Science.gov

Sample records for multilevel metallization interconnection

  1. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, David B.

    1989-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  2. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, David B.

    1987-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  3. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1985-06-24

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping lase pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  4. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1989-03-21

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration. 6 figs.

  5. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1985-08-23

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  6. Planarization of metal films for multilevel interconnects by pulsed laser heating

    DOEpatents

    Tuckerman, David B.

    1987-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  7. A novel multi-level interconnect scheme with air as low K inter-metal dielectric for ultradeep submicron application

    NASA Astrophysics Data System (ADS)

    Chen, Chung-Hui; Fang, Yean-Kuen; Lin, Chun-Sheng; Yang, Chih-Wei; Hsieh, Jang-Cheng

    2001-01-01

    In this letter, a novel multi-level interconnect scheme with air as the low K inter-metal dielectric for ultra large scale integrated circuit (ULSI) application in ultradeep submicron (UDSM) range is proposed. The detailed process integration with copper dual damascene processing is described. The feasibility of the scheme is examined by trimethylaluminum Raphael simulation for the effective dielectric constant and the cutoff frequency in a standard divide by three counter. The simulation results are also compared with these reported air gap formation technologies. The results show the developed multi-level interconnect system is suitable for UDSM application.

  8. The MSFC complementary metal oxide semiconductor (including multilevel interconnect metallization) process handbook

    NASA Technical Reports Server (NTRS)

    Bouldin, D. L.; Eastes, R. W.; Feltner, W. R.; Hollis, B. R.; Routh, D. E.

    1979-01-01

    The fabrication techniques for creation of complementary metal oxide semiconductor integrated circuits at George C. Marshall Space Flight Center are described. Examples of C-MOS integrated circuits manufactured at MSFC are presented with functional descriptions of each. Typical electrical characteristics of both p-channel metal oxide semiconductor and n-channel metal oxide semiconductor discrete devices under given conditions are provided. Procedures design, mask making, packaging, and testing are included.

  9. Multilevel metallization method for fabricating a metal oxide semiconductor device

    NASA Technical Reports Server (NTRS)

    Hollis, B. R., Jr.; Feltner, W. R.; Bouldin, D. L.; Routh, D. E. (Inventor)

    1978-01-01

    An improved method is described of constructing a metal oxide semiconductor device having multiple layers of metal deposited by dc magnetron sputtering at low dc voltages and low substrate temperatures. The method provides multilevel interconnections and cross over between individual circuit elements in integrated circuits without significantly reducing the reliability or seriously affecting the yield.

  10. Multi-level interconnects for heterojunction bipolar transistor integrated circuit technologies

    SciTech Connect

    Patrizi, G.A.; Lovejoy, M.L.; Schneider, R.P. Jr.; Hou, H.Q.; Enquist, P.M.

    1995-12-31

    Heterojunction bipolar transistors (HBTs) are mesa structures which present difficult planarization problems in integrated circuit fabrication. The authors report a multilevel metal interconnect technology using Benzocyclobutene (BCB) to implement high-speed, low-power photoreceivers based on InGaAs/InP HBTs. Processes for patterning and dry etching BCB to achieve smooth via holes with sloped sidewalls are presented. Excellent planarization of 1.9 {micro}m mesa topographies on InGaAs/InP device structures is demonstrated using scanning electron microscopy (SEM). Additionally, SEM cross sections of both the multi-level metal interconnect via holes and the base emitter via holes required in the HBT IC process are presented. All via holes exhibit sloped sidewalls with slopes of 0.4 {micro}m/{micro}m to 2 {micro}m/{micro}m which are needed to realize a robust interconnect process. Specific contact resistances of the interconnects are found to be less than 6 {times} 10{sup {minus}8} {Omega}cm{sup 2}. Integrated circuits utilizing InGaAs/InP HBTs are fabricated to demonstrate the applicability and compatibility of the multi-level interconnect technology with integrated circuit processing.

  11. CONDENSED MATTER: STRUCTURE, THERMAL AND MECHANICAL PROPERTIES: A novel analytical thermal model for multilevel nano-scale interconnects considering the via effect

    NASA Astrophysics Data System (ADS)

    Zhu, Zhang-Ming; Li, Ru; Hao, Bao-Tian; Yang, Yin-Tang

    2009-11-01

    Based on the heat diffusion equation of multilevel interconnects, a novel analytical thermal model for multilevel nano-scale interconnects considering the via effect is presented, which can compute quickly the temperature of multilevel interconnects, with substrate temperature given. Based on the proposed model and the 65 nm complementary metal oxide semiconductor (CMOS) process parameter, the temperature of nano-scale interconnects is computed. The computed results show that the via effect has a great effect on local interconnects, but the reduction of thermal conductivity has little effect on local interconnects. With the reduction of thermal conductivity or the increase of current density, however, the temperature of global interconnects rises greatly, which can result in a great deterioration in their performance. The proposed model can be applied to computer aided design (CAD) of very large-scale integrated circuits (VLSIs) in nano-scale technologies.

  12. Durability of Metallic Interconnects and Protective Coatings

    SciTech Connect

    Yang, Zhenguo; Stevenson, Jeffry W.

    2009-12-15

    To build up a useful voltage, a number of solid oxide fuel cells (SOFCs) are electrically connected into series in a stack via interconnects, which are placed between adjacent cells. In addition to functioning as a bi-polar electrical connector, the interconnect also acts as a separator plate that separates the fuel at the anode side of one cell from the air at the cathode side on an adjacent cell. During SOFC operation at the high temperatures, the interconnects are thus simultaneously exposed to the oxidizing air at one side and a reducing fuel that can be either hydrogen or hydrocarbon at the other. Besides, they are in contact with adjacent components, such as electrodes or electrical contacts, seals, etc. With steady reduction in SOFC operating temperatures into the low or intermediate range 600-850oC, oxidation resistant alloys are often used to construct interconnects. However, the metallic interconnects may degrade via interactions at their interfaces with surrounding environments or adjacent components, potentially affecting the stability and performance of interconnects and the SOFC stacks. Thus protection layers are applied to metallic interconnects that also intend to mitigate or prevent chromium migration into cells and the cell poisoning. This chapter provides a comprehensive review of materials for metallic interconnects, their degradation and coating protection.

  13. Laser printing of 3D metallic interconnects

    NASA Astrophysics Data System (ADS)

    Beniam, Iyoel; Mathews, Scott A.; Charipar, Nicholas A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-04-01

    The use of laser-induced forward transfer (LIFT) techniques for the printing of functional materials has been demonstrated for numerous applications. The printing gives rise to patterns, which can be used to fabricate planar interconnects. More recently, various groups have demonstrated electrical interconnects from laser-printed 3D structures. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or of pastes containing dispersed metallic particles. However, the generated 3D structures do not posses the same metallic conductivity as a bulk metal interconnect of the same cross-section and length as those formed by wire bonding or tab welding. An alternative is to laser transfer entire 3D structures using a technique known as lase-and-place. Lase-and-place is a LIFT process whereby whole components and parts can be transferred from a donor substrate onto a desired location with one single laser pulse. This paper will describe the use of LIFT to laser print freestanding, solid metal foils or beams precisely over the contact pads of discrete devices to interconnect them into fully functional circuits. Furthermore, this paper will also show how the same laser can be used to bend or fold the bulk metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief for the circuits under flexing or during motion from thermal mismatch. These interconnect "ridges" can span wide gaps (on the order of a millimeter) and accommodate height differences of tens of microns between adjacent devices. Examples of these laser printed 3D metallic bridges and their role in the development of next generation electronics by additive manufacturing will be presented.

  14. Recent Development of SOFC Metallic Interconnect

    SciTech Connect

    Wu JW, Liu XB

    2010-04-01

    Interest in solid oxide fuel cells (SOFC) stems from their higher e±ciencies and lower levels of emitted pollu- tants, compared to traditional power production methods. Interconnects are a critical part in SOFC stacks, which connect cells in series electrically, and also separate air or oxygen at the cathode side from fuel at the anode side. Therefore, the requirements of interconnects are the most demanding, i:e:, to maintain high elec- trical conductivity, good stability in both reducing and oxidizing atmospheres, and close coe±cient of thermal expansion (CTE) match and good compatibility with other SOFC ceramic components. The paper reviewed the interconnect materials, and coatings for metallic interconnect materials.

  15. Metallic Nanowire Interconnections for Integrated Circuit Fabrication

    NASA Technical Reports Server (NTRS)

    Ng, Hou Tee (Inventor); Li, Jun (Inventor); Meyyappan, Meyya (Inventor)

    2007-01-01

    A method for fabricating an electrical interconnect between two or more electrical components. A conductive layer is provided on a substarte and a thin, patterned catalyst array is deposited on an exposed surface of the conductive layer. A gas or vapor of a metallic precursor of a metal nanowire (MeNW) is provided around the catalyst array, and MeNWs grow between the conductive layer and the catalyst array. The catalyst array and a portion of each of the MeNWs are removed to provide exposed ends of the MeNWs.

  16. SEMICONDUCTOR TECHNOLOGY Development of spin-on-glass process for triple metal interconnects

    NASA Astrophysics Data System (ADS)

    Li, Peng; Wenbin, Zhao; Guozhang, Wang; Zongguang, Yu

    2010-12-01

    Spin-on-glass (SOG), an interlayer dielectric material applied in liquid form to fill narrow gaps in the sub-dielectric surface and thus conducive to planarization, is an alternative to silicon dioxide (SiO2) deposited using PECVD processes. However, its inability to adhere to metal and problems such as cracking prevent the easy application of SOG technology to provide an interlayer dielectric in multilevel metal interconnect circuits, particularly in university processing labs. This paper will show that a thin layer of CVD SiO2 and a curing temperature below the sintering temperature of the metal interconnect layer will promote adhesion, reduce gaps, and prevent cracking. Electron scanning microscope analysis has been used to demonstrate the success of the improved technique. This optimized process has been used in batches of double-poly, triple-metal CMOS wafer fabrication to date.

  17. Silicon-hybrid wafer-scale integration achieved with multilevel aluminum interconnects

    NASA Astrophysics Data System (ADS)

    Takahashi, Grant L.; Kolesar, Edward S.

    A silicon-hybrid wafer-scale integration (WSI) technique has been developed to interconnect complementary metal-oxide semiconductor (CMOS) circuits. Electrical performance tests and processing diagnostics reveal that the interconnect design is very promising. The wafer-scale integrated circuit was fabricated by mounting two CMOS integrated circuit dies into etched wells and then planarizing the surface of the silicon wafer substrate. Next the wafer's surface was coated with a photosensitive polyimide and patterned with vias to accommodate the interconnecting conductors. The CMOS dies were two-bit shift registers and were electrically interconnected with aluminum conductors using conventional silicon processing techniques. A diagnostic evaluation was accomplished to determine the electrical continuity of the conductors and via contacts. When compared to a complementary wire-bonded interconnect scheme, the silicon WSI technology was found to be the superior performer at 1-MHz operating frequencies. Discontinuous interconnects were evaluated, and the failures were identified to occur at the severe topographical steps encountered on the substrate wafer's surface.

  18. Perspectives on the metallic interconnects for solid oxide fuel cells.

    PubMed

    Zhu, Wei-Zhong; Yan, Mi

    2004-12-01

    The various stages and progress in the development of interconnect materials for solid oxide fuel cells (SOFCs) over the last two decades are reviewed. The criteria for the application of materials as interconnects are highlighted. In-terconnects based on lanthanum chromite ceramics demonstrate many inherent drawbacks and therefore are only useful for SOFCs operating around 1000 degrees C. The advance in the research of anode-supported flat SOFCs facilitates the replacement of ceramic interconnects with metallic ones due to their significantly lowered working temperature. Besides, interconnects made of metals or alloys offer many advantages as compared to their ceramic counterpart. The oxidation response and thermal expansion behaviors of various prospective metallic interconnects are examined and evaluated. The minimization of contact resistance to achieve desired and reliable stack performance during their projected lifetime still remains a highly challenging issue with metallic interconnects. Inexpensive coating materials and techniques may play a key role in pro-moting the commercialization of SOFC stack whose interconnects are constructed of some current commercially available alloys. Alternatively, development of new metallic materials that are capable of forming stable oxide scales with sluggish growth rate and sufficient electrical conductivity is called for.

  19. Thermal stability of copper silicide passivation layers in copper-based multilevel interconnects

    NASA Astrophysics Data System (ADS)

    Hymes, S.; Kumar, K. S.; Murarka, S. P.; Ding, P. J.; Wang, W.; Lanford, W. A.

    1998-04-01

    Copper thin films were exposed to a dilute silane mixture at temperatures in the range of 190-363 °C. The resulting silicide surface layers were characterized by four-point probe, Rutherford backscattering spectrometry, and x-ray diffraction. A definitive stability regime is observed in which progressively higher copper content phases exist with increasing temperature. Cu3Si, formed in silane, on annealing converts to Cu5Si and eventually to no silicide layer by a silicon diffusion reaction that in an inert ambient drives silicon into underlying copper to form a solid solution. In oxidizing ambients, a similar phenomenon occurs but now silicon also diffuses to surfaces where it oxidizes to form a self-passivating SiO2 layer on surface. These results have important implications governing integration of copper silicide as a passivation layer and silicon hydride based dielectric deposition in copper-based multilevel interconnect in ultralarge scale integration.

  20. Maskless laser writing of microscopic metallic interconnects

    DOEpatents

    Maya, Leon

    1995-01-01

    A method of forming a metal pattern on a substrate. The method includes depositing an insulative nitride film on a substrate and irradiating a laser beam onto the nitride film, thus decomposing the metal nitride into a metal constituent and a gaseous constituent, the metal constituent remaining in the nitride film as a conductive pattern.

  1. Maskless laser writing of microscopic metallic interconnects

    DOEpatents

    Maya, L.

    1995-10-17

    A method of forming a metal pattern on a substrate is disclosed. The method includes depositing an insulative nitride film on a substrate and irradiating a laser beam onto the nitride film, thus decomposing the metal nitride into a metal constituent and a gaseous constituent, the metal constituent remaining in the nitride film as a conductive pattern. 4 figs.

  2. Scaling of Metal Interconnects: Challenges to Functionality and Reliability

    SciTech Connect

    Engelhardt, M.; Schindler, G.; Traving, M.; Stich, A.; Gabric, Z.; Pamler, W.; Hoenlein, W.

    2006-02-07

    Copper-based nano interconnects featuring CDs well beyond today's chip generations and air gap structures were fabricated and subjected to electrical characterization and tests to get already today insight on functionality and reliability aspects of metallization schemes in future semiconductor products. Size effects observed already in today's advanced products will definitely limit the resistivity in future interconnects. Copper diffusion barrier layers were scaled down to the 1nm regime of thicknesses without observable degradation effects regarding adhesion properties and functionality. Interconnect reliability was found to decrease with decreasing barrier thickness. Worst results regarding adhesion properties and interconnect reliability were obtained for vanishing barrier thickness which promotes unrestricted mass flow of copper along the interconnect line. Air gaps were developed and characterized as an alternative approach to porous ultra low-k materials. They allowed the realization of effective k-values of the insulation of 2.4, which meet requirements of chip generations far in the future, while avoiding the integration issues associated with these soft materials. First reliability results obtained with air gaps are comparable with those obtained on full structures. Whereas leakage current behavior with electrical field strength expected to be present between neighboring lines in chip generations during the next 10 years were similar for air gaps and oxide, interconnects insulated by air gaps displayed lower breakdown fields than those insulated by oxide.

  3. Scaling of Metal Interconnects: Challenges to Functionality and Reliability

    NASA Astrophysics Data System (ADS)

    Engelhardt, M.; Schindler, G.; Traving, M.; Stich, A.; Gabric, Z.; Pamler, W.; Hönlein, W.

    2006-02-01

    Copper-based nano interconnects featuring CDs well beyond today's chip generations and air gap structures were fabricated and subjected to electrical characterization and tests to get already today insight on functionality and reliability aspects of metallization schemes in future semiconductor products. Size effects observed already in today's advanced products will definitely limit the resistivity in future interconnects. Copper diffusion barrier layers were scaled down to the 1nm regime of thicknesses without observable degradation effects regarding adhesion properties and functionality. Interconnect reliability was found to decrease with decreasing barrier thickness. Worst results regarding adhesion properties and interconnect reliability were obtained for vanishing barrier thickness which promotes unrestricted mass flow of copper along the interconnect line. Air gaps were developed and characterized as an alternative approach to porous ultra low-k materials. They allowed the realization of effective k-values of the insulation of 2.4, which meet requirements of chip generations far in the future, while avoiding the integration issues associated with these soft materials. First reliability results obtained with air gaps are comparable with those obtained on full structures. Whereas leakage current behavior with electrical field strength expected to be present between neighboring lines in chip generations during the next 10 years were similar for air gaps and oxide, interconnects insulated by air gaps displayed lower breakdown fields than those insulated by oxide.

  4. Interconnected hollow carbon nanospheres for stable lithium metal anodes

    NASA Astrophysics Data System (ADS)

    Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng; Lee, Hyun-Wook; Yan, Kai; Yao, Hongbin; Wang, Haotian; Li, Weiyang; Chu, Steven; Cui, Yi

    2014-08-01

    For future applications in portable electronics, electric vehicles and grid storage, batteries with higher energy storage density than existing lithium ion batteries need to be developed. Recent efforts in this direction have focused on high-capacity electrode materials such as lithium metal, silicon and tin as anodes, and sulphur and oxygen as cathodes. Lithium metal would be the optimal choice as an anode material, because it has the highest specific capacity (3,860 mAh g-1) and the lowest anode potential of all. However, the lithium anode forms dendritic and mossy metal deposits, leading to serious safety concerns and low Coulombic efficiency during charge/discharge cycles. Although advanced characterization techniques have helped shed light on the lithium growth process, effective strategies to improve lithium metal anode cycling remain elusive. Here, we show that coating the lithium metal anode with a monolayer of interconnected amorphous hollow carbon nanospheres helps isolate the lithium metal depositions and facilitates the formation of a stable solid electrolyte interphase. We show that lithium dendrites do not form up to a practical current density of 1 mA cm-2. The Coulombic efficiency improves to ˜99% for more than 150 cycles. This is significantly better than the bare unmodified samples, which usually show rapid Coulombic efficiency decay in fewer than 100 cycles. Our results indicate that nanoscale interfacial engineering could be a promising strategy to tackle the intrinsic problems of lithium metal anodes.

  5. A metallic interconnect for a solid oxide fuel cell stack

    NASA Astrophysics Data System (ADS)

    England, Diane Mildred

    A solid oxide fuel cell (SOFC) electrochemically converts the chemical energy of reaction into electrical energy. The commercial success of planar, SOFC stack technology has a number of challenges, one of which is the interconnect that electrically and physically connects the cathode of one cell to the anode of an adjacent cell in the SOFC stack and in addition, separates the anodic and cathodic gases. An SOFC stack operating at intermediate temperatures, between 600°C and 800°C, can utilize a metallic alloy as an interconnect material. Since the interconnect of an SOFC stack must operate in both air and fuel environments, the oxidation kinetics, adherence and electronic resistance of the oxide scales formed on commercial alloys were investigated in air and wet hydrogen under thermal cycling conditions to 800°C. The alloy, Haynes 230, exhibited the slowest oxidation kinetics and the lowest area-specific resistance as a function of oxidation time of all the alloys in air at 800°C. However, the area-specific resistance of the oxide scale formed on Haynes 230 in wet hydrogen was unacceptably high after only 500 hours of oxidation, which was attributed to the high resistivity of Cr2O3 in a reducing atmosphere. A study of the electrical conductivity of the minor phase manganese chromite, MnXCr3-XO4, in the oxide scale of Haynes 230, revealed that a composition closer to Mn2CrO4 had significantly higher electrical conductivity than that closer to MnCr 2O4. Haynes 230 was coated with Mn to form a phase closer to the Mn2CrO4 composition for application on the fuel side of the interconnect. U.S. Patent No. 6,054,231 is pending. Although coating a metallic alloy is inexpensive, the stringent economic requirements of SOFC stack technology required an alloy without coating for production applications. As no commercially available alloy, among the 41 alloys investigated, performed to the specifications required, a new alloy was created and designated DME-A2. The oxide scale

  6. Fabrication of Ultralow Density Interconnected Pure Metal Foams

    NASA Astrophysics Data System (ADS)

    Burks, Edward C.; Gilbert, Dustin A.; Liu, Kai; Kucheyev, Sergei O.; Colvin, Jeffrey D.; Felter, Thomas E.

    Ultra-low density metallic nanostructures have been shown to possess interesting thermal, electrical, magnetic, chemical and mechanical properties due to their extremely high surface areas, nanoscale geometries and high porosities. Here we report the synthesis of pure metal foams using interconnected metallic nanowires with densities as low as 0.1% of their bulk density that are still mechanically stable. The highly porous monoliths are macroscopic in size (several mm) and can be created in a wide variety of shapes for application-specific needs. Preliminary studies of such metal foams have already revealed fascinating mechanical and magnetic properties, since the physical dimensions of the foams are below some of the basic length scales that govern the material properties. These foams have been used as targets for ultrabright x-ray sources. They also have a wide variety of other potential applications such as photovoltaic devices, supercapacitors, catalysts, coatings, fuel cells, etc. This work has been supported by DTRA #BRCALL08-Per3-C-2-0006, and in part by NSF DMR-1008791 and DMR-1543582. Work at LLNL was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  7. Performance optimization of a free space optical interconnect system with a metal-semiconductor-metal detector

    NASA Astrophysics Data System (ADS)

    Al-Ababneh, Nedal; Khader, Ateka

    2011-08-01

    In this paper we study the possibility and the potentiality of using metal semiconductor-metal photodetector (MSM-PD) in three-dimensional parallel free space optical interconnect (FSOI) systems. The signal-to-noise ratio (SNR) and time response are used as performance measures to optimize the geometry of MSM-PD used in FSOI systems. Both SNR and time response are evaluated, analyzed, and their dependence on feature parameters of the MSM-PD, including finger size, spacing, and number of fingers, are considered. Based on the results obtained, we show that the use of MSM-PD in FSOI improves the interconnect speed at a given acceptable SNR.

  8. Dual-environment effects on the oxidation of metallic interconnects

    SciTech Connect

    Holcomb, G.R.; Ziomek-Moroz, M.; Covino, B.S., Jr.; Bullard, S.J.

    2006-08-01

    Metallic interconnects in solid oxide fuel cells are exposed to a dual environment: fuel on one side (i.e., H2 gas) and oxidizer on the other side (i.e., air). It has been observed that the oxidation behavior of thin stainless steel sheet in air is changed by the presence of H2 on the other side of the sheet. The resulting dual-environment scales are flaky and more friable than the single-environment scales. The H2 disrupts the scale on the air side. A model to explain some of the effects of a dual environment is presented where hydrogen diffusing through the stainless steel sheet reacts with oxygen diffusing through the scale to form water vapor, which has sufficient vapor pressure to mechanically disrupt the scale. Experiments on preoxidized 316L stainless steel tubing exposed to air-air, H2-air, and H2-Ar environments are reported in support of the model.

  9. Dual Environment Effects on the Oxidation of Metallic Interconnects

    SciTech Connect

    Holcomb, Gordon R.; Ziomek-Moroz, Malgorzata; Cramer, Stephen D.; Covino, Jr., Bernard S.; and Bullard, Sophie J.

    2004-10-20

    Metallic interconnects in solid oxide fuel cells are exposed to a dual environment: fuel on one side (i.e. H2 gas) and oxidizer on the other side (i.e. air). It has been observed that the oxidation behavior of thin stainless steel sheet in air is changed by the presence of H2 on the other side of the sheet. The resulting dual environment scales are flaky and more friable than the single environment scales. The H2 disrupts the scale on the air-side. A model to explain some of the effects of a dual environment is presented where hydrogen diffusing through the stainless steel sheet reacts with oxygen diffusing through the scale to form water vapor, which has sufficient vapor pressure to mechanically disrupt the scale. Experiments on preoxidized 316L stainless steel tubing exposed to air/air, H2/air, and H2/Ar environments are reported in support of the model.

  10. On the State of the Art of Metal Interconnects for SOFC Application

    SciTech Connect

    Jablonski@netl.doe.gov

    2011-02-27

    One of the recent developments for Solid Oxide Fuel Cells (SOFC) is oxide component materials capable of operating at lower temperatures such as 700-800C. This lower temperature range has provided for the consideration of metallic interconnects which have several advantages over ceramic interconnects: low cost, ease in manufacturing, and high conductivity. Most metals and alloys will oxidize under both the anode and cathode conditions within an SOFC, thus a chief requirement is that the base metal oxide scale must be electrically conductive since this constitutes the majority of the electrical resistance in a metallic interconnect. Common high temperature alloys form scales that contain chrome, silicon and aluminum oxides among others. Under SOFC operating conditions chrome oxide is a semi-conductor while silicon and aluminum oxides are insulators. In this talk we will review the evolution in candidate alloys and surface modifications which constitute an engineered solution for SOFC interconnect applications.

  11. Metal Interconnects for Solid Oxide Fuel Cell Power Systems

    SciTech Connect

    S. Elangovan

    2006-04-01

    Interconnect development is identified by the US Department of energy as a key technical area requiring focused research to meet the performance and cost goals under the Solid State Energy Conversion Alliance initiative. In the Phase I SECA Core Technology Program, Ceramatec investigated a commercial ferritic stainless steel composition for oxidation resistance properties by measuring the weight gain when exposed to air at the fuel cell operating temperature. A pre-treatment process that results in a dense, adherent scale was found to reduce the oxide scale growth rate significantly. A process for coating the surface of the alloy in order to reduce the in-plane resistance and potentially inhibit chromium oxide evaporation was also identified. The combination of treatments provided a very low resistance through the scale. The resistance measured was as low as 10 milliohm-cm2 at 750 C in air. The oxide scale was also found to be stable in humidified air at 750 C. The resistance value was stable over several thermal cycles. A similar treatment and coating for the fuel side of the interconnect also showed an exceptionally low resistance of one milliohm-cm2 in humidified hydrogen at 750 c, and was stable through multiple thermal cycles. Measurement of interconnect resistance when it was exposed to both air and humidified hydrogen on opposite sides also showed low, stable resistance after additional modification to the pre-treatment process. Resistance stacks, using an interconnect stack with realistic gas flows, also provided favorable results. Chromium evaporation issue however requires testing of fuel stacks and was outside of the scope of this project. based on results to-date, the alloy selection and the treatment processes appear to be well suited for SOFC interconnect application.

  12. Determination of Interfacial Adhesion Strength between Oxide Scale and Substrate for Metallic SOFC Interconnects

    SciTech Connect

    Sun, Xin; Liu, Wenning N.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2008-01-21

    The interfacial adhesion strength between the oxide scale and the substrate is crucial to the reliability and durability of metallic interconnects in SOFC operating environments. It is necessary, therefore, to establish a methodology to quantify the interfacial adhesion strength between the oxide scale and the metallic interconnect substrate, and furthermore to design and optimize the interconnect material as well as the coating materials to meet the design life of an SOFC system. In this paper, we present an integrated experimental/analytical methodology for quantifying the interfacial adhesion strength between oxide scale and a ferritic stainless steel interconnect. Stair-stepping indentation tests are used in conjunction with subsequent finite element analyses to predict the interfacial strength between the oxide scale and Crofer 22 APU substrate.

  13. LaCrO{sub 3}-dispersed Cr for metallic interconnect of planar SOFC

    SciTech Connect

    Song, Rak-Hyun; Shin, Dong Ryul; Dokiya, Masayuki

    1996-12-31

    In the planar SOFC, the interconnect materials plays two roles as an electrical connection and as a gas separation plate in a cell stack. The interconnect materials must be chemically stable in reducing and oxidizing environments, and have high electronic conductivity, high thermal conductivity, matching thermal expansion with an electrolyte, high mechanical strength, good fabricability, and gas tightness. Lanthanum chromite so far has been mainly used as interconnect materials in planar SOFC. However, the ceramic materials are very weak in mechanical strength and have poor machining property as compared with metal. Also the metallic materials have high electronic conductivity and high thermal conductivity. Recently some researchers have studied metallic interconnects such as Al{sub 2}O{sub 3}/Inconel 600 cermet, Ni-20Cr coated with (LaSr)CoO{sub 3}, and Y{sub 2}O{sub 3-} or La{sub 2}O{sub 3}-dispersed Cr alloy. These alloys have still some problems because Ni-based alloys have high thermal expansion, the added Al{sub 2}O{sub 3}, Y{sub 2}O{sub 3} and La{sub 2}O{sub 3} to metals have no electronic conductivity, and the oxide formed on the surface of Cr alloy has high volatility. To solve these problems, in this study, LaCrO{sub 3}-dispersed Cr for metallic interconnect of planar SOFC was investigated. The LaCrO{sub 3}-dispersed Cr can be one candidate of metallic interconnect because LaCrO{sub 3} possesses electronic conductivity and Cr metal has relatively low thermal expansion. The content of 25 vol.% LaCrO{sub 3} Was selected on the basis of a theoretically calculated thermal expansion. The thermal expansion, electrical and oxidation properties were examined and the results were discussed as related to SOFC requirements.

  14. Diffusion of co-sputtered metals as bonding materials for 3D interconnects during thermal treatments.

    PubMed

    Hsu, S Y; Chen, H Y; Chen, K N

    2012-03-01

    Diffusion behaviors of co-sputtered metals during thermal treatments were investigated, where these co-sputtered metals can be used as bonding materials for 3D Interconnects. In this paper, we report the diffusion behaviors and discuss the diffusion mechanisms of co-sputtered metals before and after annealing. Atom and vacancy volume, vacancy formation energy, and activation energy are proposed to explain the diffusion direction and diffusion rate among different co-sputtered metals. Based on the excellent bonding performance of this method, Cu/metal co-sputtering bonding is considered as a potential candidate for advanced bonding technology.

  15. Super-stretchable metallic interconnects on polymer with a linear strain of up to 100%

    SciTech Connect

    Arafat, Yeasir; Dutta, Indranath; Panat, Rahul

    2015-08-24

    Metal interconnects in flexible and wearable devices are heterogeneous metal-polymer systems that are expected to sustain large deformation without failure. The principal strategy to make strain tolerant interconnect lines on flexible substrates has comprised of creating serpentine structures of metal films with either in-plane or out-of-plane waves, using porous substrates, or using highly ductile materials such as gold. The wavy and helical serpentine patterns preclude high-density packing of interconnect lines on devices, while ductile materials such as Au are cost prohibitive for real world applications. Ductile copper films can be stretched if bonded to the substrate, but show high level of cracking beyond few tens of % strain. In this paper, we demonstrate a material system consisting of Indium metal film over an elastomer (PDMS) with a discontinuous Cr layer such that the metal interconnect can be stretched to extremely high linear strain (up to 100%) without any visible cracks. Such linear strain in metal interconnects exceeds that reported in literature and is obtained without the use of any geometrical manipulations or porous substrates. Systematic experimentation is carried out to explain the mechanisms that allow the Indium film to sustain the high strain level without failure. The islands forming the discontinuous Cr layer are shown to move apart from each other during stretching without delamination, providing strong adhesion to the Indium film while accommodating the large strain in the system. The Indium film is shown to form surface wrinkles upon release from the large strain, confirming its strong adhesion to PDMS. A model is proposed based upon the observations that can explain the high level of stretch-ability of the Indium metal film over the PDMS substrate.

  16. Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell

    DOEpatents

    Isenberg, A.O.

    1987-03-10

    Disclosed is a method of forming an adherent metal deposit on a conducting layer of a tube sealed at one end. The tube is immersed with the sealed end down into an aqueous solution containing ions of the metal to be deposited. An ionically conducting aqueous fluid is placed inside the tube and a direct current is passed from a cathode inside the tube to an anode outside the tube. Also disclosed is a multi-layered solid oxide fuel cell tube which consists of an inner porous ceramic support tube, a porous air electrode covering the support tube, a non-porous electrolyte covering a portion of the air electrode, a non-porous conducting interconnection covering the remaining portion of the electrode, and a metal deposit on the interconnection. 1 fig.

  17. Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell

    DOEpatents

    Isenberg, Arnold O.

    1987-01-01

    Disclosed is a method of forming an adherent metal deposit on a conducting layer of a tube sealed at one end. The tube is immersed with the sealed end down into an aqueous solution containing ions of the metal to be deposited. An ionically conducting aqueous fluid is placed inside the tube and a direct current is passed from a cathode inside the tube to an anode outside the tube. Also disclosed is a multi-layered solid oxide fuel cell tube which consists of an inner porous ceramic support tube, a porous air electrode covering the support tube, a non-porous electrolyte covering a portion of the air electrode, a non-porous conducting interconnection covering the remaining portion of the electrode, and a metal deposit on the interconnection.

  18. Fabrication and characterization of hollow metal waveguides for optical interconnect applications

    NASA Astrophysics Data System (ADS)

    Bicknell, Robert; King, Laura; Otis, Charles E.; Yeo, Jong-Souk; Meyer, Neal; Kornilovitch, Pavel; Lerner, Scott; Seals, Lenward

    2009-06-01

    As data rates continue to increase in high-performance computer systems and networks, it is becoming more difficult for copper-based interconnects to keep pace. An alternative approach to meet these requirements is to move to optical-based interconnect technologies which offer a number of advantages over the legacy copper-based solutions. In order to meet the stringent requirements of high performance and low cost, manufacturable waveguide technologies must be developed. Past solutions have often employed polymer waveguide technologies, which can be expensive and limited by modal dispersion. In the present work, hollow metal waveguides (HMWGs) are investigated as a potential alternative. These waveguides demonstrate very low optical losses of <0.05 dB/cm and the capability to transmit at extremely high data rates. The fabrication, modeling, characterization of the HMWGs are discussed to enable photonic interconnect solutions for future generations of computer and server products.

  19. On the deformation mechanisms and electrical behavior of highly stretchable metallic interconnects on elastomer substrates

    NASA Astrophysics Data System (ADS)

    Arafat, Yeasir; Dutta, Indranath; Panat, Rahul

    2016-09-01

    Flexible metallic interconnects are highly important in the emerging field of deformable/wearable electronics. In our previous work [Arafat et al., Appl. Phys. Lett. 107, 081906 (2015)], interconnect films of Indium metal, periodically bonded to an elastomer substrate using a thin discontinuous/cracked adhesion interlayer of Cr, were shown to sustain a linear strain of 80%-100% without failure during repeated cycling. In this paper, we investigate the mechanisms that allow such films to be stretched to a large strain without rupture along with strategies to prevent a deterioration in their electrical performance under high linear strain. Scanning Electron Microscopy and Digital Image Correlation are used to map the strain field of the Cr adhesion interlayer and the In interconnect film when the elastomer substrate is stretched. It is shown that the Cr interlayer morphology, consisting of islands separated by bi-axial cracks, accommodates the strain primarily by widening of the cracks between the islands along the tensile direction. This behavior is shown to cause the strain in the In interconnect film to be discontinuous and concentrated in bands perpendicular to the loading direction. This localization of strain at numerous periodically spaced locations preempts strain-localization at one location and makes the In film highly stretchable by delaying rupture. Finally, the elastic-plastic mismatch-driven wrinkling of the In interconnect upon release from first loading cycle is utilized to delay the onset of plasticity and allow the interconnect to be stretched repeatedly up to 25% linear strain in subsequent cycles without a deterioration of its electrical performance.

  20. Mechanism maps for electromigration-induced failure of metal and alloy interconnects

    NASA Astrophysics Data System (ADS)

    Andleigh, Vaibhav K.; Srikar, V. T.; Park, Young-Joon; Thompson, Carl V.

    1999-12-01

    Numerical simulation of electromigration-induced stress evolution provides a versatile technique for analyzing the reliability of interconnects under a wide range of conditions. We study the evolution of stress in confined, layered, stud-terminated, pure metal, and alloy interconnects. Failure times are estimated using different failure criteria associated with different failure modes for broad ranges of line lengths and current densities. The simulation results can be conveniently catalogued through construction of failure mechanism maps that display domains of dominance of different failure modes. Failure mechanism maps are constructed for several different failure criteria, illustrating regimes of line immortality, void-nucleation-limited failure, void-growth-limited failure, and compressive failure as a function of line length and current density. The effects of changes in failure criteria, geometry, and composition are studied for representative interconnect stacks at accelerated and service temperatures. Failure maps may be used to: (i) provide an overview of predicted reliability behavior, (ii) assess how data from accelerated tests can be accurately scaled to service conditions, and (iii) predict the effects of changes in interconnect and shunt-layer materials and dimensions on interconnect reliability.

  1. Characterization of Fe–Cr alloy metallic interconnects coated with LSMO using the aerosol deposition process

    SciTech Connect

    Huang, Jian-Jia; Fu, Yen-Pei; Wang, Jian-Yih; Cheng, Yung-Neng; Lee, Shyong; Hsu, Jin-Cherng

    2014-03-01

    Graphical abstract: - Highlights: • Lanthanum strontium manganite (LSMO) as the protective layer for metallic interconnects was successfully prepared by aerosol deposition method (AD). • The microstructure, electrical resistance and composition for LSMO-coated Fe–Cr alloys undergoing high temperature, long-hour oxidation were investigated. • The denser protective layer prepared by AD might effectively prohibit the growth of oxidized scale after long time running at 800 °C in air. - Abstract: A Fe–Cr alloy, used for metallic interconnects, was coated with a protective layer of lanthanum strontium manganite (LSMO) using the aerosol deposition method (AD). The effects of the LSMO protective layer, which was coated on the Fe–Cr interconnects using AD, on the area specific resistance (ASR) during high temperature oxidation and the Cr evaporation behaviors were systematically investigated in this paper. The microstructures, morphologies, and compositions of the oxidized scales that appeared on the LSMO-coated Fe–Cr alloy after annealing at 800 °C for 750 h in air were examined using SEM equipped with EDS. The EPMA mapping of the LSMO-coated Fe–Cr interconnects undergoing long term, high-temperature oxidation was used to explain the formation layers of the oxidized scale, which consists of (Mn,Cr){sub 3}O{sub 4} and Cr{sub 2}O{sub 3} layers. Moreover, the experimental results revealed that the AD process is a potential method for preparing denser protective layers with highly desirable electrical properties for metallic interconnects.

  2. Multilevel radiative thermal memory realized by the hysteretic metal-insulator transition of vanadium dioxide

    SciTech Connect

    Ito, Kota Nishikawa, Kazutaka; Iizuka, Hideo

    2016-02-01

    Thermal information processing is attracting much interest as an analog of electronic computing. We experimentally demonstrated a radiative thermal memory utilizing a phase change material. The hysteretic metal-insulator transition of vanadium dioxide (VO{sub 2}) allows us to obtain a multilevel memory. We developed a Preisach model to explain the hysteretic radiative heat transfer between a VO{sub 2} film and a fused quartz substrate. The transient response of our memory predicted by the Preisach model agrees well with the measured response. Our multilevel thermal memory paves the way for thermal information processing as well as contactless thermal management.

  3. Multilevel radiative thermal memory realized by the hysteretic metal-insulator transition of vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Ito, Kota; Nishikawa, Kazutaka; Iizuka, Hideo

    2016-02-01

    Thermal information processing is attracting much interest as an analog of electronic computing. We experimentally demonstrated a radiative thermal memory utilizing a phase change material. The hysteretic metal-insulator transition of vanadium dioxide (VO2) allows us to obtain a multilevel memory. We developed a Preisach model to explain the hysteretic radiative heat transfer between a VO2 film and a fused quartz substrate. The transient response of our memory predicted by the Preisach model agrees well with the measured response. Our multilevel thermal memory paves the way for thermal information processing as well as contactless thermal management.

  4. Oxidation Resistant, Cr Retaining, Electrically Conductive Coatings on Metallic Alloys for SOFC Interconnects

    SciTech Connect

    Vladimir Gorokhovsky

    2008-03-31

    This report describes significant results from an on-going, collaborative effort to enable the use of inexpensive metallic alloys as interconnects in planar solid oxide fuel cells (SOFCs) through the use of advanced coating technologies. Arcomac Surface Engineering, LLC, under the leadership of Dr. Vladimir Gorokhovsky, is investigating filtered-arc and filtered-arc plasma-assisted hybrid coating deposition technologies to promote oxidation resistance, eliminate Cr volatility, and stabilize the electrical conductivity of both standard and specialty steel alloys of interest for SOFC metallic interconnect (IC) applications. Arcomac has successfully developed technologies and processes to deposit coatings with excellent adhesion, which have demonstrated a substantial increase in high temperature oxidation resistance, stabilization of low Area Specific Resistance values and significantly decrease Cr volatility. An extensive matrix of deposition processes, coating compositions and architectures was evaluated. Technical performance of coated and uncoated sample coupons during exposures to SOFC interconnect-relevant conditions is discussed, and promising future directions are considered. Cost analyses have been prepared based on assessment of plasma processing parameters, which demonstrate the feasibility of the proposed surface engineering process for SOFC metallic IC applications.

  5. Impact of Self-Aligned Metal Capping Method on Submicron Copper Interconnections

    NASA Astrophysics Data System (ADS)

    Saito, Tatsuyuki; Noguchi, Junji; Kubo, Maki; Imai, Toshinori; Ito, Yuko

    2004-05-01

    Novel copper (Cu) interconnection technology using self-aligned metallic cap was developed to reduce effective dielectric constant (k-value) as well as to improve reliability. Tungsten (W) was preferentially deposited on Cu wiring by chemical vapor deposition (CVD) using tungsten hexa-fluoride (WF6) and hydrogen (H2). Though W selectivity loss occurred without additional cleaning because of Cu contamination on the dielectric film during the chemical mechanical polishing (CMP) process, this problem was solved by surface cleaning prior to W-CVD combined with lift-off process just after it, resulting in improved yield in the test element group (TEG) during a short check. Using these processes, we fabricated a large-scale integration (LSI) with 4-level Cu interconnections eliminating capping barrier dielectrics such as silicon nitride (SiN), which had a relatively high k-value, and confirmed that there was no degradation in LSI yield. We also confirmed effective k-value was reduced by comparing propagation delay in conventional and metal-capped interconnections.

  6. Porous electrode apparatus for electrodeposition of detailed metal structures or microelectronic interconnections

    DOEpatents

    Griffiths, Stewart K.; Nilson, Robert H.; Hruby, Jill M.

    2002-01-01

    An apparatus and procedure for performing microfabrication of detailed metal structures by electroforming metal deposits within small cavities. Two primary areas of application are: the LIGA process which manufactures complex three-dimensional metal parts and the damascene process used for electroplating line and via interconnections of microelectronic devices. A porous electrode held in contact or in close proximity with a plating substrate or mold top to ensure one-dimensional and uniform current flow into all mold cavities is used. Electrolyte is pumped over the exposed surface of the porous electrode to ensure uniform ion concentrations at this external surface. The porous electrode prevents electrolyte circulation within individual mold cavities, avoiding preferential enhancement of ion transport in cavities having favorable geometries. Both current flow and ion transport are one-dimensional and identical in all mold cavities, so all metal deposits grow at the same rate eliminating nonuniformities of the prior art.

  7. Suppression of Electromigration Early Failure of Cu/Porous Low-k Interconnects Using Dummy Metal

    NASA Astrophysics Data System (ADS)

    Kakuhara, Yumi; Yokogawa, Shinji; Hiroi, Masayuki; Takewaki, Toshiyuki; Ueno, Kazuyoshi

    2009-09-01

    The electromigration (EM) lifetime of Cu/porous low-k interconnects was evaluated by EM experiments in which the effect of back-flow stress was negligible. The EM lifetime of the downstream mode was reduced using a porous low-k film (SiOCH) as an intermetal dielectric (IMD) in comparison with using a SiO2 dielectric. The reduction in EM lifetime was observed only at low cumulative failure probability, considered as “early failure”. The early failure was caused by the formation of a slit void under a via. It was found that the early failure was suppressed by placing a dummy metal near the metal/via contact that inhibited the formation of a slit void. The EM degradation of Cu/porous low-k interconnects is likely to be caused by the mechanical properties of porous low-k film. The dummy metal supports the porous low-k film near the metal/via contact, which leads to improved EM.

  8. Corrosion and Protection of Metallic Interconnects in Solid Oxide Fuel Cells

    SciTech Connect

    Yang, Z Gary; Stevenson, Jeffry W.; Singh, Prabhakar

    2007-12-09

    Energy security and increased concern over environmental protection have spurred a dramatic world-wide growth in research and development of fuel cells, which electrochemically convert incoming fuel into electricity with no or low pollution. Fuel cell technology has become increasingly attractive to a number of sectors, including utility, automotive, and defense industries. Among the various types of fuel cells, solid oxide fuel cells (SOFCs) operate at high temperature (typically 650-1,000 C) and have advantages in terms of high conversion efficiency and the flexibility of using hydrocarbon fuels, in addition to hydrogen. The high temperature operation, however, can lead to increased mass transport and interactions between the surrounding environment and components that are required to be stable during a lifetime of thousands of hours and up to hundreds of thermal cycles. For stacks with relatively low operating temperatures (<800 C), the interconnects that are used to electrically connect a number of cells in series are typically made from cost-effective metals or alloys. The metallic interconnects must demonstrate excellent stability in a very challenging environment during SOFC operation, as they are simultaneously exposed to both an oxidizing (air) environment on the cathode side and a reducing environment (hydrogen or a reformed hydrocarbon fuel) on the anode side. Other challenges include the fact that water vapor is likely to be present in both of these environments, and the fuel is likely to contain impurities, such as sulfides. Since the fuel is usually a reformed hydrocarbon fuel, such as natural gas, coal gas, biogas, gasoline, etc., the interconnect is exposed to a wet carbonaceous environment at the anode side. Finally, the interconnect must be stable towards any adjacent components, such as electrodes, seals and electrical contact materials, with which it is in physical contact.

  9. Processing and Properties of Metallic Foams for Solid-Oxide Fuel Cell Interconnects

    NASA Astrophysics Data System (ADS)

    Scott, Justin Aaron

    Metallic foams possess a unique array of mechanical, thermal, and acoustic properties that have led to an increasing portfolio of potential applications. One of the newest additions includes solid-oxide fuel cells (SOFCs), where commercialization hinges on the development of improved materials and designs that can withstand the severe operational requirements of high temperature (up to 850 °C) and long service lifetimes (>10,000 hours). These demands place strict design limitations on the interconnect, which serves as a current path and fluid barrier between fuel and oxidant gases in the SOFC stack. Materials with excellent oxidation and creep resistance are sought. Chromia-forming Iron and Nickel-based alloy families have shown the most promise in preliminary studies. While a wealth of knowledge is available on these alloys as dense interconnects, limited research has also explored the option of porous metallic interconnects that offer the potential for cheaper, lightweight, and more mechanically robust stacks. This thesis aims to provide a more thorough examination of porous metallic interconnect construction beginning with refinement of the place-holder replication techniques to create fully-interconnected, open porosity in a E-Brite (Fe-26Cr-1Mo, wt.%) and J5 (Ni-22.5Mo-12.5Cr-1Ti-0.5Mn-0.1Al-0.1Y, wt.%) alloy. Mechanical response of the E-Brite was examined at room temperature and found good agreement with existing, beam-based models for stiffness and yield strength. High temperature mechanical deformation was also recorded and a creep strengthening effect due to the formation of oxide was characterized. Electrochemical properties of porous E-Brite including the activation energy of oxide formation and area-specific resistance were also determined and found to be comparable to existing literature on bulk response. Finite element modeling (FEM) of the creep of unoxidized and oxidized E-Brite was also performed and successfully captured the qualitative behavior

  10. Solar cell welded interconnection development program. [parallel gap and ultrasonic metal-metal bonding

    NASA Technical Reports Server (NTRS)

    Katzeff, J. S.

    1974-01-01

    Parallel gap welding and ultrasonic bonding techniques were developed for joining selected interconnect materials (silver, aluminum, copper, silver plated molybdenum and Kovar) to silver-titanium and aluminum contact cells. All process variables have been evaluated leading to establishment of optimum solar cell, interconnect, electrodes and equipment criteria for obtainment of consistent high quality welds. Applicability of nondestructive testing of solar cell welds has been studied. A pre-weld monitoring system is being built and will be utilized in the numerically controlled parallel gap weld station.

  11. Electrodeposited porous metal oxide films with interconnected nanoparticles applied as anode of lithium ion battery

    SciTech Connect

    Xiao, Anguo Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2014-12-15

    Highlights: • Highly porous NiO film is prepared by a co-electrodeposition method. • Porous NiO film is composed of interconnected nanoparticles. • Porous structure is favorable for fast ion/electron transfer. • Porous NiO film shows good lithium ion storage properties. - Abstract: Controllable synthesis of porous metal oxide films is highly desirable for high-performance electrochemical devices. In this work, a highly porous NiO film composed of interconnected nanoparticles is prepared by a simple co-electrodeposition method. The nanoparticles in the NiO film have a size ranging from 30 to 100 nm and construct large-quantity pores of 20–120 nm. As an anode material for lithium ion batteries, the highly porous NiO film electrode delivers a high discharge capacity of 700 mA h g{sup −1} at 0.2 C, as well as good high-rate performance. After 100 cycles at 0.2 C, a specific capacitance of 517 mA h g{sup −1} is attained. The good electrochemical performance is attributed to the interconnected porous structure, which facilitates the diffusion of ion and electron, and provides large reaction surface area leading to improved performance.

  12. Tubular solid oxide fuel cells with porous metal supports and ceramic interconnections

    SciTech Connect

    Huang, Kevin; Ruka, Roswell J

    2012-05-08

    An intermediate temperature solid oxide fuel cell structure capable of operating at from 600.degree. C. to 800.degree. C. having a very thin porous hollow elongated metallic support tube having a thickness from 0.10 mm to 1.0 mm, preferably 0.10 mm to 0.35 mm, a porosity of from 25 vol. % to 50 vol. % and a tensile strength from 700 GPa to 900 GPa, which metallic tube supports a reduced thickness air electrode having a thickness from 0.010 mm to 0.2 mm, a solid oxide electrolyte, a cermet fuel electrode, a ceramic interconnection and an electrically conductive cell to cell contact layer.

  13. Simulation of Fundamental Properties of CNT- and GNR-Metal Interconnects for Development of New Nanosensor Systems

    NASA Astrophysics Data System (ADS)

    Shunin, Yuri N.; Zhukovskii, Yu. F.; Burlutskaya, N. Yu.; Gopeyenko, V. I.; Bellucci, S.

    Cluster approach based on the multiple scattering theory formalism, realistic analytical and coherent potentials, as well as effective medium approximation (EMA-CPA), can be effectively used for nano-sized systems modeling. Major attention is paid now to applications of carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) with various morphology which possess unique physical properties in nanoelectronics, e.g., contacts of CNTs or (GNRs) with other conducting elements of a nanocircuit, which can be promising candidates for interconnects in high-speed electronics. The main problems solving for resistance C-Me junctions with metal particles appear due to the influence of chirality effects in the interconnects of single-wall (SW) and multi-wall (MW) CNTs, single-layer (SL) and multi-layer (ML) GNRs with the fitting metals (Me = Ni, Cu, Ag, Pd, Pt, Au) for the predefined carbon system geometry. Using the models of `liquid metal' and `effective bonds' developed in the framework of the presented approach and Landauer theory, we can predict resistivity properties for the considered interconnects. We have also developed the model of the inter-wall interaction inside MW CNTs, which demonstrates possible `radial current' losses. CNT- and GNR- Metal interconnects in FET-type nanodevices provide nanosensoring possibilities for local physical (mechanical), chemical and biochemical influences of external medium. At the same time, due to high concentrations of dangling bonds CNT- and GNR- Metal interconnects as interfaces are also considered as electrically, magnetically and chemically sensitive elements for novel nanosensor devices.

  14. A multi-level code for metallurgical effects in metal-forming processes

    SciTech Connect

    Taylor, P.A.; Silling, S.A.; Hughes, D.A.; Bammann, D.J.; Chiesa, M.L.

