Multilevel Modeling and Policy Development: Guidelines and Applications to Medical Travel.
Garcia-Garzon, Eduardo; Zhukovsky, Peter; Haller, Elisa; Plakolm, Sara; Fink, David; Petrova, Dafina; Mahalingam, Vaishali; Menezes, Igor G; Ruggeri, Kai
2016-01-01
Medical travel has expanded rapidly in recent years, resulting in new markets and increased access to medical care. Whereas several studies investigated the motives of individuals seeking healthcare abroad, the conventional analytical approach is limited by substantial caveats. Classical techniques as found in the literature cannot provide sufficient insight due to the nested nature of data generated. The application of adequate analytical techniques, specifically multilevel modeling, is scarce to non-existent in the context of medical travel. This study introduces the guidelines for application of multilevel techniques in public health research by presenting an application of multilevel modeling in analyzing the decision-making patterns of potential medical travelers. Benefits and potential limitations are discussed.
Multilevel Modeling and Policy Development: Guidelines and Applications to Medical Travel
Garcia-Garzon, Eduardo; Zhukovsky, Peter; Haller, Elisa; Plakolm, Sara; Fink, David; Petrova, Dafina; Mahalingam, Vaishali; Menezes, Igor G.; Ruggeri, Kai
2016-01-01
Medical travel has expanded rapidly in recent years, resulting in new markets and increased access to medical care. Whereas several studies investigated the motives of individuals seeking healthcare abroad, the conventional analytical approach is limited by substantial caveats. Classical techniques as found in the literature cannot provide sufficient insight due to the nested nature of data generated. The application of adequate analytical techniques, specifically multilevel modeling, is scarce to non-existent in the context of medical travel. This study introduces the guidelines for application of multilevel techniques in public health research by presenting an application of multilevel modeling in analyzing the decision-making patterns of potential medical travelers. Benefits and potential limitations are discussed. PMID:27252672
Multilevel modelling: Beyond the basic applications.
Wright, Daniel B; London, Kamala
2009-05-01
Over the last 30 years statistical algorithms have been developed to analyse datasets that have a hierarchical/multilevel structure. Particularly within developmental and educational psychology these techniques have become common where the sample has an obvious hierarchical structure, like pupils nested within a classroom. We describe two areas beyond the basic applications of multilevel modelling that are important to psychology: modelling the covariance structure in longitudinal designs and using generalized linear multilevel modelling as an alternative to methods from signal detection theory (SDT). Detailed code for all analyses is described using packages for the freeware R.
NASA Astrophysics Data System (ADS)
Sun, Yuan; Bhattacherjee, Anol
2011-11-01
Information technology (IT) usage within organisations is a multi-level phenomenon that is influenced by individual-level and organisational-level variables. Yet, current theories, such as the unified theory of acceptance and use of technology, describe IT usage as solely an individual-level phenomenon. This article postulates a model of organisational IT usage that integrates salient organisational-level variables such as user training, top management support and technical support within an individual-level model to postulate a multi-level model of IT usage. The multi-level model was then empirically validated using multi-level data collected from 128 end users and 26 managers in 26 firms in China regarding their use of enterprise resource planning systems and analysed using the multi-level structural equation modelling (MSEM) technique. We demonstrate the utility of MSEM analysis of multi-level data relative to the more common structural equation modelling analysis of single-level data and show how single-level data can be aggregated to approximate multi-level analysis when multi-level data collection is not possible. We hope that this article will motivate future scholars to employ multi-level data and multi-level analysis for understanding organisational phenomena that are truly multi-level in nature.
Theoretical and software considerations for nonlinear dynamic analysis
NASA Technical Reports Server (NTRS)
Schmidt, R. J.; Dodds, R. H., Jr.
1983-01-01
In the finite element method for structural analysis, it is generally necessary to discretize the structural model into a very large number of elements to accurately evaluate displacements, strains, and stresses. As the complexity of the model increases, the number of degrees of freedom can easily exceed the capacity of present-day software system. Improvements of structural analysis software including more efficient use of existing hardware and improved structural modeling techniques are discussed. One modeling technique that is used successfully in static linear and nonlinear analysis is multilevel substructuring. This research extends the use of multilevel substructure modeling to include dynamic analysis and defines the requirements for a general purpose software system capable of efficient nonlinear dynamic analysis. The multilevel substructuring technique is presented, the analytical formulations and computational procedures for dynamic analysis and nonlinear mechanics are reviewed, and an approach to the design and implementation of a general purpose structural software system is presented.
ERIC Educational Resources Information Center
Huang, Francis L.; Cornell, Dewey G.
2016-01-01
Advances in multilevel modeling techniques now make it possible to investigate the psychometric properties of instruments using clustered data. Factor models that overlook the clustering effect can lead to underestimated standard errors, incorrect parameter estimates, and model fit indices. In addition, factor structures may differ depending on…
Standardized Mean Differences in Two-Level Cross-Classified Random Effects Models
ERIC Educational Resources Information Center
Lai, Mark H. C.; Kwok, Oi-Man
2014-01-01
Multilevel modeling techniques are becoming more popular in handling data with multilevel structure in educational and behavioral research. Recently, researchers have paid more attention to cross-classified data structure that naturally arises in educational settings. However, unlike traditional single-level research, methodological studies about…
ERIC Educational Resources Information Center
Preacher, Kristopher J.; Curran, Patrick J.; Bauer, Daniel J.
2006-01-01
Simple slopes, regions of significance, and confidence bands are commonly used to evaluate interactions in multiple linear regression (MLR) models, and the use of these techniques has recently been extended to multilevel or hierarchical linear modeling (HLM) and latent curve analysis (LCA). However, conducting these tests and plotting the…
Multilevel Factor Analyses of Family Data from the Hawai'i Family Study of Cognition
ERIC Educational Resources Information Center
McArdle, John J.; Hamagami, Fumiaki; Bautista, Randy; Onoye, Jane; Hishinuma, Earl S.; Prescott, Carol A.; Takeshita, Junji; Zonderman, Alan B.; Johnson, Ronald C.
2014-01-01
In this study, we reanalyzed the classic Hawai'i Family Study of Cognition (HFSC) data using contemporary multilevel modeling techniques. We used the HFSC baseline data ("N" = 6,579) and reexamined the factorial structure of 16 cognitive variables using confirmatory (restricted) measurement models in an explicit sequence. These models…
NASA Astrophysics Data System (ADS)
Binh, Le Nguyen
2009-04-01
A geometrical and phasor representation technique is presented to illustrate the modulation of the lightwave carrier to generate quadrature amplitude modulated (QAM) signals. The modulation of the amplitude and phase of the lightwave carrier is implemented using only one dual-drive Mach-Zehnder interferometric modulator (MZIM) with the assistance of phasor techniques. Any multilevel modulation scheme can be generated, but we illustrate specifically, the multilevel amplitude and differential phase shift keying (MADPSK) signals. The driving voltage levels are estimated for driving the traveling wave electrodes of the modulator. Phasor diagrams are extensively used to demonstrate the effectiveness of modulation schemes. MATLAB Simulink models are formed to generate the multilevel modulation formats, transmission, and detection in optically amplified fiber communication systems. Transmission performance is obtained for the multilevel optical signals and proven to be equivalent or better than those of binary level with equivalent bit rate. Further, the resilience to nonlinear effects is much higher for MADPSK of 50% and 33% pulse width as compared to non-return-to-zero (NRZ) pulse shaping.
ERIC Educational Resources Information Center
Richter, Tobias
2006-01-01
Most reading time studies using naturalistic texts yield data sets characterized by a multilevel structure: Sentences (sentence level) are nested within persons (person level). In contrast to analysis of variance and multiple regression techniques, hierarchical linear models take the multilevel structure of reading time data into account. They…
Using iMCFA to Perform the CFA, Multilevel CFA, and Maximum Model for Analyzing Complex Survey Data.
Wu, Jiun-Yu; Lee, Yuan-Hsuan; Lin, John J H
2018-01-01
To construct CFA, MCFA, and maximum MCFA with LISREL v.8 and below, we provide iMCFA (integrated Multilevel Confirmatory Analysis) to examine the potential multilevel factorial structure in the complex survey data. Modeling multilevel structure for complex survey data is complicated because building a multilevel model is not an infallible statistical strategy unless the hypothesized model is close to the real data structure. Methodologists have suggested using different modeling techniques to investigate potential multilevel structure of survey data. Using iMCFA, researchers can visually set the between- and within-level factorial structure to fit MCFA, CFA and/or MAX MCFA models for complex survey data. iMCFA can then yield between- and within-level variance-covariance matrices, calculate intraclass correlations, perform the analyses and generate the outputs for respective models. The summary of the analytical outputs from LISREL is gathered and tabulated for further model comparison and interpretation. iMCFA also provides LISREL syntax of different models for researchers' future use. An empirical and a simulated multilevel dataset with complex and simple structures in the within or between level was used to illustrate the usability and the effectiveness of the iMCFA procedure on analyzing complex survey data. The analytic results of iMCFA using Muthen's limited information estimator were compared with those of Mplus using Full Information Maximum Likelihood regarding the effectiveness of different estimation methods.
Using Multilevel Modeling in Language Assessment Research: A Conceptual Introduction
ERIC Educational Resources Information Center
Barkaoui, Khaled
2013-01-01
This article critiques traditional single-level statistical approaches (e.g., multiple regression analysis) to examining relationships between language test scores and variables in the assessment setting. It highlights the conceptual, methodological, and statistical problems associated with these techniques in dealing with multilevel or nested…
Browne, William J; Steele, Fiona; Golalizadeh, Mousa; Green, Martin J
2009-06-01
We consider the application of Markov chain Monte Carlo (MCMC) estimation methods to random-effects models and in particular the family of discrete time survival models. Survival models can be used in many situations in the medical and social sciences and we illustrate their use through two examples that differ in terms of both substantive area and data structure. A multilevel discrete time survival analysis involves expanding the data set so that the model can be cast as a standard multilevel binary response model. For such models it has been shown that MCMC methods have advantages in terms of reducing estimate bias. However, the data expansion results in very large data sets for which MCMC estimation is often slow and can produce chains that exhibit poor mixing. Any way of improving the mixing will result in both speeding up the methods and more confidence in the estimates that are produced. The MCMC methodological literature is full of alternative algorithms designed to improve mixing of chains and we describe three reparameterization techniques that are easy to implement in available software. We consider two examples of multilevel survival analysis: incidence of mastitis in dairy cattle and contraceptive use dynamics in Indonesia. For each application we show where the reparameterization techniques can be used and assess their performance.
Extending the Multi-level Method for the Simulation of Stochastic Biological Systems.
Lester, Christopher; Baker, Ruth E; Giles, Michael B; Yates, Christian A
2016-08-01
The multi-level method for discrete-state systems, first introduced by Anderson and Higham (SIAM Multiscale Model Simul 10(1):146-179, 2012), is a highly efficient simulation technique that can be used to elucidate statistical characteristics of biochemical reaction networks. A single point estimator is produced in a cost-effective manner by combining a number of estimators of differing accuracy in a telescoping sum, and, as such, the method has the potential to revolutionise the field of stochastic simulation. In this paper, we present several refinements of the multi-level method which render it easier to understand and implement, and also more efficient. Given the substantial and complex nature of the multi-level method, the first part of this work reviews existing literature, with the aim of providing a practical guide to the use of the multi-level method. The second part provides the means for a deft implementation of the technique and concludes with a discussion of a number of open problems.
New evidence favoring multilevel decomposition and optimization
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; Polignone, Debra A.
1990-01-01
The issue of the utility of multilevel decomposition and optimization remains controversial. To date, only the structural optimization community has actively developed and promoted multilevel optimization techniques. However, even this community acknowledges that multilevel optimization is ideally suited for a rather limited set of problems. It is warned that decomposition typically requires eliminating local variables by using global variables and that this in turn causes ill-conditioning of the multilevel optimization by adding equality constraints. The purpose is to suggest a new multilevel optimization technique. This technique uses behavior variables, in addition to design variables and constraints, to decompose the problem. The new technique removes the need for equality constraints, simplifies the decomposition of the design problem, simplifies the programming task, and improves the convergence speed of multilevel optimization compared to conventional optimization.
A multilevel control system for the large space telescope. [numerical analysis/optimal control
NASA Technical Reports Server (NTRS)
Siljak, D. D.; Sundareshan, S. K.; Vukcevic, M. B.
1975-01-01
A multilevel scheme was proposed for control of Large Space Telescope (LST) modeled by a three-axis-six-order nonlinear equation. Local controllers were used on the subsystem level to stabilize motions corresponding to the three axes. Global controllers were applied to reduce (and sometimes nullify) the interactions among the subsystems. A multilevel optimization method was developed whereby local quadratic optimizations were performed on the subsystem level, and global control was again used to reduce (nullify) the effect of interactions. The multilevel stabilization and optimization methods are presented as general tools for design and then used in the design of the LST Control System. The methods are entirely computerized, so that they can accommodate higher order LST models with both conceptual and numerical advantages over standard straightforward design techniques.
Dunn, Erin C.; Masyn, Katherine E.; Yudron, Monica; Jones, Stephanie M.; Subramanian, S.V.
2014-01-01
The observation that features of the social environment, including family, school, and neighborhood characteristics, are associated with individual-level outcomes has spurred the development of dozens of multilevel or ecological theoretical frameworks in epidemiology, public health, psychology, and sociology, among other disciplines. Despite the widespread use of such theories in etiological, intervention, and policy studies, challenges remain in bridging multilevel theory and empirical research. This paper set out to synthesize these challenges and provide specific examples of methodological and analytical strategies researchers are using to gain a more nuanced understanding of the social determinants of psychiatric disorders, with a focus on children’s mental health. To accomplish this goal, we begin by describing multilevel theories, defining their core elements, and discussing what these theories suggest is needed in empirical work. In the second part, we outline the main challenges researchers face in translating multilevel theory into research. These challenges are presented for each stage of the research process. In the third section, we describe two methods being used as alternatives to traditional multilevel modeling techniques to better bridge multilevel theory and multilevel research. These are: (1) multilevel factor analysis and multilevel structural equation modeling; and (2) dynamic systems approaches. Through its review of multilevel theory, assessment of existing strategies, and examination of emerging methodologies, this paper offers a framework to evaluate and guide empirical studies on the social determinants of child psychiatric disorders as well as health across the lifecourse. PMID:24469555
Min, Ari; Park, Chang Gi; Scott, Linda D
2016-05-23
Data envelopment analysis (DEA) is an advantageous non-parametric technique for evaluating relative efficiency of performance. This article describes use of DEA to estimate technical efficiency of nursing care and demonstrates the benefits of using multilevel modeling to identify characteristics of efficient facilities in the second stage of analysis. Data were drawn from LTCFocUS.org, a secondary database including nursing home data from the Online Survey Certification and Reporting System and Minimum Data Set. In this example, 2,267 non-hospital-based nursing homes were evaluated. Use of DEA with nurse staffing levels as inputs and quality of care as outputs allowed estimation of the relative technical efficiency of nursing care in these facilities. In the second stage, multilevel modeling was applied to identify organizational factors contributing to technical efficiency. Use of multilevel modeling avoided biased estimation of findings for nested data and provided comprehensive information on differences in technical efficiency among counties and states. © The Author(s) 2016.
Hamaker, E L; Asparouhov, T; Brose, A; Schmiedek, F; Muthén, B
2018-04-06
With the growing popularity of intensive longitudinal research, the modeling techniques and software options for such data are also expanding rapidly. Here we use dynamic multilevel modeling, as it is incorporated in the new dynamic structural equation modeling (DSEM) toolbox in Mplus, to analyze the affective data from the COGITO study. These data consist of two samples of over 100 individuals each who were measured for about 100 days. We use composite scores of positive and negative affect and apply a multilevel vector autoregressive model to allow for individual differences in means, autoregressions, and cross-lagged effects. Then we extend the model to include random residual variances and covariance, and finally we investigate whether prior depression affects later depression scores through the random effects of the daily diary measures. We end with discussing several urgent-but mostly unresolved-issues in the area of dynamic multilevel modeling.
How to compare cross-lagged associations in a multilevel autoregressive model.
Schuurman, Noémi K; Ferrer, Emilio; de Boer-Sonnenschein, Mieke; Hamaker, Ellen L
2016-06-01
By modeling variables over time it is possible to investigate the Granger-causal cross-lagged associations between variables. By comparing the standardized cross-lagged coefficients, the relative strength of these associations can be evaluated in order to determine important driving forces in the dynamic system. The aim of this study was twofold: first, to illustrate the added value of a multilevel multivariate autoregressive modeling approach for investigating these associations over more traditional techniques; and second, to discuss how the coefficients of the multilevel autoregressive model should be standardized for comparing the strength of the cross-lagged associations. The hierarchical structure of multilevel multivariate autoregressive models complicates standardization, because subject-based statistics or group-based statistics can be used to standardize the coefficients, and each method may result in different conclusions. We argue that in order to make a meaningful comparison of the strength of the cross-lagged associations, the coefficients should be standardized within persons. We further illustrate the bivariate multilevel autoregressive model and the standardization of the coefficients, and we show that disregarding individual differences in dynamics can prove misleading, by means of an empirical example on experienced competence and exhaustion in persons diagnosed with burnout. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
ERIC Educational Resources Information Center
Fagginger Auer, Marije F.; Hickendorff, Marian; Van Putten, Cornelis M.; Béguin, Anton A.; Heiser, Willem J.
2016-01-01
A first application of multilevel latent class analysis (MLCA) to educational large-scale assessment data is demonstrated. This statistical technique addresses several of the challenges that assessment data offers. Importantly, MLCA allows modeling of the often ignored teacher effects and of the joint influence of teacher and student variables.…
Covariate Selection for Multilevel Models with Missing Data
Marino, Miguel; Buxton, Orfeu M.; Li, Yi
2017-01-01
Missing covariate data hampers variable selection in multilevel regression settings. Current variable selection techniques for multiply-imputed data commonly address missingness in the predictors through list-wise deletion and stepwise-selection methods which are problematic. Moreover, most variable selection methods are developed for independent linear regression models and do not accommodate multilevel mixed effects regression models with incomplete covariate data. We develop a novel methodology that is able to perform covariate selection across multiply-imputed data for multilevel random effects models when missing data is present. Specifically, we propose to stack the multiply-imputed data sets from a multiple imputation procedure and to apply a group variable selection procedure through group lasso regularization to assess the overall impact of each predictor on the outcome across the imputed data sets. Simulations confirm the advantageous performance of the proposed method compared with the competing methods. We applied the method to reanalyze the Healthy Directions-Small Business cancer prevention study, which evaluated a behavioral intervention program targeting multiple risk-related behaviors in a working-class, multi-ethnic population. PMID:28239457
Multi-level methods and approximating distribution functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, D., E-mail: daniel.wilson@dtc.ox.ac.uk; Baker, R. E.
2016-07-15
Biochemical reaction networks are often modelled using discrete-state, continuous-time Markov chains. System statistics of these Markov chains usually cannot be calculated analytically and therefore estimates must be generated via simulation techniques. There is a well documented class of simulation techniques known as exact stochastic simulation algorithms, an example of which is Gillespie’s direct method. These algorithms often come with high computational costs, therefore approximate stochastic simulation algorithms such as the tau-leap method are used. However, in order to minimise the bias in the estimates generated using them, a relatively small value of tau is needed, rendering the computational costs comparablemore » to Gillespie’s direct method. The multi-level Monte Carlo method (Anderson and Higham, Multiscale Model. Simul. 10:146–179, 2012) provides a reduction in computational costs whilst minimising or even eliminating the bias in the estimates of system statistics. This is achieved by first crudely approximating required statistics with many sample paths of low accuracy. Then correction terms are added until a required level of accuracy is reached. Recent literature has primarily focussed on implementing the multi-level method efficiently to estimate a single system statistic. However, it is clearly also of interest to be able to approximate entire probability distributions of species counts. We present two novel methods that combine known techniques for distribution reconstruction with the multi-level method. We demonstrate the potential of our methods using a number of examples.« less
Schminkey, Donna L; von Oertzen, Timo; Bullock, Linda
2016-08-01
With increasing access to population-based data and electronic health records for secondary analysis, missing data are common. In the social and behavioral sciences, missing data frequently are handled with multiple imputation methods or full information maximum likelihood (FIML) techniques, but healthcare researchers have not embraced these methodologies to the same extent and more often use either traditional imputation techniques or complete case analysis, which can compromise power and introduce unintended bias. This article is a review of options for handling missing data, concluding with a case study demonstrating the utility of multilevel structural equation modeling using full information maximum likelihood (MSEM with FIML) to handle large amounts of missing data. MSEM with FIML is a parsimonious and hypothesis-driven strategy to cope with large amounts of missing data without compromising power or introducing bias. This technique is relevant for nurse researchers faced with ever-increasing amounts of electronic data and decreasing research budgets. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Tiffany, S. H.; Adams, W. M., Jr.
1984-01-01
A technique which employs both linear and nonlinear methods in a multilevel optimization structure to best approximate generalized unsteady aerodynamic forces for arbitrary motion is described. Optimum selection of free parameters is made in a rational function approximation of the aerodynamic forces in the Laplace domain such that a best fit is obtained, in a least squares sense, to tabular data for purely oscillatory motion. The multilevel structure and the corresponding formulation of the objective models are presented which separate the reduction of the fit error into linear and nonlinear problems, thus enabling the use of linear methods where practical. Certain equality and inequality constraints that may be imposed are identified; a brief description of the nongradient, nonlinear optimizer which is used is given; and results which illustrate application of the method are presented.
Validation of Multilevel Constructs: Validation Methods and Empirical Findings for the EDI
ERIC Educational Resources Information Center
Forer, Barry; Zumbo, Bruno D.
2011-01-01
The purposes of this paper are to highlight the foundations of multilevel construct validation, describe two methodological approaches and associated analytic techniques, and then apply these approaches and techniques to the multilevel construct validation of a widely-used school readiness measure called the Early Development Instrument (EDI;…
Langford, I H; Bentham, G
1996-03-01
Mortality rates in England and Wales display a persistent regional pattern indicating generally poorer health in the North and West. Some of this is simply a reflection of regional differences in the extent of social deprivation which is known to exert a profound influence on health. Part of the pattern may also be the result of regional differences in urbanization which also affect mortality rates. However, there may be important regional differences over and above these compositional effects. This study attempts to establish the magnitude of such independent regional differences in mortality rates by using the techniques of multi-level modelling. Standardized mortality rates (SMRs) for males and females under 65 for 1989-91 in local authority districts are grouped into categories using the ACORN classification scheme. The Townsend Index is included as a measure of social deprivation. Using a cross-classified multi-level model, it is shown that region accounts for approximately four times more variation in SMRs than is explained by the ACORN classification. Analysis of diagnostic residuals show a clear North-South divide in excess mortality when both regional and socio-economic classification of districts are modelled simultaneously, a possibility allowed for by the use of a multi-level model.
Multilevel Latent Class Analysis: Parametric and Nonparametric Models
ERIC Educational Resources Information Center
Finch, W. Holmes; French, Brian F.
2014-01-01
Latent class analysis is an analytic technique often used in educational and psychological research to identify meaningful groups of individuals within a larger heterogeneous population based on a set of variables. This technique is flexible, encompassing not only a static set of variables but also longitudinal data in the form of growth mixture…
Simulator for multilevel optimization research
NASA Technical Reports Server (NTRS)
Padula, S. L.; Young, K. C.
1986-01-01
A computer program designed to simulate and improve multilevel optimization techniques is described. By using simple analytic functions to represent complex engineering analyses, the simulator can generate and test a large variety of multilevel decomposition strategies in a relatively short time. This type of research is an essential step toward routine optimization of large aerospace systems. The paper discusses the types of optimization problems handled by the simulator and gives input and output listings and plots for a sample problem. It also describes multilevel implementation techniques which have value beyond the present computer program. Thus, this document serves as a user's manual for the simulator and as a guide for building future multilevel optimization applications.
A surface temperature and moisture parameterization for use in mesoscale numerical models
NASA Technical Reports Server (NTRS)
Tremback, C. J.; Kessler, R.
1985-01-01
A modified multi-level soil moisture and surface temperature model is presented for use as in defining lower boundary conditions in mesoscale weather models. Account is taken of the hydraulic and thermal diffusion properties of the soil, their variations with soil type, and the mixing ratio at the surface. Techniques are defined for integrating the surface input into the multi-level scheme. Sample simulation runs were performed with the modified model and the original model defined by Pielke, et al. (1977, 1981). The models were applied to regional weather forecasting over soils composed of sand and clay loam. The new form of the model avoided iterations necessary in the earlier version of the model and achieved convergence at reasonable profiles for surface temperature and moisture in regions where the earlier version of the model failed.
ERIC Educational Resources Information Center
Frees, Edward W.; Kim, Jee-Seon
2006-01-01
Multilevel models are proven tools in social research for modeling complex, hierarchical systems. In multilevel modeling, statistical inference is based largely on quantification of random variables. This paper distinguishes among three types of random variables in multilevel modeling--model disturbances, random coefficients, and future response…
Institutional Climate and Student Departure: A Multinomial Multilevel Modeling Approach
ERIC Educational Resources Information Center
Yi, Pyong-sik
2008-01-01
This study applied a multinomial HOLM technique to examine the extent to which the institutional climate for diversity influences the different types of college student withdrawal, such as stop out, drop out, and transfer. Based on a reformulation of Tinto's model along with the conceptualization of institutional climate for diversity by Hurtado…
Full-Day Kindergarten and Student Literacy Growth: Does a Lengthened School Day Make a Difference?
ERIC Educational Resources Information Center
Zvoch, Keith; Reynolds, Ralph E.; Parker, Robert P.
2008-01-01
In the context of a quasi-experimental research design, literacy data obtained on students were examined to assess relationships between kindergarten program model (full- vs. half-day) and student literacy outcomes. Application of multilevel modeling techniques to the time series data collected from kindergarteners in economically disadvantaged…
GROUND WATER MONITORING AND SAMPLING: MULTI-LEVEL VERSUS TRADITIONAL METHODS – WHAT’S WHAT?
Recent studies have been conducted to evaluate different sampling techniques for determining VOC concentrations in groundwater. Samples were obtained using multi-level and traditional sampling techniques in three monitoring wells at the Raymark Superfund site in Stratford, CT. Ve...
Paul, Debjani; Saias, Laure; Pedinotti, Jean-Cedric; Chabert, Max; Magnifico, Sebastien; Pallandre, Antoine; De Lambert, Bertrand; Houdayer, Claude; Brugg, Bernard; Peyrin, Jean-Michel; Viovy, Jean-Louis
2011-01-01
A broad range of microfluidic applications, ranging from cell culture to protein crystallization, requires multilevel devices with different heights and feature sizes (from micrometers to millimeters). While state-of-the-art direct-writing techniques have been developed for creating complex three-dimensional shapes, replication molding from a multilevel template is still the preferred method for fast prototyping of microfluidic devices in the laboratory. Here, we report on a “dry and wet hybrid” technique to fabricate multilevel replication molds by combining SU-8 lithography with a dry film resist (Ordyl). We show that the two lithography protocols are chemically compatible with each other. Finally, we demonstrate the hybrid technique in two different microfluidic applications: (1) a neuron culture device with compartmentalization of different elements of a neuron and (2) a two-phase (gas-liquid) global micromixer for fast mixing of a small amount of a viscous liquid into a larger volume of a less viscous liquid. PMID:21559239
Kirch, Alexsandro; de Almeida, James M; Miranda, Caetano R
2018-05-10
The complexity displayed by nanofluidic-based systems involves electronic and dynamic aspects occurring across different size and time scales. To properly model such kind of system, we introduced a top-down multilevel approach, combining molecular dynamics simulations (MD) with first-principles electronic transport calculations. The potential of this technique was demonstrated by investigating how the water and ionic flow through a (6,6) carbon nanotube (CNT) influences its electronic transport properties. We showed that the confinement on the CNT favors the partially hydrated Na, Cl, and Li ions to exchange charge with the nanotube. This leads to a change in the electronic transmittance, allowing for the distinguishing of cations from anions. Such an ionic trace may handle an indirect measurement of the ionic current that is recorded as a sensing output. With this case study, we are able to show the potential of this top-down multilevel approach, to be applied on the design of novel nanofluidic devices.
Formulation and Application of the Generalized Multilevel Facets Model
ERIC Educational Resources Information Center
Wang, Wen-Chung; Liu, Chih-Yu
2007-01-01
In this study, the authors develop a generalized multilevel facets model, which is not only a multilevel and two-parameter generalization of the facets model, but also a multilevel and facet generalization of the generalized partial credit model. Because the new model is formulated within a framework of nonlinear mixed models, no efforts are…
Within-Cluster and Across-Cluster Matching with Observational Multilevel Data
ERIC Educational Resources Information Center
Kim, Jee-Seon; Steiner, Peter M.; Hall, Courtney; Thoemmes, Felix
2013-01-01
When randomized experiments cannot be conducted in practice, propensity score (PS) techniques for matching treated and control units are frequently used for estimating causal treatment effects from observational data. Despite the popularity of PS techniques, they are not yet well studied for matching multilevel data where selection into treatment…
Zero energy resonance and the logarithmically slow decay of unstable multilevel systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyamoto, Manabu
2006-08-15
The long time behavior of the reduced time evolution operator for unstable multilevel systems is studied based on the N-level Friedrichs model in the presence of a zero energy resonance. The latter means the divergence of the resolvent at zero energy. Resorting to the technique developed by Jensen and Kato [Duke Math. J. 46, 583 (1979)], the zero energy resonance of this model is characterized by the zero energy eigenstate that does not belong to the Hilbert space. It is then shown that for some kinds of the rational form factors the logarithmically slow decay proportional to (log t){sup -1}more » of the reduced time evolution operator can be realized.« less
Teaching Multilevel Adult ESL Classes. ERIC Digest.
ERIC Educational Resources Information Center
Shank, Cathy C.; Terrill, Lynda R.
Teachers in multilevel adult English-as-a-Second-Language classes are challenged to use a variety of materials, activities, and techniques to engage the interest of the learners and assist them in their educational goals. This digest recommends ways to choose and organize content for multilevel classes, explains grouping strategies, discusses a…
Gilbert, David
2016-01-01
Insights gained from multilevel computational models of biological systems can be translated into real-life applications only if the model correctness has been verified first. One of the most frequently employed in silico techniques for computational model verification is model checking. Traditional model checking approaches only consider the evolution of numeric values, such as concentrations, over time and are appropriate for computational models of small scale systems (e.g. intracellular networks). However for gaining a systems level understanding of how biological organisms function it is essential to consider more complex large scale biological systems (e.g. organs). Verifying computational models of such systems requires capturing both how numeric values and properties of (emergent) spatial structures (e.g. area of multicellular population) change over time and across multiple levels of organization, which are not considered by existing model checking approaches. To address this limitation we have developed a novel approximate probabilistic multiscale spatio-temporal meta model checking methodology for verifying multilevel computational models relative to specifications describing the desired/expected system behaviour. The methodology is generic and supports computational models encoded using various high-level modelling formalisms because it is defined relative to time series data and not the models used to generate it. In addition, the methodology can be automatically adapted to case study specific types of spatial structures and properties using the spatio-temporal meta model checking concept. To automate the computational model verification process we have implemented the model checking approach in the software tool Mule (http://mule.modelchecking.org). Its applicability is illustrated against four systems biology computational models previously published in the literature encoding the rat cardiovascular system dynamics, the uterine contractions of labour, the Xenopus laevis cell cycle and the acute inflammation of the gut and lung. Our methodology and software will enable computational biologists to efficiently develop reliable multilevel computational models of biological systems. PMID:27187178
Pârvu, Ovidiu; Gilbert, David
2016-01-01
Insights gained from multilevel computational models of biological systems can be translated into real-life applications only if the model correctness has been verified first. One of the most frequently employed in silico techniques for computational model verification is model checking. Traditional model checking approaches only consider the evolution of numeric values, such as concentrations, over time and are appropriate for computational models of small scale systems (e.g. intracellular networks). However for gaining a systems level understanding of how biological organisms function it is essential to consider more complex large scale biological systems (e.g. organs). Verifying computational models of such systems requires capturing both how numeric values and properties of (emergent) spatial structures (e.g. area of multicellular population) change over time and across multiple levels of organization, which are not considered by existing model checking approaches. To address this limitation we have developed a novel approximate probabilistic multiscale spatio-temporal meta model checking methodology for verifying multilevel computational models relative to specifications describing the desired/expected system behaviour. The methodology is generic and supports computational models encoded using various high-level modelling formalisms because it is defined relative to time series data and not the models used to generate it. In addition, the methodology can be automatically adapted to case study specific types of spatial structures and properties using the spatio-temporal meta model checking concept. To automate the computational model verification process we have implemented the model checking approach in the software tool Mule (http://mule.modelchecking.org). Its applicability is illustrated against four systems biology computational models previously published in the literature encoding the rat cardiovascular system dynamics, the uterine contractions of labour, the Xenopus laevis cell cycle and the acute inflammation of the gut and lung. Our methodology and software will enable computational biologists to efficiently develop reliable multilevel computational models of biological systems.
A Social-Ecological Framework of Theory, Assessment, and Prevention of Suicide
Cramer, Robert J.; Kapusta, Nestor D.
2017-01-01
The juxtaposition of increasing suicide rates with continued calls for suicide prevention efforts begs for new approaches. Grounded in the Centers for Disease Control and Prevention (CDC) framework for tackling health issues, this personal views work integrates relevant suicide risk/protective factor, assessment, and intervention/prevention literatures. Based on these components of suicide risk, we articulate a Social-Ecological Suicide Prevention Model (SESPM) which provides an integration of general and population-specific risk and protective factors. We also use this multi-level perspective to provide a structured approach to understanding current theories and intervention/prevention efforts concerning suicide. Following similar multi-level prevention efforts in interpersonal violence and Human Immunodeficiency Virus (HIV) domains, we offer recommendations for social-ecologically informed suicide prevention theory, training, research, assessment, and intervention programming. Although the SESPM calls for further empirical testing, it provides a suitable backdrop for tailoring of current prevention and intervention programs to population-specific needs. Moreover, the multi-level model shows promise to move suicide risk assessment forward (e.g., development of multi-level suicide risk algorithms or structured professional judgments instruments) to overcome current limitations in the field. Finally, we articulate a set of characteristics of social-ecologically based suicide prevention programs. These include the need to address risk and protective factors with the strongest degree of empirical support at each multi-level layer, incorporate a comprehensive program evaluation strategy, and use a variety of prevention techniques across levels of prevention. PMID:29062296
EFFECTS-BASED CUMULATIVE RISK ASSESSMENT IN A LOW-INCOME URBAN COMMUNITY NEAR A SUPERFUND SITE
We will introduce into the cumulative risk assessment framework novel methods for non-cancer risk assessment, techniques for dose-response modeling that extend insights from chemical mixtures frameworks to non-chemical stressors, multilevel statistical methods used to address ...
From least squares to multilevel modeling: A graphical introduction to Bayesian inference
NASA Astrophysics Data System (ADS)
Loredo, Thomas J.
2016-01-01
This tutorial presentation will introduce some of the key ideas and techniques involved in applying Bayesian methods to problems in astrostatistics. The focus will be on the big picture: understanding the foundations (interpreting probability, Bayes's theorem, the law of total probability and marginalization), making connections to traditional methods (propagation of errors, least squares, chi-squared, maximum likelihood, Monte Carlo simulation), and highlighting problems where a Bayesian approach can be particularly powerful (Poisson processes, density estimation and curve fitting with measurement error). The "graphical" component of the title reflects an emphasis on pictorial representations of some of the math, but also on the use of graphical models (multilevel or hierarchical models) for analyzing complex data. Code for some examples from the talk will be available to participants, in Python and in the Stan probabilistic programming language.
Antecedents and trajectories of achievement goals: a self-determination theory perspective.
Ciani, Keith D; Sheldon, Kennon M; Hilpert, Jonathan C; Easter, Matthew A
2011-06-01
Research has shown that both achievement goal theory and self-determination theory (SDT) are quite useful in explaining student motivation and success in academic contexts. However, little is known about how the two theories relate to each other. The current research used SDT as a framework to understand why students enter classes with particular achievement goal profiles, and also, how those profiles may change over time. One hundred and eighty-four undergraduate preservice teachers in a required domain course agreed to participate in the study. Data were collected at three time points during the semester, and both path modelling and multi-level longitudinal modelling techniques were used. Path modelling techniques with 169 students, results indicated that students' autonomy and relatedness need satisfaction in life predict their initial self-determined class motivation, which in turn predicts initial mastery-approach and -avoidance goals. Multi-level longitudinal modelling with 108 students found that perceived teacher autonomy support buffered against the general decline in students' mastery-approach goals over the course of the semester. Data provide a promising integration of SDT and achievement goal theory, posing a host of potentially fruitful future research questions regarding goal adoption and trajectories. ©2010 The British Psychological Society.
Multi-level emulation of complex climate model responses to boundary forcing data
NASA Astrophysics Data System (ADS)
Tran, Giang T.; Oliver, Kevin I. C.; Holden, Philip B.; Edwards, Neil R.; Sóbester, András; Challenor, Peter
2018-04-01
Climate model components involve both high-dimensional input and output fields. It is desirable to efficiently generate spatio-temporal outputs of these models for applications in integrated assessment modelling or to assess the statistical relationship between such sets of inputs and outputs, for example, uncertainty analysis. However, the need for efficiency often compromises the fidelity of output through the use of low complexity models. Here, we develop a technique which combines statistical emulation with a dimensionality reduction technique to emulate a wide range of outputs from an atmospheric general circulation model, PLASIM, as functions of the boundary forcing prescribed by the ocean component of a lower complexity climate model, GENIE-1. Although accurate and detailed spatial information on atmospheric variables such as precipitation and wind speed is well beyond the capability of GENIE-1's energy-moisture balance model of the atmosphere, this study demonstrates that the output of this model is useful in predicting PLASIM's spatio-temporal fields through multi-level emulation. Meaningful information from the fast model, GENIE-1 was extracted by utilising the correlation between variables of the same type in the two models and between variables of different types in PLASIM. We present here the construction and validation of several PLASIM variable emulators and discuss their potential use in developing a hybrid model with statistical components.
Pastor, Dena A; Lazowski, Rory A
2018-01-01
The term "multilevel meta-analysis" is encountered not only in applied research studies, but in multilevel resources comparing traditional meta-analysis to multilevel meta-analysis. In this tutorial, we argue that the term "multilevel meta-analysis" is redundant since all meta-analysis can be formulated as a special kind of multilevel model. To clarify the multilevel nature of meta-analysis the four standard meta-analytic models are presented using multilevel equations and fit to an example data set using four software programs: two specific to meta-analysis (metafor in R and SPSS macros) and two specific to multilevel modeling (PROC MIXED in SAS and HLM). The same parameter estimates are obtained across programs underscoring that all meta-analyses are multilevel in nature. Despite the equivalent results, not all software programs are alike and differences are noted in the output provided and estimators available. This tutorial also recasts distinctions made in the literature between traditional and multilevel meta-analysis as differences between meta-analytic choices, not between meta-analytic models, and provides guidance to inform choices in estimators, significance tests, moderator analyses, and modeling sequence. The extent to which the software programs allow flexibility with respect to these decisions is noted, with metafor emerging as the most favorable program reviewed.
Coping with Multi-Level Classes Effectively and Creatively.
ERIC Educational Resources Information Center
Strasheim, Lorraine A.
This paper includes a discussion of the problem of multilevel Latin classes, a description of various techniques and perspectives the teacher might use in dealing with these classes, and copies of materials and exercises that have proved useful in multilevel classes. Because the reasons for the existence of such classes are varied, it is suggested…
Multilevel SEM Strategies for Evaluating Mediation in Three-Level Data
ERIC Educational Resources Information Center
Preacher, Kristopher J.
2011-01-01
Strategies for modeling mediation effects in multilevel data have proliferated over the past decade, keeping pace with the demands of applied research. Approaches for testing mediation hypotheses with 2-level clustered data were first proposed using multilevel modeling (MLM) and subsequently using multilevel structural equation modeling (MSEM) to…
Heteronormativity, School Climates, and Perceived Safety for Gender Nonconforming Peers
ERIC Educational Resources Information Center
Toomey, Russell B.; McGuire, Jenifer K.; Russell, Stephen T.
2012-01-01
Students' perceptions of their school climates are associated with psychosocial and academic adjustment. The present study examined the role of school strategies to promote safety in predicting students' perceptions of safety for gender nonconforming peers among 1415 students in 28 high schools. Using multilevel modeling techniques, we examined…
NASA Technical Reports Server (NTRS)
Simon, M. K.
1974-01-01
Multilevel amplitude-shift-keying (MASK) and quadrature amplitude-shift-keying (QASK) as signaling techniques for multilevel digital communications systems, and the problem of providing symbol synchronization in the receivers of such systems are discussed. A technique is presented for extracting symbol sync from an MASK or QASK signal. The scheme is a generalization of the data transition tracking loop used in PSK systems. The performance of the loop was analyzed in terms of its mean-squared jitter and its effects on the data detection process in MASK and QASK systems.
Physical and property victimization behind bars: a multilevel examination.
Lahm, Karen F
2009-06-01
The majority of the extant literature on inmate victimization considers only one level of analysis, thus ignoring the interaction effects between inmate- and prison-level variables. To extend this literature, multilevel modeling techniques were used to analyze self-report data from more than 1,000 inmates and 30 prisons in Kentucky, Tennessee, and Ohio. Results revealed that demographic variables were strong predictors of physical victimization (i.e., race and assaultive behavior). Also, security level had a contextual direct effect on physical victimization. Property victimization was best explained with an integrated model including inmate (i.e., race, assaultive behavior, prior education, prior employment, and time served), contextual (i.e., security level and proportion non-White), and micro-macro interaction variables (i.e., Race x Security Level). Policy implications and suggestions for future research are discussed.
2014-01-01
Background This study aims to suggest an approach that integrates multilevel models and eigenvector spatial filtering methods and apply it to a case study of self-rated health status in South Korea. In many previous health-related studies, multilevel models and single-level spatial regression are used separately. However, the two methods should be used in conjunction because the objectives of both approaches are important in health-related analyses. The multilevel model enables the simultaneous analysis of both individual and neighborhood factors influencing health outcomes. However, the results of conventional multilevel models are potentially misleading when spatial dependency across neighborhoods exists. Spatial dependency in health-related data indicates that health outcomes in nearby neighborhoods are more similar to each other than those in distant neighborhoods. Spatial regression models can address this problem by modeling spatial dependency. This study explores the possibility of integrating a multilevel model and eigenvector spatial filtering, an advanced spatial regression for addressing spatial dependency in datasets. Methods In this spatially filtered multilevel model, eigenvectors function as additional explanatory variables accounting for unexplained spatial dependency within the neighborhood-level error. The specification addresses the inability of conventional multilevel models to account for spatial dependency, and thereby, generates more robust outputs. Results The findings show that sex, employment status, monthly household income, and perceived levels of stress are significantly associated with self-rated health status. Residents living in neighborhoods with low deprivation and a high doctor-to-resident ratio tend to report higher health status. The spatially filtered multilevel model provides unbiased estimations and improves the explanatory power of the model compared to conventional multilevel models although there are no changes in the signs of parameters and the significance levels between the two models in this case study. Conclusions The integrated approach proposed in this paper is a useful tool for understanding the geographical distribution of self-rated health status within a multilevel framework. In future research, it would be useful to apply the spatially filtered multilevel model to other datasets in order to clarify the differences between the two models. It is anticipated that this integrated method will also out-perform conventional models when it is used in other contexts. PMID:24571639
Modeling and analysis of the space shuttle nose-gear tire with semianalytic finite elements
NASA Technical Reports Server (NTRS)
Kim, Kyun O.; Noor, Ahmed K.; Tanner, John A.
1990-01-01
A computational procedure is presented for the geometrically nonlinear analysis of aircraft tires. The Space Shuttle Orbiter nose gear tire was modeled by using a two-dimensional laminated anisotropic shell theory with the effects of variation in material and geometric parameters included. The four key elements of the procedure are: (1) semianalytic finite elements in which the shell variables are represented by Fourier series in the circumferential direction and piecewise polynominals in the meridional direction; (2) a mixed formulation with the fundamental unknowns consisting of strain parameters, stress-resultant parameters, and generalized displacements; (3) multilevel operator splitting to effect successive simplifications, and to uncouple the equations associated with different Fourier harmonics; and (4) multilevel iterative procedures and reduction techniques to generate the response of the shell. Numerical results of the Space Shuttle Orbiter nose gear tire model are compared with experimental measurements of the tire subjected to inflation loading.
Error diffusion concept for multi-level quantization
NASA Astrophysics Data System (ADS)
Broja, Manfred; Michalowski, Kristina; Bryngdahl, Olof
1990-11-01
The error diffusion binarization procedure is adapted to multi-level quantization. The threshold parameters then available have a noticeable influence on the process. Characteristic features of the technique are shown together with experimental results.
Multilevel Modeling of Social Segregation
ERIC Educational Resources Information Center
Leckie, George; Pillinger, Rebecca; Jones, Kelvyn; Goldstein, Harvey
2012-01-01
The traditional approach to measuring segregation is based upon descriptive, non-model-based indices. A recently proposed alternative is multilevel modeling. The authors further develop the argument for a multilevel modeling approach by first describing and expanding upon its notable advantages, which include an ability to model segregation at a…
Missing Data Imputation versus Full Information Maximum Likelihood with Second-Level Dependencies
ERIC Educational Resources Information Center
Larsen, Ross
2011-01-01
Missing data in the presence of upper level dependencies in multilevel models have never been thoroughly examined. Whereas first-level subjects are independent over time, the second-level subjects might exhibit nonzero covariances over time. This study compares 2 missing data techniques in the presence of a second-level dependency: multiple…
A Multi-Level Model of Moral Thinking Based on Neuroscience and Moral Psychology
ERIC Educational Resources Information Center
Jeong, Changwoo; Han, Hye Min
2011-01-01
Developments in neurobiology are providing new insights into the biological and physical features of human thinking, and brain-activation imaging methods such as functional magnetic resonance imaging have become the most dominant research techniques to approach the biological part of thinking. With the aid of neurobiology, there also have been…
ERIC Educational Resources Information Center
Smith, Lindsey J. Wolff; Beretvas, S. Natasha
2017-01-01
Conventional multilevel modeling works well with purely hierarchical data; however, pure hierarchies rarely exist in real datasets. Applied researchers employ ad hoc procedures to create purely hierarchical data. For example, applied educational researchers either delete mobile participants' data from the analysis or identify the student only with…
ERIC Educational Resources Information Center
Ker, H. W.
2014-01-01
Multilevel data are very common in educational research. Hierarchical linear models/linear mixed-effects models (HLMs/LMEs) are often utilized to analyze multilevel data nowadays. This paper discusses the problems of utilizing ordinary regressions for modeling multilevel educational data, compare the data analytic results from three regression…
Kim, Eun Sook; Cao, Chunhua
2015-01-01
Considering that group comparisons are common in social science, we examined two latent group mean testing methods when groups of interest were either at the between or within level of multilevel data: multiple-group multilevel confirmatory factor analysis (MG ML CFA) and multilevel multiple-indicators multiple-causes modeling (ML MIMIC). The performance of these methods were investigated through three Monte Carlo studies. In Studies 1 and 2, either factor variances or residual variances were manipulated to be heterogeneous between groups. In Study 3, which focused on within-level multiple-group analysis, six different model specifications were considered depending on how to model the intra-class group correlation (i.e., correlation between random effect factors for groups within cluster). The results of simulations generally supported the adequacy of MG ML CFA and ML MIMIC for multiple-group analysis with multilevel data. The two methods did not show any notable difference in the latent group mean testing across three studies. Finally, a demonstration with real data and guidelines in selecting an appropriate approach to multilevel multiple-group analysis are provided.
Multilevel Modeling: A Review of Methodological Issues and Applications
ERIC Educational Resources Information Center
Dedrick, Robert F.; Ferron, John M.; Hess, Melinda R.; Hogarty, Kristine Y.; Kromrey, Jeffrey D.; Lang, Thomas R.; Niles, John D.; Lee, Reginald S.
2009-01-01
This study analyzed the reporting of multilevel modeling applications of a sample of 99 articles from 13 peer-reviewed journals in education and the social sciences. A checklist, derived from the methodological literature on multilevel modeling and focusing on the issues of model development and specification, data considerations, estimation, and…
Building Path Diagrams for Multilevel Models
ERIC Educational Resources Information Center
Curran, Patrick J.; Bauer, Daniel J.
2007-01-01
Multilevel models have come to play an increasingly important role in many areas of social science research. However, in contrast to other modeling strategies, there is currently no widely used approach for graphically diagramming multilevel models. Ideally, such diagrams would serve two functions: to provide a formal structure for deriving the…
Multidimensional radiative transfer with multilevel atoms. II. The non-linear multigrid method.
NASA Astrophysics Data System (ADS)
Fabiani Bendicho, P.; Trujillo Bueno, J.; Auer, L.
1997-08-01
A new iterative method for solving non-LTE multilevel radiative transfer (RT) problems in 1D, 2D or 3D geometries is presented. The scheme obtains the self-consistent solution of the kinetic and RT equations at the cost of only a few (<10) formal solutions of the RT equation. It combines, for the first time, non-linear multigrid iteration (Brandt, 1977, Math. Comp. 31, 333; Hackbush, 1985, Multi-Grid Methods and Applications, springer-Verlag, Berlin), an efficient multilevel RT scheme based on Gauss-Seidel iterations (cf. Trujillo Bueno & Fabiani Bendicho, 1995ApJ...455..646T), and accurate short-characteristics formal solution techniques. By combining a valid stopping criterion with a nested-grid strategy a converged solution with the desired true error is automatically guaranteed. Contrary to the current operator splitting methods the very high convergence speed of the new RT method does not deteriorate when the grid spatial resolution is increased. With this non-linear multigrid method non-LTE problems discretized on N grid points are solved in O(N) operations. The nested multigrid RT method presented here is, thus, particularly attractive in complicated multilevel transfer problems where small grid-sizes are required. The properties of the method are analyzed both analytically and with illustrative multilevel calculations for Ca II in 1D and 2D schematic model atmospheres.
Computerized Adaptive Testing with Item Clones. Research Report.
ERIC Educational Resources Information Center
Glas, Cees A. W.; van der Linden, Wim J.
To reduce the cost of item writing and to enhance the flexibility of item presentation, items can be generated by item-cloning techniques. An important consequence of cloning is that it may cause variability on the item parameters. Therefore, a multilevel item response model is presented in which it is assumed that the item parameters of a…
What Factors Determine the Uptake of A-Level Physics?
