Science.gov

Sample records for multilayer optical thin

  1. Optical properties of very thin, nonideal multilayer superlattice stacks.

    PubMed

    Madjid, A H; El-Haija, A J

    1980-08-01

    In this study, the theory of very thin, nonideal multilayer stacks is developed, and the computed wavelength variation of the transmissivity and reflectivity is compared with that measured on experimentally prepared silver-silicon monoxide layer stacks. The model imputes a step-function character to the complex index of refraction along the layer structure, and nonideality is accounted for by allowing for the likely presence of interfacial layers between each primary layer pair and also for the possibility that the thickness of the individual layers may vary randomly within some limit of error. Abeles's transfer matrix technique is used to arrive at the characteristic matrix of the stack, and additive corrective matrices are derived to account for the effects due to interfacial layers and the random layer thickness variation.

  2. Extremely high rate deposition of polymer multilayer optical thin film materials

    SciTech Connect

    Affinito, J.D.

    1993-03-01

    This paper highlights a new technique for extremely high rate deposition of optical dielectric films (vacuum deposition of polymer multilayer thin films). This is a way to produce multilayer optical filters comprised of thousands of layers of either linear or nonlinear optical materials. The technique involves the flash evaporation of an acrylic monomer onto a moving substrate; the monomer is then cured. Acrylic polymers deposited to date are very clear for wavelengths between 0.35 and 2.5 {mu}m; they have extinction coefficients of k{approx}10{sup {minus}7}. Application of electric field during cross linking can polarize (``pole``) the film to greatly enhance the nonlinear optical properties. ``Poling`` films with the polymer multilayer technique offers advantages over conventional approaches, in that the polarization should not decay over time. Battelle`s Pacific Northwest Laboratory is well suited for bringing linear and nonlinear polymer multilayer optical filter technology to manufacturing production status for batch and wide area web applications. 10 figs.

  3. Extremely high rate deposition of polymer multilayer optical thin film materials

    SciTech Connect

    Affinito, J.D.

    1993-01-01

    This paper highlights a new technique for extremely high rate deposition of optical dielectric films (vacuum deposition of polymer multilayer thin films). This is a way to produce multilayer optical filters comprised of thousands of layers of either linear or nonlinear optical materials. The technique involves the flash evaporation of an acrylic monomer onto a moving substrate; the monomer is then cured. Acrylic polymers deposited to date are very clear for wavelengths between 0.35 and 2.5 [mu]m; they have extinction coefficients of k[approx]10[sup [minus]7]. Application of electric field during cross linking can polarize (''pole'') the film to greatly enhance the nonlinear optical properties. ''Poling'' films with the polymer multilayer technique offers advantages over conventional approaches, in that the polarization should not decay over time. Battelle's Pacific Northwest Laboratory is well suited for bringing linear and nonlinear polymer multilayer optical filter technology to manufacturing production status for batch and wide area web applications. 10 figs.

  4. Electrical and optical characterization of metal oxide/metal/polymer multilayer thin films

    NASA Astrophysics Data System (ADS)

    Fryc, Irena

    1998-01-01

    A new procedure for depositing three-layer structures [doped metal oxide/metal/metal oxide (In2O3/Ag/TiO2)] on a glass substrate by applying different methods of film deposition was developed. To obtain the first film -- In2O3:Sn, the spray hydrolysis method was employed and for the second, a thin Ag film, the vacuum evaporation technique was used. The third film -- TiO2 was obtained by the organic oxide compound polymerization method. The electrical and optical properties of the films and the multilayer structure thus obtained were investigated. The studies showed that the three-layer structure could be used as a broad-band infrared filter.

  5. Preparation and properties of magneto-optical micro-cavities composed of Co thin film and dielectric multilayers

    NASA Astrophysics Data System (ADS)

    Inoue, M.; Matsumoto, K.; Arai, K. I.; Fujii, T.; Abe, M.

    1999-05-01

    Magneto-optical (MO) Kerr effect of micro-cavities composed of a Co thin film and SiO 2/SiN multilayer films was investigated theoretically and experimentally. The micro-cavity structure was found to be very effective for enhancing the MO Kerr effect: the MO Kerr rotation angle exceeding 10° at a designated wavelength of light was obtained, the value of which is more than 100 times larger than that of a Co single-layer film. The large MO Kerr effect is caused by the localization of light originating from the multilayer structure.

  6. Methanol selective fibre-optic gas sensor with a nanoporous thin film of organic-inorganic hybrid multilayers

    NASA Astrophysics Data System (ADS)

    Wang, T.; Okuda, H.; Lee, S.-W.

    2015-07-01

    The development of an evanescent wave optical fibre (EWOF) sensor modified with an organic-inorganic hybrid nanoporous thin film for alcohol vapor detection was demonstrated. The optical fibre with a core diameter of 200 μm was bent into U-shape probe optic fibre to enhance the penetation depth of light transferred into the evanescent filed. The bended region of the fibre was modified with a multilayered thin film of poly(allyamine hydrochloride) and silica nanoparticels, (PAH/SiO2)n, by a layer-by-layer (LbL) film deposition technique, followed by infusion of tetrakis(4- sulfophenyl)porphine, TPPS. The mesoporous film structure showed high sensitivity and selectivity to methanol by the aid of the TPPS infused inside the film. The optical sensor response was reversible and reproducible over many times of exposures to analytes, which was caused by the change in refractive index (RI) of the film.

  7. Verification of antiferromagnetic exchange coupling at room temperature using polar magneto-optic Kerr effect in thin EuS/Co multilayers with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Goschew, A.; Scott, M.; Fumagalli, P.

    2016-08-01

    We report on magneto-optic Kerr measurements in polar geometry carried out on a series of thin Co/EuS multilayers on suitable Co/Pd-multilayer substrates. Thin Co/EuS multilayers of a few nanometers individual layer thickness usually have their magnetization in plane. Co/Pd multilayers introduce a perpendicular magnetic anisotropy in the Co/EuS layers deposited on top, thus making it possible to measure magneto-optic signals in the polar geometry in remanence in order to study exchange coupling. Magneto-optic Kerr-effect spectra and hysteresis loops were recorded in the visible and ultraviolet photon-energy range at room temperature. The EuS contribution to the magneto-optic signal is extracted at 4.1 eV by combining hysteresis loops measured at different photon energies with polar magneto-optic Kerr-effect spectra recorded in remanence and in an applied magnetic field of 2.2 T. The extracted EuS signal shows clear signs of antiferromagnetic coupling of the Eu magnetic moments to the Co layers. This implies that the ordering temperature of at least a fraction of the EuS layers is above room temperature proving that magneto-optic Kerr-effect spectroscopy can be used here as a quasi-element-specific method.

  8. Determination of the embedded thermo-optical expansion coefficients of PbTe and ZnSe thin film infrared multilayers.

    PubMed

    Hawkins, Gary J; Stolberg-Rohr, Thomine

    2015-06-15

    This paper reports the first derived thermo-optical properties for vacuum deposited infrared thin films embedded in multilayers. These properties were extracted from the temperature-dependence of manufactured narrow bandpass filters across the 4-17 µm mid-infrared wavelength region. Using a repository of spaceflight multi-cavity bandpass filters, the thermo-optical expansion coefficients of PbTe and ZnSe were determined across an elevated temperature range 20-160 °C. Embedded ZnSe films showed thermo-optical properties similar to reported bulk values, whilst the embedded PbTe films of lower optical density, deviate from reference literature sources. Detailed knowledge of derived coefficients is essential to the multilayer design of temperature-invariant narrow bandpass filters for use in non-cooled infrared detection systems. We further present manufacture of the first reported temperature-invariant multi-cavity narrow bandpass filter utilizing PbS chalcogenide layer material.

  9. Optically transparent thin-film transistors based on 2D multilayer MoS2 and indium zinc oxide electrodes

    NASA Astrophysics Data System (ADS)

    Kwon, Junyeon; Hong, Young Ki; Kwon, Hyuk-Jun; Park, Yu Jin; Yoo, Byungwook; Kim, Jiwan; Grigoropoulos, Costas P.; Oh, Min Suk; Kim, Sunkook

    2015-01-01

    We report on optically transparent thin film transistors (TFTs) fabricated using multilayered molybdenum disulfide (MoS2) as the active channel, indium tin oxide (ITO) for the back-gated electrode and indium zinc oxide (IZO) for the source/drain electrodes, respectively, which showed more than 81% transmittance in the visible wavelength. In spite of a relatively large Schottky barrier between MoS2 and IZO, the n-type behavior with a field-effect mobility (μeff) of 1.4 cm2 V-1 s-1 was observed in as-fabricated transparent MoS2 TFT. In order to enhance the performances of transparent MoS2 TFTs, a picosecond pulsed laser was selectively irradiated onto the contact region of the IZO electrodes. Following laser annealing, μeff increased to 4.5 cm2 V-1 s-1, and the on-off current ratio (Ion/Ioff) increased to 104, which were attributed to the reduction of the contact resistance between MoS2 and IZO.

  10. Molecular self-assembly routes to optically functional thin films: Electroluminescent multilayer structures

    SciTech Connect

    Li, W.; Malinsky, J.E.; Chou, H.

    1998-07-01

    This contribution describes the use of layer-by-layer self-limiting siloxane chemisorption processes to self-assemble structurally regular multilayer organic LED (OLED) devices. Topics discussed include: (1) the synthesis of silyl-functionalized precursor molecules for hole transport layer (HTL), emissive layer (EML), and electron transport layer (ETL) self-assembly, (2) the use of layer-by-layer self-assembly for ITO electrode modification/passivation/hole-electron balancing in a vapor-deposited device, (3) the microstructure/chemical characterization of HTL self-assembly using a prototype triarylamine precursor, (4) fabrication and properties of a hybrid self-assembled + vapor deposited two-layer LED, and (5) fabrication and properties of a fully self-assembled two-layer OLED.

  11. Multilayer optical dielectric coating

    DOEpatents

    Emmett, John L.

    1990-01-01

    A highly damage resistant, multilayer, optical reflective coating includes alternating layers of doped and undoped dielectric material. The doping levels are low enough that there are no distinct interfaces between the doped and undoped layers so that the coating has properties nearly identical to the undoped material. The coating is fabricated at high temperature with plasma-assisted chemical vapor deposition techniques to eliminate defects, reduce energy-absorption sites, and maintain proper chemical stoichiometry. A number of differently-doped layer pairs, each layer having a thickness equal to one-quarter of a predetermined wavelength in the material are combined to form a narrowband reflective coating for a predetermined wavelength. Broadband reflectors are made by using a number of narrowband reflectors, each covering a portion of the broadband.

  12. Ultra-thin multilayer capacitors.

    SciTech Connect

    Renk, Timothy Jerome; Monson, Todd C.

    2009-06-01

    The fabrication of ultra-thin lanthanum-doped lead zirconium titanate (PLZT) multilayer ceramic capacitors (MLCCs) using a high-power pulsed ion beam was studied. The deposition experiments were conducted on the RHEPP-1 facility at Sandia National Laboratories. The goal of this work was to increase the energy density of ceramic capacitors through the formation of a multilayer device with excellent materials properties, dielectric constant, and standoff voltage. For successful device construction, there are a number of challenging requirements including achieving correct stoichiometric and crystallographic composition of the deposited PLZT, as well as the creation of a defect free homogenous film. This report details some success in satisfying these requirements, although 900 C temperatures were necessary for PLZT perovskite phase formation. These temperatures were applied to a previously deposited multi-layer film which was then post-annealed to this temperature. The film exhibited mechanical distress attributable to differences in the coefficient of thermal expansion (CTE) of the various layers. This caused significant defects in the deposited films that led to shorts across devices. A follow-on single layer deposition without post-anneal produced smooth layers with good interface behavior, but without the perovskite phase formation. These issues will need to be addressed in order for ion beam deposited MLCCs to become a viable technology. It is possible that future in-situ heating during deposition may address both the CTE issue, and result in lowered processing temperatures, which in turn could raise the probability of successful MLCC formation.

  13. Magneto-optical Kerr effect investigation on magnetoelectric coupling in ferromagnetic/antiferroelectric multilayer thin film structures

    NASA Astrophysics Data System (ADS)

    Mirshekarloo, Meysam Sharifzadeh; Yakovlev, Nikolai; Wong, Meng Fei; Yao, Kui; Sritharan, Thirumany; Bhatia, Charanjit Singh

    2012-10-01

    Magnetoelectric (ME) membranes comprising soft ferromagnetic Ni and antiferroelectric (AFE) (Pb,La)(Zr,Sn,Ti)O3 (PLZST) layers were proposed and fabricated through a bulk micro-machining process on silicon wafers. An AC-mode magneto-optical Kerr effect technique was proposed to examine the magnetoelectric coupling in the multilayer membranes, in which the electric field-induced magnetization rotation was analyzed for understanding the underlying coupling mechanisms. The AFE to ferroelectric phase transformation of PLZST induced a rotation of magnetization of about 0.5° in Ni, persuaded by strain-induced anisotropy of about -0.5 kJ/m3.

  14. Structural and optical properties of CdTe/CdSe heterostructure multilayer thin films prepared by physical vapor deposition technique

    NASA Astrophysics Data System (ADS)

    David Kumar, M. Melvin; Devadason, Suganthi

    2013-10-01

    CdTe/CdSe heterostructure multilayer thin films and single layers of CdSe and CdTe thin films were prepared. Sequential thermal evaporation technique is made possible to adjust the layer thickness precisely. XRD studies were used to calculate average size of the crystallites and confirmed the (111) and (100) planes of CdTe and CdSe, respectively. Bulk CdTe has band gap energy of 1.54 eV that can be shifted to larger values by reducing the crystallite size to dimensions smaller than the Bohr radius of the exciton. Experimentally measured energy levels show the spin-orbit split of valance band of CdTe. Crystallite sizes (7-12 nm) were calculated with the predictions of effective mass approximation model (i.e., Brus model) which shows that the diameter of crystallites were much smaller than the Bohr exciton diameter (14 nm) of CdTe. It is found that the emission peaks of the prepared CdTe/CdSe ML samples were shifted from the peaks of CdSe and CdTe single layers toward red region as a characteristic of type II band alignment.

  15. Optical properties and durability performance of substance SiO2/Nb2O5 for multilayer thin films prepared by high-density plasma-assisted vapor deposition

    NASA Astrophysics Data System (ADS)

    Moriizumi, Yasushi; Honma, Hideo; Takai, Osamu

    2016-01-01

    Optical lenses normally require an antireflection (AR) film to improve their characteristics of visibility and transmittance. The AR film is constructed with materials of various refractive indices and designed to obtain good optical properties by combining various materials to utilize light interference with controlled film thickness and number of layers. Therefore, in this study, we have fabricated an AR film consisting of multilayer thin films of SiO2 and Nb2O5 by high-density plasma-assisted vapor deposition to improve its environmental resistance, especially its mechanical properties, while maintaining its optical properties. We conducted the sand falling test to evaluate the damage to the multilayer we fabricated and found that the Nb2O5 layer located at a depth of about 200 nm from the outermost layer was plastically deformed and the layer absorbed the shock from the sand to reduce damage.

  16. Figure correction of multilayer coated optics

    DOEpatents

    Chapman; Henry N. , Taylor; John S.

    2010-02-16

    A process is provided for producing near-perfect optical surfaces, for EUV and soft-x-ray optics. The method involves polishing or otherwise figuring the multilayer coating that has been deposited on an optical substrate, in order to correct for errors in the figure of the substrate and coating. A method such as ion-beam milling is used to remove material from the multilayer coating by an amount that varies in a specified way across the substrate. The phase of the EUV light that is reflected from the multilayer will be affected by the amount of multilayer material removed, but this effect will be reduced by a factor of 1-n as compared with height variations of the substrate, where n is the average refractive index of the multilayer.

  17. Thin film photovoltaic device with multilayer substrate

    DOEpatents

    Catalano, Anthony W.; Bhushan, Manjul

    1984-01-01

    A thin film photovoltaic device which utilizes at least one compound semiconductor layer chosen from Groups IIB and VA of the Periodic Table is formed on a multilayer substrate The substrate includes a lowermost support layer on which all of the other layers of the device are formed. Additionally, an uppermost carbide or silicon layer is adjacent to the semiconductor layer. Below the carbide or silicon layer is a metal layer of high conductivity and expansion coefficient equal to or slightly greater than that of the semiconductor layer.

  18. Nanomechanical Behavior of High Gas Barrier Multilayer Thin Films.

    PubMed

    Humood, Mohammad; Chowdhury, Shahla; Song, Yixuan; Tzeng, Ping; Grunlan, Jaime C; Polycarpou, Andreas A

    2016-05-01

    Nanoindentation and nanoscratch experiments were performed on thin multilayer films manufactured using the layer-by-layer (LbL) assembly technique. These films are known to exhibit high gas barrier, but little is known about their durability, which is an important feature for various packaging applications (e.g., food and electronics). Films were prepared from bilayer and quadlayer sequences, with varying thickness and composition. In an effort to evaluate multilayer thin film surface and mechanical properties, and their resistance to failure and wear, a comprehensive range of experiments were conducted: low and high load indentation, low and high load scratch. Some of the thin films were found to have exceptional mechanical behavior and exhibit excellent scratch resistance. Specifically, nanobrick wall structures, comprising montmorillonite (MMT) clay and polyethylenimine (PEI) bilayers, are the most durable coatings. PEI/MMT films exhibit high hardness, large elastic modulus, high elastic recovery, low friction, low scratch depth, and a smooth surface. When combined with the low oxygen permeability and high optical transmission of these thin films, these excellent mechanical properties make them good candidates for hard coating surface-sensitive substrates, where polymers are required to sustain long-term surface aesthetics and quality.

  19. Nanomechanical Behavior of High Gas Barrier Multilayer Thin Films.

    PubMed

    Humood, Mohammad; Chowdhury, Shahla; Song, Yixuan; Tzeng, Ping; Grunlan, Jaime C; Polycarpou, Andreas A

    2016-05-01

    Nanoindentation and nanoscratch experiments were performed on thin multilayer films manufactured using the layer-by-layer (LbL) assembly technique. These films are known to exhibit high gas barrier, but little is known about their durability, which is an important feature for various packaging applications (e.g., food and electronics). Films were prepared from bilayer and quadlayer sequences, with varying thickness and composition. In an effort to evaluate multilayer thin film surface and mechanical properties, and their resistance to failure and wear, a comprehensive range of experiments were conducted: low and high load indentation, low and high load scratch. Some of the thin films were found to have exceptional mechanical behavior and exhibit excellent scratch resistance. Specifically, nanobrick wall structures, comprising montmorillonite (MMT) clay and polyethylenimine (PEI) bilayers, are the most durable coatings. PEI/MMT films exhibit high hardness, large elastic modulus, high elastic recovery, low friction, low scratch depth, and a smooth surface. When combined with the low oxygen permeability and high optical transmission of these thin films, these excellent mechanical properties make them good candidates for hard coating surface-sensitive substrates, where polymers are required to sustain long-term surface aesthetics and quality. PMID:27045231

  20. Eutectic bonds on wafer scale by thin film multilayers

    NASA Astrophysics Data System (ADS)

    Christensen, Carsten; Bouwstra, Siebe

    1996-09-01

    The use of gold based thin film multilayer systems for forming eutectic bonds on wafer scale is investigated and preliminary results will be presented. On polished 4 inch wafers different multilayer systems are developed using thin film techniques and bonded afterwards under reactive atmospheres and different bonding temperatures and forces. Pull tests are performed to extract the bonding strengths.

  1. Multilayer optics for soft x-rays

    NASA Astrophysics Data System (ADS)

    Falco, Charles M.; Slaughter, Jon M.

    1994-11-01

    We have shown that high quality Be films may be grown on alpha-Al2O3 Si(111) and Ge(111) consistent with the relative lattice mismatches, films grown on Si(111) are of higher quality than those grown on alpha-Al2O3, and those grown on Ge(111) are of the highest quality. The epitaxial Be films grown on Ge during this grant period are the best quality Be films that we or anyone else have ever produced. Growth of these high quality films is a significant step toward single crystal heterostructures containing Be. Such Be-containing structures may be useful, not only in EUV optics, but also in IR optics electronic devices, and studies of thin-film superconductivity. We have been successful in growing epitaxial Co-on-Be, and Ge-on-Be, but not in making Co/Be or Ge/Be superlattices. In both cases the problem is related to limitations of our equipment. To pursue this work further would require an upgrade to our MBE apparatus. Our very recent successes with sputter-deposited Y- and B4C-based multilayers show that there is still much to be gained by studying and optimizing the growth of carefully chosen new material pairs.

  2. Method for analyzing multilayer nonlinear optical waveguide.

    PubMed

    Wu, Yaw-Dong; Chen, Mao-Hsiung

    2005-10-01

    We propose a novel method for analyzing a multilayer optical waveguide structure with all nonlinear guiding films. This method can also be used to analyze a multibranch optical waveguide structure with all nonlinear guiding branches. The results show that agreement between theory and numerics is excellent.

  3. EUV metrology of multilayer optics

    SciTech Connect

    Ray-Chaudhuri, A.K.; Stulen, R.H.; Ng, W.; Cerrina, F.; Spector, S.; Tan, Z.; Bjorkholm, J.; Tennant, D.

    1994-11-01

    EUV metrology is central to the successful commercialization of EUV projection lithography. Metrology carried out at the EUV wavelength of 13 nm enables a gain of {approximately}50 in precision when translated from visible light wavelengths. It also uniquely measures wavefront errors due to lateral variations in the inherent phase shift upon reflection from the multilayer coating. The authors present the development of two metrology techniques: EUV Foucault and Ronchi tests.

  4. Thin film multilayer filters for solar EUV telescopes.

    PubMed

    Chkhalo, N I; Drozdov, M N; Kluenkov, E B; Kuzin, S V; Lopatin, A Ya; Luchin, V I; Salashchenko, N N; Tsybin, N N; Zuev, S Yu

    2016-06-10

    Al, with a passband in the wavelength range of 17-60 nm, and Zr, with a passband in the wavelength range of 6.5-17 nm, thin films on a support grid or support membrane are frequently used as UV, visible, and near-IR blocking filters in solar observatories. Although they possess acceptable optical performance, these filters also have some shortcomings such as low mechanical strength and low resistance to oxidation. These shortcomings hinder meeting the requirements for filters of future telescopes. We propose multilayer thin film filters on the basis of Al, Zr, and other materials with improved characteristics. It was demonstrated that stretched multilayer films on a support grid with a mesh size up to 5 mm can withstand vibration loads occurring during spacecraft launch. A large mesh size is preferable for filters of high-resolution solar telescopes, since it allows image distortion caused by light diffraction on the support grid to be avoided. We have investigated the thermal stability of Al/Si and Zr/Si multilayers assuming their possible application as filters in the Intergelioprobe project, in which the observation of coronal plasma will take place close to the Sun. Zr/Si films show high thermal stability and may be used as blocking filters in the wavelength range of 12.5-17 nm. Al/Si films show lower thermal stability: a significant decrease in the film's transmission in the EUV spectral range and an increase in the visible spectrum have been observed. We suppose that the low thermal stability of Al/Si films restricts their application in the Intergelioprobe project. Thus, there is a lack of filters for the wavelength range of λ>17  nm. Be/Si and Cr/Si filters have been proposed for the wavelength range near 30.4 nm. Although these filters have lower transparency than Al/Si, they are superior in thermal stability. Multilayer Sc/Al filters with relatively high transmission at a wavelength of 58.4 nm (HeI line) and simultaneously sufficient rejection in the

  5. Thin film multilayer filters for solar EUV telescopes.

    PubMed

    Chkhalo, N I; Drozdov, M N; Kluenkov, E B; Kuzin, S V; Lopatin, A Ya; Luchin, V I; Salashchenko, N N; Tsybin, N N; Zuev, S Yu

    2016-06-10

    Al, with a passband in the wavelength range of 17-60 nm, and Zr, with a passband in the wavelength range of 6.5-17 nm, thin films on a support grid or support membrane are frequently used as UV, visible, and near-IR blocking filters in solar observatories. Although they possess acceptable optical performance, these filters also have some shortcomings such as low mechanical strength and low resistance to oxidation. These shortcomings hinder meeting the requirements for filters of future telescopes. We propose multilayer thin film filters on the basis of Al, Zr, and other materials with improved characteristics. It was demonstrated that stretched multilayer films on a support grid with a mesh size up to 5 mm can withstand vibration loads occurring during spacecraft launch. A large mesh size is preferable for filters of high-resolution solar telescopes, since it allows image distortion caused by light diffraction on the support grid to be avoided. We have investigated the thermal stability of Al/Si and Zr/Si multilayers assuming their possible application as filters in the Intergelioprobe project, in which the observation of coronal plasma will take place close to the Sun. Zr/Si films show high thermal stability and may be used as blocking filters in the wavelength range of 12.5-17 nm. Al/Si films show lower thermal stability: a significant decrease in the film's transmission in the EUV spectral range and an increase in the visible spectrum have been observed. We suppose that the low thermal stability of Al/Si films restricts their application in the Intergelioprobe project. Thus, there is a lack of filters for the wavelength range of λ>17  nm. Be/Si and Cr/Si filters have been proposed for the wavelength range near 30.4 nm. Although these filters have lower transparency than Al/Si, they are superior in thermal stability. Multilayer Sc/Al filters with relatively high transmission at a wavelength of 58.4 nm (HeI line) and simultaneously sufficient rejection in the

  6. Optics and multilayer coatings for EUVL systems

    SciTech Connect

    Soufli, R; Bajt, S; Hudyma, R M; Taylor, J S

    2008-03-21

    EUV lithography (EUVL) employs illumination wavelengths around 13.5 nm, and in many aspects it is considered an extension of optical lithography, which is used for the high-volume manufacturing (HVM) of today's microprocessors. The EUV wavelength of illumination dictates the use of reflective optical elements (mirrors) as opposed to the refractive lenses used in conventional lithographic systems. Thus, EUVL tools are based on all-reflective concepts: they use multilayer (ML) coated optics for their illumination and projection systems, and they have a ML-coated reflective mask.

  7. Multilayered model in optics and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Kovalev, M. D.

    2009-08-01

    Three types of dispersion equations are analyzed that describe the eigenvalues of the effective refractive index of a multilayer plane optical waveguide and the energy eigenvalues of a quantum particle placed in a piecewise constant potential field. The first equation (D1) is derived by setting to zero the determinant of the system of linear equations produced by matching the solutions in the layers. The second equation (D2) is obtained using the well-known method of characteristic matrices. The third equation has been obtained in the general case by the author and is known as a multilayer equation. Simple relations between the three equations are established. It is shown that the set of roots of D2 exactly coincides with the set of eigenvalues of the multilayer problem, while the roots of D1 and the multilayer equation contain those equal to the refractive index in the optical case (or to the potential in the quantum case) in internal layers of the system, which may be superfluous. Examples are presented.

  8. Developing Multilayer Thin Film Strain Sensors With High Thermal Stability

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Gonzalez, Jose M., III

    2006-01-01

    A multilayer thin film strain sensor for large temperature range use is under development using a reactively-sputtered process. The sensor is capable of being fabricated in fine line widths utilizing the sacrificial-layer lift-off process that is used for micro-fabricated noble-metal sensors. Tantalum nitride films were optimized using reactive sputtering with an unbalanced magnetron source. A first approximation model of multilayer resistance and temperature coefficient of resistance was used to set the film thicknesses in the multilayer film sensor. Two multifunctional sensors were fabricated using multilayered films of tantalum nitride and palladium chromium, and tested for low temperature resistivity, TCR and strain response. The low temperature coefficient of resistance of the films will result in improved stability in thin film sensors for low to high temperature use.

  9. Nonlinear optical thin films

    NASA Technical Reports Server (NTRS)

    Leslie, Thomas M.

    1993-01-01

    A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film

  10. Optical effects of highly curved multilayer structure found in the scale of structurally colored moth

    NASA Astrophysics Data System (ADS)

    Yoshioka, Shinya; Kinoshita, Shuichi

    2009-08-01

    Multilayer interference phenomenon has been widely applied to various optical components that have highly wavelength-selective properties in reflection and transmission. In nature, some animals also take advantage of a similar mechanism for the coloration of their brilliant bodies. However, natural examples of multilayer thin-film structure are often modified in some structural aspects, and the modifications have been found to cause interesting optical effects. Recently, we found such an example, highly curved multilayer structure, in the wing scale of the Madagascan sunset moth. In this paper, we report the extended study of this subject. First, we will review the structural characteristics and various optical phenomena that occur on the wing of the moth. Second, inspired by the coloration mechanism of the moth wing, we newly consider multilayer designs for the color plates that change their colors depending on the analyzing direction of polarization.

  11. Thin-film optical initiator

    DOEpatents

    Erickson, Kenneth L.

    2001-01-01

    A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.

  12. Spin-orbit torque induced reversible coercivity change in Co/Pd multilayer thin films

    NASA Astrophysics Data System (ADS)

    Garcia, Davil; Lou, Paul C.; Butler, John; Kumar, Sandeep

    2016-11-01

    In this work, we report reversible reduction in coercivity of Co/Pd multilayer thin films under high-density direct current biasing. We carried out in-situ focused magneto optic Kerr effect based hysteresis measurement while the specimen was under DC bias. The experiments show a reversible reduction in coercivity during the application of direct current. We propose this reduction occurs due to the field like spin-orbit torque generated by spin Hall effect. These results are further supported by the anomalous Hall effect measurement, which do not show any change in coercivity. The magneto-optic Kerr measurement probes the surface (penetration depth) whereas anomalous Hall effect is a bulk transport behavior. These complimentary measurements prove that the origin of spin-orbit torques in ferromagnetic metal/ heavy metal multilayer thin films is spin-Hall effect.

  13. Multilayer Dielectric Transmissive Optical Phase Modulator

    NASA Technical Reports Server (NTRS)

    Keys, Andrew Scott; Fork, Richard Lynn

    2004-01-01

    A multilayer dielectric device has been fabricated as a prototype of a low-loss, low-distortion, transmissive optical phase modulator that would provide as much as a full cycle of phase change for all frequency components of a transmitted optical pulse over a frequency band as wide as 6.3 THz. Arrays of devices like this one could be an alternative to the arrays of mechanically actuated phase-control optics (adaptive optics) that have heretofore been used to correct for wave-front distortions in highly precise optical systems. Potential applications for these high-speed wave-front-control arrays of devices include agile beam steering, optical communications, optical metrology, optical tracking and targeting, directional optical ranging, and interferometric astronomy. The device concept is based on the same principle as that of band-pass interference filters made of multiple dielectric layers with fractional-wavelength thicknesses, except that here there is an additional focus on obtaining the desired spectral phase profile in addition to the device s spectral transmission profile. The device includes a GaAs substrate, on which there is deposited a stack of GaAs layers alternating with AlAs layers, amounting to a total of 91 layers. The design thicknesses of the layers range from 10 nm to greater than 1 micrometer. The number of layers and the thickness of each layer were chosen in a computational optimization process in which the wavelength dependences of the indices of refraction of GaAs and AlAs were taken into account as the design was iterated to maximize the transmission and minimize the group-velocity dispersion for a wavelength band wide enough to include all significant spectral components of the pulsed optical signal to be phase modulated.

  14. Broadband spectrophotometry on nonplanar EUV multilayer optics

    NASA Astrophysics Data System (ADS)

    Balasa, I.; Blaschke, H.; Ristau, D.

    2011-04-01

    A reliable and compact EUV-spectrometer adapted for the broadband analysis of curved EUV-optics for near normal incidence applications will be presented. Using a specific design for the specimen holder, the limits of both types of samples, convex and concave, can be verified. The capability of the device is confirmed by investigations in the spectral reflectivity of a single EUV-multilayer mirror deposited on a silicon wafer. Its radius of curvature (ROC) is continuously adjustable, providing a direct comparison of the detected peak reflectivity, peak location and spectral bandwidth in dependence on its curvature. The range of curvature applied is in compliance with optics specifications of current projection systems for EUV-lithography.

  15. A Magnetron Sputter Deposition System for the Development of Multilayer X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Broadway, David; Ramsey, Brian; Gubarev, Mikhail

    2014-01-01

    The proposal objective is to establish the capability to deposit multilayer structures for x-ray, neutron, and EUV optic applications through the development of a magnetron sputtering deposition system. A specific goal of this endeavor is to combine multilayer deposition technology with the replication process in order to enhance the MSFC's position as a world leader in the design of innovative X-ray instrumentation through the development of full shell replicated multilayer optics. The development of multilayer structures is absolutely necessary in order to advance the field of X-ray astronomy by pushing the limit for observing the universe to ever increasing photon energies (i. e. up to 200 keV or higher); well beyond Chandra (approx. 10 keV) and NuStar's (approx. 75 keV) capability. The addition of multilayer technology would significantly enhance the X-ray optics capability at MSFC and allow NASA to maintain its world leadership position in the development, fabrication and design of innovative X-ray instrumentation which would be the first of its kind by combining multilayer technology with the mirror replication process. This marriage of these technologies would allow astronomers to see the universe in a new light by pushing to higher energies that are out of reach with today's instruments.To this aim, a magnetron vacum sputter deposition system for the deposition of novel multilayer thin film X-ray optics is proposed. A significant secondary use of the vacuum deposition system includes the capability to fabricate multilayers for applications in the field of EUV optics for solar physics, neutron optics, and X-ray optics for a broad range of applications including medical imaging.

  16. Reflectance, Optical Properties, and Stability of Molybdenum/Strontium and Molybdenum/Yttrium Multilayer Mirrors

    SciTech Connect

    Kjornrattanawanich, B

    2002-09-01

    The motivation of this work is to develop high reflectance normal-incidence multilayer mirrors in the 8-12 nm wavelength region for applications in astronomy and extreme ultraviolet lithography. To achieve this goal, Mo/Sr and Mo/Y multilayers were studied. These multilayers were deposited with a UHV magnetron sputtering system and their reflectances were measured with synchrotron radiation. High normal-incidence reflectances of 23% at 8.8 nm, 40.8% at 9.4 nm, and 48.3% at 10.5 nm were achieved. However, the reflectance of Mo/Sr multilayers decreased rapidly after exposure to air. Attempts to use thin layers of carbon to passivate the surface of Mo/Sr multilayers were unsuccessful. Experimental results on the refractive index {tilde n} = 1-{delta} + i{beta} of yttrium and molybdenum in the 50-1300 eV energy region are reported in this work. This is the first time ever that values on the refractive index of yttrium are measured in this energy range. The absorption part {beta} was determined through transmittance measurements. The dispersive part {delta} was calculated by means of the Kramers-Kronig formalism. The newly determined values of the refractive index of molybdenum are in excellent agreement with the published data. Those of yttrium are more accurate and contain fine structures around the yttrium M-absorption edges where Mo/Y multilayers operate. These improved sets of optical data lead to better design and modeling of the optical properties of Mo/Y multilayers. The reflectance quality of Mo/Y multilayers is dependent on their optical and structural properties. To correlate these properties with the multilayer reflectance, x-ray diffraction, Rutherford backscattering spectrometry, and transmission electron microscopy were used to analyze samples. Normal-incidence reflectances of 32.6% at 9.27 nm, 38.4% at 9.48 nm, and 29.6% at 9.46 nm were obtained from three representative Mo/Y multilayers which had about 0%, 25%, and 39% atomic oxygen assimilated in their

  17. Design and optimization of microbolometer multilayer optical cavity

    NASA Astrophysics Data System (ADS)

    Awad, E.; Al-Khalli, N.; Abdel-Rahman, M.; Debbar, N.; Alduraibi, M.

    2015-03-01

    Microbolometers are the most widely used detectors in long-wave infrared uncooled thermal imagers. An optical cavity is required within a microbolometer structure to increase its optical absorption. In this work we present a detailed study on the design and optimization of a microbolometer optical cavity using Essential-Macleod package. In the simulations, the cavity is considered as thin film multi-layers that form cascaded Fabry-Perot optical cavities. In the design phase, the layers structures are selected including materials and initial thickness. The absorbing layers are chosen to be vanadium-pentoxide (V2O5) and titanium (Ti). In the optimization phase, the designed layer thicknesses are varied to maximize optical absorption within the absorbing layers. The simulations show that Ti layer absorption dominates over V2O5 layer. Also, the optimization proves that the air-gap cavity thickness is not simply quarter-wavelength because of the complex cascaded Fabry-Perot structure. The optimized air-gap thickness here is ≈3.5 µm at 10.6µm wavelength.

  18. Design and optimization of microbolometer multilayer optical cavity

    SciTech Connect

    Awad, E.; Al-Khalli, N.; Debbar, N.; Abdel-Rahman, M.; Alduraibi, M.

    2015-03-30

    Microbolometers are the most widely used detectors in long-wave infrared uncooled thermal imagers. An optical cavity is required within a microbolometer structure to increase its optical absorption. In this work we present a detailed study on the design and optimization of a microbolometer optical cavity using Essential-Macleod package. In the simulations, the cavity is considered as thin film multi-layers that form cascaded Fabry-Perot optical cavities. In the design phase, the layers structures are selected including materials and initial thickness. The absorbing layers are chosen to be vanadium-pentoxide (V{sub 2}O{sub 5}) and titanium (Ti). In the optimization phase, the designed layer thicknesses are varied to maximize optical absorption within the absorbing layers. The simulations show that Ti layer absorption dominates over V{sub 2}O{sub 5} layer. Also, the optimization proves that the air-gap cavity thickness is not simply quarter-wavelength because of the complex cascaded Fabry-Perot structure. The optimized air-gap thickness here is ≈3.5 µm at 10.6µm wavelength.

  19. Method to adjust multilayer film stress induced deformation of optics

    DOEpatents

    Spiller, Eberhard A.; Mirkarimi, Paul B.; Montcalm, Claude; Bajt, Sasa; Folta, James A.

    2000-01-01

    Stress compensating systems that reduces/compensates stress in a multilayer without loss in reflectivity, while reducing total film thickness compared to the earlier buffer-layer approach. The stress free multilayer systems contain multilayer systems with two different material combinations of opposite stress, where both systems give good reflectivity at the design wavelengths. The main advantage of the multilayer system design is that stress reduction does not require the deposition of any additional layers, as in the buffer layer approach. If the optical performance of the two systems at the design wavelength differ, the system with the poorer performance is deposited first, and then the system with better performance last, thus forming the top of the multilayer system. The components for the stress reducing layer are chosen among materials that have opposite stress to that of the preferred multilayer reflecting stack and simultaneously have optical constants that allow one to get good reflectivity at the design wavelength. For a wavelength of 13.4 nm, the wavelength presently used for extreme ultraviolet (EUV) lithography, Si and Be have practically the same optical constants, but the Mo/Si multilayer has opposite stress than the Mo/Be multilayer. Multilayer systems of these materials have practically identical reflectivity curves. For example, stress free multilayers can be formed on a substrate using Mo/Be multilayers in the bottom of the stack and Mo/Si multilayers at the top of the stack, with the switch-over point selected to obtain zero stress. In this multilayer system, the switch-over point is at about the half point of the total thickness of the stack, and for the Mo/Be--Mo/Si system, there may be 25 deposition periods Mo/Be to 20 deposition periods Mo/Si.

  20. Multiple analysis of an unknown optical multilayer coating

    SciTech Connect

    Dobrowolski, J.A.; Ho, F.C.; Waldorf, A.; Mitchell, D.F.; Costich, V.R.; Vincent, S.; Thoeni, W.; Casparis, E.; Pfefferkorn, R.; Bartella, J.

    1985-08-15

    Results are given of the analysis at five different laboratories of an unknown optical multilayer coating. In all, eleven different analytical and laboratory techniques were applied to the problem. The multilayer nominally consisted of three dielectric and two metallic layers. It was demonstrated convincingly that with present day techniques it is possible to determine the basic structure of such a coating.

  1. Cobalt-Based Hard Magnets, Thin Films and Multilayers

    NASA Astrophysics Data System (ADS)

    Gao, Chuan

    1991-02-01

    Co-based magnetic materials including bulk, thin film and magnetic multilayers have been studied. The purpose of the first part of this work is to study a Co -based transition metal alloy to be processed to result in significant enhancement of its magnetic properties (coercivity, magnetization, and energy product) in the absence rare earths. CoZr(Hf)BSi alloys have been studied. Rapidly quenched Co_ {78}Zr_{16}B_3Si_3 and Co_{76}Hf_ {76}B_3Si_3 showed the highest coercivity (6.7 kOe and 6.5 kOe respectively). This is the highest room temperature coercivity reported in a non -rare-earth containing magnet up to now. This system has excellent thermal stability. Co-based thin film alloys were also studied and we obtain coercivities as high as 700 Oe for sputtered thin films. This lies in between the maximum value obtained for as-cast bulk alloys (50 Oe) and rapidly quenched alloys (6.7 kOe). Multilayers were studied with the objective of determining the effect of interfaces on the magnetic properties of Co alloys. Multilayers of the form Co/Cu, Co_{95}B _5/Cu and Co/Al were studied and the interface anisotropy was found to favor a magnetization perpendicular to the film. Very thin magnetic layers led to very small coercivities since the size of magnetic domains was restricted. We also noted some interesting layer-layer magnetic interactions. Finally some unusual magnetization reversal behavior was noted in which the magnetic moment goes to zero and reverses before the applied field goes to zero.

  2. Plasma deposition of thin film multilayers for surface engineering

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, R.; Kumar, Sushil

    2012-06-01

    Plasma surface Engineering for enhancing optical and tribological behaviour of a surface is discussed. Specifically, it is shown how optimized PECVD processing can produce sophisticated Rugate filters and AR coatings on plastic lenses. It is found that multilayer Diamond Like Carbon coatings (DLC), in a functionally graded geometry, obtained by a combination of plasma intensive processing, not only can impart high value of hardness to a surface but also wear protection at high contact loads.

  3. Strong ultraviolet and violet emissions from ZnO/TiO2 multilayer thin films

    NASA Astrophysics Data System (ADS)

    Xu, Linhua; Zheng, Gaige; Wu, Hongyan; Wang, Junfeng; Gu, Fang; Su, Jing; Xian, Fenglin; Liu, Zhanhui

    2013-06-01

    ZnO/TiO2 multilayer thin films were prepared by electron beam evaporation and the influence of annealing temperature on their structural and optical properties was investigated. The analyses of X-ray diffraction (XRD) show that TiO2 in the as-deposited ZnO/TiO2 multilayer thin film as well as in that one annealed at 300 °C is amorphous. When the annealing temperature is increased up to 400 °C, the TiO2 is transformed into a brookite phase. Eventually, the TiO2 is transformed into an anatase phase with the annealing temperature rising up to 500 °C. However, ZnO in these composite films all crystallizes in a wurtzite structure and has a preferred orientation along the (0 0 2) direction whether the ZnO/TiO2 multilayer thin film is annealed or not. The photoluminescence spectra show that all the samples have two strong emission peaks including an ultraviolet (UV) peak and a violet peak. The strong UV and violet co-emissions in ZnO materials is seldom reported previously. With the increase of annealing temperature, both the UV and violet emissions are enhanced. However, the intensity of UV emission is increased faster than that of the violet emission under the same annealing temperature. The mechanism of the violet emission and the reason for the variations of the UV and violet emissions with the different annealing temperatures are analyzed.

  4. Articles including thin film monolayers and multilayers

    DOEpatents

    Li, DeQuan; Swanson, Basil I.

    1995-01-01

    Articles of manufacture including: (a) a base substrate having an oxide surface layer, and a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, (b) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, and a metal species attached to the multidentate ligand, (c) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, a metal species attached to the multidentate ligand, and a multifunctional organic ligand attached to the metal species, and (d) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, a metal species attached to the multidentate ligand, a multifunctional organic ligand attached to the metal species, and a second metal species attached to the multifunctional organic ligand, are provided, such articles useful in detecting the presence of a selected target species, as nonliear optical materials, or as scavengers for selected target species.

  5. Optical Properties of Multi-Layered Insulation

    NASA Technical Reports Server (NTRS)

    Rodriguez, Heather M.; Abercromby, Kira J.; Barker, Edwin

    2007-01-01

    Multi-layer insulation, MLI, is a material used on rocket bodies and satellites mainly for thermal insulation. MLI can be comprised of a variety of materials, layer numbers, and dimensions based on its purpose. A common composition of MLI consists of outer facing copper-colored Kapton with an aluminized backing for the top and bottom layers and the middle consisting of alternating layers of DARCON or Nomex netting with aluminized Mylar. If this material became separated from the spacecraft or rocket body its orbit would vary greatly in eccentricity due to its high area to mass (A/m) and susceptibility to solar radiation pressure perturbations. Recently a debris population was found with high A/m, which could be MLI. Laboratory photometric measurements of one intact piece and three different layers of MLI is presented in an effort to predict the characteristics of a MLI light curve and aid in identifying the source of the new population. For this paper, the layers used will be consistent with the common MLI mentioned in the above paragraph. Using a robotic arm, the piece was rotated from 0-360 degrees in one degree increments along the object s longest axis. Laboratory photometric data was recorded with a CCD camera using various filters (Johnson B, Johnson V and Bessell R). The measurements were taken at an 18 degree (light-object-camera) phase angle. As expected, the MLI pieces showed characteristics similar to a bimodal magnitude plot of a flat plate, but with more photometric features, dependant upon the layer of MLI. Time exposures varied from piece to piece such that the amount of pixels saturated would be minimal. In addition to photometric laboratory measurements, laboratory spectral measurements are shown for the same MLI samples. Spectral data will be combined to match the wavelength region of photometric data so a measure of truth can be established for the photometric measurements. Spectral data shows a strong absorption feature near 4800 angstroms

  6. Highly stable thin film transistors using multilayer channel structure

    SciTech Connect

    Nayak, Pradipta K.; Wang, Zhenwei; Anjum, D. H.; Hedhili, M. N.; Alshareef, H. N.

    2015-03-09

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO{sub 2}) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured at room temperature and at 60 °C. A tremendous improvement in gate-bias stress stability was obtained in case of the TFT with multiple layers of ZnO embedded between HfO{sub 2} layers compared to the TFT with a single layer of ZnO as the semiconductor. The ultra-thin HfO{sub 2} layers act as passivation layers, which prevent the adsorption of oxygen and water molecules in the ZnO layer and hence significantly improve the gate-bias stress stability of ZnO TFTs.

  7. Investigation of multi-layer thin films for energy storage.

    SciTech Connect

    Renk, Timothy Jerome; Monson, Todd

    2009-01-01

    We investigate here the feasibility of increasing the energy density of thin-film capacitors by construction of a multi-layer capacitor device through ablation and redeposition of the capacitor materials using a high-power pulsed ion beam. The deposition experiments were conducted on the RHEPP-1 facility at Sandia National Laboratories. The dielectric capacitor filler material was a composition of Lead-Lanthanum-Zirconium-Titanium oxide (PLZT). The energy storage can be increased by using material of intrinsically high dielectric constant, and constructing many thin layers of this material. For successful device construction, there are a number of challenging requirements including correct stoichiometric and crystallographic composition of the deposited PLZT. This report details some success in satisfying these requirements, even though the attempt at device manufacture was unsuccessful. The conclusion that 900 C temperatures are necessary to reconstitute the deposited PLZT has implications for future manufacturing capability.

  8. Multilayer cloud detection and retrieval of cloud physical and optical properties from thermal infrared measurements

    NASA Astrophysics Data System (ADS)

    Iwabuchi, H.; Tokoro, Y.; Saito, M.; Putri, N. S.; Katagiri, S.; Sekiguchi, M.

    2015-12-01

    Recent studies using active remote sensing have revealed significant occurrence of multi-layer cloud. Detection of multi-layer cloud is important in passive remote sensing for quality assessment of cloud property retrieval and identification of uncertain retrievals. An algorithm using several thermal infrared (TIR) bands at 6-13.5 micron wavelengths to detect multilayer cloud and retrieve cloud physical and optical properties including cloud thermodynamic phase is developed. This significantly extends applicability of passive remote sensing and improves accuracy of cloud property retrieval. The method uses the split window bands as well as the carbon dioxide and water vapor absorption bands. The forward model uses the two-stream approximation to solve radiative transfer with gaseous absorption treated by the correlated-k distribution method. Brightness temperature errors are evaluated by model-to-model and model-to-measurement comparisons. Top pressure of lower cloud in multi-layer cloud column can be retrieved if the upper cloud optical thickness is less than 6. The optimal estimation method is used to simultaneously infer several cloud properties including water path, effective particle radius and cloud-top pressure. The method is applied to the Moderate Resolution Imaging Spectroradiometer (MODIS) using 10 TIR bands and compared to MODIS operational product and active remote sensing measurements, showing promising results. The TIR method well detects optically thin clouds and retrieve their properties with relatively high accuracy. Particularly, cloud-top of optically thin cloud is estimated well. Multi-layer cloud detection works usually, while the TIR measurements miss very thin cloud that appears near the tropopause. The algorithm will be applied to frequent observation data from a new Japanese geostationary satellite, Himawari-8.

  9. Thinning of large-area graphene film from multilayer to bilayer with a low-power CO2 laser.

    PubMed

    Lin, Zhe; Huang, Ting; Ye, Xiaohui; Zhong, Minlin; Li, Lin; Jiang, Juan; Zhang, Wen; Fan, Lili; Zhu, Hongwei

    2013-07-12

    Bilayer graphene has attracted a great deal of attention for many electronic and optical applications. Although large-area bilayer graphene can be synthesized by chemical vapor deposition (CVD), multilayer growth often occurs and subsequent processes are required to obtain uniform bilayer films. We report an efficient way of thinning multilayer graphene film by low-power CO2 laser irradiation in vacuum. With a laser power density of ~10(2) W cm(-2), pristine graphene film of 4-5 layers can be thinned to a bilayer free of defects in 30 s. Contrary to previous laser-assisted graphene thinning processes, which reduced graphene layers precisely and locally with a high power density and a small beam diameter, our approach enables high-efficiency thinning of large-area graphene film whilst using a significantly reduced power density and an increased laser beam diameter.

  10. Magnetism of thin film multilayers: An analogue of interacting platelets

    SciTech Connect

    Felcher, G.P.; Huang, Y.Y.

    1991-11-01

    Progress is being made toward manufacturing materials with magnetic properties tailored to the desired application. This result is reached in several steps, which are monitored with different optical techniques such as polarized neutron reflectometry. First, ferromagnetic, metallic films (of Fe, Co, Ni, Gd), a few nanometers thick, are prepared by vapor deposition. Their magnetization can be tuned by changing the chemistry of thickness of the films, and can be biased by embedding the films into a matrix of antiferromagnetic material. Ensembles of metallic films (multilayers of superlattices) can be created, with a magnetic coupling between adjacent layers regulated by the nature and thickness of the spacer. For increasing spacer thickness, the alignment of neighboring magnetic layers switches between a parallel (F) and an opposite arrangement (AF) in an oscillatory manner. In multilayer structures possessing more than one kind of magnetic atom complex magnetic phase diagrams have been predicted to occur, with properties that are strongly influenced by the presence of a surface. With these characteristics, the phenomenology of magnetic multilayers draws a close similarity to the physics of interacting platelets.

  11. Investigation of optical and interfacial properties of Ag/Ta{sub 2}O{sub 5} metal dielectric multilayer structure

    SciTech Connect

    Sarkar, P. Jena, S.; Tokas, R. B.; Thakur, S.; Sahoo, N. K.; Rao, K. D.; Misal, J. S.; Prathap, C.

    2015-06-24

    One-dimensional periodic metal-dielectric multilayer thin film structures consisting of Ag and Ta{sub 2}O{sub 5} alternating layers are deposited on glass substrate using RF magnetron sputtering technique. The spectral property of the multilayers has been investigated using spectrophotometry technique. The optical parameters such as refractive index, extinction coefficient, band gap etc., along with film thickness as well as the interfacial layer properties which influence these properties have been probed with spectroscopic ellipsometry technique. Atomic force microscopy has been employed to characterize morphological properties of this metal-dielectric multilayer.

  12. Thin display optical projector

    DOEpatents

    Veligdan, James T.

    1999-01-01

    An optical system (20) projects light into a planar optical display (10). The display includes laminated optical waveguides (12) defining an inlet face (14) at one end and an outlet screen (16) at an opposite end. A first mirror (26) collimates light from a light source (18) along a first axis, and distributes the light along a second axis. A second mirror (28) collimates the light from the first mirror along the second axis to illuminate the inlet face and produce an image on the screen.

  13. Study of NbC thin films for soft X-ray multilayer applications

    SciTech Connect

    Singh, Amol E-mail: rrcat.amol@gmail.com; Modi, Mohammed H.; Lodha, G. S.; Rajput, Parasmani; Jha, S. N.

    2015-06-24

    Compound materials are being used in soft x-ray and Extreme ultraviolet (EUV) optics applications. Structural properties of compound materials changes drastically when ultrathin films are formed from bulk material. Structural properties need to be investigated to determine the suitability of compound materials in soft x-ray multilayer applications. In the present study Niobium carbide (NbC) thin films were deposited using ion beam sputtering of an NbC target on Si (100) substrate. Thickness roughness and film mass density was determined from the X-ray reflectivity (XRR) data. XRR data revealed that the film mass density was increasing with increase in film thickness. For 500Ǻ thick film, mass density of 6.85 g/cm{sup 3}, close to bulk density was found. Rms roughness for all the films was less than 10Å. Local structure of NbC thin films was determined from EXAFS measurements. The EXAFS data showed an increase in Nb-C and Nb-(C)-Nb peak ratio approaches towards bulk NbC with increasing thickness of NbC. From the present study, NbC thin films were found suitable for actual use in soft x-ray multilayer applications.

  14. Thin Aerogel as a Spacer in Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Moroz, Nancy

    2015-01-01

    Cryogenic fluid management is a critical technical area that is needed for future space exploration. A key challenge is the storability of liquid hydrogen (LH2), liquid methane (LCH4), and liquid oxygen (LOX) propellants for long-duration missions. The storage tanks must be well-insulated to prevent over-pressurization and venting, which can lead to unacceptable propellant losses for long-duration missions to Mars and beyond. Aspen Aerogels had validated the key process step to enable the fabrication of thin, low-density aerogel materials. The multilayer aerogel insulation (MLAI) system prototypes were prepared using sheets of aerogel materials with superior thermal performance exceeding current state-of-the-art insulation for space applications. The exceptional properties of this system include a new breakthrough in high-vacuum cryogenic thermal insulation, providing a durable material with excellent thermal performance at a reduced cost when compared to longstanding state-of-the-art multilayer insulation systems. During the Phase II project, further refinement and qualification/system-level testing of the MLAI system will be performed for use in cryogenic storage applications. Aspen has been in discussions with United Launch Alliance, LLC; NASA's Kennedy Space Center; and Yetispace, Inc., to test the MLAI system on rea-lworld tanks such as Vibro-Acoustic Test Article (VATA) or the Cryogenic Orbital Testbed (CRYOTE).

  15. Thin Aerogel as a Spacer in Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Moroz, Nancy

    2015-01-01

    Cryogenic fluid management is a critical technical area that is needed for future space exploration. A key challenge is the storability of liquid hydrogen (LH2), liquid methane (LCH4), and liquid oxygen (LOX) propellants for long-duration missions. The storage tanks must be well-insulated to prevent over-pressurization and venting, which can lead to unacceptable propellant losses for long-duration missions to Mars and beyond. Aspen Aerogels had validated the key process step to enable the fabrication of thin, low-density aerogel materials. The multilayer aerogel insulation (MLAI) system prototypes were prepared using sheets of aerogel materials with superior thermal performance exceeding current state-of-the-art insulation for space applications. The exceptional properties of this system include a new breakthrough in high-vacuum cryogenic thermal insulation, providing a durable material with excellent thermal performance at a reduced cost when compared to longstanding state-of-the-art multilayer insulation systems. During the Phase II project, further refinement and qualification/system-level testing of the MLAI system will be performed for use in cryogenic storage applications. Aspen has been in discussions with United Launch Alliance, LLC; NASA's Kennedy Space Center; and Yetispace, Inc., to test the MLAI system on real-world tanks such as Vibro-Acoustic Test Article (VATA) or the Cryogenic Orbital Testbed (CRYOTE).

  16. Optical Properties of Multi-Layered Insulation

    NASA Astrophysics Data System (ADS)

    Rodriguez, H.; Abercromby, K.; Mulrooney, M.; Barker, E.

    Multi-layer insulation (MLI) is a material used on rocket bodies and satellites primarily for thermal insulation. MLI is comprised of a variety of materials, layer numbers, and dimensions to satisfy specific design requirements. Typically, it is a sandwich of outward facing copper-colored Kapton layers with inward facing aluminized backing. The inner layers consist of alternating DACRON or Nomex netting and aluminized Mylar. From an orbital mechanics perspective, if this material becomes separated from a spacecraft or rocket body, its orbit will vary greatly in eccentricity due to both its high area-to-mass ratio (A/m) and its susceptibility to solar radiation pressure perturbations. Recently, a debris population was found with high A/m which could be MLI. Laboratory photometric measurements of one intact piece and three different layers of MLI are presented in an effort to ascertain the characteristics of MLI light curves and aid in identifying the source of the new population. For this paper, the layers used will be consistent with the aforementioned common MLI. Using a robotic arm, the piece was rotated from 0-360 degrees in 10? increments along the objects longest axis. Laboratory photometric data was recorded with a CCD camera and a 300 W Xenon arc light source selected to approximate the solar spectrum. The measurements were taken in white light and using various filters (Johnson Blue (B), Visible (V), and Bessell Red (R)), all taken at an 18 degree (light-object-camera) phase angle selected to closely match typical GEO observations which follow the anti-solar point. As expected, the MLI pieces exhibited characteristics similar to a bimodal magnitude plot of a flat plate, but with photometric features dependent upon the layer composition. To minimize highlight saturation (and consequent loss of intensity information), exposure times were selected empirically based on layer type and filter. In addition to photometric laboratory measurements, laboratory

  17. Predicting polymorphic phase stability in multilayered thin films

    NASA Astrophysics Data System (ADS)

    Thompson, Gregory Bruce

    As thin films are reduced in thickness, allotropic phase transformations to structures that are not the equilibrium phase in the standard state can be stabilized. These polymorphic phase transformations have been referred to as pseudomorphism. Many of these pseudomorphic phases have been serendipitously discovered. For the first time, the use of a classical thermodynamic model has been developed in the prediction of phase stability in Zr/Nb and Ti/Nb multilayered thin film structures. The classical thermodynamic model predicts that in regions of high volume fractions of Nb, the lower volume fraction, or alternatively, the thinner Zr or Ti layer, can be stabilized as a bcc phase rather then an hcp phase. The pseudomorphic phase is stabilized by a reduction in the interfacial free energy. An outcome of the classical thermodynamic model is a new type of phase stability diagram, referred to as a biphase diagram, in predicting which combinations of length scale and volume fraction will stabilize the pseudomorphic or bulk equilibrium phases. The change in hcp to bcc phase stability in Zr and Ti has been confirmed by transmission and reflection x-ray diffraction and electron diffraction. In each case, the Zr or Ti layer adopted a lattice parameter similar to its high temperature beta-bcc lattice parameter. An O-lattice construction, a nearest-neighbor-bond model, and a van der Merwe model have been used to estimate the contributing structural and chemical contributions to the hcp-bcc interfacial free energy reduction value. The Zr/Nb values match well to experimentally determined interfacial free energies that can be calculated from the slopes of the stability boundaries on the biphase diagram. Atom Probe Tomography (APT) results indicated a significant interdiffusion of up to 15 at.% Nb into the Ti layers that helped to facilitate the hcp-bcc transition in Ti. Refinement of the free energy calculations using the APT results brought the predicted and experimental

  18. All-optical control of ferromagnetic thin films and nanostructures.

    PubMed

    Lambert, C-H; Mangin, S; Varaprasad, B S D Ch S; Takahashi, Y K; Hehn, M; Cinchetti, M; Malinowski, G; Hono, K; Fainman, Y; Aeschlimann, M; Fullerton, E E

    2014-09-12

    The interplay of light and magnetism allowed light to be used as a probe of magnetic materials. Now the focus has shifted to use polarized light to alter or manipulate magnetism. Here, we demonstrate optical control of ferromagnetic materials ranging from magnetic thin films to multilayers and even granular films being explored for ultra-high-density magnetic recording. Our finding shows that optical control of magnetic materials is a much more general phenomenon than previously assumed and may have a major impact on data memory and storage industries through the integration of optical control of ferromagnetic bits.

  19. Multilayer and grazing incidence X-ray/EUV optics for astronomy and projection lithography; Proceedings of the Meeting, San Diego, CA, July 19-22, 1992

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Editor); Walker, Arthur B. C., Jr. (Editor)

    1993-01-01

    The present volume on multilayer and grazing incidence X-ray/EUV optics for astronomy and projection lithography discusses AXAF grazing incidence mirrors, the theory and high throughput optics of grazing incidence optics, multilayer mirror fabrication and characterization, and multilayer optics for X-ray projection lithography. Attention is given to the VETA-I X-ray detection system, a motion detection system for AXAF X-ray ground testing, image analysis of the AXAF VETA-I X-ray mirror, and optical constants from mirror reflectivities measured at synchrotrons. Topics discussed include the application of aberration theory to calculate encircled energy of Wolter I-II telescopes, W/C multilayers deposited on plastic films, nonspecular X-ray scattering from Si/Mo multilayers, and multilayer thin-film design as FUV polarizers. Also discussed are thin-film filter lifetesting results in the EUV, chromospheric and coronal observations with multilayer optics, present and future requirements of soft X-ray projection lithography, and the imaging Schwarzschild multilayer X-ray microscope.

  20. Self-Assembled Multilayer Structure and Enhanced Thermochromic Performance of Spinodally Decomposed TiO2-VO2 Thin Film.

    PubMed

    Sun, Guangyao; Zhou, Huaijuan; Cao, Xun; Li, Rong; Tazawa, Masato; Okada, Masahisa; Jin, Ping

    2016-03-23

    Composite films of VO2-TiO2 were deposited on sapphire (11-20) substrate by cosputtering method. Self-assembled well-ordered multilayer structure with alternating Ti- and V-rich epitaxial thin layer was obtained by thermal annealing via a spinodal decomposition mechanism. The structured thermochromic films demonstrate superior optical modulation upon phase transition, with significantly reduced transition temperature. The results provide a facile and novel approach to fabricate smart structures with excellent performance. PMID:26937588

  1. Investigation of Electrical and Optical Properties of Highly Transparent TCO/Ag/TCO Multilayer.

    PubMed

    Kim, Sunbo; Lee, Jaehyeong; Dao, Vinh Ai; Ahn, Shihyun; Hussain, Shahzada Qamar; Park, Jinjoo; Jung, Junhee; Lee, Chan; Song, Bong-Shik; Choi, Byoungdeog; Lee, Youn-Jung; Iftiquar, S M; Yi, Junsin

    2015-03-01

    Transparent conductive oxides (TCOs) have been widely used as transparent electrodes for opto-electronic devices, such as solar cells, flat-panel displays, and light-emitting diodes, because of their unique characteristics of high optical transmittance and low electrical resistivity. Among various TCO materials, zinc oxide based films have recently received much attention because they have advantages over commonly used indium and tin-based oxide films. Most TCO films, however, exhibit valleys of transmittance in the wavelength range of 550-700 nm, lowering the average transmittance in the visible region and decreasing short-circuit current (Isc) of solar cells. A TCO/Ag/TCO multi-layer structure has emerged as an attractive alternative because it provides optical characteristics without the valley of transmittance compared with a 100-nm-thick single-layer TCO. In this article, we report the electrical, optical and surface properties of TCO/Ag/TCO. These multi-layers were deposited at room temperature with various Ag film thicknesses from 5 to 15 nm while the thickness of TCO thin film was fixed at 40 nm. The TCO/Ag/TCO multi-layer with a 10-nm-thick Ag film showed optimum transmittance in the visible (400-800 nm) wavelength region. These multi-layer structures have advantages over TCO layers of the same thickness. PMID:26413647

  2. Investigation of Electrical and Optical Properties of Highly Transparent TCO/Ag/TCO Multilayer.

    PubMed

    Kim, Sunbo; Lee, Jaehyeong; Dao, Vinh Ai; Ahn, Shihyun; Hussain, Shahzada Qamar; Park, Jinjoo; Jung, Junhee; Lee, Chan; Song, Bong-Shik; Choi, Byoungdeog; Lee, Youn-Jung; Iftiquar, S M; Yi, Junsin

    2015-03-01

    Transparent conductive oxides (TCOs) have been widely used as transparent electrodes for opto-electronic devices, such as solar cells, flat-panel displays, and light-emitting diodes, because of their unique characteristics of high optical transmittance and low electrical resistivity. Among various TCO materials, zinc oxide based films have recently received much attention because they have advantages over commonly used indium and tin-based oxide films. Most TCO films, however, exhibit valleys of transmittance in the wavelength range of 550-700 nm, lowering the average transmittance in the visible region and decreasing short-circuit current (Isc) of solar cells. A TCO/Ag/TCO multi-layer structure has emerged as an attractive alternative because it provides optical characteristics without the valley of transmittance compared with a 100-nm-thick single-layer TCO. In this article, we report the electrical, optical and surface properties of TCO/Ag/TCO. These multi-layers were deposited at room temperature with various Ag film thicknesses from 5 to 15 nm while the thickness of TCO thin film was fixed at 40 nm. The TCO/Ag/TCO multi-layer with a 10-nm-thick Ag film showed optimum transmittance in the visible (400-800 nm) wavelength region. These multi-layer structures have advantages over TCO layers of the same thickness.

  3. Antifouling coating of cellulose acetate thin films with polysaccharide multilayers.

    PubMed

    Mohan, Tamilselvan; Kargl, Rupert; Tradt, Karin Eva; Kulterer, Martin R; Braćić, Matej; Hribernik, Silvo; Stana-Kleinschek, Karin; Ribitsch, Volker

    2015-02-13

    In this investigation, partially deacetylated cellulose acetate (DCA) thin films were prepared and modified with hydrophilic polysaccharides with the layer-by-layer (LbL) technique. As polysaccharides, chitosan (CHI) and carboxymethyl cellulose (CMC) were used. DCA thin films were manufactured by exposing spin coated cellulose acetate to potassium hydroxide solutions for various times. The deacetylation process was monitored by attenuated total reflectance-infrared spectroscopy, film thickness and static water contact angle measurements. A maximum of three bilayers was created from the alternating deposition of CHI and CMC on the DCA films under two different conditions namely constant ionic strengths and varying pH values of the CMC solutions. Precoatings of CMC at pH 2 were used as a base layer. The sequential deposition of CMC and CHI was investigated with a quartz crystal microbalance with dissipation, film thickness, static water contact angle and atomic force microscopy (AFM) measurements. The versatility and applicability of the developed functional coatings was shown by removing the multilayers by rinsing with mixtures containing HCl/NaCl. The developed LbL coatings are used for studying the fouling behavior of bovine serum albumin (BSA).

  4. Indentation-derived elastic modulus of multilayer thin films: Effect of unloading induced plasticity

    SciTech Connect

    Jamison, Ryan Dale; Shen, Yu -Lin

    2015-08-13

    Nanoindentation is useful for evaluating the mechanical properties, such as elastic modulus, of multilayer thin film materials. A fundamental assumption in the derivation of the elastic modulus from nanoindentation is that the unloading process is purely elastic. In this work, the validity of elastic assumption as it applies to multilayer thin films is studied using the finite element method. The elastic modulus and hardness from the model system are compared to experimental results to show validity of the model. Plastic strain is shown to increase in the multilayer system during the unloading process. Additionally, the indentation-derived modulus of a monolayer material shows no dependence on unloading plasticity while the modulus of the multilayer system is dependent on unloading-induced plasticity. Lastly, the cyclic behavior of the multilayer thin film is studied in relation to the influence of unloading-induced plasticity. Furthermore, it is found that several cycles are required to minimize unloading-induced plasticity.

  5. Multilayer magnetism: A study of selected thin film systems

    NASA Astrophysics Data System (ADS)

    Tomaz, Manuel A.

    The magnetic and structural properties of selected thin film multilayers systems have been investigated by x-ray magnetic circular dichroism, Kerr effect magnetometry, and x-ray diffraction. Experimental evidence of induced moments in the spacer material layers as well as any variation in the ferromagnetic layer is given. Evidence for the stabilization of non-equilibrium structural phases in these films is also presented. The Fe/3d systems showed moments on the spacer materials which were aligned antiferromagnetically at the interface. The Fe/4d systems exhibited more variety, with Ru, Rh and Pd showing moments aligned to Fe while Mo was aligned antiferromagnetically and any Nb moment was indeterminable. Rhodium exhibited the largest induced moment which was at least 1 μB as measured in Fe/Rh multilayer films. The presence of a moment is linked to the proximity of a ferromagnetic layer while the magnitude is related to the magnitude of the FM moment. The crystalline environment is shown to play a key role in the moments away from the interface. In the bcc phase Rh retains its moment while in the fcc phase the moment is damped at the interior of the layer, thus essentially confined to the interfacial region. The Fe moments in the films studied also exhibited a variation which was correlated to the spacer elements position in the periodic table. Those elements to the left of Fe showed antiferromagnetically aligned moments, and little or no Fe moment enhancement while those to the right (or below) showed ferromagnetic alignment and enhanced Fe moments.