    1997-08-01

    The authors present the final report on a Laboratory-Directed Research and Development (LDRD) project, A Multi-level Code for Metallurgical Effects in metal-Forming Processes, performed during the fiscal years 1995 and 1996. The project focused on the development of new modeling capabilities for simulating forging and extrusion processes that typically display phenomenology occurring on two different length scales. In support of model fitting and code validation, ring compression and extrusion experiments were performed on 304L stainless steel, a material of interest in DOE nuclear weapons applications.

  15. The Influence of Impurities and Metallic Capping Layers on the Microstructure of Copper Interconnects

    NASA Astrophysics Data System (ADS)

    Rizzolo, Michael

    As copper interconnects have scaled to ever smaller dimensions on semiconductor devices, the microstructure has become increasingly detrimental for performance and reliability. Small grains persist in interconnects despite annealing at high temperatures, leading to higher line resistance and more frequent electromigration-induced failures. Conventionally, it was believed that impurities from the electrodeposition pinned grain growth, but limitations in analytical techniques meant the effect was inferred rather than observed. Recent advances in analytical techniques, however, have enabled this work to quantify impurity content, location, and diffusion in relation to microstructural changes in electroplated copper. Surface segregation of impurities during the initial burst of grain growth was investigated. After no surface segregation was observed, a microfluidic plating cell was constructed to plate multilayer films with regions of intentionally high and low impurity concentrations to determine if grain growth could be pinned by the presence of impurities; it was not. An alternate mechanism for grain boundary pinning based on the texture of the seed layer is proposed, supported by time-resolved transmission electron microscopy and transmission electron backscatter diffraction data. The suggested model posits that the seed in narrow features has no preferred orientation, which results in rapid nucleation of subsurface grains in trench regions prior to recrystallization from the overburden down. These rapidly growing grains are able to block off several trenches from the larger overburden grains, inhibiting grain growth in narrow features. With this knowledge in hand, metallic capping layers were employed to address the problematic microstructure in 70nm lines. The capping layers (chromium, nickel, zinc, and tin) were plated on the copper overburden prior to annealing to manipulate the stress gradient and microstructural development during annealing. It appeared that

  16. Capturing buried defects in metal interconnections with electron beam inspection system

    NASA Astrophysics Data System (ADS)

    Xiao, Hong; Jiang, Ximan; Trease, David; Van Riet, Mike; Ramprasad, Shishir; Bhatia, Anadi; Lefebvre, Pierre; Bastard, David; Moreau, Olivier; Maher, Chris; MacDonald, Paul; Campochiaro, Cecelia

    2013-04-01

    In this paper we present a novel mode of electron beam inspection (EBI), entitled super wide optics (SWO) mode, which can effectively detect buried defects in tungsten (W) plugs and copper (Cu) wires. These defects are defects of interest (DOI) to integrated circuit (IC) manufacturers because they are not detectable in optical inspection, voltage contrast (VC) mode EBI or physical mode EBI. We used engineering systems to study two samples, a tungsten chemical mechanical polish (CMP) wafer and a copper CMP wafer with a silicon carbon nitride (SiCN) cap layer. EBI with our novel SWO mode was found to capture many dark defects on these two wafers. Furthermore, defect review with all three EBI modes found some of these dark defects were unique to SWO mode. For verification, physical failure analysis was performed on some SWO-unique DOI. The cross-sectional scanning electron microscope (SEM) images and transmission electron microscope (TEM) images confirmed that the unique DOI were buried voids in W-plugs and copper wire thinning caused by either buried particles or buried particle induced metal trench under-etch. These DOI can significantly increase the resistance of metal interconnects of IC chip and affect the chip yield. This new EBI mode can provide an in-line monitoring solution for these DOI, which does not exist before this study.

  17. Electrically Conductive, Corrosion-Resistant Coatings Through Defect Chemistry for Metallic Interconnects

    SciTech Connect

    Anil V. Virkar

    2006-12-31

    The principal objective of this work was to develop oxidation protective coatings for metallic interconnect based on a defect chemistry approach. It was reasoned that the effectiveness of a coating is dictated by oxygen permeation kinetics; the slower the permeation kinetics, the better the protection. All protective coating materials investigated to date are either perovskites or spinels containing metals exhibiting multiple valence states (Co, Fe, Mn, Cr, etc.). As a result, all of these oxides exhibit a reasonable level of electronic conductivity; typically at least about {approx}0.05 S/cm at 800 C. For a 5 micron coating, this equates to a maximum {approx}0.025 {Omega}cm{sup 2} area specific resistance due to the coating. This suggests that the coating should be based on oxygen ion conductivity (the lower the better) and not on electronic conductivity. Measurements of ionic conductivity of prospective coating materials were conducted using Hebb-Wagner method. It was demonstrated that special precautions need to be taken to measure oxygen ion conductivity in these materials with very low oxygen vacancy concentration. A model for oxidation under a protective coating is presented. Defect chemistry based approach was developed such that by suitably doping, oxygen vacancy concentration was suppressed, thus suppressing oxygen ion transport and increasing effectiveness of the coating. For the cathode side, the best coating material identified was LaMnO{sub 3} with Ti dopant on the Mn site (LTM). It was observed that LTM is more than 20 times as effective as Mn-containing spinels. On the anode side, LaCrO3 doped with Nb on the Cr site (LNC) was the material identified. Extensive oxidation kinetics studies were conducted on metallic alloy foils with coating {approx}1 micron in thickness. From these studies, it was projected that a 5 micron coating would be sufficient to ensure 40,000 h life.

  18. Degradation of solid oxide fuel cell metallic interconnects in fuels containing sulfur

    SciTech Connect

    Ziomek-Moroz, M.; Hawk, Jeffrey A.

    2005-01-01

    Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from all manner of fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). Impurities in the fuel can cause significant performance problems and sulfur, in particular, can decrease the cell performance of fuel cells, including solid oxide fuel cells (SOFC). In the SOFC, the high (800-1000°C) operating temperature yields advantages (e.g., internal fuel reforming) and disadvantages (e.g., material selection and degradation problems). Significant progress in reducing the operating temperature of the SOFC from ~1000 ºC to ~750 ºC may allow less expensive metallic materials to be used for interconnects and as balance of plant (BOP) materials. This paper provides insight on the material performance of nickel, ferritic steels, and nickel-based alloys in fuels containing sulfur, primarily in the form of H2S, and seeks to quantify the extent of possible degradation due to sulfur in the gas stream.

  19. Chip-package nano-structured copper and nickel interconnections with metallic and polymeric bonding interfaces

    NASA Astrophysics Data System (ADS)

    Aggarwal, Ankur

    With the semiconductor industry racing toward a historic transition, nano chips with less than 45 nm features demand I/Os in excess of 20,000 that support computing speed in terabits per second, with multi-core processors aggregately providing highest bandwidth at lowest power. On the other hand, emerging mixed signal systems are driving the need for 3D packaging with embedded active components and ultra-short interconnections. Decreasing I/O pitch together with low cost, high electrical performance and high reliability are the key technological challenges identified by the 2005 International Technology Roadmap for Semiconductors (ITRS). Being able to provide several fold increase in the chip-to-package vertical interconnect density is essential for garnering the true benefits of nanotechnology that will utilize nano-scale devices. Electrical interconnections are multi-functional materials that must also be able to withstand complex, sustained and cyclic thermo-mechanical loads. In addition, the materials must be environmentally-friendly, corrosion resistant, thermally stable over a long time, and resistant to electro-migration. A major challenge is also to develop economic processes that can be integrated into back end of the wafer foundry, i.e. with wafer level packaging. Device-to-system board interconnections are typically accomplished today with either wire bonding or solders. Both of these are incremental and run into either electrical or mechanical barriers as they are extended to higher density of interconnections. Downscaling traditional solder bump interconnect will not satisfy the thermo-mechanical reliability requirements at very fine pitches of the order of 30 microns and less. Alternate interconnection approaches such as compliant interconnects typically require lengthy connections and are therefore limited in terms of electrical properties, although expected to meet the mechanical requirements. A novel chip-package interconnection technology is

  20. Metal-sulfide melt non-interconnectivity in silicates, even at high pressure, high temperature, and high melt fractions

    SciTech Connect

    Minarik, W.G.; Ryerson, F.J.

    1996-01-01

    The authors have investigated the textural microstructure of iron-nickel-sulfur melts in contact with olivine, pyroxene, and the modified-spinel polymorph of olivine. The experiments were conducted at 1,500 C and pressures ranging from 1 to 17 GPa. For compositions more metal-rich than the monosulfide, including the eutectic composition, the metal sulfide melt has a dihedral angle greater than 60{degree} and does not form an interconnected grain-edge fluid. Increasing pressure does not measurably alter the dihedral angles. Textural evolution results in coarsening of the sulfide melt pockets, resulting in large pockets surrounded by many silicate grains and separated from one another by melt-free grain edges. Chemical communication between these large pockets is limited to lattice and grain-boundary diffusion. Due to the large interfacial energy between sulfide melt and silicates, sulfide melts are unable to separate from solid silicate via grain-boundary percolation and remain stranded in isolated melt pockets. Sulfide melt in excess of the critical melt fraction (5--25%) will develop a transient interconnectivity as sulfide collects into larger melt pockets and interconnectivity is pinched off. Efficient separation of core-forming sulfide melts from silicate requires either melting of the silicate matrix or a very large fraction of metal-sulfide melt (perhaps as large as 40%).

  1. Metal/ceramic composites via infiltration of an interconnected wood-derived ceramic

    NASA Astrophysics Data System (ADS)

    Wilkes, Thomas E.

    The use of composites is increasing as they afford scientists and engineers the ability to combine the advantageous properties of each constituent phase, e.g. metal ductility and ceramic stiffness. With respect to materials design, biomimetics is garnering increasing attention due to the complex, yet efficient, natural microstructures. One such biomimetic, or in this case 'bio-derived,' curiosity is wood-derived ceramic, which is made by either replicating or converting wood into a ceramic. The resulting porous and anisotropic material retains the precursor microstructure. The wide variety of precursors can yield materials with a range of pore sizes and distribution of pores. The purpose of this work was to study the processing, microstructure, and properties of aluminum/silicon carbide composites. The composites were made by infiltrating molten aluminum into porous wood-derived SIC, which was produced by the reactive melt-infiltration of silicon into pyrolyzed wood. The composite microstructure consisted of interconnected SiC surrounding Al-alloy 'fibers.' The strength, modulus, and toughness were measured in both longitudinal and transverse orientations. The Al → SiC load transfer was investigated with high-energy X-ray diffraction in combination with in-situ compressive loading. The properties in flexure were found to decrease with increasing temperature. Despite the complex microstructure, predictions of the composite flexural modulus and longitudinal fracture toughness were obtained using simple models: Halpin-Tsai bounds and the Ashby et al. model of the effect of ductile particle-reinforcements on the toughness of brittle materials (Ashby et al. 1989), respectively. In addition, the Al/SiC research inspired the investigation of carbon-reinforced copper composites. The goal was to explore the feasibility of making a high-thermal conductivity composite by infiltrating copper into wood-derived carbon. Results indicated that Cu/C composites could be made with

  2. Direct-Liquid-Evaporation Chemical Vapor Deposition of Nanocrystalline Cobalt Metal for Nanoscale Copper Interconnect Encapsulation.

    PubMed

    Feng, Jun; Gong, Xian; Lou, Xiabing; Gordon, Roy G

    2017-03-29

    In advanced microelectronics, precise design of liner and capping layers become critical, especially when it comes to the fabrication of Cu interconnects with dimensions lower than its mean free path. Herein, we demonstrate that direct-liquid-evaporation chemical vapor deposition (DLE-CVD) of Co is a promising method to make liner and capping layers for nanoscale Cu interconnects. DLE-CVD makes pure, smooth, nanocrystalline, and highly conformal Co films with highly controllable growth characteristics. This process allows full Co encapsulation of nanoscale Cu interconnects, thus stabilizing Cu against diffusion and electromigration. Electrical measurements and high-resolution elemental imaging studies show that the DLE-CVD Co encapsulation layer can improve the reliability and thermal stability of Cu interconnects. Also, with the high conductivity of Co, the DLE-CVD Co encapsulation layer have the potential to further decrease the power consumption of nanoscale Cu interconnects, paving the way for Cu interconnects with higher efficiency in future high-end microelectronics.

  3. CoxFe1-x oxide coatings on metallic interconnects for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Shen, Fengyu; Lu, Kathy

    2016-10-01

    In order to improve the performance of Cr-containing steel as an interconnect material for solid oxide fuel cells, CoFe alloy coatings with Co:Fe ratios of 9:1, 8:2, 7:3, 6:4, and 5:5 are deposited by electrodeposition and then oxidized to CoxFe1-x oxide coatings with a thickness of ∼6 μm as protective layers on the interconnect. The area specific resistance of the coated interconnect increases with the Fe content. Higher Co content oxide coatings are more effective in limiting the growth of the chromia scale while all coatings are effective in inhibiting Cr diffusion and evaporation. With the Co0.8Fe0.2 oxide coated interconnect, the electrochemical performance of the Sm0.5Sr0.5Co0.2Fe0.8O3 cathode is improved. Only 1.54 atomic percentage of Cr is detected on the surface of the Sm0.5Sr0.5Co0.2Fe0.8O3 cathode while no Cr is detected 0.66 μm or more into the cathode. CoxFe1-x oxide coatings are promising candidates for solid oxide fuel cell interconnects with the advantage of using existing cathode species for compatibility and performance enhancement.

  4. Fuel cell system with interconnect

    DOEpatents

    Liu, Zhien; Goettler, Richard; Delaforce, Philip Mark

    2016-03-08

    The present invention includes a fuel cell system having an interconnect that reduces or eliminates diffusion (leakage) of fuel and oxidant by providing an increased densification, by forming the interconnect as a ceramic/metal composite.

  5. Electromigration of damascene copper of IC interconnect

    NASA Astrophysics Data System (ADS)

    Meyer, William Kevin

    Copper metallization patterned with multi-level damascene process is prone to electromigration failure, which affects the reliability and performance of IC interconnect. In typical products, interconnect that is not already constrained by I·R drop or Joule self-heating operates at 'near threshold' conditions. Measurement of electromigration damage near threshold is very difficult due to slow degradation requiring greatly extended stress times, or high currents that cause thermal anomalies. Software simulations of the electromigration mechanism combined with characterization of temperature profiles allows extracting material parameters and calculation of design rules to ensure reliable interconnect. Test structures capable of demonstrating Blech threshold effects while allowing thermal characterization were designed and processed. Electromigration stress tests at various conditions were performed to extract both shortline (threshold) and long-line (above threshold) performance values. The resistance increase time constant shows immortality below Je·L (product of current density and segment length) of 3200 amp/cm. Statistical analysis of times-to-failure show that long lines last 105 hours at 3.1 mA/mum2 (120°C). While this is more robust than aluminum interconnect, the semiconductor industry will be challenged to improve that performance as future products require.

  6. A low-Cr metallic interconnect for intermediate-temperature solid oxide fuel cells

    SciTech Connect

    Geng, Shujiang; Zhu, Jiahong; Brady, Michael P; Anderson, Harlan; ZHOU, XIADONG; YANG, ZHENGUO

    2007-01-01

    Solid oxide fuel cells (SOFCs) have attracted significant attention due to the potential for environmentally-friendly power generation with high efficiency, fuel flexibility, and zero/no emissions. However, the main hurdles thwarting the commercial introduction of SOFCs are the stack cost and durability, particularly related to the long-term stability of stack/cell materials such as the interconnect 1-3. There has been recent interest in utilizing the Cr2O3-forming alloys as interconnect for intermediate-temperature SOFCs4-6. As a consequence, volatile Cr species from the Cr2O3 scale can cause severe degradation of electrical and catalytic properties of the cathode7-9. Here, we report a new low-Cr Fe-Co-Ni base alloy that demonstrates a close match in coefficient of thermal expansion (CTE) with adjacent cell components; good oxidation resistance; and low oxide scale area specific resistance (ASR). The formation of a Cr-free (Fe,Co,Ni)3O4 spinel outer layer over the chromia inner layer upon thermal exposure effectively reduces the chromium evaporation.

  7. Output power enhancement in AlGaN/GaN heterostructure field-effect transistors with multilevel metallization

    NASA Astrophysics Data System (ADS)

    Oh, Seung Kyu; Jang, Taehoon; Pouladi, Sara; Jo, Young Je; Ko, Hwa-Young; Ryou, Jae-Hyun; Kwak, Joon Seop

    2017-01-01

    To improve wafer utilization efficiency and heat dissipation performance, this paper proposes multilevel metallization-structured, lateral-type AlGaN/GaN heterostructure field-effect transistors (HFETs) on a 150 mm Si substrate using photosensitive polyimide (PSPI) as the intermetal dielectric layer. The maximum drain current of the HFETs is 46.3 A, which is 240% higher than that of conventional AlGaN/GaN HFETs with the same die size. Furthermore, the drain current drop of the HFETs under high-bias operation is reduced from 14.07 to 8.09%, as compared to that of conventional HFETs.

  8. Processing and Prolonged 500 C Testing of 4H-SiC JFET Integrated Circuits with Two Levels of Metal Interconnect

    NASA Technical Reports Server (NTRS)

    Spry, David J.; Neudeck, Philip G.; Chen, Liangyu; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.; Krasowski, Michael J.; Prokop, Norman F.

    2015-01-01

    Complex integrated circuit (IC) chips rely on more than one level of interconnect metallization for routing of electrical power and signals. This work reports the processing and testing of 4H-SiC junction field effect transistor (JFET) prototype ICs with two levels of metal interconnect capable of prolonged operation at 500 C. Packaged functional circuits including 3-and 11-stage ring oscillators, a 4-bit digital to analog converter, and a 4-bit address decoder and random access memory cell have been demonstrated at 500 C. A 3-stage oscillator functioned for over 3000 hours at 500 C in air ambient.

  9. Processing and Prolonged 500 C Testing of 4H-SiC JFET Integrated Circuits with Two Levels of Metal Interconnect

    NASA Technical Reports Server (NTRS)

    Spry, David J.; Neudeck, Philip G.; Chen, Liangyu; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.; Krasowski, Michael J.; Prokop, Norman F.

    2015-01-01

    Complex integrated circuit (IC) chips rely on more than one level of interconnect metallization for routing of electrical power and signals. This work reports the processing and testing of 4H-SiC junction field effect transistor (JFET) prototype IC's with two levels of metal interconnect capable of prolonged operation at 500 C. Packaged functional circuits including 3- and 11-stage ring oscillators, a 4-bit digital to analog converter, and a 4-bit address decoder and random access memory cell have been demonstrated at 500 C. A 3-stage oscillator functioned for over 3000 hours at 500 C in air ambient. Improved reproducibility remains to be accomplished.

  10. EFFECT OF METALLIC INTERCONNECT THICKNESS ON ITS LONG-TERM PERFORMANCE IN SOFCS

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2011-11-01

    At the operating environment of solid oxide fuel cells (SOFCs), oxide scale will grow on the ferritic interconnect (IC) surface unavoidably and furfures induce growth stress in oxide scale and along the interface of the oxide scale and IC substrate. A combination of growth stress with thermal stresses may lead to scale delamination/buckling and eventual spallation during SOFC stack cooling, even leading to serious degradation of cell performance. In this paper, the effect of the ferritic IC thickness on the delamination/spallation of the oxide scale was investigated numerically. The predicted results show that the interfacial shear stresses increase with the growth of the oxide scale and also with the thickness of the ferritic substrate; i.e., the thick ferritic substrate can easily lead to scale delamination and spallation.

  11. Interconnection Guidelines

    EPA Pesticide Factsheets

    The Interconnection Guidelines provide general guidance on the steps involved with connecting biogas recovery systems to the utility electrical power grid. Interconnection best practices including time and cost estimates are discussed.

  12. In situ X-ray spectromicroscopy investigation of the material stability of SOFC metal interconnects in operating electrochemical cells.

    PubMed

    Bozzini, Benedetto; Tondo, Elisabetta; Prasciolu, Mauro; Amati, Matteo; Abyaneh, Majid Kazemian; Gregoratti, Luca; Kiskinova, Maya

    2011-08-22

    The present in situ study of electrochemically induced processes occurring in Cr/Ni bilayers in contact with a YSZ electrolyte aims at a molecular-level understanding of the fundamental aspects related to the durability of metallic interconnects in solid oxide fuel cells (SOFCs). The results demonstrate the potential of scanning photoelectron microspectroscopy and imaging to follow in situ the evolution of the chemical states and lateral distributions of the constituent elements (Ni, Cr, Zr, and Y) as a function of applied cathodic potential in a cell working at 650 °C in 10(-6) mbar O(2) ambient conditions. The most interesting findings are the temperature-induced and potential-dependent diffusion of Ni and Cr, and the oxidation-reduction processes resulting in specific morphology-composition changes in the Ni, Cr, and YSZ areas.

  13. Light-triggered self-construction of supramolecular organic nanowires as metallic interconnects

    NASA Astrophysics Data System (ADS)

    Faramarzi, Vina; Niess, Frédéric; Moulin, Emilie; Maaloum, Mounir; Dayen, Jean-François; Beaufrand, Jean-Baptiste; Zanettini, Silvia; Doudin, Bernard; Giuseppone, Nicolas

    2012-06-01

    The construction of soft and processable organic material able to display metallic conduction properties—a large density of freely moving charges—is a major challenge for electronics. Films of doped conjugated polymers are widely used as semiconductor devices, but metallic-type transport in the bulk of such materials remains extremely rare. On the other hand, single-walled carbon nanotubes can exhibit remarkably low contact resistances with related large currents, but are intrinsically very difficult to isolate and process. Here, we describe the self-assembly of supramolecular organic nanowires between two metallic electrodes, from a solution of triarylamine derivative, under the simultaneous action of light and electric field triggers. They exhibit a combination of large conductivity values (>5 × 103 S m-1) and a low interface resistance (<2 × 10-4 Ω m). Moreover, the resistance of nanowires in series with metal interfaces systematically decreases when the temperature is lowered to 1.5 K, revealing an intrinsic metallic behaviour.

  14. Light-triggered self-construction of supramolecular organic nanowires as metallic interconnects.

    PubMed

    Faramarzi, Vina; Niess, Frédéric; Moulin, Emilie; Maaloum, Mounir; Dayen, Jean-François; Beaufrand, Jean-Baptiste; Zanettini, Silvia; Doudin, Bernard; Giuseppone, Nicolas

    2012-04-22

    The construction of soft and processable organic material able to display metallic conduction properties-a large density of freely moving charges-is a major challenge for electronics. Films of doped conjugated polymers are widely used as semiconductor devices, but metallic-type transport in the bulk of such materials remains extremely rare. On the other hand, single-walled carbon nanotubes can exhibit remarkably low contact resistances with related large currents, but are intrinsically very difficult to isolate and process. Here, we describe the self-assembly of supramolecular organic nanowires between two metallic electrodes, from a solution of triarylamine derivative, under the simultaneous action of light and electric field triggers. They exhibit a combination of large conductivity values (>5 × 10(3) S m(-1)) and a low interface resistance (<2 × 10(-4) Ω m). Moreover, the resistance of nanowires in series with metal interfaces systematically decreases when the temperature is lowered to 1.5 K, revealing an intrinsic metallic behaviour.

  15. High Performance Ceramic Interconnect Material for Solid Oxide Fuel Cells (SOFCs): Ca- and Transition Metal-doped Yttrium Chromite

    SciTech Connect

    Yoon, Kyung J.; Stevenson, Jeffry W.; Marina, Olga A.

    2011-10-15

    The effect of transition metal substitution on thermal and electrical properties of Ca-doped yttrium chromite was investigated in relation to use as a ceramic interconnect in high temperature solid oxide fuel cells (SOFCs). 10 at% Co, 4 at% Ni, and 1 at% Cu substitution on B-site of 20 at% Ca-doped yttrium chromite led to a close match of thermal expansion coefficient (TEC) with that of 8 mol% yttria-stabilized zirconia (YSZ), and a single phase Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 remained stable between 25 and 1100 degree C over a wide oxygen partial pressure range. Doping with Cu significantly facilitated densification of yttrium chromite. Ni dopant improved both electrical conductivity and dimensional stability in reducing environments, likely through diminishing the oxygen vacancy formation. Substitution with Co substantially enhanced electrical conductivity in oxidizing atmosphere, which was attributed to an increase in charge carrier density and hopping mobility. Electrical conductivity of Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 at 900 degree C is 57 S/cm in air and 11 S/cm in fuel (pO2=5×10^-17 atm) environments. Chemical compatibility of doped yttrium chromite with other cell components was verified at the processing temperatures. Based on the chemical and dimensional stability, sinterability, and thermal and electrical properties, Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 is suggested as a promising SOFC ceramic interconnect to potentially overcome technical limitations of conventional acceptor-doped lanthanum chromites.

  16. The effect of metal-contacts on carbon nanotube for high frequency interconnects and devices

    SciTech Connect

    Chimowa, George; Bhattacharyya, Somnath

    2014-08-15

    High frequency characterisation of platinum and tungsten contacts on individual multi-walled carbon nanotubes (MWNT) is performed from 10 MHz to 50 GHz. By measuring the scattering parameters of aligned individual MWNTs, we show that metal contacts enhance an inductive response due to the improved MWNT-electrode coupling reducing the capacitive effect. This behaviour is pronounced in the frequency below 10 GHz and strong for tungsten contacts. We explain the inductive response as a result of the interaction of stimulus current with the localized (or defects) states present at the contact region resulting in the current lagging behind the voltage. The results are further supported by direct current measurements that show tungsten to significantly increase carbon nanotube-electrode coupling. The immediate consequence is the reduction of the contact resistance, implying a reduction of electron tunnelling barrier from the electrode to the carbon nanotube.

  17. Model-based prediction of the ohmic resistance of metallic interconnects from oxide scale growth based on scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Linder, Markus; Hocker, Thomas; Holzer, Lorenz; Friedrich, K. Andreas; Iwanschitz, Boris; Mai, Andreas; Schuler, J. Andreas

    2014-12-01

    The increase of ohmic losses caused by continuously growing Cr2O3 scales on metallic interconnects (MICs) is a major contribution to the degradation of SOFC stacks. Comparison of measured ohmic resistances of chromium- (CFY) and ferritic-based alloy (Crofer) MICs at 850 °C in air with the growth of mean oxide scale thicknesses, obtained from SEM cross section images, reveals a non-trivial, non-linear relationship. To understand the correlation between scale evolution and resulting ohmic losses, 2D finite element (FE) simulations of electrical current distributions have been performed for a large number of real oxide scale morphologies. It turns out that typical morphologies favor nonhomogeneous electrical current distributions, where the main current flows over rather few "bridges", i.e. local spots with relatively thin oxide scales. These current-"bridges" are the main reason for the non-linear dependence of ohmic losses on the corresponding oxide scale morphology. Combining electrical conductivity and SEM measurements with FE simulations revealed two further advantages: it permits a more reliable extrapolation of MIC-degradation data over the whole stack lifetime and it provides a method to assess the effective electrical conductivity of thermally grown Cr2O3 scales under stack operation.

  18. Electrically Robust Metal Nanowire Network Formation by In-Situ Interconnection with Single-Walled Carbon Nanotubes

    PubMed Central

    Woo, Jong Seok; Han, Joong Tark; Jung, Sunshin; Jang, Jeong In; Kim, Ho Young; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Lee, Geon-Woong

    2014-01-01

    Modulation of the junction resistance between metallic nanowires is a crucial factor for high performance of the network-structured conducting film. Here, we show that under current flow, silver nanowire (AgNW) network films can be stabilised by minimizing the Joule heating at the NW-NW junction assisted by in-situ interconnection with a small amount (less than 3 wt%) of single-walled carbon nanotubes (SWCNTs). This was achieved by direct deposition of AgNW suspension containing SWCNTs functionalised with quadruple hydrogen bonding moieties excluding dispersant molecules. The electrical stabilisation mechanism of AgNW networks involves the modulation of the electrical transportation pathway by the SWCNTs through the SWCNT-AgNW junctions, which results in a relatively lower junction resistance than the NW-NW junction in the network film. In addition, we propose that good contact and Fermi level matching between AgNWs and modified SWCNTs lead to the modulation of the current pathway. The SWCNT-induced stabilisation of the AgNW networks was also demonstrated by irradiating the film with microwaves. The development of the high-throughput fabrication technology provides a robust and scalable strategy for realizing high-performance flexible transparent conductor films. PMID:24763208

  19. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun; Ma, Jun; Lau, Kei May

    2015-05-04

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrown n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.

  20. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun; Ma, Jun; Lau, Kei May

    2015-05-01

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrown n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.

  1. Coplanar interconnection module

    NASA Technical Reports Server (NTRS)

    Steward, R. D.; Windsor, H. F.

    1970-01-01

    Module for interconnecting a semiconductor array to external leads or components incorporates a metal external heat sink for cooling the array. Heat sink, extending down from the molded block that supports the array, is immersed in a liquid nitrogen bath which is designed to maintain the desired array temperature.

  2. Optical Interconnections For WSI

    NASA Astrophysics Data System (ADS)

    Friedrich, E.; Valette, S.; Gidon, P.

    1989-02-01

    Optical interconnections may be an alternative to metallic lines in very large and fast circuits. In this field, integrated optics could be very attractive because the basic approach is similar to the one of microelectronics. From this point of view, the silicon based integrated optics technology developed at LETI is described and expected performances are analysed.

  3. SOFC INTERCONNECT DEVELOPMENT

    SciTech Connect

    Diane M. England

    2004-03-16

    An interconnect for an SOFC stack is used to connect fuel cells into a stack. SOFC stacks are expected to run for 40,000 hours and 10 thermal cycles for the stationary application and 10,000 hours and 7000 thermal cycles for the transportation application. The interconnect of a stack must be economical and robust enough to survive the SOFC stack operation temperature of 750 C and must maintain the electrical connection to the fuel cells throughout the lifetime and under thermal cycling conditions. Ferritic and austenitic stainless steels, and nickel-based superalloys were investigated as possible interconnect materials for solid oxide fuel cell (SOFC) stacks. The alloys were thermally cycled in air and in a wet nitrogen-argon-hydrogen (N2-Ar-H2-H2O) atmosphere. Thermogravimetry was used to determine the parabolic oxidation rate constants of the alloys in both atmospheres. The area-specific resistance of the oxide scale and metal substrates were measured using a two-probe technique with platinum contacts. The study identifies two new interconnect designs which can be used with both bonded and compressive stack sealing mechanisms. The new interconnect designs offer a solution to chromium vaporization, which can lead to degradation of some (chromium-sensitive) SOFC cathodes.

  4. Patterning gold nanoparticles in liquid environment with high ionic strength for local fabrication of up to 100 μm long metallic interconnections.

    PubMed

    Grüter, Robert R; Dielacher, Bernd; Hirt, Luca; Vörös, János; Zambelli, Tomaso

    2015-05-01

    Metallic interconnections were fabricated in situ using the FluidFM as scanning probe lithography tool. In contrast to other SPL tools, the closed fluidic circuit of the FluidFM enables a pressure-controlled deposition of metallic nanoparticles in liquid environment. Taking advantage of the salt concentration of the liquid environment (i.e. the ionic strength) to tailor the resulting particle density in the deposited layer, a protocol was established for direct patterning of conductive interconnecting structures. The FluidFM microchannel was filled with an aqueous solution of negatively charged gold nanoparticles (AuNPs) to be delivered onto a glass surface coated with a polycation favoring electrostatic adhesion. The deposited structures were analyzed both topographically and electrically to optimize the external parameters such as contact time, salt concentration of the liquid environment and size of the AuNPs. Using this optimized protocol we succeeded in the local fabrication of conductive metallic wires between two prefabricated macroelectrodes in liquid environment. In a subsequent step, the conductivity of the deposited structure was improved by gold annealing.

  5. Multilevel Classes.

    ERIC Educational Resources Information Center

    Connections: A Journal of Adult Literacy, 1997

    1997-01-01

    This issue contains 12 articles written by teachers who have investigated various aspects of the multilevel question in their own classrooms. "The Multilevel Question" (Lenore Balliro) provides an introduction. "Deconstructing the Great Wall of Print" (Richard Goldberg) investigates reading strategies that allow students with a wide range of…

  6. Evidence of Processing Non-Idealities in 4H-SiC Integrated Circuits Fabricated With Two Levels of Metal Interconnect

    NASA Technical Reports Server (NTRS)

    Spry, David J.; Neudeck, Philip G.; Chen, Liangyu; Evans, Laura J.; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.

    2015-01-01

    The fabrication and prolonged 500 C electrical testing of 4H-SiC junction field effect transistor (JFET) integrated circuits (ICs) with two levels of metal interconnect is reported in another submission to this conference proceedings. While some circuits functioned more than 3000 hours at 500 C, the majority of packaged ICs from this wafer electrically failed after less than 200 hours of operation in the same test conditions. This work examines the root physical degradation and failure mechanisms believed responsible for observed large discrepancies in 500 C operating time. Evidence is presented for four distinct issues that significantly impacted 500 C IC operational yield and lifetime for this wafer.

  7. Evidence of Processing Non-Idealities in 4H-SiC Integrated Circuits Fabricated with Two Levels of Metal Interconnect

    NASA Technical Reports Server (NTRS)

    Spry, David J.; Neudeck, Philip G.; Liangyu, Chen; Evans, Laura J.; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.

    2015-01-01

    The fabrication and prolonged 500 C electrical testing of 4H-SiC junction field effect transistor (JFET) integrated circuits (ICs) with two levels of metal interconnect is reported in another submission to this conference proceedings. While some circuits functioned more than 1000 hours at 500 C, the majority of packaged ICs from this wafer electrically failed after less than 200 hours of operation in the same test conditions. This work examines the root physical degradation and failure mechanisms believed responsible for observed large discrepancies in 500 C operating time. Evidence is presented for four distinct issues that significantly impacted 500 C IC operational yield and lifetime for this wafer.

  8. Interconnect resistance of photovoltaic submodules

    NASA Technical Reports Server (NTRS)

    Volltrauer, H.; Eser, E.; Delahoy, A. E.

    1985-01-01

    Small area amorphous silicon solar cells generally have higher efficiencies than large interconnected submodules. Among the reasons for the differences in performance are the lack of large area uniformity, the effect of nonzero tin oxide sheet resistance, and possibly pinholes in the various layers. Another and usually small effect that can contribute to reduced performance of interconnected cells is the resistance of the interconnection i.e., the series resistance introduced by the metal to tin oxide contact through silicon. Proper processing problems to avoid poor contacts are discussed.

  9. Electrical interconnect

    SciTech Connect

    Frost, John S.; Brandt, Randolph J.; Hebert, Peter; Al Taher, Omar

    2015-10-06

    An interconnect includes a first set of connector pads, a second set of connector pads, and a continuous central portion. A first plurality of legs extends at a first angle from the continuous central portion. Each leg of the first plurality of legs is connected to a connector pad of a first set of connector pads. A second plurality of legs extends at a second angle from the continuous central portion. Each leg of the second plurality of legs is connected to a connector pad of the second set of connector pads. Gaps are defined between legs. The gaps enable movement of the first set of connector pads relative to the second set of connector pads.

  10. Alloy Films Deposited by Electroplating as Precursors for Protective Oxide Coatings on Solid Oxide Fuel Cells Metallic Interconnect Materials

    SciTech Connect

    Johnson, Christopher; Gemmen, R.S.; Cross, Caleb

    2006-10-01

    The successful development of stainless steel interconnects for intermediate temperature solid oxide fuel cells (SOFC) may be the materials breakthrough that makes SOFC technology truly commercial. Many of the ferritic stainless steels, however, suffer from a relatively high area specific resistance (ASR) after long exposure times at temperature and the Cr in the native oxide can evaporate and contaminate other cell components. Conductive coatings that resist oxide scale growth and chromium evaporation may prevent both of these problems. In the present study electrochemical deposition of binary alloys followed by oxidation of the alloy to form protective and conductive oxide layers is examined. Results are presented for the deposition of Mn/Co and Fe/Ni alloys via electroplating to form a precursor for spinel oxide coating formation. Analysis of the alloy coatings is done by SEM, EDS and XRD.

  11. Modeling interconnect corners under double patterning misalignment

    NASA Astrophysics Data System (ADS)

    Hyun, Daijoon; Shin, Youngsoo

    2016-03-01

    Publisher's Note: This paper, originally published on March 16th, was replaced with a corrected/revised version on March 28th. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. Interconnect corners should accurately reflect the effect of misalingment in LELE double patterning process. Misalignment is usually considered separately from interconnect structure variations; this incurs too much pessimism and fails to reflect a large increase in total capacitance for asymmetric interconnect structure. We model interconnect corners by taking account of misalignment in conjunction with interconnect structure variations; we also characterize misalignment effect more accurately by handling metal pitch at both sides of a target metal independently. Identifying metal space at both sides of a target metal.

  12. Interconnects, Transmitters, and Receivers

    NASA Astrophysics Data System (ADS)

    Hoefflinger, Bernd

    Interconnects on-chip between transistors and between functions like processors and memories, between chips on carriers or in stacks, and the communication with the outside world have become a highly complex performance, reliability, cost, and energy challenge. Twelve layers of metal interconnects, produced by lithography, require, including the contact vias, 24 mask and process cycles on top of the process front-end. The resulting lines are associated with resistance, capacitance and inductance parasitics as well as with ageing due to high current densities. Large savings in wiring lengths are achieved with 3D integration: transistor stacking, chip stacking and TSV's, a direction, which has exploded since 2005 because of many other benefits and, at the same time, with sensitive reliability and cost issues. On top of this or as an alternative, non-contact interconnects are possible with capacitive or inductive coupling. Inductive in particular has proven to be attractive because its transmission range is large enough for communication in chip stacks and yet not too large to cause interference.Optical transmitters based on integrated III-V compound-semiconductor lasers and THz power amplifiers compete with ascending low-cost, parallel-wire transmitters based on BiCMOS technologies. Parallel mm-wave and THz transceiver arrays enable mm-wave radar for traffic safety and THz computed-tomography. In spite of all these technology advances, the power efficiency of data communication will only improve 100× in a decade. New compression and architectural techniques are in high demand.

  13. Advanced Interconnect Development

    SciTech Connect

    Yang, Z.G.; Maupin, G.; Simner, S.; Singh, P.; Stevenson, J.; Xia, G.

    2005-01-27

    The objectives of this project are to develop cost-effective, optimized materials for intermediate temperature SOFC interconnect and interconnect/electrode interface applications and identify and understand degradation processes in interconnects and at their interfaces with electrodes.

  14. Interconnection networks

    DOEpatents

    Faber, V.; Moore, J.W.

    1988-06-20

    A network of interconnected processors is formed from a vertex symmetric graph selected from graphs GAMMA/sub d/(k) with degree d, diameter k, and (d + 1)exclamation/ (d /minus/ k + 1)exclamation processors for each d greater than or equal to k and GAMMA/sub d/(k, /minus/1) with degree d /minus/ 1, diameter k + 1, and (d + 1)exclamation/(d /minus/ k + 1)exclamation processors for each d greater than or equal to k greater than or equal to 4. Each processor has an address formed by one of the permutations from a predetermined sequence of letters chosen a selected number of letters at a time, and an extended address formed by appending to the address the remaining ones of the predetermined sequence of letters. A plurality of transmission channels is provided from each of the processors, where each processor has one less channel than the selected number of letters forming the sequence. Where a network GAMMA/sub d/(k, /minus/1) is provided, no processor has a channel connected to form an edge in a direction delta/sub 1/. Each of the channels has an identification number selected from the sequence of letters and connected from a first processor having a first extended address to a second processor having a second address formed from a second extended address defined by moving to the front of the first extended address the letter found in the position within the first extended address defined by the channel identification number. The second address is then formed by selecting the first elements of the second extended address corresponding to the selected number used to form the address permutations. 9 figs.

  15. Interconnected semiconductor devices

    DOEpatents

    Grimmer, Derrick P.; Paulson, Kenneth R.; Gilbert, James R.

    1990-10-23

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  16. A Novel, Free-Space Optical Interconnect Employing Vertical-Cavity Surface Emitting Laser Diodes and InGaAs Metal-Semiconductor-Metal Photodetectors for Gbit/s RF/Microwave Systems

    NASA Technical Reports Server (NTRS)

    Savich, Gregory R.; Simons, Rainee N.

    2006-01-01

    Emerging technologies and continuing progress in vertical-cavity surface emitting laser (VCSEL) diode and metal-semiconductor-metal (MSM) photodetector research are making way for novel, high-speed forms of optical data transfer in communication systems. VCSEL diodes operating at 1550 nm have only recently become commercially available, while MSM photodetectors are pushing the limits of contact lithography with interdigitated electrode widths reaching sub micron levels. We propose a novel, free-space optical interconnect operating at about 1Gbit/s utilizing VCSEL diodes and MSM photodetectors. We report on development, progress, and current work, which are as follows: first, analysis of the divergent behavior of VCSEL diodes for coupling to MSM photodetectors with a 50 by 50 m active area and second, the normalized frequency response of the VCSEL diode as a function of the modulating frequency. Third, the calculated response of MSM photodetectors with varying electrode width and spacing on the order of 1 to 3 m as well as the fabrication and characterization of these devices. The work presented here will lead to the formation and characterization of a fully integrated 1Gbit/s free-space optical interconnect at 1550 nm and demonstrates both chip level and board level functionality for RF/microwave digital systems.

  17. CMOS device and interconnect technology enhancements for low power/low voltage applications

    NASA Astrophysics Data System (ADS)

    Vasudev, P. K.

    1996-04-01

    This paper reviews current advances and future directions in the development of scaled CMOS device technologies on bulk and SOI substrates, and multilevel interconnect architectures for application to low power/low voltage ULSI. Although traditional device scaling (as per the SIA roadmap) calls for the concomitant reduction in device sizes and power supplies driven by DRAM technology generations, the achievement of ultra-low power dissipation (at Vdd ≈ 1 V or less) and high speed performance (for battery operated portable systems) will accelerate scaling and drive several new engineered structures, such as vertically modulated channel doping profiles, ultra-shallow source/drain junctions and ultra-thin SOI devices that are tailored for low voltages. In addition, the development of novel low temperature processing schemes, such as Damascene, will be accelerated for integrating low K dielectrics with Al or Cu metallizations for multilevel interconnect architectures that are designed for low power. The successful incorporation of these technologies into portable electronics systems of the coming decade will require meeting the timing, manufacturability, cost and performance goals, in concert with the SIA roadmap.

  18. Printed Module Interconnects

    SciTech Connect

    Stockert, Talysa R.; Fields, Jeremy D.; Pach, Gregory F.; Mauger, Scott A.; van Hest, Maikel F. A. M.

    2015-06-14

    Monolithic interconnects in photovoltaic modules connect adjacent cells in series, and are typically formed sequentially involving multiple deposition and scribing steps. Interconnect widths of 500 um every 10 mm result in 5% dead area, which does not contribute to power generation in an interconnected solar panel. This work expands on previous work that introduced an alternative interconnection method capable of producing interconnect widths less than 100 um. The interconnect is added to the module in a single step after deposition of the photovoltaic stack, eliminating the need for scribe alignment. This alternative method can be used for all types of thin film photovoltaic modules. Voltage addition with copper-indium-gallium-diselenide (CIGS) solar cells using a 2-scribe printed interconnect approach is demonstrated. Additionally, interconnect widths of 250 um are shown.

  19. Application of selective CVD tungsten for low contact resistance via filling to aluminum multilayer interconnection

    NASA Astrophysics Data System (ADS)

    Rang, S.; Chow, R.; Wilson, R. H.; Gorowitz, B.; Williams, A. G.

    1988-05-01

    Process parameters for selective chemical vapor deposition of tungsten to fill vias between aluminum or aluminum alloy multilevel metallization have been identified and demonstrated. By controlling two competing parallel reactions: Aluminum and hydrogen reductions of tungsten hexafluoride in one reduction step process, the specific contact resistivity was found to be in the range of 2.5 to 8.0 x 10-9 ohm-cm2 for 1.8 micron diameter vias. This is at least one order of magnitude lower than the values reported by the previous workers. It was also observed that alloying the aluminum did not appear to affect the contact resistance significantly. In this experiment one cold wall experimental reactor, two cold wall production systems of two different models and one hot wall tube furnace were used to deposit selective CVD tungsten on aluminum or aluminum with 1% silicon first level metal. As a consequence of these findings, problems associated with filling straight wall vias of high aspect ratio in VLSI multilevel interconnection (i.e., high contact resistance, poor step coverage, electromigration, etc.) can now be alleviated or resolved. Therefore, the use of selective CVD tungsten in the existing aluminum IC metallization becomes very attractive and feasible.

  20. Influence of fiber interconnections on the thermomechanical behavior of metal matrix composites consisting of Zn-Al alloy reinforced with steel fibers

    SciTech Connect

    Tao, L.; Delannay, F.

    1998-11-20

    Interconnected fiber networks presenting transverse isotropic symmetry with variable fiber interconnectivity were prepared by sintering assemblies of low carbon steel fibers. The strength and stiffness of these fiber preforms was found to increase very much when increasing sintering temperature or sintering time. Squeeze cast composites were prepared by infiltrating these preforms with alloy ZA8. Creep tests and tensile tests were carried out at 150 C. Both the creep strength and the back-flow strains at unloading drastically increase with increasing preform sintering temperature or time. Also thermal expansion is much affected by fiber interconnectivity. Especially, during cooling, the matrix dilatation strains brought about by thermal mismatches increase with increasing fiber interconnectivity. These results demonstrate that plastic and viscoplastic behaviors of network reinforced composites depend on the mechanical properties of the network as a whole.

  1. Ultrafine Pitch Stencil Printing of Liquid Metal Alloys.

    PubMed

    Lazarus, Nathan; Bedair, Sarah S; Kierzewski, Iain M

    2017-01-18

    With high conductivity and stretchable for large cross-sections, liquid metals such as galinstan are promising for creating stretchable devices and interconnects. Creating high resolution features in parallel is challenging, with most techniques limited to a hundred micrometers or more. In this work, multilevel electroplated stencils are investigated for printing liquid metals, with galinstan features as small as ten micrometers printed on soft elastomers, a factor of 10 reduction over past liquid metal stencil printing. Capacitors and resistive strain sensors are also demonstrated, showing the potential for creating stretchable conductors and devices.

  2. Perforation patterned electrical interconnects

    SciTech Connect

    Frey, Jonathan

    2014-01-28

    This disclosure describes systems and methods for increasing the usable surface area of electrical contacts within a device, such as a thin film solid state device, through the implementation of electrically conductive interconnects. Embodiments described herein include the use of a plurality of electrically conductive interconnects that penetrate through a top contact layer, through one or more multiple layers, and into a bottom contact layer. The plurality of conductive interconnects may form horizontal and vertical cross-sectional patterns. The use of lasers to form the plurality of electrically conductive interconnects from reflowed layer material further aids in the manufacturing process of a device.

  3. Immortality of Cu damascene interconnects

    NASA Astrophysics Data System (ADS)

    Hau-Riege, Stefan P.

    2002-04-01

    We have studied short-line effects in fully-integrated Cu damascene interconnects through electromigration experiments on lines of various lengths and embedded in different dielectric materials. We compare these results with results from analogous experiments on subtractively-etched Al-based interconnects. It is known that Al-based interconnects exhibit three different behaviors, depending on the magnitude of the product of current density, j, and line length, L: For small values of (jL), no void nucleation occurs, and the line is immortal. For intermediate values, voids nucleate, but the line does not fail because the current can flow through the higher-resistivity refractory-metal-based shunt layers. Here, the resistance of the line increases but eventually saturates, and the relative resistance increase is proportional to (jL/B), where B is the effective elastic modulus of the metallization system. For large values of (jL/B), voiding leads to an unacceptably high resistance increase, and the line is considered failed. By contrast, we observed only two regimes for Cu-based interconnects: Either the resistance of the line stays constant during the duration of the experiment, and the line is considered immortal, or the line fails due to an abrupt open-circuit failure. The absence of an intermediate regime in which the resistance saturates is due to the absence of a shunt layer that is able to support a large amount of current once voiding occurs. Since voids nucleate much more easily in Cu- than in Al-based interconnects, a small fraction of short Cu lines fails even at low current densities. It is therefore more appropriate to consider the probability of immortality in the case of Cu rather than assuming a sharp boundary between mortality and immortality. The probability of immortality decreases with increasing amount of material depleted from the cathode, which is proportional to (jL2/B) at steady state. By contrast, the immortality of Al-based interconnects is

  4. Solar cell array interconnects

    DOEpatents

    Carey, P.G.; Thompson, J.B.; Colella, N.J.; Williams, K.A.

    1995-11-14

    Electrical interconnects are disclosed for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value. 4 figs.

  5. Solar cell array interconnects

    DOEpatents

    Carey, Paul G.; Thompson, Jesse B.; Colella, Nicolas J.; Williams, Kenneth A.

    1995-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  6. Laser printed interconnects for flexible electronics

    NASA Astrophysics Data System (ADS)

    Pique, Alberto; Beniam, Iyoel; Mathews, Scott; Charipar, Nicholas

    Laser-induced forward transfer (LIFT) can be used to generate microscale 3D structures for interconnect applications non-lithographically. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or dispersed metallic nanoparticles. However, the resulting 3D structures do not achieve the bulk conductivity of metal interconnects of the same cross-section and length as those formed by wire bonding or tab welding. It is possible, however, to laser transfer entire structures using a LIFT technique known as lase-and-place. Lase-and-place allows whole components and parts to be transferred from a donor substrate onto a desired location with one single laser pulse. This talk will present the use of LIFT to laser print freestanding solid metal interconnects to connect individual devices into functional circuits. Furthermore, the same laser can bend or fold the thin metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief due to flexing or thermal mismatch. Examples of these laser printed 3D metallic bridges and their role in the development of next generation flexible electronics by additive manufacturing will be presented. This work was funded by the Office of Naval Research (ONR) through the Naval Research Laboratory Basic Research Program.

  7. Avioptic plug-in interconnection

    NASA Astrophysics Data System (ADS)

    Caserta, Anthony L.; Lijoi, Bruno

    1989-05-01

    A secure interconnection is claimed for optical and avioptic cables located in exposed positions, which often occur on aircraft communications circuits, for connecting those cables into equipment such as circuit boards. In this invention the interconnection for optical fiber cables comprises a connector which is engaged in a receptacle in a mother board provided with optical circuitry. The connector comprises a cuplike body or plug containing a metal sleeve which encases the optical fiber cable such that the cable end is exposed. The mating receptacle comprises a cylindrical shell having its lower end embedded in the mother board. A hole in the receptacle shell wall receives the end of an optical fiber on the optical circuitry of the mother board. The end of the sleeve of the connector fits over the end of the receptacle shell protruding from the mother board. Beam deflection means in the receptacle or on the connector directs light between the fiber optic cable and the optical circuit element of the mother board. Electrical coupling can be incorporated into the interconnection such that the termination can accommodate electrical as well as optical functions.

  8. Double interconnection fuel cell array

    DOEpatents

    Draper, Robert; Zymboly, Gregory E.

    1993-01-01

    A fuel cell array (10) is made, containing number of tubular, elongated fuel cells (12) which are placed next to each other in rows (A, B, C, D), where each cell contains inner electrodes (14) and outer electrodes (18 and 18'), with solid electrolyte (16 and 16') between the electrodes, where the electrolyte and outer electrode are discontinuous, having two portions, and providing at least two opposed discontinuities which contain at least two oppositely opposed interconnections (20 and 20') contacting the inner electrode (14), each cell (12) having only three metallic felt electrical connectors (22) which contact surrounding cells, where each row is electrically connected to the other.

  9. Micro-fluidic interconnect

    DOEpatents

    Okandan, Murat; Galambos, Paul C.; Benavides, Gilbert L.; Hetherington, Dale L.