ERIC Educational Resources Information Center
Gill, Tim; Bell, John F.
2013-01-01
There has been much concern recently in the UK about the decline in the number of students studying physics beyond age 16. To investigate why this might be we used data from a national database of student qualifications and a multilevel modelling technique to investigate which factors had the greatest impact on the uptake of physics at Advanced…
The Synthesis of Single-Subject Experimental Data: Extensions of the Basic Multilevel Model
ERIC Educational Resources Information Center
Van den Noortgate, Wim; Moeyaert, Mariola; Ugille, Maaike; Beretvas, Tasha; Ferron, John
2014-01-01
Due to an increasing interest in the use of single-subject experimental designs (SSEDs), appropriate techniques are needed to analyze this type of data. The purpose of this paper proposal is to present four studies (Beretvas, Hembry, Van den Noortgate, & Ferron, 2013; Bunuan, Hembry & Beretvas, 2013; Moeyaert, Ugille, Ferron, Beretvas,…
ERIC Educational Resources Information Center
Allen, Joseph; Gregory, Anne; Mikami, Amori; Lun, Janetta; Hamre, Bridget; Pianta, Robert
2013-01-01
Multilevel modeling techniques were used with a sample of 643 students enrolled in 37 secondary school classrooms to predict future student achievement (controlling for baseline achievement) from observed teacher interactions with students in the classroom, coded using the Classroom Assessment Scoring System--Secondary. After accounting for prior…
ERIC Educational Resources Information Center
Lee, Woo-yeol; Cho, Sun-Joo
2017-01-01
Cross-level invariance in a multilevel item response model can be investigated by testing whether the within-level item discriminations are equal to the between-level item discriminations. Testing the cross-level invariance assumption is important to understand constructs in multilevel data. However, in most multilevel item response model…
Alternative Methods for Assessing Mediation in Multilevel Data: The Advantages of Multilevel SEM
ERIC Educational Resources Information Center
Preacher, Kristopher J.; Zhang, Zhen; Zyphur, Michael J.
2011-01-01
Multilevel modeling (MLM) is a popular way of assessing mediation effects with clustered data. Two important limitations of this approach have been identified in prior research and a theoretical rationale has been provided for why multilevel structural equation modeling (MSEM) should be preferred. However, to date, no empirical evidence of MSEM's…
Use of multilevel logistic regression to identify the causes of differential item functioning.
Balluerka, Nekane; Gorostiaga, Arantxa; Gómez-Benito, Juana; Hidalgo, María Dolores
2010-11-01
Given that a key function of tests is to serve as evaluation instruments and for decision making in the fields of psychology and education, the possibility that some of their items may show differential behaviour is a major concern for psychometricians. In recent decades, important progress has been made as regards the efficacy of techniques designed to detect this differential item functioning (DIF). However, the findings are scant when it comes to explaining its causes. The present study addresses this problem from the perspective of multilevel analysis. Starting from a case study in the area of transcultural comparisons, multilevel logistic regression is used: 1) to identify the item characteristics associated with the presence of DIF; 2) to estimate the proportion of variation in the DIF coefficients that is explained by these characteristics; and 3) to evaluate alternative explanations of the DIF by comparing the explanatory power or fit of different sequential models. The comparison of these models confirmed one of the two alternatives (familiarity with the stimulus) and rejected the other (the topic area) as being a cause of differential functioning with respect to the compared groups.
Ren, Yan; Yang, Min; Li, Qian; Pan, Jay; Chen, Fei; Li, Xiaosong; Meng, Qun
2017-01-01
Objectives To introduce multilevel repeated measures (RM) models and compare them with multilevel difference-in-differences (DID) models in assessing the linear relationship between the length of the policy intervention period and healthcare outcomes (dose–response effect) for data from a stepped-wedge design with a hierarchical structure. Design The implementation of national essential medicine policy (NEMP) in China was a stepped-wedge-like design of five time points with a hierarchical structure. Using one key healthcare outcome from the national NEMP surveillance data as an example, we illustrate how a series of multilevel DID models and one multilevel RM model can be fitted to answer some research questions on policy effects. Setting Routinely and annually collected national data on China from 2008 to 2012. Participants 34 506 primary healthcare facilities in 2675 counties of 31 provinces. Outcome measures Agreement and differences in estimates of dose–response effect and variation in such effect between the two methods on the logarithm-transformed total number of outpatient visits per facility per year (LG-OPV). Results The estimated dose–response effect was approximately 0.015 according to four multilevel DID models and precisely 0.012 from one multilevel RM model. Both types of model estimated an increase in LG-OPV by 2.55 times from 2009 to 2012, but 2–4.3 times larger SEs of those estimates were found by the multilevel DID models. Similar estimates of mean effects of covariates and random effects of the average LG-OPV among all levels in the example dataset were obtained by both types of model. Significant variances in the dose–response among provinces, counties and facilities were estimated, and the ‘lowest’ or ‘highest’ units by their dose–response effects were pinpointed only by the multilevel RM model. Conclusions For examining dose–response effect based on data from multiple time points with hierarchical structure and the stepped wedge-like designs, multilevel RM models are more efficient, convenient and informative than the multilevel DID models. PMID:28399510
2004-01-01
login identity to the one under which the system call is executed, the parameters of the system call execution - file names including full path...Anomaly detection COAST-EIMDT Distributed on target hosts EMERALD Distributed on target hosts and security servers Signature recognition Anomaly...uses a centralized architecture, and employs an anomaly detection technique for intrusion detection. The EMERALD project [80] proposes a
Sample Size Limits for Estimating Upper Level Mediation Models Using Multilevel SEM
ERIC Educational Resources Information Center
Li, Xin; Beretvas, S. Natasha
2013-01-01
This simulation study investigated use of the multilevel structural equation model (MLSEM) for handling measurement error in both mediator and outcome variables ("M" and "Y") in an upper level multilevel mediation model. Mediation and outcome variable indicators were generated with measurement error. Parameter and standard…
Using Visual Analysis to Evaluate and Refine Multilevel Models of Single-Case Studies
ERIC Educational Resources Information Center
Baek, Eun Kyeng; Petit-Bois, Merlande; Van den Noortgate, Wim; Beretvas, S. Natasha; Ferron, John M.
2016-01-01
In special education, multilevel models of single-case research have been used as a method of estimating treatment effects over time and across individuals. Although multilevel models can accurately summarize the effect, it is known that if the model is misspecified, inferences about the effects can be biased. Concern with the potential for model…
A knowledge-based tool for multilevel decomposition of a complex design problem
NASA Technical Reports Server (NTRS)
Rogers, James L.
1989-01-01
Although much work has been done in applying artificial intelligence (AI) tools and techniques to problems in different engineering disciplines, only recently has the application of these tools begun to spread to the decomposition of complex design problems. A new tool based on AI techniques has been developed to implement a decomposition scheme suitable for multilevel optimization and display of data in an N x N matrix format.
Ling, Qinjie; He, Erxing; Ouyang, Hanbin; Guo, Jing; Yin, Zhixun; Huang, Wenhua
2017-07-27
To introduce a new surgical approach to the multilevel ossification of the ligamentum flavum (OLF) aided by three-dimensional (3D) printing technology. A multilevel OLF patient (male, 66 years) was scanned using computed tomography (CT). His saved DICOM format data were inputted to the Mimics14.0 3D reconstruction software (Materialise, Belgium). The resulting 3D model was used to observe the anatomical features of the multilevel OLF area and to design the surgical approach. At the base of the spinous process, two channels were created using an osteotomy bilaterally to create a "V" shape to remove the bone ligamentous complex (BLC). The decompressive laminoplasty using mini-plate fixation was simulated with the computer. The physical model was manufactured using 3D printing technology. The patient was subsequently treated using the designed surgery. The operation was completed successfully without any complications. The operative time was 90 min, and blood loss was 200 ml. One month after the operation, neurologic function was recovered well, and the JOA score was improved from 6 preoperatively to 10. Postoperative CT scanning showed that the OLF was totally removed, and the replanted BLC had not subsided. 3D printing technology is an effective, reliable, and minimally invasive method to design operations. The technique can be an option for multilevel OLF surgical treatment. This can provide sufficient decompression with minimum damage to the spine and other intact anatomical structures.
Multilevel structural equation models for assessing moderation within and across levels of analysis.
Preacher, Kristopher J; Zhang, Zhen; Zyphur, Michael J
2016-06-01
Social scientists are increasingly interested in multilevel hypotheses, data, and statistical models as well as moderation or interactions among predictors. The result is a focus on hypotheses and tests of multilevel moderation within and across levels of analysis. Unfortunately, existing approaches to multilevel moderation have a variety of shortcomings, including conflated effects across levels of analysis and bias due to using observed cluster averages instead of latent variables (i.e., "random intercepts") to represent higher-level constructs. To overcome these problems and elucidate the nature of multilevel moderation effects, we introduce a multilevel structural equation modeling (MSEM) logic that clarifies the nature of the problems with existing practices and remedies them with latent variable interactions. This remedy uses random coefficients and/or latent moderated structural equations (LMS) for unbiased tests of multilevel moderation. We describe our approach and provide an example using the publicly available High School and Beyond data with Mplus syntax in Appendix. Our MSEM method eliminates problems of conflated multilevel effects and reduces bias in parameter estimates while offering a coherent framework for conceptualizing and testing multilevel moderation effects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
On some variational acceleration techniques and related methods for local refinement
NASA Astrophysics Data System (ADS)
Teigland, Rune
1998-10-01
This paper shows that the well-known variational acceleration method described by Wachspress (E. Wachspress, Iterative Solution of Elliptic Systems and Applications to the Neutron Diffusion Equations of Reactor Physics, Prentice-Hall, Englewood Cliffs, NJ, 1966) and later generalized to multilevels (known as the additive correction multigrid method (B.R Huthchinson and G.D. Raithby, Numer. Heat Transf., 9, 511-537 (1986))) is similar to the FAC method of McCormick and Thomas (S.F McCormick and J.W. Thomas, Math. Comput., 46, 439-456 (1986)) and related multilevel methods. The performance of the method is demonstrated for some simple model problems using local refinement and suggestions for improving the performance of the method are given.
Analysis of aircraft tires via semianalytic finite elements
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Kim, Kyun O.; Tanner, John A.
1990-01-01
A computational procedure is presented for the geometrically nonlinear analysis of aircraft tires. The tire was modeled by using a two-dimensional laminated anisotropic shell theory with the effects of variation in material and geometric parameters included. The four key elements of the procedure are: (1) semianalytic finite elements in which the shell variables are represented by Fourier series in the circumferential direction and piecewise polynomials in the meridional direction; (2) a mixed formulation with the fundamental unknowns consisting of strain parameters, stress-resultant parameters, and generalized displacements; (3) multilevel operator splitting to effect successive simplifications, and to uncouple the equations associated with different Fourier harmonics; and (4) multilevel iterative procedures and reduction techniques to generate the response of the shell.
Multilevel Evaluation Alignment: An Explication of a Four-Step Model
ERIC Educational Resources Information Center
Yang, Huilan; Shen, Jianping; Cao, Honggao; Warfield, Charles
2004-01-01
Using the evaluation work on the W.K. Kellogg Foundation's Unleashing Resources Initiative as an example, in this article we explicate a general four-step model appropriate for multilevel evaluation alignment. We review the relevant literature, argue for the need for evaluation alignment in a multilevel context, explain the four-step model,…
Alternatives to Multilevel Modeling for the Analysis of Clustered Data
ERIC Educational Resources Information Center
Huang, Francis L.
2016-01-01
Multilevel modeling has grown in use over the years as a way to deal with the nonindependent nature of observations found in clustered data. However, other alternatives to multilevel modeling are available that can account for observations nested within clusters, including the use of Taylor series linearization for variance estimation, the design…
The Impact of Sample Size and Other Factors When Estimating Multilevel Logistic Models
ERIC Educational Resources Information Center
Schoeneberger, Jason A.
2016-01-01
The design of research studies utilizing binary multilevel models must necessarily incorporate knowledge of multiple factors, including estimation method, variance component size, or number of predictors, in addition to sample sizes. This Monte Carlo study examined the performance of random effect binary outcome multilevel models under varying…
ERIC Educational Resources Information Center
Kwok, Oi-man; West, Stephen G.; Green, Samuel B.
2007-01-01
This Monte Carlo study examined the impact of misspecifying the [big sum] matrix in longitudinal data analysis under both the multilevel model and mixed model frameworks. Under the multilevel model approach, under-specification and general-misspecification of the [big sum] matrix usually resulted in overestimation of the variances of the random…
Hanbury, Andria; Thompson, Carl; Mannion, Russell
2011-07-01
Tailored implementation strategies targeting health professionals' adoption of evidence-based recommendations are currently being developed. Research has focused on how to select an appropriate theoretical base, how to use that theoretical base to explore the local context, and how to translate theoretical constructs associated with the key factors found to influence innovation adoption into feasible and tailored implementation strategies. The reasons why an intervention is thought not to have worked are often cited as being: inappropriate choice of theoretical base; unsystematic development of the implementation strategies; and a poor evidence base to guide the process. One area of implementation research that is commonly overlooked is how to synthesize the data collected in a local context in order to identify what factors to target with the implementation strategies. This is suggested to be a critical process in the development of a theory-based intervention. The potential of multilevel modelling techniques to synthesize data collected at different hierarchical levels, for example, individual attitudes and team level variables, is discussed. Future research is needed to explore further the potential of multilevel modelling for synthesizing contextual data in implementation studies, as well as techniques for synthesizing qualitative and quantitative data.
Marston, Louise; Peacock, Janet L; Yu, Keming; Brocklehurst, Peter; Calvert, Sandra A; Greenough, Anne; Marlow, Neil
2009-07-01
Studies of prematurely born infants contain a relatively large percentage of multiple births, so the resulting data have a hierarchical structure with small clusters of size 1, 2 or 3. Ignoring the clustering may lead to incorrect inferences. The aim of this study was to compare statistical methods which can be used to analyse such data: generalised estimating equations, multilevel models, multiple linear regression and logistic regression. Four datasets which differed in total size and in percentage of multiple births (n = 254, multiple 18%; n = 176, multiple 9%; n = 10 098, multiple 3%; n = 1585, multiple 8%) were analysed. With the continuous outcome, two-level models produced similar results in the larger dataset, while generalised least squares multilevel modelling (ML GLS 'xtreg' in Stata) and maximum likelihood multilevel modelling (ML MLE 'xtmixed' in Stata) produced divergent estimates using the smaller dataset. For the dichotomous outcome, most methods, except generalised least squares multilevel modelling (ML GH 'xtlogit' in Stata) gave similar odds ratios and 95% confidence intervals within datasets. For the continuous outcome, our results suggest using multilevel modelling. We conclude that generalised least squares multilevel modelling (ML GLS 'xtreg' in Stata) and maximum likelihood multilevel modelling (ML MLE 'xtmixed' in Stata) should be used with caution when the dataset is small. Where the outcome is dichotomous and there is a relatively large percentage of non-independent data, it is recommended that these are accounted for in analyses using logistic regression with adjusted standard errors or multilevel modelling. If, however, the dataset has a small percentage of clusters greater than size 1 (e.g. a population dataset of children where there are few multiples) there appears to be less need to adjust for clustering.
Hierarchical models of very large problems, dilemmas, prospects, and an agenda for the future
NASA Technical Reports Server (NTRS)
Richardson, J. M., Jr.
1975-01-01
Interdisciplinary approaches to the modeling of global problems are discussed in terms of multilevel cooperation. A multilevel regionalized model of the Lake Erie Basin is analyzed along with a multilevel regionalized world modeling project. Other topics discussed include: a stratified model of interacting region in a world system, and the application of the model to the world food crisis in south Asia. Recommended research for future development of integrated models is included.
Ren, Yan; Yang, Min; Li, Qian; Pan, Jay; Chen, Fei; Li, Xiaosong; Meng, Qun
2017-02-22
To introduce multilevel repeated measures (RM) models and compare them with multilevel difference-in-differences (DID) models in assessing the linear relationship between the length of the policy intervention period and healthcare outcomes (dose-response effect) for data from a stepped-wedge design with a hierarchical structure. The implementation of national essential medicine policy (NEMP) in China was a stepped-wedge-like design of five time points with a hierarchical structure. Using one key healthcare outcome from the national NEMP surveillance data as an example, we illustrate how a series of multilevel DID models and one multilevel RM model can be fitted to answer some research questions on policy effects. Routinely and annually collected national data on China from 2008 to 2012. 34 506 primary healthcare facilities in 2675 counties of 31 provinces. Agreement and differences in estimates of dose-response effect and variation in such effect between the two methods on the logarithm-transformed total number of outpatient visits per facility per year (LG-OPV). The estimated dose-response effect was approximately 0.015 according to four multilevel DID models and precisely 0.012 from one multilevel RM model. Both types of model estimated an increase in LG-OPV by 2.55 times from 2009 to 2012, but 2-4.3 times larger SEs of those estimates were found by the multilevel DID models. Similar estimates of mean effects of covariates and random effects of the average LG-OPV among all levels in the example dataset were obtained by both types of model. Significant variances in the dose-response among provinces, counties and facilities were estimated, and the 'lowest' or 'highest' units by their dose-response effects were pinpointed only by the multilevel RM model. For examining dose-response effect based on data from multiple time points with hierarchical structure and the stepped wedge-like designs, multilevel RM models are more efficient, convenient and informative than the multilevel DID models. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Multilevel Modeling and School Psychology: A Review and Practical Example
ERIC Educational Resources Information Center
Graves, Scott L., Jr.; Frohwerk, April
2009-01-01
The purpose of this article is to provide an overview of the state of multilevel modeling in the field of school psychology. The authors provide a systematic assessment of published research of multilevel modeling studies in 5 journals devoted to the research and practice of school psychology. In addition, a practical example from the nationally…
Multilevel filtering elliptic preconditioners
NASA Technical Reports Server (NTRS)
Kuo, C. C. Jay; Chan, Tony F.; Tong, Charles
1989-01-01
A class of preconditioners is presented for elliptic problems built on ideas borrowed from the digital filtering theory and implemented on a multilevel grid structure. They are designed to be both rapidly convergent and highly parallelizable. The digital filtering viewpoint allows the use of filter design techniques for constructing elliptic preconditioners and also provides an alternative framework for understanding several other recently proposed multilevel preconditioners. Numerical results are presented to assess the convergence behavior of the new methods and to compare them with other preconditioners of multilevel type, including the usual multigrid method as preconditioner, the hierarchical basis method and a recent method proposed by Bramble-Pasciak-Xu.
Broadband seismic : case study modeling and data processing
NASA Astrophysics Data System (ADS)
Cahyaningtyas, M. B.; Bahar, A.
2018-03-01
Seismic data with wide range of frequency is needed due to its close relation to resolution and the depth of the target. Low frequency provides deeper penetration for the imaging of deep target. In addition, the wider the frequency bandwidth, the sharper the wavelet. Sharp wavelet is responsible for high-resolution imaging and is very helpful to resolve thin bed. As a result, the demand for broadband seismic data is rising and it spurs the technology development of broadband seismic in oil and gas industry. An obstacle that is frequently found on marine seismic data is the existence of ghost that affects the frequency bandwidth contained on the seismic data. Ghost alters bandwidth to bandlimited. To reduce ghost effect and to acquire broadband seismic data, lots of attempts are used, both on the acquisition and on the processing of seismic data. One of the acquisition technique applied is the multi-level streamer, where some streamers are towed on some levels of depth. Multi-level streamer will yield data with varied ghost notch shown on frequency domain. If the ghost notches are not overlapping, the summation of multi-level streamer data will reduce the ghost effect. The result of the multi-level streamer data processing shows that reduction of ghost notch on frequency domain indeed takes place.
A multilevel control approach for a modular structured space platform
NASA Technical Reports Server (NTRS)
Chichester, F. D.; Borelli, M. T.
1981-01-01
A three axis mathematical representation of a modular assembled space platform consisting of interconnected discrete masses, including a deployable truss module, was derived for digital computer simulation. The platform attitude control system as developed to provide multilevel control utilizing the Gauss-Seidel second level formulation along with an extended form of linear quadratic regulator techniques. The objectives of the multilevel control are to decouple the space platform's spatial axes and to accommodate the modification of the platform's configuration for each of the decoupled axes.
Resche-Rigon, Matthieu; White, Ian R
2018-06-01
In multilevel settings such as individual participant data meta-analysis, a variable is 'systematically missing' if it is wholly missing in some clusters and 'sporadically missing' if it is partly missing in some clusters. Previously proposed methods to impute incomplete multilevel data handle either systematically or sporadically missing data, but frequently both patterns are observed. We describe a new multiple imputation by chained equations (MICE) algorithm for multilevel data with arbitrary patterns of systematically and sporadically missing variables. The algorithm is described for multilevel normal data but can easily be extended for other variable types. We first propose two methods for imputing a single incomplete variable: an extension of an existing method and a new two-stage method which conveniently allows for heteroscedastic data. We then discuss the difficulties of imputing missing values in several variables in multilevel data using MICE, and show that even the simplest joint multilevel model implies conditional models which involve cluster means and heteroscedasticity. However, a simulation study finds that the proposed methods can be successfully combined in a multilevel MICE procedure, even when cluster means are not included in the imputation models.
ERIC Educational Resources Information Center
Park, Jungkyu; Yu, Hsiu-Ting
2016-01-01
The multilevel latent class model (MLCM) is a multilevel extension of a latent class model (LCM) that is used to analyze nested structure data structure. The nonparametric version of an MLCM assumes a discrete latent variable at a higher-level nesting structure to account for the dependency among observations nested within a higher-level unit. In…
Zhang, Xinyan; Li, Bingzong; Han, Huiying; Song, Sha; Xu, Hongxia; Hong, Yating; Yi, Nengjun; Zhuang, Wenzhuo
2018-05-10
Multiple myeloma (MM), like other cancers, is caused by the accumulation of genetic abnormalities. Heterogeneity exists in the patients' response to treatments, for example, bortezomib. This urges efforts to identify biomarkers from numerous molecular features and build predictive models for identifying patients that can benefit from a certain treatment scheme. However, previous studies treated the multi-level ordinal drug response as a binary response where only responsive and non-responsive groups are considered. It is desirable to directly analyze the multi-level drug response, rather than combining the response to two groups. In this study, we present a novel method to identify significantly associated biomarkers and then develop ordinal genomic classifier using the hierarchical ordinal logistic model. The proposed hierarchical ordinal logistic model employs the heavy-tailed Cauchy prior on the coefficients and is fitted by an efficient quasi-Newton algorithm. We apply our hierarchical ordinal regression approach to analyze two publicly available datasets for MM with five-level drug response and numerous gene expression measures. Our results show that our method is able to identify genes associated with the multi-level drug response and to generate powerful predictive models for predicting the multi-level response. The proposed method allows us to jointly fit numerous correlated predictors and thus build efficient models for predicting the multi-level drug response. The predictive model for the multi-level drug response can be more informative than the previous approaches. Thus, the proposed approach provides a powerful tool for predicting multi-level drug response and has important impact on cancer studies.
Multilevel Modeling in Psychosomatic Medicine Research
Myers, Nicholas D.; Brincks, Ahnalee M.; Ames, Allison J.; Prado, Guillermo J.; Penedo, Frank J.; Benedict, Catherine
2012-01-01
The primary purpose of this manuscript is to provide an overview of multilevel modeling for Psychosomatic Medicine readers and contributors. The manuscript begins with a general introduction to multilevel modeling. Multilevel regression modeling at two-levels is emphasized because of its prevalence in psychosomatic medicine research. Simulated datasets based on some core ideas from the Familias Unidas effectiveness study are used to illustrate key concepts including: communication of model specification, parameter interpretation, sample size and power, and missing data. Input and key output files from Mplus and SAS are provided. A cluster randomized trial with repeated measures (i.e., three-level regression model) is then briefly presented with simulated data based on some core ideas from a cognitive behavioral stress management intervention in prostate cancer. PMID:23107843
Multilevel Higher-Order Item Response Theory Models
ERIC Educational Resources Information Center
Huang, Hung-Yu; Wang, Wen-Chung
2014-01-01
In the social sciences, latent traits often have a hierarchical structure, and data can be sampled from multiple levels. Both hierarchical latent traits and multilevel data can occur simultaneously. In this study, we developed a general class of item response theory models to accommodate both hierarchical latent traits and multilevel data. The…
Conducting Multilevel Analyses in Medical Education
ERIC Educational Resources Information Center
Zyphur, Michael J.; Kaplan, Seth A.; Islam, Gazi; Barsky, Adam P.; Franklin, Michael S.
2008-01-01
A significant body of education literature has begun using multilevel statistical models to examine data that reside at multiple levels of analysis. In order to provide a primer for medical education researchers, the current work gives a brief overview of some issues associated with multilevel statistical modeling. To provide an example of this…
Multi-level discriminative dictionary learning with application to large scale image classification.
Shen, Li; Sun, Gang; Huang, Qingming; Wang, Shuhui; Lin, Zhouchen; Wu, Enhua
2015-10-01
The sparse coding technique has shown flexibility and capability in image representation and analysis. It is a powerful tool in many visual applications. Some recent work has shown that incorporating the properties of task (such as discrimination for classification task) into dictionary learning is effective for improving the accuracy. However, the traditional supervised dictionary learning methods suffer from high computation complexity when dealing with large number of categories, making them less satisfactory in large scale applications. In this paper, we propose a novel multi-level discriminative dictionary learning method and apply it to large scale image classification. Our method takes advantage of hierarchical category correlation to encode multi-level discriminative information. Each internal node of the category hierarchy is associated with a discriminative dictionary and a classification model. The dictionaries at different layers are learnt to capture the information of different scales. Moreover, each node at lower layers also inherits the dictionary of its parent, so that the categories at lower layers can be described with multi-scale information. The learning of dictionaries and associated classification models is jointly conducted by minimizing an overall tree loss. The experimental results on challenging data sets demonstrate that our approach achieves excellent accuracy and competitive computation cost compared with other sparse coding methods for large scale image classification.
Analyzing Multiple Outcomes in Clinical Research Using Multivariate Multilevel Models
Baldwin, Scott A.; Imel, Zac E.; Braithwaite, Scott R.; Atkins, David C.
2014-01-01
Objective Multilevel models have become a standard data analysis approach in intervention research. Although the vast majority of intervention studies involve multiple outcome measures, few studies use multivariate analysis methods. The authors discuss multivariate extensions to the multilevel model that can be used by psychotherapy researchers. Method and Results Using simulated longitudinal treatment data, the authors show how multivariate models extend common univariate growth models and how the multivariate model can be used to examine multivariate hypotheses involving fixed effects (e.g., does the size of the treatment effect differ across outcomes?) and random effects (e.g., is change in one outcome related to change in the other?). An online supplemental appendix provides annotated computer code and simulated example data for implementing a multivariate model. Conclusions Multivariate multilevel models are flexible, powerful models that can enhance clinical research. PMID:24491071
Space construction base control system
NASA Technical Reports Server (NTRS)
1978-01-01
Aspects of an attitude control system were studied and developed for a large space base that is structurally flexible and whose mass properties change rather dramatically during its orbital lifetime. Topics of discussion include the following: (1) space base orbital pointing and maneuvering; (2) angular momentum sizing of actuators; (3) momentum desaturation selection and sizing; (4) multilevel control technique applied to configuration one; (5) one-dimensional model simulation; (6) N-body discrete coordinate simulation; (7) structural analysis math model formulation; and (8) discussion of control problems and control methods.
DC-DC Type High-Frequency Link DC for Improved Power Quality of Cascaded Multilevel Inverter
NASA Astrophysics Data System (ADS)
Sadikin, Muhammad; Senjyu, Tomonobu; Yona, Atsushi
2013-06-01
Multilevel inverters are emerging as a new breed of power converter options for power system applications. Recent advances in power switching devices enabled the suitability of multilevel inverters for high voltage and high power applications because they are connecting several devices in series without the need of component matching. Usually, a transformerless battery energy storage system, based on a cascaded multilevel inverter, is used as a measure for voltage and frequency deviations. System can be reduced in size, weight, and cost of energy storage system. High-frequency link circuit topology is advantageous in realizing compact and light-weight power converters for uninterruptible power supply systems, new energy systems using photovoltaic-cells, fuel-cells and so on. This paper presents a DC-DC type high-frequency link DC (HFLDC) cascaded multilevel inverter. Each converter cell is implemented a control strategy for two H-bridge inverters that are controlled with the same multicarrier pulse width modulation (PWM) technique. The proposed cascaded multilevel inverter generates lower voltage total harmonic distortion (THD) in comparison with conventional cascaded multilevel inverter. Digital simulations are carried out using PSCAD/EMTDC to validate the performance of the proposed cascaded multilevel inverter.
Sung, Yao-Ting; Chen, Ju-Ling; Cha, Ji-Her; Tseng, Hou-Chiang; Chang, Tao-Hsing; Chang, Kuo-En
2015-06-01
Multilevel linguistic features have been proposed for discourse analysis, but there have been few applications of multilevel linguistic features to readability models and also few validations of such models. Most traditional readability formulae are based on generalized linear models (GLMs; e.g., discriminant analysis and multiple regression), but these models have to comply with certain statistical assumptions about data properties and include all of the data in formulae construction without pruning the outliers in advance. The use of such readability formulae tends to produce a low text classification accuracy, while using a support vector machine (SVM) in machine learning can enhance the classification outcome. The present study constructed readability models by integrating multilevel linguistic features with SVM, which is more appropriate for text classification. Taking the Chinese language as an example, this study developed 31 linguistic features as the predicting variables at the word, semantic, syntax, and cohesion levels, with grade levels of texts as the criterion variable. The study compared four types of readability models by integrating unilevel and multilevel linguistic features with GLMs and an SVM. The results indicate that adopting a multilevel approach in readability analysis provides a better representation of the complexities of both texts and the reading comprehension process.
NASA Technical Reports Server (NTRS)
Lin, Shu; Rhee, Dojun
1996-01-01
This paper is concerned with construction of multilevel concatenated block modulation codes using a multi-level concatenation scheme for the frequency non-selective Rayleigh fading channel. In the construction of multilevel concatenated modulation code, block modulation codes are used as the inner codes. Various types of codes (block or convolutional, binary or nonbinary) are being considered as the outer codes. In particular, we focus on the special case for which Reed-Solomon (RS) codes are used as the outer codes. For this special case, a systematic algebraic technique for constructing q-level concatenated block modulation codes is proposed. Codes have been constructed for certain specific values of q and compared with the single-level concatenated block modulation codes using the same inner codes. A multilevel closest coset decoding scheme for these codes is proposed.
Mathematical model comparing of the multi-level economics systems
NASA Astrophysics Data System (ADS)
Brykalov, S. M.; Kryanev, A. V.
2017-12-01
The mathematical model (scheme) of a multi-level comparison of the economic system, characterized by the system of indices, is worked out. In the mathematical model of the multi-level comparison of the economic systems, the indicators of peer review and forecasting of the economic system under consideration can be used. The model can take into account the uncertainty in the estimated values of the parameters or expert estimations. The model uses the multi-criteria approach based on the Pareto solutions.
Multilevel corporate environmental responsibility.
Karassin, Orr; Bar-Haim, Aviad
2016-12-01
The multilevel empirical study of the antecedents of corporate social responsibility (CSR) has been identified as "the first knowledge gap" in CSR research. Based on an extensive literature review, the present study outlines a conceptual multilevel model of CSR, then designs and empirically validates an operational multilevel model of the principal driving factors affecting corporate environmental responsibility (CER), as a measure of CSR. Both conceptual and operational models incorporate three levels of analysis: institutional, organizational, and individual. The multilevel nature of the design allows for the assessment of the relative importance of the levels and of their components in the achievement of CER. Unweighted least squares (ULS) regression analysis reveals that the institutional-level variables have medium relationships with CER, some variables having a negative effect. The organizational level is revealed as having strong and positive significant relationships with CER, with organizational culture and managers' attitudes and behaviors as significant driving forces. The study demonstrates the importance of multilevel analysis in improving the understanding of CSR drivers, relative to single level models, even if the significance of specific drivers and levels may vary by context. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hong, Sehee; Kim, Soyoung
2018-01-01
There are basically two modeling approaches applicable to analyzing an actor-partner interdependence model: the multilevel modeling (hierarchical linear model) and the structural equation modeling. This article explains how to use these two models in analyzing an actor-partner interdependence model and how these two approaches work differently. As an empirical example, marital conflict data were used to analyze an actor-partner interdependence model. The multilevel modeling and the structural equation modeling produced virtually identical estimates for a basic model. However, the structural equation modeling approach allowed more realistic assumptions on measurement errors and factor loadings, rendering better model fit indices.
Intermediate and advanced topics in multilevel logistic regression analysis
Merlo, Juan
2017-01-01
Multilevel data occur frequently in health services, population and public health, and epidemiologic research. In such research, binary outcomes are common. Multilevel logistic regression models allow one to account for the clustering of subjects within clusters of higher‐level units when estimating the effect of subject and cluster characteristics on subject outcomes. A search of the PubMed database demonstrated that the use of multilevel or hierarchical regression models is increasing rapidly. However, our impression is that many analysts simply use multilevel regression models to account for the nuisance of within‐cluster homogeneity that is induced by clustering. In this article, we describe a suite of analyses that can complement the fitting of multilevel logistic regression models. These ancillary analyses permit analysts to estimate the marginal or population‐average effect of covariates measured at the subject and cluster level, in contrast to the within‐cluster or cluster‐specific effects arising from the original multilevel logistic regression model. We describe the interval odds ratio and the proportion of opposed odds ratios, which are summary measures of effect for cluster‐level covariates. We describe the variance partition coefficient and the median odds ratio which are measures of components of variance and heterogeneity in outcomes. These measures allow one to quantify the magnitude of the general contextual effect. We describe an R 2 measure that allows analysts to quantify the proportion of variation explained by different multilevel logistic regression models. We illustrate the application and interpretation of these measures by analyzing mortality in patients hospitalized with a diagnosis of acute myocardial infarction. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. PMID:28543517
Intermediate and advanced topics in multilevel logistic regression analysis.
Austin, Peter C; Merlo, Juan
2017-09-10
Multilevel data occur frequently in health services, population and public health, and epidemiologic research. In such research, binary outcomes are common. Multilevel logistic regression models allow one to account for the clustering of subjects within clusters of higher-level units when estimating the effect of subject and cluster characteristics on subject outcomes. A search of the PubMed database demonstrated that the use of multilevel or hierarchical regression models is increasing rapidly. However, our impression is that many analysts simply use multilevel regression models to account for the nuisance of within-cluster homogeneity that is induced by clustering. In this article, we describe a suite of analyses that can complement the fitting of multilevel logistic regression models. These ancillary analyses permit analysts to estimate the marginal or population-average effect of covariates measured at the subject and cluster level, in contrast to the within-cluster or cluster-specific effects arising from the original multilevel logistic regression model. We describe the interval odds ratio and the proportion of opposed odds ratios, which are summary measures of effect for cluster-level covariates. We describe the variance partition coefficient and the median odds ratio which are measures of components of variance and heterogeneity in outcomes. These measures allow one to quantify the magnitude of the general contextual effect. We describe an R 2 measure that allows analysts to quantify the proportion of variation explained by different multilevel logistic regression models. We illustrate the application and interpretation of these measures by analyzing mortality in patients hospitalized with a diagnosis of acute myocardial infarction. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
Jongerling, Joran; Laurenceau, Jean-Philippe; Hamaker, Ellen L
2015-01-01
In this article we consider a multilevel first-order autoregressive [AR(1)] model with random intercepts, random autoregression, and random innovation variance (i.e., the level 1 residual variance). Including random innovation variance is an important extension of the multilevel AR(1) model for two reasons. First, between-person differences in innovation variance are important from a substantive point of view, in that they capture differences in sensitivity and/or exposure to unmeasured internal and external factors that influence the process. Second, using simulation methods we show that modeling the innovation variance as fixed across individuals, when it should be modeled as a random effect, leads to biased parameter estimates. Additionally, we use simulation methods to compare maximum likelihood estimation to Bayesian estimation of the multilevel AR(1) model and investigate the trade-off between the number of individuals and the number of time points. We provide an empirical illustration by applying the extended multilevel AR(1) model to daily positive affect ratings from 89 married women over the course of 42 consecutive days.
Dual deep modeling: multi-level modeling with dual potencies and its formalization in F-Logic.
Neumayr, Bernd; Schuetz, Christoph G; Jeusfeld, Manfred A; Schrefl, Michael
2018-01-01
An enterprise database contains a global, integrated, and consistent representation of a company's data. Multi-level modeling facilitates the definition and maintenance of such an integrated conceptual data model in a dynamic environment of changing data requirements of diverse applications. Multi-level models transcend the traditional separation of class and object with clabjects as the central modeling primitive, which allows for a more flexible and natural representation of many real-world use cases. In deep instantiation, the number of instantiation levels of a clabject or property is indicated by a single potency. Dual deep modeling (DDM) differentiates between source potency and target potency of a property or association and supports the flexible instantiation and refinement of the property by statements connecting clabjects at different modeling levels. DDM comes with multiple generalization of clabjects, subsetting/specialization of properties, and multi-level cardinality constraints. Examples are presented using a UML-style notation for DDM together with UML class and object diagrams for the representation of two-level user views derived from the multi-level model. Syntax and semantics of DDM are formalized and implemented in F-Logic, supporting the modeler with integrity checks and rich query facilities.
FBILI method for multi-level line transfer
NASA Astrophysics Data System (ADS)
Kuzmanovska, O.; Atanacković, O.; Faurobert, M.
2017-07-01
Efficient non-LTE multilevel radiative transfer calculations are needed for a proper interpretation of astrophysical spectra. In particular, realistic simulations of time-dependent processes or multi-dimensional phenomena require that the iterative method used to solve such non-linear and non-local problem is as fast as possible. There are several multilevel codes based on efficient iterative schemes that provide a very high convergence rate, especially when combined with mathematical acceleration techniques. The Forth-and-Back Implicit Lambda Iteration (FBILI) developed by Atanacković-Vukmanović et al. [1] is a Gauss-Seidel-type iterative scheme that is characterized by a very high convergence rate without the need of complementing it with additional acceleration techniques. In this paper we make the implementation of the FBILI method to the multilevel atom line transfer in 1D more explicit. We also consider some of its variants and investigate their convergence properties by solving the benchmark problem of CaII line formation in the solar atmosphere. Finally, we compare our solutions with results obtained with the well known code MULTI.
Anderson, Emma L; Tilling, Kate; Fraser, Abigail; Macdonald-Wallis, Corrie; Emmett, Pauline; Cribb, Victoria; Northstone, Kate; Lawlor, Debbie A; Howe, Laura D
2013-07-01
Methods for the assessment of changes in dietary intake across the life course are underdeveloped. We demonstrate the use of linear-spline multilevel models to summarize energy-intake trajectories through childhood and adolescence and their application as exposures, outcomes, or mediators. The Avon Longitudinal Study of Parents and Children assessed children's dietary intake several times between ages 3 and 13 years, using both food frequency questionnaires (FFQs) and 3-day food diaries. We estimated energy-intake trajectories for 12,032 children using linear-spline multilevel models. We then assessed the associations of these trajectories with maternal body mass index (BMI), and later offspring BMI, and also their role in mediating the relation between maternal and offspring BMIs. Models estimated average and individual energy intake at 3 years, and linear changes in energy intake from age 3 to 7 years and from age 7 to 13 years. By including the exposure (in this example, maternal BMI) in the multilevel model, we were able to estimate the average energy-intake trajectories across levels of the exposure. When energy-intake trajectories are the exposure for a later outcome (in this case offspring BMI) or a mediator (between maternal and offspring BMI), results were similar, whether using a two-step process (exporting individual-level intercepts and slopes from multilevel models and using these in linear regression/path analysis), or a single-step process (multivariate multilevel models). Trajectories were similar when FFQs and food diaries were assessed either separately, or when combined into one model. Linear-spline multilevel models provide useful summaries of trajectories of dietary intake that can be used as an exposure, outcome, or mediator.
Modeling, Development and Control of Multilevel Converters for Power System Application =
NASA Astrophysics Data System (ADS)
Vahedi, Hani
The main goal of this project is to develop a multilevel converter topology to be useful in power system applications. Although many topologies are introduced rapidly using a bunch of switches and isolated dc sources, having a single-dc-source multilevel inverter is still a matter of controversy. In fact, each isolated dc source means a bulky transformer and a rectifier that have their own losses and costs forcing the industries to avoid entering in this topic conveniently. On the other hand, multilevel inverters topologies with single-dc-source require associated controllers to regulate the dc capacitors voltages in order to have multilevel voltage waveform at the output. Thus, a complex controller would not interest investors properly. Consequently, developing a single-dc-source multilevel inverter topology along with a light and reliable voltage control is still a challenging topic to replace the 2-level inverters in the market effectively. The first effort in this project was devoted to the PUC7 inverter to design a simple and yet efficient controller. A new modelling is performed on the PUC7 inverter and it has been simplified to first order system. Afterwards, a nonlinear cascaded controller is designed and applied to regulate the capacitor voltage at 1/3 of the DC source amplitude and to generate 7 identical voltage levels at the output supplying different type of loads such as RL or rectifier harmonic ones. In next work, the PUC5 topology is proposed as a remedy to the PUC7 that requires a complicated controller to operate properly. The capacitor voltage is regulated at half of dc source amplitude to generate 5 voltage levels at the output. Although the 7-level voltage waveform is replaced by a 5-level one in PUC5 topology, it is shown that the PUC5 needs a very simple and reliable voltage balancing technique due to having some redundant switching states. Moreover, a sensor-less voltage balancing technique is designed and implemented on the PUC5 inverter successfully to work in both stand-alone and gridconnected mode of operation. Eventually, a modified configuration of the PUC5 topology is presented to work as a buck PFC rectifier. The internal performance of the rectifier is like a buck converter to generate stepped down DC voltages at the two output terminals while the grid sees a boost converter externally. As well, a decoupled voltage/current controller is designed and applied to balance the output voltages identically and synchronize the input current with grid voltage to have a PFC operation acceptably. A power balance analysis is done to show the load variation range limit. All the theoretical and simulation studies are validated by experimental results completely.
ERIC Educational Resources Information Center
Ludtke, Oliver; Marsh, Herbert W.; Robitzsch, Alexander; Trautwein, Ulrich
2011-01-01
In multilevel modeling, group-level variables (L2) for assessing contextual effects are frequently generated by aggregating variables from a lower level (L1). A major problem of contextual analyses in the social sciences is that there is no error-free measurement of constructs. In the present article, 2 types of error occurring in multilevel data…
A multilevel correction adaptive finite element method for Kohn-Sham equation
NASA Astrophysics Data System (ADS)
Hu, Guanghui; Xie, Hehu; Xu, Fei
2018-02-01
In this paper, an adaptive finite element method is proposed for solving Kohn-Sham equation with the multilevel correction technique. In the method, the Kohn-Sham equation is solved on a fixed and appropriately coarse mesh with the finite element method in which the finite element space is kept improving by solving the derived boundary value problems on a series of adaptively and successively refined meshes. A main feature of the method is that solving large scale Kohn-Sham system is avoided effectively, and solving the derived boundary value problems can be handled efficiently by classical methods such as the multigrid method. Hence, the significant acceleration can be obtained on solving Kohn-Sham equation with the proposed multilevel correction technique. The performance of the method is examined by a variety of numerical experiments.
Backlund, Eric; Rowe, Geoff; Lynch, John; Wolfson, Michael C; Kaplan, George A; Sorlie, Paul D
2007-06-01
Some of the most consistent evidence in favour of an association between income inequality and health has been among US states. However, in multilevel studies of mortality, only two out of five studies have reported a positive relationship with income inequality after adjustment for the compositional characteristics of the state's inhabitants. In this study, we attempt to clarify these mixed results by analysing the relationship within age-sex groups and by applying a previously unused analytical method to a database that contains more deaths than any multilevel study to date. The US National Longitudinal Mortality Study (NLMS) was used to model the relationship between income inequality in US states and mortality using both a novel and previously used methodologies that fall into the general framework of multilevel regression. We adjust age-sex specific models for nine socioeconomic and demographic variables at the individual level and percentage black and region at the state level. The preponderance of evidence from this study suggests that 1990 state-level income inequality is associated with a 40% differential in state level mortality rates (95% CI = 26-56%) for men 25-64 years and a 14% (95% CI = 3-27%) differential for women 25-64 years after adjustment for compositional factors. No such relationship was found for men or women over 65. The relationship between income inequality and mortality is only robust to adjustment for compositional factors in men and women under 65. This explains why income inequality is not a major driver of mortality trends in the United States because most deaths occur at ages 65 and over. This analysis does suggest, however, the certain causes of death that occur primarily in the population under 65 may be associated with income inequality. Comparison of analytical techniques also suggests coefficients for income inequality in previous multilevel mortality studies may be biased, but further research is needed to provide a definitive answer.
Generalized Multilevel Structural Equation Modeling
ERIC Educational Resources Information Center
Rabe-Hesketh, Sophia; Skrondal, Anders; Pickles, Andrew
2004-01-01
A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent…
Multi-level damage identification with response reconstruction
NASA Astrophysics Data System (ADS)
Zhang, Chao-Dong; Xu, You-Lin
2017-10-01
Damage identification through finite element (FE) model updating usually forms an inverse problem. Solving the inverse identification problem for complex civil structures is very challenging since the dimension of potential damage parameters in a complex civil structure is often very large. Aside from enormous computation efforts needed in iterative updating, the ill-condition and non-global identifiability features of the inverse problem probably hinder the realization of model updating based damage identification for large civil structures. Following a divide-and-conquer strategy, a multi-level damage identification method is proposed in this paper. The entire structure is decomposed into several manageable substructures and each substructure is further condensed as a macro element using the component mode synthesis (CMS) technique. The damage identification is performed at two levels: the first is at macro element level to locate the potentially damaged region and the second is over the suspicious substructures to further locate as well as quantify the damage severity. In each level's identification, the damage searching space over which model updating is performed is notably narrowed down, not only reducing the computation amount but also increasing the damage identifiability. Besides, the Kalman filter-based response reconstruction is performed at the second level to reconstruct the response of the suspicious substructure for exact damage quantification. Numerical studies and laboratory tests are both conducted on a simply supported overhanging steel beam for conceptual verification. The results demonstrate that the proposed multi-level damage identification via response reconstruction does improve the identification accuracy of damage localization and quantization considerably.
Foster, Katherine T; Beltz, Adriene M
2018-08-01
Ambulatory assessment (AA) methodologies have the potential to increase understanding and treatment of addictive behavior in seemingly unprecedented ways, due in part, to their emphasis on intensive repeated assessments of an individual's addictive behavior in context. But, many analytic techniques traditionally applied to AA data - techniques that average across people and time - do not fully leverage this potential. In an effort to take advantage of the individualized, temporal nature of AA data on addictive behavior, the current paper considers three underutilized person-oriented analytic techniques: multilevel modeling, p-technique, and group iterative multiple model estimation. After reviewing prevailing analytic techniques, each person-oriented technique is presented, AA data specifications are mentioned, an example analysis using generated data is provided, and advantages and limitations are discussed; the paper closes with a brief comparison across techniques. Increasing use of person-oriented techniques will substantially enhance inferences that can be drawn from AA data on addictive behavior and has implications for the development of individualized interventions. Copyright © 2017. Published by Elsevier Ltd.
Estimating Treatment Effects via Multilevel Matching within Homogenous Groups of Clusters
ERIC Educational Resources Information Center
Steiner, Peter M.; Kim, Jee-Seon
2015-01-01
Despite the popularity of propensity score (PS) techniques they are not yet well studied for matching multilevel data where selection into treatment takes place among level-one units within clusters. This paper suggests a PS matching strategy that tries to avoid the disadvantages of within- and across-cluster matching. The idea is to first…
Friendship and Alcohol Use in Early Adolescence: A Multilevel Social Network Approach
ERIC Educational Resources Information Center
Knecht, Andrea B.; Burk, William J.; Weesie, Jeroen; Steglich, Christian
2011-01-01
This study applies multilevel social network analytic techniques to examine processes of homophilic selection and social influence related to alcohol use among friends in early adolescence. Participants included 3,041 Dutch youth (M age =12 years, 49% female) from 120 classrooms in 14 schools. Three waves with 3-month intervals of friendship…
A Study of Synchronization Techniques for Optical Communication Systems
NASA Technical Reports Server (NTRS)
Gagliardi, R. M.
1975-01-01
The study of synchronization techniques and related topics in the design of high data rate, deep space, optical communication systems was reported. Data cover: (1) effects of timing errors in narrow pulsed digital optical systems, (2) accuracy of microwave timing systems operating in low powered optical systems, (3) development of improved tracking systems for the optical channel and determination of their tracking performance, (4) development of usable photodetector mathematical models for application to analysis and performance design in communication receivers, and (5) study application of multi-level block encoding to optical transmission of digital data.
ERIC Educational Resources Information Center
Sun, Shuyan; Pan, Wei
2014-01-01
As applications of multilevel modelling in educational research increase, researchers realize that multilevel data collected in many educational settings are often not purely nested. The most common multilevel non-nested data structure is one that involves student mobility in longitudinal studies. This article provides a methodological review of…
Multilevel Mixture Kalman Filter
NASA Astrophysics Data System (ADS)
Guo, Dong; Wang, Xiaodong; Chen, Rong
2004-12-01
The mixture Kalman filter is a general sequential Monte Carlo technique for conditional linear dynamic systems. It generates samples of some indicator variables recursively based on sequential importance sampling (SIS) and integrates out the linear and Gaussian state variables conditioned on these indicators. Due to the marginalization process, the complexity of the mixture Kalman filter is quite high if the dimension of the indicator sampling space is high. In this paper, we address this difficulty by developing a new Monte Carlo sampling scheme, namely, the multilevel mixture Kalman filter. The basic idea is to make use of the multilevel or hierarchical structure of the space from which the indicator variables take values. That is, we draw samples in a multilevel fashion, beginning with sampling from the highest-level sampling space and then draw samples from the associate subspace of the newly drawn samples in a lower-level sampling space, until reaching the desired sampling space. Such a multilevel sampling scheme can be used in conjunction with the delayed estimation method, such as the delayed-sample method, resulting in delayed multilevel mixture Kalman filter. Examples in wireless communication, specifically the coherent and noncoherent 16-QAM over flat-fading channels, are provided to demonstrate the performance of the proposed multilevel mixture Kalman filter.