  6. Roll-to-Roll sputtered ITO/Cu/ITO multilayer electrode for flexible, transparent thin film heaters and electrochromic applications

    PubMed Central

    Park, Sung-Hyun; Lee, Sang-Mok; Ko, Eun-Hye; Kim, Tae-Ho; Nah, Yoon-Chae; Lee, Sang-Jin; Lee, Jae Heung; Kim, Han-Ki

    2016-01-01

    We fabricate high-performance, flexible, transparent electrochromic (EC) films and thin film heaters (TFHs) on an ITO/Cu/ITO (ICI) multilayer electrode prepared by continuous roll-to-roll (RTR) sputtering of ITO and Cu targets. The RTR-sputtered ICI multilayer on a 700 mm wide PET substrate at room temperature exhibits a sheet resistance of 11.8 Ω/square and optical transmittance of 73.9%, which are acceptable for the fabrication of flexible and transparent EC films and TFHs. The effect of the Cu interlayer thickness on the electrical and optical properties of the ICI multilayer was investigated in detail. The bending and cycling fatigue tests demonstrate that the RTR-sputtered ICI multilayer was more flexible than a single ITO film because of high strain failure of the Cu interlayer. The flexible and transparent EC films and TFHs fabricated on the ICI electrode show better performances than reference EC films and TFHs with a single ITO electrode. Therefore, the RTR-sputtered ICI multilayer is the best substitute for the conventional ITO film electrode in order to realize flexible, transparent, cost-effective and large-area EC devices and TFHs that can be used as flexible and smart windows. PMID:27653830

  7. The Role of Annealing Process in Ag-Based BaSnO3 Multilayer Thin Films

    NASA Astrophysics Data System (ADS)

    Wu, Muying; Yu, Shihui; He, Lin; Yang, Lei; Zhang, Weifeng

    2016-08-01

    The BaSnO3/Ag/BaSnO3 multilayer structure was designed and fabricated on a quartz glass by magnetron sputtering, followed by an annealing process at a temperature from 150 to 750 °C in air. In this paper, we investigated the influence of the annealing temperature on the structural, optical, and electrical properties of the multilayers and proposed the mechanisms of conduction and transmittance. The maximum value of the figure of merit of 31.8 × 10-3 Ω-1 was achieved for the BaSnO3/Ag/BaSnO3 multilayer thin films annealed at 150 °C, while the average optical transmittance in the visible ranges was >84 %, the resistivity was 5.71 × 10-5 Ω cm, and the sheet resistance was 5.57 Ω/sq. When annealed at below 600 °C, the values of resistivity and transmittance of the multilayers were within an acceptable range (resistivity <5.0 × 10-4 Ω cm, transmittance >80 %). The observed property of the multilayer film is suitable for the application of transparent conductive electrodes.

  8. The Role of Annealing Process in Ag-Based BaSnO3 Multilayer Thin Films.

    PubMed

    Wu, Muying; Yu, Shihui; He, Lin; Yang, Lei; Zhang, Weifeng

    2016-12-01

    The BaSnO3/Ag/BaSnO3 multilayer structure was designed and fabricated on a quartz glass by magnetron sputtering, followed by an annealing process at a temperature from 150 to 750 °C in air. In this paper, we investigated the influence of the annealing temperature on the structural, optical, and electrical properties of the multilayers and proposed the mechanisms of conduction and transmittance. The maximum value of the figure of merit of 31.8 × 10(-3) Ω(-1) was achieved for the BaSnO3/Ag/BaSnO3 multilayer thin films annealed at 150 °C, while the average optical transmittance in the visible ranges was >84 %, the resistivity was 5.71 × 10(-5) Ω cm, and the sheet resistance was 5.57 Ω/sq. When annealed at below 600 °C, the values of resistivity and transmittance of the multilayers were within an acceptable range (resistivity <5.0 × 10(-4) Ω cm, transmittance >80 %). The observed property of the multilayer film is suitable for the application of transparent conductive electrodes. PMID:27544775

  9. Graphite Thin Films Consisting of Nanograins of Multilayer Graphene on Sapphire Substrates Directly Grown by Alcohol Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Miyasaka, Yuta; Nakamura, Atsushi; Temmyo, Jiro

    2011-04-01

    Graphene has been attracting a strong interest as a transparent electrode as well as a THz nanoelectronic device owing to its unique properties. To date, large-area graphene growth has been realized by chemical vapor deposition (CVD) with a catalyst metal. To avoid the transfer of segregated graphene, we have examined directly graphite thin film growth on nonpolar a-sapphire substrates without any catalyst metal by alcohol CVD. Graphite thin films consisting of nanograins of multilayer graphene on a-sapphire substrates were verified by a combination of transmission electron spectroscopy (TEM), and Raman analyses, and optical transparent and sheet resistance measurements.

  10. Optical constants for hard x-ray multilayers over the energy range E = 35 - 180 keV

    NASA Astrophysics Data System (ADS)

    Windt, David L.; Donguy, Soizik; Hailey, Charles J.; Koglin, Jason E.; Honkimaki, Veijo; Ziegler, Eric; Christensen, Finn E.; Harrison, Fiona A.

    2004-02-01

    We have determined experimentally optical constants for eight thin film materials that can be used in hard X-ray multilayer coatings. Thin film samples of Ni.97V.03, Mo, W, Pt, C, B4C, Si and SiC were deposited by magnetron sputtering onto superpolished optical flats. Optical constants were determined from fits to reflectance-vs-incidence angle measurements made using synchrotron radiation over the energy range E=35 180 keV. We have also measured the X-ray reflectance of a prototype W/SiC multilayer coating over the energy range E=35 100 keV, and we compare the measured reflectance with a calculation using the newly derived optical constants.

  11. A soft gamma-ray concentrator using thin-film multilayer structures

    NASA Astrophysics Data System (ADS)

    Bloser, Peter F.; Aliotta, Paul H.; Echt, Olof; Krzanowski, James E.; Legere, Jason S.; McConnell, Mark L.; Shirazi, Farzane; Tsavalas, John G.; Wong, Emily N.; Kippen, R. Marc

    2015-09-01

    We have begun to investigate the use of thin-film, multilayer structures to form optics capable of concentrating soft gamma rays with energies greater than 100 keV, beyond the reach of current grazing-incidence hard X-ray mirrors. Alternating layers of low- and high-density materials (e.g., polymers and metals) will channel soft gamma-ray photons via total external reflection. A suitable arrangement of bent structures will then concentrate the incident radiation to a point. Gamma-ray optics made in this way offer the potential for soft gamma-ray telescopes with focal lengths of less than 10 m, removing the need for formation flying spacecraft and opening the field up to balloon-borne instruments. Building on initial investigations at Los Alamos National Laboratory, we are investigating whether it is possible to grow such flexible multi-layer structures with the required thicknesses and smoothness using magnetron sputter and pulsed laser deposition techniques. We present the initial results of tests aimed at fabricating such structures by combining magnetron sputtering with either spin coating or pulsed laser deposition, and demonstrating gamma-ray channeling of 122 keV photons in the laboratory. If successful, this technology offers the potential for transformational increases in sensitivity while dramatically improving the system-level performance of future high-energy astronomy missions through reduced mass and complexity.

  12. UV protection filters by dielectric multilayer thin films on Glass BK-7 and Infrasil 301

    NASA Astrophysics Data System (ADS)

    Abdel-Aziz, M. M.; Azim, Osama A.; Abdel-Wahab, L. A.; Seddik, Mohamed M.

    2006-10-01

    The increasing use of Ultraviolet (UV) light in medicine, industrial environments, for cosmetic use, and even in consumer products necessitates that greater attention be paid to the potential hazards of this type of electromagnetic radiation. To avoid any adverse effects of exposure to this type of radiation, four suitable protection filters were produced to block three UV bands (UVA, UVB, and UVC). The design structure of the required dielectric multilayer filters was done by optical thin film technology using the absorbing property of UV radiation for the substrates and dielectric materials. The computer analyses of the multilayer filter formulas were prepared using Macleod Software for the production processes. The deposition technique was achieved on optical substrates (Glass BK-7 and Infrasil 301) by dielectric material combinations including Titanium dioxide (Ti 2O 3), Hafnium dioxide (HfO 2), and Lima (mixture of oxides SiO 2/Al 2O 3); deposition being achieved using an electron beam gun. The output results of the theoretical and experimental transmittance values for spectral band from 200 nm to 800 nm were discussed in four processes. To analyze the suitability for use in 'real world' applications, the test pieces were subjected to the durability tests (adhesion, abrasion resistance, and humidity) according to Military Standard MIL-C-675C and MIL-C-48497A.

  13. Method to adjust multilayer film stress induced deformation of optics

    DOEpatents

    Mirkarimi, Paul B.; Montcalm, Claude

    2000-01-01

    A buffer-layer located between a substrate and a multilayer for counteracting stress in the multilayer. Depositing a buffer-layer having a stress of sufficient magnitude and opposite in sign reduces or cancels out deformation in the substrate due to the stress in the multilayer. By providing a buffer-layer between the substrate and the multilayer, a tunable, near-zero net stress results, and hence results in little or no deformation of the substrate, such as an optic for an extreme ultraviolet (EUV) lithography tool. Buffer-layers have been deposited, for example, between Mo/Si and Mo/Be multilayer films and their associated substrate reducing significantly the stress, wherein the magnitude of the stress is less than 100 MPa and respectively near-normal incidence (5.degree.) reflectance of over 60% is obtained at 13.4 nm and 11.4 nm. The present invention is applicable to crystalline and non-crystalline materials, and can be used at ambient temperatures.

  14. Fabrication of multilayered thin films via spin-assembly

    DOEpatents

    Chiarelli, Peter A.; Robinson, Jeanne M.; Casson, Joanna L.; Johal, Malkiat S.; Wang, Hsing-Lin

    2007-02-20

    An process of forming multilayer thin film heterostructures is disclosed and includes applying a solution including a first water-soluble polymer from the group of polyanionic species, polycationic species and uncharged polymer species onto a substrate to form a first coating layer on the substrate, drying the first coating layer on the substrate, applying a solution including a second water-soluble polymer from the group of polyanionic species, polycationic species and uncharged polymer species onto the substrate having the first coating layer to form a second coating layer on the first coating layer wherein the second water-soluble polymer is of a different material than the first water-soluble polymer, and drying the second coating layer on the first coating layer so as to form a bilayer structure on the substrate. Optionally, one or more additional applying and drying sequences can be repeated with a water-soluble polymer from the group of polyanionic species, polycationic species and uncharged polymer species, so that a predetermined plurality of layers are built up upon the substrate.

  15. Method for measurement of diffusivity: Calorimetric studies of Fe/Ni multilayer thin films

    SciTech Connect

    Liu, JX; Barmak, K

    2015-07-15

    A calorimetric method for the measurement of diffusivity in thin film multilayers is introduced and applied to the Fe Ni system. Using this method, the diffusivity in [Fe (25 nm)/Ni (25 nm)](20) multilayer thin films is measured as 4 x 10(-3)exp(-1.6 +/- 0.1 eV/ k(B)T) cm(2)/s, respectively. The diffusion mechanism in the multilayers and its relevance to laboratory synthesis of L1(0) ordered FeNi are discussed. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Spectral Response of Multilayer Optical Structures to Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Scripka, David; Lecroy, Garrett; Lee, Gyuhyon; Sun, Changyan; Kang, Zhitao; Summers, Christopher J.; Thadhani, Naresh N.

    2015-06-01

    Distributed Bragg Reflectors and optical microcavities are multilayer optical structures with spectral properties that are intrinsically sensitive to external perturbations. With nanometer to micrometer dimensions and near instantaneous optical response, these structures show significant potential as the basis for mesoscale time-resolved diagnostics that can be used to probe the dynamic behavior of mesoscale heterogeneous materials. In order to characterize the optical and mechanical behavior of the multilayer structures, a coupled computational-experimental study is underway. A mechanistic analysis of the spectral response of the structures to dynamic loading will be presented, along with computational simulations illustrating the observable spectral effects of 1D shock compression. Results from fabrication of specific multilayer designs and initial laser-driven shock loading experiments will be shown and compared to the simulation results. Preliminary results indicate that the magnitude of dynamic loading can be directly correlated to the altered spectral response. Potential applications of the theoretical diagnostics and challenges associated with spatially resolved data collection methodology will also be discussed. DTRA grant HDTRA-1-12-1-0052 is acknowledged. David Scripka is supported by the Department of Defense through the National Defense Science and Engineering Graduate Fellowship Program.

  17. Ferroelectric properties of PZT/BFO multilayer thin films prepared using the sol-gel method

    PubMed Central

    2012-01-01

    In this study, Pb(Zr0.52Ti0.48)O3/BiFeO3 [PZT/BFO] multilayer thin films were fabricated using the spin-coating method on a Pt(200 nm)/Ti(10 nm)/SiO2(100 nm)/p-Si(100) substrate alternately using BFO and PZT metal alkoxide solutions. The coating-and-heating procedure was repeated several times to form the multilayer thin films. All PZT/BFO multilayer thin films show a void-free, uniform grain structure without the presence of rosette structures. The relative dielectric constant and dielectric loss of the six-coated PZT/BFO [PZT/BFO-6] thin film were approximately 405 and 0.03%, respectively. As the number of coatings increased, the remanent polarization and coercive field increased. The values for the BFO-6 multilayer thin film were 41.3 C/cm2 and 15.1 MV/cm, respectively. The leakage current density of the BFO-6 multilayer thin film at 5 V was 2.52 × 10-7 A/cm2. PMID:22221519

  18. Study of Thermal properties of VO2 and multilayer VO2 thin films for application in Thermal Switches

    NASA Astrophysics Data System (ADS)

    Zhu, Gaohua

    Ultrafast nature of the phase transition near room temperature in VO2 makes it attractive material for applications in electronics and optical devices however utilization of corresponding drastic change in thermo-physical properties are rarely reported. In this study we investigate thermal and electronic properties of VO2 thin films on various substrates across the transition temperature to seek possibility of utilizing VO2 based thermal switches for applications in thermal devices. In addition, the interfacial heat transfer in VO2/metal multilayer thin film is mediated by phonons at low temperature, and when temperature is elevated beyond phase transition temperature, the interface thermal conductance is mediated mainly by both phons and electrons. VO2-multilayers approach is studied to utilize the switching interface thermal conductance in order to obtain higher thermal conductivity switch ratio than what can be achieved in intrinsic VO2. Thermal conductivities and interface thermal conductance of VO2 and VO2 multilayer thin films are measured using the time-domain thermoreflectance (TDTR) method. We will discuss interplay of phononic and electronic component to thermal conductivity in the light of Wiedemann-Franz law across the metal to insulator state of VO2 films.

  19. Optical system to extract reflection coefficients and optical admittances of a thin film stack and its application in coating monitoring

    NASA Astrophysics Data System (ADS)

    Lee, Cheng-Chung; Wu, Kai; Chen, Yu-Jen; Kuo, Chien-Cheng

    2011-10-01

    An optical system to extract the reflection coefficient and optical admittance of film stack is presented. Both reflection phase and reflection magnitude intensity from the tested film stack were measured under normal incidence of the light. Two dimensional refractive index and thickness distribution of each layer in multilayer thin films can be obtained by the analysis of the reflection coefficients or optical admittance of multi-wavelengths. A novel monitoring method for the thin film deposition using the reflection coefficient and optical admittance loci as the thickness grows is also proposed to achieve better performance in this article.

  20. Electro-optic polymer/TiO2 multilayer slot waveguide modulators

    NASA Astrophysics Data System (ADS)

    Enami, Y.; Yuan, B.; Tanaka, M.; Luo, J.; Jen, A. K.-Y.

    2012-09-01

    We report an all-dielectric electro-optic (EO) polymer/TiO2 multilayer slot waveguide modulator with low optical insertion loss for high-speed operations. The EO polymer is sandwiched between thin TiO2 slot waveguide films to improve mode confinement in the EO polymer. The structure increased the mode confinement in the TiO2 and EO polymer slot layers and reduced the electrode distance between the Au electrodes without introducing optical loss from the metal electrodes. The half-wave voltage of the modulator was 6.5 V for a 5-mm-long electrode at a wavelength of 1550 nm. The half-wave voltage and length product was 3.25 V.cm.

  1. Aperiodic multilayer structures in soft X-ray radiation optics

    SciTech Connect

    Vishnyakov, E A; Kamenets, F F; Kondratenko, V V; Lugin, M S; Panchenko, A V; Pershin, Yu P; Pirozhkov, A S; Ragozin, Evgenii N

    2012-02-28

    We review the works related to the development of aperiodic multilayer structures - optical elements for the soft X-ray range. The potentialities of aperiodic multilayer mirrors as regards reflection of soft X-ray radiation in a broad wavelength range, first and foremost at normal radiation incidence, as well as the capabilities of broadband polariser mirrors are investigated. The results of multiparametric optimisation and experimental results for Mo/Si aperiodic mirrors ({lambda} {>=} 12.5 nm) as well as calculations for several promising material pairs (Pd/Y, Ag/Y, etc.) for {lambda} {<=} 12.5 nm are outlined. The effect of transition layers on the reflectivity is considered, in particular by taking into account the smooth variation of the permittivity near interfacial boundaries. The use of broadband mirrors in laser-plasma spectroscopic experiments is discussed.

  2. Multi-Layer Laminated Thin Films for Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Yavrouian, Andre; Plett, Gary; Mannella, Jerami

    2005-01-01

    Special-purpose balloons and other inflatable structures would be constructed as flexible laminates of multiple thin polymeric films interspersed with layers of adhesive, according to a proposal. In the original intended application, the laminate would serve as the envelope of the Titan Aerobot a proposed robotic airship for exploring Titan (one of the moons of Saturn). Potential terrestrial applications for such flexible laminates could include blimps and sails. In the original application, the multi-layered laminate would contain six layers of 0.14-mil (0.0036-mm)-thick Mylar (or equivalent) polyethylene terephthalate film with a layer of adhesive between each layer of Mylar . The overall thickness and areal density of this laminate would be nearly the same as those of 1-mil (0.0254-mm)-thick monolayer polyethylene terephthalate sheet. However, the laminate would offer several advantages over the monolayer sheet, especially with respect to interrelated considerations of flexing properties, formation of pinholes, and difficulty or ease of handling, as discussed next. Most of the damage during flexing of the laminate would be localized in the outermost layers, where the radii of bending in a given bend would be the largest and, hence, the bending stress would be the greatest. The adverse effects of formation of pinholes would be nearly completely mitigated in the laminate because a pinhole in a given layer would not propagate to adjacent layers. Hence, the laminate would tend to remain effective as a barrier to retain gas. Similar arguments can be made regarding cracks: While a crack could form as a result of stress or a defect in the film material, a crack would not propagate into adjacent layers, and the adjacent layer(s) would even arrest propagation of the crack. In the case of the monolayer sheet, surface damage (scratches, dents, permanent folds, pinholes, and the like) caused by handling would constitute or give rise to defects that could propagate through

  3. Stimuli-responsive self-assembled multilayer azo thin films: Photo-switchable absorbance and morphological characteristics

    NASA Astrophysics Data System (ADS)

    Shaikh, Haseeb; Hassan, Mohsin; Ahmad, Nasir M.

    2014-02-01

    Light has been employed as a source of energy for surface modulation, tuning and control in photo-responsive azo-incorporating self-assembled polyelectrolyte multilayer thin films. A custom built setup for controlled exposure enabled successful photo-switching. Spectral changes were characterized through UV-vis spectroscopy, while scanning electron microscopy technique was employed to study structural properties and response of the films. The effects of chromophore aggregation and dispersion on thin film photo-responsiveness have been studied, with significant contributions made to a recently proposed model correlating structural and spectral properties of the azo thin films. Structural and optical photo-responses have been acquired for surface tuning and modulation, while photo-reversibility is also achieved to control surface properties cyclically.

  4. Application of low-coherence interferometry for in situ nondestructive evaluation of thin and thick multilayered transparent composites

    NASA Astrophysics Data System (ADS)

    Khomenko, Anton; Cloud, Gary Lee; Haq, Mahmoodul

    2015-12-01

    Multilayered transparent composites having laminates with polymer interlayers and backing sheets are commonly used in a wide range of applications where visibility, transparency, impact resistance, and safety are essential. Manufacturing flaws or damage during operation can seriously compromise both safety and performance. Most fabrication defects are not discernible until after the entire multilayered transparent composite assembly has been completed, and in-the-field inspection for damage is a problem not yet solved. A robust and reliable nondestructive evaluation (NDE) technique is needed to evaluate structural integrity and identify defects that result from manufacturing issues as well as in-service damage arising from extreme environmental conditions in addition to normal mechanical and thermal loads. Current optical techniques have limited applicability for NDE of such structures. This work presents a technique that employs a modified interferometer utilizing a laser diode or femtosecond fiber laser source to acquire in situ defect depth location inside a thin or thick multilayered transparent composite, respectively. The technique successfully located various defects inside examined composites. The results show great potential of the technique for defect detection, location, and identification in multilayered transparent composites.

  5. Multi-layer boron thin-film detectors for neutrons

    SciTech Connect

    Wang, Zhehui; Morris, Christopher L

    2010-01-01

    Intrinsic efficiencies of the multilayer boron detectors have been examined both theoretically and experimentally. It is shown that due to the charge loss in the boron layers, the practical efficiencies of most multi-layer {sup 10}B detectors are limited up to about 42%, much less than 77% of the 2 bar 2-inch diameter {sup 3}He detectors. It is suggested that the same charge loss mechanism will prevent essentially all substrate-based boron detectors from ever reaching the efficiencies of high-pressure {sup 3}He tubes, independent of the substrate geometry and material composition (including silicon). Meanwhile, the experimental data indicate that the multi-layer approach can increase the efficiencies up to the theoretical limit. Good n/{gamma} discrimination has also achieved using the ionization charnber technique.

  6. Periodically multilayered planar optical concentrator for photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Solano, Manuel E.; Faryad, Muhammad; Monk, Peter B.; Mallouk, Thomas E.; Lakhtakia, Akhlesh

    2013-11-01

    A planar optical concentrator comprising a periodic multilayered isotropic dielectric material backed by a metallic surface-relief grating was theoretically examined for silicon photovoltaics. The concentrator was optimized using a differential evolution algorithm for solar-spectrum-integrated power-flux density. Further optimization was carried out for tolerance to variations in the incidence angle, spatial dimensions, and dielectric properties. The average electron-hole pair density in a silicon solar cell can be doubled, and the material costs substantially diminished by this concentrator, whose efficacy is due to the excitation of waveguide modes and multiple surface-plasmon-polariton waves in a broad spectral regime.

  7. Deposition of multilayer optical coatings using closed-field magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Gibson, D. R.; Brinkley, I.; Hall, G. W.; Waddell, E. M.; Walls, J. M.

    2006-08-01

    "Closed field" magnetron (CFM) sputtering offers a flexible and high throughput deposition process for optical coatings and thin films required in display technologies. CFM sputtering uses two or more different metal targets to deposit multilayers comprising a wide range of dielectrics, metals and conductive oxides. Moreover, CFM provides a room temperature deposition process with high ion current density, low bias voltage and reactive oxidation in the entire volume around the rotating substrate drum carrier, thereby producing films over a large surface area at high deposition rate with excellent and reproducible optical properties. Machines based on the Closed Field are scaleable to meet a range of batch and in-line size requirements. Typically, thin film thickness control to < +/-1% is accomplished simply using time, although optical monitoring can be used for more demanding applications. Fine layer thickness control and deposition of graded index layers is also assisted with a specially designed rotating shutter mechanism. This paper presents data on optical properties for CFM deposited optical coatings, including anti-reflection, IR blocker and colour control and thermal control filters, graded coatings, narrowband filters as well as conductive transparent oxides such as indium tin oxide. Benefits of the CFM sputter process are described.

  8. Unprecedented highest electro-optic coefficient of 226 pm/V for electro-optic polymer/TiO₂ multilayer slot waveguide modulators.

    PubMed

    Jouane, Y; Chang, Y-C; Zhang, D; Luo, J; Jen, A K-Y; Enami, Y

    2014-11-01

    We investigated the electrical properties and optical quality of two layers a titanium dioxide (TiO₂) selective layer and a sol-gel silica cladding layer for use as coating layers for nonlinear optic (NLO) polymers in electro-optic (EO) polymer/TiO₂ multilayer slot waveguide modulators. We used a simple ellipsometric reflective technique developed by Teng and Man to measure the electro-optic (EO) coefficients of poled thin films of an EO polymer in an EO multilayer device. The Pockels coefficient was enhanced up to 226 and 198 pm/V at wavelengths of 1.31 and 1.55 μm, respectively, when optimally poled with TiO₂ and a sol-gel silica cladding. PMID:25401916

  9. Automatic determination of the optical constants of inhomogeneous thin films.

    PubMed

    Borgogno, J P; Lazarides, B; Pelletier, E

    1982-11-15

    The refractive index of a layer is a sensitive function of the preparation conditions. Normal incidence measurement of the optical properties can reveal possible inhomogeneity of index. We propose a method of automatic determination of the complex refractive index and thickness of a layer which includes systematic measurement of the degree of inhomogeneity which is represented by a simple model. The usefulness of the technique is demonstrated by examples that form part of an experimental study of a number of useful optical materials including Y(2)O(3), TiO(2), MgF(2), HfO(2), and SiO(2). The dispersions of the refractive index, the extinction coefficient, and of the inhomogeneity are represented by Cauchy formulas with accurately determined coefficients. The results can therefore be readily used in computing the optical properties of thin-film multilayers.

  10. Simultaneous measurement of thermal diffusivity and optical absorption coefficient using photothermal radiometry. II Multilayered solids

    NASA Astrophysics Data System (ADS)

    Salazar, Agustín; Fuente, Raquel; Apiñaniz, Estibaliz; Mendioroz, Arantza; Celorrio, R.

    2011-08-01

    The aim of this work is to analyze the ability of modulated photothermal radiometry to retrieve the thermal diffusivity and the optical absorption coefficient of layered materials simultaneously. First, we extend the thermal quadrupole method to calculate the surface temperature of semitransparent multilayered materials. Then, this matrix method is used to evaluate the influence of heat losses by convection and radiation, the influence of the use of thin paint layers on the accuracy of thermal diffusivity measurements, and the effect of lateral heat diffusion due to the use of Gaussian laser beams. Finally, we apply the quadrupole method to retrieve (a) the thermal contact resistance in glass stacks and (b) the thermal diffusivity and optical absorption coefficient depth profiles in heterogeneous materials with continuously varying physical properties, as is the case of functionally graded materials and partially cured dental resins.

  11. Indentation-derived elastic modulus of multilayer thin films: Effect of unloading induced plasticity

    DOE PAGESBeta

    Jamison, Ryan Dale; Shen, Yu -Lin

    2015-08-13

    Nanoindentation is useful for evaluating the mechanical properties, such as elastic modulus, of multilayer thin film materials. A fundamental assumption in the derivation of the elastic modulus from nanoindentation is that the unloading process is purely elastic. In this work, the validity of elastic assumption as it applies to multilayer thin films is studied using the finite element method. The elastic modulus and hardness from the model system are compared to experimental results to show validity of the model. Plastic strain is shown to increase in the multilayer system during the unloading process. Additionally, the indentation-derived modulus of a monolayermore » material shows no dependence on unloading plasticity while the modulus of the multilayer system is dependent on unloading-induced plasticity. Lastly, the cyclic behavior of the multilayer thin film is studied in relation to the influence of unloading-induced plasticity. Furthermore, it is found that several cycles are required to minimize unloading-induced plasticity.« less

  12. σ-π molecular dielectric multilayers for low-voltage organic thin-film transistors

    PubMed Central

    Yoon, Myung-Han; Facchetti, Antonio; Marks, Tobin J.

    2005-01-01

    Very thin (2.3-5.5 nm) self-assembled organic dielectric multilayers have been integrated into organic thin-film transistor structures to achieve sub-1-V operating characteristics. These new dielectrics are fabricated by means of layer-by-layer solution phase deposition of molecular silicon precursors, resulting in smooth, nanostructurally well defined, strongly adherent, thermally stable, virtually pinhole-free, organosiloxane thin films having exceptionally large electrical capacitances (up to ≈2,500 nF·cm-2), excellent insulating properties (leakage current densities as low as 10-9 A·cm-2), and single-layer dielectric constant (k)of ≈16. These 3D self-assembled multilayers enable organic thin-film transistor function at very low source-drain, gate, and threshold voltages (<1 V) and are compatible with a broad variety of vapor- or solution-deposited p- and n-channel organic semiconductors. PMID:15781860

  13. Nonlinear optical properties of multilayer graphene in the infrared.

    PubMed

    Demetriou, Giorgos; Bookey, Henry T; Biancalana, Fabio; Abraham, Eitan; Wang, Yu; Ji, Wei; Kar, Ajoy K

    2016-06-13

    A negative value for the nonlinear refraction in graphene is experimentally observed and unambiguously verified by performing a theoretical analysis arising from the conductivity of the graphene monolayer. The nonlinear optical properties of multi-layer graphene are experimentally studied by employing the Z-scan technique. The measurements are carried out at 1150, 1550, 1900 and 2400 nm with a 100-femtosecond laser source. Under laser illumination the multi-layer graphene exhibits a transmittance increase due to saturable absorption, followed by optical limiting due to two-photon absorption. The saturation irradiance Isat and the two-photon absorption coefficient β are measured in the operating wavelength range. Furthermore, an irradiance-dependent nonlinear refraction is observed and discriminated from the conventional nonlinear refraction coefficient n2, which is not irradiance dependent. The values obtained for the irradiance-dependent nonlinear refraction are in the order of ∼10-9 cm2W-1, approximately 8 orders of magnitude larger than any bulk dielectrics. PMID:27410322

  14. A Multilayered Thin Film Insulator for Harsh Environments

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Blaha, Charles A.; Busfield, A. Rachel; Thomas, Valarie D.

    2002-01-01

    The status of work to develop a reliable high temperature dielectric thin film for use with thin film sensors is presented. The use of thin films to electrically insulate thin film sensors on engine components minimizes the intrusiveness of the sensor and allows a more accurate measurement of the environment. A variety of insulating films were investigated for preventing electrical shorting caused by insulator failure between the sensor and the component. By alternating layers of sputtered high temperature ceramics, a sequence of insulating layers was devised that prevents pinholes from forming completely through the insulator and maintains high electrical resistivity at high temperatures. The major technical challenge remaining is to optimize the fabrication of the insulator with respect to composition to achieve a reliable high temperature insulating film. Data from the testing of various potentially insulating thin film systems is presented and their application to thin film sensors is also discussed.

  15. Development of an inspection system using an UV wavelength for defects on the thin electrode in a multilayer pattern

    NASA Astrophysics Data System (ADS)

    Namgung, Kee; Lim, Sanghee; Kim, Jaewan; Kim, Jaisoon; Choi, Wonshik; Pak, James Jungho

    2014-09-01

    Generally, the Organic Light-Emitting Diode (OLED), Light-Emitting Diode (LCD), Touch Screen Panel (TSP) glass and Thin Film Transistor (TFT) pattern consists of multiple layers of electrodes separated by thin insulating films. In multilayered devices, when using visible light to inspect the electrode pattern and the defect, the critical shapes of a specific layer are difficult to define. To increase the image contrast between the materials and the layers, this study uses a UV wavelength, which has larger selective differences in reflectance than a visible wavelength. The newly-developed optical system and image analysis units are made to focus on a specific UV range to precisely define a top electrode layer. Two types of magnification systems are developed. Direct side illumination is available in a magnification 1.2 (1.2x) system with a large back focal length (BFL). However, in a magnification 3 (3x) system, on-axis line beam illumination is needed. A multi-point LED source (custom-made) and an anamorphic optical system is used to increase the light efficiency and decrease the noise. Electric units and an algorithm for high-speed image processing and data transfer are also developed. The final images have good selective contrast between the layers despite the high-depth condition decided by the required NA for the target resolution. This system can be used for the inspection of general display panels, Printed Circuit Board (PCB) patterns, and mobile glasses that are composed of multilayered films.

  16. Photonic bandgap amorphous chalcogenide thin films with multilayered structure grown by pulsed laser deposition method

    NASA Astrophysics Data System (ADS)

    Zhang, Shao-qian; Němec, Petre; Nazabal, Virginie; Jin, Yu-qi

    2016-05-01

    Amorphous chalcogenide thin films were fabricated by the pulsed laser deposition technique. Thereafter, the stacks of multilayered thin films for reflectors and microcavity were designed for telecommunication wavelength. The prepared multilayered thin films for reflectors show good compatibility. The microcavity structure consists of Ge25Ga5Sb10S65 (doped with Er3+) spacer layer surrounded by two 5-layer As40Se60/Ge25Sb5S70 reflectors. Scanning/transmission electron microscopy results show good periodicity, great adherence and smooth interfaces between the alternating dielectric layers, which confirms a suitable compatibility between different materials. The results demonstrate that the chalcogenides can be used for preparing vertical Bragg reflectors and microcavity with high quality.

  17. Thin film ferroelectric electro-optic memory

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita (Inventor); Thakoor, Anilkumar P. (Inventor)

    1993-01-01

    An electrically programmable, optically readable data or memory cell is configured from a thin film of ferroelectric material, such as PZT, sandwiched between a transparent top electrode and a bottom electrode. The output photoresponse, which may be a photocurrent or photo-emf, is a function of the product of the remanent polarization from a previously applied polarization voltage and the incident light intensity. The cell is useful for analog and digital data storage as well as opto-electric computing. The optical read operation is non-destructive of the remanent polarization. The cell provides a method for computing the product of stored data and incident optical data by applying an electrical signal to store data by polarizing the thin film ferroelectric material, and then applying an intensity modulated optical signal incident onto the thin film material to generate a photoresponse therein related to the product of the electrical and optical signals.

  18. Optical phonons in PbTe/CdTe multilayer heterostructures

    SciTech Connect

    Novikova, N. N.; Yakovlev, V. A.; Kucherenko, I. V.; Karczewski, G.; Aleshchenko, Yu. A.; Muratov, A. V.; Zavaritskaya, T. N.; Melnik, N. N.

    2015-05-15

    The infrared reflection spectra of PbTe/CdTe multilayer nanostructures grown by molecular-beam epitaxy are measured in the frequency range of 20–5000 cm{sup −1} at room temperature. The thicknesses and high-frequency dielectric constants of the PbTe and CdTe layers and the frequencies of the transverse optical (TO) phonons in these structures are determined from dispersion analysis of the spectra. It is found that the samples under study are characterized by two TO phonon frequencies, equal to 28 and 47 cm{sup −1}. The first frequency is close to that of TO phonons in bulk PbTe, and the second is assigned to the optical mode in structurally distorted interface layers. The Raman-scattering spectra upon excitation with the radiation of an Ar{sup +} laser at 514.5 nm are measured at room and liquid-nitrogen temperatures. The weak line at 106 cm{sup −1} observed in these spectra is attributed to longitudinal optical phonons in the interface layers.

  19. MultiLayer solid electrolyte for lithium thin film batteries

    DOEpatents

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  20. Residual stress, mechanical behavior and electrical properties of Cu/Nb thin-film multilayers

    SciTech Connect

    Griffin, A.J. Jr.; Hundley, M.F.; Jervis, T.R.; Kung, H.H.; Scarborough, W.K.; Walter, K.C.; Nastasi, M.; Embury, J.D.

    1995-09-01

    Effect of compositional wavelength (modulation) on residual stress, electrical resistivities and mechanical properties of Cu/Nb thin-film multilayers sputtered onto single-crystal Si substrates, was evaluated. Electrical resistivities were measured down to 4 K using a standard 4-point probe. Differential specimen curvature was used to determine residual stress, and a microprobe was used to obtain hardness and elastic modulus. Profilometry, ion-beam analysis and TEM were used. Hardness of the Cu-Nb multilayers increased with decreasing compositional wavelength so that the layered structures had hardness values in excess of either constituent and the hardness predicted by the rule of mixtures. A peak in net residual compressive stress of the multilayers was observed at a compositional wavelength of 100 nm. No resistivity plateau was observed within the composition wavelength range studied.

  1. Kinetic Monte Carlo Simulation of Epitaxial Thin Film Growth: Formation of Submonolayer Islands and Multilayer Mounds

    SciTech Connect

    Evans, J. W.; Thiel, P. A.; Li, Maozhi

    2007-06-14

    We consider homoepitaxy (or low-misfit heteroepitaxy) via vapor deposition or MBE under UHV conditions. Thin film growth is initiated by nucleation and growth of 2D islands in the submonolayer regime. For atoms subsequently deposited on top of islands, a step edge barrier often inhibits downward transport and produces kinetic roughening during multilayer growth. Such unstable growth is characterized by the formation of 3D mounds (multilayer stacks of 2D islands). Kinetic Monte Carlo (KMC) simulation of suitable atomistic lattice-gas models can address fundamental or general issues related to both submonolayer and multilayer film evolution, and can also provide a predictive tool for morphological evolution in specific systems. Examples of the successes of KMC modeling are provided for metal homoepitaxial film growth, specifically for contrasting behavior in the classic Ag/Ag(100) and Ag/Ag(111) systems.

  2. Zirconia-parylene multilayer thin films for enhanced fracture resistance of dental ceramics.

    PubMed

    Teixeira, E C; Piascik, J R; Stoner, B R; Thompson, J Y

    2009-10-01

    Recent research has shown that the application of specific thin films can enhance the material properties of a laminate construct. In this study, the effect of different mono/multilayered films on the strength of a ceramic specimen is demonstrated. It is well established that cracks can initiate and/or propagate from the internal surfaces of all-ceramic dental restorations. Modifying that surface by thin-film deposition might help increase clinical longevity and applicability. Specimens were divided into the following groups according to different surface treatments received: uncoated (control group), 10 microm yttria-stabilized zirconia (YSZ) thin film, 10 microm parylene thin film, 9.75 microm YSZ + 0.25 microm parylene film, and a multilayered film (five layers of 1.25 microm YSZ + 0.75 microm parylene). Depositions were performed using a radio-frequency magnetron sputter system (working pressure 15 mT, 150 degrees C, 30:1 Ar/O2 gas ratio) to produce the YSZ layers, and a vapour deposition process was used to produce the parylene layers. Flexural strength measurements were carried out by three-point bending (span = 10 mm) in a servo-electric material testing system in deioinized (DI) water (37 degrees C). The results showed that the strength of the specimen significantly increased with the deposition of all types of coating, showing the greatest increase with the multilayered film (approximately 32 per cent). It is hypothesized that a multilayer thin film (brittle/ductile) can promote crack deflection, causing strength enhancement of the brittle construct.

  3. Multilayered optical memory with bits stored as refractive index change. II. Numerical results of a waveguide multilayered optical memory.

    PubMed

    Guo, Hanming; Zhuang, Songlin; Guo, Shuwen; Chen, Jiabi; Liang, Zhongcheng

    2008-07-01

    In terms of the electromagnetic theory described in Part I of our current investigations [J. Opt. Soc. Am. A24, 1776 (2007)], the numerical method for and results of numerical computations corresponding to the electromagnetic theory of a waveguide multilayered optical memory are presented. Here the characteristics of the cross talk and the modulation contrast, the power of readout signals, the variation of the power of the readout signals with the scanning position along the track, and the distribution of the light intensity at the detector are investigated in detail. Results show that the polarization of the reading light, the feature sizes of bits, and the distances between the two adjacent tracks and the two adjacent bits on the same track have significant effects on the distribution of the light intensity at the detector, the power of the readout signals, the cross talk, and the modulation contrast. In addition, the optimal polarization of the reading light is also suggested.

  4. Multilayers for EUV, soft x-ray and x-ray optics

    NASA Astrophysics Data System (ADS)

    Wang, Zhanshan; Huang, Qiushi; Zhang, Zhong

    2016-02-01

    Driven by the requirements in synchrotron radiation applications, astronomical observation, and dense plasma diagnostics, the EUV, soft X-rays and X-rays multilayer optics have been tremendously developed. Based on the LAMP project for soft X-ray polarimetry, Co/C and Cr/C multilayers have been fabricated and characterized. Both Co/C and Cr/C multilayers reveal good optical performance working at 250 eV. Pd/Y multilayers have been successfully fabricated using reactive sputtering with nitrogen working at around 9.4 nm. EUV normal incidence Schwarzschild and soft X-ray grazing incidence KB microscopes were developed for ICF plasma diagnostics. This paper covers the outline of the multilayer optics and the current status in our lab.

  5. Multilayered optical memory with bits stored as refractive index change. I. Electromagnetic theory.

    PubMed

    Guo, Hanming; Zhuang, Songlin; Chen, Jiabi; Liang, Zhongcheng

    2007-06-01

    With the Lippman-Schwinger equation, dyadic Green's functions, and the vector coherent transfer function method, an electromagnetic theory of a waveguide multilayered optical memory is first developed for the static case, from which a theory describing a conventional multilayered optical memory with bits stored as a refractive index change is also derived. In addition, the formulas for readout signals and cross talk are given, and some problems of numerical calculations are discussed. The theories can be used effectively for optimum design of a multilayered optical memory with bits stored as a refractive index change.

  6. Nanomechanical investigation of thin-film electroceramic/metal-organic framework multilayers

    SciTech Connect

    Best, James P. E-mail: engelbert.redel@kit.edu Michler, Johann; Maeder, Xavier; Liu, Jianxi; Wang, Zhengbang; Tsotsalas, Manuel; Liu, Jinxuan; Gliemann, Hartmut; Weidler, Peter G.; Redel, Engelbert E-mail: engelbert.redel@kit.edu Wöll, Christof E-mail: engelbert.redel@kit.edu; Röse, Silvana; Oberst, Vanessa; Walheim, Stefan

    2015-09-07

    Thin-film multilayer stacks of mechanically hard magnetron sputtered indium tin oxide (ITO) and mechanically soft highly porous surface anchored metal-organic framework (SURMOF) HKUST-1 were studied using nanoindentation. Crystalline, continuous, and monolithic surface anchored MOF thin films were fabricated using a liquid-phase epitaxial growth method. Control over respective fabrication processes allowed for tuning of the thickness of the thin film systems with a high degree of precision. It was found that the mechanical indentation of such thin films is significantly affected by the substrate properties; however, elastic parameters were able to be decoupled for constituent thin-film materials (E{sub ITO} ≈ 96.7 GPa, E{sub HKUST−1} ≈ 22.0 GPa). For indentation of multilayer stacks, it was found that as the layer thicknesses were increased, while holding the relative thickness of ITO and HKUST-1 constant, the resistance to deformation was significantly altered. Such an observation is likely due to small, albeit significant, changes in film texture, interfacial roughness, size effects, and controlling deformation mechanism as a result of increasing material deposition during processing. Such effects may have consequences regarding the rational mechanical design and utilization of MOF-based hybrid thin-film devices.

  7. Development of the water window imaging X-ray microscope utilizing normal-incidence multilayer optics

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Shealy, David L.; Brinkley, B. R.; Baker, Phillip C.; Barbee, Troy W., Jr.; Walker, Arthur B. C., Jr.

    1991-01-01

    A water-window imaging X-ray telescope configured with normal-incidence multilayer X-ray mirrors has been developed to obtain images with unprecedented spatial resolution and contrast of carbon-based microstructures within living cells. The narrow bandpass response inherent in multilayer X-ray optics is accurately tuned to wavelengths within the water window.

  8. TAPE CALENDERING MANUFACTURING PROCESS FOR MULTILAYER THIN-FILM SOLID OXIDE FUEL CELLS

    SciTech Connect

    Nguyen Minh; Kurt Montgomery

    2004-10-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the Phases I and II under Contract DE-AC26-00NT40705 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Tape Calendering Manufacturing Process For Multilayer Thin-Film Solid Oxide Fuel Cells''. The main objective of this project was to develop the manufacturing process based on tape calendering for multilayer solid oxide fuel cells (SOFC's) using the unitized cell design concept and to demonstrate cell performance under specified operating conditions. Summarized in this report is the development and improvements to multilayer SOFC cells and the unitized cell design. Improvements to the multilayer SOFC cell were made in electrochemical performance, in both the anode and cathode, with cells demonstrating power densities of nearly 0.9 W/cm{sup 2} for 650 C operation and other cell configurations showing greater than 1.0 W/cm{sup 2} at 75% fuel utilization and 800 C. The unitized cell design was matured through design, analysis and development testing to a point that cell operation at greater than 70% fuel utilization was demonstrated at 800 C. The manufacturing process for both the multilayer cell and unitized cell design were assessed and refined, process maps were developed, forming approaches explored, and nondestructive evaluation (NDE) techniques examined.

  9. Improving the assembly speed, quality, and tunability of thin conductive multilayers.

    PubMed

    Gittleson, Forrest S; Kohn, David J; Li, Xiaokai; Taylor, André D

    2012-05-22

    While inhomogeneous thin conductive films have been sought after for their flexibility, transparency, and strength, poor control in the processing of these materials has restricted their application. The versatile layer-by-layer assembly technique allows greater control over film deposition, but even this has been hampered by the traditional dip-coating method. Here, we employ a fully automated spin-spray layer-by-layer system (SSLbL) to rapidly produce high-quality, tunable multilayer films. With bilayer deposition cycle times as low as 13 s (~50% of previously reported) and thorough characterization of film conductance in the near percolation region, we show that SSLbL permits nanolevel control over film growth and efficient formation of a conducting network not available with other methods of multilayer deposition. The multitude of variables from spray time, to spin rate, to active drying available with SSLbL makes films generated by this technique inherently more tunable and expands the opportunity for optimization and application of composite multilayers. A comparison of several polymer-CNT systems deposited by both spin-spray and dip-coating exemplifies the potential of SSLbL assembly to allow for rapid screening of multilayer films. Ultrathin polymer-CNT multilayers assembled by SSLbL were also evaluated as lithium-ion battery electrodes, emphasizing the practical application of this technique. PMID:22515634

  10. Shock compression response of highly reactive Ni + Al multilayered thin foils

    NASA Astrophysics Data System (ADS)

    Kelly, Sean C.; Thadhani, Naresh N.

    2016-03-01

    The shock-compression response of Ni + Al multilayered thin foils is investigated using laser-accelerated thin-foil plate-impact experiments over the pressure range of 2 to 11 GPa. The foils contain alternating Ni and Al layers (parallel but not flat) of nominally 50 nm bilayer spacing. The goal is to determine the equation of state and shock-induced reactivity of these highly reactive fully dense thin-foil materials. The laser-accelerated thin-foil impact set-up involved combined use of photon-doppler-velocimetry to monitor the acceleration and impact velocity of an aluminum flyer, and VISAR interferometry was used to monitor the back free-surface velocity of the impacted Ni + Al multilayered target. The shock-compression response of the Ni + Al target foils was determined using experimentally measured parameters and impedance matching approach, with error bars identified considering systematic and experimental errors. Meso-scale CTH shock simulations were performed using real imported microstructures of the cross-sections of the multilayered Ni + Al foils to compute the Hugoniot response (assuming no reaction) for correlation with their experimentally determined equation of state. It was observed that at particle velocities below ˜150 m/s, the experimentally determined equation of state trend matches the CTH-predicted inert response and is consistent with the observed unreacted state of the recovered Ni + Al target foils from this velocity regime. At higher particle velocities, the experimentally determined equation of state deviates from the CTH-predicted inert response. A complete and self-sustained reaction is also seen in targets recovered from experiments performed at these higher particle velocities. The deviation in the measured equation of state, to higher shock speeds and expanded volumes, combined with the observation of complete reaction in the recovered multilayered foils, confirmed via microstructure characterization, is indicative of the occurrence

  11. Optical analysis of hafnium oxide-aluminum multilayer structures for transparent heat mirrors.

    PubMed

    Ramzan, Muhammad; Rana, Anwar M; Hafeez, Muhammad; Ahmed, Ejaz; Bhatti, Arshad S; Wasiq, Muhammad F; Nadeem, Muhammad Y

    2014-01-01

    We report on HfO2/Al/HfO2 multilayer thin films for heat mirror applications prepared on corning glass substrates by electron beam evaporation. Films fabricated at a substrate temperature of 100 °C show nano-polycrystals of HfO2 embedded in a disordered lattice according to X-ray diffraction results. Atomic force microscopy revealed that HfO2/Al/HfO2 layers possess smooth surface that is appropriate for optical heat mirror applications. Study of optical properties by UV-Visible spectrophotometer demonstrated that transmittance of HfO2/Al/HfO2 device was decreasing from UV to VIS and then slightly increasing in the NIR regions, with an opposite trend followed by reflectance. Optical constants i.e. refractive index, extinction coefficient, band gap energy, Urbach energy has also been calculated. The optical band gap and Urbach energy are found to be 4.34 eV and 3.164 eV, respectively. The collective oscillation energy loss for heat mirrors applications are also observed.

  12. Multilayer bioactive glass/zirconium titanate thin films in bone tissue engineering and regenerative dentistry

    PubMed Central

    Mozafari, Masoud; Salahinejad, Erfan; Shabafrooz, Vahid; Yazdimamaghani, Mostafa; Vashaee, Daryoosh; Tayebi, Lobat

    2013-01-01

    Surface modification, particularly coatings deposition, is beneficial to tissue-engineering applications. In this work, bioactive glass/zirconium titanate composite thin films were prepared by a sol-gel spin-coating method. The surface features of the coatings were studied by scanning electron microscopy, atomic force microscopy, and spectroscopic reflection analyses. The results show that uniform and sound multilayer thin films were successfully prepared through the optimization of the process variables and the application of carboxymethyl cellulose as a dispersing agent. Also, it was found that the thickness and roughness of the multilayer coatings increase nonlinearly with increasing the number of the layers. This new class of nanocomposite coatings, comprising the bioactive and inert components, is expected not only to enhance bioactivity and biocompatibility, but also to protect the surface of metallic implants against wear and corrosion. PMID:23641155

  13. Measuring sticking and stripping in muon catalyzed dt fusion with multilayer thin films

    SciTech Connect

    Fujiwara, M.C.; Bailey, J.M.; Beer, G.A.

    1995-12-01

    The authors propose a direct measurement of muon sticking to alpha particles in muon catalyzed dt fusion at a high density. Exploiting the features of a multilayer thin film target developed at TRIUMF, the sticking is determined directly by detection of charged fusion products. Experimental separation of initial ticking and stripping may become possible for the first time. Monte Carlo simulations, as well as preliminary results of test measurements are described.

  14. Selective structuring of multi-layer functional thin films using a laser-induced shockwave delamination process

    NASA Astrophysics Data System (ADS)

    Ehrhardt, M.; Lorenz, P.; Bayer, L.; Molpeceres, C.; Ramirez, C. Antonio Herrera; Zimmer, K.

    2016-03-01

    The laser assisted micro structuring of thin films especially for electronic applications without influence the functionality of the multi-layer system e.g. due to melting products is a challenge for the laser micro machining techniques. The P2 scribing of copper indium gallium selenide (CIGS) solar cells on stainless steel carrier foil was studied using shockwave- induced film delamination (SWIFD) patterning. The delamination process is induced by a shock wave generated by the laser ablation of the rear side of the carrier foil. In the present study UV nanosecond laser pulses provided by a KrF excimer laser were used to induce the SWIFD process. The morphology and size of the achieved thin-film structures were studied in dependence on various laser irradiation parameters by optical and scanning electron microscopy (SEM). Furthermore, the materials composition after the laser patterning was analyzed by energy dispersive X-ray spectroscopy (EDX). The temporal sequences of processes involved in the SWIFD process were analyzed with high speed shadowgraph experiments. The results of the present study shows that in dependence on the laser parameter used a large process window exist in which the CIGS thin film can be removed from the substrate without visible thermal modification of the CIGS thin film.

  15. High temperature stability multilayers for EUV condenser optics

    SciTech Connect

    Bajt, S; Stearns, D G

    2005-05-03

    We investigate the thermal stability of Mo/SiC multilayer coatings at elevated temperatures. Transmission electron microscopy and x-ray diffraction studies show that upon annealing a thermally-induced structural relaxation occurs that transforms the polycrystalline Mo and amorphous SiC layers in as-deposited multilayers into amorphous Mo-Si-C alloy and crystalline SiC, respectively. After this relaxation process is complete the multilayer is stable at temperatures up to 400 C.

  16. Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties.

    PubMed

    Aulin, Christian; Karabulut, Erdem; Tran, Amy; Wågberg, Lars; Lindström, Tom

    2013-08-14

    The layer-by-layer (LbL) deposition method was used for the build-up of alternating layers of nanofibrillated cellulose (NFC) or carboxymethyl cellulose (CMC) with a branched, cationic polyelectrolyte, polyethyleneimine (PEI) on flexible poly (lactic acid) (PLA) substrates. With this procedure, optically transparent nanocellulosic films with tunable gas barrier properties were formed. 50 layer pairs of PEI/NFC and PEI/CMC deposited on PLA have oxygen permeabilities of 0.34 and 0.71 cm(3)·μm/m(2)·day·kPa at 23 °C and 50% relative humidity, respectively, which is in the same range as polyvinyl alcohol and ethylene vinyl alcohol. The oxygen permeability of these multilayer nanocomposites outperforms those of pure NFC films prepared by solvent-casting. The nanocellulosic LbL assemblies on PLA substrates was in detailed characterized using a quartz crystal microbalance with dissipation (QCM-D). Atomic force microscopy (AFM) reveals large structural differences between the PEI/NFC and the PEI/CMC assemblies, with the PEI/NFC assembly showing a highly entangled network of nanofibrils, whereas the PEI/CMC surfaces lacked structural features. Scanning electron microscopy images showed a nearly perfect uniformity of the nanocellulosic coatings on PLA, and light transmittance results revealed remarkable transparency of the LbL-coated PLA films. The present work demonstrates the first ever LbL films based on high aspect ratio, water-dispersible nanofibrillated cellulose, and water-soluble carboxymethyl cellulose polymers that can be used as multifunctional films and coatings with tailorable properties, such as gas barriers and transparency. Owing to its flexibility, transparency and high-performance gas barrier properties, these thin film assemblies are promising candidates for several large-scale applications, including flexible electronics and renewable packaging.

  17. Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties.

    PubMed

    Aulin, Christian; Karabulut, Erdem; Tran, Amy; Wågberg, Lars; Lindström, Tom

    2013-08-14

    The layer-by-layer (LbL) deposition method was used for the build-up of alternating layers of nanofibrillated cellulose (NFC) or carboxymethyl cellulose (CMC) with a branched, cationic polyelectrolyte, polyethyleneimine (PEI) on flexible poly (lactic acid) (PLA) substrates. With this procedure, optically transparent nanocellulosic films with tunable gas barrier properties were formed. 50 layer pairs of PEI/NFC and PEI/CMC deposited on PLA have oxygen permeabilities of 0.34 and 0.71 cm(3)·μm/m(2)·day·kPa at 23 °C and 50% relative humidity, respectively, which is in the same range as polyvinyl alcohol and ethylene vinyl alcohol. The oxygen permeability of these multilayer nanocomposites outperforms those of pure NFC films prepared by solvent-casting. The nanocellulosic LbL assemblies on PLA substrates was in detailed characterized using a quartz crystal microbalance with dissipation (QCM-D). Atomic force microscopy (AFM) reveals large structural differences between the PEI/NFC and the PEI/CMC assemblies, with the PEI/NFC assembly showing a highly entangled network of nanofibrils, whereas the PEI/CMC surfaces lacked structural features. Scanning electron microscopy images showed a nearly perfect uniformity of the nanocellulosic coatings on PLA, and light transmittance results revealed remarkable transparency of the LbL-coated PLA films. The present work demonstrates the first ever LbL films based on high aspect ratio, water-dispersible nanofibrillated cellulose, and water-soluble carboxymethyl cellulose polymers that can be used as multifunctional films and coatings with tailorable properties, such as gas barriers and transparency. Owing to its flexibility, transparency and high-performance gas barrier properties, these thin film assemblies are promising candidates for several large-scale applications, including flexible electronics and renewable packaging. PMID:23834391

  18. Analysis of multiple reflection effects in reflective measurements of electro-optic coefficients of poled polymers in multilayer structures.

    PubMed

    Park, Dong H; Lee, Chi H; Herman, Warren N

    2006-09-18

    We present new closed-form expressions for analysis of Teng-Man measurements of the electro-optic coefficients of poled polymer thin films. These expressions account for multiple reflection effects using a rigorous analysis of the multilayered structure for varying angles of incidence. The analysis based on plane waves is applicable to both transparent and absorptive films and takes into account the properties of the transparent conducting electrode layer. Methods for fitting data are presented and the error introduced by ignoring the transparent conducting layer and multiple reflections is discussed. PMID:19529267

  19. Thin nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth J. (Inventor); Hughes, Eli (Inventor)

    2009-01-01

    A thin nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  20. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2008-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  1. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2007-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  2. Thin-film optical shutter. Final report

    SciTech Connect

    Matlow, S.L.

    1981-02-01

    A specific embodiment of macroconjugated macromolecules, the poly (p-phenylene)'s, has been chosen as the one most likely to meet all of the requirements of the Thin Film Optical Shutter project (TFOS). The reason for this choice is included. In order to be able to make meaningful calculations of the thermodynamic and optical properties of the poly (p-phenylene)'s a new quantum mechanical method was developed - Equilibrium Bond Length (EBL) Theory. Some results of EBL Theory are included.

  3. Inhomogeneity in films: limitation of the accuracy of optical monitoring of thin films.

    PubMed

    Borgogno, J P; Bousquet, P; Flory, F; Lazarides, B; Pelletier, E; Roche, P

    1981-01-01

    With present-day refinements, thin film multilayers can be designed theoretically to meet virtually any reasonable filtering requirements. Often, when the optical properties are specified over very wide spectral regions the thicknesses of the various layers are not related in any simple way. The manufacture of such multilayers presents many difficulties. The tolerances on layer thickness and refractive indices in some designs are often very narrow. We have developed an optical method for the accurate control of layer thickness that involves the measurement of transmittance over a wide spectral region (400-1000 mm). This measurement is performed continuously during deposition by a rapid scanning monochromator. The accuracy of such a system depends on a precise knowledge of the indices of refraction that are produced during the multilayer deposition. In addition the structure of many optical thin films used for hard coatings departs considerably from the simple method that is traditionally used in optical coating designs. In the method we have developed to compensate for such discrepancies, optical inhomogeneity is included by assuming a linear refractive-index profile, determined by analyzing experimental results. These results are in agreement with other studies of structure.

  4. Highly Crystalline CVD-grown Multilayer MoSe2 Thin Film Transistor for Fast Photodetector

    PubMed Central

    Jung, Chulseung; Kim, Seung Min; Moon, Hyunseong; Han, Gyuchull; Kwon, Junyeon; Hong, Young Ki; Omkaram, Inturu; Yoon, Youngki; Kim, Sunkook; Park, Jozeph

    2015-01-01

    Hexagonal molybdenum diselenide (MoSe2) multilayers were grown by chemical vapor deposition (CVD). A relatively high pressure (>760 Torr) was used during the CVD growth to achieve multilayers by creating multiple nuclei based on the two-dimensional crystal growth model. Our CVD-grown multilayer MoSe2 thin-film transistors (TFTs) show p-type-dominant ambipolar behaviors, which are attributed to the formation of Se vacancies generated at the decomposition temperature (650 °C) after the CVD growth for 10 min. Our MoSe2 TFT with a reasonably high field-effect mobility (10 cm2/V · s) exhibits a high photoresponsivity (93.7 A/W) and a fast photoresponse time (τrise ~ 0.4 s) under the illumination of light, which demonstrates the practical feasibility of multilayer MoSe2 TFTs for photodetector applications. PMID:26477744

  5. Analysis of a Thin Optical Lens Model

    ERIC Educational Resources Information Center

    Ivchenko, Vladimir V.

    2011-01-01

    In this article a thin optical lens model is considered. It is shown that the limits of its applicability are determined not only by the ratio between the thickness of the lens and the modules of the radii of curvature, but above all its geometric type. We have derived the analytical criteria for the applicability of the model for different types…

  6. Tracing the 4000 year history of organic thin films: From monolayers on liquids to multilayers on solidsa)

    NASA Astrophysics Data System (ADS)

    Greene, J. E.

    2015-03-01

    The recorded history of organic monolayer and multilayer thin films spans approximately 4000 years. Fatty-acid-based monolayers were deposited on water by the ancients for applications ranging from fortune telling in King Hammurabi's time (˜1800 BC, Mesopotamia) to stilling choppy waters for sailors and divers as reported by the Roman philosopher Pliny the Elder in ˜78 AD, and then much later (1774) by the peripatetic American statesman and natural philosopher Benjamin Franklin, to Japanese "floating-ink" art (suminagashi) developed ˜1000 years ago. The modern science of organic monolayers began in the late-1800s/early-1900s with experiments by Lord Rayleigh and the important development by Agnes Pockels, followed two decades later by Irving Langmuir, of the tools and technology to measure the surface tension of liquids, the surface pressure of organic monolayers deposited on water, interfacial properties, molecular conformation of the organic layers, and phase transitions which occur upon compressing the monolayers. In 1935, Katherine Blodgett published a landmark paper showing that multilayers can be synthesized on solid substrates, with controlled thickness and composition, using an apparatus now known as the Langmuir-Blodgett (L-B) trough. A disadvantage of LB films for some applications is that they form weak physisorbed bonds to the substrate. In 1946, Bigelow, Pickett, and Zisman demonstrated, in another seminal paper, the growth of organic self-assembled monolayers (SAMs) via spontaneous adsorption from solution, rather than from the water/air interface, onto SiO2 and metal substrates. SAMs are close-packed two-dimensional organic crystals which exhibit strong covalent bonding to the substrate. The first multicomponent adsorbed monolayers and multilayer SAMs were produced in the early 1980s. Langmuir monolayers, L-B multilayers, and self-assembled mono- and multilayers have found an extraordinarily broad range of applications including controlled wetting

  7. Tracing the 4000 year history of organic thin films: From monolayers on liquids to multilayers on solids

    SciTech Connect

    Greene, J. E.

    2015-03-15

    The recorded history of organic monolayer and multilayer thin films spans approximately 4000 years. Fatty-acid-based monolayers were deposited on water by the ancients for applications ranging from fortune telling in King Hammurabi's time (∼1800 BC, Mesopotamia) to stilling choppy waters for sailors and divers as reported by the Roman philosopher Pliny the Elder in ∼78 AD, and then much later (1774) by the peripatetic American statesman and natural philosopher Benjamin Franklin, to Japanese “floating-ink” art (suminagashi) developed ∼1000 years ago. The modern science of organic monolayers began in the late-1800s/early-1900s with experiments by Lord Rayleigh and the important development by Agnes Pockels, followed two decades later by Irving Langmuir, of the tools and technology to measure the surface tension of liquids, the surface pressure of organic monolayers deposited on water, interfacial properties, molecular conformation of the organic layers, and phase transitions which occur upon compressing the monolayers. In 1935, Katherine Blodgett published a landmark paper showing that multilayers can be synthesized on solid substrates, with controlled thickness and composition, using an apparatus now known as the Langmuir-Blodgett (L-B) trough. A disadvantage of LB films for some applications is that they form weak physisorbed bonds to the substrate. In 1946, Bigelow, Pickett, and Zisman demonstrated, in another seminal paper, the growth of organic self-assembled monolayers (SAMs) via spontaneous adsorption from solution, rather than from the water/air interface, onto SiO{sub 2} and metal substrates. SAMs are close-packed two-dimensional organic crystals which exhibit strong covalent bonding to the substrate. The first multicomponent adsorbed monolayers and multilayer SAMs were produced in the early 1980s. Langmuir monolayers, L-B multilayers, and self-assembled mono- and multilayers have found an extraordinarily broad range of applications including

  8. Magnetic and structural properties of MnBi multilayered thin films

    SciTech Connect

    Hozumi, T.; LeClair, P.; Mankey, G.; Mewes, C.; Suzuki, T.; Sepehri-Amin, H.; Hono, K.

    2014-05-07

    Magnetic and structural properties of MnBi films with thicknesses up to 50 nm were investigated. Thin films of the MnBi LTP (Low Temperature Phase) were fabricated onto silica-glass substrates by sputter-deposition of Bi/Mn multilayer, followed by a subsequent annealing at about 550 °C for 30 min. Coercivity of such thin films is higher than 15 kOe, even though the film thickness is about 10 nm. These thin films show the preferential growth of c-axis of the LTP along the film normal. Moreover, high resolution transmission electron microscopy indicates that the LTP regions of 30–50 nm in size are physically isolated by Bi. The magnetization reversal mechanism of such a LTP region is mainly governed by a coherent rotation mode based on the δM curve measurement.

  9. Finite element analysis and equivalent parallel-resistance model for conductive multilayer thin films

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Yi; Juang, Jia-Yang

    2016-07-01

    The standard collinear four-point probe method is an indispensable tool and has been extensively used for characterizing conductive thin films with homogeneous and isotropic electrical properties. In this paper, we conduct three-dimensional (3D) finite element simulations on conductive multilayer films to study the relationship between the reading of the four-point probe and the conductivity of the individual layers. We find that a multilayer film may be modeled as a simple equivalent circuit with multiple resistances, connected in parallel for a wide range of resistivity and thickness ratios, as long as its total thickness is smaller than approximately half of the probe spacing. As a result, we may determine the resistivity of each layer sequentially by applying the four-point probe, with the original correction factor π/ln(2), after deposition of each layer.

  10. Multilayer optics for coherent EUV/X-ray laser sources

    NASA Astrophysics Data System (ADS)

    Delmotte, F.; Dehlinger, M.; Bourassin-Bouchet, Ch.; de Rossi, S.; Jerome, A.; Meltchakov, E.; Varnière, F.

    2015-09-01

    After a brief review of recent results achieved at Laboratoire Charles Fabry concerning high reflectivity mirrors, mirrors with enhanced spectral purity and broadband mirrors, we describe a new approach to design high efficiency multilayer mirrors for application on a broad spectral range. The main idea is to use 2 "spacer" materials (Aluminum and Scandium) in combination with a third material (Boron carbide or Silicon Carbide). We present several examples of design optimization using such multilayers. Finally, we show the first preliminary experimental results with Al/Sc/B4C and Al/Sc/SiC multilayers deposited by ion beam sputtering.

  11. Polyelectrolyte-mediated assembly of copper-phthalocyanine tetrasulfonate multilayers and the subsequent production of nanoparticulate copper oxide thin films.

    PubMed

    Chickneyan, Zarui Sara; Briseno, Alejandro L; Shi, Xiangyang; Han, Shubo; Huang, Jiaxing; Zhou, Feimeng

    2004-07-01

    An approach to producing films of nanometer-sized copper oxide particulates, based on polyelectrolyte-mediated assembly of the precursor, copper(II)phthalocyanine tetrasulfonate (CPTS), is described. Multilayered CPTS and polydiallyldimethylammonium chloride (PDADMAC) were alternately assembled on different planar substrates via the layer-by-layer (LbL) procedure. The growth of CPTS multilayers was monitored by UV-visible spectrometry and quartz crystal microbalance (QCM) measurements. Both the UV-visible spectra and the QCM data showed that a fixed amount of CPTS could be attached to the substrate surface for a given adsorption cycle. Cyclic voltammograms at the CPTS/PDADMAC-covered gold electrode exhibited a decrease in peak currents with the layer number, indicating that the permeability of CPTS multilayers on the electrodes had diminished. When these CPTS multilayered films were calcined at elevated temperatures, uniform thin films composed of nanoparticulate copper oxide could be produced. Ellipsometry showed that the thickness of copper oxide nanoparticulate films could be precisely tailored by varying the thickness of CPTS multilayer films. The morphology and roughness of CPTS multilayer and copper oxide thin films were characterized by atomic force microscopy. X-ray diffraction (XRD) measurements indicated that these thin films contained both CuO and Cu2O nanoparticles. The preparation of such copper oxide thin films with the use of metal complex precursors represents a new route for the synthesis of inorganic oxide films with a controlled thickness.

  12. Thickness-dependent carrier transport and optically enhanced transconductance gain in III-VI multilayer InSe

    NASA Astrophysics Data System (ADS)

    Ho, Ching-Hwa

    2016-06-01

    Multilayer InSe with a thickness above ∼20 nm, is a direct semiconductor with a peak absorption wavelength approaching λ = 1000 nm, which is a promising candidate for solar-energy conversion and 2D optoelectronics devices. We present herein the experimental observations of thickness-dependent conductivity and photoconductive-responsivity spectrum in multilayer InSe as well as optically enhanced transconductance gain in the multilayer InSe metal-semiconductor-field-effect transistor (MESFET) illuminated by a halogen lamp. The voltage-current (V-I) measurement result shows multilayer InSe belongs to a p-type semiconductor, which can form a p-channel FET device. Thickness (t) dependent conductivity (σ) of multilayer InSe reveals about six-order variation from 5076 (Ω-cm)‑1 (t = 5 nm) to 2.56 × 10‑3 (Ω-cm)‑1 (t = 184 μm, bulk) following a relationship of σ ∝ t ‑1.38. The highest conductivity in a thin InSe (e.g. t = 5 nm) is due to the increase of carrier density when the thickness is decreased. The photoresponsivity spectrum of a Ag-InSe-Ag multilayer photoconductor demonstrates a prominent peak absorption at 1.1 ∼ 1.3 eV, matches well with the direct-free-exciton energy of the InSe. A multilayer p-InSe MESFET was tested by V-I measurement. The transconductance was measured and determined to be {g}m={≤ft|\\tfrac{\\partial {{{I}}}{{D}}}{\\partial {{{V}}}{{G}}}\\right|}{{{V}}{{SD}}={{2V}}} = ({1.25 +/- 0.008})× {10}-4≤ft(\\tfrac{{{A}}}{{{V}}}\\right). The gm value will enhance about three times when the MESFET was placed under the illumination of a tungsten halogen lamp of a lower power density ∼0.5 mW · cm‑2. All the experimental results demonstrate multilayer InSe a promising 2D material available for microelectronics and optoelectronics applications.

