anisotropy in the power spectrum of the curvature perturbations of this model. To do so, we account for the classical background values of the three scalar fields that are generated on large (superhorizon) scales during inflation via a random walk sum, as the perturbation modes leave the horizon. Such an anisotropy is unavoidably generated, even starting from perfectly isotropic classical initial conditions. The expected level of anisotropy is related to the duration of inflation and to the amplitude of the squeezed bispectrum. If this amplitude is close to its current observational limit (so that one of the most interesting predictions of the model can be observed in the near future), we find that a level of statistical anisotropy F{sup 2} gives frozen and scale invariant vector perturbations on superhorizon scales.

  3. Role of dynamic effects in the characterization of multilayers by means of power spectral density.

    PubMed

    Haase, Anton; Soltwisch, Victor; Laubis, Christian; Scholze, Frank

    2014-05-10

    In this paper, we present measurements of angle- and wavelength-resolved diffuse scattering of EUV radiation on a Mo/Si multilayer. Our sample is optimized for high reflectivity at 13.5 nm wavelength near-normal incidence. We present a rigorous theoretical analysis of the off-specular EUV scattering on the basis of the distorted-wave Born approximation. We prove that the determination of the interface roughness power spectral density (PSD) is only possible by considering geometry-dependent and dynamic contributions. The scattering from multilayer mirrors leads to an intrinsic enhancement in off-specular intensity independent of roughness properties. The thickness oscillations in the scattering intensity (Kiessig fringes) are found to cause additional dynamic enhancement in analogy to Bragg-like peaks for grazing incidence geometry. Considering these effects, the interface PSD is consistently determined. PMID:24922021

  4. Dielectric Effects at Organic/Inorganic Interfaces in Nanostructured Devices.

    PubMed

    Sherkar, Tejas S; Koster, L Jan Anton

    2015-06-10

    Dielectric interfaces are important in organic electronic devices, as they dominate charge generation and recombination dynamics and set the tone for efficiency of the device. In a charge separation scenario across the interface, we calculate the binding energy of a charge carrier for variations in dielectric mismatch (i.e., the ratio of the dielectric constant of materials forming the interface), interface shape and size, and dielectric anisotropy. We find that dielectric mismatch results in binding of the charge carrier to the interface with energies on the order of several kT. For the variation in interface shape and size, epitomized by the device morphology, we show that the assumption of a planar interface overestimates the attractive potential. The change in the interface curvature affects the binding energy of the charge carrier by order of kT. Anisotropy is shown to affect critically the electric field along the principal axis, while the binding energy of the charge is altered by more than 5 kT. We are able to give an upper limit on the change in the binding energy for the variations in the above interfacial factors. These limits can serve as guidelines for optimization, interface engineering, and design of high efficiency organic electronic devices.

  5. Anisotropy of the cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Silk, J.

    1981-01-01

    Theoretical predictions of the angular anisotropy in the cosmic microwave background radiation on both small and large angular scales are presented, and the effect of massive neutrinos on both the background radiation anisotropy and on the galaxy correlation function over very large scales is reviewed. Current observations show that the quadrupole anisotropy provides the greatest constraint on theory, and the values for the gravitational potential fluctuations indicate that small amplitude but sufficiently large-scale density fluctuations, both at the present epoch and on the surface of last scattering, can produce significant large angular scale variations in the radiation temperature. Most importantly, it is proposed that the quadrupole moment is most simply and elegantly interpreted in terms of the density fluctuations on very large scales whose presence is inferred from the requirement that an initial fluctuation spectrum is required in order for structure to develop.

  6. Measuring anisotropies in the cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Lisanti, Mariangela; Safdi, Benjamin R.; Tully, Christopher G.

    2014-10-01

    Neutrino capture on tritium has emerged as a promising method for detecting the cosmic neutrino background (C ν B ). We show that relic neutrinos are captured most readily when their spin vectors are antialigned with the polarization axis of the tritium nuclei and when they approach along the direction of polarization. As a result, C ν B observatories may measure anisotropies in the cosmic neutrino velocity and spin distributions by polarizing the tritium targets. A small dipole anisotropy in the C ν B is expected due to the peculiar velocity of the lab frame with respect to the cosmic frame and due to late-time gravitational effects. The PTOLEMY experiment, a tritium observatory currently under construction, should observe a nearly isotropic background. This would serve as a strong test of the cosmological origin of a potential signal. The polarized-target measurements may also constrain nonstandard neutrino interactions that would induce larger anisotropies and help discriminate between Majorana versus Dirac neutrinos.

  7. Large Friction Anisotropy of a Polydiacetylene Monolayer

    SciTech Connect

    Burns, A.R.; Carpick, R.W.; Sasaki, D.Y.

    1999-05-11

    Friction force microscopy measurements of a polydiacetylene monolayer film reveal a 300% friction anisotropy that is correlated with the film structure. The film consists of a monolayer of the red form of N-(2-ethanol)- 10,12 pentacosadiynamide, prepared on a Langmuir trough and deposited on a mica substrate. As confirmed by atomic force microscopy and fluorescence microscopy, the monolayer consists of domains of linearly oriented conjugated backbones with pendant hydrocarbon side chains above and below the backbones. Maximum friction occurs when the sliding direction is perpendicular to the backbone. We propose that the backbones impose anisotropic packing of the hydrocarbon side chains which leads to the observed friction anisotropy. Friction anisotropy is therefore a sensitive, optically-independent indicator of polymer backbone direction and monolayer structural properties.