Shi, Yan; Wang, Hao Gang; Li, Long; Chan, Chi Hou
2008-10-01
A multilevel Green's function interpolation method based on two kinds of multilevel partitioning schemes--the quasi-2D and the hybrid partitioning scheme--is proposed for analyzing electromagnetic scattering from objects comprising both conducting and dielectric parts. The problem is formulated using the surface integral equation for homogeneous dielectric and conducting bodies. A quasi-2D multilevel partitioning scheme is devised to improve the efficiency of the Green's function interpolation. In contrast to previous multilevel partitioning schemes, noncubic groups are introduced to discretize the whole EM structure in this quasi-2D multilevel partitioning scheme. Based on the detailed analysis of the dimension of the group in this partitioning scheme, a hybrid quasi-2D/3D multilevel partitioning scheme is proposed to effectively handle objects with fine local structures. Selection criteria for some key parameters relating to the interpolation technique are given. The proposed algorithm is ideal for the solution of problems involving objects such as missiles, microstrip antenna arrays, photonic bandgap structures, etc. Numerical examples are presented to show that CPU time is between O(N) and O(N log N) while the computer memory requirement is O(N).
Using multilevel models to quantify heterogeneity in resource selection
Wagner, Tyler; Diefenbach, Duane R.; Christensen, Sonja; Norton, Andrew S.
2011-01-01
Models of resource selection are being used increasingly to predict or model the effects of management actions rather than simply quantifying habitat selection. Multilevel, or hierarchical, models are an increasingly popular method to analyze animal resource selection because they impose a relatively weak stochastic constraint to model heterogeneity in habitat use and also account for unequal sample sizes among individuals. However, few studies have used multilevel models to model coefficients as a function of predictors that may influence habitat use at different scales or quantify differences in resource selection among groups. We used an example with white-tailed deer (Odocoileus virginianus) to illustrate how to model resource use as a function of distance to road that varies among deer by road density at the home range scale. We found that deer avoidance of roads decreased as road density increased. Also, we used multilevel models with sika deer (Cervus nippon) and white-tailed deer to examine whether resource selection differed between species. We failed to detect differences in resource use between these two species and showed how information-theoretic and graphical measures can be used to assess how resource use may have differed. Multilevel models can improve our understanding of how resource selection varies among individuals and provides an objective, quantifiable approach to assess differences or changes in resource selection.
Advances in contact algorithms and their application to tires
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Tanner, John A.
1988-01-01
Currently used techniques for tire contact analysis are reviewed. Discussion focuses on the different techniques used in modeling frictional forces and the treatment of contact conditions. A status report is presented on a new computational strategy for the modeling and analysis of tires, including the solution of the contact problem. The key elements of the proposed strategy are: (1) use of semianalytic mixed finite elements in which the shell variables are represented by Fourier series in the circumferential direction and piecewise polynomials in the meridional direction; (2) use of perturbed Lagrangian formulation for the determination of the contact area and pressure; and (3) application of multilevel iterative procedures and reduction techniques to generate the response of the tire. Numerical results are presented to demonstrate the effectiveness of a proposed procedure for generating the tire response associated with different Fourier harmonics.
Li, Baoyue; Bruyneel, Luk; Lesaffre, Emmanuel
2014-05-20
A traditional Gaussian hierarchical model assumes a nested multilevel structure for the mean and a constant variance at each level. We propose a Bayesian multivariate multilevel factor model that assumes a multilevel structure for both the mean and the covariance matrix. That is, in addition to a multilevel structure for the mean we also assume that the covariance matrix depends on covariates and random effects. This allows to explore whether the covariance structure depends on the values of the higher levels and as such models heterogeneity in the variances and correlation structure of the multivariate outcome across the higher level values. The approach is applied to the three-dimensional vector of burnout measurements collected on nurses in a large European study to answer the research question whether the covariance matrix of the outcomes depends on recorded system-level features in the organization of nursing care, but also on not-recorded factors that vary with countries, hospitals, and nursing units. Simulations illustrate the performance of our modeling approach. Copyright © 2013 John Wiley & Sons, Ltd.
A Multilevel Multiset Time-Series Model for Describing Complex Developmental Processes
Ma, Xin; Shen, Jianping
2017-01-01
The authors sought to develop an analytical platform where multiple sets of time series can be examined simultaneously. This multivariate platform capable of testing interaction effects among multiple sets of time series can be very useful in empirical research. The authors demonstrated that the multilevel framework can readily accommodate this analytical capacity. Given their intention to use the multilevel multiset time-series model to pursue complicated research purposes, their resulting model is relatively simple to specify, to run, and to interpret. These advantages make the adoption of their model relatively effortless as long as researchers have the basic knowledge and skills in working with multilevel growth modeling. With multiple potential extensions of their model, the establishment of this analytical platform for analysis of multiple sets of time series can inspire researchers to pursue far more advanced research designs to address complex developmental processes in reality. PMID:29881094
Gottfredson, Nisha C; Panter, A T; Daye, Charles E; Allen, Walter F; Wightman, Linda F
2009-01-01
Controversy surrounding the use of race-conscious admissions can be partially resolved with improved empirical knowledge of the effects of racial diversity in educational settings. We use a national sample of law students nested in 64 law schools to test the complex and largely untested theory regarding the effects of educational diversity on student outcomes. Social scientists who study these outcomes frequently encounter both latent variables and nested data within a single analysis. Yet, until recently, an appropriate modeling technique has been computationally infeasible, and consequently few applied researchers have estimated appropriate models to test their theories, sometimes limiting the scope of their research question. Our results, based on disaggregated multilevel structural equation models, show that racial diversity is related to a reduction in prejudiced attitudes and increased perceived exposure to diverse ideas and that these effects are mediated by more frequent interpersonal contact with diverse peers. These findings provide support for the idea that administrative manipulation of educational diversity may lead to improved student outcomes. Admitting a racially/ethnically diverse student body provides an educational experience that encourages increased exposure to diverse ideas and belief systems.
Multi-level and hybrid modelling approaches for systems biology.
Bardini, R; Politano, G; Benso, A; Di Carlo, S
2017-01-01
During the last decades, high-throughput techniques allowed for the extraction of a huge amount of data from biological systems, unveiling more of their underling complexity. Biological systems encompass a wide range of space and time scales, functioning according to flexible hierarchies of mechanisms making an intertwined and dynamic interplay of regulations. This becomes particularly evident in processes such as ontogenesis, where regulative assets change according to process context and timing, making structural phenotype and architectural complexities emerge from a single cell, through local interactions. The information collected from biological systems are naturally organized according to the functional levels composing the system itself. In systems biology, biological information often comes from overlapping but different scientific domains, each one having its own way of representing phenomena under study. That is, the different parts of the system to be modelled may be described with different formalisms. For a model to have improved accuracy and capability for making a good knowledge base, it is good to comprise different system levels, suitably handling the relative formalisms. Models which are both multi-level and hybrid satisfy both these requirements, making a very useful tool in computational systems biology. This paper reviews some of the main contributions in this field.
A Goal Programming Model for the Siting of Multilevel EMS Systems.
1980-03-01
Management," unpublished Ph.D. thesis, University of Texas, Austin, Texas, 1971. -23- (11) Daskin , M. and E. Stern, " A Multiobjective Set Covering...GOAL PROGRAM4MING MODEL FOR THE SITING OF MULTILEVEL EMS SYSTE-ETC(U) UNM1AR 80 A CHARNES, J E STORBECK N000iA-75-C-569 WICLASSIFIED CCS-366 N...366 A GOAL PROGRAMMING MODEL FOR THE SITING OF MULTILEVEL EMS SYSTEMS by A . Charnes J. Storbeck March 1980 This project was partially supported by
Device Independent Layout and Style Editing Using Multi-Level Style Sheets
NASA Astrophysics Data System (ADS)
Dees, Walter
This paper describes a layout and styling framework that is based on the multi-level style sheets approach. It shows some of the techniques that can be used to add layout and style information to a UI in a device-independent manner, and how to reuse the layout and style information to create user interfaces for different devices
Predicting Homework Effort: Support for a Domain-Specific, Multilevel Homework Model
ERIC Educational Resources Information Center
Trautwein, Ulrich; Ludtke, Oliver; Schnyder, Inge; Niggli, Alois
2006-01-01
According to the domain-specific, multilevel homework model proposed in the present study, students' homework effort is influenced by expectancy and value beliefs, homework characteristics, parental homework behavior, and conscientiousness. The authors used structural equation modeling and hierarchical linear modeling analyses to test the model in…
Laminoplasty Techniques for the Treatment of Multilevel Cervical Stenosis
Mitsunaga, Lance K.; Klineberg, Eric O.; Gupta, Munish C.
2012-01-01
Laminoplasty is one surgical option for cervical spondylotic myelopathy. It was developed to avoid the significant risk of complications associated with alternative surgical options such as anterior decompression and fusion and laminectomy with or without posterior fusion. Various laminoplasty techniques have been described. All of these variations are designed to reposition the laminae and expand the spinal canal while retaining the dorsal elements to protect the dura from scar formation and to preserve postoperative cervical stability and alignment. With the right surgical indications, reliable results can be expected with laminoplasty in treating patients with multilevel cervical myelopathy. PMID:22496982
Multi-Level Adaptive Techniques (MLAT) for singular-perturbation problems
NASA Technical Reports Server (NTRS)
Brandt, A.
1978-01-01
The multilevel (multigrid) adaptive technique, a general strategy of solving continuous problems by cycling between coarser and finer levels of discretization is described. It provides very fast general solvers, together with adaptive, nearly optimal discretization schemes. In the process, boundary layers are automatically either resolved or skipped, depending on a control function which expresses the computational goal. The global error decreases exponentially as a function of the overall computational work, in a uniform rate independent of the magnitude of the singular-perturbation terms. The key is high-order uniformly stable difference equations, and uniformly smoothing relaxation schemes.
NASA Astrophysics Data System (ADS)
Zulvia, Pepi; Kurnia, Anang; Soleh, Agus M.
2017-03-01
Individual and environment are a hierarchical structure consist of units grouped at different levels. Hierarchical data structures are analyzed based on several levels, with the lowest level nested in the highest level. This modeling is commonly call multilevel modeling. Multilevel modeling is widely used in education research, for example, the average score of National Examination (UN). While in Indonesia UN for high school student is divided into natural science and social science. The purpose of this research is to develop multilevel and panel data modeling using linear mixed model on educational data. The first step is data exploration and identification relationships between independent and dependent variable by checking correlation coefficient and variance inflation factor (VIF). Furthermore, we use a simple model approach with highest level of the hierarchy (level-2) is regency/city while school is the lowest of hierarchy (level-1). The best model was determined by comparing goodness-of-fit and checking assumption from residual plots and predictions for each model. Our finding that for natural science and social science, the regression with random effects of regency/city and fixed effects of the time i.e multilevel model has better performance than the linear mixed model in explaining the variability of the dependent variable, which is the average scores of UN.
Suppressor Variables and Multilevel Mixture Modelling
ERIC Educational Resources Information Center
Darmawan, I Gusti Ngurah; Keeves, John P.
2006-01-01
A major issue in educational research involves taking into consideration the multilevel nature of the data. Since the late 1980s, attempts have been made to model social science data that conform to a nested structure. Among other models, two-level structural equation modelling or two-level path modelling and hierarchical linear modelling are two…
The use of multilevel sampling techniques for determining shallow aquifer nitrate profiles.
Lasagna, Manuela; De Luca, Domenico Antonio
2016-10-01
Nitrate is a worldwide pollutant in aquifers. Shallow aquifer nitrate concentrations generally display vertical stratification, with a maximum concentration immediately below the water level. The concentration then gradually decreases with depth. Different techniques can be used to highlight this stratification. The paper aims at comparing the advantages and limitations of three open hole multilevel sampling techniques (packer system, dialysis membrane samplers and bailer), chosen on the base of a literary review, to highlight a nitrate vertical stratification under the assumption of (sub)horizontal flow in the aquifer. The sampling systems were employed at three different times of the year in a shallow aquifer piezometer in northern Italy. The optimal purge time, equilibration time and water volume losses during the time in the piezometer were evaluated. Multilevel techniques highlighted a similar vertical nitrate stratification, present throughout the year. Indeed, nitrate concentrations generally decreased with depth downwards, but with significantly different levels in the sampling campaigns. Moreover, the sampling techniques produced different degrees of accuracy. More specifically, the dialysis membrane samplers provided the most accurate hydrochemical profile of the shallow aquifer and they appear to be necessary when the objective is to detect the discontinuities in the nitrate profile. Bailer and packer system showed the same nitrate profile with little differences of concentration. However, the bailer resulted much more easier to use.
Analyzing average and conditional effects with multigroup multilevel structural equation models
Mayer, Axel; Nagengast, Benjamin; Fletcher, John; Steyer, Rolf
2014-01-01
Conventionally, multilevel analysis of covariance (ML-ANCOVA) has been the recommended approach for analyzing treatment effects in quasi-experimental multilevel designs with treatment application at the cluster-level. In this paper, we introduce the generalized ML-ANCOVA with linear effect functions that identifies average and conditional treatment effects in the presence of treatment-covariate interactions. We show how the generalized ML-ANCOVA model can be estimated with multigroup multilevel structural equation models that offer considerable advantages compared to traditional ML-ANCOVA. The proposed model takes into account measurement error in the covariates, sampling error in contextual covariates, treatment-covariate interactions, and stochastic predictors. We illustrate the implementation of ML-ANCOVA with an example from educational effectiveness research where we estimate average and conditional effects of early transition to secondary schooling on reading comprehension. PMID:24795668
Construction of Covariance Functions with Variable Length Fields
NASA Technical Reports Server (NTRS)
Gaspari, Gregory; Cohn, Stephen E.; Guo, Jing; Pawson, Steven
2005-01-01
This article focuses on construction, directly in physical space, of three-dimensional covariance functions parametrized by a tunable length field, and on an application of this theory to reproduce the Quasi-Biennial Oscillation (QBO) in the Goddard Earth Observing System, Version 4 (GEOS-4) data assimilation system. These Covariance models are referred to as multi-level or nonseparable, to associate them with the application where a multi-level covariance with a large troposphere to stratosphere length field gradient is used to reproduce the QBO from sparse radiosonde observations in the tropical lower stratosphere. The multi-level covariance functions extend well-known single level covariance functions depending only on a length scale. Generalizations of the first- and third-order autoregressive covariances in three dimensions are given, providing multi-level covariances with zero and three derivatives at zero separation, respectively. Multi-level piecewise rational covariances with two continuous derivatives at zero separation are also provided. Multi-level powerlaw covariances are constructed with continuous derivatives of all orders. Additional multi-level covariance functions are constructed using the Schur product of single and multi-level covariance functions. A multi-level powerlaw covariance used to reproduce the QBO in GEOS-4 is described along with details of the assimilation experiments. The new covariance model is shown to represent the vertical wind shear associated with the QBO much more effectively than in the baseline GEOS-4 system.
General method to find the attractors of discrete dynamic models of biological systems.
Gan, Xiao; Albert, Réka
2018-04-01
Analyzing the long-term behaviors (attractors) of dynamic models of biological networks can provide valuable insight. We propose a general method that can find the attractors of multilevel discrete dynamical systems by extending a method that finds the attractors of a Boolean network model. The previous method is based on finding stable motifs, subgraphs whose nodes' states can stabilize on their own. We extend the framework from binary states to any finite discrete levels by creating a virtual node for each level of a multilevel node, and describing each virtual node with a quasi-Boolean function. We then create an expanded representation of the multilevel network, find multilevel stable motifs and oscillating motifs, and identify attractors by successive network reduction. In this way, we find both fixed point attractors and complex attractors. We implemented an algorithm, which we test and validate on representative synthetic networks and on published multilevel models of biological networks. Despite its primary motivation to analyze biological networks, our motif-based method is general and can be applied to any finite discrete dynamical system.
General method to find the attractors of discrete dynamic models of biological systems
NASA Astrophysics Data System (ADS)
Gan, Xiao; Albert, Réka
2018-04-01
Analyzing the long-term behaviors (attractors) of dynamic models of biological networks can provide valuable insight. We propose a general method that can find the attractors of multilevel discrete dynamical systems by extending a method that finds the attractors of a Boolean network model. The previous method is based on finding stable motifs, subgraphs whose nodes' states can stabilize on their own. We extend the framework from binary states to any finite discrete levels by creating a virtual node for each level of a multilevel node, and describing each virtual node with a quasi-Boolean function. We then create an expanded representation of the multilevel network, find multilevel stable motifs and oscillating motifs, and identify attractors by successive network reduction. In this way, we find both fixed point attractors and complex attractors. We implemented an algorithm, which we test and validate on representative synthetic networks and on published multilevel models of biological networks. Despite its primary motivation to analyze biological networks, our motif-based method is general and can be applied to any finite discrete dynamical system.
Multilevel Modeling with Correlated Effects
ERIC Educational Resources Information Center
Kim, Jee-Seon; Frees, Edward W.
2007-01-01
When there exist omitted effects, measurement error, and/or simultaneity in multilevel models, explanatory variables may be correlated with random components, and standard estimation methods do not provide consistent estimates of model parameters. This paper introduces estimators that are consistent under such conditions. By employing generalized…
Multi-level bandwidth efficient block modulation codes
NASA Technical Reports Server (NTRS)
Lin, Shu
1989-01-01
The multilevel technique is investigated for combining block coding and modulation. There are four parts. In the first part, a formulation is presented for signal sets on which modulation codes are to be constructed. Distance measures on a signal set are defined and their properties are developed. In the second part, a general formulation is presented for multilevel modulation codes in terms of component codes with appropriate Euclidean distances. The distance properties, Euclidean weight distribution and linear structure of multilevel modulation codes are investigated. In the third part, several specific methods for constructing multilevel block modulation codes with interdependency among component codes are proposed. Given a multilevel block modulation code C with no interdependency among the binary component codes, the proposed methods give a multilevel block modulation code C which has the same rate as C, a minimum squared Euclidean distance not less than that of code C, a trellis diagram with the same number of states as that of C and a smaller number of nearest neighbor codewords than that of C. In the last part, error performance of block modulation codes is analyzed for an AWGN channel based on soft-decision maximum likelihood decoding. Error probabilities of some specific codes are evaluated based on their Euclidean weight distributions and simulation results.
Ackerson, Leland K.; Kawachi, Ichiro; Barbeau, Elizabeth M.; Subramanian, S.V.
2009-01-01
We investigated the geographic distribution and the relationship with neighborhood wealth of underweight and overweight in India. Using multilevel modeling techniques, we calculated state-specific smoothed shrunken state residuals of overweight and underweight, neighborhood and state variation of nutritional status, and the relationships between neighborhood wealth and nutritional status of 76,681 women living in 3204 neighborhoods in 26 Indian states. We found a substantial variation in overweight and underweight at the neighborhood and state levels, net of what could be attributed to individual-level factors. Neighborhood wealth was associated with increased levels of overweight and decreased levels of underweight, and was found to modify the relationship between personal living standard and nutritional status. These findings suggest that interventions to address the double burden of undernutrition and overnutrition in India must take into account state and neighborhood characteristics in order to be successful. PMID:18602351
Sánchez-Vizcaíno, Fernando; Perez, Andrés; Martínez-López, Beatriz; Sánchez-Vizcaíno, José Manuel
2012-08-01
Trade of animals and animal products imposes an uncertain and variable risk for exotic animal diseases introduction into importing countries. Risk analysis provides importing countries with an objective, transparent, and internationally accepted method for assessing that risk. Over the last decades, European Union countries have conducted probabilistic risk assessments quite frequently to quantify the risk for rare animal diseases introduction into their territories. Most probabilistic animal health risk assessments have been typically classified into one-level and multilevel binomial models. One-level models are more simple than multilevel models because they assume that animals or products originate from one single population. However, it is unknown whether such simplification may result in substantially different results compared to those obtained through the use of multilevel models. Here, data used on a probabilistic multilevel binomial model formulated to assess the risk for highly pathogenic avian influenza introduction into Spain were reanalyzed using a one-level binomial model and their outcomes were compared. An alternative ordinal model is also proposed here, which makes use of simpler assumptions and less information compared to those required by traditional one-level and multilevel approaches. Results suggest that, at least under certain circumstances, results of the one-level and ordinal approaches are similar to those obtained using multilevel models. Consequently, we argue that, when data are insufficient to run traditional probabilistic models, the ordinal approach presented here may be a suitable alternative to rank exporting countries in terms of the risk that they impose for the spread of rare animal diseases into disease-free countries. © 2012 Society for Risk Analysis.
Level-Specific Evaluation of Model Fit in Multilevel Structural Equation Modeling
ERIC Educational Resources Information Center
Ryu, Ehri; West, Stephen G.
2009-01-01
In multilevel structural equation modeling, the "standard" approach to evaluating the goodness of model fit has a potential limitation in detecting the lack of fit at the higher level. Level-specific model fit evaluation can address this limitation and is more informative in locating the source of lack of model fit. We proposed level-specific test…
Xu, Hongwei; Logan, John R.; Short, Susan E.
2014-01-01
Research on neighborhoods and health increasingly acknowledges the need to conceptualize, measure, and model spatial features of social and physical environments. In ignoring underlying spatial dynamics, we run the risk of biased statistical inference and misleading results. In this paper, we propose an integrated multilevel-spatial approach for Poisson models of discrete responses. In an empirical example of child mortality in 1880 Newark, New Jersey, we compare this multilevel-spatial approach with the more typical aspatial multilevel approach. Results indicate that spatially-defined egocentric neighborhoods, or distance-based measures, outperform administrative areal units, such as census units. In addition, although results did not vary by specific definitions of egocentric neighborhoods, they were sensitive to geographic scale and modeling strategy. Overall, our findings confirm that adopting a spatial-multilevel approach enhances our ability to disentangle the effect of space from that of place, and point to the need for more careful spatial thinking in population research on neighborhoods and health. PMID:24763980
Vassallo, Rebecca; Durrant, Gabriele B; Smith, Peter W F; Goldstein, Harvey
2015-01-01
The paper investigates two different multilevel approaches, the multilevel cross-classified and the multiple-membership models, for the analysis of interviewer effects on wave non-response in longitudinal surveys. The models proposed incorporate both interviewer and area effects to account for the non-hierarchical structure, the influence of potentially more than one interviewer across waves and possible confounding of area and interviewer effects arising from the non-random allocation of interviewers across areas. The methods are compared by using a data set: the UK Family and Children Survey. PMID:25598587
Strong and Long Makes Short: Strong-Pump Strong-Probe Spectroscopy.
Gelin, Maxim F; Egorova, Dassia; Domcke, Wolfgang
2011-01-20
We propose a new time-domain spectroscopic technique that is based on strong pump and probe pulses. The strong-pump strong-probe (SPSP) technique provides temporal resolution that is not limited by the durations of the pump and probe pulses. By numerically exact simulations of SPSP signals for a multilevel vibronic model, we show that the SPSP signals exhibit electronic and vibrational beatings on time scales which are significantly shorter than the pulse durations. This suggests the possible application of SPSP spectroscopy for the real-time investigation of molecular processes that cannot be temporally resolved by pump-probe spectroscopy with weak pump and probe pulses.
Soft-decision decoding techniques for linear block codes and their error performance analysis
NASA Technical Reports Server (NTRS)
Lin, Shu
1996-01-01
The first paper presents a new minimum-weight trellis-based soft-decision iterative decoding algorithm for binary linear block codes. The second paper derives an upper bound on the probability of block error for multilevel concatenated codes (MLCC). The bound evaluates difference in performance for different decompositions of some codes. The third paper investigates the bit error probability code for maximum likelihood decoding of binary linear codes. The fourth and final paper included in this report is concerns itself with the construction of multilevel concatenated block modulation codes using a multilevel concatenation scheme for the frequency non-selective Rayleigh fading channel.
Post test review of a single car test of multi-level passenger equipment
DOT National Transportation Integrated Search
2008-04-22
The single car test of multi-level equipment described in : this paper was designed to help evaluate the crashworthiness of : a multi-level car in a controlled collision. The data collected : from this test will be used to refine engineering models. ...
González-Ponce, I; Leo, F M; Jiménez, R; Sánchez-Oliva, D; Sarmento, H; Figueiredo, A; García-Calvo, T
2018-04-23
The purpose of this study was to examine the relationship between coaching competency and team conflict, at individual and team levels, over the season. The participants were professional female and male soccer players, who participated in the First and Second Division. A longitudinal study was performed. At Time 1, the sample of participants consisted of 581 soccer players aged between 15 and 39 years. At Time 2, 549 players were recruited from the original sample aged between 15 and 37 years. Finally, at Time 3, the sample comprised 576 players aged between 15 and 37 years. All participants completed a multi-section questionnaire assessing coaching competency (motivation, game strategy, technique competency, and character-building competency) and team conflict (task conflict and relationship conflict). Results showed that both task and relationship conflict increased significantly over time. Multilevel modelling analysis showed that game strategy and character-building competencies negatively predicted both task and relationship conflicts at the individual level, whereas motivation competency was also added as a significant predictor of task conflict at the team level. Moreover, technique competency positively predicted task conflict at the team level. The current study suggests the importance of coaching competency in group dynamics in sport.
Two alternative ways for solving the coordination problem in multilevel optimization
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw
1991-01-01
Two techniques for formulating the coupling between levels in multilevel optimization by linear decomposition, proposed as improvements over the original formulation, now several years old, that relied on explicit equality constraints which were shown by application experience as occasionally causing numerical difficulties. The two new techniques represent the coupling without using explicit equality constraints, thus avoiding the above diffuculties and also reducing computational cost of the procedure. The old and new formulations are presented in detail and illustrated by an example of a structural optimization. A generic version of the improved algorithm is also developed for applications to multidisciplinary systems not limited to structures.
Nobukawa, Teruyoshi; Nomura, Takanori
2016-09-05
A holographic data storage system using digital holography is proposed to record and retrieve multilevel complex amplitude data pages. Digital holographic techniques are capable of modulating and detecting complex amplitude distribution using current electronic devices. These techniques allow the development of a simple, compact, and stable holographic storage system that mainly consists of a single phase-only spatial light modulator and an image sensor. As a proof-of-principle experiment, complex amplitude data pages with binary amplitude and four-level phase are recorded and retrieved. Experimental results show the feasibility of the proposed holographic data storage system.
Parameter Recovery for the 1-P HGLLM with Non-Normally Distributed Level-3 Residuals
ERIC Educational Resources Information Center
Kara, Yusuf; Kamata, Akihito
2017-01-01
A multilevel Rasch model using a hierarchical generalized linear model is one approach to multilevel item response theory (IRT) modeling and is referred to as a one-parameter hierarchical generalized linear logistic model (1-P HGLLM). Although it has the flexibility to model nested structure of data with covariates, the model assumes the normality…
Sturgeon, John A; Zautra, Alex J; Arewasikporn, Anne
2014-02-01
The processes of individual adaptation to chronic pain are complex and occur across multiple domains. We examined the social, cognitive, and affective context of daily pain adaptation in individuals with fibromyalgia and osteoarthritis. By using a sample of 260 women with fibromyalgia or osteoarthritis, we examined the contributions of pain catastrophizing, negative interpersonal events, and positive interpersonal events to daily negative and positive affect across 30days of daily diary data. Individual differences and daily fluctuations in predictor variables were estimated simultaneously by utilizing multilevel structural equation modeling techniques. The relationships between pain and negative and positive affect were mediated by stable and day-to-day levels of pain catastrophizing as well as day-to-day positive interpersonal events, but not negative interpersonal events. There were significant and independent contributions of pain catastrophizing and positive interpersonal events to adaptation to pain and pain-related affective dysregulation. These effects occur both between persons and within a person's everyday life. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
On the application of multilevel modeling in environmental and ecological studies
Qian, Song S.; Cuffney, Thomas F.; Alameddine, Ibrahim; McMahon, Gerard; Reckhow, Kenneth H.
2010-01-01
This paper illustrates the advantages of a multilevel/hierarchical approach for predictive modeling, including flexibility of model formulation, explicitly accounting for hierarchical structure in the data, and the ability to predict the outcome of new cases. As a generalization of the classical approach, the multilevel modeling approach explicitly models the hierarchical structure in the data by considering both the within- and between-group variances leading to a partial pooling of data across all levels in the hierarchy. The modeling framework provides means for incorporating variables at different spatiotemporal scales. The examples used in this paper illustrate the iterative process of model fitting and evaluation, a process that can lead to improved understanding of the system being studied.
Evidencing Learning Outcomes: A Multi-Level, Multi-Dimensional Course Alignment Model
ERIC Educational Resources Information Center
Sridharan, Bhavani; Leitch, Shona; Watty, Kim
2015-01-01
This conceptual framework proposes a multi-level, multi-dimensional course alignment model to implement a contextualised constructive alignment of rubric design that authentically evidences and assesses learning outcomes. By embedding quality control mechanisms at each level for each dimension, this model facilitates the development of an aligned…
Examining Elementary Social Studies Marginalization: A Multilevel Model
ERIC Educational Resources Information Center
Fitchett, Paul G.; Heafner, Tina L.; Lambert, Richard G.
2014-01-01
Utilizing data from the National Center for Education Statistics Schools and Staffing Survey (SASS), a multilevel model (Hierarchical Linear Model) was developed to examine the association of teacher/classroom and state level indicators on reported elementary social studies instructional time. Findings indicated that state testing policy was a…
Handling Correlations between Covariates and Random Slopes in Multilevel Models
ERIC Educational Resources Information Center
Bates, Michael David; Castellano, Katherine E.; Rabe-Hesketh, Sophia; Skrondal, Anders
2014-01-01
This article discusses estimation of multilevel/hierarchical linear models that include cluster-level random intercepts and random slopes. Viewing the models as structural, the random intercepts and slopes represent the effects of omitted cluster-level covariates that may be correlated with included covariates. The resulting correlations between…
Cho, Sun-Joo; Goodwin, Amanda P
2016-04-01
When word learning is supported by instruction in experimental studies for adolescents, word knowledge outcomes tend to be collected from complex data structure, such as multiple aspects of word knowledge, multilevel reader data, multilevel item data, longitudinal design, and multiple groups. This study illustrates how generalized linear mixed models can be used to measure and explain word learning for data having such complexity. Results from this application provide deeper understanding of word knowledge than could be attained from simpler models and show that word knowledge is multidimensional and depends on word characteristics and instructional contexts.
Hans-Erik Andersen; Strunk Jacob; Hailemariam Temesgen; Donald Atwood; Ken Winterberger
2012-01-01
The emergence of a new generation of remote sensing and geopositioning technologies, as well as increased capabilities in image processing, computing, and inferential techniques, have enabled the development and implementation of increasingly efficient and cost-effective multilevel sampling designs for forest inventory. In this paper, we (i) describe the conceptual...
Hierarchical Poly Tree Configurations for the Solution of Dynamically Refined Finte Element Models
NASA Technical Reports Server (NTRS)
Gute, G. D.; Padovan, J.
1993-01-01
This paper demonstrates how a multilevel substructuring technique, called the Hierarchical Poly Tree (HPT), can be used to integrate a localized mesh refinement into the original finite element model more efficiently. The optimal HPT configurations for solving isoparametrically square h-, p-, and hp-extensions on single and multiprocessor computers is derived. In addition, the reduced number of stiffness matrix elements that must be stored when employing this type of solution strategy is quantified. Moreover, the HPT inherently provides localize 'error-trapping' and a logical, efficient means with which to isolate physically anomalous and analytically singular behavior.
Multi-Level Reduced Order Modeling Equipped with Probabilistic Error Bounds
NASA Astrophysics Data System (ADS)
Abdo, Mohammad Gamal Mohammad Mostafa
This thesis develops robust reduced order modeling (ROM) techniques to achieve the needed efficiency to render feasible the use of high fidelity tools for routine engineering analyses. Markedly different from the state-of-the-art ROM techniques, our work focuses only on techniques which can quantify the credibility of the reduction which can be measured with the reduction errors upper-bounded for the envisaged range of ROM model application. Our objective is two-fold. First, further developments of ROM techniques are proposed when conventional ROM techniques are too taxing to be computationally practical. This is achieved via a multi-level ROM methodology designed to take advantage of the multi-scale modeling strategy typically employed for computationally taxing models such as those associated with the modeling of nuclear reactor behavior. Second, the discrepancies between the original model and ROM model predictions over the full range of model application conditions are upper-bounded in a probabilistic sense with high probability. ROM techniques may be classified into two broad categories: surrogate construction techniques and dimensionality reduction techniques, with the latter being the primary focus of this work. We focus on dimensionality reduction, because it offers a rigorous approach by which reduction errors can be quantified via upper-bounds that are met in a probabilistic sense. Surrogate techniques typically rely on fitting a parametric model form to the original model at a number of training points, with the residual of the fit taken as a measure of the prediction accuracy of the surrogate. This approach, however, does not generally guarantee that the surrogate model predictions at points not included in the training process will be bound by the error estimated from the fitting residual. Dimensionality reduction techniques however employ a different philosophy to render the reduction, wherein randomized snapshots of the model variables, such as the model parameters, responses, or state variables, are projected onto lower dimensional subspaces, referred to as the "active subspaces", which are selected to capture a user-defined portion of the snapshots variations. Once determined, the ROM model application involves constraining the variables to the active subspaces. In doing so, the contribution from the variables discarded components can be estimated using a fundamental theorem from random matrix theory which has its roots in Dixon's theory, developed in 1983. This theory was initially presented for linear matrix operators. The thesis extends this theorem's results to allow reduction of general smooth nonlinear operators. The result is an approach by which the adequacy of a given active subspace determined using a given set of snapshots, generated either using the full high fidelity model, or other models with lower fidelity, can be assessed, which provides insight to the analyst on the type of snapshots required to reach a reduction that can satisfy user-defined preset tolerance limits on the reduction errors. Reactor physics calculations are employed as a test bed for the proposed developments. The focus will be on reducing the effective dimensionality of the various data streams such as the cross-section data and the neutron flux. The developed methods will be applied to representative assembly level calculations, where the size of the cross-section and flux spaces are typically large, as required by downstream core calculations, in order to capture the broad range of conditions expected during reactor operation. (Abstract shortened by ProQuest.).
Coarse mesh and one-cell block inversion based diffusion synthetic acceleration
NASA Astrophysics Data System (ADS)
Kim, Kang-Seog
DSA (Diffusion Synthetic Acceleration) has been developed to accelerate the SN transport iteration. We have developed solution techniques for the diffusion equations of FLBLD (Fully Lumped Bilinear Discontinuous), SCB (Simple Comer Balance) and UCB (Upstream Corner Balance) modified 4-step DSA in x-y geometry. Our first multi-level method includes a block Gauss-Seidel iteration for the discontinuous diffusion equation, uses the continuous diffusion equation derived from the asymptotic analysis, and avoids void cell calculation. We implemented this multi-level procedure and performed model problem calculations. The results showed that the FLBLD, SCB and UCB modified 4-step DSA schemes with this multi-level technique are unconditionally stable and rapidly convergent. We suggested a simplified multi-level technique for FLBLD, SCB and UCB modified 4-step DSA. This new procedure does not include iterations on the diffusion calculation or the residual calculation. Fourier analysis results showed that this new procedure was as rapidly convergent as conventional modified 4-step DSA. We developed new DSA procedures coupled with 1-CI (Cell Block Inversion) transport which can be easily parallelized. We showed that 1-CI based DSA schemes preceded by SI (Source Iteration) are efficient and rapidly convergent for LD (Linear Discontinuous) and LLD (Lumped Linear Discontinuous) in slab geometry and for BLD (Bilinear Discontinuous) and FLBLD in x-y geometry. For 1-CI based DSA without SI in slab geometry, the results showed that this procedure is very efficient and effective for all cases. We also showed that 1-CI based DSA in x-y geometry was not effective for thin mesh spacings, but is effective and rapidly convergent for intermediate and thick mesh spacings. We demonstrated that the diffusion equation discretized on a coarse mesh could be employed to accelerate the transport equation. Our results showed that coarse mesh DSA is unconditionally stable and is as rapidly convergent as fine mesh DSA in slab geometry. For x-y geometry our coarse mesh DSA is very effective for thin and intermediate mesh spacings independent of the scattering ratio, but is not effective for purely scattering problems and high aspect ratio zoning. However, if the scattering ratio is less than about 0.95, this procedure is very effective for all mesh spacing.
Modeling of BN Lifetime Prediction of a System Based on Integrated Multi-Level Information
Wang, Xiaohong; Wang, Lizhi
2017-01-01
Predicting system lifetime is important to ensure safe and reliable operation of products, which requires integrated modeling based on multi-level, multi-sensor information. However, lifetime characteristics of equipment in a system are different and failure mechanisms are inter-coupled, which leads to complex logical correlations and the lack of a uniform lifetime measure. Based on a Bayesian network (BN), a lifetime prediction method for systems that combine multi-level sensor information is proposed. The method considers the correlation between accidental failures and degradation failure mechanisms, and achieves system modeling and lifetime prediction under complex logic correlations. This method is applied in the lifetime prediction of a multi-level solar-powered unmanned system, and the predicted results can provide guidance for the improvement of system reliability and for the maintenance and protection of the system. PMID:28926930
Modeling of BN Lifetime Prediction of a System Based on Integrated Multi-Level Information.
Wang, Jingbin; Wang, Xiaohong; Wang, Lizhi
2017-09-15
Predicting system lifetime is important to ensure safe and reliable operation of products, which requires integrated modeling based on multi-level, multi-sensor information. However, lifetime characteristics of equipment in a system are different and failure mechanisms are inter-coupled, which leads to complex logical correlations and the lack of a uniform lifetime measure. Based on a Bayesian network (BN), a lifetime prediction method for systems that combine multi-level sensor information is proposed. The method considers the correlation between accidental failures and degradation failure mechanisms, and achieves system modeling and lifetime prediction under complex logic correlations. This method is applied in the lifetime prediction of a multi-level solar-powered unmanned system, and the predicted results can provide guidance for the improvement of system reliability and for the maintenance and protection of the system.
Kaur, Taranjit; Saini, Barjinder Singh; Gupta, Savita
2018-03-01
In the present paper, a hybrid multilevel thresholding technique that combines intuitionistic fuzzy sets and tsallis entropy has been proposed for the automatic delineation of the tumor from magnetic resonance images having vague boundaries and poor contrast. This novel technique takes into account both the image histogram and the uncertainty information for the computation of multiple thresholds. The benefit of the methodology is that it provides fast and improved segmentation for the complex tumorous images with imprecise gray levels. To further boost the computational speed, the mutation based particle swarm optimization is used that selects the most optimal threshold combination. The accuracy of the proposed segmentation approach has been validated on simulated, real low-grade glioma tumor volumes taken from MICCAI brain tumor segmentation (BRATS) challenge 2012 dataset and the clinical tumor images, so as to corroborate its generality and novelty. The designed technique achieves an average Dice overlap equal to 0.82010, 0.78610 and 0.94170 for three datasets. Further, a comparative analysis has also been made between the eight existing multilevel thresholding implementations so as to show the superiority of the designed technique. In comparison, the results indicate a mean improvement in Dice by an amount equal to 4.00% (p < 0.005), 9.60% (p < 0.005) and 3.58% (p < 0.005), respectively in contrast to the fuzzy tsallis approach.
ERIC Educational Resources Information Center
Butner, Jonathan; Amazeen, Polemnia G.; Mulvey, Genna M.
2005-01-01
The authors present a dynamical multilevel model that captures changes over time in the bidirectional, potentially asymmetric influence of 2 cyclical processes. S. M. Boker and J. Graham's (1998) differential structural equation modeling approach was expanded to the case of a nonlinear coupled oscillator that is common in bimanual coordination…
ERIC Educational Resources Information Center
Theiss, Jennifer A.; Solomon, Denise Haunani
2006-01-01
We used longitudinal data and multilevel modeling to examine how intimacy, relational uncertainty, and failed attempts at interdependence influence emotional, cognitive, and communicative responses to romantic jealousy, and how those experiences shape subsequent relationship characteristics. The relational turbulence model (Solomon & Knobloch,…
Electromagnetic Launch Vehicle Fairing and Acoustic Blanket Model of Received Power Using FEKO
NASA Technical Reports Server (NTRS)
Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.
2011-01-01
Evaluating the impact of radio frequency transmission in vehicle fairings is important to electromagnetically sensitive spacecraft. This study employs the multilevel fast multipole method (MLFMM) from a commercial electromagnetic tool, FEKO, to model the fairing electromagnetic environment in the presence of an internal transmitter with improved accuracy over industry applied techniques. This fairing model includes material properties representative of acoustic blanketing commonly used in vehicles. Equivalent surface material models within FEKO were successfully applied to simulate the test case. Finally, a simplified model is presented using Nicholson Ross Weir derived blanket material properties. These properties are implemented with the coated metal option to reduce the model to one layer within the accuracy of the original three layer simulation.
A General Multilevel SEM Framework for Assessing Multilevel Mediation
ERIC Educational Resources Information Center
Preacher, Kristopher J.; Zyphur, Michael J.; Zhang, Zhen
2010-01-01
Several methods for testing mediation hypotheses with 2-level nested data have been proposed by researchers using a multilevel modeling (MLM) paradigm. However, these MLM approaches do not accommodate mediation pathways with Level-2 outcomes and may produce conflated estimates of between- and within-level components of indirect effects. Moreover,…
The Consequences of Ignoring Individuals' Mobility in Multilevel Growth Models: A Monte Carlo Study
ERIC Educational Resources Information Center
Luo, Wen; Kwok, Oi-man
2012-01-01
In longitudinal multilevel studies, especially in educational settings, it is fairly common that participants change their group memberships over time (e.g., students switch to different schools). Participant's mobility changes the multilevel data structure from a purely hierarchical structure with repeated measures nested within individuals and…
The Effects of Autonomy and Empowerment on Employee Turnover: Test of a Multilevel Model in Teams
ERIC Educational Resources Information Center
Liu, Dong; Zhang, Shu; Wang, Lei; Lee, Thomas W.
2011-01-01
Extending research on voluntary turnover in the team setting, this study adopts a multilevel self-determination theoretical approach to examine the unique roles of individual and social-contextual motivational precursors, autonomy orientation and autonomy support, in reducing team member voluntary turnover. Analysis of multilevel time-lagged data…
Austin, Peter C
2010-04-22
Multilevel logistic regression models are increasingly being used to analyze clustered data in medical, public health, epidemiological, and educational research. Procedures for estimating the parameters of such models are available in many statistical software packages. There is currently little evidence on the minimum number of clusters necessary to reliably fit multilevel regression models. We conducted a Monte Carlo study to compare the performance of different statistical software procedures for estimating multilevel logistic regression models when the number of clusters was low. We examined procedures available in BUGS, HLM, R, SAS, and Stata. We found that there were qualitative differences in the performance of different software procedures for estimating multilevel logistic models when the number of clusters was low. Among the likelihood-based procedures, estimation methods based on adaptive Gauss-Hermite approximations to the likelihood (glmer in R and xtlogit in Stata) or adaptive Gaussian quadrature (Proc NLMIXED in SAS) tended to have superior performance for estimating variance components when the number of clusters was small, compared to software procedures based on penalized quasi-likelihood. However, only Bayesian estimation with BUGS allowed for accurate estimation of variance components when there were fewer than 10 clusters. For all statistical software procedures, estimation of variance components tended to be poor when there were only five subjects per cluster, regardless of the number of clusters.
A multilevel model of the impact of farm-level best management practices on phosphorus runoff
USDA-ARS?s Scientific Manuscript database
Multilevel or hierarchical models have been applied for a number of years in the social sciences but only relatively recently in the environmental sciences. These models can be developed in either a frequentist or Bayesian context and have similarities to other methods such as empirical Bayes analys...
Cross-Classified Random Effects Models in Institutional Research
ERIC Educational Resources Information Center
Meyers, Laura E.
2012-01-01
Multilevel modeling offers researchers a rich array of tools that can be used for a variety of purposes, such as analyzing specific institutional issues, looking for macro-level trends, and helping to shape and inform educational policy. One of the more complex multilevel modeling tools available to institutional researchers is cross-classified…
Outward Bound Outcome Model Validation and Multilevel Modeling
ERIC Educational Resources Information Center
Luo, Yuan-Chun
2011-01-01
This study was intended to measure construct validity for the Outward Bound Outcomes Instrument (OBOI) and to predict outcome achievement from individual characteristics and course attributes using multilevel modeling. A sample of 2,340 participants was collected by Outward Bound USA between May and September 2009 using the OBOI. Two phases of…
Introduction to Multilevel Item Response Theory Analysis: Descriptive and Explanatory Models
ERIC Educational Resources Information Center
Sulis, Isabella; Toland, Michael D.
2017-01-01
Item response theory (IRT) models are the main psychometric approach for the development, evaluation, and refinement of multi-item instruments and scaling of latent traits, whereas multilevel models are the primary statistical method when considering the dependence between person responses when primary units (e.g., students) are nested within…
ERIC Educational Resources Information Center
Lu, Xingjiang; Yao, Chen; Zheng, Jianmin
2013-01-01
This paper focuses on the training of undergraduate students' innovation ability. On top of the theoretical framework of the Quality Function Deployment (QFD), we propose a teaching quality management model. Based on this model, we establish a multilevel decomposition indicator system, which integrates innovation ability characterized by four…
Seeing the forest and the trees: multilevel models reveal both species and community patterns
Michelle M. Jackson; Monica G. Turner; Scott M. Pearson; Anthony R. Ives
2012-01-01
Studies designed to understand species distributions and community assemblages typically use separate analytical approaches (e.g., logistic regression and ordination) to model the distribution of individual species and to relate community composition to environmental variation. Multilevel models (MLMs) offer a promising strategy for integrating species and community-...
ERIC Educational Resources Information Center
Zhu, Xiaoshu
2013-01-01
The current study introduced a general modeling framework, multilevel mixture IRT (MMIRT) which detects and describes characteristics of population heterogeneity, while accommodating the hierarchical data structure. In addition to introducing both continuous and discrete approaches to MMIRT, the main focus of the current study was to distinguish…
A Multilevel Analysis of Phase II of the Louisiana School Effectiveness Study.
ERIC Educational Resources Information Center
Kennedy, Eugene; And Others
This paper presents findings of a study that used conventional modeling strategies (student- and school-level) and a new multilevel modeling strategy, Hierarchical Linear Modeling, to investigate school effects on student-achievement outcomes for data collected as part of Phase 2 of the Louisiana School Effectiveness Study. The purpose was to…
Multilevel Modeling and Ordinary Least Squares Regression: How Comparable Are They?
ERIC Educational Resources Information Center
Huang, Francis L.
2018-01-01
Studies analyzing clustered data sets using both multilevel models (MLMs) and ordinary least squares (OLS) regression have generally concluded that resulting point estimates, but not the standard errors, are comparable with each other. However, the accuracy of the estimates of OLS models is important to consider, as several alternative techniques…
Developing an Adequately Specified Model of State Level Student Achievement with Multilevel Data.
ERIC Educational Resources Information Center
Bernstein, Lawrence
Limitations of using linear, unilevel regression procedures in modeling student achievement are discussed. This study is a part of a broader study that is developing an empirically-based predictive model of variables associated with academic achievement from a multilevel perspective and examining the differences by which parameters are estimated…
A Bayesian Multi-Level Factor Analytic Model of Consumer Price Sensitivities across Categories
ERIC Educational Resources Information Center
Duvvuri, Sri Devi; Gruca, Thomas S.
2010-01-01
Identifying price sensitive consumers is an important problem in marketing. We develop a Bayesian multi-level factor analytic model of the covariation among household-level price sensitivities across product categories that are substitutes. Based on a multivariate probit model of category incidence, this framework also allows the researcher to…
ERIC Educational Resources Information Center
de Jong, Martijn G.; Steenkamp, Jan-Benedict E. M.
2010-01-01
We present a class of finite mixture multilevel multidimensional ordinal IRT models for large scale cross-cultural research. Our model is proposed for confirmatory research settings. Our prior for item parameters is a mixture distribution to accommodate situations where different groups of countries have different measurement operations, while…
The role of supervisor emotional support on individual job satisfaction: A multilevel analysis.
Pohl, Sabine; Galletta, Maura
2017-02-01
Supervisor emotional support is a strong determinant of job satisfaction. There is no study examining the effect of supervisor emotional support at the group level on job satisfaction. Multilevel statistical techniques can help disentangle the effects of subjective assessments from those of group factors. The study's aim was to examine the moderating role of supervisor emotional support (group-level variable) on the relationship between work engagement and job satisfaction (individual-level variables). A cross-sectional study was performed in 39units from three Belgian hospitals. A total of 323 nurses completed a self-reported questionnaire. We carried out a multilevel analysis by using Hierarchical Linear Modeling. The results showed that the cross-level interaction was significant. Hence, at individual-level, the nurses with high levels of work engagement showed high levels of job satisfaction and this relationship was stronger when supervisor emotional support at group-level was high. Contextual differences among groups had an impact on the form of the work engagement-job satisfaction relationship. This relationship between work engagement and job satisfaction is an individual and group level phenomenon. Ways to enhance emotional supervisor support include training supervisors in providing support and enhancing communication between nurses and supervisors. Copyright © 2016 Elsevier Inc. All rights reserved.
An efficient multilevel optimization method for engineering design
NASA Technical Reports Server (NTRS)
Vanderplaats, G. N.; Yang, Y. J.; Kim, D. S.
1988-01-01
An efficient multilevel deisgn optimization technique is presented. The proposed method is based on the concept of providing linearized information between the system level and subsystem level optimization tasks. The advantages of the method are that it does not require optimum sensitivities, nonlinear equality constraints are not needed, and the method is relatively easy to use. The disadvantage is that the coupling between subsystems is not dealt with in a precise mathematical manner.
ERIC Educational Resources Information Center
Ferrer, Emilio; Hamagami, Fumiaki; McArdle, John J.
2004-01-01
This article offers different examples of how to fit latent growth curve (LGC) models to longitudinal data using a variety of different software programs (i.e., LISREL, Mx, Mplus, AMOS, SAS). The article shows how the same model can be fitted using both structural equation modeling and multilevel software, with nearly identical results, even in…
The Effect of Small Sample Size on Two-Level Model Estimates: A Review and Illustration
ERIC Educational Resources Information Center
McNeish, Daniel M.; Stapleton, Laura M.