    2006-02-28

    An apparatus for simultaneously aligning and interconnecting microfluidic ports is presented. Such interconnections are required to utilize microfluidic devices fabricated in Micro-Electromechanical-Systems (MEMS) technologies, that have multiple fluidic access ports (e.g. 100 micron diameter) within a small footprint, (e.g. 3 mm.times.6 mm). Fanout of the small ports of a microfluidic device to a larger diameter (e.g. 500 microns) facilitates packaging and interconnection of the microfluidic device to printed wiring boards, electronics packages, fluidic manifolds etc.

  10. LTCC interconnects in microsystems

    NASA Astrophysics Data System (ADS)

    Rusu, Cristina; Persson, Katrin; Ottosson, Britta; Billger, Dag

    2006-06-01

    Different microelectromechanical system (MEMS) packaging strategies towards high packaging density of MEMS devices and lower expenditure exist both in the market and in research. For example, electrical interconnections and low stress wafer level packaging are essential for improving device performance. Hybrid integration of low temperature co-fired ceramics (LTCC) with Si can be a way for an easier packaging system with integrated electrical interconnection, and as well towards lower costs. Our research on LTCC-Si integration is reported in this paper.

  11. Novel interconnect deposition technology

    NASA Astrophysics Data System (ADS)

    Speckman, D. M.; Wendt, J. P.

    1991-12-01

    A new series of experiments was initiated to improve current interconnect deposition technology for integrated circuits. Preliminary aluminum deposition experiments were carried out using trimethylamine(alane) as the precursor, and some mildly reflective, uniform aluminum films were successfully deposited on glass slides, suggesting that chemical vapor deposition (CVD) will be a practicable deposition technique for advanced integrated circuit interconnect films. CVD studies of aluminum and zirconium- and hafnium-diboride thin films are continuing.

  12. Zee electrical interconnect

    NASA Technical Reports Server (NTRS)

    Rust, Thomas M. (Inventor); Gaddy, Edward M. (Inventor); Herriage, Michael J. (Inventor); Patterson, Robert E. (Inventor); Partin, Richard D. (Inventor)

    2001-01-01

    An interconnect, having some length, that reliably connects two conductors separated by the length of the interconnect when the connection is made but in which one length if unstressed would change relative to the other in operation. The interconnect comprises a base element an intermediate element and a top element. Each element is rectangular and formed of a conducting material and has opposed ends. The elements are arranged in a generally Z-shape with the base element having one end adapted to be connected to one conductor. The top element has one end adapted to be connected to another conductor and the intermediate element has its ends disposed against the other end of the base and the top element. Brazes mechanically and electrically interconnect the intermediate element to the base and the top elements proximate the corresponding ends of the elements. When the respective ends of the base and the top elements are connected to the conductors, an electrical connection is formed therebetween, and when the conductors are relatively moved or the interconnect elements change length the elements accommodate the changes and the associated compression and tension forces in such a way that the interconnect does not mechanically fatigue.

  13. Enabling Inexpensive Metallic Alloys as SOFC Interconnects: An Investigation into Hybrid Coating Technologies to Deposit Nanocomposite Functional Coatings on Ferritic Stainless Steel

    SciTech Connect

    Gannon, Paul; Gorokhovsky, Vladimir I.; Deibert, Max; Smith, Richard J.; Kayani, Asghar N.; White, P T.; Sofie, Stephen W.; Yang, Z Gary; Mccready, David E.; Visco, S.; Jacobson, C.; Kurokawa, H.

    2007-11-01

    Reduced operating temperatures (600-800°C) of Solid Oxide Fuel Cells (SOFCs) may enable the use of inexpensive ferritic steels as interconnects. Due to the demanding SOFC interconnect operating environment, protective coatings are required to increase long-term stability. In this study, large area filtered arc deposition (LAFAD) and hybrid filtered arc-assisted electron beam physical vapor deposition (FA-EBPVD) technologies were used to deposit two-segment coatings with Cr-Al-Y-O nanocomposite bottom segments and Mn-Co-O spinel-based top segments. Coatings were deposited on ferritic steels and subsequently annealed in air for various times. Surface oxidation was investigated using SEM/EDS, XRD and RBS analyses. Cr-volatilization was evaluated by transpiration and ICP-MS analysis of the resultant condensate. Time dependent Area Specific Resistance (ASR) was studied using the four-point technique. The oxidation behavior, Cr volatilization rate, and ASR of coated and uncoated samples are reported. Significant long-term (>1,000 hours) surface stability, low ASR, and dramatically reduced Cr-volatility were observed with the coated specimens. Improvement mechanisms, including the coating diffusion barrier properties and electrical conductivity are discussed.

  14. Viewing Integrated-Circuit Interconnections By SEM

    NASA Technical Reports Server (NTRS)

    Lawton, Russel A.; Gauldin, Robert E.; Ruiz, Ronald P.

    1990-01-01

    Back-scattering of energetic electrons reveals hidden metal layers. Experiment shows that with suitable operating adjustments, scanning electron microscopy (SEM) used to look for defects in aluminum interconnections in integrated circuits. Enables monitoring, in situ, of changes in defects caused by changes in temperature. Gives truer picture of defects, as etching can change stress field of metal-and-passivation pattern, causing changes in defects.

  15. Welded solar cell interconnection

    NASA Technical Reports Server (NTRS)

    Stofel, E. J.; Browne, E. R.; Meese, R. A.; Vendura, G. J.

    1982-01-01

    The efficiency of the welding of solar-cell interconnects is compared with the efficiency of soldering such interconnects, and the cases in which welding may be superior are examined. Emphasis is placed on ultrasonic welding; attention is given to the solar-cell welding machine, the application of the welding process to different solar-cell configurations, producibility, and long-life performance of welded interconnects. Much of the present work has been directed toward providing increased confidence in the reliability of welding using conditions approximating those that would occur with large-scale array production. It is concluded that there is as yet insufficient data to determine which of three methods (soldering, parallel gap welding, and ultrasonic welding) provides the longest-duration solar panel life.

  16. Optically interconnected phased arrays

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Kunath, Richard R.

    1988-01-01

    Phased-array antennas are required for many future NASA missions. They will provide agile electronic beam forming for communications and tracking in the range of 1 to 100 GHz. Such phased arrays are expected to use several hundred GaAs monolithic integrated circuits (MMICs) as transmitting and receiving elements. However, the interconnections of these elements by conventional coaxial cables and waveguides add weight, reduce flexibility, and increase electrical interference. Alternative interconnections based on optical fibers, optical processing, and holography are under evaluation as possible solutions. In this paper, the current status of these techniques is described. Since high-frequency optical components such as photodetectors, lasers, and modulators are key elements in these interconnections, their performance and limitations are discussed.

  17. Multilevel and Diverse Classrooms

    ERIC Educational Resources Information Center

    Baurain, Bradley, Ed.; Ha, Phan Le, Ed.

    2010-01-01

    The benefits and advantages of classroom practices incorporating unity-in-diversity and diversity-in-unity are what "Multilevel and Diverse Classrooms" is all about. Multilevel classrooms--also known as mixed-ability or heterogeneous classrooms--are a fact of life in ESOL programs around the world. These classrooms are often not only…

  18. SOFC INTERCONNECT DEVELOPMENT

    SciTech Connect

    Diane M. England

    2003-06-06

    This report summarizes the interconnect work being performed at Delphi. Materials were chosen for this interconnect project were chosen from ferritic and austenitic stainless steels, and nickel-based superalloys. The alloys are thermally cycled in air and a wet hydrogen atmosphere. The oxide scale adherence, electrical resistance and oxidation resistance are determined after long-term oxidation of each alloy. The oxide scale adherence will be observed using a scanning electron microscope. The electrical resistance of the oxidized alloys will be determined using an electrical resistance measurement apparatus which has been designed and is currently being built. Data from the electrical resistance measurement is expected to be provided in the second quarter.

  19. Interconnect Between a Waveguide and a Dielectric Waveguide Comprising an Impedance Matched Dielectric Lens

    NASA Technical Reports Server (NTRS)

    Decrossas, Emmanuel (Inventor); Chattopadhyay, Goutam (Inventor); Chahat, Nacer (Inventor); Tang, Adrian J. (Inventor)

    2016-01-01

    A lens for interconnecting a metallic waveguide with a dielectric waveguide is provided. The lens may be coupled a metallic waveguide and a dielectric waveguide, and minimize a signal loss between the metallic waveguide and the dielectric waveguide.

  20. Optical transceivers for interconnections in satellite payloads

    NASA Astrophysics Data System (ADS)

    Karppinen, Mikko; Heikkinen, Veli; Juntunen, Eveliina; Kautio, Kari; Ollila, Jyrki; Sitomaniemi, Aila; Tanskanen, Antti

    2013-02-01

    The increasing data rates and processing on board satellites call for the use of photonic interconnects providing high-bitrate performance as well as valuable savings in mass and volume. Therefore, optical transmitter and receiver technology is developed for aerospace applications. The metal-ceramic-packaging with hermetic fiber pigtails enables robustness for the harsh spacecraft environment, while the 850-nm VCSEL-based transceiver technology meets the high bit-rate and low power requirements. The developed components include 6 Gbps SpaceFibre duplex transceivers for intra-satellite data links and 40 Gbps parallel optical transceivers for board-to-board interconnects. Also, integration concept of interchip optical interconnects for onboard processor ICs is presented.

  1. Interconnecting with VIPs

    ERIC Educational Resources Information Center

    Collins, Robert

    2013-01-01

    Interconnectedness changes lives. It can even save lives. Recently the author got to witness and be part of something in his role as a teacher of primary science that has changed lives: it may even have saved lives. It involved primary science teaching--and the climate. Robert Collins describes how it is all interconnected. The "Toilet…

  2. Capillary interconnect device

    DOEpatents

    Renzi, Ronald F

    2013-11-19

    An interconnecting device for connecting a plurality of first fluid-bearing conduits to a corresponding plurality of second fluid-bearing conduits thereby providing fluid communication between the first fluid-bearing conduits and the second fluid-bearing conduits. The device includes a manifold and one or two ferrule plates that are held by compressive axial forces.

  3. CAISSON: Interconnect Network Simulator

    NASA Technical Reports Server (NTRS)

    Springer, Paul L.

    2006-01-01

    Cray response to HPCS initiative. Model future petaflop computer interconnect. Parallel discrete event simulation techniques for large scale network simulation. Built on WarpIV engine. Run on laptop and Altix 3000. Can be sized up to 1000 simulated nodes per host node. Good parallel scaling characteristics. Flexible: multiple injectors, arbitration strategies, queue iterators, network topologies.

  4. Open Systems Interconnection.

    ERIC Educational Resources Information Center

    Denenberg, Ray

    1985-01-01

    Discusses the need for standards allowing computer-to-computer communication and gives examples of technical issues. The seven-layer framework of the Open Systems Interconnection (OSI) Reference Model is explained and illustrated. Sidebars feature public data networks and Recommendation X.25, OSI standards, OSI layer functions, and a glossary.…

  5. A 3D Nanostructure Based on Transition-Metal Phosphide Decorated Heteroatom-Doped Mesoporous Nanospheres Interconnected with Graphene: Synthesis and Applications.

    PubMed

    Qiu, Shuilai; Xing, Weiyi; Mu, Xiaowei; Feng, Xiaming; Ma, Chao; Yuen, Richard K K; Hu, Yuan

    2016-11-30

    A novel three-dimensional nanostructure based on cobalt phosphide nanoparticles (Co2P NPs) and heteroatom-doped mesoporous carbon spheres interconnected with graphene (3D PZM@Co2P@RGO) was facilely synthesized for the first time, and it was used for enhancing the flame retardancy and toxicity suppression of epoxy resins (EP) via a synergistic effect. Herein, the cross-linked polyphosphazene hollow spheres (PZM) were used as templates for the fabrication of 3D architecture. The 3D architecture based on Co2P-decorated heteroatom-doped carbon sphere and reduced graphene oxide was prepared via a carbonization procedure followed by a hydrothermal self-assembly strategy. The as-prepared material exhibits excellent catalytic activity with regard to the combustion process. Notably, inclusion of incorporating PZM@Co2P@RGO resulted in a dramatic reduction of the fire hazards of EP, such as a 47.9% maximum decrease in peak heat release rate and a 29.2% maximum decrease in total heat release, lower toxic CO yield, and formation of high-graphitized protective char layer. In addition, the mechanism for flame retardancy and toxicity suppression was proposed. It is reasonable to know that the improved flame-retardant performance for EP nanocomposites is attributed to tripartite cooperative effect from respective components (Co2P NPs and RGO) plus the heteroatom-doped carbon spheres.

  6. Multilevel filtering elliptic preconditioners

    NASA Technical Reports Server (NTRS)

    Kuo, C. C. Jay; Chan, Tony F.; Tong, Charles

    1989-01-01

    A class of preconditioners is presented for elliptic problems built on ideas borrowed from the digital filtering theory and implemented on a multilevel grid structure. They are designed to be both rapidly convergent and highly parallelizable. The digital filtering viewpoint allows the use of filter design techniques for constructing elliptic preconditioners and also provides an alternative framework for understanding several other recently proposed multilevel preconditioners. Numerical results are presented to assess the convergence behavior of the new methods and to compare them with other preconditioners of multilevel type, including the usual multigrid method as preconditioner, the hierarchical basis method and a recent method proposed by Bramble-Pasciak-Xu.

  7. Multilevel ensemble Kalman filtering

    DOE PAGES

    Hoel, Hakon; Law, Kody J. H.; Tempone, Raul

    2016-06-14

    This study embeds a multilevel Monte Carlo sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF) in the setting of finite dimensional signal evolution and noisy discrete-time observations. The signal dynamics is assumed to be governed by a stochastic differential equation (SDE), and a hierarchy of time grids is introduced for multilevel numerical integration of that SDE. Finally, the resulting multilevel EnKF is proved to asymptotically outperform EnKF in terms of computational cost versus approximation accuracy. The theoretical results are illustrated numerically.

  8. Multilevel Charge Storage in a Multiple Alloy Nanodot Memory

    NASA Astrophysics Data System (ADS)

    Lee, Gae-Hun; Lee, Jung-Min; Heub Song, Yun; Bea, Ji Chel; Tanaka, Tetsu; Koyanagi, Mitsumasa

    2011-09-01

    A multilevel charge storage in a multiple FePt alloy nanodot memory is investigated for the first time. It is demonstrated that the memory structure with multiple FePt nanodot layers effectively realizes a multilevel state by the adjustment of gate voltage. Metal oxide semiconductor (MOS) capacitors with four FePt nanodot layers as a floating gate are fabricated to evaluate the multilevel cell characteristic and reliability. Here, the effect of memory window for a nanodot diameter is also investigated, and it is found that a smaller dot size gives a larger window. From the results showing good endurance and retention characteristics for the multilevel states, it is expected that a multiple FePt nanodot memory using Fowler-Nordheim (FN) tunneling can be a candidate structure for the future multilevel NAND flash memory.

  9. Carbon Nanotube Interconnect

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Meyyappan, Meyya (Inventor)

    2006-01-01

    Method and system for fabricating an electrical interconnect capable of supporting very high current densities ( 10(exp 6)-10(exp 10) Amps/sq cm), using an array of one or more carbon nanotubes (CNTs). The CNT array is grown in a selected spaced apart pattern, preferably with multi-wall CNTs, and a selected insulating material, such as SiOw, or SiuNv is deposited using CVD to encapsulate each CNT in the array. An exposed surface of the insulating material is planarized to provide one or more exposed electrical contacts for one or more CNTs.

  10. Multilevel corporate environmental responsibility.

    PubMed

    Karassin, Orr; Bar-Haim, Aviad

    2016-12-01

    The multilevel empirical study of the antecedents of corporate social responsibility (CSR) has been identified as "the first knowledge gap" in CSR research. Based on an extensive literature review, the present study outlines a conceptual multilevel model of CSR, then designs and empirically validates an operational multilevel model of the principal driving factors affecting corporate environmental responsibility (CER), as a measure of CSR. Both conceptual and operational models incorporate three levels of analysis: institutional, organizational, and individual. The multilevel nature of the design allows for the assessment of the relative importance of the levels and of their components in the achievement of CER. Unweighted least squares (ULS) regression analysis reveals that the institutional-level variables have medium relationships with CER, some variables having a negative effect. The organizational level is revealed as having strong and positive significant relationships with CER, with organizational culture and managers' attitudes and behaviors as significant driving forces. The study demonstrates the importance of multilevel analysis in improving the understanding of CSR drivers, relative to single level models, even if the significance of specific drivers and levels may vary by context.

  11. Effect of pre-oxidation and environmental aging on the seal strength of a novel high-temperature solid oxide fuel cell (SOFC) sealing glass with metallic interconnect

    SciTech Connect

    Chou, Y. S.; Stevenson, Jeffry W.; Singh, Prabhakar

    2008-09-15

    A novel high-temperature alkaline-earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two ferritic stainless steel coupons for strength evaluation. The steel coupons were pre-oxidized at elevated temperatures to promote thick oxide layers to simulate long-term exposure conditions. In addition, seals to as-received metal coupons were also tested after aging in oxidizing or reducing environments to simulate the actual SOFC environment. Room temperature tensile testing showed strength degradation when using pre-oxidized coupons, and more extensive degradation after aging in air. Fracture surface and microstructural analysis confirmed that the cause of degradation was formation of SrCrO4 at the outer sealing edges exposed to air.

  12. Polymeric optoelectronic interconnects

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.

    2000-04-01

    Electrical interconnects are reaching their fundamental limits and are becoming the speed bottleneck as processor speeds are increasing. A polymer-based interconnect technology was developed for affordable integrated optical circuits that address the optical signal processing needs in the telecom, datacom, and performance computing industries. We engineered organic polymers that can be readily made into single-mode, multimode, and micro-optical waveguide structures of controlled numerical apertures and geometries. These materials are formed from highly-crosslinked acrylate monomers with specific linkages that determine properties such as flexibility, robustness, optical loss, thermal stability, and humidity resistance. These monomers are intermiscible, providing for precise continuous adjustment of the refractive index over a wide range. In polymer form, they exhibit state-of-the-art loss values and exceptional environmental stability, enabling use in a variety of demanding applications. A wide range of rigid and flexible substrates can be used, including glass, quartz, silicon, glass-filled epoxy printed circuit board substrates, and flexible plastic films. The devices we describe include a variety of routing elements that can be sued as part of a massively parallel photonic integrated circuit on the MCM, board, or backplane level.

  13. Electrophoretic deposition of Mn1.5Co1.5O4 on metallic interconnect and interaction with glass-ceramic sealant for solid oxide fuel cells application

    NASA Astrophysics Data System (ADS)

    Smeacetto, Federico; De Miranda, Auristela; Cabanas Polo, Sandra; Molin, Sebastian; Boccaccini, Dino; Salvo, Milena; Boccaccini, Aldo R.

    2015-04-01

    Cr-containing stainless steels are widely used as metallic interconnects for SOFCs. Volatile Cr-containing species, which originate from the oxide formed on steel, can poison the cathode material and subsequently cause degradation in the SOFC stack. Mn1.5Co1.5O4 spinel is one of the most promising coating materials due to its high electrical conductivity, good CTE match with the stainless steel substrate and an excellent chromium retention capability. In this work Mn1.5Co1.5O4 spinel coatings are deposited on Crofer22APU substrates by cathodic electrophoretic deposition (EPD) followed by sintering at 800-1150 °C in different atmospheres. Dense, continuous and crack free Mn1.5Co1.5O4 coatings (with thickness ranging from 10 to 40 μm) are obtained on Crofer22APU substrates. Moreover, electrical properties of the coated Crofer22APU alloy are tested up to 2500 h and an excellent compatibility is found between Mn1.5Co1.5O4 coated Crofer22APU and a new glass-ceramic sealant, after 500 h of thermal tests in air, thus suggesting that the spinel protection layer can effectively act as a barrier to outward diffusion of Cr.

  14. Policy issues in interconnecting networks

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.

    1989-01-01

    To support the activities of the Federal Research Coordinating Committee (FRICC) in creating an interconnected set of networks to serve the research community, two workshops were held to address the technical support of policy issues that arise when interconnecting such networks. The workshops addressed the required and feasible technologies and architectures that could be used to satisfy the desired policies for interconnection. The results of the workshop are documented.

  15. Fuel cell system with interconnect

    DOEpatents

    Liu, Zhien; Goettler, Richard

    2015-09-29

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  16. Optical interconnection of optical modules

    NASA Astrophysics Data System (ADS)

    Schamschula, Marius P.; Caulfield, H. J.; Shamir, Joseph

    1990-12-01

    The most plausible possible uses of nonlinear optics as the bases for interconnections among complex optical modules are evaluated, with a view to such applications as neural networks that entail large numbers of interconnections and numerous stages. Optical interconnection allows such a system to be composed of many modules as well as to incorporate switching- and amplification-function optical nonlinearities. While it is possible to achieve a pixel-by-pixel, diffraction-limited flat-field relay with nonlinearity, where the interconnect allows for cascadability, the wave-particle duality is destroyed between stages.

  17. Probabilistic immortality of Cu damascene interconnects

    NASA Astrophysics Data System (ADS)

    Hau-Riege, Stefan P.

    2002-02-01

    We have studied electromigration short-line effects in Cu damascene interconnects through experiments on lines of various lengths L, stressed at a variety of current densities j, and embedded in different dielectric materials. We observed two modes of resistance evolution: Either the resistance of the lines remains constant for the duration of the test, so that the lines are considered immortal, or the lines fail due to abrupt open-circuit failure. The resistance was not observed to gradually increase and then saturate, as commonly observed in Al-based interconnects, because the barrier is too thin and resistive to serve as a redundant current path should voiding occur. The critical stress for void nucleation was found to be smaller than 41 MPa, since voiding occurred even under the mildest test conditions of j=2 MA/cm2 and L=10.5 μm at 300 °C. A small fraction of short Cu lines failed even at low current densities, which deems necessary a concept of probabilistic immortality rather than deterministic immortality. Experiments and modeling suggest that the probability of immortality is described by (jL2/B), where B is the effective elastic modulus of the metallization scheme. By contrast, the immortality of Al-based interconnects with shunt layers is described by (jL) if no voids nucleate, and (jL/B) if voids do nucleate. Even though the phenomenology of short-line effects differs for Al- and Cu-based interconnects, the immortality of interconnects of either materials system can be explained by the phenomena of nucleation barriers for void formation and void-growth saturation. The differences are due solely to the absence of a shunt layer and the low critical stress for void nucleation in the case of Cu.

  18. Copper Nanowire Production for Interconnect Applications

    NASA Technical Reports Server (NTRS)

    Han, Jin-Woo (Inventor); Meyyappan, Meyya (Inventor)

    2014-01-01

    A method of fabricating metallic Cu nanowires with lengths up to about 25 micrometers and diameters in a range 20-100 nanometers, or greater if desired. Vertically oriented or laterally oriented copper oxide structures (CuO and/or Cu2O) are grown on a Cu substrate. The copper oxide structures are reduced with 99+ percent H or H2, and in this reduction process the lengths decrease (to no more than about 25 micrometers), the density of surviving nanostructures on a substrate decreases, and the diameters of the surviving nanostructures have a range, of about 20-100 nanometers. The resulting nanowires are substantially pure Cu and can be oriented laterally (for local or global interconnects) or can be oriented vertically (for standard vertical interconnects).

  19. Epidemics on interconnected networks

    NASA Astrophysics Data System (ADS)

    Dickison, Mark; Havlin, S.; Stanley, H. E.

    2012-06-01

    Populations are seldom completely isolated from their environment. Individuals in a particular geographic or social region may be considered a distinct network due to strong local ties but will also interact with individuals in other networks. We study the susceptible-infected-recovered process on interconnected network systems and find two distinct regimes. In strongly coupled network systems, epidemics occur simultaneously across the entire system at a critical infection strength βc, below which the disease does not spread. In contrast, in weakly coupled network systems, a mixed phase exists below βc of the coupled network system, where an epidemic occurs in one network but does not spread to the coupled network. We derive an expression for the network and disease parameters that allow this mixed phase and verify it numerically. Public health implications of communities comprising these two classes of network systems are also mentioned.

  20. Parallel multilevel adaptive methods

    NASA Technical Reports Server (NTRS)

    Dowell, B.; Govett, M.; Mccormick, S.; Quinlan, D.

    1989-01-01

    The progress of a project for the design and analysis of a multilevel adaptive algorithm (AFAC/HM/) targeted for the Navier Stokes Computer is discussed. The results of initial timing tests of AFAC, coupled with multigrid and an efficient load balancer, on a 16-node Intel iPSC/2 hypercube are included. The results of timing tests are presented.

  1. Printed interconnects for photovoltaic modules

    SciTech Connect

    Fields, J. D.; Pach, G.; Horowitz, K. A. W.; Stockert, T. R.; Woodhouse, M.; van Hest, M. F. A. M.

    2017-01-01

    Film-based photovoltaic modules employ monolithic interconnects to minimize resistance loss and enhance module voltage via series connection. Conventional interconnect construction occurs sequentially, with a scribing step following deposition of the bottom electrode, a second scribe after deposition of absorber and intermediate layers, and a third following deposition of the top electrode. This method produces interconnect widths of about 300 um, and the area comprised by interconnects within a module (generally about 3%) does not contribute to power generation. The present work reports on an increasingly popular strategy capable of reducing the interconnect width to less than 100 um: printing interconnects. Cost modeling projects a savings of about $0.02/watt for CdTe module production through the use of printed interconnects, with savings coming from both reduced capital expense and increased module power output. Printed interconnect demonstrations with copper-indium-gallium-diselenide and cadmium-telluride solar cells show successful voltage addition and miniaturization down to 250 um. Material selection guidelines and considerations for commercialization are discussed.

  2. Process for electrically interconnecting electrodes

    DOEpatents

    Carey, Paul G.; Thompson, Jesse B.; Colella, Nicolas J.; Williams, Kenneth A.

    2002-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb--Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb--Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  3. Advanced micromechanisms in a multilevel polysilicon technology

    NASA Astrophysics Data System (ADS)

    Rodgers, M. Steven; Sniegowski, Jeffry J.; Miller, Samuel L.; Craig Barron, Carole; McWhorter, Paul J.

    1997-09-01

    Quad-level polysilicon surface micromachining technology, comprising three mechanical levels plus an electrical interconnect layer, is giving rise to a new generation of micro-electromechanical devices and assemblies. Enhanced components can now be produced through greater flexibility in fabrication and design. New levels of design complexity that include multi-level gears, single-attempt locks, and optical elements have recently been realized. Extensive utilization of the fourth layer of polysilicon differentiates these latter generation devices from their predecessors. This level of poly enables the fabrication of pin joints, linkage arms, hinges on moveable plates, and multi-level gear assemblies. The mechanical design aspects of these latest micromachines will be discussed with particular emphasis on a number of design modifications that improve the power, reliability, and smoothness of operation of the microengine. The microengine is the primary actuation mechanism that is being used to drive mirrors out of plane and rotate 1600-micrometers diameter gears. Also discussed is our most advanced micromechanical system to date, a complex proof-of-concept batch-fabricated assembly that, upon transmitting the proper electrical code to a mechanical lock, permits the operation of a micro-optical shutter.

  4. Multilevel Interventions: Measurement and Measures

    PubMed Central

    Charns, Martin P.; Alligood, Elaine C.; Benzer, Justin K.; Burgess, James F.; Mcintosh, Nathalie M.; Burness, Allison; Partin, Melissa R.; Clauser, Steven B.

    2012-01-01

    Background Multilevel intervention research holds the promise of more accurately representing real-life situations and, thus, with proper research design and measurement approaches, facilitating effective and efficient resolution of health-care system challenges. However, taking a multilevel approach to cancer care interventions creates both measurement challenges and opportunities. Methods One-thousand seventy two cancer care articles from 2005 to 2010 were reviewed to examine the state of measurement in the multilevel intervention cancer care literature. Ultimately, 234 multilevel articles, 40 involving cancer care interventions, were identified. Additionally, literature from health services, social psychology, and organizational behavior was reviewed to identify measures that might be useful in multilevel intervention research. Results The vast majority of measures used in multilevel cancer intervention studies were individual level measures. Group-, organization-, and community-level measures were rarely used. Discussion of the independence, validity, and reliability of measures was scant. Discussion Measurement issues may be especially complex when conducting multilevel intervention research. Measurement considerations that are associated with multilevel intervention research include those related to independence, reliability, validity, sample size, and power. Furthermore, multilevel intervention research requires identification of key constructs and measures by level and consideration of interactions within and across levels. Thus, multilevel intervention research benefits from thoughtful theory-driven planning and design, an interdisciplinary approach, and mixed methods measurement and analysis. PMID:22623598

  5. Method of doping interconnections for electrochemical cells

    DOEpatents

    Pal, Uday B.; Singhal, Subhash C.; Moon, David M.; Folser, George R.

    1990-01-01

    A dense, electronically conductive interconnection layer 26 is bonded on a porous, tubular, electronically conductive air electrode structure 16, optionally supported by a ceramic support 22, by (A) forming a layer of oxide particles of at least one of the metals Ca, Sr, Co, Ba or Mg on a part 24 of a first surface of the air electrode 16, (B) heating the electrode structure, (C) applying a halide vapor containing at least lanthanum halide and chromium halide to the first surface and applying a source of oxygen to a second opposite surface of the air electrode so that they contact at said first surface, to cause a reaction of the oxygen and halide and cause a dense lanthanum-chromium oxide structure to grow, from the first electrode surface, between and around the oxide particles, where the metal oxide particles get incoporated into the lanthanum-chromium oxide structure as it grows thicker with time, and the metal ions in the oxide particles diffuse into the bulk of the lanthamum-chromium oxide structure, to provide a dense, top, interconnection layer 26 on top of the air electrode 16. A solid electrolyte layer 18 can be applied to the uncovered portion of the air electrode, and a fuel electrode 20 can be applied to the solid electrolyte, to provide an electrochemical cell 10.

  6. Fast process flow, on-wafer interconnection and singulation for MEPV

    DOEpatents

    Okandan, Murat; Nielson, Gregory N.; Cruz-Campa, Jose Luis; Sanchez, Carlos Anthony

    2017-01-31

    A method including providing a substrate comprising a device layer on which a plurality of device cells are defined; depositing a first dielectric layer on the device layer and metal interconnect such that the deposited interconnect is electrically connected to at least two of the device cells; depositing a second dielectric layer over the interconnect; and exposing at least one contact point on the interconnect through the second dielectric layer. An apparatus including a substrate having defined thereon a device layer including a plurality of device cells; a first dielectric layer disposed directly on the device layer; a plurality of metal interconnects, each of which is electrically connected to at least two of the device cells; and a second dielectric layer disposed over the first dielectric layer and over the interconnects, wherein the second dielectric layer is patterned in a positive or negative planar spring pattern.

  7. Interconnecting heterogeneous database management systems

    NASA Technical Reports Server (NTRS)

    Gligor, V. D.; Luckenbaugh, G. L.

    1984-01-01

    It is pointed out that there is still a great need for the development of improved communication between remote, heterogeneous database management systems (DBMS). Problems regarding the effective communication between distributed DBMSs are primarily related to significant differences between local data managers, local data models and representations, and local transaction managers. A system of interconnected DBMSs which exhibit such differences is called a network of distributed, heterogeneous DBMSs. In order to achieve effective interconnection of remote, heterogeneous DBMSs, the users must have uniform, integrated access to the different DBMs. The present investigation is mainly concerned with an analysis of the existing approaches to interconnecting heterogeneous DBMSs, taking into account four experimental DBMS projects.

  8. Recent developments in multilevel optimization

    NASA Technical Reports Server (NTRS)

    Vanderplaats, Garret N.; Kim, D.-S.

    1989-01-01

    Recent developments in multilevel optimization are briefly reviewed. The general nature of the multilevel design task, the use of approximations to develop and solve the analysis design task, the structure of the formal multidiscipline optimization problem, a simple cantilevered beam which demonstrates the concepts of multilevel design and the basic mathematical details of the optimization task and the system level are among the topics discussed.

  9. Universal Interconnection Technology Workshop Proceedings

    SciTech Connect

    Sheaffer, P.; Lemar, P.; Honton, E. J.; Kime, E.; Friedman, N. R.; Kroposki, B.; Galdo, J.

    2002-10-01

    The Universal Interconnection Technology (UIT) Workshop - sponsored by the U.S. Department of Energy, Distributed Energy and Electric Reliability (DEER) Program, and Distribution and Interconnection R&D - was held July 25-26, 2002, in Chicago, Ill., to: (1) Examine the need for a modular universal interconnection technology; (2) Identify UIT functional and technical requirements; (3) Assess the feasibility of and potential roadblocks to UIT; (4) Create an action plan for UIT development. These proceedings begin with an overview of the workshop. The body of the proceedings provides a series of industry representative-prepared papers on UIT functions and features, present interconnection technology, approaches to modularization and expandability, and technical issues in UIT development as well as detailed summaries of group discussions. Presentations, a list of participants, a copy of the agenda, and contact information are provided in the appendices of this document.

  10. Fuel cell system with interconnect

    DOEpatents

    Liu, Zhien; Goettler, Richard

    2016-12-20

    The present invention includes an integrated planar, series connected fuel cell system having electrochemical cells electrically connected via interconnects, wherein the anodes of the electrochemical cells are protected against Ni loss and migration via an engineered porous anode barrier layer.

  11. Development of Ceramic Interconnect Materials for SOFC

    SciTech Connect

    Yoon, Kyung J.; Stevenson, Jeffry W.; Marina, Olga A.

    2010-08-05

    Currently, acceptor-doped lanthanum chromite is the state-of-the-art ceramic interconnect material for high temperature solid oxide fuel cells (SOFCs) due to its fairly good electronic conductivity and chemical stability in both oxidizing and reducing atmospheres, and thermal compatibility with other cell components. The major challenge for acceptor-doped lanthanum chromite for SOFC interconnect applications is its inferior sintering behavior in air, which has been attributed to the development of a thin layer of Cr2O3 at the interparticle necks during the initial stages of sintering. In addition, lanthanum chromite is reactive with YSZ electrolyte at high temperatures, forming a highly resistive lanthanum zirconate phase (La2Zr2O7), which further complicates co-firing processes. Acceptor-doped yttrium chromite is considered to be one of the promising alternatives to acceptor-doped lanthanum chromite because it is more stable with respect to the formation of hydroxides in SOFC operating conditions, and the formation of impurity phases can be effectively avoided at co-firing temperatures. In addition, calcium-doped yttrium chromite exhibits higher mechanical strength than lanthanum chromite-based materials. The major drawback of yttrium chromite is considered to be its lower electrical conductivity than lanthanum chromite. The properties of yttrium chromites could possibly be improved and optimized by partial substitution of chromium with various transition metals. During FY10, PNNL investigated the effect of various transition metal doping on chemical stability, sintering and thermal expansion behavior, microstructure, electronic and ionic conductivity, and chemical compatibility with other cell components to develop the optimized ceramic interconnect material.

  12. Misalignment corrections in optical interconnects

    NASA Astrophysics Data System (ADS)

    Song, Deqiang

    Optical interconnects are considered a promising solution for long distance and high bitrate data transmissions, outperforming electrical interconnects in terms of loss and dispersion. Due to the bandwidth and distance advantage of optical interconnects, longer links have been implemented with optics. Recent studies show that optical interconnects have clear advantages even at very short distances---intra system interconnects. The biggest challenge for such optical interconnects is the alignment tolerance. Many free space optical components require very precise assembly and installation, and therefore the overall cost could be increased. This thesis studied the misalignment tolerance and possible alignment correction solutions for optical interconnects at backplane or board level. First the alignment tolerance for free space couplers was simulated and the result indicated the most critical alignments occur between the VCSEL, waveguide and microlens arrays. An in-situ microlens array fabrication method was designed and experimentally demonstrated, with no observable misalignment with the waveguide array. At the receiver side, conical lens arrays were proposed to replace simple microlens arrays for a larger angular alignment tolerance. Multilayer simulation models in CodeV were built to optimized the refractive index and shape profiles of the conical lens arrays. Conical lenses fabricated with micro injection molding machine and fiber etching were characterized. Active component VCSOA was used to correct misalignment in optical connectors between the board and backplane. The alignment correction capability were characterized for both DC and AC (1GHz) optical signal. The speed and bandwidth of the VCSOA was measured and compared with a same structure VCSEL. Based on the optical inverter being studied in our lab, an all-optical flip-flop was demonstrated using a pair of VCSOAs. This memory cell with random access ability can store one bit optical signal with set or

  13. Multilevel Modeling of Social Segregation

    ERIC Educational Resources Information Center

    Leckie, George; Pillinger, Rebecca; Jones, Kelvyn; Goldstein, Harvey

    2012-01-01

    The traditional approach to measuring segregation is based upon descriptive, non-model-based indices. A recently proposed alternative is multilevel modeling. The authors further develop the argument for a multilevel modeling approach by first describing and expanding upon its notable advantages, which include an ability to model segregation at a…

  14. A Primer on Multilevel Modeling

    ERIC Educational Resources Information Center

    Hayes, Andrew F.

    2006-01-01

    Multilevel modeling (MLM) is growing in use throughout the social sciences. Although daunting from a mathematical perspective, MLM is relatively easy to employ once some basic concepts are understood. In this article, I present a primer on MLM, describing some of these principles and applying them to the analysis of a multilevel data set on…

  15. Fast multilevel radiative transfer

    NASA Astrophysics Data System (ADS)

    Paletou, Frédéric; Léger, Ludovick

    2007-01-01

    The vast majority of recent advances in the field of numerical radiative transfer relies on approximate operator methods better known in astrophysics as Accelerated Lambda-Iteration (ALI). A superior class of iterative schemes, in term of rates of convergence, such as Gauss-Seidel and Successive Overrelaxation methods were therefore quite naturally introduced in the field of radiative transfer by Trujillo Bueno & Fabiani Bendicho (1995); it was thoroughly described for the non-LTE two-level atom case. We describe hereafter in details how such methods can be generalized when dealing with non-LTE unpolarised radiation transfer with multilevel atomic models, in monodimensional geometry.

  16. Average interconnection length and interconnection distribution for rectangular arrays

    NASA Astrophysics Data System (ADS)

    Gura, Carol; Abraham, Jacob A.

    1989-05-01

    It is shown that it is necessary to utilize different partitioning coefficients in interconnection length analyses which are based on Rent's rule, depending on whether one- or two-dimensional placement strategies are used. Beta is the partitioning coefficient in the power-law relationship Alpha Beta which provides a measure of the number of interconnection that cross a boundary which encloses Beta blocks. The partitioning coefficients are Beta = p/2 and Beta = p for two- and one-dimensional arrays, respectively, where p is the experimental coefficient, of the Rent relationship. Based on these separate partitioning coefficients, an average interconnection length prediction is presented for rectangular arrays that out performs existing predictions. Examples are given to support this theory.

  17. Phase reactions at semiconductor metallization interfaces

    NASA Astrophysics Data System (ADS)

    Bhansali, A. S.; Ko, D. H.; Sinclair, R.

    1990-11-01

    During, or following, the fabrication of a microelectronic device, it is possible for the material phases at critical interfaces to react with one another, and so alter the elec-trical performance. This is particularly important for metallization contacts to semi-conductors and for multilevel interconnects. The present article shows that application of phase diagram principles can successfully predict the mutual stability or chemical reactivity in such circumstances. Since most relevant phase diagrams are not available, it is shown how they may be calculated from known thermochemical data, or deduced from observations on thin-film reactions. The article is illustrated by the behavior of titanium silicide with a diffusion barrier layer (TiN) and the surrounding dielectric SiO2. In addition the Al-Si-O-N and W-N-Ga-As systems are described, and metastable amor-phous phase formation at the Ti-Si interface is discussed.

  18. Manufacturing of planar ceramic interconnects

    SciTech Connect

    Armstrong, B.L.; Coffey, G.W.; Meinhardt, K.D.; Armstrong, T.R.

    1996-12-31

    The fabrication of ceramic interconnects for solid oxide fuel cells (SOFC) and separator plates for electrochemical separation devices has been a perennial challenge facing developers. Electrochemical vapor deposition (EVD), plasma spraying, pressing, tape casting and tape calendering are processes that are typically utilized to fabricate separator plates or interconnects for the various SOFC designs and electrochemical separation devices. For sake of brevity and the selection of a planar fuel cell or gas separation device design, pressing will be the only fabrication technique discussed here. This paper reports on the effect of the characteristics of two doped lanthanum manganite powders used in the initial studies as a planar porous separator for a fuel cell cathode and as a dense interconnect for an oxygen generator.

  19. Fully-integrated, bezel-less transistor arrays using reversibly foldable interconnects and stretchable origami substrates

    NASA Astrophysics Data System (ADS)

    Kim, Mijung; Park, Jihun; Ji, Sangyoon; Shin, Sung-Ho; Kim, So-Yun; Kim, Young-Cheon; Kim, Ju-Young; Park, Jang-Ung

    2016-05-01

    Here we demonstrate fully-integrated, bezel-less transistor arrays using stretchable origami substrates and foldable conducting interconnects. Reversible folding of these arrays is enabled by origami substrates which are composed of rigid support fixtures and foldable elastic joints. In addition, hybrid structures of thin metal films and metallic nanowires worked as foldable interconnects which are located on the elastomeric joints.Here we demonstrate fully-integrated, bezel-less transistor arrays using stretchable origami substrates and foldable conducting interconnects. Reversible folding of these arrays is enabled by origami substrates which are composed of rigid support fixtures and foldable elastic joints. In addition, hybrid structures of thin metal films and metallic nanowires worked as foldable interconnects which are located on the elastomeric joints. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02041k

  20. Electrochemical Processing Tools for Advanced Copper Interconnects: An Introduction

    NASA Astrophysics Data System (ADS)

    Datta, Madhav

    The change from vacuum-deposited aluminum to electroplated copper in 1997 brought about a paradigm shift in interconnect technology and in chip making [1]. Since then, most of the leading chip manufacturers have converted to electroplated Cu technology for chip interconnects. Cu interconnects are fabricated by dual Damascene process which is referred to a metallization patterning process by which two insulator (dielectric) levels are patterned, filled with copper, and planarized to create a metal layer consisting of vias and lines. The process steps consist of laying a sandwich of two levels of insulator and etch stop layers that are patterned as holes for vias and troughs for lines. They are then filled with a single metallization step. Finally, the excess material is removed, and the wafer is planarized by chemical mechanical polishing (CMP). While finer details of exact sequence of fabrication steps vary, the end result of forming a metal layer remains the same in which vias are formed in the lower layer, and trenches are formed in the upper layer. Electroplating enables deposition of Cu in via holes and overlying trenches in a single step thus eliminating a via/line interface and significantly reducing the cycle time. Due to these reasons and due to relatively less expensive tooling, electroplating is a cost-effective and efficient process for Cu interconnects [2, 3]. Compared with vacuum deposition processes, electroplated Cu provides improved super filling capabilities and abnormal grain growth phenomena. These properties contribute significantly to improved reliability of Cu interconnects. With the proper choice of additives and plating conditions, void-free, seam-free Damascene deposits are obtained which eliminates surface-like fast diffusion paths for Cu electromigration.

  1. Optical interconnection techniques for Hypercube

    NASA Technical Reports Server (NTRS)

    Johnston, A. R.; Bergman, L. A.; Wu, W. H.

    1988-01-01

    Direct free-space optical interconnection techniques are described for the Hypercube concurrent processor machine using a holographic optical element. Computational requirements and optical constraints on implementation are briefly summarized with regard to topology, power consumption, and available technologies. A hybrid lens/HOE approach is described that can support an eight-dimensional cube of 256 nodes.

  2. Solid oxide fuel cell with internal reforming, catalyzed interconnect for use therewith, and methods

    SciTech Connect

    Liu, Di-Jia; Guan, Jie; Minh, Nguyen

    2010-06-08

    A catalyzed interconnect for an SOFC electrically connects an anode and an anodic current collector and comprises a metallic substrate, which provides space between the anode and anodic current collector for fuel gas flow over at least a portion of the anode, and a catalytic coating on the metallic substrate comprising a catalyst for catalyzing hydrocarbon fuel in the fuel gas to hydrogen rich reformate. An SOFC including the catalyzed anodic inter-connect, a method for operating an SOFC, and a method for making a catalyzed anodic interconnect are also disclosed.

  3. Totally parallel multilevel algorithms

    NASA Technical Reports Server (NTRS)

    Frederickson, Paul O.

    1988-01-01

    Four totally parallel algorithms for the solution of a sparse linear system have common characteristics which become quite apparent when they are implemented on a highly parallel hypercube such as the CM2. These four algorithms are Parallel Superconvergent Multigrid (PSMG) of Frederickson and McBryan, Robust Multigrid (RMG) of Hackbusch, the FFT based Spectral Algorithm, and Parallel Cyclic Reduction. In fact, all four can be formulated as particular cases of the same totally parallel multilevel algorithm, which are referred to as TPMA. In certain cases the spectral radius of TPMA is zero, and it is recognized to be a direct algorithm. In many other cases the spectral radius, although not zero, is small enough that a single iteration per timestep keeps the local error within the required tolerance.

  4. Parallel multilevel preconditioners

    SciTech Connect

    Bramble, J.H.; Pasciak, J.E.; Xu, Jinchao.

    1989-01-01

    In this paper, we shall report on some techniques for the development of preconditioners for the discrete systems which arise in the approximation of solutions to elliptic boundary value problems. Here we shall only state the resulting theorems. It has been demonstrated that preconditioned iteration techniques often lead to the most computationally effective algorithms for the solution of the large algebraic systems corresponding to boundary value problems in two and three dimensional Euclidean space. The use of preconditioned iteration will become even more important on computers with parallel architecture. This paper discusses an approach for developing completely parallel multilevel preconditioners. In order to illustrate the resulting algorithms, we shall describe the simplest application of the technique to a model elliptic problem.

  5. Multilevel DC link inverter

    DOEpatents

    Su, Gui-Jia

    2003-06-10

    A multilevel DC link inverter and method for improving torque response and current regulation in permanent magnet motors and switched reluctance motors having a low inductance includes a plurality of voltage controlled cells connected in series for applying a resulting dc voltage comprised of one or more incremental dc voltages. The cells are provided with switches for increasing the resulting applied dc voltage as speed and back EMF increase, while limiting the voltage that is applied to the commutation switches to perform PWM or dc voltage stepping functions, so as to limit current ripple in the stator windings below an acceptable level, typically 5%. Several embodiments are disclosed including inverters using IGBT's, inverters using thyristors. All of the inverters are operable in both motoring and regenerating modes.

  6. Cantilevered multilevel LIGA devices and methods

    DOEpatents

    Morales, Alfredo Martin; Domeier, Linda A.

    2002-01-01

    In the formation of multilevel LIGA microstructures, a preformed sheet of photoresist material, such as polymethylmethacrylate (PMMA) is patterned by exposure through a mask to radiation, such as X-rays, and developed using a developer to remove the exposed photoresist material. A first microstructure is then formed by electroplating metal into the areas from which the photoresist has been removed. Additional levels of microstructure are added to the initial microstructure by covering the first microstructure with a conductive polymer, machining the conductive polymer layer to reveal the surface of the first microstructure, sealing the conductive polymer and surface of the first microstructure with a metal layer, and then forming the second level of structure on top of the first level structure. In such a manner, multiple layers of microstructure can be built up to allow complex cantilevered microstructures to be formed.

  7. Modeling and experimental characterization of electromigration in interconnect trees

    NASA Astrophysics Data System (ADS)

    Thompson, C. V.; Hau-Riege, S. P.; Andleigh, V. K.

    1999-11-01

    Most modeling and experimental characterization of interconnect reliability is focussed on simple straight lines terminating at pads or vias. However, laid-out integrated circuits often have interconnects with junctions and wide-to-narrow transitions. In carrying out circuit-level reliability assessments it is important to be able to assess the reliability of these more complex shapes, generally referred to as `trees.' An interconnect tree consists of continuously connected high-conductivity metal within one layer of metallization. Trees terminate at diffusion barriers at vias and contacts, and, in the general case, can have more than one terminating branch when they include junctions. We have extended the understanding of `immortality' demonstrated and analyzed for straight stud-to-stud lines, to trees of arbitrary complexity. This leads to a hierarchical approach for identifying immortal trees for specific circuit layouts and models for operation. To complete a circuit-level-reliability analysis, it is also necessary to estimate the lifetimes of the mortal trees. We have developed simulation tools that allow modeling of stress evolution and failure in arbitrarily complex trees. We are testing our models and simulations through comparisons with experiments on simple trees, such as lines broken into two segments with different currents in each segment. Models, simulations and early experimental results on the reliability of interconnect trees are shown to be consistent.

  8. Process for making a multilayer interconnect system

    NASA Technical Reports Server (NTRS)

    Zachry, Clyde L. (Inventor); Niedzwiecke, Andrew J. (Inventor)

    1976-01-01

    A process for making an interconnect system for a multilayer circuit pattern. The interconnect system is formed having minimized through-hole space consumption so as to be suitable for high density, closely meshed circuit patterns.

  9. 47 CFR 64.1401 - Expanded interconnection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission... interconnectors' fiber optic systems or microwave radio transmission facilities (where reasonably feasible) with... interconnection of fiber optic facilities, local exchange carriers shall provide: (1) An interconnection point...

  10. 47 CFR 64.1401 - Expanded interconnection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission... interconnectors' fiber optic systems or microwave radio transmission facilities (where reasonably feasible) with... interconnection of fiber optic facilities, local exchange carriers shall provide: (1) An interconnection point...

  11. 47 CFR 64.1401 - Expanded interconnection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission... interconnectors' fiber optic systems or microwave radio transmission facilities (where reasonably feasible) with... interconnection of fiber optic facilities, local exchange carriers shall provide: (1) An interconnection point...

  12. Formation of interconnections to microfluidic devices

    DOEpatents

    Matzke, Carolyn M.; Ashby, Carol I. H.; Griego, Leonardo

    2003-07-29

    A method is disclosed to form external interconnections to a microfluidic device for coupling of a fluid or light or both into a microchannel of the device. This method can be used to form optical or fluidic interconnections to microchannels previously formed on a substrate, or to form both the interconnections and microchannels during the same process steps. The optical and fluidic interconnections are formed parallel to the plane of the substrate, and are fluid tight.

  13. Interconnect mechanisms in microelectronic packaging

    NASA Astrophysics Data System (ADS)

    Roma, Maria Penafrancia C.

    Global economic, environmental and market developments caused major impact in the microelectronics industry. Astronomical rise of gold metal prices over the last decade shifted the use of copper and silver alloys as bonding wires. Environmental legislation on the restriction of the use of Pb launched worldwide search for lead-free solders and platings. Finally, electrical and digital uses demanded smaller, faster and cheaper devices. Ultra-fine pitch bonding, decreasing bond wire sizes and hard to bond substrates have put the once-robust stitch bond in the center of reliability issues due to stitch bond lift or open wires .Unlike the ball bond, stitch bonding does not lead to intermetallic compound formation but adhesion is dependent on mechanical deformation, interdiffusion, solid solution formation, void formation and mechanical interlocking depending on the wire material, bond configuration, substrate type , thickness and surface condition. Using Au standoff stitch bonds on NiPdAu plated substrates eliminated stitch bond lift even when the Au and Pd layers are reduced. Using the Matano-Boltzmann analysis on a STEM (Scanning Transmission Analysis) concentration profile the interdiffusion coefficient is measured to be 10-16 cm 2/s. Wire pull strength data showed that the wire pull strength is 0.062N and increases upon stress testing. Meanwhile, coating the Cu wire with Pd, not only increases oxidation resistance but also improved adhesion due to the formation of a unique interfacial adhesion layers. Adhesion strength as measured by pull showed the Cu wire bonded to Ag plated Cu substrate (0.132N) to be stronger than the Au wire bonded on the same substrate (0.124N). Ag stitch bonded to Au is predicted to be strong but surface modification made the adhesion stronger. However, on the Ag ball bonded to Al showed multiple IMC formation with unique morphology exposed by ion milling and backscattered scanning electron microscopy. Adding alloying elements in the Ag wire

  14. 18 CFR 292.306 - Interconnection costs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Interconnection costs... § 292.306 Interconnection costs. (a) Obligation to pay. Each qualifying facility shall be obligated to pay any interconnection costs which the State regulatory authority (with respect to any...