  13. Thickness-dependent carrier transport and optically enhanced transconductance gain in III-VI multilayer InSe

    NASA Astrophysics Data System (ADS)

    Ho, Ching-Hwa

    2016-06-01

    Multilayer InSe with a thickness above ˜20 nm, is a direct semiconductor with a peak absorption wavelength approaching λ = 1000 nm, which is a promising candidate for solar-energy conversion and 2D optoelectronics devices. We present herein the experimental observations of thickness-dependent conductivity and photoconductive-responsivity spectrum in multilayer InSe as well as optically enhanced transconductance gain in the multilayer InSe metal-semiconductor-field-effect transistor (MESFET) illuminated by a halogen lamp. The voltage-current (V-I) measurement result shows multilayer InSe belongs to a p-type semiconductor, which can form a p-channel FET device. Thickness (t) dependent conductivity (σ) of multilayer InSe reveals about six-order variation from 5076 (Ω-cm)-1 (t = 5 nm) to 2.56 × 10-3 (Ω-cm)-1 (t = 184 μm, bulk) following a relationship of σ ∝ t -1.38. The highest conductivity in a thin InSe (e.g. t = 5 nm) is due to the increase of carrier density when the thickness is decreased. The photoresponsivity spectrum of a Ag-InSe-Ag multilayer photoconductor demonstrates a prominent peak absorption at 1.1 ˜ 1.3 eV, matches well with the direct-free-exciton energy of the InSe. A multilayer p-InSe MESFET was tested by V-I measurement. The transconductance was measured and determined to be {g}m={≤ft|\\tfrac{\\partial {{{I}}}{{D}}}{\\partial {{{V}}}{{G}}}\\right|}{{{V}}{{SD}}={{2V}}} = ({1.25 +/- 0.008})× {10}-4≤ft(\\tfrac{{{A}}}{{{V}}}\\right). The gm value will enhance about three times when the MESFET was placed under the illumination of a tungsten halogen lamp of a lower power density ˜0.5 mW · cm-2. All the experimental results demonstrate multilayer InSe a promising 2D material available for microelectronics and optoelectronics applications.

  14. Aspects of Integrating Functional Electroceramic Material in Multilayer Thin Films for Image Sensing: Modeling and Experiment

    NASA Astrophysics Data System (ADS)

    Matin, M. A.; Oishi, K.; Katsuta, A.; Akai, D.; Sawada, K.; Ishida, M.

    2015-07-01

    Using combined experimental and simulation techniques, this study addresses the critical stress for peeling off crucial layer(s) in multilayered epitaxial functional thin films on n-Si(001) substrate. The thickness of platinum (Pt) and PZT thin films was varied from 22 nm to 142 nm and 90 nm to 450 nm, respectively. Residual stresses were measured by analyzing captured fringes using Newton's rings technique. Advanced finite element computation was next conducted to predict the evolution of residual stresses. Induced stresses in Pt thin film were found to be decreased with decreasing the thickness of film from 72 nm to 40 nm. In contrast, stresses are shown to be decreased with increasing the thickness of PZT film from 240 nm to 450 nm. The design of the pyroelectric multilayered sensors was thus optimized employing finite element (FE) simulation. Computed stresses were found to correlate well with that observed in experiments. FE simulations can thus be used as a tool to a priori predict the evolution of residual stresses, which may allow a fail-safe design before the fabrication of pyroelectric image sensors.

  15. Doped SnO₂ transparent conductive multilayer thin films explored by continuous composition spread.

    PubMed

    Lee, Jin Ju; Ha, Jong-Yoon; Choi, Won-Kook; Cho, Yong Soo; Choi, Ji-Won

    2015-04-13

    Mn-doped SnO₂ thin films were fabricated by a continuous composition spread (CCS) method on a glass substrate at room temperature to find optimized compositions. The fabricated materials were found to have a lower resistivity than pure SnO₂ thin films because of oxygen vacancies generated by Mn doping. As Mn content was increased, resistivity was found to decrease for limited doping concentrations. The minimum thin film resistivity was 0.29 Ω-cm for a composition of 2.59 wt % Mn-doped SnO₂. The Sn-O vibrational stretching frequency in FT-IR showed a blue shift, consistent with oxygen deficiency. Mn-doped SnO₂/Ag/Mn-doped SnO₂ multilayer structures were fabricated using this optimized composition deposited by an on-axis radio frequency (RF) sputter. The multilayer transparent conducting oxide film had a resistivity of 7.35 × 10⁻⁵ Ω-cm and an average transmittance above 86% in the 550 nm wavelength region. PMID:25761303

  16. Channel cracks in atomic-layer and molecular-layer deposited multilayer thin film coatings

    SciTech Connect

    Long, Rong; Dunn, Martin L.

    2014-06-21

    Metal oxide thin film coatings produced by atomic layer deposition have been shown to be an effective permeation barrier. The primary failure mode of such coatings under tensile loads is the propagation of channel cracks that penetrate vertically into the coating films. Recently, multi-layer structures that combine the metal oxide material with relatively soft polymeric layers produced by molecular layer deposition have been proposed to create composite thin films with desired properties, including potentially enhanced resistance to fracture. In this paper, we study the effects of layer geometry and material properties on the critical strain for channel crack propagation in the multi-layer composite films. Using finite element simulations and a thin-film fracture mechanics formalism, we show that if the fracture energy of the polymeric layer is lower than that of the metal oxide layer, the channel crack tends to penetrate through the entire composite film, and dividing the metal oxide and polymeric materials into thinner layers leads to a smaller critical strain. However, if the fracture energy of the polymeric material is high so that cracks only run through the metal oxide layers, more layers can result in a larger critical strain. For intermediate fracture energy of the polymer material, we developed a design map that identifies the optimal structure for given fracture energies and thicknesses of the metal oxide and polymeric layers. These results can facilitate the design of mechanically robust permeation barriers, an important component for the development of flexible electronics.

  17. Multilayer and grazing incidence X-ray/EUV optics; Proceedings of the Meeting, San Diego, CA, July 22-24, 1991

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Editor)

    1992-01-01

    The present conference discusses the Advanced X-ray Astrophysics Facility (AXAF) calibration by means of synchrotron radiation and its X-ray reflectivity, X-ray scattering measurements from thin-foil X-ray mirrors, lobster-eye X-ray optics using microchannel plates, space-based interferometry at EUV and soft X-ray wavelengths, a water-window imaging X-ray telescope, a graded d-spacing multilayer telescope for high energy X-ray astronomy, photographic films for the multispectral solar telescope array, a soft X-ray ion chamber, and the development of hard X-ray optics. Also discussed are X-ray spectroscopy with multilayered optics, a slit aperture for monitoring X-ray experiments, an objective double-crystal spectrometer, a Ly-alpha coronagraph/polarimeter, tungsten/boron nitride multilayers for XUV optical applications, the evaluation of reflectors for soft X-ray optics, the manufacture of elastically bent crystals and multilayer mirrors, and selective photodevices for the VUV.

  18. A high transmittance optical recording material with long-term reliability for super-multilayer discs

    NASA Astrophysics Data System (ADS)

    Shimomai, Kenichi; Asano, Sho; Oshita, Junji; Matsuda, Isao; Kojo, Shinichi; Murai, Wakaaki; Hattori, Masashi; Shimizu, Atsuo; Fujii, Toru

    2015-09-01

    As a means of increasing data capacity, the multilayer optical disc is a promising approach. Because the recording layers in multilayer optical discs must have a high transmittance, they are commonly made of transparent oxide films. Moreover, the recording layer must have sufficient long-term reliability for data archival. In this work, a recording material with high transmittance and long-term reliability for use in super-multilayer discs was investigated. This paper clarifies the recording mechanism of GeBi oxide material and proposes a suitable material design that satisfies the abovementioned characteristics. Furthermore, experimental results of recording on super-multilayer discs based on GeBi oxide recording material are presented.

  19. Lipid Multilayer Grating Arrays Integrated by Nanointaglio for Vapor Sensing by an Optical Nose

    PubMed Central

    Lowry, Troy W.; Prommapan, Plengchart; Rainer, Quinn; Van Winkle, David; Lenhert, Steven

    2015-01-01

    Lipid multilayer gratings are recently invented nanomechanical sensor elements that are capable of transducing molecular binding to fluid lipid multilayers into optical signals in a label free manner due to shape changes in the lipid nanostructures. Here, we show that nanointaglio is suitable for the integration of chemically different lipid multilayer gratings into a sensor array capable of distinguishing vapors by means of an optical nose. Sensor arrays composed of six different lipid formulations are integrated onto a surface and their optical response to three different vapors (water, ethanol and acetone) in air as well as pH under water is monitored as a function of time. Principal component analysis of the array response results in distinct clustering indicating the suitability of the arrays for distinguishing these analytes. Importantly, the nanointaglio process used here is capable of producing lipid gratings out of different materials with sufficiently uniform heights for the fabrication of an optical nose. PMID:26308001

  20. Development of high damage threshold multilayer thin film beam combiner for laser application

    NASA Astrophysics Data System (ADS)

    Nand, Mangla; Babita, Jena, S.; Tokas, R. B.; Rajput, P.; Mukharjee, C.; Thakur, S.; Jha, S. N.; Sahoo, N. K.

    2016-05-01

    A polarized wavelength multiplexer with high laser induced damage threshold has been developed to combine two laser beam of high peak power in the visible region. The present wavelength multiplexer is a multilayer thin film device deposited by reactive electron beam evaporation. The developed device is capable of combining two p-polarized laser beams of peak power density of 1.7 GW/cm2 at an angle of incidence of 45°. High transmission (T> 90%) in high pass region and high reflection (R> 99%) in stop band region have been achieved.

  1. Sculpted-multilayer optical effects in two species of Papilio butterfly.

    PubMed

    Vukusic, P; Sambles, R; Lawrence, C; Wakely, G

    2001-03-01

    The wing-scale microstructures associated with two species of Papilio butterfly are described and characterized. Despite close similarities in their structures, they do not exhibit analogous optical effects. With Papilio palinurus, deep modulations in its multilayering create bicolor reflectivity with strong polarization effects, and this leads to additive color mixing in certain visual systems. In contrast to this, Papilio ulysses features shallow multilayer modulation that produces monocolor reflectivity without significant polarization effects. PMID:18357096

  2. Optical properties of gold-silica-gold multilayer nanoshells.

    PubMed

    Hu, Ying; Fleming, Ryan C; Drezek, Rebekah A

    2008-11-24

    The spectral and angular radiation properties of gold-silica-gold multilayer nanoshells are investigated using Mie theory for concentric multilayer spheres. The spectral tunability of multilayer nanoshells is explained and characterized by a plasmon hybridization model and a universal scaling principle. A thinner intermediate silica layer, scaled by particle size, red shifts the plasmon resonance. This shift is relatively insensitive to the overall particle size and follows the universal scaling principle with respect to the resonant wavelength of a conventional silica-gold core-shell nanoshell. The extra tunability provided by the inner core further shifts the extinction peak to longer wavelengths, which is difficult to achieve on conventional sub-100 nm nanoshells due to limitations in synthesizing ultrathin gold coatings. We found multilayer nanoshells to be more absorbing with a larger gold core, a thinner silica layer, and a thinner outer gold shell. Both scattering intensity and angular radiation pattern were found to differ from conventional nanoshells due to spectral modulation from the inner core. Multilayer nanoshells may provide more backscattering at wavelengths where silica-gold core-shell nanoshells predominantly forward scatter. PMID:19030045

  3. Polydiacetylene thin films for nonlinear optical applications

    NASA Technical Reports Server (NTRS)

    Paley, Mark S.

    1993-01-01

    One very promising class of organic compounds for nonlinear optical (NLO) applications are polydiacetylenes, which are novel in that they are highly conjugated polymers which can also be crystalline. Polydiacetylenes offer several advantages over other organic materials: because of their highly conjugated electronic structures, they are capable of possessing large optical nonlinearities with fast response times; because they are crystalline, they can be highly ordered, which is essential for optimizing their NLO properties; and, last, because they are polymeric, they can be formed as thin films, which are useful for device fabrication. We have actively been carrying out ground-based research on several compounds of interest.

  4. Brilliant iridescence of Morpho butterfly wing scales is due to both a thin film lower lamina and a multilayered upper lamina.

    PubMed

    Giraldo, M A; Stavenga, D G

    2016-05-01

    Butterflies belonging to the nymphalid subfamily, Morphinae, are famous for their brilliant blue wing coloration and iridescence. These striking optical phenomena are commonly explained as to originate from multilayer reflections by the ridges of the wing scales. Because the lower lamina of the scales of related nymphalid butterflies, the Nymphalinae, plays a dominant role in the wing coloration, by acting as a thin film reflector, we investigated single blue scales of three characteristic Morpho species: M. epistrophus, M. helenor and M. cypris. The experimental data obtained by spectrophotometry, scatterometry and scanning electron microscopy demonstrated that also in the Morpho genus the lower lamina of both the cover and ground scales acts as an optical thin film reflector, contributing importantly to the blue structural coloration of the wings. Melanin pigment has a contrast-enhancing function in a sub-class of ground scales. PMID:27072662

  5. Design and development of an in-line sputtering system and process development of thin film multilayer neutron supermirrors.

    PubMed

    Biswas, A; Sampathkumar, R; Kumar, Ajaya; Bhattacharyya, D; Sahoo, N K; Lagoo, K D; Veerapur, R D; Padmanabhan, M; Puri, R K; Bhattacharya, Debarati; Singh, Surendra; Basu, S

    2014-12-01

    Neutron supermirrors and supermirror polarizers are thin film multilayer based devices which are used for reflecting and polarizing neutrons in various neutron based experiments. In the present communication, the in-house development of a 9 m long in-line dc sputtering system has been described which is suitable for deposition of neutron supermirrors on large size (1500 mm × 150 mm) substrates and in large numbers. The optimisation process of deposition of Co and Ti thin film, Co/Ti periodic multilayers, and a-periodic supermirrors have also been described. The system has been used to deposit thin film multilayer supermirror polarizers which show high reflectivity up to a reasonably large critical wavevector transfer of ∼0.06 Å(-1) (corresponding to m = 2.5, i.e., 2.5 times critical wavevector transfer of natural Ni). The computer code for designing these supermirrors has also been developed in-house. PMID:25554268

  6. Design and development of an in-line sputtering system and process development of thin film multilayer neutron supermirrors

    SciTech Connect

    Biswas, A.; Sampathkumar, R.; Kumar, Ajaya; Bhattacharyya, D.; Sahoo, N. K.; Lagoo, K. D.; Veerapur, R. D.; Padmanabhan, M.; Puri, R. K.; Bhattacharya, Debarati; Singh, Surendra; Basu, S.

    2014-12-15

    Neutron supermirrors and supermirror polarizers are thin film multilayer based devices which are used for reflecting and polarizing neutrons in various neutron based experiments. In the present communication, the in-house development of a 9 m long in-line dc sputtering system has been described which is suitable for deposition of neutron supermirrors on large size (1500 mm × 150 mm) substrates and in large numbers. The optimisation process of deposition of Co and Ti thin film, Co/Ti periodic multilayers, and a-periodic supermirrors have also been described. The system has been used to deposit thin film multilayer supermirror polarizers which show high reflectivity up to a reasonably large critical wavevector transfer of ∼0.06 Å{sup −1} (corresponding to m = 2.5, i.e., 2.5 times critical wavevector transfer of natural Ni). The computer code for designing these supermirrors has also been developed in-house.

  7. Recovery of Mo/Si multilayer coated optical substrates

    DOEpatents

    Baker, S.L.; Vernon, S.P.; Stearns, D.G.

    1997-12-16

    Mo/Si multilayers are removed from superpolished ZERODUR and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. The two step dry etching process removes SiO{sub 2} overlayer with a fluroine-containing gas and then moves molybdenum and silicon multilayers with a chlorine-containing gas. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates. 5 figs.

  8. Recovery of Mo/Si multilayer coated optical substrates

    DOEpatents

    Baker, Sherry L.; Vernon, Stephen P.; Stearns, Daniel G.

    1997-12-16

    Mo/Si multilayers are removed from superpolished ZERODUR and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. The two step dry etching process removes SiO.sub.2 overlayer with a fluroine-containing gas and then moves molybdenum and silicon multilayers with a chlorine-containing gas. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates.

  9. Optical properties of protocrystalline silicon/amorphous SiC multilayer films

    NASA Astrophysics Data System (ADS)

    Fu, Guangsheng; Ma, Luo; Lu, Wanbing; Zhang, Zicai; Yu, Wei

    2008-11-01

    Protocrystalline silicon/amorphous SiC multilayer films were fabricated by helicon wave plasma enhanced chemical vapour deposition (HW-PECVD). Atom force microscopy, Raman scattering and optical absorption measurements were used to analyze the microstructure and optical properties of the multilayer films. Experiment analyses reveal that through inserting transient a-SiC layer into film depositing process, well-controlled pc-Si:H films have been obtained in the growth condition of the μc-Si:H. The optical gap is observed being tuned from 2.15 to 2.43 eV by varying single pc-Si:H layer thickness. Such multilayer structure should have potential application in constructing high efficiency and stable Si-based solar cells.

  10. Nanocomposite thin films exhibiting high mechanical and optical flexibility

    NASA Astrophysics Data System (ADS)

    Druffel, Thad; Buazza, Omar; Lattis, Matt; Farmer, Scott

    2008-08-01

    Nanocomposites are created by doping host polymers with nanoparticles that typically have higher or lower refractive indices. The ability to tailor the mechanical and optical performance of these composites has led to their increased use in transparent materials. Nanocomposites maintain the elastic properties of the binding polymers and exhibit infinite refractive index tunability between the limits of the system. These unique properties provide distinct benefits for multilayer, thin-film optical filters. Because the nanoparticles are dispersed in a fluid or bound in a polymer matrix in use, toxicity risks that may be associated with raw particles are reduced. Using a stable dispersion of titanium dioxide nanoparticles and a UV curable monomer, we were able to design and produce several quarter-wave filters that demonstrate control of the height and width of the passband through adjustment of the organic/inorganic ratio and layer count. The volume loading of the metal oxides can be adjusted from zero to near the theoretical packing density of spheres, allowing refractive index to be controlled over a large range. Because metal oxide particles exhibit high UV absorption, these additives provide UV protection to the host polymer and the filter's substrate. Additionally, significant improvements in abrasion resistance are often observed in films loaded with nanoparticles at the concentrations of interest.

  11. Semileaky thin-film optical isolator

    SciTech Connect

    Kirsch, S.T.; Biolsi, W.A.; Blank, S.L.; Tien, P.K.; Martin, R.J.; Bridenbaugh, P.M.; Grabbe, P.

    1981-05-01

    Two interesting effects have been experimentally demonstrated for the first time: (1) simultaneous reciprocal and nonreciprocal mode conversion to achieve an isolation effect and (2) magneto-optic switching between guided and radiation modes. These effects were observed in connection with the construction of a previously proposed thin-film optical isolator. The isolator consists of a piece of LiNbO/sub 3/ placed on top of a thin film of yttrium ion garnet (YIG) with a selenium layer to avoid optical contact problems. The isolator, which is 1 cm long, exhibited 10 dB of isolation at lambda = 1.15 ..mu..m. The observed isolation was better than theoretical predictions and a mysterious isolation direction dependence on mode order was observed. Although the device had 10 dB of insertion loss and required a magnetic field of 40 Oe, with a slight change in wavelength and film composition, it should be possible to reduce the insertion loss and field required to under 1 dB and 0.1 Oe, respectively. These characteristics combined with broad tolerances on film thickness and the length of the isolation region, broadband operation (from lambda = 1.1 to 4.5 ..mu..m), and easy construction and adjustment make the isolator very attractive for use in integrated optics.

  12. Development of extreme ultraviolet and soft x-ray multilayer optics for scientific studies with femtosecond/attosecond sources

    SciTech Connect

    Aquila, Andrew Lee

    2009-05-21

    The development of multilayer optics for extreme ultraviolet (EUV) radiation has led to advancements in many areas of science and technology, including materials studies, EUV lithography, water window microscopy, plasma imaging, and orbiting solar physics imaging. Recent developments in femtosecond and attosecond EUV pulse generation from sources such as high harmonic generation lasers, combined with the elemental and chemical specificity provided by EUV radiation, are opening new opportunities to study fundamental dynamic processes in materials. Critical to these efforts is the design and fabrication of multilayer optics to transport, focus, shape and image these ultra-fast pulses This thesis describes the design, fabrication, characterization, and application of multilayer optics for EUV femtosecond and attosecond scientific studies. Multilayer mirrors for bandwidth control, pulse shaping and compression, tri-material multilayers, and multilayers for polarization control are described. Characterization of multilayer optics, including measurement of material optical constants, reflectivity of multilayer mirrors, and metrology of reflected phases of the multilayer, which is critical to maintaining pulse size and shape, were performed. Two applications of these multilayer mirrors are detailed in the thesis. In the first application, broad bandwidth multilayers were used to characterize and measure sub-100 attosecond pulses from a high harmonic generation source and was performed in collaboration with the Max-Planck institute for Quantum Optics and Ludwig- Maximilians University in Garching, Germany, with Professors Krausz and Kleineberg. In the second application, multilayer mirrors with polarization control are useful to study femtosecond spin dynamics in an ongoing collaboration with the T-REX group of Professor Parmigiani at Elettra in Trieste, Italy. As new ultrafast x-ray sources become available, for example free electron lasers, the multilayer designs

  13. Development of extreme ultraviolet and soft x-ray multilayer optics for scientific studies with femtosecond/attosecond sources

    NASA Astrophysics Data System (ADS)

    Aquila, Andrew Lee

    The development of multilayer optics for extreme ultraviolet (EUV) radiation has led to advancements in many areas of science and technology, including materials studies, EUV lithography, water window microscopy, plasma imaging, and orbiting solar physics imaging. Recent developments in femtosecond and attosecond EUV pulse generation from sources such as high harmonic generation lasers, combined with the elemental and chemical specificity provided by EUV radiation, are opening new opportunities to study fundamental dynamic processes in materials. Critical to these efforts is the design and fabrication of multilayer optics to transport, focus, shape and image these ultra-fast pulses. This thesis describes the design, fabrication, characterization, and application of multilayer optics for EUV femtosecond and attosecond scientific studies. Multilayer mirrors for bandwidth control, pulse shaping and compression, tri-material multilayers, and multilayers for polarization control are described. Characterization of multilayer optics, including measurement of material optical constants, reflectivity of multilayer mirrors, and metrology of reflected phases of the multilayer, which is critical to maintaining pulse size and shape, were performed. Two applications of these multilayer mirrors are detailed in the thesis. In the first application, broad bandwidth multilayers were used to characterize and measure sub-100 attosecond pulses from a high harmonic generation source and was performed in collaboration with the Max-Planck institute for Quantum Optics and Ludwig-Maximilians University in Garching, Germany, with Professors Krausz and Kleineberg. In the second application, multilayer mirrors with polarization control are useful to study femtosecond spin dynamics in an ongoing collaboration with the T-REX group of Professor Parmigiani at Elettra in Trieste, Italy. As new ultrafast x-ray sources become available, for example free electron lasers, the multilayer designs

  14. Multilayer single-mode polymeric waveguides by imprint patterning for optical interconnects

    NASA Astrophysics Data System (ADS)

    Korhonen, Tia; Salminen, Noora; Kokkonen, Annukka; Masuda, Noriyuki; Karppinen, Mikko

    2014-03-01

    Low-loss single-mode waveguides are fabricated for optical interconnection applications. Such waveguides operating at telecom wavelength window are attractive for communicating between micro-photonic integrated circuit chips, such as silicon photonics, on the carrier/package, and also for enhanced coupling of photonic devices to fibers for longer reach interconnects. Manufacturing of the waveguides is based on direct pattering of optical polymeric materials by UV nanoimprinting. The advantages of the technology include the applicability to stack multiple layers of waveguides, fabrication on various substrate materials, and simultaneous fabrication of optical coupling structures. The developed process enables high wafer-level yield with precision overlay alignment. The multilayer waveguides were implemented using the so-called inverted rib waveguide process, that is, the shape of the waveguide cores are imprinted on the undercladding layer as grooves and then the core material is deposited on the cladding layer filling the grooves and also forming a thin slab layer. The subsequent deposition of the upper cladding layer finalizes the first waveguide layer and also starts the manufacturing of the next waveguide layer. The achieved wafer-scale layer-to-layer alignment tolerances were 1...2 μm and <0.3 μm in horizontal and vertical directions, respectively. Losses measured from the long waveguide spirals made of commercial ORMOCER materials on silicon wafers were 0.35 dB/cm at 1305 nm and 0.86 dB/cm at 1530 nm, which are only around 0.15 dB/cm higher than the material losses.

  15. Preliminary investigation of changes in x-ray multilayer optics subjected to high radiation flux

    SciTech Connect

    Hockaday, M.P.; Blake, R.L.; Grosso, J.S.; Selph, M.M.; Klein, M.M.; Matuska, W. Jr.; Palmer, M.A.; Liefeld, R.J.

    1985-01-01

    A variety of metal multilayers was exposed to high x-ray flux using Sandia National Laboratories' PROTO II machine in the gas puff mode. Fluxes incident on the multilayers above 700 MW/cm/sup 2/ in total radiation, in nominal 20 ns pulses, were realized. The neon hydrogen- and helium-like resonance lines were used to probe the x-ray reflectivity properties of the multilayers as they underwent change of state during the heating pulse. A fluorescer-fiber optic-streak camera system was used to monitor the changes in x-ray reflectivity as a function of time and irradiance. Preliminary results are presented for a W/C multilayer. Work in progress to model the experiment is discussed. 13 refs., 4 figs.

  16. MoRu/Be multilayers for extreme ultraviolet applications

    DOEpatents

    Bajt, Sasa C.; Wall, Mark A.

    2001-01-01

    High reflectance, low intrinsic roughness and low stress multilayer systems for extreme ultraviolet (EUV) lithography comprise amorphous layers MoRu and crystalline Be layers. Reflectance greater than 70% has been demonstrated for MoRu/Be multilayers with 50 bilayer pairs. Optical throughput of MoRu/Be multilayers can be 30-40% higher than that of Mo/Be multilayer coatings. The throughput can be improved using a diffusion barrier to make sharper interfaces. A capping layer on the top surface of the multilayer improves the long-term reflectance and EUV radiation stability of the multilayer by forming a very thin native oxide that is water resistant.

  17. Modelling single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources.

    PubMed

    Loch, R A; Sobierajski, R; Louis, E; Bosgra, J; Bijkerk, F

    2012-12-17

    The single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources are theoretically investigated, using a model developed on the basis of experimental data obtained at the FLASH and LCLS free electron lasers. We compare the radiation hardness of commonly used multilayer optics and propose new material combinations selected for a high damage threshold. Our study demonstrates that the damage thresholds of multilayer optics can vary over a large range of incidence fluences and can be as high as several hundreds of mJ/cm(2). This strongly suggests that multilayer mirrors are serious candidates for damage resistant optics. Especially, multilayer optics based on Li(2)O spacers are very promising for use in current and future short-wavelength radiation sources.

  18. Low-threshold optical bistability with multilayer graphene-covering Otto configuration

    NASA Astrophysics Data System (ADS)

    Wang, Hengliang; Wu, Jipeng; Guo, Jun; Jiang, Leyong; Xiang, Yuanjiang; Wen, Shuangchun

    2016-06-01

    In this paper, we propose a modified Otto configuration to realize tunable and low-threshold optical bistability at terahertz frequencies by attaching multilayer graphene sheets to a nonlinear substrate interface. Our work demonstrates that the threshold of optical bistability can be markedly reduced (three orders of magnitude) by covering the nonlinear substrate with multilayer graphene sheets, due to strong local field enhancement with the excitation of surface plasmons. We present the influences of the Fermi energy of graphene, the incident angle, the thickness of air gap and the relaxation time of graphene on the hysteresis phenomenon and give a way to optimize the surface plasmon resonance, which will enable us to further lower the minimal power requirements for realizing optical bistability due to the strong interaction of light with graphene sheets. These results are promising for realization of terahertz optical switches, optical modulators and logical devices.

  19. Permanent laser conditioning of thin film optical materials

    DOEpatents

    Wolfe, C.R.; Kozlowski, M.R.; Campbell, J.H.; Staggs, M.; Rainer, F.

    1995-12-05

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold. 9 figs.

  20. Permanent laser conditioning of thin film optical materials

    DOEpatents

    Wolfe, C. Robert; Kozlowski, Mark R.; Campbell, John H.; Staggs, Michael; Rainer, Frank

    1995-01-01

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold.

  1. Optical thin film metrology for optoelectronics

    NASA Astrophysics Data System (ADS)

    Petrik, Peter

    2012-12-01

    The manufacturing of optoelectronic thin films is of key importance, because it underpins a significant number of industries. The aim of the European joint research project for optoelectronic thin film characterization (IND07) in the European Metrology Research Programme of EURAMET is to develop optical and X-ray metrologies for the assessment of quality as well as key parameters of relevant materials and layer systems. This work is intended to be a step towards the establishment of validated reference metrologies for the reliable characterization, and the development of calibrated reference samples with well-defined and controlled parameters. In a recent comprehensive study (including XPS, AES, GD-OES, GD-MS, SNMS, SIMS, Raman, SE, RBS, ERDA, GIXRD), Abou-Ras et al. (Microscopy and Microanalysis 17 [2011] 728) demonstrated that most characterization techniques have limitations and bottle-necks, and the agreement of the measurement results in terms of accurate, absolute values is not as perfect as one would expect. This paper focuses on optical characterization techniques, laying emphasis on hardware and model development, which determine the kind and number of parameters that can be measured, as well as their accuracy. Some examples will be discussed including optical techniques and materials for photovoltaics, biosensors and waveguides.

  2. Microstructure Related Properties of Optical Thin Films.

    NASA Astrophysics Data System (ADS)

    Wharton, John James, Jr.

    Both the optical and physical properties of thin film optical interference coatings depend upon the microstructure of the deposited films. This microstructure is strongly columnar with voids between the columns. Computer simulations of the film growth process indicate that the two most important factors responsible for this columnar growth are a limited mobility of the condensing molecules and self-shadowing by molecules already deposited. During the vacuum deposition of thin films, the microstructure can be influenced by many parameters, such as substrate temperature and vacuum pressure. By controlling these parameters and introducing additional ones, thin film coatings can be improved. In this research, ultraviolet irradiation and ion bombardment were examined as additional parameters. Past studies have shown that post-deposition ultraviolet irradiation can be used to relieve stress and reduce absorption in the far ultraviolet of silicon dioxide films. Ion bombardment has been used to reduce stress, improve packing density, and increase resistance to moisture penetration. Three refractory oxide materials commonly used in thin film coatings were studied; they are silicon dioxide, titanium dioxide, and zirconium dioxide. Both single-layer films and narrowband filters made of these materials were examined. A 1000-watt mercury-xenon lamp was used to provide ultraviolet irradiation. An inverted magnetron ion source was used to produce argon and oxygen ions. Ultraviolet irradiation was found to reduce the absorption and slightly increase the index of refraction in zirconium oxide films. X-ray diffraction analysis revealed that ultraviolet irradiation caused titanium oxide films to become more amorphous; their absorption in the ultraviolet was slightly reduced. No changes were noted in film durability. Ion bombardment enhanced the tetragonal (lll) peak of zirconium oxide but increased the absorption of both zirconium oxide and titanium oxide films. The titanium oxide

  3. Suppression of Cross Contamination in Multi-Layer Thin Film Prepared by Using Rotating Hexagonal Sputtering Cathode.

    PubMed

    Park, Se Yeon; Choi, Bum Ho; Lee, Jong Ho

    2015-01-01

    In this study, single- and multi-layered thin films were prepared on a glass substrate using a newly developed rotating hexagonal sputtering cathode in a single chamber. The rotatinghexagonal sputtering cathode can install up to six different sputtering targets or six single targets in a cathode. Using the rotating hexagonal cathode, we prepared a single-layered AZO film and a multi-layer film to evaluate the performance of hexagonal gun. Cross-contamination, which is often observed in multi-layer thin film preparation, was suppressed to nearly zero by controlling process parameters and revising hardware. Energy-saving effects of five-layered glass were also verified by measuring the temperature.

  4. Optically active multilayer films based on chitosan and an azopolymer.

    PubMed

    Fernández, Raquel; Ocando, Connie; Fernandes, Susana C M; Eceiza, Arantxa; Tercjak, Agnieszka

    2014-04-14

    The layer-by-layer technique has been widely adopted for the fabrication of nanostructures with tailored properties. In this work, photoactive multilayer films consisting of alternating layers of chitosan and an azopolymer were developed by this method. Taking into account that pH is the factor controlling the charge of weak polyelectrolytes, the influence of this parameter on the structure and properties of the multilayer films was evaluated. Thus, different films were prepared by varying pH conditions as well as bilayer number. The morphology and properties of the films were analyzed by diverse advanced techniques, such as ultraviolet-visible spectroscopy, X-ray diffraction, and atomic force microscopy equipped with PeakForce QNM (Quantitative Nanomechanical Property Mapping). It was found that the thickness, roughness and elastic modulus of the developed multilayer films increased with the decrease of the chitosan solution pH and the increase of the bilayer number. Furthermore, induced birefringence measurements revealed that a higher level of photo-orientation was attained with the decrease of pH and the increase of bilayer number. PMID:24564819

  5. An Electrochemical Experiment Using an Optically Transparent Thin Layer Electrode

    ERIC Educational Resources Information Center

    DeAngelis, Thomas P.; Heineman, William R.

    1976-01-01

    Describes a unified experiment in which an optically transparent thin layer electrode is used to illustrate the techniques of thin layer electrochemistry, cyclic voltammetry, controlled potential coulometry, and spectroelectrochemistry. (MLH)

  6. Flat or curved thin optical display panel

    DOEpatents

    Veligdan, J.T.

    1995-01-10

    An optical panel includes a plurality of waveguides stacked together, with each waveguide having a first end and an opposite second end. The first ends collectively define a first face, and the second ends collectively define a second face of the panel. The second face is disposed at an acute face angle relative to the waveguides to provide a panel which is relatively thin compared to the height of the second face. In an exemplary embodiment for use in a projection TV, the first face is substantially smaller in height than the second face and receives a TV image, with the second face defining a screen for viewing the image enlarged. 7 figures.

  7. Robust, Thin Optical Films for Extreme Environments

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The environment of space presents scientists and engineers with the challenges of a harsh, unforgiving laboratory in which to conduct their scientific research. Solar astronomy and X-ray astronomy are two of the more challenging areas into which NASA scientists delve, as the optics for this high-tech work must be extremely sensitive and accurate, yet also be able to withstand the battering dished out by radiation, extreme temperature swings, and flying debris. Recent NASA work on this rugged equipment has led to the development of a strong, thin film for both space and laboratory use.

  8. Optical conductivity of topological insulator thin films

    SciTech Connect

    Li, L. L.; Xu, W.; Peeters, F. M.

    2015-05-07

    We present a detailed theoretical study on the optoelectronic properties of topological insulator thin film (TITFs). The k·p approach is employed to calculate the energy spectra and wave functions for both the bulk and surface states in the TITF. With these obtained results, the optical conductivities induced by different electronic transitions among the bulk and surface states are evaluated using the energy-balance equation derived from the Boltzmann equation. We find that for Bi{sub 2}Se{sub 3}-based TITFs, three characteristic regimes for the optical absorption can be observed. (i) In the low radiation frequency regime (photon energy ℏω<200 meV), the free-carrier absorption takes place due to intraband electronic transitions. An optical absorption window can be observed. (ii) In the intermediate radiation frequency regime (200<ℏω<300 meV), the optical absorption is induced mainly by interband electronic transitions from surface states in the valance band to surface states in the conduction band and an universal value σ{sub 0}=e{sup 2}/(8ℏ) for the optical conductivity can be obtained. (iii) In the high radiation frequency regime (ℏω>300 meV), the optical absorption can be achieved via interband electronic transitions from bulk and surface states in the valance band to bulk and surface states in the conduction band. A strong absorption peak can be observed. These interesting findings indicate that optical measurements can be applied to identify the energy regimes of bulk and surface states in the TITF.

  9. A soft X-ray beam-splitting multilayer optic for the NASA GEMS Bragg Reflection Polarimeter

    DOE PAGESBeta

    Allured, Ryan; Kaaret, Philip; Fernandez-Perea, Monica; Soufli, Regina; Alameda, Jennifer B.; Pivovaroff, Michael J.; Gullikson, Eric M.

    2013-04-12

    A soft X-ray, beam-splitting, multilayer optic has been developed for the Bragg Reflection Polarimeter (BRP) on the NASA Gravity and Extreme Magnetism Small Explorer Mission (GEMS). The optic is designed to reflect 0.5 keV X-rays through a 90° angle to the BRP detector, and transmit 2–10 keV X-rays to the primary polarimeter. The transmission requirement prevents the use of a thick substrate, so a 2 μm thick polyimide membrane was used. Atomic force microscopy has shown the membrane to possess high spatial frequency roughness less than 0.2 nm rms, permitting adequate X-ray reflectance. A multilayer thin film was especially developedmore » and deposited via magnetron sputtering with reflectance and transmission properties that satisfy the BRP requirements and with near-zero stress. Furthermore, reflectance and transmission measurements of BRP prototype elements closely match theoretical predictions, both before and after rigorous environmental testing.« less

  10. A soft X-ray beam-splitting multilayer optic for the NASA GEMS Bragg Reflection Polarimeter

    SciTech Connect

    Allured, Ryan; Kaaret, Philip; Fernandez-Perea, Monica; Soufli, Regina; Alameda, Jennifer B.; Pivovaroff, Michael J.; Gullikson, Eric M.

    2013-04-12

    A soft X-ray, beam-splitting, multilayer optic has been developed for the Bragg Reflection Polarimeter (BRP) on the NASA Gravity and Extreme Magnetism Small Explorer Mission (GEMS). The optic is designed to reflect 0.5 keV X-rays through a 90° angle to the BRP detector, and transmit 2–10 keV X-rays to the primary polarimeter. The transmission requirement prevents the use of a thick substrate, so a 2 μm thick polyimide membrane was used. Atomic force microscopy has shown the membrane to possess high spatial frequency roughness less than 0.2 nm rms, permitting adequate X-ray reflectance. A multilayer thin film was especially developed and deposited via magnetron sputtering with reflectance and transmission properties that satisfy the BRP requirements and with near-zero stress. Furthermore, reflectance and transmission measurements of BRP prototype elements closely match theoretical predictions, both before and after rigorous environmental testing.

  11. Optical constants of materials in the EUV/soft x-ray region for multilayer mirror applications

    SciTech Connect

    Soufli, R

    1997-12-01

    The response of a given material to an incident electromagnetic wave is described by the energy dependent complex index of refraction n = 1 {minus} {delta} + i{beta}. In the extreme ultraviolet (EUV)/soft x-ray spectral region, the need for accurate determination of n is driven by activity in areas such as synchrotron based research, EUV/x-ray lithography, x-ray astronomy and plasma applications. Knowledge of the refractive index is essential for the design of the optical components of instruments used in experiments and applications. Moreover, measured values of n may be used to evaluate solid state models for the optical behavior of materials. The refractive index n of Si, Mo and Be is investigated in the EUV/soft x-ray region. In the case of Si, angle dependent reflectance measurements are performed in the energy range 50--180 eV. The optical constants {delta}, {beta} are both determined by fitting to the Fresnel equations. The results of this method are compared to the values in the 1993 atomic tables. Photoabsorption measurements for the optical constants of Mo are performed on C/Mo/C foils, in the energy range 60--930 eV. Photoabsorption measurements on Be thin films supported on silicon nitride membranes are performed, and the results are applied in the determination of the absorption coefficient of Be in the energy region 111.5--250 eV. The new results for Si and Mo are applied to the calculation of normal incidence reflectivities of Mo/Si and Mo/Be multilayer mirrors. These calculations show the importance of accurate knowledge of {delta} and {beta} in the prediction and modeling of the performance of multilayer optics.

  12. Deodorisation effect of diamond-like carbon/titanium dioxide multilayer thin films deposited onto polypropylene

    NASA Astrophysics Data System (ADS)

    Ozeki, K.; Hirakuri, K. K.; Masuzawa, T.

    2011-04-01

    Many types of plastic containers have been used for the storage of food. In the present study, diamond-like carbon (DLC)/titanium oxide (TiO2) multilayer thin films were deposited on polypropylene (PP) to prevent flavour retention and to remove flavour in plastic containers. For the flavour removal test, two types of multilayer films were prepared, DLC/TiO2 films and DLC/TiO2/DLC films. The residual gas concentration of acetaldehyde, ethylene, and turmeric compounds in bottle including the DLC/TiO2-coated and the DLC/TiO2/DLC-coated PP plates were measured after UV radiation, and the amount of adsorbed compounds to the plates was determined. The percentages of residual gas for acetaldehyde, ethylene, and turmeric with the DLC/TiO2 coated plates were 0.8%, 65.2% and 75.0% after 40 h of UV radiation, respectively. For the DLC/TiO2/DLC film, the percentages of residual gas for acetaldehyde, ethylene and turmeric decreased to 34.9%, 76.0% and 85.3% after 40 h of UV radiation, respectively. The DLC/TiO2/DLC film had a photocatalytic effect even though the TiO2 film was covered with the DLC film.

  13. Multilayer optics and applications in EUV and x-ray region

    NASA Astrophysics Data System (ADS)

    Zhu, Jingtao; Huang, Qiushi; Li, Haochuan; Tu, Yuchun; Song, Zhuqing; Pan, Lei; Jiang, Li; Wang, Xiaoqiang; Wang, Fengli; Zhang, Zhong; Wang, Zhanshan; Chen, Lingyan

    2010-10-01

    For extreme ultraviolet (EUV) radiation and soft X-rays, real part of the refractive indices of all materials are very close to unity, coupled with high absorption, makes the realization of high-reflective mirrors (just like visible and infrared light) impossible. Multilayer is a nano-structure, alternating of low- and high-Z materials in a periodic way, which can greatly enhance the reflectivity via the interference of light reflected from interfaces, like crystal optics. Reflective mirrors, polarization elements, monochromators, etc, can be made basing on multi-layer structures. Zone plate is a powerful tool to focus the light beam for EUV and soft X-ray into nanometer scale, which is produced by electron beam etching method. However, for hard X-ray, the zone plate will has smaller width of outmost layer and larger aspect ratio, which is difficult to realize. Multilayer Laue lens (MLL) is a promising method to overcome these limitations. MLL is a novel linear zone plate which is produced by depositing the depth-graded multilayer, according to the zone plate law reversely, on flat substrate and then slicing and polishing it to an ideal aspect ratio. In this paper, some recent development of multilayer optics for EUV and X-ray regions in IPOE will be introduced.

  14. Multilayer optics and applications in EUV and x-ray region

    NASA Astrophysics Data System (ADS)

    Zhu, Jingtao; Huang, Qiushi; Li, Haochuan; Tu, Yuchun; Song, Zhuqing; Pan, Lei; Jiang, Li; Wang, Xiaoqiang; Wang, Fengli; Zhang, Zhong; Wang, Zhanshan; Chen, Lingyan

    2011-02-01

    For extreme ultraviolet (EUV) radiation and soft X-rays, real part of the refractive indices of all materials are very close to unity, coupled with high absorption, makes the realization of high-reflective mirrors (just like visible and infrared light) impossible. Multilayer is a nano-structure, alternating of low- and high-Z materials in a periodic way, which can greatly enhance the reflectivity via the interference of light reflected from interfaces, like crystal optics. Reflective mirrors, polarization elements, monochromators, etc, can be made basing on multi-layer structures. Zone plate is a powerful tool to focus the light beam for EUV and soft X-ray into nanometer scale, which is produced by electron beam etching method. However, for hard X-ray, the zone plate will has smaller width of outmost layer and larger aspect ratio, which is difficult to realize. Multilayer Laue lens (MLL) is a promising method to overcome these limitations. MLL is a novel linear zone plate which is produced by depositing the depth-graded multilayer, according to the zone plate law reversely, on flat substrate and then slicing and polishing it to an ideal aspect ratio. In this paper, some recent development of multilayer optics for EUV and X-ray regions in IPOE will be introduced.

  15. Thermal activation in Co/Sb nanoparticle-multilayer thin films

    NASA Astrophysics Data System (ADS)

    Madden, Michael R.

    Multilayer "Co" /"Sb" thin films created via electron-beam physical vapor deposition are known to exhibit thermally activated dynamics. Scanning tunneling microscopy has indicated that the "Co" forms nanoparticles within an "Sb" matrix during deposition and subsequently forms nanowires by way of NP migration within the interstices of the confining layers. The electrical resistance of these systems decays during this irreversible aging process in a manner well-modeled by an Arrhenius law. Presently, this phenomenon is shown to possess some degree of tunability with respect to "Co" layer thickness tCo as well as deposition temperature Tdep , whereby characteristic timescales increase with either parameter. Furthermore, fluctuation timescales and activation energies seem to decrease and increase respectively with increasing t Co. An easily calibrated, one-time-use, time-temperature switch based on such systems lies within the realm of plausibility. The results presented here can be considered to be part of an ongoing development of the concept.

  16. Variability of electrical contact properties in multilayer MoS2 thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Seong Yeoul; Park, Seonyoung; Choi, Woong

    2014-09-01

    We report the variability of electrical properties of Ti contacts in back-gated multilayer MoS2 thin-film transistors based on mechanically exfoliated flakes. By measuring current-voltage characteristics from room temperature to 240 °C, we demonstrate the formation of both ohmic and Schottky contacts at the Ti-MoS2 junctions of MoS2 transistors fabricated using identical electrode materials under the same conditions. While MoS2 transistors with ohmic contacts exhibit a typical signature of band transport, those with Schottky contacts indicate thermally activated transport behavior for the given temperature range. These results provide the experimental evidence of the variability of Ti metal contacts on MoS2, highlighting the importance of understanding the variability of electronic properties of naturally occurring MoS2 for further investigation.

  17. Actively controlled thin-shell space optics

    NASA Astrophysics Data System (ADS)

    Denoyer, Keith K.; Flint, Eric M.; Main, John A.; Lindler, Jason E.

    2003-08-01

    Increasingly, scientific and military missions require the use of space-based optical systems. For example, new capabilities are required for imaging terrestrial like planets, for surveillance, and for directed energy applications. Given the difficulties in producing and launching large optics, it is doubtful that refinements of conventional technology will meet future needs, particularly in a cost-effective manner. To meet this need, recent research has been investigating the feasibility of a new class of ultra-lightweight think-skin optical elements that combine recent advances in lightweight thermally formed materials, active materials, and novel sensing and control architectures. If successful, the approach may lead to an order of magnitude reduction in space optics areal density, improved large scale manufacturing capability, and dramatic reductions in manufacturing and launch costs. In a recent effort, a one meter thin-film mirror like structure was fabricated. This paper provides an overview of tools used to model and simulate this structure as well as results from structural dynamic testing. In addition, progress in the area of non-contact global shape control using smart materials is presented.

  18. Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition

    SciTech Connect

    Leng Jian; Yu Zhinong; Xue Wei; Zhang Ting; Jiang Yurong; Zhang Jie; Zhang Dongpu

    2010-10-15

    The structural, optical, and electrical characteristics of zinc sulfide (ZnS)/Ag/ZnS (ZAZ) multilayer films prepared by ion beam assisted deposition on k9 glass have been investigated as a function of Ag layer thickness. The characteristics of ZAZ multilayer are significantly improved up insertion of optimal Ag thickness between ZnS layers. The results show that due to bombardment of Ar ion beam, distinct Ag islands evolve into continuous Ag films at a thin Ag thickness of about 4 nm. The thinner Ag film as a thickness of 2 nm leads to high sheet resistance and low transmittance for the interface scattering induced by the Ag islands or noncontinuous films; and when the Ag thickness is over 4 nm, the ZAZ multilayer exhibits a remarkably reduced sheet resistance between 7-80 {Omega}/sq for the increase in carrier concentration and mobility of Ag layer, and a high transmittance over 90% for the interference phenomena of multilayers and low absorption and surface scattering of Ag layer. The ZAZ multilayer with 14 nm Ag film has a figure of merit up to 6.32x10{sup -2} {Omega}{sup -1}, an average transmittance over 92% and a sheet resistance of 7.1 {Omega}/sq. The results suggest that ZAZ film has better optoelectrical properties than conditional indium tin oxide single layer.

  19. Multilayer coatings on flexible substrates

    SciTech Connect

    Martin, P.M.; Affinito, J.D.; Gross, M.E.; Coronado, C.A.; Bennett, W.D.; Stewart, D.C.

    1995-04-01

    Thin-film optical and non-optical multilayer coatings are deposited onto flexible substrates using a vacuum web coater developed at Pacific Northwest Laboratory. The coater`s primary application is rapid prototyping of multilayer (1) polymer coatings, (2) polymer/metal coatings, (3) ceramic/metal coatings, and (4) hybrid polymer, ceramic, and metal coatings. The coater is fully automated and incorporates polymer evaporation and extrusion heads, high-rate magnetron sputtering cathodes, and e-beam evaporation sources. Polymer electrolytes are deposited by extrusion techniques. Flexible plastic, metal, and ceramic substrates can be coated using roll-to-roll or closed-loop configurations. Examples of multilayer optical coatings demonstrated to date are solar reflectors, heat mirrors, Fabry-Perot filters, and alpha particle sensors. Nonoptical coatings include multilayer magnetic metal/ceramic and lamellar composites.

  20. Analysis on vertical directional couplers with long range surface plasmons for multilayer optical routing

    NASA Astrophysics Data System (ADS)

    Alam, B.; Veroli, A.; Benedetti, A.

    2016-08-01

    A structure featuring vertical directional coupling of long-range surface plasmon polaritons between strip waveguides at λ = 1.55 μm is investigated with the aim of producing efficient elements that enable optical multilayer routing for 3D photonics. We have introduced a practical computational method to calculate the interaction on the bent part. This method allows us both to assess the importance of the interaction in the bent part and to control it by a suitable choice of the fabrication parameters that helps also to restrain effects due to fabrication issues. The scheme adopted here allows to reduce the insertion losses compared with other planar and multilayer devices.

  1. Element-specific soft x-ray magneto-optic rotation studies of magnetic films and multilayers

    SciTech Connect

    Kortright, J.B.; Rice, M.

    1996-05-01

    Tunable multilayer linear polarizers extend magneto-optic rotation techniques that directly sense polarization changes into the 50--1,000 eV range. The resonant response at atomic core levels yields element-specific magnetic signals that can be much larger than the analogous signal in the visible. A tunable multilayer polarimeter is described, and examples of its use in early Kerr rotation hysteresis studies of Fe films and Fe/Cr multilayers are given.

  2. Coordinated Multi-layer Multi-domain Optical Network (COMMON) for Large-Scale Science Applications (COMMON)

    SciTech Connect

    Vokkarane, Vinod

    2013-09-01

    We intend to implement a Coordinated Multi-layer Multi-domain Optical Network (COMMON) Framework for Large-scale Science Applications. In the COMMON project, specific problems to be addressed include 1) anycast/multicast/manycast request provisioning, 2) deployable OSCARS enhancements, 3) multi-layer, multi-domain quality of service (QoS), and 4) multi-layer, multidomain path survivability. In what follows, we outline the progress in the above categories (Year 1, 2, and 3 deliverables).

  3. Investigation of optical pump on dielectric tunability in PZT/PT thin film by THz spectroscopy.

    PubMed

    Ji, Jie; Luo, Chunya; Rao, Yunkun; Ling, Furi; Yao, Jianquan

    2016-07-11

    The dielectric spectra of single-layer PbTiO3 (PT), single-layer PbZrxTi1-xO3 (PZT) and multilayer PZT/PT thin films under an external optical field were investigated at room temperature by time-domain terahertz (THz) spectroscopy. Results showed that the real part of permittivity increased upon application of an external optical field, which could be interpreted as hardening of the soft mode and increasing of the damping coefficient and oscillator strength. Furthermore, the central mode was observed in the three films. Among the dielectric property of the three thin films studied, the tunability of the PZT/PT superlattice was the largest. PMID:27410799

  4. Ultra-short-period W/B{sub 4}C multilayers for x-ray optics-microstructure limits on reflectivity

    SciTech Connect

    Walton, C C

    1997-12-01

    Multilayer thin films are used as Bragg reflectors for soft x-rays in the energy range 50eV < E < 1000eV in many x-ray optics applications such as x-ray microscopes and telescopes, reducing optics for extreme ultraviolet (EUV) lithography, and x-ray polarizers and phase retarders. Applications often depend critically on reflectivity, which has not been systematically characterized for multilayer periods below 20{angstrom}. For this study, W/B{sub 4}C multilayers were fabricated by magnetron sputtering on Si(111), with periods from 48{angstrom} to as little as 4.7{angstrom}. The x-ray reflectivity measured at {lambda} = 1.54{angstrom} and at 45{degrees} incidence (289 eV < E < 860 eV) was found to decrease sharply for multilayer periods less than 15-20{angstrom}. Examination by high-resolution transmission electron microscopy (HRTEM) showed an expansion of the thickness of the W-rich layers of 30-40% from the nominal values, consistent with intermixture of the two materials during sputter growth, and discontinuous W-rich layers for multilayer periods below about 15{angstrom}. The experimental data for the specular reflectivity in the hard and soft x-ray regimes and the diffuse scattering fit well to a model of multilayer roughness. The model is expressed as a power-law dependence of roughness on spatial frequency. Analysis of small-angle scattering in transmission from multilayers grown on freestanding Si{sub 3}N{sub 4} membranes confirms the onset of discontinuity at periods between 14{angstrom} and 22{angstrom}. Spectroscopy studies by x-ray absorption (NEXAFS) and electron energy loss (EELS) at the boron K-edge (188eV) are consistent with changes in the average boron bonding environment, as the multilayer period decreases and the W-rich layers are increasingly thin and dispersed. A discrete W-rich phase is present for periods at least as small as 6.3{angstrom}.

  5. Optical-Quality Thin Polymer Membranes

    NASA Technical Reports Server (NTRS)

    Moore, James; Patrick, Brian

    2003-01-01

    A method of fabricating both curved and flat thin polymer membranes of optical quality has been developed. The method was originally intended to enable the fabrication of lightweight membrane imaging and interferometric optics, possibly with apertures multiple meters wide, for use in scientific instruments that would operate in outer space. The method may also be applicable to the fabrication of lightweight membrane optics for terrestrial use. The method involves flow-casting of a soluble polymer with mechanical and environmental controls that provide nearly ideal conditions for the formation of a membrane. The preferred environmental conditions and other details of the process depend on the choice of polymer and substrate material and on the shape and size of the membrane to be cast. Once the polymer has dried to a membrane, it is cured with convective heating, then released. Membranes with root-mean-square surface roughnesses of less than 10.5 can be produced routinely by this method. Variations in the thicknesses of the membranes have ranged from 1/3 wavelength down to as little as 1/20 wavelength (at a wavelength of 633 nm). Membranes fabricated thus far have had diameters up to 0.5 m, and there appears to be no major obstacle to scaling up to multiple-meter diameters.

  6. Sound transmission through finite lightweight multilayered structures with thin air layers.

    PubMed

    Dijckmans, A; Vermeir, G; Lauriks, W

    2010-12-01

    The sound transmission loss (STL) of finite lightweight multilayered structures with thin air layers is studied in this paper. Two types of models are used to describe the vibro-acoustic behavior of these structures. Standard transfer matrix method assumes infinite layers and represents the plane wave propagation in the layers. A wave based model describes the direct sound transmission through a rectangular structure placed between two reverberant rooms. Full vibro-acoustic coupling between rooms, plates, and air cavities is taken into account. Comparison with double glazing measurements shows that this effect of vibro-acoustic coupling is important in lightweight double walls. For infinite structures, structural damping has no significant influence on STL below the coincidence frequency. In this frequency region, the non-resonant transmission or so-called mass-law behavior dominates sound transmission. Modal simulations suggest a large influence of structural damping on STL. This is confirmed by experiments with double fiberboard partitions and sandwich structures. The results show that for thin air layers, the damping induced by friction and viscous effects at the air gap surfaces can largely influence and improve the sound transmission characteristics. PMID:21218884

  7. A uniform porous multilayer-junction thin film for enhanced gas-sensing performance.

    PubMed

    Zhang, Ping-Ping; Zhang, Hui; Sun, Xu-Hui

    2016-01-21

    Highly-uniform In2O3/CuO bilayer and multilayer porous thin films were successfully fabricated using a self-assembled soft template and a simple sputtering deposition technique. The sensor based on the In2O3/CuO bilayer porous thin film shows obviously improved sensing performance to ethanol at a lower working temperature, compared to its single layer counterpart sensors. The response of the In2O3/CuO bilayer sensors exhibit nearly 3 and 5 times higher performance than those of the single layer In2O3 and CuO porous film sensors over the same ethanol concentration, respectively. The sensing mechanism based on the p-n hetero-junction, which contributed to the enhanced sensing performance, was also experimentally confirmed by a control experiment in which an SiO2 insulation layer was inserted between the In2O3 and CuO layers to break the p-n junction. In addition, the sensing performance can be further enhanced by increasing the number of In2O3/CuO junction layers. The facile process can be easily extended to the fabrication of other semiconductor oxide gas sensors for practical sensing applications. PMID:26673658

  8. Proof of Concept Thin Films and Multilayers Toward Enhanced Field Gradients in SRF Cavities

    SciTech Connect

    Lukaszew, R A; Beringer, D; Roach, W M; Eremeev, G V; Valente-Feliciano, A-M; Reece, C E; Xi, X

    2013-09-01

    Due to the very shallow penetration depth of the RF fields, SRF properties are inherently a surface phenomenon involving a material thickness of less than 1 micron thus opening up the possibility of using thin film coatings to achieve a desired performance. The challenge has been to understand the dependence of the SRF properties on the detailed characteristics of real surfaces and then to employ appropriate techniques to tailor these surface properties for greatest benefit. Our aim is to achieve gradients >100 MV/m and no simple material is known to be capable of sustaining this performance. A theoretical framework has been proposed which could yield such behavior [1] and it requires creation of thin film layered structures. I will present our systematic studies on such proof-of-principle samples. Our overarching goal has been to build a basic understanding of key nano-scale film growth parameters for materials that show promise for SRF cavity multilayer coatings and to demonstrate the ability to elevate the barrier for vortex entry in such layered structures above the bulk value of Hc1 for type-II superconductors and thus to sustain higher accelerating fields.

  9. Computation of the optical properties of nonideal multilayer structures.

    PubMed

    Abuel-Haija, A J; Madjid, A H

    1979-09-15

    A general computer program was developed to calculate the reflectivity, transmissivity, and absorptivity of nonideal multilayer structure devices. The program allows for error-based variation in layer thicknesses and also for the formation of interfacial layers between the primary layers. The main text of the program consists of the calculation of the matrix elements of the characteristic matrix T for any given two-component layer structure. The treatment is not restricted to any particular range of wavelength, type of material forming the layer structure, or number of layers in the chosen system. The pertinent parameters entering the calculations are the thicknesses of the individual layers (which are permitted to vary randomly within some limit of error); the thicknesses of the interfacial layers; the complex indices of refraction of the substrate, the pertinent layers, and the surrounding ambience; and the structural makeup of the layer stacking.

  10. Interstellar clouds containing optically thin H2

    NASA Technical Reports Server (NTRS)

    Jura, M.

    1975-01-01

    The theory of Black and Delgarno that the relative populations of the excited rotational levels of H2 can be understood in terms of cascading following absorption in the Lyman and Werner bands is employed to infer the gas densities and radiation fields within diffuse interstellar clouds containing H2 that is optically thin in those bands. The procedure is described for computing the populations of the different rotation levels, the relative distribution among the different rotation levels of newly formed H2 is determined on the basis of five simplified models, and the rate of H2 formation is estimated. The results are applied to delta Ori, two components of iota Ori, the second components of rho Leo and zeta Ori, tau Sco, gamma Vel, and zeta Pup. The inferred parameters are summarized for each cloud.

  11. Flat or curved thin optical display panel

    DOEpatents

    Veligdan, James T.

    1995-01-10

    An optical panel 10 includes a plurality of waveguides 12 stacked together, with each waveguide 12 having a first end 12a and an opposite second end 12b. The first ends 12a collectively define a first face 16, and the second ends 12b collectively define a second face 18 of the panel 10. The second face 18 is disposed at an acute face angle relative to the waveguides 12 to provide a panel 10 which is relatively thin compared to the height of the second face. In an exemplary embodiment for use in a projection TV, the first face 16 is substantially smaller in height than the second face 18 and receives a TV image, with the second face 18 defining a screen for viewing the image enlarged.

  12. Thermal conductivities of thin, sputtered optical films

    SciTech Connect

    Henager, C.H. Jr.; Pawlewicz, W.T.

    1991-05-01

    The normal component of the thin film thermal conductivity has been measured for the first time for several advanced sputtered optical materials. Included are data for single layers of boron nitride (BN), aluminum nitride (AIN), silicon aluminum nitride (Si-Al-N), silicon aluminum oxynitride (Si-Al-O-N), silicon carbide (SiC), and for dielectric-enhanced metal reflectors of the form Al(SiO{sub 2}/Si{sub 3}N{sub 4}){sup n} and Al(Al{sub 2}O{sub 3}/AIN){sup n}. Sputtered films of more conventional materials like SiO{sub 2}, Al{sub 2}O{sub 3}, Ta{sub 2}O{sub 5}, Ti, and Si have also been measured. The data show that thin film thermal conductivities are typically 10 to 100 times lower than conductivities for the same materials in bulk form. Structural disorder in the amorphous or very fine-grained films appears to account for most of the conductivity difference. Conclusive evidence for a film/substrate interface contribution is presented.

  13. A uniform porous multilayer-junction thin film for enhanced gas-sensing performance

    NASA Astrophysics Data System (ADS)

    Zhang, Ping-Ping; Zhang, Hui; Sun, Xu-Hui

    2016-01-01

    Highly-uniform In2O3/CuO bilayer and multilayer porous thin films were successfully fabricated using a self-assembled soft template and a simple sputtering deposition technique. The sensor based on the In2O3/CuO bilayer porous thin film shows obviously improved sensing performance to ethanol at a lower working temperature, compared to its single layer counterpart sensors. The response of the In2O3/CuO bilayer sensors exhibit nearly 3 and 5 times higher performance than those of the single layer In2O3 and CuO porous film sensors over the same ethanol concentration, respectively. The sensing mechanism based on the p-n hetero-junction, which contributed to the enhanced sensing performance, was also experimentally confirmed by a control experiment in which an SiO2 insulation layer was inserted between the In2O3 and CuO layers to break the p-n junction. In addition, the sensing performance can be further enhanced by increasing the number of In2O3/CuO junction layers. The facile process can be easily extended to the fabrication of other semiconductor oxide gas sensors for practical sensing applications.Highly-uniform In2O3/CuO bilayer and multilayer porous thin films were successfully fabricated using a self-assembled soft template and a simple sputtering deposition technique. The sensor based on the In2O3/CuO bilayer porous thin film shows obviously improved sensing performance to ethanol at a lower working temperature, compared to its single layer counterpart sensors. The response of the In2O3/CuO bilayer sensors exhibit nearly 3 and 5 times higher performance than those of the single layer In2O3 and CuO porous film sensors over the same ethanol concentration, respectively. The sensing mechanism based on the p-n hetero-junction, which contributed to the enhanced sensing performance, was also experimentally confirmed by a control experiment in which an SiO2 insulation layer was inserted between the In2O3 and CuO layers to break the p-n junction. In addition, the sensing

  14. Optical layer development for thin films thermal conductivity measurement by pulsed photothermal radiometry

    SciTech Connect

    Martan, J.

    2015-01-15

    Measurement of thermal conductivity and volumetric specific heat of optically transparent thin films presents a challenge for optical-based measurement methods like pulsed photothermal radiometry. We present two approaches: (i) addition of an opaque optical layer to the surface and (ii) approximate correction of the mathematical model to incorporate semitransparency of the film. Different single layer and multilayer additive optical layers were tested. The materials of the optical layers were chosen according to analysis and measurement of their optical properties: emissivity and absorption coefficient. Presented are thermal properties’ measurement results for 6 different thin films with wide range of thermal conductivity in three configurations of surface: as deposited, added Ti layer, and added Ti/TiAlSiN layer. Measurements were done in dependence on temperature from room temperature to 500 °C. The obtained thermal effusivity evolution in time after the laser pulse shows different effects of the surface layers: apparent effusivity change and time delay. Suitability of different measurement configurations is discussed and results of high temperature testing of different optical layers are presented.

  15. Robustness of the universal optical transmittance in monolayer and multilayer graphene flakes under Coulomb interactions

    NASA Astrophysics Data System (ADS)

    Yadav, Premlata; Srivastava, Pawan Kumar; Ray, Nirat; Ghosh, Subhasis

    2016-09-01

    We present an experimental investigation on the universality of the optical transmittance of mono- and multilayer chemically exfoliated graphene flakes. By varying the exfoliating solvent, and thereby modulating the strength of electron-electron interactions, we find that the universality is not impacted over the visible region. The impact of modulating the interaction strength is clearly seen as shifts in the M-point exciton spectra. These shifts can then lead to a reduction in the wavelength regime over which universal wavelength independent optical transmittance is observed. At the level of first-order perturbation theory, our results are consistent with existing theoretical predictions for interaction corrections in optical properties of monolayer graphene.

  16. Phase Modulator with Terahertz Optical Bandwidth Formed by Multi-Layered Dielectric Stack

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S. (Inventor); Fork, Richard L. (Inventor)

    2005-01-01

    An optical phase modulator includes a bandpass multilayer stack, formed by a plurality of dielectric layers, preferably of GaAs and AlAs, and having a transmission function related to the refractive index of the layers of the stack, for receiving an optical input signal to be phase modulated. A phase modulator device produces a nonmechanical change in the refractive index of each layer of the stack by, e.g., the injection of free carrier, to provide shifting of the transmission function so as to produce phase modulation of the optical input signal and to thereby produce a phase modulated output signal.

  17. Thin Film Multilayer Conductor/Ferroelectric Tunable Microwave Components for Communication Applications

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Romanofsky, Robert R.; VanKeuls, Frederick W.; Mueller, Carl H.; Treece, Randolph E.; Rivkin, Tania V.

    1997-01-01

    High Temperature Superconductor/Ferroelectric (HTS/FE ) thin film multilayered structures deposited onto dielectric substrates are currently being investigated for use in low loss, tunable microwave components for satellite and ground based communications. The main goal for this technology is to achieve maximum tunability while keeping the microwave losses as low as possible, so as to avoid performance degradation when replacing conventional technology (e.g., filters and oscillators) with HTS/FE components. Therefore, for HTS/FE components to be successfully integrated into current working systems, full optimization of the material and electrical properties of the ferroelectric films, without degrading those of the HTS film; is required. Hence, aspects such as the appropriate type of ferroelectric and optimization of the deposition conditions (e.g., deposition temperature) should be carefully considered. The tunability range as well as the microwave losses of the desired varactor (i.e., tunable component) are also dependent on the geometry chosen (e.g., parallel plate capacitor, interdigital capacitor, coplanar waveguide, etc.). In addition, the performance of the circuit is dependent on the location of the varactor in the circuit and the biasing circuitry. In this paper, we will present our results on the study of the SrTiO3/YBa2Cu3O(7-delta)/LaAl03 (STO/YBCO/LAO) and the Ba(x)Sr(1-x)TiO3/YBa2Cu3O(7-delta)/LaAl03(BSTO/YBCO/ILAO) HTS/FE multilayered structures. We have observed that the amount of variation of the dielectric constant upon the application of a dc electric field is closely related to the microstructure of the film. The largest tuning of the STO/YBCO/LAO structure corresponded to single-phased, epitaxial STO films deposited at 800 C and with a thickness of 500 nm. Higher temperatures resulted in interfacial degradation and poor film quality, while lower deposition temperatures resulted in films with lower dielectric constants, lower tunabilities, and

  18. Collaboration of the NASA Glenn Research Center and Rolls-Royce Developed Thin Film Multilayered Dielectrics for Harsh Environments

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Busfield, A. Rachel; Thomas, Valarie D.; Blaha, Charles A.