2016-01-01
Multilevel models are an increasingly popular method to analyze data that originate from a clustered or hierarchical structure. To effectively utilize multilevel models, one must have an adequately large number of clusters; otherwise, some model parameters will be estimated with bias. The goals for this paper are to (1) raise awareness of the…
2017-01-01
Reduced pesticide use is one of the reasons given by Europeans for accepting new genetic engineering techniques. According to the advocates of these techniques, consumers are likely to embrace the application of cisgenesis to apple trees. In order to verify the acceptability of these techniques, we estimate a Bayesian multilevel structural equation model, which takes into account the multidimensional nature of acceptability and individual, national, and European effects, using data from the Eurobarometer 2010 73.1 on science. The results underline the persistence of clear differences between European countries and whilst showing considerable defiance, a relatively wider acceptability of vertical gene transfer as a means of reducing phytosanitary treatments, compared to horizontal transfer. PMID:28877215
Vossen, Catherine J.; Vossen, Helen G. M.; Marcus, Marco A. E.; van Os, Jim; Lousberg, Richel
2013-01-01
In analyzing time-locked event-related potentials (ERPs), many studies have focused on specific peaks and their differences between experimental conditions. In theory, each latency point after a stimulus contains potentially meaningful information, regardless of whether it is peak-related. Based on this assumption, we introduce a new concept which allows for flexible investigation of the whole epoch and does not primarily focus on peaks and their corresponding latencies. For each trial, the entire epoch is partitioned into event-related fixed-interval areas under the curve (ERFIAs). These ERFIAs, obtained at single trial level, act as dependent variables in a multilevel random regression analysis. The ERFIA multilevel method was tested in an existing ERP dataset of 85 healthy subjects, who underwent a rating paradigm of 150 painful and non-painful somatosensory electrical stimuli. We modeled the variability of each consecutive ERFIA with a set of predictor variables among which were stimulus intensity and stimulus number. Furthermore, we corrected for latency variations of the P2 (260 ms). With respect to known relationships between stimulus intensity, habituation, and pain-related somatosensory ERP, the ERFIA method generated highly comparable results to those of commonly used methods. Notably, effects on stimulus intensity and habituation were also observed in non-peak-related latency ranges. Further, cortical processing of actual stimulus intensity depended on the intensity of the previous stimulus, which may reflect pain-memory processing. In conclusion, the ERFIA multilevel method is a promising tool that can be used to study event-related cortical processing. PMID:24224018
Multigrid techniques for the solution of the passive scalar advection-diffusion equation
NASA Technical Reports Server (NTRS)
Phillips, R. E.; Schmidt, F. W.
1985-01-01
The solution of elliptic passive scalar advection-diffusion equations is required in the analysis of many turbulent flow and convective heat transfer problems. The accuracy of the solution may be affected by the presence of regions containing large gradients of the dependent variables. The multigrid concept of local grid refinement is a method for improving the accuracy of the calculations in these problems. In combination with the multilevel acceleration techniques, an accurate and efficient computational procedure is developed. In addition, a robust implementation of the QUICK finite-difference scheme is described. Calculations of a test problem are presented to quantitatively demonstrate the advantages of the multilevel-multigrid method.
Determinants of Academic Entrepreneurship Behavior: A Multilevel Model
ERIC Educational Resources Information Center
Llano, Joseph Anthony
2010-01-01
It is well established that universities encourage the acquisition and dissemination of new knowledge among university community members and beyond. However, what is less well understood is how universities encourage entrepreneurial (opportunity discovery, evaluation, and exploiting) behavior. This research investigated a multilevel model of the…
Attachment, Autonomy, and Emotional Reliance: A Multilevel Model
ERIC Educational Resources Information Center
Lynch, Martin F.
2013-01-01
This article reports a test of a multilevel model investigating how attachment security and autonomy contribute to emotional reliance, or the willingness to seek interpersonal support. Participants ("N" = 247) completed online measures of attachment, autonomy, emotional reliance, and vitality with respect to several everyday…
Valente-dos-Santos, João; Coelho-e-Silva, Manuel J.; Severino, Vítor; Duarte, João; Martins, Raúl S.; Figueiredo, António J.; Seabra, André T.; Philippaerts, Renaat M.; Cumming, Sean P; Elferink-Gemser, Marije; Malina, Robert M.
2012-01-01
The purpose of the study was to evaluate the developmental changes in performance in a repeated-sprint ability (RSA) test in young soccer players of contrasting maturity status. A total of 83 regional level Portuguese youth soccer players, aged 11-13 years at baseline was assessed annually. Stature, body mass, 7x34.2-m sprint protocol (25-s active recovery), 20-m multi-stage continuous shuttle endurance run and counter-movement jump (CMJ) without the use of the arms were measured. Fat-free mass (FFM) was determined by age and gender-specific formulas. Developmental changes in total sprint time across ages were predicted using multilevel modeling. Corresponding measurements were performed on an independent cross-sectional subsample of 52 youth soccer players 11-17 years to evaluate the predictive model. CA, CA2, maturational status (SA-CA), body size (mass and stature), FFM, aerobic endurance, lower limb explosive strength and annual volume training significantly improved the statistical fit of the RSA multilevel model. In ‘late’ maturing athletes, the best model for predicting change in RSA was expressed by the following equation: 86.54 - 2.87 x CA + 0.05 x CA2 - 0.25 x FFM + 0.15 x body mass + 0.05 x stature - 0.05 x aerobic endurance - 0.09 x lower limb explosive strength - 0.01 x annual volume training. The best fitting models for players who were ‘on time’ and ‘early’ maturing were identical to the best model for late maturing players, less 0.64 seconds and 1.74 seconds, respectively. Multilevel modeling provided performance curves that permitted the prediction of individual RSA performance across adolescent years in regional level soccer players. Key pointsRepeated-sprint ability tests are a valuable sport-specific field test of sprint performance in youth soccer players. Here, the test had reasonable reliability and can be useful to trainers and coaches in the assessment of young athletes and in monitoring changes over time.The total sprint time of youth soccer players advanced in biological maturation improves more, on average, than that of players who are on time (average) and late in maturation. The performance difference between early and late maturing players is consistent after about 13 years of age.Multilevel modeling is a promising statistical technique for analyzing the development of functional capacity in a sport. It has the potential to provide useful information to assist trainers and coaches in evaluating and facilitating the development of individual players. PMID:24149342
ERIC Educational Resources Information Center
Schölmerich, Vera L. N.; Kawachi, Ichiro
2016-01-01
Multilevel interventions are inspired by socio-ecological models, and seek to create change on various levels--for example by increasing the health literacy of individuals as well as modifying the social norms within a community. Despite becoming a buzzword in public health, actual multilevel interventions remain scarce. In this commentary, we…
ERIC Educational Resources Information Center
Wu, Jiun-Yu; Kwok, Oi-man
2012-01-01
Both ad-hoc robust sandwich standard error estimators (design-based approach) and multilevel analysis (model-based approach) are commonly used for analyzing complex survey data with nonindependent observations. Although these 2 approaches perform equally well on analyzing complex survey data with equal between- and within-level model structures…
Using Design-Based Latent Growth Curve Modeling with Cluster-Level Predictor to Address Dependency
ERIC Educational Resources Information Center
Wu, Jiun-Yu; Kwok, Oi-Man; Willson, Victor L.
2014-01-01
The authors compared the effects of using the true Multilevel Latent Growth Curve Model (MLGCM) with single-level regular and design-based Latent Growth Curve Models (LGCM) with or without the higher-level predictor on various criterion variables for multilevel longitudinal data. They found that random effect estimates were biased when the…
Illustration of a Multilevel Model for Meta-Analysis
ERIC Educational Resources Information Center
de la Torre, Jimmy; Camilli, Gregory; Vargas, Sadako; Vernon, R. Fox
2007-01-01
In this article, the authors present a multilevel (or hierarchical linear) model that illustrates issues in the application of the model to data from meta-analytic studies. In doing so, several issues are discussed that typically arise in the course of a meta-analysis. These include the presence of non-zero between-study variability, how multiple…
ERIC Educational Resources Information Center
Hatzichristiou, Chryse; Issari, Philia; Lykitsakou, Konstantina; Lampropoulou, Aikaterini; Dimitropoulou, Panayiota
2011-01-01
This article proposes a multi-level model for crisis preparedness and intervention in the Greek educational system. It presents: a) a brief overview of leading models of school crisis preparedness and intervention as well as cultural considerations for contextually relevant crisis response; b) a description of existing crisis intervention…
Explaining Technology Integration in K-12 Classrooms: A Multilevel Path Analysis Model
ERIC Educational Resources Information Center
Liu, Feng; Ritzhaupt, Albert D.; Dawson, Kara; Barron, Ann E.
2017-01-01
The purpose of this research was to design and test a model of classroom technology integration in the context of K-12 schools. The proposed multilevel path analysis model includes teacher, contextual, and school related variables on a teacher's use of technology and confidence and comfort using technology as mediators of classroom technology…
Nyman, Elin; Rozendaal, Yvonne J W; Helmlinger, Gabriel; Hamrén, Bengt; Kjellsson, Maria C; Strålfors, Peter; van Riel, Natal A W; Gennemark, Peter; Cedersund, Gunnar
2016-04-06
We are currently in the middle of a major shift in biomedical research: unprecedented and rapidly growing amounts of data may be obtained today, from in vitro, in vivo and clinical studies, at molecular, physiological and clinical levels. To make use of these large-scale, multi-level datasets, corresponding multi-level mathematical models are needed, i.e. models that simultaneously capture multiple layers of the biological, physiological and disease-level organization (also referred to as quantitative systems pharmacology-QSP-models). However, today's multi-level models are not yet embedded in end-usage applications, neither in drug research and development nor in the clinic. Given the expectations and claims made historically, this seemingly slow adoption may seem surprising. Therefore, we herein consider a specific example-type 2 diabetes-and critically review the current status and identify key remaining steps for these models to become mainstream in the future. This overview reveals how, today, we may use models to ask scientific questions concerning, e.g., the cellular origin of insulin resistance, and how this translates to the whole-body level and short-term meal responses. However, before these multi-level models can become truly useful, they need to be linked with the capabilities of other important existing models, in order to make them 'personalized' (e.g. specific to certain patient phenotypes) and capable of describing long-term disease progression. To be useful in drug development, it is also critical that the developed models and their underlying data and assumptions are easily accessible. For clinical end-usage, in addition, model links to decision-support systems combined with the engagement of other disciplines are needed to create user-friendly and cost-efficient software packages.
Rights, Jason D; Sterba, Sonya K
2016-11-01
Multilevel data structures are common in the social sciences. Often, such nested data are analysed with multilevel models (MLMs) in which heterogeneity between clusters is modelled by continuously distributed random intercepts and/or slopes. Alternatively, the non-parametric multilevel regression mixture model (NPMM) can accommodate the same nested data structures through discrete latent class variation. The purpose of this article is to delineate analytic relationships between NPMM and MLM parameters that are useful for understanding the indirect interpretation of the NPMM as a non-parametric approximation of the MLM, with relaxed distributional assumptions. We define how seven standard and non-standard MLM specifications can be indirectly approximated by particular NPMM specifications. We provide formulas showing how the NPMM can serve as an approximation of the MLM in terms of intraclass correlation, random coefficient means and (co)variances, heteroscedasticity of residuals at level 1, and heteroscedasticity of residuals at level 2. Further, we discuss how these relationships can be useful in practice. The specific relationships are illustrated with simulated graphical demonstrations, and direct and indirect interpretations of NPMM classes are contrasted. We provide an R function to aid in implementing and visualizing an indirect interpretation of NPMM classes. An empirical example is presented and future directions are discussed. © 2016 The British Psychological Society.
Analysis of MAGSAT and surface data of the Indian region
NASA Technical Reports Server (NTRS)
Agarwal, G. C. (Principal Investigator)
1983-01-01
Techniques and significant results of an analysis of MAGSAT and surface data of the Indian region are described. Specific investigative tasks included: (1) use of the multilevel data at different altitudes to develop a model for variation of magnetic anomaly with altitude; (2) development of the regional model for the description of main geomagnetic field for the Indian sub-continent using MAGSAT and observatory data; (3) development of regional mathematical model of secular variations over the Indian sub-continent; and (4) downward continuation of the anomaly field obtained from MAGSAT and its combination with the existing observatory data to produce a regional anomaly map for elucidating tectonic features of the Indian sub-continent.
Get Over It! A Multilevel Threshold Autoregressive Model for State-Dependent Affect Regulation.
De Haan-Rietdijk, Silvia; Gottman, John M; Bergeman, Cindy S; Hamaker, Ellen L
2016-03-01
Intensive longitudinal data provide rich information, which is best captured when specialized models are used in the analysis. One of these models is the multilevel autoregressive model, which psychologists have applied successfully to study affect regulation as well as alcohol use. A limitation of this model is that the autoregressive parameter is treated as a fixed, trait-like property of a person. We argue that the autoregressive parameter may be state-dependent, for example, if the strength of affect regulation depends on the intensity of affect experienced. To allow such intra-individual variation, we propose a multilevel threshold autoregressive model. Using simulations, we show that this model can be used to detect state-dependent regulation with adequate power and Type I error. The potential of the new modeling approach is illustrated with two empirical applications that extend the basic model to address additional substantive research questions.
ERIC Educational Resources Information Center
Aydin, Burak; Leite, Walter L.; Algina, James
2016-01-01
We investigated methods of including covariates in two-level models for cluster randomized trials to increase power to detect the treatment effect. We compared multilevel models that included either an observed cluster mean or a latent cluster mean as a covariate, as well as the effect of including Level 1 deviation scores in the model. A Monte…
Vilardaga, Roger; Heffner, Jaimee L.; Mercer, Laina D.; Bricker, Jonathan
2014-01-01
No studies to date have examined the effect of counselor techniques on smoking cessation over the course of treatment. To address this gap, we examined the degree to which the use of specific Acceptance and Commitment Therapy (ACT) counseling techniques in a given session predicted smoking cessation reported at the next session. The data came from the ACT arm of a randomized controlled trial of a telephone-delivered smoking cessation intervention. Trained raters coded 139 counseling sessions across 44 participants. The openness, awareness and activation components of the ACT model were rated for each telephone counseling session. Multilevel logistic regression models were used to estimate the predictive relationship between each component during any given telephone session and smoking cessation at the following telephone session. For every 1-unit increase in counselors’ use of openness and awareness techniques there were 42% and 52% decreases in the odds of smoking at the next counseling session, respectively. However, there was no significant predictive relationship between counselors’ use of activation techniques and smoking cessation. Overall, results highlight the theoretical and clinical value of examining therapists’ techniques as predictors of outcome during the course of treatment. PMID:25156397
DOT National Transportation Integrated Search
2011-09-21
Title: Transportation and Socioeconomic Impacts of Bypasses on Communities: An Integrated Synthesis of Panel Data, Multilevel, and Spatial Econometric Models with Case Studies. The title used at the start of this project was Transportation and Soc...
Multilevel Evaluation Systems Project. Final Report.
ERIC Educational Resources Information Center
Herman, Joan L.
Several studies were conducted in 1987 by the Multilevel Evaluation Systems Project, which focuses on developing a model for a multi-purpose, multi-user evaluation system to facilitate educational decision making and evaluation. The project model emphasizes on-going integrated assessment of individuals, classes, and programs using a variety of…
ERIC Educational Resources Information Center
Miller, Jeffrey R.; Piper, Tinka Markham; Ahern, Jennifer; Tracy, Melissa; Tardiff, Kenneth J.; Vlahov, David; Galea, Sandro
2005-01-01
Evidence on the relationship between income inequality and suicide is inconsistent. Data from the New York City Office of the Chief Medical Examiner for all fatal injuries was collected to conduct a multilevel case-control study. In multilevel models, suicide decedents (n = 374) were more likely than accident controls (n = 453) to reside in…
ERIC Educational Resources Information Center
Bulotsky-Shearer, Rebecca J.; Wen, Xiaoli; Faria, Ann-Marie; Hahs-Vaughn, Debbie L.; Korfmacher, Jon
2012-01-01
Guided by a developmental and ecological model, the study employed latent profile analysis to identify a multilevel typology of family involvement and Head Start classroom quality. Using the nationally representative Head Start Family and Child Experiences Survey (FACES 1997; N = 1870), six multilevel latent profiles were estimated, characterized…
Suvak, Michael K; Walling, Sherry M; Iverson, Katherine M; Taft, Casey T; Resick, Patricia A
2009-12-01
Multilevel modeling is a powerful and flexible framework for analyzing nested data structures (e.g., repeated measures or longitudinal designs). The authors illustrate a series of multilevel regression procedures that can be used to elucidate the nature of the relationship between two variables across time. The goal is to help trauma researchers become more aware of the utility of multilevel modeling as a tool for increasing the field's understanding of posttraumatic adaptation. These procedures are demonstrated by examining the relationship between two posttraumatic symptoms, intrusion and avoidance, across five assessment points in a sample of rape and robbery survivors (n = 286). Results revealed that changes in intrusion were highly correlated with changes in avoidance over the 18-month posttrauma period.
Active phase locking of thirty fiber channels using multilevel phase dithering method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhimeng; Luo, Yongquan, E-mail: yongquan-l@sina.com; Liu, Cangli
2016-03-15
An active phase locking of a large-scale fiber array with thirty channels has been demonstrated experimentally. In the experiment, the first group of thirty phase controllers is used to compensate the phase noises between the elements and the second group of thirty phase modulators is used to impose additional phase disturbances to mimic the phase noises in the high power fiber amplifiers. A multi-level phase dithering algorithm using dual-level rectangular-wave phase modulation and time division multiplexing can achieve the same phase control as single/multi-frequency dithering technique, but without coherent demodulation circuit. The phase locking efficiency of 30 fiber channels ismore » achieved about 98.68%, 97.82%, and 96.50% with no additional phase distortion, modulated phase distortion I (±1 rad), and phase distortion II (±2 rad), corresponding to the phase error of λ/54, λ/43, and λ/34 rms. The contrast of the coherent combined beam profile is about 89%. Experimental results reveal that the multi-level phase dithering technique has great potential in scaling to a large number of laser beams.« less
Fenske, Stefanie; Pröbstle, Rasmus; Auer, Franziska; Hassan, Sami; Marks, Vanessa; Pauza, Danius H; Biel, Martin; Wahl-Schott, Christian
2016-01-01
The normal heartbeat slightly fluctuates around a mean value; this phenomenon is called physiological heart rate variability (HRV). It is well known that altered HRV is a risk factor for sudden cardiac death. The availability of genetic mouse models makes it possible to experimentally dissect the mechanism of pathological changes in HRV and its relation to sudden cardiac death. Here we provide a protocol that allows for a comprehensive multilevel analysis of heart rate (HR) fluctuations. The protocol comprises a set of techniques that include in vivo telemetry and in vitro electrophysiology of intact sinoatrial network preparations or isolated single sinoatrial node (SAN) cells. In vitro preparations can be completed within a few hours, with data acquisition within 1 d. In vivo telemetric ECG requires 1 h for surgery and several weeks for data acquisition and analysis. This protocol is of interest to researchers investigating cardiovascular physiology and the pathophysiology of sudden cardiac death.
NASA Astrophysics Data System (ADS)
Talarn, Àngela; Pavón-Carrasco, F. Javier; Torta, J. Miquel; Catalán, Manuel
2017-02-01
One efficient approach to modelling the Earth's core magnetic field involves the inclusion of crossover marine data which cover areas lacking in observatory and repeat station data for epochs when precise three-component satellite magnetic field measurements were not common. In this study, we show how the Revised Spherical Cap Harmonic Analysis (R-SCHA) can appropriately provide a continuous-time field model for the North Atlantic region by using multilevel sets of geomagnetic data such as marine, repeat station, observatory, and satellite data. Taking advantage of the properties of the R-SCHA basis functions we can model the radial and horizontal variations of the main field and its secular variation with the most suitable spatial and temporal wavelengths. To assess the best compromise between the data fit and the model roughness, temporal and spatial regularization matrices were implemented in the modelling approach. Two additional strategies were also used to obtain a satisfactory regional model: the opportunity to fit the anomaly bias at each observatory location, and constraining the regional model to the CHAOS-6 model at the end of its period of validity, i.e. 1999-2000, allowing a smooth transition with the predictions of this recent model. In terms of the root mean square error, the degree of success was limited partly because of the high uncertainties associated with some of the datasets (especially the marine ones), but we have produced a model that performs comparably to the global models for the period 1960-2000, thus showing the benefits of using this regional technique.
Li, Qing; Li, Xiaoming; Stanton, Bonita; Fang, Xiaoyi; Zhao, Ran
2010-11-01
Multilevel analytical techniques are being applied in condom use research to ensure the validity of investigation on environmental/structural influences and clustered data from venue-based sampling. The literature contains reports of consistent associations between perceived gatekeeper support and condom use among entertainment establishment-based female sex workers (FSWs) in Guangxi, China. However, the clustering inherent in the data (FSWs being clustered within establishment) has not been accounted in most of the analyses. We used multilevel analyses to examine perceived features of gatekeepers and individual correlates of consistent condom use among FSWs and to validate the findings in the existing literature. We analyzed cross-sectional data from 318 FSWs from 29 entertainment establishments in Guangxi, China in 2004, with a minimum of 5 FSWs per establishment. The Hierarchical Linear Models program with Laplace estimation was used to estimate the parameters in models containing random effects and binary outcomes. About 11.6% of women reported consistent condom use with clients. The intraclass correlation coefficient indicated 18.5% of the variance in condom use could be attributed to their similarity between FSWs within the same establishments. Women's perceived gatekeeper support and education remained positively associated with condom use (P < 0.05), after controlling for other individual characteristics and clustering. After adjusting for data clustering, perceived gatekeeper support remains associated with consistent condom use with clients among FSWs in China. The results imply that combined interventions to intervene both gatekeepers and individual FSW may effectively promote consistent condom use.
Li, Qing; Li, Xiaoming; Stanton, Bonita; Fang, Xiaoyi; Zhao, Ran
2010-01-01
Background Multilevel analytical techniques are being applied in condom use research to ensure the validity of investigation on environmental/structural influences and clustered data from venue-based sampling. The literature contains reports of consistent associations between perceived gatekeeper support and condom use among entertainments establishment-based female sex workers (FSWs) in Guangxi, China. However, the clustering inherent in the data (FSWs being clustered within establishment) has not been accounted in most of the analyses. We used multilevel analyses to examine perceived features of gatekeepers and individual correlates of consistent condom use among FSWs and to validate the findings in the existing literature. Methods We analyzed cross-sectional data from 318 FSWs from 29 entertainment establishments in Guangxi, China in 2004, with a minimum of 5 FSWs per establishment. The Hierarchical Linear Models program with Laplace estimation was used to estimate the parameters in models containing random effects and binary outcomes. Results About 11.6% of women reported consistent condom use with clients. The intraclass correlation coefficient indicated 18.5% of the variance in condom use could be attributed to their similarity between FSWs within the same establishments. Women’s perceived gatekeeper support and education remained positively associated with condom use (P < 0.05), after controlling for other individual characteristics and clustering. Conclusions After adjusting for data clustering, perceived gatekeeper support remains associated with consistent condom use with clients among FSWs in China. The results imply that combined interventions to intervene both gatekeepers and individual FSW may effectively promote consistent condom use. PMID:20539262
[How to fit and interpret multilevel models using SPSS].
Pardo, Antonio; Ruiz, Miguel A; San Martín, Rafael
2007-05-01
Hierarchic or multilevel models are used to analyse data when cases belong to known groups and sample units are selected both from the individual level and from the group level. In this work, the multilevel models most commonly discussed in the statistic literature are described, explaining how to fit these models using the SPSS program (any version as of the 11 th ) and how to interpret the outcomes of the analysis. Five particular models are described, fitted, and interpreted: (1) one-way analysis of variance with random effects, (2) regression analysis with means-as-outcomes, (3) one-way analysis of covariance with random effects, (4) regression analysis with random coefficients, and (5) regression analysis with means- and slopes-as-outcomes. All models are explained, trying to make them understandable to researchers in health and behaviour sciences.
Multi-level optimization of a beam-like space truss utilizing a continuum model
NASA Technical Reports Server (NTRS)
Yates, K.; Gurdal, Z.; Thangjitham, S.
1992-01-01
A continuous beam model is developed for approximate analysis of a large, slender, beam-like truss. The model is incorporated in a multi-level optimization scheme for the weight minimization of such trusses. This scheme is tested against traditional optimization procedures for savings in computational cost. Results from both optimization methods are presented for comparison.
ERIC Educational Resources Information Center
Konishi, Chiaki; Miyazaki, Yasuo; Hymel, Shelley; Waterhouse, Terry
2017-01-01
This study examined how student reports of bullying were related to different dimensions of school climate, at both the school and the student levels, using a contextual effects model in a two-level multilevel modeling framework. Participants included 48,874 secondary students (grades 8 to 12; 24,244 girls) from 76 schools in Western Canada.…
ERIC Educational Resources Information Center
Reardon, Sean F.; Brennan, Robert T.; Buka, Stephen L.
2002-01-01
Developed procedures for constructing a retrospective person-period data set from cross-sectional data and discusses modeling strategies for estimating multilevel discrete-time event history models. Applied the methods to the analysis of cigarette use by 1,979 urban adolescents. Results show the influence of the racial composition of the…
On the Usefulness of a Multilevel Logistic Regression Approach to Person-Fit Analysis
ERIC Educational Resources Information Center
Conijn, Judith M.; Emons, Wilco H. M.; van Assen, Marcel A. L. M.; Sijtsma, Klaas
2011-01-01
The logistic person response function (PRF) models the probability of a correct response as a function of the item locations. Reise (2000) proposed to use the slope parameter of the logistic PRF as a person-fit measure. He reformulated the logistic PRF model as a multilevel logistic regression model and estimated the PRF parameters from this…
ERIC Educational Resources Information Center
Youngs, Howard; Piggot-Irvine, Eileen
2012-01-01
Mixed methods research has emerged as a credible alternative to unitary research approaches. The authors show how a combination of a triangulation convergence model with a triangulation multilevel model was used to research an aspiring school principal development pilot program. The multilevel model is used to show the national and regional levels…
Assessing Omitted Confounder Bias in Multilevel Mediation Models.
Tofighi, Davood; Kelley, Ken
2016-01-01
To draw valid inference about an indirect effect in a mediation model, there must be no omitted confounders. No omitted confounders means that there are no common causes of hypothesized causal relationships. When the no-omitted-confounder assumption is violated, inference about indirect effects can be severely biased and the results potentially misleading. Despite the increasing attention to address confounder bias in single-level mediation, this topic has received little attention in the growing area of multilevel mediation analysis. A formidable challenge is that the no-omitted-confounder assumption is untestable. To address this challenge, we first analytically examined the biasing effects of potential violations of this critical assumption in a two-level mediation model with random intercepts and slopes, in which all the variables are measured at Level 1. Our analytic results show that omitting a Level 1 confounder can yield misleading results about key quantities of interest, such as Level 1 and Level 2 indirect effects. Second, we proposed a sensitivity analysis technique to assess the extent to which potential violation of the no-omitted-confounder assumption might invalidate or alter the conclusions about the indirect effects observed. We illustrated the methods using an empirical study and provided computer code so that researchers can implement the methods discussed.
van Witteloostuijn, Arjen
2018-01-01
In this paper, we develop an ecological, multi-level model that can be used to study the evolution of emerging technology. More specifically, by defining technology as a system composed of a set of interacting components, we can build upon the argument of multi-level density dependence from organizational ecology to develop a distribution-independent model of technological evolution. This allows us to distinguish between different stages of component development, which provides more insight into the emergence of stable component configurations, or dominant designs. We validate our hypotheses in the biotechnology industry by using patent data from the USPTO from 1976 to 2003. PMID:29795575
NASA Technical Reports Server (NTRS)
Rajpal, Sandeep; Rhee, Do Jun; Lin, Shu
1997-01-01
The first part of this paper presents a simple and systematic technique for constructing multidimensional M-ary phase shift keying (MMK) trellis coded modulation (TCM) codes. The construction is based on a multilevel concatenation approach in which binary convolutional codes with good free branch distances are used as the outer codes and block MPSK modulation codes are used as the inner codes (or the signal spaces). Conditions on phase invariance of these codes are derived and a multistage decoding scheme for these codes is proposed. The proposed technique can be used to construct good codes for both the additive white Gaussian noise (AWGN) and fading channels as is shown in the second part of this paper.
Highly-Efficient and Modular Medium-Voltage Converters
2015-09-28
HVDC modular multilevel converter in decoupled double synchronous reference frame for voltage oscillation reduction," IEEE Trans. Ind...Electron., vol. 29, pp. 77-88, Jan 2014. [10] M. Guan and Z. Xu, "Modeling and control of a modular multilevel converter -based HVDC system under...34 Modular multilevel converter design for VSC HVDC applications," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, pp.
ERIC Educational Resources Information Center
Karakolidis, Anastasios; Pitsia, Vasiliki; Emvalotis, Anastassios
2016-01-01
The main aim of the present study was to carry out an in-depth examination of mathematics underperformance in Greece. By applying a binary multilevel model to the PISA 2012 data, this study investigated the factors which were linked to low achievement in mathematics. The multilevel analysis revealed that students' gender, immigration status,…
Using Multilevel Modeling in Counseling Research
ERIC Educational Resources Information Center
Lynch, Martin F.
2012-01-01
This conceptual and practical overview of multilevel modeling (MLM) for researchers in counseling and development provides guidelines on setting up SPSS to perform MLM and an example of how to present the findings. It also provides a discussion on how counseling and developmental researchers can use MLM to address their own research questions.…
Multilevel Modeling: Overview and Applications to Research in Counseling Psychology
ERIC Educational Resources Information Center
Kahn, Jeffrey H.
2011-01-01
Multilevel modeling (MLM) is rapidly becoming the standard method of analyzing nested data, for example, data from students within multiple schools, data on multiple clients seen by a smaller number of therapists, and even longitudinal data. Although MLM analyses are likely to increase in frequency in counseling psychology research, many readers…
Multilevel and Single-Level Models for Measured and Latent Variables When Data Are Clustered
ERIC Educational Resources Information Center
Stapleton, Laura M.; McNeish, Daniel M.; Yang, Ji Seung
2016-01-01
Multilevel models are often used to evaluate hypotheses about relations among constructs when data are nested within clusters (Raudenbush & Bryk, 2002), although alternative approaches are available when analyzing nested data (Binder & Roberts, 2003; Sterba, 2009). The overarching goal of this article is to suggest when it is appropriate…
Multilevel Cognitive Diagnosis Models for Assessing Changes in Latent Attributes
ERIC Educational Resources Information Center
Huang, Hung-Yu
2017-01-01
Cognitive diagnosis models (CDMs) have been developed to evaluate the mastery status of individuals with respect to a set of defined attributes or skills that are measured through testing. When individuals are repeatedly administered a cognitive diagnosis test, a new class of multilevel CDMs is required to assess the changes in their attributes…
ERIC Educational Resources Information Center
Goldstein, Harvey; Bonnet, Gerard; Rocher, Thierry
2007-01-01
The Programme for International Student Assessment comparative study of reading performance among 15-year-olds is reanalyzed using statistical procedures that allow the full complexity of the data structures to be explored. The article extends existing multilevel factor analysis and structural equation models and shows how this can extract richer…
Multilevel Factor Analysis by Model Segregation: New Applications for Robust Test Statistics
ERIC Educational Resources Information Center
Schweig, Jonathan
2014-01-01
Measures of classroom environments have become central to policy efforts that assess school and teacher quality. This has sparked a wide interest in using multilevel factor analysis to test measurement hypotheses about classroom-level variables. One approach partitions the total covariance matrix and tests models separately on the…
Multilevel poisson regression modelling for determining factors of dengue fever cases in bandung
NASA Astrophysics Data System (ADS)
Arundina, Davila Rubianti; Tantular, Bertho; Pontoh, Resa Septiani
2017-03-01
Scralatina or Dengue Fever is a kind of fever caused by serotype virus which Flavivirus genus and be known as Dengue Virus. Dengue Fever caused by Aedes Aegipty Mosquito bites who infected by a dengue virus. The study was conducted in 151 villages in Bandung. Health Analysts believes that there are two factors that affect the dengue cases, Internal factor (individual) and external factor (environment). The data who used in this research is hierarchical data. The method is used for hierarchical data modelling is multilevel method. Which is, the level 1 is village and level 2 is sub-district. According exploration data analysis, the suitable Multilevel Method is Random Intercept Model. Penalized Quasi Likelihood (PQL) approach on multilevel Poisson is a proper analysis to determine factors that affecting dengue cases in the city of Bandung. Clean and Healthy Behavior factor from the village level have an effect on the number of cases of dengue fever in the city of Bandung. Factor from the sub-district level has no effect.
Fitting and Calibrating a Multilevel Mixed-Effects Stem Taper Model for Maritime Pine in NW Spain
Arias-Rodil, Manuel; Castedo-Dorado, Fernando; Cámara-Obregón, Asunción; Diéguez-Aranda, Ulises
2015-01-01
Stem taper data are usually hierarchical (several measurements per tree, and several trees per plot), making application of a multilevel mixed-effects modelling approach essential. However, correlation between trees in the same plot/stand has often been ignored in previous studies. Fitting and calibration of a variable-exponent stem taper function were conducted using data from 420 trees felled in even-aged maritime pine (Pinus pinaster Ait.) stands in NW Spain. In the fitting step, the tree level explained much more variability than the plot level, and therefore calibration at plot level was omitted. Several stem heights were evaluated for measurement of the additional diameter needed for calibration at tree level. Calibration with an additional diameter measured at between 40 and 60% of total tree height showed the greatest improvement in volume and diameter predictions. If additional diameter measurement is not available, the fixed-effects model fitted by the ordinary least squares technique should be used. Finally, we also evaluated how the expansion of parameters with random effects affects the stem taper prediction, as we consider this a key question when applying the mixed-effects modelling approach to taper equations. The results showed that correlation between random effects should be taken into account when assessing the influence of random effects in stem taper prediction. PMID:26630156
NASA Astrophysics Data System (ADS)
Taissariyeva, K.; Issembergenov, N.; Dzhobalaeva, G.; Usembaeva, S.
2016-09-01
The given paper considers the multilevel 6 kW-power transistor inverter at supply by 12 accumulators for transformation of solar battery energy to the electric power. At the output of the multilevel transistor inverter, it is possible to receive voltage close to a sinusoidal form. The main objective of this inverter is transformation of solar energy to the electric power of industrial frequency. The analysis of the received output curves of voltage on harmonicity has been carried out. In this paper it is set forth the developed scheme of the multilevel transistor inverter (DC-to-ac converter) which allows receiving at the output the voltage close to sinusoidal form, as well as to regulation of the output voltage level. In the paper, the results of computer modeling and experimental studies are presented.
Howe, Laura D; Tilling, Kate; Matijasevich, Alicia; Petherick, Emily S; Santos, Ana Cristina; Fairley, Lesley; Wright, John; Santos, Iná S; Barros, Aluísio Jd; Martin, Richard M; Kramer, Michael S; Bogdanovich, Natalia; Matush, Lidia; Barros, Henrique; Lawlor, Debbie A
2016-10-01
Childhood growth is of interest in medical research concerned with determinants and consequences of variation from healthy growth and development. Linear spline multilevel modelling is a useful approach for deriving individual summary measures of growth, which overcomes several data issues (co-linearity of repeat measures, the requirement for all individuals to be measured at the same ages and bias due to missing data). Here, we outline the application of this methodology to model individual trajectories of length/height and weight, drawing on examples from five cohorts from different generations and different geographical regions with varying levels of economic development. We describe the unique features of the data within each cohort that have implications for the application of linear spline multilevel models, for example, differences in the density and inter-individual variation in measurement occasions, and multiple sources of measurement with varying measurement error. After providing example Stata syntax and a suggested workflow for the implementation of linear spline multilevel models, we conclude with a discussion of the advantages and disadvantages of the linear spline approach compared with other growth modelling methods such as fractional polynomials, more complex spline functions and other non-linear models. © The Author(s) 2013.
Analyzing chromatographic data using multilevel modeling.
Wiczling, Paweł
2018-06-01
It is relatively easy to collect chromatographic measurements for a large number of analytes, especially with gradient chromatographic methods coupled with mass spectrometry detection. Such data often have a hierarchical or clustered structure. For example, analytes with similar hydrophobicity and dissociation constant tend to be more alike in their retention than a randomly chosen set of analytes. Multilevel models recognize the existence of such data structures by assigning a model for each parameter, with its parameters also estimated from data. In this work, a multilevel model is proposed to describe retention time data obtained from a series of wide linear organic modifier gradients of different gradient duration and different mobile phase pH for a large set of acids and bases. The multilevel model consists of (1) the same deterministic equation describing the relationship between retention time and analyte-specific and instrument-specific parameters, (2) covariance relationships relating various physicochemical properties of the analyte to chromatographically specific parameters through quantitative structure-retention relationship based equations, and (3) stochastic components of intra-analyte and interanalyte variability. The model was implemented in Stan, which provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods. Graphical abstract Relationships between log k and MeOH content for acidic, basic, and neutral compounds with different log P. CI credible interval, PSA polar surface area.
Tilling, Kate; Matijasevich, Alicia; Petherick, Emily S; Santos, Ana Cristina; Fairley, Lesley; Wright, John; Santos, Iná S.; Barros, Aluísio JD; Martin, Richard M; Kramer, Michael S; Bogdanovich, Natalia; Matush, Lidia; Barros, Henrique; Lawlor, Debbie A
2013-01-01
Childhood growth is of interest in medical research concerned with determinants and consequences of variation from healthy growth and development. Linear spline multilevel modelling is a useful approach for deriving individual summary measures of growth, which overcomes several data issues (co-linearity of repeat measures, the requirement for all individuals to be measured at the same ages and bias due to missing data). Here, we outline the application of this methodology to model individual trajectories of length/height and weight, drawing on examples from five cohorts from different generations and different geographical regions with varying levels of economic development. We describe the unique features of the data within each cohort that have implications for the application of linear spline multilevel models, for example, differences in the density and inter-individual variation in measurement occasions, and multiple sources of measurement with varying measurement error. After providing example Stata syntax and a suggested workflow for the implementation of linear spline multilevel models, we conclude with a discussion of the advantages and disadvantages of the linear spline approach compared with other growth modelling methods such as fractional polynomials, more complex spline functions and other non-linear models. PMID:24108269
Wilfley, Denise E.; Van Buren, Dorothy J.; Theim, Kelly R.; Stein, Richard I.; Saelens, Brian E.; Ezzet, Farkad; Russian, Angela C.; Perri, Michael G.; Epstein, Leonard H.
2011-01-01
Objective Weight loss outcomes achieved through conventional behavior change interventions are prone to deterioration over time. Basic learning laboratory studies in the area of behavioral extinction and renewal and multi-level models of weight control offer clues as to why newly acquired weight loss skills are prone to relapse. According to these models, current clinic-based interventions may not be of sufficient duration or scope to allow for the practice of new skills across the multiple community contexts necessary to promote sustainable weight loss. Although longer, more intensive interventions with greater reach may hold the key to improving weight loss outcomes, it is difficult to test these assumptions in a time efficient and cost-effective manner. A research design tool that has been increasingly utilized in other fields (e.g., pharmaceuticals) is the use of biosimulation analyses. The present paper describes our research team's use of computer simulation models to assist in designing a study to test a novel, comprehensive socio-environmental treatment approach to weight loss maintenance in children ages 7 to 12 years. Methods Weight outcome data from the weight loss, weight maintenance, and follow-up phases of a recently completed randomized controlled trial (RCT) were used to describe the time course of a proposed, extended multi-level treatment program. Simulations were then conducted to project the expected changes in child percent overweight trajectories in the proposed study. Results A 12.9% decrease in percent overweight at 30 months was estimated based upon the midway point between models of “best-case” and “worst-case” weight maintenance scenarios. Conclusions Preliminary data and further analyses, including biosimulation projections, suggest that our socio-environmental approach to weight loss maintenance treatment is promising and warrants evaluation in a large-scale RCT. Biosimulation techniques may have utility in the design of future community-level interventions for the treatment and prevention of childhood overweight. PMID:20107468
Wheeler, Stephanie B; Leeman, Jennifer; Hassmiller Lich, Kristen; Tangka, Florence K L; Davis, Melinda M; Richardson, Lisa C
A robust evidence base supports the effectiveness of timely colorectal cancer (CRC) screening, follow-up of abnormal results, and referral to care in reducing CRC morbidity and mortality. However, only two-thirds of the US population is current with recommended screening, and rates are much lower for those who are vulnerable because of their race/ethnicity, insurance status, or rural location. Multiple, multilevel factors contribute to observed disparities, and these factors vary across different populations and contexts. As highlighted by the Cancer Moonshot Blue Ribbon Panel working groups focused on Prevention and Early Detection and Implementation Science inadequate CRC screening and follow-up represent an enormous missed opportunity in cancer prevention and control. To measurably reduce CRC morbidity and mortality, the evidence base must be strengthened to guide the identification of (1) multilevel factors that influence screening across different populations and contexts, (2) multilevel interventions and implementation strategies that will be most effective at targeting those factors, and (3) combinations of strategies that interact synergistically to improve outcomes. Systems thinking and simulation modeling (systems science) provide a set of approaches and techniques to aid decision makers in using the best available data and research evidence to guide implementation planning in the context of such complexity. This commentary summarizes current challenges in CRC prevention and control, discusses the status of the evidence base to guide the selection and implementation of multilevel CRC screening interventions, and describes a multi-institution project to showcase how systems science can be leveraged to optimize selection and implementation of CRC screening interventions in diverse populations and contexts.
Fabian C.C. Uzoh; William W. Oliver
2008-01-01
A diameter increment model is developed and evaluated for individual trees of ponderosa pine throughout the species range in the United States using a multilevel linear mixed model. Stochastic variability is broken down among period, locale, plot, tree and within-tree components. Covariates acting at tree and stand level, as breast height diameter, density, site index...
Multilevel cervical laminectomy and fusion with posterior cervical cages
Bou Monsef, Jad N; Siemionow, Krzysztof B
2017-01-01
Context: Cervical spondylotic myelopathy (CSM) is a progressive disease that can result in significant disability. Single-level stenosis can be effectively decompressed through either anterior or posterior techniques. However, multilevel pathology can be challenging, especially in the presence of significant spinal stenosis. Three-level anterior decompression and fusion are associated with higher nonunion rates and prolonged dysphagia. Posterior multilevel laminectomies with foraminotomies jeopardize the bone stock required for stable fixation with lateral mass screws (LMSs). Aims: This is the first case series of multilevel laminectomy and fusion for CSM instrumented with posterior cervical cages. Settings and Design: Three patients presented with a history of worsening neck pain, numbness in bilateral upper extremities and gait disturbance, and examination findings consistent with myeloradiculopathy. Cervical magnetic resonance imaging demonstrated multilevel spondylosis resulting in moderate to severe bilateral foraminal stenosis at three cervical levels. Materials and Methods: The patients underwent a multilevel posterior cervical laminectomy and instrumented fusion with intervertebral cages placed between bilateral facet joints over three levels. Oswestry disability index and visual analog scores were collected preoperatively and at each follow-up. Pre- and post-operative images were analyzed for changes in cervical alignment and presence of arthrodesis. Results: Postoperatively, all patients showed marked improvement in neurological symptoms and neck pain. They had full resolution of radicular symptoms by 6 weeks postoperatively. At 12-month follow-up, they demonstrated solid arthrodesis on X-rays and computed tomography scan. Conclusions: Posterior cervical cages may be an alternative option to LMSs in multilevel cervical laminectomy and fusion for cervical spondylotic myeloradiculopathy. PMID:29403242
Shi, Qi; Abdel-Aty, Mohamed; Yu, Rongjie
2016-03-01
In traffic safety studies, crash frequency modeling of total crashes is the cornerstone before proceeding to more detailed safety evaluation. The relationship between crash occurrence and factors such as traffic flow and roadway geometric characteristics has been extensively explored for a better understanding of crash mechanisms. In this study, a multi-level Bayesian framework has been developed in an effort to identify the crash contributing factors on an urban expressway in the Central Florida area. Two types of traffic data from the Automatic Vehicle Identification system, which are the processed data capped at speed limit and the unprocessed data retaining the original speed were incorporated in the analysis along with road geometric information. The model framework was proposed to account for the hierarchical data structure and the heterogeneity among the traffic and roadway geometric data. Multi-level and random parameters models were constructed and compared with the Negative Binomial model under the Bayesian inference framework. Results showed that the unprocessed traffic data was superior. Both multi-level models and random parameters models outperformed the Negative Binomial model and the models with random parameters achieved the best model fitting. The contributing factors identified imply that on the urban expressway lower speed and higher speed variation could significantly increase the crash likelihood. Other geometric factors were significant including auxiliary lanes and horizontal curvature. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wood, Beatrice L; Miller, Bruce D; Lehman, Heather K
2015-06-01
Asthma is the most common chronic disease in children. Despite dramatic advances in pharmacological treatments, asthma remains a leading public health problem, especially in socially disadvantaged minority populations. Some experts believe that this health gap is due to the failure to address the impact of stress on the disease. Asthma is a complex disease that is influenced by multilevel factors, but the nature of these factors and their interrelations are not well understood. This paper aims to integrate social, psychological, and biological literatures on relations between family/parental stress and pediatric asthma, and to illustrate the utility of multilevel systemic models for guiding treatment and stimulating future research. We used electronic database searches and conducted an integrated analysis of selected epidemiological, longitudinal, and empirical studies. Evidence is substantial for the effects of family/parental stress on asthma mediated by both disease management and psychobiological stress pathways. However, integrative models containing specific pathways are scarce. We present two multilevel models, with supporting data, as potential prototypes for other such models. We conclude that these multilevel systems models may be of substantial heuristic value in organizing investigations of, and clinical approaches to, the complex social-biological aspects of family stress in pediatric asthma. However, additional systemic models are needed, and the models presented herein could serve as prototypes for model development. © 2015 Family Process Institute.
The art of spacecraft design: A multidisciplinary challenge
NASA Technical Reports Server (NTRS)
Abdi, F.; Ide, H.; Levine, M.; Austel, L.
1989-01-01
Actual design turn-around time has become shorter due to the use of optimization techniques which have been introduced into the design process. It seems that what, how and when to use these optimization techniques may be the key factor for future aircraft engineering operations. Another important aspect of this technique is that complex physical phenomena can be modeled by a simple mathematical equation. The new powerful multilevel methodology reduces time-consuming analysis significantly while maintaining the coupling effects. This simultaneous analysis method stems from the implicit function theorem and system sensitivity derivatives of input variables. Use of the Taylor's series expansion and finite differencing technique for sensitivity derivatives in each discipline makes this approach unique for screening dominant variables from nondominant variables. In this study, the current Computational Fluid Dynamics (CFD) aerodynamic and sensitivity derivative/optimization techniques are applied for a simple cone-type forebody of a high-speed vehicle configuration to understand basic aerodynamic/structure interaction in a hypersonic flight condition.
Evaluation of the cognitive effects of travel technique in complex real and virtual environments.
Suma, Evan A; Finkelstein, Samantha L; Reid, Myra; V Babu, Sabarish; Ulinski, Amy C; Hodges, Larry F
2010-01-01
We report a series of experiments conducted to investigate the effects of travel technique on information gathering and cognition in complex virtual environments. In the first experiment, participants completed a non-branching multilevel 3D maze at their own pace using either real walking or one of two virtual travel techniques. In the second experiment, we constructed a real-world maze with branching pathways and modeled an identical virtual environment. Participants explored either the real or virtual maze for a predetermined amount of time using real walking or a virtual travel technique. Our results across experiments suggest that for complex environments requiring a large number of turns, virtual travel is an acceptable substitute for real walking if the goal of the application involves learning or reasoning based on information presented in the virtual world. However, for applications that require fast, efficient navigation or travel that closely resembles real-world behavior, real walking has advantages over common joystick-based virtual travel techniques.
Squeezed light from conventionally pumped multi-level lasers
NASA Technical Reports Server (NTRS)
Ralph, T. C.; Savage, C. M.
1992-01-01
We have calculated the amplitude squeezing in the output of several conventionally pumped multi-level lasers. We present results which show that standard laser models can produce significantly squeezed outputs in certain parameter ranges.
Conceptual design optimization study
NASA Technical Reports Server (NTRS)
Hollowell, S. J.; Beeman, E. R., II; Hiyama, R. M.
1990-01-01
The feasibility of applying multilevel functional decomposition and optimization techniques to conceptual design of advanced fighter aircraft was investigated. Applying the functional decomposition techniques to the conceptual design phase appears to be feasible. The initial implementation of the modified design process will optimize wing design variables. A hybrid approach, combining functional decomposition techniques for generation of aerodynamic and mass properties linear sensitivity derivatives with existing techniques for sizing mission performance and optimization, is proposed.
ERIC Educational Resources Information Center
Humphrey, Neil; Wigelsworth, Michael
2012-01-01
The current study explores some of the factors associated with children's mental health difficulties in primary school. Multilevel modeling with data from 628 children from 36 schools was used to determine how much variation in mental health difficulties exists between and within schools, and to identify characteristics at the school and…
ERIC Educational Resources Information Center
Schmidt, Susanne; Zlatkin-Troitschanskaia, Olga; Fox, Jean-Paul
2016-01-01
Longitudinal research in higher education faces several challenges. Appropriate methods of analyzing competence growth of students are needed to deal with those challenges and thereby obtain valid results. In this article, a pretest-posttest-posttest multivariate multilevel IRT model for repeated measures is introduced which is designed to address…
A Multilevel Model of Minority Opinion Expression and Team Decision-Making Effectiveness
ERIC Educational Resources Information Center
Park, Guihyun; DeShon, Richard P.
2010-01-01
The consideration of minority opinions when making team decisions is an important factor that contributes to team effectiveness. A multilevel model of minority opinion influence in decision-making teams is developed to address the conditions that relate to adequate consideration of minority opinions. Using a sample of 57 teams working on a…
The Dubious Benefits of Multi-Level Modeling
ERIC Educational Resources Information Center
Gorard, Stephen
2007-01-01
This paper presents an argument against the wider adoption of complex forms of data analysis, using multi-level modeling (MLM) as an extended case study. MLM was devised to overcome some deficiencies in existing datasets, such as the bias caused by clustering. The paper suggests that MLM has an unclear theoretical and empirical basis, has not led…
Asymptotic Effect of Misspecification in the Random Part of the Multilevel Model
ERIC Educational Resources Information Center
Berkhof, Johannes; Kampen, Jarl Kennard
2004-01-01
The authors examine the asymptotic effect of omitting a random coefficient in the multilevel model and derive expressions for the change in (a) the variance components estimator and (b) the estimated variance of the fixed effects estimator. They apply the method of moments, which yields a closed form expression for the omission effect. In…
Three-Level Models for Indirect Effects in School- and Class-Randomized Experiments in Education
ERIC Educational Resources Information Center
Pituch, Keenan A.; Murphy, Daniel L.; Tate, Richard L.