  8. Radial anisotropy ambient noise tomography of volcanoes

    NASA Astrophysics Data System (ADS)

    Mordret, Aurélien; Rivet, Diane; Shapiro, Nikolai; Jaxybulatov, Kairly; Landès, Matthieu; Koulakov, Ivan; Sens-Schönfelder, Christoph

    2016-04-01

    The use of ambient seismic noise allows us to perform surface-wave tomography of targets which could hardly be imaged by other means. The frequencies involved (~ 0.5 - 20 s), somewhere in between active seismic and regular teleseismic frequency band, make possible the high resolution imaging of intermediate-size targets like volcanic edifices. Moreover, the joint inversion of Rayleigh and Love waves dispersion curves extracted from noise correlations allows us to invert for crustal radial anisotropy. We present here the two first studies of radial anisotropy on volcanoes by showing results from Lake Toba Caldera, a super-volcano in Indonesia, and from Piton de la Fournaise volcano, a hot-spot effusive volcano on the Réunion Island (Indian Ocean). We will see how radial anisotropy can be used to infer the main fabric within a magmatic system and, consequently, its dominant type of intrusion.

  9. Anisotropy in Gravity and Holography

    NASA Astrophysics Data System (ADS)

    Melby-Thompson, Charles Milton

    In this thesis, we examine the dynamical structure of Hořava-Lifshitz gravity, and investigate its relationship with holography for anisotropic systems. Hořava-Lifshitz gravity refers to a broad class of gravitational models that incorporate anisotropy at a fundamental level. The idea behind Hořava-Lifshitz gravity is to utilize ideas from the theory of dynamical critical phenomena into gravity to produce a theory of dynamical spacetime that is power-counting renormalizable, and is thus a candidate renormalizable quantum field theory of gravity. One of the most distinctive features of Hořava-Lifshitz gravity is that its group of symmetries consists not of the diffeomorphisms of spacetime, but instead of the group of diffeomorphisms that preserve a given foliation by spatial slices. As a result of having a smaller group of symmetries, HL gravity naturally has one more propagating degree of freedom than general relativity. The extra mode presents two possible difficulties with the theory, one relating to consistency, and the second to its viability as a phenomenological model. (1) It may destabilize the theory. (2) Phenomenologically, there are severe constraints on the existence of an extra propagating graviton polarization, as well as strong experimental constraints on the value of a parameter appearing in the dispersion relation of the extra mode. In the first part of this dissertation we show that the extra mode can be eliminated by introducing a new local symmetry which steps in and takes the place of general covariance in the anisotropic context. While the identification of the appropriate symmetry is quite subtle in the full non-linear theory, once the dust settles, the resulting theory has a spectrum which matches that of general relativity in the infrared. This goes a good way toward answering the question of how close Hořava-Lifshitz gravity can come to reproducing general relativity in the infrared regime. In the second part of the thesis we pursue

  10. Hydraulic Conductivity Anisotropy of Heterogeneous Unsaturated Soils

    NASA Astrophysics Data System (ADS)

    Sun, Dongmin; Zhu, Jianting

    2010-05-01

    The effects of saturation degree (or capillary pressure) on hydraulic conductivity anisotropy in unsaturated soils have not been fully understood. This study developed an approach based on a conceptualization of combining the neural network based pedo-transfer function (PTF) results with the thin layer concept to explore the capillary pressure-dependent anisotropy in relation to soil texture and soil bulk density. The main objective is to examine how anisotropy characteristics are related to the relationships between hydraulic parameters and the basic soil attributes such as texture and bulk density. The hydraulic parameters are correlated with the texture and bulk density based on the pedo-transfer function (PTF) results. It is demonstrated that non-monotonic behavior of the unsaturated soil anisotropy in relation to the capillary pressure is only observed when the saturated hydraulic conductivity and the shape parameter are both related to the mean particle diameter. When only one hydraulic parameter is related to the grain diameter or when both are not related to the same attribute simultaneously, the unsaturated soil anisotropy increases monotonically with the increasing capillary pressure head. Therefore, it is suggested that this behavior is mainly due to the coupled dependence of the layer saturated hydraulic conductivities and the shape factors on the texture and bulk density. The correlation between the soil grain diameter and bulk density decreases the anisotropy effects of the unsaturated layered soils. The study illustrates that the inter-relationships of soil texture, bulk density, and hydraulic properties may cause vastly different characteristics of anisotropic unsaturated soils.

  11. Co/Ti-substituted M-type hexagonal ferrites for high-frequency multilayer inductors

    NASA Astrophysics Data System (ADS)

    Bierlich, S.; Reimann, T.; Bartsch, H.; Töpfer, J.