    2003-01-01

    The use of thin films to electrically insulate thin film sensors on engine components minimizes the intrusiveness of the sensors and allows a more accurate measurement of the environment. A variety of insulating films were investigated for preventing electrical shorting caused by insulator failure between the sensor and the component. By alternating layers of sputtered high-temperature ceramics, a sequence of insulating layers was devised that (1) prevents pinholes from forming completely through the insulator and (2) maintains high electrical resistivity at high temperatures. The total thickness is only a fraction of that needed for conventional insulating techniques. The Sensors and Electronics Technology Branch of the NASA Glenn Research Center has an in-house effort to develop thin film sensors for surface measurement in propulsion system research. Thin film sensors do not require special machining of the components on which they are mounted, and they are considerably thinner (less than 10 mm thick) than wire or foil sensors. The thin film sensors are thus much less disturbing to the operating environment and have a minimal impact on the physical characteristics of the supporting component. To further this research, NASA Glenn and Rolls-Royce (Derby, UK), with assistance from the Ohio Aerospace Institute (OAI) and the Akima Corporation, pursued a joint investigation using multilayered thin film dielectrics as a reliable insulator in harsh environments. The use of a multilayered scheme is thought to be promising for the fabrication of electrically insulating thin films. A major cause of conduction in thin film dielectrics is the presence of defects, such as pinholes, that propagate through the film to the underlying substrate surface. By alternating the insulating material, each new growth pattern would deviate from the previous one, eliminating direct pathways for conduction to the substrate. The film depositions and testing were conducted in the Instrument

  19. Multilayer-Based Optics for High-Brightness X-ray Sources

    SciTech Connect

    Bajt, S.; Barthelmess, M.; Chapman, H. N.; Aquila, A.; Krzywinski, J.; Nelson, A. J.

    2011-09-09

    High-brightness x-ray sources, such as next-generation synchrotrons and free-electron lasers (FELs), pose unique challenges for the development of x-ray optics. The peak intensities of FEL pulses can be high enough to convert any material placed in a focused beam into plasma. X-ray optics, which are used close to the focal spot, are likely to be partially or completely damaged in a single shot. Such optics would need to be replenished after each shot. Optics that are used in the unfocused or indirect beam may survive much longer, perhaps indefinitely, if care is used to limit the energy absorbed in the optics. Here we present different types of multilayer-based optics, which were used successfully in FEL experiments for reflecting, focusing, and filtering high-intensity, pulsed x-rays in a variety of novel science applications.

  20. Optical properties of TiN thin films close to the superconductor-insulator transition.

    SciTech Connect

    Pfuner, F.; Degiorgi, L.; Baturina, T. I.; Vinokur, V. M.; Baklanov, M. R.; Materials Science Division; ETH Zurich; Inst. Semiconductor Physics; IMEC Kapeldreef

    2009-11-10

    We present the intrinsic optical properties over a broad spectral range of TiN thin films deposited on an Si/SiO{sub 2} substrate. We analyze the measured reflectivity spectra of the film-substrate multilayer structure within a well-establish procedure based on the Fresnel equation and extract the real part of the optical conductivity of TiN. We identify the metallic contribution as well as the finite energy excitations and disentangle the spectral weight distribution among them. The absorption spectrum of TiN bears some similarities with the electrodynamic response observed in the normal state of the high-temperature superconductors. Particularly, a mid-infrared feature in the optical conductivity is quite reminiscent of a pseudogap-like excitation.

  1. X ray, extreme and far ultraviolet optical thin films for space applications

    NASA Technical Reports Server (NTRS)

    Zukic, Muamer; Torr, Douglas G.; Kim, Jongmin

    1993-01-01

    Far and extreme ultraviolet optical thin film filters find many uses in space astronomy, space astrophysics, and space aeronomy. Spacebased spectrographs are used for studying emission and absorption features of the earth, planets, sun, stars, and the interstellar medium. Most of these spectrographs use transmission or reflection filters. This requirement has prompted a search for selective filtering coatings with high throughput in the FUV and EUV spectral region. Important progress toward the development of thin film filters with improved efficiency and stability has been made in recent years. The goal for this field is the minimization of absorption to get high throughput and enhancement of wavelength selection. The Optical Aeronomy Laboratory (OAL) at the University of Alabama in Huntsville has recently developed the technology to determine optical constants of bulk and film materials for wavelengths extending from x-rays (0.1 nm) to the FUV (200 nm), and several materials have been identified that were used for designs of various optical devices which previously have been restricted to space application in the visible and near infrared. A new design concept called the Pi-multilayer was introduced and applied to the design of optical coatings for wavelengths extending from x-rays to the FUV. Section 3 of this report explains the Pi-multilayer approach and demonstrates its application for the design and fabrication of the FUV coatings. Two layer Pi-stacks have been utilized for the design of reflection filters in the EUV wavelength range from 70 - 100 nm. In order to eliminate losses due to the low reflection of the imaging optics and increase throughput and out-of-band rejection of the EUV instrumentation we introduced a self-filtering camera concept. In the FUV region, MgF2 and LiF crystals are known to be birefringent. Transmission polarizers and quarterwave retarders made of MgF2 or LiF crystals are commercially available but the performances are poor. New

  2. Nanointaglio fabrication of optical lipid multilayer diffraction gratings with applications in biosensing

    NASA Astrophysics Data System (ADS)

    Lowry, Troy Warren

    The dynamic self-organization of lipids in biological systems is a highly regulated process that enables the compartmentalization of living systems at microscopic and nanoscopic levels. Exploiting the self-organization and innate biofunctionality of lyotropic liquid crystalline phospholipids, a novel nanofabrication process called "nanointaglio" was invented in order to rapidly and scalably integrate lipid nanopatterns onto the surface. The work presented here focuses on using nanointaglio fabricated lipid diffraction micro- and nanopatterns for the development of new sensing and bioactivity studies. The lipids are patterned as diffraction gratings for sensor functionality. The lipid multilayer gratings operate as nanomechanical sensor elements that are capable of transducing molecular binding to fluid lipid multilayers into optical signals in a label free manner due to shape changes in the lipid nanostructures. To demonstrate the label free detection capabilities, lipid nanopatterns are shown to be suitable for the integration of chemically different lipid multilayer gratings into a sensor array capable of distinguishing vapors by means of an optical nose. Sensor arrays composed of six different lipid formulations are integrated onto a surface and their optical response to three different vapors (water, ethanol and acetone) in air as well as pH under water is monitored as a function of time. Principal component analysis of the array response results in distinct clustering, indicating the suitability of the arrays for distinguishing these analytes. Importantly, the nanointaglio process used is capable of producing lipid gratings out of different materials with sufficiently uniform heights for the fabrication of an optical nose. A second main application is demonstrated for the study of membrane binding proteins. Although in vitro methods for assaying the catalytic activity of individual enzymes are well established, quantitative methods for assaying the kinetics of

  3. Three dimensional optical twisters-driven helically stacked multi-layered microrotors

    NASA Astrophysics Data System (ADS)

    Xavier, Jolly; Dasgupta, Raktim; Ahlawat, Sunita; Joseph, Joby; Kumar Gupta, Pradeep

    2012-03-01

    We demonstrate tunable helically stacked multi-layered microrotors realized in vortex-embedded three dimensional (3D) optical twister patterns. Intensity-tunable annular irradiance profiles with higher order vortex are generated as well as simultaneously unfolded by phase-engineered multiple plane wave interference. In the individually tunable 3D helical bright arms of these unfolded vortex structures, 2 μm silica beads are optically trapped as spiraling multilayered handles of multi-armed microrotors. Further, multiple rows of such microrotors are parallelly actuated with controllable sense of rotation. We also present our observation on helical 3D stacking of micro-particles in these longitudinally gyrating multi-armed rotor traps.

  4. Photolithographically patterened thin-film multilayer devices of YBa sub 2 Cu sub 3 O sub 7-x

    SciTech Connect

    Kingston, J.J.; Wellstood, F.C.; Quan, D.; Clarke, J.

    1990-09-01

    We have fabricated thin-film YBa{sub 2}Cu{sub 3}O{sub 7-x}-SrTiO{sub 3}-YBa{sub 2}Cu{sub 3}O{sub 7-x} multilayer interconnect structures in which each in situ laser-deposited film is independently patterned by photolithography. In particular, we have constructed the two key components necessary for a superconducting multilayer interconnect technology, crossovers and window contacts. As a further demonstration of the technology, we have fabricated a thin-film flux transformer, suitable for use with a Superconducting QUantum Interference Device (SQUID), that includes a ten-turn input coil with 6{mu}m linewidth. Transport measurements showed that the critical temperature was 87K and the critical current was 135 {mu}A at 82K. 7 refs., 6 figs.

  5. Optical Properties of Thin Film Molecular Mixtures

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Shumway, Dean A.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Thin films composed of molecular mixtures of metal and dielectric are being considered for use as solar selective coatings for a variety of space power applications. By controlling the degree of molecular mixing, the solar selective coatings can be tailored to have the combined properties of high solar absorptance, alpha, and low infrared emittance, epsilon. On orbit, these combined properties would simultaneously maximize the amount of solar energy captured by the coating and minimize the amount of thermal energy radiated. Mini-satellites equipped with solar collectors coated with these cermet coatings may utilize the captured heat energy to power a heat engine to generate electricity, or to power a thermal bus that directs heat to remote regions of the spacecraft. Early work in this area identified the theoretical boundary conditions needed to operate a Carnot cycle in space, including the need for a solar concentrator, a solar selective coating at the heat inlet of the engine, and a radiator. A solar concentrator that can concentrate sunlight by a factor of 100 is ideal. At lower values, the temperature of the solar absorbing surface becomes too low for efficient heat engine operation, and at higher values, cavity type heat receivers become attractive. In designing the solar selective coating, the wavelength region yielding high solar absorptance must be separated from the wavelength region yielding low infrared emittance by establishing a sharp transition in optical properties. In particular, a sharp transition in reflectance is desired in the infrared to achieve the desired optical performance. For a heat engine operating at 450C, a sharp transition at 1.8 micrometers is desired. The radiator completes the heat flow through the Carnot cycle. Additional work has been done supporting the use of molecular mixtures for terrestrial applications. Sputter deposition provides a means to apply coatings to the tubes that carry a working fluid at the focus of trough

  6. Chiral magnetic conductivity and surface states of Weyl semimetals in topological insulator ultra-thin film multilayer

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.

    2016-06-01

    We investigate an ultra-thin film of topological insulator (TI) multilayer as a model for a three-dimensional (3D) Weyl semimetal. We introduce tunneling parameters t S, {{t}\\bot} , and t D, where the former two parameters couple layers of the same thin film at small and large momenta, and the latter parameter couples neighbouring thin film layers along the z-direction. The Chern number is computed in each topological phase of the system and we find that for {{t}\\text{S}},{{t}\\text{D}}>0 , the tunneling parameter {{t}\\bot} changes from positive to negative as the system transits from Weyl semi-metallic phase to insulating phases. We further study the chiral magnetic effect (CME) of the system in the presence of a time dependent magnetic field. We compute the low-temperature dependence of the chiral magnetic conductivity and show that it captures three distinct phases of the system separated by plateaus. Furthermore, we propose and study a 3D lattice model of Porphyrin thin film, an organic material known to support topological Frenkel exciton edge states. We show that this model exhibits a 3D Weyl semi-metallic phase and also supports a 2D Weyl semi-metallic phase. We further show that this model recovers that of 3D Weyl semimetal in topological insulator thin film multilayer. Thus, paving the way for simulating a 3D Weyl semimetal in topological insulator thin film multilayer. We obtain the surface states (Fermi arcs) in the 3D model and the chiral edge states in the 2D model and analyze their topological properties.

  7. Chiral magnetic conductivity and surface states of Weyl semimetals in topological insulator ultra-thin film multilayer.

    PubMed

    Owerre, S A

    2016-06-15

    We investigate an ultra-thin film of topological insulator (TI) multilayer as a model for a three-dimensional (3D) Weyl semimetal. We introduce tunneling parameters t S, [Formula: see text], and t D, where the former two parameters couple layers of the same thin film at small and large momenta, and the latter parameter couples neighbouring thin film layers along the z-direction. The Chern number is computed in each topological phase of the system and we find that for [Formula: see text], the tunneling parameter [Formula: see text] changes from positive to negative as the system transits from Weyl semi-metallic phase to insulating phases. We further study the chiral magnetic effect (CME) of the system in the presence of a time dependent magnetic field. We compute the low-temperature dependence of the chiral magnetic conductivity and show that it captures three distinct phases of the system separated by plateaus. Furthermore, we propose and study a 3D lattice model of Porphyrin thin film, an organic material known to support topological Frenkel exciton edge states. We show that this model exhibits a 3D Weyl semi-metallic phase and also supports a 2D Weyl semi-metallic phase. We further show that this model recovers that of 3D Weyl semimetal in topological insulator thin film multilayer. Thus, paving the way for simulating a 3D Weyl semimetal in topological insulator thin film multilayer. We obtain the surface states (Fermi arcs) in the 3D model and the chiral edge states in the 2D model and analyze their topological properties.

  8. Chiral magnetic conductivity and surface states of Weyl semimetals in topological insulator ultra-thin film multilayer.

    PubMed

    Owerre, S A

    2016-06-15

    We investigate an ultra-thin film of topological insulator (TI) multilayer as a model for a three-dimensional (3D) Weyl semimetal. We introduce tunneling parameters t S, [Formula: see text], and t D, where the former two parameters couple layers of the same thin film at small and large momenta, and the latter parameter couples neighbouring thin film layers along the z-direction. The Chern number is computed in each topological phase of the system and we find that for [Formula: see text], the tunneling parameter [Formula: see text] changes from positive to negative as the system transits from Weyl semi-metallic phase to insulating phases. We further study the chiral magnetic effect (CME) of the system in the presence of a time dependent magnetic field. We compute the low-temperature dependence of the chiral magnetic conductivity and show that it captures three distinct phases of the system separated by plateaus. Furthermore, we propose and study a 3D lattice model of Porphyrin thin film, an organic material known to support topological Frenkel exciton edge states. We show that this model exhibits a 3D Weyl semi-metallic phase and also supports a 2D Weyl semi-metallic phase. We further show that this model recovers that of 3D Weyl semimetal in topological insulator thin film multilayer. Thus, paving the way for simulating a 3D Weyl semimetal in topological insulator thin film multilayer. We obtain the surface states (Fermi arcs) in the 3D model and the chiral edge states in the 2D model and analyze their topological properties. PMID:27157544

  9. Multilayer Optics for an Extreme Ultraviolet Lithography Tool with 70 nm Resolution

    SciTech Connect

    Soufli, R; Spiller, E; Schmidt, M A; Davidson, J C; Brabner, R F; Bullikson, E M; Kaufmann, B B; Baker, S L; Chapman, H N; Hudyma, R M; Taylor, J S; Walton, C C; Montcalm, C; Folta, J A

    2001-05-04

    One of the most critical tasks in the development of extreme ultraviolet lithography (EUVL) is the accurate deposition of reflective multilayer coatings for the mirrors comprising the EUVL tool. The second set (Set 2) of four imaging optics for an alpha-class EUVL system has been coated successfully. All four mirrors (M1, M2, M3, M4) were Mo/Si-coated during a single deposition run with a production-scale DC-magnetron sputtering system. Ideally, the multilayer coatings should not degrade the residual wavefront error of the imaging system design. For the present EUVL camera, this requirement is equivalent to depositing multilayer coatings that would add a figure error of less than 0.11 nm rms. In addition, all mirrors should be matched in centroid wavelength, in order to insure maximum throughput of the EUVL tool. In order to meet these constraints, the multilayer deposition process needs to be controlled to atomic precision. EUV measurements of the coated mirrors determined that the added figure errors due to the multilayer coatings are 0.032 nm rms (M1), 0.037 nm rms (M2), 0.040 nm rms (M3) and 0.015 nm rms (M4), well within the aforementioned requirement of 0.11 nm rms. The average wavelength among the four projection mirrors is 13.352 nm, with an optic-to-optic matching of 1{sigma}=0.010 nm. This outstanding level of wavelength matching produces 99.3% of the throughput of an ideally matched four-mirror system. Peak reflectances are 63.8% (M1), 65.2% (M2), 63.8% (M3) and 66.7% (M4). The variation in reflectance values between the four optics is consistent with their high frequency substrate roughness. It is predicted that the multilayer coatings will not introduce any aberrations in the lithographic system performance, for both static and scanned images of 70 nm-dense features.

  10. All-thin-film multilayered multiferroic structures with a slot-line for spin-electromagnetic wave devices

    SciTech Connect

    Nikitin, Andrey A.; Ustinov, Alexey B.; Semenov, Alexander A.; Kalinikos, Boris A.; Lähderanta, E.

    2014-03-03

    Spin-electromagnetic waves propagating in thin-film multilayered multiferroic structures containing a slot transmission line have been investigated both experimentally and theoretically. The thin-film structure was composed of a ferrite film, a ferroelectric film, and a slot-line. It was shown that the spectrum of the spin-electromagnetic wave was formed as a result of hybridization of the spin wave in the ferrite film with the electromagnetic wave in the slot-line and was electrically and magnetically tunable. For the experimental investigations, a microwave phase shifter based on the multiferroic structure has been fabricated. Performance characteristics are presented.

  11. Nanostructured multilayered thin film barriers for Mg{sub 2}Si thermoelectric materials

    SciTech Connect

    Battiston, S.; Boldrini, S.; Fiameni, S.; Agresti, F.; Famengo, A.; Fabrizio, M.; Barison, S.

    2012-06-26

    The Mg{sub 2}Si-based alloys are promising candidates for thermoelectric energy conversion in the middle-high temperature range in order to replace lead compounds. The main advantages of silicide-based thermoelectrics are the nontoxicity and the abundance of their constituent elements in the earth crust. The drawback of such kind of materials is their oxygen sensitivity at high temperature that entails their use under vacuum or inert atmosphere. In order to limit the corrosion phenomena, nanostructured multilayered molybdenum silicide-based materials were deposited via RF magnetron sputtering onto stainless steel, alumina and silicon (100) to set up the deposition process and then onto Mg{sub 2}Si pellets. XRD, EDS, FE-SEM and electrical measurements at high temperature were carried out in order to obtain, respectively, the structural, compositional, morphological and electrical characterization of the deposited coatings. At the end, the mechanical behavior of the system thin film/Mg{sub 2}Si-substrate as a function of temperature and the barrier properties for oxygen protection after thermal treatment in air at high temperature were qualitatively evaluated by FE-SEM.

  12. Copper phthalocyanine thin films on Cu(111): Sub-monolayer to multi-layer

    NASA Astrophysics Data System (ADS)

    Stock, T. J. Z.; Nogami, J.

    2015-07-01

    Scanning tunneling microscopy (STM) has been used to observe the growth mode and crystal structure of sub-monolayer (ML) to multilayer thin films of copper phthalocyanine (CuPc) molecules on the Cu(111) surface at room temperature (RT). At sub-ML coverage the molecules are mobile on the surface. At approximately one ML coverage the molecules become sterically confined and lying flat on the Cu substrate form an ordered, multi-domained, 2D oblique lattice. As coverage is increased beyond 1 ML the molecule-substrate interaction diminishes in strength while the intermolecular interaction begins to dominate, causing the layer separation to increase, and the crystal domain size and lattice constants to shrink as the crystal structure begins to more closely resemble the bulk α-phase CuPc molecular solid. This trend continues for the layer-by-layer growth of 3 complete ML, eventually giving way to the emergence of large 3D islands at a coverage equivalent to 4 ML.

  13. Nanostructured multilayered thin film barriers for Mg2Si thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Battiston, S.; Boldrini, S.; Fiameni, S.; Agresti, F.; Famengo, A.; Fabrizio, M.; Barison, S.

    2012-06-01

    The Mg2Si-based alloys are promising candidates for thermoelectric energy conversion in the middle-high temperature range in order to replace lead compounds. The main advantages of silicide-based thermoelectrics are the nontoxicity and the abundance of their constituent elements in the earth crust. The drawback of such kind of materials is their oxygen sensitivity at high temperature that entails their use under vacuum or inert atmosphere. In order to limit the corrosion phenomena, nanostructured multilayered molybdenum silicide-based materials were deposited via RF magnetron sputtering onto stainless steel, alumina and silicon (100) to set up the deposition process and then onto Mg2Si pellets. XRD, EDS, FE-SEM and electrical measurements at high temperature were carried out in order to obtain, respectively, the structural, compositional, morphological and electrical characterization of the deposited coatings. At the end, the mechanical behavior of the system thin film/Mg2Si-substrate as a function of temperature and the barrier properties for oxygen protection after thermal treatment in air at high temperature were qualitatively evaluated by FE-SEM.

  14. Magnetoelastic coupling in multilayered ferroelectric/ferromagnetic thin films: A quantitative evaluation

    NASA Astrophysics Data System (ADS)

    Chiolerio, A.; Quaglio, M.; Lamberti, A.; Celegato, F.; Balma, D.; Allia, P.

    2012-08-01

    The electrical control of magnetization in a thin film, achieved by means of magnetoelastic coupling between a ferroelectric and a ferromagnetic layer represents an attractive way to implement magnetic information storage and processing within logical architectures known as Magnetic Quantum Cellular Automata (MQCA). Such systems have been addressed as multiferroics. We exploited cost-effective techniques to realize multi-layered multiferroic systems, such as sol-gel deposition and RF sputtering, introducing a specific technique to control the crystal structure and film roughness effect on the magnetic domain wall motion and reconfiguration, induced by magnetoelastic coupling, by evaluating the 2-dimensional statistical properties of enhanced MFM matrices. A RF sputtered 50-nm-thick Co layer on a Si/SiO2/Si3N4/Ti/Pt/PbTiO3/Pb(Zr0.53Ti0.47)O3 substrate was realized, exploiting two differently engineered PZT nano-crystalline structures and the conditions leading to a favorable compromise in order to realize functional devices were elucidated.

  15. Optical Properties of Thin Film Molecular Mixtures

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Shumway, Dean A.

    2003-01-01

    Thin films composed of molecular mixtures of metal and dielectric are being considered for use as solar selective coatings for a variety of space power applications. By controlling the degree of molecular mixing, the solar selective coatings can be tailored to have the combined properties of high solar absorptance, , and low infrared emittance, . On orbit, these combined properties would simultaneously maximize the amount of solar energy captured by the coating and minimize the amount of thermal energy radiated. Mini-satellites equipped with solar collectors coated with these cermet coatings may utilize the captured heat energy to power a heat engine to generate electricity, or to power a thermal bus that directs heat to remote regions of the spacecraft. Early work in this area identified the theoretical boundary conditions needed to operate a Carnot cycle in space, including the need for a solar concentrator, a solar selective coating at the heat inlet of the engine, and a radiator.1 A solar concentrator that can concentrate sunlight by a factor of 100 is ideal. At lower values, the temperature of the solar absorbing surface becomes too low for efficient heat engine operation, and at higher values, cavity type heat receivers become attractive. In designing the solar selective coating, the wavelength region yielding high solar absorptance must be separated from the wavelength region yielding low infrared emittance by establishing a sharp transition in optical properties. In particular, a sharp transition in reflectance is desired in the infrared to achieve the desired optical performance. For a heat engine operating at 450 C, a sharp transition at 1.8 micrometers is desired.2 The radiator completes the heat flow through the Carnot cycle.

  16. Multilayer Phase-Only Diffraction Gratings: Fabrication andApplication to EUV Optics

    SciTech Connect

    Salmassi, Farhad; Gullikson, Eric M.; Anderson, Erik H.; Naulleau, Patrick P.

    2007-05-01

    The use of phase-only diffractive devices has long played an important role in advanced optical systems in varying fields. Such devices include gratings, diffractive and holographic optical elements, diffractive lenses, and phase-shift masks for advanced lithography. Extending such devices to the increasingly important regime of extreme ultraviolet (EUV) wavelengths, however, is not trivial. Here, we present an effective fabrication and etch process enabling high-resolution patterning of Mo/Si multilayers for use in EUV phase devices, providing another method for fabrication of high numerical aperture diffractive devices or high-resolution EUV phase shift masks.

  17. Optical fiber based sensing system design for the health monitoring of multi-layered pavement structure

    NASA Astrophysics Data System (ADS)

    Liu, Wanqiu; Wang, Huaping; Zhou, Zhi; Li, Shiyu; Ni, Yuanbao; Wang, Geng

    2011-11-01

    This paper introduces an optical fiber based sensing system design for multi-layered pavement structural health monitoring. The co-line and integration design of FBG (Fiber Bragg Gating) sensors and BOTDR (Brillouin Optical Time Domain Reflectometry) sensors will ensure the large scale damage monitoring and local high accurate strain measurement. The function of pavement structure multi-scale shape measurement will provide real time subgrade settlement and rutting information. The sensor packaging methodology and strain transfer problem of the system will also be discussed in this paper. Primary lab tests prove the potential and feasibility of the practical application of the sensing system.

  18. Intelligent process monitoring of multilayer ceramic actuators using high temperature optical fiber displacement sensors

    SciTech Connect

    Gunther, M.F.; Claus, R.O.; Ritter, A.; Tran, T.A.; Greene, J.A.

    1994-12-31

    The Fiber and Electro-Optics Research Center (FEORC) has developed a sensing technique for the intelligent processing of a multilayer ceramic actuator (MCA) elements manufactured by the AVX Corporation in Conway, SC. Presented are the results of the fiber optic strain sensor used to monitor the burnout of organic binders from a green actuator sample. The results establish the operation of the short gage length, low finesse Fabry-Perot interferometric strain sensor as a tool for intelligent processing of such ceramic actuator elements. Also presented is the method of sensor operation, and post processing results using the same sensor for tracking actuator performance and hysteresis.

  19. Nonlinear optical microscopy for imaging thin films and surfaces

    SciTech Connect

    Smilowitz, L.B.; McBranch, D.W.; Robinson, J.M.

    1995-03-01

    We have used the inherent surface sensitivity of second harmonic generation to develop an instrument for nonlinear optical microscopy of surfaces and interfaces. We have demonstrated the use of several nonlinear optical responses for imaging thin films. The second harmonic response of a thin film of C{sub 60} has been used to image patterned films. Two photon absorption light induced fluorescence has been used to image patterned thin films of Rhodamine 6G. Applications of nonlinear optical microscopy include the imaging of charge injection and photoinduced charge transfer between layers in semiconductor heterojunction devices as well as across membranes in biological systems.

  20. Magnetic, Magneto-Optic and Structural Studies of Platinum-Manganese Antimonide Thin Films

    NASA Astrophysics Data System (ADS)

    Attaran-Kakhki, Ebrahim

    Available from UMI in association with The British Library. Requires signed TDF. Media for current high density magneto-optic storage systems have certain basic requirements such as perpendicular (to the surface) anisotropy, suitable magnetization, coercivity, domain and grain sizes and high optical Kerr and Faraday rotations. At present no known material combines all these properties to the optimum. However, ferromagnetic compounds with the Heusler Cl_{rm b} structure, which are members of a class of materials known as "half metallic" materials exhibit high magneto -optic properties. The present work is an investigation of PtMnSb sputtered thin films as possible media for high density magneto-optic memory systems. It is divided into three main sections. The first section is concerned with the crystal structure and magnetic properties of these films. Compositions and structure of the films have been determined by Rutherford back scattering spectroscopy, X-ray diffractometry and electron microscopy. The magnetic properties have been measured with a sensitive vibrating sample magnetometer. The amorphous assputtered films become ferromagnetic when annealed in vacuum. Crystal and magnetic ordering commences at a temperature of about 160^circC and is completed at temperatures between 400-500 ^circC. The annealed films become significantly more transparent with an in-plane easy axis of magnetization. The optimum saturation magnetization is about 570 kA/m which is close to the magnetization of the bulk PtMnSb alloy. Coercivity for these films is in the range 12-15 KA/m. The second section is concerned with the magneto -optical properties of these thin films. The magneto-optic Kerr and Faraday effects were measured with a magneto-optic hysteresis loop plotter. Optical rotations of 1.35 ^circ and 8 times 10^5^circ/cm have been measured in reflection and transmission respectively. The highest magnetization and optical rotations are for the composition Pt_{31}Mn _{38}Sb_{31

  1. Multilayered phantoms with tunable optical properties for a better understanding of light/tissue interactions

    NASA Astrophysics Data System (ADS)

    Roig, Blandine; Koenig, Anne; Perraut, François; Piot, Olivier; Vignoud, Séverine; Lavaud, Jonathan; Manfait, Michel; Dinten, Jean-Marc

    2015-03-01

    Light/tissue interactions, like diffuse reflectance, endogenous fluorescence and Raman scattering, are a powerful means for providing skin diagnosis. Instrument calibration is an important step. We thus developed multilayered phantoms for calibration of optical systems. These phantoms mimic the optical properties of biological tissues such as skin. Our final objective is to better understand light/tissue interactions especially in the case of confocal Raman spectroscopy. The phantom preparation procedure is described, including the employed method to obtain a stratified object. PDMS was chosen as the bulk material. TiO2 was used as light scattering agent. Dye and ink were adopted to mimic, respectively, oxy-hemoglobin and melanin absorption spectra. By varying the amount of the incorporated components, we created a material with tunable optical properties. Monolayer and multilayered phantoms were designed to allow several characterization methods. Among them, we can name: X-ray tomography for structural information; Diffuse Reflectance Spectroscopy (DRS) with a homemade fibered bundle system for optical characterization; and Raman depth profiling with a commercial confocal Raman microscope for structural information and for our final objective. For each technique, the obtained results are presented and correlated when possible. A few words are said on our final objective. Raman depth profiles of the multilayered phantoms are distorted by elastic scattering. The signal attenuation through each single layer is directly dependent on its own scattering property. Therefore, determining the optical properties, obtained here with DRS, is crucial to properly correct Raman depth profiles. Thus, it would be permitted to consider quantitative studies on skin for drug permeation follow-up or hydration assessment, for instance.

  2. Temperature dependent magnetic coupling between ferromagnetic FeTaC layers in multilayer thin films

    NASA Astrophysics Data System (ADS)

    Singh, Akhilesh Kumar; Hsu, Jen-Hwa; Perumal, Alagarsamy

    2016-11-01

    We report systematic investigations on temperature dependent magnetic coupling between ferromagnetic FeTaC layers and resulting magnetic properties of multilayer structured [FeTaC (~67 nm)/Ta(x nm)]2/FeTaC(~67 nm)] thin films, which are fabricated directly on thermally oxidized Si substrate. As-deposited amorphous films are post annealed at different annealing temperatures (TA=200, 300 and 400 °C). Structural analyzes reveal that the films annealed at TA≤200 °C exhibit amorphous nature, while the films annealed above 200 °C show nucleation of nanocrystals at TA=300 °C and well-defined α-Fe nanocrystals with size of about 9 nm in amorphous matrix for 400 °C annealed films. Room temperature and temperature dependent magnetic hysteresis (M-H) loops reveal that magnetization reversal behaviors and magnetic properties are strongly depending on spacer layer thickness (x), TA and temperature. A large reduction in coercivity (HC) was observed for the films annealed at 200 °C and correlated to relaxation of stress quenched in during the film deposition. On the other hand, the films annealed at 300 °C exhibit unusual variation of HC(T), i.e., a broad minimum in HC(T) vs T curve. This is caused by change in magnetic coupling between ferromagnetic layers having different microstructure. In addition, the broad minimum in the HC(T) curve shifts from 150 K for x=1 film to 80 K for x=4 film. High-temperature thermomagnetization data show a strong (significant) variation of Curie temperature (TC) with TA (x). The multilayer films annealed at 200 °C exhibit low value of TC with a minimum of 350 K for x=4 film. But, the films annealed at 400 °C show largest TC with a maximum of 869 K for x=1 film. The observed results are discussed on the basis of variations in magnetic couplings between FeTaC layers, which are majorly driven by temperature, spacer layer thickness, annealing temperature and nature of interfaces.

  3. Optical tuning a dichroic multilayer for a high fluence laser application

    SciTech Connect

    R. Chow, Loomis, G.E.; Bibeau, C.; Molau, N.E.; Kanz, V.K.; Beach, R.J.

    1995-10-11

    We report on the design and successful fabrication of a dichroic multilayer stack using a procedure that allowed shifting from high reflectance to high transmittance within 89 rim and surviving high laser fluences. A design approach based on quarter-wave thick layers allowed the multilayer stack to be optically tuned in the last layers of the stack. In our case, this necessitated removing the samples from the coating chamber for a transmittance scan prior to depositing the last layers. This procedure is not commonly practiced due to thermal stress-induced failures in an oxide multilayer. However, D.J. Smith and co-workers reported that reactive e-beam evaporated hafnia from a Hf source produced laser-resistant coatings that had less coating stress compared to coatings evaporated from a HfO{sub 2} source. Tuned dichroic coatings were made that had high transmittance at 941 rim and high reflectance at 1030 nm. The coating was exposed for 5 minutes to a 100 kW/cm{sup 2} 1064 nm (180-ns pulsewidth, 10.7 kHz) laser beam and survived without microscopic damage. The same coating survived a 140 kW/cm{sup 2} of laser intensity without catastrophic damage before optical tuning were performed.

  4. Practical magnetron sputtering system for the deposition of optical multilayer coatings.

    PubMed

    Dobrowolski, J A; Pekelsky, J R; Pelletier, R; Ranger, M; Sullivan, B T; Waldorf, A J

    1992-07-01

    A magnetron sputtering system is described in which, at any one time, as many as four different 15-cm x 46-cm rectangular planar magnetron targets can be mounted vertically in the deposition chamber. These can be attached to either dc or rf power supplies for direct or reactive deposition of metal, metal oxide, or nitride films. Typical target materials include Ag, Al, C, Mo, Nb, Ni, Si, W, and Zr. Good uniformity can be obtained on stationary substrates, although better results are possible with oscillating substrates. The refractive indices are given for several useful oxide materials. The materials and thicknesses of the individual layers that comprise an optical multilayer system are entered into a computer that subsequently controls the deposition parameters, the substrate motion, and the deposition time. After a relatively simple calibration process, coatings that consist of between 20 and 60 layers can be produced to within an accuracy of 1% or 2%. A wideband optical monitor is available for checking the performance of the multilayer system during its deposition. Several examples of multilayer coatings that were prepared on this equipment are given.

  5. Thin Films of Quasicrystals: Optical, Electronic, and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Symko, Orest G.

    1998-03-01

    In order to extend some of the unusual properties of quasicrystals toward practical applications and to study fundamental aspects of these properties, we have developed a technology for the deposition of high quality thin films of quasicrystals on a variety of substrates. Mechanical support for the thin films is provided by the substrate as bulk quasicrystals are brittle. We have applied the thin films to studies of their optical, electrical, and mechanical properties as well as to coatings of biomedical devices. An important characteristic of a quasicrystal is its pseudogap in the electronic density of states; it is determined directly from optical transmission measurements. Optical and mechanical characteristics of the thin films provide strong support for the cluster nature of quasicrystals and emphasize their importance for coatings. When used in biomedical devices, thin film quasicrystalline coatings show remarkable strength, low friction, and non-stick behavior. This work was in collaboration with W. Park, E. Abdel-Rahman, and T. Klein.

  6. Progress toward light weight high angular resolution multilayer coated optics

    SciTech Connect

    Ulmer, M.P.; Graham, M.E.; Vaynman, S.; Echt, J.; Farber, M.; Ehlert, S.; Varlese, S.

    2008-11-18

    We have been working on 3 separate projects that together will give us the ability to make 1 arc second, light weight Wolter I optics that work above 40 keV. The three separate tasks are: (a) plasma spraying of metal-coated micro-balloons; (b) coating of the inside of Wolter I mirrors, (c) actuator designs for improving figure quality. We give a progress report on our work on all three areas. In summary, for future space missions it will be desirable for them to be affordable by reducing mass, keeping the focal length manageable, and yet having high figure quality. The avenues we have described above are straight forward paths to achieving this goal, but a great deal of work needs to be done to take us from the concept stage to a functional system.

  7. Modeling plasmonic scattering combined with thin-film optics

    NASA Astrophysics Data System (ADS)

    Schmid, M.; Klenk, R.; Lux-Steiner, M. Ch; Topič, M.; Krč, J.

    2011-01-01

    Plasmonic scattering from metal nanostructures presents a promising concept for improving the conversion efficiency of solar cells. The determination of optimal nanostructures and their position within the solar cell is crucial to boost the efficiency. Therefore we established a one-dimensional optical model combining plasmonic scattering and thin-film optics to simulate optical properties of thin-film solar cells including metal nanoparticles. Scattering models based on dipole oscillations and Mie theory are presented and their integration in thin-film semi-coherent optical descriptions is explained. A plasmonic layer is introduced in the thin-film structure to simulate scattering properties as well as parasitic absorption in the metal nanoparticles. A proof of modeling concept is given for the case of metal-island grown silver nanoparticles on glass and ZnO:Al/glass substrates. Using simulations a promising application of the nanoparticle integration is shown for the case of CuGaSe2 solar cells.

  8. Light waves in thin films and integrated optics.

    PubMed

    Tien, P K

    1971-11-01

    Integrated optics is a far-reaching attempt to apply thin-film technology to optical circuits and devices, and, by using methods of integrated circuitry, to achieve a better and more economical optical system. The specific topics discussed here are physics of light waves in thin films, materials and losses involved, methods of couplings light beam into and out of a thin film, and nonlinear interactions in waveguide structures. The purpose of this paper is to review in some detail the important development of this new and fascinating field, and to caution the reader that the technology involved is difficult because of the smallness and perfection demanded by thin-film optical devices.

  9. Optical sensors and multisensor arrays containing thin film electroluminescent devices

    DOEpatents

    Aylott, Jonathan W.; Chen-Esterlit, Zoe; Friedl, Jon H.; Kopelman, Raoul; Savvateev, Vadim N.; Shinar, Joseph

    2001-12-18

    Optical sensor, probe and array devices for detecting chemical biological, and physical analytes. The devices include an analyte-sensitive layer optically coupled to a thin film electroluminescent layer which activates the analyte-sensitive layer to provide an optical response. The optical response varies depending upon the presence of an analyte and is detected by a photodetector and analyzed to determine the properties of the analyte.

  10. Proposal for a multilayer read-only-memory optical disk structure.

    PubMed

    Ichimura, Isao; Saito, Kimihiro; Yamasaki, Takeshi; Osato, Kiyoshi

    2006-03-10

    Coherent interlayer cross talk and stray-light intensity of multilayer read-only-memory (ROM) optical disks are investigated. From results of scalar diffraction analyses, we conclude that layer separations above 10 microm are preferred in a system using a 0.85 numerical aperture objective lens in terms of signal quality and stability in focusing control. Disk structures are optimized to prevent signal deterioration resulting from multiple reflections, and appropriate detectors are determined to maintain acceptable stray-light intensity. In the experiment, quadrilayer and octalayer high-density ROM disks are prepared by stacking UV-curable films onto polycarbonate substrates. Data-to-clock jitters of < or = 7% demonstrate the feasibility of multilayer disk storage up to 200 Gbytes. PMID:16572696

  11. Proposal for a multilayer read-only-memory optical disk structure

    NASA Astrophysics Data System (ADS)

    Ichimura, Isao; Saito, Kimihiro; Yamasaki, Takeshi; Osato, Kiyoshi

    2006-03-01

    Coherent interlayer cross talk and stray-light intensity of multilayer read-only-memory (ROM) optical disks are investigated. From results of scalar diffraction analyses, we conclude that layer separations above 10 µm are preferred in a system using a 0.85 numerical aperture objective lens in terms of signal quality and stability in focusing control. Disk structures are optimized to prevent signal deterioration resulting from multiple reflections, and appropriate detectors are determined to maintain acceptable stray-light intensity. In the experiment, quadrilayer and octalayer high-density ROM disks are prepared by stacking UV-curable films onto polycarbonate substrates. Data-to-clock jitters of ≤7% demonstrate the feasibility of multilayer disk storage up to 200 Gbytes.

  12. Fabrication and characterization of a multilayered optical tissue model with embedded scattering microspheres in polymeric materials.

    PubMed

    Chang, Robert C; Johnson, Peter; Stafford, Christopher M; Hwang, Jeeseong

    2012-06-01

    We report on a novel fabrication approach to build multilayered optical tissue phantoms that serve as independently validated test targets for axial resolution and contrast in scattering measurements by depth-resolving optical coherent tomography (OCT) with general applicability to a variety of three-dimensional optical sectioning platforms. We implement a combinatorial bottom-up approach to prepare monolayers of light-scattering microspheres with interspersed layers of transparent polymer. A dense monolayer assembly of monodispersed microspheres is achieved via a combined methodology of polyelectrolyte multilayers (PEMs) for particle-substrate binding and convective particle flux for two-dimensional crystal array formation on a glass substrate. Modifications of key parameters in the layer-by-layer polyelectrolyte deposition approach are applied to optimize particle monolayer transfer from a glass substrate into an elastomer while preserving the relative axial positioning in the particle monolayer. Varying the dimensions of the scattering microspheres and the thickness of the intervening transparent polymer layers enables different spatial frequencies to be realized in the transverse dimension of the solid phantoms. Step-wise determination of the phantom dimensions is performed independently of the optical system under test to enable precise spatial calibration, independent validation, and quantitative dimensional measurements.

  13. Improving the laser damage resistance of oxide thin films and multilayers via tailoring ion beam sputtering parameters

    NASA Astrophysics Data System (ADS)

    Cosar, M. B.; Ozhan, A. E. S.; Aydogdu, G. H.

    2015-05-01

    Ion beam sputtering is one of the widely used methods for manufacturing laser optical components due to its advantages such as uniformity, reproducibility, suitability for multilayer coatings and growth of dielectric materials with high packing densities. In this study, single Ta2O5 layers and Ta2O5/SiO2 heterostructures were deposited on optical quality glass substrates by dual ion beam sputtering. We focused on the effect of deposition conditions like substrate cleaning, assistance by 12 cm diameter ion beam source and oxygen partial pressure on the laser-induced damage threshold of Ta2O5 single layers. Afterwards, the obtained information is employed to a sample design and produces a Ta2O5/SiO2 multilayer structure demonstrating low laser-induced damage without a post treatment procedure.

  14. Experimental demonstration of a Fresnel-reflection based optical fiber biosensor coated with polyelectrolyte multilayers

    NASA Astrophysics Data System (ADS)

    Yu, Wenjie; Lang, Tingting

    2014-11-01

    We report that the end facet of an optical fiber can be coated with polyelectrolyte multilayers (PEM) of polycation (diallyldimethyl ammonium chloride) and polyanion (styrenesulfonate sodium salt) (PDDA+PSS)n (n is the number of bilayers), which functions effectively as a Fresnel-reflection based biosensor. The experimental setup includes a broadband light source, a 3dB coupler, and an optical spectrum analyzer. Biotin and streptavidin are deposited onto the multilayers-coated end facet sequentially. The light intensity change due to variation of external refractive index is monitored. When the concentrations of streptavidin changes from 0.1mg/ml to 1mg/ml, a linear relationship between the concentration of streptavidin and the reflected optical power at the wavelength of 1530nm is observed. The sensitivity increases from -1.6262×10-3 dB/ppm to -4.7852 ×10-3 dB/ppm, when the number of PEM increases from 1 to 2. Then we confirm the optimized numbers of bilayers of PEM are 5 through experiment. Selectivity and repeatability of our proposed optical fiber biosensor are verified. When bovine serum albumin (BSA) is added instead of streptavidin, the obtained spectra overlaps with that of biotin's. The final end facet coated with PEM and biotin-streptavidin can be cleaned using microwave vibration or aqua regia. The microwave vibration method is utilized due to security concern. The optical spectra changes back to the initial one of the optical fiber in air. In conclusion, a Fresnel-reflection based optical fiber biosensor with good sensitivity, selectivity and repeatability is proposed. This biosensor has the advantages of simple structure, low cost and reliability.

  15. Chemical and phase distributions in a multilayered organic matter-Ag nanoparticle thin film system

    NASA Astrophysics Data System (ADS)

    Michel, F. M.; Levard, C.; Wang, Y.; Choi, Y.; Eng, P.; Brown, G. E.

    2010-12-01

    Rapid development of nanotechnologies raises concern regarding the environmental impact of nanoparticles on ecosystems. Among the types of nanoparticles currently in production, metallic silver is the most widely used in nanotechnology (1). Synthetic Ag nanoparticles (Ag-NPs) are most often used for their antimicrobial and antifungal properties that are, in part, explained by the release of highly toxic Ag+ species (2). While such properties are desirable in certain applied cases, the release of Ag-NPs and soluble Ag+ species to the environment is expected to impact biota as well as soil and water quality (3). With the production of Ag-NPs projected to increase (1), the amount of Ag-NPs that will be released to the environment through waste streams is also likely to increase. As such, a deeper understanding of the fundamental processes associated with Ag-NPs toxicity and reactivity is needed to evaluate their impact on the environment. We have studied the interaction during aging of poly-acrylic acid (PAA) and Ag-NPs with average particle sizes of 20 ±5 nm. The sample studied was composed of thin films of PAA and Ag-NPs deposited on a Si-wafer support. PAA served as a model compound and a simplified surrogate for exopolysaccharide, an organic substance produced through metabolic activity by most microorganisms. We applied a novel combination of long-period x-ray standing wave fluorescence yield (XSW-FY) spectroscopy, grazing-incidence x-ray diffraction (GI-XRD), and XRD-based standing wave profiles (XSW-XRD) to obtain chemical- and phase-specific information on this sample. After 24 hours, we observed the formation of AgCl(s) in the PAA film of the sample, which suggests oxidation and dissolution of a portion of the Ag-NPs during aging, resulting in the release of Ag+. In addition, we see partitioning of Cl and Br, both present initially in the PAA, to the intact Ag-NPs thin film. To our knowledge, this is the first application of this suite of techniques to this

  16. Biocatalytic polymer thin films: optimization of the multilayered architecture towards in situ synthesis of anti-proliferative drugs

    NASA Astrophysics Data System (ADS)

    Andreasen, Sidsel Ø.; Fejerskov, Betina; Zelikin, Alexander N.

    2014-03-01

    We report on the assembly of multi-layered polyelectrolyte thin films containing an immobilized enzyme to perform conversion of externally administered prodrugs and achieve delivery of the resulting therapeutics to adhering cells. Towards this goal, multi-layered coatings were assembled using poly(sodium styrene sulfonate) and poly(allylamine hydrochloride). Activity of the incorporated enzyme was quantified as a function of the assembly conditions, position of the enzyme within the multi-layered architecture, concentration of the enzyme in the adsorption solution, and concentration of the administered prodrug. Biocatalytic coatings exhibited sustained levels of enzymatic activity over at least one week of incubation in physiological buffers without signs of loss of activity of the enzyme. Developed enzyme-containing polymer films afforded zero-order release of the in situ synthesized cargo with kinetics of synthesis (nM per hour) covering at least 3 orders of magnitude. Internalization of the synthesized product by adhering cells was visualized using a fluorogenic enzyme substrate. Therapeutic utility of biocatalytic coatings was demonstrated using a myoblast cell line and a prodrug for the anti-proliferative agent, 5-fluorouridine. Taken together, this work presents a novel approach to delivery of small molecule drugs using multi-layered polymer thin films with utility in surface-mediated drug delivery, assembly of therapeutic implantable devices, and tissue engineering.We report on the assembly of multi-layered polyelectrolyte thin films containing an immobilized enzyme to perform conversion of externally administered prodrugs and achieve delivery of the resulting therapeutics to adhering cells. Towards this goal, multi-layered coatings were assembled using poly(sodium styrene sulfonate) and poly(allylamine hydrochloride). Activity of the incorporated enzyme was quantified as a function of the assembly conditions, position of the enzyme within the multi-layered

  17. Multilayer optical data storage by fluorescence modulation using a CW laser

    NASA Astrophysics Data System (ADS)

    Singer, Kenneth D.; Christenson, Cory W.; Saini, Anuj; Ryan, Christopher J.; Mirletz, Heather; Shiyanovskaya, Irina; Yin, Kezhen; Baer, Eric

    2015-08-01

    Optical data storage has been widely used in certain consumer applications owing to its passive and robust nature, but has failed to keep with larger industry data storage needs due to the lack of capacity. Many alternatives have been proposed and developed, such as 3D data storage using two-photon absorption that require complex and dangerous laser systems to localize the bits. In this paper, we present a method for localizing bits using a CW 405nm laser diode, in a multilayered polymer film. Data is stored by photobleaching a fluorescent dye, and the response of the material is nonlinear, despite the CW laser and absorption in the visible region. This is achieved using sub-μs pulses from the laser initiating a photothermal effect. This writing method, along with the inexpensive roll-to-roll method for making the disc, will allow for terabyte-scale optical discs using conventional commercial optics and lasers.

  18. Development of Multilayer Optics in EUV, Soft X-Ray and X-Ray Range at IPOE

    NASA Astrophysics Data System (ADS)

    Wang, Zhanshan; Zhu, Jingtao; Zhang, Zhong; Cheng, Xinbin; Xu, Jing; Wang, Fengli; Wang, Xiaoqiang; Chen, Lingyan

    Multilayer coatings are key optical components in the EUV, soft X-ray and X-ray range. At Institute of Precision Optical Engineering (IPOE), the development of multilayer optics has been impelled for their wide applications in X-ray laser, plasma diagnostics, astronomical observation and synchrotron radiation. The paper presents our recent results of periodic multilayers of Mo/Si, Cr/C, Cr/Sc, La/B4C, Mo/B4C, Si/C, Si/SiC, Mg/SiC Mo/Y and Ru/Y. To improve the reflectivity of Ru/Y multilayer mirrors, Mo layers were inserted between Ru and Y layer. The Mo barrier layers suppress intermixing between Ru and Y, thereby increasing the reflectivity of Ru/Y multilayer. We also discuss the application of Mo/Si, Mo/Y, Mo/B4C, La/B4C non-periodic multilayers in EUV broadband polarization measurement.

  19. Near-field optical microscopy of bacteria thin sections

    NASA Astrophysics Data System (ADS)

    Konnov, Nikolai P.; Baiburin, Vil B.; Shcherbakov, Anatolyi A.; Malakhaeva, Alina N.; Volkov, Yuri P.

    1997-12-01

    Whole bacteria as well as thin sections were investigated in our laboratory by means of near field scanning optical microscope (NSOM). The main problem in NSOM operation is a control of distance between microscopy tip and sample surface. The bacteria thin section is a more preferable sample for NSOM investigation because of its flat surface. For increasing of thin sections' image contrast were used different light microscopy stainers (Eosin, Hematoxylin, etc.). We obtained images of thin sections of plague (Y. Pestis EV) and cholera (V. Cholerae). Lateral resolution in the investigation is about 300 angstroms.

  20. Manufacturing of glassy thin shell for adaptive optics: results achieved

    NASA Astrophysics Data System (ADS)

    Poutriquet, F.; Rinchet, A.; Carel, J.-L.; Leplan, H.; Ruch, E.; Geyl, R.; Marque, G.

    2012-07-01

    Glassy thin shells are key components for the development of adaptive optics and are part of future & innovative projects such as ELT. However, manufacturing thin shells is a real challenge. Even though optical requirements for the front face - or optical face - are relaxed compared to conventional passive mirrors, requirements concerning thickness uniformity are difficult to achieve. In addition, process has to be completely re-defined as thin mirror generates new manufacturing issues. In particular, scratches and digs requirement is more difficult as this could weaken the shell, handling is also an important issue due to the fragility of the mirror. Sagem, through REOSC program, has recently manufactured different types of thin shells in the frame of European projects: E-ELT M4 prototypes and VLT Deformable Secondary Mirror (VLT DSM).

  1. Design of a superluminal ring laser gyroscope using multilayer optical coatings with huge group delay.

    PubMed

    Qu, Tianliang; Yang, Kaiyong; Han, Xiang; Wu, Suyong; Huang, Yun; Luo, Hui

    2014-11-18

    We propose and analyze a superluminal ring laser gyroscope (RLG) using multilayer optical coatings with huge group delay (GD). This GD assisted superluminal RLG can measure the absolute rotation with a giant sensitivity-enhancement factor of ~10(3); while, the broadband FWHM of the enhancement factor can reach 20 MHz. This superluminal RLG is based on a traditional RLG with minimal re-engineering, and beneficial for miniaturization according to theoretical calculation. The idea of using GD coatings as a fast-light medium will shed lights on the design and application of fast-light sensors.

  2. Design of a superluminal ring laser gyroscope using multilayer optical coatings with huge group delay

    PubMed Central

    Qu, Tianliang; Yang, Kaiyong; Han, Xiang; Wu, Suyong; Huang, Yun; Luo, Hui

    2014-01-01

    We propose and analyze a superluminal ring laser gyroscope (RLG) using multilayer optical coatings with huge group delay (GD). This GD assisted superluminal RLG can measure the absolute rotation with a giant sensitivity-enhancement factor of ~103; while, the broadband FWHM of the enhancement factor can reach 20 MHz. This superluminal RLG is based on a traditional RLG with minimal re-engineering, and beneficial for miniaturization according to theoretical calculation. The idea of using GD coatings as a fast-light medium will shed lights on the design and application of fast-light sensors. PMID:25403698

  3. Material selection and corresponding optimal surface relief height for multilayer diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Dun, Xiong; Jin, Weiqi; Wang, Xia

    2015-11-01

    We present a model based on refractive index difference analysis for optimization of material selection for multilayer diffractive optical elements (MLDOEs). From the proposed model, two important relationships are derived: the relationship between material selection and the maximum polychromatic integral diffraction efficiency of MLDOEs, and between material selection and the surface relief heights of MLDOEs. The new relationships are more comprehensive and reliable than those discussed in previous papers. A theoretical expression of the optimal surface relief heights of MLDOEs is also presented, and its correctness is demonstrated through a comparison with the results of enumeration optimization.

  4. Vapor-phase molecular layer deposition of self-assembled multilayers for organic thin-film transistor.

    PubMed

    Lee, Byoung H; Lee, Kwang H; Im, Seongil; Sung, Myung M

    2009-12-01

    We report a vapor-phase molecular layer deposition (MLD) of self-assembled multilayer thin films for organic thin-film transistor. In the present MLD process, alkylsiloxane self-assembled multilayers (SAMs) were grown under vacuum by repeated sequential adsorptions of C=C-terminated alkylsilane and aluminum hydroxide with ozone activation. The MLD method is a self-controlled layer-by-layer growth process, and is perfectly compatible with the atomic layer deposition (ALD) method. The SAMs films prepared exhibited good mechanical flexibility and stability, excellent insulating properties, and relatively high dielectric capacitances of 374 nF/cm2 with a high dielectric strength of 4 MV/cm. They were then used as a 12 nm-thick dielectric for pentacene-based thin-film transistors (TFTs), which showed a maximum field effect mobility of 0.57 cm2/V s, operating at -4 V with an on/off current ratio of approximately 10(3).

  5. Preparation of polymeric diacetylene thin films for nonlinear optical applications

    NASA Technical Reports Server (NTRS)

    Frazier, Donald O. (Inventor); Mcmanus, Samuel P. (Inventor); Paley, Mark S. (Inventor); Donovan, David N. (Inventor)

    1995-01-01

    A method for producing polymeric diacetylene thin films having desirable nonlinear optical characteristics has been achieved by producing amorphous diacetylene polymeric films by simultaneous polymerization of diacetylene monomers in solution and deposition of polymerized diacetylenes on to the surface of a transparent substrate through which ultraviolet light has been transmitted. These amorphous polydiacetylene films produced by photo-deposition from solution possess very high optical quality and exhibit large third order nonlinear optical susceptibilities, such properties being suitable for nonlinear optical devices such as waveguides and integrated optics.

  6. AND/R: Advanced neutron diffractometer/reflectometer for investigation of thin films and multilayers for the life sciences

    PubMed Central

    Dura, Joseph A.; Pierce, Donald J.; Majkrzak, Charles F.; Maliszewskyj, Nicholas C.; McGillivray, Duncan J.; Lösche, Mathias; O'Donovan, Kevin V.; Mihailescu, Mihaela; Perez-Salas, Ursula; Worcester, David L.; White, Stephen H.

    2011-01-01

    An elastic neutron scattering instrument, the advanced neutron diffractometer/reflectometer (AND/R), has recently been commissioned at the National Institute of Standards and Technology Center for Neutron Research. The AND/R is the centerpiece of the Cold Neutrons for Biology and Technology partnership, which is dedicated to the structural characterization of thin films and multilayers of biological interest. The instrument is capable of measuring both specular and nonspecular reflectivity, as well as crystalline or semicrystalline diffraction at wave-vector transfers up to approximately 2.20 Å−1. A detailed description of this flexible instrument and its performance characteristics in various operating modes are given. PMID:21892232

  7. Development of Multilayer Optics for EUV, Soft X-Ray and X-Ray Regions in IPOE

    NASA Astrophysics Data System (ADS)

    Wang, Z. S.; Zhu, J. T.; Wang, F. L.; Zhang, Z.; Wang, H. C.; Qin, S. J.; Chen, L. Y.

    In EUV and X-ray regions, multilayer mirrors are the essential and necessary optics elements. The good prospects of the EUV and X-ray optics for next generation lithography system, microscopy in the "water windows", astronomy telescope, spectroscopy, plasma diagnostics, and X-ray laser have impelled the development of multilayer. This report introduced the recent results of the multilayer optics elements in institute of precision optical engineering (IPOE), Tongji University, China, including beam splitters, broad band/angular polarizers, supermirrors, and high-reflectance mirrors. The product of reflectivity and transmittance is above 4% for the Mo/Si multilayer beam splitter at 13.9 nm. Over the 15-17 nm wavelength range, the s-reflectivity of the non-periodic Mo/Si broadband multilayer polarizers is reasonably constant, as high as 36.6%, and the degree of polarization is more than 97.8%. The experimental results of some X-ray supermirrors and high-reflectance mirrors in our lab were also presented.

  8. General Strategy for Broadband Coherent Perfect Absorption and Multi-wavelength All-optical Switching Based on Epsilon-Near-Zero Multilayer Films

    PubMed Central

    Kim, Tae Young; Badsha, Md. Alamgir; Yoon, Junho; Lee, Seon Young; Jun, Young Chul; Hwangbo, Chang Kwon

    2016-01-01

    We propose a general, easy-to-implement scheme for broadband coherent perfect absorption (CPA) using epsilon-near-zero (ENZ) multilayer films. Specifically, we employ indium tin oxide (ITO) as a tunable ENZ material, and theoretically investigate CPA in the near-infrared region. We first derive general CPA conditions using the scattering matrix and the admittance matching methods. Then, by combining these two methods, we extract analytic expressions for all relevant parameters for CPA. Based on this theoretical framework, we proceed to study ENZ CPA in a single layer ITO film and apply it to all-optical switching. Finally, using an ITO multilayer of different ENZ wavelengths, we implement broadband ENZ CPA structures and investigate multi-wavelength all-optical switching in the technologically important telecommunication window. In our design, the admittance matching diagram was employed to graphically extract not only the structural parameters (the film thicknesses and incident angles), but also the input beam parameters (the irradiance ratio and phase difference between two input beams). We find that the multi-wavelength all-optical switching in our broadband ENZ CPA system can be fully controlled by the phase difference between two input beams. The simple but general design principles and analyses in this work can be widely used in various thin-film devices. PMID:26965195

  9. General Strategy for Broadband Coherent Perfect Absorption and Multi-wavelength All-optical Switching Based on Epsilon-Near-Zero Multilayer Films.

    PubMed

    Kim, Tae Young; Badsha, Md Alamgir; Yoon, Junho; Lee, Seon Young; Jun, Young Chul; Hwangbo, Chang Kwon

    2016-01-01

    We propose a general, easy-to-implement scheme for broadband coherent perfect absorption (CPA) using epsilon-near-zero (ENZ) multilayer films. Specifically, we employ indium tin oxide (ITO) as a tunable ENZ material, and theoretically investigate CPA in the near-infrared region. We first derive general CPA conditions using the scattering matrix and the admittance matching methods. Then, by combining these two methods, we extract analytic expressions for all relevant parameters for CPA. Based on this theoretical framework, we proceed to study ENZ CPA in a single layer ITO film and apply it to all-optical switching. Finally, using an ITO multilayer of different ENZ wavelengths, we implement broadband ENZ CPA structures and investigate multi-wavelength all-optical switching in the technologically important telecommunication window. In our design, the admittance matching diagram was employed to graphically extract not only the structural parameters (the film thicknesses and incident angles), but also the input beam parameters (the irradiance ratio and phase difference between two input beams). We find that the multi-wavelength all-optical switching in our broadband ENZ CPA system can be fully controlled by the phase difference between two input beams. The simple but general design principles and analyses in this work can be widely used in various thin-film devices. PMID:26965195

  10. General Strategy for Broadband Coherent Perfect Absorption and Multi-wavelength All-optical Switching Based on Epsilon-Near-Zero Multilayer Films

    NASA Astrophysics Data System (ADS)

    Kim, Tae Young; Badsha, Md. Alamgir; Yoon, Junho; Lee, Seon Young; Jun, Young Chul; Hwangbo, Chang Kwon

    2016-03-01

    We propose a general, easy-to-implement scheme for broadband coherent perfect absorption (CPA) using epsilon-near-zero (ENZ) multilayer films. Specifically, we employ indium tin oxide (ITO) as a tunable ENZ material, and theoretically investigate CPA in the near-infrared region. We first derive general CPA conditions using the scattering matrix and the admittance matching methods. Then, by combining these two methods, we extract analytic expressions for all relevant parameters for CPA. Based on this theoretical framework, we proceed to study ENZ CPA in a single layer ITO film and apply it to all-optical switching. Finally, using an ITO multilayer of different ENZ wavelengths, we implement broadband ENZ CPA structures and investigate multi-wavelength all-optical switching in the technologically important telecommunication window. In our design, the admittance matching diagram was employed to graphically extract not only the structural parameters (the film thicknesses and incident angles), but also the input beam parameters (the irradiance ratio and phase difference between two input beams). We find that the multi-wavelength all-optical switching in our broadband ENZ CPA system can be fully controlled by the phase difference between two input beams. The simple but general design principles and analyses in this work can be widely used in various thin-film devices.

  11. Self-Assembled Nano-heterostructural Thin Film for Optical Lens

    NASA Astrophysics Data System (ADS)

    Fujimoto, Kouji; Kyung, Kyu-Hong; Shiratori, Seimei

    2011-04-01

    The layer-by-layer (LBL) self-assembly method enables the deposition of functional nanoscale multilayer thin films on intricate-shape substrates. The present problem with optical devices is the formation of a uniform coating of a nanoscale heterostructural thin film on both faces of the lens. In this paper, we introduce self-assembled heterostructural optical films with higher- and lower-refractive index layers, which were fabricated using a stable water base titanium complex [titanium(IV) bis(ammonium lactato) dihydroxide (TALH)] and cationic and anionic polyelectrolytes [poly(diallyldimethylammonium chloride) (PDDA)] and [poly(acrylic acid) (PAA)] on a lens via the LBL method. The antireflectance characteristics of (PDDA/TALH)20/(PDDA/PAA)20 showed a maximum transmittance of 99.2% with (PDDA/TALH)20 (ca. 1.75, 80 nm) and (PDDA/PAA)20 (ca. 1.48, 87 nm) on both faces of the lens. These results demonstrate that we can control the refractive index and film thickness of self-assembled nano-heterostructural films on optical lenses.

  12. All optical switching in henna thin film

    NASA Astrophysics Data System (ADS)

    Henari, Fryad Z.; Jasim, Khalil E.

    2013-08-01

    The optical nonlinearity in henna (Lawson (2- hydroxyl-1,4 naphthoquinone) film was utilized to demonstrate all optical switching. The nonlinear absorption of the henna film was calculated by measuring the transmission of the laser beam ( λ = 488 nm) as a function of incident light intensities. The observed nonlinear absorption is attributed to a two-photon absorption process. The pump and probe technique was used to demonstrate all optical switching. The switching characteristics can be utilized to generate all-optical logic gates such as simple inverter switches (NOT) NOR, AND NAND logic functions.

  13. Multilayer Markov Random Field models for change detection in optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Benedek, Csaba; Shadaydeh, Maha; Kato, Zoltan; Szirányi, Tamás; Zerubia, Josiane

    2015-09-01

    In this paper, we give a comparative study on three Multilayer Markov Random Field (MRF) based solutions proposed for change detection in optical remote sensing images, called Multicue MRF, Conditional Mixed Markov model, and Fusion MRF. Our purposes are twofold. On one hand, we highlight the significance of the focused model family and we set them against various state-of-the-art approaches through a thematic analysis and quantitative tests. We discuss the advantages and drawbacks of class comparison vs. direct approaches, usage of training data, various targeted application fields and different ways of Ground Truth generation, meantime informing the Reader in which roles the Multilayer MRFs can be efficiently applied. On the other hand we also emphasize the differences between the three focused models at various levels, considering the model structures, feature extraction, layer interpretation, change concept definition, parameter tuning and performance. We provide qualitative and quantitative comparison results using principally a publicly available change detection database which contains aerial image pairs and Ground Truth change masks. We conclude that the discussed models are competitive against alternative state-of-the-art solutions, if one uses them as pre-processing filters in multitemporal optical image analysis. In addition, they cover together a large range of applications, considering the different usage options of the three approaches.

  14. Optical response of cylindrical multilayers in the context of hydrodynamic convection-diffusion model

    NASA Astrophysics Data System (ADS)

    Dong, Tianyu; Shi, Yi; Lu, Lizhen; Chen, Feng; Ma, Xikui; Mittra, Raj

    2016-09-01

    In this work, we generalize the cascading scattering matrix algorithm for calculating the optical response of concentric multilayered structures comprised of either plasmonic metal or dielectric, within the framework of hydrodynamic convection-diffusion model of electrodynamics. Two additional boundary conditions, namely, the continuity of first order pressure of free electron density and the continuity of normal components of free charge velocity, respectively, are adopted in order to handle the behaviour at interfaces involving metals. Scattering matrices at interfaces can be readily obtained and cascaded to obtain the modal coefficients in each layer by expanding electromagnetic waves in harmonic modes with cylindrical vector wave functions. We have validated the proposed method by analyzing the optical responses of several configurations of nanostructures, including a bi-metallic nanocylinder and a hyperlens. We found that nonlocal effects can be important for small structures, when the characteristic size is comparable to the Fermi wavelength. The proposed method shows its capability and flexibility to solve hybrid metal-dielectric multilayer structures even when the number of layers is large. Although we have discussed our method in the context of the retarded radiation regime, it can be applied in quasi-static scenarios without any difficulties. Furthermore, it may be extended to solve similar problems in other areas of physics, such as acoustics.

  15. Design, Fabrication and Testing of Multilayer Coated X-Ray Optics for the Water Window Imaging X-Ray Microscope

    NASA Technical Reports Server (NTRS)

    Spencer, Dwight C.

    1996-01-01

    Hoover et. al. built and tested two imaging Schwarzschild multilayer microscopes. These instruments were constructed as prototypes for the "Water Window Imaging X-Ray Microscope," which is a doubly reflecting, multilayer x-ray microscope configured to operate within the "water window." The "water window" is the narrow region of the x-ray spectrum between the K absorption edges of oxygen (lamda = 23.3 Angstroms) and of carbon (lamda = 43.62 Angstroms), where water is relatively highly transmissive and carbon is highly absorptive. This property of these materials, thus permits the use of high resolution multilayer x-ray microscopes for producing high contrast images of carbon-based structures within the aqueous physiological environments of living cells. We report the design, fabrication and testing of multilayer optics that operate in this regime.

  16. Optical damage performance measurements of multilayer dielectric gratings for high energy short pulse lasers

    NASA Astrophysics Data System (ADS)

    Alessi, D.; Carr, C. W.; Negres, R. A.; Hackel, R. P.; Stanion, K. A.; Cross, D. A.; Guss, G.; Nissen, J. D.; Luthi, R.; Fair, J. E.; Britten, J. A.; Haefner, C.

    2015-02-01

    We investigate the laser damage resistance of multilayer dielectric (MLD) diffraction gratings used in the pulse compressors for high energy, high peak power laser systems such as the Advanced Radiographic Capability (ARC) Petawatt laser on the National Ignition Facility (NIF). Our study includes measurements of damage threshold and damage density (ρ(Φ)) with picosecond laser pulses at 1053 nm under relevant operational conditions. Initial results indicate that sparse defects present on the optic surface from the manufacturing processes are responsible for damage initiation at laser fluences below the damage threshold indicated by the standard R-on-1 test methods, as is the case for laser damage with nanosecond pulse durations. As such, this study supports the development of damage density measurements for more accurate predictions on the damage performance of large area optics.

  17. Optically tuned terahertz modulator based on annealed multilayer MoS2

    NASA Astrophysics Data System (ADS)

    Cao, Yapeng; Gan, Sheng; Geng, Zhaoxin; Liu, Jian; Yang, Yuping; Bao, Qiaoling; Chen, Hongda

    2016-03-01

    Controlling the propagation properties of terahertz waves is very important in terahertz technologies applied in high-speed communication. Therefore a new-type optically tuned terahertz modulator based on multilayer-MoS2 and silicon is experimentally demonstrated. The terahertz transmission could be significantly modulated by changing the power of the pumping laser. With an annealing treatment as a p-doping method, MoS2 on silicon demonstrates a triple enhancement of terahertz modulation depth compared with the bare silicon. This MoS2-based device even exhibited much higher modulation efficiency than the graphene-based device. We also analyzed the mechanism of the modulation enhancement originated from annealed MoS2, and found that it is different from that of graphene-based device. The unique optical modulating properties of the device exhibit tremendous promise for applications in terahertz switch.