2009-01-01
Due to the clustered nature of field data, multi-level modeling has become commonly used to analyze data arising from educational field experiments. While recent methodological literature has focused on multi-level mediation analysis, relatively little attention has been devoted to mediation analysis when three levels (e.g., student, class,…
ERIC Educational Resources Information Center
Yarnell, Lisa M.; Bohrnstedt, George W.
2018-01-01
This study examines student-teacher "racial match" for its association with Black student achievement. Multilevel structural equation modeling was used to analyze 2013 National Assessment for Educational Progress (NAEP) Grade 4 Reading Assessment data to examine interactions of teacher race and student race in their associations with…
Multilevel Modeling in the Presence of Outliers: A Comparison of Robust Estimation Methods
ERIC Educational Resources Information Center
Finch, Holmes
2017-01-01
Multilevel models (MLMs) have proven themselves to be very useful in social science research, as data from a variety of sources is sampled such that individuals at level-1 are nested within clusters such as schools, hospitals, counseling centers, and business entities at level-2. MLMs using restricted maximum likelihood estimation (REML) provide…
ERIC Educational Resources Information Center
Dettmers, Swantje; Trautwein, Ulrich; Ludtke, Oliver; Kunter, Mareike; Baumert, Jurgen
2010-01-01
The present study examined the associations of 2 indicators of homework quality (homework selection and homework challenge) with homework motivation, homework behavior, and mathematics achievement. Multilevel modeling was used to analyze longitudinal data from a representative national sample of 3,483 students in Grades 9 and 10; homework effects…
A Multilevel Model of Team Cultural Diversity and Creativity: The Role of Climate for Inclusion
ERIC Educational Resources Information Center
Li, Ci-Rong; Lin, Chen-Ju; Tien, Yun-Hsiang; Chen, Chien-Ming
2017-01-01
We developed a multi-level model to test how team cultural diversity may relate to team- and individual-level creativity, integrating team diversity research and information-exchange perspective. We proposed that the team climate for inclusion would moderate both the relationship between cultural diversity and team information sharing and between…
ERIC Educational Resources Information Center
Hsu, Hsien-Yuan; Lin, Jr-Hung; Kwok, Oi-Man; Acosta, Sandra; Willson, Victor
2017-01-01
Several researchers have recommended that level-specific fit indices should be applied to detect the lack of model fit at any level in multilevel structural equation models. Although we concur with their view, we note that these studies did not sufficiently consider the impact of intraclass correlation (ICC) on the performance of level-specific…
Coherent population transfer in multi-level Allen-Eberly models
NASA Astrophysics Data System (ADS)
Li, Wei; Cen, Li-Xiang
2018-04-01
We investigate the solvability of multi-level extensions of the Allen-Eberly model and the population transfer yielded by the corresponding dynamical evolution. We demonstrate that, under a matching condition of the frequency, the driven two-level system and its multi-level extensions possess a stationary-state solution in a canonical representation associated with a unitary transformation. As a consequence, we show that the resulting protocol is able to realize complete population transfer in a nonadiabatic manner. Moreover, we explore the imperfect pulsing process with truncation and display that the nonadiabatic effect in the evolution can lead to suppression to the cutoff error of the protocol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Kota, E-mail: kotaito@mosk.tytlabs.co.jp; Nishikawa, Kazutaka; Iizuka, Hideo
Thermal information processing is attracting much interest as an analog of electronic computing. We experimentally demonstrated a radiative thermal memory utilizing a phase change material. The hysteretic metal-insulator transition of vanadium dioxide (VO{sub 2}) allows us to obtain a multilevel memory. We developed a Preisach model to explain the hysteretic radiative heat transfer between a VO{sub 2} film and a fused quartz substrate. The transient response of our memory predicted by the Preisach model agrees well with the measured response. Our multilevel thermal memory paves the way for thermal information processing as well as contactless thermal management.
Using multilevel models for assessing the variability of multinational resource use and cost data.
Grieve, Richard; Nixon, Richard; Thompson, Simon G; Normand, Charles
2005-02-01
Multinational economic evaluations often calculate a single measure of cost-effectiveness using cost data pooled across several countries. To assess the validity of pooling international cost data the reasons for cost variation across countries need to be assessed. Previously, ordinary least-squares (OLS) regression models have been used to identify factors associated with variability in resource use and total costs. However, multilevel models (MLMs), which accommodate the hierarchical structure of the data, may be more appropriate. This paper compares these different techniques using a multinational dataset comprising case-mix, resource use and cost data on 1300 stroke admissions from 13 centres in 11 European countries. OLS and MLMs were used to estimate the effect of patient and centre-level covariates on the total length of hospital stay (LOS) and total cost. MLMs with normal and gamma distributions for the data within centres were compared. The results from the OLS model showed that both patient and centre-level covariates were associated with LOS and total cost. The estimates from the MLMs showed that none of the centre-level characteristics were associated with LOS, and the level of spending on health was the centre-level variable most highly associated with total cost. We conclude that using OLS models for assessing international variation can lead to incorrect inferences, and that MLMs are more appropriate for assessing why resource use and costs vary across centres. Copyright (c) 2004 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Walsh, Joanne L.; Young, Katherine C.; Pritchard, Jocelyn I.; Adelman, Howard M.; Mantay, Wayne R.
1995-01-01
This paper describes an integrated aerodynamic/dynamic/structural (IADS) optimization procedure for helicopter rotor blades. The procedure combines performance, dynamics, and structural analyses with a general-purpose optimizer using multilevel decomposition techniques. At the upper level, the structure is defined in terms of global quantities (stiffness, mass, and average strains). At the lower level, the structure is defined in terms of local quantities (detailed dimensions of the blade structure and stresses). The IADS procedure provides an optimization technique that is compatible with industrial design practices in which the aerodynamic and dynamic designs are performed at a global level and the structural design is carried out at a detailed level with considerable dialog and compromise among the aerodynamic, dynamic, and structural groups. The IADS procedure is demonstrated for several examples.
NASA Technical Reports Server (NTRS)
Walsh, Joanne L.; Young, Katherine C.; Pritchard, Jocelyn I.; Adelman, Howard M.; Mantay, Wayne R.
1994-01-01
This paper describes an integrated aerodynamic, dynamic, and structural (IADS) optimization procedure for helicopter rotor blades. The procedure combines performance, dynamics, and structural analyses with a general purpose optimizer using multilevel decomposition techniques. At the upper level, the structure is defined in terms of local quantities (stiffnesses, mass, and average strains). At the lower level, the structure is defined in terms of local quantities (detailed dimensions of the blade structure and stresses). The IADS procedure provides an optimization technique that is compatible with industrial design practices in which the aerodynamic and dynamic design is performed at a global level and the structural design is carried out at a detailed level with considerable dialogue and compromise among the aerodynamic, dynamic, and structural groups. The IADS procedure is demonstrated for several cases.
Lu, Dan; Zhang, Guannan; Webster, Clayton G.; ...
2016-12-30
In this paper, we develop an improved multilevel Monte Carlo (MLMC) method for estimating cumulative distribution functions (CDFs) of a quantity of interest, coming from numerical approximation of large-scale stochastic subsurface simulations. Compared with Monte Carlo (MC) methods, that require a significantly large number of high-fidelity model executions to achieve a prescribed accuracy when computing statistical expectations, MLMC methods were originally proposed to significantly reduce the computational cost with the use of multifidelity approximations. The improved performance of the MLMC methods depends strongly on the decay of the variance of the integrand as the level increases. However, the main challengemore » in estimating CDFs is that the integrand is a discontinuous indicator function whose variance decays slowly. To address this difficult task, we approximate the integrand using a smoothing function that accelerates the decay of the variance. In addition, we design a novel a posteriori optimization strategy to calibrate the smoothing function, so as to balance the computational gain and the approximation error. The combined proposed techniques are integrated into a very general and practical algorithm that can be applied to a wide range of subsurface problems for high-dimensional uncertainty quantification, such as a fine-grid oil reservoir model considered in this effort. The numerical results reveal that with the use of the calibrated smoothing function, the improved MLMC technique significantly reduces the computational complexity compared to the standard MC approach. Finally, we discuss several factors that affect the performance of the MLMC method and provide guidance for effective and efficient usage in practice.« less
Diffractive optics fabricated by direct write methods with an electron beam
NASA Technical Reports Server (NTRS)
Kress, Bernard; Zaleta, David; Daschner, Walter; Urquhart, Kris; Stein, Robert; Lee, Sing H.
1993-01-01
State-of-the-art diffractive optics are fabricated using e-beam lithography and dry etching techniques to achieve multilevel phase elements with very high diffraction efficiencies. One of the major challenges encountered in fabricating diffractive optics is the small feature size (e.g. for diffractive lenses with small f-number). It is not only the e-beam system which dictates the feature size limitations, but also the alignment systems (mask aligner) and the materials (e-beam and photo resists). In order to allow diffractive optics to be used in new optoelectronic systems, it is necessary not only to fabricate elements with small feature sizes but also to do so in an economical fashion. Since price of a multilevel diffractive optical element is closely related to the e-beam writing time and the number of etching steps, we need to decrease the writing time and etching steps without affecting the quality of the element. To do this one has to utilize the full potentials of the e-beam writing system. In this paper, we will present three diffractive optics fabrication techniques which will reduce the number of process steps, the writing time, and the overall fabrication time for multilevel phase diffractive optics.
An Integrated Multilevel Converter with Sigma Delta Control for LED Lighting
NASA Astrophysics Data System (ADS)
Gerber, Daniel L.
High brightness LEDs have become a mainstream lighting technology due to their efficiency, life span, and environmental benefits. As such, the lighting industry values LED drivers with low cost, small form factor, and long life span. Additional specifications that define a high quality LED driver are high efficiency, high power factor, wide-range dimming, minimal flicker, and a galvanically isolated output. The flyback LED driver is a popular topology that satisfies all these specifications, but it requires a bulky and costly flyback transformer. In addition, its passive methods for cancelling AC power ripple require electrolytic capacitors, which have been known to have life span issues. This dissertation details the design, construction, and verification of a novel LED driver that satisfies all the specifications. In addition, it does not require a flyback transformer or electrolytic capacitors, thus marking an improvement over the flyback driver on size, cost, and life span. This dissertation presents an integrated circuit (IC) LED driver, which features a pair of generalized multilevel converters that are controlled via sigma-delta modulation. The first is a multilevel rectifier responsible for power factor correction (PFC) and dimming. The PFC rectifier employs a second order sigma-delta loop to precisely control the input current harmonics and amplitude. The second is a bidirectional multilevel inverter used to cancel AC power ripple from the DC bus. This ripple-cancellation module transfers energy to and from a storage capacitor. It uses a first order sigma-delta loop with a preprogrammed waveform to swing the storage capacitor voltage. The system also contains an output stage that powers the LEDs with DC and provides for galvanic isolation. The output stage consists of an H-bridge stack that connects to the output through a small toroid transformer. The IC LED driver was simulated and prototyped on an ABCD silicon test chip. Testing and verification indicates functional performance for all the modules in the LED driver. The driver exhibits moderate efficiency at half voltage. Although the part was only testable to half voltage, loss models predict that its efficiency would be much higher at full voltage. The driver also meets specifications on the line current harmonics and ripple cancellation. This dissertation introduces multilevel circuit techniques to the IC and LED research space. The prototype's functional performance indicates that integrated multilevel converters are a viable topology for lighting and other similar applications.
Reilly, Jamie; Peelle, Jonathan E; Garcia, Amanda; Crutch, Sebastian J
2016-01-01
Biological plausibility is an essential constraint for any viable model of semantic memory. Yet, we have only the most rudimentary understanding of how the human brain conducts abstract symbolic transformations that underlie word and object meaning. Neuroscience has evolved a sophisticated arsenal of techniques for elucidating the architecture of conceptual representation. Nevertheless, theoretical convergence remains elusive. Here we describe several contrastive approaches to the organization of semantic knowledge, and in turn we offer our own perspective on two recurring questions in semantic memory research: 1) to what extent are conceptual representations mediated by sensorimotor knowledge (i.e., to what degree is semantic memory embodied)? 2) How might an embodied semantic system represent abstract concepts such as modularity, symbol, or proposition? To address these questions, we review the merits of sensorimotor (i.e., embodied) and amodal (i.e., disembodied) semantic theories and address the neurobiological constraints underlying each. We conclude that the shortcomings of both perspectives in their extreme forms necessitate a hybrid middle ground. We accordingly propose the Dynamic Multilevel Reactivation Framework, an integrative model premised upon flexible interplay between sensorimotor and amodal symbolic representations mediated by multiple cortical hubs. We discuss applications of the Dynamic Multilevel Reactivation Framework to abstract and concrete concept representation and describe how a multidimensional conceptual topography based on emotion, sensation, and magnitude can successfully frame a semantic space containing meanings for both abstract and concrete words. The consideration of ‘abstract conceptual features’ does not diminish the role of logical and/or executive processing in activating, manipulating and using information stored in conceptual representations. Rather, it proposes that the material on which these processes operate necessarily combine pure sensorimotor information and higher-order cognitive dimensions involved in symbolic representation. PMID:27294419
Reilly, Jamie; Peelle, Jonathan E; Garcia, Amanda; Crutch, Sebastian J
2016-08-01
Biological plausibility is an essential constraint for any viable model of semantic memory. Yet, we have only the most rudimentary understanding of how the human brain conducts abstract symbolic transformations that underlie word and object meaning. Neuroscience has evolved a sophisticated arsenal of techniques for elucidating the architecture of conceptual representation. Nevertheless, theoretical convergence remains elusive. Here we describe several contrastive approaches to the organization of semantic knowledge, and in turn we offer our own perspective on two recurring questions in semantic memory research: (1) to what extent are conceptual representations mediated by sensorimotor knowledge (i.e., to what degree is semantic memory embodied)? (2) How might an embodied semantic system represent abstract concepts such as modularity, symbol, or proposition? To address these questions, we review the merits of sensorimotor (i.e., embodied) and amodal (i.e., disembodied) semantic theories and address the neurobiological constraints underlying each. We conclude that the shortcomings of both perspectives in their extreme forms necessitate a hybrid middle ground. We accordingly propose the Dynamic Multilevel Reactivation Framework-an integrative model predicated upon flexible interplay between sensorimotor and amodal symbolic representations mediated by multiple cortical hubs. We discuss applications of the dynamic multilevel reactivation framework to abstract and concrete concept representation and describe how a multidimensional conceptual topography based on emotion, sensation, and magnitude can successfully frame a semantic space containing meanings for both abstract and concrete words. The consideration of 'abstract conceptual features' does not diminish the role of logical and/or executive processing in activating, manipulating and using information stored in conceptual representations. Rather, it proposes that the materials upon which these processes operate necessarily combine pure sensorimotor information and higher-order cognitive dimensions involved in symbolic representation.
The Performance of Multilevel Growth Curve Models under an Autoregressive Moving Average Process
ERIC Educational Resources Information Center
Murphy, Daniel L.; Pituch, Keenan A.
2009-01-01
The authors examined the robustness of multilevel linear growth curve modeling to misspecification of an autoregressive moving average process. As previous research has shown (J. Ferron, R. Dailey, & Q. Yi, 2002; O. Kwok, S. G. West, & S. B. Green, 2007; S. Sivo, X. Fan, & L. Witta, 2005), estimates of the fixed effects were unbiased, and Type I…
ERIC Educational Resources Information Center
Yang, Ji Seung; Cai, Li
2014-01-01
The main purpose of this study is to improve estimation efficiency in obtaining maximum marginal likelihood estimates of contextual effects in the framework of nonlinear multilevel latent variable model by adopting the Metropolis-Hastings Robbins-Monro algorithm (MH-RM). Results indicate that the MH-RM algorithm can produce estimates and standard…
ERIC Educational Resources Information Center
Ottley, Jennifer Riggie; Ferron, John M.; Hanline, Mary Frances
2016-01-01
The purpose of this study was to explain the variability in data collected from a single-case design study and to identify predictors of communicative outcomes for children with developmental delays or disabilities (n = 4). Using SAS® University Edition, we fit multilevel models with time nested within children. Children's level of baseline…
ERIC Educational Resources Information Center
Gkolia, Aikaterini; Koustelios, Athanasios; Belias, Dimitrios
2018-01-01
The main aim of this study is to examine the effect of principals' transformational leadership on teachers' self-efficacy across 77 different Greek elementary and secondary schools based on a centralized education system. For the investigation of the above effect multilevel Structural Equation Modelling analysis was conducted, recognizing the…
ERIC Educational Resources Information Center
Wang, Ya-Ling; Tsai, Chin-Chung
2016-01-01
This study aimed to investigate the factors accounting for science learning self-efficacy (the specific beliefs that people have in their ability to complete tasks in science learning) from both the teacher and the student levels. We thus propose a multilevel model to delineate its relationships with teacher and student science hardiness (i.e.,…
ERIC Educational Resources Information Center
Sebro, Negusse Yohannes; Goshu, Ayele Taye
2017-01-01
This study aims to explore Bayesian multilevel modeling to investigate variations of average academic achievement of grade eight school students. A sample of 636 students is randomly selected from 26 private and government schools by a two-stage stratified sampling design. Bayesian method is used to estimate the fixed and random effects. Input and…
ERIC Educational Resources Information Center
Bulotsky-Shearer, Rebecca J.; Dominguez, Ximena; Bell, Elizabeth R.
2012-01-01
Guided by an ecological theoretical model, the authors used a series of multilevel models to examine associations among children's individual problem behavior, the classroom behavioral context, and school readiness outcomes for a cohort of low-income children (N = 3,861) enrolled in 229 urban Head Start classrooms. Associations were examined…
NASA Astrophysics Data System (ADS)
Ghoudelbourk, Sihem.; Dib, D.; Meghni, B.; Zouli, M.
2017-02-01
The paper deals with the multilevel converters control strategy for photovoltaic system integrated in distribution grids. The objective of the proposed work is to design multilevel inverters for solar energy applications so as to reduce the Total Harmonic Distortion (THD) and to improve the power quality. The multilevel inverter power structure plays a vital role in every aspect of the power system. It is easier to produce a high-power, high-voltage inverter with the multilevel structure. The topologies of multilevel inverter have several advantages such as high output voltage, lower total harmonic distortion (THD) and reduction of voltage ratings of the power semiconductor switching devices. The proposed control strategy ensures an implementation of selective harmonic elimination (SHE) modulation for eleven levels. SHE is a very important and efficient strategy of eliminating selected harmonics by judicious selection of the firing angles of the inverter. Harmonics elimination technique eliminates the need of the expensive low pass filters in the system. Previous research considered that constant and equal DC sources with invariant behavior; however, this research extends earlier work to include variant DC sources, which are typical of lead-acid batteries when used in system PV. This Study also investigates methods to minimize the total harmonic distortion of the synthesized multilevel waveform and to help balance the battery voltage. The harmonic elimination method was used to eliminate selected lower dominant harmonics resulting from the inverter switching action.
NASA Astrophysics Data System (ADS)
Wang, Lei; Fan, Youping; Zhang, Dai; Ge, Mengxin; Zou, Xianbin; Li, Jingjiao
2017-09-01
This paper proposes a method to simulate a back-to-back modular multilevel converter (MMC) HVDC transmission system. In this paper we utilize an equivalent networks to simulate the dynamic power system. Moreover, to account for the performance of converter station, core components of model of the converter station gives a basic model of simulation. The proposed method is applied to an equivalent real power system.
Performance Analysis of Multilevel Parallel Applications on Shared Memory Architectures
NASA Technical Reports Server (NTRS)
Jost, Gabriele; Jin, Haoqiang; Labarta, Jesus; Gimenez, Judit; Caubet, Jordi; Biegel, Bryan A. (Technical Monitor)
2002-01-01
In this paper we describe how to apply powerful performance analysis techniques to understand the behavior of multilevel parallel applications. We use the Paraver/OMPItrace performance analysis system for our study. This system consists of two major components: The OMPItrace dynamic instrumentation mechanism, which allows the tracing of processes and threads and the Paraver graphical user interface for inspection and analyses of the generated traces. We describe how to use the system to conduct a detailed comparative study of a benchmark code implemented in five different programming paradigms applicable for shared memory
ERIC Educational Resources Information Center
Griffith, James
2002-01-01
Describes and demonstrates analytical techniques used in organizational psychology and contemporary multilevel analysis. Using these analytic techniques, examines the relationship between educational outcomes and the school environment. Finds that at least some indicators might be represented as school-level phenomena. Results imply that the…
Multilevel selection analysis of a microbial social trait
de Vargas Roditi, Laura; Boyle, Kerry E; Xavier, Joao B
2013-01-01
The study of microbial communities often leads to arguments for the evolution of cooperation due to group benefits. However, multilevel selection models caution against the uncritical assumption that group benefits will lead to the evolution of cooperation. We analyze a microbial social trait to precisely define the conditions favoring cooperation. We combine the multilevel partition of the Price equation with a laboratory model system: swarming in Pseudomonas aeruginosa. We parameterize a population dynamics model using competition experiments where we manipulate expression, and therefore the cost-to-benefit ratio of swarming cooperation. Our analysis shows that multilevel selection can favor costly swarming cooperation because it causes population expansion. However, due to high costs and diminishing returns constitutive cooperation can only be favored by natural selection when relatedness is high. Regulated expression of cooperative genes is a more robust strategy because it provides the benefits of swarming expansion without the high cost or the diminishing returns. Our analysis supports the key prediction that strong group selection does not necessarily mean that microbial cooperation will always emerge. PMID:23959025
NASA Astrophysics Data System (ADS)
Astuti Thamrin, Sri; Taufik, Irfan
2018-03-01
Dengue haemorrhagic fever (DHF) is an infectious disease caused by dengue virus. The increasing number of people with DHF disease correlates with the neighbourhood, for example sub-districts, and the characteristics of the sub-districts are formed from individuals who are domiciled in the sub-districts. Data containing individuals and sub-districts is a hierarchical data structure, called multilevel analysis. Frequently encountered response variable of the data is the time until an event occurs. Multilevel and spatial models are being increasingly used to obtain substantive information on area-level inequalities in DHF survival. Using a case study approach, we report on the implications of using multilevel with spatial survival models to study geographical inequalities in all cause survival.
Kashuba, Roxolana; Cha, YoonKyung; Alameddine, Ibrahim; Lee, Boknam; Cuffney, Thomas F.
2010-01-01
Multilevel hierarchical modeling methodology has been developed for use in ecological data analysis. The effect of urbanization on stream macroinvertebrate communities was measured across a gradient of basins in each of nine metropolitan regions across the conterminous United States. The hierarchical nature of this dataset was harnessed in a multi-tiered model structure, predicting both invertebrate response at the basin scale and differences in invertebrate response at the region scale. Ordination site scores, total taxa richness, Ephemeroptera, Plecoptera, Trichoptera (EPT) taxa richness, and richness-weighted mean tolerance of organisms at a site were used to describe invertebrate responses. Percentage of urban land cover was used as a basin-level predictor variable. Regional mean precipitation, air temperature, and antecedent agriculture were used as region-level predictor variables. Multilevel hierarchical models were fit to both levels of data simultaneously, borrowing statistical strength from the complete dataset to reduce uncertainty in regional coefficient estimates. Additionally, whereas non-hierarchical regressions were only able to show differing relations between invertebrate responses and urban intensity separately for each region, the multilevel hierarchical regressions were able to explain and quantify those differences within a single model. In this way, this modeling approach directly establishes the importance of antecedent agricultural conditions in masking the response of invertebrates to urbanization in metropolitan regions such as Milwaukee-Green Bay, Wisconsin; Denver, Colorado; and Dallas-Fort Worth, Texas. Also, these models show that regions with high precipitation, such as Atlanta, Georgia; Birmingham, Alabama; and Portland, Oregon, start out with better regional background conditions of invertebrates prior to urbanization but experience faster negative rates of change with urbanization. Ultimately, this urbanization-invertebrate response example is used to detail the multilevel hierarchical construction methodology, showing how the result is a set of models that are both statistically more rigorous and ecologically more interpretable than simple linear regression models.
Development of an algorithm for controlling a multilevel three-phase converter
NASA Astrophysics Data System (ADS)
Taissariyeva, Kyrmyzy; Ilipbaeva, Lyazzat
2017-08-01
This work is devoted to the development of an algorithm for controlling transistors in a three-phase multilevel conversion system. The developed algorithm allows to organize a correct operation and describes the state of transistors at each moment of time when constructing a computer model of a three-phase multilevel converter. The developed algorithm of operation of transistors provides in-phase of a three-phase converter and obtaining a sinusoidal voltage curve at the converter output.
Damman, Olga C; Stubbe, Janine H; Hendriks, Michelle; Arah, Onyebuchi A; Spreeuwenberg, Peter; Delnoij, Diana M J; Groenewegen, Peter P
2009-04-01
Ratings on the quality of healthcare from the consumer's perspective need to be adjusted for consumer characteristics to ensure fair and accurate comparisons between healthcare providers or health plans. Although multilevel analysis is already considered an appropriate method for analyzing healthcare performance data, it has rarely been used to assess case-mix adjustment of such data. The purpose of this article is to investigate whether multilevel regression analysis is a useful tool to detect case-mix adjusters in consumer assessment of healthcare. We used data on 11,539 consumers from 27 Dutch health plans, which were collected using the Dutch Consumer Quality Index health plan instrument. We conducted multilevel regression analyses of consumers' responses nested within health plans to assess the effects of consumer characteristics on consumer experience. We compared our findings to the results of another methodology: the impact factor approach, which combines the predictive effect of each case-mix variable with its heterogeneity across health plans. Both multilevel regression and impact factor analyses showed that age and education were the most important case-mix adjusters for consumer experience and ratings of health plans. With the exception of age, case-mix adjustment had little impact on the ranking of health plans. On both theoretical and practical grounds, multilevel modeling is useful for adequate case-mix adjustment and analysis of performance ratings.
Qi, Yu; Wang, Hui; Wei, Kai; Yang, Ya; Zheng, Ru-Yue; Kim, Ick Soo; Zhang, Ke-Qin
2017-03-03
The biological performance of artificial biomaterials is closely related to their structure characteristics. Cell adhesion, migration, proliferation, and differentiation are all strongly affected by the different scale structures of biomaterials. Silk fibroin (SF), extracted mainly from silkworms, has become a popular biomaterial due to its excellent biocompatibility, exceptional mechanical properties, tunable degradation, ease of processing, and sufficient supply. As a material with excellent processability, SF can be processed into various forms with different structures, including particulate, fiber, film, and three-dimensional (3D) porous scaffolds. This review discusses and summarizes the various constructions of SF-based materials, from single structures to multi-level structures, and their applications. In combination with single structures, new techniques for creating special multi-level structures of SF-based materials, such as micropatterning and 3D-printing, are also briefly addressed.
Sairyo, Koichi; Sakai, Toshinori; Yasui, Natsuo; Kiapour, Ali; Biyani, Ashok; Ebraheim, Nabil; Goel, Vijay K
2009-10-01
Case series and a biomechanical study using a finite element (FE) analysis. To report three cases with multi-level spondylolysis and to understand the mechanism biomechanically. Multi-level spondylolysis is a very rare condition. There have been few reports in the literature on multi-level spondylolysis among sports players. We reviewed three cases of the condition, clinically. These patients were very active young sports players and had newly developed fresh L4 spondylolysis and pre-existing L5 terminal stage spondylolysis. Thus, we assumed that L5 spondylolysis may have increased the pars stress at the cranial adjacent levels, leading to newly developed spondylolysis at these levels. Biomechanically, we investigated pars stress at L4 with or without spondylolysis at L5 using the finite element technique. L4 pars stress decreased in the presence of L5 spondylolysis, which does not support our first hypothesis. It seems that multi-level spondylolysis may occur due to genetic and not biomechanical reasons.
Multilevel Hierarchical Kernel Spectral Clustering for Real-Life Large Scale Complex Networks
Mall, Raghvendra; Langone, Rocco; Suykens, Johan A. K.
2014-01-01
Kernel spectral clustering corresponds to a weighted kernel principal component analysis problem in a constrained optimization framework. The primal formulation leads to an eigen-decomposition of a centered Laplacian matrix at the dual level. The dual formulation allows to build a model on a representative subgraph of the large scale network in the training phase and the model parameters are estimated in the validation stage. The KSC model has a powerful out-of-sample extension property which allows cluster affiliation for the unseen nodes of the big data network. In this paper we exploit the structure of the projections in the eigenspace during the validation stage to automatically determine a set of increasing distance thresholds. We use these distance thresholds in the test phase to obtain multiple levels of hierarchy for the large scale network. The hierarchical structure in the network is determined in a bottom-up fashion. We empirically showcase that real-world networks have multilevel hierarchical organization which cannot be detected efficiently by several state-of-the-art large scale hierarchical community detection techniques like the Louvain, OSLOM and Infomap methods. We show that a major advantage of our proposed approach is the ability to locate good quality clusters at both the finer and coarser levels of hierarchy using internal cluster quality metrics on 7 real-life networks. PMID:24949877
Vickers, T. Winston; Ernest, Holly B.; Boyce, Walter M.
2017-01-01
The importance of examining multiple hierarchical levels when modeling resource use for wildlife has been acknowledged for decades. Multi-level resource selection functions have recently been promoted as a method to synthesize resource use across nested organizational levels into a single predictive surface. Analyzing multiple scales of selection within each hierarchical level further strengthens multi-level resource selection functions. We extend this multi-level, multi-scale framework to modeling resistance for wildlife by combining multi-scale resistance surfaces from two data types, genetic and movement. Resistance estimation has typically been conducted with one of these data types, or compared between the two. However, we contend it is not an either/or issue and that resistance may be better-modeled using a combination of resistance surfaces that represent processes at different hierarchical levels. Resistance surfaces estimated from genetic data characterize temporally broad-scale dispersal and successful breeding over generations, whereas resistance surfaces estimated from movement data represent fine-scale travel and contextualized movement decisions. We used telemetry and genetic data from a long-term study on pumas (Puma concolor) in a highly developed landscape in southern California to develop a multi-level, multi-scale resource selection function and a multi-level, multi-scale resistance surface. We used these multi-level, multi-scale surfaces to identify resource use patches and resistant kernel corridors. Across levels, we found puma avoided urban, agricultural areas, and roads and preferred riparian areas and more rugged terrain. For other landscape features, selection differed among levels, as did the scales of selection for each feature. With these results, we developed a conservation plan for one of the most isolated puma populations in the U.S. Our approach captured a wide spectrum of ecological relationships for a population, resulted in effective conservation planning, and can be readily applied to other wildlife species. PMID:28609466
Zeller, Katherine A; Vickers, T Winston; Ernest, Holly B; Boyce, Walter M
2017-01-01
The importance of examining multiple hierarchical levels when modeling resource use for wildlife has been acknowledged for decades. Multi-level resource selection functions have recently been promoted as a method to synthesize resource use across nested organizational levels into a single predictive surface. Analyzing multiple scales of selection within each hierarchical level further strengthens multi-level resource selection functions. We extend this multi-level, multi-scale framework to modeling resistance for wildlife by combining multi-scale resistance surfaces from two data types, genetic and movement. Resistance estimation has typically been conducted with one of these data types, or compared between the two. However, we contend it is not an either/or issue and that resistance may be better-modeled using a combination of resistance surfaces that represent processes at different hierarchical levels. Resistance surfaces estimated from genetic data characterize temporally broad-scale dispersal and successful breeding over generations, whereas resistance surfaces estimated from movement data represent fine-scale travel and contextualized movement decisions. We used telemetry and genetic data from a long-term study on pumas (Puma concolor) in a highly developed landscape in southern California to develop a multi-level, multi-scale resource selection function and a multi-level, multi-scale resistance surface. We used these multi-level, multi-scale surfaces to identify resource use patches and resistant kernel corridors. Across levels, we found puma avoided urban, agricultural areas, and roads and preferred riparian areas and more rugged terrain. For other landscape features, selection differed among levels, as did the scales of selection for each feature. With these results, we developed a conservation plan for one of the most isolated puma populations in the U.S. Our approach captured a wide spectrum of ecological relationships for a population, resulted in effective conservation planning, and can be readily applied to other wildlife species.
Identifying Synergies in Multilevel Interventions.
Lewis, Megan A; Fitzgerald, Tania M; Zulkiewicz, Brittany; Peinado, Susana; Williams, Pamela A
2017-04-01
Social ecological models of health often describe multiple levels of influence that interact to influence health. However, it is still common for interventions to target only one or two of these levels, perhaps owing in part to a lack of guidance on how to design multilevel interventions to achieve optimal impact. The convergence strategy emphasizes that interventions at different levels mutually reinforce each other by changing patterns of interaction among two or more intervention audiences; this strategy is one approach for combining interventions at different levels to produce synergistic effects. We used semistructured interviews with 65 representatives in a cross-site national initiative that enhanced health and outcomes for patients with diabetes to examine whether the convergence strategy was a useful conceptual model for multilevel interventions. Using a framework analysis approach to analyze qualitative interview data, we found three synergistic themes that match the convergence strategy and support how multilevel interventions can be successful. These three themes were (1) enhancing engagement between patient and provider and access to quality care; (2) supporting communication, information sharing, and coordination among providers, community stakeholders, and systems; and (3) building relationships and fostering alignment among providers, community stakeholders, and systems. These results support the convergence strategy as a testable conceptual model and provide examples of successful intervention strategies for combining multilevel interventions to produce synergies across levels and promote diabetes self-management and that may extend to management of other chronic illnesses as well.
Using multiple group modeling to test moderators in meta-analysis.
Schoemann, Alexander M
2016-12-01
Meta-analysis is a popular and flexible analysis that can be fit in many modeling frameworks. Two methods of fitting meta-analyses that are growing in popularity are structural equation modeling (SEM) and multilevel modeling (MLM). By using SEM or MLM to fit a meta-analysis researchers have access to powerful techniques associated with SEM and MLM. This paper details how to use one such technique, multiple group analysis, to test categorical moderators in meta-analysis. In a multiple group meta-analysis a model is fit to each level of the moderator simultaneously. By constraining parameters across groups any model parameter can be tested for equality. Using multiple groups to test for moderators is especially relevant in random-effects meta-analysis where both the mean and the between studies variance of the effect size may be compared across groups. A simulation study and the analysis of a real data set are used to illustrate multiple group modeling with both SEM and MLM. Issues related to multiple group meta-analysis and future directions for research are discussed. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
The potential application of the blackboard model of problem solving to multidisciplinary design
NASA Technical Reports Server (NTRS)
Rogers, James L.
1989-01-01
The potential application of the blackboard model of problem solving to multidisciplinary design is discussed. Multidisciplinary design problems are complex, poorly structured, and lack a predetermined decision path from the initial starting point to the final solution. The final solution is achieved using data from different engineering disciplines. Ideally, for the final solution to be the optimum solution, there must be a significant amount of communication among the different disciplines plus intradisciplinary and interdisciplinary optimization. In reality, this is not what happens in today's sequential approach to multidisciplinary design. Therefore it is highly unlikely that the final solution is the true optimum solution from an interdisciplinary optimization standpoint. A multilevel decomposition approach is suggested as a technique to overcome the problems associated with the sequential approach, but no tool currently exists with which to fully implement this technique. A system based on the blackboard model of problem solving appears to be an ideal tool for implementing this technique because it offers an incremental problem solving approach that requires no a priori determined reasoning path. Thus it has the potential of finding a more optimum solution for the multidisciplinary design problems found in today's aerospace industries.
ERIC Educational Resources Information Center
Sun, Letao; Bradley, Kelly D.; Akers, Kathryn
2012-01-01
This study utilized data from the 2006 Programme for International Student Assessment Hong Kong sample to investigate the factors that impact the science achievement of 15-year-old students. A multilevel model was used to examine the factors from both student and school perspectives. At the student level, the results indicated that male students,…
ERIC Educational Resources Information Center
Mervis, Carolyn B.; Kistler, Doris J.; John, Angela E.; Morris, Colleen A.
2012-01-01
Multilevel modeling was used to address the longitudinal stability of standard scores (SSs) measuring intellectual ability for children with Williams syndrome (WS). Participants were 40 children with genetically confirmed WS who completed the Kaufman Brief Intelligence Test--Second Edition (KBIT-2; A. S. Kaufman & N. L. Kaufman, 2004) 4-7…
ERIC Educational Resources Information Center
Micceri, Theodore
2007-01-01
This research sought to determine whether any measure(s) used in the Carnegie Foundation's classification of Doctoral/Research Universities contribute to a greater degree than other measures to final rank placement. Multilevel Modeling (MLM) was applied to all eight of the Carnegie Foundation's predictor measures using final rank…
ERIC Educational Resources Information Center
O'Dwyer, Laura M.; Parker, Caroline E.
2014-01-01
Analyzing data that possess some form of nesting is often challenging for applied researchers or district staff who are involved in or in charge of conducting data analyses. This report provides a description of the challenges for analyzing nested data and provides a primer of how multilevel regression modeling may be used to resolve these…
ERIC Educational Resources Information Center
Cho, Sun-Joo; Preacher, Kristopher J.; Bottge, Brian A.
2015-01-01
Multilevel modeling (MLM) is frequently used to detect group differences, such as an intervention effect in a pre-test--post-test cluster-randomized design. Group differences on the post-test scores are detected by controlling for pre-test scores as a proxy variable for unobserved factors that predict future attributes. The pre-test and post-test…
ERIC Educational Resources Information Center
Bauer, Daniel J.; Preacher, Kristopher J.; Gil, Karen M.
2006-01-01
The authors propose new procedures for evaluating direct, indirect, and total effects in multilevel models when all relevant variables are measured at Level 1 and all effects are random. Formulas are provided for the mean and variance of the indirect and total effects and for the sampling variances of the average indirect and total effects.…
A closed-loop multi-level model of glucose homeostasis
Uluseker, Cansu; Simoni, Giulia; Dauriz, Marco; Matone, Alice
2018-01-01
Background The pathophysiologic processes underlying the regulation of glucose homeostasis are considerably complex at both cellular and systemic level. A comprehensive and structured specification for the several layers of abstraction of glucose metabolism is often elusive, an issue currently solvable with the hierarchical description provided by multi-level models. In this study we propose a multi-level closed-loop model of whole-body glucose homeostasis, coupled with the molecular specifications of the insulin signaling cascade in adipocytes, under the experimental conditions of normal glucose regulation and type 2 diabetes. Methodology/Principal findings The ordinary differential equations of the model, describing the dynamics of glucose and key regulatory hormones and their reciprocal interactions among gut, liver, muscle and adipose tissue, were designed for being embedded in a modular, hierarchical structure. The closed-loop model structure allowed self-sustained simulations to represent an ideal in silico subject that adjusts its own metabolism to the fasting and feeding states, depending on the hormonal context and invariant to circadian fluctuations. The cellular level of the model provided a seamless dynamic description of the molecular mechanisms downstream the insulin receptor in the adipocytes by accounting for variations in the surrounding metabolic context. Conclusions/Significance The combination of a multi-level and closed-loop modeling approach provided a fair dynamic description of the core determinants of glucose homeostasis at both cellular and systemic scales. This model architecture is intrinsically open to incorporate supplementary layers of specifications describing further individual components influencing glucose metabolism. PMID:29420588
Measuring situational awareness and resolving inherent high-level fusion obstacles
NASA Astrophysics Data System (ADS)
Sudit, Moises; Stotz, Adam; Holender, Michael; Tagliaferri, William; Canarelli, Kathie
2006-04-01
Information Fusion Engine for Real-time Decision Making (INFERD) is a tool that was developed to supplement current graph matching techniques in Information Fusion models. Based on sensory data and a priori models, INFERD dynamically generates, evolves, and evaluates hypothesis on the current state of the environment. The a priori models developed are hierarchical in nature lending them to a multi-level Information Fusion process whose primary output provides a situational awareness of the environment of interest in the context of the models running. In this paper we look at INFERD's multi-level fusion approach and provide insight on the inherent problems such as fragmentation in the approach and the research being undertaken to mitigate those deficiencies. Due to the large variance of data in disparate environments, the awareness of situations in those environments can be drastically different. To accommodate this, the INFERD framework provides support for plug-and-play fusion modules which can be developed specifically for domains of interest. However, because the models running in INFERD are graph based, some default measurements can be provided and will be discussed in the paper. Among these are a Depth measurement to determine how much danger is presented by the action taking place, a Breadth measurement to gain information regarding the scale of an attack that is currently happening, and finally a Reliability measure to tell the user the credibility of a particular hypothesis. All of these results will be demonstrated in the Cyber domain where recent research has shown to be an area that is welldefined and bounded, so that new models and algorithms can be developed and evaluated.
Postoperative 3D spine reconstruction by navigating partitioning manifolds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadoury, Samuel, E-mail: samuel.kadoury@polymtl.ca; Labelle, Hubert, E-mail: hubert.labelle@recherche-ste-justine.qc.ca; Parent, Stefan, E-mail: stefan.parent@umontreal.ca
Purpose: The postoperative evaluation of scoliosis patients undergoing corrective treatment is an important task to assess the strategy of the spinal surgery. Using accurate 3D geometric models of the patient’s spine is essential to measure longitudinal changes in the patient’s anatomy. On the other hand, reconstructing the spine in 3D from postoperative radiographs is a challenging problem due to the presence of instrumentation (metallic rods and screws) occluding vertebrae on the spine. Methods: This paper describes the reconstruction problem by searching for the optimal model within a manifold space of articulated spines learned from a training dataset of pathological casesmore » who underwent surgery. The manifold structure is implemented based on a multilevel manifold ensemble to structure the data, incorporating connections between nodes within a single manifold, in addition to connections between different multilevel manifolds, representing subregions with similar characteristics. Results: The reconstruction pipeline was evaluated on x-ray datasets from both preoperative patients and patients with spinal surgery. By comparing the method to ground-truth models, a 3D reconstruction accuracy of 2.24 ± 0.90 mm was obtained from 30 postoperative scoliotic patients, while handling patients with highly deformed spines. Conclusions: This paper illustrates how this manifold model can accurately identify similar spine models by navigating in the low-dimensional space, as well as computing nonlinear charts within local neighborhoods of the embedded space during the testing phase. This technique allows postoperative follow-ups of spinal surgery using personalized 3D spine models and assess surgical strategies for spinal deformities.« less
A collision dynamics model of a multi-level train
DOT National Transportation Integrated Search
2006-11-05
In train collisions, multi-level rail passenger vehicles can deform in modes that are different from the behavior of single level cars. The deformation in single level cars usually occurs at the front end during a collision. In one particular inciden...
Hierarchical modeling and robust synthesis for the preliminary design of large scale complex systems
NASA Astrophysics Data System (ADS)
Koch, Patrick Nathan
Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: (1) Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis, (2) Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration, and (3) Noise modeling techniques for implementing robust preliminary design when approximate models are employed. The method developed and associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system; the turbofan system-level problem is partitioned into engine cycle and configuration design and a compressor module is integrated for more detailed subsystem-level design exploration, improving system evaluation.
Explaining employment relationships with social exchange and job embeddedness.
Hom, Peter W; Tsui, Anne S; Wu, Joshua B; Lee, Thomas W; Zhang, Ann Yan; Fu, Ping Ping; Li, Lan
2009-03-01
The research reported in this article clarifies how employee-organization relationships (EORs) work. Specifically, the authors tested whether social exchange and job embeddedness mediate how mutual-investment (whereby employers offer high inducements to employees for their high contributions) and over-investment (high inducements without corresponding high expected contributions) EOR approaches, which are based on Tsui, Pearce, Porter, and Tripoli's (1997) framework, affect quit propensity and organizational commitment. Two studies evaluated these intervening mechanisms. Study 1 surveyed 953 Chinese managers attending part-time master of business administration (MBA) programs in China, whereas Study 2 collected cross-sectional and longitudinal data from 526 Chinese middle managers in 41 firms. Standard and multilevel causal modeling techniques affirmed that social exchange and job embeddedness translate EOR influence. A second multilevel test using lagged outcome measures further established that job embeddedness mediates long-term EOR effects over 18 months. These findings corroborate prevailing views that social exchange explains how mutual- and over-investment EORs motivate greater workforce commitment and loyalty. This study enriches EOR perspectives by identifying job embeddedness as another mediator that is more enduring than social exchange. (c) 2009 APA, all rights reserved.
Grant, Edward M.; Young, Deborah Rohm; Wu, Tong Tong
2015-01-01
We examined associations among longitudinal, multilevel variables and girls’ physical activity to determine the important predictors for physical activity change at different adolescent ages. The Trial of Activity for Adolescent Girls 2 study (Maryland) contributed participants from 8th (2009) to 11th grade (2011) (n=561). Questionnaires were used to obtain demographic, and psychosocial information (individual- and social-level variables); height, weight, and triceps skinfold to assess body composition; interviews and surveys for school-level data; and self-report for neighborhood-level variables. Moderate to vigorous physical activity minutes were assessed from accelerometers. A doubly regularized linear mixed effects model was used for the longitudinal multilevel data to identify the most important covariates for physical activity. Three fixed effects at the individual level and one random effect at the school level were chosen from an initial total of 66 variables, consisting of 47 fixed effects and 19 random effects variables, in additional to the time effect. Self-management strategies, perceived barriers, and social support from friends were the three selected fixed effects, and whether intramural or interscholastic programs were offered in middle school was the selected random effect. Psychosocial factors and friend support, plus a school’s physical activity environment, affect adolescent girl’s moderate to vigorous physical activity longitudinally. PMID:25928064
Koch, Tobias; Schultze, Martin; Jeon, Minjeong; Nussbeck, Fridtjof W; Praetorius, Anna-Katharina; Eid, Michael
2016-01-01
Multirater (multimethod, multisource) studies are increasingly applied in psychology. Eid and colleagues (2008) proposed a multilevel confirmatory factor model for multitrait-multimethod (MTMM) data combining structurally different and multiple independent interchangeable methods (raters). In many studies, however, different interchangeable raters (e.g., peers, subordinates) are asked to rate different targets (students, supervisors), leading to violations of the independence assumption and to cross-classified data structures. In the present work, we extend the ML-CFA-MTMM model by Eid and colleagues (2008) to cross-classified multirater designs. The new C4 model (Cross-Classified CTC[M-1] Combination of Methods) accounts for nonindependent interchangeable raters and enables researchers to explicitly model the interaction between targets and raters as a latent variable. Using a real data application, it is shown how credibility intervals of model parameters and different variance components can be obtained using Bayesian estimation techniques.
Liu, Jia-Ming; Peng, Hong-Wei; Liu, Zhi-Li; Long, Xin-Hua; Yu, Yan-Qing; Huang, Shan-Hu
2015-12-01
The hybrid decompression technique (corpectomy combined with discectomy) and anterior cervical corpectomy with fusion (ACCF) both provide good neurological recovery and disease stabilization for the treatment of multilevel cervical spondylotic myelopathy (CSM). However, no single study has been large enough to determine definitively which one is superior for this condition. A meta-analysis was conducted to compare the clinical efficacy and safety of the hybrid decompression technique versus ACCF for the treatment of multilevel CSM. Electronic databases such as PubMed, MEDLINE, EMBASE, Google Scholar, and the Cochrane Library were selected to search for potentially relevant trials up to April 2015 that compared the outcomes of the hybrid technique with ACCF for the treatment of multilevel CSM. Data extraction and quality assessment were performed according to Cochrane Collaboration guidelines. The outcome assessments were duration of surgery, blood loss, Cobb angle of C2-C7, segment angle, fusion rate, Japanese Orthopedics Association score, Neck Disability Index, and complications. The results were expressed as the odds ratio (OR) for dichotomous outcomes and the mean difference (MD) for continuous outcomes with a 95% confidence interval (CI). Five controlled clinical trials published between 2009 and 2013, involving 356 patients (hybrid, 196; ACCF, 160) with 3- or 4-level CSM were retrieved in this study. Overall, there were significant differences between the 2 treatment groups for blood loss (MD = -38.69, 95% CI = -54.62 to -22.76, P < 0.01), fusion rate (OR = 2.56, 95% CI = 1.11 to 5.93, P = 0.03), and complications (OR = 0.25, 95% CI = 0.15 to 0.43, P < 0.01). However, no significant differences were found for duration of surgery (MD = -4.50, 95% CI = -22.902 to 13.91, P = 0.63), Cobb angle of C2-C7 after surgery (MD = 3.32, 95% CI = -3.72 to 10.37, P = 0.35), segment angle after surgery (MD = 2.87, 95% CI = -2.47 to 8.21, P = 0.29), Japanese Orthopedics Association score (MD = -0.07, 95% CI = -0.36 to 0.22, P = 0.62), or Neck Disability Index (MD = -0.86, 95% CI = -3.26 to 1.54, P = 0.48). Based on this meta-analysis, both the hybrid technique and ACCF can achieve good results for CSM. However, the hybrid technique is associated with significantly less blood loss, complications, and a higher fusion rate than ACCF. Copyright © 2015 Elsevier Inc. All rights reserved.
Multilevel Interventions Targeting Obesity: Research Recommendations for Vulnerable Populations.
Stevens, June; Pratt, Charlotte; Boyington, Josephine; Nelson, Cheryl; Truesdale, Kimberly P; Ward, Dianne S; Lytle, Leslie; Sherwood, Nancy E; Robinson, Thomas N; Moore, Shirley; Barkin, Shari; Cheung, Ying Kuen; Murray, David M
2017-01-01
The origins of obesity are complex and multifaceted. To be successful, an intervention aiming to prevent or treat obesity may need to address multiple layers of biological, social, and environmental influences. NIH recognizes the importance of identifying effective strategies to combat obesity, particularly in high-risk and disadvantaged populations with heightened susceptibility to obesity and subsequent metabolic sequelae. To move this work forward, the National Heart, Lung, and Blood Institute, in collaboration with the NIH Office of Behavioral and Social Science Research and NIH Office of Disease Prevention convened a working group to inform research on multilevel obesity interventions in vulnerable populations. The working group reviewed relevant aspects of intervention planning, recruitment, retention, implementation, evaluation, and analysis, and then made recommendations. Recruitment and retention techniques used in multilevel research must be culturally appropriate and suited to both individuals and organizations. Adequate time and resources for preliminary work are essential. Collaborative projects can benefit from complementary areas of expertise and shared investigations rigorously pretesting specific aspects of approaches. Study designs need to accommodate the social and environmental levels under study, and include appropriate attention given to statistical power. Projects should monitor implementation in the multiple venues and include a priori estimation of the magnitude of change expected within and across levels. The complexity and challenges of delivering interventions at several levels of the social-ecologic model require careful planning and implementation, but hold promise for successful reduction of obesity in vulnerable populations. Copyright © 2016. Published by Elsevier Inc.