    2015-06-01

    The sintering behavior, microstructure and permeability of Co/Ti-substituted M-type hexagonal ferrites BaCoxTixFe12-2xO19 (1.0≤x≤1.4) was studied for applications as multilayer inductors in the high-frequency range up to 2 GHz. Single-phase M-type ferrites were obtained after calcination at 1000 °C. The saturation magnetization and coercivity decrease with x and hysteresis measurements illustrate a gradual transition of the anisotropy from uniaxial to planar. Addition of 5 wt% of a BBSZ glass allows densification at 900 °C through liquid-phase sintering. The permeability of samples sintered at 900 °C increases with the Co/Ti substitution and reaches its maximum of μ‧=16 at 1 MHz at x=1.3 with a resonance frequency fr≥1 GHz. Monolithic ferrite multilayer inductors were fabricated with printed Ag coil patterns by co-firing at 900 °C. It is shown that Co/Ti-substituted hexagonal M-type ferrite is an excellent material for the high-frequency multilayer inductors.

  12. Soft Interfaces

    NASA Astrophysics Data System (ADS)

    Gilles de Gennes, Pierre; Edwards, Introduction By Sam

    1997-04-01

    Paul Adrien Maurice Dirac, one of the greatest physicists of the twentieth century, died in 1984. Dirac's college, St. John's of Cambridge, generously endowed annual lectures to be held at Cambridge University in his memory. This volume contains a much expanded version of the 1994 Dirac Lecture by Nobel Laureate Pierre Gilles de Gennes. The book presents an impressionistic tour of the physics of soft interfaces. Full of insight and interesting asides, it not only provides an accessible introduction to this topic, but also lays down many markers and signposts that will be of interest to researchers in physics or chemistry. Features discussions of wetting and dewetting, the dynamics of different types of interface and adhesion and polymer/polymer welding.

  13. Temperature anisotropy and beam type whistler instabilities

    NASA Technical Reports Server (NTRS)

    Hashimoto, K.; Matsumoto, H.

    1976-01-01

    Whistler instabilities have been investigated for two different types; i.e., a temperature-anisotropy type instability and a beam-type instability. A comparison between the two types of whistler instabilities is made within the framework of linear theory. A transition from one type to the other is also discussed, which is an extension of the work on electrostatic beam and Landau instabilities performed by O'Neil and Malmberg (1968) for electromagnetic whistler instabilities. It is clarified that the essential source of the whistler instability is not beam kinetic energy but a temperature anisotropy, even for the beam-type whistler instability.

  14. Microwave background anisotropy induced by gravitational waves

    NASA Technical Reports Server (NTRS)

    Linder, Eric V.

    1988-01-01

    A cosmological background of gravitational waves induces redshift perturbations in light transversing it. Calculations of this Sachs-Wolfe effect on the microwave background are presented in an Omega = 1 Friedmann universe as a function of angular scale and gravitational wave spectrum. Blurriness of the last-scattering surface can cause nonnegligible dilution of the anisotropy for wavelengths less than about 100 Mpc. The limit implied for the energy density of the gravitational waves is given. A difficulty in associating a linear scale with an angular anisotropy, due to the clumpiness of the universe, is also pointed out.

  15. Anisotropy of the Topopah Spring Member Tuff

    SciTech Connect

    Martin, R.J. III; Boyd, P.J.; Haupt, R.W.; Price, R.H.

    1992-07-01

    Mechanical properties of the tuffaceous rocks within Yucca Mountain are needed for near and far-field modeling of the potential nuclear waste repository. If the mechanical properties are significantly anisotropic (i.e., direction-dependent), a more complex model is required. Relevant data from tuffs tested in earlier studies indicate that elastic and strength properties are anisotropic. This scoping study confirms the elastic anisotropy and concludes some tuffs are transversely isotropic. An approach for sampling and testing the rock to determine the magnitude of the anisotropy is proposed.

  16. Anisotropy of dilepton emission from nuclear collisions

    SciTech Connect

    Bratkovskaya, E.L.; Teryaev, O.V.; Toneev, V.D. |

    1994-11-07

    Attention is paid to studying the angular characteristics of e{sup +}e{sup {minus}} pairs created in collisions with nuclear targets at intermediate and relativistic energies. Arising due to general spin and angular momentum constraints, the dilepton anisotropy seems to be quite sensitive to the contribution of different sources and may be used for disentangling these sources (or models) as well as an additional signature of a possible chiral symmetry restoration and phase transition of hadrons into the quark-gluon plasma. An anisotropy estimate for some dilepton sources is given and its relevance to the problems mentioned is discussed.

  17. Effects of anisotropy on dynamic tensile behavior

    SciTech Connect

    Schifert, S.K.; Davidson, R.F.; Maudlin, P.J.

    1991-01-01

    A stability analysis for an anisotropic stretching rod is presented. We consider the particular case of a rapidly stretching titanium jet using a continuum code to examine anisotropic plastic response in the finite-neck regime. It was found that the classical analysis (yield strength is inversely proportional to stability) is insufficient; anisotropic jets can be more or less stable than their maximum or minimum yield strengths, depending on initial perturbations and the orientation of the anisotropy. One particular anisotropy -- with the weak direction along the jet axis -- appears to be generally stabilizing. 10 refs., 6 figs.

  18. The anisotropy of aluminum and aluminum alloys

    NASA Astrophysics Data System (ADS)

    Hosford, William F.