  15. Multilevel turbulence simulations

    SciTech Connect

    Tziperman, E.

    1994-12-31

    The authors propose a novel method for the simulation of turbulent flows, that is motivated by and based on the Multigrid (MG) formalism. The method, called Multilevel Turbulence Simulations (MTS), is potentially more efficient and more accurate than LES. In many physical problems one is interested in the effects of the small scales on the larger ones, or in a typical realization of the flow, and not in the detailed time history of each small scale feature. MTS takes advantage of the fact that the detailed simulation of small scales is not needed at all times, in order to make the calculation significantly more efficient, while accurately accounting for the effects of the small scales on the larger scale of interest. In MTS, models of several resolutions are used to represent the turbulent flow. The model equations in each coarse level incorporate a closure term roughly corresponding to the tau correction in the MG formalism that accounts for the effects of the unresolvable scales on that grid. The finer resolution grids are used only a small portion of the simulation time in order to evaluate the closure terms for the coarser grids, while the coarse resolution grids are then used to accurately and efficiently calculate the evolution of the larger scales. The methods efficiency relative to direct simulations is of the order of the ratio of required integration time to the smallest eddies turnover time, potentially resulting in orders of magnitude improvement for a large class of turbulence problems.

  16. Challenges of evaluating multilevel interventions.

    PubMed

    Nastasi, Bonnie K; Hitchcock, John

    2009-06-01

    This article uses the Comprehensive Mixed-Methods Participatory Evaluation (CMMPE; Nastasi and Hitchcock Transforming school mental health services: Population-based approaches to promoting the competency and wellness of children, Thousand Oaks, CA: Corwin Press with National Association of School Psychologists 2008; Nastasi et al. School-based mental health services: creating comprehensive and culturally specific programs. Washington, DC: American Psychological Association 2004) model as a framework for addressing the multiplicity of evaluation decisions and complex nature of questions related to program success in multilevel interventions. CMMPE defines program success in terms of acceptability, integrity, social or cultural validity, outcomes (impact), sustainability and institutionalization, thus broadening the traditional notions of program outcomes. The authors use CMMPE and an example of a community-based multilevel sexual risk prevention program with multiple outcomes to discuss challenges of evaluating multilevel interventions. The sexual risk program exemplifies what Schensul and Trickett (this issue) characterize as multilevel intervention-multilevel evaluation (M-M), with both intervention and evaluation at community, health practitioner, and patient levels. The illustration provides the context for considering several challenges related to M-M designs: feasibility of randomized controlled trials within community-based multilevel intervention; acceptability and social or cultural validity of evaluation procedures; implementer, recipient, and contextual variations in program success; interactions among levels of the intervention; unanticipated changes or conditions; multiple indicators of program success; engaging multiple stakeholders in a participatory process; and evaluating sustainability and institutionalization. The complexity of multilevel intervention and evaluation designs challenges traditional notions of evaluation research and experimental

  17. Flexible interconnects for fuel cell stacks

    DOEpatents

    Lenz, David J.; Chung, Brandon W.; Pham, Ai Quoc

    2004-11-09

    An interconnect that facilitates electrical connection and mechanical support with minimal mechanical stress for fuel cell stacks. The interconnects are flexible and provide mechanically robust fuel cell stacks with higher stack performance at lower cost. The flexible interconnects replace the prior rigid rib interconnects with flexible "fingers" or contact pads which will accommodate the imperfect flatness of the ceramic fuel cells. Also, the mechanical stress of stacked fuel cells will be smaller due to the flexibility of the fingers. The interconnects can be one-sided or double-sided.

  18. Interconnects for nanoscale MOSFET technology: a review

    NASA Astrophysics Data System (ADS)

    Chaudhry, Amit

    2013-06-01

    In this paper, a review of Cu/low-k, carbon nanotube (CNT), graphene nanoribbon (GNR) and optical based interconnect technologies has been done. Interconnect models, challenges and solutions have also been discussed. Of all the four technologies, CNT interconnects satisfy most of the challenges and they are most suited for nanometer scale technologies, despite some minor drawbacks. It is concluded that beyond 32 nm technology, a paradigm shift in the interconnect material is required as Cu/low-k interconnects are approaching fundamental limits.

  19. Chromium Vaporization Reduction by Nickel Coatings For SOEC Interconnect Materials

    SciTech Connect

    Michael V. Glazoff; Sergey N. Rashkeev; J. Stephen Herring

    2014-09-01

    The vaporization of Cr-rich volatile species from interconnect materials is a major source of degradation that limits the lifetime of planar solid oxide devices systems with metallic interconnects, including Solid Oxide Electrolysis Cells, or SOECs. Some metallic coatings (Ni, Co, and Cu) significantly reduce the Cr release from interconnects and slow down the oxide scale growth on the steel substrate. To shed additional light upon the mechanisms of such protection and find a suitable coating material for ferritic stainless steel materials, we used a combination of first-principles calculations, thermodynamics, and diffusion modeling to investigate which factors determine the quality of the Ni metallic coating at stainless steel interconnector. We found that the Cr migration in Ni coating is determined by a delicate combination of the nickel oxidation, Cr diffusion, and phase transformation processes. Although the formation of Cr2O3 oxide is more exothermic than that of NiO, the kinetic rate of the chromia formation in the coating layer and its surface is significantly reduced by the low mobility of Cr in nickel oxide and in NiCr2O4 spinel. These results are in a good agreement with diffusion modeling for Cr diffusion through Ni coating layer on the ferritic 441 steel substrate.

  20. Interconnects for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Huang, Wenhua

    Presently, one of the principal goals of solid oxide fuel cells (SOFCs) research is to reduce the stack operating temperature to between 600 and 800°C. However, one of the principal technological barriers is the non-availability of a suitable material satisfying all of the stability requirements for the interconnect. In this work two approaches for intermediate temperature SOFC interconnects have been explored. The first approach comprises an interconnect consisting of a bi-layer structure, a p-type oxide (La0.96Sr0.08MnO 2.001/LSM) layer exposed to a cathodic environment, and an n-type oxide (Y0.08Sr0.88Ti0.95Al0.05O 3-delta/YSTA) layer exposed to anodic conditions. Theoretical analysis based on the bi-layer structure has established design criteria to implement this approach. The analysis shows that the interfacial oxygen partial pressure, which determines the interconnect stability, is independent of the electronic conductivities of both layers but dependent on the oxygen ion layer interconnects, the oxygen ion conductivities of LSM and YSTA were measured as a function of temperature and oxygen partial pressure. Based on the measured data, it has been determined that if the thickness of YSTA layer is around 0.1cm, the thickness of LSM layer should be around 0.6 mum in order to maintain the stability of LSM. In a second approach, a less expensive stainless steel interconnect has been studied. However, one of the major concerns associated with the use of metallic interconnects is the development of a semi-conducting or insulating oxide scale and chromium volatility during extended exposure to the SOFC operating environment. Dense and well adhered Mn-Cu spinet oxide coatings were successfully deposited on stainless steel by an electrophoretic deposition (EPD) technique. It was found that the Mn-Cu-O coating significantly reduced the oxidation rate of the stainless steel and the volatility of chromium. The area specific resistance (ASR) of coated Crofer 22 APU is

  1. Environmental toxicology: Interconnections between human ...

    EPA Pesticide Factsheets

    This presentation will discuss what has made a career in environmental toxicology rewarding, environmental and scientific challenges for the 21st century, paradigm shift in regulatory toxicology, adverse outcome framework, interconnections between human health and ecological integrity, SOT-SETAC Pellston Workshop findings, concepts for systems thinking in environmental toxicology The Eminent Toxicologist Lectures are historically relevant, high-quality presentations appropriate for senior undergraduate students, graduate students, or the scientifically oriented general public. This series of lectures is produced by the SOT Undergraduate Subcommittee of the Education Committee in conjunction with the Eminent Toxicologist Working Group.

  2. Analysis of vertical interconnection measurements

    NASA Astrophysics Data System (ADS)

    Karner, F. A.

    The paper examines the predominance of the effects that measurement points, geometries, and alignment have on the interpretation of measured values of contact resistance of vertical interconnections in multilayer electronic packages. It is concluded that: (1) four-terminal measurements for contact resistance are misleading; (2) measured values are mostly a function of structural geometry; (3) simulation in two dimensions and subsequent synthesis is a good predictor in three-dimensional simulations; (4) the dual-contact site is a good alignment aid and contact-resistance indicator; and (5) the measured resistance value should only be used as a reference, and not as an indicator of good or bad.

  3. A 1 GHz integrated circuit with carbon nanotube interconnects and silicon transistors.

    PubMed

    Close, Gael F; Yasuda, Shinichi; Paul, Bipul; Fujita, Shinobu; Wong, H-S Philip

    2008-02-01

    Due to their excellent electrical properties, metallic carbon nanotubes are promising materials for interconnect wires in future integrated circuits. Simulations have shown that the use of metallic carbon nanotube interconnects could yield more energy efficient and faster integrated circuits. The next step is to build an experimental prototype integrated circuit using carbon nanotube interconnects operating at high speed. Here, we report the fabrication of the first stand-alone integrated circuit combining silicon transistors and individual carbon nanotube interconnect wires on the same chip operating above 1 GHz. In addition to setting a milestone by operating above 1 GHz, this prototype is also a tool to investigate carbon nanotubes on a silicon-based platform at high frequencies, paving the way for future multi-GHz nanoelectronics.

  4. Thin-film chip-to-substrate interconnect and methods for making same

    DOEpatents

    Tuckerman, David B.

    1991-01-01

    Integrated circuit chips are electrically connected to a silica wafer interconnection substrate. Thin film wiring is fabricated down bevelled edges of the chips. A subtractive wire fabrication method uses a series of masks and etching steps to form wires in a metal layer. An additive method direct laser writes or deposits very thin metal lines which can then be plated up to form wires. A quasi-additive or subtractive/additive method forms a pattern of trenches to expose a metal surface which can nucleate subsequent electrolytic deposition of wires. Low inductance interconnections on a 25 micron pitch (1600 wires on a 1 cm square chip) can be produced. The thin film hybrid interconnect eliminates solder joints or welds, and minimizes the levels of metallization. Advantages include good electrical properties, very high wiring density, excellent backside contact, compactness, and high thermal and mechanical reliability.

  5. A General Multilevel SEM Framework for Assessing Multilevel Mediation

    ERIC Educational Resources Information Center

    Preacher, Kristopher J.; Zyphur, Michael J.; Zhang, Zhen

    2010-01-01

    Several methods for testing mediation hypotheses with 2-level nested data have been proposed by researchers using a multilevel modeling (MLM) paradigm. However, these MLM approaches do not accommodate mediation pathways with Level-2 outcomes and may produce conflated estimates of between- and within-level components of indirect effects. Moreover,…

  6. AC Power Consumption of Single-Walled Carbon Nanotube Interconnects: Non-Equilibrium Green's Function Simulation

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takahiro; Sasaoka, Kenji; Watanabe, Satoshi

    2012-04-01

    We theoretically investigate the emittance and dynamic dissipation of a nanoscale interconnect consisting of a metallic single-walled carbon nanotube using the non-equilibrium Green's function technique for AC electronic transport. We show that the emittance and dynamic dissipation depend strongly on the contact conditions of the interconnect and that the power consumption can be reduced by adjusting the contact conditions. We propose an appropriate condition of contact that yields a high power factor and low apparent power.

  7. Interconnect fatigue design for terrestrial photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1982-01-01

    The results of comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable (1) the prediction of cumulative interconnect failures during the design life of an array field, and (2) the unambiguous--ie., quantitative--interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field.

  8. Role of Stress-Driven Interfacial Instability in the Failure of Confined Electric Interconnects

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Provatas, Nikolas

    2017-02-01

    We examine the possible role of stress-driven surface instability in the failure of electric interconnects found in large-scale integrated circuits. While electromigration is commonly known as the main reason behind interconnect failure, the complex interplay of electromigration-induced mass transport and stress-induced transport has also been studied extensively since the discovery of the Blech effect due to its importance in integrated-circuit design. However, the role of the dielectric medium confining the interconnect has not been properly included in previous analysis of this phenomenon. Here, we examine the classic ATG instability in the presence of dielectric confinement. We propose that thermal stress and surface transport, typically active in all metal interconnects, may trigger a surface instability at the metal-dielectric interface. In particular, we show that there exists a critical thermal stress level below which the stress-driven surface instability cannot be responsible for the failure of interconnects of any length. However, for an interconnect confined by soft low-k dielectric materials, thermal stresses can still be large enough that such stress-driven instability may break the metal conductor even if its length is below the Blech limit.

  9. Cascade solar cell having conductive interconnects

    DOEpatents

    Borden, Peter G.; Saxena, Ram R.

    1982-10-26

    Direct ohmic contact between the cells in an epitaxially grown cascade solar cell is obtained by means of conductive interconnects formed through grooves etched intermittently in the upper cell. The base of the upper cell is directly connected by the conductive interconnects to the emitter of the bottom cell. The conductive interconnects preferably terminate on a ledge formed in the base of the upper cell.

  10. Progress toward optical interconnects for intrachip global communication

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.; Iqbal, Muzammil; McFadden, Michael J.; Dillon, Thomas; Prather, Dennis W.

    2006-02-01

    Microprocessor performance is now limited by the poor delay and bandwidth performance of the on-chip global wiring layers. Although relatively few in number, the global metal wires have proven to be the primary cause of performance limitations - effectively leading to a premature saturation of Moore's Law scaling in future Silicon generations. Building upon device-, circuit-, system- and architectural-level models, a framework for performance evaluation of global wires is developed aimed at quantifying the major challenges faced by intrachip global communications over the span of six technology generations. This paper reviews the status of possible intra-chip optical interconnect solutions in which the Silicon chip's global metal wiring layers are replaced with a high-density guided-wave or free-space optical interconnection fabric. The overall goal is to provide a scalable approach that is compatible with established silicon chip fabrication and packaging technology, and which can extend the reach of Moore's Law for many generations to come. To achieve the required densities, the integrated sources are envisioned to be modulators that are optically powered by off-chip sources. Structures for coupling dense modulator arrays to optical power sources and to free-space or guide-wave optical global fabrics are analyzed. Results of proof-of-concept experiments, which demonstrate the potential benefits of ultra-high-density optical interconnection fabrics for intra-chip global communications, are presented.

  11. Multilevel Assessments of Science Standards

    ERIC Educational Resources Information Center

    Quellmalz, Edys S.; Timms, Michael J.; Silberglitt, Matt D.

    2011-01-01

    The Multilevel Assessment of Science Standards (MASS) project is creating a new generation of technology-enhanced formative assessments that bring the best formative assessment practices into classrooms to transform what, how, when, and where science learning is assessed. The project is investigating the feasibility, utility, technical quality,…

  12. Multilevel Modeling with Correlated Effects

    ERIC Educational Resources Information Center

    Kim, Jee-Seon; Frees, Edward W.

    2007-01-01

    When there exist omitted effects, measurement error, and/or simultaneity in multilevel models, explanatory variables may be correlated with random components, and standard estimation methods do not provide consistent estimates of model parameters. This paper introduces estimators that are consistent under such conditions. By employing generalized…

  13. Applications of Multilevel IRT Modeling

    ERIC Educational Resources Information Center

    Fox, Jean-Paul

    2004-01-01

    The recent development of multilevel IRT models (Fox & Glas, 2001, 2003) has been shown to be very useful for analyzing relationships between observed variables on different levels containing measurement error. Model parameter estimates and their standard deviations are concurrently estimated taking account of measurement error in observed…

  14. Generalized Multilevel Structural Equation Modeling

    ERIC Educational Resources Information Center

    Rabe-Hesketh, Sophia; Skrondal, Anders; Pickles, Andrew

    2004-01-01

    A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent…

  15. Multilevel algorithms for nonlinear optimization

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia; Dennis, J. E., Jr.

    1994-01-01

    Multidisciplinary design optimization (MDO) gives rise to nonlinear optimization problems characterized by a large number of constraints that naturally occur in blocks. We propose a class of multilevel optimization methods motivated by the structure and number of constraints and by the expense of the derivative computations for MDO. The algorithms are an extension to the nonlinear programming problem of the successful class of local Brown-Brent algorithms for nonlinear equations. Our extensions allow the user to partition constraints into arbitrary blocks to fit the application, and they separately process each block and the objective function, restricted to certain subspaces. The methods use trust regions as a globalization strategy, and they have been shown to be globally convergent under reasonable assumptions. The multilevel algorithms can be applied to all classes of MDO formulations. Multilevel algorithms for solving nonlinear systems of equations are a special case of the multilevel optimization methods. In this case, they can be viewed as a trust-region globalization of the Brown-Brent class.

  16. Visualizing interconnections among climate risks

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Yokohata, T.; Nishina, K.; Takahashi, K.; Emori, S.; Kiguchi, M.; Iseri, Y.; Honda, Y.; Okada, M.; Masaki, Y.; Yamamoto, A.; Shigemitsu, M.; Yoshimori, M.; Sueyoshi, T.; Hanasaki, N.; Ito, A.; Sakurai, G.; Iizumi, T.; Nishimori, M.; Lim, W. H.; Miyazaki, C.; Kanae, S.; Oki, T.

    2015-12-01

    It is now widely recognized that climate change is affecting various sectors of the world. Climate change impact on one sector may spread out to other sectors including those seemingly remote, which we call "interconnections of climate risks". While a number of climate risks have been identified in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5), there has been no attempt to explore their interconnections comprehensively. Here we present a first and most exhaustive visualization of climate risks drawn based on a systematic literature survey. Our risk network diagrams depict that changes in the climate system impact natural capitals (terrestrial water, crop, and agricultural land) as well as social infrastructures, influencing the socio-economic system and ultimately our access to food, water, and energy. Our findings suggest the importance of incorporating climate risk interconnections into impact and vulnerability assessments and call into question the widely used damage function approaches, which address a limited number of climate change impacts in isolation. Furthermore, the diagram is useful to educate decision makers, stakeholders, and general public about cascading risks that can be triggered by the climate change. Socio-economic activities today are becoming increasingly more inter-dependent because of the rapid technological progress, urbanization, and the globalization among others. Equally complex is the ecosystem that is susceptible to climate change, which comprises interwoven processes affecting one another. In the context of climate change, a number of climate risks have been identified and classified according to regions and sectors. These reports, however, did not fully address the inter-relations among risks because of the complexity inherent in this issue. Climate risks may ripple through sectors in the present inter-dependent world, posing a challenge ahead of us to maintain the resilience of the system. It is

  17. Advanced micromechanisms in a multi-level polysilicon technology

    SciTech Connect

    Rodgers, M.S.; Sniegowski, J.J.; Miller, S.L.; Barron, C.C.; McWhorter, P.J.

    1997-08-01

    Quad-level polysilicon surface micromachining technology, comprising three mechanical levels plus an electrical interconnect layer, is giving rise to a new generation of micro-electromechanical devices and assemblies. Enhanced components can not be produced through greater flexibility in fabrication and design. New levels of design complexity that include multi-level gears, single-attempt locks, and optical elements have recently been realized. Extensive utilization of the fourth layer of polysilicon differentiates these latter generation devices from their predecessors. This level of poly enables the fabrication of pin joints, linkage arms, hinges on moveable plates, and multi-level gear assemblies. The mechanical design aspects of these latest micromachines will be discussed with particular emphasis on a number of design aspects of these latest micromachines will be discussed with particular emphasis on a number of design modifications that improve the power, reliability, and smoothness of operation of the microengine. The microengine is the primary actuation mechanism that is being used to drive mirrors out of plane and rotate 1600-{mu}m diameter gears. Also discussed is the authors most advanced micromechanical system to date, a complex proof-of-concept batch-fabricated assembly that, upon transmitting the proper electrical code to a mechanical lock, permits the operation of a micro-optical shutter.

  18. Microtexture of Strain in electroplated copper interconnects

    SciTech Connect

    Spolenak, R.; Barr, D.L.; Gross, M.E.; Evans-Lutterodt, K.; Brown, W.L.; Tamura, N.; MacDowell, A.A.; Celestre, R.S.; Padmore, H.A.; Valek, B.C.; Bravman, J.C.; Flinn, P.; Marieb, T.; Keller, R.R.; Batterman, B.W.; Patel, J.R.

    2001-04-01

    The microstructure of narrow metal conductors in the electrical interconnections on IC chips has often been identified as of major importance in the reliability of these devices. The stresses and stress gradients that develop in the conductors as a result of thermal expansion differences in the materials and of electromigration at high current densities are believed to be strongly dependent on the details of the grain structure. The present work discusses new techniques based on microbeam x-ray diffraction (MBXRD) that have enabled measurement not only of the microstructure of totally encapsulated conductors but also of the local stresses in them on a micron and submicron scale. White x-rays from the Advanced Light Source were focused to a micron spot size by Kirkpatrick-Baez mirrors. The sample was stepped under the micro-beam and Laue images obtained at each sample location using a CCD area detector. Microstructure and local strain were deduced from these images. Cu lines with widths ranging from 0.8 mm to 5 mm and thickness of 1 mm were investigated. Comparisons are made between the capabilities of MBXRD and the well established techniques of broad beam XRD, electron back scatter diffraction (EBSD) and focused ion beam imagining (FIB).

  19. Thin-film chip-to-substrate interconnect and methods for making same

    DOEpatents

    Tuckerman, D.B.

    1988-06-06

    Integrated circuit chips are electrically connected to a silicon wafer interconnection substrate. Thin film wiring is fabricated down bevelled edges of the chips. A subtractive wire fabrication method uses a series of masks and etching steps to form wires in a metal layer. An additive method direct laser writes or deposits very thin lines which can then be plated up to form wires. A quasi-additive or subtractive/additive method forms a pattern of trenches to expose a metal surface which can nucleate subsequent electrolytic deposition of wires. Low inductance interconnections on a 25 micron pitch (1600 wires on a 1 cm square chip) can be produced. The thin film hybrid interconnect eliminates solder joints or welds, and minimizes the levels of metallization. Advantages include good electrical properties, very high wiring density, excellent backside contact, compactness, and high thermal and mechanical reliability. 6 figs.

  20. Interconnect fatigue design for terrestrial photovoltaic modules

    SciTech Connect

    Mon, G. R.; Moore, D. M.; Ross, Jr., R. G.

    1982-03-01

    Fatigue of solar cell electrical interconnects due to thermal cycling has historically been a major failure mechanism in photovoltaic arrays; the results of a comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data gathered in this study indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable: (1) the prediction of cumulative interconnect failures during the design life of an array field; and (2) the unambiguous - i.e., quantitative - interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field. This procedure yields not only the minimum break-even cost of delivered energy, but also the required degree of interconnect redundancy and an estimate of array power degradation during the design life of the array field. The usefulness of the design algorithms is demonstrated with realistic examples of design optimization, prediction, and service qualification testing.

  1. 14 CFR 29.674 - Interconnected controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Interconnected controls. 29.674 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.674 Interconnected controls. Each primary flight control system must provide for safe flight and landing and...

  2. 14 CFR 27.674 - Interconnected controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Interconnected controls. 27.674 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.674 Interconnected controls. Each primary flight control system must provide for safe flight and landing and...

  3. 47 CFR 101.519 - Interconnection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Interconnection. 101.519 Section 101.519 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.519 Interconnection. (a) All...

  4. 14 CFR 23.701 - Flap interconnection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flap interconnection. 23.701 Section 23.701 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Systems § 23.701 Flap interconnection. (a) The main wing flaps and related movable surfaces as a...

  5. Government Open Systems Interconnection: Profile in Progress.

    ERIC Educational Resources Information Center

    Mills, Kevin L.

    1990-01-01

    Describes the emergence of Open Systems Interconnection (OSI) as it relates to the U.S. Government Open Systems Interconnection Profile (GOSIP); defines GOSIP; and speculates about its future. Challenges facing GOSIP that are related to test policies and procedures, strategic and tactical planning, additional functionality, and international…

  6. 47 CFR 90.477 - Interconnected systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Applicants for new land stations to be interconnected with the public switched telephone network must... switched telephone network only after modifying their license. See § 1.929 of this chapter. In all cases a..., 896-901 MHz, and 935-940 MHz, interconnection with the public switched telephone network is...

  7. 47 CFR 90.477 - Interconnected systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Applicants for new land stations to be interconnected with the public switched telephone network must... operation. This restriction will not apply to trunked systems or on any channel assigned exclusively to one... interconnection device. When land stations subject to this part are multiple licensed or shared by...

  8. 47 CFR 101.519 - Interconnection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Interconnection. 101.519 Section 101.519 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.519 Interconnection. (a) All...

  9. 47 CFR 101.519 - Interconnection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Interconnection. 101.519 Section 101.519 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.519 Interconnection. (a) All...

  10. 47 CFR 101.519 - Interconnection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Interconnection. 101.519 Section 101.519 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.519 Interconnection. (a) All...

  11. 47 CFR 101.519 - Interconnection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Interconnection. 101.519 Section 101.519 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.519 Interconnection. (a) All...

  12. Updating Technical Screens for PV Interconnection: Preprint

    SciTech Connect

    Coddington, M.; Ellis, A.; Lynn, K.; Razon, A.; Key, T.; Kroposki, B.; Mather, B.; Hill, R.; Nicole, K.; Smith, J.

    2012-08-01

    Solar photovoltaics (PV) is the dominant type of distributed generation (DG) technology interconnected to electric distribution systems in the United States, and deployment of PV systems continues to increase rapidly. Considering the rapid growth and widespread deployment of PV systems in United States electric distribution grids, it is important that interconnection procedures be as streamlined as possible to avoid unnecessary interconnection studies, costs, and delays. Because many PV interconnection applications involve high penetration scenarios, the process needs to allow for a sufficiently rigorous technical evaluation to identify and address possible system impacts. Existing interconnection procedures are designed to balance the need for efficiency and technical rigor for all DG. However, there is an implicit expectation that those procedures will be updated over time in order to remain relevant with respect to evolving standards, technology, and practical experience. Modifications to interconnection screens and procedures must focus on maintaining or improving safety and reliability, as well as accurately allocating costs and improving expediency of the interconnection process. This paper evaluates the origins and usefulness of the capacity penetration screen, offers potential short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen.

  13. High density interconnects for aerospace applications

    NASA Astrophysics Data System (ADS)

    Menozzi, Gaetan

    1988-08-01

    The technologies of large scale interconnectors were evaluated for chip and wire or leadless ceramic chip carriers. The packaging and interconnecting structures are either ceramic multilayer with multilayer thick film and cofired multilayer ceramic. Test results are given, technology status and next generation interconnects are described, and aerospace applications are presented.

  14. Method for sequentially processing a multi-level interconnect circuit in a vacuum chamber

    NASA Technical Reports Server (NTRS)

    Routh, D. E.; Sharma, G. C. (Inventor)

    1984-01-01

    An apparatus is disclosed which includes a vacuum system having a vacuum chamber in which wafers are processed on rotating turntables. The vacuum chamber is provided with an RF sputtering system and a dc magnetron sputtering system. A gas inlet introduces various gases to the vacuum chamber and creates various gas plasma during the sputtering steps. The rotating turntables insure that the respective wafers are present under the sputtering guns for an average amount of time such that consistency in sputtering and deposition is achieved. By continuous and sequential processing of the wafers in a common vacuum chamber without removal, the adverse affects of exposure to atmospheric conditions are eliminated providing higher quality circuit contacts and functional device.

  15. Stretchable multilayer self-aligned interconnects fabricated using excimer laser photoablation and in situ masking

    NASA Astrophysics Data System (ADS)

    Lin, Kevin L.; Jain, Kanti

    2009-02-01

    Stretchable interconnects are essential to large-area flexible circuits and large-area sensor array systems, and they play an important role towards the realization of the realm of systems which include wearable electronics, sensor arrays for structural health monitoring, and sensor skins for tactile feedback. These interconnects must be reliable and robust for viability, and must be flexible, stretchable, and conformable to non-planar surfaces. This research describes the design, modeling, fabrication, and testing of stretchable interconnects on polymer substrates using metal patterns both as functional interconnect layers and as in-situ masks for excimer laser photoablation. Excimer laser photoablation is often used for patterning of polymers and thin-film metals. The fluences for photoablation of polymers are generally much lower than the threshold fluence for removal or damage of high-thermallyconductive metals; thus, metal thin films can be used as in-situ masks for polymers if the proper fluence is used. Selfaligned single-layer and multi-layer interconnects of various designs (rectilinear and 'meandering') have been fabricated, and certain 'meandering' interconnect designs can be stretched up to 50% uniaxially while maintaining good electrical conductivity and structural integrity. These results are compared with Finite Element Analysis (FEA) models and are observed to be in good accordance with them. This fabrication approach eliminates masks and microfabrication processing steps as compared to traditional fabrication approaches; furthermore, this technology is scalable for large-area sensor arrays and electronic circuits, adaptable for a variety of materials and interconnects designs, and compatible with MEMS-based capacitive sensor technology.

  16. Large data centers interconnect bottlenecks.

    PubMed

    Ghiasi, Ali

    2015-02-09

    Large data centers interconnect bottlenecks are dominated by the switch I/O BW and the front panel BW as a result of pluggable modules. To overcome the front panel BW and the switch ASIC BW limitation one approach is to either move the optics onto the mid-plan or integrate the optics into the switch ASIC. Over the last 4 years, VCSEL based optical engines have been integrated into the packages of large-scale HPC routers, moderate size Ethernet switches, and even FPGA's. Competing solutions based on Silicon Photonics (SiP) have also been proposed for integration into HPC and Ethernet switch packages but with better integration path through the use of TSV (Through Silicon Via) stack dies. Integrating either VCSEL or SiP based optical engines into complex ASIC package that operates at high temperatures, where the required reliability is not trivial, one should ask what is the technical or the economic advantage before embarking on such a complex integration. High density Ethernet switches addressing data centers currently in development are based on 25G NRZ signaling and QSFP28 optical module that can support up to 3.6 Tb of front panel bandwidth.

  17. Method to Determine Maximum Allowable Sinterable Silver Interconnect Size

    SciTech Connect

    Wereszczak, A. A.; Modugno, M. C.; Waters, S. B.; DeVoto, D. J.; Paret, P. P.

    2016-05-01

    The use of sintered-silver for large-area interconnection is attractive for some large-area bonding applications in power electronics such as the bonding of metal-clad, electrically-insulating substrates to heat sinks. Arrays of different pad sizes and pad shapes have been considered for such large area bonding; however, rather than arbitrarily choosing their size, it is desirable to use the largest size possible where the onset of interconnect delamination does not occur. If that is achieved, then sintered-silver's high thermal and electrical conductivities can be fully taken advantage of. Toward achieving this, a simple and inexpensive proof test is described to identify the largest achievable interconnect size with sinterable silver. The method's objective is to purposely initiate failure or delamination. Copper and invar (a ferrous-nickel alloy whose coefficient of thermal expansion (CTE) is similar to that of silicon or silicon carbide) disks were used in this study and sinterable silver was used to bond them. As a consequence of the method's execution, delamination occurred in some samples during cooling from the 250 degrees C sintering temperature to room temperature and bonding temperature and from thermal cycling in others. These occurrences and their interpretations highlight the method's utility, and the herein described results are used to speculate how sintered-silver bonding will work with other material combinations.

  18. EPRI PEAC Corp.: Certification Model Program and Interconnection Agreement Tools

    SciTech Connect

    Not Available

    2003-10-01

    Summarizes the work of EPRI PEAC Corp., under contract to DOE's Distribution and Interconnection R&D, to develop a certification model program and interconnection agreement tools to support the interconnection of distributed energy resources.

  19. 78 FR 29672 - Small Generator Interconnection Agreements and Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ... Energy Regulatory Commission 18 CFR Part 35 Small Generator Interconnection Agreements and Procedures... Generator Interconnection Procedures (SGIP) and pro forma Small Generator Interconnection Agreement (SGIA..., 2013, the Commission issued an order in the above- referenced docket. Small Generator...

  20. A multilevel stochastic collocation method for SPDEs

    SciTech Connect

    Gunzburger, Max; Jantsch, Peter; Teckentrup, Aretha; Webster, Clayton

    2015-03-10

    We present a multilevel stochastic collocation method that, as do multilevel Monte Carlo methods, uses a hierarchy of spatial approximations to reduce the overall computational complexity when solving partial differential equations with random inputs. For approximation in parameter space, a hierarchy of multi-dimensional interpolants of increasing fidelity are used. Rigorous convergence and computational cost estimates for the new multilevel stochastic collocation method are derived and used to demonstrate its advantages compared to standard single-level stochastic collocation approximations as well as multilevel Monte Carlo methods.

  1. Partial Synchronization of Interconnected Boolean Networks.

    PubMed

    Chen, Hongwei; Liang, Jinling; Lu, Jianquan

    2017-01-01

    This paper addresses the partial synchronization problem for the interconnected Boolean networks (BNs) via the semi-tensor product (STP) of matrices. First, based on an algebraic state space representation of BNs, a necessary and sufficient criterion is presented to ensure the partial synchronization of the interconnected BNs. Second, by defining an induced digraph of the partial synchronized states set, an equivalent graphical description for the partial synchronization of the interconnected BNs is established. Consequently, the second partial synchronization criterion is derived in terms of adjacency matrix of the induced digraph. Finally, two examples (including an epigenetic model) are provided to illustrate the efficiency of the obtained results.

  2. Method for fabricating an interconnected array of semiconductor devices

    DOEpatents

    Grimmer, Derrick P.; Paulson, Kenneth R.; Gilbert, James R.

    1989-10-10

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  3. Traffic congestion in interconnected complex networks

    NASA Astrophysics Data System (ADS)

    Tan, Fei; Wu, Jiajing; Xia, Yongxiang; Tse, Chi K.

    2014-06-01

    Traffic congestion in isolated complex networks has been investigated extensively over the last decade. Coupled network models have recently been developed to facilitate further understanding of real complex systems. Analysis of traffic congestion in coupled complex networks, however, is still relatively unexplored. In this paper, we try to explore the effect of interconnections on traffic congestion in interconnected Barabási-Albert scale-free networks. We find that assortative coupling can alleviate traffic congestion more readily than disassortative and random coupling when the node processing capacity is allocated based on node usage probability. Furthermore, the optimal coupling probability can be found for assortative coupling. However, three types of coupling preferences achieve similar traffic performance if all nodes share the same processing capacity. We analyze interconnected Internet autonomous-system-level graphs of South Korea and Japan and obtain similar results. Some practical suggestions are presented to optimize such real-world interconnected networks accordingly.

  4. Computational continuum modeling of solder interconnects: Applications

    SciTech Connect

    Burchett, S.N.; Neilsen, M.K.; Frear, D.R.

    1997-04-01

    The most commonly used solder for electrical interconnections in electronic packages is the near eutectic 60Sn-40Fb alloy. This alloy has a number of processing advantages (suitable melting point of 183C and good wetting behavior). However, under conditions of cyclic strain and temperature (thermomechanical fatigue), the microstructure of this alloy undergoes a heterogeneous coarsening and failure process that makes the prediction of solder joint lifetime complex. A viscoplastic, microstructure dependent, constitutive model for solder, which is currently under development, was implemented into a finite element code. With this computational capability, the thermomechanical response of solder interconnects, including microstructural evolution, can be predicted. This capability was applied to predict the thermomechanical response of a mini ball grid array solder interconnect. In this paper, the constitutive model will first be briefly discussed. The results of computational studies to determine the thermomechanical response of a mini ball grid array solder interconnects then will be presented.

  5. Epidemics in Interconnected Small-World Networks

    PubMed Central

    Liu, Meng; Li, Daqing; Qin, Pengju; Liu, Chaoran; Wang, Huijuan; Wang, Feilong

    2015-01-01

    Networks can be used to describe the interconnections among individuals, which play an important role in the spread of disease. Although the small-world effect has been found to have a significant impact on epidemics in single networks, the small-world effect on epidemics in interconnected networks has rarely been considered. Here, we study the susceptible-infected-susceptible (SIS) model of epidemic spreading in a system comprising two interconnected small-world networks. We find that the epidemic threshold in such networks decreases when the rewiring probability of the component small-world networks increases. When the infection rate is low, the rewiring probability affects the global steady-state infection density, whereas when the infection rate is high, the infection density is insensitive to the rewiring probability. Moreover, epidemics in interconnected small-world networks are found to spread at different velocities that depend on the rewiring probability. PMID:25799143

  6. INTERCONNECTIONS BETWEEN HUMAN HEALTH AND ECOLOGICAL INTEGRITY

    EPA Science Inventory

    Interconnections between Human Health and Ecological Integrity emanates from a June 2000 Pellston Workshop in Snowbird, Utah, USA. Jointly sponsored by the Society of Environmental Toxicology and Chemistry (SETAC) and the Society of Toxicology (SOT), the workshop was motivated by...

  7. Implementation of optical interconnections for VLSI

    NASA Technical Reports Server (NTRS)

    Wu, Wennie H.; Bergman, Larry A.; Johnston, Alan R.; Guest, Clark C.; Esener, Sadik C.

    1987-01-01

    This paper reports on the progress in implementing optical interconnections for VLSI. Four areas are covered: (1) the holographic optical element (HOE), (2) the laser sources, (3) the detectors and associated circuits forming an optically addressed gate, and (4) interconnection experiments in which five gates are actuated from one source. A laser scanner system with a resolution of 12 x 20 microns has been utilized to generate the HOEs. Diffraction efficiency of the HOE and diffracted spot size have been measured. Stock lasers have been modified with a high-frequency package for interconnect experiments, and buried heterostructure fabrication techniques have been pursued. Measurements have been made on the fabricated photodetectors to determine dark current, responsivity, and response time. The optical gates and the overall chip have been driven successfully with an input light beam, as well as with the optical signal interconnected through the one to five holograms.

  8. Traffic congestion in interconnected complex networks.

    PubMed

    Tan, Fei; Wu, Jiajing; Xia, Yongxiang; Tse, Chi K

    2014-06-01

    Traffic congestion in isolated complex networks has been investigated extensively over the last decade. Coupled network models have recently been developed to facilitate further understanding of real complex systems. Analysis of traffic congestion in coupled complex networks, however, is still relatively unexplored. In this paper, we try to explore the effect of interconnections on traffic congestion in interconnected Barabási-Albert scale-free networks. We find that assortative coupling can alleviate traffic congestion more readily than disassortative and random coupling when the node processing capacity is allocated based on node usage probability. Furthermore, the optimal coupling probability can be found for assortative coupling. However, three types of coupling preferences achieve similar traffic performance if all nodes share the same processing capacity. We analyze interconnected Internet autonomous-system-level graphs of South Korea and Japan and obtain similar results. Some practical suggestions are presented to optimize such real-world interconnected networks accordingly.

  9. Silicon Hybrid Wafer Scale Integration Interconnect Evaluation

    DTIC Science & Technology

    1989-12-01

    the assessment of the current state -of-the-art in electromagnetic analyses to determine its applicability to NVSI interconnections. Weak links or... states that transmission line effects are clearly exhibited when the physical length of any component of an electrical system (include interconnections...assumedl for coniduc- tois and dielectrics. Furthermore, all geometric distances arc assuimedl to bie uniform. unless otherwise stated . This assertion

  10. Scalable IP switching based on optical interconnect

    NASA Astrophysics Data System (ADS)

    Luo, Zhixiang; Cao, Mingcui; Liu, Erwu

    2000-10-01

    IP traffic on the Internet and enterprise networks has been growing exponentially in the last several years, and much attention is being focused on the use of IP multicast for real-time multimedia applications. The current soft and general-purpose CPU-based routers face great stress since they have great latency and low forwarding speeds. Based on the ASICs, layer 2 switching provides high-speed packet forwarding. Integrating high-speed of Layer 2 switching with the flexibility of Layer 3 routing, Layer 3 switching (IP switching) has been put forward in order to avoid the performance bottleneck associated with Layer 3 forwarding. In this paper, we present a prototype system of a scalable IP switching based on scalable ATM switching fabric and optical interconnect. The IP switching system mainly consists of the input/output interface unit, scalable ATM switching fabric and IP control component. Optical interconnects between the input fan-out stage and the interconnect stage, also the interconnect stage and the output concentration stage provide high-speed data paths. And the interconnect stage is composed of 16 X 16 CMOS-SEED ATM switching modules. With 64 ports of OC-12 interface, the maximum throughput of the prototype system is about 20 million packets per second (MPPS) for 256 bytes average packet length, and the packet loss ratio is less than 10e-9. Benefiting from the scalable architecture and the optical interconnect, this IP switching system can easily scale to very large network size.

  11. Navigability of interconnected networks under random failures

    PubMed Central

    De Domenico, Manlio; Solé-Ribalta, Albert; Gómez, Sergio; Arenas, Alex

    2014-01-01

    Assessing the navigability of interconnected networks (transporting information, people, or goods) under eventual random failures is of utmost importance to design and protect critical infrastructures. Random walks are a good proxy to determine this navigability, specifically the coverage time of random walks, which is a measure of the dynamical functionality of the network. Here, we introduce the theoretical tools required to describe random walks in interconnected networks accounting for structure and dynamics inherent to real systems. We develop an analytical approach for the covering time of random walks in interconnected networks and compare it with extensive Monte Carlo simulations. Generally speaking, interconnected networks are more resilient to random failures than their individual layers per se, and we are able to quantify this effect. As an application––which we illustrate by considering the public transport of London––we show how the efficiency in exploring the multiplex critically depends on layers’ topology, interconnection strengths, and walk strategy. Our findings are corroborated by data-driven simulations, where the empirical distribution of check-ins and checks-out is considered and passengers travel along fastest paths in a network affected by real disruptions. These findings are fundamental for further development of searching and navigability strategies in real interconnected systems. PMID:24912174

  12. Scalable Adaptive Multilevel Solvers for Multiphysics Problems

    SciTech Connect

    Xu, Jinchao

    2014-11-26

    In this project, we carried out many studies on adaptive and parallel multilevel methods for numerical modeling for various applications, including Magnetohydrodynamics (MHD) and complex fluids. We have made significant efforts and advances in adaptive multilevel methods of the multiphysics problems: multigrid methods, adaptive finite element methods, and applications.

  13. A Multilevel Assessment of Differential Item Functioning.

    ERIC Educational Resources Information Center

    Shen, Linjun

    A multilevel approach was proposed for the assessment of differential item functioning and compared with the traditional logistic regression approach. Data from the Comprehensive Osteopathic Medical Licensing Examination for 2,300 freshman osteopathic medical students were analyzed. The multilevel approach used three-level hierarchical generalized…

  14. Structural optimization by multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; James, B.; Dovi, A.

    1983-01-01

    A method is described for decomposing an optimization problem into a set of subproblems and a coordination problem which preserves coupling between the subproblems. The method is introduced as a special case of multilevel, multidisciplinary system optimization and its algorithm is fully described for two level optimization for structures assembled of finite elements of arbitrary type. Numerical results are given for an example of a framework to show that the decomposition method converges and yields results comparable to those obtained without decomposition. It is pointed out that optimization by decomposition should reduce the design time by allowing groups of engineers, using different computers to work concurrently on the same large problem.

  15. An Interconnected Network of Core-Forming Melts Produced by Shear Deformation

    NASA Technical Reports Server (NTRS)

    Bruhn, D.; Groebner, N.; Kohlstedt, D. L.

    2000-01-01

    The formation mechanism of terrestrial planetary is still poorly understood, and has been the subject of numerous experimental studies. Several mechanisms have been proposed by which metal-mainly iron with some nickel-could have been extracted from a silicate mantle to form the core. Most recent models involve gravitational sinking of molten metal or metal sulphide through a partially or fully molten mantle that is often referred to as a'magma ocean. Alternative models invoke percolation of molten metal along an interconnected network (that is, porous flow) through a solid silicate matrix. But experimental studies performed at high pressures have shown that, under hydrostatic conditions, these melts do not form an interconnected network, leading to the widespread assumption that formation of metallic cores requires a magma ocean. In contrast, here we present experiments which demonstrate that shear deformation to large strains can interconnect a significant fraction of initially isolated pockets of metal and metal sulphide melts in a solid matrix of polycrystalline olivine. Therefore, in a dynamic (nonhydrostatic) environment, percolation remains a viable mechanism for the segregation and migration of core-forming melts in a solid silicate mantle.

  16. FUNDAMENTAL STUDIES OF THE DURABILITY OF MATERIALS FOR INTERCONNECTS IN SOLID OXIDE FUEL CELLS

    SciTech Connect

    Hammer, J.; Laney, S.; Jackson, W.; Pettit, F.; Meier, J.; Dhanaraj, N.; Beuth, J.

    2005-01-28

    This task involves theoretical analysis of possible alternative metallic interconnect schemes including: Ni and dispersion-strengthened Ni, low CTE alloys based on Fe-Ni (Invar), coatings to suppress evaporation, and incorporation of high conductivity paths. The most promising systems are being evaluated experimentally with regard to durability and oxide conductivity.

  17. Selection and Evaluation of Heat-Resistant Alloys for Planar SOFC Interconnect Applications

    SciTech Connect

    Yang, Z Gary; Weil, K. Scott; Paxton, Dean M.; Stevenson, Jeffry W.

    2002-11-21

    Over the past several years, the steady reduction in SOFC operating temperatures to the intermediate range of 700~850oC [1] has made it feasible for lanthanum chromite to be supplanted by metals or alloys as the interconnect materials. Compared to doped lanthanum chromite, metals or alloys offer significantly lower raw material and fabrication costs. However, to be a durable and reliable, a metal or alloy has to satisfy several functional requirements specific to the interconnect under SOFC operating conditions. Specifically, the interconnect metal or alloy should possess the following properties: (i) Good surface stability (resistance to oxidation, hot corrosion, and carburization) in both cathodic (air) and anodic (fuel) atmospheres; (ii) Thermal expansion matching to the ceramic PEN (positive cathode-electrolyte-negative anode) and seal materials (as least for a rigid seal design); (iii) High electrical conductivity through both the bulk material and in-situ formed oxide scales; (iv) Bulk and interfacial thermal mechanical reliability and durability at the operating temperature; (v) Compatibility with other materials in contact with interconnects such as seals and electrical contact materials.

  18. Electrical transport and electromigration studies on nickel encapsulated carbon nanotubes: possible future interconnects.

    PubMed

    Kulshrestha, Neha; Misra, Abhishek; Misra, D S

    2013-05-10

    We nominate the nickel filled multiwalled carbon nanotubes (MWNTs) as potential candidates to cope with challenges in persistent scaling for future interconnect technology. The insights into electrical transport through nickel filled carbon nanotubes provide an effective solution for major performance and reliability issues such as the increasing resistivity of metals at reduced scales, electromigration at high current densities and the problem of diffusion and corrosion faced by the existing copper interconnect technology. Furthermore, the nickel filled MWNTs outperform their hollow counterparts, the unfilled MWNTs, carrying at least one order higher current density, with increased time to failure. The results suggest that metal filled carbon nanotubes can provide a twofold benefit: (1) the metal filling provides an increased density of states for the system leading to a higher current density compared to hollow MWNTs, (2) metal out-diffusion and corrosion is prevented by the surrounding graphitic walls.

  19. A multilevel nonvolatile magnetoelectric memory

    NASA Astrophysics Data System (ADS)

    Shen, Jianxin; Cong, Junzhuang; Shang, Dashan; Chai, Yisheng; Shen, Shipeng; Zhai, Kun; Sun, Young

    2016-09-01

    The coexistence and coupling between magnetization and electric polarization in multiferroic materials provide extra degrees of freedom for creating next-generation memory devices. A variety of concepts of multiferroic or magnetoelectric memories have been proposed and explored in the past decade. Here we propose a new principle to realize a multilevel nonvolatile memory based on the multiple states of the magnetoelectric coefficient (α) of multiferroics. Because the states of α depends on the relative orientation between magnetization and polarization, one can reach different levels of α by controlling the ratio of up and down ferroelectric domains with external electric fields. Our experiments in a device made of the PMN-PT/Terfenol-D multiferroic heterostructure confirm that the states of α can be well controlled between positive and negative by applying selective electric fields. Consequently, two-level, four-level, and eight-level nonvolatile memory devices are demonstrated at room temperature. This kind of multilevel magnetoelectric memory retains all the advantages of ferroelectric random access memory but overcomes the drawback of destructive reading of polarization. In contrast, the reading of α is nondestructive and highly efficient in a parallel way, with an independent reading coil shared by all the memory cells.

  20. A multilevel nonvolatile magnetoelectric memory

    PubMed Central

    Shen, Jianxin; Cong, Junzhuang; Shang, Dashan; Chai, Yisheng; Shen, Shipeng; Zhai, Kun; Sun, Young

    2016-01-01

    The coexistence and coupling between magnetization and electric polarization in multiferroic materials provide extra degrees of freedom for creating next-generation memory devices. A variety of concepts of multiferroic or magnetoelectric memories have been proposed and explored in the past decade. Here we propose a new principle to realize a multilevel nonvolatile memory based on the multiple states of the magnetoelectric coefficient (α) of multiferroics. Because the states of α depends on the relative orientation between magnetization and polarization, one can reach different levels of α by controlling the ratio of up and down ferroelectric domains with external electric fields. Our experiments in a device made of the PMN-PT/Terfenol-D multiferroic heterostructure confirm that the states of α can be well controlled between positive and negative by applying selective electric fields. Consequently, two-level, four-level, and eight-level nonvolatile memory devices are demonstrated at room temperature. This kind of multilevel magnetoelectric memory retains all the advantages of ferroelectric random access memory but overcomes the drawback of destructive reading of polarization. In contrast, the reading of α is nondestructive and highly efficient in a parallel way, with an independent reading coil shared by all the memory cells. PMID:27681812

  1. Dislocation pile-ups as sites for formation of electromigration-induced transgranular slit-like voids in Al interconnects

    SciTech Connect

    Srikar, V.T.; Thompson, C.V.

    1999-12-17

    Electromigration-induced voiding in metal interconnects in Si integrated circuits is a serious reliability concern. The microstructure of narrow interconnects subject to post-pattern anneal is expected to be bamboo-like in character. These structures are best described as chains of single crystals, with grain boundaries perpendicular to the interconnect axis. In these microstructures, two distinct types of void morphologies have been reported in Al-alloy interconnects: large, wedge shaped erosion voids (E-voids), and narrow slit-like voids (S-voids). A summarized below, electromigration experiments conducted on single-crystal Al interconnects have clearly shown that the transition of erosion voids to slit-like voids is very strongly dependent on the crystallography of the interconnect, and also that there is some inhomogeneously distributed feature which triggers S-void formation, even in single-crystal interconnects. In summary, the authors feel that the strong crystallographic dependence of the S-voids, the possible effects of the enormous mechanical stresses (in excess of 1 GPa in some cases) which can exist in such interconnects, and the stochastic nature of the development of slit-like features, have not been adequately captured in the existing models. In what follows, the authors present a model for a role that dislocation pile-ups may play in reducing the energy of transition of E-voids to S-voids, and for controlling the location of this transition.

  2. Committed regional electrical interconnection projects in the Middle East

    SciTech Connect

    Azzam, M.; Al-Said, A.

    1994-12-01

    Due to the well-known advantages of electrical interconnections and their consequent benefits, Jordan considers the interconnection of its electrical network with the neighboring electrical networks as one of its main corporate strategies. At present the electrical interconnection project of the networks of Egypt, Iraq, Jordan, Syria, and Turkey is progressing. To achieve this interconnection project, two feasibility studies were conducted: interconnection of the Egyptian and Jordanian electrical power systems; interconnection of the electrical networks of Egypt, Iraq, Jordan, Syria, and Turkey (EIJST interconnection). This presentation reviews these studies and their results.