Multilevel Interventions Targeting Obesity: Research Recommendations for Vulnerable Populations
Stevens, June; Pratt, Charlotte; Boyington, Josephine; Nelson, Cheryl; Truesdale, Kimberly P.; Ward, Dianne S.; Lytle, Leslie; Sherwood, Nancy E.; Robinson, Thomas N.; Moore, Shirley; Barkin, Shari; Cheung, Ying Kuen; Murray, David M.
2017-01-01
Introduction The origins of obesity are complex and multifaceted. To be successful, an intervention aiming to prevent or treat obesity may need to address multiple layers of biological, social, and environmental influences. Methods NIH recognizes the importance of identifying effective strategies to combat obesity, particularly in high-risk and disadvantaged populations with heightened susceptibility to obesity and subsequent metabolic sequelae. To move this work forward, the National Heart, Lung, and Blood Institute, in collaboration with the NIH Office of Behavioral and Social Science Research and NIH Office of Disease Prevention convened a working group to inform research on multilevel obesity interventions in vulnerable populations. The working group reviewed relevant aspects of intervention planning, recruitment, retention, implementation, evaluation, and analysis, and then made recommendations. Results Recruitment and retention techniques used in multilevel research must be culturally appropriate and suited to both individuals and organizations. Adequate time and resources for preliminary work are essential. Collaborative projects can benefit from complementary areas of expertise and shared investigations rigorously pretesting specific aspects of approaches. Study designs need to accommodate the social and environmental levels under study, and include appropriate attention given to statistical power. Projects should monitor implementation in the multiple venues and include a priori estimation of the magnitude of change expected within and across levels. Conclusions The complexity and challenges of delivering interventions at several levels of the social—ecologic model require careful planning and implementation, but hold promise for successful reduction of obesity in vulnerable populations. PMID:28340973
Using a dyadic logistic multilevel model to analyze couple data.
Preciado, Mariana A; Krull, Jennifer L; Hicks, Andrew; Gipson, Jessica D
2016-02-01
There is growing recognition within the sexual and reproductive health field of the importance of incorporating both partners' perspectives when examining sexual and reproductive health behaviors. Yet, the analytical approaches to address couple data have not been readily integrated and utilized within the demographic and public health literature. This paper seeks to provide readers unfamiliar with analytical approaches to couple data an applied example of the use of dyadic logistic multilevel modeling, a useful approach to analyzing couple data to assess the individual, partner and couple characteristics that are related to individuals' reproductively relevant beliefs, attitudes and behaviors. The use of multilevel models in reproductive health research can help researchers develop a more comprehensive picture of the way in which individuals' reproductive health outcomes are situated in a larger relationship and cultural context. Copyright © 2016 Elsevier Inc. All rights reserved.
Hastings, Paul D; Helm, Jonathan; Mills, Rosemary S L; Serbin, Lisa A; Stack, Dale M; Schwartzman, Alex E
2015-07-01
This investigation evaluated a multilevel model of dispositional and environmental factors contributing to the development of internalizing problems from preschool-age to school-age. In a sample of 375 families (185 daughters, 190 sons) drawn from three independent samples, preschoolers' behavioral inhibition, cortisol and gender were examined as moderators of the links between mothers' negative parenting behavior, negative emotional characteristics, and socioeconomic status when children were 3.95 years, and their internalizing problems when they were 8.34 years. Children's dispositional characteristics moderated all associations between these environmental factors and mother-reported internalizing problems in patterns that were consistent with either diathesis-stress or differential-susceptibility models of individual-environment interaction, and with gender models of developmental psychopathology. Greater inhibition and lower socioeconomic status were directly predictive of more teacher reported internalizing problems. These findings highlight the importance of using multilevel models within a bioecological framework to understand the complex pathways through which internalizing difficulties develop.
Austin, Peter C; Wagner, Philippe; Merlo, Juan
2017-03-15
Multilevel data occurs frequently in many research areas like health services research and epidemiology. A suitable way to analyze such data is through the use of multilevel regression models (MLRM). MLRM incorporate cluster-specific random effects which allow one to partition the total individual variance into between-cluster variation and between-individual variation. Statistically, MLRM account for the dependency of the data within clusters and provide correct estimates of uncertainty around regression coefficients. Substantively, the magnitude of the effect of clustering provides a measure of the General Contextual Effect (GCE). When outcomes are binary, the GCE can also be quantified by measures of heterogeneity like the Median Odds Ratio (MOR) calculated from a multilevel logistic regression model. Time-to-event outcomes within a multilevel structure occur commonly in epidemiological and medical research. However, the Median Hazard Ratio (MHR) that corresponds to the MOR in multilevel (i.e., 'frailty') Cox proportional hazards regression is rarely used. Analogously to the MOR, the MHR is the median relative change in the hazard of the occurrence of the outcome when comparing identical subjects from two randomly selected different clusters that are ordered by risk. We illustrate the application and interpretation of the MHR in a case study analyzing the hazard of mortality in patients hospitalized for acute myocardial infarction at hospitals in Ontario, Canada. We provide R code for computing the MHR. The MHR is a useful and intuitive measure for expressing cluster heterogeneity in the outcome and, thereby, estimating general contextual effects in multilevel survival analysis. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
Wagner, Philippe; Merlo, Juan
2016-01-01
Multilevel data occurs frequently in many research areas like health services research and epidemiology. A suitable way to analyze such data is through the use of multilevel regression models (MLRM). MLRM incorporate cluster‐specific random effects which allow one to partition the total individual variance into between‐cluster variation and between‐individual variation. Statistically, MLRM account for the dependency of the data within clusters and provide correct estimates of uncertainty around regression coefficients. Substantively, the magnitude of the effect of clustering provides a measure of the General Contextual Effect (GCE). When outcomes are binary, the GCE can also be quantified by measures of heterogeneity like the Median Odds Ratio (MOR) calculated from a multilevel logistic regression model. Time‐to‐event outcomes within a multilevel structure occur commonly in epidemiological and medical research. However, the Median Hazard Ratio (MHR) that corresponds to the MOR in multilevel (i.e., ‘frailty’) Cox proportional hazards regression is rarely used. Analogously to the MOR, the MHR is the median relative change in the hazard of the occurrence of the outcome when comparing identical subjects from two randomly selected different clusters that are ordered by risk. We illustrate the application and interpretation of the MHR in a case study analyzing the hazard of mortality in patients hospitalized for acute myocardial infarction at hospitals in Ontario, Canada. We provide R code for computing the MHR. The MHR is a useful and intuitive measure for expressing cluster heterogeneity in the outcome and, thereby, estimating general contextual effects in multilevel survival analysis. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. PMID:27885709
ERIC Educational Resources Information Center
Marsh, Herbert W.; Kong, Chit-Kwong; Hau, Kit-Tai
Longitudinal multilevel path models (7,997 students, 44 high schools, 4 years) evaluated the effects of school-average achievement and perceived school status on academic self-concept in Hong Kong, a collectivist culture with a highly achievement-segregated high school system. Consistent with a priori predictions based on the big-fish-little-pond…
Assessing a multilevel model of young children’s oral health with national survey data
Bramlett, Matthew D.; Soobader, Mah-J; Fisher-Owens, Susan A.; Weintraub, Jane A.; Gansky, Stuart A.; Platt, Larry J.; Newacheck, Paul W.
2010-01-01
Objectives To empirically test a multilevel conceptual model of children’s oral health incorporating 22 domains of children’s oral health across four levels: child, family, neighborhood and state. Data source The 2003 National Survey of Children’s Health, a module of the State and Local Area Integrated Telephone Survey conducted by the Centers for Disease Control and Prevention’s National Center for Health Statistics, is a nationally representative telephone survey of caregivers of children. Study design We examined child-, family-, neighborhood-, and state-level factors influencing parent’s report of children’s oral health using a multilevel logistic regression model, estimated for 26 736 children ages 1–5 years. Principal findings Factors operating at all four levels were associated with the likelihood that parents rated their children’s oral health as fair or poor, although most significant correlates are represented at the child or family level. Of 22 domains identified in our conceptual model, 15 domains contained factors significantly associated with young children’s oral health. At the state level, access to fluoridated water was significantly associated with favorable oral health for children. Conclusions Our results suggest that efforts to understand or improve children’s oral health should consider a multilevel approach that goes beyond solely child-level factors. PMID:20370808
Milliren, Carly E.; Evans, Clare R.; Subramanian, S. V.; Richmond, Tracy K.
2015-01-01
Objectives. Although schools and neighborhoods influence health, little is known about their relative importance, or the influence of one context after the influence of the other has been taken into account. We simultaneously examined the influence of each setting on depression among adolescents. Methods. Analyzing data from wave 1 (1994–1995) of the National Longitudinal Study of Adolescent Health, we used cross-classified multilevel modeling to examine between-level variation and individual-, school-, and neighborhood-level predictors of adolescent depressive symptoms. Also, we compared the results of our cross-classified multilevel models (CCMMs) with those of a multilevel model wherein either school or neighborhood was excluded. Results. In CCMMs, the school-level random effect was significant and more than 3 times the neighborhood-level random effect, even after individual-level characteristics had been taken into account. Individual-level indicators (e.g., race/ethnicity, socioeconomic status) were associated with depressive symptoms, but there was no association with either school- or neighborhood-level fixed effects. The between-level variance in depressive symptoms was driven largely by schools as opposed to neighborhoods. Conclusions. Schools appear to be more salient than neighborhoods in explaining variation in depressive symptoms. Future work incorporating cross-classified multilevel modeling is needed to understand the relative effects of schools and neighborhoods. PMID:25713969
Qi, Yu; Wang, Hui; Wei, Kai; Yang, Ya; Zheng, Ru-Yue; Kim, Ick Soo; Zhang, Ke-Qin
2017-01-01
The biological performance of artificial biomaterials is closely related to their structure characteristics. Cell adhesion, migration, proliferation, and differentiation are all strongly affected by the different scale structures of biomaterials. Silk fibroin (SF), extracted mainly from silkworms, has become a popular biomaterial due to its excellent biocompatibility, exceptional mechanical properties, tunable degradation, ease of processing, and sufficient supply. As a material with excellent processability, SF can be processed into various forms with different structures, including particulate, fiber, film, and three-dimensional (3D) porous scaffolds. This review discusses and summarizes the various constructions of SF-based materials, from single structures to multi-level structures, and their applications. In combination with single structures, new techniques for creating special multi-level structures of SF-based materials, such as micropatterning and 3D-printing, are also briefly addressed. PMID:28273799
Improved Bat Algorithm Applied to Multilevel Image Thresholding
2014-01-01
Multilevel image thresholding is a very important image processing technique that is used as a basis for image segmentation and further higher level processing. However, the required computational time for exhaustive search grows exponentially with the number of desired thresholds. Swarm intelligence metaheuristics are well known as successful and efficient optimization methods for intractable problems. In this paper, we adjusted one of the latest swarm intelligence algorithms, the bat algorithm, for the multilevel image thresholding problem. The results of testing on standard benchmark images show that the bat algorithm is comparable with other state-of-the-art algorithms. We improved standard bat algorithm, where our modifications add some elements from the differential evolution and from the artificial bee colony algorithm. Our new proposed improved bat algorithm proved to be better than five other state-of-the-art algorithms, improving quality of results in all cases and significantly improving convergence speed. PMID:25165733
NASA Astrophysics Data System (ADS)
de Siqueira, A. F.; Cabrera, F. C.; Pagamisse, A.; Job, A. E.
2014-12-01
This study consolidates multi-level starlet segmentation (MLSS) and multi-level starlet optimal segmentation (MLSOS) techniques for photomicrograph segmentation, based on starlet wavelet detail levels to separate areas of interest in an input image. Several segmentation levels can be obtained using MLSS; after that, Matthews correlation coefficient is used to choose an optimal segmentation level, giving rise to MLSOS. In this paper, MLSOS is employed to estimate the concentration of gold nanoparticles with diameter around 47 nm, reduced on natural rubber membranes. These samples were used for the construction of SERS/SERRS substrates and in the study of the influence of natural rubber membranes with incorporated gold nanoparticles on the physiology of Leishmania braziliensis. Precision, recall, and accuracy are used to evaluate the segmentation performance, and MLSOS presents an accuracy greater than 88 % for this application.
Sehr, Christiana; Kremling, Andreas; Marin-Sanguino, Alberto
2015-10-16
During the last 10 years, systems biology has matured from a fuzzy concept combining omics, mathematical modeling and computers into a scientific field on its own right. In spite of its incredible potential, the multilevel complexity of its objects of study makes it very difficult to establish a reliable connection between data and models. The great number of degrees of freedom often results in situations, where many different models can explain/fit all available datasets. This has resulted in a shift of paradigm from the initially dominant, maybe naive, idea of inferring the system out of a number of datasets to the application of different techniques that reduce the degrees of freedom before any data set is analyzed. There is a wide variety of techniques available, each of them can contribute a piece of the puzzle and include different kinds of experimental information. But the challenge that remains is their meaningful integration. Here we show some theoretical results that enable some of the main modeling approaches to be applied sequentially in a complementary manner, and how this workflow can benefit from evolutionary reasoning to keep the complexity of the problem in check. As a proof of concept, we show how the synergies between these modeling techniques can provide insight into some well studied problems: Ammonia assimilation in bacteria and an unbranched linear pathway with end-product inhibition.
A longitudinal multilevel CFA-MTMM model for interchangeable and structurally different methods
Koch, Tobias; Schultze, Martin; Eid, Michael; Geiser, Christian
2014-01-01
One of the key interests in the social sciences is the investigation of change and stability of a given attribute. Although numerous models have been proposed in the past for analyzing longitudinal data including multilevel and/or latent variable modeling approaches, only few modeling approaches have been developed for studying the construct validity in longitudinal multitrait-multimethod (MTMM) measurement designs. The aim of the present study was to extend the spectrum of current longitudinal modeling approaches for MTMM analysis. Specifically, a new longitudinal multilevel CFA-MTMM model for measurement designs with structurally different and interchangeable methods (called Latent-State-Combination-Of-Methods model, LS-COM) is presented. Interchangeable methods are methods that are randomly sampled from a set of equivalent methods (e.g., multiple student ratings for teaching quality), whereas structurally different methods are methods that cannot be easily replaced by one another (e.g., teacher, self-ratings, principle ratings). Results of a simulation study indicate that the parameters and standard errors in the LS-COM model are well recovered even in conditions with only five observations per estimated model parameter. The advantages and limitations of the LS-COM model relative to other longitudinal MTMM modeling approaches are discussed. PMID:24860515
Contextual determinants of neonatal mortality using two analysis methods, Rio Grande do Sul, Brazil.
Zanini, Roselaine Ruviaro; Moraes, Anaelena Bragança de; Giugliani, Elsa Regina Justo; Riboldi, João
2011-02-01
To analyze neonatal mortality determinants using multilevel logistic regression and classic hierarchical models. Cohort study including 138,407 live births with birth certificates and 1,134 neonatal deaths recorded in 2003, in the state of Rio Grande do Sul, Southern Brazil. The Information System on Live Births and mortality records were linked for gathering information on individual-level exposures. Sociodemographic data and information on the pregnancy, childbirth care and characteristics of the children at birth were collected. The associated factors were estimated and compared by traditional and multilevel logistic regression analysis. The neonatal mortality rate was 8.19 deaths per 1,000 live births. Low birth weight, 1- and 5-minute Apgar score below eight, congenital malformation, pre-term birth and previous fetal loss were associated with neonatal death in the traditional model. Elective cesarean section had a protective effect. Previous fetal loss did not remain significant in the multilevel model, but the inclusion of a contextual variable (poverty rate) showed that 15% of neonatal mortality variation can be explained by varying poverty rates in the microregions. The use of multilevel models showed a small effect of contextual determinants on the neonatal mortality rate. There was found a positive association with the poverty rate in the general model, and the proportion of households with water supply among preterm newborns.
Ren, Da-Jiang; Li, Fang; Zhang, Zhi-Cheng; Kai, Guan; Shan, Jian-Lin; Zhao, Guang-Min; Sun, Tian-Sheng
2015-08-05
Posterior cervical decompression is an accepted treatment for multilevel cervical spondylotic myelopathy (CSM). Each posterior technique has its own advantages and disadvantages. In the present study, we compared the functional and radiological outcomes of expansive hemilaminectomy and laminoplasty with mini titanium plate in the treatment of multilevel CSM. Forty-four patients with multilevel CSM treated with posterior cervical surgery in Department of Orthopedic Surgery, Beijing Army General Hospital from March 2011 to June 2012 were enrolled in this retrospective study. Patients were divided into two groups by surgical procedure: Laminoplasty (Group L) and hemilaminectomy (Group H). Perioperative parameters including age, sex, duration of symptoms, operative duration, and intraoperative blood loss were recorded and compared. Spinal canal area, calculated using AutoCAD ® software(Autodesk Inc., San Rafael, CA, USA), and neurological improvement, evaluated with Japanese Orthopedic Association score, were also compared. Neurological improvement did not differ significantly between groups. Group H had a significantly shorter operative duration and significantly less blood loss. Mean expansion ratio was significantly greater in Group L (77.83 ± 6.41%) than in Group H (62.72 ± 3.86%) (P < 0.01). Both surgical approaches are safe and effective in treating multilevel CSM. Laminoplasty provides a greater degree of enlargement of the spinal canal, whereas expansive hemilaminectomy has the advantages of shorter operative duration and less intraoperative blood loss.
Multilevel Space-Time Aggregation for Bright Field Cell Microscopy Segmentation and Tracking
Inglis, Tiffany; De Sterck, Hans; Sanders, Geoffrey; Djambazian, Haig; Sladek, Robert; Sundararajan, Saravanan; Hudson, Thomas J.
2010-01-01
A multilevel aggregation method is applied to the problem of segmenting live cell bright field microscope images. The method employed is a variant of the so-called “Segmentation by Weighted Aggregation” technique, which itself is based on Algebraic Multigrid methods. The variant of the method used is described in detail, and it is explained how it is tailored to the application at hand. In particular, a new scale-invariant “saliency measure” is proposed for deciding when aggregates of pixels constitute salient segments that should not be grouped further. It is shown how segmentation based on multilevel intensity similarity alone does not lead to satisfactory results for bright field cells. However, the addition of multilevel intensity variance (as a measure of texture) to the feature vector of each aggregate leads to correct cell segmentation. Preliminary results are presented for applying the multilevel aggregation algorithm in space time to temporal sequences of microscope images, with the goal of obtaining space-time segments (“object tunnels”) that track individual cells. The advantages and drawbacks of the space-time aggregation approach for segmentation and tracking of live cells in sequences of bright field microscope images are presented, along with a discussion on how this approach may be used in the future work as a building block in a complete and robust segmentation and tracking system. PMID:20467468
Multilevel processes and cultural adaptation: Examples from past and present small-scale societies.
Reyes-García, V; Balbo, A L; Gomez-Baggethun, E; Gueze, M; Mesoudi, A; Richerson, P; Rubio-Campillo, X; Ruiz-Mallén, I; Shennan, S
2016-12-01
Cultural adaptation has become central in the context of accelerated global change with authors increasingly acknowledging the importance of understanding multilevel processes that operate as adaptation takes place. We explore the importance of multilevel processes in explaining cultural adaptation by describing how processes leading to cultural (mis)adaptation are linked through a complex nested hierarchy, where the lower levels combine into new units with new organizations, functions, and emergent properties or collective behaviours. After a brief review of the concept of "cultural adaptation" from the perspective of cultural evolutionary theory and resilience theory, the core of the paper is constructed around the exploration of multilevel processes occurring at the temporal, spatial, social and political scales. We do so by examining small-scale societies' case studies. In each section, we discuss the importance of the selected scale for understanding cultural adaptation and then present an example that illustrates how multilevel processes in the selected scale help explain observed patterns in the cultural adaptive process. We end the paper discussing the potential of modelling and computer simulation for studying multilevel processes in cultural adaptation.
Multilevel processes and cultural adaptation: Examples from past and present small-scale societies
Reyes-García, V.; Balbo, A. L.; Gomez-Baggethun, E.; Gueze, M.; Mesoudi, A.; Richerson, P.; Rubio-Campillo, X.; Ruiz-Mallén, I.; Shennan, S.
2016-01-01
Cultural adaptation has become central in the context of accelerated global change with authors increasingly acknowledging the importance of understanding multilevel processes that operate as adaptation takes place. We explore the importance of multilevel processes in explaining cultural adaptation by describing how processes leading to cultural (mis)adaptation are linked through a complex nested hierarchy, where the lower levels combine into new units with new organizations, functions, and emergent properties or collective behaviours. After a brief review of the concept of “cultural adaptation” from the perspective of cultural evolutionary theory and resilience theory, the core of the paper is constructed around the exploration of multilevel processes occurring at the temporal, spatial, social and political scales. We do so by examining small-scale societies’ case studies. In each section, we discuss the importance of the selected scale for understanding cultural adaptation and then present an example that illustrates how multilevel processes in the selected scale help explain observed patterns in the cultural adaptive process. We end the paper discussing the potential of modelling and computer simulation for studying multilevel processes in cultural adaptation. PMID:27774109
Integrable time-dependent Hamiltonians, solvable Landau-Zener models and Gaudin magnets
NASA Astrophysics Data System (ADS)
Yuzbashyan, Emil A.
2018-05-01
We solve the non-stationary Schrödinger equation for several time-dependent Hamiltonians, such as the BCS Hamiltonian with an interaction strength inversely proportional to time, periodically driven BCS and linearly driven inhomogeneous Dicke models as well as various multi-level Landau-Zener tunneling models. The latter are Demkov-Osherov, bow-tie, and generalized bow-tie models. We show that these Landau-Zener problems and their certain interacting many-body generalizations map to Gaudin magnets in a magnetic field. Moreover, we demonstrate that the time-dependent Schrödinger equation for the above models has a similar structure and is integrable with a similar technique as Knizhnik-Zamolodchikov equations. We also discuss applications of our results to the problem of molecular production in an atomic Fermi gas swept through a Feshbach resonance and to the evaluation of the Landau-Zener transition probabilities.
Multilevel Analysis Methods for Partially Nested Cluster Randomized Trials
ERIC Educational Resources Information Center
Sanders, Elizabeth A.
2011-01-01
This paper explores multilevel modeling approaches for 2-group randomized experiments in which a treatment condition involving clusters of individuals is compared to a control condition involving only ungrouped individuals, otherwise known as partially nested cluster randomized designs (PNCRTs). Strategies for comparing groups from a PNCRT in the…
Daily Stressors in School-Age Children: A Multilevel Approach
ERIC Educational Resources Information Center
Escobar, Milagros; Alarcón, Rafael; Blanca, María J.; Fernández-Baena, F. Javier; Rosel, Jesús F.; Trianes, María Victoria
2013-01-01
This study uses hierarchical or multilevel modeling to identify variables that contribute to daily stressors in a population of schoolchildren. Four hierarchical levels with several predictive variables were considered: student (age, sex, social adaptation of the student, number of life events and chronic stressors experienced, and educational…
Commitment to the Study of International Business and Cultural Intelligence: A Multilevel Model
ERIC Educational Resources Information Center
Ramsey, Jase R.; Barakat, Livia L.; Aad, Amine Abi
2014-01-01
Adopting a multilevel theoretical framework, we examined how metacognitive and motivational cultural intelligence influence an individual's commitment to the study of international business (IB). Data from 292 undergraduate and graduate business students nested in 12 U.S. business school classes demonstrated that individuals' metacognitive and…
A review of distributed parameter groundwater management modeling methods
Gorelick, Steven M.
1983-01-01
Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.
A Review of Distributed Parameter Groundwater Management Modeling Methods
NASA Astrophysics Data System (ADS)
Gorelick, Steven M.
1983-04-01
Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.
An Optimal Order Nonnested Mixed Multigrid Method for Generalized Stokes Problems
NASA Technical Reports Server (NTRS)
Deng, Qingping
1996-01-01
A multigrid algorithm is developed and analyzed for generalized Stokes problems discretized by various nonnested mixed finite elements within a unified framework. It is abstractly proved by an element-independent analysis that the multigrid algorithm converges with an optimal order if there exists a 'good' prolongation operator. A technique to construct a 'good' prolongation operator for nonnested multilevel finite element spaces is proposed. Its basic idea is to introduce a sequence of auxiliary nested multilevel finite element spaces and define a prolongation operator as a composite operator of two single grid level operators. This makes not only the construction of a prolongation operator much easier (the final explicit forms of such prolongation operators are fairly simple), but the verification of the approximate properties for prolongation operators is also simplified. Finally, as an application, the framework and technique is applied to seven typical nonnested mixed finite elements.
A Multilevel Shape Fit Analysis of Neutron Transmission Data
NASA Astrophysics Data System (ADS)
Naguib, K.; Sallam, O. H.; Adib, M.; Ashry, A.
A multilevel shape fit analysis of neutron transmission data is presented. A multilevel computer code SHAPE is used to analyse clean transmission data obtained from time-of-flight (TOF) measurements. The shape analysis deduces the parameters of the observed resonances in the energy region considered in the measurements. The shape code is based upon a least square fit of a multilevel Briet-Wigner formula and includes both instrumental resolution and Doppler broadenings. Operating the SHAPE code on a test example of a measured transmission data of 151Eu, 153Eu and natural Eu in the energy range 0.025-1 eV accquired a good result for the used technique of analysis.Translated AbstractAnalyse von Neutronentransmissionsdaten mittels einer VielniveauformanpassungNeutronentransmissionsdaten werden in einer Vielniveauformanpassung analysiert. Dazu werden bereinigte Daten aus Flugzeitmessungen mit dem Rechnerprogramm SHAPE bearbeitet. Man erhält die Parameter der beobachteten Resonanzen im gemessenen Energiebereich. Die Formanpassung benutzt eine Briet-Wignerformel und berücksichtigt Linienverbreiterungen infolge sowohl der Meßeinrichtung als auch des Dopplereffekts. Als praktisches Beispiel werden 151Eu, 153Eu und natürliches Eu im Energiebereich 0.025 bis 1 eV mit guter Übereinstimmung theoretischer und experimenteller Werte behandelt.
Deconvolution of mixing time series on a graph
Blocker, Alexander W.; Airoldi, Edoardo M.
2013-01-01
In many applications we are interested in making inference on latent time series from indirect measurements, which are often low-dimensional projections resulting from mixing or aggregation. Positron emission tomography, super-resolution, and network traffic monitoring are some examples. Inference in such settings requires solving a sequence of ill-posed inverse problems, yt = Axt, where the projection mechanism provides information on A. We consider problems in which A specifies mixing on a graph of times series that are bursty and sparse. We develop a multilevel state-space model for mixing times series and an efficient approach to inference. A simple model is used to calibrate regularization parameters that lead to efficient inference in the multilevel state-space model. We apply this method to the problem of estimating point-to-point traffic flows on a network from aggregate measurements. Our solution outperforms existing methods for this problem, and our two-stage approach suggests an efficient inference strategy for multilevel models of multivariate time series. PMID:25309135
Multivariate Longitudinal Analysis with Bivariate Correlation Test.
Adjakossa, Eric Houngla; Sadissou, Ibrahim; Hounkonnou, Mahouton Norbert; Nuel, Gregory
2016-01-01
In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model's parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated.
Solid Fuel Use for Household Cooking: Country and Regional Estimates for 1980–2010
Bonjour, Sophie; Adair-Rohani, Heather; Wolf, Jennyfer; Bruce, Nigel G.; Mehta, Sumi; Lahiff, Maureen; Rehfuess, Eva A.; Mishra, Vinod; Smith, Kirk R.
2013-01-01
Background: Exposure to household air pollution from cooking with solid fuels in simple stoves is a major health risk. Modeling reliable estimates of solid fuel use is needed for monitoring trends and informing policy. Objectives: In order to revise the disease burden attributed to household air pollution for the Global Burden of Disease 2010 project and for international reporting purposes, we estimated annual trends in the world population using solid fuels. Methods: We developed a multilevel model based on national survey data on primary cooking fuel. Results: The proportion of households relying mainly on solid fuels for cooking has decreased from 62% (95% CI: 58, 66%) to 41% (95% CI: 37, 44%) between 1980 and 2010. Yet because of population growth, the actual number of persons exposed has remained stable at around 2.8 billion during three decades. Solid fuel use is most prevalent in Africa and Southeast Asia where > 60% of households cook with solid fuels. In other regions, primary solid fuel use ranges from 46% in the Western Pacific, to 35% in the Eastern Mediterranean and < 20% in the Americas and Europe. Conclusion: Multilevel modeling is a suitable technique for deriving reliable solid-fuel use estimates. Worldwide, the proportion of households cooking mainly with solid fuels is decreasing. The absolute number of persons using solid fuels, however, has remained steady globally and is increasing in some regions. Surveys require enhancement to better capture the health implications of new technologies and multiple fuel use. PMID:23674502
Multi-level manual and autonomous control superposition for intelligent telerobot
NASA Technical Reports Server (NTRS)
Hirai, Shigeoki; Sato, T.
1989-01-01
Space telerobots are recognized to require cooperation with human operators in various ways. Multi-level manual and autonomous control superposition in telerobot task execution is described. The object model, the structured master-slave manipulation system, and the motion understanding system are proposed to realize the concept. The object model offers interfaces for task level and object level human intervention. The structured master-slave manipulation system offers interfaces for motion level human intervention. The motion understanding system maintains the consistency of the knowledge through all the levels which supports the robot autonomy while accepting the human intervention. The superposing execution of the teleoperational task at multi-levels realizes intuitive and robust task execution for wide variety of objects and in changeful environment. The performance of several examples of operating chemical apparatuses is shown.
Wu, Jian; Jin, Yongming; Zhang, Jun; Shao, Haiyu; Yang, Di; Chen, Jinping
2014-12-01
This was a prospective, randomized controlled clinical study. To determine the efficacy of absorbable gelatin sponge in reducing blood loss, as well as shortening the length of hospital stay in patients undergoing multilevel posterior lumbar spinal surgery. Absorbable gelatin sponge is reported to decrease postoperative drain output and the length of hospital stay after multilevel posterior cervical spine surgery. However, there is a dearth of literature on prospective study of the efficacy of absorbable gelatin sponge in reducing postoperative blood loss, as well as shortening the length of hospital stay in patients undergoing multilevel posterior lumbar spinal surgery. A total of 82 consecutive patients who underwent multilevel posterior lumbar fusion or posterior lumbar interbody fusion between June 2011 and June 2012 were prospectively randomized into one of the 2 groups according to whether absorbable gelatin sponge for postoperative blood management was used or not. Demographic distribution, total drain output, blood transfusion rate, the length of stay, the number of readmissions, and postoperative complications were analyzed. Total drain output averaged 173 mL in the study group and 392 mL in the control group (P=0.000). Perioperative allogeneic blood transfusion rate were lower in the Gelfoam group (34.1% vs. 58.5%, P=0.046); moreover, length of stay in patients with the use of absorbable gelatin sponge (12.58 d) was significantly shorter (P=0.009) than the patients in the control group (14.46 d). No patient developed adverse reactions attributable to the absorbable gelatin sponge. Application of absorbable gelatin sponge at the end of multilevel posterior lumbar fusion can significantly decrease postoperative drain output and length of hospital stay.
Enabling multi-level relevance feedback on PubMed by integrating rank learning into DBMS.
Yu, Hwanjo; Kim, Taehoon; Oh, Jinoh; Ko, Ilhwan; Kim, Sungchul; Han, Wook-Shin
2010-04-16
Finding relevant articles from PubMed is challenging because it is hard to express the user's specific intention in the given query interface, and a keyword query typically retrieves a large number of results. Researchers have applied machine learning techniques to find relevant articles by ranking the articles according to the learned relevance function. However, the process of learning and ranking is usually done offline without integrated with the keyword queries, and the users have to provide a large amount of training documents to get a reasonable learning accuracy. This paper proposes a novel multi-level relevance feedback system for PubMed, called RefMed, which supports both ad-hoc keyword queries and a multi-level relevance feedback in real time on PubMed. RefMed supports a multi-level relevance feedback by using the RankSVM as the learning method, and thus it achieves higher accuracy with less feedback. RefMed "tightly" integrates the RankSVM into RDBMS to support both keyword queries and the multi-level relevance feedback in real time; the tight coupling of the RankSVM and DBMS substantially improves the processing time. An efficient parameter selection method for the RankSVM is also proposed, which tunes the RankSVM parameter without performing validation. Thereby, RefMed achieves a high learning accuracy in real time without performing a validation process. RefMed is accessible at http://dm.postech.ac.kr/refmed. RefMed is the first multi-level relevance feedback system for PubMed, which achieves a high accuracy with less feedback. It effectively learns an accurate relevance function from the user's feedback and efficiently processes the function to return relevant articles in real time.
Enabling multi-level relevance feedback on PubMed by integrating rank learning into DBMS
2010-01-01
Background Finding relevant articles from PubMed is challenging because it is hard to express the user's specific intention in the given query interface, and a keyword query typically retrieves a large number of results. Researchers have applied machine learning techniques to find relevant articles by ranking the articles according to the learned relevance function. However, the process of learning and ranking is usually done offline without integrated with the keyword queries, and the users have to provide a large amount of training documents to get a reasonable learning accuracy. This paper proposes a novel multi-level relevance feedback system for PubMed, called RefMed, which supports both ad-hoc keyword queries and a multi-level relevance feedback in real time on PubMed. Results RefMed supports a multi-level relevance feedback by using the RankSVM as the learning method, and thus it achieves higher accuracy with less feedback. RefMed "tightly" integrates the RankSVM into RDBMS to support both keyword queries and the multi-level relevance feedback in real time; the tight coupling of the RankSVM and DBMS substantially improves the processing time. An efficient parameter selection method for the RankSVM is also proposed, which tunes the RankSVM parameter without performing validation. Thereby, RefMed achieves a high learning accuracy in real time without performing a validation process. RefMed is accessible at http://dm.postech.ac.kr/refmed. Conclusions RefMed is the first multi-level relevance feedback system for PubMed, which achieves a high accuracy with less feedback. It effectively learns an accurate relevance function from the user’s feedback and efficiently processes the function to return relevant articles in real time. PMID:20406504
Multi-level Hierarchical Poly Tree computer architectures
NASA Technical Reports Server (NTRS)
Padovan, Joe; Gute, Doug
1990-01-01
Based on the concept of hierarchical substructuring, this paper develops an optimal multi-level Hierarchical Poly Tree (HPT) parallel computer architecture scheme which is applicable to the solution of finite element and difference simulations. Emphasis is given to minimizing computational effort, in-core/out-of-core memory requirements, and the data transfer between processors. In addition, a simplified communications network that reduces the number of I/O channels between processors is presented. HPT configurations that yield optimal superlinearities are also demonstrated. Moreover, to generalize the scope of applicability, special attention is given to developing: (1) multi-level reduction trees which provide an orderly/optimal procedure by which model densification/simplification can be achieved, as well as (2) methodologies enabling processor grading that yields architectures with varying types of multi-level granularity.
Advanced imaging techniques for the study of plant growth and development.
Sozzani, Rosangela; Busch, Wolfgang; Spalding, Edgar P; Benfey, Philip N
2014-05-01
A variety of imaging methodologies are being used to collect data for quantitative studies of plant growth and development from living plants. Multi-level data, from macroscopic to molecular, and from weeks to seconds, can be acquired. Furthermore, advances in parallelized and automated image acquisition enable the throughput to capture images from large populations of plants under specific growth conditions. Image-processing capabilities allow for 3D or 4D reconstruction of image data and automated quantification of biological features. These advances facilitate the integration of imaging data with genome-wide molecular data to enable systems-level modeling. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mapping and quantifying electric and magnetic dipole luminescence at the nanoscale.
Aigouy, L; Cazé, A; Gredin, P; Mortier, M; Carminati, R
2014-08-15
We report on an experimental technique to quantify the relative importance of electric and magnetic dipole luminescence from a single nanosource in structured environments. By attaching a Eu^{3+}-doped nanocrystal to a near-field scanning optical microscope tip, we map the branching ratios associated with two electric dipole and one magnetic dipole transitions in three dimensions on a gold stripe. The relative weights of the electric and magnetic radiative local density of states can be recovered quantitatively, based on a multilevel model. This paves the way towards the full electric and magnetic characterization of nanostructures for the control of single emitter luminescence.
ERIC Educational Resources Information Center
Bjarnason, Thoroddur; Thorlindsson, Thorolfur; Sigfusdottir, Inga D.; Welch, Michael R.
2005-01-01
A multi-level Durkheimian theory of familial and religious influences on adolescent alcohol use is developed and tested with hierarchical linear modeling of data from Icelandic schools and students. On the individual level, traditional family structure, parental monitoring, parental support, religious participation, and perceptions of divine…
Help Seeking in Online Collaborative Groupwork: A Multilevel Analysis
ERIC Educational Resources Information Center
Du, Jianxia; Xu, Jianzhong; Fan, Xitao
2015-01-01
This study examined predictive models for students' help seeking in the context of online collaborative groupwork. Results from multilevel analysis revealed that most of the variance in help seeking was at the individual student level, and multiple variables at the individual level were predictive of help-seeking behaviour. Help seeking was…
A Multi-Level Examination of College and Its Influence on Ecumenical Worldview Development
ERIC Educational Resources Information Center
Mayhew, Matthew J.
2012-01-01
This multi-level, longitudinal study investigated the ecumenical worldview development of 13,932 students enrolled in one of 126 institutions. Results indicated that the final hierarchical linear model, consisting of institution-and-student-level predictors as well as slopes explaining the relationships among some of these predictors, explained…
Managing Money in Marriage: Multilevel and Cross-National Effects of the Breadwinner Role
ERIC Educational Resources Information Center
Yodanis, Carrie; Lauer, Sean
2007-01-01
We examine whether institutionalized practices and beliefs regarding breadwinning roles are associated with the choice of more or less equal money management strategies in marriage. Using cross-national data from 21 country contexts in the International Social Survey Programme and multilevel modeling, we find that in contexts of shared…
A Multilevel Evaluation of a Comprehensive Child Abuse Prevention Program
ERIC Educational Resources Information Center
Lawson, Michael A.; Alameda-Lawson, Tania; Byrnes, Edward C.
2012-01-01
Objectives: The purpose of this study is to examine the extent to which participation in a county-wide prevention program leads to improvements in protective factors associated with child abuse prevention (CAP) and whether improvements in measured protective factors relate to decreased odds of child abuse. Method: Using multilevel growth modeling,…
ERIC Educational Resources Information Center
Bradshaw, Catherine P.; Mitchell, Mary M.; O'Brennan, Lindsey M.; Leaf, Philip J.
2010-01-01
Although there is increasing awareness of the overrepresentation of ethic minority students--particularly Black students--in disciplinary actions, the extant research has rarely empirically examined potential factors that may contribute to these disparities. The current study used a multilevel modeling approach to examine factors at the child…
Multiple Imputation of Multilevel Missing Data-Rigor versus Simplicity
ERIC Educational Resources Information Center
Drechsler, Jörg
2015-01-01
Multiple imputation is widely accepted as the method of choice to address item-nonresponse in surveys. However, research on imputation strategies for the hierarchical structures that are typically found in the data in educational contexts is still limited. While a multilevel imputation model should be preferred from a theoretical point of view if…
"Using Power Tables to Compute Statistical Power in Multilevel Experimental Designs"
ERIC Educational Resources Information Center
Konstantopoulos, Spyros
2009-01-01
Power computations for one-level experimental designs that assume simple random samples are greatly facilitated by power tables such as those presented in Cohen's book about statistical power analysis. However, in education and the social sciences experimental designs have naturally nested structures and multilevel models are needed to compute the…
ERIC Educational Resources Information Center
Cramp, Anita G.; Bray, Steven R.
2009-01-01
The purpose of this study was to examine women's leisure time physical activity (LTPA) before pregnancy, during pregnancy, and through the first 7 months postnatal. Pre- and postnatal women (n = 309) completed the 12-month Modifiable Activity Questionnaire and demographic information. Multilevel modeling was used to estimate a growth curve…
ERIC Educational Resources Information Center
Cronley, Courtney; Patterson, David A.
2012-01-01
This study examined the effects of organizational culture on staff members' use of management information systems ("N" = 142) within homeless service organizations ("N" = 24), using a multilevel model. The Organizational Social Context Questionnaire was used to measure organizational culture, defined by three sub-constructs: (1) proficiency, (2)…
Identifying Synergies in Multilevel Interventions: The Convergence Strategy
ERIC Educational Resources Information Center
Lewis, Megan A.; Fitzgerald, Tania M.; Zulkiewicz, Brittany; Peinado, Susana; Williams, Pamela A.
2017-01-01
Social ecological models of health often describe multiple levels of influence that interact to influence health. However, it is still common for interventions to target only one or two of these levels, perhaps owing in part to a lack of guidance on how to design multilevel interventions to achieve optimal impact. The convergence strategy…
Saville, Benjamin R.; Herring, Amy H.; Kaufman, Jay S.
2013-01-01
Racial/ethnic disparities in birthweight are a large source of differential morbidity and mortality worldwide and have remained largely unexplained in epidemiologic models. We assess the impact of maternal ancestry and census tract residence on infant birth weights in New York City and the modifying effects of race and nativity by incorporating random effects in a multilevel linear model. Evaluating the significance of these predictors involves the test of whether the variances of the random effects are equal to zero. This is problematic because the null hypothesis lies on the boundary of the parameter space. We generalize an approach for assessing random effects in the two-level linear model to a broader class of multilevel linear models by scaling the random effects to the residual variance and introducing parameters that control the relative contribution of the random effects. After integrating over the random effects and variance components, the resulting integrals needed to calculate the Bayes factor can be efficiently approximated with Laplace’s method. PMID:24082430
Austin, Peter C.; Stryhn, Henrik; Leckie, George; Merlo, Juan
2017-01-01
Multilevel data occur frequently in many research areas like health services research and epidemiology. A suitable way to analyze such data is through the use of multilevel regression models. These models incorporate cluster‐specific random effects that allow one to partition the total variation in the outcome into between‐cluster variation and between‐individual variation. The magnitude of the effect of clustering provides a measure of the general contextual effect. When outcomes are binary or time‐to‐event in nature, the general contextual effect can be quantified by measures of heterogeneity like the median odds ratio or the median hazard ratio, respectively, which can be calculated from a multilevel regression model. Outcomes that are integer counts denoting the number of times that an event occurred are common in epidemiological and medical research. The median (incidence) rate ratio in multilevel Poisson regression for counts that corresponds to the median odds ratio or median hazard ratio for binary or time‐to‐event outcomes respectively is relatively unknown and is rarely used. The median rate ratio is the median relative change in the rate of the occurrence of the event when comparing identical subjects from 2 randomly selected different clusters that are ordered by rate. We also describe how the variance partition coefficient, which denotes the proportion of the variation in the outcome that is attributable to between‐cluster differences, can be computed with count outcomes. We illustrate the application and interpretation of these measures in a case study analyzing the rate of hospital readmission in patients discharged from hospital with a diagnosis of heart failure. PMID:29114926
Ren, Da-Jiang; Li, Fang; Zhang, Zhi-Cheng; Kai, Guan; Shan, Jian-Lin; Zhao, Guang-Min; Sun, Tian-Sheng
2015-01-01
Background: Posterior cervical decompression is an accepted treatment for multilevel cervical spondylotic myelopathy (CSM). Each posterior technique has its own advantages and disadvantages. In the present study, we compared the functional and radiological outcomes of expansive hemilaminectomy and laminoplasty with mini titanium plate in the treatment of multilevel CSM. Methods: Forty-four patients with multilevel CSM treated with posterior cervical surgery in Department of Orthopedic Surgery, Beijing Army General Hospital from March 2011 to June 2012 were enrolled in this retrospective study. Patients were divided into two groups by surgical procedure: Laminoplasty (Group L) and hemilaminectomy (Group H). Perioperative parameters including age, sex, duration of symptoms, operative duration, and intraoperative blood loss were recorded and compared. Spinal canal area, calculated using AutoCAD® software (Autodesk Inc., San Rafael, CA, USA), and neurological improvement, evaluated with Japanese Orthopedic Association score, were also compared. Results: Neurological improvement did not differ significantly between groups. Group H had a significantly shorter operative duration and significantly less blood loss. Mean expansion ratio was significantly greater in Group L (77.83 ± 6.41%) than in Group H (62.72 ± 3.86%) (P < 0.01). Conclusions: Both surgical approaches are safe and effective in treating multilevel CSM. Laminoplasty provides a greater degree of enlargement of the spinal canal, whereas expansive hemilaminectomy has the advantages of shorter operative duration and less intraoperative blood loss. PMID:26228218
Ergül, Özgür
2011-11-01
Fast and accurate solutions of large-scale electromagnetics problems involving homogeneous dielectric objects are considered. Problems are formulated with the electric and magnetic current combined-field integral equation and discretized with the Rao-Wilton-Glisson functions. Solutions are performed iteratively by using the multilevel fast multipole algorithm (MLFMA). For the solution of large-scale problems discretized with millions of unknowns, MLFMA is parallelized on distributed-memory architectures using a rigorous technique, namely, the hierarchical partitioning strategy. Efficiency and accuracy of the developed implementation are demonstrated on very large problems involving as many as 100 million unknowns.
Multilevel wireless capsule endoscopy video segmentation
NASA Astrophysics Data System (ADS)
Hwang, Sae; Celebi, M. Emre
2010-03-01
Wireless Capsule Endoscopy (WCE) is a relatively new technology (FDA approved in 2002) allowing doctors to view most of the small intestine. WCE transmits more than 50,000 video frames per examination and the visual inspection of the resulting video is a highly time-consuming task even for the experienced gastroenterologist. Typically, a medical clinician spends one or two hours to analyze a WCE video. To reduce the assessment time, it is critical to develop a technique to automatically discriminate digestive organs and shots each of which consists of the same or similar shots. In this paper a multi-level WCE video segmentation methodology is presented to reduce the examination time.
Noninterferometric Two-Dimensional Fourier-Transform Spectroscopy of Multilevel Systems
NASA Astrophysics Data System (ADS)
Davis, J. A.; Dao, L. V.; Do, M. T.; Hannaford, P.; Nugent, K. A.; Quiney, H. M.
2008-06-01
We demonstrate a technique that determines the phase of the photon-echo emission from spectrally resolved intensity data without requiring phase-stabilized input pulses. The full complex polarization of the emission is determined from spectral intensity measurements. The validity of this technique is demonstrated using simulated data, and is then applied to the analysis of two-color data obtained from the light-harvesting molecule lycopene.
NASA Astrophysics Data System (ADS)
Wang, Bo; Tian, Kuo; Zhao, Haixin; Hao, Peng; Zhu, Tianyu; Zhang, Ke; Ma, Yunlong
2017-06-01
In order to improve the post-buckling optimization efficiency of hierarchical stiffened shells, a multilevel optimization framework accelerated by adaptive equivalent strategy is presented in this paper. Firstly, the Numerical-based Smeared Stiffener Method (NSSM) for hierarchical stiffened shells is derived by means of the numerical implementation of asymptotic homogenization (NIAH) method. Based on the NSSM, a reasonable adaptive equivalent strategy for hierarchical stiffened shells is developed from the concept of hierarchy reduction. Its core idea is to self-adaptively decide which hierarchy of the structure should be equivalent according to the critical buckling mode rapidly predicted by NSSM. Compared with the detailed model, the high prediction accuracy and efficiency of the proposed model is highlighted. On the basis of this adaptive equivalent model, a multilevel optimization framework is then established by decomposing the complex entire optimization process into major-stiffener-level and minor-stiffener-level sub-optimizations, during which Fixed Point Iteration (FPI) is employed to accelerate convergence. Finally, the illustrative examples of the multilevel framework is carried out to demonstrate its efficiency and effectiveness to search for the global optimum result by contrast with the single-level optimization method. Remarkably, the high efficiency and flexibility of the adaptive equivalent strategy is indicated by compared with the single equivalent strategy.
Zahnd, Whitney E; McLafferty, Sara L
2017-11-01
There is increasing call for the utilization of multilevel modeling to explore the relationship between place-based contextual effects and cancer outcomes in the United States. To gain a better understanding of how contextual factors are being considered, we performed a systematic review. We reviewed studies published between January 1, 2002 and December 31, 2016 and assessed the following attributes: (1) contextual considerations such as geographic scale and contextual factors used; (2) methods used to quantify contextual factors; and (3) cancer type and outcomes. We searched PubMed, Scopus, and Web of Science and initially identified 1060 studies. One hundred twenty-two studies remained after exclusions. Most studies utilized a two-level structure; census tracts were the most commonly used geographic scale. Socioeconomic factors, health care access, racial/ethnic factors, and rural-urban status were the most common contextual factors addressed in multilevel models. Breast and colorectal cancers were the most common cancer types, and screening and staging were the most common outcomes assessed in these studies. Opportunities for future research include deriving contextual factors using more rigorous approaches, considering cross-classified structures and cross-level interactions, and using multilevel modeling to explore understudied cancers and outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.
To center or not to center? Investigating inertia with a multilevel autoregressive model.
Hamaker, Ellen L; Grasman, Raoul P P P
2014-01-01
Whether level 1 predictors should be centered per cluster has received considerable attention in the multilevel literature. While most agree that there is no one preferred approach, it has also been argued that cluster mean centering is desirable when the within-cluster slope and the between-cluster slope are expected to deviate, and the main interest is in the within-cluster slope. However, we show in a series of simulations that if one has a multilevel autoregressive model in which the level 1 predictor is the lagged outcome variable (i.e., the outcome variable at the previous occasion), cluster mean centering will in general lead to a downward bias in the parameter estimate of the within-cluster slope (i.e., the autoregressive relationship). This is particularly relevant if the main question is whether there is on average an autoregressive effect. Nonetheless, we show that if the main interest is in estimating the effect of a level 2 predictor on the autoregressive parameter (i.e., a cross-level interaction), cluster mean centering should be preferred over other forms of centering. Hence, researchers should be clear on what is considered the main goal of their study, and base their choice of centering method on this when using a multilevel autoregressive model.
To center or not to center? Investigating inertia with a multilevel autoregressive model
Hamaker, Ellen L.; Grasman, Raoul P. P. P.