    2006-05-01

    The anisotropy of textured aluminum is approximated by a yield criterion with an exponent of eight. The use of this criterion in metal-forming analyses has improved the understanding of the formability of aluminum and other metals. The effect of anisotropy on the limiting drawing ratio in cupping is less than that expected from the quadratic Hill yield criterion and the effect of texture on forming limit diagrams is negligible. A method of predicting the effect of strain-path changes on forming limit curves of aluminum alloy sheets has proven to agree with experiments.

  19. Improvement of thermal stability of metal/oxide interface for electronic devices

    SciTech Connect

    Ichikawa, Yo; Hiramoto, Masayoshi; Matsukawa, Nozomu; Iijima, Kenji; Kitagawa, Masatoshi

    1998-12-31

    The nano-meter controlled iron/iron-oxide multilayer materials have been successfully obtained by the pulse reactive sputtering method with high deposition rate. These multilayer demonstrated a good thermal stability of its structure and magnetic properties up to 500 C when a small amount of Si was doped in the structure, whereas the non-doped multilayer degraded at above 300 C. The difference of the oxidation energy between Fe and Si increases the thermal stability of the interface between Fe and Fe-O layer.

  20. Theory of spin relaxation at metallic interfaces

    NASA Astrophysics Data System (ADS)

    Belashchenko, K. D.; Kovalev, Alexey A.; van Schilfgaarde, Mark

    Spin-flip scattering at metallic interfaces affects transport phenomena in nanostructures, such as magnetoresistance, spin injection, spin pumping, and spin torques. It has been characterized for many material combinations by an empirical parameter δ, which is obtained by matching magnetoresistance data for multilayers to the Valet-Fert model [J. Bass and W. P. Pratt, J. Phys.: Condens. Matter 19, 183201 (2007)]. However, the relation of the parameter δ to the scattering properties of the interface remains unclear. Here we establish this relation using the scattering theory approach and confirm it using a generalization of the magnetoelectronic circuit theory, which includes interfacial spin relaxation. The results of first-principles calculations of spin-flip scattering at the Cu/Pd and Cu/Pt interfaces are found to be in reasonable agreement with experimental data. Supported by NSF Grant DMR-1308751.

  1. Copper dusting effects on perpendicular magnetic anisotropy in Pt/Co/Pt tri-layers

    NASA Astrophysics Data System (ADS)

    Parakkat, Vineeth Mohanan; Ganesh, K. R.; Anil Kumar, P. S.

    2016-05-01

    The effect of Cu dusting on perpendicular magnetic anisotropy of sputter grown Pt/Co/Pt stack in which the Cu layer is in proximity with that of Co is investigated in this work. We used magneto optic Kerr effect microscopy measurements to study the variation in the reversal mechanisms in films with Co thicknesses below 0.8nm by systematically varying their perpendicular magnetic anisotropy using controlled Cu dusting. Cu dusting was done separately above and below the cobalt layer in order to understand the role of bottom and top Pt layers in magnetization reversal mechanisms of sputtered Pt/Co/Pt stack. The introduction of even 0.3nm thick Cu layer below the cobalt layer drastically affected the perpendicular magnetic anisotropy as evident from the nucleation behavior. On the contrary, even a 4nm thick top Cu layer had little effect on the reversal mechanism. These observations along with magnetization data was used to estimate the role of top and bottom Pt in the origin of perpendicular magnetic anisotropy as well as magnetization switching mechanism in Pt/Co/Pt thin films. Also, with an increase in the bottom Cu dusting from 0.2 to 0.4nm there was an increase in the number of nucleation sites resulting in the transformation of domain wall patterns from a smooth interface type to a finger like one and finally to maze type.

  2. Guided Cell Migration on Microtextured Substrates with Variable Local Density and Anisotropy

    PubMed Central

    Kim, Deok-Ho; Seo, Chang-Ho; Han, Karam; Kwon, Keon Woo; Levchenko, Andre; Suh, Kahp-Yang

    2009-01-01

    This work reports the design of and experimentation with a topographically patterned cell culture substrate of variable local density and anisotropy as a facile and efficient platform to guide the organization and migration of cells in spatially desirable patterns. Using UV-assisted capillary force lithography, an optically transparent microstructured layer of a UV curable poly(urethane acrylate) resin is fabricated and employed as a cell-culture substrate after coating with fibronectin. With variable local pattern density and anisotropy present in a single cell-culture substrate, the differential polarization of cell morphology and movement in a single experiment is quantitatively characterized. It is found that cell shape and velocity are exquisitely sensitive to variation in the local anisotropy of the two-dimensional rectangular lattice arrays, with cell elongation and speed decreasing on symmetric lattice patterns. It is also found that cells could integrate orthogonal spatial cues when determining the direction of cell orientation and movement. Furthermore, cells preferentially migrate toward the topographically denser areas from sparser ones. Consistent with these results, it is demonstrated that systematic variation of local densities of rectangular lattice arrays enable a planar assembly of cells into a specified location. It is envisioned that lithographically defined substrates of variable local density and anisotropy not only provide a new route to tailoring the cell-material interface but could serve as a template for advanced tissue engineering. PMID:20046799

  3. Haptic feedback for multilayer cutting.

    PubMed

    Rianto, Sugeng; Li, Ling; Hartley, Bruce

    2008-01-01

    An approach in effectively estimating the force feedback for a tactile haptic based on multi-proxy rendering for 3D surface cuttings for a virtual surgery simulation is described in this paper. The force-models representing haptic force-feedback are approximated using D'Alembert's principle in the mechanic case of spring-damper-stiffness interaction of the surfaces. We also propose a combination between mesh refinement and adaptive re-meshing to create a progressive cutting over the layering surfaces. Experimental results prove that the physical interaction to create cutting paths over the multilayer surfaces can be deliver smoothly with haptic in real time with 3D visual stereo on a PC.