  18. Optically tuned terahertz modulator based on annealed multilayer MoS2

    PubMed Central

    Cao, Yapeng; Gan, Sheng; Geng, Zhaoxin; Liu, Jian; Yang, Yuping; Bao, Qiaoling; Chen, Hongda

    2016-01-01

    Controlling the propagation properties of terahertz waves is very important in terahertz technologies applied in high-speed communication. Therefore a new-type optically tuned terahertz modulator based on multilayer-MoS2 and silicon is experimentally demonstrated. The terahertz transmission could be significantly modulated by changing the power of the pumping laser. With an annealing treatment as a p-doping method, MoS2 on silicon demonstrates a triple enhancement of terahertz modulation depth compared with the bare silicon. This MoS2-based device even exhibited much higher modulation efficiency than the graphene-based device. We also analyzed the mechanism of the modulation enhancement originated from annealed MoS2, and found that it is different from that of graphene-based device. The unique optical modulating properties of the device exhibit tremendous promise for applications in terahertz switch. PMID:26953153

  19. Optically tuned terahertz modulator based on annealed multilayer MoS2.

    PubMed

    Cao, Yapeng; Gan, Sheng; Geng, Zhaoxin; Liu, Jian; Yang, Yuping; Bao, Qiaoling; Chen, Hongda

    2016-01-01

    Controlling the propagation properties of terahertz waves is very important in terahertz technologies applied in high-speed communication. Therefore a new-type optically tuned terahertz modulator based on multilayer-MoS2 and silicon is experimentally demonstrated. The terahertz transmission could be significantly modulated by changing the power of the pumping laser. With an annealing treatment as a p-doping method, MoS2 on silicon demonstrates a triple enhancement of terahertz modulation depth compared with the bare silicon. This MoS2-based device even exhibited much higher modulation efficiency than the graphene-based device. We also analyzed the mechanism of the modulation enhancement originated from annealed MoS2, and found that it is different from that of graphene-based device. The unique optical modulating properties of the device exhibit tremendous promise for applications in terahertz switch. PMID:26953153

  20. Electro-optical backplane demonstrator with integrated multimode gradient-index thin glass waveguide panel

    NASA Astrophysics Data System (ADS)

    Schröder, Henning; Brusberg, Lars; Pitwon, Richard; Whalley, Simon; Wang, Kai; Miller, Allen; Herbst, Christian; Weber, Daniel; Lang, Klaus-Dieter

    2015-03-01

    Optical interconnects for data transmission at board level offer increased energy efficiency, system density, and bandwidth scalability compared to purely copper driven systems. We present recent results on manufacturing of electrooptical printed circuit board (PCB) with integrated planar glass waveguides. The graded index multi-mode waveguides are patterned inside commercially available thin-glass panels by performing a specific ion-exchange process. The glass waveguide panel is embedded within the layer stack-up of a PCB using proven industrial processes. This paper describes the design, manufacture, assembly and characterization of the first electro-optical backplane demonstrator based on integrated planar glass waveguides. The electro-optical backplane in question is created by laminating the glass waveguide panel into a conventional multi-layer electronic printed circuit board stack-up. High precision ferrule mounts are automatically assembled, which will enable MT compliant connectors to be plugged accurately to the embedded waveguide interfaces on the glass panel edges. The demonstration platform comprises a standardized sub-rack chassis and five pluggable test cards each housing optical engines and pluggable optical connectors. The test cards support a variety of different data interfaces and can support data rates of up to 32 Gb/s per channel.

  1. Study of Au/Cr multilayer thin-film surface morphology, structure and constituents on borosilicate glass, and quartz surfaces

    NASA Astrophysics Data System (ADS)

    Lavoie, John; Kemble, Eric; Senevirathne, Indrajith

    2014-03-01

    Au/Cr/substrate multilayer thin films have a wide area of applications in both industry and proof of concept investigations in device engineering. Borosilicate glass and quartz are used for substrate materials. Typically, Cr deposition on substrates give rise to Stanski-Krastonov (SK) like growth while Frank-van der Merwe (FM) like growth is desired in many engineering applications. A thermal evaporator is used to deposit Cr with a thickness of ~ 100nm on the previously mentioned substrates. The additional Au layer is then deposited via magnetron sputter deposition at 100mtorr at low deposition rates (~ 1ML/min) onto the Cr thin film. These systems were then annealed using different temperatures for various durations. After annealing these systems were characterized via Atomic Force Microscopy (AFM) probes for surface topography and structure. Further, the ambient contamination and elemental distribution/diffusion at annealing was investigated via Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDX).

  2. Thin Hydrogel Films for Optical Biosensor Applications

    PubMed Central

    Mateescu, Anca; Wang, Yi; Dostalek, Jakub; Jonas, Ulrich

    2012-01-01

    Hydrogel materials consisting of water-swollen polymer networks exhibit a large number of specific properties highly attractive for a variety of optical biosensor applications. This properties profile embraces the aqueous swelling medium as the basis of biocompatibility, non-fouling behavior, and being not cell toxic, while providing high optical quality and transparency. The present review focuses on some of the most interesting aspects of surface-attached hydrogel films as active binding matrices in optical biosensors based on surface plasmon resonance and optical waveguide mode spectroscopy. In particular, the chemical nature, specific properties, and applications of such hydrogel surface architectures for highly sensitive affinity biosensors based on evanescent wave optics are discussed. The specific class of responsive hydrogel systems, which can change their physical state in response to externally applied stimuli, have found large interest as sophisticated materials that provide a complex behavior to hydrogel-based sensing devices. PMID:24957962

  3. Coastal thin layer dynamics: Consequences to biology and optics

    NASA Astrophysics Data System (ADS)

    Sullivan, James M.; Donaghay, Percy L.; Rines, Jan E. B.

    2010-01-01

    Thin layers are fine-scale structures with high concentrations of organisms or particles occurring over very small vertical scales (a few meters or less), but with large horizontal scales, often extending for many kilometers. Because of their small vertical scales, thin layers are traditionally under sampled, but when proper measurement techniques are used, thin layers have been found to be ubiquitous in stratified oceans. A multi-investigator, interdisciplinary study of thin layers was sponsored by the US Office of Naval Research under a research initiative termed: Layered Organization in the Coastal Ocean (LOCO). The goal of this program was to understand the properties of coastal thin layers and the interacting physical, chemical, biological and optical processes responsible for their formation, maintenance and dissipation. As part of this program, fine-scale vertical profiles (cm resolution) of biological, physical and chemical properties were made hourly over periods spanning 1-3 weeks during three summers in Monterey Bay, California USA. The vertical profiles were made using arrays of moored autonomous profilers. In total, these profilers made ~2000 individual vertical profiles and provided a unique view of phytoplankton thin layer spatial-temporal dynamics. The autonomous profiler data were supplemented with high-resolution ship-based profiling and discrete water sampling for identifications of organisms. Persistent phytoplankton thin layers were observed during each year in Monterey Bay; however, each year had very different biological and physical dynamics. During 2002, thin layers were dominated by the non-motile and potentially toxic diatom genus Pseudo-nitzschia; during 2005, thin layers were dominated by the highly motile dinoflagellate species Akashiwo sanguinea; and during 2006, a more complex phytoplankton assemblage was present, but thin layers of the toxic dinoflagellate species Alexandrium catenella frequently occurred. The variability in the

  4. Application of in situ ellipsometry in the fabrication of thin-film optical coatings on semiconductors.

    PubMed

    Boudreau, M G; Wallace, S G; Balcaitis, G; Murugkar, S; Haugen, H K; Mascher, P

    2000-02-20

    Thin-film interference filters, suitable for use on GaAs- and InP-based lasers, have been fabricated by use of the electron-cyclotron resonance plasma-enhanced chemical vapor deposition technique. Multilayer film structures composed of silicon oxynitride material have been deposited at low temperatures with an in situ rotating compensator ellipsometer for monitoring the index of refraction and thickness of the deposited layers. Individual layers with an index of refraction from 3.3 to 1.46 at 633 nm have been produced with a run-to-run reproducibility of 0.005 and a thickness control of 10 A. Several filter designs have been implemented, including high-reflection filters, one- and two-layer anitreflection filters, and narrow-band high-reflection filters. It is shown that an accurate measurement of the filter optical properties during deposition is possible and that controlled reflectance spectra can be obtained. PMID:18337985

  5. Optically thin accretion disks in the Kerr metric

    NASA Technical Reports Server (NTRS)

    Bjornsson, G.

    1995-01-01

    We calculate the structure of an effectively optically thin and geometrically thin accretion disk in the Kerr geometry, including electron-positron pairs. We show that the properties of the disk solutions are strongly dependent on the angular momentum of the central black hole. We find that close to a rapidly rotating hole there can be an appreciable pair density even for modest accretion rates. Pair critical accretion rates recently discovered in Newtonian disk models are also shown to be present in the general relativistic models, and we show that the geometrically thin disk approximations easily break down for rapidly rotating holes.

  6. Assembly of luminescent ordered multilayer thin-films based on oppositely-charged MMT and magnetic NiFe-LDHs nanosheets with ultra-long lifetimes.

    PubMed

    Liu, Meitang; Wang, Tianlei; Ma, Hongwen; Fu, Yu; Hu, Kunran; Guan, Chao

    2014-01-01

    In this present report, luminescent ordered multilayer thin films (OMFs) based on oppositely-charged inorganic nanosheets and the different oppositely-charged chromophores were fabricated via layer-by-layer assembly method. Exfoliated layered double hydroxides (LDHs) and montmorillonite (MMT) nanosheets with opposite charges can be expected to provide a pseudo electronic microenvironment (PEM) which has not been declared in previous literatures, and transition metal-bearing LDHs nanosheets can offer an additional ferromagnetic effect (FME) for the chromophores at the same time. Surprisingly, the luminescent lifetimes of those OMFs with PEM and FME are significantly prolonged compared with that of the pristine chromophores, even much longer than those of OMFs without oppositely-charged and ferromagnetic architecture. Therefore, it is highly expected that the PEM and FME formed by oppositely-charged and transition metal-bearing inorganic nanosheets have remarkable influence on obtaining better optical property, which suggests a new potential way to manipulate, control and develop the novel light-emitting materials and optical devices. PMID:25413710

  7. Assembly of luminescent ordered multilayer thin-films based on oppositely-charged MMT and magnetic NiFe-LDHs nanosheets with ultra-long lifetimes

    PubMed Central

    Liu, Meitang; Wang, Tianlei; Ma, Hongwen; Fu, Yu; Hu, Kunran; Guan, Chao

    2014-01-01

    In this present report, luminescent ordered multilayer thin films (OMFs) based on oppositely-charged inorganic nanosheets and the different oppositely-charged chromophores were fabricated via layer-by-layer assembly method. Exfoliated layered double hydroxides (LDHs) and montmorillonite (MMT) nanosheets with opposite charges can be expected to provide a pseudo electronic microenvironment (PEM) which has not been declared in previous literatures, and transition metal-bearing LDHs nanosheets can offer an additional ferromagnetic effect (FME) for the chromophores at the same time. Surprisingly, the luminescent lifetimes of those OMFs with PEM and FME are significantly prolonged compared with that of the pristine chromophores, even much longer than those of OMFs without oppositely-charged and ferromagnetic architecture. Therefore, it is highly expected that the PEM and FME formed by oppositely-charged and transition metal-bearing inorganic nanosheets have remarkable influence on obtaining better optical property, which suggests a new potential way to manipulate, control and develop the novel light-emitting materials and optical devices. PMID:25413710

  8. Optical characterization of iridescent wings of butterflies using multilayer rigorous coupled wave analysis

    NASA Astrophysics Data System (ADS)

    Liao, Guanglan; Cao, Yanbo; Shi, Tielin; Zuo, Haibo; Peng, Ping; Tang, Zirong

    2008-12-01

    In certain species of moths and butterflies iridescent colors arise from sub-wavelength diffractive surface corrugation of the wing-scales. The optical properties of such structures depend strongly on the wavelength, the incidence angle, the polarization of illuminating radiation, and the index of ambient medium. In this paper, after getting the SEM picture of the dorsal scales of the Morpho didius butterfly, we construct a bionic two dimension model, whose ridge contains a certain quasi-periodic arrangement of tree-like sub-wavelength microstructures. Then using a multilayer rigorous coupled wave analysis method in two dimensions, we study the reflection spectra of the wings of Morpho didius butterfly by simulating the multilayer model of a transverse cross-section comprised of the ground scale. Here we assume that the structure is made of a slightly lossy dielectric material and analyzed the polarization, the incidence angle and the index of ambient medium which affect the reflection spectra strongly. The results got, have revealed the natural phenomenon of iridescent colors and color-changed in essence, and the simulation results enable an artificial microsensor which discriminate vapor or component by reflective efficiency spectra.

  9. Fiber Optic pH Sensor with Self-Assembled Polymer Multilayer Nanocoatings

    PubMed Central

    Shao, Li-Yang; Yin, Ming-Jie; Tam, Hwa-Yaw; Albert, Jacques

    2013-01-01

    A fiber-optic pH sensor based on a tilted fiber Bragg grating (TFBG) with electrostatic self-assembly multilayer sensing film is presented. The pH sensitive polymeric film, poly(diallyldimethylammonium chloride) (PDDA) and poly(acrylic acid) (PAA) was deposited on the circumference of the TFBG with the layer-by-layer (LbL) electrostatic self-assembly technique. The PDDA/PAA film exhibits a reduction in refractive index by swelling in different pH solutions. This effect results in wavelength shifts and transmission changes in the spectrum of the TFBG. The peak amplitude of the dominant spectral fringes over a certain window of the transmission spectrum, obtained by FFT analysis, has a near-linear pH sensitivity of 117 arbitrary unit (a.u.)/pH unit and an accuracy of ±1 a.u. (in the range of pH 4.66 to pH 6.02). The thickness and surface morphology of the sensing multilayer film were characterized to investigate their effects on the sensor's performance. The dynamic response of the sensor also has been studied (10 s rise time and 18 s fall time for a sensor with six bilayers of PDDA/PAA). PMID:23348031

  10. Epitaxial growth and magnetic properties of ultraviolet transparent Ga2O3/(Ga1-xFex)2O3 multilayer thin films

    NASA Astrophysics Data System (ADS)

    Guo, Daoyou; An, Yuehua; Cui, Wei; Zhi, Yusong; Zhao, Xiaolong; Lei, Ming; Li, Linghong; Li, Peigang; Wu, Zhenping; Tang, Weihua

    2016-04-01

    Multilayer thin films based on the ferromagnetic and ultraviolet transparent semiconductors may be interesting because their magnetic/electronic/photonic properties can be manipulated by the high energy photons. Herein, the Ga2O3/(Ga1-xFex)2O3 multilayer epitaxial thin films were obtained by alternating depositing of wide band gap Ga2O3 layer and Fe ultrathin layer due to inter diffusion between two layers at high temperature using the laser molecular beam epitaxy technique. The multilayer films exhibits a preferred growth orientation of crystal plane, and the crystal lattice expands as Fe replaces Ga site. Fe ions with a mixed valence of Fe2+ and Fe3+ are stratified distributed in the film and exhibit obvious agglomerated areas. The multilayer films only show a sharp absorption edge at about 250 nm, indicating a high transparency for ultraviolet light. What’s more, the Ga2O3/(Ga1-xFex)2O3 multilayer epitaxial thin films also exhibits room temperature ferromagnetism deriving from the Fe doping Ga2O3.

  11. Epitaxial growth and magnetic properties of ultraviolet transparent Ga2O3/(Ga1-xFex)2O3 multilayer thin films.

    PubMed

    Guo, Daoyou; An, Yuehua; Cui, Wei; Zhi, Yusong; Zhao, Xiaolong; Lei, Ming; Li, Linghong; Li, Peigang; Wu, Zhenping; Tang, Weihua

    2016-04-28

    Multilayer thin films based on the ferromagnetic and ultraviolet transparent semiconductors may be interesting because their magnetic/electronic/photonic properties can be manipulated by the high energy photons. Herein, the Ga2O3/(Ga1-xFex)2O3 multilayer epitaxial thin films were obtained by alternating depositing of wide band gap Ga2O3 layer and Fe ultrathin layer due to inter diffusion between two layers at high temperature using the laser molecular beam epitaxy technique. The multilayer films exhibits a preferred growth orientation of crystal plane, and the crystal lattice expands as Fe replaces Ga site. Fe ions with a mixed valence of Fe(2+) and Fe(3+) are stratified distributed in the film and exhibit obvious agglomerated areas. The multilayer films only show a sharp absorption edge at about 250 nm, indicating a high transparency for ultraviolet light. What's more, the Ga2O3/(Ga1-xFex)2O3 multilayer epitaxial thin films also exhibits room temperature ferromagnetism deriving from the Fe doping Ga2O3.

  12. Epitaxial growth and magnetic properties of ultraviolet transparent Ga2O3/(Ga1−xFex)2O3 multilayer thin films

    PubMed Central

    Guo, Daoyou; An, Yuehua; Cui, Wei; Zhi, Yusong; Zhao, Xiaolong; Lei, Ming; Li, Linghong; Li, Peigang; Wu, Zhenping; Tang, Weihua

    2016-01-01

    Multilayer thin films based on the ferromagnetic and ultraviolet transparent semiconductors may be interesting because their magnetic/electronic/photonic properties can be manipulated by the high energy photons. Herein, the Ga2O3/(Ga1−xFex)2O3 multilayer epitaxial thin films were obtained by alternating depositing of wide band gap Ga2O3 layer and Fe ultrathin layer due to inter diffusion between two layers at high temperature using the laser molecular beam epitaxy technique. The multilayer films exhibits a preferred growth orientation of crystal plane, and the crystal lattice expands as Fe replaces Ga site. Fe ions with a mixed valence of Fe2+ and Fe3+ are stratified distributed in the film and exhibit obvious agglomerated areas. The multilayer films only show a sharp absorption edge at about 250 nm, indicating a high transparency for ultraviolet light. What’s more, the Ga2O3/(Ga1−xFex)2O3 multilayer epitaxial thin films also exhibits room temperature ferromagnetism deriving from the Fe doping Ga2O3. PMID:27121446

  13. Quantitative determination of molecular structure in multilayered thin films of biaxial and lower symmetry from photon spectroscopies. I. Reflection infrared vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Parikh, Atul N.; Allara, David L.

    1992-01-01

    A semitheoretical formalism based on classical electromagnetic wave theory has been developed for application to the quantitative treatment of reflection spectra from multilayered anisotropic films on both metallic and nonmetallic substrates. Both internal and external reflection experiments as well as transmission can be handled. The theory is valid for all wavelengths and is appropriate, therefore, for such experiments as x-ray reflectivity, uv-visible spectroscopic ellipsometry, and infrared reflection spectroscopy. Further, the theory is applicable to multilayered film structures of variable number of layers, each with any degree of anisotropy up to and including full biaxial symmetry. The reflectivities (and transmissivities) are obtained at each frequency by solving the wave propagation equations using a rigorous 4×4 transfer matrix method developed by Yeh in which the optical functions of each medium are described in the form of second rank (3×3) tensors. In order to obtain optical tensors for materials not readily available in single crystal form, a method has been developed to evaluate tensor elements from the complex scalar optical functions (n̂) obtained from the isotropic material with the limitations that the molecular excitations are well characterized and obey photon-dipole selection rules. This method is intended primarily for infrared vibrational spectroscopy and involves quantitative decomposition of the isotropic imaginary optical function (k) spectrum into a sum of contributions from fundamental modes, the assignment of a direction in molecular coordinates to the transition dipole matrix elements for each mode, the appropriate scaling of each k vector component in surface coordinates according to a selected surface orientation of the molecule to give a diagonal im(n̂) tensor, and the calculation of the real(n̂) spectrum tensor elements by the Kramers-Kronig transformation. Tensors for other surface orientations are generated by an

  14. ZrO2 Layer Thickness Dependent Electrical and Dielectric Properties of BST/ZrO2/BST Multilayer Thin Films

    SciTech Connect

    Sahoo, S. K.; Misra, D.; Agrawal, D. C.; Mohapatra, Y. N.

    2011-01-01

    Recently, high K materials play an important role in microelectronic devices such as capacitors, memory devices, and microwave devices. Now a days ferroelectric barium strontium titanate [Ba{sub x}Sr{sub 1-x}TiO{sub 3}, (BST)] thin film is being actively investigated for applications in dynamic random access memories (DRAM), field effect transistor (FET), and tunable devices because of its properties such as high dielectric constant, low leakage current, low dielectric loss, and high dielectric breakdown strength. Several approaches have been used to optimize the dielectric and electrical properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found that inserting a ZrO{sub 2} layer in between two BST layers results in a significant reduction in dielectric constant, loss tangent, and leakage current in the multilayer thin films. Also it is shown that the properties of multilayer structure are found to depend strongly on the sublayer thicknesses. In this work the effect of ZrO{sub 2} layer thickness on the dielectric, ferroelectric as well as electrical properties of BST/ZrO{sub 2}/BST multilayer structure is studied. The multilayer Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3}/ZrO{sub 2}/Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} film is deposited by a sol-gel process on the platinized Si substrate. The thickness of the middle ZrO{sub 2} layer is varied while keeping the top and bottom BST layer thickness as fixed. It is observed that the dielectric constant, dielectric loss tangent, and leakage current of the multilayer films reduce with the increase of ZrO{sub 2} layer thickness and hence suitable for memory device applications. The ferroelectric properties of the multilayer film also decrease with the ZrO{sub 2} layer thickness.

  15. Diffraction efficiency sensitivity to oblique incident angle for multilayer diffractive optical elements.

    PubMed

    Yang, Hongfang; Xue, Changxi; Li, Chuang; Wang, Ju; Zhang, Ran

    2016-09-01

    The relationship between diffraction efficiency of multilayer diffractive optical elements (MLDOEs) and arbitrary incident angle was numerically analyzed with the effective area method. The method is based on the shield effect between two elements of MLDOEs; a generalized diffraction efficiency formulation was obtained in a wide range of tilt angles, which overcame the limitations of scalar diffraction theory when the period width of MLDOEs is taken into account. A detailed comparison of the proposed effective area method with the scalar diffraction theory is numerically presented for MLDOEs. The validity of the proposed method is verified by comparison with the rigorous electromagnetic analysis method, especially the finite-difference time-domain method. The analysis results show that the shield effect augments with the increase of the incident angles; the effect of incident angles on MLDOEs with finite period widths is more noticeable than that with large period widths. PMID:27607291

  16. Development and production of hard X-ray multilayer optics for HEFT

    NASA Astrophysics Data System (ADS)

    Koglin, Jason E.; Christensen, Finn E.; Chonko, Jim; Craig, William W.; Decker, Todd R.; Jimenez-Garate, Mario A.; Gunderson, Kurt S.; Hailey, Charles J.; Harrison, Fiona A.; Jensen, Carsten P.; Sileo, Mike; Windt, David L.; Yu, Haitao

    2003-03-01

    The High Energy Focusing Telescope (HEFT) will observe a wide range of objects including young supernova remnants, active galactic nuclei, and galaxy clusters at energies between 20 and 70 keV. Large collecting areas are achieved by tightly nesting layers of grazing incidence mirrors in a conic approximation Wolter-I design. The segmented mirrors that form these layers are made of thermally formed glass substrates coated with depth-graded multilayer films for enhanced reflectivity. The mirrors are assembled using an over-constraint method that forces the overall shape of the nominally cylindrical substrates to the appropriate conic form. We will present performance data on the HEFT optics and report the current status of the assembly production.

  17. Nonlocal optical effects on the Goos-Hänchen shifts at multilayered hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Wei; Bian, Tingting; Chiang, Hai-Pang; Leung, P. T.

    2016-02-01

    The lateral beam shift of light incident on a multilayered hyperbolic metamaterial (HMM) is investigated using a theoretical model which emphasizes the nonlocal optical response of the indefinite material. By applying an effective local response theory formulated recently in the literature, it is found that nonlocal effects only affect p polarized light in this Goos-Hänchen (GH) shift of the incident beam; leading to a blue-shifted peak for positive shifts at high frequencies and red-shifted dip for negative shifts at low frequencies in the GH shift spectrum. An account for the observed phenomenon is given by referring to the ‘Brewster condition’ for the reflected wave from the HMM. This observation thus provides a relatively direct probe for the nonlocal response of the HMM.

  18. Oriented niobate ferroelectric thin films for electrical and optical devices

    DOEpatents

    Wessels, Bruce W.; Nystrom, Michael J.

    2001-01-01

    Sr.sub.x Ba.sub.1-x Nb.sub.2 O.sub.6, where x is greater than 0.25 and less than 0.75, and KNbO.sub.3 ferroelectric thin films metalorganic chemical vapor deposited on amorphous or cyrstalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface. Such films can be used in electronic, electro-optic, and frequency doubling components.

  19. Accurate description of the optical response of a multilayered spherical system in the long wavelength approximation

    NASA Astrophysics Data System (ADS)

    Chung, H. Y.; Guo, G. Y.; Chiang, H.-P.; Tsai, D. P.; Leung, P. T.

    2010-10-01

    The optical response of a multilayered spherical system of unlimited number of layers (a “matryushka”) in the long wavelength limit can be accounted for from the knowledge of the static multipole polarizability of the system to first-order accuracy. However, for systems of ultrasmall dimensions or systems with sizes not-too-small compared to the wavelength, this ordinary quasistatic long wavelength approximation (LWA) becomes inaccurate. Here we introduce two significant modifications of the LWA for such a nanomatryushka in each of the two limits: the nonlocal optical response for ultrasmall systems (<10nm) , and the “finite-wavelength corrections” for systems ˜100nm . This is accomplished by employing the previous work for a single-layer shell, in combination with a certain effective-medium approach formulated recently in the literature. Numerical calculations for the extinction cross sections for such a system of different dimensions are provided as illustrations for these effects. This formulation thus provides significant improvements on the ordinary LWA, yielding enough accuracy for the description of the optical response of these nanoshell systems over an appreciable range of sizes, without resorting to more involved quantum mechanical or fully electrodynamic calculations.

  20. All-optical diode action in asymmetric nonlinear photonic multilayers with perfect transmission resonances

    SciTech Connect

    Zhukovsky, Sergei V.; Smirnov, Andrey G.

    2011-02-15

    Light propagation in asymmetric Kerr-nonlinear multilayers with perfect transmission resonances is theoretically investigated. It is found that hybrid Fabry-Perot-resonator-photonic-crystal structures of the type (BA){sup k}(AB){sup k}(AABB){sup m} exhibit both pronounced unidirectionality (due to strong spatial asymmetry of the resonant mode) and high transmission (due to the existence of a perfect transmission resonance). This results in nonlinear optical diode action with low reflection losses without need for a pumping beam or input pulse modulation. By slightly perturbing the perfect transmission resonance condition, the operating regime of the optical diode can be tuned, with a tradeoff between minimizing the reflection losses and maximizing the frequency bandwidth where unidirectional transmission exists. Optical diode action is demonstrated in direct numerical simulation, showing >92% transmittance in one direction and about 22% in the other. The effect of perfect transmission resonance restoration induced by nonlinearity was observed analytically and numerically. The proposed geometry is shown to have advantages over previously reported designs based on photonic quasicrystals.

  1. Defect Interactions at Metal/Ceramic Interfaces in Thin Film Multilayers

    SciTech Connect

    Misra, Amit

    2012-06-14

    Summary of metal-ceramic multilayer deformation: (1) In nanolayered Al/TiN, Al layers grow in a twin orientation with the underlying TiN/Al layers favored by N-terminated TiN layers; (2) The shear strength of Al/TiN interface varies significantly depending on whether the interface is Ti or N terminated; (3) 2 nm Al - 2 TiN multilayers exhibit unusual mechanical properties as revealed by compression testing - (a) High maximum flow strength of 4.5 GPa, which is significantly higher than hardness (6 GPa) divided by a factor of 3, (b) Extraordinarily high strain hardening rates in Al nanolayers (16-35 GPa, {approx} E/2 to E/4), (c) Co-deformability of the TiN nanolayers with Al (confirmed by TEM on nanoindents) to plastic strains in excess of 5%.

  2. Complementary techniques for the characterization of thin film Ti/Nb multilayers.

    PubMed

    Genç, Arda; Banerjee, Rajarshi; Thompson, Gregory B; Maher, Dennis M; Johnson, Andrew W; Fraser, Hamish L

    2009-09-01

    An aberration corrector on the probe-forming lens of a scanning TEM (STEM) equipped with an electron energy-loss spectrometer (EELS) and X-ray energy-dispersive spectrometer (XEDS) has been employed to investigate the compositional variations as a function of length scale in nanoscale Ti/Nb metallic multilayers. The composition profiles of EELS and XEDS were compared with the profiles obtained from the complementary technique of 3D atom probe tomography. At large layer widths (h > or = 7 nm, where h is the layer width) of Ti and Nb, XEDS composition profiles of Ti/Nb metallic multilayers are in good agreement with the EELS results. However, at reduced layer widths (h approximately 2 nm), profiles of EELS and atom probe exhibited similar compositional variations, whereas XEDS results have shown a marked difference. This difference in the composition profiling of the layers has been addressed with reference to the effects of beam broadening and the origin of the signals collected in these techniques. The advantage of using EELS over XEDS for these nanoscaled multilayered materials is demonstrated. PMID:19553019

  3. Tailoring the emissive properties of photocathodes through materials engineering: Ultra-thin multilayers

    NASA Astrophysics Data System (ADS)

    Velázquez, Daniel; Seibert, Rachel; Ganegoda, Hasitha; Olive, Daniel; Rice, Amy; Logan, Kevin; Yusof, Zikri; Spentzouris, Linda; Terry, Jeff

    2016-01-01

    We report on an experimental verification that emission properties of photocathodes can be manipulated through the engineering of the surface electronic structure. Ultrathin multilayered MgO/Ag(0 0 1)/MgO films were grown by pulsed laser deposition, tuning the thickness n of the flanking MgO layers to 0, 2, 3, and 4 monolayers. We observed an increase in quantum efficiency and simultaneous decrease in work function with layer thickness. The scale and trend direction of measurements are in good but not excellent agreement with theory. Angle resolved photoemission data for the multilayered sample n = 3 showed that the emission profile has a metallic-like momentum dispersion. Deviations from theoretical predictions [K. Németh et al., PRL 104, 046801 (2010)] are attributed to imperfections of real surfaces in contrast with the ideal surfaces of the calculation. Photoemissive properties of cathodes are critical for electron beam applications such as photoinjectors for Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). An ideal photoemitter has a high quantum efficiency, low work function, low intrinsic emittance and long lifetime. It has been demonstrated here that emission properties may be systematically tailored by control of layer thickness in ultrathin multilayered structures. The reproducibility of the emission parameters under specific growth conditions is excellent, even though the interfaces themselves have varying degrees of roughness.

  4. Enhanced carrier mobility of multilayer MoS2 thin-film transistors by Al2O3 encapsulation

    NASA Astrophysics Data System (ADS)

    Kim, Seong Yeoul; Park, Seonyoung; Choi, Woong

    2016-10-01

    We report the effect of Al2O3 encapsulation on the carrier mobility and contact resistance of multilayer MoS2 thin-film transistors by statistically investigating 70 devices with SiO2 bottom-gate dielectric. After Al2O3 encapsulation by atomic layer deposition, calculation based on Y-function method indicates that the enhancement of carrier mobility from 24.3 cm2 V-1 s-1 to 41.2 cm2 V-1 s-1 occurs independently from the reduction of contact resistance from 276 kΩ.μm to 118 kΩ.μm. Furthermore, contrary to the previous literature, we observe a negligible effect of thermal annealing on contact resistance and carrier mobility during the atomic layer deposition of Al2O3. These results demonstrate that Al2O3 encapsulation is a useful method of improving the carrier mobility of multilayer MoS2 transistors, providing important implications on the application of MoS2 and other two-dimensional materials into high-performance transistors.

  5. Enhancement of the barrier performance in organic/inorganic multilayer thin-film structures by annealing of the parylene layer

    SciTech Connect

    Kim, Namsu; Graham, Samuel; Hwang, Kyung-Jun

    2014-10-15

    Highlights: • High performance thin-film barrier structure for encapsulation was fabricated. • By annealing parylene in encapsulation structure, the barrier performance was improved. • The effective water vapor transmission rate is 7.2 ± 3.0 × 10{sup −6} g/m{sup 2}/day. - Abstract: A multilayered barrier structure was fabricated by chemical vapor deposition of parylene and subsequent plasma-enhanced chemical vapor deposition of SiO{sub x} or SiN{sub x}. The barrier performance against water vapor ingress was significantly improved by annealing the parylene layer before the deposition of either SiO{sub x} or SiN{sub x}. The mechanism of this enhancement was investigated using atomic force microscopy, Raman spectroscopy, and X-ray diffraction. The surface roughness of the parylene before the deposition of either SiO{sub x} or SiN{sub x} was found to correlate closely with the barrier performance of the multilayered structures. In addition, removing absorbed water vapor in the film by annealing results in a lower water vapor transmission rate in the transient region and a longer lag time. Annealing the parylene leads to a large decrease in the effective water vapor transmission rate, which reaches 7.2 ± 3.0 × 10{sup −6} g/m{sup 2}/day.

  6. Formation of nanosized monolayer MoS2 by oxygen-assisted thinning of multilayer MoS2

    NASA Astrophysics Data System (ADS)

    Neupane, Guru P.; Dhakal, Krishna P.; Kim, Hyun; Lee, Jubok; Kim, Min Su; Han, Ganghee; Lee, Young Hee; Kim, Jeongyong

    2016-08-01

    We report the controllable nanosized local thinning of multi-layer (2 L and 3 L)-thickness MoS2 films down to the monolayer (1 L) thickness using the simple method of annealing in a dry oxygen atmosphere. The annealing temperature was optimized in the range of 240 °C to 270 °C for 1.5 h, and 1 L thick nanosized pits were developed on the uniform film of the 2 L and 3 L MoS2 grown using the chemical vapor deposition method. We characterized the formation of the 1 L nanosized pits using nanoscale confocal photoluminescence (PL) and Raman spectroscopy. We observed that the PL intensity increased and the Raman frequency shifted, representative of the characteristics of 1 L MoS2 films. A subsequent hydrogen treatment process was useful for removing the oxygen-induced doping effect resulting from the annealing.

  7. Maskless deposition technique for the physical vapor deposition of thin film and multilayer coatings with subnanometer precision and accuracy

    DOEpatents

    Vernon, Stephen P.; Ceglio, Natale M.

    2000-01-01

    The invention is a method for the production of axially symmetric, graded and ungraded thickness thin film and multilayer coatings that avoids the use of apertures or masks to tailor the deposition profile. A motional averaging scheme permits the deposition of uniform thickness coatings independent of the substrate radius. Coating uniformity results from an exact cancellation of substrate radius dependent terms, which occurs when the substrate moves at constant velocity. If the substrate is allowed to accelerate over the source, arbitrary coating profiles can be generated through appropriate selection and control of the substrate center of mass equation of motion. The radial symmetry of the coating profile is an artifact produced by orbiting the substrate about its center of mass; other distributions are obtained by selecting another rotation axis. Consequently there is a direct mapping between the coating thickness and substrate equation of motion which can be used to tailor the coating profile without the use of masks and apertures.

  8. Design and experimental verification of a thin broadband nanocomposite multilayer microwave absorber using genetic algorithm based approach

    NASA Astrophysics Data System (ADS)

    Panwar, Ravi; Agarwala, Vijaya; Singh, Dharmendra

    2014-10-01

    The bandwidth-thickness tradeoff of single layer microwave wave absorber has become challenge for researchers. This paper presents experimental results of thin broadband multilayer microwave wave absorbing structures using magnetic ceramic based nano-composites for absorption at X-band. A genetic algorithm (GA) based approach has been used to optimize thickness of different material layers and selection of suitable material to ensure minimum reflection. The parameters optimized through genetic algorithm have been simulated through Ansoft High Frequency structural simulator (HFSS) and experimentally verified through Absorption Testing device (ATD). It has been found that the peak value of reflection loss is -24.53 dB for 1.3 mm absorber layer coating thickness, which shows the effectiveness of absorber for various applications..

  9. Characterization of thin-film multilayers using magnetization curves and modeling of low-angle X-ray diffraction data

    SciTech Connect

    Lane, M.; Chaiken, A.; Michel, R.P.

    1994-12-01

    We have characterized thin-film multilayers grown by ion-beam sputtering using magnetization curves and modeling of low-angle x-ray diffraction data. In our films, we use ferromagnetic layer = Co, Fe, and NiFe and spacer layer = Si, Ge, FeSi{sub 2}, and CoSi{sub 2}. We have studied the effects of (1) deposition conditions; (2) thickness of layers; (3) different layer materials; and (4) annealing. We find higher magnetization in films grown at 1000V rather than 500V and in films with spacer layers of 50{angstrom} rather than 100{angstrom}. We find higher coercivity in films with cobalt grown on germanium rather than silicon, metal grown on gold underlayers rather than on glass substrates, and when using thinner spacer layers. Finally, modeling reveals that films grown with disilicide layers are more thermally stable than films grown with silicon spacer layers.

  10. Sputter process with time-variant reactive gas mixture for the deposition of optical multilayer and gradient layer systems

    NASA Astrophysics Data System (ADS)

    Bartzsch, H.; Weber, J.; Lau, K.; Glöß, D.; Frach, P.

    2008-09-01

    Magnetron sputtering of a silicon target in a time-variant mixture of the reactive gases oxygen and nitrogen allows the deposition of optical multilayer and gradient layer systems of silicon oxinitride at one stationary sputtering station. In this paper the processes within the sputter discharge and the properties of the growing film during the change of the reactive gas composition are investigated using optical in-situ monitoring, optical plasma emission spectroscopy and plasma impedance monitoring. A time delay between the change to the reactive gas composition and the resulting change to the film composition was observed. The time delay is longer for the transition from oxide to nitride deposition then vice versa. This asymmetry is attributed to the different affinity of nitrogen and oxygen to the silicon target. Examples of deposited antireflective coatings as well as rugate filters based on silicon oxinitride multilayer and gradient layer designs are given.

  11. Dynamic magneto-optical imaging of superconducting thin films

    NASA Astrophysics Data System (ADS)

    Wells, Frederick S.; Pan, Alexey V.; Wilson, Stephen; Golovchanskiy, Igor A.; Fedoseev, Sergey A.; Rozenfeld, Anatoly

    2016-03-01

    We present a novel method for analysis of superconducting thin films using dynamic magneto-optical imaging, revealing hallmarks of flux penetration with temporal resolution around 1 ms (in the present work) or better. This method involves investigation of transient field and dynamic current distributions, which are calculated by an inversion procedure on the Biot-Savart Law, which we show to be valid under dynamic conditions. We compare and discuss the flux front penetration speed and evolution of current distribution in high quality YBa2Cu3O{}7-δ thin films with that of samples deliberately damaged in such a way as to reduce critical current density without causing macroscopic damage.

  12. Orientational tomography of optical axes directions distributions of multilayer biological tissues birefringent polycrystalline networks

    NASA Astrophysics Data System (ADS)

    Zabolotna, Natalia I.; Dovhaliuk, Rostyslav Y.

    2013-09-01

    We present a novel measurement method of optic axes orientation distribution which uses a relatively simple measurement setup. The principal difference of our method from other well-known methods lies in direct approach for measuring the orientation of optical axis of polycrystalline networks biological crystals. Our test polarimetry setup consists of HeNe laser, quarter wave plate, two linear polarizers and a CCD camera. We also propose a methodology for processing of measured optic axes orientation distribution which consists of evaluation of statistical, correlational and spectral moments. Such processing of obtained data can be used to classify particular tissue sample as "healthy" or "pathological". For our experiment we use thin layers of histological section of normal and muscular dystrophy tissue sections. It is shown that the difference between mentioned moments` values of normal and pathological samples can be quite noticeable with relative difference up to 6.26.

  13. Broadband multilayer mirror and diffractive optics for attosecond pulse shaping in the 280-500 eV photon energy range

    NASA Astrophysics Data System (ADS)

    Guggenmos, A.; Hofstetter, M.; Rauhut, R.; Späth, C.; Hertrich, S.; Nickel, B.; Yang, S.; Gullikson, E. M.; Schmidt, J.; Seibald, M.; Schnick, W.; Krausz, F.; Kleineberg, U.

    2013-03-01

    Chirped broadband multilayer mirrors are key components to shape attosecond pulses in the XUV range. Compressing high harmonic pulses to their Fourier limit is the major goal for attosecond physics utilizing short pulse pump-probe experiments. Here, we report about the first implementation of multilayers and diffractive optics fulfilling these requirements in the "water-window" spectral range.

  14. Interfacial structure of multi-layered thin-films produced by pulsed laser deposition for use in small-scale ceramic capacitors

    NASA Astrophysics Data System (ADS)

    Araki, Takao; Hino, Takanori; Ohara, Masahiro

    2014-08-01

    The aim of this study was to develop thin film capacitors with superior properties that could provide an alternative to materials currently used in conventional multi-layer ceramic capacitors fabricated by sintering. To this end, an artificial dielectric super lattice technique, incorporating pulsed laser deposition, was applied to improving the dielectric properties of thin film capacitors. This method permits the A-site atoms of a perovskite ABO3 structure to be selected layer by layer at a nanoscopic scale; consequently, multi-layer BaTiO3- SrTiO3 thin films were produced on Pt(111)/Ti/SiO2/Si(100) and SrTiO3(111) substrates. Hetero-epitaxial grain growth was observed between BaTiO3 and SrTiO3, with the lattice mismatch between them introducing a compressive residual strain at the interface. The dielectric properties of these multi-layer thin-film capacitors were found to be superior to those of conventional solid-solution thin films once the thickness of the layers and the ratio of the two oxides were optimized.

  15. Morphological Evolution of Multilayer Ni/NiO Thin Film Electrodes during Lithiation.

    PubMed

    Evmenenko, Guennadi; Fister, Timothy T; Buchholz, D Bruce; Li, Qianqian; Chen, Kan-Sheng; Wu, Jinsong; Dravid, Vinayak P; Hersam, Mark C; Fenter, Paul; Bedzyk, Michael J

    2016-08-10

    Oxide conversion reactions in lithium ion batteries are challenged by substantial irreversibility associated with significant volume change during the phase separation of an oxide into lithia and metal species (e.g., NiO + 2Li(+) + 2e(-) → Ni + Li2O). We demonstrate that the confinement of nanometer-scale NiO layers within a Ni/NiO multilayer electrode can direct lithium transport and reactivity, leading to coherent expansion of the multilayer. The morphological changes accompanying lithiation were tracked in real-time by in-operando X-ray reflectivity (XRR) and ex-situ cross-sectional transmission electron microscopy on well-defined periodic Ni/NiO multilayers grown by pulsed-laser deposition. Comparison of pristine and lithiated structures reveals that the nm-thick nickel layers help initiate the conversion process at the interface and then provide an architecture that confines the lithiation to the individual oxide layers. XRR data reveal that the lithiation process starts at the top and progressed through the electrode stack, layer by layer resulting in a purely vertical expansion. Longer term cycling showed significant reversible capacity (∼800 mA h g(-1) after ∼100 cycles), which we attribute to a combination of the intrinsic bulk lithiation capacity of the NiO and additional interfacial lithiation capacity. These observations provide new insight into the role of metal/metal oxide interfaces in controlling lithium ion conversion reactions by defining the relationships between morphological changes and film architecture during reaction. PMID:27419860

  16. Soft-x-ray polarimeter with multilayer optics: complete analysis of the polarization state of light.

    PubMed

    Schäfers, F; Mertins, H C; Gaupp, A; Gudat, W; Mertin, M; Packe, I; Schmolla, F; Di Fonzo, S; Soullié, G; Jark, W; Walker, R; Le Cann, X; Nyholm, R; Eriksson, M

    1999-07-01

    The design of a versatile high-precision eight-axis ultrahigh-vacuum-compatible polarimeter is presented. This multipurpose instrument can be used as a self-calibrating polarization detector for linearly and circularly polarized UV and soft-x-ray light. It can also be used for the characterization of reflection or transmission properties (reflectometer) or polarizing and phase-retarding properties (ellipsometer) of any optical element. The polarization properties of Mo/Si, Cr/C, Cr/Sc, and Ni/Ti multilayers used in this polarimeter as polarizers in transmission and as analyzers in reflection have been investigated theoretically and experimentally. In the soft-x-ray range, close to the p edges of Sc, Ti, and Cr, resonantly enhanced phase retardation of the transmission polarizers of as much as 18 degrees has been measured. With these newly developed optical elements the complete polarization analysis of soft-x-ray synchrotron radiation can be extended to the water-window range from 300 to 600 eV. PMID:18323885

  17. A multilayer heat conduction solution for magneto-optical disk recording

    NASA Astrophysics Data System (ADS)

    Shih, O. W.

    1994-05-01

    The Green's function temperature expressions formulated by McGahan and Cole [J. Appl. Phys. 72, 1362 (1992)] are modified into a form suitable for solving the heat conduction problem encountered in magneto-optical (MO) disk recording situations. The temperature distribution within MO multilayer media heated by a pulsed scanning Gaussian laser beam is calculated by using Fourier-transformed Green's functions. The linear heat conduction equation is solved exactly not in real space but in frequency space. The temperature in real space is efficiently recovered by the inverse fast Fourier transform; numerical integrations are unnecessary. Optical absorption in MO media is calculated exactly. Realistic and piecewise-linear models of the laser pulse's time dependence are incorporated directly into the formalism. Elliptically shaped laser-beam cross sections are also easily included. At the same time, the extended method still preserves the conceptual simplicity and computational efficiency of the original theory. This paper describes the extended method, discusses some numerical issues arising from the modifications, and presents comparisons with previously published finite-difference calculations.

  18. Sputter deposition of ZnS:Mn/SrS:Ce multilayer stacks for use as white phosphor thin film electroluminscent panels

    SciTech Connect

    Ruffner, J.A.; Tuenge, R.T.; Sun, Sey-Shing

    1995-07-01

    Sputter deposition of ZnS:Mn/SrS:Ce multilayered broad-band ``white`` emission thin film electroluminescent (TFEL) stacks has been investigated. To date, deposition of these multilayers has been limited to vacuum evaporation techniques and atomic layer epitaxy, both of which require two different substrate temperatures for growth of high quality ZnS and SrS. This repeated thermal cycling during multilayer deposition can induce stress, defects, and interdiffusion with adversely affect EL performance. Sputter deposition of ZnS and SrS produces high quality TFELs for a wider range of substrate temperatures. Both materials can be sputter deposited at a common temperature (300-350{degrees}C) which eliminates the need for thermal cycling and increases manufacturability. Luminance outputs from sputter deposited ZnS and SrS thin films are comparable to those from evaporated films, making sputtering an attractive alternative deposition technique for these materials. We report on the effects of sputter deposition parameters including chamber pressure, substrate temperature, and H2S process gas partial pressure on the resultant composition and morphology of ZnS:Mn and SrS:Ce thin films and multilayers. Their EL performance was evaluated and correlated to composition and morphology.

  19. Optical limiting effects in nanostructured silicon carbide thin films

    SciTech Connect

    Borshch, A A; Starkov, V N; Volkov, V I; Rudenko, V I; Boyarchuk, A Yu; Semenov, A V

    2013-12-31

    We present the results of experiments on the interaction of nanosecond laser radiation at 532 and 1064 nm with nanostructured silicon carbide thin films of different polytypes. We have found the effect of optical intensity limiting at both wavelengths. The intensity of optical limiting at λ = 532 nm (I{sub cl} ∼ 10{sup 6} W cm{sup -2}) is shown to be an order of magnitude less than that at λ = 1064 nm (I{sub cl} ∼ 10{sup 7} W cm{sup -2}). We discuss the nature of the nonlinearity, leading to the optical limiting effect. We have proposed a method for determining the amount of linear and two-photon absorption in material media. (nonlinear optical phenomena)

  20. Nonlinear optical properties of calcium barium niobate epitaxial thin films.

    PubMed

    Bancelin, Stéphane; Vigne, Sébastien; Hossain, Nadir; Chaker, Mohammed; Légaré, François

    2016-07-25

    We investigate the potential of epitaxial calcium barium niobate (CBN) thin film grown by pulsed laser deposition for optical frequency conversion. Using second harmonic generation (SHG), we analyze the polarization response of the generated signal to determine the ratios d15 / d32 and d33 / d32 of the three independent components of the second-order nonlinear susceptibility tensor in CBN thin film. In addition, a detailed comparison to the signal intensity obtained in a y-cut quartz allows us to measure the absolute value of these components in CBN thin film: d15 = 5 ± 2 pm / V, d32 = 3.1 ± 0.6 pm / V and d33 = 9 ± 2 pm / V.

  1. Nonlinear optical properties of calcium barium niobate epitaxial thin films.

    PubMed

    Bancelin, Stéphane; Vigne, Sébastien; Hossain, Nadir; Chaker, Mohammed; Légaré, François

    2016-07-25

    We investigate the potential of epitaxial calcium barium niobate (CBN) thin film grown by pulsed laser deposition for optical frequency conversion. Using second harmonic generation (SHG), we analyze the polarization response of the generated signal to determine the ratios d15 / d32 and d33 / d32 of the three independent components of the second-order nonlinear susceptibility tensor in CBN thin film. In addition, a detailed comparison to the signal intensity obtained in a y-cut quartz allows us to measure the absolute value of these components in CBN thin film: d15 = 5 ± 2 pm / V, d32 = 3.1 ± 0.6 pm / V and d33 = 9 ± 2 pm / V. PMID:27464195

  2. Hyperspectrally-Resolved Surface Emissivity Derived Under Optically Thin Clouds

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping

    2010-01-01

    Surface spectral emissivity derived from current and future satellites can and will reveal critical information about the Earth s ecosystem and land surface type properties, which can be utilized as a means of long-term monitoring of global environment and climate change. Hyperspectrally-resolved surface emissivities are derived with an algorithm utilizes a combined fast radiative transfer model (RTM) with a molecular RTM and a cloud RTM accounting for both atmospheric absorption and cloud absorption/scattering. Clouds are automatically detected and cloud microphysical parameters are retrieved; and emissivity is retrieved under clear and optically thin cloud conditions. This technique separates surface emissivity from skin temperature by representing the emissivity spectrum with eigenvectors derived from a laboratory measured emissivity database; in other words, using the constraint as a means for the emissivity to vary smoothly across atmospheric absorption lines. Here we present the emissivity derived under optically thin clouds in comparison with that under clear conditions.

  3. Diamond/AlN Thin Films for Optical Applications

    SciTech Connect

    Knoebber, F.; Bludau, O.; Williams, O. A.; Sah, R. E.; Kirste, L.; Baeumler, M.; Nebel, C. E.; Ambacher, O.; Cimalla, V.; Lebedev, V.; Leopold, S.; Paetz, D.

    2010-11-01

    In this work we report on membranes made of nanocrystalline diamond (NCD) and AlN for the use in tunable micro-optics. For the growth of the AlN and NCD thin films, magnetron sputtering and chemical vapor deposition techniques have been used, respectively. A chemical-mechanical polishing process of NCD layers has been introduced, which is crucial for the growth of c-oriented, fiber textured AlN films. AlN layers deposited on as grown and polished nanocrystalline diamond along with free standing membranes have been compared by studying microstructure, surface morphology, piezoelectrical response as well as optical properties.

  4. Giant optical activity of sugar in thin soap films.

    PubMed

    Emile, Janine; Emile, Olivier; Ghoufi, Aziz; Moréac, Alain; Casanova, Federico; Ding, Minxia; Houizot, Patrick

    2013-10-15

    We report on enhanced experimental optical activity measurements of thin soap films in the presence of sugar. This unusual optical activity is linked to the intramolecular chiral conformation of the glucose molecules at the air/liquid interface. Choosing sodium dodecylsulfate (SDS) as a model surfactant and glucose as model sugar, favorable interactions between the anionic group -OSO3(-)- and the glucose molecules are highlighted. This induces an interfacial anchoring of glucose molecules leading to a perturbing influence of the asymmetric chiral environment. PMID:23932406

  5. An investigation of the magneto-optical properties of thin-film magnetic structures

    NASA Astrophysics Data System (ADS)

    Tsidaeva, N. I.; Abaeva, V. V.; Enaldieva, E. V.; Magkoev, T. T.; Turiev, A. M.; Ramonova, A. G.; Butkhuzi, T. T.; Tvauri, I.

    2013-11-01

    This study reports on the performance of multilayer film structures, which are a very prospective material for thin-film magnetic sensors. The magnetic and magneto-optical properties of iron and cobalt thin films and also ferromagnetic (FM)/non-magnetic layer (NML)/FM trilayers, prepared using a magnetron sputtering system, are presented. The FM layer thickness of tFe and tCo in trilayers varied from 25 to 100 Å and the NML thickness of tNML varied from 5 to 2000 Å. In the NML/FM samples, the NML thickness varied from 0 to 400 Å. The dependences of the hysteresis characteristics of Fe films on the NML thickness were found. The dependence of the transverse Kerr effect (TKE) magnitude on tFe was established. It was shown experimentally that TKE is sensitive to the magnetization up to a certain depth range below the surface of ferromagnetic—the information depth. It was discovered that the in-plane hysteresis characteristic of the trilayers is strongly dependent on tnml. So existence of the exchange coupling between FM layers through NML and its oscillatory behaviour (from antiferromagnetic (AF) to ferromagnetic (F) order) were experimentally established. It was found that the period AF-F-AF oscillations of exchange coupling is equal to 5-10 Å.

  6. Analysis of lidar backscatter profiles in optically thin clouds.

    PubMed

    Young, S A

    1995-10-20

    The solution of the lidar equation for profiles of backscatter and extinction in optically thin clouds is constrained by values of the cloud transmittance determined from the elastically scattered lidar signals below and above the cloud. The method is extended to those cases in which an aerosol layer lies below or above the cloud layer. Examples are given in both cases. An analytical expression for the average lidar ratio in the cloud is derived for those cases in which molecular scattering is significant.

  7. Retrieval of Aerosol Optical Properties under Thin Cirrus from MODIS

    NASA Technical Reports Server (NTRS)

    Lee, Jaehwa; Hsu, Nai-Yung Christina; Bettenhausen, Corey; Sayer, Andrew Mark.

    2014-01-01

    Retrieval of aerosol optical properties using shortwave bands from passive satellite sensors, such as MODIS, is typically limited to cloud-free areas. However, if the clouds are thin enough (i.e. thin cirrus) such that the satellite-observed reflectance contains signals under the cirrus layer, and if the optical properties of this cirrus layer are known, the TOA reflectance can be corrected for the cirrus layer to be used for retrieving aerosol optical properties. To this end, we first correct the TOA reflectances in the aerosol bands (0.47, 0.55, 0.65, 0.86, 1.24, 1.63, and 2.12 micron for ocean algorithm and 0.412, 0.47, and 0.65 micron for deep blue algorithm) for the effects of thin cirrus using 1.38 micron reflectance and conversion factors that convert cirrus reflectance in 1.38 micron band to those in aerosol bands. It was found that the conversion factors can be calculated by using relationships between reflectances in 1.38 micron band and minimum reflectances in the aerosol bands (Gao et al., 2002). Refer to the example in the figure. Then, the cirrus-corrected reflectance can be calculated by subtracting the cirrus reflectance from the TOA reflectance in the optically thin case. A sensitivity study suggested that cloudy-sky TOA reflectances can be calculated with small errors in the form of simple linear addition of cirrus-only reflectances and clear-sky reflectances. In this study, we correct the cirrus signals up to TOA reflectance at 1.38 micron of 0.05 where the simple linear addition is valid without extensive radiative transfer simulations. When each scene passes the set of tests shown in the flowchart, the scene is corrected for cirrus contamination and passed into aerosol retrieval algorithms.

  8. Nanostructured multilayer thin films of multiwalled carbon nanotubes/gold nanoparticles/glutathione for the electrochemical detection of dopamine

    NASA Astrophysics Data System (ADS)

    Detsri, Ekarat; Rujipornsakul, Sirilak; Treetasayoot, Tanapong; Siriwattanamethanon, Pawarit

    2016-10-01

    In the present study, multiwalled carbon nanotubes (MWCNTs), gold nanoparticles (AuNPs), and glutathione (GSH) were used to fabricate multilayer nanoscale thin films. The composite thin films were fabricated by layer-by-layer technique as the films were constructed by the alternate deposition of cationic and anionic polyelectrolytes. The MWCNTs were modified via a noncovalent surface modification method using poly(diallydimethylammonium chloride) to form a cationic polyelectrolyte. An anionic polyelectrolyte was prepared by the chemical reduction of HAuCl4 using sodium citrate as both the stabilizing and reducing agent to form anionic AuNPs. GSH was used as an electrocatalyst toward the electro-oxidation of dopamine. The constructed composite electrode exhibits excellent electrocatalytic activity toward dopamine with a short response time and a wide linear range from 1 to 100 μmol/L. The limits of detection and quantitation of dopamine are (0.316 ± 0.081) μmol/L and (1.054 ± 0.081) μmol/L, respectively. The method is satisfactorily applied for the determination of dopamine in plasma and urine samples to obtain the recovery in the range from 97.90% to 105.00%.

  9. Stimuli-responsive weak polyelectrolyte multilayer films: A thin film platform for self triggered multi-drug delivery.

    PubMed

    Anandhakumar, S; Gokul, P; Raichur, A M

    2016-01-01

    Polyelectrolyte multilayer (PEM) thin film composed of weak polyelectrolytes was designed by layer-by-layer (LbL) assembly of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) for multi-drug delivery applications. Environmental stimuli such as pH and ionic strength showed significant influence in changing the film morphology from pore-free smooth structure to porous structure and favored triggered release of loaded molecules. The film was successfully loaded with bovine serum albumin (BSA) and ciprofloxacin hydrochloride (CH) by modulating the porous polymeric network of the film. Release studies showed that the amount of release could be easily controlled by changing the environmental conditions such as pH and ionic strength. Sustained release of loaded molecules was observed up to 8h. The fabricated films were found to be biocompatible with epithelial cells during in-vitro cell culture studies. PEM film reported here not only has the potential to be used as self-responding thin film platform for transdermal drug delivery, but also has the potential for further development in antimicrobial or anti-inflammatory coatings on implants and drug-releasing coatings for stents. PMID:26478353

  10. Phase transformation and quantum confinement effect in CdSe/Se multilayer thin films prepared by physical vapour deposition

    NASA Astrophysics Data System (ADS)

    Kumar, M. Melvin David; Devadason, Suganthi

    2013-12-01

    CdSe/Se multilayer (ML) thin films with different thickness ratios of Se and CdSe sublayers were prepared by using a thermal evaporation method. Prepared samples were annealed at temperature 300 K. From X-ray diffraction (XRD) studies, samples prepared at room temperature showed a (100) plane of CdSe with wurtzite structure, whereas the annealed samples confirmed the cubic structure. Stress created in ML systems was calculated from XRD data and found that it increases with decreasing particle size. The energy band gap value of a CdSe/Se ML thin film is shifted to a value higher than that of the bulk CdSe (1.74 eV) semiconductor. This is due to decrease in the crystallite size smaller than the Bohr exciton diameter of CdSe (11.2 nm). Crystallite sizes (≈5 nm) were calculated from UV-VIS data with the predictions of an effective mass approximation model. The photoluminescence peak of the ML samples is split into two bands having nearest values due to the emissions from spin-orbit split-up of the excited energy state.

  11. Thin gold layer in Ni electroforming process: optical surface characterization

    NASA Astrophysics Data System (ADS)

    Sironi, G.; Spiga, D.; Pareschi, G.; Missaglia, N.; Paganini, L.

    2009-08-01

    Mandrel replication by Nickel electroforming is a well-suited process to manufacture X-ray mirrors, making use of Gold layer playing the twofold role of release agent and reflective coating. To increase the optical performances of mirrors it is crucial to minimize the impact of X-ray scattering effects related to surface microroughness, especially when the mirror is intended to operate in hard X-rays. In this case, the Gold layer simply acts as release agent because the reflection is demanded to interferential over-coatings. Even though the replicated optical surface is usually believed to reproduce the smooth topography of the master, a surface degradation is commonly observed. Such a worsening can also suffer from a contribution from the spontaneous roughness growth of the Gold layer itself: if this is the case, the mirror's optical quality could potentially benefit from the utilization of a thin Gold layer (< 100 nm) instead of the traditional thick gold layer (> 100 nm). To prove the effectiveness of the Gold thickness reduction, a microroughness characterization of replicated thin gold layers has been achieved. We report here a preliminary roughness study of 3 electroformed Ni samples replicated from a super-polished Zerodur flat master with various Gold layer thicknesses, in the spectral range 0.02-1000 μm. The study is organized as follows: (a) characterization of the 3 replicated samples; (b) comparison of the Gold roughness for thin vs. thick layers; (c) comparison of the two sides of Gold layers.

  12. 100 ps time-resolved solution scattering utilizing a wide-bandwidth X-ray beam from multilayer optics.

    PubMed

    Ichiyanagi, K; Sato, T; Nozawa, S; Kim, K H; Lee, J H; Choi, J; Tomita, A; Ichikawa, H; Adachi, S; Ihee, H; Koshihara, S

    2009-05-01

    100 ps time-resolved X-ray solution-scattering capabilities have been developed using multilayer optics at the beamline NW14A, Photon Factory Advanced Ring, KEK. X-ray pulses with an energy bandwidth of DeltaE/E = 1-5% are generated by reflecting X-ray pulses (DeltaE/E = 15%) through multilayer optics, made of W/B(4)C or depth-graded Ru/C on silicon substrate. This tailor-made wide-bandwidth X-ray pulse provides high-quality solution-scattering data for obtaining photo-induced molecular reaction dynamics. The time-resolved solution scattering of CH(2)I(2) in methanol is demonstrated as a typical example. PMID:19395804

  13. Synthesis and evaluation of single layer, bilayer, and multilayer thermoelectric thin films

    SciTech Connect

    Farmer, J.C.; Barbee, T.W. Jr.; Chapline, G.C. Jr.; Olsen, M.L.; Foreman, R.J.; Summers, L.J.; Dresselhaus, M.S.; Hicks, L.D.

    1995-01-20

    The relative efficiency of a thermoelectric material is measured in terms of a dimensionless figure of merit, ZT. Though all known thermoelectric materials are believed to have ZT{le}1, recent theoretical results predict that thermoelectric devices fabricated as two-dimensional quantum wells (2D QWs) or one-dimensional (ID) quantum wires could have ZT{ge}3. Multilayers with the dimensions of 2D QWs have been synthesized by alternately sputtering thermoelectric and barrier materials onto a moving single-crystal sapphire substrate from dual magnetrons. These materials have been used to test the thermoelectric quantum well concept and gain insight into relevant transport mechanisms. If successful, research could lead to thermoelectric devices that have efficiencies close to that of an ideal Carnot engine. Ultimately, such devices could be used to replace conventional heat engines and mechanical refrigeration systems.

  14. Synthesis and Evaluation of Single Layer, Bilayer, and Multilayer Thermoelectric Thin Films

    DOE R&D Accomplishments Database

    Farmer, J. C.; Barbee, T. W. Jr.; Chapline, G. C. Jr.; Olsen, M. L.; Foreman, R. J.; Summers, L. J.; Dresselhaus, M. S.; Hicks, L. D.

    1995-01-20

    The relative efficiency of a thermoelectric material is measured in terms of a dimensionless figure of merit, ZT. Though all known thermoelectric materials are believed to have ZT{le}1, recent theoretical results predict that thermoelectric devices fabricated as two-dimensional quantum wells (2D QWs) or one-dimensional (ID) quantum wires could have ZT{ge}3. Multilayers with the dimensions of 2D QWs have been synthesized by alternately sputtering thermoelectric and barrier materials onto a moving single-crystal sapphire substrate from dual magnetrons. These materials have been used to test the thermoelectric quantum well concept and gain insight into relevant transport mechanisms. If successful, research could lead to thermoelectric devices that have efficiencies close to that of an ideal Carnot engine. Ultimately, such devices could be used to replace conventional heat engines and mechanical refrigeration systems.

  15. Surface nanopatterning of Al/Ti multilayer thin films and Al single layer by a low-fluence UV femtosecond laser beam

    NASA Astrophysics Data System (ADS)

    Kovačević, Aleksander G.; Petrović, Suzana; Bokić, Bojana; Gaković, Biljana; Bokorov, Miloš T.; Vasić, Borislav; Gajić, Radoš; Trtica, Milan; Jelenković, Branislav M.

    2015-01-01

    The effects of UV femtosecond laser beam with 76 MHz repetition rate on two types of thin films on Si substrate - the Al single layer thin film, and the multilayered thin film consisted of five Al/Ti bilayers (total thickness 130 nm) - were studied. The surface modification of the target was done by low fluences and different irradiation times, not exceeding ∼300 s. Nanopatterns in the form of femtosecond-laser induced periodic surface structures (fs-LIPSS) with periodicity of <315 nm and height of ∼45 nm were registered upon irradiation of the thin films. It was shown that: (i) the fs-LIPSS evolve from ruffles similar to high spatial frequency LIPSS (HSFL) into a low spatial frequency LIPSS (LSFL) if a certain threshold of the fluence is met, (ii) the number of LSFL increases with the exposition time and (iii) the LSFL remain stable even after long exposure times. We achieved high-quality highly-controllable fabrication of periodic structures on the surface of nanosized multilayer films with high-repetition-rate low-fluence femtosecond laser pulses. Compared to the Al single layer, the presence of the Ti underlayer in the Al/Ti multilayer thin film enabled more efficient heat transmittance through the Al/Ti interface away from the interaction zone which caused the reduction of the ablation effects leading to the formation of more regular LIPSS. The different outcomes of interactions with multi and single layer thin films lead to the conclusion that the behavior of the LIPSS is due to thin film structure.

  16. Wideband dynamic behavioral modeling of reflective semiconductor optical amplifiers using a tapped-delay multilayer perceptron.

    PubMed

    Liu, Zhansheng; Violas, Manuel Alberto; Carvalho, Nuno Borges

    2013-02-11

    In this paper, we propose a wideband dynamic behavioral model for a bulk reflective semiconductor optical amplifier (RSOA) used as a modulator in colorless radio over fiber (RoF) systems using a tapped-delay multilayer perceptron (TDMLP). 64 quadrature amplitude modulation (QAM) signals with 20 Msymbol/s were used to train, validate and test the model. Nonlinear distortion and dynamic effects induced by the RSOA modulator are demonstrated. The parameters of the model such as the number of nodes in the hidden layer and memory depth were optimized to ensure the generality and accuracy. The normalized mean square error (NMSE) is used as a figure of merit. The NMSE was up to -44.33 dB when the number of nodes in the hidden layer and memory depth were set to 20 and 3, respectively. The TDMLP model can accurately approximate to the dynamic characteristics of the RSOA modulator. The dynamic AM-AM and dynamic AM-PM distortions of the RSOA modulator are drawn. The results show that the single hidden layer TDMLP can provide accurate approximation for behaviors of the RSOA modulator.

  17. Fabrication of Optical Multilayer Devices from Porous Silicon Coatings with Closed Porosity by Magnetron Sputtering.

    PubMed

    Caballero-Hernández, Jaime; Godinho, Vanda; Lacroix, Bertrand; Jiménez de Haro, Maria C; Jamon, Damien; Fernández, Asunción

    2015-07-01

    The fabrication of single-material photonic-multilayer devices is explored using a new methodology to produce porous silicon layers by magnetron sputtering. Our bottom-up methodology produces highly stable amorphous porous silicon films with a controlled refractive index using magnetron sputtering and incorporating a large amount of deposition gas inside the closed pores. The influence of the substrate bias on the formation of the closed porosity was explored here for the first time when He was used as the deposition gas. We successfully simulated, designed, and characterized Bragg reflectors and an optical microcavity that integrates these porous layers. The sharp interfaces between the dense and porous layers combined with the adequate control of the refractive index and thickness allowed for excellent agreement between the simulation and the experiments. The versatility of the magnetron sputtering technique allowed for the preparation of these structures for a wide range of substrates such as polymers while also taking advantage of the oblique angle deposition to prepare Bragg reflectors with a controlled lateral gradient in the stop band wavelengths.

  18. Thermal conduction properties of Mo/Si multilayers for extreme ultraviolet optics

    NASA Astrophysics Data System (ADS)

    Bozorg-Grayeli, Elah; Li, Zijian; Asheghi, Mehdi; Delgado, Gil; Pokrovsky, Alexander; Panzer, Matthew; Wack, Daniel; Goodson, Kenneth E.