2015-01-01
Whether level 1 predictors should be centered per cluster has received considerable attention in the multilevel literature. While most agree that there is no one preferred approach, it has also been argued that cluster mean centering is desirable when the within-cluster slope and the between-cluster slope are expected to deviate, and the main interest is in the within-cluster slope. However, we show in a series of simulations that if one has a multilevel autoregressive model in which the level 1 predictor is the lagged outcome variable (i.e., the outcome variable at the previous occasion), cluster mean centering will in general lead to a downward bias in the parameter estimate of the within-cluster slope (i.e., the autoregressive relationship). This is particularly relevant if the main question is whether there is on average an autoregressive effect. Nonetheless, we show that if the main interest is in estimating the effect of a level 2 predictor on the autoregressive parameter (i.e., a cross-level interaction), cluster mean centering should be preferred over other forms of centering. Hence, researchers should be clear on what is considered the main goal of their study, and base their choice of centering method on this when using a multilevel autoregressive model. PMID:25688215
Leedahl, Skye N; Chapin, Rosemary K; Little, Todd D
2015-01-01
Testing a model based on past research and theory, this study assessed relationships between facility characteristics (i.e., culture change efforts, social workers) and residents' social networks and social support across nursing homes; and examined relationships between multiple aspects of social integration (i.e., social networks, social capital, social engagement, social support) and mental and functional health for older adults in nursing homes. Data were collected at nursing homes using a planned missing data design with random sampling techniques. Data collection occurred at the individual-level through in-person structured interviews with older adult nursing home residents (N = 140) and at the facility-level (N = 30) with nursing home staff. The best fitting multilevel structural equation model indicated that the culture change subscale for relationships significantly predicted differences in residents' social networks. Additionally, social networks had a positive indirect relationship with mental and functional health among residents primarily via social engagement. Social capital had a positive direct relationship with both health outcomes. To predict better social integration and mental and functional health outcomes for nursing homes residents, study findings support prioritizing that close relationships exist among staff, residents, and the community as well as increased resident social engagement and social trust. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
A Tutorial on Multilevel Survival Analysis: Methods, Models and Applications
Austin, Peter C.
2017-01-01
Summary Data that have a multilevel structure occur frequently across a range of disciplines, including epidemiology, health services research, public health, education and sociology. We describe three families of regression models for the analysis of multilevel survival data. First, Cox proportional hazards models with mixed effects incorporate cluster-specific random effects that modify the baseline hazard function. Second, piecewise exponential survival models partition the duration of follow-up into mutually exclusive intervals and fit a model that assumes that the hazard function is constant within each interval. This is equivalent to a Poisson regression model that incorporates the duration of exposure within each interval. By incorporating cluster-specific random effects, generalised linear mixed models can be used to analyse these data. Third, after partitioning the duration of follow-up into mutually exclusive intervals, one can use discrete time survival models that use a complementary log–log generalised linear model to model the occurrence of the outcome of interest within each interval. Random effects can be incorporated to account for within-cluster homogeneity in outcomes. We illustrate the application of these methods using data consisting of patients hospitalised with a heart attack. We illustrate the application of these methods using three statistical programming languages (R, SAS and Stata). PMID:29307954
A Tutorial on Multilevel Survival Analysis: Methods, Models and Applications.
Austin, Peter C
2017-08-01
Data that have a multilevel structure occur frequently across a range of disciplines, including epidemiology, health services research, public health, education and sociology. We describe three families of regression models for the analysis of multilevel survival data. First, Cox proportional hazards models with mixed effects incorporate cluster-specific random effects that modify the baseline hazard function. Second, piecewise exponential survival models partition the duration of follow-up into mutually exclusive intervals and fit a model that assumes that the hazard function is constant within each interval. This is equivalent to a Poisson regression model that incorporates the duration of exposure within each interval. By incorporating cluster-specific random effects, generalised linear mixed models can be used to analyse these data. Third, after partitioning the duration of follow-up into mutually exclusive intervals, one can use discrete time survival models that use a complementary log-log generalised linear model to model the occurrence of the outcome of interest within each interval. Random effects can be incorporated to account for within-cluster homogeneity in outcomes. We illustrate the application of these methods using data consisting of patients hospitalised with a heart attack. We illustrate the application of these methods using three statistical programming languages (R, SAS and Stata).
de Alencar Ximenes, Ricardo Arraes; Martelli, Celina Maria Turchi; Merchán-Hamann, Edgar; Montarroyos, Ulisses Ramos; Braga, Maria Cynthia; de Lima, Maria Luíza Carvalho; Cardoso, Maria Regina Alves; Turchi, Marília Dalva; Costa, Marcelo Abrahão; de Alencar, Luiz Cláudio Arraes; Moreira, Regina Célia; Figueiredo, Gerusa Maria; Pereira, Leila Maria Moreira Beltrão
2008-01-01
Background The objectives were to estimate the prevalence of hepatitis A among children and adolescents from the Northeast and Midwest regions and the Federal District of Brazil and to identify individual-, household- and area-levels factors associated with hepatitis A infection. Methods This population-based survey was conducted in 2004–2005 and covered individuals aged between 5 and 19 years. A stratified multistage cluster sampling technique with probability proportional to size was used to select 1937 individuals aged between 5 and 19 years living in the Federal capital and in the State capitals of 12 states in the study regions. The sample was stratified according to age (5–9 and 10- to 19-years-old) and capital within each region. Individual- and household-level data were collected by interview at the home of the individual. Variables related to the area were retrieved from census tract data. The outcome was total antibodies to hepatitis A virus detected using commercial EIA. The age distribution of the susceptible population was estimated using a simple catalytic model. The associations between HAV infection and independent variables were assessed using the odds ratio and corrected for the random design effect and sampling weight. Multilevel analysis was performed by GLLAMM using Stata 9.2. Results The prevalence of hepatitis A infection in the 5–9 and 10–19 age-group was 41.5 and 57.4%, respectively for the Northeast, 32.3 and 56.0%, respectively for the Midwest and 33.8 and 65.1% for the Federal District. A trend for the prevalence of HAV infection to increase according to age was detected in all sites. By the age of 5, 31.5% of the children had already been infected with HAV in the Northeast region compared with 20.0% in the other sites. By the age of 19 years, seropositivity was ∼70% in all areas. The curves of susceptible populations differed from one area to another. Multilevel modeling showed that variables relating to different levels of education were associated with HAV infection in all sites. Conclusion The study sites were classified as areas with intermediate endemicity area for hepatitis A infection. Differences in age trends of infection were detected among settings. This multilevel model allowed for quantification of contextual predictors of hepatitis A infection in urban areas. PMID:18653514
Uddin, Shahadat
2016-02-04
A patient-centric care network can be defined as a network among a group of healthcare professionals who provide treatments to common patients. Various multi-level attributes of the members of this network have substantial influence to its perceived level of performance. In order to assess the impact different multi-level attributes of patient-centric care networks on healthcare outcomes, this study first captured patient-centric care networks for 85 hospitals using health insurance claim dataset. From these networks, this study then constructed physician collaboration networks based on the concept of patient-sharing network among physicians. A multi-level regression model was then developed to explore the impact of different attributes that are organised at two levels on hospitalisation cost and hospital length of stay. For Level-1 model, the average visit per physician significantly predicted both hospitalisation cost and hospital length of stay. The number of different physicians significantly predicted only the hospitalisation cost, which has significantly been moderated by age, gender and Comorbidity score of patients. All Level-1 findings showed significance variance across physician collaboration networks having different community structure and density. These findings could be utilised as a reflective measure by healthcare decision makers. Moreover, healthcare managers could consider them in developing effective healthcare environments.
mlCAF: Multi-Level Cross-Domain Semantic Context Fusioning for Behavior Identification.
Razzaq, Muhammad Asif; Villalonga, Claudia; Lee, Sungyoung; Akhtar, Usman; Ali, Maqbool; Kim, Eun-Soo; Khattak, Asad Masood; Seung, Hyonwoo; Hur, Taeho; Bang, Jaehun; Kim, Dohyeong; Ali Khan, Wajahat
2017-10-24
The emerging research on automatic identification of user's contexts from the cross-domain environment in ubiquitous and pervasive computing systems has proved to be successful. Monitoring the diversified user's contexts and behaviors can help in controlling lifestyle associated to chronic diseases using context-aware applications. However, availability of cross-domain heterogeneous contexts provides a challenging opportunity for their fusion to obtain abstract information for further analysis. This work demonstrates extension of our previous work from a single domain (i.e., physical activity) to multiple domains (physical activity, nutrition and clinical) for context-awareness. We propose multi-level Context-aware Framework (mlCAF), which fuses the multi-level cross-domain contexts in order to arbitrate richer behavioral contexts. This work explicitly focuses on key challenges linked to multi-level context modeling, reasoning and fusioning based on the mlCAF open-source ontology. More specifically, it addresses the interpretation of contexts from three different domains, their fusioning conforming to richer contextual information. This paper contributes in terms of ontology evolution with additional domains, context definitions, rules and inclusion of semantic queries. For the framework evaluation, multi-level cross-domain contexts collected from 20 users were used to ascertain abstract contexts, which served as basis for behavior modeling and lifestyle identification. The experimental results indicate a context recognition average accuracy of around 92.65% for the collected cross-domain contexts.
mlCAF: Multi-Level Cross-Domain Semantic Context Fusioning for Behavior Identification
Villalonga, Claudia; Lee, Sungyoung; Akhtar, Usman; Ali, Maqbool; Kim, Eun-Soo; Khattak, Asad Masood; Seung, Hyonwoo; Hur, Taeho; Kim, Dohyeong; Ali Khan, Wajahat
2017-01-01
The emerging research on automatic identification of user’s contexts from the cross-domain environment in ubiquitous and pervasive computing systems has proved to be successful. Monitoring the diversified user’s contexts and behaviors can help in controlling lifestyle associated to chronic diseases using context-aware applications. However, availability of cross-domain heterogeneous contexts provides a challenging opportunity for their fusion to obtain abstract information for further analysis. This work demonstrates extension of our previous work from a single domain (i.e., physical activity) to multiple domains (physical activity, nutrition and clinical) for context-awareness. We propose multi-level Context-aware Framework (mlCAF), which fuses the multi-level cross-domain contexts in order to arbitrate richer behavioral contexts. This work explicitly focuses on key challenges linked to multi-level context modeling, reasoning and fusioning based on the mlCAF open-source ontology. More specifically, it addresses the interpretation of contexts from three different domains, their fusioning conforming to richer contextual information. This paper contributes in terms of ontology evolution with additional domains, context definitions, rules and inclusion of semantic queries. For the framework evaluation, multi-level cross-domain contexts collected from 20 users were used to ascertain abstract contexts, which served as basis for behavior modeling and lifestyle identification. The experimental results indicate a context recognition average accuracy of around 92.65% for the collected cross-domain contexts. PMID:29064459
Macro-actor execution on multilevel data-driven architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaudiot, J.L.; Najjar, W.
1988-12-31
The data-flow model of computation brings to multiprocessors high programmability at the expense of increased overhead. Applying the model at a higher level leads to better performance but also introduces loss of parallelism. We demonstrate here syntax directed program decomposition methods for the creation of large macro-actors in numerical algorithms. In order to alleviate some of the problems introduced by the lower resolution interpretation, we describe a multi-level of resolution and analyze the requirements for its actual hardware and software integration.
Caçola, Priscila M; Pant, Mohan D
2014-10-01
The purpose was to use a multi-level statistical technique to analyze how children's age, motor proficiency, and cognitive styles interact to affect accuracy on reach estimation tasks via Motor Imagery and Visual Imagery. Results from the Generalized Linear Mixed Model analysis (GLMM) indicated that only the 7-year-old age group had significant random intercepts for both tasks. Motor proficiency predicted accuracy in reach tasks, and cognitive styles (object scale) predicted accuracy in the motor imagery task. GLMM analysis is suitable to explore age and other parameters of development. In this case, it allowed an assessment of motor proficiency interacting with age to shape how children represent, plan, and act on the environment.
GREEN, JENNIFER GREIF; DUNN, ERIN C.; JOHNSON, RENEE M.; MOLNAR, BETH E.
2011-01-01
Although researchers have identified individual-level predictors of nonphysical bullying among children and youth, school-level predictors (i.e., characteristics of the school environment that influence bullying exposure) remain largely unstudied. Using data from a survey of 1,838 students in 21 Boston public high schools, we used multilevel modeling techniques to estimate the level of variation across schools in student reports of nonphysical bully victimization and identify school-level predictors of bullying. We found significant between school variation in youth reports of nonphysical bullying, with estimates ranging from 25–58%. We tested school-level indicators of academic performance, emotional well-being, and school safety. After controlling for individual-level covariates and demographic controls, the percent of students in the school who met with a mental health counselor was significantly associated with bullying (OR = 1.03, 95% CI = 1.01, 1.06). There was no significant association between school-level academic performance and perceptions of school safety on individual reports of bullying. Findings suggest that prevention and intervention programs may benefit from attending to the emotional well-being of students and support the importance of understanding the role of the school environment in shaping student experiences with bullying. PMID:21532943
Bosselut, Grégoire; Heuzé, Jean-Philippe; Eys, Mark A; Fontayne, Paul; Sarrazin, Philippe
2012-06-01
The purpose of this study was to examine the relationship between athletes' perceptions of role ambiguity and two theoretically derived dimensions of coaching competency (i.e., game strategy and technique competencies). A total of 243 players from 26 teams representing various interdependent sports completed French versions of the Role Ambiguity Scale and the Coaching Competency Scale. Multilevel analyses supported the existence of relationships between the four dimensions of role ambiguity and the two dimensions of coaching competency at both individual and team levels. When the levels were considered jointly, athletes perceiving greater ambiguity in their role in both offensive and defensive contexts were more critical of their coach's capacities to lead their team during competitions and to diagnose or formulate instructions during training sessions. The results also indicated that the dimension of scope of responsibilities was the main contributor to the relationship with coaching competency at an individual level, whereas role evaluation was the main contributor to this relationship at a group level. Findings are discussed in relation to the role episode model, the role ambiguity dimensions involved in the relationships according to the level of analysis considered, and the salience of ambiguity perceptions in the offensive context.
Travel time to maternity care and its effect on utilization in rural Ghana: a multilevel analysis.
Masters, Samuel H; Burstein, Roy; Amofah, George; Abaogye, Patrick; Kumar, Santosh; Hanlon, Michael
2013-09-01
Rates of neonatal and maternal mortality are high in Ghana. In-facility delivery and other maternal services could reduce this burden, yet utilization rates of key maternal services are relatively low, especially in rural areas. We tested a theoretical implication that travel time negatively affects the use of in-facility delivery and other maternal services. Empirically, we used geospatial techniques to estimate travel times between populations and health facilities. To account for uncertainty in Ghana Demographic and Health Survey cluster locations, we adopted a novel approach of treating the location selection as an imputation problem. We estimated a multilevel random-intercept logistic regression model. For rural households, we found that travel time had a significant effect on the likelihood of in-facility delivery and antenatal care visits, holding constant education, wealth, maternal age, facility capacity, female autonomy, and the season of birth. In contrast, a facility's capacity to provide sophisticated maternity care had no detectable effect on utilization. As the Ghanaian health network expands, our results suggest that increasing the availability of basic obstetric services and improving transport infrastructure may be important interventions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Martínez, Francisco J; Márquez, Andrés; Gallego, Sergi; Ortuño, Manuel; Francés, Jorge; Pascual, Inmaculada; Beléndez, Augusto
2015-02-20
Parallel-aligned (PA) liquid-crystal on silicon (LCoS) microdisplays are especially appealing in a wide range of spatial light modulation applications since they enable phase-only operation. Recently we proposed a novel polarimetric method, based on Stokes polarimetry, enabling the characterization of their linear retardance and the magnitude of their associated phase fluctuations or flicker, exhibited by many LCoS devices. In this work we apply the calibrated values obtained with this technique to show their capability to predict the performance of spatially varying phase multilevel elements displayed onto the PA-LCoS device. Specifically we address a series of multilevel phase blazed gratings. We analyze both their average diffraction efficiency ("static" analysis) and its associated time fluctuation ("dynamic" analysis). Two different electrical configuration files with different degrees of flicker are applied in order to evaluate the actual influence of flicker on the expected performance of the diffractive optical elements addressed. We obtain a good agreement between simulation and experiment, thus demonstrating the predictive capability of the calibration provided by the average Stokes polarimetric technique. Additionally, it is obtained that for electrical configurations with less than 30° amplitude for the flicker retardance, they may not influence the performance of the blazed gratings. In general, we demonstrate that the influence of flicker greatly diminishes when the number of quantization levels in the optical element increases.
Multilevel Multidimensional Item Response Model with a Multilevel Latent Covariate
ERIC Educational Resources Information Center
Cho, Sun-Joo; Bottge, Brian A.
2015-01-01
In a pretest-posttest cluster-randomized trial, one of the methods commonly used to detect an intervention effect involves controlling pre-test scores and other related covariates while estimating an intervention effect at post-test. In many applications in education, the total post-test and pre-test scores that ignores measurement error in the…
ERIC Educational Resources Information Center
Takashiro, Naomi
2017-01-01
The author examined the simultaneous influence of Japanese middle school student and school socioeconomic status (SES) on student math achievement with two-level multilevel analysis models by utilizing the Trends in International Mathematics and Science Study (TIMSS) Japan data sets. The theoretical framework used in this study was…
When Cannabis Is Available and Visible at School--A Multilevel Analysis of Students' Cannabis Use
ERIC Educational Resources Information Center
Kuntsche, Emmanuel
2010-01-01
Aims: To investigate the links between the visibility of cannabis use in school (measured by teachers' reports of students being under the influence of cannabis on school premises), the proportion of cannabis users in the class, perceived availability of cannabis, as well as adolescent cannabis use. Methods: A multilevel regression model was…
ERIC Educational Resources Information Center
Gu, Jibao; Chen, Zhi; Huang, Qian; Liu, Hefu; Huang, Shenglan
2018-01-01
An inter-organizational team, which consists of diverse members from different organizations to conduct an initiative, has been widely treated as a critical method to improve organizational innovation. This study proposes a multilevel model to test the relationship between shared leadership and creativity at both team- and individual level in the…
ERIC Educational Resources Information Center
Weeks, Margaret R.; Li, Jianghong; Liao, Susu; Zhang, Qingning; Dunn, Jennifer; Wang, Yanhong; Jiang, Jingmei
2013-01-01
Social and public health scientists are increasingly interested in applying system dynamics theory to improve understanding and to harness the forces of change within complex, multilevel systems that affect community intervention implementation, effects, and sustainability. Building a system dynamics model based on ethnographic case study has the…
ERIC Educational Resources Information Center
Netten, Andrea; Luyten, Hans; Droop, Mienke; Verhoeven, Ludo
2016-01-01
This study examined how linguistic and sociocultural diversity have an impact on the reading literacy outcomes of a representative sample of 3,549 first-language (L1) and 208 second-language (L2) fourth-grade students in the Netherlands. A multilevel modelling analysis was conducted using Progress in International Reading Literacy Study 2006 data…
Synthesis of Single-Case Experimental Data: A Comparison of Alternative Multilevel Approaches
ERIC Educational Resources Information Center
Ferron, John; Van den Noortgate, Wim; Beretvas, Tasha; Moeyaert, Mariola; Ugille, Maaike; Petit-Bois, Merlande; Baek, Eun Kyeng
2013-01-01
Single-case or single-subject experimental designs (SSED) are used to evaluate the effect of one or more treatments on a single case. Although SSED studies are growing in popularity, the results are in theory case-specific. One systematic and statistical approach for combining single-case data within and across studies is multilevel modeling. The…
ERIC Educational Resources Information Center
French, Kimberly A.; Kottke, Janet L.
2013-01-01
Multilevel modeling is used to examine the impact of teamwork interest and group extraversion on group satisfaction. Participants included 206 undergraduates in 65 groups who were surveyed at the beginning and end of a requisite term-length group project for an upper-division university course. We hypothesized that teamwork interest and both…
ERIC Educational Resources Information Center
Welch, Chiquitia L.; Roberts-Lewis, Amelia C.; Parker, Sharon
2009-01-01
The rise in female delinquency has resulted in large numbers of girls being incarcerated in Youth Development Centers (YDC). However, there are few gender specific treatment programs for incarcerated female adolescent offenders, particularly for those with a history of substance dependency. In this article, we present a Multi-level Risk Model…
ERIC Educational Resources Information Center
Powell, Joshua E.; Powell, Anna L.; Petrosko, Joseph M.
2015-01-01
We surveyed public school educators on the workplace incivility and workplace bullying they experienced and obtained their ratings of the organizational climate of the school. We used multilevel modeling to determine the effects of individual-level and school-level predictors. Ratings of school climate were significantly related to incivility and…
Multilevel Analyses of School and Children's Characteristics Associated with Physical Activity
ERIC Educational Resources Information Center
Gomes, Thayse Natacha; dos Santos, Fernanda K.; Zhu, Weimo; Eisenmann, Joey; Maia, José A. R.
2014-01-01
Background: Children spend most of their awake time at school, and it is important to identify individual and school-level correlates of their physical activity (PA) levels. This study aimed to identify the between-school variability in Portuguese children PA and to investigate student and school PA correlates using multilevel modeling. Methods:…
NASA Astrophysics Data System (ADS)
Liu, Y. R.; Li, Y. P.; Huang, G. H.; Zhang, J. L.; Fan, Y. R.
2017-10-01
In this study, a Bayesian-based multilevel factorial analysis (BMFA) method is developed to assess parameter uncertainties and their effects on hydrological model responses. In BMFA, Differential Evolution Adaptive Metropolis (DREAM) algorithm is employed to approximate the posterior distributions of model parameters with Bayesian inference; factorial analysis (FA) technique is used for measuring the specific variations of hydrological responses in terms of posterior distributions to investigate the individual and interactive effects of parameters on model outputs. BMFA is then applied to a case study of the Jinghe River watershed in the Loess Plateau of China to display its validity and applicability. The uncertainties of four sensitive parameters, including soil conservation service runoff curve number to moisture condition II (CN2), soil hydraulic conductivity (SOL_K), plant available water capacity (SOL_AWC), and soil depth (SOL_Z), are investigated. Results reveal that (i) CN2 has positive effect on peak flow, implying that the concentrated rainfall during rainy season can cause infiltration-excess surface flow, which is an considerable contributor to peak flow in this watershed; (ii) SOL_K has positive effect on average flow, implying that the widely distributed cambisols can lead to medium percolation capacity; (iii) the interaction between SOL_AWC and SOL_Z has noticeable effect on the peak flow and their effects are dependent upon each other, which discloses that soil depth can significant influence the processes of plant uptake of soil water in this watershed. Based on the above findings, the significant parameters and the relationship among uncertain parameters can be specified, such that hydrological model's capability for simulating/predicting water resources of the Jinghe River watershed can be improved.
Bittig, Arne T; Uhrmacher, Adelinde M
2017-01-01
Spatio-temporal dynamics of cellular processes can be simulated at different levels of detail, from (deterministic) partial differential equations via the spatial Stochastic Simulation algorithm to tracking Brownian trajectories of individual particles. We present a spatial simulation approach for multi-level rule-based models, which includes dynamically hierarchically nested cellular compartments and entities. Our approach ML-Space combines discrete compartmental dynamics, stochastic spatial approaches in discrete space, and particles moving in continuous space. The rule-based specification language of ML-Space supports concise and compact descriptions of models and to adapt the spatial resolution of models easily.
A Bayesian Multilevel Model for Microcystin Prediction in ...
The frequency of cyanobacteria blooms in North American lakes is increasing. A major concernwith rising cyanobacteria blooms is microcystin, a common cyanobacterial hepatotoxin. Toexplore the conditions that promote high microcystin concentrations, we analyzed the US EPANational Lake Assessment (NLA) dataset collected in the summer of 2007. The NLA datasetis reported for nine eco-regions. We used the results of random forest modeling as a means ofvariable selection from which we developed a Bayesian multilevel model of microcystin concentrations.Model parameters under a multilevel modeling framework are eco-region specific, butthey are also assumed to be exchangeable across eco-regions for broad continental scaling. Theexchangeability assumption ensures that both the common patterns and eco-region specific featureswill be reflected in the model. Furthermore, the method incorporates appropriate estimatesof uncertainty. Our preliminary results show associations between microcystin and turbidity, totalnutrients, and N:P ratios. The NLA 2012 will be used for Bayesian updating. The results willhelp develop management strategies to alleviate microcystin impacts and improve lake quality. This work provides a probabilistic framework for predicting microcystin presences in lakes. It would allow for insights to be made about how changes in nutrient concentrations could potentially change toxin levels.
Ng, Edmond S-W; Diaz-Ordaz, Karla; Grieve, Richard; Nixon, Richard M; Thompson, Simon G; Carpenter, James R
2016-10-01
Multilevel models provide a flexible modelling framework for cost-effectiveness analyses that use cluster randomised trial data. However, there is a lack of guidance on how to choose the most appropriate multilevel models. This paper illustrates an approach for deciding what level of model complexity is warranted; in particular how best to accommodate complex variance-covariance structures, right-skewed costs and missing data. Our proposed models differ according to whether or not they allow individual-level variances and correlations to differ across treatment arms or clusters and by the assumed cost distribution (Normal, Gamma, Inverse Gaussian). The models are fitted by Markov chain Monte Carlo methods. Our approach to model choice is based on four main criteria: the characteristics of the data, model pre-specification informed by the previous literature, diagnostic plots and assessment of model appropriateness. This is illustrated by re-analysing a previous cost-effectiveness analysis that uses data from a cluster randomised trial. We find that the most useful criterion for model choice was the deviance information criterion, which distinguishes amongst models with alternative variance-covariance structures, as well as between those with different cost distributions. This strategy for model choice can help cost-effectiveness analyses provide reliable inferences for policy-making when using cluster trials, including those with missing data. © The Author(s) 2013.
Relating Measurement Invariance, Cross-Level Invariance, and Multilevel Reliability.
Jak, Suzanne; Jorgensen, Terrence D
2017-01-01
Data often have a nested, multilevel structure, for example when data are collected from children in classrooms. This kind of data complicate the evaluation of reliability and measurement invariance, because several properties can be evaluated at both the individual level and the cluster level, as well as across levels. For example, cross-level invariance implies equal factor loadings across levels, which is needed to give latent variables at the two levels a similar interpretation. Reliability at a specific level refers to the ratio of true score variance over total variance at that level. This paper aims to shine light on the relation between reliability, cross-level invariance, and strong factorial invariance across clusters in multilevel data. Specifically, we will illustrate how strong factorial invariance across clusters implies cross-level invariance and perfect reliability at the between level in multilevel factor models.
A Multilevel, Hierarchical Sampling Technique for Spatially Correlated Random Fields
Osborn, Sarah; Vassilevski, Panayot S.; Villa, Umberto
2017-10-26
In this paper, we propose an alternative method to generate samples of a spatially correlated random field with applications to large-scale problems for forward propagation of uncertainty. A classical approach for generating these samples is the Karhunen--Loève (KL) decomposition. However, the KL expansion requires solving a dense eigenvalue problem and is therefore computationally infeasible for large-scale problems. Sampling methods based on stochastic partial differential equations provide a highly scalable way to sample Gaussian fields, but the resulting parametrization is mesh dependent. We propose a multilevel decomposition of the stochastic field to allow for scalable, hierarchical sampling based on solving amore » mixed finite element formulation of a stochastic reaction-diffusion equation with a random, white noise source function. Lastly, numerical experiments are presented to demonstrate the scalability of the sampling method as well as numerical results of multilevel Monte Carlo simulations for a subsurface porous media flow application using the proposed sampling method.« less
A Multilevel, Hierarchical Sampling Technique for Spatially Correlated Random Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborn, Sarah; Vassilevski, Panayot S.; Villa, Umberto
In this paper, we propose an alternative method to generate samples of a spatially correlated random field with applications to large-scale problems for forward propagation of uncertainty. A classical approach for generating these samples is the Karhunen--Loève (KL) decomposition. However, the KL expansion requires solving a dense eigenvalue problem and is therefore computationally infeasible for large-scale problems. Sampling methods based on stochastic partial differential equations provide a highly scalable way to sample Gaussian fields, but the resulting parametrization is mesh dependent. We propose a multilevel decomposition of the stochastic field to allow for scalable, hierarchical sampling based on solving amore » mixed finite element formulation of a stochastic reaction-diffusion equation with a random, white noise source function. Lastly, numerical experiments are presented to demonstrate the scalability of the sampling method as well as numerical results of multilevel Monte Carlo simulations for a subsurface porous media flow application using the proposed sampling method.« less
Gain and power optimization of the wireless optical system with multilevel modulation.
Liu, Xian
2008-06-01
When used in an outdoor environment to expedite networking access, the performance of wireless optical communication systems is affected by transmitter sway. In the design of such systems, much attention has been paid to developing power-efficient schemes. However, the bandwidth efficiency is also an important issue. One of the most natural approaches to promote bandwidth efficiency is to use multilevel modulation. This leads to multilevel pulse amplitude modulation in the context of intensity modulation and direct detection. We develop a model based on the four-level pulse amplitude modulation. We show that the model can be formulated as an optimization problem in terms of the transmitter power, bit error probability, transmitter gain, and receiver gain. The technical challenges raised by modeling and solving the problem include the analytical and numerical treatments for the improper integrals of the Gaussian functions coupled with the erfc function. The results demonstrate that, at the optimal points, the power penalty paid to the doubled bandwidth efficiency is around 3 dB.
NASA Technical Reports Server (NTRS)
Schmidt, R. J.; Dodds, R. H., Jr.
1985-01-01
The dynamic analysis of complex structural systems using the finite element method and multilevel substructured models is presented. The fixed-interface method is selected for substructure reduction because of its efficiency, accuracy, and adaptability to restart and reanalysis. This method is extended to reduction of substructures which are themselves composed of reduced substructures. The implementation and performance of the method in a general purpose software system is emphasized. Solution algorithms consistent with the chosen data structures are presented. It is demonstrated that successful finite element software requires the use of software executives to supplement the algorithmic language. The complexity of the implementation of restart and reanalysis porcedures illustrates the need for executive systems to support the noncomputational aspects of the software. It is shown that significant computational efficiencies can be achieved through proper use of substructuring and reduction technbiques without sacrificing solution accuracy. The restart and reanalysis capabilities and the flexible procedures for multilevel substructured modeling gives economical yet accurate analyses of complex structural systems.
A multilevel model for comorbid outcomes: obesity and diabetes in the US.
Congdon, Peter
2010-02-01
Multilevel models are overwhelmingly applied to single health outcomes, but when two or more health conditions are closely related, it is important that contextual variation in their joint prevalence (e.g., variations over different geographic settings) is considered. A multinomial multilevel logit regression approach for analysing joint prevalence is proposed here that includes subject level risk factors (e.g., age, race, education) while also taking account of geographic context. Data from a US population health survey (the 2007 Behavioral Risk Factor Surveillance System or BRFSS) are used to illustrate the method, with a six category multinomial outcome defined by diabetic status and weight category (obese, overweight, normal). The influence of geographic context is partly represented by known geographic variables (e.g., county poverty), and partly by a model for latent area influences. In particular, a shared latent variable (common factor) approach is proposed to measure the impact of unobserved area influences on joint weight and diabetes status, with the latent variable being spatially structured to reflect geographic clustering in risk.
NASA Astrophysics Data System (ADS)
Sun, Li; Wang, Deyu
2011-09-01
A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of high time cost in adopting a rational-based optimal design method for ship structural design. Furthermore, the method was verified by its effective application in optimization of the mid-ship section of a container ship. A full 3-D FEM model of a ship, suffering static and quasi-static loads, was used as the analyzing object for evaluating the structural performance of the mid-ship module, including static strength and buckling performance. Research results reveal that this new method could substantially reduce the computational cost of the rational-based optimization problem without decreasing its accuracy, which increases the feasibility and economic efficiency of using a rational-based optimal design method in ship structural design.
Multivariate Longitudinal Analysis with Bivariate Correlation Test
Adjakossa, Eric Houngla; Sadissou, Ibrahim; Hounkonnou, Mahouton Norbert; Nuel, Gregory
2016-01-01
In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model’s parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated. PMID:27537692
Liu, Nancy H.; Daumit, Gail L.; Dua, Tarun; Aquila, Ralph; Charlson, Fiona; Cuijpers, Pim; Druss, Benjamin; Dudek, Kenn; Freeman, Melvyn; Fujii, Chiyo; Gaebel, Wolfgang; Hegerl, Ulrich; Levav, Itzhak; Munk Laursen, Thomas; Ma, Hong; Maj, Mario; Elena Medina‐Mora, Maria; Nordentoft, Merete; Prabhakaran, Dorairaj; Pratt, Karen; Prince, Martin; Rangaswamy, Thara; Shiers, David; Susser, Ezra; Thornicroft, Graham; Wahlbeck, Kristian; Fekadu Wassie, Abe; Whiteford, Harvey; Saxena, Shekhar
2017-01-01
Excess mortality in persons with severe mental disorders (SMD) is a major public health challenge that warrants action. The number and scope of truly tested interventions in this area remain limited, and strategies for implementation and scaling up of programmes with a strong evidence base are scarce. Furthermore, the majority of available interventions focus on a single or an otherwise limited number of risk factors. Here we present a multilevel model highlighting risk factors for excess mortality in persons with SMD at the individual, health system and socio‐environmental levels. Informed by that model, we describe a comprehensive framework that may be useful for designing, implementing and evaluating interventions and programmes to reduce excess mortality in persons with SMD. This framework includes individual‐focused, health system‐focused, and community level and policy‐focused interventions. Incorporating lessons learned from the multilevel model of risk and the comprehensive intervention framework, we identify priorities for clinical practice, policy and research agendas. PMID:28127922
Zhang, Qi-Jian; Miao, Shi-Feng; Li, Hua; He, Jing-Hui; Li, Na-Jun; Xu, Qing-Feng; Chen, Dong-Yun; Lu, Jian-Mei
2017-06-19
Small-molecule-based multilevel memory devices have attracted increasing attention because of their advantages, such as super-high storage density, fast reading speed, light weight, low energy consumption, and shock resistance. However, the fabrication of small-molecule-based devices always requires expensive vacuum-deposition techniques or high temperatures for spin-coating. Herein, through rational tailoring of a previous molecule, DPCNCANA (4,4'-(6,6'-bis(2-octyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)-9H,9'H-[3,3'-bicarbazole]-9,9'-diyl)dibenzonitrile), a novel bat-shaped A-D-A-type (A-D-A=acceptor-donor-acceptor) symmetric framework has been successfully synthesized and can be dissolved in common solvents at room temperature. Additionally, it has a low-energy bandgap and dense intramolecular stacking in the film state. The solution-processed memory devices exhibited high-performance nonvolatile multilevel data-storage properties with low switching threshold voltages of about -1.3 and -2.7 V, which is beneficial for low power consumption. Our result should prompt the study of highly efficient solution-processed multilevel memory devices in the field of organic electronics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jeon, Seokwoo; Shir, Daniel J.; Nam, Yun Suk; ...
2007-05-08
This paper introduces approaches that combine micro/nanomolding, or nanoimprinting, techniques with proximity optical phase mask lithographic methods to form three dimensional (3D) nanostructures in thick, transparent layers of photopolymers. The results demonstrate three strategies of this type, where molded relief structures in these photopolymers represent (i) fine (<1 μm) features that serve as the phase masks for their own exposure, (ii) coarse features (>1 μm) that are used with phase masks to provide access to large structure dimensions, and (iii) fine structures that are used together phase masks to achieve large, multilevel phase modulations. Several examples are provided, together withmore » optical modeling of the fabrication process and the transmission properties of certain of the fabricated structures. Lastly, these approaches provide capabilities in 3D fabrication that complement those of other techniques, with potential applications in photonics, microfluidics, drug delivery and other areas.« less
Lüdtke, Oliver; Marsh, Herbert W; Robitzsch, Alexander; Trautwein, Ulrich
2011-12-01
In multilevel modeling, group-level variables (L2) for assessing contextual effects are frequently generated by aggregating variables from a lower level (L1). A major problem of contextual analyses in the social sciences is that there is no error-free measurement of constructs. In the present article, 2 types of error occurring in multilevel data when estimating contextual effects are distinguished: unreliability that is due to measurement error and unreliability that is due to sampling error. The fact that studies may or may not correct for these 2 types of error can be translated into a 2 × 2 taxonomy of multilevel latent contextual models comprising 4 approaches: an uncorrected approach, partial correction approaches correcting for either measurement or sampling error (but not both), and a full correction approach that adjusts for both sources of error. It is shown mathematically and with simulated data that the uncorrected and partial correction approaches can result in substantially biased estimates of contextual effects, depending on the number of L1 individuals per group, the number of groups, the intraclass correlation, the number of indicators, and the size of the factor loadings. However, the simulation study also shows that partial correction approaches can outperform full correction approaches when the data provide only limited information in terms of the L2 construct (i.e., small number of groups, low intraclass correlation). A real-data application from educational psychology is used to illustrate the different approaches.
Shore, Benjamin J; Smith, Katherine R; Riazi, Arash; Symons, Sean B V; Khot, Abhay; Graham, Kerr
2013-06-01
We studied the use of cortico-cancellous circular allograft combined with cannulated screw fixation for the correction of dorsolateral peritalar subluxation in a series of children with bilateral spastic cerebral palsy undergoing single event multilevel surgery. Forty-six children who underwent bilateral subtalar fusion between January 1999 and December 2004 were retrospectively reviewed. Gait laboratory records, Gross Motor Function Classification System (GMFCS) levels, Functional Mobility Scale (FMS) scores, and radiographs were reviewed. The surgical technique used an Ollier type incision with a precut cortico-cancellous allograft press-fit into the prepared sinus tarsi. One or two 7.3 mm fully threaded cancellous screws were used to fix the subtalar joint. Radiographic analysis included preoperative and postoperative standing lateral radiographs measuring the lateral talocalcaneal angle, lateral talo-first metatarsal angle, and navicular cuboid overlap. Fusion rate was assessed with radiographs >12 months after surgery. The mean patient age was 12.9 years (range, 7.8 to 18.4 y) with an average follow-up of 55 months. Statistically significant improvement postoperatively was found for all 3 radiographic indices: lateral talocalcaneal angle, mean improvement 20 degrees (95% CI, 17.5-22.1; P<0.001); lateral talo-first metatarsal angle, mean improvement 21 degrees (95% CI, 19.2-23.4; P<0.001); and navicular cuboid overlap, mean improvement 29% (95% CI, 25.7%-32.6%; P<0.001). FMS improved across all patients, with Gross Motor Function Classification System III children experiencing a 70% improvement across all 3 FMS distances (5, 50, and 500 m). All 3 radiographic measures improved significantly (P<0.001). Fusion was achieved in 45 patients and there were no wound complications. With this study, we demonstrate significant improvement in radiographic segmental alignment and overall function outcome with this modified subtalar fusion technique. We conclude that this technique is an effective complement for children with dorsolateral peritalar subluxation undergoing single event multilevel surgery. Level IV.
Johnson, Sara B; Little, Todd D; Masyn, Katherine; Mehta, Paras D; Ghazarian, Sharon R
2017-06-01
Characterizing the determinants of child health and development over time, and identifying the mechanisms by which these determinants operate, is a research priority. The growth of precision medicine has increased awareness and refinement of conceptual frameworks, data management systems, and analytic methods for multilevel data. This article reviews key methodological challenges in cohort studies designed to investigate multilevel influences on child health and strategies to address them. We review and summarize methodological challenges that could undermine prospective studies of the multilevel determinants of child health and ways to address them, borrowing approaches from the social and behavioral sciences. Nested data, variation in intervals of data collection and assessment, missing data, construct measurement across development and reporters, and unobserved population heterogeneity pose challenges in prospective multilevel cohort studies with children. We discuss innovations in missing data, innovations in person-oriented analyses, and innovations in multilevel modeling to address these challenges. Study design and analytic approaches that facilitate the integration across multiple levels, and that account for changes in people and the multiple, dynamic, nested systems in which they participate over time, are crucial to fully realize the promise of precision medicine for children and adolescents. Copyright © 2017 Elsevier Inc. All rights reserved.
Tzavidis, Nikos; Salvati, Nicola; Schmid, Timo; Flouri, Eirini; Midouhas, Emily
2016-02-01
Multilevel modelling is a popular approach for longitudinal data analysis. Statistical models conventionally target a parameter at the centre of a distribution. However, when the distribution of the data is asymmetric, modelling other location parameters, e.g. percentiles, may be more informative. We present a new approach, M -quantile random-effects regression, for modelling multilevel data. The proposed method is used for modelling location parameters of the distribution of the strengths and difficulties questionnaire scores of children in England who participate in the Millennium Cohort Study. Quantile mixed models are also considered. The analyses offer insights to child psychologists about the differential effects of risk factors on children's outcomes.
ERIC Educational Resources Information Center
Zee, Marjolein; de Jong, Peter F.; Koomen, Helma M. Y.
2016-01-01
The present study examined teachers' domain-specific self-efficacy (TSE) in relation to individual students with a variety of social-emotional behaviors in class. Using a sample of 526 third- to sixth-grade students and 69 teachers, multilevel modeling was conducted to examine students' externalizing, internalizing, and prosocial behaviors as…
Multilevel Analysis of the Effects of Antidiscrimination Policies on Earnings by Sexual Orientation
ERIC Educational Resources Information Center
Klawitter, Marieka
2011-01-01
This study uses the 2000 U.S. Census data to assess the impact of antidiscrimination policies for sexual orientation on earnings for gays and lesbians. Using a multilevel model allows estimation of the effects of state and local policies on earnings and of variation in the effects of sexual orientation across local labor markets. The results…
Fluid Intelligence as a Predictor of Learning: A Longitudinal Multilevel Approach Applied to Math
ERIC Educational Resources Information Center
Primi, Ricardo; Ferrao, Maria Eugenia; Almeida, Leandro S.
2010-01-01
The association between fluid intelligence and inter-individual differences was investigated using multilevel growth curve modeling applied to data measuring intra-individual improvement on math achievement tests. A sample of 166 students (88 boys and 78 girls), ranging in age from 11 to 14 (M = 12.3, SD = 0.64), was tested. These individuals took…
ERIC Educational Resources Information Center
Lai, Mark H. C.; Kwok, Oi-man
2015-01-01
Educational researchers commonly use the rule of thumb of "design effect smaller than 2" as the justification of not accounting for the multilevel or clustered structure in their data. The rule, however, has not yet been systematically studied in previous research. In the present study, we generated data from three different models…
Multi-focus and multi-level techniques for visualization and analysis of networks with thematic data
NASA Astrophysics Data System (ADS)
Cossalter, Michele; Mengshoel, Ole J.; Selker, Ted
2013-01-01
Information-rich data sets bring several challenges in the areas of visualization and analysis, even when associated with node-link network visualizations. This paper presents an integration of multi-focus and multi-level techniques that enable interactive, multi-step comparisons in node-link networks. We describe NetEx, a visualization tool that enables users to simultaneously explore different parts of a network and its thematic data, such as time series or conditional probability tables. NetEx, implemented as a Cytoscape plug-in, has been applied to the analysis of electrical power networks, Bayesian networks, and the Enron e-mail repository. In this paper we briefly discuss visualization and analysis of the Enron social network, but focus on data from an electrical power network. Specifically, we demonstrate how NetEx supports the analytical task of electrical power system fault diagnosis. Results from a user study with 25 subjects suggest that NetEx enables more accurate isolation of complex faults compared to an especially designed software tool.
NASA Technical Reports Server (NTRS)
Baker, G. R.; Fethe, T. P.
1975-01-01
Research in the application of remotely sensed data from LANDSAT or other airborne platforms to the efficient management of a large timber based forest industry was divided into three phases: (1) establishment of a photo/ground sample correlation, (2) investigation of techniques for multi-spectral digital analysis, and (3) development of a semi-automated multi-level sampling system. To properly verify results, three distinct test areas were selected: (1) Jacksonville Mill Region, Lower Coastal Plain, Flatwoods, (2) Pensacola Mill Region, Middle Coastal Plain, and (3) Mississippi Mill Region, Middle Coastal Plain. The following conclusions were reached: (1) the probability of establishing an information base suitable for management requirements through a photo/ground double sampling procedure, alleviating the ground sampling effort, is encouraging, (2) known classification techniques must be investigated to ascertain the level of precision possible in separating the many densities involved, and (3) the multi-level approach must be related to an information system that is executable and feasible.
Modelling the Evolution of Social Structure
Sutcliffe, A. G.; Dunbar, R. I. M.; Wang, D.
2016-01-01
Although simple social structures are more common in animal societies, some taxa (mainly mammals) have complex, multi-level social systems, in which the levels reflect differential association. We develop a simulation model to explore the conditions under which multi-level social systems of this kind evolve. Our model focuses on the evolutionary trade-offs between foraging and social interaction, and explores the impact of alternative strategies for distributing social interaction, with fitness criteria for wellbeing, alliance formation, risk, stress and access to food resources that reward social strategies differentially. The results suggest that multi-level social structures characterised by a few strong relationships, more medium ties and large numbers of weak ties emerge only in a small part of the overall fitness landscape, namely where there are significant fitness benefits from wellbeing and alliance formation and there are high levels of social interaction. In contrast, ‘favour-the-few’ strategies are more competitive under a wide range of fitness conditions, including those producing homogeneous, single-level societies of the kind found in many birds and mammals. The simulations suggest that the development of complex, multi-level social structures of the kind found in many primates (including humans) depends on a capacity for high investment in social time, preferential social interaction strategies, high mortality risk and/or differential reproduction. These conditions are characteristic of only a few mammalian taxa. PMID:27427758
Kaufman, Michelle R; Cornish, Flora; Zimmerman, Rick S; Johnson, Blair T
2014-08-15
Despite increasing recent emphasis on the social and structural determinants of HIV-related behavior, empirical research and interventions lag behind, partly because of the complexity of social-structural approaches. This article provides a comprehensive and practical review of the diverse literature on multi-level approaches to HIV-related behavior change in the interest of contributing to the ongoing shift to more holistic theory, research, and practice. It has the following specific aims: (1) to provide a comprehensive list of relevant variables/factors related to behavior change at all points on the individual-structural spectrum, (2) to map out and compare the characteristics of important recent multi-level models, (3) to reflect on the challenges of operating with such complex theoretical tools, and (4) to identify next steps and make actionable recommendations. Using a multi-level approach implies incorporating increasing numbers of variables and increasingly context-specific mechanisms, overall producing greater intricacies. We conclude with recommendations on how best to respond to this complexity, which include: using formative research and interdisciplinary collaboration to select the most appropriate levels and variables in a given context; measuring social and institutional variables at the appropriate level to ensure meaningful assessments of multiple levels are made; and conceptualizing intervention and research with reference to theoretical models and mechanisms to facilitate transferability, sustainability, and scalability.
Recommendations for level-determined sampling in wells
NASA Astrophysics Data System (ADS)
Lerner, David N.; Teutsch, Georg
1995-10-01
Level-determined samples of groundwater are increasingly important for hydrogeological studies. The techniques for collecting them range from the use of purpose drilled wells, sometimes with sophisticated dedicated multi-level samplers in them, to a variety of methods used in open wells. Open, often existing, wells are frequently used on cost grounds, but there are risks of obtaining poor and unrepresentative samples. Alternative approaches to level-determined sampling incorporate seven concepts: depth sampling; packer systems; individual wells; dedicated multi-level systems; separation pumping; baffle systems; multi-port sock samplers. These are outlined and evaluated in terms of the environment to be sampled, and the features and performance of the methods. Recommendations are offered to match methods to sampling problems.
The performance of trellis coded multilevel DPSK on a fading mobile satellite channel
NASA Technical Reports Server (NTRS)
Simon, Marvin K.; Divsalar, Dariush
1987-01-01
The performance of trellis coded multilevel differential phase-shift-keying (MDPSK) over Rician and Rayleigh fading channels is discussed. For operation at L-Band, this signalling technique leads to a more robust system than the coherent system with dual pilot tone calibration previously proposed for UHF. The results are obtained using a combination of analysis and simulation. The analysis shows that the design criterion for trellis codes to be operated on fading channels with interleaving/deinterleaving is no longer free Euclidean distance. The correct design criterion for optimizing bit error probability of trellis coded MDPSK over fading channels will be presented along with examples illustrating its application.
Design of shared unit-dose drug distribution network using multi-level particle swarm optimization.
Chen, Linjie; Monteiro, Thibaud; Wang, Tao; Marcon, Eric
2018-03-01
Unit-dose drug distribution systems provide optimal choices in terms of medication security and efficiency for organizing the drug-use process in large hospitals. As small hospitals have to share such automatic systems for economic reasons, the structure of their logistic organization becomes a very sensitive issue. In the research reported here, we develop a generalized multi-level optimization method - multi-level particle swarm optimization (MLPSO) - to design a shared unit-dose drug distribution network. Structurally, the problem studied can be considered as a type of capacitated location-routing problem (CLRP) with new constraints related to specific production planning. This kind of problem implies that a multi-level optimization should be performed in order to minimize logistic operating costs. Our results show that with the proposed algorithm, a more suitable modeling framework, as well as computational time savings and better optimization performance are obtained than that reported in the literature on this subject.
Multilevel animal societies can emerge from cultural transmission
Cantor, Maurício; Shoemaker, Lauren G.; Cabral, Reniel B.; Flores, César O.; Varga, Melinda; Whitehead, Hal
2015-01-01
Multilevel societies, containing hierarchically nested social levels, are remarkable social structures whose origins are unclear. The social relationships of sperm whales are organized in a multilevel society with an upper level composed of clans of individuals communicating using similar patterns of clicks (codas). Using agent-based models informed by an 18-year empirical study, we show that clans are unlikely products of stochastic processes (genetic or cultural drift) but likely originate from cultural transmission via biased social learning of codas. Distinct clusters of individuals with similar acoustic repertoires, mirroring the empirical clans, emerge when whales learn preferentially the most common codas (conformism) from behaviourally similar individuals (homophily). Cultural transmission seems key in the partitioning of sperm whales into sympatric clans. These findings suggest that processes similar to those that generate complex human cultures could not only be at play in non-human societies but also create multilevel social structures in the wild. PMID:26348688
NASA Astrophysics Data System (ADS)
Crevillén-García, D.; Power, H.
2017-08-01
In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen-Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error.
Cuadrado, Esther; Tabernero, Carmen
2015-01-01
Little research has focused on how individual- and team-level characteristics jointly influence, via interaction, how prosocially individuals behave in teams and few studies have considered the potential influence of team context on prosocial behavior. Using a multilevel perspective, we examined the relationships between individual (affective balance) and group (team prosocial efficacy and team trust) level variables and prosocial behavior towards team members. The participants were 123 students nested in 45 small teams. A series of multilevel random models was estimated using hierarchical linear and nonlinear modeling. Individuals were more likely to behave prosocially towards in-group members when they were feeling good. Furthermore, the relationship between positive affective balance and prosocial behavior was stronger in teams with higher team prosocial efficacy levels as well as in teams with higher team trust levels. Finally, the relevance of team trust had a stronger influence on behavior than team prosocial efficacy.