  4. Techniques for multilayer channel routing

    NASA Astrophysics Data System (ADS)

    Braun, Douglas; Burns, Jeffrey L.; Romeo, Fabio; Sangiovanni-Vincentelli, Alberto; Mayaram, Kartikeya

    1988-06-01

    The techniques described have been implemented in a multilayer channel router called Chameleon. Chameleon consists of two stages: a partitioner and a detailed router. The partitioner divides the problem into two-layer and three-layer subproblems such that global channel area is minimized. The detailed router then implements the connections using generalizations of the algorithms used in YACR2. In particular, a three-dimensional maze router is used for the vertical connections; this methodology is effective even when cycle constraints are present. Chameleon has produced optimal results on a wide range of industrial and academic examples for a variety of layer and pitch combinations, and can handle a variety of technology constraints.

  5. Structural and magnetic properties of (Fe/Mn) exchange-biased multilayers

    NASA Astrophysics Data System (ADS)

    El Bahoui, A.; Genevois, C.; Juraszek, J.; Bordel, C.; Ledue, D.

    2013-05-01

    Exchange-biasing of ferromagnetic (F) Fe layers by adjacent antiferromagnetic (AF) Mn layers has been investigated in (Fe/Mn)10 multilayered films. This study has been focused on the relationship between the evolution of the exchange-bias field and the evolution of the film microstructure as a function of the deposition temperature. The increase of the deposition temperature results in the formation of an Fe-Mn alloy at the interfaces and columnar features whose size increases with the deposition temperature. In parallel, the exchange-bias field decreases significantly, due to interface roughness.

  6. Multilayer composites and manufacture of same

    DOEpatents

    Holesinger, Terry G.; Jia, Quanxi

    2006-02-07

    The present invention is directed towards a process of depositing multilayer thin films, disk-shaped targets for deposition of multilayer thin films by a pulsed laser or pulsed electron beam deposition process, where the disk-shaped targets include at least two segments with differing compositions, and a multilayer thin film structure having alternating layers of a first composition and a second composition, a pair of the alternating layers defining a bi-layer wherein the thin film structure includes at least 20 bi-layers per micron of thin film such that an individual bi-layer has a thickness of less than about 100 nanometers.

  7. Trapping of Implanted He at Cu/Nb Interfaces Measured by Neutron Reflectometry

    SciTech Connect

    Wang, Peng; Zhernenkov, Mikhail; Kashinath, Abishek; Demkowicz, Michael; Baldwin, Jon K.; Majewski, Jaroslaw

    2012-06-20

    In single crystalline metals, He is insoluble and precipitates into bubbles. In contrast, Cu-Nb multilayers show no evidence of bubble formation below a critical concentration. The conclusions of this paper are: (1) He is trapped at Cu/Nb , Cu/Mo interfaces; (2) He is trapped interstitially; (3) The interface swells {approx} 10 times; and (4) The layered structure retains despite the swell of interfaces.

  8. Highly Efficient Multilayer Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Boufelfel, Ali

    2006-01-01

    Multilayer thermoelectric devices now at the prototype stage of development exhibit a combination of desirable characteristics, including high figures of merit and high performance/cost ratios. These devices are capable of producing temperature differences of the order of 50 K in operation at or near room temperature. A solvent-free batch process for mass production of these state-of-the-art thermoelectric devices has also been developed. Like prior thermoelectric devices, the present ones have commercial potential mainly by virtue of their utility as means of controlled cooling (and/or, in some cases, heating) of sensors, integrated circuits, and temperature-critical components of scientific instruments. The advantages of thermoelectric devices for such uses include no need for circulating working fluids through or within the devices, generation of little if any noise, and high reliability. The disadvantages of prior thermoelectric devices include high power consumption and relatively low coefficients of performance. The present development program was undertaken in the hope of reducing the magnitudes of the aforementioned disadvantages and, especially, obtaining higher figures of merit for operation at and near room temperature. Accomplishments of the program thus far include development of an algorithm to estimate the heat extracted by, and the maximum temperature drop produced by, a thermoelectric device; solution of the problem of exchange of heat between a thermoelectric cooler and a water-cooled copper block; retrofitting of a vacuum chamber for depositing materials by sputtering; design of masks; and fabrication of multilayer thermoelectric devices of two different designs, denoted I and II. For both the I and II designs, the thicknesses of layers are of the order of nanometers. In devices of design I, nonconsecutive semiconductor layers are electrically connected in series. Devices of design II contain superlattices comprising alternating electron