    2012-10-01

    Extreme ultraviolet (EUV) lithography requires nanostructured optical components, whose reliability can be influenced by radiation absorption and thermal conduction. Thermal conduction analysis is complicated by sub-continuum electron and phonon transport and the lack of thermal property data. This paper measures and interprets thermal property data, and their evolution due to heating exposure, for Mo/Si EUV mirrors with 6.9 nm period and Mo/Si thickness ratios of 0.4/0.6 and 0.6/0.4. We use time-domain thermoreflectance and the 3ω method to estimate the thermal resistance between the Ru capping layer and the Mo/Si multilayers (RRu-Mo/Si = 1.5 m2 K GW-1), as well as the out-of-plane thermal conductivity (kMo/Si 1.1 W m-1 K-1) and thermal anisotropy (η = 13). This work also reports the impact of annealing on thermal conduction in a co-deposited MoSi2 layer, increasing the thermal conductivity from 1.7 W m-1 K-1 in the amorphous phase to 2.8 W m-1 K-1 in the crystalline phase.

  19. Automated multilayer segmentation and characterization in 3D spectral-domain optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Hu, Zhihong; Wu, Xiaodong; Hariri, Amirhossein; Sadda, SriniVas R.

    2013-03-01

    Spectral-domain optical coherence tomography (SD-OCT) is a 3-D imaging technique, allowing direct visualization of retinal morphology and architecture. The various layers of the retina may be affected differentially by various diseases. In this study, an automated graph-based multilayer approach was developed to sequentially segment eleven retinal surfaces including the inner retinal bands to the outer retinal bands in normal SD-OCT volume scans at three different stages. For stage 1, the four most detectable and/or distinct surfaces were identified in the four-times-downsampled images and were used as a priori positional information to limit the graph search for other surfaces at stage 2. Eleven surfaces were then detected in the two-times-downsampled images at stage 2, and refined in the original image space at stage 3 using the graph search integrating the estimated morphological shape models. Twenty macular SD-OCT (Heidelberg Spectralis) volume scans from 20 normal subjects (one eye per subject) were used in this study. The overall mean and absolute mean differences in border positions between the automated and manual segmentation for all 11 segmented surfaces were -0.20 +/- 0.53 voxels (-0.76 +/- 2.06 μm) and 0.82 +/- 0.64 voxels (3.19 +/- 2.46 μm). Intensity and thickness properties in the resultant retinal layers were investigated. This investigation in normal subjects may provide a comparative reference for subsequent investigations in eyes with disease.

  20. Efficient multi-keV x-ray source generated by nanosecond laser pulse irradiated multi-layer thin foils target

    NASA Astrophysics Data System (ADS)

    Tu, Shao-yong; Hu, Guang-yue; Miao, Wen-yong; Zhao, Bin; Zheng, Jian; Yuan, Yong-teng; Zhan, Xia-yu; Hou, Li-fei; Jiang, Shao-en; Ding, Yong-kun

    2014-04-01

    A new target configuration is proposed to generate efficient multi-keV x-ray source using multiple thin foils as x-ray emitters. The target was constructed with several layers of thin foils, which were placed with a specific, optimized spacing. The thin foils are burned though one by one by a nanosecond-long laser pulse, which produced a very large, hot, underdense plasma. One-dimensional radiation hydrodynamic simulations show that the emission region and the multi-keV x-ray flux generated by multi-layer thin foil target are similar to that of the low-density gas or foam target, which is currently a bright multi-keV x-ray source generated by laser heating. Detailed analysis of a range of foil thicknesses showed that a layer-thickness of 0.1 μm is thin enough to generate an efficient multi-keV x-ray source. Additionally, this type of target can be easily manufactured, compared with the complex techniques for fabrication of low-density foam targets. Our preliminary experimental results also verified that the size of multi-keV x-ray emission region could be enhanced significantly by using a multi-layer Ti thin foil target.

  1. Layer-by-layer grown scalable redox-active ruthenium-based molecular multilayer thin films for electrochemical applications and beyond.

    PubMed

    Kaliginedi, Veerabhadrarao; Ozawa, Hiroaki; Kuzume, Akiyoshi; Maharajan, Sivarajakumar; Pobelov, Ilya V; Kwon, Nam Hee; Mohos, Miklos; Broekmann, Peter; Fromm, Katharina M; Haga, Masa-aki; Wandlowski, Thomas

    2015-11-14

    Here we report the first study on the electrochemical energy storage application of a surface-immobilized ruthenium complex multilayer thin film with anion storage capability. We employed a novel dinuclear ruthenium complex with tetrapodal anchoring groups to build well-ordered redox-active multilayer coatings on an indium tin oxide (ITO) surface using a layer-by-layer self-assembly process. Cyclic voltammetry (CV), UV-Visible (UV-Vis) and Raman spectroscopy showed a linear increase of peak current, absorbance and Raman intensities, respectively with the number of layers. These results indicate the formation of well-ordered multilayers of the ruthenium complex on ITO, which is further supported by the X-ray photoelectron spectroscopy analysis. The thickness of the layers can be controlled with nanometer precision. In particular, the thickest layer studied (65 molecular layers and approx. 120 nm thick) demonstrated fast electrochemical oxidation/reduction, indicating a very low attenuation of the charge transfer within the multilayer. In situ-UV-Vis and resonance Raman spectroscopy results demonstrated the reversible electrochromic/redox behavior of the ruthenium complex multilayered films on ITO with respect to the electrode potential, which is an ideal prerequisite for e.g. smart electrochemical energy storage applications. Galvanostatic charge-discharge experiments demonstrated a pseudocapacitor behavior of the multilayer film with a good specific capacitance of 92.2 F g(-1) at a current density of 10 μA cm(-2) and an excellent cycling stability. As demonstrated in our prototypical experiments, the fine control of physicochemical properties at nanometer scale, relatively good stability of layers under ambient conditions makes the multilayer coatings of this type an excellent material for e.g. electrochemical energy storage, as interlayers in inverted bulk heterojunction solar cell applications and as functional components in molecular electronics applications

  2. Effect of multilayered SrSSrS: CeSrS phosphor prepared by multi-source deposition method on the thin film electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Lee, Y. H.; Kim, D. H.; Ju, B. K.; Yeom, T. H.; S Hahn, T.; Oh, M. H.; Choh, S. H.

    1995-02-01

    Single-layer SrS: Ce and multilayer SrSSrS: CeSrS thin films have been grown by multi-source deposition method. The X-ray diffraction patterns of the films showed the typical diffraction patterns of the cubic SrS powder. Single-layer SrS: Ce thin films exhibited sulfur deficiency and their fluorescence spectra showed a broad red emission peak. The multilayer SrSSrS: CeSrS electroluminescent device showed nearly stoichiometric composition and an electroluminescent device made of these layers displayed a green-emission intensified spectrum with peaks located at 493 and 523 nm. A distinct S-shaped pinching effect in the transferred charge versus applied voltage characteristics, similar to a hysteretic electroluminescent device, was observed in multilayer device. We interpret that the separation of the light-emitting SrS: Ce layer from the two interfacial SrS layers and the resulting nonuniform space charge in the middle SrS: Ce layer are responsible for the observed enhancement of luminance through the intensified hysteretic effect in the multilayer structure.

  3. Multilayered disease-mimicking bladder phantom with realistic surface topology for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Smith, Gennifer T.; Lurie, Kristen L.; Khan, Saara A.; Liao, Joseph C.; Ellerbee, Audrey K.

    2014-03-01

    Optical coherence tomography (OCT) has shown potential as a complementary modality to white light cystoscopy (WLC), the gold standard for imaging bladder cancer. OCT can visualize sub-surface details of the bladder wall, which enables it to stage cancers and detect tumors that are otherwise invisible to WLC. Currently, OCT systems have too slow a speed and too small a field of view for comprehensive bladder imaging, which limits its clinical utility. Validation and feasibility testing of technological refinements aimed to provide faster imaging and wider fields of view necessitates a realistic bladder phantom. We present a novel process to fabricate the first such phantom that mimics both the optical and morphological properties of layers of the healthy and pathologic bladder wall as they characteristically appear with OCT. The healthy regions of the silicone-based phantom comprises three layers: the urothelium, lamina propria and muscularis propria, each containing an appropriate concentration of titanium dioxide to mimic its distinct scattering properties. As well, the layers each possess a unique surface appearance imposed by a textured mold. Within this phantom, pathologic tissue-mimicking regions are created by thickening specific layers or creating inclusions that disrupt the layered appearance of the bladder wall, as is characteristic of bladder carcinomas. This phantom can help to evaluate the efficacy of new OCT systems and software for tumor localization. Moreover, the procedure we have developed is highly generalizable for the creation of OCT-relevant, multi-layer phantoms for tissues that incorporate diseased states characterized by the loss of layered structures.

  4. Coating Thin Mirror Segments for Lightweight X-ray Optics

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Sharpe, Marton V.; Zhang, William; Kolosc, Linette; Hong, Melinda; McClelland, Ryan; Hohl, Bruce R.; Saha, Timo; Mazzarellam, James

    2013-01-01

    Next generations lightweight, high resolution, high throughput optics for x-ray astronomy requires integration of very thin mirror segments into a lightweight telescope housing without distortion. Thin glass substrates with linear dimension of 200 mm and thickness as small as 0.4 mm can now be fabricated to a precision of a few arc-seconds for grazing incidence optics. Subsequent implementation requires a distortion-free deposition of metals such as iridium or platinum. These depositions, however, generally have high coating stresses that cause mirror distortion. In this paper, we discuss the coating stress on these thin glass mirrors and the effort to eliminate their induced distortion. It is shown that balancing the coating distortion either by coating films with tensile and compressive stresses, or on both sides of the mirrors is not sufficient. Heating the mirror in a moderately high temperature turns out to relax the coated films reasonably well to a precision of about a second of arc and therefore provide a practical solution to the coating problem.

  5. Application of measurement configuration optimization for accurate metrology of sub-wavelength dimensions in multilayer gratings using optical scatterometry.

    PubMed

    Zhu, Jinlong; Shi, Yating; Goddard, Lynford L; Liu, Shiyuan

    2016-09-01

    Critical dimension measurement accuracy in optical scatterometry relies not only on the systematic noise level of instruments and the reliability of forward modeling algorithms, but also heavily on the measurement configuration. To construct a set of potentially high-accuracy configurations, we apply a general measurement configuration optimization method based on error propagation theory and singular value decomposition, by which the measurement accuracy is approximated as a function of a pseudo Jacobian with respect to the measurement configurations. Simulations and experiments for the optical metrology of a sub-wavelength deep-etched multilayer grating establish the feasibility of the proposed method. PMID:27607258

  6. Optical properties of rubrene thin film prepared by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Deng, Jin-Xiang; Kong, Le; Cui, Min; Chen, Ren-Gang; Zhang, Zi-Jia

    2015-04-01

    Rubrene thin films are deposited on quartz substrates and silver nanoparticles (Ag NPs) films by the thermal evaporation technique. The optical properties of rubrene thin film are investigated in a spectral range of 190 nm-1600 nm. The analysis of the absorption coefficient (α) reveals direct allowed transition with a corresponding energy of 2.24 eV. The photoluminescence (PL) peak of the rubrene thin film is observed to be at 563 nm (2.21 eV). With the use of Ag NPs which are fabricated by radio-frequency (RF) magnetron sputtering on the quartz, the PL intensity is 8.5 times that of as-deposited rubrene thin film. It is attributed to the fact that the surface plasmon enhances the photoluminescence. Project supported by the Funding for the Development Project of Beijing Municipal Education Commission of Science and Technology, China (Grant No. KZ201410005008), the Natural Science Foundation of Beijing City, China (Grant No. 4102014), and the Graduate Science Fund of the Beijing University of Technology, China (Grant No. ykj-2013-9835).

  7. Optically transparent carbon nanotube film electrode for thin layer spectroelectrochemistry.

    PubMed

    Wang, Tingting; Zhao, Daoli; Alvarez, Noe; Shanov, Vesselin N; Heineman, William R

    2015-10-01

    Carbon nanotube (CNT) film was evaluated as an optically transparent electrode (OTE) for thin layer spectroelectrochemistry. Chemically inert CNT arrays were synthesized by chemical vapor deposition (CVD) using thin films of Fe and Co as catalysts. Vertically aligned CNT arrays were drawn onto a quartz slide to form CNT films that constituted the OTE. Adequate conductivity and transparency make this material a good OTE for spectroelectrochemistry. These properties could be varied by the number of layers of CNTs used to form the OTE. Detection in the UV/near UV region down to 200 nm can be achieved using these transparent CNT films on quartz. The OTE was characterized by transmission electron microscopy, scanning electron microscopy, Raman spectroscopy, UV-visible spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and thin layer spectroelectrochemistry. Ferricyanide, tris(2,2'-bipyridine) ruthenium(II) chloride, and cytochrome c were used as representative redox probes for thin layer spectroelectrochemistry using the CNT film OTE, and the results correlated well with their known properties. Direct electron transfer of cytochrome c was achieved on the CNT film electrode. PMID:26291731

  8. Sensitivity and Response of Polyvinyl Alcohol/Tin Oxide Nanocomposite Multilayer Thin Film Sensors.

    PubMed

    Sriram, G; Dhineshbabu, N R; Nithyavathy, N; Saminathan, K; Kaler, K V I S; Rajendran, V

    2016-01-01

    Nanocrystalline Tin Oxide (SnO₂) is Non-Stoichiometric in Nature with Functional Properties Suitable for gas sensing. In this study, SnO₂nanoparticles were prepared by the sol-gel technique, which were then characterised using X-ray diffraction. The nanoparticles showed tetragonal structure with an average crystallite size of 18 nm. The stretching and vibration modes of SnO₂were confirmed using Fourier transform infrared spectroscopy. The size of SnO₂ nanoparticles was determined using particle size analyser, which was found be 60 ± 10 nm on average. The surface morphology of the nanoparticles was investigated using scanning electron microscope, which showed irregular-sized agglomerated SnO₂nanostructures. In addition, primary particle size was evaluated using high-resolution transmission electron microscopy, which was found to be 50 nm on average. The polyvinyl alcohol/SnO₂ composite thin film was prepared on a glass substrate using spin-coating method. The values of band gap energy and electrical conductance of 13-layer thin film were found to be 2.96 eV and 0.0505 mho, respectively. Sulfur dioxide (SO₂) was suitably tailored to verify the sensor response over a concentration range of 10-70 ppm at room temperature. The performance, response, and recovery time of sensors were increased by increasing the layers of the thin film. PMID:27398561

  9. Thick growing multilayer nanobrick wall thin films: super gas barrier with very few layers.

    PubMed

    Guin, Tyler; Krecker, Michelle; Hagen, David Austin; Grunlan, Jaime C

    2014-06-24

    Recent work with multilayer nanocoatings composed of polyelectrolytes and clay has demonstrated the ability to prepare super gas barrier layers from water that rival inorganic CVD-based films (e.g., SiOx). In an effort to reduce the number of layers required to achieve a very low oxygen transmission rate (OTR (<0.01 cc/m(2)·day·atm)) in these nanocoatings, buffered cationic chitosan (CH) and vermiculite clay (VMT) were deposited using layer-by-layer (LbL) assembly. Buffering the chitosan solution and its rinse with 50 mM Trizma base increased the thickness of these films by an order of magnitude. The OTR of a 1.6-μm-thick, six-bilayer film was 0.009 cc/m(2)·day·atm, making this the best gas barrier reported for such a small number of layers. This simple modification to the LbL process could likely be applied more universally to produce films with the desired properties much more quickly.

  10. Coadsorption of sodium dodecyl sulfate and a polyanion onto poly(ethylenimine) in multilayered thin films.

    PubMed

    Johal, Malkiat S; Ozer, Byram H; Casson, Joanna L; St John, Ashlee; Robinson, Jeanne M; Wang, Hsing-Lin

    2004-03-30

    Mixed surfactant-polyelectrolyte multilayer films were fabricated by both ionic self-assembly and spin assembly. A polycation [PEI = poly(ethylenimine)] was deposited from a dilute solution, while a polyanion (PAZO = poly[1-[4-(3-carboxy-4-hydroxyphenylazo) benzenesulfonamido]-1,2-ethanediyl, sodium salt]) was deposited from a mixture containing a fixed concentration of polyanion and various concentrations of the anionic surfactant sodium dodecyl sulfate (SDS). Coadsorption of SDS and PAZO onto PEI layers was observed using both deposition methods and attributed to strong PEI-SDS interactions and entropic factors. Increasing the concentration of SDS resulted in films containing progressively less adsorbed PAZO. No further reduction in the amount of adsorbed PAZO was observed above the SDS critical micelle concentration. We attribute the film growth behavior to a fast adsorption of SDS onto PEI, followed by a slower adsorption of PAZO onto the remaining unoccupied binding sites. We observe that SDS interpenetrates throughout the PAZO and PEI layers, increasing the surface hydrophobicity of both. We observed similar behavior for both ionically self-assembled and spin-assembled systems.

  11. Note: Large area deposition of Rh single and Rh/W/Cu multilayer thin films on stainless steel substrate by pulsed laser deposition technique

    SciTech Connect

    Mostako, A. T. T.; Khare, Alika

    2014-04-15

    Mirror like thin films of single layer Rh and multilayer Rh/W/Cu are deposited on highly polished 50 mm diameter stainless steel substrate by Pulsed Laser Deposition (PLD) technique for first mirror application in fusion reactors. For this, the conventional PLD technique has been modified by incorporating substrate rastering stage for large area deposition via PLD. Process optimization to achieve uniformity of deposition as estimated from fringe visibility and thickness is also discussed.

  12. Anomalous magneto-optical response of black phosphorus thin films

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoying; Lou, Wen-Kai; Zhai, Feng; Chang, Kai

    2015-10-01

    We theoretically investigate the Landau levels (LLs) and magneto-optical conductivity (MOC) of black phosphorus thin films under a perpendicular magnetic field based on an effective k .p Hamiltonian and linear-response theory. We obtain the analytical expression for LLs, which agrees well with the numerical calculations, and find that the LLs sublinearly depend on the magnetic field and LL index. By using the Kubo formula, we evaluate the longitudinal and Hall optical conductivities as functions of the photon energy and the magnetic field. The analytical optical transition matrix elements reveal unusual selection rules for the interband (intraband) optical transitions between the LLs Δ n =0 ,±2 (±1 ,±3 ). The MOC shows strongly anisotropic behaviors of the band structure. For the interband transition, the MOC for linearly polarized light along the armchair direction is three orders of magnitude larger than that along the zigzag direction. Interestingly, we find a beating pattern in the interband MOC due to the interference among the three kinds of optical transitions. For the intraband transition, the MOC can be used to determine the band parameters such as the effective masses and the interband coupling at zero magnetic field. Our results about the MOC can also be applied to the monolayer black phosphorus.

  13. Optical and mechanical properties of thermally evaporated fluoride thin films

    SciTech Connect

    Zhang, K.; Fahey, R.; Jasinski, D.; Scarpino, C.; Dziendziel, R.; Burger, S.; DePoy, D.

    1998-06-08

    As a result of health and safety issues surrounding the use of radioactive materials on coated optical components, there has been renewed interest in coating materials whose optical and mechanical properties approach those offered by their radioactive counterparts. Due to the radioactive nature of ThF{sub 4} and its widespread use in optical coatings, the coating industry is examining other low index and non-radioactive fluorides as possible alternatives. In this paper, the authors present the results of an experimental study on the optical and mechanical properties of thermally evaporated ThF{sub 4}, DyF{sub 3}, CeF{sub 3}, LiF, HfF{sub 4}, IRX, and IRB thin films, where the materials were deposited at different substrate temperatures. The objective is to examine this series of fluorides under comparable deposition conditions and with respect to such material properties as: n and k, film stress, and environmental stability. The optical constants of these fluorides were evaluated over the wavelength region from 1.0 {micro}m to 12.5 {micro}m.

  14. Preparation and Basic Properties of BaTiO3-BaPbO3 Multilayer Thin Films by Metal-Alkoxides Method

    NASA Astrophysics Data System (ADS)

    Azuma, Takahiro; Takahashi, Sheiji; Kuwabara, Makoto

    1993-09-01

    Preferentially oriented barium titanate (BTO)-barium metaplumbate (BPO) multilayer thin films were prepared by the metal-alkoxides method on MgO single crystals. The BPO layer is an electrode for the BTO layer. Thin films were deposited on cleaved MgO (100) substrates by spin coating. A BTO film of 0.4 μm thickness on the BPO layer shows a dielectric constant of about 400 at room temperature. No formation of reaction phases between BTO and BPO, fired at 800°C to yield a well-crystallized BTO film, was detected in X-ray diffraction analysis.

  15. Optical figuring specifications for thin shells to be used in adaptive telescope mirrors

    NASA Astrophysics Data System (ADS)

    Riccardi, A.

    2006-06-01

    The present work describes the guidelines to define the optical figuring specifications for optical manufacturing of thin shells in terms of figuring error power spectrum (and related rms vs scale distributon) to be used in adaptive optics correctors with force actuators like Deformable Secondary Mirrors (DSM). In particular the numerical example for a thin shell for a VLT DSM is considered.

  16. Coupled annealing temperature and layer thickness effect on strengthening mechanisms of Ti/Ni multilayer thin films

    NASA Astrophysics Data System (ADS)

    Yang, Zhou; Wang, Junlan

    2016-03-01

    A systematic study was performed on mechanical and microstructural properties of Ti/Ni multilayers with layer thickness from 200 nm to 6 nm and annealing temperature from room temperature to 500 °C. Based on the observed hardness evolution, a coupled layer-thickness and annealing-temperature dependent strengthening mechanism map is proposed. For as-deposited films, the deformation behavior follows the traditional trend of dislocation mediated strengthening to grain boundary mediated softening with decreasing layer thickness. For annealed films, grain boundary relaxation is considered to be the initial strengthening mechanism with higher activation temperature required for thicker layers. Under further annealing, solid solution hardening, intermetallic precipitation hardening, and fully intermixed alloy structure continue to strengthen the thin layered films, while recrystallization and grain-growth lead to the eventual softening of thick layered films. For the films with intermediate layer thickness, a strong orientation dependent hardness behavior is exhibited under high temperature annealing due to mechanism switch from grain growth softening to intermetallic precipitation hardening when changing the loading orientation from perpendicular to parallel to the layer interfaces.

  17. Layer-by-Layer assembled hybrid multilayer thin film electrodes based on transparent cellulose nanofibers paper for flexible supercapacitors applications

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Gao, Kezheng; Shao, Ziqiang; Peng, Xiaoqing; Wu, Xue; Wang, Feijun

    2014-03-01

    Cellulose nanofibers (CNFs) paper with low thermal expansion and electrolyte absorption properties is considered to be a good potential substrate for supercapacitors. Unlike traditional substrates, such as glass or plastic, CNFs paper saves surfaces pretreatment when Layer-by-Layer (LbL) assembly method is used. In this study, negatively charged graphene oxide (GO) nanosheets and poly(3,4-ethylenedioxythiophene: poly(styrene sulfonate)) (PEDOT:PSS) nanoparticles are deposited onto CNFs paper with positively charged polyaniline (PANI) nanowires as agents to prepare multilayer thin film electrodes, respectively. Due to the different nanostructures of reduced graphene oxide (RGO) and PEDOT:PSS, the microstructures of the electrodes are distinguishing. Our work demonstrate that CNFs paper/PANI/RGO electrode provides a more effective pathway for ion transport facilitation compared with CNFs paper/PANI/PEDOT:PSS electrode. The supercapacitor fabricated by CNFs/[PANI-RGO]8 (S-PG-8) exhibits an excellent areal capacitance of 5.86 mF cm-2 at a current density of 0.0043 mA cm-2, and at the same current density the areal capacitance of the supercapacitor fabricated by CNFs/[PANI-PEDOT:PSS]8 (S-PP-8) is 4.22 mF cm-2. S-PG-8 also exhibits good cyclic stability. This study provides a novel method using CNFs as substrate to prepare hybrid electrodes with diverse microstructures that are promising for future flexible supercapacitors.

  18. Microstructure, Optical and Photocatalytic Properties of TiO₂ Thin Films Prepared by Chelating-Agent Assisted Sol-Gel Method.

    PubMed

    Matĕjová, Lenka; Cieslarová, Monika; Matĕj, Zdenĕk; Danis, Stanislav; Peikertová, Pavlína; Sihor, Marcel; Lang, Jaroslav; Matĕjka, Vlastimil

    2016-01-01

    Single and multilayer TiO₂ thin films coated on two types of soda-lime glass substrates (microscope slides and cylinders) were prepared by a chelating agent-assisted sol-gel method, using ethyl acetoacetate as a chelating agent, dip-coating and calcination at 500 °C for 2 h in air. Phase composition, microstructural, morphological and optical properties of thin films were comprehensively investigated by using XRF, advanced XRD analysis, Raman and UV-vis spectroscopy and AFM. It was found out that the thickness of thin films increases linearly with increasing number of deposited layers, indicating a good adhesion of the titania solution to a glass substrate as well as to a previously calcined layer. 1 layer film crystallized to anatase-TiO₂(B) mixture with minor/negligible amount of nanosized brookite, 2-4 layers films crystallized to anatase-brookite-TiO₂(B) mixture. In contrast to other multilayers films, 4 layers film was highly inhomogeneous. The different phase composition of thin films was clarified based on the crystallization via titanate/s and metastable monoclinic TiO₂(B) as a consequence of several phenomena; the diffusion of Na⁺ ions from a soda-lime glass substrate, acidic conditions and repeated thermal treatment. The multilayer films were in average highly transparent (80-95%) in the visible light region with the sharp absorption edge in the UV light region. Additionally, the photocatalytic properties of selected multilayer films were compared in AO7 photodegradation. Photocatalytic experiments showed that thicker 4 layers film of tricrystalline anatase-brookite-TiO₂(B) phase mixture was similarly active as thinner 3 layers film of similar phase composition, which may be a consequence of the inhomogeneity of the thicker film. PMID:27398480

  19. Microstructure, Optical and Photocatalytic Properties of TiO₂ Thin Films Prepared by Chelating-Agent Assisted Sol-Gel Method.

    PubMed

    Matĕjová, Lenka; Cieslarová, Monika; Matĕj, Zdenĕk; Danis, Stanislav; Peikertová, Pavlína; Sihor, Marcel; Lang, Jaroslav; Matĕjka, Vlastimil

    2016-01-01

    Single and multilayer TiO₂ thin films coated on two types of soda-lime glass substrates (microscope slides and cylinders) were prepared by a chelating agent-assisted sol-gel method, using ethyl acetoacetate as a chelating agent, dip-coating and calcination at 500 °C for 2 h in air. Phase composition, microstructural, morphological and optical properties of thin films were comprehensively investigated by using XRF, advanced XRD analysis, Raman and UV-vis spectroscopy and AFM. It was found out that the thickness of thin films increases linearly with increasing number of deposited layers, indicating a good adhesion of the titania solution to a glass substrate as well as to a previously calcined layer. 1 layer film crystallized to anatase-TiO₂(B) mixture with minor/negligible amount of nanosized brookite, 2-4 layers films crystallized to anatase-brookite-TiO₂(B) mixture. In contrast to other multilayers films, 4 layers film was highly inhomogeneous. The different phase composition of thin films was clarified based on the crystallization via titanate/s and metastable monoclinic TiO₂(B) as a consequence of several phenomena; the diffusion of Na⁺ ions from a soda-lime glass substrate, acidic conditions and repeated thermal treatment. The multilayer films were in average highly transparent (80-95%) in the visible light region with the sharp absorption edge in the UV light region. Additionally, the photocatalytic properties of selected multilayer films were compared in AO7 photodegradation. Photocatalytic experiments showed that thicker 4 layers film of tricrystalline anatase-brookite-TiO₂(B) phase mixture was similarly active as thinner 3 layers film of similar phase composition, which may be a consequence of the inhomogeneity of the thicker film.

  20. The effect of metal nano particle on optical absorption coefficient of multi-layer spherical quantum dot

    NASA Astrophysics Data System (ADS)

    Zamani, N.; Keshavarz, A.; Nadgaran, H.

    2016-06-01

    In this paper, we investigate the optical absorption coefficient of hybrid structure consisting of metal nano particle (MNP) coupled to multi-layer spherical quantum dot (MSQD). Energy eigenvalues and eigenfunctions of Schrödinger equation in this structure are obtained by using numerical solution (by the fourth-order Runge-Kutta method). The effect of MNP in the vicinity of MSQD is calculated by considering local field theory. Then the variation of optical absorption coefficient hybrid structure is calculated. The results show that the presence of MNP near MSQD enhances the optical absorption coefficient. Also, by changing the distance between MNP and MSQD and radius of MNP, variation of optical absorption coefficient and refractive index changes are introduced.

  1. Metal nanoparticles enhanced optical absorption in thin film solar cells

    NASA Astrophysics Data System (ADS)

    Xie, Wanlu; Liu, Fang; Qu, Di; Xu, Qi; Huang, Yidong

    2011-12-01

    The plasmonic enhanced absorption for thin film solar cells with silver nanoparticles (NPs) deposited on top of the amorphous silicon film (a-Si:H) solar cells and embedded inside the active layer of organic solar cells (OSCs) has been simulated and analyzed. Obvious optical absorption enhancement is obtained not only at vertical incidence but also at oblique incidence. By properly adjusting the period and size of NPs, an increased absorption enhancement of about 120% and 140% is obtained for a-Si:H solar cells and OSCs, respectively.

  2. Structural and optical properties of molybdenum trioxide thin films

    SciTech Connect

    Bhatia, Shally; Khanna, Atul

    2015-06-24

    Thermal evaporation technique was used to prepare thin films of MoO{sub 3}. X-ray diffraction measurements found that as-deposited films of MoO{sub 3} were amorphous which crystallized to orthorhombic phase on annealing at 623K for 1h in air. The optical band gap of the films decreases from 3.1eV to 1.7eV upon crystallization. Short range structure of the as deposited films and annealed films were studied by Raman spectroscopy and it consisted of MoO{sub 6} units.

  3. Multilayer films with sharp, stable interfaces for use in EUV and soft X-ray application

    DOEpatents

    Barbee, Jr., Troy W.; Bajt, Sasa

    2002-01-01

    The reflectivity and thermal stability of Mo/Si (molybdenum/silicon) multilayer films, used in soft x-ray and extreme ultraviolet region, is enhanced by deposition of a thin layer of boron carbide (e.g., B.sub.4 C) between alternating layers of Mo and Si. The invention is useful for reflective coatings for soft X-ray and extreme ultraviolet optics, multilayer for masks, coatings for other wavelengths and multilayers for masks that are more thermally stable than pure Mo/Si multilayers

  4. Understanding geometric instabilities in thin films via a multi-layer model.

    PubMed

    Lejeune, Emma; Javili, Ali; Linder, Christian

    2016-01-21

    When a thin stiff film adhered to a compliant substrate is subject to compressive stresses, the film will experience a geometric instability and buckle out of plane. For high film/substrate stiffness ratios with relatively low levels of strain, the primary mode of instability will either be wrinkling or buckling delamination depending on the material and geometric properties of the system. Previous works approach these systems by treating the film and substrate as homogenous layers, either consistently perfectly attached, or perfectly unattached at interfacial flaws. However, this approach neglects systems where the film and substrate are uniformly weakly attached or where interfacial layers due to surface modifications in either the film or substrate are present. Here we demonstrate a method for accounting for these additional thin surface layers via an analytical solution verified by numerical results. The main outcome of this work is an improved understanding of how these layers influence global behavior. We demonstrate the utility of our model with applications ranging from buckling based metrology in ultrathin films, to an improved understanding of the formation of a novel surface in carbon nanotube bio-interface films. Moving forward, this model can be used to interpret experimental results, particularly for systems which deviate from traditional behavior, and aid in the evaluation and design of future film/substrate systems.

  5. Multilayer's birefringence and related optical components photo-induced by femtosecond laser in silica

    NASA Astrophysics Data System (ADS)

    Lancry, M.; Desmarchelier, R.; Cook, K.; Canning, J.; Poumellec, B.

    2014-10-01

    Recently, we showed that femtosecond laser induced "nanogratings" consist of thin regions with a low refractive index (Δn = -0.15) due to the formation of nanoporous silica surrounded by regions with a positive index change. In this paper, we investigate a wide range of laser parameters to achieve the highest retardance value within a single layer of such gratings; i.e. 350 nm at λ = 546 nm. We show that the total retardance depends on the number of layers present and can be accumulated in the direction of laser propagation to values higher than 1600 nm. This opens the door to using these nanostructures as refined building blocks for novel optical elements based on strong retardance. Rotating their orientation means properties such as the slow axis orientation can be spatially varied in the propagation direction to make interesting structures akin to, for example, a twisted nematic liquid crystals in fused silica.

  6. Charge transport in organic multi-layer devices under electric and optical fields

    NASA Astrophysics Data System (ADS)

    Park, June Hyoung

    2007-12-01

    Charge transport in small organic molecules and conjugated conducting polymers under electric or optical fields is studied by using field effect transistors and photo-voltaic cells with multiple thin layers. With these devices, current under electric field, photo-current under optical field, and luminescence of optical materials are measured to characterize organic and polymeric materials. For electric transport studies, poly(3,4-ethylenedioxythiophene) doped by polystyrenesulfonic acid is used, which is conductive with conductivity of approximately 25 S/cm. Despite their high conductance, field effect transistors based on the films are successfully built and characterized by monitoring modulations of drain current by gate voltage and IV characteristic curves. Due to very thin insulating layers of poly(vinylphenol), the transistors are relative fast under small gate voltage variation although heavy ions are involved in charge transport. In IV characteristic curves, saturation effects can be observed. Analysis using conventional field effect transistor model indicates high mobility of charge carriers, 10 cm2/V·sec, which is not consistent with the mobility of the conducting polymer. It is proposed that the effect of a small density of ions injected via polymer dielectric upon application of gate voltage and the ion compensation of key hopping sites accounts for the operation of the field effect transistors. For the studies of transport under optical field, photovoltaic cells with 3 different dendrons, which are efficient to harvest photo-excited electrons, are used. These dendrons consist of two electron-donors (tetraphenylporphyrin) and one electron-accepter (naphthalenediimide). Steady-state fluorescence measurements show that inter-molecular interaction is dominant in solid dendron film, although intra-molecular interaction is still present. Intra-molecular interaction is suggested by different fluorescence lifetimes between solutions of donor and dendrons. This

  7. Characterization of nodular and thermal defects in hafnia/silica multilayer coatings using optical, photothermal, and atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Stolz, Christopher J.; Yoshiyama, J. M.; Salleo, Alberto; Wu, Zhouling; Green, John; Krupka, Rene

    1998-04-01

    Multilayer coatings manufactured from metallic hafnium and silica sources by reactive electron beam deposition, are being developed for high fluence optics in a fusion lasers with a wavelength of 1053 nm and a 3 ns pulse length. Damage threshold studies have revealed a correlation between laser damage and nodular defects, but interestingly laser damage is also present in nodule-free regions. Photothermal studies of optical coatings reveal the existence of defects with strong optical absorption in nodule-free regions of the coating. A variety of microscopic techniques were employed to characterize the defects for a better understanding of the thermal properties of nodular defects and role of thermal defects in laser damage. Photothermal microscopy, utilizing the surface thermal lensing technique, was used to map the thermal characteristics of 3 mm X 3 mm areas of the coatings. High resolution subaperture scans, with a 1 micrometers step size and a 3 micrometers pump beam diameter, were conducted on the defects to characterize their photothermal properties. Optical and atomic force microscopy was used to visually identify defects and characterize their topography. The defects were then irradiated to determine the role of nodular and thermal defects in limiting the damage threshold of the multilayer.

  8. Characterization of nodular and thermal defects in hafnia/silica multilayer coatings using optical, photothermal, and atomic force microscopy

    SciTech Connect

    Stolz, C.J.; Yoshiyama, J.M.; Salleo, A.; Wu, Z.L.; Green, J.; Krupka, R.

    1997-12-24

    Multilayer coatings manufactured from metallic hafnium and silica sources by reactive electron beam deposition, are being developed for high fluence optics in a fusion laser with a wavelength of 1053 nm and a 3 ns pulse length. Damage threshold studies have revealed a correlation between laser damage and nodular defects, but interestingly laser damage is also present in nodule-free regions. Photothermal studies of optical coatings reveal the existence of defects with strong optical absorption in nodule-free regions of the coating. A variety of microscopic techniques were employed to characterize the effects for a better understanding of the thermal properties of nodular defects and role of thermal defects in laser damage. Photothermal microscopy, utilizing the surface thermal lensing technique, was used to map the thermal characteristics of 3 mm x 3 mm areas of the coatings. High resolution subaperture scans, with a 1 pm step size and a 3 um pump beam diameter, W= conducted on the defects to characterize their photothermal properties. Optical and atomic force microscopy was used to visually identify defects and characterize their topography. The defects were then irradiated to determine the role of nodular and thermal defects in limiting the damage threshold of the multilayer.

  9. Transparent ambipolar organic thin film transistors based on multilayer transparent source-drain electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Hu, Yongsheng; Lin, Jie; Li, Yantao; Liu, Xingyuan

    2016-08-01

    A fabrication method for transparent ambipolar organic thin film transistors with transparent Sb2O3/Ag/Sb2O3 (SAS) source and drain electrodes has been developed. A pentacene/N,N'-ditridecylperylene-3,4,9,10-tetracarboxylic di-imide (PTCDI-C13) bilayer heterojunction is used as the active semiconductor. The electrodes are deposited by room temperature electron beam evaporation. The devices are fabricated without damaging the active layers. The SAS electrodes have high transmittance (82.5%) and low sheet resistance (8 Ω/sq). High performance devices with hole and electron mobilities of 0.3 cm2/V s and 0.027 cm2/V s, respectively, and average visible range transmittance of 72% were obtained. These transistors have potential for transparent logic integrated circuit applications.

  10. Theoretical model for thin ferroelectric films and the multilayer structures based on them

    SciTech Connect

    Starkov, A. S. Pakhomov, O. V.; Starkov, I. A.

    2013-06-15

    A modified Weiss mean-field theory is used to study the dependence of the properties of a thin ferroelectric film on its thickness. The possibility of introducing gradient terms into the thermodynamic potential is analyzed using the calculus of variations. An integral equation is introduced to generalize the well-known Langevin equation to the case of the boundaries of a ferroelectric. An analysis of this equation leads to the existence of a transition layer at the interface between ferroelectrics or a ferroelectric and a dielectric. The permittivity of this layer is shown to depend on the electric field direction even if the ferroelectrics in contact are homogeneous. The results obtained in terms of the Weiss model are compared with the results of the models based on the correlation effect and the presence of a dielectric layer at the boundary of a ferroelectric and with experimental data.

  11. Optically Thin Metallic Films for High-Radiative-Efficiency Plasmonics

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Zhen, Bo; Hsu, Chia Wei; Miller, Owen D.; Joannopoulos, John D.; Soljačić, Marin

    2016-07-01

    Plasmonics enables deep-subwavelength concentration of light and has become important for fundamental studies as well as real-life applications. Two major existing platforms of plasmonics are metallic nanoparticles and metallic films. Metallic nanoparticles allow efficient coupling to far field radiation, yet their synthesis typically leads to poor material quality. Metallic films offer substantially higher quality materials, but their coupling to radiation is typically jeopardized due to the large momentum mismatch with free space. Here, we propose and theoretically investigate optically thin metallic films as an ideal platform for high-radiative-efficiency plasmonics. For far-field scattering, adding a thin high-quality metallic substrate enables a higher quality factor while maintaining the localization and tunability that the nanoparticle provides. For near-field spontaneous emission, a thin metallic substrate, of high quality or not, greatly improves the field overlap between the emitter environment and propagating surface plasmons, enabling high-Purcell (total enhancement > $10^4$), high-quantum-yield (> 50 %) spontaneous emission, even as the gap size vanishes (3$\\sim$5 nm). The enhancement has almost spatially independent efficiency and does not suffer from quenching effects that commonly exist in previous structures.

  12. Optically Thin Metallic Films for High-Radiative-Efficiency Plasmonics.

    PubMed

    Yang, Yi; Zhen, Bo; Hsu, Chia Wei; Miller, Owen D; Joannopoulos, John D; Soljačić, Marin

    2016-07-13

    Plasmonics enables deep-subwavelength concentration of light and has become important for fundamental studies as well as real-life applications. Two major existing platforms of plasmonics are metallic nanoparticles and metallic films. Metallic nanoparticles allow efficient coupling to far field radiation, yet their synthesis typically leads to poor material quality. Metallic films offer substantially higher quality materials, but their coupling to radiation is typically jeopardized due to the large momentum mismatch with free space. Here, we propose and theoretically investigate optically thin metallic films as an ideal platform for high-radiative-efficiency plasmonics. For far-field scattering, adding a thin high-quality metallic substrate enables a higher quality factor while maintaining the localization and tunability that the nanoparticle provides. For near-field spontaneous emission, a thin metallic substrate, of high quality or not, greatly improves the field overlap between the emitter environment and propagating surface plasmons, enabling high-Purcell (total enhancement >10(4)), high-quantum-yield (>50%) spontaneous emission, even as the gap size vanishes (3-5 nm). The enhancement has almost spatially independent efficiency and does not suffer from quenching effects that commonly exist in previous structures.

  13. Optical properties of thin films and the Berreman effect

    NASA Astrophysics Data System (ADS)

    Harbecke, B.; Heinz, B.; Grosse, P.

    1985-12-01

    The measurement of reflection and transmission of normally incident light to obtain the optical constants of a material is a usual tool in solid-state spectroscopy. If the material under investigation is a thin film, the interaction of the electromagnetic field with the sample can be enhanced by oblique incidence. If the light is p-polarized, structures in the reflection and transmission spectra are observed at the frequencies of transverse (TO) and longitudinal (LO) resonances. The LO structure — called the Berreman effect — is generated by the surface charges due to the normal component of the electric field. We discuss this effect for three cases: a free film, a film with a metallic back and a substrate with thin films on both sides. The dependence of the effect on the energy-loss function Im {-1/ɛ} and on the film thickness is discussed. For idealized systems simple formulae are derived and a characteristic parameter, called the Berreman thickness, is obtained. Films of this thickness show a maximum effect. Intuitive arguments are given to explain the effect. Examples for the application of the Berreman effect to characterize very thin films are discussed.

  14. Optical detector prepared by high-Tc superconducting thin film

    NASA Astrophysics Data System (ADS)

    Wang, Lingjie; Zhou, Fang Q.; Zhao, Xing R.; Sun, Han D.; Yi, Xin J.

    1991-12-01

    An optical detector prepared by high T(subscript c) superconducting thin film has been discussed. The device has been made from YBaCuO superconducting thin film with zero resistance at more than 80 K on a ZrO(subscript 2) substrate. A pattern of the device with the dimension of the microbridge is formed through photolithographic process. Electrical contacts are made by evaporating gold or silver with thickness of 0.5 - 1 micrometers . The sample is then placed in a dewar with an infrared window and is cooled by liquid nitrogen. A blackbody source at 800 K is used to measure the responsivity of the detector, and the infrared radiation is chopped at frequencies between 6.3 and 2000 Hz. The detector output with the detectivity larger than 10(superscript 9) cmHz(superscript 1/2)/w and a typical responsivity value as large as 10(superscript 3) V/w is observed on both lock-in amplifier and root-mean-square voltmeter. In addition, the mechanism of optical detection and the methods to improve the sensitivity have been described.

  15. Direct absorption measurements in thin rods and optical fibers

    NASA Astrophysics Data System (ADS)

    Mühlig, Christian; Bublitz, Simon; Lorenz, Martin

    2015-11-01

    We report on the first realization of direct absorption measurements in thin rods and optical fibers using the laser induced deflection (LID) technique. Typically, along the fiber processing chain more or less technology steps are able to introduce additional losses to the starting material. After the final processing, the fibers are commonly characterized regarding losses using the so-called cut-back technique in combination with spectrometers. This, however, only serves for a total loss determination. For optimization of the fiber processing, it would be of great interest to not only distinguish between different loss mechanisms but also have a better understanding of possible causes. For measuring the absorption losses along the fiber processing, a particular concept for the LID technique is introduced and requirements, calibration procedure as well as first results are presented. It allows to measure thin rods, e.g. during preform manufacturing, as well as optical fibers. In addition, the results show the prospects to also apply the new concept to topics like characterizing unwanted absorption after fiber splicing or Bragg grating inscription.

  16. An Atmospheric Radiation Measurement Value-Added Product to Retrieve Optically Thin Cloud Visible Optical Depth using Micropulse Lidar

    SciTech Connect

    Lo, C; Comstock, JM; Flynn, C

    2006-10-01

    The purpose of the Micropulse Lidar (MPL) Cloud Optical Depth (MPLCOD) Value-Added Product (VAP) is to retrieve the visible (short-wave) cloud optical depth for optically thin clouds using MPL. The advantage of using the MPL to derive optical depth is that lidar is able to detect optically thin cloud layers that may not be detected by millimeter cloud radar or radiometric techniques. The disadvantage of using lidar to derive optical depth is that the lidar signal becomes attenuation limited when τ approaches 3 (this value can vary depending on instrument specifications). As a result, the lidar will not detect optically thin clouds if an optically thick cloud obstructs the lidar beam.

  17. Magnetic layer thickness dependence of all-optical magnetization switching in GdFeCo thin films

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Hiroki; El Moussaoui, Souliman; Terashita, Shinnosuke; Ueda, Ryohei; Tsukamoto, Arata

    2016-07-01

    To clarify the relationship between all-optical magnetization switching (AOS) and nonlocal and nonadiabatic energy dissipation process, we focus on the contribution from energy dissipation in the depth direction. Differently designed structure dependence of created magnetic domain is observed from the reversal phenomenon, AOS, or multidomains by thermomagnetic nucleation (TMN) in GdFeCo multilayer thin films. TMN depends on the shared absorbed energy throughout the continuous metallic volume. On the other hand, AOS critically depends on nonadiabatic energy dissipation process with the electron system in sub-picoseconds. Furthermore, the laser fluence dependence of AOS-created domain sizes indicates that the value of irradiated laser fluence threshold per magnetic domain volume is almost constant. However, a lower laser irradiation fluence below 1–2 mW has a larger value and thickness dependence. From these results, we suggest that AOS depends on energy dissipation from the incident surface in the depth direction for a few picoseconds.

  18. Method for high-precision multi-layered thin film deposition for deep and extreme ultraviolet mirrors

    DOEpatents

    Ruffner, Judith Alison

    1999-01-01

    A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet ("DUV") and Extreme Ultra-Violet ("EUV") wavelengths. The method results in a product with minimum feature sizes of less than 0.10-.mu.m for the shortest wavelength (13.4-nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R.sup.2 factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates.

  19. Method for high-precision multi-layered thin film deposition for deep and extreme ultraviolet mirrors

    DOEpatents

    Ruffner, J.A.

    1999-06-15

    A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet (DUV) and Extreme Ultra-Violet (EUV) wavelengths. The method results in a product with minimum feature sizes of less than 0.10 [micro]m for the shortest wavelength (13.4 nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R[sup 2] factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates. 15 figs.

  20. Poly(amido amine)-based multilayered thin films on 2D and 3D supports for surface-mediated cell transfection.

    PubMed

    Hujaya, Sry D; Marchioli, Giulia; Roelofs, Karin; van Apeldoorn, Aart A; Moroni, Lorenzo; Karperien, Marcel; Paulusse, Jos M J; Engbersen, Johan F J

    2015-05-10

    Two linear poly(amido amine)s, pCABOL and pCHIS, prepared by polyaddition of cystamine bisacrylamide (C) with 4-aminobutanol (ABOL) or histamine (HIS), were explored to form alternating multilayer thin films with DNA to obtain functionalized materials with transfection capacity in 2D and 3D. Therefore, COS-7 cells were cultured on top of multilayer films formed by layer-by-layer dipcoating of these polymers with GFP-encoded pDNA, and the effect of the number of layers and cell seeding density on the transfection efficiency was evaluated. Multilayer films with pCABOL were found to be superior to pCHIS in facilitating transfection, which was attributed to higher incorporation of pDNA and release of the transfection agent. High amounts of transfected cells were obtained on pCABOL films, correlating proportionally over a wide range with seeding density. Optimal transfection efficiency was obtained with pCABOL films composed of 10 bilayers. Further increase in the number of bilayers only marginally increased transfection efficiency. Using the optimal multilayer and cell seeding conditions, pCABOL multilayers were fabricated on poly(ε-caprolactone) (PCL), heparinized PCL (PCL-HEP), and poly(lactic acid) (PLA) disks as examples of common biomedical supports. The multilayers were found to completely mask the properties of the original substrates, with significant improvement in cell adhesion, which is especially pronounced for PCL and PLA disks. With all these substrates, transfection efficiency was found to be in the range of 25-50% transfected cells. The pCABOL/pDNA multilayer films can also conveniently add transfection capability to 3D scaffolds. Significant improvement in cell adhesion was observed after multilayer coating of 3D-plotted fibers of PCL (with and without an additional covalent heparin layer), especially for the PCL scaffold without heparin layer and transfection was observed on both 3D PCL and PCL-HEP scaffolds. These results show that layer

  1. Optical properties analysis of Ta-doped TiO2 thin films on LaAlO3 substrates

    NASA Astrophysics Data System (ADS)

    Nurfani, Eka; Sutjahja, Inge M.; Winata, Toto; Rusydi, Andrivo; Darma, Yudi

    2015-09-01

    We study optical properties of Ta-doped TiO2 thin film on LaAlO3 substrate using spectroscopy ellipsometry (SE) analysis at energy range of 0.5 - 6.5 eV. Room temperature SE data for Ψ (amplitude ratio) and Δ (phase difference) between p- and s- polarized light waves are taken with multiple incident angles at several spots on the samples. Here, absorption coefficient has been extracted from SE measurements at photon incident angle of 70° for different Ta concentration (0.01, 0.4, and 5 at. %). Multilayer modelling is performed which takes into account reflections at each interface through Fresnel coefficients to obtain reasonably well the fitting of Ψ and Δ data simultaneously. As the results, we estimate that film thickness increases by increasing Ta concentration accompanied by the formation of a new electronic structure. By increasing Ta impurities, the blueshift of absorption coefficient (α) peaks is observable. This result indicates that TiO2 thin film becomes optically resistive by introducing Ta doping. Schematic model of interband transition inTiO2:Ta will be proposed base on obtained optical properties. This study enables us to predict the role of Ta doping on the electronic and optical band structures of TiO2 thin film. Due to a processing error by AIP Publishing, an incorrect version of the above article was published on 30 September 2015 that omitted the name of author Toto Winata. AIP Publishing apologizes for this error. All online versions of the article were corrected on 7 October 2015. The author names and affiliations appear correctly above.

  2. Indentation and overall compression behavior of multilayered thin-film composites. Effect of undulating layer geometry

    DOE PAGESBeta

    Jamison, Ryan D.; Shen, Y. -L.

    2015-03-19

    Two finite element models are used to investigate the behavior of aluminum/silicon carbide thin-film layered composites with imperfect internal geometry when subjected to various loadings. In both models, undulating layers are represented by regular waveforms with various amplitudes, wavelengths, and phase offsets. First, uniaxial compressive loading of the composite is considered. The modulus and stress/strain response of the composite is sensitive to both loading direction and frequency of the undulation. Second, the nanoindentation response of the composite is investigated. The derived hardness and modulus are shown to be sensitive to the presence of undulating layers and the relative size ofmore » the indenter to the undulation. Undulating layers create bands of tensile and compressive stress in the indentation direction that are significantly different from the flat layers. The amount of equivalent plastic strain in the Al layers is increased by the presence of undulating layers. The correlations between the two forms of loading, and the implications to composite property measurement are carefully examined in this study.« less

  3. Indentation and overall compression behavior of multilayered thin-film composites. Effect of undulating layer geometry

    SciTech Connect

    Jamison, Ryan D.; Shen, Y. -L.

    2015-03-19

    Two finite element models are used to investigate the behavior of aluminum/silicon carbide thin-film layered composites with imperfect internal geometry when subjected to various loadings. In both models, undulating layers are represented by regular waveforms with various amplitudes, wavelengths, and phase offsets. First, uniaxial compressive loading of the composite is considered. The modulus and stress/strain response of the composite is sensitive to both loading direction and frequency of the undulation. Second, the nanoindentation response of the composite is investigated. The derived hardness and modulus are shown to be sensitive to the presence of undulating layers and the relative size of the indenter to the undulation. Undulating layers create bands of tensile and compressive stress in the indentation direction that are significantly different from the flat layers. The amount of equivalent plastic strain in the Al layers is increased by the presence of undulating layers. The correlations between the two forms of loading, and the implications to composite property measurement are carefully examined in this study.

  4. Toward air-stable multilayer phosphorene thin-films and transistors

    NASA Astrophysics Data System (ADS)

    Kim, Joon-Seok; Liu, Yingnan; Zhu, Weinan; Kim, Seohee; Wu, Di; Tao, Li; Dodabalapur, Ananth; Lai, Keji; Akinwande, Deji

    2015-03-01

    Few-layer black phosphorus (BP), also known as phosphorene, is poised to be the most attractive graphene analogue owing to its high mobility approaching that of graphene, and its thickness-tunable band gap that can be as large as that of molybdenum disulfide. In essence, phosphorene represents the much sought after high-mobility, large direct band gap two-dimensional layered crystal that is ideal for optoelectronics and flexible devices. However, its instability in air is of paramount concern for practical applications. Here, we demonstrate air-stable BP devices with dielectric and hydrophobic encapsulation. Microscopy, spectroscopy, and transport techniques were employed to elucidate the aging mechanism, which can initiate from the BP surface for bare samples, or edges for samples with thin dielectric coating, highlighting the ineffectiveness of conventional scaled dielectrics. Our months-long studies indicate that a double layer capping of Al2O3 and hydrophobic fluoropolymer affords BP devices and transistors with indefinite air-stability for the first time, overcoming a critical material challenge for applied research and development.

  5. Toward air-stable multilayer phosphorene thin-films and transistors.

    PubMed

    Kim, Joon-Seok; Liu, Yingnan; Zhu, Weinan; Kim, Seohee; Wu, Di; Tao, Li; Dodabalapur, Ananth; Lai, Keji; Akinwande, Deji

    2015-03-11

    Few-layer black phosphorus (BP), also known as phosphorene, is poised to be the most attractive graphene analogue owing to its high mobility approaching that of graphene, and its thickness-tunable band gap that can be as large as that of molybdenum disulfide. In essence, phosphorene represents the much sought after high-mobility, large direct band gap two-dimensional layered crystal that is ideal for optoelectronics and flexible devices. However, its instability in air is of paramount concern for practical applications. Here, we demonstrate air-stable BP devices with dielectric and hydrophobic encapsulation. Microscopy, spectroscopy, and transport techniques were employed to elucidate the aging mechanism, which can initiate from the BP surface for bare samples, or edges for samples with thin dielectric coating, highlighting the ineffectiveness of conventional scaled dielectrics. Our months-long studies indicate that a double layer capping of Al2O3 and hydrophobic fluoropolymer affords BP devices and transistors with indefinite air-stability for the first time, overcoming a critical material challenge for applied research and development.

  6. Nanobrick wall multilayer thin films grown faster and stronger using electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Cho, Chungyeon; Wallace, Kevin L.; Hagen, David A.; Stevens, Bart; Regev, Oren; Grunlan, Jaime C.

    2015-05-01

    In an effort to speed up the layer-by-layer (LbL) deposition technique, electrophoretic deposition (EPD) is employed with weak polyelectrolytes and clay nanoplatelets. The introduction of an electric field results in nearly an order of magnitude increase in thickness relative to conventional LbL deposition for a given number of deposited layers. A higher clay concentration also results with the EPD-LbL process, which produces higher modulus and strength with fewer deposited layers. A 20 quadlayer (QL) assembly of linear polyethyleneimine (LPEI)/poly(acrylic acid)/LPEI/clay has an elastic modulus of 45 GPa, tensile strength of 70 MPa, and thickness of 4.4 μm. Traditional LbL requires 40 QL to achieve the same thickness, with lower modulus and strength. This study reveals how these films grow and maintain a highly ordered nanobrick wall structure that is commonly associated with LbL deposition. Fewer layers required to achieve improved properties will open up many new opportunities for this multifunctional thin film deposition technique.

  7. Toward air-stable multilayer phosphorene thin-films and transistors

    PubMed Central

    Kim, Joon-Seok; Liu, Yingnan; Zhu, Weinan; Kim, Seohee; Wu, Di; Tao, Li; Dodabalapur, Ananth; Lai, Keji; Akinwande, Deji

    2015-01-01

    Few-layer black phosphorus (BP), also known as phosphorene, is poised to be the most attractive graphene analogue owing to its high mobility approaching that of graphene, and its thickness-tunable band gap that can be as large as that of molybdenum disulfide. In essence, phosphorene represents the much sought after high-mobility, large direct band gap two-dimensional layered crystal that is ideal for optoelectronics and flexible devices. However, its instability in air is of paramount concern for practical applications. Here, we demonstrate air-stable BP devices with dielectric and hydrophobic encapsulation. Microscopy, spectroscopy, and transport techniques were employed to elucidate the aging mechanism, which can initiate from the BP surface for bare samples, or edges for samples with thin dielectric coating, highlighting the ineffectiveness of conventional scaled dielectrics. Our months-long studies indicate that a double layer capping of Al2O3 and hydrophobic fluoropolymer affords BP devices and transistors with indefinite air-stability for the first time, overcoming a critical material challenge for applied research and development. PMID:25758437

  8. Multilayer crack-free hybrid coatings for functional devices

    NASA Astrophysics Data System (ADS)

    Islam, Shumaila; Bidin, Noriah; Riaz, Saira; Naseem, Shahzad; Marsin Sanagi, Mohd.; Imran, M.

    2016-04-01

    Porous acid catalyzed TiO2 single, SiO2-TiO2 hybrid, and TiO2/SiO2-TiO2/SiO2 multilayer coatings are synthesized and characterized for optical and electro-optical applications. The reflection value is reasonably reduced from the surface of the glass by integrating sol-gel based spin-coated single and multilayer thin films. Structurally, the films show uniform, crack-free, and porous nanofilms with good surface roughness of below 10 nm, which has potential for optical applications. Wide range tunability of refractive index (2.83 to 1.59) with more than 78% optical transparency is observed. The multilayered reflection profile is observed around 0.18%, so these coatings are desirable for optochemical functional devices.

  9. Quantitative analysis of electron energy loss spectra and modelling of optical properties of multilayer systems for extreme ultraviolet radiation regime

    SciTech Connect

    Gusenleitner, S.; Hauschild, D.; Reinert, F.; Handick, E.

    2014-03-28

    Ruthenium capped multilayer coatings for use in the extreme ultraviolet (EUV) radiation regime have manifold applications in science and industry. Although the Ru cap shall protect the reflecting multilayers, the surface of the heterostructures suffers from contamination issues and surface degradation. In order to get a better understanding of the effects of these impurities on the optical parameters, reflection electron energy loss spectroscopy (REELS) measurements of contaminated and H cleaned Ru multilayer coatings were taken at various primary electron beam energies. Experiments conducted at low primary beam energies between 100 eV and 1000 eV are very surface sensitive due to the short inelastic mean free path of the electrons in this energy range. Therefore, influences of the surface condition on the above mentioned characteristics can be appraised. In this paper, it can be shown that carbon and oxide impurities on the mirror surface decrease the transmission of the Ru cap by about 0.75% and the overall reflectance of the device is impaired as the main share of the non-transmitted EUV light is absorbed in the contamination layer.

  10. Deposition and characterization of titania-silica optical multilayers by asymmetric bipolar pulsed dc sputtering of oxide targets

    NASA Astrophysics Data System (ADS)

    Sagdeo, P. R.; Shinde, D. D.; Misal, J. S.; Kamble, N. M.; Tokas, R. B.; Biswas, A.; Poswal, A. K.; Thakur, S.; Bhattacharyya, D.; Sahoo, N. K.; Sabharwal, S. C.

    2010-02-01

    Titania-silica (TiO2/SiO2) optical multilayer structures have been conventionally deposited by reactive sputtering of metallic targets. In order to overcome the problems of arcing, target poisoning and low deposition rates encountered there, the application of oxide targets was investigated in this work with asymmetric bipolar pulsed dc magnetron sputtering. In order to evaluate the usefulness of this deposition methodology, an electric field optimized Fabry Perot mirror for He-Cd laser (λ = 441.6 nm) spectroscopy was deposited and characterized. For comparison, this mirror was also deposited by the reactive electron beam (EB) evaporation technique. The mirrors developed by the two complementary techniques were investigated for their microstructural and optical reflection properties invoking atomic force microscopy, ellipsometry, grazing incidence reflectometry and spectrophotometry. From these measurements the layer geometry, optical constants, mass density, topography, surface and interface roughness and disorder parameters were evaluated. The microstructural properties and spectral functional characteristics of the pulsed dc sputtered multilayer mirror were found to be distinctively superior to the EB deposited mirror. The knowledge gathered during this study has been utilized to develop a 21-layer high-pass edge filter for radio photoluminescence dosimetry.

  11. Electro-thermal control of aluminum-doped zinc oxide/vanadium dioxide multilayered thin films for smart-device applications

    NASA Astrophysics Data System (ADS)

    Skuza, J. R.; Scott, D. W.; Mundle, R. M.; Pradhan, A. K.

    2016-02-01

    We demonstrate the electro-thermal control of aluminum-doped zinc oxide (Al:ZnO) /vanadium dioxide (VO2) multilayered thin films, where the application of a small electric field enables precise control of the applied heat to the VO2 thin film to induce its semiconductor-metal transition (SMT). The transparent conducting oxide nature of the top Al:ZnO film can be tuned to facilitate the fine control of the SMT of the VO2 thin film and its associated properties. In addition, the Al:ZnO film provides a capping layer to the VO2 thin film, which inhibits oxidation to a more energetically favorable and stable V2O5 phase. It also decreases the SMT of the VO2 thin film by approximately 5-10 °C because of an additional stress induced on the VO2 thin film and/or an alteration of the oxygen vacancy concentration in the VO2 thin film. These results have significant impacts on technological applications for both passive and active devices by exploiting this near-room-temperature SMT.

  12. Electro-thermal control of aluminum-doped zinc oxide/vanadium dioxide multilayered thin films for smart-device applications.

    PubMed

    Skuza, J R; Scott, D W; Mundle, R M; Pradhan, A K

    2016-02-17

    We demonstrate the electro-thermal control of aluminum-doped zinc oxide (Al:ZnO) /vanadium dioxide (VO2) multilayered thin films, where the application of a small electric field enables precise control of the applied heat to the VO2 thin film to induce its semiconductor-metal transition (SMT). The transparent conducting oxide nature of the top Al:ZnO film can be tuned to facilitate the fine control of the SMT of the VO2 thin film and its associated properties. In addition, the Al:ZnO film provides a capping layer to the VO2 thin film, which inhibits oxidation to a more energetically favorable and stable V2O5 phase. It also decreases the SMT of the VO2 thin film by approximately 5-10 °C because of an additional stress induced on the VO2 thin film and/or an alteration of the oxygen vacancy concentration in the VO2 thin film. These results have significant impacts on technological applications for both passive and active devices by exploiting this near-room-temperature SMT.

  13. Electro-thermal control of aluminum-doped zinc oxide/vanadium dioxide multilayered thin films for smart-device applications

    PubMed Central

    Skuza, J. R.; Scott, D. W.; Mundle, R. M.; Pradhan, A. K.

    2016-01-01

    We demonstrate the electro-thermal control of aluminum-doped zinc oxide (Al:ZnO) /vanadium dioxide (VO2) multilayered thin films, where the application of a small electric field enables precise control of the applied heat to the VO2 thin film to induce its semiconductor-metal transition (SMT). The transparent conducting oxide nature of the top Al:ZnO film can be tuned to facilitate the fine control of the SMT of the VO2 thin film and its associated properties. In addition, the Al:ZnO film provides a capping layer to the VO2 thin film, which inhibits oxidation to a more energetically favorable and stable V2O5 phase. It also decreases the SMT of the VO2 thin film by approximately 5–10 °C because of an additional stress induced on the VO2 thin film and/or an alteration of the oxygen vacancy concentration in the VO2 thin film. These results have significant impacts on technological applications for both passive and active devices by exploiting this near-room-temperature SMT. PMID:26884225

  14. Feasibility of Ultra-Thin Fiber-Optic Dosimeters for Radiotherapy Dosimetry.

    PubMed

    Lee, Bongsoo; Kwon, Guwon; Shin, Sang Hun; Kim, Jaeseok; Yoo, Wook Jae; Ji, Young Hoon; Jang, Kyoung Won

    2015-11-17

    In this study, prototype ultra-thin fiber-optic dosimeters were fabricated using organic scintillators, wavelength shifting fibers, and plastic optical fibers. The sensor probes of the ultra-thin fiber-optic dosimeters consisted of very thin organic scintillators with thicknesses of 100, 150 and 200 μm. These types of sensors cannot only be used to measure skin or surface doses but also provide depth dose measurements with high spatial resolution. With the ultra-thin fiber-optic dosimeters, surface doses for gamma rays generated from a Co-60 therapy machine were measured. Additionally, percentage depth doses in the build-up regions were obtained by using the ultra-thin fiber-optic dosimeters, and the results were compared with those of external beam therapy films and a conventional fiber-optic dosimeter.

  15. Feasibility of Ultra-Thin Fiber-Optic Dosimeters for Radiotherapy Dosimetry

    PubMed Central

    Lee, Bongsoo; Kwon, Guwon; Shin, Sang Hun; Kim, Jaeseok; Yoo, Wook Jae; Ji, Young Hoon; Jang, Kyoung Won

    2015-01-01

    In this study, prototype ultra-thin fiber-optic dosimeters were fabricated using organic scintillators, wavelength shifting fibers, and plastic optical fibers. The sensor probes of the ultra-thin fiber-optic dosimeters consisted of very thin organic scintillators with thicknesses of 100, 150 and 200 μm. These types of sensors cannot only be used to measure skin or surface doses but also provide depth dose measurements with high spatial resolution. With the ultra-thin fiber-optic dosimeters, surface doses for gamma rays generated from a Co-60 therapy machine were measured. Additionally, percentage depth doses in the build-up regions were obtained by using the ultra-thin fiber-optic dosimeters, and the results were compared with those of external beam therapy films and a conventional fiber-optic dosimeter. PMID:26593917

  16. Fiber-optic ultrasonic hydrophone using short Fabry-Perot cavity with multilayer reflectors deposited on small stub.

    PubMed

    Kim, Kyung-Su; Mizuno, Yosuke; Nakamura, Kentaro

    2014-04-01

    A fiber-optic probe with dielectric multilayer films deposited on a small stub is studied for mega-hertz ultrasonic-wave detection in water. The small stub with a short Fabry-Perot cavity and distributed reflectors is attached on the fiber end. The structure is mechanically strong and withstands intense ultrasonic pressure. Ultrasonic waves at 1.56MHz are successfully detected in water with a good signal-to-noise ratio. The working principle and the characteristics are studied by comparing the ultrasonic sensitivity with that of a conventional piezoelectric hydrophone. The distance response and directional response are also investigated.

  17. Multilayer stress field interference in sandstone and mudstone thin interbed reservoir

    NASA Astrophysics Data System (ADS)

    Guo, Jian-Chun; Luo, Bo; Zhu, Hai-Yan; Yuan, Shu-Hang; Deng, Yan; Duan, You-Jing; Duan, Wei-Gang; Chen, Li

    2016-10-01

    General fracturing and separate layer fracturing play an important role in sandstone and mudstone thin interbed (SMTI) reservoirs, where one of the main issues is to control the excessive height growth of fracturing. The fracture propagation at the interface depends on the induced stress produced by the hydraulic fracturing construction. This paper employed a poroelastic coupled damage element with the cohesive zone method (CZM) to establish a 2D fracture quasi-static propagation model. A parametric study was performed under different fracture height, fracture width, pumping rate, fluid viscosity, in situ stress, elastic modulus and tensile strength with this model. General fracturing and separate layer fracturing are compared with each other through fracture morphology and induced stress. The simulation results show that the absolute value of induced stress increases with the decrease in matrix stress near the fracture tip. As a result, the propagation of the fractures is much easier due to the weakened degree of compression. The growth of fracture height and width, the increase in pumping rate and the excessively large or small value of fluid viscosity lead to larger induced stress on the interface. Higher in situ stress, lower elastic modulus, and higher tensile strength of the interlayers can control the excessive height growth of fracturing. The simulated results also show that the fractures are more likely to be overlapped with each other in general fracturing compared to that in separate-layer fracturing. Results of the simulations suggest that lower pumping rates, the proper value of fluid viscosity, separate layer fracturing and interlayers with higher in situ stress, lower elastic modulus and higher tensile strength tend to limit fracture height. Finally, the proposed model was applied to a practical oil field case to verify its effectiveness.

  18. Thin-film fiber optic hydrogen and temperature sensor system

    DOEpatents

    Nave, S.E.

    1998-07-21

    The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiber optic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences. 3 figs.