  3. Multilevel modelling: Beyond the basic applications.

    PubMed

    Wright, Daniel B; London, Kamala

    2009-05-01

    Over the last 30 years statistical algorithms have been developed to analyse datasets that have a hierarchical/multilevel structure. Particularly within developmental and educational psychology these techniques have become common where the sample has an obvious hierarchical structure, like pupils nested within a classroom. We describe two areas beyond the basic applications of multilevel modelling that are important to psychology: modelling the covariance structure in longitudinal designs and using generalized linear multilevel modelling as an alternative to methods from signal detection theory (SDT). Detailed code for all analyses is described using packages for the freeware R.

  4. Interconnection Testing of Distributed Resources: Preprint

    SciTech Connect

    Kroposki, B.; Basso, T.; DeBlasio, R.

    2004-02-01

    With the publication of IEEE 1547-2003(TM) Standard for Interconnecting Distributed Resources With Electric Power Systems, the electric power industry has a need to develop tests and procedures to verify that interconnection equipment meets 1547 technical requirements. A new standard, IEEE P1547.1(TM), is being written to give detailed tests and procedures for confirming that equipment meets the interconnection requirements. The National Renewable Energy Laboratory has been validating test procedures being developed as part of IEEE P1547.1. As work progresses on the validation of those procedures, information and test reports are passed on to the working group of IEEE P1547.1 for future revisions.

  5. Random walk centrality in interconnected multilayer networks

    NASA Astrophysics Data System (ADS)

    Solé-Ribalta, Albert; De Domenico, Manlio; Gómez, Sergio; Arenas, Alex

    2016-06-01

    Real-world complex systems exhibit multiple levels of relationships. In many cases they require to be modeled as interconnected multilayer networks, characterizing interactions of several types simultaneously. It is of crucial importance in many fields, from economics to biology and from urban planning to social sciences, to identify the most (or the less) influent nodes in a network using centrality measures. However, defining the centrality of actors in interconnected complex networks is not trivial. In this paper, we rely on the tensorial formalism recently proposed to characterize and investigate this kind of complex topologies, and extend two well known random walk centrality measures, the random walk betweenness and closeness centrality, to interconnected multilayer networks. For each of the measures we provide analytical expressions that completely agree with numerically results.

  6. Design of reconfigurable GRIN planar optical interconnects

    NASA Astrophysics Data System (ADS)

    Gomez-Reino, C.; Flores-Arias, M. T.; Perez, M. V.; Bao, C.; Castelo, A.; Nieto, D.

    2008-04-01

    Design of all-optics reconfigurable GRIN (Gradient-Index) planar structure for crossover and parallel interconnects will be presented. Design represents a unique combination of GRIN materials, simple geometry optics and waveguide technology for both parallel and distributed processing and communication networks. The optical analysis is based on-axis and off-axis multiple imaging property of GRIN components. The analysis includes the study of the Point Spread Function (PSF) for describing the performance of the GRIN planar structure and the evaluation of the Space Bandwidth Product (SBP) for estimating the number of channels which can be handled. The dependence of the number of channels on the wavelength of the light and the aperture of the planar interconnect is shown. The results are given for five working wavelengths of Laser Diode (LD) and for four transverse aperture of reconfigurable optical interconnect.

  7. The motion of interconnected flexible bodies

    NASA Technical Reports Server (NTRS)

    Hopkins, A. S.

    1975-01-01

    The equations of motion for an arbitrarily interconnected collection of substructures are derived. The substructures are elastic bodies which may be idealized as finite element assemblies and are subject to small deformations relative to a nominal state. Interconnections between the elastic substructures permit large relative translations and rotations between substructures, governed by Pfaffian constraints describing the connections. Screw connections (permitting rotation about and translation along a single axis) eliminate constraint forces and incorporate modal coupling. The problem of flexible spacecraft simulation is discussed. Hurty's component mode approach is extended by permitting interconnected elastic substructures large motions relative to each other and relative to inertial space. The hybrid coordinate methods are generalized by permitting all substructures to be flexible (rather than only the terminal members of a topological tree of substructures). The basic relationships of continuum mechanics are developed.

  8. Automotion of domain walls for spintronic interconnects

    SciTech Connect

    Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.

    2014-06-07

    We simulate “automotion,” the transport of a magnetic domain wall under the influence of demagnetization and magnetic anisotropy, in nanoscale spintronic interconnects. In contrast to spin transfer driven magnetic domain wall motion, the proposed interconnects operate without longitudinal charge current transfer, with only a transient current pulse at domain wall creation and have favorable scaling down to the 20 nm dimension. Cases of both in-plane and out-of-plane magnetization are considered. Analytical dependence of the velocity of domain walls on the angle of magnetization are compared with full micromagnetic simulations. Deceleration, attenuation and disappearance, and reflection of domain walls are demonstrated through simulation. Dependences of the magnetization angle on the current pulse parameters are studied. The energy and delay analysis suggests that automotion is an attractive option for spintronic logic interconnects.

  9. High-Density, High-Bandwidth, Multilevel Holographic Memory

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    2008-01-01

    A proposed holographic memory system would be capable of storing data at unprecedentedly high density, and its data transfer performance in both reading and writing would be characterized by exceptionally high bandwidth. The capabilities of the proposed system would greatly exceed even those of a state-of-the art memory system, based on binary holograms (in which each pixel value represents 0 or 1), that can hold .1 terabyte of data and can support a reading or writing rate as high as 1 Gb/s. The storage capacity of the state-of-theart system cannot be increased without also increasing the volume and mass of the system. However, in principle, the storage capacity could be increased greatly, without significantly increasing the volume and mass, if multilevel holograms were used instead of binary holograms. For example, a 3-bit (8-level) hologram could store 8 terabytes, or an 8-bit (256-level) hologram could store 256 terabytes, in a system having little or no more size and mass than does the state-of-the-art 1-terabyte binary holographic memory. The proposed system would utilize multilevel holograms. The system would include lasers, imaging lenses and other beam-forming optics, a block photorefractive crystal wherein the holograms would be formed, and two multilevel spatial light modulators in the form of commercially available deformable-mirror-device spatial light modulators (DMDSLMs) made for use in high speed input conversion of data up to 12 bits. For readout, the system would also include two arrays of complementary metal oxide/semiconductor (CMOS) photodetectors matching the spatial light modulators. The system would further include a reference-beam sterring device (equivalent of a scanning mirror), containing no sliding parts, that could be either a liquid-crystal phased-array device or a microscopic mirror actuated by a high-speed microelectromechanical system. Time-multiplexing and the multilevel nature of the DMDSLM would be exploited to enable writing

  10. On multilevel block modulation codes

    NASA Technical Reports Server (NTRS)

    Kasami, Tadao; Takata, Toyoo; Fujiwara, Toru; Lin, Shu

    1991-01-01

    The multilevel (ML) technique for combining block coding and modulation is investigated. A general formulation is presented for ML modulation codes in terms of component codes with appropriate distance measures. A specific method for constructing ML block modulation codes (MLBMCs) with interdependency among component codes is proposed. Given an MLBMC C with no interdependency among the binary component codes, the proposed method gives an MLBC C-prime that has the same rate as C, a minimum squared Euclidean distance not less than that of C, a trellis diagram with the same number of states as that of C, and a smaller number of nearest-neighbor codewords than that of C. Finally, a technique is presented for analyzing the error performance of MLBMCs for an additive white Gaussian noise channel based on soft-decision maximum-likelihood decoding.

  11. Multi-level assemblies of lead sulphide nanorods.

    PubMed

    Lu, Qingyi; Gao, Feng; Komarneni, Sridhar

    2006-05-28

    A new concept of multi-level assemblies of nanorod-based structures has been proposed, which could give new insight into the construction of nanorod-based complex structures from the bottom up. Multi-level architectures of complex lead sulphide (PbS) nanorod-based structures have been realized by a simple and general amino acid-mediated approach. First-level structure (multi-arm horn-like structure), second-level structure (bi-pyramid structure formed by several horn-like structures), and third-level structure (multi-pyramid structure formed by several pyramid-like structures) can be synthesized with the assistance of different amino acids: aspartic acid, serine, and histidine, respectively. The amino acids have several functional groups, such as -NH(2) and -COOH, which have strong abilities for coordination with the metal ions, and might provide reaction sites by coordinating with metal ions to initiate and then confine the assemblies of the PbS nanorods. This amino acid-mediated method provides a possibility of studying the formation and assembly mechanisms from the bottom up and might open a door to constructing complex nanorod-based structures at different levels.

  12. A Thermal Model for Carbon Nanotube Interconnects

    PubMed Central

    Mohsin, Kaji Muhammad; Srivastava, Ashok; Sharma, Ashwani K.; Mayberry, Clay

    2013-01-01

    In this work, we have studied Joule heating in carbon nanotube based very large scale integration (VLSI) interconnects and incorporated Joule heating influenced scattering in our previously developed current transport model. The theoretical model explains breakdown in carbon nanotube resistance which limits the current density. We have also studied scattering parameters of carbon nanotube (CNT) interconnects and compared with the earlier work. For 1 µm length single-wall carbon nanotube, 3 dB frequency in S12 parameter reduces to ~120 GHz from 1 THz considering Joule heating. It has been found that bias voltage has little effect on scattering parameters, while length has very strong effect on scattering parameters.

  13. Graphene Nanoribbons (GNRs) for Future Interconnect

    NASA Astrophysics Data System (ADS)

    Saptono Duryat, Rahmat

    2016-05-01

    Selecting and developing materials for the future devices require a sound understanding of design requirements. Miniaturization of electronic devices, as commonly expressed by Moore Law, has involved the integration level. Increase of the level has caused some consequences in the design and selection of materials for interconnection. The present paper deals with the challenge of materials design and selection beyond the nanoscale limit and the ability of traditional materials to cope with. One of the emerging materials, i.e. Graphene, will be reviewed with particular reference to its characteristics and potentials for future interconnection.

  14. Metallic nanowire networks

    DOEpatents

    Song, Yujiang; Shelnutt, John A.

    2012-11-06

    A metallic nanowire network synthesized using chemical reduction of a metal ion source by a reducing agent in the presence of a soft template comprising a tubular inverse micellar network. The network of interconnected polycrystalline nanowires has a very high surface-area/volume ratio, which makes it highly suitable for use in catalytic applications.

  15. Revised Record of Decision for the Electrical Interconnection of the Summit/Westward Project

    SciTech Connect

    N /A

    2004-10-21

    The Bonneville Power Administration (BPA) has decided to amend its July 25, 2003, Record of Decision (ROD) regarding the proposed Summit/Westward Project (Project) to offer contract terms for an optional interconnection of this Project into the Federal Columbia River Transmission System (FCRTS). Under this optional interconnection plan, BPA would integrate electric power from the Project into the FCRTS at a point adjacent to Clatskanie People's Utility District (CPUD) existing Wauna Substation. In order to deliver power to this location, CPUD would develop a new substation (Bradbury Substation) at a site near the Project and a new 230-kV transmission line from there to CPUD's Wauna Substation, which is already connected to the FCRTS. As part of this revised decision, BPA will facilitate CPUD development of the Bradbury-Wauna transmission line by allowing joint use of BPA right-of-way. This will involve reconstructing a section of BPA's 115-kV Allston-Astoria No. 1 transmission line from single-circuit H-frame wood-pole design to double-circuit single metal pole design. Terms of BPA participation in CPUD's development of the Bradbury-Wauna transmission line will be documented in a Construction Agreement. This optional interconnection plan is in addition to BPA's previous offer for interconnection of the Project at BPA's Allston Substation, as documented in the July 25, 2003, ROD. As with the initial interconnection plan, the decision to offer terms to interconnect the Project through the optional interconnection plan is consistent with BPA's Business Plan Final Environmental Impact Statement (BP EIS) (DOE/EIS-0183, June 1995), and the Business Plan Record of Decision (BP ROD, August 1995). This decision thus is similarly tiered to the Business Plan ROD.

  16. Pressure activated interconnection of micro transfer printed components

    NASA Astrophysics Data System (ADS)

    Prevatte, Carl; Guven, Ibrahim; Ghosal, Kanchan; Gomez, David; Moore, Tanya; Bonafede, Salvatore; Raymond, Brook; Trindade, António Jose; Fecioru, Alin; Kneeburg, David; Meitl, Matthew A.; Bower, Christopher A.

    2016-05-01

    Micro transfer printing and other forms of micro assembly deterministically produce heterogeneously integrated systems of miniaturized components on non-native substrates. Most micro assembled systems include electrical interconnections to the miniaturized components, typically accomplished by metal wires formed on the non-native substrate after the assembly operation. An alternative scheme establishing interconnections during the assembly operation is a cost-effective manufacturing method for producing heterogeneous microsystems, and facilitates the repair of integrated microsystems, such as displays, by ex post facto addition of components to correct defects after system-level tests. This letter describes pressure-concentrating conductor structures formed on silicon (1 0 0) wafers to establish connections to preexisting conductive traces on glass and plastic substrates during micro transfer printing with an elastomer stamp. The pressure concentrators penetrate a polymer layer to form the connection, and reflow of the polymer layer bonds the components securely to the target substrate. The experimental yield of series-connected test systems with >1000 electrical connections demonstrates the suitability of the process for manufacturing, and robustness of the test systems against exposure to thermal shock, damp heat, and mechanical flexure shows reliability of the resulting bonds.

  17. Cervical Laminoplasty for Multilevel Cervical Myelopathy

    PubMed Central

    Sayana, Murali Krishna; Jamil, Hassan; Poynton, Ashley

    2011-01-01

    Cervical spondylotic myelopathy can result from degenerative cervical spondylosis, herniated disk material, osteophytes, redundant ligamentum flavum, or ossification of the posterior longitudinal ligament. Surgical intervention for multi-level myelopathy aims to decompress the spinal cord and maintain stability of the cervical spine. Laminoplasty was major surgical advancement as laminectomy resulted in kyphosis and unsatisfactory outcomes. Hirabayashi popularised the expansive open door laminoplasty which was later modified several surgeons. Laminoplasty has changed the way surgeons approach multilevel cervical spondylotic myelopathy. PMID:21991408

  18. Computational continuum modeling of solder interconnects

    SciTech Connect

    Burchett, S.N.; Neilsen, M.K.; Frear, D.R.; Stephens, J.J.

    1997-03-01

    The most commonly used solder for electrical interconnections in electronic packages is the near eutectic 60Sn-40Pb alloy. This alloy has a number of processing advantages (suitable melting point of 183 C and good wetting behavior). However, under conditions of cyclic strain and temperature (thermomechanical fatigue), the microstructure of this alloy undergoes a heterogeneous coarsening and failure process that makes prediction of solder joint lifetime complex. A viscoplastic, microstructure dependent, constitutive model for solder which is currently in development was implemented into a finite element code. With this computational capability, the thermomechanical response of solder interconnects, including microstructural evolution, can be predicted. This capability was applied to predict the thermomechanical response of various leadless chip carrier solder interconnects to determine the effects of variations in geometry and loading. In this paper, the constitutive model will first be briefly discussed. The results of computational studies to determine the effect of geometry and loading variations on leadless chip carrier solder interconnects then will be presented.

  19. Organization of Systems with Bussed Interconnections

    DTIC Science & Technology

    1992-03-01

    arrangement of modules. For general arrangements, arbitration time grows linearly with number of busses, while for linear arrangements, *1.4 .,-B2’ZT TE•.1...for linear arrangements, arbitration time is constant. Keywords: arbitration with busses, binomial arbitration, bussed interconnections, busses...demonstrating the superiority of binomial arbitration for general arrangements of modules under the digital transmission line model. For linear

  20. Electric network interconnection of Mashreq Arab Countries

    SciTech Connect

    El-Amin, I.M.; Al-Shehri, A.M.; Opoku, G.; Al-Baiyat, S.A.; Zedan, F.M.

    1994-12-01

    Power system interconnection is a well established practice for a variety of technical and economical reasons. Several interconnected networks exist worldwide for a number of factors. Some of these networks cross international boundaries. This presentation discusses the future developments of the power systems of Mashreq Arab Countries (MAC). MAC consists of Bahrain, Egypt, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, United Arab Emirates (UAE), and Yemen. Mac power systems are operated by government or semigovernment bodies. Many of these countries have national or regional electric grids but are generally isolated from each other. With the exception of Saudi Arabia power systems, which employ 60 Hz, all other MAC utilities use 50 Hz frequency. Each country is served by one utility, except Saudi Arabia, which is served by four major utilities and some smaller utilities serving remote towns and small load centers. The major utilities are the Saudi Consolidated electric Company in the Eastern Province (SCECO East), SCECO Center, SCECO West, and SCECO South. These are the ones considered in this study. The energy resources in MAC are varied. Countries such as Egypt, Iraq, and Syria have significant hydro resources.The gulf countries and Iraq have abundant fossil fuel, The variation in energy resources as well as the characteristics of the electric load make it essential to look into interconnections beyond the national boundaries. Most of the existing or planned interconnections involve few power systems. A study involving 12 countries and over 20 utilities with different characteristics represents a very large scale undertaking.

  1. Optical interconnections to focal plane arrays

    SciTech Connect

    Rienstra, J.L.; Hinckley, M.K.

    2000-11-01

    The authors have successfully demonstrated an optical data interconnection from the output of a focal plane array to the downstream data acquisition electronics. The demonstrated approach included a continuous wave laser beam directed at a multiple quantum well reflectance modulator connected to the focal plane array analog output. The output waveform from the optical interconnect was observed on an oscilloscope to be a replica of the input signal. They fed the output of the optical data link to the same data acquisition system used to characterize focal plane array performance. Measurements of the signal to noise ratio at the input and output of the optical interconnection showed that the signal to noise ratio was reduced by a factor of 10 or more. Analysis of the noise and link gain showed that the primary contributors to the additional noise were laser intensity noise and photodetector receiver noise. Subsequent efforts should be able to reduce these noise sources considerably and should result in substantially improved signal to noise performance. They also observed significant photocurrent generation in the reflectance modulator that imposes a current load on the focal plane array output amplifier. This current loading is an issue with the demonstrated approach because it tends to negate the power saving feature of the reflectance modulator interconnection concept.

  2. 14 CFR 23.701 - Flap interconnection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.701 Flap interconnection. (a) The main wing flaps and related movable surfaces as a system... independent of the flap drive system; or by an approved equivalent means; or (2) Be designed so that...

  3. 14 CFR 23.701 - Flap interconnection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.701 Flap interconnection. (a) The main wing flaps and related movable surfaces as a system... independent of the flap drive system; or by an approved equivalent means; or (2) Be designed so that...

  4. 14 CFR 23.701 - Flap interconnection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.701 Flap interconnection. (a) The main wing flaps and related movable surfaces as a system... independent of the flap drive system; or by an approved equivalent means; or (2) Be designed so that...

  5. 14 CFR 23.701 - Flap interconnection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.701 Flap interconnection. (a) The main wing flaps and related movable surfaces as a system... independent of the flap drive system; or by an approved equivalent means; or (2) Be designed so that...

  6. 14 CFR 27.674 - Interconnected controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Interconnected controls. 27.674 Section 27.674 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems §...

  7. 14 CFR 29.674 - Interconnected controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Interconnected controls. 29.674 Section 29.674 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems §...

  8. 14 CFR 27.674 - Interconnected controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Interconnected controls. 27.674 Section 27.674 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems §...

  9. 14 CFR 29.674 - Interconnected controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Interconnected controls. 29.674 Section 29.674 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems §...

  10. 47 CFR 90.477 - Interconnected systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... where the base station site or sites proposed stations are located 120 km (75 mi.) or more from the... mi.) of the 25 cities, they must obtain the consent of all co-channel licensees located both within 120 km (75 mi.) of the center of the city; and within 120 km (75 mi.) of the interconnected...

  11. 47 CFR 90.477 - Interconnected systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... where the base station site or sites proposed stations are located 120 km (75 mi.) or more from the... mi.) of the 25 cities, they must obtain the consent of all co-channel licensees located both within 120 km (75 mi.) of the center of the city; and within 120 km (75 mi.) of the interconnected...

  12. 47 CFR 90.477 - Interconnected systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... where the base station site or sites proposed stations are located 120 km (75 mi.) or more from the... mi.) of the 25 cities, they must obtain the consent of all co-channel licensees located both within 120 km (75 mi.) of the center of the city; and within 120 km (75 mi.) of the interconnected...

  13. Novel Composite Materials for SOFC Cathode-Interconnect Contact

    SciTech Connect

    J. H. Zhu

    2009-07-31

    This report summarized the research efforts and major conclusions of our University Coal Research Project, which focused on developing a new class of electrically-conductive, Cr-blocking, damage-tolerant Ag-perovksite composite materials for the cathode-interconnect contact of intermediate-temperature solid oxide fuel cell (SOFC) stacks. The Ag evaporation rate increased linearly with air flow rate initially and became constant for the air flow rate {ge} {approx} 1.0 cm {center_dot} s{sup -1}. An activation energy of 280 KJ.mol{sup -1} was obtained for Ag evaporation in both air and Ar+5%H{sub 2}+3%H{sub 2}O. The exposure environment had no measurable influence on the Ag evaporation rate as well as its dependence on the gas flow rate, while different surface morphological features were developed after thermal exposure in the oxidizing and reducing environments. Pure Ag is too volatile at the SOFC operating temperature and its evaporation rate needs to be reduced to facilitate its application as the cathode-interconnect contact. Based on extensive evaporation testing, it was found that none of the alloying additions reduced the evaporation rate of Ag over the long-term exposure, except the noble metals Au, Pt, and Pd; however, these noble elements are too expensive to justify their practical use in contact materials. Furthermore, the addition of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSM) into Ag to form a composite material also did not significantly modify the Ag evaporation rate. The Ag-perovskite composites with the perovskite being either (La{sub 0.6}Sr{sub 0.4})(Co{sub 0.8}Fe{sub 0.2})O{sub 3} (LSCF) or LSM were systematically evaluated as the contact material between the ferritic interconnect alloy Crofer 22 APU and the LSM cathode. The area specific resistances (ASRs) of the test specimens were shown to be highly dependent on the volume percentage and the type of the perovskite present in the composite contact material as well as the amount of thermal cycling

  14. Large Scale Interconnections Using Dynamic Gratings

    NASA Astrophysics Data System (ADS)

    Pauliat, Gilles; Roosen, Gerald

    1987-01-01

    Optics is attractive for interconnects because the possibility of crossing without any interaction multiple light beams. A crossbar network can be achieved using holographic elements which permit to connect independently all inputs and all outputs. The incorporation of dynamic holographic materials is enticing as this will render the interconnection changeable. However, it is necessary to find first a passive method permitting to achieve beam deflection and secondly a photosensitive material of high optical quality requiring low power levels to optically induce the refractive index changes. We first describe an optical method allowing to produce very large deflections of light beams thus enabling to randomly address any spot on a plane. Such a technique appears applicable to both interconnections of VLSI chips and random access of optical memories. Our scheme for realizing dynamic optical interconnects is based on Bragg diffraction of the beam to steer by a dynamic phase grating which spacing and orientation are changeable in real time. This is achieved in a passive way by acting on the optical frequency of the control beams used to record the dynamic grating. Deflection angles of 15° have been experimentally demonstrated for a 27 nm shift in the control wavelength. For a larger wavelength scanning (50 nm), 28° deflections are anticipated while maintaining the Bragg condition satisfied. We then discuss some issues related to photosensitive materials able to dynamically record the optically induced refractive index change. The specific example of Bi12 Si 020 or Bi12 Ge 020 photorefractive crystals is presented. Indeed these materials are very attractive as they require low driving energy and exhibit a memory effect. This latter property permits to achieve numerous iterations between computing cells before reconfiguration of the interconnect network.

  15. A model for electromigration-induced degradation mechanisms in dual-inlaid copper interconnects: Effect of interface bonding strength

    NASA Astrophysics Data System (ADS)

    Sukharev, Valeriy; Zschech, Ehrenfried

    2004-12-01

    A physical model and a simulation algorithm are used to predict an electromigration-(EM-) induced void nucleation and growth in dual-inlaid copper interconnect. Incorporation of all important atom migration driving forces into the mass balance equation and its solution together with solution of the coupled electromagnetics, heat transfer, and elasticity problems allows to simulate EM-induced degradation in a variety of dual-inlaid copper interconnect segments characterized by different dominant channels for mass transport. The interface bonding strengths, significantly influencing the interface diffusivity and consequently the mass transport along interfaces, result in completely different degradation and failure pictures for the weak and strengthened copper/capping layer interfaces. Strengthening of the top interface of inlaid copper interconnect metal line is a promising way to prolong the EM lifetime. The results of the numerical simulation have been proven experimentally by the EM degradation studies on the fully embedded dual-inlaid copper interconnect test structures. EM-induced void formation, movement, and growth in a copper interconnect were continuously monitored in an in situ scanning electron microscopy experiment. The correspondence between simulation results and experimental data indicates the applicability of the developed model for optimization of the physical and electrical design rules. Simulation-based optimization of the interconnect architecture, segment geometry, material properties, and some of the process parameters can generate on-chip interconnect systems with a high immunity to EM-induced failures.

  16. Interconnect assembly for an electronic assembly and assembly method therefor

    DOEpatents

    Gerbsch, Erich William

    2003-06-10

    An interconnect assembly and method for a semiconductor device, in which the interconnect assembly can be used in lieu of wirebond connections to form an electronic assembly. The interconnect assembly includes first and second interconnect members. The first interconnect member has a first surface with a first contact and a second surface with a second contact electrically connected to the first contact, while the second interconnect member has a flexible finger contacting the second contact of the first interconnect member. The first interconnect member is adapted to be aligned and registered with a semiconductor device having a contact on a first surface thereof, so that the first contact of the first interconnect member electrically contacts the contact of the semiconductor device. Consequently, the assembly method does not require any wirebonds, but instead merely entails aligning and registering the first interconnect member with the semiconductor device so that the contacts of the first interconnect member and the semiconductor device make electrically contact, and then contacting the second contact of the first interconnect member with the flexible finger of the second interconnect member.

  17. Analysis of thermal vias in molded interconnect devices

    NASA Astrophysics Data System (ADS)

    Reitterer, Jörg; Fidler, Franz; Saint Julien-Wallsee, Ferdinand; Barth, Maximilian; Eberhardt, Wolfgang; Keßler, Ulrich; Kück, Heinz; Schmid, Ulrich

    2013-05-01

    The ongoing miniaturization of micro-opto-electro-mechanical-systems requires compact multifunctional packaging solutions like offered by the three-dimensional MID (molded interconnect device) technology which combines integrated electronic circuitry and mechanical support structures directly into one compact housing. Due to the inherently large thermal resistance of thermoplastic MID substrate materials, temperature-sensitive applications require carefully arranged thermal vias in order to reduce the thermal resistance of the packaging effectively. This paper presents the analysis and optimization of various laser-drilled thermal via design parameters of MIDs including hole diameter, pitch, plating thickness of the Cu/Ni/Au metallization layers as well as the void level of the filling material inside the vias.

  18. A Computationally Efficient State Space Approach to Estimating Multilevel Regression Models and Multilevel Confirmatory Factor Models.

    PubMed

    Gu, Fei; Preacher, Kristopher J; Wu, Wei; Yung, Yiu-Fai

    2014-01-01

    Although the state space approach for estimating multilevel regression models has been well established for decades in the time series literature, it does not receive much attention from educational and psychological researchers. In this article, we (a) introduce the state space approach for estimating multilevel regression models and (b) extend the state space approach for estimating multilevel factor models. A brief outline of the state space formulation is provided and then state space forms for univariate and multivariate multilevel regression models, and a multilevel confirmatory factor model, are illustrated. The utility of the state space approach is demonstrated with either a simulated or real example for each multilevel model. It is concluded that the results from the state space approach are essentially identical to those from specialized multilevel regression modeling and structural equation modeling software. More importantly, the state space approach offers researchers a computationally more efficient alternative to fit multilevel regression models with a large number of Level 1 units within each Level 2 unit or a large number of observations on each subject in a longitudinal study.

  19. FUNDAMENTAL STUDIES OF THE DURABILITY OF MATERIALS FOR INTERCONNECTS IN SOLID OXIDE FUEL CELLS

    SciTech Connect

    Frederick S. Pettit; Gerald H. Meier

    2003-06-30

    This report describes the result of the first eight months of effort on a project directed at improving metallic interconnect materials for solid oxide fuel cells (SOFCs). The results include cyclic oxidation studies of a group of ferritic alloys, which are candidate interconnect materials. The exposures have been carried out in simulated fuel cell atmospheres. The oxidation morphologies have been characterized and the ASR has been measured for the oxide scales. The effect of fuel cell electric current density on chromia growth rates has been considered The thermomechanical behavior of the scales has been investigated by stress measurements using x-ray diffraction and interfacial fracture toughness measurements using indentation. The ultimate goal of this thrust is to use knowledge of changes in oxide thickness, stress and adhesion to develop accelerated testing methods for evaluating SOFC interconnect alloys. Finally a theoretical assessment of the potential for use of ''new'' metallic materials as interconnect materials has been conducted and is presented in this report. Alloys being considered include materials based on pure nickel, materials based on the ''Invar'' concept, and coated materials to optimize properties in both the anode and cathode gases.

  20. Multilevel sequential Monte Carlo samplers

    SciTech Connect

    Beskos, Alexandros; Jasra, Ajay; Law, Kody; Tempone, Raul; Zhou, Yan

    2016-08-24

    Here, we study the approximation of expectations w.r.t. probability distributions associated to the solution of partial differential equations (PDEs); this scenario appears routinely in Bayesian inverse problems. In practice, one often has to solve the associated PDE numerically, using, for instance finite element methods and leading to a discretisation bias, with the step-size level hL. In addition, the expectation cannot be computed analytically and one often resorts to Monte Carlo methods. In the context of this problem, it is known that the introduction of the multilevel Monte Carlo (MLMC) method can reduce the amount of computational effort to estimate expectations, for a given level of error. This is achieved via a telescoping identity associated to a Monte Carlo approximation of a sequence of probability distributions with discretisation levels ${\\infty}$ >h0>h1 ...>hL. In many practical problems of interest, one cannot achieve an i.i.d. sampling of the associated sequence of probability distributions. A sequential Monte Carlo (SMC) version of the MLMC method is introduced to deal with this problem. In conclusion, it is shown that under appropriate assumptions, the attractive property of a reduction of the amount of computational effort to estimate expectations, for a given level of error, can be maintained within the SMC context.

  1. Applications of cascade multilevel inverters.

    PubMed

    Peng, Fang-zen; Qian, Zhao-ming

    2003-01-01

    Cascade multilevel inverters have been developed for electric utility applications. A cascade M-level inverter consists of (M-1)/2 H-bridges in which each bridge's dc voltage is supported by its own dc capacitor. The new inverter can: (1) generate almost sinusoidal waveform voltage while only switching one time per fundamental cycle; (2) dispense with multi-pulse inverters' transformers used in conventional utility interfaces and static var compensators; (3) enables direct parallel or series transformer-less connection to medium- and high-voltage power systems. In short, the cascade inverter is much more efficient and suitable for utility applications than traditional multi-pulse and pulse width modulation (PWM) inverters. The authors have experimentally demonstrated the superiority of the new inverter for power supply, (hybrid) electric vehicle (EV) motor drive, reactive power (var) and harmonic compensation. This paper summarizes the features, feasibility, and control schemes of the cascade inverter for utility applications including utility interface of renewable energy, voltage regulation, var compensation, and harmonic filtering in power systems. Analytical, simulated, and experimental results demonstrated the superiority of the new inverters.

  2. Multilevel Complex Networks and Systems

    NASA Astrophysics Data System (ADS)

    Caldarelli, Guido

    2014-03-01

    Network theory has been a powerful tool to model isolated complex systems. However, the classical approach does not take into account the interactions often present among different systems. Hence, the scientific community is nowadays concentrating the efforts on the foundations of new mathematical tools for understanding what happens when multiple networks interact. The case of economic and financial networks represents a paramount example of multilevel networks. In the case of trade, trade among countries the different levels can be described by the different granularity of the trading relations. Indeed, we have now data from the scale of consumers to that of the country level. In the case of financial institutions, we have a variety of levels at the same scale. For example one bank can appear in the interbank networks, ownership network and cds networks in which the same institution can take place. In both cases the systemically important vertices need to be determined by different procedures of centrality definition and community detection. In this talk I will present some specific cases of study related to these topics and present the regularities found. Acknowledged support from EU FET Project ``Multiplex'' 317532.

  3. Multilevel sequential Monte Carlo samplers

    DOE PAGES

    Beskos, Alexandros; Jasra, Ajay; Law, Kody; ...

    2016-08-24

    Here, we study the approximation of expectations w.r.t. probability distributions associated to the solution of partial differential equations (PDEs); this scenario appears routinely in Bayesian inverse problems. In practice, one often has to solve the associated PDE numerically, using, for instance finite element methods and leading to a discretisation bias, with the step-size level hL. In addition, the expectation cannot be computed analytically and one often resorts to Monte Carlo methods. In the context of this problem, it is known that the introduction of the multilevel Monte Carlo (MLMC) method can reduce the amount of computational effort to estimate expectations, for a given level of error. This is achieved via a telescoping identity associated to a Monte Carlo approximation of a sequence of probability distributions with discretisation levelsmore » $${\\infty}$$ >h0>h1 ...>hL. In many practical problems of interest, one cannot achieve an i.i.d. sampling of the associated sequence of probability distributions. A sequential Monte Carlo (SMC) version of the MLMC method is introduced to deal with this problem. In conclusion, it is shown that under appropriate assumptions, the attractive property of a reduction of the amount of computational effort to estimate expectations, for a given level of error, can be maintained within the SMC context.« less

  4. National Offshore Wind Energy Grid Interconnection Study Executive Summary

    SciTech Connect

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Gregory; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  5. High temperature solid electrolyte fuel cell configurations and interconnections

    DOEpatents

    Isenberg, Arnold O.

    1984-01-01

    High temperature fuel cell configurations and interconnections are made including annular cells having a solid electrolyte sandwiched between thin film electrodes. The cells are electrically interconnected along an elongated axial outer surface.

  6. National Offshore Wind Energy Grid Interconnection Study Full Report

    SciTech Connect

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Gregory; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  7. 14 CFR 29.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flow between interconnected tanks. 29.957... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow...

  8. 14 CFR 23.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flow between interconnected tanks. 23.957... Fuel System § 23.957 Flow between interconnected tanks. (a) It must be impossible, in a gravity feed system with interconnected tank outlets, for enough fuel to flow between the tanks to cause an...

  9. An Interconnect Bus Power Optimization Method

    NASA Astrophysics Data System (ADS)

    En, Yun-Fei; Zhu, Zhang-Ming; Hao, Yue

    2010-07-01

    A simple yet accurate interconnect parasitical capacitance model is presented. Based on this model a novel interconnect bus optimization methodology is proposed. Combining wire spacing with wire ordering, this methodology focuses on bus dynamic power optimization with consideration of bus performance requirements. The optimization methodology is verified under a 65 nm technology node and it shows that with 50% slack in the routing space, a 33.03% power saving can be provided by the proposed optimization methodology for an intermediate video bus compared to the 27.68% power saving provided by uniform spacing technology. The proposed methodology is especially suitable for computer-aided design of nanometer scale on-chip buses.

  10. Interconnection of bundled solid oxide fuel cells

    DOEpatents

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  11. Architecture for on-die interconnect

    SciTech Connect

    Khare, Surhud; More, Ankit; Somasekhar, Dinesh; Dunning, David S.

    2016-03-15

    In an embodiment, an apparatus includes: a plurality of islands configured on a semiconductor die, each of the plurality of islands having a plurality of cores; and a plurality of network switches configured on the semiconductor die and each associated with one of the plurality of islands, where each network switch includes a plurality of output ports, a first set of the output ports are each to couple to the associated network switch of an island via a point-to-point interconnect and a second set of the output ports are each to couple to the associated network switches of a plurality of islands via a point-to-multipoint interconnect. Other embodiments are described and claimed.

  12. Advanced silicon device technologies for optical interconnects

    NASA Astrophysics Data System (ADS)

    Wosinski, Lech; Wang, Zhechao; Lou, Fei; Dai, Daoxin; Lourdudoss, Sebastian; Thylen, Lars

    2012-01-01

    Silicon photonics is an emerging technology offering novel solutions in different areas requiring highly integrated communication systems for optical networking, sensing, bio-applications and computer interconnects. Silicon photonicsbased communication has many advantages over electric wires for multiprocessor and multicore macro-chip architectures including high bandwidth data transmission, high speed and low power consumption. Following the INTEL's concept to "siliconize" photonics, silicon device technologies should be able to solve the fabrication problems for six main building blocks for realization of optical interconnects: light generation, guiding of light including wavelength selectivity, light modulation for signal encoding, detection, low cost assembly including optical connecting of the devices to the real world and finally the electronic control systems.

  13. Development of Interconnect Technologies for Particle Detectors

    SciTech Connect

    Tripathi, Mani

    2015-01-29

    This final report covers the three years of this grant, for the funding period 9/1/2010 - 8/31/2013. The project consisted of generic detector R&D work at UC Davis, with an emphasis on developing interconnect technologies for applications in HEP. Much of the work is done at our Facility for Interconnect Technologies (FIT) at UC Davis. FIT was established using ARRA funds, with further studies supported by this grant. Besides generic R&D work at UC Davis, FIT is engaged in providing bump bonding help to several DOE supported detector R&D efforts. Some of the developmental work was also supported by funding from other sources: continuing CMS project funds and the Linear Collider R&D funds. The latter program is now terminated. The three year program saw a good deal of progress on several fronts, which are reported here.

  14. Release Resistant Electrical Interconnections For Mems Devices

    DOEpatents

    Peterson, Kenneth A.; Garrett, Stephen E.; Reber, Cathleen A.

    2005-02-22

    A release resistant electrical interconnection comprising a gold-based electrical conductor compression bonded directly to a highly-doped polysilicon bonding pad in a MEMS, IMEMS, or MOEMS device, without using any intermediate layers of aluminum, titanium, solder, or conductive adhesive disposed in-between the conductor and polysilicon pad. After the initial compression bond has been formed, subsequent heat treatment of the joint above 363 C creates a liquid eutectic phase at the bondline comprising gold plus approximately 3 wt % silicon, which, upon re-solidification, significantly improves the bond strength by reforming and enhancing the initial bond. This type of electrical interconnection is resistant to chemical attack from acids used for releasing MEMS elements (HF, HCL), thereby enabling the use of a "package-first, release-second" sequence for fabricating MEMS devices. Likewise, the bond strength of an Au--Ge compression bond may be increased by forming a transient liquid eutectic phase comprising Au-12 wt % Ge.

  15. Bioactive macroporous titanium implants highly interconnected.

    PubMed

    Caparrós, Cristina; Ortiz-Hernandez, Mónica; Molmeneu, Meritxell; Punset, Miguel; Calero, José Antonio; Aparicio, Conrado; Fernández-Fairén, Mariano; Perez, Román; Gil, Francisco Javier

    2016-10-01

    Intervertebral implants should be designed with low load requirements, high friction coefficient and low elastic modulus in order to avoid the stress shielding effect on bone. Furthermore, the presence of a highly interconnected porous structure allows stimulating bone in-growth and enhancing implant-bone fixation. The aim of this study was to obtain bioactive porous titanium implants with highly interconnected pores with a total porosity of approximately 57 %. Porous Titanium implants were produced by powder sintering route using the space holder technique with a binder phase and were then evaluated in an in vivo study. The size of the interconnection diameter between the macropores was about 210 μm in order to guarantee bone in-growth through osteblastic cell penetration. Surface roughness and mechanical properties were analyzed. Stiffness was reduced as a result of the powder sintering technique which allowed the formation of a porous network. Compression and fatigue tests exhibited suitable properties in order to guarantee a proper compromise between mechanical properties and pore interconnectivity. Bioactivity treatment effect in novel sintered porous titanium materials was studied by thermo-chemical treatments and were compared with the same material that had undergone different bioactive treatments. Bioactive thermo-chemical treatment was confirmed by the presence of sodium titanates on the surface of the implants as well as inside the porous network. Raman spectroscopy results suggested that the identified titanate structures would enhance in vivo apatite formation by promoting ion exchange for the apatite formation process. In vivo results demonstrated that the bioactive titanium achieved over 75 % tissue colonization compared to the 40 % value for the untreated titanium.

  16. Market Based Analysis of Power System Interconnections

    NASA Astrophysics Data System (ADS)

    Obushevs, Artjoms; Turcik, Mario; Oleinikova, Irina; Junghans, Gatis

    2011-01-01

    Analysis in this Article is focused on usage of transmission grid under liberalized market with implicit transmission capacity allocation method, e.g. Nordic market. Attention is paid on fundamental changes in transmission utilization and its economical effective operation. For interconnection and power flow analysis and losses calculation model of Nordic grid was developed and transmission losses calculation method was created. Given approach will improve economical efficiency of system operation in electricity market conditions.

  17. Hydraulically interconnected vehicle suspension: background and modelling

    NASA Astrophysics Data System (ADS)

    Zhang, Nong; Smith, Wade A.; Jeyakumaran, Jeku

    2010-01-01

    This paper presents a novel approach for the frequency domain analysis of a vehicle fitted with a general hydraulically interconnected suspension (HIS) system. Ideally, interconnected suspensions have the capability, unique among passive systems, to provide stiffness and damping characteristics dependent on the all-wheel suspension mode in operation. A basic, lumped-mass, four-degree-of-freedom half-car model is used to illustrate the proposed methodology. The mechanical-fluid boundary condition in the double-acting cylinders is modelled as an external force on the mechanical system and a moving boundary on the fluid system. The fluid system itself is modelled using the hydraulic impedance method, in which the relationships between the dynamic fluid states, i.e. pressures and flows, at the extremities of a single fluid circuit are determined by the transfer matrix method. A set of coupled, frequency-dependent equations, which govern the dynamics of the integrated half-car system, are then derived and the application of these equations to both free and forced vibration analysis is explained. The fluid system impedance matrix for the two general wheel-pair interconnection types-anti-synchronous and anti-oppositional-is also given. To further outline the application of the proposed methodology, the paper finishes with an example using a typical anti-roll HIS system. The integrated half-car system's free vibration solutions and frequency response functions are then obtained and discussed in some detail. The presented approach provides a scientific basis for investigating the dynamic characteristics of HIS-equipped vehicles, and the results offer further confirmation that interconnected suspension schemes can provide, at least to some extent, individual control of modal stiffness and damping characteristics.

  18. Optimizing Baseload Power of Interconnected Wind Farms

    NASA Astrophysics Data System (ADS)

    Kobrin, B. H.

    2010-12-01

    Interconnecting wind farms has been proposed as a way to reduce the natural unreliability of wind power caused by the intermittency of winds. In a previous study, the benefits of interconnecting up to 19 sites in the Midwestern United States were evaluated with the assumption that the same number of turbines would be installed at each site. The goal of this study was to avoid this assumption and examine the advantages of optimizing the ratio of turbines at each site. An optimization algorithm based on the gradient method was used to maximize the baseload power, or guaranteed power 87.5% of the year, using hourly wind speed data for the same 19 sites. The result was a significant improvement in the reliability of the array, increasing the baseload power by 38% compared to the array with equally-weighted sites. Further analysis showed that the turbines were generally distributed according to the average wind power at each site and the wind correlation among sites. In addition to optimizing the average baseload of the array, this study examined the benefits of optimizing the baseload for peak usage time (between noon and 7 p.m), and thus a simplified model was created to analyze how interconnecting wind farms could increase correlation with energy consumption. Optimization for peak usage hours, however, provided no additional benefit over the original optimized array because the variation of average hourly wind speeds was well-correlated among the sites.

  19. Integrated nanophotonic devices for optical interconnections

    NASA Astrophysics Data System (ADS)

    Huang, Yidong; Feng, Xue; Cui, Kaiyu; Li, Yongzhuo; Wang, Yu

    2016-03-01

    Nanostructure is an effective solution for realizing optoelectronic devices with compact size and high performances simultaneously. This paper reports our research progress on integrated nanophotonic devices for optical interconnections. We proposed a parent-sub micro ring structure for optical add-drop multiplexer (OADM) with compact footprint, large free spectral range, and uniform channel spacing. All eight channels can be multiplexed and de-multiplexed with 2.6 dB drop loss, 0.36 nm bandwidth (>40 GHz), -20 dB channel crosstalk, and high thermal tuning efficiency of 0.15 nm/mW. A novel principle of optical switch was proposed and demonstrated based on the coupling of the defect modes in photonic crystal waveguide. Switching functionality with bandwidth up to 24 nm and extinction ratio in excess of 15 dB over the entire bandwidth was achieved, while the footprint was only 8 μm×17.6 μm. We proposed an optical orbital angular momentum (OAM) coding and decoding method to increase the data-carrying capacity of wireless optical interconnect. An integrated OAM emitter, where the topological charge can be continuously varied from -4 to 4 was realized. Also we studied ultrafast modulated nLED as the integrated light source for optical interconnections using a nanobeam cavity with stagger holes.

  20. Modeling and synthesis of multicomputer interconnection networks

    NASA Technical Reports Server (NTRS)

    Standley, Hilda M.; Auxter, D. Steve

    1990-01-01

    The type of interconnection network employed has a profound effect on the performance of a multicomputer and multiprocessor design. Adequate models are needed to aid in the design and development of interconnection networks. A novel modeling approach using statistical and optimization techniques is described. This method represents an attempt to compare diverse interconnection network designs in a way that allows not only the best of existing designs to be identified but to suggest other, perhaps hybrid, networks that may offer better performance. Stepwise linear regression is used to develop a polynomial surface representation of performance in a (k+1) space with a total of k quantitative and qualitative independent variables describing graph-theoretic characteristics such as size, average degree, diameter, radius, girth, node-connectivity, edge-connectivity, minimum dominating set size, and maximum number of prime node and edge cutsets. Dependent variables used to measure performance are average message delay and the ratio of message completion rate to network connection cost. Response Surface Methodology (RSM) optimizes a response variable from a polynomial function of several independent variables. Steepest ascent path may also be used to approach optimum points.

  1. Implementation of interconnect simulation tools in spice

    NASA Technical Reports Server (NTRS)

    Satsangi, H.; Schutt-Aine, J. E.

    1993-01-01

    Accurate computer simulation of high speed digital computer circuits and communication circuits requires a multimode approach to simulate both the devices and the interconnects between devices. Classical circuit analysis algorithms (lumped parameter) are needed for circuit devices and the network formed by the interconnected devices. The interconnects, however, have to be modeled as transmission lines which incorporate electromagnetic field analysis. An approach to writing a multimode simulator is to take an existing software package which performs either lumped parameter analysis or field analysis and add the missing type of analysis routines to the package. In this work a traditionally lumped parameter simulator, SPICE, is modified so that it will perform lossy transmission line analysis using a different model approach. Modifying SPICE3E2 or any other large software package is not a trivial task. An understanding of the programming conventions used, simulation software, and simulation algorithms is required. This thesis was written to clarify the procedure for installing a device into SPICE3E2. The installation of three devices is documented and the installations of the first two provide a foundation for installation of the lossy line which is the third device. The details of discussions are specific to SPICE, but the concepts will be helpful when performing installations into other circuit analysis packages.

  2. Silicon hybrid wafer scale integration interconnect evaluation

    NASA Astrophysics Data System (ADS)

    Lyke, James C.

    1989-12-01

    The electrical characteristics of interconnections that have been proposed for use in silicon hybrid wafer scale integration (WSI) approaches were investigated. The study was based on a set of 5 inch test wafers, containing various interconnection structures previously designed at AFIT. Two test wafers used a special polyimide dielectric, while a third was composed of a benzocyclobutene (BCB). The investigated structures represented 10 cm length aluminum, coupled, stripline-like transmission lines. The metrics used included continuity measurements, ac measurement of the characteristic impedance and coupling levels, and pulsed-signal response measurements. Continuity results indicated transmission and leakage failures in all wafers, although the failure mechanisms were sometimes wafer-specific. The characteristic impedance measurement technique was flawed, but revealed interesting information concerning the driving-point impedances of the structures. Most coupled structures manifested coupling responses which were consistent in shape with theoretical estimates, but higher in magnitude by 10 to 20 dB. All structures revealed coupling levels lower than -25 dB. Despite correlation difficulties, the results implied that transmission line behavior is manifested in WSIC interconnections.

  3. Synchrotron X-Ray Microdiffraction Studies of Electromigration in Interconnect lines at the Advanced Light Source

    SciTech Connect

    Tamura, Nobumichi; Chen, Kai; Kunz, Martin

    2009-12-01

    Synchrotron polychromatic X-ray microdiffraction is a particularly suitable technique to study in situ the effect of electromigration in metal interconnects as add spatial resolution to grain orientation and strain sensitivity. This technique has been extensively used at the Advanced Light Source to monitor changes in aluminum and copper interconnect test structures while high-density current is passed into them during accelerated tests at elevated temperature. One of the principal findings is the observation of electromigration-induced plasticity in the metal lines that appear during the very early stages of electromigration. In some of the lines, high density of geometrically necessary dislocation are formed leading to additional diffusion paths causing an enhancement of electromigration effect at test temperature.

  4. A multilevel preconditioner for domain decomposition boundary systems

    SciTech Connect

    Bramble, J.H.; Pasciak, J.E.; Xu, Jinchao.

    1991-12-11

    In this note, we consider multilevel preconditioning of the reduced boundary systems which arise in non-overlapping domain decomposition methods. It will be shown that the resulting preconditioned systems have condition numbers which be bounded in the case of multilevel spaces on the whole domain and grow at most proportional to the number of levels in the case of multilevel boundary spaces without multilevel extensions into the interior.

  5. Growth and characterization of high-density mats of single-walled carbon nanotubes for interconnects

    SciTech Connect

    Robertson, J.; Zhong, G.; Telg, H.; Thomsen, C.; Warner, J. H.; Briggs, G. A. D.; Dettlaff-Weglikowska, U.; Roth, S.

    2008-10-20

    We grow high-density, aligned single wall carbon nanotube mats for use as interconnects in integrated circuits by remote plasma chemical vapor deposition from a Fe-Al{sub 2}O{sub 3} thin film catalyst. We carry out extensive Raman characterization of the resulting mats, and find that this catalyst system gives rise to a broad range of nanotube diameters, with no preferential selectivity of semiconducting tubes, but with at least 1/3 of metallic tubes.

  6. Multilevel Modeling in Psychosomatic Medicine Research

    PubMed Central

    Myers, Nicholas D.; Brincks, Ahnalee M.; Ames, Allison J.; Prado, Guillermo J.; Penedo, Frank J.; Benedict, Catherine

    2012-01-01

    The primary purpose of this manuscript is to provide an overview of multilevel modeling for Psychosomatic Medicine readers and contributors. The manuscript begins with a general introduction to multilevel modeling. Multilevel regression modeling at two-levels is emphasized because of its prevalence in psychosomatic medicine research. Simulated datasets based on some core ideas from the Familias Unidas effectiveness study are used to illustrate key concepts including: communication of model specification, parameter interpretation, sample size and power, and missing data. Input and key output files from Mplus and SAS are provided. A cluster randomized trial with repeated measures (i.e., three-level regression model) is then briefly presented with simulated data based on some core ideas from a cognitive behavioral stress management intervention in prostate cancer. PMID:23107843

  7. Multilevel modeling in psychosomatic medicine research.

    PubMed

    Myers, Nicholas D; Brincks, Ahnalee M; Ames, Allison J; Prado, Guillermo J; Penedo, Frank J; Benedict, Catherine

    2012-01-01

    The primary purpose of this study is to provide an overview of multilevel modeling for Psychosomatic Medicine readers and contributors. The article begins with a general introduction to multilevel modeling. Multilevel regression modeling at two levels is emphasized because of its prevalence in psychosomatic medicine research. Simulated data sets based on some core ideas from the Familias Unidas effectiveness study are used to illustrate key concepts including communication of model specification, parameter interpretation, sample size and power, and missing data. Input and key output files from Mplus and SAS are provided. A cluster randomized trial with repeated measures (i.e., three-level regression model) is then briefly presented with simulated data based on some core ideas from a cognitive-behavioral stress management intervention in prostate cancer.