  9. Thermal and stress studies of normal incidence Mo/B4C multilayers for a 6.7 nm wavelength.

    PubMed

    Barthelmess, Miriam; Bajt, Saša

    2011-04-10

    Wavelength, reflectance, and stress stability of Mo/B(4)C multilayers were studied as a function of postdeposition annealing up to 900 °C. These multilayers are of interest as normal incidence coatings for wavelengths above the boron K-absorption edge. Mo/B(4)C multilayers deposited at low sputtering pressure have high compressive stress. Zero stress can be achieved at 360 °C-370 °C, but annealing at <200 °C is sufficient to reduce stress by ∼40%. This stress relaxation is accompanied with a multilayer period expansion of ∼0.02 nm and a <0.5% decrease in normal incidence reflectivity. The multilayer period remains stable up to ∼600 °C, while intrinsic stress changes from compressive to tensile. A four-layer model with amorphous molybdenum and boron carbide layers separated by amorphous layers of molybdenum borides (Mo(x)B(y)) is presented. These interlayers are present already in the as-deposited state and continue to grow with increasing temperature. Their presence lowers the optical contrast and the achievable reflectivity. However, they also increase multilayer thermal stability. At temperatures >600 °C, a noticeable decrease in reflectivity associated with the phase transition from amorphous to crystalline molybdenum boride is observed. This is accompanied with an increase in interface and surface roughness and a change in stress as a function of temperature.

  10. Laser induced local modification of magnetic domain in Co/Pt multilayer

    NASA Astrophysics Data System (ADS)

    Talapatra, A.; Mohanty, J.

    2016-11-01

    Manipulation of magnetic system by the use of laser has drawn the attention of contemporary research. We demonstrate here the modification of magnetic domain in perpendicularly magnetized Co/Pt multilayer by using ultrashort laser pulse. The as-prepared sample shows an out-of-plane saturation magnetic field of 803.4 mT and almost zero remanence with a labyrinth-like domain pattern at room temperature. Atomistic simulation showed that interaction with femto-second laser results in demagnetization of the material in 200 fs followed by a slower recovery. As it indicates a net loss in magnetization, so magnetic force microscopy is carried out to investigate the equilibrium state after the system is relaxed. Demagnetized random domains appeared at the centre of the laser spot with having a rim at the boundary which signifies a deterministic switching with respect to the neighbouring area. Rotation of domains at the central area with the application of small transverse field (100 mT) proves the region to be magnetically weaker. Systematic 3D micromagnetic simulation has been performed to model the laser induced change by selective reduction of anisotropy which is discussed in detail. This shows shrinking of domains to a near circular pattern to minimize the magnetostatic energy. 50% reduction in anisotropy energy is observed with increasing the total energy of the system and a sharp increase in demagnetization energy also takes place simultaneously. This also satisfies the anisotropy in domain rotation with the application of transverse field.

  11. Anisotropic magnetization relaxation in ferromagnetic multilayers with variable interlayer exchange coupling

    NASA Astrophysics Data System (ADS)

    Kravets, A. F.; Polishchuk, D. M.; Dzhezherya, Yu. I.; Tovstolytkin, A. I.; Golub, V. O.; Korenivski, V.

    2016-08-01

    The ferromagnetic resonance (FMR) linewidth and its anisotropy in F1/f /F2 /AF multilayers, where spacer f has a low Curie point compared to the strongly ferromagnetic F1 and F2, is investigated. The role of the interlayer exchange coupling in magnetization relaxation is determined experimentally by varying the thickness of the spacer. It is shown that stronger interlayer coupling via thinner spacers enhances the microwave energy exchange between the outer ferromagnetic layers, with the magnetization of F2 exchange dragged by the resonance precession in F1. A weaker mirror effect is also observed: the magnetization of F1 can be exchange dragged by the precession in F2, which leads to antidamping and narrower FMR linewidths. A theory is developed to model the measured data, which allows separating various contributions to the magnetic relaxation in the system. Key physical parameters, such as the interlayer coupling constant, in-plane anisotropy of the FMR linewidth, and dispersion of the magnetic anisotropy fields, are quantified. These results should be useful for designing high-speed magnetic nanodevices based on thermally assisted switching.

  12. Polar MOKE Imaging of Local Interactions in Perpendicular Anisotropy Artificial Spin Ice Geometries

    NASA Astrophysics Data System (ADS)

    Fraleigh, Robert; Kempinger, Susan; Gilbert, Ian; Crespi, Vincent; Schiffer, Peter; Lammert, Paul; Samarth, Nitin

    2015-03-01

    We use diffraction-limited Kerr imaging to directly observe the accommodation of frustration and antiferromagnetic ordering within a macroscopic Ising system built from large arrays of single-domain ferromagnetic islands. Geometrically un-frustrated (square and hexagonal) and frustrated (triangular and kagome) lattices constructed with lithographically-defined Pt/Co multilayer islands are probed with an external magnetic field. Islands exhibit strong perpendicular anisotropy, thus allowing polar Kerr imaging in a custom-designed microscope with sub-400nm spatial resolution. A combination of image processing and particle tracking algorithms allows us to resolve the magnetic reversal of each island and consequently the entire array as a function of applied magnetic field. Direct observation of local island-island interactions provides detailed statistical information about correlated switching behavior and antiferromagnetic ordering as a function of geometry and lattice spacing in the presence of an external magnetic field sweep or demagnetization protocol.