  19. Optical study of thin-film photovoltaic cells with apparent optical path length

    NASA Astrophysics Data System (ADS)

    Cho, Changsoon; Jeong, Seonju; Lee, Jung-Yong

    2016-09-01

    Extending the insufficient optical path length (OPL) in thin-film photovoltaic cells (PVs) is the key to achieving a high power conversion efficiency (PCE) in devices. Here, we introduce the apparent OPL (AOPL) as a figure of merit for light absorbing capability in thin-film PVs. The optical characteristics such as the structural effects and angular responses in thin-film PVs were analyzed in terms of the AOPL. Although the Lambertian scattering surface yields a broadband absorption enhancement in thin-film PVs, the enhancement is not as effective as in thick-film PVs. On the other hand, nanophotonic schemes are introduced as an approach to increasing the single-pass AOPL by inducing surface plasmon resonance. The scheme using periodic metal gratings is proved to increase the AOPL in a narrow wavelength range and specific polarization, overcoming the Yablonovitch limit. The AOPL calculation can be also adopted in the experimental analysis and a maximum AOPL of 4.15d (where d is the active layer thickness) is exhibited in the absorption band edge region of PTB7:PC70BM-based polymer PVs.

  20. Application of photothermal probe beam deflection technique for the high-sensitive characterization of optical thin films with respect to their optical, thermal, and thermoelastic inhomgeneities

    NASA Astrophysics Data System (ADS)

    Welsch, Eberhard; Ettrich, K.; Peters, M.; Blaschke, Holger; Ziegler, W.; Bodemann, Axel; Reichling, Michael

    1994-11-01

    Two-dimensional cw photothermal surface displacement (PTD) scans with high spatial resolution provide a new quality for thin-film characterization. This is demonstrated for optical single-layer films of MgF2 and for 248 nm high-reflecting Al2O3/SiO2 multilayer coatings. Inhomogeneities of the films were detected with a lateral resolution better than 2 micrometers . Photothermal images reveal that Al2O3/SiO2 coatings with low damage thresholds differ above all in the amplitude of the PTD background signal whereas high-damage-threshold-coatings excel in a noticeable decrease in defect concentration. On the other hand, pulsed thermal MIRAGE technique is shown to be capable to yield complementary information with respect to the subdamage behavior as well as the onset of UV damage in Al2O3/SiO2 laser mirrors. Thus, the physical origin of the UV radiation breakdown in optical thin films can be elucidated.

  1. Optical constants and nonlinear calculations of fluorescein/FTO thin film optical system

    NASA Astrophysics Data System (ADS)

    Zahran, H. Y.; Iqbal, Javed; Yahia, I. S.

    2016-11-01

    The organic thin films of fluorescein dye were deposited on fluorine-doped tin oxide glass substrate by using low-cost spin coating technique. The surface of the deposited film was characterized by using AFM and X-ray diffraction spectroscopy, which shows that the film is uniform and amorphous. The spectrophotometric study was carried out at the wavelength range of 300-2500 nm. The spectral dependences of the linear refractive index and absorption index were found to decrease as the wavelength was increased. Tauc's plot study revealed that the film shows the direct transition and energy band gap values were found 1.75 eV and 3.55 eV for the thin film and the substrate, respectively. Optical constants were found nearly the same in the higher energy domain (1.0-4.5 eV). Spectroscopic method was employed to study the nonlinear optical susceptibility χ (3). The deposited thin film is a promising optical system for new generation of optoelectronics.

  2. Multilayer Thin Film Polarizer Design for Far Ultraviolet using Induced Transmission and Absorption Technique

    NASA Technical Reports Server (NTRS)

    Kim, Jongmin; Zukic, Muamer; Wilson, Michele M.; Park, Jung Ho; Torr, Douglas G.

    1994-01-01

    Good theoretical designs of far ultraviolet polarizers have been reported using a MgF2/Al/MgF2 three layer structure on a thick Al layer as a substrate. The thicknesses were determined to induce transmission and absorption of p-polarized light. In these designs Al optical constants were used from films produced in ultrahigh vacuum (UHV: 10(exp -10) torr). Reflectance values for polarizers fabricated in a conventional high vacuum (p approx. 10(exp -6 torr)) using the UHV design parameters differed dramatically from the design predictions. Al is a highly reactive material and is oxidized even in a high vacuum chamber. In order to solve the problem other metals have been studied. It is found that a larger reflectance difference is closely related to higher amplitude and larger phase difference of Fresnel reflection coefficients between two polarizations at the boundary of MgF2/metal. It is also found that for one material a larger angle of incidence from the surface normal brings larger amplitude and phase difference. Be and Mo are found good materials to replace Al. Polarizers designed for 121.6 nm with Be at 60 deg and with Mo at 70 deg are shown as examples.

  3. Optical and electrical properties of thin superconducting films

    NASA Technical Reports Server (NTRS)

    Covington, Billy C.; Jing, Feng Chen

    1990-01-01

    Infrared spectroscopic techniques can provide a vital probe of the superconducting energy gap which is one of the most fundamental physical properties of superconductors. Currently, the central questions regarding the optical properties of superconductors are how the energy gap can be measured by infrared techniques and at which frequency the gap exists. An effective infrared spectroscopic method to investigate the superconducting energy gap, Eg, was developed by using the Bomem DA 3.01 Fourier Transformation Spectrophotometer. The reflectivity of a superconducting thin film of YBaCuO deposited on SrTiO3 was measured. A shoulder was observed in the superconducting state reflectance R(sub S) at 480/cm. This gives a value of Eg/kT(sub c) = 7.83, where k is the Boltzmann constant and T(sub c) is the superconducting transition temperature, from which, it is suggested that YBaCuO is a very strong coupling superconductor.

  4. Model of a thin film optical fiber fluorosensor

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1991-01-01

    The efficiency of core-light injection from sources in the cladding of an optical fiber is modeled analytically by means of the exact field solution of a step-profile fiber. The analysis is based on the techniques by Marcuse (1988) in which the sources are treated as infinitesimal electric currents with random phase and orientation that excite radiation fields and bound modes. Expressions are developed based on an infinite cladding approximation which yield the power efficiency for a fiber coated with fluorescent sources in the core/cladding interface. Marcuse's results are confirmed for the case of a weakly guiding cylindrical fiber with fluorescent sources uniformly distributed in the cladding, and the power efficiency is shown to be practically constant for variable wavelengths and core radii. The most efficient fibers have the thin film located at the core/cladding boundary, and fibers with larger differences in the indices of refraction are shown to be the most efficient.

  5. Model of a thin film optical fiber fluorosensor

    NASA Astrophysics Data System (ADS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1991-03-01

    The efficiency of core-light injection from sources in the cladding of an optical fiber is modeled analytically by means of the exact field solution of a step-profile fiber. The analysis is based on the techniques by Marcuse (1988) in which the sources are treated as infinitesimal electric currents with random phase and orientation that excite radiation fields and bound modes. Expressions are developed based on an infinite cladding approximation which yield the power efficiency for a fiber coated with fluorescent sources in the core/cladding interface. Marcuse's results are confirmed for the case of a weakly guiding cylindrical fiber with fluorescent sources uniformly distributed in the cladding, and the power efficiency is shown to be practically constant for variable wavelengths and core radii. The most efficient fibers have the thin film located at the core/cladding boundary, and fibers with larger differences in the indices of refraction are shown to be the most efficient.

  6. Optically transparent frequency selective surfaces on flexible thin plastic substrates

    SciTech Connect

    Dewani, Aliya A. O’Keefe, Steven G.; Thiel, David V.; Galehdar, Amir

    2015-02-15

    A novel 2D simple low cost frequency selective surface was screen printed on thin (0.21 mm), flexible transparent plastic substrate (relative permittivity 3.2). It was designed, fabricated and tested in the frequency range 10-20 GHz. The plane wave transmission and reflection coefficients agreed with numerical modelling. The effective permittivity and thickness of the backing sheet has a significant effect on the frequency characteristics. The stop band frequency reduced from 15GHz (no backing) to 12.5GHz with polycarbonate. The plastic substrate thickness beyond 1.8mm has minimal effect on the resonant frequency. While the inner element spacing controls the stop-band frequency, the substrate thickness controls the bandwidth. The screen printing technique provided a simple, low cost FSS fabrication method to produce flexible, conformal, optically transparent and bio-degradable FSS structures which can find their use in electromagnetic shielding and filtering applications in radomes, reflector antennas, beam splitters and polarizers.

  7. Microstructural and Optical Characterization of Potassium Niobate Thin Films

    NASA Astrophysics Data System (ADS)

    Chow, Alice Foo Bing

    1995-01-01

    High quality epitaxial orthorhombic potassium niobate rm (KNbO_3) thin films have been grown by a computer-controlled, rotating multi -target ion-beam sputter deposition technique. Processing parameters, such as deposition temperature, beam voltage, ion source, target dwell times, pre-deposition substrate annealing, curing, and cleaning, and choice of substrate and substrate supplier are all critical conditions that have been either optimized or chosen favorably to produce dense films with a high degree of epitaxy and a smooth surface and interface. rm KNbO_3 thin films have been deposited on magnesium oxide, MgO (001), magnesium aluminate spinel, rm MgAl_2O_4 (001), and potassium tantalate, rm KTaO_3 (001) substrates. These substrates were chosen to provide a range of microstructures, lattice mismatches, and refractive index mismatches. The rm KNbO_3 films were microstructurally characterized by x-ray diffraction and rocking curves, Rutherford backscattering spectrometry and ion-channeling, transmission electron microscopy, field emission scanning electron microscopy, and atomic force microscopy. The degree of epitaxy is affected by the substrate and can be correlated with the lattice mismatch. Optical properties such as refractive index and optical scattering losses were analyzed by prism-coupling and an optical fiber loss method, respectively. Results show that the rm KNbO_3 films are dense and the optical losses seem to be dominated by bulk scattering originating from twin domains, grain boundaries or grain size, with partial contributions from surface/interface scattering. Potassium tantalum niobium oxide rm (K(Ta,Nb)O_3), KTaO_3, and amorphous tantalum oxide rm (Ta_2O _5) thin films were also grown and characterized to determine the specific roles of surface/interface scattering, twin domains, and oxygen vacancies. MgO buffer layers were also deposited on silicon, Si (001), gallium arsenide, GaAs (001), and various orientations of sapphire rm (Al_2O_3

  8. Optically transparent frequency selective surfaces on flexible thin plastic substrates

    NASA Astrophysics Data System (ADS)

    Dewani, Aliya A.; O'Keefe, Steven G.; Thiel, David V.; Galehdar, Amir

    2015-02-01

    A novel 2D simple low cost frequency selective surface was screen printed on thin (0.21 mm), flexible transparent plastic substrate (relative permittivity 3.2). It was designed, fabricated and tested in the frequency range 10-20 GHz. The plane wave transmission and reflection coefficients agreed with numerical modelling. The effective permittivity and thickness of the backing sheet has a significant effect on the frequency characteristics. The stop band frequency reduced from 15GHz (no backing) to 12.5GHz with polycarbonate. The plastic substrate thickness beyond 1.8mm has minimal effect on the resonant frequency. While the inner element spacing controls the stop-band frequency, the substrate thickness controls the bandwidth. The screen printing technique provided a simple, low cost FSS fabrication method to produce flexible, conformal, optically transparent and bio-degradable FSS structures which can find their use in electromagnetic shielding and filtering applications in radomes, reflector antennas, beam splitters and polarizers.

  9. Deducing effective light transport parameters in optically thin systems

    NASA Astrophysics Data System (ADS)

    Mazzamuto, G.; Pattelli, L.; Toninelli, C.; Wiersma, D. S.

    2016-02-01

    We present an extensive Monte Carlo study on light transport in optically thin slabs, addressing both axial and transverse propagation. We systematically characterize diffusive transport in this intermediate scattering regime, notably in terms of the spatial variance of the transmitted/reflected profile. Focusing on late, multiply scattered light, we test the validity of the prediction cast by diffusion theory that the spatial variance should grow independently of absorption and, to a first approximation, of the sample thickness and refractive index contrast. Based on a large set of simulated data, we build a freely available look-up table routine enabling reliable and precise determination of the microscopic transport parameters starting from robust observables which are independent from absolute intensity measurements. We also present the Monte Carlo software package that was developed for the purpose of this study.

  10. Roughness, optical, and wetting properties of nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Schröder, Sven; Coriand, Luisa; Duparré, Angela

    2013-09-01

    Roughness structures are essential for a variety of functional surfaces, for example surfaces with extreme wetting behavior like superhydrophobicity or superhydrophilicity. On the other hand, roughness also gives rise to light scattering, and thus limits the usability of such surfaces for optical applications. Our approach is based on using small-scale intrinsic roughness components of thin film coatings to achieve the desired functional properties while keeping the light scattering at acceptable levels. A comprehensive measurement and analysis methodology for effectively predicting, defining and controlling the structural and wetting properties of stochastically rough superhydrophobic surfaces is presented. Power Spectral Density (PSD) functions determined from atomic force microscopy data are used for thorough roughness analysis as well as to predict the wetting and light scattering properties. Dynamic contact angle analysis is performed by measuring advancing, receding, roll-off, and bounce-off angles. Examples of natural and technical superhydrophobic surfaces like the Lotus leaf and thin film coatings with stochastic nanoroughness are given. These surfaces reveal high advancing contact angles, low contact angle hysteresis, low roll-off angles, and, consequently, the effect of self-cleaning.

  11. Piezoelectric and Dielectric Properties of Multilayered BaTiO3/(Ba,Ca)TiO3/CaTiO3 Thin Films.

    PubMed

    Zhu, Xiao Na; Gao, Ting Ting; Xu, Xing; Liang, Wei Zheng; Lin, Yuan; Chen, Chonglin; Chen, Xiang Ming

    2016-08-31

    Highly oriented multilayered BaTiO3-(Ba,Ca)TiO3-CaTiO3 thin films were fabricated on Nb-doped (001) SrTiO3 (Nb:STO) substrates by pulsed laser deposition. The configurations of multilayered BaTiO3-(Ba,Ca)TiO3-CaTiO3 thin films are designed with the thickness ratio of 1:1:1 and 2:1:1 and total thickness ∼300 nm. Microstructural characterization by X-ray diffraction indicates that the as-deposited thin films are highly c-axis oriented and large in-plane strain is determined in BaTiO3 and CaTiO3 layers. Piezoresponse force microscopy (PFM) studies reveal an intense in-plane polarization component, whereas the out-of-plane shows inferior phase contrast. The optimized combination is found to be the BaTiO3-(Ba0.85Ca0.15)TiO3-CaTiO3 structure with combination ratio 2:1:1, which displays the largest domain switching amplitude under DC electric field, the largest room-temperature dielectric constant ∼646, a small dielectric loss of 0.03, and the largest dielectric tunability of ∼50% at 400 kV/cm. These results suggest that the enhanced dielectric and tunability performance are greatly associated with the large in-plane polarization component and domain switching.

  12. Investigations of the structural, morphological and electrical properties of multilayer ZnO/TiO2 thin films, deposited by sol-gel technique

    NASA Astrophysics Data System (ADS)

    Khan, M. I.; Bhatti, K. A.; Qindeel, Rabia; Bousiakou, Leda G.; Alonizan, Norah; Fazal-e-Aleem

    Investigations of the structural, morphological and electrical properties of multilayer ZnO/TiO2 thin films deposited by sol-gel technique on glass substrate. Sol-gel is a technique in which compound is dissolved in a liquid in order to bring it back as a solid in a controlled manner. TiO2 solution was obtained by dissolving 0.4 g of TiO2 nano powder in 5 ml ethanol and 5 ml diethylene glycol. ZnO solution was obtained by dissolving 0.88 g zinc acetate in 20 ml of 2-methoxyethanol. X-ray diffraction (XRD) (PW 3050/60 PANalytical X'Pert PRO diffractometer) results showed that the crystallinity is improved when the number of ZnO/TiO2 layers increased. Also it shows the three phases (rutile, anatase and brookite) of TiO2. Surface morphology measured by scanning electron microscopy (SEM) (Quanta 250 fei) revealed that Crakes are present on the surface of ZnO/TiO2 thin films which are decreased when the number of ZnO/TiO2 layers increased. Four point probe (KIETHLEY instrument) technique used to investigate the electrical properties of ZnO/TiO2 showed the average resistivity decreased by increasing the number of ZnO/TiO2 layers. These results indicated that the multilayer thin films improved the quality of film crystallinity and electrical properties as compared to single layer.

  13. Piezoelectric and Dielectric Properties of Multilayered BaTiO3/(Ba,Ca)TiO3/CaTiO3 Thin Films.

    PubMed

    Zhu, Xiao Na; Gao, Ting Ting; Xu, Xing; Liang, Wei Zheng; Lin, Yuan; Chen, Chonglin; Chen, Xiang Ming

    2016-08-31

    Highly oriented multilayered BaTiO3-(Ba,Ca)TiO3-CaTiO3 thin films were fabricated on Nb-doped (001) SrTiO3 (Nb:STO) substrates by pulsed laser deposition. The configurations of multilayered BaTiO3-(Ba,Ca)TiO3-CaTiO3 thin films are designed with the thickness ratio of 1:1:1 and 2:1:1 and total thickness ∼300 nm. Microstructural characterization by X-ray diffraction indicates that the as-deposited thin films are highly c-axis oriented and large in-plane strain is determined in BaTiO3 and CaTiO3 layers. Piezoresponse force microscopy (PFM) studies reveal an intense in-plane polarization component, whereas the out-of-plane shows inferior phase contrast. The optimized combination is found to be the BaTiO3-(Ba0.85Ca0.15)TiO3-CaTiO3 structure with combination ratio 2:1:1, which displays the largest domain switching amplitude under DC electric field, the largest room-temperature dielectric constant ∼646, a small dielectric loss of 0.03, and the largest dielectric tunability of ∼50% at 400 kV/cm. These results suggest that the enhanced dielectric and tunability performance are greatly associated with the large in-plane polarization component and domain switching. PMID:27514235

  14. Evaluation of space environmental effects on metals and optical thin films on EOIM-3

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason A.; Linton, Roger C.; Finckenor, Miria M.; Kamenetzky, Rachel R.

    1995-01-01

    Metals and optical thin films exposed to the space environment on the Third Flight of the Evaluation of Oxygen Interactions with Materials (EOIM-3) payload, onboard Space Shuttle mission STS-46 were evaluated. The materials effects described in this paper include the effects of space exposure on various pure metals, optical thin films, and optical thin film metals. The changes induced by exposure to the space environment in the material properties were evaluated using bidirectional reflectance distribution function (BRDF), specular reflectance (250 nm to 2500 nm), ESCA, VUV reflectance (120 nm to 200 nm), ellipsometry, FTIR and optical properties. Using these analysis techniques gold optically thin film metal mirrors with nickel undercoats were observed to darken due to nickel diffusion through the gold to the surface. Also, thin film nickel mirrors formed nickel oxide due to exposure to both the atmosphere and space.

  15. HfO2/SiO2 multilayer based reflective and transmissive optics from the IR to the UV

    NASA Astrophysics Data System (ADS)

    Wang, Jue; Hart, Gary A.; Oudard, Jean Francois; Wamboldt, Leonard; Roy, Brian P.

    2016-05-01

    HfO2/SiO2 multilayer based reflective optics enable threat detection in the short-wave/middle-wave infrared and high power laser targeting capability in the near infrared. On the other hand, HfO2/SiO2 multilayer based transmissive optics empower early missile warning by taking advantage of the extremely low noise light detection in the deep-ultraviolet region where solar irradiation is strongly absorbed by the ozone layer of the earth's atmosphere. The former requires high laser damage resistance, whereas the latter needs a solar-blind property, i.e., high transmission of the radiation below 290 nm and strong suppression of the solar background from 300 nm above. The technical challenges in both cases are revealed. The spectral limits associated with the HfO2 and SiO2 films are discussed and design concepts are schematically illustrated. Spectral performances are realized for potential A and D and commercial applications.

  16. Extreme ultraviolet spectroscopy diagnostics of low-temperature plasmas based on a sliced multilayer grating and glass capillary optics

    SciTech Connect

    Kantsyrev, V. L.; Safronova, A. S.; Williamson, K. M.; Wilcox, P.; Ouart, N. D.; Yilmaz, M. F.; Struve, K. W.; Voronov, D. L.; Feshchenko, R. M.; Artyukov, I. A.; Vinogradov, A. V.

    2008-10-15

    New extreme ultraviolet (EUV) spectroscopic diagnostics of relatively low-temperature plasmas based on the application of an EUV spectrometer and fast EUV diodes combined with glass capillary optics is described. An advanced high resolution dispersive element sliced multilayer grating was used in the compact EUV spectrometer. For monitoring of the time history of radiation, filtered fast EUV diodes were used in the same spectral region (>13 nm) as the EUV spectrometer. The radiation from the plasma was captured by using a single inexpensive glass capillary that was transported onto the spectrometer entrance slit and EUV diode. The use of glass capillary optics allowed placement of the spectrometer and diodes behind the thick radiation shield outside the direction of a possible hard x-ray radiation beam and debris from the plasma source. The results of the testing and application of this diagnostic for a compact laser plasma source are presented. Examples of modeling with parameters of plasmas are discussed.

  17. Investigation of local and nonlocal nonlinear optical refraction effect in IZO thin films

    NASA Astrophysics Data System (ADS)

    Htwe, Zin Maung; Zhang, Yun-Dong; Yao, Cheng-Bao; Li, Hui; Yuan, Ping

    2016-10-01

    We report the local and nonlocal nonlinear optical refraction properties of indium doped zinc oxide (IZO) thin films using closed aperture Z-scan technique. The Z-scan results show the films have positive nonlinear optical refraction properties. The nonlocal parameter m of samples is increased with indium. In both of local and nonlocal studies, the nonlinear optical refractions of thin films were increased with In contents and laser energy. This relation reveals the role of In composition in IZO affects on the nonlinear optical responses of the films. These results make the IZO thin films as the promising application in optoelectronics devices.

  18. Estimation of thermal conductivity of amorphous silicon thin films from the optical reflectivity measurement.

    PubMed

    Moon, Seung-Jae; Choi, Jung Hyun

    2013-09-01

    Amorphous silicon (a-Si) thin film material is widely used in liquid crystal display and solar cell applications. Knowledge of its properties is important in enhancing device performance. The properties of a-Si thin film have not been well understood due to the lack of periodicity of the structure. Furthermore, thermal conductivity of a-Si thin film is a key parameter to understand the complex phase transformation mechanism from a-Si thin film to polysilicon thin film by analyzing the transient temperature during the laser recrystallization process. In this work, thermal conductivity of a-Si thin film was determined by measuring optical reflectivity. A-Si thin film was irradiated with a KrF excimer laser beam to raise its temperature. The raised film temperature affects temperature-dependent optical properties such as refractive indices and extinction coefficients. The temperature-dependent optical properties of refractive indices and extinction coefficients of a-Si thin film were measured by ellipsometry. In-situ transient reflectivity at the wavelength of 633 nm was obtained during the excimer laser irradiation. The numerical simulation of one-dimensional conduction equation was solved so that transient reflectivities were calculated with temperature-dependent optical properties combined with thin film optics. Therefore, a well-fitted thermal conductivity was determined by comparing the numerically obtained transient reflectivity with the experimentally measured reflectivity data. The determined thermal conductivity of a-Si thin films was 1.5 W/mK.

  19. Estimation of thermal conductivity of amorphous silicon thin films from the optical reflectivity measurement.

    PubMed

    Moon, Seung-Jae; Choi, Jung Hyun

    2013-09-01

    Amorphous silicon (a-Si) thin film material is widely used in liquid crystal display and solar cell applications. Knowledge of its properties is important in enhancing device performance. The properties of a-Si thin film have not been well understood due to the lack of periodicity of the structure. Furthermore, thermal conductivity of a-Si thin film is a key parameter to understand the complex phase transformation mechanism from a-Si thin film to polysilicon thin film by analyzing the transient temperature during the laser recrystallization process. In this work, thermal conductivity of a-Si thin film was determined by measuring optical reflectivity. A-Si thin film was irradiated with a KrF excimer laser beam to raise its temperature. The raised film temperature affects temperature-dependent optical properties such as refractive indices and extinction coefficients. The temperature-dependent optical properties of refractive indices and extinction coefficients of a-Si thin film were measured by ellipsometry. In-situ transient reflectivity at the wavelength of 633 nm was obtained during the excimer laser irradiation. The numerical simulation of one-dimensional conduction equation was solved so that transient reflectivities were calculated with temperature-dependent optical properties combined with thin film optics. Therefore, a well-fitted thermal conductivity was determined by comparing the numerically obtained transient reflectivity with the experimentally measured reflectivity data. The determined thermal conductivity of a-Si thin films was 1.5 W/mK. PMID:24205662

  20. Maria Goeppert-Mayer Award Talk: Novel Magnetism and Transport in Complex Oxide Thin Films, Multilayers and Nanostructures

    NASA Astrophysics Data System (ADS)

    Suzuki, Yuri

    2005-03-01

    In epitaxial complex oxide systems, epitaxial strain, cation substitution and nanofabrication are just some ways in which their magnetic, electronic and optical properties may be tuned. In addition, their surfaces and interfaces provide a rich playground for the exploration of novel magnetic properties not found in the bulk constituents and the development of functional interfaces to be incorporated into technological applications. We have probed magnetism in complex oxide materials through studies of epitaxial oxide thin films, nanostructures and junction devices. With our ability to control oxide film growth as well as our expertise in nanofabrication, we have been able to study the effects of surfaces and interfaces on magnetism in ultra-thin magnetic oxide films and magnetic oxide nanostructures. For example, we have found that the nature of local magnetic structure in submicron islands of colossal magnetoresistance (CMR) material reveals the importance of shape anisotropy as well as magnetostriction in determining the micromagnetics in such small CMR structures. We have also studied epitaxial oxide trilayer junctions composed of magnetite (Fe3O4) and doped manganite (La0.7Sr0.3MnO3) in which we have confirmed the theoretically predicted negative spin polarization of Fe3O4. Transport through the barrier can be understood in terms of hopping transport through localized states that preserves electron spin information.

  1. Thin-film fiber optic hydrogen and temperature sensor system

    DOEpatents

    Nave, Stanley E.

    1998-01-01

    The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiberoptic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences.

  2. Fabrication of multilayer TiO{sub 2} thin films for dye-sensitized solar cells with high conversion efficiency by electrophoresis deposition

    SciTech Connect

    Chang, Ho; Chen, Wei-An; Su, Hung-Ting; Chen, Sih-Li; David Huang, K.; Chien, Shu-Hua; Chen, Chih-Chieh

    2010-01-15

    This research coats a commercial TiO{sub 2} nanoparticle Degussa P25 with good roundness and size uniformity on an indium tin oxide (ITO) glass substrate and to be photoelectrical electrode by electrophoresis deposition. It combined with dye N719, electrolyte I{sup -}/ I{sub 3}{sup -} and counter-electrode of Pt layer to produce dye-sensitized solar cells (DSSCs). Through the electrophoretic technique, a multilayer film of an appropriate thickness is deposited in the suspension containing TiO{sub 2} nanoparticles and isopropanol. In this process, electric current, voltage, and the number of deposition cycles are well controlled to obtain a single TiO{sub 2} film of around 3.3 {mu}m thick. Stacking is then performed to obtain a multilayer-typed TiO{sub 2} film of around 12 {mu}m thick. As the sintering temperature reaches 400 C, the prepared multilayer TiO{sub 2} film with a good compactness can increase the dye adsorption capability of the thin film and enhance its adsorption percentage. In addition, the heat treatment will transfer a portion of the rutile crystalline into the anatase crystalline, resulting in better material properties for DSSCs application. DSSCs produced are exposed to metal halide lamp and their energy conversion efficiency is measured. The I-V curve of the produced DSSCs shows that it has an excellent energy conversion efficiency of 6.9%. (author)

  3. Photoreactive Thin Films of Azobenzene-Derivatized Poly(amic acid) and Poly(imide) Langmuir-Blodgett-Kuhn Multilayer Assemblies

    NASA Astrophysics Data System (ADS)

    Zong, Yun; Hees, Ulrike; Knoll, Wolfgang; Rühe, Jürgen

    Various poly(amic acid)s with azobenzene-chromophore sidegroups have been synthesized and structurally and functionally characterized. Their amphiphilic properties allowed us to prepare stable monomolecular layers at the water/air interface of a Langmuir trough, and to transfer these highly organized monolayers to solid supports via the Langmuir-Blodgett-Kuhn deposition protocol. The resulting multilayer assemblies were investigated by surface plasmon- and waveguide-optical techniques, by X-ray reflectometry, and by UV-vis and IR spectroscopies. Thermal imidization of the assemblies resulted in functional poly(imide) multilayers that still could undergo photoisomerization reactions in their azobenzene sidegroups. The kinetic parameters of this trans-cis and cis-trans isomerization, respectively, as well as, the resulting control of the alignment of a liquid crystal in contact to these ``command layers'' were evaluated.

  4. Optical properties analysis of Ta-doped TiO{sub 2} thin films on LaAlO{sub 3} substrates

    SciTech Connect

    Nurfani, Eka; Sutjahja, Inge M.; Rusydi, Andrivo; Darma, Yudi

    2015-09-30

    We study optical properties of Ta-doped TiO{sub 2} thin film on LaAlO{sub 3} substrate using spectroscopy ellipsometry (SE) analysis at energy range of 0.5 – 6.5 eV. Room temperature SE data for Ψ (amplitude ratio) and Δ (phase difference) between p- and s- polarized light waves are taken with multiple incident angles at several spots on the samples. Here, absorption coefficient has been extracted from SE measurements at photon incident angle of 70° for different Ta concentration (0.01, 0.4, and 5 at. %). Multilayer modelling is performed which takes into account reflections at each interface through Fresnel coefficients to obtain reasonably well the fitting of Ψ and Δ data simultaneously. As the results, we estimate that film thickness increases by increasing Ta concentration accompanied by the formation of a new electronic structure. By increasing Ta impurities, the blueshift of absorption coefficient (α) peaks is observable. This result indicates that TiO{sub 2} thin film becomes optically resistive by introducing Ta doping. Schematic model of interband transition inTiO{sub 2}:Ta will be proposed base on obtained optical properties. This study enables us to predict the role of Ta doping on the electronic and optical band structures of TiO{sub 2} thin film.

  5. Non-linear optics of nano-scale pentacene thin film

    NASA Astrophysics Data System (ADS)

    Yahia, I. S.; Alfaify, S.; Jilani, Asim; Abdel-wahab, M. Sh.; Al-Ghamdi, Attieh A.; Abutalib, M. M.; Al-Bassam, A.; El-Naggar, A. M.

    2016-07-01

    We have found the new ways to investigate the linear/non-linear optical properties of nanostructure pentacene thin film deposited by thermal evaporation technique. Pentacene is the key material in organic semiconductor technology. The existence of nano-structured thin film was confirmed by atomic force microscopy and X-ray diffraction. The wavelength-dependent transmittance and reflectance were calculated to observe the optical behavior of the pentacene thin film. It has been observed the anomalous dispersion at wavelength λ < 800 nm, whereas the normal dispersion was found at wavelength λ > 800. The non-linear refractive index of the deposited films was investigated. The linear optical susceptibility of pentacene thin film was calculated, and we observed the non-linear optical susceptibility of pentacene thin film at about 6 × 10-13 esu. The advantage of this work is to use of spectroscopic method to calculate the liner and non-liner optical response of pentacene thin films rather than expensive Z-scan. The calculated optical behavior of the pentacene thin films could be used in the organic thin films base advanced optoelectronic devices such as telecommunications devices.

  6. Damage of multilayer optics with varying capping layers induced by focused extreme ultraviolet beam

    SciTech Connect

    Jody Corso, Alain; Nicolosi, Piergiorgio; Nardello, Marco; Guglielmina Pelizzo, Maria; Barkusky, Frank; Mann, Klaus; Mueller, Matthias

    2013-05-28

    Extreme ultraviolet Mo/Si multilayers protected by capping layers of different materials were exposed to 13.5 nm plasma source radiation generated with a table-top laser to study the irradiation damage mechanism. Morphology of single-shot damaged areas has been analyzed by means of atomic force microscopy. Threshold fluences were evaluated for each type of sample in order to determine the capability of the capping layer to protect the structure underneath.

  7. An investigation of Au/Ti multilayer thin-films: surface morphology, structure and interfacial/surface migration of constituents under applied thermal stress

    NASA Astrophysics Data System (ADS)

    Senevirathne, Indrajith; Kemble, Eric; Lavoie, John

    2014-03-01

    Multilayer thin films are ubiquitous in industry. Au/Ti/substrate is unique due to possible biological applications in proof of concept devices. Material used for substrates include borosilicate glass, and quartz. Typical Ti depositions on substrates give rise to Stanski-Krastonov (SK) like growth while Frank-van der Merwe (FM) like growth is preferred. Ti films with thickness of ~ 100nm were deposited onto varying substrates using a thermal evaporator. The additional Au layer is then deposited via magnetron sputter deposition at 100mtorr at low deposition rates (~ 1ML/min) onto the Ti thin film. These systems were annealed at varying temperatures and at different durations. Systems were investigated via AFM (Atomic Force Microscopy) probes to examine the surface morphology, and structure. Further, the ambient contamination and elemental distribution/diffusion at annealing was investigated via Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDX). PASSHE FPDC Annual Grant (LOU # 2010-LHU-03)

  8. Interface Properties of Atomic-Layer-Deposited Al2O3 Thin Films on Ultraviolet/Ozone-Treated Multilayer MoS2 Crystals.

    PubMed

    Park, Seonyoung; Kim, Seong Yeoul; Choi, Yura; Kim, Myungjun; Shin, Hyunjung; Kim, Jiyoung; Choi, Woong

    2016-05-11

    We report the interface properties of atomic-layer-deposited Al2O3 thin films on ultraviolet/ozone (UV/O3)-treated multilayer MoS2 crystals. The formation of S-O bonds on MoS2 after low-power UV/O3 treatment increased the surface energy, allowing the subsequent deposition of uniform Al2O3 thin films. The capacitance-voltage measurement of Au-Al2O3-MoS2 metal oxide semiconductor capacitors indicated n-type MoS2 with an electron density of ∼10(17) cm(-3) and a minimum interface trap density of ∼10(11) cm(-2) eV(-1). These results demonstrate the possibility of forming a high-quality Al2O3-MoS2 interface by proper UV/O3 treatment, providing important implications for their integration into field-effect transistors.

  9. Thin film technologies for optoelectronic components in fiber optic communication

    NASA Astrophysics Data System (ADS)

    Perinati, Agostino

    1998-02-01

    will grow at an annual average rate of 22 percent from 1.3 million fiber-km in 1995 to 3.5 million fiber-km in 2000. The worldwide components market-cable, transceivers and connectors - 6.1 billion in 1994, is forecasted to grow and show a 19 percent combined annual growth rate through the year 2000 when is predicted to reach 17.38 billion. Fiber-in-the-loop and widespread use of switched digital services will dominate this scenario being the fiber the best medium for transmitting multimedia services. As long as communication will partially replace transportation, multimedia services will push forward technology for systems and related components not only for higher performances but for lower cost too in order to get the consumers wanting to buy the new services. In the long distance transmission area (trunk network) higher integration of electronic and optoelectronic functions are required for transmitter and receiver in order to allow for higher system speed, moving from 2.5 Gb/s to 5, 10, 40 Gb/s; narrow band wavelength division multiplexing (WDM) filters are required for higher transmission capacity through multiwavelength technique and for optical amplifier. In the access area (distribution network) passive components as splitters, couplers, filters are needed together with optical amplifiers and transceivers for point-to-multipoint optical signal distribution: main issue in this area is the total cost to be paid by the customer for basic and new services. Multimedia services evolution, through fiber to the home and to the desktop approach, will be mainly affected by the availability of technologies suitable for component consistent integration, high yield manufacturing processes and final low cost. In this paper some of the optoelectronic components and related thin film technologies expected to mainly affect the fiber optic transmission evolution, either for long distance telecommunication systems or for subscriber network, are presented.

  10. Investigation of multilayered polyelectrolyte thin films by means of refractive index measurements, FT-IR spectroscopy and SEM

    NASA Astrophysics Data System (ADS)

    Bodurov, I.; Vlaeva, I.; Exner, G.; Uzunova, Y.; Russev, S.; Pilicheva, B.; Viraneva, A.; Yovcheva, T.; Grancharova, Ts; Sotirov, S.; Marudova, M.

    2016-02-01

    Multilayered polyelectrolyte films are promising structures in the biomedical field. In order to meet the demands for biomedical applications, the structures have to be built from biocompatible and/or biodegradable, nontoxic starting materials, possessing some specific functional properties, depending on the particular application. In the present study, the multilayered polyelectrolyte films with potential use as buccal bioadhesive drug delivery systems were investigated. They were prepared via layer-by-layer deposition of successive nanolayers onto substrate. Three different biopolymers were used. The substrate, from poly(lactic acid), was solvent casted. After that, it was subjected to corona treatment, which ensures surface charge excess for the multilayer deposition. The nanolayers were prepared either from 0.01 g/L solutions of chitosan or 0.05 g/L xanthan. Acetate buffer (pH 4.5 and ionic strength 1 M) was used as a solvent. The substrate was dipped successively into one of the solutions, allowing formation of polyelectrolyte complexes of chitosan (polycation) and xanthan (polyanion). The substrates was treated in negative corona. The multilayered structures consisted of 8, 9, 14, 15 or 20 nanolayers. Number of techniques, such refractive index measurements, FT- IR spectroscopy and SEM morphology were employed in order to monitor the properties of the so prepared multilayered polyelectrolyte films.

  11. Ordered organic-organic multilayer growth

    DOEpatents

    Forrest, Stephen R.; Lunt, Richard R.

    2016-04-05

    An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.

  12. Ordered organic-organic multilayer growth

    DOEpatents

    Forrest, Stephen R; Lunt, Richard R

    2015-01-13

    An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.

  13. Freestanding and Reactive Thin Films Fabricated by Covalent Layer-by-Layer Assembly and Subsequent Lift-Off of Azlactone-Containing Polymer Multilayers

    PubMed Central

    Buck, Maren E.

    2010-01-01

    We report an approach to the fabrication of freestanding and amine-reactive thin films that is based on the reactive layer-by-layer assembly and subsequent lift-off of azlactone-containing polymer multilayers. We demonstrate that covalently crosslinked multilayers fabricated using the azlactone-functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) and a primary amine-containing polymer [poly(ethyleneimine) (PEI)] can be delaminated from planar glass and silicon surfaces by immersion in mildly acidic aqueous environments to yield flexible freestanding membranes. These freestanding membranes are robust and can withstand exposure to strong acid, strong base, or incubation in high ionic strength solutions that typically lead to the disruption and erosion of polymer multilayers assembled by reversible weak interactions (e.g., ‘polyelectrolyte multilayers’ assembled by electrostatic interactions or hydrogen bonding). We demonstrate further that these PEI/PVDMA assemblies contain residual reactive azlactone functionality that can be exploited to chemically modify the films (either directly after fabrication or after they have been lifted off of the substrates on which they were fabricated) using a variety of amine-functionalized small molecules. These freestanding membranes can also be transferred readily onto other objects (for example, onto the surfaces of planar substrates containing holes or pores) to fabricate suspended polymer membranes and other film-functionalized interfaces. In addition to planar, two-dimensional freestanding films, this approach can be used to fabricate and isolate three-dimensional freestanding membranes (e.g., curved films or tubes) by layer-by-layer assembly on, and subsequent lift-off from, the surfaces of topologically complex substrates (e.g., the curved ends of glass tubing, etc.). The results of this investigation, when combined, suggest the basis of methods for the fabrication of stable, chemically-reactive, and

  14. Structural and optical properties of silicon rich oxide films in graded-stoichiometric multilayers for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Palacios-Huerta, L.; Cabañas-Tay, S. A.; Cardona-Castro, M. A.; Aceves-Mijares, M.; Domínguez-Horna, C.; Morales-Sánchez, A.

    2016-07-01

    Silicon nanocrystals (Si-ncs) are excellent candidates for the development of optoelectronic devices. Nevertheless, different strategies are still necessary to enhance their photo and electroluminescent properties by controlling their structural and compositional properties. In this work, the effect of the stoichiometry and structure on the optical properties of silicon rich oxide (SRO) films in a multilayered (ML) structure is studied. SRO MLs with silicon excess gradually increased towards the top and bottom and towards the center of the ML produced through the variation of the stoichiometry in each SRO layer were fabricated and confirmed by X-ray photoelectron spectroscopy. Si-ncs with three main sizes were observed by a transmission electron microscope, in agreement with the stoichiometric profile of each SRO layer. The presence of the three sized Si-ncs and some oxygen related defects enhances intense violet/blue and red photoluminescence (PL) bands. The SRO MLs were super-enriched with additional excess silicon by Si+ implantation, which enhanced the PL intensity. Oxygen-related defects and small Si-ncs (<2 nm) are mostly generated during ion implantation enhancing the violet/blue band to become comparable to the red band. The structural, compositional, and luminescent characteristics of the multilayers are the result of the contribution of the individual characteristics of each layer.

  15. Optical and structural characterization of CeO2/B4C multilayers near boron K-edge energy

    NASA Astrophysics Data System (ADS)

    Sertsu, M. G.; Giglia, A.; Brose, S.; Comisso, A.; Wang, Z. S.; Juschkin, L.; Nicolosi, P.

    2015-05-01

    A search for novel materials for making multilayers of high reflectivity has been driven by the vigorous demand towards miniaturizing photonics. A typical consumer of high performance multilayers (MLs) is the extreme ultraviolet lithography (EUVL) based on the 13.5 nm laser produced plasma (LPP) source. To sustain "Moore's law" and print fine features below 10 nm on integrated circuits (IC), source of radiation for the EUVL has to shift towards even shorter wavelengths where 6.x nm wavelength seems to be immediate successor. However, the 6.x nm EUV lithography needs MLs of reflectivity performance above 70 % to support high volume manufacturing (HVM). It is clear that more work is required particularly on the development of MLs with high reflectance, stable to thermal heat and sufficient lifetime. In this work new MLs of B4C/CeO2 are deposited, analyzed and characterized for the first time. Combinations of X-ray reflectometry (XRR) and EUV reflectance measurements near resonance edge of boron are analyzed to derive structural and optical parameters of MLs. ML coatings of B4C/CeO2 MLs have shown similar reflectance performance with the leading candidate MLs around 6.x nm wavelength. Analysis shows that interlayer diffusion is a major reason for low reflectivity performance. Cross-sectional scanning electron microscopy (SEM) images of the MLs have proved formation of interlayer diffusion.

  16. Silicon-integrated thin-film structure for electro-optic applications

    DOEpatents

    McKee, Rodney A.; Walker, Frederick Joseph

    2000-01-01

    A crystalline thin-film structure suited for use in any of an number of electro-optic applications, such as a phase modulator or a component of an interferometer, includes a semiconductor substrate of silicon and a ferroelectric, optically-clear thin film of the perovskite BaTiO.sub.3 overlying the surface of the silicon substrate. The BaTiO.sub.3 thin film is characterized in that substantially all of the dipole moments associated with the ferroelectric film are arranged substantially parallel to the surface of the substrate to enhance the electro-optic qualities of the film.

  17. Nonlinear Optical Properties of Organic and Polymeric Thin Film Materials of Potential for Microgravity Processing Studies

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin; Frazier, Donald O.; Paley, Mark S.; Penn, Benjamin; Witherow, William K.; Bank, Curtis; Shields, Angela; Hicks, Rosline; Ashley, Paul R.

    1996-01-01

    In this paper, we will take a closer look at the state of the art of polydiacetylene, and metal-free phthalocyanine films, in view of the microgravity impact on their optical properties, their nonlinear optical properties and their potential advantages for integrated optics. These materials have many attractive features with regard to their use in integrated optical circuits and optical switching. Thin films of these materials processed in microgravity environment show enhanced optical quality and better molecular alignment than those processed in unit gravity. Our studies of these materials indicate that microgravity can play a major role in integrated optics technology. Polydiacetylene films are produced by UV irradiation of monomer solution through an optical window. This novel technique of forming polydiacetylene thin films has been modified for constructing sophisticated micro-structure integrated optical patterns using a pre-programmed UV-Laser beam. Wave guiding through these thin films by the prism coupler technique has been demonstrated. The third order nonlinear parameters of these films have been evaluated. Metal-free phthalocyanine films of good optical quality are processed in our laboratories by vapor deposition technique. Initial studies on these films indicate that they have excellent chemical, laser, and environmental stability. They have large nonlinear optical parameters and show intrinsic optical bistability. This bistability is essential for optical logic gates and optical switching applications. Waveguiding and device making investigations of these materials are underway.

  18. Electrical and optical properties of organic thin films

    SciTech Connect

    Buckner, S.L.

    1991-01-01

    This research examines the applicability of organic thin films as electric insulators in metal-insulator-semiconductor (MIS) and metal-insulator-metal (MIM) devices and an anti-reflective (A-R) coatings for solar cells. Films of anthracene, stearic acid, and diacetylene alcohol were examined for their electrical and optical properties. Two techniques were used to deposit the films for these studies. Thermal evaporation in vacuum was used to deposit aluminum as electrodes and contacts in MIS and MIM devices. The organic films were deposited by either thermal evaporation or the Langmuir-Blodgett (L-B) dipping technique. Several vacuum systems and an L-B trough were fabricated for these studies and their design and construction are outlined. Several types of measurements were used to examined the properties of the organic films. For each type of measurement made on the devices, theories are outlined to analyze the data obtained. Finally, conclusions are drawn as to the applicable of these types of organic materials as insulators and coatings for semiconductor devices.

  19. Optical characterization of copper indium gallium diselenide thin films

    NASA Astrophysics Data System (ADS)

    Hebert, Damon

    Cu(In,Ga)Se2 (CIGS) and its alloys are the leading choice for thin film photovoltaic absorber layers due to their high performance in devices, low degradation, high optical absorption coefficient and high tolerance to off-stoichiometry and intrinsic defects. Film conductivity and recombination losses are controlled by intrinsic point defect concentrations, especially in the near-surface space-charge region of the heterojunction. Despite the amount of research already performed on CIGS alloys, their optoelectronic properties, defect chemistry and recombination mechanisms are still poorly understood. The focus of this dissertation is to optically characterize a selection of CIGS absorber layers fabricated by various techniques in order to better understand the radiative emission and defect physics. This work aims to identify the defects responsible for recombination and their relation to grain boundaries and band edge fluctuations, which limit device performance. This study used photoluminescence (PL) spectroscopy, photoluminescence excitation (PLE) spectroscopy, and cathodoluminescence (CL) to study radiative emissions from a variety of Cu-poor CIGS thin films. Three general types of CIGS films were analyzed. Polycrystalline layers deposited on Mo-coated soda lime glass, polycrystalline layers deposited on metal foil, and epitaxial films grown on (100) and (111) GaAs were analyzed in this work. This work concludes that the donor-acceptor pair recombination model used in most interpretations of CIGS emission should be replaced with a model that accounts for high compensation and band edge fluctuations, which is shown to be undoubtedly the case in Cu-poor CIGS. Within this model, the most commonly observed emissions were explained as free-to-bound types, specifically iii band-to-impurity (BI) and tail-to-impurity (TI) types. Band tail width was measured by PLE. A correlation was established between band tail width and device efficiency. CIGS absorber layers that

  20. On the Nature and Extent of Optically Thin Marine low Clouds

    NASA Technical Reports Server (NTRS)

    Leahy, L. V.; Wood, R.; Charlson, R. J.; Hostetler, C. A.; Rogers, R. R.; Vaughan, M. A.; Winker, D. M.

    2012-01-01

    Macrophysical properties of optically thin marine low clouds over the nonpolar oceans (60 deg S-60 deg N) are measured using 2 years of full-resolution nighttime data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). Optically thin clouds, defined as the subset of marine low clouds that do not fully attenuate the lidar signal, comprise almost half of the low clouds over the marine domain. Regionally, the fraction of low clouds that are optically thin (f(sub thin,cld)) exhibits a strong inverse relationship with the low-cloud cover, with maxima in the tropical trades (f(sub thin,cld) greater than 0.8) and minima in regions of persistent marine stratocumulus and in midlatitudes (f(sub thin,cld) less than 0.3). Domain-wide, a power law fit describes the cloud length distribution, with exponent beta = 2.03 +/- 0.06 (+/-95% confidence interval). On average, the fraction of a cloud that is optically thin decreases from approximately 1 for clouds smaller than 2 km to less than 0.3 for clouds larger than 30 km. This relationship is found to be independent of region, so that geographical variations in the cloud length distribution explain three quarters of the variance in f(sub thin,cld). Comparing collocated trade cumulus observations from CALIOP and the airborne High Spectral Resolution Lidar reveals that clouds with lengths smaller than are resolvable with CALIOP contribute approximately half of the low clouds in the region sampled. A bounded cascade model is constructed to match the observations from the trades. The model shows that the observed optically thin cloud behavior is consistent with a power law scaling of cloud optical depth and suggests that most optically thin clouds only partially fill the CALIOP footprint.

  1. Structural and optical properties of Sn1-xMnxO2 thin films

    NASA Astrophysics Data System (ADS)

    Tripathi, Akhilesh; Mishra, Sheo K.; Shukla, R. K.

    2015-06-01

    Sn1-xMnxO2 thin films are deposited by spray pyrolysis method. XRD of all the thin films show the amorphous nature. Synthesis of SnO2 is also confirmed by FTIR spectroscopy. Undoped SnO2 thin film is 60-70 % transparent in visible and near IR region and it increases up to 80-90% for 20 at. % Mn doped SnO2 thin film. The optical band gap is tunable linearly between 3.34 to 3.96 eV for 0≤x≤0.20 for Sn1-xMnxO2 amorphous thin films.

  2. Optical constants of SrF2 thin films in the 25-780-eV spectral range

    DOE PAGESBeta

    Rodriguez-de Marcos, Luis; Larraguert, Juan I.; Aznarez, Jose A.; Fernandez-Perea, Monica; Soufli, Regina; Mendez, Jose A.; Baker, Sherry L.; Gullikson, Eric M.

    2013-04-08

    The transmittance and the optical constants of SrF2 thin films, a candidate material for multilayer coatings operating in the extreme ultraviolet and soft x-rays, have been determined in the spectral range of 25–780 eV, in most of which no experimental data were previously available. SrF2 films of various thicknesses were deposited by evaporation onto room-temperature, thin Al support films, and their transmittance was measured with synchrotron radiation. The transmittance as a function of film thickness was used to calculate the extinction coefficient k at each photon energy. A decrease in density with increasing SrF2 film thickness was observed. In themore » calculation of k, this effect was circumvented by fitting the transmittance versus the product of thickness and density. The real part of the refractive index of SrF2 films was calculated from k with Kramers-Krönig analysis, for which the measured spectral range was extended both to lower and to higher photon energies with data in the literature combined with interpolations and extrapolations. In conclusion, with the application of f- and inertial sum rules, the consistency of the compiled data was found to be excellent.« less

  3. Structure and optical properties of plant cell wall bio-inspired materials: cellulose-lignin multilayer nanocomposites.

    PubMed

    Hambardzumyan, Arayik; Molinari, Michael; Dumelie, Nicolas; Foulon, Laurence; Habrant, Anouck; Chabbert, Brigitte; Aguié-Béghin, Véronique

    2011-11-01

    Interfacial affinity between lignin model compound (dehydrogenation polymer [DHP]) and cellulose nanocristals (CN) was studied before building a nanocomposite cellulose/lignin in multilayer form by spin-coating method. The adsorption isotherm of DHP was measured by ellipsometry at the liquid/CN film interface and showed that the surface concentration of adsorbed DHP increases with the bulk concentration in solution. The DHP appeared as globular structures on cellulosic film, as observed by AFM. Spreading a dense lignin layer on CN film gave rise to the disappearance of the InfraRed resonance bands related to the DHP aromatics. The film obtained from alternate layers of cellulose/DHP was transparent in visible light and had weak absorption in UV wavelengths. Optical properties measured in the visible wavelength range by ellipsometry and spectrophotometry indicated that beyond six bilayers (cellulose/DHP), the composite exhibits antireflexion properties. PMID:22078740

  4. Experimental realization of the porous silicon optical multilayers based on the 1-s sequence

    NASA Astrophysics Data System (ADS)

    Estevez, J. O.; Arriaga, J.; Méndez-Blas, A.; Robles-Cháirez, M. G.; Contreras-Solorio, D. A.

    2012-01-01

    We report experimental results of the reflectance spectra of deterministic aperiodic multilayer structures fabricated with porous silicon. The refractive index of the layers forming the structures follows the values generated by the self-similar sequence called "the 1s-counting sequence." We fabricated samples with 64, 128, and 256 layers with different thicknesses and porosities by controlling the applied current density and the etching time. The measured reflectance spectra exhibit properties of self-similarity, which are in good agreement with theoretical results reported previously.

  5. Effect of Thin Cirrus Clouds on Dust Optical Depth Retrievals From MODIS Observations

    NASA Technical Reports Server (NTRS)

    Feng, Qian; Hsu, N. Christina; Yang, Ping; Tsay, Si-Chee

    2011-01-01

    The effect of thin cirrus clouds in retrieving the dust optical depth from MODIS observations is investigated by using a simplified aerosol retrieval algorithm based on the principles of the Deep Blue aerosol property retrieval method. Specifically, the errors of the retrieved dust optical depth due to thin cirrus contamination are quantified through the comparison of two retrievals by assuming dust-only atmospheres and the counterparts with overlapping mineral dust and thin cirrus clouds. To account for the effect of the polarization state of radiation field on radiance simulation, a vector radiative transfer model is used to generate the lookup tables. In the forward radiative transfer simulations involved in generating the lookup tables, the Rayleigh scattering by atmospheric gaseous molecules and the reflection of the surface assumed to be Lambertian are fully taken into account. Additionally, the spheroid model is utilized to account for the nonsphericity of dust particles In computing their optical properties. For simplicity, the single-scattering albedo, scattering phase matrix, and optical depth are specified a priori for thin cirrus clouds assumed to consist of droxtal ice crystals. The present results indicate that the errors in the retrieved dust optical depths due to the contamination of thin cirrus clouds depend on the scattering angle, underlying surface reflectance, and dust optical depth. Under heavy dusty conditions, the absolute errors are comparable to the predescribed optical depths of thin cirrus clouds.

  6. Optical and morphological characteristics of organic thin films for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Zhong, Zhiyou; Sun, Fenglou

    2007-12-01

    Organic semiconductor thin films of tri-(8-hydroxyquinoline)-aluminum (Alq), 9,10-di-(2-naphthyl)-anthracene (ADN), and N,N'bis(naphthalen-1-yl)-N,N'bis(phenyl)-benzidine (NPB) for optoelectronic devices were deposited onto glass substrates by vacuum sublimation technique. The surface morphology and roughness of the thin film were characterized by means of atomic force microscopy (AFM). Experimental results indicate that all thin films present similar granular topography but different surface roughness. In addition, the optical transmittance spectra of thin films were measured by a double beam spectrophotometer and their corresponding optical properties were investigated. The complex refractive index and the optical band gap of thin films were obtained, respectively. Meanwhile, the dispersion behavior of the refractive index was studied in terms of Wemple-DiDomenico single oscillator model, and the oscillator parameters were achieved.

  7. Electrical and optical properties of in and Al doped ZnO thin film

    NASA Astrophysics Data System (ADS)

    Park, Sang-Uk; Koh, Jung-Hyuk

    2013-07-01

    In this study, to improve the electrical and optical properties of aluminium (Al) doped zinc oxide thin films, we have added small amounts of indium (In) to Al doped ZnO thin films. We will present the results of In and Al doped ZnO thin film on glass substrates prepared by the sol-gel processing method. A rapid thermal annealing process was applied to cure the thin film properties. Different amounts of In were used to dope the AZO thin films to find the optimum process condition. The effects of crystallinity were analyzed by an x-ray diffraction method. In addition, the optical transmittance and electrical proprties of In doped AZO thin films were investigated.

  8. X-Shaped electro-optic chromophore with remarkably blue-shifted optical absorption. Synthesis, characterization, linear/nonlinear optical properties, self-assembly, and thin film microstructural characteristics.

    PubMed

    Kang, Hu; Evmenenko, Guennadi; Dutta, Pulak; Clays, Koen; Song, Kai; Marks, Tobin J

    2006-05-10

    A novel type of "X-shaped" two-dimensional electro-optic (EO) chromophore with extended conjugation has been synthesized and characterized. This chromophore is found to exhibit a remarkably blue-shifted optical maximum (357 nm in CH(2)Cl(2)) while maintaining a very large first hyperpolarizability (beta). Hyper-Rayleigh Scattering (HRS) measurements at 800 nm provide a beta(zzz) value of 1840 x 10(-30) esu. Self-assembled thin films of this chromophore were fabricated via a layer-by-layer chemisorptive siloxane-based approach. The chromophoric multilayers have been characterized by transmission optical spectroscopy, advancing contact angle measurements, synchrotron X-ray reflectivity, atomic force microscopy, and angle-dependent polarized second harmonic generation spectroscopy. The self-assembled chromophoric films exhibit a dramatically blue-shifted optical maximum (325 nm) while maintaining a large EO response (chi(2)(333) approximately 232 pm/V at 1064 nm; r(33) approximately 45 pm/V at 1310 nm). This work demonstrates an attractive approach to developing EO materials offering improved nonlinearity-transparency trade-offs. PMID:16669690

  9. A Study of the Vertical Structure of Tropical (20 deg S-20 deg N) Optically Thin Clouds from SAGE II Observations

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Minnis, Patrick; McCormick, M. Patrick; Kent, Geoffrey S.; Yue, Glenn K.; Young, David F.; Skeens, Kristi M.

    1998-01-01

    The tropical cloud data obtained by the satellite instrument of the Stratospheric Aerosol and Gas Experiment (SAGE) II from October 1984 to May 1991 have been used to study cloud vertical distribution, including thickness and multilayer structure, and to estimate cloud optical depth. The results indicate that the SAGE-II-observed clouds are generally optically thin clouds, corresponding to a range of optical depth between approximately 8 x 10(exp -4) and 3 x 10(exp -1) with a mean of about 0.035. Two-thirds are classified as subvisual cirrus and one-third thin cirrus. Clouds between 2- to 3-km thick occur most frequently. Approximately 30% of the SAGE II cloud measurements are isolated single-layer clouds, while 65% are high clouds contiguous with an underlying opaque cloud that terminates the SAGE II profile. Thin clouds above detached opaque clouds at altitudes greater than 6.5 km occur less often. Only about 3% of the SAGE II single-layer clouds are located above the tropopause, while 58% of the cloud layers never reach the tropopause. More than one-third of the clouds appear at the tropopause. This study also shows that clouds occur more frequently and extend higher above the tropopause over the western Pacific than than over the eastern Pacific, especially during northern winter. The uncertainty of the derived results due to the SAGE II sampling constraints, data processing, and cloud characteristics is discussed.

  10. Nonlinear optical properties of zinc oxide doped bismuth thin films using Z-scan technique

    NASA Astrophysics Data System (ADS)

    Abed, S.; Bouchouit, K.; Aida, M. S.; Taboukhat, S.; Sofiani, Z.; Kulyk, B.; Figa, V.

    2016-06-01

    ZnO doped Bi thin films were grown on glass substrates by spray ultrasonic technique. This paper presents the effect of Bi doping concentration on structural and nonlinear optical properties of zinc oxide thin films. These thin films were characterized by X-ray diffractometer technique. XRD analysis revealed that the ZnO:Bi thin films indicated good preferential orientation along c-axis perpendicular to the substrate. The nonlinear optical properties such as nonlinear absorption coefficient (β) and third order nonlinear susceptibility (Imχ(3)) are investigated. The calculations have been performed with a Z scan technique using Nd:YAG laser emitting 532 nm. The reverse saturable absorption (RSA) mechanism was responsible for the optical limiting effect. The results suggest that this material considered as a promising candidate for future optical device applications.

  11. Optimization of generalized dielectric nanostructures for enhanced light trapping in thin-film photovoltaics via boosting the local density of optical states.

    PubMed

    Wang, Peng; Menon, Rajesh

    2014-01-13

    Recent work has shown that using a high-index cladding atop a lower-index photovoltaic absorber enables absorption of light beyond the ergodic (4n2) limit. In this paper, we propose a generalized optimization method for deriving optimal geometries that allow for such enhancement. Specifically, we adapted the direct-binary-search algorithm to optimize a complex 2-D multi-layer structure with the explicit goal of increasing photocurrent. We show that such an optimization results in enhancing the local density of optical states in an ultra-thin absorber, which forms a slot-waveguide geometry in the presence of a higher-index overcladding. Numerical simulations confirmed optical absorption approaching 100% and absorption-enhancement beyond the ergodic (4n2) limit for specific spectral bands of interest. Our method provides a direct, intuitive and computationally scalable approach for designing light-trapping nanostructures.

  12. Domain size criterion for the observation of all-optical helicity-dependent switching in magnetic thin films

    NASA Astrophysics Data System (ADS)

    El Hadri, Mohammed Salah; Hehn, Michel; Pirro, Philipp; Lambert, Charles-Henri; Malinowski, Grégory; Fullerton, Eric E.; Mangin, Stéphane

    2016-08-01

    To understand the necessary condition for the observation of all-optical helicity-dependent switching (AO-HDS) of magnetization in thin films, we investigated ferromagnetic Co/Pt and Co/Ni multilayers as well as ferrimagnetic TbCo alloys as a function of magnetic layer compositions and thicknesses. We show that both ferro- and ferrimagnets with high saturation magnetization show AO-HDS if their magnetic thickness is strongly reduced below a material-dependent threshold thickness. By taking into account the demagnetizing energy and the domain wall energy, we are able to define a criterion to predict whether AO-HDS or thermal demagnetization (TD) will be observed. This criterion for the observation of AO-HDS is that the equilibrium size of magnetic domains forming during the cooling process should be larger than the laser spot size. From these results we anticipate that more magnetic materials are expected to show AO-HDS. However, the effect of the optical pulses' helicity is hidden by the formation of small magnetic domains during the cooling process.

  13. Multifunctional organic thin films and their electronic/optical properties

    NASA Astrophysics Data System (ADS)

    Shao, Yan

    The concept of multifunctional organic thin films and their electronic/optical properties has been applied to organic functional device design, fabrication, and characterization. The organic devices involve organic light-emitting diodes (OLEDs) and organic photovoltaic devices (OPV) in this dissertation. In the research of graded junction structure of OLEDs, two kinds of naturally-formed graded junction (NFGJ) structures, sharp and shallow graded junctions, can be formed using single thermal evaporation boat loaded with uniformly mixed charge transport and light-emitting materials. OLEDs with NFGJ have been demonstrated in Chapter 3; the performance is comparable to the heterojunction OLEDs, but with better device lifetime. A novel method to prepare highly uniform mixed organic solid solutions through a high temperature and high-pressure fusion process has been demonstrated in Chapter 4. A series of fused organic solid solution (FOSS) compounds with NPD doped with different organic emitting dopants were prepared and DSC technique was utilized to determine the thermal characteristics. For the first time, the schematic phase diagram for this binary system has been obtained. High performance OLEDs of single color and white emission were fabricated and the device properties were characterized. In Chapter 5, an efficient photovoltaic heterojunction of tetracene and fullerene has been investigated and high performance organic solar cells have been demonstrated by thermal deposition and successive heat treatment. The preliminary conclusion for this enhancement is discussed and supported by atomic force microscopy images, absorption spectra and x-ray diffraction analysis. Additionally, an effective organic photovoltaic heterojunction based on the typical triplet material PtOEP was demonstrated. It is believed that introducing appropriate organic materials with long exciton lifetime is a very promising way to improve photovoltaic performance.

  14. Preparation, characterization, and infrared emissivity property of optically active polyurethane/TiO{sub 2}/SiO{sub 2} multilayered microspheres

    SciTech Connect

    Yang Yong; Zhou Yuming; Ge Jianhua; Wang Yongjuan; Zhu Yunxia

    2011-10-15

    Optically active polyurethane/titania/silica (LPU/TiO{sub 2}/SiO{sub 2}) multilayered core-shell composite microspheres were prepared by the combination of titania deposition on the surface of silica spheres and subsequent polymer grafting. LPU/TiO{sub 2}/SiO{sub 2} was characterized by FT-IR, UV-vis spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), SEM and TEM, and the infrared emissivity value (8-14 {mu}m) was investigated in addition. The results indicated that titania and polyurethane had been successfully coated onto the surfaces of silica microspheres. LPU/TiO{sub 2}/SiO{sub 2} exhibited clearly multilayered core-shell construction. The infrared emissivity values reduced along with the increase of covering layers thus proved that the interfacial interactions had direct influence on the infrared emissivity. Besides, LPU/TiO{sub 2}/SiO{sub 2} multilayered microspheres based on the optically active polyurethane took advantages of the orderly secondary structure and strengthened interfacial synergistic actions. Consequently, it possessed the lowest infrared emissivity value. - Graphical Abstract: Optically active polyurethane/titania/silica (LPU/TiO{sub 2}/SiO{sub 2}) multilayered core-shell composite microspheres were prepared by the combination of titania deposition on the surface of silica spheres and subsequent polymer grafting. Highlights: > Optically active polyurethane based on tyrosine was used for the modification of nanoparticles. > LPU/TiO{sub 2}/SiO{sub 2} multilayered core-shell microspheres were prepared and characterized. > Interfacial interactions and secondary structure affected the infrared emissivity of composite.

  15. Fabrication, performance, and figure metrology of epoxy-replicated aluminum foils for hard x-ray focusing multilayer-coated segmented conical optics

    NASA Astrophysics Data System (ADS)

    Jimenez-Garate, Mario A.; Craig, William W.; Hailey, Charles J.; Christensen, Finn E.; Hussain, Ahsen M.

    2000-11-01

    We fabricated x-ray mirrors for hard x-ray (>= 10 keV) telescopes using multilayer coatings and an improved epoxy- replicated aluminum foil (ERAF) nonvacuum technology. The ERAF optics have approximately 1 arcmin axial figure half- power diameter (HPD) and passed environmental testing. Reflectivity measurements at 8 keV on ERAFs with and without multilayer coatings show a 4.4 to 4.8 angstroms room mean square microroughness for correlation lengths optics. These developments lower cost and improve the optics performance of the HEFT (high-energy focusing telescope) and Constellation-X missions.

  16. Structural tailoring of hydrogen-bonded poly(acrylic acid)/poly(ethylene oxide) multilayer thin films for reduced gas permeability.

    PubMed

    Xiang, Fangming; Ward, Sarah M; Givens, Tara M; Grunlan, Jaime C

    2015-02-01

    Hydrogen bonded poly(acrylic acid) (PAA)/poly(ethylene oxide) (PEO) layer-by-layer assemblies are highly elastomeric, but more permeable than ionically bonded thin films. In order to expand the use of hydrogen-bonded assemblies to applications that require a better gas barrier, the effect of assembling pH on the oxygen permeability of PAA/PEO multilayer thin films was investigated. Altering the assembling pH leads to significant changes in phase morphology and bonding. The amount of intermolecular hydrogen bonding between PAA and PEO is found to increase with increasing pH due to reduction of COOH dimers between PAA chains. This improved bonding leads to smaller PEO domains and lower gas permeability. Further increasing the pH beyond 2.75 results in higher oxygen permeability due to partial deprotonation of PAA. By setting the assembling pH at 2.75, the negative impacts of COOH dimer formation and PAA ionization on intermolecular hydrogen bonding can be minimized, leading to a 50% reduction in the oxygen permeability of the PAA/PEO thin film. A 20 bilayer coating reduces the oxygen transmission rate of a 1.58 mm natural rubber substrate by 20 ×. These unique nanocoatings provide the opportunity to impart a gas barrier to elastomeric substrates without altering their mechanical behavior.

  17. Dependence of intermediated noble metals on the optical and electrical properties of ITO/metal/ITO multilayers

    NASA Astrophysics Data System (ADS)

    Lee, J. Y.; Yang, J. W.; Chae, J. H.; Park, J. H.; Choi, J. I.; Park, H. J.; Kim, Daeil

    2009-06-01

    Sn doped In 2O 3 (ITO) single layer and a sandwich structure of ITO/metal/ITO (IMI) multilayer films were deposited on a polycarbonate substrate using radio-frequency and direct-current magnetron sputtering process without substrate heating. The intermediated metal films in the IMI structure were Au and Cu films and the thickness of each layer in the IMI films was kept constant at 50 nm/10 nm/40 nm. In this study, the ITO/Au/ITO films show the lowest resistivity of 5.6 × 10 -5 Ω cm. However the films show the lower optical transmission of 71% at 550 nm than that (81%) of as deposited ITO films. The ITO/Cu/ITO films show an optical transmittance of 54% and electrical resistivity of 1.5 × 10 -4 Ω cm. Only the ITO/Au/ITO films showed the diffraction peaks in the XRD pattern. The figure of merit indicated that the ITO/Au/ITO films performed better in a transparent conducting electrode than in ITO single layer films and ITO/Cu/ITO films.