  8. Propensity score weighting with multilevel data.

    PubMed

    Li, Fan; Zaslavsky, Alan M; Landrum, Mary Beth

    2013-08-30

    Propensity score methods are being increasingly used as a less parametric alternative to traditional regression to balance observed differences across groups in both descriptive and causal comparisons. Data collected in many disciplines often have analytically relevant multilevel or clustered structure. The propensity score, however, was developed and has been used primarily with unstructured data. We present and compare several propensity-score-weighted estimators for clustered data, including marginal, cluster-weighted, and doubly robust estimators. Using both analytical derivations and Monte Carlo simulations, we illustrate bias arising when the usual assumptions of propensity score analysis do not hold for multilevel data. We show that exploiting the multilevel structure, either parametrically or nonparametrically, in at least one stage of the propensity score analysis can greatly reduce these biases. We applied these methods to a study of racial disparities in breast cancer screening among beneficiaries of Medicare health plans.

  9. Formulation and Application of the Generalized Multilevel Facets Model

    ERIC Educational Resources Information Center

    Wang, Wen-Chung; Liu, Chih-Yu

    2007-01-01

    In this study, the authors develop a generalized multilevel facets model, which is not only a multilevel and two-parameter generalization of the facets model, but also a multilevel and facet generalization of the generalized partial credit model. Because the new model is formulated within a framework of nonlinear mixed models, no efforts are…

  10. Multilevel transport solution of LWR reactor cores

    SciTech Connect

    Jose Ignacio Marquez Damian; Cassiano R.E. de Oliveira; HyeonKae Park

    2008-09-01

    This work presents a multilevel approach for the solution of the transport equation in typical LWR assemblies and core configurations. It is based on the second-order, even-parity formulation of the transport equation, which is solved within the framework provided by the finite element-spherical harmonics code EVENT. The performance of the new solver has been compared with that of the standard conjugate gradient solver for diffusion and transport problems on structured and unstruc-tured grids. Numerical results demonstrate the potential of the multilevel scheme for realistic reactor calculations.

  11. Overcoming erasure errors with multilevel systems

    NASA Astrophysics Data System (ADS)

    Muralidharan, Sreraman; Zou, Chang-Ling; Li, Linshu; Wen, Jianming; Jiang, Liang

    2017-01-01

    We investigate the usage of highly efficient error correcting codes of multilevel systems to protect encoded quantum information from erasure errors and implementation to repetitively correct these errors. Our scheme makes use of quantum polynomial codes to encode quantum information and generalizes teleportation based error correction for multilevel systems to correct photon losses and operation errors in a fault-tolerant manner. We discuss the application of quantum polynomial codes to one-way quantum repeaters. For various types of operation errors, we identify different parameter regions where quantum polynomial codes can achieve a superior performance compared to qubit based quantum parity codes.

  12. Multilevel resistive switching nonvolatile memory based on MoS2 nanosheet-embedded graphene oxide

    NASA Astrophysics Data System (ADS)

    Shin, Gwang Hyuk; Kim, Choong-Ki; Bang, Gyeong Sook; Kim, Jong Yun; Jang, Byung Chul; Koo, Beom Jun; Woo, Myung Hun; Choi, Yang-Kyu; Choi, Sung-Yool

    2016-09-01

    An increasing demand for nonvolatile memory has driven extensive research on resistive switching memory because it uses simple structures with high density, fast switching speed, and low power consumption. To improve the storage density, the application of multilevel cells is among the most promising solutions, including three-dimensional cross-point array architectures. Two-dimensional nanomaterials have several advantages as resistive switching media, including flexibility, low cost, and simple fabrication processes. However, few reports exist on multilevel nonvolatile memory and its switching mechanism. We herein present a multilevel resistive switching memory based on graphene oxide (GO) and MoS2 fabricated by a simple spin-coating process. Metallic 1T-MoS2 nanosheets, chemically exfoliated by Li intercalation, were successfully embedded between two GO layers as charge-trapping sites. The resulting stacks of GO/MoS2/GO exhibited excellent nonvolatile memory performance with at least four resistance states, >102 endurance cycles, and >104 s retention time. Furthermore, the charge transport mechanism was systematically investigated through the analysis of low-frequency 1/f noise in various resistance states, which could be modulated by the input voltage bias in the negative differential resistance region. Accordingly, we propose a strategy to achieve multilevel nonvolatile memory in which the stacked layers of two-dimensional nanosheets are utilized as resistive and charge-storage materials.

  13. Development of Ni1-xCoxO as the cathode/interconnect contact for solid oxide fuel cells

    SciTech Connect

    Lu, Zigui; Xia, Guanguang; Templeton, Joshua D.; Li, Xiaohong S.; Nie, Zimin; Yang, Zhenguo; Stevenson, Jeffry W.

    2011-06-01

    A new type of material, Ni1-xCoxO, was developed for solid oxide fuel cell (SOFC) cathode/interconnect contact applications. The phase structure, coefficient of thermal expansion, sintering behavior, electrical property, and mechanical bonding strength of these materials were evaluated against the requirements of the SOFC cathode/interconnect contact. A dense cathode/interconnect contact layer was developed through reaction sintering from Ni and Co metal powders. An area specific resistance (ASR) as low as 5.5 mohm.cm2 was observed after 1000 h exposure in air at 800 °C for the LSM/Ni0.33Co0.67O/AISI441 assembly. Average mechanical strengths of 6.8 and 5.0 MPa were obtained for the cathode/contact/cathode and interconnect/contact/interconnect structures, respectively. The significantly low ASR was probably due to the dense structure and therefore improved electrical conductivity of the Ni0.33Co0.67O contact and the good bonding of the interfaces between the contact and the cathode, and between the contact and the interconnect.

  14. Multichannel parallel free-space VCSEL optoelectronic interconnects for digital data transmission and processing

    NASA Astrophysics Data System (ADS)

    Liu, J. Jiang; Lawler, William B.; Riely, Brian P.; Chang, Wayne H.; Shen, Paul H.; Newman, Peter G.; Taysing-Lara, Monica A.; Olver, Kimberly; Koley, Bikash; Dagenais, Mario; Simonis, George J.

    2000-07-01

    A free-space integrated optoelectronic interconnect was built to explore parallel data transmission and processing. This interconnect comprises an 8 X 8 substrate-emitting 980-nm InGaAs/GaAs quantum-well vertical-cavity surface- emitting laser (VCSEL) array and an 8 X 8 InGaAs/InP P-I- N photodetector array. Both VCSEL and detector arrays were flip-chip bonded onto the complimentary metal-oxide- semiconductor (CMOS) circuitry, packaged in pin-grid array packages, and mounted on customized printed circuit boards. Individual data rates as high as 1.2 Gb/s on the VCSEL/CMOS transmitter array were measured. After the optical alignment, we carried out serial and parallel transmissions of digital data and live video scenes through this interconnect between two computers. Images captured by CCD camera were digitized to 8-bit data signals and transferred in serial bit-stream through multiple channels in this parallel VCSEL-detector optical interconnect. A data processing algorithm of edge detection was attempted during the data transfer. Final images were reconstructed back from optically transmitted and processed digital data. Although the transmitter and detector offered much higher data rates, we found that the overall image transfer rate was limited by the CMOS receiver circuits. A new design for the receiver circuitry was accomplished and submitted for fabrication.

  15. Updating Interconnection Screens for PV System Integration

    SciTech Connect

    Coddington, M.; Mather, B.; Kroposki, B.; Lynn, K.; Razon, A.; Ellis, A.; Hill, R.; Key, T.; Nicole, K.; Smith, J.

    2012-02-01

    This white paper evaluates the origins and usefulness of the capacity penetration screen, offer short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen. Short-term and longer-term alternatives approaches are offered as examples; however, specific modifications to screening procedures should be discussed with stakeholders and must ultimately be adopted by state and federal regulatory bodies.

  16. NITINOL Interconnect Device for Optical Fiber Waveguides

    DTIC Science & Technology

    1981-07-01

    LE EL,~NAVSEA REPORT NO. S27L~kV-NL 4P fNSWNC TR 81-129 1 JULY 1981 0 NITINOL INTERC&INECT DEVICE FOR OPTICAL FIBER WAVEGUIDES FINAL REPORT A...ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER NSWC TR 81-129I 1-19 -A )ci , ’ 4 TI TL E (and Sbtitle) S. TYPE OF REPORT & PERIOD COVERED NITINOL ... NITINOL Optical Fibers 20. ABSTRACT (Continue on reverse side if neceeewy and identify by block number) Two different interconnect devices for optical

  17. High density interconnection technology - Surface mount technology

    NASA Astrophysics Data System (ADS)

    Menozzi, G.

    The design features of surface mount technology (SMT) circuits for data transmission, engineering and aerospace applications are examined. Details of pin out, dual face, and interconnection techniques employed for SMT circuits mounted on plastic or ceramic leadless chip carriers are explored. The industrial processes applied to obtain the SMT boards are discussed, along with methods for quality assurance, especially for the soldered connections. SMT installations in the form of 4 Mbit multilayer circuits for an ESA project and a 32-bit mainframe computer are described.

  18. Repairable chip bonding/interconnect process

    DOEpatents

    Bernhardt, Anthony F.; Contolini, Robert J.; Malba, Vincent; Riddle, Robert A.

    1997-01-01

    A repairable, chip-to-board interconnect process which addresses cost and testability issues in the multi-chip modules. This process can be carried out using a chip-on-sacrificial-substrate technique, involving laser processing. This process avoids the curing/solvent evolution problems encountered in prior approaches, as well is resolving prior plating problems and the requirements for fillets. For repairable high speed chip-to-board connection, transmission lines can be formed on the sides of the chip from chip bond pads, ending in a gull wing at the bottom of the chip for subsequent solder.

  19. Repairable chip bonding/interconnect process

    DOEpatents

    Bernhardt, A.F.; Contolini, R.J.; Malba, V.; Riddle, R.A.

    1997-08-05

    A repairable, chip-to-board interconnect process which addresses cost and testability issues in the multi-chip modules is disclosed. This process can be carried out using a chip-on-sacrificial-substrate technique, involving laser processing. This process avoids the curing/solvent evolution problems encountered in prior approaches, as well is resolving prior plating problems and the requirements for fillets. For repairable high speed chip-to-board connection, transmission lines can be formed on the sides of the chip from chip bond pads, ending in a gull wing at the bottom of the chip for subsequent solder. 10 figs.

  20. Optically Tunable Gratings for Optical Interconnects

    DTIC Science & Technology

    1989-10-30

    OPTICALLY TUNABLE GRATINGS FOR OPTICAL INTERCONNECTS Final Report SELECTED JAN 2 31990 D ~ Submitted...such as acousto - optic or electro- optic deflectors . Using the strengths of our research program, we investigated optically tuneable gratings in...are those ~!,f~~ a~Sh~;~~L~~ d ~~9~H ~~t.:~~!-r~~~’~IU! 2 ~’h!~ ~H~~!~g:rtment of the Army position, 17. COSATI CODES 1 I. SUBJECT TERMS (Continut on

  1. Environmental Regulation Impacts on Eastern Interconnection Performance

    SciTech Connect

    Markham, Penn N; Liu, Yilu; Young II, Marcus Aaron

    2013-07-01

    In the United States, recent environmental regulations will likely result in the removal of nearly 30 GW of oil and coal-fired generation from the power grid, mostly in the Eastern Interconnection (EI). The effects of this transition on voltage stability and transmission line flows have previously not been studied from a system-wide perspective. This report discusses the results of power flow studies designed to simulate the evolution of the EI over the next few years as traditional generation sources are replaced with environmentally friendlier ones such as natural gas and wind.

  2. A Multilevel Transaction Problem for Multilevel Secure Database Systems and its Solution for the Replicated Architecture

    DTIC Science & Technology

    1992-01-01

    interesting a research issue. An algorithm for this case, using a multiversion technique, will be the subject of future work. In addition, there is a...34 Multiversion Concurrency Control for Multilevel Secure Database Systems" in Proceedings of the IEEE Symposium on Security and Privacy, pp. 369-383...Oakland, CA May 1990. 7. William T. Maimone and Ira B. Greenberg, "Single-Level Multiversion Schedulers for Multilevel Secure Database Systems" in

  3. The Economic Cost of Homosexuality: Multilevel Analyses

    ERIC Educational Resources Information Center

    Baumle, Amanda K.; Poston, Dudley, Jr.

    2011-01-01

    This article builds on earlier studies that have examined "the economic cost of homosexuality," by using data from the 2000 U.S. Census and by employing multilevel analyses. Our findings indicate that partnered gay men experience a 12.5 percent earnings penalty compared to married heterosexual men, and a statistically insignificant earnings…

  4. Efficiently Exploring Multilevel Data with Recursive Partitioning

    ERIC Educational Resources Information Center

    Martin, Daniel P.; von Oertzen, Timo; Rimm-Kaufman, Sara E.

    2015-01-01

    There is an increasing number of datasets with many participants, variables, or both, in education and other fields that often deal with large, multilevel data structures. Once initial confirmatory hypotheses are exhausted, it can be difficult to determine how best to explore the dataset to discover hidden relationships that could help to inform…

  5. Engineering applications of heuristic multilevel optimization methods

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.

    1988-01-01

    Some engineering applications of heuristic multilevel optimization methods are presented and the discussion focuses on the dependency matrix that indicates the relationship between problem functions and variables. Coordination of the subproblem optimizations is shown to be typically achieved through the use of exact or approximate sensitivity analysis. Areas for further development are identified.

  6. Differential Item Functioning from a Multilevel Perspective.

    ERIC Educational Resources Information Center

    van den Bergh, Huub; And Others

    The term differential item functioning (DIF) refers to whether or not the same psychological constructs are measured across different groups. If an item does not measure the same skills or subskills in different populations, it is said to function differentially or to display item bias. A multilevel approach to DIF is proposed. In such a model,…

  7. Engineering applications of heuristic multilevel optimization methods

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.

    1989-01-01

    Some engineering applications of heuristic multilevel optimization methods are presented and the discussion focuses on the dependency matrix that indicates the relationship between problem functions and variables. Coordination of the subproblem optimizations is shown to be typically achieved through the use of exact or approximate sensitivity analysis. Areas for further development are identified.

  8. A Practical Guide to Multilevel Modeling

    ERIC Educational Resources Information Center

    Peugh, James L.

    2010-01-01

    Collecting data from students within classrooms or schools, and collecting data from students on multiple occasions over time, are two common sampling methods used in educational research that often require multilevel modeling (MLM) data analysis techniques to avoid Type-1 errors. The purpose of this article is to clarify the seven major steps…

  9. Multilevel Factor Models for Ordinal Variables

    ERIC Educational Resources Information Center

    Grilli, Leonardo; Rampichini, Carla

    2007-01-01

    This article tackles several issues involved in specifying, fitting, and interpreting the results of multilevel factor models for ordinal variables. First, the problem of model specification and identification is addressed, outlining parameter interpretation. Special attention is devoted to the consequences on interpretation stemming from the…

  10. Single-Level and Multilevel Mediation Analysis

    ERIC Educational Resources Information Center

    Tofighi, Davood; Thoemmes, Felix

    2014-01-01

    Mediation analysis is a statistical approach used to examine how the effect of an independent variable on an outcome is transmitted through an intervening variable (mediator). In this article, we provide a gentle introduction to single-level and multilevel mediation analyses. Using single-level data, we demonstrate an application of structural…

  11. Quasi-1D van der Waals materials as high current-density local interconnects (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Stolyarov, Maxim; Aytan, Ece; Bloodgood, Matthew; Salguero, Tina T.; Balandin, Alexander A.

    2016-09-01

    The continuous downscaling of interconnect dimensions in combination with the introduction of low-k dielectrics has increased the number of heat dissipation, integration and reliability challenges in modern electronics. As a result, there is a strong need for new materials that have high current-carrying capacity for applications as nanoscale interconnects. In this presentation, we show that quasi-one-dimensional (1D) van der Waals metals such as TaSe3 have excellent breakdown current density exceeding that of 5 MA/cm2. This value is above that currently achievable in conventional copper or aluminum wires. The quasi-1D van der Waals materials are characterized by strong bonds along one dimension and weak van der Waals bonds along two other dimensions. The material for this study was grown by the chemical vapor transport (CVT) method. Both mechanical and chemical exfoliation methods were used to fabricate nanowires with lateral dimensions below 100 nm. The dimensions of the quasi-1D nanowires were verified with scanning electron microscopy (SEM) and atomic force microscopy (AFM). The metal (Ti/Au) contacts for the electrical characterization were deposited using electron beam evaporation (EBE). The measurements were conducted on a number of prototype interconnects with multiple electric contacts to ensure reproducibility. The obtained results suggest that quasi-1D van der Waals metals present a feasible alternative to conventional copper interconnects in terms of the current-carrying capacity and the breakdown current-density. This work was supported, in part, by the SRC and DARPA through STARnet Center for Function Accelerated nanoMaterial Engineering (FAME).

  12. Approaching Gas Phase Electrodeposition: Process and Optimization to Enable the Self-Aligned Growth of 3D Nanobridge-Based Interconnects.

    PubMed

    Fang, Jun; Schlag, Leslie; Park, Se-Chul; Stauden, Thomas; Pezoldt, Jörg; Schaaf, Peter; Jacobs, Heiko O

    2016-03-02

    A nanowire bonding process referred to as gas-phase electrodeposition is reported to form nanobridge-based interconnects. The process is able to grow free-standing point-to-point electrical connections using metallic wires. As a demonstration, programmable interconnects and an interdigitated electrode array are shown. The process is more material efficient when compared with conventional vapor deposition since the material is directed to the point of use.

  13. An interconnecting bus power optimization method combining interconnect wire spacing with wire ordering

    NASA Astrophysics Data System (ADS)

    Zhu, Zhang-Ming; Hao, Bao-Tian; En, Yun-Fei; Yang, Yin-Tang; Li, Yue-Jin

    2011-06-01

    On-chip interconnect buses consume tens of percents of dynamic power in a nanometer scale integrated circuit and they will consume more power with the rapid scaling down of technology size and continuously rising clock frequency, therefore it is meaningful to lower the interconnecting bus power in design. In this paper, a simple yet accurate interconnect parasitic capacitance model is presented first and then, based on this model, a novel interconnecting bus optimization method is proposed. Wire spacing is a process for spacing wires for minimum dynamic power, while wire ordering is a process that searches for wire orders that maximally enhance it. The method, i.e., combining wire spacing with wire ordering, focuses on bus dynamic power optimization with a consideration of bus performance requirements. The optimization method is verified based on various nanometer technology parameters, showing that with 50% slack of routing space, 25.71% and 32.65% of power can be saved on average by the proposed optimization method for a global bus and an intermediate bus, respectively, under a 65-nm technology node, compared with 21.78% and 27.68% of power saved on average by uniform spacing technology. The proposed method is especially suitable for computer-aided design of nanometer scale on-chip buses.

  14. Message Passing Framework for Globally Interconnected Clusters

    NASA Astrophysics Data System (ADS)

    Hafeez, M.; Asghar, S.; Malik, U. A.; Rehman, A.; Riaz, N.

    2011-12-01

    In prevailing technology trends it is apparent that the network requirements and technologies will advance in future. Therefore the need of High Performance Computing (HPC) based implementation for interconnecting clusters is comprehensible for scalability of clusters. Grid computing provides global infrastructure of interconnecting clusters consisting of dispersed computing resources over Internet. On the other hand the leading model for HPC programming is Message Passing Interface (MPI). As compared to Grid computing, MPI is better suited for solving most of the complex computational problems. MPI itself is restricted to a single cluster. It does not support message passing over the internet to use the computing resources of different clusters in an optimal way. We propose a model that provides message passing capabilities between parallel applications over the internet. The proposed model is based on Architecture for Java Universal Message Passing (A-JUMP) framework and Enterprise Service Bus (ESB) named as High Performance Computing Bus. The HPC Bus is built using ActiveMQ. HPC Bus is responsible for communication and message passing in an asynchronous manner. Asynchronous mode of communication offers an assurance for message delivery as well as a fault tolerance mechanism for message passing. The idea presented in this paper effectively utilizes wide-area intercluster networks. It also provides scheduling, dynamic resource discovery and allocation, and sub-clustering of resources for different jobs. Performance analysis and comparison study of the proposed framework with P2P-MPI are also presented in this paper.

  15. Si photonics technology for future optical interconnection

    NASA Astrophysics Data System (ADS)

    Zheng, Xuezhe; Krishnamoorthy, Ashok V.

    2011-12-01

    Scaling of computing systems require ultra-efficient interconnects with large bandwidth density. Silicon photonics offers a disruptive solution with advantages in reach, energy efficiency and bandwidth density. We review our progress in developing building blocks for ultra-efficient WDM silicon photonic links. Employing microsolder based hybrid integration with low parasitics and high density, we optimize photonic devices on SOI platforms and VLSI circuits on more advanced bulk CMOS technology nodes independently. Progressively, we successfully demonstrated single channel hybrid silicon photonic transceivers at 5 Gbps and 10 Gbps, and 80 Gbps arrayed WDM silicon photonic transceiver using reverse biased depletion ring modulators and Ge waveguide photo detectors. Record-high energy efficiency of less than 100fJ/bit and 385 fJ/bit were achieved for the hybrid integrated transmitter and receiver, respectively. Waveguide grating based optical proximity couplers were developed with low loss and large optical bandwidth to enable multi-layer intra/inter-chip optical interconnects. Thermal engineering of WDM devices by selective substrate removal, together with WDM link using synthetic wavelength comb, we significantly improved the device tuning efficiency and reduced the tuning range. Using these innovative techniques, two orders of magnitude tuning power reduction was achieved. And tuning cost of only a few 10s of fJ/bit is expected for high data rate WDM silicon photonic links.

  16. National Offshore Wind Energy Grid Interconnection Study

    SciTech Connect

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Greg; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

  17. Aspects of short-range interconnect packaging

    NASA Astrophysics Data System (ADS)

    Wohlfeld, Denis; Brenner, Karl-Heinz

    2012-01-01

    In short-range interconnect applications, one question arises frequently: When should optical solutions be chosen over electrical wiring? The answer to this question of course depends on several factors like costs, performance, reliability, availability of testing equipment and knowledge about optical technologies, and last but not least, it strongly depends on the application itself. Networking in high performance computing (HPC) is one such example. With bit rates around 10 Gbit/s per channel and cable length above 2 m, the high attenuation of electrical cables leads to a clear preference of optical or active optical cables (AOC) for most planned HPC systems. For AOCs, the electro-optical conversion is realized inside the connector housing, while for purely optical cables, the conversion is done at the edge of the board. Proceeding to 25 Gbit/s and higher, attenuation and loss of signal quality become critical. Therefore, either significantly more effort has to be spent on the electrical side, or the package for conversion has to be integrated closer to the chip, thus requiring new packaging technologies. The paper provides a state of the art overview of packaging concepts for short range interconnects, it describes the main challenges of optical package integration and illustrates new concepts and trends in this research area.

  18. European Transmission Interconnection; Eurasian power grid

    SciTech Connect

    Posch, J. )

    1991-09-01

    Systems and philosophies perceived on a grand scale, encompassing new ideas, are often characterized as a dream. But in fact, such dreams often lead to the first step to fruitful development. This article is based on a preliminary study of the existing electrical high-tension networks of Western Europe, Eastern Europe and the Soviet Union - which, as explained herein, may be merged into a multinational energy supply system. Such a system would constitute a completely interconnected Eurasian Power Grid. The idea of a Eurasian super grid, spanning from the Atlantic to the Ural and Siberia, is not new. Various studies have been conducted by both western Europe and the Soviet Union on this topic. Our world is currently in an era of extra high voltage (EHV) and ultra high voltage (UHV) electrical systems. This translates into existing UHV lines of 1150 kV which have already been proven in successful operation. Such UHV systems are capable of transmitting thousands of megawatts over a distance of a 1000 miles. Furthermore, national boundaries are not more a hindrance than the challenge of interconnecting complete networks into an overall synchronized working system with load exchange capabilities in all directions.

  19. Fluoropolymer metallization for microelectronic applications

    NASA Astrophysics Data System (ADS)

    Sacher, E.

    1994-11-01

    One of the most important requirements for the fastest microelectronic devices in present use, and for the even faster devices for future use, is the reduction of the signal interconnection delay time to a small fraction of all the switching delay times. The interconnection delay time is the product of the resistance of the metal interconnection and the capacitance of the associated dielectric. One method of lowering this delay time is the use of multilayer devices incorporating low resistivity metals (e.g., Cu) and low capacitance dielectrics (e.g. fluoropolymers). Among the many problems faced in the construction of multilayer devices from these materials is the lack of metal adhesion to flouropolymers. This article attempts to put into perspective the problem of metal adhesion to fluoropolymers by addressing the reason for its necessity. Reviewing the critical properties and techniques and discussing the presently available results.

  20. Reconfigurable optical interconnections via dynamic computer-generated holograms

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor); Zhou, Shaomin (Inventor)

    1994-01-01

    A system is proposed for optically providing one-to-many irregular interconnections, and strength-adjustable many-to-many irregular interconnections which may be provided with strengths (weights) w(sub ij) using multiple laser beams which address multiple holograms and means for combining the beams modified by the holograms to form multiple interconnections, such as a cross-bar switching network. The optical means for interconnection is based on entering a series of complex computer-generated holograms on an electrically addressed spatial light modulator for real-time reconfigurations, thus providing flexibility for interconnection networks for largescale practical use. By employing multiple sources and holograms, the number of interconnection patterns achieved is increased greatly.

  1. Variational Integrators for Interconnected Lagrange-Dirac Systems

    NASA Astrophysics Data System (ADS)

    Parks, Helen; Leok, Melvin

    2017-02-01

    Interconnected systems are an important class of mathematical models, as they allow for the construction of complex, hierarchical, multiphysics, and multiscale models by the interconnection of simpler subsystems. Lagrange-Dirac mechanical systems provide a broad category of mathematical models that are closed under interconnection, and in this paper, we develop a framework for the interconnection of discrete Lagrange-Dirac mechanical systems, with a view toward constructing geometric structure-preserving discretizations of interconnected systems. This work builds on previous work on the interconnection of continuous Lagrange-Dirac systems (Jacobs and Yoshimura in J Geom Mech 6(1):67-98, 2014) and discrete Dirac variational integrators (Leok and Ohsawa in Found Comput Math 11(5), 529-562, 2011). We test our results by simulating some of the continuous examples given in Jacobs and Yoshimura (2014).

  2. Reconfigurable Optical Interconnections Via Dynamic Computer-Generated Holograms

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor); Zhou, Shao-Min (Inventor)

    1996-01-01

    A system is presented for optically providing one-to-many irregular interconnections, and strength-adjustable many-to-many irregular interconnections which may be provided with strengths (weights) w(sub ij) using multiple laser beams which address multiple holograms and means for combining the beams modified by the holograms to form multiple interconnections, such as a cross-bar switching network. The optical means for interconnection is based on entering a series of complex computer-generated holograms on an electrically addressed spatial light modulator for real-time reconfigurations, thus providing flexibility for interconnection networks for large-scale practical use. By employing multiple sources and holograms, the number of interconnection patterns achieved is increased greatly.

  3. Application of optical interconnect technology at Lawrence Livermore National Laboratory

    SciTech Connect

    Haigh, R.E.; Lowry, M.E.; McCammon, K.; Hills, R.; Mitchell, R.; Sweider, D.

    1995-08-10

    Optical interconnects will be required to meet the information bandwidth requirements of future communication and computing applications. At Lawrence Livermore National Laboratory, the authors are involved in applying optical interconnect technologies in two distinct application areas: Multi-Gigabit/sec Computer Backplanes and Gigabit/sec Wide Area Networking using Wavelength Division Multiplexing. In this paper, the authors discuss their efforts to integrate optical interconnect technologies into prototype computing and communication systems.

  4. Thin and Thick Films Materials Based Interconnection Technology for 500 C Operation

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.

    2000-01-01

    Precious metal based thick-film material was used for printed wires, wire bond pads, test lead-attach, and conductive die-attach for high temperature (up to 500 C and beyond) chip level packaging. A SiC Shottky diode with a thin-film coated backside was attached to a ceramic substrate using precious metal based thick-film material as the electrically conductive bonding layer. After a 500-hour soak test in atmospheric oxygen, these basic interconnection elements, including attached test diode survived both electrically and mechanically. The electrical resistance of these interconnections (including thick-film printed wire/pad, bonded wire, and test lead attach) were low and stable at both room and elevated temperatures. The electrical resistance of the die-attach interface estimated by I-V characterization of the attached diode, during and after high temperature heat treatment, remained desirably low over the course of a 500-hour anneal. Further durability testing of this high temperature interconnection technology is also discussed.

  5. Synchrotron X-Ray Microdiffraction Studies of Electromigration in Interconnect lines at the Advanced Light Source

    SciTech Connect

    Tamura, Nobumichi; Chen, Kai; Kunz, Martin

    2009-05-01

    Synchrotron polychromatic X-ray microdiffraction is a particularly suitable technique to study in situ the effect of electromigration in metal interconnects as add spatial resolution to grain orientation and strain sensitivity. This technique has been extensively used at the Advanced Light Source to monitor changes in aluminum and copper interconnect test structures while high-density current is passed into them during accelerated tests at elevated temperature. One of the principal findings is the observation of electromigration-induced plasticity in the metal lines that appear during the very early stages of electromigration. In some of the lines, high density of geometrically necessary dislocation are formed leading to additional diffusion paths causing an enhancement of electromigration effect at test temperature. This paper presents an overview of the principal results obtained from X-ray microdiffraction studies of electromigration effects on aluminum and copper interconnects at the ALS throughout continuous efforts that spanned over a decade (1998-2008) from approximately 40 weeks of combined beamtime.

  6. Investigation of welded interconnection of large area wraparound contacted silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lott, D. R.

    1984-01-01

    An investigation was conducted to evaluate the welding and temperature cycle testing of large area 5.9 x 5.9 wraparound silicon solar cells utilizing printed circuit substrates with SSC-155 interconnect copper metals and the LMSC Infrared Controlled weld station. An initial group of 5 welded modules containing Phase 2 developmental 5.9 x 5.9 cm cells were subjected to cyclical temperatures of + or 80 C at a rate of 120 cycles per day. Anomalies were noted in the adhesion of the cell contact metallization; therefore, 5 additional modules were fabricated and tested using available Phase I cells with demonstrated contact integrity. Cycling of the later module type through 12,000 cycles indicated the viability of this type of lightweight flexible array concept. This project demonstrated acceptable use of an alternate interconnect copper in combination with large area wraparound cells and emphasized the necessity to implement weld pull as opposed to solder pull procedures at the cell vendors for cells that will be interconnected by welding.

  7. Effect of atomic interconnects on percolation in single-walled carbon nanotube thin film networks.

    PubMed

    Tian, Xiaojuan; Moser, Matthew L; Pekker, Aron; Sarkar, Santanu; Ramirez, Jason; Bekyarova, Elena; Itkis, Mikhail E; Haddon, Robert C

    2014-07-09

    The formation of covalent bonds to single-walled carbon nanotube (SWNT) or graphene surfaces usually leads to a decrease in the electrical conductivity and mobility as a result of the structural rehybridization of the functionalized carbon atoms from sp(2) to sp(3). In the present study, we explore the effect of metal deposition on semiconducting (SC-) and metallic (MT-) SWNT thin films in the vicinity of the percolation threshold and we are able to clearly delineate the effects of weak physisorption, ionic chemisorption with charge transfer, and covalent hexahapto (η(6)) chemisorption on these percolating networks. The results support the idea that for those metals capable of forming bis-hexahapto-bonds, the generation of covalent (η(6)-SWNT)M(η(6)-SWNT) interconnects provides a conducting pathway in the SWNT films and establishes the transition metal bis-hexahapto organometallic bond as an electronically conjugating linkage between graphene surfaces.

  8. Using Bayesian Multilevel Whole Genome Regression Models for Partial Pooling of Training Sets in Genomic Prediction

    PubMed Central

    Technow, Frank; Totir, L. Radu

    2015-01-01

    Training set size is an important determinant of genomic prediction accuracy. Plant breeding programs are characterized by a high degree of structuring, particularly into populations. This hampers the establishment of large training sets for each population. Pooling populations increases training set size but ignores unique genetic characteristics of each. A possible solution is partial pooling with multilevel models, which allows estimating population-specific marker effects while still leveraging information across populations. We developed a Bayesian multilevel whole-genome regression model and compared its performance with that of the popular BayesA model applied to each population separately (no pooling) and to the joined data set (complete pooling). As an example, we analyzed a wide array of traits from the nested association mapping maize population. There we show that for small population sizes (e.g., <50), partial pooling increased prediction accuracy over no or complete pooling for populations represented in the training set. No pooling was superior; however, when populations were large. In another example data set of interconnected biparental maize populations either partial or complete pooling was superior, depending on the trait. A simulation showed that no pooling is superior when differences in genetic effects among populations are large and partial pooling when they are intermediate. With small differences, partial and complete pooling achieved equally high accuracy. For prediction of new populations, partial and complete pooling had very similar accuracy in all cases. We conclude that partial pooling with multilevel models can maximize the potential of pooling by making optimal use of information in pooled training sets. PMID:26024866

  9. Oscillations in interconnected complex networks under intentional attack

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Ping; Xia, Yongxiang; Tan, Fei

    2016-01-01

    Many real-world networks are interconnected with each other. In this paper, we study the traffic dynamics in interconnected complex networks under an intentional attack. We find that with the shortest time delay routing strategy, the traffic dynamics can show the stable state, periodic, quasi-periodic and chaotic oscillations, when the capacity redundancy parameter changes. Moreover, compared with isolated complex networks, oscillations always take place in interconnected networks more easily. Thirdly, in interconnected networks, oscillations are affected strongly by the coupling probability and coupling preference.

  10. Compact Interconnection Networks Based on Quantum Dots

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Toomarian, Nikzad; Modarress, Katayoon; Spotnitz, Matthew

    2003-01-01

    Architectures that would exploit the distinct characteristics of quantum-dot cellular automata (QCA) have been proposed for digital communication networks that connect advanced digital computing circuits. In comparison with networks of wires in conventional very-large-scale integrated (VLSI) circuitry, the networks according to the proposed architectures would be more compact. The proposed architectures would make it possible to implement complex interconnection schemes that are required for some advanced parallel-computing algorithms and that are difficult (and in many cases impractical) to implement in VLSI circuitry. The difficulty of implementation in VLSI and the major potential advantage afforded by QCA were described previously in Implementing Permutation Matrices by Use of Quantum Dots (NPO-20801), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 42. To recapitulate: Wherever two wires in a conventional VLSI circuit cross each other and are required not to be in electrical contact with each other, there must be a layer of electrical insulation between them. This, in turn, makes it necessary to resort to a noncoplanar and possibly a multilayer design, which can be complex, expensive, and even impractical. As a result, much of the cost of designing VLSI circuits is associated with minimization of data routing and assignment of layers to minimize crossing of wires. Heretofore, these considerations have impeded the development of VLSI circuitry to implement complex, advanced interconnection schemes. On the other hand, with suitable design and under suitable operating conditions, QCA-based signal paths can be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes. The proposed architectures require two advances in QCA-based circuitry beyond basic QCA-based binary

  11. Multi-level segmentation of passive millimeter wave images with Gaussian mixture modeling

    NASA Astrophysics Data System (ADS)

    Yeom, Seokwon; Lee, Dong-Su; Son, Jung-Young

    2011-05-01

    Passive millimeter wave imaging is very useful for security applications since it candetect objects concealed under clothing. In this paper,the multi-level segmentation of passive millimeter wave images is presented to detectconcealed objects under clothing. Our passive millimeter wave imaging system is equipped with a Cassegrain dish antenna and a receiver channel operating around 3 mm wavelength. The expectation-maximization algorithm is adopted to cluster pixelson the basis ofa Gaussian mixture model. The multi-level segmentation is investigated with different numbers of clusters in Gaussian mixture distribution. The performance is evaluated by average probability error. Experimentsconfirm that the presented method is able to detect the wood grip as well as metal part of the hand axconcealed under clothing.

  12. Lower limits of line resistance in nanocrystalline back end of line Cu interconnects

    NASA Astrophysics Data System (ADS)

    Hegde, Ganesh; Bowen, R. Chris; Rodder, Mark S.

    2016-11-01

    The strong non-linear increase in the Cu interconnect line resistance with decreasing linewidth presents a significant obstacle to their continued downscaling. In this letter we use the first principles density functional theory based electronic structure of Cu interconnects to find the lower limits of their line resistance for metal linewidths corresponding to future technology nodes. We find that even in the absence of scattering due to grain boundaries, edge roughness or interfaces, quantum confinement causes a severe increase in the line resistance of Cu. We also find that when the simplest scattering mechanism in the grain boundary scattering dominated limit is added to otherwise coherent electronic transmission in monocrystalline nanowires, the lower limit of line resistance is significantly higher than projected roadmap requirements in the International Technology Roadmap for Semiconductors.

  13. Interconnection capacitance models for VLSI circuits

    NASA Astrophysics Data System (ADS)

    Wong, Shyh-Chyi; Liu, Patrick S.; Ru, Jien-Wen; Lin, Shi-Tron

    1998-06-01

    A new set of capacitance models is developed for delay estimation of VLSI interconnections. The set of models is derived for five representative wiring structures, with their combinations covering arbitrary VLSI layouts. A semi-empirical approach is adopted to deal with complicated geometry nature in VLSI and to allow for closed-form capacitance formulas to be developed to provide direct observation of capacitance variation vs process parameters as well as computational efficiency for circuit simulation. The formulas are given explicitly in terms of wire width, wire thickness, dielectric thickness and inter-wire spacing. The models show good agreement with numerical solutions from RAPHAEL and measurement data of fabricated capacitance test structures. The models are further applied and validated on a ring oscillator. It is shown that the frequency of the ring oscillator obtained from HSPICE simulation with our models agrees well with the bench measurement.

  14. Microfabricated structures with electrical isolation and interconnections

    NASA Technical Reports Server (NTRS)

    Clark, William A. (Inventor); Juneau, Thor N. (Inventor); Roessig, Allen W. (Inventor); Lemkin, Mark A. (Inventor)

    2001-01-01

    The invention is directed to a microfabricated device. The device includes a substrate that is etched to define mechanical structures at least some of which are anchored laterally to the remainder of the substrate. Electrical isolation at points where mechanical structures are attached to the substrate is provided by filled isolation trenches. Filled trenches may also be used to electrically isolate structure elements from each other at points where mechanical attachment of structure elements is desired. The performance of microelectromechanical devices is improved by 1) having a high-aspect-ratio between vertical and lateral dimensions of the mechanical elements, 2) integrating electronics on the same substrate as the mechanical elements, 3) good electrical isolation among mechanical elements and circuits except where electrical interconnection is desired.

  15. Virtual interconnection platform initiative scoping study

    SciTech Connect

    Liu, Yong; Kou, Gefei; Pan, Zuohong; Liu, Yilu; King Jr., Thomas J.

    2016-01-01

    Due to security and liability concerns, the research community has limited access to realistic large-scale power grid models to test and validate new operation and control methodologies. It is also difficult for industry to evaluate the relative value of competing new tools without a common platform for comparison. This report proposes to develop a large-scale virtual power grid model that retains basic features and represents future trends of major U.S. electric interconnections. This model will include realistic power flow and dynamics information as well as a relevant geospatial distribution of assets. This model will be made widely available to the research community for various power system stability and control studies and can be used as a common platform for comparing the efficacies of various new technologies.

  16. Forming electrical interconnections through semiconductor wafers

    NASA Technical Reports Server (NTRS)

    Anthony, T. R.

    1981-01-01

    An information processing system based on CMOS/SOS technology is being developed by NASA to process digital image data collected by satellites. An array of holes is laser drilled in a semiconductor wafer, and a conductor is formed in the holes to fabricate electrical interconnections through the wafers. Six techniques are used to form conductors in the silicon-on-sapphire (SOS) wafers, including capillary wetting, wedge extrusion, wire intersection, electroless plating, electroforming, double-sided sputtering and through-hole electroplating. The respective strengths and weaknesses of these techniques are discussed and compared, with double-sided sputtering and the through-hole plating method achieving best results. In addition, hollow conductors provided by the technique are available for solder refill, providing a natural way of forming an electrically connected stack of SOS wafers.

  17. Mapping the global journey of anthropogenic aluminum: a trade-linked multilevel material flow analysis.

    PubMed

    Liu, Gang; Müller, Daniel B

    2013-10-15

    Material cycles have become increasingly coupled and interconnected in a globalizing era. While material flow analysis (MFA) has been widely used to characterize stocks and flows along technological life cycle within a specific geographical area, trade networks among individual cycles have remained largely unexplored. Here we developed a trade-linked multilevel MFA model to map the contemporary global journey of anthropogenic aluminum. We demonstrate that the anthropogenic aluminum cycle depends substantially on international trade of aluminum in all forms and becomes highly interconnected in nature. While the Southern hemisphere is the main primary resource supplier, aluminum production and consumption concentrate in the Northern hemisphere, where we also find the largest potential for recycling. The more developed countries tend to have a substantial and increasing presence throughout the stages after bauxite refining and possess highly consumption-based cycles, thus maintaining advantages both economically and environmentally. A small group of countries plays a key role in the global redistribution of aluminum and in the connectivity of the network, which may render some countries vulnerable to supply disruption. The model provides potential insights to inform government and industry policies in resource criticality, supply chain security, value chain management, and cross-boundary environmental impacts mitigation.

  18. Fabrication and Electrical Characterization of Multilevel Aluminum Interconnects Used to Achieve Silicon-Hybrid Wafer-Scale Integration.

    DTIC Science & Technology

    1987-12-01

    Nitin Parekh and his colleagues at the Xerox Palo Alto Research Center described this procedure: a low viscosity liquid is spin coated to form a...of Polyimides in VLSI Fabrication," Polyimides -- Synthesis, Characterization, and Applications," Volume 2, edited by K. L. Mittal . New York: Plenum

  19. Automatic Multilevel Parallelization Using OpenMP

    NASA Technical Reports Server (NTRS)

    Jin, Hao-Qiang; Jost, Gabriele; Yan, Jerry; Ayguade, Eduard; Gonzalez, Marc; Martorell, Xavier; Biegel, Bryan (Technical Monitor)

    2002-01-01

    In this paper we describe the extension of the CAPO (CAPtools (Computer Aided Parallelization Toolkit) OpenMP) parallelization support tool to support multilevel parallelism based on OpenMP directives. CAPO generates OpenMP directives with extensions supported by the NanosCompiler to allow for directive nesting and definition of thread groups. We report some results for several benchmark codes and one full application that have been parallelized using our system.

  20. Knowledge discovery of multilevel protein motifs

    SciTech Connect

    Conklin, D.; Glasgow, J.; Fortier, S.

    1994-12-31

    A new category of protein motif is introduced. This type of motif captures, in addition to global structure, the nested structure of its component parts. A dataset of four proteins is represented using this scheme. A structured machine discovery procedure is used to discover recurrent amino acid motifs and this knowledge is utilized for the expression of subsequent protein motif discoveries. Examples of discovered multilevel motifs are presented.

  1. Multilevel resistive information storage and retrieval

    DOEpatents

    Lohn, Andrew; Mickel, Patrick R.

    2016-08-09

    The present invention relates to resistive random-access memory (RRAM or ReRAM) systems, as well as methods of employing multiple state variables to form degenerate states in such memory systems. The methods herein allow for precise write and read steps to form multiple state variables, and these steps can be performed electrically. Such an approach allows for multilevel, high density memory systems with enhanced information storage capacity and simplified information retrieval.

  2. Automatic Multilevel Parallelization Using OpenMP

    NASA Technical Reports Server (NTRS)

    Jin, Hao-Qiang; Jost, Gabriele; Yan, Jerry; Ayguade, Eduard; Gonzalez, Marc; Martorell, Xavier; Biegel, Bryan (Technical Monitor)

    2002-01-01

    In this paper we describe the extension of the CAPO parallelization support tool to support multilevel parallelism based on OpenMP directives. CAPO generates OpenMP directives with extensions supported by the NanosCompiler to allow for directive nesting and definition of thread groups. We report first results for several benchmark codes and one full application that have been parallelized using our system.

  3. Voltage balanced multilevel voltage source converter system

    DOEpatents

    Peng, F.Z.; Lai, J.S.

    1997-07-01

    Disclosed is a voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means. 15 figs.

  4. Voltage balanced multilevel voltage source converter system

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    1997-01-01

    A voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means.

  5. Multilevel sparse functional principal component analysis.

    PubMed

    Di, Chongzhi; Crainiceanu, Ciprian M; Jank, Wolfgang S

    2014-01-29

    We consider analysis of sparsely sampled multilevel functional data, where the basic observational unit is a function and data have a natural hierarchy of basic units. An example is when functions are recorded at multiple visits for each subject. Multilevel functional principal component analysis (MFPCA; Di et al. 2009) was proposed for such data when functions are densely recorded. Here we consider the case when functions are sparsely sampled and may contain only a few observations per function. We exploit the multilevel structure of covariance operators and achieve data reduction by principal component decompositions at both between and within subject levels. We address inherent methodological differences in the sparse sampling context to: 1) estimate the covariance operators; 2) estimate the functional principal component scores; 3) predict the underlying curves. Through simulations the proposed method is able to discover dominating modes of variations and reconstruct underlying curves well even in sparse settings. Our approach is illustrated by two applications, the Sleep Heart Health Study and eBay auctions.

  6. Computational analyses of multilevel discourse comprehension.

    PubMed

    Graesser, Arthur C; McNamara, Danielle S

    2011-04-01

    The proposed multilevel framework of discourse comprehension includes the surface code, the textbase, the situation model, the genre and rhetorical structure, and the pragmatic communication level. We describe these five levels when comprehension succeeds and also when there are communication misalignments and comprehension breakdowns. A computer tool has been developed, called Coh-Metrix, that scales discourse (oral or print) on dozens of measures associated with the first four discourse levels. The measurement of these levels with an automated tool helps researchers track and better understand multilevel discourse comprehension. Two sets of analyses illustrate the utility of Coh-Metrix in discourse theory and educational practice. First, Coh-Metrix was used to measure the cohesion of the text base and situation model, as well as potential extraneous variables, in a sample of published studies that manipulated text cohesion. This analysis helped us better understand what was precisely manipulated in these studies and the implications for discourse comprehension mechanisms. Second, Coh-Metrix analyses are reported for samples of narrative and science texts in order to advance the argument that traditional text difficulty measures are limited because they fail to accommodate most of the levels of the multilevel discourse comprehension framework.

  7. Addressing Asthma Health Disparities: A Multilevel Challenge

    PubMed Central

    Canino, Glorisa; McQuaid, Elizabeth L.; Rand, Cynthia S.

    2009-01-01

    Substantial research has documented pervasive disparities in the prevalence, severity, and morbidity of asthma among minority populations compared to non-Latino whites. The underlying causes of these disparities are not well understood, and as a result, the leverage points to address them remain unclear. A multilevel framework for integrating research in asthma health disparities is proposed in order to advance both future research and clinical practice. The components of the proposed model include health care policies and regulations, operation of the health care system, provider/clinician-level factors, social/environmental factors, and individual/family attitudes and behaviors. The body of research suggests that asthma disparities have multiple, complex and inter-related sources. Disparities occur when individual, environmental, health system, and provider factors interact with one another over time. Given that the causes of asthma disparities are complex and multilevel, clinical strategies to address these disparities must therefore be comparably multilevel and target many aspects of asthma care. Clinical Implications: Several strategies that could be applied in clinical settings to reduce asthma disparities are described including the need for routine assessment of the patient’s beliefs, financial barriers to disease management, and health literacy, and the provision of cultural competence training and communication skills to health care provider groups. PMID:19447484

  8. 14 CFR 25.701 - Flap and slat interconnection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... sides of the plane of symmetry must be synchronized by a mechanical interconnection or approved... engines on one side of the plane of symmetry inoperative and the remaining engines at takeoff power. (c... resulting when interconnected flap or slat surfaces on one side of the plane of symmetry are jammed...

  9. 14 CFR 25.701 - Flap and slat interconnection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... sides of the plane of symmetry must be synchronized by a mechanical interconnection or approved... engines on one side of the plane of symmetry inoperative and the remaining engines at takeoff power. (c... resulting when interconnected flap or slat surfaces on one side of the plane of symmetry are jammed...

  10. 14 CFR 25.701 - Flap and slat interconnection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... sides of the plane of symmetry must be synchronized by a mechanical interconnection or approved... engines on one side of the plane of symmetry inoperative and the remaining engines at takeoff power. (c... resulting when interconnected flap or slat surfaces on one side of the plane of symmetry are jammed...

  11. 14 CFR 25.701 - Flap and slat interconnection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... sides of the plane of symmetry must be synchronized by a mechanical interconnection or approved... engines on one side of the plane of symmetry inoperative and the remaining engines at takeoff power. (c... resulting when interconnected flap or slat surfaces on one side of the plane of symmetry are jammed...

  12. 14 CFR 25.701 - Flap and slat interconnection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... sides of the plane of symmetry must be synchronized by a mechanical interconnection or approved... engines on one side of the plane of symmetry inoperative and the remaining engines at takeoff power. (c... resulting when interconnected flap or slat surfaces on one side of the plane of symmetry are jammed...

  13. 76 FR 35210 - Peetz Logan Interconnect, LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Peetz Logan Interconnect, LLC; Notice of Filing Take notice that on June 3, 2011, Peetz Logan Interconnect, LLC (PLI) filed a response to a staff deficiency letter...

  14. Updating Small Generator Interconnection Procedures for New Market Conditions

    SciTech Connect

    Coddington, M.; Fox, K.; Stanfield, S.; Varnado, L.; Culley, T.; Sheehan, M.

    2012-12-01

    Federal and state regulators are faced with the challenge of keeping interconnection procedures updated against a backdrop of evolving technology, new codes and standards, and considerably transformed market conditions. This report is intended to educate policymakers and stakeholders on beneficial reforms that will keep interconnection processes efficient and cost-effective while maintaining a safe and reliable power system.

  15. Determining the Utility Value of Water-Supply Interconnections.

    ERIC Educational Resources Information Center

    Hardman, James L.; Cheremisinoff, Paul N.

    1979-01-01

    This article is the third in a series which discusses a mathematical methodology for evaluating interconnections of water supply systems. The model can be used to analyze the carrying capacity of proposed links or predict the impact of abandoning interconnections. (AS)

  16. ENVIRONMENTAL-HUMAN HEALTH INTERCONNECTIONS: A WORKSHOP REPORT

    EPA Science Inventory

    A Pellston Workshop jointly sponsored by SETAC and SOT to discuss this topic of "Interconnections" was held in June, 2000 in Snowbird, Utah. This workshop was motivated by a deep concern shared by many human health, environmental, and social scientists for the interconnections, ...

  17. 14 CFR 29.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Section 29.957 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow...

  18. 14 CFR 29.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Section 29.957 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow...

  19. 14 CFR 29.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Section 29.957 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow...

  20. 14 CFR 29.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Section 29.957 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow...