  13. Direct Observation of Field and Temperature Induced Domain Replication in Dipolar Coupled Perpendicular Anisotropy Films

    SciTech Connect

    Hauet, T.; Gunther, C.M.; Pfau, B.; Eisebitt, S.; Fischer, P.; Rick, R. L.; Thiele, J.-U.; Hellwig, O.; Schabes, M.E.

    2007-07-01

    Dipolar interactions in a soft/Pd/hard [CoNi/Pd]{sub 30}/Pd/[Co/Pd]{sub 20} multilayer system, where a thick Pd layer between two ferromagnetic units prevents direct exchange coupling, are directly revealed by combining magnetometry and state-of-the-art layer resolving soft x-ray imaging techniques with sub-100-nm spatial resolution. The domains forming in the soft layer during external magnetic field reversal are found to match the domains previously trapped in the hard layer. The low Curie temperature of the soft layer allows varying its intrinsic parameters via temperature and thus studying the competition with dipolar fields due to the domains in the hard layer. Micromagnetic simulations elucidate the role of [CoNi/Pd] magnetization, exchange, and anisotropy in the duplication process. Finally, thermally driven domain replication in remanence during temperature cycling is demonstrated.

  14. Anisotropy-induced wave steering in periodic linear and nonlinear lattices

    NASA Astrophysics Data System (ADS)

    Casadei, Filippo; Rimoli, Julian; Ruzzene, Massimo

    2012-02-01

    Structural lattice configurations can be designed with tailored topologies which provide them with unusual behaviors, such as negative bulk modulus, negative Poisson's ratios, or extreme anisotropyootnotetextM. Ruzzene et al. Phisica Status Solidi B, 242, 665 (2005). The latter is of particular relevance to explore the inherent anisotropic behavior of periodic lattices as a design paradigm for wave guiding and steering applications. The equivalent material anisotropy of square and skew periodic lattices is investigated through the application of Bloch's theoremootnotetextBloch F., Z. Physik 52, 555 (1928) to the finite element discretization of the representative unit cell. The in-plane directions of wave propagation are determined through detailed analysis of the longitudinal and shear wave velocities, and verified through full-field wave propagation simulations. Similar wave behaviors are investigated analytically and experimentally for multilayer composite panels with anisotropic lay-ups in order to demonstrate the feasibility of micro structural design as an effective approach for wave management.

  15. [The photoluminescence characteristics of organic multilayer quantum wells].

    PubMed

    Zhao, De-Wei; Song, Shu-Fang; Zhao, Su-Ling; Xu, Zheng; Wang, Yong-Sheng; Xu, Xu-Rong

    2007-04-01

    By the use of multi-source high-vaccum organic beam deposition system, the authors prepared organic multilayer quantum well structures, which consist of alternate organic small molecule materials PBD and Alq3. Based on 4-period organic quantum wells, different samples with different thickness barriers and wells were prepared. The authors measured the lowest unoccupied molecular orbit (LUMO) and the highest occupied molecular orbit (HOMO) by electrochemistry cyclic voltammetry and optical absorption. From the energy diagrams, it seems like type-I quantum well structures of the inorganic semiconductor, in which PBD is used as a barrier layer and Alq3 as a well layer and emitter. From small angle X-ray diffraction measurements, the results indicate that these structures have high interface quality and uniformity. The photoluminescence characteristics of organic multilayer quantum wells were investigated. The PL peak has a blue-shift with the decrease of the well layer thickness. Meanwhile as the barrier thickness decreases the PL peaks of PBD disappear gradually. And the energy may be effectively transferred from PBD to Alq3, inducing an enhancement of the luminescence of Alq3.

  16. Electrostatics and charge regulation in polyelectrolyte multilayered assembly.

    PubMed

    Cherstvy, Andrey G

    2014-05-01

    We examine the implications of electrostatic interactions on formation of polyelectrolyte multilayers, in application to field-effect based biosensors for label-free detection of charged macromolecules. We present a quantitative model to describe the experimental potentiometric observations and discuss its possibilities and limitations for detection of polyelectrolyte adsorption. We examine the influence of the ionic strength and pH on the sensor response upon polyelectrolyte layer-by-layer formation. The magnitude of potential oscillations on the sensor-electrolyte interface predicted upon repetitive adsorption charge-alternating polymers agrees satisfactorily with experimental results. The model accounts for different screening by mobile ions in electrolyte and inside tightly interdigitated multilayered structure. In particular, we show that sensors' potential oscillations are larger and more persistent at lower salt conditions, while they decay faster with the number of layers at higher salt conditions, in agreement with experiments. The effects of polyelectrolyte layer thickness, substrate potential, and charge regulation on the sensor surface triggered by layer-by-layer deposition are also analyzed.