  18. Analytical model of optical field distribution of thin disk laser with thermal-optical aberration gain medium

    NASA Astrophysics Data System (ADS)

    Zhu, Guangzhi; Qiu, Yuli; Wang, Zexiong; Zhu, Xiao; Zhu, Changhong

    2016-08-01

    An analytical model is developed to analyze the optical field distribution of thin disk laser with a thermal-optical aberration gain medium. The fundamental mode field distribution is calculated by using the eigenvector method of the resonator transit matrix for different pumping parameters. The analytical results show that the uniformity of the pumping spot is an important factor that impacts the beam quality of thin disk laser. The uniform pumping spot is beneficial to decrease thermal aberration and Optical Path Difference (OPD) of thin disk crystal, and to improve the beam quality. However, the beam quality still decreases slightly with the increasing of pumping intensity under the uniform pumping condition. The main reason for degradation of beam quality is the aspherical part of OPD which leads to diffraction losses of the resonator and wavefront deformation.

  19. Structural, morphological, optical and photoluminescent properties of spray-deposited ZnSe thin film

    NASA Astrophysics Data System (ADS)

    Lohar, G. M.; Shinde, S. K.; Fulari, V. J.

    2014-11-01

    ZnSe thin films are successfully deposited by spray pyrolysis deposition technique. Deposited thin films are characterized by X-ray diffraction study, and it reveals that spray-deposited ZnSe thin films are polycrystalline with hexagonal crystal structure. Surface morphology is carried out by scanning electron microscopy. It shows cotton-like morphology, and optical properties, such as absorbance, transmittance, reflectance, band gap, refractive index, extinction coefficient are studied. Photoluminescence shows strong emission at 497 nm. Also, spray-deposited ZnSe thin films are hydrophilic in nature, which is shown by contact angle meter.

  20. Nonlinear optical characterization of ZnS thin film synthesized by chemical spray pyrolysis method

    SciTech Connect

    G, Sreeja V; Anila, E. I. R, Reshmi John, Manu Punnan; V, Sabitha P; Radhakrishnan, P.

    2014-10-15

    ZnS thin film was prepared by Chemical Spray Pyrolysis (CSP) method. The sample was characterized by X-ray diffraction method and Z scan technique. XRD pattern showed that ZnS thin film has hexagonal structure with an average size of about 5.6nm. The nonlinear optical properties of ZnS thin film was studied by open aperture Z-Scan technique using Q-switched Nd-Yag Laser at 532nm. The Z-scan plot showed that the investigated ZnS thin film has saturable absorption behavior. The nonlinear absorption coefficient and saturation intensity were also estimated.

  1. Optically thin ice clouds in Arctic : Formation processes

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Girard, E.; Pelon, J.; Blanchet, J.; Wobrock, W.; Gultepe, I.; Gayet, J.; Delanoë, J.; Mioche, G.; Adam de Villiers, R.

    2010-12-01

    Arctic ice cloud formation during winter is poorly understood mainly due to lack of observations and the remoteness of this region. Their influence on Northern Hemisphere weather and climate is of paramount importance, and the modification of their properties, linked to aerosol-cloud interaction processes, needs to be better understood. Large concentration of aerosols in the Arctic during winter is associated to long-range transport of anthropogenic aerosols from the mid-latitudes to the Arctic. Observations show that sulphuric acid coats most of these aerosols. Laboratory and in-situ measurements show that at cold temperature (<-30°C), acidic coating lowers the freezing point and deactivates ice nuclei (IN). Therefore, the IN concentration is reduced in these regions and there is less competition for the same available moisture. As a result, large ice crystals form in relatively small concentrations. It is hypothesized that the observed low concentration of large ice crystals in thin ice clouds is linked to the acidification of aerosols. Extensive measurements from ground-based sites and satellite remote sensing (CloudSat and CALIPSO) reveal the existence of two types of extended optically thin ice clouds (TICs) in the Arctic during the polar night and early spring. The first type (TIC-1) is seen only by the lidar, but not the radar, and is found in pristine environment whereas the second type (TIC-2) is detected by both sensors, and is associated with high concentration of aerosols, possibly anthropogenic. TIC-2 is characterized by a low concentration of ice crystals that are large enough to precipitate. To further investigate the interactions between TICs clouds and aerosols, in-situ, airborne and satellite measurements of specific cases observed during the POLARCAT and ISDAC field experiments are analyzed. These two field campaigns took place respectively over the North Slope of Alaska and Northern part of Sweden in April 2008. Analysis of cloud type can be

  2. Optically thin ice clouds in Arctic; Formation processes

    NASA Astrophysics Data System (ADS)

    Jouan, Caroline; Pelon, Jacques; Girard, Eric; Blanchet, Jean-Pierre; Wobrock, Wolfram; Gayet, Jean-Franćois; Schwarzenböck, Alfons; Gultepe, Ismail; Delanoë, Julien; Mioche, Guillaume

    2010-05-01

    Arctic ice cloud formation during winter is poorly understood mainly due to lack of observations and the remoteness of this region. Yet, their influence on Northern Hemisphere weather and climate is of paramount importance, and the modification of their properties, linked to aerosol-cloud interaction processes, needs to be better understood. Large concentration of aerosols in the Arctic during winter is associated to long-range transport of anthropogenic aerosols from the mid-latitudes to the Arctic. Observations show that sulphuric acid coats most of these aerosols. Laboratory and in-situ measurements show that at cold temperature (< -30°C), acidic coating lowers the freezing point and deactivates ice nuclei (IN). Therefore, the IN concentration is reduced in these regions and there is less competition for the same available moisture. As a result, large ice crystals form in relatively small concentrations. It is hypothesized that the observed low concentration of large ice crystals in thin ice clouds is linked to the acidification of aerosols. To check this, it is necessary to analyse cloud properties in the Arctic. Extensive measurements from ground-based sites and satellite remote sensing (CloudSat and CALIPSO) reveal the existence of two types of extended optically thin ice clouds (TICs) in the Arctic during the polar night and early spring. The first type (TIC-1) is seen only by the lidar, but not the radar, and is found in pristine environment whereas the second type (TIC-2) is detected by both sensors, and is associated with high concentration of aerosols, possibly anthropogenic. TIC-2 is characterized by a low concentration of ice crystals that are large enough to precipitate. To further investigate the interactions between TICs clouds and aerosols, in-situ, airborne and satellite measurements of specific cases observed during the POLARCAT and ISDAC field experiments are analyzed. These two field campaigns took place respectively over the North Slope of

  3. Surface plasmon resonance based fiber optic detection of chlorine utilizing polyvinylpyrolidone supported zinc oxide thin films.

    PubMed

    Tabassum, Rana; Gupta, Banshi D

    2015-03-21

    A highly sensitive chlorine sensor for an aqueous medium is fabricated using an optical fiber surface plasmon resonance (OFSPR) system. An OFSPR-based chlorine sensor is designed with a multilayer-type platform by zinc oxide (ZnO) and polyvinylpyrollidone (PVP) film morphology manipulations. Among all the methodologies of transduction reported in the field of solid state chemical and biochemical sensing, our attention is focused on the Kretschmann configuration optical fiber sensing technique using the mechanism of surface plasmon resonance. The optical fiber surface plasmon resonance (SPR) chlorine sensor is developed using a multimode optical fiber with the PVP-supported ZnO film deposited over a silver-coated unclad core of the fiber. A spectral interrogation mode of operation is used to characterize the sensor. In an Ag/ZnO/PVP multilayer system, the absorption of chlorine in the vicinity of the sensing region is performed by the PVP layer and the zinc oxide layer enhances the shift in resonance wavelength. It is, experimentally, demonstrated that the SPR wavelength shifts nonlinearly towards the red side of the visible region with an increase in the chlorine concentration in an aqueous medium while the sensitivity of the sensor decreases linearly with an increase in the chlorine concentration. As the proposed sensor utilizes an optical fiber, it possesses the additional advantages of fiber such as less signal degradation, less susceptibility to electromagnetic interference, possibility of remote sensing, probe miniaturization, probe re-usability, online monitoring, small size, light weight and low cost.

  4. Optical Gratings Coated with Thin Si3N4 Layer for Efficient Immunosensing by Optical Waveguide Lightmode Spectroscopy

    PubMed Central

    Diéguez, Lorena; Caballero, David; Calderer, Josep; Moreno, Mauricio; Martínez, Elena; Samitier, Josep

    2012-01-01

    New silicon nitride coated optical gratings were tested by means of Optical Waveguide Lightmode Spectroscopy (OWLS). A thin layer of 10 nm of transparent silicon nitride was deposited on commercial optical gratings by means of sputtering. The quality of the layer was tested by x-ray photoelectron spectroscopy and atomic force microscopy. As a proof of concept, the sensors were successfully tested with OWLS by monitoring the concentration dependence on the detection of an antibody-protein pair. The potential of the Si3N4 as functional layer in a real-time biosensor opens new ways for the integration of optical waveguides with microelectronics. PMID:25585707

  5. Optical band gap tuning of Sb-Se thin films for xerographic based applications

    NASA Astrophysics Data System (ADS)

    Kaur, Ramandeep; Singh, Palwinder; Singh, Kulwinder; Kumar, Akshay; Thakur, Anup

    2016-10-01

    In the present paper we have studied the effect of Sb addition on the optical band gap tuning of thermally evaporated SbxSe100-x (x = 0, 5, 20, 50 and 60) thin films. The structural investigations revealed that all thin films were amorphous in nature. Transmission spectrum was taken in the range 400-2500 nm shows that all films are highly transparent in the near infrared region. The fundamental absorption edge shifts towards longer wavelength with Sb incorporation. The optical band gap decreases with addition of antimony in a-Se thin films. A good correlation has been drawn between experimentally estimated and theoretically calculated optical band gap. The decrease in optical band gap of thin films has been explained using chemical bond approach and density of states model. Decrease in optical band gap with Sb addition increases the concentration of electron deep traps which increases the X-ray sensitivity of Sb-Se thin films. Thus by tuning the optical band gap of Sb-Se alloy, it could be utilized for xerographic based applications.

  6. Fabrication of optical multilayer for two-color phase plate in super-resolution microscope

    SciTech Connect

    Iketaki, Yoshinori; Kitagawa, Katsuichi; Hidaka, Kohjiro; Kato, Naoki; Hirabayashi, Akira; Bokor, Nandor

    2014-07-15

    In super-resolution microscopy based on fluorescence depletion, the two-color phase plate (TPP) is an indispensable optical element, which can independently control the phase shifts for two beams of different color, i.e., the pump and erase beams. By controlling a phase shift of the erase beam through the TPP, the erase beam can be modulated into a doughnut shape, while the pump beam maintains the initial Gaussian shape. To obtain a reliable optical multiplayer (ML) for the TPP, we designed a ML with only two optical layers by performing numerical optimization. The measured phase shifts generated by the fabricated ML using interferometry correspond to the design values. The beam profiles in the focal plane are also consistent with theoretical results. Although the fabricated ML consists of only two optical layers, the ML can provide a suitable phase modulation function for the TPP in a practical super-resolution microscope.

  7. Fabrication of optical multilayer for two-color phase plate in super-resolution microscope

    NASA Astrophysics Data System (ADS)

    Iketaki, Yoshinori; Kitagawa, Katsuichi; Hidaka, Kohjiro; Kato, Naoki; Hirabayashi, Akira; Bokor, Nandor

    2014-07-01

    In super-resolution microscopy based on fluorescence depletion, the two-color phase plate (TPP) is an indispensable optical element, which can independently control the phase shifts for two beams of different color, i.e., the pump and erase beams. By controlling a phase shift of the erase beam through the TPP, the erase beam can be modulated into a doughnut shape, while the pump beam maintains the initial Gaussian shape. To obtain a reliable optical multiplayer (ML) for the TPP, we designed a ML with only two optical layers by performing numerical optimization. The measured phase shifts generated by the fabricated ML using interferometry correspond to the design values. The beam profiles in the focal plane are also consistent with theoretical results. Although the fabricated ML consists of only two optical layers, the ML can provide a suitable phase modulation function for the TPP in a practical super-resolution microscope.

  8. Influence of sputtering power on the optical properties of ITO thin films

    SciTech Connect

    K, Aijo John; M, Deepak T, Manju; Kumar, Vineetha V.

    2014-10-15

    Tin doped indium oxide films are widely used in transparent conducting coatings such as flat panel displays, crystal displays and in optical devices such as solar cells and organic light emitting diodes due to the high electrical resistivity and optical transparency in the visible region of solar spectrum. The deposition parameters have a commendable influence on the optical and electrical properties of the thin films. In this study, ITO thin films were prepared by RF magnetron sputtering. The properties of the films prepared under varying sputtering power were compared using UV- visible spectrophotometry. Effect of sputtering power on the energy band gap, absorption coefficient and refractive index are investigated.

  9. Influence of sputtering power on the optical properties of ITO thin films

    NASA Astrophysics Data System (ADS)

    K, Aijo John; Kumar, Vineetha V.; M, Deepak; T, Manju

    2014-10-01

    Tin doped indium oxide films are widely used in transparent conducting coatings such as flat panel displays, crystal displays and in optical devices such as solar cells and organic light emitting diodes due to the high electrical resistivity and optical transparency in the visible region of solar spectrum. The deposition parameters have a commendable influence on the optical and electrical properties of the thin films. In this study, ITO thin films were prepared by RF magnetron sputtering. The properties of the films prepared under varying sputtering power were compared using UV- visible spectrophotometry. Effect of sputtering power on the energy band gap, absorption coefficient and refractive index are investigated.

  10. Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band

    NASA Technical Reports Server (NTRS)

    Wind, Galina; Platnick, Steven; King, Michael D.; Hubanks, Paul A,; Pavolonis, Michael J.; Heidinger, Andrew K.; Yang, Ping; Baum, Bryan A.

    2009-01-01

    Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the NASA Earth Observing System EOS Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that presents difficulties for retrieving cloud effective radius using single layer plane-parallel cloud models. The algorithm uses the MODIS 0.94 micron water vapor band along with CO2 bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO2 and the 0.94 micron methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phases

  11. Subdiffraction-Resolution Optical Measurements of Molecular Transport in Thin Polymer Films.

    PubMed

    Pahal, Suman; Raichur, Ashok M; Varma, Manoj M

    2016-06-01

    The measurement of molecular transport within polymer films yields information about the internal structural organization of the films and is useful in applications such as the design of polymeric capsules for drug delivery. Layer-by-layer assembly of polyelectrolyte multilayer films has been widely used in such applications where the multilayer structure often exhibits anisotropic transport resulting in different diffusivities in the lateral (parallel to the film) and transverse (normal to the film) directions. Although lateral transport can be probed using techniques such as fluorescence recovery after photobleaching (FRAP), it cannot be applied to probing transverse diffusivity in polymer films smaller than the diffraction limit of light. Here we present a technique to probe the transport of molecules tagged with fluorphores in polymer films thinner than the optical diffraction limit using the modulation of fluorescence emission depending on the distance of the tagged molecules from a metal surface. We have used this technique to probe the diffusion of proteins biotin and bovine serum albumin (BSA) in polyelectrolyte multilayer films. We also studied the interdiffusion of chains in multilayer films using this technique. We observed a 3 order of magnitude increase in interdiffusion as a function of the ionic strength of the medium. This technique, along with FRAP, will be useful in studying anisotropic transport in polymer films, even those thinner than the diffraction limit, because the signal in this technique arises only from transverse and not lateral transport. Finally, this technique is also applicable to studying the diffusion of chromophore-labeled species within a polymer film. We demonstrate this aspect by measuring the transverse diffusion of methylene blue in the PAH-PAA multilayer system.

  12. Tailoring the optical bandgap and magnetization of cobalt ferrite thin films through controlled zinc doping

    NASA Astrophysics Data System (ADS)

    Sharma, Deepanshu; Khare, Neeraj

    2016-08-01

    In this report, the tuning of the optical bandgap and saturation magnetization of cobalt ferrite (CFO) thin films through low doping of zinc (Zn) has been demonstrated. The Zn doped CFO thin films with doping concentrations (0 to 10%) have been synthesized by ultrasonic assisted chemical vapour deposition technique. The optical bandgap varies from 1.48 to 1.88 eV and saturation magnetization varies from 142 to 221 emu/cc with the increase in the doping concentration and this change in the optical and magnetic properties is attributed to the change in the relative population of the Co2+ at the tetrahedral and octahedral sites. Raman study confirms the decrease in the population of Co2+ at tetrahedral sites with controlled Zn doping in CFO thin films. A quantitative analysis has been presented to explain the observed variation in the optical bandgap and saturation magnetization.

  13. Microstructural parameters and optical constants of CdS thin films synthesized with various bath temperature

    NASA Astrophysics Data System (ADS)

    Sharkey, J. Joseph; Dhanasekaran, V.; Lee, Chang Woo; Peter, A. John

    2011-02-01

    Optical constants of cadmium sulfide (CdS) thin films for different bath temperature were determined in the spectral range, 400 to 1200 nm from the optical absorption and transmittance measurements. X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM), techniques was used to determine the crystallite structure and morphology of the films. EDX images showed that a sample with 70 °C bath temperature had a stoichiometric composition. The crystallite size and microstrain were calculated using Williamson-Hall method. Optical study is performed to calculate the refractive index (n), extinction coefficient (k), optical conductivity (σ), dielectric constant (real and imaginary), and optical band gap using transmission spectra.

  14. Design and manufacture of sputtered multilayers for applications to soft X-ray optics

    NASA Astrophysics Data System (ADS)

    Houdy, Ph.; Boher, P.

    1994-09-01

    Nanometer scale multilayers has been deposited using high vacuum diode rf sputtering chamber equipped with in situ kinetic ellipsometers. The influence of the composition, the roughness, the interface layer and the number of periods have been studied in order to optimize the stacks for soft X-ray reflection. The behaviour of the structures under thermal annealing has been observed. At last, gratings have been successfully manufactured. Des muticouches nanométriques ont été déposées par pulvérisation diode rf ultravide dans une chambre équipée d'ellipsomètres in situ. L'influence de la composition, de la rugosité, de la présence d'une couche d'interface et du nombre de périodes a été estimée afin d'optimiser les empilements pour la réflexion de rayons X mous. Le comportement de ces structures sous recuit thermique a été observé. Enfin des réseaux ont été réalisés avec succès.

  15. Multifunctional lipid multilayer stamping.

    PubMed

    Nafday, Omkar A; Lowry, Troy W; Lenhert, Steven

    2012-04-10

    Nanostructured lipid multilayers on surfaces are a promising biofunctional nanomaterial. For example, surface-supported lipid multilayer diffraction gratings with optical properties that depend on the microscale spacing of the grating lines and the nanometer thickness of the lipid multilayers have been fabricated previously by dip-pen nanolithography (DPN), with immediate applications as label-free biosensors. The innate biocompatibility of such gratings makes them promising as biological sensor elements, model cellular systems, and construction materials for nanotechnology. Here a method is described that combines the lateral patterning capabilities and scalability of microcontact printing with the topographical control of nanoimprint lithography and the multimaterial integration aspects of dip-pen nanolithography in order to create nanostructured lipid multilayer arrays. This approach is denoted multilayer stamping. The distinguishing characteristic of this method is that it allows control of the lipid multilayer thickness, which is a crucial nanoscale dimension that determines the optical properties of lipid multilayer nanostructures. The ability to integrate multiple lipid materials on the same surface is also demonstrated by multi-ink spotting onto a polydimethoxysilane stamp, as well as higher-throughput patterning (on the order of 2 cm(2) s(-1) for grating fabrication) and the ability to pattern lipid materials that could not previously be patterned with high resolution by lipid DPN, for example, the gel-phase phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or the steroid cholesterol. PMID:22307810

  16. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, Michael D.; Britten, Jerald A.; Nguyen, Hoang T.; Boyd, Robert; Shore, Bruce W.

    1999-01-01

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described.

  17. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, M.D.; Britten, J.A.; Nguyen, H.T.; Boyd, R.; Shore, B.W.

    1999-05-25

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described. 7 figs.

  18. Multilayer-MoS2-microsheet/(Nano-Au:LiNbO3) for all-optical tunable metamaterial-induced transparency

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Yang, Xiaoyu; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2015-10-01

    All-optical tunable metamaterial-induced transparency is realized using polycrystalline lithium niobate doped with gold nanoparticles and multilayer molybdenum disulfide microsheets as a third-order nonlinear optical material. A low threshold pump intensity of 90 kW cm-2 is obtained based on nonlinearity enhancement associated with the quantum confinement effect, the local-field enhancement effect, and reinforced interaction between photons and the multilayer molybdenum disulfide microsheets. An ultrafast response time of 27.4 ps is maintained owing to the fast relaxation dynamics of bound electrons in the polycrystalline lithium niobate. This work may pave a way for the realization of ultrahigh speed information processing chips based on metamaterials.

  19. Spontaneously poling of electro-optic polymer thin films across a 1.1-mm thick glass substrate by pyroelectric crystals

    NASA Astrophysics Data System (ADS)

    Huang, Su; Luo, Jingdong; Jin, Zhian; Li, Ming; Kim, Tae-Dong; Chen, Antao; Jen, Alex K.-Y.

    2014-11-01

    We developed a method to pole electro-optic (E-O) polymer thin films using pyroelectric crystals instead of external high voltage source unit. The process is based on a multi-layered dielectric stack, in which micron-thick E-O polymer films were sandwiched between millimeter thick pyroelectric crystal and borosilicate glass substrate. Through modest temperature change, very large electric fields could be spontaneously generated from pyroelectric effect of the crystals, which can deliver high effective field strength (up to 0.7 MV/cm) to the E-O polymer thin films across the glass plate. Very intriguing phenomena of significantly reduced leak through current (LTC) and improved dielectric breakdown strength of E-O polymers were observed. As a result, large Pockels coefficients of 62 pm/V at 1.31 μm can be obtained for poled E-O thin films. The good agreement between theory and experimentally measured results in the study provide important insights of electrostatics in pyroelectric systems and their effective interactions with thin film E-O polymeric materials. It also demonstrates that pyroelectric poling is a promising alternative to commonly used contact poling and corona poling that offers unique advantages of high field strength and near-zero LTC for polarizing dielectric functional materials and devices.

  20. Fiber-Optic Temperature Sensor Using a Thin-Film Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn

    1997-01-01

    A fiber-optic temperature sensor was developed that is rugged, compact, stable, and can be inexpensively fabricated. This thin-film interferometric temperature sensor was shown to be capable of providing a +/- 2 C accuracy over the range of -55 to 275 C, throughout a 5000 hr operating life. A temperature-sensitive thin-film Fabry-Perot interferometer can be deposited directly onto the end of a multimode optical fiber. This batch-fabricatable sensor can be manufactured at a much lower cost than can a presently available sensor, which requires the mechanical attachment of a Fabry-Perot interferometer to a fiber. The principal disadvantage of the thin-film sensor is its inherent instability, due to the low processing temperatures that must be used to prevent degradation of the optical fiber's buffer coating. The design of the stable thin-film temperature sensor considered the potential sources of both short and long term drifts. The temperature- sensitive Fabry-Perot interferometer was a silicon film with a thickness of approx. 2 microns. A laser-annealing process was developed which crystallized the silicon film without damaging the optical fiber. The silicon film was encapsulated with a thin layer of Si3N4 over coated with aluminum. Crystallization of the silicon and its encapsulation with a highly stable, impermeable thin-film structure were essential steps in producing a sensor with the required long-term stability.

  1. Optical method for the determination of stress in thin films

    DOEpatents

    Maris, H.J.

    1999-01-26

    A method and optical system is disclosed for measuring an amount of stress in a film layer disposed over a substrate. The method includes steps of: (A) applying a sequence of optical pump pulses to the film layer, individual ones of said optical pump pulses inducing a propagating strain pulse in the film layer, and for each of the optical pump pulses, applying at least one optical probe pulse, the optical probe pulses being applied with different time delays after the application of the corresponding optical probe pulses; (B) detecting variations in an intensity of a reflection of portions of the optical probe pulses, the variations being due at least in part to the propagation of the strain pulse in the film layer; (C) determining, from the detected intensity variations, a sound velocity in the film layer; and (D) calculating, using the determined sound velocity, the amount of stress in the film layer. In one embodiment of this invention the step of detecting measures a period of an oscillation in the intensity of the reflection of portions of the optical probe pulses, while in another embodiment the step of detecting measures a change in intensity of the reflection of portions of the optical probe pulses and determines a time at which the propagating strain pulse reflects from a boundary of the film layer. 16 figs.

  2. Optical method for the determination of stress in thin films

    DOEpatents

    Maris, Humphrey J.

    1999-01-01

    A method and optical system is disclosed for measuring an amount of stress in a film layer disposed over a substrate. The method includes steps of: (A) applying a sequence of optical pump pulses to the film layer, individual ones of said optical pump pulses inducing a propagating strain pulse in the film layer, and for each of the optical pump pulses, applying at least one optical probe pulse, the optical probe pulses being applied with different time delays after the application of the corresponding optical probe pulses; (B) detecting variations in an intensity of a reflection of portions of the optical probe pulses, the variations being due at least in part to the propagation of the strain pulse in the film layer; (C) determining, from the detected intensity variations, a sound velocity in the film layer; and (D) calculating, using the determined sound velocity, the amount of stress in the film layer. In one embodiment of this invention the step of detecting measures a period of an oscillation in the intensity of the reflection of portions of the optical probe pulses, while in another embodiment the step of detecting measures a change in intensity of the reflection of portions of the optical probe pulses and determines a time at which the propagating strain pulse reflects from a boundary of the film layer.

  3. Correlation of Predicted and Observed Optical Properties of Multilayer Thermal Control Coatings

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    1998-01-01

    Thermal control coatings on spacecraft will be increasingly important, as spacecraft grow smaller and more compact. New thermal control coatings will be needed to meet the demanding requirements of next generation spacecraft. Computer programs are now available to design optical coatings and one such program was used to design several thermal control coatings consisting of alternating layers of WO3 and SiO2. The coatings were subsequently manufactured with electron beam evaporation and characterized with both optical and thermal techniques. Optical data were collected in both the visible region of the spectrum and the infrared. Predictions of solar absorptance and infrared emittance were successfully correlated to the observed thermal control properties. Functional performance of the coatings was verified in a bench top thermal vacuum chamber.

  4. Automation Enhancement of Multilayer Laue Lenses

    SciTech Connect

    Lauer K. R.; Conley R.

    2010-12-01

    X-ray optics fabrication at Brookhaven National Laboratory has been facilitated by a new, state of the art magnetron sputtering physical deposition system. With its nine magnetron sputtering cathodes and substrate carrier that moves on a linear rail via a UHV brushless linear servo motor, the system is capable of accurately depositing the many thousands of layers necessary for multilayer Laue lenses. I have engineered a versatile and automated control program from scratch for the base system and many subsystems. Its main features include a custom scripting language, a fully customizable graphical user interface, wireless and remote control, and a terminal-based interface. This control system has already been successfully used in the creation of many types of x-ray optics, including several thousand layer multilayer Laue lenses.Before reaching the point at which a deposition can be run, stencil-like masks for the sputtering cathodes must be created to ensure the proper distribution of sputtered atoms. Quality of multilayer Laue lenses can also be difficult to measure, given the size of the thin film layers. I employ my knowledge of software and algorithms to further ease these previously painstaking processes with custom programs. Additionally, I will give an overview of an x-ray optic simulator package I helped develop during the summer of 2010. In the interest of keeping my software free and open, I have worked mostly with the multiplatform Python and the PyQt application framework, utilizing C and C++ where necessary.

  5. Analysis of amorphous-nano-crystalline multilayer structures by optical, photo-deflection and photo-current spectroscopy.

    PubMed

    Gracin, D; Sancho-Paramon, J; Juraić, K; Gajović, A; Ceh, M

    2009-01-01

    Thin film structures consisting of nano-crystalline and amorphous silicon layers deposited on glass by plasma enhanced chemical vapour deposition have been studied by optical spectroscopy methods (transmittance, photo-thermal deflection spectroscopy and photo-current spectroscopy) while structure was examined by Raman spectroscopy. The nano-crystalline layers were grown on the same amorphous layers, using different radio-frequency (RF) discharge powers, leading to different structural and optical properties. The energy dependence of the absorption coefficient above the band gap agrees well to the bimodal size distribution of crystals and crystal fraction estimated by Raman spectroscopy. For energies below the band gap, the comparison of the absorption of the bi-layer systems with respect to single amorphous layer reveals that the samples produced at higher RF discharge present a higher disorder degree (Urbach edge increases) and higher number of structural defects (absorption related to the defects increases).

  6. Thickness and microstructure effects in the optical and electrical properties of silver thin films

    SciTech Connect

    Ding, Guowen Clavero, César; Schweigert, Daniel; Le, Minh

    2015-11-15

    The optical and electrical response of metal thin films approaching thicknesses in the range of the electron mean free path is highly affected by electronic scattering with the interfaces and defects. Here, we present a theoretical and experimental study on how thickness and microstructure affect the properties of Ag thin films. We are able to successfully model the electrical resistivity and IR optical response using a thickness dependent electronic scattering time. Remarkably, the product of electronic scattering time and resistivity remains constant regardless of the thickness (τx ρ = C), with a value of 59 ± 2 μΩ cm ⋅ fs for Ag films in the investigated range from 3 to 74 nm. Our findings enable us to develop a theoretically framework that allows calculating the optical response of metal thin films in the IR by using their measured thickness and resistivity. An excellent agreement is found between experimental measurements and predicted values. This study also shows the theoretical lower limit for emissivity in Ag thin films according to their microstructure and thickness. Application of the model presented here will allow rapid characterization of the IR optical response of metal thin films, with important application in a broad spectrum of fundamental and industrial applications, including optical coatings, low-emissivity windows and semiconductor industry.

  7. Microscopic thin film optical anisotropy imaging at the solid-liquid interface.

    PubMed

    Miranda, Adelaide; De Beule, Pieter A A

    2016-04-01

    Optical anisotropy of thin films has been widely investigated through ellipsometry, whereby typically an optical signal is averaged over a ∼1 cm(2) elliptical area that extends with increasing angle-of-incidence (AOI). Here, we report on spectroscopic imaging ellipsometry at the solid-liquid interface applied to a supported lipid bilayer (SLB). We detail how a differential spectrally resolved ellipsometry measurement, between samples with and without optically anisotropic thin film on an absorbing substrate, can be applied to recover in and out of plane refractive indices of the thin film with known film thickness, hence determining the thin film optical anisotropy. We also present how optimal wavelength and AOI settings can be determined ensuring low parameter cross correlation between the refractive indices to be determined from a differential measurement in Δ ellipsometry angle. Furthermore, we detail a Monte Carlo type analysis that allows one to determine the minimal required optical ellipsometry resolution to recover a given thin film anisotropy. We conclude by presenting a new setup for a spectroscopic imaging ellipsometry based on fiber supercontinuum laser technology, multi-wavelength diode system, and an improved liquid cell design, delivering a 5 ×-10 × ellipsometric noise reduction over state-of-the-art. We attribute this improvement to increased ellipsometer illumination power and a reduced light path in liquid through the use of a water dipping objective. PMID:27131681

  8. Microscopic thin film optical anisotropy imaging at the solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Miranda, Adelaide; De Beule, Pieter A. A.

    2016-04-01

    Optical anisotropy of thin films has been widely investigated through ellipsometry, whereby typically an optical signal is averaged over a ˜1 cm2 elliptical area that extends with increasing angle-of-incidence (AOI). Here, we report on spectroscopic imaging ellipsometry at the solid-liquid interface applied to a supported lipid bilayer (SLB). We detail how a differential spectrally resolved ellipsometry measurement, between samples with and without optically anisotropic thin film on an absorbing substrate, can be applied to recover in and out of plane refractive indices of the thin film with known film thickness, hence determining the thin film optical anisotropy. We also present how optimal wavelength and AOI settings can be determined ensuring low parameter cross correlation between the refractive indices to be determined from a differential measurement in Δ ellipsometry angle. Furthermore, we detail a Monte Carlo type analysis that allows one to determine the minimal required optical ellipsometry resolution to recover a given thin film anisotropy. We conclude by presenting a new setup for a spectroscopic imaging ellipsometry based on fiber supercontinuum laser technology, multi-wavelength diode system, and an improved liquid cell design, delivering a 5 ×-10 × ellipsometric noise reduction over state-of-the-art. We attribute this improvement to increased ellipsometer illumination power and a reduced light path in liquid through the use of a water dipping objective.

  9. Moisture barrier properties of thin organic-inorganic multilayers prepared by plasma-enhanced ALD and CVD in one reactor

    NASA Astrophysics Data System (ADS)

    Bülow, Tim; Gargouri, Hassan; Siebert, Mirko; Rudolph, Rolf; Johannes, Hans-Hermann; Kowalsky, Wolfgang

    2014-05-01

    A widely used application of the atomic layer deposition (ALD) and chemical vapour deposition (CVD) methods is the preparation of permeation barrier layers against water vapour. Especially in the field of organic electronics, these films are highly demanded as such devices are very sensitive to moisture and oxygen. In this work, multilayers of aluminium oxide (AlO x ) and plasma polymer (PP) were coated on polyethylene naphthalate substrates by plasma-enhanced ALD and plasma-enhanced CVD at 80℃ in the same reactor, respectively. As precursor, trimethylaluminium was used together with oxygen radicals in order to prepare AlO x , and benzene served as precursor to deposit the PP. This hybrid structure allows the decoupling of defects between the single AlO x layers and extends the permeation path for water molecules towards the entire barrier film. Furthermore, the combination of two plasma techniques in a single reactor system enables short process times without vacuum breaks. Single aluminium oxide films by plasma-enhanced ALD were compared to thermally grown layers and showed a significantly better barrier performance. The water vapour transmission rate (WVTR) was determined by means of electrical calcium tests. For a multilayer with 3.5 dyads of 25-nm AlO x and 125-nm PP, a WVTR of 1.2 × 10 -3 g m -2 d -1 at 60℃ and 90% relative humidity could be observed.

  10. Moisture barrier properties of thin organic-inorganic multilayers prepared by plasma-enhanced ALD and CVD in one reactor.

    PubMed

    Bülow, Tim; Gargouri, Hassan; Siebert, Mirko; Rudolph, Rolf; Johannes, Hans-Hermann; Kowalsky, Wolfgang

    2014-01-01

    A widely used application of the atomic layer deposition (ALD) and chemical vapour deposition (CVD) methods is the preparation of permeation barrier layers against water vapour. Especially in the field of organic electronics, these films are highly demanded as such devices are very sensitive to moisture and oxygen. In this work, multilayers of aluminium oxide (AlO x ) and plasma polymer (PP) were coated on polyethylene naphthalate substrates by plasma-enhanced ALD and plasma-enhanced CVD at 80â"ƒ in the same reactor, respectively. As precursor, trimethylaluminium was used together with oxygen radicals in order to prepare AlO x , and benzene served as precursor to deposit the PP. This hybrid structure allows the decoupling of defects between the single AlO x layers and extends the permeation path for water molecules towards the entire barrier film. Furthermore, the combination of two plasma techniques in a single reactor system enables short process times without vacuum breaks. Single aluminium oxide films by plasma-enhanced ALD were compared to thermally grown layers and showed a significantly better barrier performance. The water vapour transmission rate (WVTR) was determined by means of electrical calcium tests. For a multilayer with 3.5 dyads of 25-nm AlO x and 125-nm PP, a WVTR of 1.2 × 10 (-3) gm (-2) d (-1) at 60â"ƒ and 90% relative humidity could be observed.

  11. Moisture barrier properties of thin organic-inorganic multilayers prepared by plasma-enhanced ALD and CVD in one reactor

    PubMed Central

    2014-01-01

    A widely used application of the atomic layer deposition (ALD) and chemical vapour deposition (CVD) methods is the preparation of permeation barrier layers against water vapour. Especially in the field of organic electronics, these films are highly demanded as such devices are very sensitive to moisture and oxygen. In this work, multilayers of aluminium oxide (AlO x ) and plasma polymer (PP) were coated on polyethylene naphthalate substrates by plasma-enhanced ALD and plasma-enhanced CVD at 80℃ in the same reactor, respectively. As precursor, trimethylaluminium was used together with oxygen radicals in order to prepare AlO x , and benzene served as precursor to deposit the PP. This hybrid structure allows the decoupling of defects between the single AlO x layers and extends the permeation path for water molecules towards the entire barrier film. Furthermore, the combination of two plasma techniques in a single reactor system enables short process times without vacuum breaks. Single aluminium oxide films by plasma-enhanced ALD were compared to thermally grown layers and showed a significantly better barrier performance. The water vapour transmission rate (WVTR) was determined by means of electrical calcium tests. For a multilayer with 3.5 dyads of 25-nm AlO x and 125-nm PP, a WVTR of 1.2 × 10 −3 gm−2d−1 at 60℃ and 90% relative humidity could be observed. PMID:24936155

  12. Moisture barrier properties of thin organic-inorganic multilayers prepared by plasma-enhanced ALD and CVD in one reactor.

    PubMed

    Bülow, Tim; Gargouri, Hassan; Siebert, Mirko; Rudolph, Rolf; Johannes, Hans-Hermann; Kowalsky, Wolfgang

    2014-01-01

    A widely used application of the atomic layer deposition (ALD) and chemical vapour deposition (CVD) methods is the preparation of permeation barrier layers against water vapour. Especially in the field of organic electronics, these films are highly demanded as such devices are very sensitive to moisture and oxygen. In this work, multilayers of aluminium oxide (AlO x ) and plasma polymer (PP) were coated on polyethylene naphthalate substrates by plasma-enhanced ALD and plasma-enhanced CVD at 80â"ƒ in the same reactor, respectively. As precursor, trimethylaluminium was used together with oxygen radicals in order to prepare AlO x , and benzene served as precursor to deposit the PP. This hybrid structure allows the decoupling of defects between the single AlO x layers and extends the permeation path for water molecules towards the entire barrier film. Furthermore, the combination of two plasma techniques in a single reactor system enables short process times without vacuum breaks. Single aluminium oxide films by plasma-enhanced ALD were compared to thermally grown layers and showed a significantly better barrier performance. The water vapour transmission rate (WVTR) was determined by means of electrical calcium tests. For a multilayer with 3.5 dyads of 25-nm AlO x and 125-nm PP, a WVTR of 1.2 × 10 (-3) gm (-2) d (-1) at 60â"ƒ and 90% relative humidity could be observed. PMID:24936155

  13. Optically active SiO2/TiO2/polyacetylene multilayered nanospheres: Preparation, characterization, and application for low infrared emissivity

    NASA Astrophysics Data System (ADS)

    Bu, Xiaohai; Zhou, Yuming; He, Man; Chen, Zhenjie; Zhang, Tao

    2014-01-01

    Optically active silica/titania/substituted polyacetylene (SiO2/TiO2/SPA) multilayered core-shell nanocomposite was successfully prepared by the combination of subsequent surface titania deposition and polymer grafting on the bare silica nanosphere. The chiral amino acid-based SPA copolymer serving as the organic shell was optically active and adopted a predominately single-handed helical conformation. The SiO2/TiO2/SPA nanospheres were characterized by Fourier transform infrared spectroscopies (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) to record the formation of the multilayered architecture and the results clearly showed that the inorganic/organic hybrid nanoparticles exhibited hierarchical multilayered core-shell construction. The SPA outer shell experienced an enhancement in thermal stability and still remained considerable optical activity after grafting to the SiO2/TiO2 nanosphere. The SiO2/TiO2/SPA nanocomposite had an infrared emissivity value (ɛ = 0.548) at the wavelength of 8-14 μm which was much lower than each of its components. The reduced infrared emissivity values proved that the strengthened interfacial interactions originating from the coating SPA had an effective synergistic effect with the semiconductive anatase TiO2 nanoparticles on silica sphere in lowering the infrared emissivity value.

  14. Multilayer composites and manufacture of same

    DOEpatents

    Holesinger, Terry G.; Jia, Quanxi

    2006-02-07

    The present invention is directed towards a process of depositing multilayer thin films, disk-shaped targets for deposition of multilayer thin films by a pulsed laser or pulsed electron beam deposition process, where the disk-shaped targets include at least two segments with differing compositions, and a multilayer thin film structure having alternating layers of a first composition and a second composition, a pair of the alternating layers defining a bi-layer wherein the thin film structure includes at least 20 bi-layers per micron of thin film such that an individual bi-layer has a thickness of less than about 100 nanometers.

  15. Optical realization of bioinspired spiking neurons in the electron trapping material thin film.

    PubMed

    Pashaie, Ramin; Farhat, Nabil H

    2007-12-10

    A thin film of electron-trapping material (ETM), when combined with suitable optical bistability, is considered as a medium for optical implementation of bioinspired neural nets. The optical mechanism of ETM under blue light and near-infrared exposure has the inherent ability at the material level to mimic the crucial components of the stylized Hodgkin-Huxley model of biological neurons. Combining this unique property with the high-resolution capability of ETM, a dense network of bioinspired neurons can be realized in a thin film of this infrared stimulable storage phosphor. When combined with suitable optical bistability and optical interconnectivity, it has the potential of producing an artificial nonlinear excitable medium analog to cortical tissue.

  16. Interface Properties of Atomic-Layer-Deposited Al2O3 Thin Films on Ultraviolet/Ozone-Treated Multilayer MoS2 Crystals.

    PubMed

    Park, Seonyoung; Kim, Seong Yeoul; Choi, Yura; Kim, Myungjun; Shin, Hyunjung; Kim, Jiyoung; Choi, Woong

    2016-05-11

    We report the interface properties of atomic-layer-deposited Al2O3 thin films on ultraviolet/ozone (UV/O3)-treated multilayer MoS2 crystals. The formation of S-O bonds on MoS2 after low-power UV/O3 treatment increased the surface energy, allowing the subsequent deposition of uniform Al2O3 thin films. The capacitance-voltage measurement of Au-Al2O3-MoS2 metal oxide semiconductor capacitors indicated n-type MoS2 with an electron density of ∼10(17) cm(-3) and a minimum interface trap density of ∼10(11) cm(-2) eV(-1). These results demonstrate the possibility of forming a high-quality Al2O3-MoS2 interface by proper UV/O3 treatment, providing important implications for their integration into field-effect transistors. PMID:27117229

  17. Absence of morphotropic phase boundary effects in BiFeO3-PbTiO3 thin films grown via a chemical multilayer deposition method

    NASA Astrophysics Data System (ADS)

    Gupta, Shashaank; Bhattacharjee, Shuvrajyoti; Pandey, Dhananjai; Bansal, Vipul; Bhargava, Suresh K.; Peng, Ju Lin; Garg, Ashish

    2011-07-01

    We report an unusual behavior observed in (BiFeO3)1- x -(PbTiO3) x (BF- xPT) thin films prepared using a multilayer chemical solution deposition method. Films of different compositions were grown by depositing several bilayers of BF and PT precursors of varying BF and PT layer thicknesses followed by heat treatment in air. X-ray diffraction showed that samples of all compositions show mixing of two compounds resulting in a single-phase mixture, also confirmed by transmission electron microscopy. In contrast to bulk compositions, samples show a monoclinic (MA-type) structure suggesting disappearance of the morphotropic phase boundary (MPB) at x=0.30 as observed in the bulk. This is accompanied by the lack of any enhancement of the remanent polarization at the MPB, as shown by the ferroelectric measurements. Magnetic measurements showed an increase in the magnetization of the samples with increasing BF content. Significant magnetization in the samples indicates melting of spin spirals in the BF- xPT films, arising from a random distribution of iron atoms. Absence of Fe2+ ions was corroborated by X-ray photoelectron spectroscopy measurements. The results illustrate that thin film processing methodology significantly changes the structural evolution, in contrast to predictions from the equilibrium phase diagram, besides modifying the functional characteristics of the BP- xPT system dramatically.

  18. Rapid replication and facile modulation of subwavelength antireflective polymer film using injection nanomolding and optical property of multilayer coatings

    NASA Astrophysics Data System (ADS)

    Fuh, Yiin-Kuen; Peng, Cheng-Chang; Huang, Chieh-Tse

    2013-10-01

    A rapid, cost-effective and high-throughput process for nanotexturing subwavelength structures with high uniformity using the polycarbonate (PC) is realized via injection nanomolding. The process enables the precise control of nanohole array (NHA) surface topography (nanohole depth, diameter, and periodicity) over large areas thereby presenting a highly versatile platform for fabricating substrates with user-defined, functional performance. Specifically, the optical property of the PC substrates were systematically characterized and tuned through the modulation of the depths of NHA. The aspect ratio submicron holes can be easily modulated and experimentally proven by simply adjusting the molding temperature. The nanotextured depths were reliably fabricated in the range of 200 to 400 nm with a period of approximately 700 nm. The fabricated PC films can reduce the reflectivity from an original bare film of 10.2% and 8.9% to 1.4% and 2.1% with 400-nm depth of nanoholes at the wavelength of 400 and 550 nm, respectively. Compared with conventional moth-like nanostructures with nanopillar arrays with heights adjustable only by an etching process, this paper proposes a facile route with submicron holes to achieve a similar antireflective function, with a significantly reduced time and facile height modulation capability. Furthermore, the effects of multilayer coatings of dielectric and metallic layers on the nanomolded NHA have been performed and potential sensing application is explored.

  19. Fabrication of a thin-layer solid optical tissue phantom by a spin-coating method: pilot study.

    PubMed

    Bae, Yunjin; Son, Taeyoon; Park, Jihoon; Jung, Byungjo

    2013-02-01

    Solid optical tissue phantoms (OTPs) have been widely used for many purposes. This study introduces a spin-coating method (SCM) to fabricate a thin-layer solid OTP (TSOTP) with epidermal thickness. TSOTPs are fabricated by controlling the spin speed (250 to 2500 rpm), absorber concentration (0.2% to 1.0%), and the number of layers. The results show that the thicknesses of the TSOTPs are homogeneous in the region of interest. The one-layer TSOTP achieves maximum and minimum thicknesses of 65±0.28 μm (250 rpm) and 5.1±0.17 μm (2500 rpm), respectively, decreasing exponentially as a function of the spin speed. The thicknesses of the multilayer TSOTPs increases as a function of the number of layers and are correlated strongly with the spin speed (R2≥0.95). The concentration of the OTP mixture does not directly affect the thickness of the TSOTP; however, the absorption coefficients exponentially increase as a function of absorber concentration (R2≥0.98). These results suggest that the SCM can be used to fabricate homogeneous TSOTPs with various thicknesses by controlling the spin speed and number of layers. Finally, a double-layer OTP that combines epidermal TSOTP and dermal OTP is manufactured as a preliminary study to investigate the practical feasibility of TSOTPs.

  20. Structural and optical properties of Tin sulphide thin films

    SciTech Connect

    Akkari, A.; Ben Nasr, T.; Kamoun, N.

    2007-09-19

    Tin sulphide SnS thin films were deposited on glass substrates using the chemical bath deposition technique (CBD). By investigating the influence of triethanolamine (TEA) concentration on the properties of deposited films, we obtained the optimum deposition parameter. These films were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM) analysis and spectrophotometric measurements. The obtained thin films exhibit the orthorhombic structure and the direct band gap energy is found to be about 1.65 eV, for films prepared at TEA concentration films equal to 13.5 M.

  1. Optical Sensors Based on Single Arm Thin Film Waveguide Interferometer

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S.

    1997-01-01

    All the goals of the research effort for the first year were met by the accomplishments. Additional efforts were done to speed up the process of development and construction of the experimental gas chamber which will be completed by the end of 1997. This chamber incorporates vacuum sealed multimode optical fiber lines which connect the sensor to the remote light source and signal processing equipment. This optical fiber line is a prototype of actual optical communication links connecting real sensors to a control unit within an aircraft or spacecraft. An important problem which we are planning to focus on during the second year is coupling of optical fiber line to the sensor. Currently this problem is solved using focusing optics and prism couplers. More reliable solutions are planned to be investigated.

  2. Retinal axial focusing and multi-layer imaging with a liquid crystal adaptive optics camera

    NASA Astrophysics Data System (ADS)

    Liu, Rui-Xue; Zheng, Xian-Liang; Li, Da-Yu; Xia, Ming-Liang; Hu, Li-Fa; Cao, Zhao-Liang; Mu, Quan-Quan; Xuan, Li

    2014-09-01

    With the help of adaptive optics (AO) technology, cellular level imaging of living human retina can be achieved. Aiming to reduce distressing feelings and to avoid potential drug induced diseases, we attempted to image retina with dilated pupil and froze accommodation without drugs. An optimized liquid crystal adaptive optics camera was adopted for retinal imaging. A novel eye stared system was used for stimulating accommodation and fixating imaging area. Illumination sources and imaging camera kept linkage for focusing and imaging different layers. Four subjects with diverse degree of myopia were imaged. Based on the optical properties of the human eye, the eye stared system reduced the defocus to less than the typical ocular depth of focus. In this way, the illumination light can be projected on certain retina layer precisely. Since that the defocus had been compensated by the eye stared system, the adopted 512 × 512 liquid crystal spatial light modulator (LC-SLM) corrector provided the crucial spatial fidelity to fully compensate high-order aberrations. The Strehl ratio of a subject with -8 diopter myopia was improved to 0.78, which was nearly close to diffraction-limited imaging. By finely adjusting the axial displacement of illumination sources and imaging camera, cone photoreceptors, blood vessels and nerve fiber layer were clearly imaged successfully.

  3. UV optical properties of thin film oxide layers deposited by different processes.

    PubMed

    Pellicori, Samuel F; Martinez, Carol L

    2011-10-01

    UV optical properties of thin film layers of compound and mixed oxide materials deposited by different processes are presented. Japan Electron Optics Laboratory plasma ion assisted deposition (JEOL PIAD), electron beam with and without IAD, and pulsed DC magnetron sputtering were used. Comparisons are made with published deposition process data. Refractive indices and absorption values to as short as 145 nm were measured by spectroscopic ellipsometry (SE). Electronic interband defect states are detected that are deposition-process dependent. SE might be effective in identifying UV optical film quality, especially in defining processes and material composition beneficial for high-energy excimer laser applications and environments requiring stable optical properties.

  4. Optical and structural properties of PbI2 thin film produced via chemical dipping method

    NASA Astrophysics Data System (ADS)

    Kariper, İ. A.

    2016-06-01

    PbI2 thin films were deposited on glass substrates via chemical bath deposition. The characteristics of PbI2 thin films were examined through their structural and optical properties. X-ray diffraction spectra showed the presence of rhombohedral structure and atom planes were subject to change with the pH of the bath. Scanning electron microscope indicated uniform distribution of grains. Optical properties were examined via UV-VIS; optical spectrum of the thin films was measured at the range of 200-1100 nm wavelength. Optimum pH levels for producing thin films were found to be pH 4-5. It has been observed that transmission and optical band gap ( E g) increased with the pH of the bath, which varied between 66-95 and 2.24-2.50 %, respectively; on the other hand film thickness of PbI2 thin films was decreased with the pH of the bath. Energy-dispersive X-ray spectroscopy analysis were in accordance with theoretical value of PbI2 at pH = 4 and 5. Refractive index was negatively correlated with pH of the chemical bath; it has been calculated as 1.97, 1.40, 1.29 and 1.24 for the films produced at pH 2, 3, 4 and 5. The results of the study were compared with similar studies in the literature.

  5. Morphological characteristics and optical properties of hydrogenated amorphous silicon thin films

    NASA Astrophysics Data System (ADS)

    Tang, Haihua; Liu, Shuang; Zhou, Xiang; Liu, Yunfei; Chen, Dejun; Liu, Yong; Zhong, Zhiyong

    2016-05-01

    Hydrogenated amorphous silicon (a-Si:H) thin films were prepared by radio frequency (RF) plasma enhanced chemical vapor deposition (RF-PECVD) technique with silane (SiH4) as reactive gas. The influence of process parameters on the morphological characteristics and optical properties of a-Si:H thin films were systematically investigated. When the RF power density was taken as the only variable, it firstly improves the smoothness of the surface with increasing the RF power density below the value of 0.17 W/cm2, and then exhibits an obvious degradation at further power density. The refractive index, extinction coefficient, optical energy gap initially increase and reach a maximum at 0.17 W/cm2, followed by a significant decrease with further RF power density. When the RF power density was taken as the only variable, the surface of a-Si:H thin films become smoother by increasing the reaction pressure in the investigated range (from 50 Pa to 140 Pa), and the refractive index, extinction coefficient, optical energy gap increase with increasing of reaction pressure. The effect of RF power density and the reaction pressure on the morphological characteristics and optical properties of a-Si:H thin films was obtained, contributing to the further studies of the performance and applications of a-Si:H thin films.

  6. Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film

    NASA Astrophysics Data System (ADS)

    Choi, S. B.; Kyoung, J. S.; Kim, H. S.; Park, H. R.; Park, D. J.; Kim, Bong-Jun; Ahn, Y. H.; Rotermund, F.; Kim, Hyun-Tak; Ahn, K. J.; Kim, D. S.

    2011-02-01

    We demonstrate ultrafast all-optical control of terahertz (THz) radiation through nanoresonators, slot antennas with a hundred micron length but submicron width in thin gold layers, fabricated on vanadium dioxide (VO2) thin films. Our THz nanoresonators show almost perfect transmission at resonance. By virtue of phase transition of VO2 from insulating to metallic state, induced in subpicosecond time scale by moderate optical pump, ultrafast control of THz transmission is enabled. This is compared to bare VO2 films where no switching dynamics are observed under similar conditions.

  7. Performance of multilayer optical coatings under long-term 532nm laser exposure

    NASA Astrophysics Data System (ADS)

    Poulios, D.; Konoplev, O.; Chiragh, F.; Vasilyev, A.; Stephen, M.; Strickler, K.

    2013-11-01

    The effects of long-term exposure to high intensity 532 nm radiation on various dielectric-coated optics are studied. To investigate potential photodarkening effects on optical surfaces, an accelerated life test platform was constructed where optics were exposed to 532 nm radiation from a short-pulse, high repetition rate fiber amplifier at total doses up to 1 trillion shots. The first run of trillion-shot tests were conducted on e-beam deposited and ion beam sputtering (IBS) coated high reflecting mirrors with onsurface intensities ranging from 1.0-1.4 GW/cm2. It was found that the e-beam coated mirrors failed catastrophically at less than 150 billion shots, while the IBS coated mirror was able to complete the trillionshot test with no measurable loss of reflectivity. Profiling the IBS mirror surface with a high-resolution white light interferometer post-irradiation revealed a ~10 nm high photocontamination deposit at the irradiation site that closely matched the intensity profile of the laser spot. Trillion-shot surface exposure tests were also conducted at multiple surface sites of an LBO frequency doubling crystal at ~1.5 GW/cm2 at multiple surface sites. The transmitted power and on-surface beam size were monitored throughout the tests, and periodic measurements of the beam quality and waist location of the transmitted light were also made using an M2 meter. No changes in transmitted power or M2 were observed in any of the tests, but 3D surface profiling revealed laser-induced contamination deposits at each site tested.

  8. Optical waveguide modeling of refractive index mediated pH responses in silica nanocomposite thin film based fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Ohodnicki, P. R.; Wang, C.

    2016-02-01

    Recent experiments have demonstrated a pH-dependent optical transmission of silica based nanocomposite thin film enabled evanescent wave absorption spectroscopy based fiber optic sensors in aqueous solutions. Although the response was observed to linearly correlate with the pH-dependent surface charge density of the silica matrix, the responsible mechanism was not fully clarified. In this manuscript, an optical waveguide model is applied to describe observed responses through a modified effective refractive index of the silica matrix layer as a function of the solution phase pH. The refractive index dependence results from a surface charge dependent ionic adsorption, resulting in concentration of ionic species at charged surfaces. The resultant effective index modification to porous silica is estimated through effective medium theories and applied to an optical waveguide model of a multi-mode fiber optic based sensor response capable of reproducing all experimental observations reported to date.

  9. Investigation in morphology and optical properties of electron beam gun evaporated nanostructured Bromoindium phthalocyanine thin films

    NASA Astrophysics Data System (ADS)

    Azim-Araghi, M. E.; Sahebi, R.

    2014-01-01

    Bromoindium phthalocyanine in thin film form was prepared by electron beam gun evaporation technique, using pre-cleaned polyborosilicate glass as substrate. 2D AFM image confirms that the surface of BrInPc thin film is granular with a grain size of 40-60 nm. 3D AFM image confirms that surface is homogeneous and its RMS roughness is 4.9 nm. The UV-VIS absorption spectrum showed two well-known absorption bands of the phthalocyanines, B and Q bands and characteristics Davydov splitting were observed. The optical transition determined to be direct allowed and the value of optical band gap was obtained. The value of Urbach energy was calculated. To investigation in the effect of thermal annealing on optical properties of BrInPc thin films, we annealed some thin films at 473 and 603 K for 1 h. As the result of thermal annealing we observed another absorption peak, named N-band, in absorption spectrum. A red shift observed in the position of B-band and Q-band peaks. There was not changing in optical transition mechanism. The value of optical band gap decreased and the Urbach energy increased as the result of thermal annealing.

  10. Irradiation of EUV multilayer optics with synchrotron radiation of a different time structure

    NASA Astrophysics Data System (ADS)

    Klein, Roman; Scholze, Frank; Thornagel, R.; Tummler, Johannes; Wedowski, M.; Jansen, R.; Mertens, B.; van de Runstraat, A.; Ulm, Gerhard

    2002-12-01

    Extensive investigations on the lifetime of EUVL optics using synchrotron radiation [1, 2, 3] have been performed at the radiometry laboratory [4] of the Physikalisch-Technische Bundesanstalt (PTB) at the BESSY II electron storage ring in the past. Nevertheless, synchrotron radiation shows a very different time structure as compared to the radiation of EUVL sources to be used in lithography tools. To assess the question, whether the different time structure of the radiation has an impact on the contamination behavior of EUVL optics, an irradiation experiment was performed using synchrotron radiation of different time structure available at the BESSY II electron storage ring: Keeping all other parameters constant, radiation from the normal operation mode of BESSY II, which resembles quasi-cw- illumination, and the special single bunch operation mode, which gives pulsed synchrotron radiation with 1.25 MHz repetition rate were used to irradiate samples in a defined residual gas environment. The reflectance of the samples were measured before and after the illumination to determine the loss in reflectance due to irradiation. Although the time structure of the single bunch mode still differs considerably from those of potential EUVL sources, trends in the contamination behavior could possibly be observed.

  11. Mushroom tyrosinase in polyelectrolyte multilayers as an optical biosensor for o-diphenols.

    PubMed

    Fiorentino, Daniela; Gallone, Anna; Fiocco, Daniela; Palazzo, Gerardo; Mallardi, Antonia

    2010-05-15

    Determination of phenolic derivatives is very important in medical, food and environmental samples because of their relevant significance in health care and pollution monitoring. Tyrosinase-based biosensors are promising tools for this purpose because of several advantages with respect to currently used detection methods. A key aspect in the development of a biosensor is the effective immobilization of the enzyme. In this work, ordered tyrosinase films on an optical transparent support were immobilized by a "layer-by-layer" (LbL) assembly, alternating the enzyme with the polycation polymer poly(dimethyldiallylammonium chloride). As confirmed by UV-vis spectroscopy, the LbL deposition allowed a high loading of enzyme. The immobilized tyrosinase functionality was proven and its kinetic parameters were spectrophotometrically determined. The prepared biosensor was used to optically detect the o-diphenolic compound l-3,4-dihydroxyphenyl-alanine (L-DOPA) and exhibited good repeatability and time stability. The sensing properties of the system were studied by means of both absorption and fluorescence spectroscopy. The bioassay based on the absorbance measurements gave a LOD of 23 microM and a linear response up to 350 microM. The bioassay based on the fluorescence measurements gave a LOD of 3 microM and a linear response in the range of tens of micromolar (the exact value depends on the number of mushroom tyrosinase layers). Biosensor sensitivity could be modulated varying the number of the immobilized enzyme layers. PMID:20176470

  12. The optical dielectric model of Cu2O thin film and its verification

    NASA Astrophysics Data System (ADS)

    Lai, Guo-Zhong; Liang, Xiong; Lv, Jing

    2016-11-01

    The transmittance and reflectance of cuprous oxide (Cu2O) thin film deposited on quartz substrate were measured by a spectrophotometer. Use the optical dielectric model combining the Forouhi-Bloomer model with modified Drude model (FBM+MDM), the optical constants, as well as the thickness of Cu2O film were attained from its measured transmittance data. Moreover, by means of the TFCalc software, the reflectance and transmittance were calculated conversely from the optical constants (n, k) and the thickness of the Cu2O film. It was found that the calculated reflectance and transmittance were in good agreement with the measured ones. So the optical dielectric model, namely FBM+MDM, is suitable for Cu2O thin film.

  13. Ultra-thin optical vortex phase plate based on the metasurface and the angular momentum transformation

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Yan; Guo, Zhongyi; Li, Rongzhen; Zhang, Jingran; Zhang, Anjun; Qu, Shiliang

    2015-04-01

    The ultra-thin optical vortex phase plate (VPP) has been designed and investigated based on the metasurface of the metal rectangular split-ring resonators (MRSRRs) array. The circularly polarized incident light can convert into corresponding cross-polarization transmission light, and the phase and the amplitude of cross-polarization transmission light can be simultaneously governed by modulating two arms of the MRSRR. The MRSRR has been arranged in a special order for forming an ultra-thin optical VPP that can covert a plane wave into a vortex beam with a variety of the topological charges, and the transformation between spin angular momentum (SAM) and orbital angular momentum (OAM) has been discussed in detail. The multi-spectral characteristics of the VPP have also been investigated, and the operating bandwidth of the designed VPP is 190 nm (in the range of 710-900 nm), which enable a potential implication for integrated optics and vortex optics.

  14. Linear and nonlinear optical properties of SrBi4Ti4O15 thin films

    NASA Astrophysics Data System (ADS)

    Rambabu, A.; Reddy, E. Sivanagi; Hamad, Syed; Raju, K. C. James; Rao, S. Venugopal

    2016-05-01

    Polycrystalline SrBi4Ti4O15 thin films with good morphology and layered perovskite structure were fabricated on fused silica substrates using r f magnetron sputtering system at various oxygen mixing percentages (25 and 50). The crystallite sizes of the particles are in 17-28 nm range. The Nonlinear optical properties were investigated by using Z-scan method at a wavelength of 800 nm with 2 ps duration pulses. The films exhibit the fast and giant optical nonlinearities having the two-photon absorption coefficient (β) with magnitude of 10-8-10-9 cm/W and the nonlinear refraction coefficient of ˜10-12 cm2/W. These results indicate SrBi4Ti4O15 thin films are promising candidates for applications in nonlinear optical and optical signal processing devices.

  15. Structural and dielectric behavior of pulsed laser ablated Sr 0.6Ca 0.4TiO 3 thin film and asymmetric multilayer of SrTiO 3 and CaTiO 3

    NASA Astrophysics Data System (ADS)

    Chakraborty, Pradip; Choudhury, Palash Roy; Krupanidhi, S. B.

    2011-12-01

    Homogeneous thin films of Sr 0.6Ca 0.4TiO 3 (SCT40) and asymmetric multilayer of SrTiO 3 (STO) and CaTiO 3 (CTO) were fabricated on Pt/Ti/SiO 2/Si substrates by using pulsed laser deposition technique. The electrical behavior of films was observed within a temperature range of 153 K-373 K. A feeble dielectric peak of SCT40 thin film at 273 K is justified as paraelectric to antiferroelectric phase transition. Moreover, the Curie-Weiss temperature, determined from the ɛ'( T) data above the transition temperature is found to be negative. Using Landau theory, the negative Curie-Weiss temperature is interpreted in terms of an antiferroelectric transition. The asymmetric multilayer exhibits a broad dielectric peak at 273 K, and is attributed to interdiffusion at several interfaces of multilayer. The average dielectric constants for homogeneous Sr 0.6Ca 0.4TiO 3 films (˜650) and asymmetric multilayered films (˜350) at room temperature are recognized as a consequence of grain size effect. Small frequency dispersion in the real part of the dielectric constants and relatively low dielectric losses for both cases ensure high quality of the films applicable for next generation integrated devices.

  16. Hydrogenic impurity, external electric and magnetic fields effects on the nonlinear optical properties of a multi-layer spherical quantum dot

    NASA Astrophysics Data System (ADS)

    Tanhaei, M. H.; Rezaei, G.

    2016-10-01

    In this work, effects of an on-center hydrogenic impurity, external electric and magnetic fields on the optical rectification coefficient (ORC), second and third harmonic generations (SHG and THG) of a multi-layer spherical quantum dot (MLSQD) are studied. Energy eigenvalues and eigenvectors are calculated using the direct matrix diagonalization method and optical properties are obtained using the compact density matrix approach. Our results reveal that the hydrogenic impurity and external fields have a great influence on these optical quantities. Hydrogenic impurity reduces the magnitude of the resonant peaks and shifts them to the higher energies. An increase in the magnetic (electric) field, leads to increase (decrease) the interval energies and the dipole moment matrix elements. Therefore, resonant peaks of these optical quantities find an obvious blue (red) shift and their magnitudes enhance (diminish) with increasing the external magnetic (electric) field.

  17. Designing a stronger interface through graded structures in amorphous/nanocrystalline ZrCu/Cu multilayered films

    NASA Astrophysics Data System (ADS)

    Chang, C. H.; Hsieh, C. H.; Huang, J. C.; Wang, C.; Liao, Y. C.; Hsueh, C. H.; Du, X. H.; Wang, Z. K.; Wang, X.

    2016-06-01

    Many multilayered nano-structures appear to fail due to brittle matter along the interfaces. In order to toughen them, in this study, the microstructure and interface strength of multilayered thin films consisting of amorphous ZrCu and nanocrystalline Cu (with sharp or graded interfaces) are examined and analyzed. The interface possesses a gradient nature in terms of composition, nanocrystalline phase size and volume fraction. The bending results extracted from the nano-scaled cantilever bending samples demonstrate that multilayered films with graded interfaces would have a much higher interface bending strength/strain/modulus, and an overall improvement upgrade of more than 50%. The simple graded interface design of multilayered thin films with improved mechanical properties can offer much more promising performance in structural and functional applications for MEMS or optical coating.

  18. A Study of Optical Parameters of Tin Sulphide Thin Films Using the Swanepoel Method

    NASA Astrophysics Data System (ADS)

    Ragina, A. J.; Murali, K. V.; Preetha, K. C.; Deepa, K.; Remadevi, T. L.

    2011-10-01

    The knowledge of the optical parameters of thin films is important for optics and optoelectronics. In the present work, tin sulphide thin films were deposited on glass substrates by chemical bath deposition method. The as grown films were brown in color and highly adherent to the substrate. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy and spectrophotometric measurements. XRD patterns showed that the films developed were orthorhombic structure. SEM images of tin sulphide thin films confirmed the formation of nanowires. Absorption spectra revealed medium absorption in the visible region and a gradual decrease with higher wavelength. The transmittance of the as-synthesized films is about 50% in the wavelength range 600-1000 nm. The methodological framework of the Swanepoel's method for the spectrophotometric determination of optical parameters of tin sulphide thin films using transmittance data was discussed. The Swanepoel's method is found to be applicable for thin films when measured transmittance spectra have at least one minimum and one maximum. By analyzing the transmission curve, the refractive index and the thickness of the film were evaluated. The energy band gaps are also reported. The optical band gap is direct with a value of 1.79 eV. The values of the optical band gap energy and thickness of the film calculated by Swanepoel's method were compared with that obtained from absorption spectra and cross sectional SEM photographs respectively. These properties demonstrated that tin sulphide thin films could be used as an absorber layer in the fabrication of heterojunction solar cells.

  19. Engineering of the band gap and optical properties of thin films of yttrium hydride

    SciTech Connect

    You, Chang Chuan; Mongstad, Trygve; Maehlen, Jan Petter; Karazhanov, Smagul

    2014-07-21

    Thin films of oxygen-containing yttrium hydride show photochromic effect at room temperature. In this work, we have studied structural and optical properties of the films deposited at different deposition pressures, discovering the possibility of engineering the optical band gap by variation of the oxygen content. In sum, the transparency of the films and the wavelength range of photons triggering the photochromic effect can be controlled by variation of the deposition pressure.

  20. Optical properties of vanadium dioxide thin film in nanoparticle structure

    NASA Astrophysics Data System (ADS)

    Fang, Baoying; Li, Yi; Tong, Guoxiang; Wang, Xiaohua; Yan, Meng; Liang, Qian; Wang, Feng; Qin, Yuan; Ding, Jie; Chen, Shaojuan; Chen, Jiankun; Zheng, Hongzhu; Yuan, Wenrui

    2015-09-01

    The thermo-optic effect and infrared optical properties of VO2 nanoparticles were studied to obtain an optical material with special property that can be used in smart windows. The reflectance and transmittance spectra of the VO2 nanoparticles with different duty cycles at different temperatures were simulated with a specific dispersion relation. Vanadium metal nanoparticles were deposited on glass substrate by magnetic reactive sputtering with porous alumina template (AAO) mask, and the VO2 nanoparticles were prepared by thermal oxidation. The nanostructure and optical properties of the VO2 nanoparticles were characterized by atomic force microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and spectrophotometry. The method of preparation of the sample is economical and the phase transition temperature is observed to drop to 43 °C. The transmission at 1700 nm exhibits a variation of 29% between the metallic and semiconducting states. The VO2 nanoparticles exhibit a significant thermochromic property. The transmittance of the VO2 nanoparticles is improved compared with the VO2 film. The decrease in phase transition temperature and the enhancement of optical properties demonstrate that VO2 film in nanoparticle structure is a viable candidate material for smart windows.