  1. Modelling of asymmetrical interconnect T-tree laminated on flexible substrate

    NASA Astrophysics Data System (ADS)

    Ravelo, Blaise

    2015-11-01

    A fast and accurate behavioral modelling of asymmetrical microstrip tree printed on plastic substrate is investigated. The methodology for extracting the asymmetrical tree transfer responses based on the ABCD-matrix analysis is presented. The elements of the interconnect T-tree are constituted by transmission lines (TLs) defined by their characteristic impedance and physical length. The distributed tree network can be assumed as a single input multiple output (SIMO) topology. By considering the circuit equivalent between the electrical path from the tree input and output, the single input single output (SISO) simplified circuit can be established. In order to determine the frequency response of the interconnect tree system, the elementary TLs constituting the tree branches are modelled with their equivalent frequency dependent RLCG network. The novelty of the present paper is the application of the model to the microstrip structure printed on the plastic substrate by analyzing the influence of the metallization conductivity. As proof of concept (POC), a single input and three output distributed interconnect T-tree having branches presented physical lengths from 3 cm to 20 cm was designed. The POC was printed on the Cu metal deposited plastic Kapton substrate. Then, the frequency dependent per unit length resistance, inductance, capacitance and conductance of the elementary branches of the T-tree from DC to 10 GHz were extracted. By implementing the behavioral model of the circuit, the frequency- and time-domain responses of the proposed asymmetrical T-tree are computed. Then, the analyses of the asymmetrical T-tree responses in function of the thin film conductivity of the microstrip interconnect lines were discussed. In addition, time domain analysis enabling to predict the influence of the deposited metallic ink conductivity on the signal integrity is realized by considering a mixed signal corresponding to the digital data "010110000" having 0.5 Gbps rate

  2. Optical backplane interconnect switch for data processors and computers

    NASA Technical Reports Server (NTRS)

    Hendricks, Herbert D.; Benz, Harry F.; Hammer, Jacob M.

    1989-01-01

    An optoelectronic integrated device design is reported which can be used to implement an all-optical backplane interconnect switch. The switch is sized to accommodate an array of processors and memories suitable for direct replacement into the basic avionic multiprocessor backplane. The optical backplane interconnect switch is also suitable for direct replacement of the PI bus traffic switch and at the same time, suitable for supporting pipelining of the processor and memory. The 32 bidirectional switchable interconnects are configured with broadcast capability for controls, reconfiguration, and messages. The approach described here can handle a serial interconnection of data processors or a line-to-link interconnection of data processors. An optical fiber demonstration of this approach is presented.

  3. Solid-state energy storage module employing integrated interconnect board

    DOEpatents

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2003-11-04

    The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electromechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  4. Solid-state energy storage module employing integrated interconnect board

    DOEpatents

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2004-09-28

    An electrochemical energy storage device includes a number of solid-state thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  5. Fuel cell electrode interconnect contact material encapsulation and method

    DOEpatents

    Derose, Anthony J.; Haltiner, Jr., Karl J.; Gudyka, Russell A.; Bonadies, Joseph V.; Silvis, Thomas W.

    2016-05-31

    A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.

  6. Ultra-low energy photoreceivers for optical interconnects

    NASA Astrophysics Data System (ADS)

    Going, Ryan Wayne

    Optical interconnects are increasingly important for our communication and data center systems, and are forecasted to be an essential component of future computers. In order to meet these future demands, optical interconnects must be improved to consume less power than they do today. To do this, both more efficient transmitters and more sensitive receivers must be developed. This work addresses the latter, focusing on device level improvements to tightly couple a low capacitance photodiode with the first stage transistor of the receiver as a single phototransistor device. First I motivate the need for a coupled phototransistor using a simple circuit model which shows how receiver sensitivity is determined by photodiode capacitance and the length of wire connecting it to the first transistor in a receiver amplifier. Then I describe our use of the unique rapid melt growth technique, which is used to integrate crystalline germanium on silicon photonics substrates without an epitaxial reactor. The resulting material quality is demonstrated with high quality (0.95 A/W, 40+ GHz) germanium photodiodes on silicon waveguides. Next I describe two germanium phototransistors I have developed. One is a germanium- gated MOSFET on silicon photonics which has up to 18 A/W gate-controlled responsivity at 1550 nm. Simulations show how MOSFET scaling rules can be easily applied to increase both speed and sensitivity. The second is a floating base germanium bipolar phototransistor on silicon photonics with a 15 GHz gain x bandwidth product. The photoBJT also has a clear scaling path, and it is proposed to create a separate gain and absorption region photoBJT to realize the maximum benefit of scaling the BJT without negatively affecting its absorption and photocarrier collection. Following this design a 120 GHz gain x bandwidth photoBJT is simulated. Finally I present a metal-cavity, which can have over 50% quantum efficiency absorption in sub-100 aF germanium photodiodes, which

  7. Mapping of interconnection of climate risks

    NASA Astrophysics Data System (ADS)

    Yokohata, Tokuta; Tanaka, Katsumasa; Nishina, Kazuya; Takanashi, Kiyoshi; Emori, Seita; Kiguchi, Masashi; Iseri, Yoshihiko; Honda, Yasushi; Okada, Masashi; Masaki, Yoshimitsu; Yamamoto, Akitomo; Shigemitsu, Masahito; Yoshimori, Masakazu; Sueyoshi, Tetsuo; Iwase, Kenta; Hanasaki, Naota; Ito, Akihiko; Sakurai, Gen; Iizumi, Toshichika; Oki, Taikan

    2015-04-01

    Anthropogenic climate change possibly causes various impacts on human society and ecosystem. Here, we call possible damages or benefits caused by the future climate change as "climate risks". Many climate risks are closely interconnected with each other by direct cause-effect relationship. In this study, the major climate risks are comprehensively summarized based on the survey of studies in the literature using IPCC AR5 etc, and their cause-effect relationship are visualized by a "network diagram". This research is conducted by the collaboration between the experts of various fields, such as water, energy, agriculture, health, society, and eco-system under the project called ICA-RUS (Integrated Climate Assessment - Risks, Uncertainties and Society). First, the climate risks are classified into 9 categories (water, energy, food, health, disaster, industry, society, ecosystem, and tipping elements). Second, researchers of these fields in our project survey the research articles, and pick up items of climate risks, and possible cause-effect relationship between the risk items. A long list of the climate risks is summarized into ~130, and that of possible cause-effect relationship between the risk items is summarized into ~300, because the network diagram would be illegible if the number of the risk items and cause-effect relationship is too large. Here, we only consider the risks that could occur if climate mitigation policies are not conducted. Finally, the chain of climate risks is visualized by creating a "network diagram" based on a network graph theory (Fruchtman & Reingold algorithm). Through the analysis of network diagram, we find that climate risks at various sectors are closely related. For example, the decrease in the precipitation under the global climate change possibly causes the decrease in river runoff and the decrease in soil moisture, which causes the changes in crop production. The changes in crop production can have an impact on society by

  8. Laser Direct Routing for High Density Interconnects

    NASA Astrophysics Data System (ADS)

    Moreno, Wilfrido Alejandro

    The laser restructuring of electronic circuits fabricated using standard Very Large Scale Integration (VLSI) process techniques, is an excellent alternative that allows low-cost quick turnaround production with full circuit similarity between the Laser Restructured prototype and the customized product for mass production. Laser Restructurable VLSI (LRVLSI) would allow design engineers the capability to interconnect cells that implement generic logic functions and signal processing schemes to achieve a higher level of design complexity. LRVLSI of a particular circuit at the wafer or packaged chip level is accomplished using an integrated computer controlled laser system to create low electrical resistance links between conductors and to cut conductor lines. An infrastructure for rapid prototyping and quick turnaround using Laser Restructuring of VLSI circuits was developed to meet three main parallel objectives: to pursue research on novel interconnect technologies using LRVLSI, to develop the capability of operating in a quick turnaround mode, and to maintain standardization and compatibility with commercially available equipment for feasible technology transfer. The system is to possess a high degree of flexibility, high data quality, total controllability, full documentation, short downtime, a user-friendly operator interface, automation, historical record keeping, and error indication and logging. A specially designed chip "SLINKY" was used as the test vehicle for the complete characterization of the Laser Restructuring system. With the use of Design of Experiment techniques the Lateral Diffused Link (LDL), developed originally at MIT Lincoln Laboratories, was completely characterized and for the first time a set of optimum process parameters was obtained. With the designed infrastructure fully operational, the priority objective was the search for a substitute for the high resistance, high current leakage to substrate, and relatively low density Lateral

  9. Monte Carlo Method Applied to the ABV Model of an Interconnect Alloy

    NASA Astrophysics Data System (ADS)

    Dahoo, P. R.; Linares, J.; Chiruta, D.; Chong, C.; Pougnet, P.; Meis, C.; El Hami, A.

    2016-08-01

    A Monte Carlo (MC) simulation of a 2D microscopic ABV (metal A, metal B and void V) Ising model of an interconnect alloy is performed by taking into account results of Finite Element methods (FEM) calculations on correlated void-thermal effects. The evolution of a homogeneous structure of a binary alloy containing a small percentage of voids is studied with temperature cycling. The diffusion of voids and segregation of A type or B type metals is a function of the relative interaction energy of the different pairs AA, BB, AB, AV and BV, the initial concentrations of A, B and V and local heating effect due to the presence of clusters of voids. Voids segregates in a matrix of A type, of B type or AB type and form large localized clusters or smaller delocalized ones of different shapes.

  10. Backplane photonic interconnect modules with optical jumpers

    NASA Astrophysics Data System (ADS)

    Glebov, Alexei L.; Lee, Michael G.; Yokouchi, Kishio

    2005-03-01

    Prototypes of optical interconnect (OI) modules for backplane applications are presented. The transceivers attached to the linecards E/O convert the signals that are passed to and from the backplane by optical jumpers terminated with MTP-type connectors. The connectors plug into adaptors attached to the backplane and the microlens arrays mounted in the adaptors couple the light between the fibers and waveguides. Planar polymer channel waveguides with 30-50 μm cross-sections route the optical signals across the board with propagation losses as low as 0.05 dB/cm @ 850 nm. The 45¦-tapered integrated micromirrors reflect the light in and out of the waveguide plane with the loss of 0.8 dB per mirror. The connector displacement measurements indicate that the adaptor lateral assembly accuracy can be at least +/-10 μm for the excess loss not exceeding 1 dB. Insertion losses of the test modules with integrated waveguides, 45¦ mirrors, and pluggable optical jumper connectors are about 5 dB. Eye diagrams at 10.7 Gb/s have typical width and height of 70 ps and 400 mV, respectively, and jitter of about 20 ps.

  11. Design of free space interconnected signal processor

    NASA Astrophysics Data System (ADS)

    Murdocca, Miles; Stone, Thomas

    1993-12-01

    Progress is described on a collaborative effort between the Photonics Center at Rome Laboratory (RL), Griffiss AFB and Rutgers University, through the RL Expert Science and Engineering (ES&E) program. The goal of the effort is to develop a prototype random access memory (RAM) that can be used in a signal processor for a computing model that consists of cascaded arrays of optical logic gates interconnected in free space with regular patterns. The effort involved the optical and architectural development of a cascadable optical logic system in which microlaser pumped S-SEED devices serve as logic gates. At the completion of the contract, two gate-level layouts of the module were completed which were created in collaboration with RL personnel. The basic layout of the optical system has been developed, and key components have been tested. The delayed delivery of microlaser arrays precluded completion of the processor during the contract period, but preliminary testing was made possible through the use of other microlaser devices.

  12. Multimode siloxane polymer components for optical interconnects

    NASA Astrophysics Data System (ADS)

    Bamiedakis, Nikolaos; Beals, Joseph, IV; Penty, Richard V.; White, Ian H.; DeGroot, Jon v., Jr.; Clapp, Terry V.; De Shazer, David

    2009-02-01

    This paper presents an overview of multimode waveguides and waveguide components formed from siloxane polymer materials which are suitable for use in optical interconnection applications. The components can be cost-effectively integrated onto conventional PCBs and offer increased functionality in optical transmission. The multimode waveguides exhibit low loss (0.04 dB/cm at 850 nm) and low crosstalk (< -30 dB) performance, large alignment tolerances and negligible mode mixing for short waveguide lengths. Error-free data transmission at 10 Gb/s over 1.4 m long waveguides has been successfully demonstrated. Waveguide crossings exhibit very low excess losses, below 0.01 dB/crossing, and excellent crosstalk performance. Low loss is obtained for waveguide bends with radii of curvature larger than 8 mm and 6 mm for 90° and S-shaped bends respectively. High-uniformity splitting is achieved with multimode Y-splitters even in the presence of input misalignments. Y-combiners are shown to benefit from the multimode nature of the waveguides allowing low loss combining (4 dB for an 8×1 device). A large range of power splitting ratios between 30% and 75% is achieved with multimode coupler devices. Examples of system applications benefiting from the use of these components are briefly presented including a terabit capacity optical backplane, a radio-over-fibre multicasting system and a SCM passive optical network.

  13. Ceramic Interconnects with Low Sintering Temperature

    NASA Technical Reports Server (NTRS)

    Zhong, Zhi-Min; Goldsby, Jon C.

    2004-01-01

    Ceramic interconnects for use in solid oxide he1 cells are expected to operate between 900 to approximately 1000 C, sinter below 1400 C to allow co-firing and meet a number thermal mechanical requirements. The pervoskite type (ABO3) lanthanum chromite based materials have emerged as a leading candidate that will meet these criteria by varying the composition on the A and B sites. A need therefore exists to determine this material's temperature dependent electrical and mechanical properties with respect to these site substitutions. In this investigation oxide powders were prepared by the glycine-nitrate process. Ionic substitutions were carried out on A sites with Ca or Sr, and B sites with Co and Al, respectively. Only stoichiometric compositions were considered for the sake of stability. The powders and their ability to sinter were investigated by XRD, SEM, dilatometry and density measurements. The sintered materials were further examined by SEM, thermal expansion and electric conductivity measurements in order to elucidate the resulting microstructure, electrical and mechanical properties. In addition quantum mechanical calculations were performed to obtain insight into the effects of these dopants on the materials electronic band structure and lattice parameter.

  14. Interconnected Cavernous Structure of Bacterial Fruiting Bodies

    PubMed Central

    Harvey, Cameron W.; Du, Huijing; Xu, Zhiliang; Kaiser, Dale; Aranson, Igor; Alber, Mark

    2012-01-01

    The formation of spore-filled fruiting bodies by myxobacteria is a fascinating case of multicellular self-organization by bacteria. The organization of Myxococcus xanthus into fruiting bodies has long been studied not only as an important example of collective motion of bacteria, but also as a simplified model for developmental morphogenesis. Sporulation within the nascent fruiting body requires signaling between moving cells in order that the rod-shaped self-propelled cells differentiate into spores at the appropriate time. Probing the three-dimensional structure of myxobacteria fruiting bodies has previously presented a challenge due to limitations of different imaging methods. A new technique using Infrared Optical Coherence Tomography (OCT) revealed previously unknown details of the internal structure of M. xanthus fruiting bodies consisting of interconnected pockets of relative high and low spore density regions. To make sense of the experimentally observed structure, modeling and computer simulations were used to test a hypothesized mechanism that could produce high-density pockets of spores. The mechanism consists of self-propelled cells aligning with each other and signaling by end-to-end contact to coordinate the process of differentiation resulting in a pattern of clusters observed in the experiment. The integration of novel OCT experimental techniques with computational simulations can provide new insight into the mechanisms that can give rise to the pattern formation seen in other biological systems such as dictyostelids, social amoeba known to form multicellular aggregates observed as slugs under starvation conditions. PMID:23300427

  15. A stochastic model for interconnected neurons.

    PubMed

    Cottrell, M; Piat, F; Rospars, J P

    1997-01-01

    A model is proposed to describe the collective behavior of a biologically plausible neural network, composed of interconnected spiking neurons which separately receive external stationary stimulations. The spiking dynamics of each neuron is represented by an hourglass metaphor. This network model was first studied in a special case where the connections are only inhibitory (Cottrell, 1988, 1992). We study the network dynamics as a function of the parameters which quantify the strengths of both inhibitory and excitatory connections. We show that the model exhibits two kinds of limit states. In the first states (convergent case), the system is ergodic and all neurons have a positive mean firing rate. In the other states (divergent case), some neurons become definitively inactive while the sub-network of the active neurons is ergodic. The patterns which result from these divergent states can be seen as a neural coding of the external stimulation by the network. This property is applied to the olfactory system to produce a code for an odor. The role of inhibitory connections in odor discrimination is studied.

  16. Adaptive optical interconnects: the ADDAPT project

    NASA Astrophysics Data System (ADS)

    Henker, Ronny; Pliva, Jan; Khafaji, Mahdi; Ellinger, Frank; Toifl, Thomas; Offrein, Bert; Cevrero, Alessandro; Oezkaya, Ilter; Seifried, Marc; Ledentsov, Nikolay; Kropp, Joerg-R.; Shchukin, Vitaly; Zoldak, Martin; Halmo, Leos; Turkiewicz, Jaroslaw; Meredith, Wyn; Eddie, Iain; Georgiades, Michael; Charalambides, Savvas; Duis, Jeroen; van Leeuwen, Pieter

    2015-09-01

    Existing optical networks are driven by dynamic user and application demands but operate statically at their maximum performance. Thus, optical links do not offer much adaptability and are not very energy-efficient. In this paper a novel approach of implementing performance and power adaptivity from system down to optical device, electrical circuit and transistor level is proposed. Depending on the actual data load, the number of activated link paths and individual device parameters like bandwidth, clock rate, modulation format and gain are adapted to enable lowering the components supply power. This enables flexible energy-efficient optical transmission links which pave the way for massive reductions of CO2 emission and operating costs in data center and high performance computing applications. Within the FP7 research project Adaptive Data and Power Aware Transceivers for Optical Communications (ADDAPT) dynamic high-speed energy-efficient transceiver subsystems are developed for short-range optical interconnects taking up new adaptive technologies and methods. The research of eight partners from industry, research and education spanning seven European countries includes the investigation of several adaptive control types and algorithms, the development of a full transceiver system, the design and fabrication of optical components and integrated circuits as well as the development of high-speed, low loss packaging solutions. This paper describes and discusses the idea of ADDAPT and provides an overview about the latest research results in this field.

  17. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOEpatents

    Jansen, Kai W.; Maley, Nagi

    2001-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  18. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOEpatents

    Jansen, Kai W.; Maley, Nagi

    2000-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  19. A sewing-enabled stitch-and-transfer method for robust, ultra-stretchable, conductive interconnects

    NASA Astrophysics Data System (ADS)

    Rahimi, Rahim; Ochoa, Manuel; Yu, Wuyang; Ziaie, Babak

    2014-09-01

    Fabricating highly stretchable and robust electrical interconnects at low-cost remains an unmet challenge in stretchable electronics. Previously reported stretchable interconnects require complicated fabrication processes with resulting devices exhibiting limited stretchability, poor reliability, and large gauge factors. Here, we demonstrate a novel sew-and-transfer method for rapid fabrication of low-cost, highly stretchable interconnects. Using a commercial sewing machine and double-thread stitch with one of the threads being water soluble polyvinyl alcohol (PVA), thin zigzag-pattern metallic wires are sewn into a polymeric film and are subsequently transferred onto a stretchable elastomeric substrate by dissolving PVA in warm water. The resulting structures exhibit extreme stretchability (exceeding 500% strain for a zigzag angle of 18 °) and robustness (capable of withstanding repeated stretch-and-release cycles of 15000 at 110% strain, 50000 at 55% strain, and  > 120000 at 30% strain without any noticeable change in resistance even at maximum strain levels). Using this technique, we demonstrate a stretchable inductive strain sensor for monitoring balloon expansion in a Foley urinary catheter capable of detecting the balloon diameter change from 9 mm to 38 mm with an average sensitivity of 4 nH/mm.

  20. Assembly and interconnection technology for micromechanical structures using anisotropic conductive film

    NASA Astrophysics Data System (ADS)

    Kang, In-Byeong; Haskard, Malcolm R.; Ju, Byeong-Kwon

    1996-09-01

    A bonding method using an anisotropic conductive film (ACF) has been developed for the assembly and interconnection of micromechanical structures. The method provides many advantages such as low temperature, low cost, process simplicity, selective bonding as well as both electrical and mechanical interconnection. These advantages were confirmed by experiment using CP7621. ACF on various materials such as wafers, glasses, thin metal layers, and plastic films. For the experiments, a range of materials were tested including p type, (100) orientation, 100 ohm-cm resistivity, 300 micrometers thickness silicon wafers with/without micromechanical structures, 300 micrometers thick sodalime glass substrates, 1.5 mm thick pyrex glass substrates, and 100 micrometers polyethylene plastic thin film were used to verify the effectiveness of this bonding method. A 2000 angstrom thick sputtered aluminium and chrome layer was also used to confirm the electrical interconnection between conductors. The optimum bonding conditions were achieved at 180 degrees C temperature with 5 kg/cm2 pressure applied for 10 seconds. Cleaning was not over critical for the process and the bond strength was strong on silicon and glass substrates. The process was applied to fabricate a silicon micropump that consists of three wafers, results indicating excellent sealing and stability characteristics both needed for this application.

  1. Thermal Growth and Performance of Manganese Cobaltite Spinel Protection Layers on Ferritic Stainless Steel SOFC Interconnects

    SciTech Connect

    Yang, Zhenguo; Xia, Guanguang; Simner, Steven P.; Stevenson, Jeffry W.

    2005-08-01

    To protect solid oxide fuel cells (SOFCs) from chromium poisoning and improve metallic interconnect stability, manganese cobaltite spinel protection layers with a nominal composition of Mn1.5Co1.5O4 were thermally grown on Crofer22 APU, a ferritic stainless steel. Thermal, electrical and electrochemical investigations indicated that the spinel protection layers not only significantly decreased the contact area specific resistance (ASR) between a LSF cathode and the stainless steel interconnect, but also inhibited the sub-scale growth on the stainless steel by acting as a barrier to the inward diffusion of oxygen. A long-term thermal cycling test demonstrated excellent structural and thermomechanical stability of these spinel protection layers, which also acted as a barrier to outward chromium cation diffusion to the interconnect surface. The reduction in the contact ASR and prevention of Cr migration achieved by application of the spinel protection layers on ferritic stainless steel resulted in improved stability and electrochemical performance of SOFCs.

  2. Method of producing microporous joints in metal bodies

    DOEpatents

    Danko, Joseph C.

    1982-01-01

    Tungsten is placed in contact with either molybdenum, tantalum, niobium, vanadium, rhenium, or other metal of atoms having a different diffusion coefficient than tungsten. The metals are heated so that the atoms having the higher diffusion coefficient migrate to the metal having the lower diffusion rate, leaving voids in the higher diffusion coefficient metal. Heating is continued until the voids are interconnected.

  3. [The testing and verification for interconnect faults based on cluster FPGA configuration].

    PubMed

    Duan, Cheng-Hu; Jia, Jian-Ge

    2005-05-01

    We have developed a hierarchical approach to define a set of FPGA configurations to solve the interconnect testing problem. This technique enables the detection, testing and verification of bridging faults involving intracluster interconnect and extracluster interconnect to be done easily.

  4. Interconnectivity analysis of supercritical CO₂-foamed scaffolds.

    PubMed

    Lemon, Greg; Reinwald, Yvonne; White, Lisa J; Howdle, Steven M; Shakesheff, Kevin M; King, John R

    2012-06-01

    This paper describes a computer algorithm for the determination of the interconnectivity of the pore space inside scaffolds used for tissue engineering. To validate the algorithm and its computer implementation, the algorithm was applied to a computer-generated scaffold consisting of a set of overlapping spherical pores, for which the interconnectivity was calculated exactly. The algorithm was then applied to micro-computed X-ray tomography images of supercritical CO(2)-foamed scaffolds made from poly(lactic-co-glycolic acid) (PLGA), whereby the effect of using different weight average molecular weight polymer on the interconnectivity was investigated.

  5. Multilevel Higher-Order Item Response Theory Models

    ERIC Educational Resources Information Center

    Huang, Hung-Yu; Wang, Wen-Chung

    2014-01-01

    In the social sciences, latent traits often have a hierarchical structure, and data can be sampled from multiple levels. Both hierarchical latent traits and multilevel data can occur simultaneously. In this study, we developed a general class of item response theory models to accommodate both hierarchical latent traits and multilevel data. The…

  6. Consequences of Unmodeled Nonlinear Effects in Multilevel Models

    ERIC Educational Resources Information Center

    Bauer, Daniel J.; Cai, Li

    2009-01-01

    Applications of multilevel models have increased markedly during the past decade. In incorporating lower-level predictors into multilevel models, a key interest is often whether or not a given predictor requires a random slope, that is, whether the effect of the predictor varies over upper-level units. If the variance of a random slope…

  7. Minimally invasive treatment of multilevel spinal epidural abscess.

    PubMed

    Safavi-Abbasi, Sam; Maurer, Adrian J; Rabb, Craig H

    2013-01-01

    The use of minimally invasive tubular retractor microsurgery for treatment of multilevel spinal epidural abscess is described. This technique was used in 3 cases, and excellent results were achieved. The authors conclude that multilevel spinal epidural abscesses can be safely and effectively managed using microsurgery via a minimally invasive tubular retractor system.

  8. Alternatives to Multilevel Modeling for the Analysis of Clustered Data

    ERIC Educational Resources Information Center

    Huang, Francis L.

    2016-01-01

    Multilevel modeling has grown in use over the years as a way to deal with the nonindependent nature of observations found in clustered data. However, other alternatives to multilevel modeling are available that can account for observations nested within clusters, including the use of Taylor series linearization for variance estimation, the design…

  9. Multilevel Modeling and School Psychology: A Review and Practical Example

    ERIC Educational Resources Information Center

    Graves, Scott L., Jr.; Frohwerk, April

    2009-01-01

    The purpose of this article is to provide an overview of the state of multilevel modeling in the field of school psychology. The authors provide a systematic assessment of published research of multilevel modeling studies in 5 journals devoted to the research and practice of school psychology. In addition, a practical example from the nationally…

  10. Multilevel conductance switching in polymer films

    NASA Astrophysics Data System (ADS)

    Lauters, M.; McCarthy, B.; Sarid, D.; Jabbour, G. E.

    2006-07-01

    Multilevel conductance switching in poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) films is demonstrated. A thin-film structure, ITO-coated glass/MEH-PPV/Al, has shown the ability to store a continuum of conductance states. These states are nonvolatile and can be switched reproducibly by applying appropriate programing biases above a certain threshold voltage. The electrical conductivity of the highest and lowest states can differ by five orders of magnitude. Furthermore, these devices exhibit good cyclic switching characteristics and retention times of several weeks.

  11. Hydraulically interconnected vehicle suspension: handling performance

    NASA Astrophysics Data System (ADS)

    Smith, Wade A.; Zhang, Nong; Hu, William

    2011-02-01

    This paper extends recent research on vehicles with hydraulically interconnected suspension (HIS) systems. Such suspension schemes have received considerable attention in the research community over the last few years. This is due, in part, to their reported ability to provide stiffness and damping rates dependent on the suspension mode of operation (i.e. the bounce, roll, pitch or articulation of the unsprung masses relative to the sprung mass), rather than relying on the stiffness and damping characteristics of the single wheel stations. The paper uses a nine-degrees-of-freedom (DOF) vehicle model and simulations of a fishhook manoeuvre to assess the handling performance of a vehicle when it is fitted with: (a) a conventional independent suspension, and (b) an HIS. In the case of the latter, the fluid subsystem is modelled using a nonlinear finite-element approach, resulting in a set of coupled, first-order nonlinear differential equations, which describe the dynamics of the integrated mechanical-hydraulic vehicle system. The simulation results indicate that, in general, the HIS-equipped vehicle possesses superior handling, as measured by the sprung mass roll angle, roll rate, roll acceleration, lateral acceleration and the vehicle's Rollover Critical Factor. The potential effects of the suspension set-up on ride performance are also considered by studying the transient response when one side of the vehicle traverses a half-sine bump. The obtained results are then discussed, and it is shown that they are consistent with previous findings, both by the authors and other researchers. The presented work outlines an alternative approach for studying the dynamics of HIS-equipped vehicles, particularly suited to analyses in the time domain.

  12. Interacting Social Processes on Interconnected Networks

    PubMed Central

    Alvarez-Zuzek, Lucila G.; La Rocca, Cristian E.; Vazquez, Federico; Braunstein, Lidia A.

    2016-01-01

    We propose and study a model for the interplay between two different dynamical processes –one for opinion formation and the other for decision making– on two interconnected networks A and B. The opinion dynamics on network A corresponds to that of the M-model, where the state of each agent can take one of four possible values (S = −2,−1, 1, 2), describing its level of agreement on a given issue. The likelihood to become an extremist (S = ±2) or a moderate (S = ±1) is controlled by a reinforcement parameter r ≥ 0. The decision making dynamics on network B is akin to that of the Abrams-Strogatz model, where agents can be either in favor (S = +1) or against (S = −1) the issue. The probability that an agent changes its state is proportional to the fraction of neighbors that hold the opposite state raised to a power β. Starting from a polarized case scenario in which all agents of network A hold positive orientations while all agents of network B have a negative orientation, we explore the conditions under which one of the dynamics prevails over the other, imposing its initial orientation. We find that, for a given value of β, the two-network system reaches a consensus in the positive state (initial state of network A) when the reinforcement overcomes a crossover value r*(β), while a negative consensus happens for r < r*(β). In the r − β phase space, the system displays a transition at a critical threshold βc, from a coexistence of both orientations for β < βc to a dominance of one orientation for β > βc. We develop an analytical mean-field approach that gives an insight into these regimes and shows that both dynamics are equivalent along the crossover line (r*, β*). PMID:27689698

  13. Genomic Predictability of Interconnected Biparental Maize Populations

    PubMed Central

    Riedelsheimer, Christian; Endelman, Jeffrey B.; Stange, Michael; Sorrells, Mark E.; Jannink, Jean-Luc; Melchinger, Albrecht E.

    2013-01-01

    Intense structuring of plant breeding populations challenges the design of the training set (TS) in genomic selection (GS). An important open question is how the TS should be constructed from multiple related or unrelated small biparental families to predict progeny from individual crosses. Here, we used a set of five interconnected maize (Zea mays L.) populations of doubled-haploid (DH) lines derived from four parents to systematically investigate how the composition of the TS affects the prediction accuracy for lines from individual crosses. A total of 635 DH lines genotyped with 16,741 polymorphic SNPs were evaluated for five traits including Gibberella ear rot severity and three kernel yield component traits. The populations showed a genomic similarity pattern, which reflects the crossing scheme with a clear separation of full sibs, half sibs, and unrelated groups. Prediction accuracies within full-sib families of DH lines followed closely theoretical expectations, accounting for the influence of sample size and heritability of the trait. Prediction accuracies declined by 42% if full-sib DH lines were replaced by half-sib DH lines, but statistically significantly better results could be achieved if half-sib DH lines were available from both instead of only one parent of the validation population. Once both parents of the validation population were represented in the TS, including more crosses with a constant TS size did not increase accuracies. Unrelated crosses showing opposite linkage phases with the validation population resulted in negative or reduced prediction accuracies, if used alone or in combination with related families, respectively. We suggest identifying and excluding such crosses from the TS. Moreover, the observed variability among populations and traits suggests that these uncertainties must be taken into account in models optimizing the allocation of resources in GS. PMID:23535384

  14. Interacting Social Processes on Interconnected Networks.

    PubMed

    Alvarez-Zuzek, Lucila G; La Rocca, Cristian E; Vazquez, Federico; Braunstein, Lidia A

    We propose and study a model for the interplay between two different dynamical processes -one for opinion formation and the other for decision making- on two interconnected networks A and B. The opinion dynamics on network A corresponds to that of the M-model, where the state of each agent can take one of four possible values (S = -2,-1, 1, 2), describing its level of agreement on a given issue. The likelihood to become an extremist (S = ±2) or a moderate (S = ±1) is controlled by a reinforcement parameter r ≥ 0. The decision making dynamics on network B is akin to that of the Abrams-Strogatz model, where agents can be either in favor (S = +1) or against (S = -1) the issue. The probability that an agent changes its state is proportional to the fraction of neighbors that hold the opposite state raised to a power β. Starting from a polarized case scenario in which all agents of network A hold positive orientations while all agents of network B have a negative orientation, we explore the conditions under which one of the dynamics prevails over the other, imposing its initial orientation. We find that, for a given value of β, the two-network system reaches a consensus in the positive state (initial state of network A) when the reinforcement overcomes a crossover value r*(β), while a negative consensus happens for r < r*(β). In the r - β phase space, the system displays a transition at a critical threshold βc, from a coexistence of both orientations for β < βc to a dominance of one orientation for β > βc. We develop an analytical mean-field approach that gives an insight into these regimes and shows that both dynamics are equivalent along the crossover line (r*, β*).

  15. Multilevel converters -- A new breed of power converters

    SciTech Connect

    Lai, J.S.; Peng, F.Z. |

    1995-09-01

    Multilevel voltage source converters are emerging as a new breed of power converter options for high-power applications. The multilevel voltage source converters typically synthesize the staircase voltage wave from several levels of dc capacitor voltages. One of the major limitations of the multilevel converters is the voltage unbalance between different levels. The techniques to balance the voltage between different levels normally involve voltage clamping or capacitor charge control. There are several ways of implementing voltage balance in multilevel converters. Without considering the traditional magnetic coupled converters, this paper presents three recently developed multilevel voltage source converters: (1) diode-clamp, (2) flying-capacitors, and (3) cascaded-inverters with separate dc sources. The operating principle, features, constraints, and potential applications of these converters will be discussed.

  16. Multilevel cervical arthroplasty: current evidence. A systematic review.

    PubMed

    Joaquim, Andrei F; Riew, K Daniel

    2017-02-01

    OBJECTIVE Cervical disc arthroplasty (CDA) has been demonstrated to be an effective treatment modality for single-level cervical radiculopathy or myelopathy. Its advantages over an anterior cervical discectomy and fusion (ACDF) include motion preservation and decreased reoperations at the index and adjacent segments up to 7 years postoperatively. Considering the fact that many patients have multilevel cervical disc degeneration (CDD), the authors performed a systematic review of the clinical studies evaluating patients who underwent multilevel CDA (2 or more levels). METHODS A systematic review in the MEDLINE database was performed. Clinical studies including patients who had multilevel CDA were selected and included. Case reports and literature reviews were excluded. Articles were then grouped according to their main study objective: 1) studies comparing multilevel CDA versus ACDF; 2) studies comparing single-level CDA versus multilevel CDA; and 3) multilevel CDA after a previous cervical spine surgery. RESULTS Fourteen articles met all inclusion criteria. The general conclusions were that multilevel CDA was at least as safe and effective as ACDF, with preservation of cervical motion when compared with ACDF and potentially with fewer reoperations expected in most of the studies. Multilevel CDAs are clinically effective as single-level surgeries, with good clinical and radiological outcomes. Some studies reported a higher incidence of heterotopic ossification in multilevel CDA when compared with single-level procedures, but without clinical relevance during the follow-up period. A CDA may be indicated even after a previous cervical surgery in selected cases. CONCLUSIONS The current literature supports the use of multilevel CDA. Caution is necessary regarding the more restrictive indications for CDA when compared with ACDF. Further prospective, controlled, multicenter, and randomized studies not sponsored by the device manufactures are desirable to prove the

  17. Design solutions for the solar cell interconnect fatigue fracture problem

    NASA Technical Reports Server (NTRS)

    Mon, G. R.; Ross, R. G., Jr.

    1982-01-01

    Mechanical fatigue of solar cell interconnects is a major failure mechanism in photovoltaic arrays. A comprehensive approach to the reliability design of interconnects, together with extensive design data for the fatigue properties of copper interconnects, has been published. This paper extends the previous work, developing failure prediction (fatigue) data for additional interconnect material choices, including aluminum and a variety of copper-Invar and copper-steel claddings. An improved global fatigue function is used to model the probability-of-failure statistics of each material as a function of level and number of cycles of applied strain. Life-cycle economic analyses are used to evaluate the relative merits of each material choce. The copper-Invar clad composites demonstrate superior performance over pure copper. Aluminum results are disappointing.

  18. IEEE P1547 Series of Standards for Interconnection: Preprint

    SciTech Connect

    Basso, T. S.; DeBlasio, R.

    2003-05-01

    The IEEE P1547 Standard For Interconnecting Distributed Resources With Electric Power Systems is the first in the P1547 series of planned interconnection standards, and additional standards are needed. There are major issues and obstacles to an orderly transition to the use and integration of distributed power resources with electric power systems (grid or utility grid). The lack of uniform national interconnection standards and tests for interconnection operation and certification-as well as the lack of uniform national building, electrical, and safety codes-is understood, and resolving this needs reasonable lead time to develop and promulgate consensus. The P1547 standard is a benchmark milestone for the IEEE standards consensus process and successfully demonstrates a model for ongoing success in the development of further national standards and for moving forward in modernizing our nation's electric power system.

  19. On the Equilibrium States of Interconnected Bubbles or Balloons.

    ERIC Educational Resources Information Center

    Weinhaus, F.; Barker, W.

    1978-01-01

    Describes the equilibrium states of a system composed of two interconnected, air-filled spherical membranes of different sizes. The equilibrium configurations are determined by the method of minimization of the availability of the system at constant temperature. (GA)

  20. Environmental toxicology: Interconnections between human health and ecological integrity

    EPA Science Inventory

    This presentation will discuss what has made a career in environmental toxicology rewarding, environmental and scientific challenges for the 21st century, paradigm shift in regulatory toxicology, adverse outcome framework, interconnections between human health and ecological inte...

  1. Free-Space Optical Interconnect Employing VCSEL Diodes

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Savich, Gregory R.; Torres, Heidi

    2009-01-01

    Sensor signal processing is widely used on aircraft and spacecraft. The scheme employs multiple input/output nodes for data acquisition and CPU (central processing unit) nodes for data processing. To connect 110 nodes and CPU nodes, scalable interconnections such as backplanes are desired because the number of nodes depends on requirements of each mission. An optical backplane consisting of vertical-cavity surface-emitting lasers (VCSELs), VCSEL drivers, photodetectors, and transimpedance amplifiers is the preferred approach since it can handle several hundred megabits per second data throughput.The next generation of satellite-borne systems will require transceivers and processors that can handle several Gb/s of data. Optical interconnects have been praised for both their speed and functionality with hopes that light can relieve the electrical bottleneck predicted for the near future. Optoelectronic interconnects provide a factor of ten improvement over electrical interconnects.

  2. Manufacturing and quality control of interconnecting wire harnesses, Volume 2

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Interconnecting wire harnesses defined in the design standard are considered, including type 4, open bundle (not enclosed). Knowledge gained through experience on the Saturn 5 program coupled with recent advances in techniques, materials, and processes was incorporated into the document.

  3. 14. Control Area, Interconnecting Corridor and Frequency Changer and Generator ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Control Area, Interconnecting Corridor and Frequency Changer and Generator Building, general view VIEW SOUTHWEST, NORTH ELEVATION - NIKE Missile Battery PR-79, Control Area, Tucker Hollow Road south of State Route 101, Foster, Providence County, RI

  4. Multilevel converters for large electric drives

    SciTech Connect

    Tolbert, L.M.; Peng, F.Z.

    1997-11-01

    Traditional two-level high frequency pulse width modulation (PWM) inverters for motor drives have several problems associated with their high frequency switching which produces common-mode voltage and high voltage change (dV/dt) rates to the motor windings. Multilevel inverters solve these problems because their devices can switch at a much lower frequency. Two different multilevel topologies are identified for use as a converter for electric drives, a cascade inverter with separate dc sources and a back-to-back diode clamped converter. The cascade inverter is a natural fit for large automotive all electric drives because of the high VA ratings possible and because it uses several levels of dc voltage sources which would be available from batteries or fuel cells. The back to back diode damped converter is ideal where a source of ac voltage is available such as a hybrid electric vehicle. Simulation and experimental results show the superiority of these two converters over PWM based drives.

  5. The treatment for multilevel noncontiguous spinal fractures

    PubMed Central

    Lian, Xiao Feng; Hou, Tie Sheng; Yuan, Jian Dong; Jin, Gen Yang; Li, Zhong Hai

    2006-01-01

    We report the outcome of 30 patients with multilevel noncontiguous spinal fractures treated between 2000 and 2005. Ten cases were treated conservatively (group A), eight cases were operated on at only one level (group B), and 12 cases were treated surgically at both levels (group C). All cases were followed up for 14–60 months (mean 32 months). Initial mobilisation with a wheelchair or crutches in group A was 9.2±1.1 weeks, which was significantly longer than groups B and C with 6.8±0.7 weeks and 3.1±0.4 weeks, respectively. Operative time and blood loss in group C were significantly more than group B. The neurological deficit improved in six cases in group A (60%), six in group B (75%) and eight in group C (80%). Correction of kyphotic deformity was significantly superior in groups C and B at the operated level, and increasing deformity occurred in groups A and B at the non-operated level. From the results we believe that three treatment strategies were suitable for multilevel noncontiguous spinal fractures, and individualised treatment should be used in these patients. In the patients treated surgically, the clinical and radiographic outcomes are much better. PMID:17043863

  6. Method for fabricating an interconnected array of semiconductor devices

    NASA Technical Reports Server (NTRS)

    Grimmer, Derrick P. (Inventor)

    1995-01-01

    A method of forming an array of interconnected solar cells. A flexible substrate carrying semiconductor and conductive layers is divided into individual devices by slitting the substrate along the web length. The individual devices are then connected with one another in series by laminating the substrate onto an insulating backing and by depositing conducting interconnection layers which join the lower conductor of one device with the top conductor of the adjoining device.

  7. Signal Delay in Leaky RC Mesh Models for Bipolar Interconnect,

    DTIC Science & Technology

    1985-10-01

    Mesh Networks," IEEE Trans. Circuits and Systems, vol. CAS-32, no. 5, pp. 507-510, May 1985. (3] Desoer , Charles A., and Ernest S. Kuh, Basic Circuit ...is appropriate for * modelling interconnect in digital bipolar circuits . This paper is intended to serve as a tutorial as well as a research report...class of networks that is appropriate for modelling interconnect in digital bipolar circuits . This paper is intended *" to serve as a tutorial as well

  8. The organization of permutation architectures with bussed interconnections

    NASA Astrophysics Data System (ADS)

    Kilian, Joe; Kipnis, Sholomo; Leiserson, Charles E.

    1989-01-01

    The problem of efficiently permuting data stored in VLSI chips is explored in accordance with a predetermined set of permutations. By connecting chips with shared bus interconnections, as opposed to point-to-point interconnections, it is shown that the number of pins per chip can often be reduced. Uniform permutation architectures were also considered that realize permutations in several clock ticks, instead of one, and show that further savings in the number of pins per chip can be obtained.

  9. The organization of permutation architectures with bused interconnections

    NASA Astrophysics Data System (ADS)

    Kilian, Joe; Kipnis, Shlomo; Leiserson, Charles E.

    1990-11-01

    The problem of efficiently permuting data stored in VLSI chips is explored, in accordance with a predetermined set of permutations. By connecting chips with shared bus interconnections, as opposed to point-to-point interconnections, it is shown that the number of pins per chip can often be reduced. Uniform permutation architectures are also considered that realize permutations in several clock ticks, instead of one, and it is demonstrated that further savings in the number of pins per chip can be obtained.

  10. Monolithic microwave integrated circuits: Interconnections and packaging considerations

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Downey, A. N.; Ponchak, G. E.; Romanofsky, R. R.; Anzic, G.; Connolly, D. J.

    1984-01-01

    Monolithic microwave integrated circuits (MMIC's) above 18 GHz were developed because of important potential system benefits in cost reliability, reproducibility, and control of circuit parameters. The importance of interconnection and packaging techniques that do not compromise these MMIC virtues is emphasized. Currently available microwave transmission media are evaluated to determine their suitability for MMIC interconnections. An antipodal finline type of microstrip waveguide transition's performance is presented. Packaging requirements for MMIC's are discussed for thermal, mechanical, and electrical parameters for optimum desired performance.

  11. Developing Generic Dynamic Models for the 2030 Eastern Interconnection Grid

    SciTech Connect

    Kou, Gefei; Hadley, Stanton W; Markham, Penn N; Liu, Yilu

    2013-12-01

    The Eastern Interconnection Planning Collaborative (EIPC) has built three major power flow cases for the 2030 Eastern Interconnection (EI) based on various levels of energy/environmental policy conditions, technology advances, and load growth. Using the power flow cases, this report documents the process of developing the generic 2030 dynamic models using typical dynamic parameters. The constructed model was validated indirectly using the synchronized phasor measurements by removing the wind generation temporarily.

  12. Solid-state energy storage module employing integrated interconnect board

    DOEpatents

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2000-01-01

    The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. In one embodiment, a sheet of conductive material is processed by employing a known milling, stamping, or chemical etching technique to include a connection pattern which provides for flexible and selective interconnecting of individual electrochemical cells within the housing, which may be a hermetically sealed housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  13. Reconfigurable Hybrid Interconnection for Static and DynamicScientific Applications

    SciTech Connect

    Kamil, Shoaib; Pinar, Ali; Gunter, Daniel; Lijewski, Michael; Oliker, Leonid; Shalf, John; Skinner, David

    2006-04-25

    As we enter the era of petascale computing, system architects must plan for machines composed of tens of thousands or even hundreds of thousands of processors. Although fully connected networks such as fat-tree interconnects currently dominate HPC network designs, such approaches are inadequate for thousands of processors due to the superlinear growth of component costs. Traditional low-degree interconnect topologies, such as the 3D torus, have reemerged as a competitive solution because the number of switch components scales linearly with the node count, but such networks are poorly suited for the requirements of many scientific applications. We present our latest work on a hybrid switch architecture called HFAST that uses circuit switches to dynamically reconfigure a lower-degree interconnect to suit the topological requirements of each scientific application. This paper expands upon our prior work on the requirements of non-adaptive applications by analyzing the communication characteristics of dynamically adapting AMR code and presents a methodology that captures the evolving communication requirements. We also present a new optimization that computes the under-utilization of fat-tree interconnects for a given communication topology, showing the potential of constructing a ''fit-tree'' for the application by using the HFAST circuit switches to provision an optimal interconnect topology for each application. Finally, we apply our new optimization technique to the communication requirements of the AMR code to demonstrate the potential of using dynamic reconfiguration of the HFAST interconnect between the communication intensive phases of a dynamically adapting application.

  14. Scalable graphite/copper bishell composite for high-performance interconnects.

    PubMed

    Yeh, Chao-Hui; Medina, Henry; Lu, Chun-Chieh; Huang, Kun-Ping; Liu, Zheng; Suenaga, Kazu; Chiu, Po-Wen

    2014-01-28

    We present the fabrication and characterizations of novel electrical interconnect test lines made of a Cu/graphite bishell composite with the graphite cap layer grown by electron cyclotron resonance chemical vapor deposition. Through this technique, conformal multilayer graphene can be formed on the predeposited Cu interconnects under CMOS-friendly conditions. The low-temperature (400 °C) deposition also renders the process unlimitedly scalable. The graphite layer can boost the current-carrying capacity of the composite structure to 10(8) A/cm(2), more than an order of magnitude higher than that of bare metal lines, and reduces resistivity of fine test lines by ∼10%. Raman measurements reveal that physical breakdown occurs at ∼680-720 °C. Modeling the current vs voltage curves up to breakdown shows that the maximum current density of the composites is limited by self-heating of the graphite, suggesting the strong roles of phonon scattering at high fields and highlighting the significance of a metal counterpart for enhanced thermal dissipation.

  15. [Applying multilevel models in evaluation of bioequivalence (I)].

    PubMed

    Liu, Qiao-lan; Shen, Zhuo-zhi; Chen, Feng; Li, Xiao-song; Yang, Min

    2009-12-01

    This study aims to explore the application value of multilevel models for bioequivalence evaluation. Using a real example of 2 x 4 cross-over experimental design in evaluating bioequivalence of antihypertensive drug, this paper explores complex variance components corresponding to criteria statistics in existing methods recommended by FDA but obtained in multilevel models analysis. Results are compared with those from FDA standard Method of Moments, specifically on the feasibility and applicability of multilevel models in directly assessing the bioequivalence (ABE), the population bioequivalence (PBE) and the individual bioequivalence (IBE). When measuring ln (AUC), results from all variance components of the test and reference groups such as total variance (sigma(TT)(2) and sigma(TR)(2)), between-subject variance (sigma(BT)(2) and sigma(BR)(2)) and within-subject variance (sigma(WT)(2) and sigma(WR)(2)) estimated by simple 2-level models are very close to those that using the FDA Method of Moments. In practice, bioequivalence evaluation can be carried out directly by multilevel models, or by FDA criteria, based on variance components estimated from multilevel models. Both approaches produce consistent results. Multilevel models can be used to evaluate bioequivalence in cross-over test design. Compared to FDA methods, this one is more flexible in decomposing total variance into sub components in order to evaluate the ABE, PBE and IBE. Multilevel model provides a new way into the practice of bioequivalence evaluation.

  16. Electrode and interconnect for miniature fuel cells using direct methanol feed

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor); Clara, Filiberto (Inventor)

    2004-01-01

    An improved system for interconnects in a fuel cell. In one embodiment, the membranes are located in parallel with one another, and current flow between them is facilitated by interconnects. In another embodiment, all of the current flow is through the interconnects which are located on the membranes. The interconnects are located between two electrodes.

  17. Electronic interconnects and devices with topological surface states and methods for fabricating same

    DOEpatents

    Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.

    2017-04-04

    An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.

  18. Electronic interconnects and devices with topological surface states and methods for fabricating same

    SciTech Connect

    Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.

    2016-05-03

    An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.

  19. Structural optimization by generalized, multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; James, B. B.; Riley, M. F.

    1985-01-01

    The developments toward a general multilevel optimization capability and results for a three-level structural optimization are described. The method partitions a structure into a number of substructuring levels where each substructure corresponds to a subsystem in the general case of an engineering system. The method is illustrated by a portal framework that decomposes into individual beams. Each beam is a box that can be further decomposed into stiffened plates. Substructuring for this example spans three different levels: (1) the bottom level of finite elements representing the plates; (2) an intermediate level of beams treated as substructures; and (3) the top level for the assembled structure. The three-level case is now considered to be qualitatively complete.

  20. Multilevel architectures for electronic document retrieval

    SciTech Connect

    Rome, J.A.; Tolliver, J.S.

    1997-04-01

    Traditionally, most classified computer systems run at the highest level of any of the data on the system, and all users must be cleared to this security level. This architecture precludes the use of low-level (pay and clearance) personnel for such tasks as data entry, and makes sharing data with other entities difficult. The government is trying to solve this problem by the introduction of multilevel-secure (MLS) computer systems. In addition, wherever possible, there is pressure to use commercial off-the-shelf software (COTS) to improve reliability, and to reduce purchase and maintenance costs. This paper presents two architectures for an MLS electronic document retrieval system using COTS products. Although the authors believe that the resulting systems represent a real advance in usability, scaleability, and scope, the disconnect between existing security rules and regulations and the rapidly-changing state of technology will make accreditation of such systems a challenge.

  1. Earning potential in multilevel marketing enterprises

    NASA Astrophysics Data System (ADS)

    Legara, Erika Fille; Monterola, Christopher; Juanico, Dranreb Earl; Litong-Palima, Marisciel; Saloma, Caesar

    2008-08-01

    Government regulators and other concerned citizens warily view multilevel marketing enterprises (MLM) because of their close operational resemblance to exploitative pyramid schemes. We analyze two types of MLM network architectures - the unilevel and binary, in terms of growth behavior and earning potential among members. We show that network growth decelerates after reaching a size threshold, contrary to claims of unrestricted growth by MLM recruiters. We have also found that the earning potential in binary MLM’s obey the Pareto “80-20” rule, implying an earning opportunity that is strongly biased against the most recent members. On the other hand, unilevel MLM’s do not exhibit the Pareto earning distribution and earning potential is independent of member position in the network. Our analytical results agree well with field data taken from real-world MLM’s in the Philippines. Our analysis is generally valid and can be applied to other MLM architectures.

  2. Multilevel wireless capsule endoscopy video segmentation

    NASA Astrophysics Data System (ADS)

    Hwang, Sae; Celebi, M. Emre

    2010-03-01

    Wireless Capsule Endoscopy (WCE) is a relatively new technology (FDA approved in 2002) allowing doctors to view most of the small intestine. WCE transmits more than 50,000 video frames per examination and the visual inspection of the resulting video is a highly time-consuming task even for the experienced gastroenterologist. Typically, a medical clinician spends one or two hours to analyze a WCE video. To reduce the assessment time, it is critical to develop a technique to automatically discriminate digestive organs and shots each of which consists of the same or similar shots. In this paper a multi-level WCE video segmentation methodology is presented to reduce the examination time.