  17. Electrostatics and charge regulation in polyelectrolyte multilayered assembly.

    PubMed

    Cherstvy, Andrey G

    2014-05-01

    We examine the implications of electrostatic interactions on formation of polyelectrolyte multilayers, in application to field-effect based biosensors for label-free detection of charged macromolecules. We present a quantitative model to describe the experimental potentiometric observations and discuss its possibilities and limitations for detection of polyelectrolyte adsorption. We examine the influence of the ionic strength and pH on the sensor response upon polyelectrolyte layer-by-layer formation. The magnitude of potential oscillations on the sensor-electrolyte interface predicted upon repetitive adsorption charge-alternating polymers agrees satisfactorily with experimental results. The model accounts for different screening by mobile ions in electrolyte and inside tightly interdigitated multilayered structure. In particular, we show that sensors' potential oscillations are larger and more persistent at lower salt conditions, while they decay faster with the number of layers at higher salt conditions, in agreement with experiments. The effects of polyelectrolyte layer thickness, substrate potential, and charge regulation on the sensor surface triggered by layer-by-layer deposition are also analyzed. PMID:24725100

  18. Theory of electromechanical resonance in magnetostrictive - piezoelectric multilayer composites

    NASA Astrophysics Data System (ADS)

    Filippov, D. A.; Nan, C. W.; Srinivasan, G.

    2005-03-01

    The theory of electromechanical resonance in multilayer magnetostrictive - piezoelectric composites is developed. The theory is based on the use of initial (not effective) parameters of magnetostrictive and piezoelectric phases. Equations of motion were used to obtain an expression for the frequency-dependence of magnetoelectric response in a multilayer composite [1,2]. The enhanced magnetoelectric response at the electromechanical resonance is dependent on the interface coupling. The calculations predict a peak in the magnetoelectric voltage coefficient at electromechanical resonance, with a two-order of magnitude increase relative to low-frequency values. These predictions are in agreement with data for ferrite-lead zirconante titanate (PZT) bilayers and metal-PZT-metal trilayers. 1. M. I. Bichurin, D.A. Filippov, V. M. Petrov, V. M. Laletin, N. Paddubnaya, and G. Srinivasan, Phys. Rev., B 68, 132408 (2003). 2. D. A. Fillipov, M. I. Bichurin, V. M. Petrov, V. M. Laletsin, N. N. Puddubnaya, and G. Srinivasan, Magnetoelectric Interaction Phenomena in Crystals-NATO Science Series II. Vol. 164, Eds. M. Fiebig, V. V. Eremenko, and I. E. Chupis (Kluwer Academic Publishers, London, 2004), p.71-80. - supported by grants from the Russian Ministry of Education (Å02-3.4-278), the Universities of Russia Foundation (UNR 01.01.026) and the National Science Foundation (DMR-0302254).

  19. Off-axis electron holography of ferromagnetic multilayer nanowires

    SciTech Connect

    Akhtari-Zavareh, Azadeh; Kavanagh, K. L.; Carignan, L. P.; Yelon, A.; Ménard, D.; Kasama, T.; Herring, R.; Dunin-Borkowski, R. E.; McCartney, M. R.

    2014-07-14

    We have used electron holography to investigate the local magnetic behavior of isolated ferromagnetic nanowires (NWs) in their remanent states. The NWs consisted of periodic magnetic layers of soft, high-saturation magnetization CoFeB alloys, and non-magnetic layers of Cu. All NWs were fabricated by pulsed-potential electrodeposition in nanoporous alumina membranes. The NW composition and layer thicknesses were measured using scanning transmission electron microscopy and energy dispersive spectroscopy. The magnetization of individual NWs depended upon the thicknesses of the layers and the direction of an external magnetic field, which had been applied in situ. When the CoFeB was thicker than the diameter (50 nm), magnetization was axial for all external field directions, while thinner layers could be randomized via a perpendicular field. In some cases, magnetization inside the wire was detected at an angle with respect to the axis of the wires. In thinner Cu/CoFeB (<10 nm each) multilayer, magnetic field vortices were detected, associated with opposing magnetization in neighbouring layers. The measured crystallinity, compositions, and layer thicknesses of individual NWs were found to be significantly different from those predicted from calibration growths based on uniform composition NWs. In particular, a significant fraction of Cu (up to 50 at. %) was present in the CoFeB layers such that the measured magnetic induction was lower than expected. These results will be used to better understand previously measured effective anisotropy fields of similar NW arrays.

  20. Moessbauer Study of Electrodeposited Fe/Fe-Oxide Multilayers

    SciTech Connect

    Kuzmann, E.; Homonnay, Z.; Klencsar, Z.; Vertes, A.; Lakatos-Varsanyi, M.; Miko, A.; Varga, L.K.; Kalman, E.; Nagy, F.

    2005-04-26

    Iron has been deposited electrochemically by short current pulses in Na-saccharin containing FeII-chloride and sulphate solution electrolytes. Combined electrochemical techniques with initial pulse plating of iron nanolayer and its subsequent anodic oxidation under potential control have been used for production of Fe/Fe-oxide multilayers. 57Fe CEM spectra of pulse plated iron revealed the presence of a minor doublet attributed mainly to {gamma}-FeOOH in addition to the dominant sextet of {alpha}-iron. In the case of anodically oxidized pulse plated iron and of samples after repeated deposition of anodically oxidized pulse plated iron an additional minor doublet, assigned to ferrous chloride, also appears in the Moessbauer spectra. A significant change in the magnetic anisotropy of {alpha}-iron was observed with the anodic oxidation. The thickness of the layers were estimated from the CEM spectrum data by a modified computer program of the Liljequist method. The coercive field and the power loss versus frequency data showed that the pulse plated iron cores are good inductive elements up to several kHz frequencies.