  3. Multi-level coupled cluster theory

    SciTech Connect

    Myhre, Rolf H.; Koch, Henrik; Sánchez de Merás, Alfredo M. J.

    2014-12-14

    We present a general formalism where different levels of coupled cluster theory can be applied to different parts of the molecular system. The system is partitioned into subsystems by Cholesky decomposition of the one-electron Hartree-Fock density matrix. In this way the system can be divided across chemical bonds without discontinuities arising. The coupled cluster wave function is defined in terms of cluster operators for each part and these are determined from a set of coupled equations. The total wave function fulfills the Pauli-principle across all borders and levels of electron correlation. We develop the associated response theory for this multi-level coupled cluster theory and present proof of principle applications. The formalism is an essential tool in order to obtain size-intensive complexity in the calculation of local molecular properties.

  4. Multilevel domain decomposition for electronic structure calculations

    SciTech Connect

    Barrault, M. . E-mail: maxime.barrault@edf.fr; Cances, E. . E-mail: cances@cermics.enpc.fr; Hager, W.W. . E-mail: hager@math.ufl.edu; Le Bris, C. . E-mail: lebris@cermics.enpc.fr

    2007-03-01

    We introduce a new multilevel domain decomposition method (MDD) for electronic structure calculations within semi-empirical and density functional theory (DFT) frameworks. This method iterates between local fine solvers and global coarse solvers, in the spirit of domain decomposition methods. Using this approach, calculations have been successfully performed on several linear polymer chains containing up to 40,000 atoms and 200,000 atomic orbitals. Both the computational cost and the memory requirement scale linearly with the number of atoms. Additional speed-up can easily be obtained by parallelization. We show that this domain decomposition method outperforms the density matrix minimization (DMM) method for poor initial guesses. Our method provides an efficient preconditioner for DMM and other linear scaling methods, variational in nature, such as the orbital minimization (OM) procedure.

  5. Evolutionary biosemiotics and multilevel construction networks.

    PubMed

    Sharov, Alexei A

    2016-12-01

    In contrast to the traditional relational semiotics, biosemiotics decisively deviates towards dynamical aspects of signs at the evolutionary and developmental time scales. The analysis of sign dynamics requires constructivism (in a broad sense) to explain how new components such as subagents, sensors, effectors, and interpretation networks are produced by developing and evolving organisms. Semiotic networks that include signs, tools, and subagents are multilevel, and this feature supports the plasticity, robustness, and evolvability of organisms. The origin of life is described here as the emergence of simple self-constructing semiotic networks that progressively increased the diversity of their components and relations. Primitive organisms have no capacity to classify and track objects; thus, we need to admit the existence of proto-signs that directly regulate activities of agents without being associated with objects. However, object recognition and handling became possible in eukaryotic species with the development of extensive rewritable epigenetic memory as well as sensorial and effector capacities. Semiotic networks are based on sequential and recursive construction, where each step produces components (i.e., agents, scaffolds, signs, and resources) that are needed for the following steps of construction. Construction is not limited to repair and reproduction of what already exists or is unambiguously encoded, it also includes production of new components and behaviors via learning and evolution. A special case is the emergence of new levels of organization known as metasystem transition. Multilevel semiotic networks reshape the phenotype of organisms by combining a mosaic of features developed via learning and evolution of cooperating and/or conflicting subagents.

  6. Metallic fuel development

    SciTech Connect

    Walters, L.C.

    1987-01-01

    Metallic fuels are capable of achieving high burnup as a result of design modifications instituted in the late 1960's. The gap between the fuel slug and the cladding is fixed such that by the time the fuel swells to the cladding the fission gas bubbles interconnect and release the fission gas to an appropriately sized plenum volume. Interconnected porosity thus provides room for the fuel to deform from further swelling rather than stress the cladding. In addition, the interconnected porosity allows the fuel pin to be tolerant to transient events because as stresses are generated during a transient event the fuel flows rather than applying significant stress to the cladding. Until 1969 a number of metallic fuel alloys were under development in the US. At that time the metallic fuel development program in the US was discontinued in favor of ceramic fuels. However, development had proceeded to the point where it was clear that the zirconium addition to uranium-plutonium fuel would yield a ternary fuel with an adequately high solidus temperature and good compatibility with austenitic stainless steel cladding. Furthermore, several U-Pu-Zr fuel pins had achieved about 6 at.% bu by the late 1960's, without failure, and thus the prospect for high burnup was promising.

  7. Diffusion and structural changes in microcircuit interconnections

    NASA Technical Reports Server (NTRS)

    Nowak, W. B.

    1973-01-01

    The interdiffusion of platimum and gold films, a couple utilized in beam lead microcircuits, has been studied for temperatures up to 550 C. Gold-on-platinum couples and separate platimum and gold films 80-450 nm thick, were deposited by electron beam evaporation onto oxidized (111) silicon substrates. Diffusion was monitored by means of spectral reflectance versus wavelength in the band 500-1000 nm. The separate metal films showed good adhesion and stable reflectances (after an initial change) for at least 6 h at diffusion temperatures, in contrast to the couples. Analysis of platinum diffusion through the gold films yielded an activation energy about 38 kcal/g-atom and a pre-exponential factor of the order 0.001 sq cm/sec, values close to those for volume diffusion. The pre-exponential factor especially is dependent upon film deposition conditions.

  8. Impact of photolithography and mask variability on interconnect parasitics

    NASA Astrophysics Data System (ADS)

    Tian, Yuxin; Shi, Weiping; Mercer, M. Ray

    2005-11-01

    Due to photolithography effects and manufacture process variations, the actual features printed on wafer are different from the designed ones. This difference results in the inaccuracy on parasitic extraction, which is critical for timing verification and design for manufacturability. Most of the current layout parasitic extraction (LPE) tools ignore these effects and can cause as high as 20% errors. This paper proposes a new strategy to extract interconnect parasitics with the consideration of photolithography effects and process variations. Based on the feedback from lithography simulation, a shape correction process is setup to adjust the interconnect structure for LPE tools. Compared with the traditional extraction methodology, the parasitics extracted from this adjusted geometry are more accurate. This method can be implanted into the current design flow with minimum change. Meanwhile, this paper studies the impacts of mask critical dimension (CD) variations on interconnect parasitics. The variability analysis is based on PROLITH lithography simulation software and is tested on RAPHAEL interconnect library. The results show a high nonlinear relationship between the mask variation and the interconnect parasitics.

  9. Microcoil Spring Interconnects for Ceramic Grid Array Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Strickland, S. M.; Hester, J. D.; Gowan, A. K.; Montgomery, R. K.; Geist, D. L.; Blanche, J. F.; McGuire, G. D.; Nash, T. S.

    2011-01-01

    As integrated circuit miniaturization trends continue, they drive the need for smaller higher input/output (I/O) packages. Hermetically sealed ceramic area array parts are the package of choice by the space community for high reliability space flight electronic hardware. Unfortunately, the coefficient of thermal expansion mismatch between the ceramic area array package and the epoxy glass printed wiring board limits the life of the interconnecting solder joint. This work presents the results of an investigation by Marshall Space Flight Center into a method to increase the life of this second level interconnection by the use of compliant microcoil springs. The design of the spring and its attachment process are presented along with thermal cycling results of microcoil springs (MCS) compared with state-of-the-art ball and column interconnections. Vibration testing has been conducted on MCS and high lead column parts. Radio frequency simulation and measurements have been made and the MCS has been modeled and a stress analysis performed. Thermal cycling and vibration testing have shown MCS interconnects to be significantly more reliable than solder columns. Also, MCS interconnects are less prone to handling damage than solder columns. Future work that includes shock testing, incorporation into a digital signal processor board, and process evaluation of expansion from a 400 I/O device to a device with over 1,100 I/O is identified.

  10. Electrochemical Migration of Fine-Pitch Nanopaste Ag Interconnects

    NASA Astrophysics Data System (ADS)

    Tsou, Chia-Hung; Liu, Kai-Ning; Lin, Heng-Tien; Ouyang, Fan-Yi

    2016-12-01

    With the development of intelligent electronic products, usage of fine-pitch interconnects has become mainstream in high performance electronic devices. Electrochemical migration (ECM) of interconnects would be a serious reliability problem under temperature, humidity and biased voltage environments. In this study, ECM behavior of nanopaste Ag interconnects with pitch size from 20 μm to 50 μm was evaluated by thermal humidity bias (THB) and water drop (WD) tests with deionized water through in situ leakage current-versus-time (CVT) curve. The results indicate that the failure time of ECM in fine-pitch samples occurs within few seconds under WD testing and it increases with increasing pitch size. The microstructure examination indicated that intensive dendrite formation of Ag through the whole interface was found to bridge the two electrodes. In the THB test, the CVT curve exhibited two stages, incubation and ramp-up; failure time of ECM was about 173.7 min. In addition, intensive dendrite formation was observed only at the protrusion of the Ag interconnects due to the concentration of the electric field at the protrusion of the Ag interconnects.

  11. Modeling region-based interconnection for interdependent networks

    NASA Astrophysics Data System (ADS)

    Wang, Xiangrong; Kooij, Robert E.; Van Mieghem, Piet

    2016-10-01

    Various real-world networks interact with and depend on each other. The design of the interconnection between interacting networks is one of the main challenges to achieve a robust interdependent network. Due to cost considerations, network providers are inclined to interconnect nodes that are geographically close. Accordingly, we propose two topologies, the random geographic graph and the relative neighborhood graph, for the design of interconnection in interdependent networks that incorporates the geographic location of nodes. Differing from the one-to-one interconnection studied in the literature, one node in one network can depend on an arbitrary number of nodes in the other network. We derive the average number of interdependent links for the two topologies, which enables their comparison. For the two topologies, we evaluate the impact of the interconnection structure on the robustness of interdependent networks against cascading failures. The two topologies are assessed on the real-world coupled Italian Internet and the electric transmission network. Finally, we propose the derivative of the largest mutually connected component with respect to the fraction of failed nodes as a robustness metric. This robustness metric quantifies the damage of the network introduced by a small fraction of initial failures well before the critical fraction of failures at which the whole network collapses.

  12. Metallization of Large Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Pryor, R. A.

    1978-01-01

    A metallization scheme was developed which allows selective plating of silicon solar cell surfaces. The system is comprised of three layers. Palladium, through the formation of palladium silicide at 300 C in nitrogen, makes ohmic contact to the silicon surface. Nickel, plated on top of the palladium silicide layer, forms a solderable interface. Lead-tin solder on the nickel provides conductivity and allows a convenient means for interconnection of cells. To apply this metallization, three chemical plating baths are employed.

  13. Multilevel Atomic Coherent States and Atomic Holomorphic Representation

    NASA Technical Reports Server (NTRS)

    Cao, Chang-Qi; Haake, Fritz

    1996-01-01

    The notion of atomic coherent states is extended to the case of multilevel atom collective. Based on atomic coherent states, a holomorphic representation for atom collective states and operators is defined. An example is given to illustrate its application.

  14. Multi-level segmentation of passive millimeter wave images with high cluster numbers for hidden object detection

    NASA Astrophysics Data System (ADS)

    Yeom, Seokwon; Lee, Dong-Su; Son, Jung-Young

    2012-09-01

    Passive millimeter wave imaging is useful for security applications since it can detect objects concealed under clothing. However, because of the diffraction limit and low signal level, the automatic image analysis is very challenging. The multi-level segmentation of passive millimeter wave images is discussed as a way to detect concealed objects under clothing. Our passive millimeter wave imaging system is equipped with a Cassegrain dish antenna and a receiver channel operating around 3 mm wavelength. The expectation-maximization algorithm is adopted to cluster pixels on the basis of a Gaussian mixture model. The multi-level segmentation is investigated with more than two clusters to recognize the hidden object in different parts. The performance is evaluated by the average probability error. Experiments confirm that the presented method is able to detect the wood grip of a hand ax as well as the metal part concealed under clothing.

  15. 76 FR 46793 - PJM Interconnection, L.L.C.; PJM Power Providers Group v. PJM Interconnection, L.L.C.; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ... Energy Regulatory Commission PJM Interconnection, L.L.C.; PJM Power Providers Group v. PJM Interconnection, L.L.C.; Notice Establishing Post-Technical Comment Period As indicated in the June 29, 2011... issues related to PJM Interconnection, L.L.C. (PJM)'s Minimum Offer Price Rule (MOPR) and...

  16. Fan-In Communications On A Cray Gemini Interconnect

    SciTech Connect

    Jones, Terry R; Settlemyer, Bradley W

    2014-01-01

    Using the Cray Gemini interconnect as our platform, we present a study of an important class of communication operations the fan-in communication pattern. By its nature, fan-in communications form hot spots that present significant challenges for any interconnect fabric and communication software stack. Yet despite the inherent challenges, these communication patterns are common in both applications (which often perform reductions and other collective operations that include fan-in communication such as barriers) and system software (where they assume an important role within parallel file systems and other components requiring high-bandwidth or low-latency I/O). Our study determines the effectiveness of differing clientserver fan-in strategies. We describe fan-in performance in terms of aggregate bandwidth in the presence of varying degrees of congestion, as well as several other key attributes. Comparison numbers are presented for the Cray Aries interconnect. Finally, we provide recommended communication strategies based on our findings.

  17. Advancements in Distributed Generation Issues: Interconnection, Modeling, and Tariffs

    SciTech Connect

    Thomas, H.; Kroposki, B.; Basso, T.; Treanton, B. G.

    2007-01-01

    The California Energy Commission is cost-sharing research with the Department of Energy through the National Renewable Energy Laboratory to address distributed energy resources (DER) topics. These efforts include developing interconnection and power management technologies, modeling the impacts of interconnecting DER with an area electric power system, and evaluating possible modifications to rate policies and tariffs. As a result, a DER interconnection device has been developed and tested. A workshop reviewed the status and issues of advanced power electronic devices. Software simulations used validated models of distribution circuits that incorporated DER, and tests and measurements of actual circuits with and without DER systems are being conducted to validate these models. Current policies affecting DER were reviewed and rate making policies to support deployment of DER through public utility rates and policies were identified. These advancements are expected to support the continued and expanded use of DER systems.

  18. Solar cell interconnection and packaging using tape carrier

    SciTech Connect

    Kim, N.P.; Stanbery, B.J.

    1991-06-04

    This paper describes an array of photovoltaic cells. It comprises: photovolatic cells having a ratio of mass to surface area of less than 60 milligrams/square centimeter; a dielectric tape having a carrier surface for supporting the photovoltaic cells; interconnect means including an electrical circuit for electrically interconnecting the photovoltaic cells, the interconnect means supported by the dielectric tape on the carrier surface, the electrical circuit including contact fingers; and means defining primary openings in the dielectric tape, a primary opening being associated with a contact finger and positioned such that the contact finger can be directed from below the carrier surface in the direction of the photovoltaic cells and electrically connected to a photovoltaic cell, a portion of both sides of the contact finger being substantially free of the dielectric tape. This patent also describes the array of the above claim, wherein the photovoltaic cells are tandem cells including an upper subcell and a lower subcell.

  19. Parallel optical interconnects utilizing VLSI/FLC spatial light modulators

    NASA Astrophysics Data System (ADS)

    Genco, Sheryl M.

    1991-12-01

    Interconnection architectures are a cornerstone of parallel computing systems. However, interconnections can be a bottleneck in conventional computer architectures because of queuing structures that are necessary to handle the traffic through a switch at very high data rates and bandwidths. These issues must find new solutions to advance the state of the art in computing beyond the fundamental limit of silicon logic technology. Today's optoelectronic (OE) technology in particular VLSI/FLC spatial light modulators (SLMs) can provide a unique and innovative solution to these issues. This paper reports on the motivations for the system, describes the major areas of architectural requirements, discusses interconnection topologies and processor element alternatives, and documents an optical arbitration (i.e., control) scheme using `smart' SLMs and optical logic gates. The network topology is given in section 2.1 `Architectural Requirements -- Networks,' but it should be noted that the emphasis is on the optical control scheme (section 2.4) and the system.

  20. Net Metering and Interconnection Procedures-- Incorporating Best Practices

    SciTech Connect

    Jason Keyes, Kevin Fox, Joseph Wiedman, Staff at North Carolina Solar Center

    2009-04-01

    State utility commissions and utilities themselves are actively developing and revising their procedures for the interconnection and net metering of distributed generation. However, the procedures most often used by regulators and utilities as models have not been updated in the past three years, in which time most of the distributed solar facilities in the United States have been installed. In that period, the Interstate Renewable Energy Council (IREC) has been a participant in more than thirty state utility commission rulemakings regarding interconnection and net metering of distributed generation. With the knowledge gained from this experience, IREC has updated its model procedures to incorporate current best practices. This paper presents the most significant changes made to IREC’s model interconnection and net metering procedures.

  1. Applied study of optical interconnection link in computer cluster

    NASA Astrophysics Data System (ADS)

    Zhou, Ge; Tian, Jindong; Zhang, Nan; Jing, Wencai; Li, Haifeng

    2000-10-01

    In this paper, some study results to apply fiber link to a computer cluster are presented. The research is based on a ring network topology for a cluster system, which is connected by gigabit/s virtual parallel optical fiber link (VPOFLink) and its driver is for Linux Operating System, the transmission protocol of VPOFLink is compliant with Ethernet standard. We have studied the effect of different types of motherboard on transmission rate of the VPOFLink, and have analyzed the influence of optical interconnection network topology and computer networks protocol on the performance of this optical interconnection computer cluster. The round-trip transmission bandwidth of the VPOFLink have been tested, and the factors that limit transmission bandwidth, such as modes of forwarding data packets in the optical interconnection ring networks, and the size of the link buffer etc., are investigated.

  2. Multi-level bandwidth efficient block modulation codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1989-01-01

    The multilevel technique is investigated for combining block coding and modulation. There are four parts. In the first part, a formulation is presented for signal sets on which modulation codes are to be constructed. Distance measures on a signal set are defined and their properties are developed. In the second part, a general formulation is presented for multilevel modulation codes in terms of component codes with appropriate Euclidean distances. The distance properties, Euclidean weight distribution and linear structure of multilevel modulation codes are investigated. In the third part, several specific methods for constructing multilevel block modulation codes with interdependency among component codes are proposed. Given a multilevel block modulation code C with no interdependency among the binary component codes, the proposed methods give a multilevel block modulation code C which has the same rate as C, a minimum squared Euclidean distance not less than that of code C, a trellis diagram with the same number of states as that of C and a smaller number of nearest neighbor codewords than that of C. In the last part, error performance of block modulation codes is analyzed for an AWGN channel based on soft-decision maximum likelihood decoding. Error probabilities of some specific codes are evaluated based on their Euclidean weight distributions and simulation results.

  3. Future manufacturing techniques for stacked MCM interconnections

    NASA Astrophysics Data System (ADS)

    Carson, R. F.; Seigal, P. K.; Craft, D. C.; Lovejoy, M. L.

    1994-06-01

    As multichip modules (MCMs) grow in chip count and complexity, increasingly large numbers of input/output (I/O) channels will be required for connection to other MCMs or printed wiring boards. In applications such as digital signal processing, large increases in processing density (number of operations in a given volume) can be obtained in stacked MCM arrangements. The potential pin counts and required I/O densities in these stacked architectures will push beyond the limits of present interlevel coupling techniques. This problem is particularly acute if easy separation of layers is needed to meet MCM testing and yield requirements. Solutions to this problem include the use of laser-drilled, metal-filled electrical vias in the MCM substrate and also optoelectronic data channels that operate in large arrays. These arrays will emit and detect signals traveling perpendicular to the surface of the MCM. All of these approaches will require packaging and alignment that makes use of advanced MCM manufacturing techniques.

  4. IEEE 1547 Series of Standards: Interconnection Issues; Preprint

    SciTech Connect

    Basso, T.; DeBlasio, R.

    2003-09-01

    IEEE 1547TM 2003 Standard for Interconnecting Distributed Resources With Electric Power Systems is the first in the 1547 series of planned interconnection standards. Major issues and a wealth of constructive dialogue arose during 1547 development. There was also a perceived increased vitality in updating complementary IEEE standards and developing additional standards to accommodate modern electrical and electronics systems and improved grid communications and operations. Power engineers and other stakeholders looking to the future are poised to incorporate 1547 into their knowledge base to help transform our nation's aging distribution systems while alleviating some of the burden on existing transmission systems.

  5. Corrosion Performance of Ferritic Steel for SOFC Interconnect Applications

    SciTech Connect

    Ziomek-Moroz, M.; Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Jablonski, P.D.; Alman, D.E.

    2006-11-01

    Ferritic stainless steels have been identified as potential candidates for interconnects in planar-type solid oxide fuel cells (SOFC) operating below 800ºC. Crofer 22 APU was selected for this study. It was studied under simulated SOFC-interconnect dual environment conditions with humidified air on one side of the sample and humidified hydrogen on the other side at 750ºC. The surfaces of the oxidized samples were studied by scanning electron microscopy (SEM) equipped with microanalytical capabilities. X-ray diffraction (XRD) analysis was also used in this study.

  6. 980-nm VCSELs for optical interconnects at bandwidths beyond 40 Gb/s

    NASA Astrophysics Data System (ADS)

    Hofmann, W. H.; Moser, P.; Wolf, P.; Larisch, G.; Unrau, W.; Bimberg, D.

    2012-03-01

    The copper-induced communication bottleneck is inhibiting performance and environmental acceptance of today's supercomputers. Vertical-cavity surface-emitting lasers (VCSELs) are ideally suited to solve this dilemma. Indeed global players like Google, Intel, HP or IBM are now going for optical interconnects based on VCSELs. The required bandwidth per link, however, is fixed by the architecture of the data center. According to Google, a bandwidth of 40 Gb/s has to be accommodated. We recently realized ultra-high speed VCSELs suited for optical interconnects in data centers with record-high performance. The 980-nm wavelength was chosen to be able to realize densely-packed, bottom-emitting devices particularly advantageous for interconnects. These devices show error-free transmission at temperatures up to 155°C. Serial data-rates of 40 Gb/s were achieved up to 75° C. Peltier-cooled devices were modulated up to 50 Gb/s. These results were achieved from the sender side by a VCSEL structure with important improvements and from the receiver side by a receiver module supplied by u2t with some 30 GHz bandwidth. The novel VCSELs feature a new active region, a very short laser cavity, and a drastically improved thermal resistance by the incorporation of a binary bottom mirror. As these devices might be of industrial interest we had the epi-growth done by metal-organic chemical-vapor deposition at IQE Europe. Consequently, the devices were fabricated using a three-inch wafer process, and the apertures were formed by proprietary in-situ controlled selective wet oxidation. All device data were measured, mapped and evaluated by our fully automated probe station. Furthermore, these devices enable record-efficient data-transmission beyond 30 Gb/s, which is crucial for green photonics.

  7. Final Report and Documentation for the Optical Backplane/Interconnect for High Speed Communication LDRD

    SciTech Connect

    ROBERTSON, PERRY J.; CHEN, HELEN Y.; BRANDT, JAMES M.; SULLIVAN, CHARLES T.; PIERSON, LYNDON G.; WITZKE, EDWARD L.; GASS, KARL

    2001-03-01

    Current copper backplane technology has reached the technical limits of clock speed and width for systems requiring multiple boards. Currently, bus technology such as VME and PCI (types of buses) will face severe limitations are the bus speed approaches 100 MHz. At this speed, the physical length limit of an unterminated bus is barely three inches. Terminating the bus enables much higher clock rates but at drastically higher power cost. Sandia has developed high bandwidth parallel optical interconnects that can provide over 40 Gbps throughput between circuit boards in a system. Based on Sandia's unique VCSEL (Vertical Cavity Surface Emitting Laser) technology, these devices are compatible with CMOS (Complementary Metal Oxide Semiconductor) chips and have single channel bandwidth in excess of 20 GHz. In this project, we are researching the use of this interconnect scheme as the physical layer of a greater ATM (Asynchronous Transfer Mode) based backplane. There are several advantages to this technology including small board space, lower power and non-contact communication. This technology is also easily expandable to meet future bandwidth requirements in excess of 160 Gbps sometimes referred to as UTOPIA 6. ATM over optical backplane will enable automatic switching of wide high-speed circuits between boards in a system. In the first year we developed integrated VCSELs and receivers, identified fiber ribbon based interconnect scheme and a high level architecture. In the second year, we implemented the physical layer in the form of a PCI computer peripheral card. A description of future work including super computer networking deployment and protocol processing is included.

  8. Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor

    DOEpatents

    Bates, J.L.

    1992-09-01

    In one aspect of the invention, an air electrode material for a solid oxide fuel cell comprises Y[sub 1[minus]a]Q[sub a]MnO[sub 3], where Q is selected from the group consisting of Ca and Sr or mixtures thereof and a' is from 0.1 to 0.8. Preferably, a' is from 0.4 to 0.7. In another aspect of the invention, an electrical interconnection material for a solid oxide fuel cell comprises Y[sub 1[minus]b]Ca[sub b]Cr[sub 1[minus]c]Al[sub c]O[sub 3], where b' is from 0.1 to 0.6 and c' is from 0 to 9.3. Preferably, b' is from 0.3 to 0.5 and c' is from 0.05 to 0.1. A composite solid oxide electrochemical fuel cell incorporating these materials comprises: a solid oxide air electrode and an adjacent solid oxide electrical interconnection which commonly include the cation Y, the air electrode comprising Y[sub 1[minus]a]Q[sub a]MnO[sub 3], where Q is selected from the group consisting of Ca and Sr or mixtures thereof and a' is from 0.1 to 0.8, the electrical interconnection comprising Y[sub 1[minus]b]Ca[sub b]Cr[sub 1[minus]c]Al[sub c]O[sub 3], where b' is from 0.1 to 0.6 and c' is from 0.0 to 0.3; a yttrium stabilized solid electrolyte comprising (1[minus]d)ZrO[sub 2]-(d)Y[sub 2]O[sub 3] where d' is from 0.06 to 0.5; and a solid fuel electrode comprising X-ZrO[sub 2], where X' is an elemental metal. 5 figs.

  9. Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor

    DOEpatents

    Bates, J. Lambert

    1992-01-01

    In one aspect of the invention, an air electrode material for a solid oxide fuel cell comprises Y.sub.1-a Q.sub.a MnO.sub.3, where "Q" is selected from the group consisting of Ca and Sr or mixtures thereof and "a" is from 0.1 to 0.8. Preferably, "a" is from 0.4 to 0.7. In another aspect of the invention, an electrical interconnection material for a solid oxide fuel cell comprises Y.sub.1-b Ca.sub.b Cr.sub.1-c Al.sub.c O.sub.3, where "b" is from 0.1 to 0.6 and "c" is from 0 to 9.3. Preferably, "b" is from 0.3 to 0.5 and "c" is from 0.05 to 0.1. A composite solid oxide electrochemical fuel cell incorporating these materials comprises: a solid oxide air electrode and an adjacent solid oxide electrical interconnection which commonly include the cation Y, the air electrode comprising Y.sub.1-a Q.sub.a MnO.sub.3, where "Q" is selected from the group consisting of Ca and Sr or mixtures thereof and "a" is from 0.1 to 0.8, the electrical interconnection comprising Y.sub.1-b Ca.sub.b Cr.sub.1-c Al.sub.c O.sub.3, where "b" is from 0.1 to 0.6 and "c" is from 0.0 to 0.3; a yttrium stabilized solid electrolyte comprising (1-d)ZrO.sub.2 -(d)Y.sub.2 O.sub.3 where "d" is from 0.06 to 0.5; and a solid fuel electrode comprising X-ZrO.sub.2, where "X" is an elemental metal.

  10. Electroplated solder alloys for flip chip interconnections

    NASA Astrophysics Data System (ADS)

    Annala, P.; Kaitila, J.; Salonen, J.

    1997-01-01

    Flip chip mounting of bare dice is gaining widespread use in microelectronics packaging. The main drivers for this technology are high packaging density, improved performance at high frequency, low parasitic effects and potentially high reliability and low cost. Many companies have made significant efforts to develop a technology for bump processing, bare die testing and underfill encapsulation to gain the benefit of all potential advantages. We have focussed on low cost bumping of fully processed silicon wafers to develop a flexible scheme for various reflow requirements. The bumping process is based on galvanic plating from an alloy solution or, alternatively, from several elemental plating baths. Sputtered Mo/Cu or Cr/Cu is used as a wettable base for electroplating. Excess base metal is removed by using the bumps as an etching mask. Variation of the alloy composition or the layer structure, allows the adjustment of the bump reflow temperature for the specific requirements of the assembly. Using binary tin-lead and ternary tin-lead-bismuth alloys, reflow temperatures from 100 °C (bismuth rich alloys) to above 300 °C (lead rich alloys) can be covered. The influence of the plating current density on the final alloy composition has been established by ion beam analysis of the plated layers and a series of reflow experiments. To control the plating uniformity and the alloy composition, a new cup plating system has been built with a random flow pattern and continuous adjustment of the current density. A well-controlled reflow of the bumps has been achieved in hot glycerol up to the eutectic point of tin-lead alloys. For high temperature alloys, high molecular weight organic liquids have been used. A tensile pull strength of 20 g per bump and resistance of 5 mΩ per bump have been measured for typical eutectic tin-lead bumps of 100 μm in diameter.

  11. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect

    Anderson, K; Coddington, M; Burman, K; Hayter, S; Kroposki, B; Watson, and A

    2009-11-01

    The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in the five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to networks in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and

  12. Multi-level Simulation of a Real Time Vibration Monitoring System Component

    NASA Technical Reports Server (NTRS)

    Roberston, Bryan; Wilkerson, DeLisa

    2004-01-01

    This paper describes the development of a custom built Digital Signal Processing (DSP) printed circuit board designed to implement the Advanced Real Time Vibration Monitoring Subsystem proposed by MSFC Transportation Directorate in 2000 for the Space Shuttle Main Engine Advanced Health Management System (AHMS). This Real Time Vibration Monitoring System (RTVMS) is being developed for ground use as part of the AHMS Health Management Computer-Integrated Rack Assembly (HMC-IRA). The HMC-IRA RTVMS design contains five DSPs which are highly interconnected through individual communication ports, shared memory, and a unique communication router that allows all the DSPs to receive digitized data from two multi-channel analog boards simultaneously. This paper will briefly cover the overall board design but will focus primarily on the state-of-the-art simulation environment within which this board was developed. This 16-layer board with over 1800 components and an additional mezzanine card has been an extremely challenging design. Utilization of a Mentor Graphics simulation environment provided the unique board and system level simulation capability to ascertain any timing or functional concerns before production. By combining VHDL, Synopsys Software and Hardware Models, and the Mentor Design Capture Environment, multiple simulations were developed to verify the RTVMS design. This multi-level simulation allowed the designers to achieve complete operability without error the first time the RTVMS printed circuit board was powered. The HMCIRA design has completed all engineering unit testing and the deliverable unit is currently under development.

  13. Multi-level Simulation of a Real Time Vibration Monitoring System Component

    NASA Technical Reports Server (NTRS)

    Robertson, Bryan A.; Wilkerson, Delisa

    2005-01-01

    This paper describes the development of a custom built Digital Signal Processing (DSP) printed circuit board designed to implement the Advanced Real Time Vibration Monitoring Subsystem proposed by Marshall Space Flight Center (MSFC) Transportation Directorate in 2000 for the Space Shuttle Main Engine Advanced Health Management System (AHMS). This Real Time Vibration Monitoring System (RTVMS) is being developed for ground use as part of the AHMS Health Management Computer-Integrated Rack Assembly (HMC-IRA). The HMC-IRA RTVMS design contains five DSPs which are highly interconnected through individual communication ports, shared memory, and a unique communication router that allows all the DSPs to receive digitized data fiom two multi-channel analog boards simultaneously. This paper will briefly cover the overall board design but will focus primarily on the state-of-the-art simulation environment within which this board was developed. This 16-layer board with over 1800 components and an additional mezzanine card has been an extremely challenging design. Utilization of a Mentor Graphics simulation environment provided the unique board and system level simulation capability to ascertain any timing or functional concerns before production. By combining VHDL, Synopsys Software and Hardware Models, and the Mentor Design Capture Environment, multiple simulations were developed to verify the RTVMS design. This multi-level simulation allowed the designers to achieve complete operability without error the first time the RTVMS printed circuit board was powered. The HMC-IRA design has completed all engineering and deliverable unit testing. P

  14. Interconnected Co-Entrapped, N-Doped Carbon Nanotube Film as Active Hydrogen Evolution Cathode over the Whole pH Range.

    PubMed

    Xing, Zhicai; Liu, Qian; Xing, Wei; Asiri, Abdullah M; Sun, Xuping

    2015-06-08

    The use of electrocatalysts with low metal content (metal-deficient) or metal free for the hydrogen evolution reaction (HER) can prevent or decrease metal ion release, which reduces environmental impact; development of such catalysts with high activity and durability over the whole pH range is thus highly desired but still remains a huge challenge. Herein, we describe the direct growth of a film consisting of interconnected Co-entrapped, N-doped carbon nanotubes on carbon cloth using chemical vapor deposition from dicyanodiamine using a Co3 O4 nanowire array as catalyst. This integrated architecture is used as a flexible 3D electrode for the electrolytic hydrogen evolution with outstanding catalytic activity and durability in acidic media. Moreover, this electrode is also highly efficient under neutral and basic conditions. It offers us an attractive carbon-based metal-deficient HER catalyst outperforming most transition-metal and all metal-free/deficient catalysts.

  15. Silver flip chip interconnect technology and solid state bonding

    NASA Astrophysics Data System (ADS)

    Sha, Chu-Hsuan

    In this dissertation, fluxless transient liquid phase (TLP) bonding and solid state bonding between thermal expansion mismatch materials have been developed using Ag-In binary systems, pure Au, Ag, and Cu-Ag composite. In contrast to the conventional soldering process, fluxless bonding technique eliminates any corrosion and contamination problems caused by flux. Without flux, it is possible to fabricate high quality joints in large bonding areas where the flux is difficult to clean entirely. High quality joints are crucial to bonding thermal expansion mismatch materials since shear stress develops in the bonded pair. Stress concentration at voids in joints could increases breakage probability. In addition, intermetallic compound (IMC) formation between solder and underbump metallurgy (UBM) is essential for interconnect joint formation in conventional soldering process. However, the interface between IMC and solder is shown to be the weak interface that tends to break first during thermal cycling and drop tests. In our solid state bonding technique, there is no IMC involved in the bonding between Au to Au, Ag and Cu, and Ag and Au. All the reliability issues related to IMC or IMC growth is not our concern. To sum up, ductile bonding media, such as Ag or Au, and proper metallic layered structure are utilized in this research to produce high quality joints. The research starts with developing a low temperature fluxless bonding process using electroplated Ag/In/Ag multilayer structures between Si chip and 304 stainless steel (304SS) substrate. Because the outer thin Ag layer effectively protects inner In layer from oxidation, In layer dissolves Ag layer and joints to Ag layer on the to-be-bonded Si chip when temperature reaches the reflow temperature of 166ºC. Joints consist of mainly Ag-rich Ag-In solid solution and Ag2In. Using this fluxless bonding technique, two 304SS substrates can be bonded together as well. From the high magnification SEM images taken at cross

  16. The Highly Robust Electrical Interconnects and Ultrasensitive Biosensors Based on Embedded Carbon Nanotube Arrays

    NASA Technical Reports Server (NTRS)

    Li, Jun; Cassell, Alan; Koehne, Jessica; Chen, Hua; Ng, Hou Tee; Ye, Qi; Stevens, Ramsey; Han, Jie; Meyyappan, M.

    2003-01-01

    We report on our recent breakthroughs in two different applications using well-aligned carbon nanotube (CNT) arrays on Si chips, including (1) a novel processing solution for highly robust electrical interconnects in integrated circuit manufacturing, and (2) the development of ultrasensitive electrochemical DNA sensors. Both of them rely on the invention of a bottom-up fabrication scheme which includes six steps, including: (a) lithographic patterning, (b) depositing bottom conducting contacts, (c) depositing metal catalysts, (d) CNT growth by plasma enhanced chemical vapor deposition (PECVD), (e) dielectric gap-filling, and (f) chemical mechanical polishing (CMP). Such processes produce a stable planarized surface with only the open end of CNTs exposed, whch can be further processed or modified for different applications. By depositing patterned top contacts, the CNT can serve as vertical interconnects between the two conducting layers. This method is fundamentally different fiom current damascene processes and avoids problems associated with etching and filling of high aspect ratio holes at nanoscales. In addition, multiwalled CNTs (MWCNTs) are highly robust and can carry a current density of 10(exp 9) A/square centimeters without degradation. It has great potential to help extending the current Si technology. The embedded MWCNT array without the top contact layer can be also used as a nanoelectrode array in electrochemical biosensors. The cell time-constant and sensitivity can be dramatically improved. By functionalizing the tube ends with specific oligonucleotide probes, specific DNA targets can be detected with electrochemical methods down to subattomoles.

  17. Nanostructured CuS networks composed of interconnected nanoparticles for asymmetric supercapacitors.

    PubMed

    Fu, Wenbin; Han, Weihua; Zha, Heming; Mei, Junfeng; Li, Yunxia; Zhang, Zemin; Xie, Erqing

    2016-09-21

    Nanostructured metal sulfides with excellent electrochemical activity and electrical conductivity are particularly promising for applications in high-performance energy storage devices. Here, we report on the facile synthesis of nanostructured CuS networks composed of interconnected nanoparticles as novel battery-type materials for asymmetric supercapacitors. We find that the CuS networks exhibit a high specific capacity of 49.8 mA g(-1) at a current density of 1 A g(-1), good rate capability and cycle stability. The superior performance could be attributed to the interconnected nanoparticles of CuS networks, which can facilitate electrolyte diffusion and provide fast electron pathways. Furthermore, an aqueous asymmetric supercapacitor has been assembled by using the CuS networks as the positive electrode and activated carbon as the negative electrode. The assembled device can work at a high operating voltage of 1.6 V and show a maximum energy density of 17.7 W h kg(-1) at a power density of 504 W kg(-1). This study indicates that the CuS networks have great potential for supercapacitor applications.

  18. High integrity interconnection of silver submicron/nanoparticles on silicon wafer by femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Huang, H.; Sivayoganathan, M.; Duley, W. W.; Zhou, Y.

    2015-01-01

    Welding of nanomaterials is a promising technique for constructing nanodevices with robust mechanical properties. To date, fabrication of these devices is limited because of difficulties in restricting damage to the nanomaterials during the welding process. In this work, by utilizing very low fluence (˜900 μJ cm-2) femtosecond (fs) laser irradiation, we have produced a metallic interconnection between two adjacent silver (Ag) submicron/nanoparticles which were fixed on a silicon (Si) wafer after fs laser deposition. No additional filler material was used, and the connected particles remain almost damage free. Observation of the morphology before and after joining and finite difference time domain simulations indicate that the interconnection can be attributed to plasmonic excitation in the Ag submicron/nanoparticles. Concentration of energy between the particles leads to local ablation followed by re-deposition of the ablated material to form a bridging link that joins the two particles. This welding technique shows potential applications in the fabrication of nanodevices.

  19. High integrity interconnection of silver submicron/nanoparticles on silicon wafer by femtosecond laser irradiation.

    PubMed

    Huang, H; Sivayoganathan, M; Duley, W W; Zhou, Y

    2015-01-16

    Welding of nanomaterials is a promising technique for constructing nanodevices with robust mechanical properties. To date, fabrication of these devices is limited because of difficulties in restricting damage to the nanomaterials during the welding process. In this work, by utilizing very low fluence (∼900 μJ cm(-2)) femtosecond (fs) laser irradiation, we have produced a metallic interconnection between two adjacent silver (Ag) submicron/nanoparticles which were fixed on a silicon (Si) wafer after fs laser deposition. No additional filler material was used, and the connected particles remain almost damage free. Observation of the morphology before and after joining and finite difference time domain simulations indicate that the interconnection can be attributed to plasmonic excitation in the Ag submicron/nanoparticles. Concentration of energy between the particles leads to local ablation followed by re-deposition of the ablated material to form a bridging link that joins the two particles. This welding technique shows potential applications in the fabrication of nanodevices.

  20. Stress migration risk on electromigration reliability in advanced narrow line copper interconnects

    NASA Astrophysics Data System (ADS)

    Heryanto, A.; Pey, K. L.; Lim, Y. K.; Raghavan, N.; Liu, W.; Wei, J.; Gan, C. L.; Tan, J. B.

    2011-10-01

    The influence of stress migration (SM) on the electromigration (EM) reliability is studied here for very fine line interconnects, fabricated using the 45-nm Cu/low-κ interconnect process flow. As opposed to the current understanding that SM is not a concern for the narrow metal lines because of limited availability of vacancies for voiding, we found that SM does have serious wear-out effects. The EM lifetime distribution was severely degraded by around 38% for the samples that had been subjected to a 1000-h SM-only test, with a drastic reduction in the slope of the EM lognormal fitting distribution, from 0.548 to 0.193. The current density exponent of Black's equation for SM+EM stressed samples is ˜1, suggesting that void had already been nucleated because of the SM-only test. The high intrinsic tensile stress in the line is suspected to be responsible for this early void nucleation. In the second part, we developed a Monte Carlo simulation model to estimate the void nucleation and growth time using the EM-only and SM+EM degradation tests. We found that at low percentile failures overall failure time is mainly growth dominated, whereas at high percentile failures overall failure time is nucleation dominated. Stress migration was found to shorten the nucleation time for all the samples.

  1. Formation of an interconnected network of iron melt at Earth’s lower mantle conditions

    SciTech Connect

    Shi, Crystal Y.; Zhang, Li; Yang, Wenge; Liu, Yijin; Wang, Junyue; Meng, Yue; Andrews, Joy C.; Mao, Wendy L.

    2013-10-06

    Core formation represents the most significant differentiation event in Earth’s history. Our planet’s present layered structure with a metallic core and an overlying mantle implies that there must be a mechanism to separate iron alloy from silicates in the initially accreted material. At upper mantle conditions, percolation has been ruled out as an efficient mechanism because of the tendency of molten iron to form isolated pockets at these pressures and temperatures. Here we present experimental evidence of a liquid iron alloy forming an interconnected melt network within a silicate perovskite matrix under pressure and temperature conditions of the Earth’s lower mantle. Using nanoscale synchrotron X-ray computed tomography, we image a marked transition in the shape of the iron-rich melt in three-dimensional reconstructions of samples prepared at varying pressures and temperatures using a laser-heated diamond-anvil cell. We find that, as the pressure increases from 25 to 64GPa, the iron distribution changes from isolated pockets to an interconnected network. Our results indicate that percolation could be a viable mechanism of core formation at Earth’s lower mantle conditions.

  2. Designing Scalable PGAS Communication Subsystems on Cray Gemini Interconnect

    SciTech Connect

    Vishnu, Abhinav; Daily, Jeffrey A.; Palmer, Bruce J.

    2012-12-26

    The Cray Gemini Interconnect has been recently introduced as a next generation network architecture for building multi-petaflop supercomputers. Cray XE6 systems including LANL Cielo, NERSC Hopper, ORNL Titan and proposed NCSA BlueWaters leverage the Gemini Interconnect as their primary Interconnection network. At the same time, programming models such as the Message Passing Interface (MPI) and Partitioned Global Address Space (PGAS) models such as Unified Parallel C (UPC) and Co-Array Fortran (CAF) have become available on these systems. Global Arrays is a popular PGAS model used in a variety of application domains including hydrodynamics, chemistry and visualization. Global Arrays uses Aggregate Re- mote Memory Copy Interface (ARMCI) as the communication runtime system for Remote Memory Access communication. This paper presents a design, implementation and performance evaluation of scalable and high performance communication subsystems on Cray Gemini Interconnect using ARMCI. The design space is explored and time-space complexities of commu- nication protocols for one-sided communication primitives such as contiguous and uniformly non-contiguous datatypes, atomic memory operations (AMOs) and memory synchronization is presented. An implementation of the proposed design (referred as ARMCI-Gemini) demonstrates the efficacy on communication primitives, application kernels such as LU decomposition and full applications such as Smooth Particle Hydrodynamics (SPH) application.

  3. Democracy and Spiritual Awareness: Interconnections and Implications for Educational Leadership

    ERIC Educational Resources Information Center

    Woods, Glenys J.; Woods, Philip A.

    2008-01-01

    This article sets out theorisations of developmental democracy and spiritual awareness formulated in previous work by the authors. These are used to explore collegial leadership in a case study Steiner school, with the aim of illuminating and illustrating the transformative demands of developmental democracy and its interconnection with spiritual…

  4. 78 FR 7523 - Small Generator Interconnection Agreements and Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... Transmission Provider a pre-application report providing existing information about system conditions at a... Table of Contents Paragraph Nos. I. Introduction 1 II. Background 6 A. Order No. 2006 6 B. Solar Energy... interconnection requests and the growth in solar photovoltaic (PV) installations, driven in part by...

  5. 78 FR 73239 - Small Generator Interconnection Agreements and Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-05

    ... (Technical Information), Office of Electric Reliability, Federal Energy Regulatory Commission, 888 First... Issues 233 1. Network Resource Interconnection Service.. 233 a. Commission Proposal 233 b. Comments 234 c... facilities used for transmitting electric energy in interstate commerce, as defined by the FPA. See 16...

  6. Use of Fiber Optic Interconnects for Signal Integrity

    NASA Astrophysics Data System (ADS)

    Phal, Yamuna D.; Phal, Deovrat D.

    2016-05-01

    Signal integrity (SI) is always a concern when it comes to high-speed data transmission. Even in space, there is a need for high-speed data transmission such as in the communication systems, monitoring various sub- systems and for other on-board experiments and applications.From Electromagneticperspective, using fiber-optic interconnect is highly recommended to avoid interference issues. This field has been explored for quite some time now, but mostly limited to applications that are on earth. Using these interconnects for harsh and extreme environments i.e. in space, requires reliability and ruggedness of interconnects and the system.This study suggests methods for optical fiber based communication systems for internal unit communication, communication within various instruments, as well as inter-board communication. A conclusion in terms of what areas need to be explored for enabling high-speed data transmission for space applications would be discussed in details. This study also explores and compares the existing technologies in the fiber-optic interconnects for space applications.

  7. Hermetic aluminum radio frequency interconnection and method for making

    DOEpatents

    Kilgo, Riley D.; Kovacic, Larry; Brow, Richard K.

    2000-01-01

    The present invention provides a light-weight, hermetic coaxial radio-frequency (RF) interconnection having an electrically conductive outer housing made of aluminum or an aluminum alloy, a central electrical conductor made of ferrous or non-ferrous material, and a cylinder of dielectric material comprising a low-melting-temperature, high-thermal-expansion aluminophosphate glass composition for hermetically sealing between the aluminum-alloy outer housing and the ferrous or non-ferrous center conductor. The entire RF interconnection assembly is made permanently hermetic by thermally fusing the center conductor, glass, and housing concurrently by bringing the glass to the melt point by way of exposure to an atmospheric temperature sufficient to melt the glass, less than 540.degree. C., but that does not melt the center conductor or the outer aluminum or aluminum alloy housing. The composition of the glass used is controlled to provide a suitable low dielectric constant so that an appropriate electrical characteristic impedance, for example 50 ohms, can be achieved for an electrical interconnection that performs well at high radio frequencies and also provides an interconnection maintaining a relatively small physical size.

  8. Optical interconnection networks for high-performance computing systems.

    PubMed

    Biberman, Aleksandr; Bergman, Keren

    2012-04-01

    Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers.

  9. Desirements of Next Generation Spacecraft Interconnects : The JPL NEXUS Perspective

    NASA Technical Reports Server (NTRS)

    He, Yutao; Some, Rafi

    2011-01-01

    Objectives of NEXUS (NEXt bUS) (1) A research task funded by JPL R&TD program (2) Develop a common highly-capable next generation avionics interconnect with the following features: (a) Transparently compatible with wired, fiber-optic, and RF physical layers (b) A clear and feasible path-to-flight to ensure infusion into future NASA/JPL missions

  10. Using SPEEDES to simulate the blue gene interconnect network

    NASA Technical Reports Server (NTRS)

    Springer, P.; Upchurch, E.

    2003-01-01

    JPL and the Center for Advanced Computer Architecture (CACR) is conducting application and simulation analyses of BG/L in order to establish a range of effectiveness for the Blue Gene/L MPP architecture in performing important classes of computations and to determine the design sensitivity of the global interconnect network in support of real world ASCI application execution.

  11. Open Systems Interconnection: A Special Issue of "Library Hi Tech."

    ERIC Educational Resources Information Center

    Denenberg, Ray; Reusser, Trudy Grieb

    1990-01-01

    Traces the evolution of Open Systems Interconnection (OSI) from its genesis in 1978 and provides an overview of the various categories of standards, international standards organizations, the scope of standards, and the notations used to designate both the standards groups and the actual standards. (SD)

  12. 100 Gbit Interconnects and Above: The Need for Speed

    DTIC Science & Technology

    2007-01-01

    ADM002197. 14 . ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF PAGES... 14 3.6 Protocols for the data center...interconnects .............. 14 Figure 7: Simplistic view of the current network (Core, Metro, Access, and Last Mile) ............. 15 Figure 8: Basics

  13. Fiber optic demonstration of MIL-STD-1760 stores interconnect

    NASA Astrophysics Data System (ADS)

    Nelson, Gary L.; Cosimini, Gregory J.; Bartnik, Daniel J.

    The authors describe a laser-diode-based, fiber-optic stores management interconnect demonstration system. System test results for MIL-STD-1760 compliance are presented. These tests include bandwidth, latency, step input response, transient (T-pulse) response, and signal to noise ratio.

  14. Peace Education, ESD and the Earth Charter: Interconnections and Synergies

    ERIC Educational Resources Information Center

    Toh, Swee-Hin; Cawagas, Virginia Floresca

    2010-01-01

    This article provides a review of how the values and principles of the Earth Charter initiative relate to two specific innovative movements of educational transformation, namely peace education and education for sustainable development (ESD). The interconnections and synergies between these movements and the Earth Charter are highlighted.…

  15. 14 CFR 25.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Section 25.957 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the...

  16. 14 CFR 25.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Section 25.957 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the...

  17. 14 CFR 25.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Section 25.957 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the...

  18. 14 CFR 25.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Section 25.957 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the...

  19. 16. Control Area, Interconnecting Corridor, interior view showing highcapacity venting ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Control Area, Interconnecting Corridor, interior view showing high-capacity venting system and black-out shades on south wall VIEW WEST - NIKE Missile Battery PR-79, Control Area, Tucker Hollow Road south of State Route 101, Foster, Providence County, RI

  20. Scanning Acoustic Microscope of 3D-Interconnect

    NASA Astrophysics Data System (ADS)

    Wai Kong, Lay; Diebold, A. C.; Rudack, A.; Arkalgud, S.

    2009-09-01

    The College of Nanoscale Science and Engineering of the University at Albany in collaboration with International SEMATECH is investigating the use of Scanning Acoustic Microscope (SAM) for analyzing 3D Interconnects. SAM is a non-destructive metrology technique which utilizes high frequency ultrasound to generate a microscopic image of the internal parts of a specimen. The goal of this project is to develop microscopic techniques for evaluating Through-Silicon Vias (TSVs) for 3D-Interconnects. Preliminary data shows voids and other defects in the interface between bonded wafers as shown in Figure 1. Our SAM laboratory system operates at 230 MHz and has a spatial resolution of 5-10 μm and focal length of 5.9 mm on a silicon wafer. The spatial resolution and sampling depth depend on the ultrasonic frequency, sound velocity, focal length and diameter of piezoelectric crystal. Typically, the silicon wafers have a thickness of 775 μm before they are bonded. Our initial work is focused on blanket wafers in order to develop the bonding process. The next step is to bond wafers with test die where the patterning obscures the interface. This paper will discuss the limitations of SAM and compare it to infrared microscopy which is another important imaging capability for 3D Interconnect. We also discuss the current status of research into more advanced acoustic microscopy methods and how this might impact 3D Interconnect imaging.