Multilevel modeling: overview and applications to research in counseling psychology.
Kahn, Jeffrey H
2011-04-01
Multilevel modeling (MLM) is rapidly becoming the standard method of analyzing nested data, for example, data from students within multiple schools, data on multiple clients seen by a smaller number of therapists, and even longitudinal data. Although MLM analyses are likely to increase in frequency in counseling psychology research, many readers of counseling psychology journals have had only limited exposure to MLM concepts. This paper provides an overview of MLM that blends mathematical concepts with examples drawn from counseling psychology. This tutorial is intended to be a first step in learning about MLM; readers are referred to other sources for more advanced explorations of MLM. In addition to being a tutorial for understanding and perhaps even conducting MLM analyses, this paper reviews recent research in counseling psychology that has adopted a multilevel framework, and it provides ideas for MLM approaches to future research in counseling psychology. 2011 APA, all rights reserved
Portoghese, Igor; Galletta, Maura; Burdorf, Alex; Cocco, Pierluigi; D'Aloja, Ernesto; Campagna, Marcello
2017-10-01
The aim of the study was to examine the relationship between role stress, emotional exhaustion, and a supportive coworker climate among health care workers, by adopting a multilevel perspective. Aggregated data of 738 health care workers nested within 67 teams of three Italian hospitals were collected. Multilevel regression analysis with a random intercept model was used. Hierarchical linear modeling showed that a lack of role clarity was significantly linked to emotional exhaustion at the individual level. At the unit level, the cross-level interaction revealed that a supportive coworker climate moderated the relationship between lack of role clarity and emotional exhaustion. This study supports previous results of single-level burnout studies, extending the existing literature with evidence on the multidimensional and cross-level interaction associations of a supportive coworker climate as a key aspect of job resources on burnout.
Crevillén-García, D; Power, H
2017-08-01
In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen-Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error.
Power, H.
2017-01-01
In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen–Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error. PMID:28878974
NOVA: A new multi-level logic simulator
NASA Technical Reports Server (NTRS)
Miles, L.; Prins, P.; Cameron, K.; Shovic, J.
1990-01-01
A new logic simulator that was developed at the NASA Space Engineering Research Center for VLSI Design was described. The simulator is multi-level, being able to simulate from the switch level through the functional model level. NOVA is currently in the Beta test phase and was used to simulate chips designed for the NASA Space Station and the Explorer missions. A new algorithm was devised to simulate bi-directional pass transistors and a preliminary version of the algorithm is presented. The usage of functional models in NOVA is also described and performance figures are presented.
A multilevel modelling approach to analysis of patient costs under managed care.
Carey, K
2000-07-01
The growth of the managed care model of health care delivery in the USA has led to broadened interest in the performance of health care providers. This paper uses multilevel modelling to analyse the effects of managed care penetration on patient level costs for a sample of 24 medical centres operated by the Veterans Health Administration (VHA). The appropriateness of a two level approach to this problem over ordinary least squares (OLS) is demonstrated. Results indicate a modicum of difference in institutions' performance after controlling for patient effects. Facilities more heavily penetrated by the managed care model may be more effective at controlling costs of their sicker patients. Copyright 2000 John Wiley & Sons, Ltd.
Guenole, Nigel
2016-01-01
We describe a Monte Carlo study examining the impact of assuming item isomorphism (i.e., equivalent construct meaning across levels of analysis) on conclusions about homology (i.e., equivalent structural relations across levels of analysis) under varying degrees of non-isomorphism in the context of ordinal indicator multilevel structural equation models (MSEMs). We focus on the condition where one or more loadings are higher on the between level than on the within level to show that while much past research on homology has ignored the issue of psychometric isomorphism, psychometric isomorphism is in fact critical to valid conclusions about homology. More specifically, when a measurement model with non-isomorphic items occupies an exogenous position in a multilevel structural model and the non-isomorphism of these items is not modeled, the within level exogenous latent variance is under-estimated leading to over-estimation of the within level structural coefficient, while the between level exogenous latent variance is overestimated leading to underestimation of the between structural coefficient. When a measurement model with non-isomorphic items occupies an endogenous position in a multilevel structural model and the non-isomorphism of these items is not modeled, the endogenous within level latent variance is under-estimated leading to under-estimation of the within level structural coefficient while the endogenous between level latent variance is over-estimated leading to over-estimation of the between level structural coefficient. The innovative aspect of this article is demonstrating that even minor violations of psychometric isomorphism render claims of homology untenable. We also show that posterior predictive p-values for ordinal indicator Bayesian MSEMs are insensitive to violations of isomorphism even when they lead to severely biased within and between level structural parameters. We highlight conditions where poor estimation of even correctly specified models rules out empirical examination of isomorphism and homology without taking precautions, for instance, larger Level-2 sample sizes, or using informative priors.
Guenole, Nigel
2016-01-01
We describe a Monte Carlo study examining the impact of assuming item isomorphism (i.e., equivalent construct meaning across levels of analysis) on conclusions about homology (i.e., equivalent structural relations across levels of analysis) under varying degrees of non-isomorphism in the context of ordinal indicator multilevel structural equation models (MSEMs). We focus on the condition where one or more loadings are higher on the between level than on the within level to show that while much past research on homology has ignored the issue of psychometric isomorphism, psychometric isomorphism is in fact critical to valid conclusions about homology. More specifically, when a measurement model with non-isomorphic items occupies an exogenous position in a multilevel structural model and the non-isomorphism of these items is not modeled, the within level exogenous latent variance is under-estimated leading to over-estimation of the within level structural coefficient, while the between level exogenous latent variance is overestimated leading to underestimation of the between structural coefficient. When a measurement model with non-isomorphic items occupies an endogenous position in a multilevel structural model and the non-isomorphism of these items is not modeled, the endogenous within level latent variance is under-estimated leading to under-estimation of the within level structural coefficient while the endogenous between level latent variance is over-estimated leading to over-estimation of the between level structural coefficient. The innovative aspect of this article is demonstrating that even minor violations of psychometric isomorphism render claims of homology untenable. We also show that posterior predictive p-values for ordinal indicator Bayesian MSEMs are insensitive to violations of isomorphism even when they lead to severely biased within and between level structural parameters. We highlight conditions where poor estimation of even correctly specified models rules out empirical examination of isomorphism and homology without taking precautions, for instance, larger Level-2 sample sizes, or using informative priors. PMID:26973580
The dynamics of sex ratio evolution: from the gene perspective to multilevel selection.
Argasinski, Krzysztof
2013-01-01
The new dynamical game theoretic model of sex ratio evolution emphasizes the role of males as passive carriers of sex ratio genes. This shows inconsistency between population genetic models of sex ratio evolution and classical strategic models. In this work a novel technique of change of coordinates will be applied to the new model. This will reveal new aspects of the modelled phenomenon which cannot be shown or proven in the original formulation. The underlying goal is to describe the dynamics of selection of particular genes in the entire population, instead of in the same sex subpopulation, as in the previous paper and earlier population genetics approaches. This allows for analytical derivation of the unbiased strategic model from the model with rigorous non-simplified genetics. In effect, an alternative system of replicator equations is derived. It contains two subsystems: the first describes changes in gene frequencies (this is an alternative unbiased formalization of the Fisher-Dusing argument), whereas the second describes changes in the sex ratios in subpopulations of carriers of genes for each strategy. An intriguing analytical result of this work is that the fitness of a gene depends on the current sex ratio in the subpopulation of its carriers, not on the encoded individual strategy. Thus, the argument of the gene fitness function is not constant but is determined by the trajectory of the sex ratio among carriers of that gene. This aspect of the modelled phenomenon cannot be revealed by the static analysis. Dynamics of the sex ratio among gene carriers is driven by a dynamic "tug of war" between female carriers expressing the encoded strategic trait value and random partners of male carriers expressing the average population strategy (a primary sex ratio). This mechanism can be called "double-level selection". Therefore, gene interest perspective leads to multi-level selection.
ERIC Educational Resources Information Center
Thum, Yeow Meng; Bhattacharya, Suman Kumar
To better describe individual behavior within a system, this paper uses a sample of longitudinal test scores from a large urban school system to consider hierarchical Bayes estimation of a multilevel linear regression model in which each individual regression slope of test score on time switches at some unknown point in time, "kj."…
ERIC Educational Resources Information Center
Fetter, Gary; Shockley, Jeff
2014-01-01
Instructors look for ways to explain to students how supply chains can be constructed so that competing suppliers can work together to improve inventory management performance (i.e., a phenomenon known as co-opetition). An Excel spreadsheet-driven simulation is presented that models a complete multilevel supply chain system--customer, retailer,…
Level and Change of Bullying Behavior during High School: A Multilevel Growth Curve Analysis
ERIC Educational Resources Information Center
Nocentini, Annalaura; Menesini, Ersilia; Salmivalli, Christina
2013-01-01
The development of bullying behavior was examined across three years in a sample of 515 adolescents (46% females) from 41 classrooms. At time 1, the students were in grades 9 and 10 (mean age = 14.5 years; SD = 0.54). Results of a multilevel growth model showed that both baseline level and change of bullying varied significantly across individuals…
ERIC Educational Resources Information Center
McArdle, John J.; Paskus, Thomas S.; Boker, Steven M.
2013-01-01
This is an application of contemporary multilevel regression modeling to the prediction of academic performances of 1st-year college students. At a first level of analysis, the data come from N greater than 16,000 students who were college freshman in 1994-1995 and who were also participants in high-level college athletics. At a second level of…
ERIC Educational Resources Information Center
Modin, Bitte; Ostberg, Viveca; Toivanen, Susanna; Sundell, Knut
2011-01-01
This study explores the psychosocial working conditions of 7930 Swedish 9th grade students, distributed over 475 classes and 130 schools, in relation to their subjective health using multilevel modeling. At the individual level, students with "strained" working conditions in school (i.e. those experiencing a high level of demands in…
ERIC Educational Resources Information Center
Israel, Maya; Wang, Shuai; Marino, Matthew T.
2016-01-01
Extant research reports differential effects related to the efficacy of video games as a means to enhance science instruction. However, there are very few studies examining differences in learning outcomes across student-level independent variables. This study used multilevel modeling to examine the effects of three video game-enhanced life…
ERIC Educational Resources Information Center
Wold, Bente; Torsheim, Torbjorn; Currie, Candace; Roberts, Chris
2004-01-01
The paper examines the association between restrictions on teacher tobacco smoking at school and student exposure to teachers who smoke during school hours. The data are taken from a European Commission-funded study "Control of Adolescent Smoking" (the CAS study) in seven European countries. Multilevel modelling analyses were applied to…
ERIC Educational Resources Information Center
Gebreselassie, Tesfayi; Stephens, Robert L.; Maples, Connie J.; Johnson, Stacy F.; Tucker, Alyce L.
2014-01-01
Predictors of retention of participants in a longitudinal study and heterogeneity between communities were investigated using a multilevel logistic regression model. Data from the longitudinal outcome study of the national evaluation of the Comprehensive Community Mental Health Services for Children and Their Families program and information on…
ERIC Educational Resources Information Center
Özdemir, Caner
2016-01-01
This paper aims to discover the level of equity in the Turkish education system using maths outcomes of 15-year-old students in the Programme for International Student Assessment (PISA) exam. In order to do that, associations between various social background variables and student performance are analysed via multilevel models. Female pupils,…
A Bayesian Multilevel Model for Microcystin Prediction in ...
The frequency of cyanobacteria blooms in North American lakes is increasing. A major concern with rising cyanobacteria blooms is microcystin, a common cyanobacterial hepatotoxin. To explore the conditions that promote high microcystin concentrations, we analyzed the US EPA National Lake Assessment (NLA) dataset collected in the summer of 2007. The NLA dataset is reported for nine eco-regions. We used the results of random forest modeling as a means ofvariable selection from which we developed a Bayesian multilevel model of microcystin concentrations. Model parameters under a multilevel modeling framework are eco-region specific, butthey are also assumed to be exchangeable across eco-regions for broad continental scaling. The exchangeability assumption ensures that both the common patterns and eco-region specific features will be reflected in the model. Furthermore, the method incorporates appropriate estimates of uncertainty. Our preliminary results show associations between microcystin and turbidity, total nutrients, and N:P ratios. Upon release of a comparable 2012 NLA dataset, we will apply Bayesian updating. The results will help develop management strategies to alleviate microcystin impacts and improve lake quality. This work provides a probabilistic framework for predicting microcystin presences in lakes. It would allow for insights to be made about how changes in nutrient concentrations could potentially change toxin levels.
Multilevel joint competing risk models
NASA Astrophysics Data System (ADS)
Karunarathna, G. H. S.; Sooriyarachchi, M. R.
2017-09-01
Joint modeling approaches are often encountered for different outcomes of competing risk time to event and count in many biomedical and epidemiology studies in the presence of cluster effect. Hospital length of stay (LOS) has been the widely used outcome measure in hospital utilization due to the benchmark measurement for measuring multiple terminations such as discharge, transferred, dead and patients who have not completed the event of interest at the follow up period (censored) during hospitalizations. Competing risk models provide a method of addressing such multiple destinations since classical time to event models yield biased results when there are multiple events. In this study, the concept of joint modeling has been applied to the dengue epidemiology in Sri Lanka, 2006-2008 to assess the relationship between different outcomes of LOS and platelet count of dengue patients with the district cluster effect. Two key approaches have been applied to build up the joint scenario. In the first approach, modeling each competing risk separately using the binary logistic model, treating all other events as censored under the multilevel discrete time to event model, while the platelet counts are assumed to follow a lognormal regression model. The second approach is based on the endogeneity effect in the multilevel competing risks and count model. Model parameters were estimated using maximum likelihood based on the Laplace approximation. Moreover, the study reveals that joint modeling approach yield more precise results compared to fitting two separate univariate models, in terms of AIC (Akaike Information Criterion).
Sayers, A; Heron, J; Smith, Adac; Macdonald-Wallis, C; Gilthorpe, M S; Steele, F; Tilling, K
2017-02-01
There is a growing debate with regards to the appropriate methods of analysis of growth trajectories and their association with prospective dependent outcomes. Using the example of childhood growth and adult BP, we conducted an extensive simulation study to explore four two-stage and two joint modelling methods, and compared their bias and coverage in estimation of the (unconditional) association between birth length and later BP, and the association between growth rate and later BP (conditional on birth length). We show that the two-stage method of using multilevel models to estimate growth parameters and relating these to outcome gives unbiased estimates of the conditional associations between growth and outcome. Using simulations, we demonstrate that the simple methods resulted in bias in the presence of measurement error, as did the two-stage multilevel method when looking at the total (unconditional) association of birth length with outcome. The two joint modelling methods gave unbiased results, but using the re-inflated residuals led to undercoverage of the confidence intervals. We conclude that either joint modelling or the simpler two-stage multilevel approach can be used to estimate conditional associations between growth and later outcomes, but that only joint modelling is unbiased with nominal coverage for unconditional associations.
NASA Technical Reports Server (NTRS)
Vinolo, A. R.; Clarke, J. H.
1972-01-01
The gas dynamic structures of the transport shock and the downstream collisional relaxation layer are evaluated for partially ionized monatomic gases. Elastic and inelastic collisional nonequilibrium effects are taken into consideration. Three electronic levels are accounted for in the microscopic model of the atom. Nonequilibrium processes with respect to population of levels and species plus temperature are considered. By using an asymptotic technique the shock morphology is found on a continuum flow basis. The asymptotic procedure gives two distinct layers in which the nonequilibrium effects to be considered are different. A transport shock appears as the inner solution to an outer collisional relaxation layer in which the gas reaches local equilibrium. A family of numerical examples is displayed for different flow regimes. Argon and helium models are used in these examples.
Finger, T; Bayerl, S; Bertog, M; Czabanka, M; Woitzik, J; Vajkoczy, P
2016-11-01
We hypothesised, that the inclusion of the ilium for multilevel lumbosacral fusions reduces the incidence of postoperative sacroiliac joint (SIJ) pain. The primary objective of this study was to compare the frequency of postoperative SIJ pain in patients undergoing multilevel stabilization with and without sacropelvic fixation for multilevel degenerative spine disease. In addition, we aimed at identifying factors that may predict the worsening or new onset of postoperative SIJ pain. A total of 63 patients with multisegmental fusion surgery with a minimum follow up of 12 months were evaluated. 34 patients received sacral fixation (SF group) and 29 patients received an additional sacropelvic fixation device (SPF group). Primary outcome parameters were changes in SIJ pain between the groups and the influence of pelvic parameters, the patient́s age, the patient́s body mass index (BMI) and the length of the stabilization on the SIJ pain. Between the two surgical groups there were no differences concerning age (p=0.3), BMI (p=0.56), length of follow up (p=0.96), length of the construct (p=0.56). In total 31.7% of the patients had a worsening/new onset of SIJ pain after surgery. An additional fixation of the SIJ with iliac screws or iliosacral plate did not have an influence on the SIJ pain (p=0.67). Likewise, pelvic parameters were not predictive for the outcome of the SIJ pain. Only an increased preoperative BMI correlated with a higher chance of a new onset of SIJ pain (p=0.037). In our retrospective study there was no influence of a sacropelvic fixation techniques on the SIJ pain in patients with multilevel degenerative spine disease after multilevel stabilization surgeries. The patients' BMI is the only preoperative factor that correlated with a higher incidence to develop postoperative SIJ pain, independently of the implantation of a sacropelvic fixation device. Copyright © 2016 Elsevier B.V. All rights reserved.
Push pull microfluidics on a multi-level 3D CD.
Thio, Tzer Hwai Gilbert; Ibrahim, Fatimah; Al-Faqheri, Wisam; Moebius, Jacob; Khalid, Noor Sakinah; Soin, Norhayati; Kahar, Maria Kahar Bador Abdul; Madou, Marc
2013-08-21
A technique known as thermo-pneumatic (TP) pumping is used to pump fluids on a microfluidic compact disc (CD) back towards the CD center against the centrifugal force that pushes liquids from the center to the perimeter of the disc. Trapped air expands in a TP air chamber during heating, and this creates positive pressure on liquids located in chambers connected to that chamber. While the TP air chamber and connecting channels are easy to fabricate in a one-level CD manufacturing technique, this approach provides only one way pumping between two chambers, is real-estate hungry and leads to unnecessary heating of liquids in close proximity to the TP chamber. In this paper, we present a novel TP push and pull pumping method which allows for pumping of liquid in any direction between two connected liquid chambers. To ensure that implementation of TP push and pull pumping also addresses the issue of space and heating challenges, a multi-level 3D CD design is developed, and localized forced convection heating, rather than infra-red (IR) is applied. On a multi-level 3D CD, the TP features are placed on a top level separate from the rest of the microfluidic processes that are implemented on a lower separate level. This approach allows for heat shielding of the microfluidic process level, and efficient usage of space on the CD for centrifugal handling of liquids. The use of localized forced convection heating, rather than infra-red (IR) or laser heating in earlier implementations allows not only for TP pumping of liquids while the CD is spinning but also makes heat insulation for TP pumping and other fluidic functions easier. To aid in future implementations of TP push and pull pumping on a multi-level 3D CD, study on CD surface heating is also presented. In this contribution, we also demonstrate an advanced application of pull pumping through the implementation of valve-less switch pumping.
Push pull microfluidics on a multi-level 3D CD
Thio, Tzer Hwai Gilbert; Ibrahim, Fatimah; Al-Faqheri, Wisam; Moebius, Jacob; Khalid, Noor Sakinah; Soin, Norhayati; Kahar, Maria Kahar Bador Abdul; Madou, Marc
2013-01-01
A technique known as thermo-pneumatic (TP) pumping is used to pump fluids on a microfluidic compact disc (CD) back towards the CD center against the centrifugal force that pushes liquids from the center to the perimeter of the disc. Trapped air expands in a TP air chamber during heating, and this creates positive pressure on liquids located in chambers connected to that chamber. While the TP air chamber and connecting channels are easy to fabricate in a one-level CD manufacturing technique, this approach provides only one way pumping between two chambers, is real-estate hungry and leads to unnecessary heating of liquids in close proximity to the TP chamber. In this paper, we present a novel TP push and pull pumping method which allows for pumping of liquid in any direction between two connected liquid chambers. To ensure that implementation of TP push and pull pumping also addresses the issue of space and heating challenges, a multi-level 3D CD design is developed, and localized forced convection heating, rather than infra-red (IR) is applied. On a multi-level 3D CD, the TP features are placed on a top level separate from the rest of the microfluidic processes that are implemented on a lower separate level. This approach allows for heat shielding of the microfluidic process levels, and efficient usage of space on the CD for centrifugal handling of liquids. The use of localized forced convection heating, rather than infra-red (IR) or laser heating in earlier implementations allows not only for TP pumping of liquids while the CD is spinning but also makes heat insulation for TP pumping and other fluidic functions easier. To aid in future implementations of TP push and pull pumping on a multi-level 3D CD, study on CD surface heating is also presented. In this contribution, we also demonstrate an advanced application of pull pumping through the implementation of valve-less switch pumping. PMID:23774994
Is job a viable unit of analysis? A multilevel analysis of demand-control-support models.
Morrison, David; Payne, Roy L; Wall, Toby D
2003-07-01
The literature has ignored the fact that the demand-control (DC) and demand-control-support (DCS) models of stress are about jobs and not individuals' perceptions of their jobs. Using multilevel modeling, the authors report results of individual- and job-level analyses from a study of over 6,700 people in 81 different jobs. Support for additive versions of the models came when individuals were the unit of analysis. DC and DCS models are only helpful for understanding the effects of individual perceptions of jobs and their relationship to psychological states. When job perceptions are aggregated and their relationship to the collective experience of jobholders is assessed, the models prove of little value. Role set may be a better unit of analysis.
Barnier, C; Palmier, C; Atteia, O
2013-01-01
The vertical heterogeneity of contaminant concentrations in aquifers is well known, but obtaining representative samples is still a subject of debate. In this paper, the question arises from sites where numerous fully screened wells exist and there is a need to define the vertical distribution of contaminants. For this purpose, several wells were investigated with different techniques on a site contaminated with chlorinated solvents. A core-bored well shows that a tetrachloroethene (PCE) phase is sitting on and infiltrating a less permeable layer. Downstream of the cored well, the following sampling techniques were compared on fully screened wells: low flow pumping at several depths, pumping between packers and a new multilevel sampler for fully screened wells. Concerning low flow rate pumping, very low gradients were found, which may be due to the existence of vertical flow inside the well or in the gravel pack. Sampling between packers gave results comparable with the cores, separating a layer with PCE and trichloroethene from another one with cis 1,2-dichloroethene and vinyl chloride as major compounds. Detailed sampling according to pumped volume shows that even between packers, cleaning of the inter-packer volume is necessary before each sampling. Lastly, the proposed new multilevel sampler gives results similar to the packers but has the advantages of much faster sampling and a constant vertical positioning, which is fairly important for long-term monitoring in highly stratified aquifers.
Suzuki, Etsuji; Yamamoto, Eiji; Takao, Soshi; Kawachi, Ichiro; Subramanian, S. V.
2012-01-01
Background Multilevel analyses are ideally suited to assess the effects of ecological (higher level) and individual (lower level) exposure variables simultaneously. In applying such analyses to measures of ecologies in epidemiological studies, individual variables are usually aggregated into the higher level unit. Typically, the aggregated measure includes responses of every individual belonging to that group (i.e. it constitutes a self-included measure). More recently, researchers have developed an aggregate measure which excludes the response of the individual to whom the aggregate measure is linked (i.e. a self-excluded measure). In this study, we clarify the substantive and technical properties of these two measures when they are used as exposures in multilevel models. Methods Although the differences between the two aggregated measures are mathematically subtle, distinguishing between them is important in terms of the specific scientific questions to be addressed. We then show how these measures can be used in two distinct types of multilevel models—self-included model and self-excluded model—and interpret the parameters in each model by imposing hypothetical interventions. The concept is tested on empirical data of workplace social capital and employees' systolic blood pressure. Results Researchers assume group-level interventions when using a self-included model, and individual-level interventions when using a self-excluded model. Analytical re-parameterizations of these two models highlight their differences in parameter interpretation. Cluster-mean centered self-included models enable researchers to decompose the collective effect into its within- and between-group components. The benefit of cluster-mean centering procedure is further discussed in terms of hypothetical interventions. Conclusions When investigating the potential roles of aggregated variables, researchers should carefully explore which type of model—self-included or self-excluded—is suitable for a given situation, particularly when group sizes are relatively small. PMID:23251609
Jin, H; Wu, S; Vidyanti, I; Di Capua, P; Wu, B
2015-01-01
This article is part of the Focus Theme of Methods of Information in Medicine on "Big Data and Analytics in Healthcare". Depression is a common and often undiagnosed condition for patients with diabetes. It is also a condition that significantly impacts healthcare outcomes, use, and cost as well as elevating suicide risk. Therefore, a model to predict depression among diabetes patients is a promising and valuable tool for providers to proactively assess depressive symptoms and identify those with depression. This study seeks to develop a generalized multilevel regression model, using a longitudinal data set from a recent large-scale clinical trial, to predict depression severity and presence of major depression among patients with diabetes. Severity of depression was measured by the Patient Health Questionnaire PHQ-9 score. Predictors were selected from 29 candidate factors to develop a 2-level Poisson regression model that can make population-average predictions for all patients and subject-specific predictions for individual patients with historical records. Newly obtained patient records can be incorporated with historical records to update the prediction model. Root-mean-square errors (RMSE) were used to evaluate predictive accuracy of PHQ-9 scores. The study also evaluated the classification ability of using the predicted PHQ-9 scores to classify patients as having major depression. Two time-invariant and 10 time-varying predictors were selected for the model. Incorporating historical records and using them to update the model may improve both predictive accuracy of PHQ-9 scores and classification ability of the predicted scores. Subject-specific predictions (for individual patients with historical records) achieved RMSE about 4 and areas under the receiver operating characteristic (ROC) curve about 0.9 and are better than population-average predictions. The study developed a generalized multilevel regression model to predict depression and demonstrated that using generalized multilevel regression based on longitudinal patient records can achieve high predictive ability.
The design of multi-core DSP parallel model based on message passing and multi-level pipeline
NASA Astrophysics Data System (ADS)
Niu, Jingyu; Hu, Jian; He, Wenjing; Meng, Fanrong; Li, Chuanrong
2017-10-01
Currently, the design of embedded signal processing system is often based on a specific application, but this idea is not conducive to the rapid development of signal processing technology. In this paper, a parallel processing model architecture based on multi-core DSP platform is designed, and it is mainly suitable for the complex algorithms which are composed of different modules. This model combines the ideas of multi-level pipeline parallelism and message passing, and summarizes the advantages of the mainstream model of multi-core DSP (the Master-Slave model and the Data Flow model), so that it has better performance. This paper uses three-dimensional image generation algorithm to validate the efficiency of the proposed model by comparing with the effectiveness of the Master-Slave and the Data Flow model.
Bai, Sunhye; Repetti, Rena L
2018-04-01
Examining emotion reactivity and recovery following minor problems in daily life can deepen our understanding of how stress affects child mental health. This study assessed children's immediate and delayed emotion responses to daily problems at school, and examined their correlations with psychological symptoms. On 5 consecutive weekdays, 83 fifth graders (M = 10.91 years, SD = 0.53, 51% female) completed brief diary forms 5 times per day, providing repeated ratings of school problems and emotions. They also completed a one-time questionnaire about symptoms of depression, and parents and teachers rated child internalizing and externalizing problems. Using multilevel modeling techniques, we assessed within-person daily associations between school problems and negative and positive emotion at school and again at bedtime. On days when children experienced more school problems, they reported more negative emotion and less positive emotion at school, and at bedtime. There were reliable individual differences in emotion reactivity and recovery. Individual-level indices of emotion responses derived from multilevel models were correlated with child psychological symptoms. Children who showed more negative emotion reactivity reported more depressive symptoms. Multiple informants described fewer internalizing problems among children who showed better recovery by bedtime, even after controlling for children's average levels of exposure to school problems. Diary methods can extend our understanding of the links between daily stress, emotions and child mental health. Recovery following stressful events may be an important target of research and intervention for child internalizing problems.
NASA Astrophysics Data System (ADS)
Bastani, Ali Foroush; Dastgerdi, Maryam Vahid; Mighani, Abolfazl
2018-06-01
The main aim of this paper is the analytical and numerical study of a time-dependent second-order nonlinear partial differential equation (PDE) arising from the endogenous stochastic volatility model, introduced in [Bensoussan, A., Crouhy, M. and Galai, D., Stochastic equity volatility related to the leverage effect (I): equity volatility behavior. Applied Mathematical Finance, 1, 63-85, 1994]. As the first step, we derive a consistent set of initial and boundary conditions to complement the PDE, when the firm is financed by equity and debt. In the sequel, we propose a Newton-based iteration scheme for nonlinear parabolic PDEs which is an extension of a method for solving elliptic partial differential equations introduced in [Fasshauer, G. E., Newton iteration with multiquadrics for the solution of nonlinear PDEs. Computers and Mathematics with Applications, 43, 423-438, 2002]. The scheme is based on multilevel collocation using radial basis functions (RBFs) to solve the resulting locally linearized elliptic PDEs obtained at each level of the Newton iteration. We show the effectiveness of the resulting framework by solving a prototypical example from the field and compare the results with those obtained from three different techniques: (1) a finite difference discretization; (2) a naive RBF collocation and (3) a benchmark approximation, introduced for the first time in this paper. The numerical results confirm the robustness, higher convergence rate and good stability properties of the proposed scheme compared to other alternatives. We also comment on some possible research directions in this field.
Nonresonant interaction of ultrashort electromagnetic pulses with multilevel quantum systems
NASA Technical Reports Server (NTRS)
Belenov, E.; Isakov, V.; Nazarkin, A.
1994-01-01
Some features of the excitation of multilevel quantum systems under the action of electromagnetic pulses which are shorter than the inverse frequency of interlevel transitions are considered. It is shown that the interaction is characterized by a specific type of selectivity which is not connected with the resonant absorption of radiation. The simplest three-level model displays the inverse population of upper levels. The effect of an ultrashort laser pulse on a multilevel molecule was regarded as an instant reception of the oscillation velocity by the oscillator and this approach showed an effective excitation and dissociation of the molecule. The estimations testify to the fact that these effects can be observed using modern femtosecond lasers.
Agent-based model with multi-level herding for complex financial systems
NASA Astrophysics Data System (ADS)
Chen, Jun-Jie; Tan, Lei; Zheng, Bo
2015-02-01
In complex financial systems, the sector structure and volatility clustering are respectively important features of the spatial and temporal correlations. However, the microscopic generation mechanism of the sector structure is not yet understood. Especially, how to produce these two features in one model remains challenging. We introduce a novel interaction mechanism, i.e., the multi-level herding, in constructing an agent-based model to investigate the sector structure combined with volatility clustering. According to the previous market performance, agents trade in groups, and their herding behavior comprises the herding at stock, sector and market levels. Further, we propose methods to determine the key model parameters from historical market data, rather than from statistical fitting of the results. From the simulation, we obtain the sector structure and volatility clustering, as well as the eigenvalue distribution of the cross-correlation matrix, for the New York and Hong Kong stock exchanges. These properties are in agreement with the empirical ones. Our results quantitatively reveal that the multi-level herding is the microscopic generation mechanism of the sector structure, and provide new insight into the spatio-temporal interactions in financial systems at the microscopic level.
Agent-based model with multi-level herding for complex financial systems
Chen, Jun-Jie; Tan, Lei; Zheng, Bo
2015-01-01
In complex financial systems, the sector structure and volatility clustering are respectively important features of the spatial and temporal correlations. However, the microscopic generation mechanism of the sector structure is not yet understood. Especially, how to produce these two features in one model remains challenging. We introduce a novel interaction mechanism, i.e., the multi-level herding, in constructing an agent-based model to investigate the sector structure combined with volatility clustering. According to the previous market performance, agents trade in groups, and their herding behavior comprises the herding at stock, sector and market levels. Further, we propose methods to determine the key model parameters from historical market data, rather than from statistical fitting of the results. From the simulation, we obtain the sector structure and volatility clustering, as well as the eigenvalue distribution of the cross-correlation matrix, for the New York and Hong Kong stock exchanges. These properties are in agreement with the empirical ones. Our results quantitatively reveal that the multi-level herding is the microscopic generation mechanism of the sector structure, and provide new insight into the spatio-temporal interactions in financial systems at the microscopic level. PMID:25669427
A Multilevel Model for Comorbid Outcomes: Obesity and Diabetes in the US
Congdon, Peter
2010-01-01
Multilevel models are overwhelmingly applied to single health outcomes, but when two or more health conditions are closely related, it is important that contextual variation in their joint prevalence (e.g., variations over different geographic settings) is considered. A multinomial multilevel logit regression approach for analysing joint prevalence is proposed here that includes subject level risk factors (e.g., age, race, education) while also taking account of geographic context. Data from a US population health survey (the 2007 Behavioral Risk Factor Surveillance System or BRFSS) are used to illustrate the method, with a six category multinomial outcome defined by diabetic status and weight category (obese, overweight, normal). The influence of geographic context is partly represented by known geographic variables (e.g., county poverty), and partly by a model for latent area influences. In particular, a shared latent variable (common factor) approach is proposed to measure the impact of unobserved area influences on joint weight and diabetes status, with the latent variable being spatially structured to reflect geographic clustering in risk. PMID:20616977
Estimation of river and stream temperature trends under haphazard sampling
Gray, Brian R.; Lyubchich, Vyacheslav; Gel, Yulia R.; Rogala, James T.; Robertson, Dale M.; Wei, Xiaoqiao
2015-01-01
Long-term temporal trends in water temperature in rivers and streams are typically estimated under the assumption of evenly-spaced space-time measurements. However, sampling times and dates associated with historical water temperature datasets and some sampling designs may be haphazard. As a result, trends in temperature may be confounded with trends in time or space of sampling which, in turn, may yield biased trend estimators and thus unreliable conclusions. We address this concern using multilevel (hierarchical) linear models, where time effects are allowed to vary randomly by day and date effects by year. We evaluate the proposed approach by Monte Carlo simulations with imbalance, sparse data and confounding by trend in time and date of sampling. Simulation results indicate unbiased trend estimators while results from a case study of temperature data from the Illinois River, USA conform to river thermal assumptions. We also propose a new nonparametric bootstrap inference on multilevel models that allows for a relatively flexible and distribution-free quantification of uncertainties. The proposed multilevel modeling approach may be elaborated to accommodate nonlinearities within days and years when sampling times or dates typically span temperature extremes.
Dunn, Erin C.; Richmond, Tracy K.; Milliren, Carly E.; Subramanian, S.V.
2015-01-01
Background Despite much interest in understanding the influence of contexts on health, most research has focused on one context at a time despite the reality that individuals have simultaneous memberships in multiple settings. Method Using the example of smoking behavior among adolescents in the National Longitudinal Study of Adolescent Health, we applied cross-classified multilevel modeling (CCMM) to examine fixed and random effects for schools and neighborhoods. We compared the CCMM results with those obtained from a traditional multilevel model (MLM) focused on either the school and neighborhood separately. Results In the MLMs, 5.2% of the variation in smoking was due to differences between neighborhoods (when schools were ignored) and 6.3% to differences between schools (when neighborhoods were ignored). However in the CCMM examining neighborhood and school variation simultaneously, the neighborhood-level variation was reduced to 0.4%. Conclusion Results suggest that using MLM, instead of CCMM, could lead to overestimating the importance of certain contexts and could ultimately lead to targeting interventions or policies to the wrong settings. PMID:25579227
Fully implicit adaptive mesh refinement MHD algorithm
NASA Astrophysics Data System (ADS)
Philip, Bobby
2005-10-01
In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former results in stiffness due to the presence of very fast waves. The latter requires one to resolve the localized features that the system develops. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. To our knowledge, a scalable, fully implicit AMR algorithm has not been accomplished before for MHD. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technologyootnotetextL. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite --FAC-- algorithms) for scalability. We will demonstrate that the concept is indeed feasible, featuring optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations will be presented on a variety of problems.
Fully implicit adaptive mesh refinement algorithm for reduced MHD
NASA Astrophysics Data System (ADS)
Philip, Bobby; Pernice, Michael; Chacon, Luis
2006-10-01
In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technology to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite grid --FAC-- algorithms) for scalability. We demonstrate that the concept is indeed feasible, featuring near-optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations in challenging dissipation regimes will be presented on a variety of problems that benefit from this capability, including tearing modes, the island coalescence instability, and the tilt mode instability. L. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) B. Philip, M. Pernice, and L. Chac'on, Lecture Notes in Computational Science and Engineering, accepted (2006)
Language Model Combination and Adaptation Using Weighted Finite State Transducers
NASA Technical Reports Server (NTRS)
Liu, X.; Gales, M. J. F.; Hieronymus, J. L.; Woodland, P. C.
2010-01-01
In speech recognition systems language model (LMs) are often constructed by training and combining multiple n-gram models. They can be either used to represent different genres or tasks found in diverse text sources, or capture stochastic properties of different linguistic symbol sequences, for example, syllables and words. Unsupervised LM adaption may also be used to further improve robustness to varying styles or tasks. When using these techniques, extensive software changes are often required. In this paper an alternative and more general approach based on weighted finite state transducers (WFSTs) is investigated for LM combination and adaptation. As it is entirely based on well-defined WFST operations, minimum change to decoding tools is needed. A wide range of LM combination configurations can be flexibly supported. An efficient on-the-fly WFST decoding algorithm is also proposed. Significant error rate gains of 7.3% relative were obtained on a state-of-the-art broadcast audio recognition task using a history dependently adapted multi-level LM modelling both syllable and word sequences
Multilevel photonic modules for millimeter-wave phased-array antennas
NASA Astrophysics Data System (ADS)
Paolella, Arthur C.; Bauerle, Athena; Joshi, Abhay M.; Wright, James G.; Coryell, Louis A.
2000-09-01
Millimeter wave phased array systems have antenna element sizes and spacings similar to MMIC chip dimensions by virtue of the operating wavelength. Designing modules in traditional planar packaing techniques are therefore difficult to implement. An advantageous way to maintain a small module footprint compatible with Ka-Band and high frequency systems is to take advantage of two leading edge technologies, opto- electronic integrated circuits (OEICs) and multilevel packaging technology. Under a Phase II SBIR these technologies are combined to form photonic modules for optically controlled millimeter wave phased array antennas. The proposed module, consisting of an OEIC integrated with a planar antenna array will operate on the 40GHz region. The OEIC consists of an InP based dual-depletion PIN photodetector and distributed amplifier. The multi-level module will be fabricated using an enhanced circuit processing thick film process. Since the modules are batch fabricated using an enhanced circuit processing thick film process. Since the modules are batch fabricated, using standard commercial processes, it has the potential to be low cost while maintaining high performance, impacting both military and commercial communications systems.
ERIC Educational Resources Information Center
Pozzoli, Tiziana; Gini, Gianluca; Vieno, Alessio
2012-01-01
This study investigates possible individual and class correlates of defending and passive bystanding behavior in bullying, in a sample of 1,825 Italian primary school (mean age = 10 years 1 month) and middle school (mean age = 13 years 2 months) students. The findings of a series of multilevel regression models show that both individual (e.g.,…
ERIC Educational Resources Information Center
Talloen, Wouter; Moerkerke, Beatrijs; Loeys, Tom; De Naeghel, Jessie; Van Keer, Hilde; Vansteelandt, Stijn
2016-01-01
To assess the direct and indirect effect of an intervention, multilevel 2-1-1 studies with intervention randomized at the upper (class) level and mediator and outcome measured at the lower (student) level are frequently used in educational research. In such studies, the mediation process may flow through the student-level mediator (the within…
The Epistemic Representation of Information Flow Security in Probabilistic Systems
1995-06-01
The new characterization also means that our security crite- rion is expressible in a simpler logic and model. 1 Introduction Multilevel security is...ber generator) during its execution. Such probabilistic choices are useful in a multilevel security context for Supported by grants HKUST 608/94E from... 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and
Multilevel model of safety climate for furniture industries.
Rodrigues, Matilde A; Arezes, Pedro M; Leão, Celina P
2015-01-01
Furniture companies can analyze their safety status using quantitative measures. However, the data needed are not always available and the number of accidents is under-reported. Safety climate scales may be an alternative. However, there are no validated Portuguese scales that account for the specific attributes of the furniture sector. The current study aims to develop and validate an instrument that uses a multilevel structure to measure the safety climate of the Portuguese furniture industry. The Safety Climate in Wood Industries (SCWI) model was developed and applied to the safety climate analysis using three different scales: organizational, group and individual. A multilevel exploratory factor analysis was performed to analyze the factorial structure. The studied companies' safety conditions were also analyzed. Different factorial structures were found between and within levels. In general, the results show the presence of a group-level safety climate. The scores of safety climates are directly and positively related to companies' safety conditions; the organizational scale is the one that best reflects the actual safety conditions. The SCWI instrument allows for the identification of different safety climates in groups that comprise the same furniture company and it seems to reflect those groups' safety conditions. The study also demonstrates the need for a multilevel analysis of the studied instrument.
A multi-level model accounting for the effects of JAK2-STAT5 signal modulation in erythropoiesis.
Lai, Xin; Nikolov, Svetoslav; Wolkenhauer, Olaf; Vera, Julio
2009-08-01
We develop a multi-level model, using ordinary differential equations, based on quantitative experimental data, accounting for murine erythropoiesis. At the sub-cellular level, the model includes a description of the regulation of red blood cell differentiation through Epo-stimulated JAK2-STAT5 signalling activation, while at the cell population level the model describes the dynamics of (STAT5-mediated) red blood cell differentiation from their progenitors. Furthermore, the model includes equations depicting the hypoxia-mediated regulation of hormone erythropoietin blood levels. Take all together, the model constitutes a multi-level, feedback loop-regulated biological system, involving processes in different organs and at different organisational levels. We use our model to investigate the effect of deregulation in the proteins involved in the JAK2-STAT5 signalling pathway in red blood cells. Our analysis results suggest that down-regulation in any of the three signalling system components affects the hematocrit level in an individual considerably. In addition, our analysis predicts that exogenous Epo injection (an already existing treatment for several blood diseases) may compensate the effects of single down-regulation of Epo hormone level, STAT5 or EpoR/JAK2 expression level, and that it may be insufficient to counterpart a combined down-regulation of all the elements in the JAK2-STAT5 signalling cascade.
Tong, Min-Ji; Xiang, Guang-Heng; He, Zi-Li; Chen, De-Heng; Tang, Qian; Xu, Hua-Zi; Tian, Nai-Feng
2017-08-01
Anterior cervical diskectomy and fusion with plate-screw construct has been gradually applied for multilevel cervical spondylotic myelopathy in recent years. However, long cervical plate was associated with complications including breakage or loosening of plate and screws, trachea-esophageal injury, neurovascular injury, and postoperative dysphagia. To reduce these complications, the zero-profile spacer has been introduced. This meta-analysis was performed to compare the clinical and radiologic outcomes of zero-profile spacer versus cage-plate construct for the treatment of multilevel cervical spondylotic myelopathy. We systematically searched MEDLINE, Springer, and Web of Science databases for relevant studies that compared the clinical and radiologic outcomes of zero-profile spacer versus cage and plate for multilevel cervical spondylotic myelopathy. Risk of bias in included studies was assessed. Pooled estimates and corresponding 95% confidence intervals were calculated. On the basis of predefined inclusion criteria, 7 studies with a total of 409 patients were included in this analysis. The pooled data revealed that zero-profile spacer was associated with a decreased dysphagia rate at 2, 3, and 6 months postoperatively when compared with the cage-plate group. Both techniques had similar perioperative outcomes, functional outcome, radiologic outcome, and dysphagia rate immediately and at >1-year after operation. On the basis of available evidence, zero-profile spacer was more effective in reducing postoperative dysphagia rate for multilevel cervical spondylotic myelopathy. Both devices were safe in anterior cervical surgeries, and they had similar efficacy in improving the functional and radiologic outcomes. More randomized controlled trials are needed to compare these 2 devices. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fajingbesi, F. E.; Midi, N. S.; Khan, S.
2017-06-01
Green energy sources or renewable energy system generally utilize modular approach in their design. This sort of power sources are generally in DC form or in single cases AC. Due to high fluctuation in the natural origin of this energy (wind & solar) source they are stored as DC. DC power however are difficult to transfer over long distances hence DC to AC converters and storage system are very important in green energy system design. In this work we have designed a novel multilevel DC to AC converter that takes into account the modular design of green energy systems. A power conversion efficiency of 99% with reduced total harmonic distortion (THD) was recorded from our simulated system design.
McMahon, James M; Pouget, Enrique R; Tortu, Stephanie
2007-06-01
Hepatitis C virus (HCV) is the most common bloodborne pathogen in the United States and is a leading cause of liver-related morbidity and mortality. Although it is known that HCV is most commonly transmitted among injection drug users, the role of sexual transmission in the spread of HCV remains controversial because of inconsistent findings across studies involving heterosexual couples. A novel multilevel modeling technique designed to overcome the limitations of previous research was performed to assess multiple risk factors for HCV while partitioning the source of risk at the individual and couple level. The analysis was performed on risk exposure and HCV screening data obtained from 265 drug-using couples in East Harlem, New York City. In multivariable analysis, significant individual risk factors for HCV included a history of injection drug use, tattooing, and older age. At the couple level, HCV infection tended to cluster within couples, and this interdependence was accounted for by couples' drug-injection behavior. Individual and couple-level sexual behavior was not associated with HCV infection. Our results are consistent with prior research indicating that sexual contact plays little role in HCV transmission. Rather, couples' injection behavior appears to account for the clustering of HCV within heterosexual dyads.
Jahng, Seungmin; Wood, Phillip K.
2017-01-01
Intensive longitudinal studies, such as ecological momentary assessment studies using electronic diaries, are gaining popularity across many areas of psychology. Multilevel models (MLMs) are most widely used analytical tools for intensive longitudinal data (ILD). Although ILD often have individually distinct patterns of serial correlation of measures over time, inferences of the fixed effects, and random components in MLMs are made under the assumption that all variance and autocovariance components are homogenous across individuals. In the present study, we introduced a multilevel model with Cholesky transformation to model ILD with individually heterogeneous covariance structure. In addition, the performance of the transformation method and the effects of misspecification of heterogeneous covariance structure were investigated through a Monte Carlo simulation. We found that, if individually heterogeneous covariances are incorrectly assumed as homogenous independent or homogenous autoregressive, MLMs produce highly biased estimates of the variance of random intercepts and the standard errors of the fixed intercept and the fixed effect of a level 2 covariate when the average autocorrelation is high. For intensive longitudinal data with individual specific residual covariance, the suggested transformation method showed lower bias in those estimates than the misspecified models when the number of repeated observations within individuals is 50 or more. PMID:28286490
NASA Astrophysics Data System (ADS)
Priya Darshini, B.; Ranjit, M.; Babu, V. Ramesh
2018-04-01
In this paper different Multicarrier PWM (MCPWM) techniques are proposed for dual inverter fed open end induction motor (IM) drive to achieve multilevel operation. To generate the switching pulses for the dual inverter sinusoidal modulating signal is compared with multi carrier signals. A common mode voltage (CMV) has been analyzed in the proposed open end winding induction motor drive. All the proposed techniques mitigate the CMV along with the harmonic distortion in the phase voltage. To authenticate the proposed work several simulation techniques have been carried out using MATLAB/SIMULINK and the corresponding results are presented and compared.
Mills, Melinda; Begall, Katia
2010-03-01
Comparative research on the preferred sex of children in Western societies has generally focused on women only and ignored the role of gender equity and the need for children's economic support in old age. A multilevel analysis extends existing research by examining, for both men and women and across 24 European countries, the effect of the preferred sex-composition of offspring on whether parents have or intend to have a third child. Using the European Social Survey (2004/5), a multilevel (random coefficient) ordered logit regression of that intention (N = 3,323) and a binary logistic multilevel model of the transition to a third child (N = 6,502) demonstrate the presence of a mixed-sex preference. In countries with a high risk of poverty in old age, a preference for sons is found, particularly for men. In societies where there is lower gender equity, both men and women have a significant preference for boys.
Initial Skill Acquisition of Handrim Wheelchair Propulsion: A New Perspective.
Vegter, Riemer J K; de Groot, Sonja; Lamoth, Claudine J; Veeger, Dirkjan Hej; van der Woude, Lucas H V
2014-01-01
To gain insight into cyclic motor learning processes, hand rim wheelchair propulsion is a suitable cyclic task, to be learned during early rehabilitation and novel to almost every individual. To propel in an energy efficient manner, wheelchair users must learn to control bimanually applied forces onto the rims, preserving both speed and direction of locomotion. The purpose of this study was to evaluate mechanical efficiency and propulsion technique during the initial stage of motor learning. Therefore, 70 naive able-bodied men received 12-min uninstructed wheelchair practice, consisting of three 4-min blocks separated by 2 min rest. Practice was performed on a motor-driven treadmill at a fixed belt speed and constant power output relative to body mass. Energy consumption and the kinetics of propulsion technique were continuously measured. Participants significantly increased their mechanical efficiency and changed their propulsion technique from a high frequency mode with a lot of negative work to a longer-slower movement pattern with less power losses. Furthermore a multi-level model showed propulsion technique to relate to mechanical efficiency. Finally improvers and non-improvers were identified. The non-improving group was already more efficient and had a better propulsion technique in the first block of practice (i.e., the fourth minute). These findings link propulsion technique to mechanical efficiency, support the importance of a correct propulsion technique for wheelchair users and show motor learning differences.
An adaptive multi-level simulation algorithm for stochastic biological systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lester, C., E-mail: lesterc@maths.ox.ac.uk; Giles, M. B.; Baker, R. E.
2015-01-14
Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, “Multi-level Montemore » Carlo for continuous time Markov chains, with applications in biochemical kinetics,” SIAM Multiscale Model. Simul. 10(1), 146–179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the efficiency of our method using a number of examples.« less
Cuadrado, Esther; Tabernero, Carmen
2015-01-01
Little research has focused on how individual- and team-level characteristics jointly influence, via interaction, how prosocially individuals behave in teams and few studies have considered the potential influence of team context on prosocial behavior. Using a multilevel perspective, we examined the relationships between individual (affective balance) and group (team prosocial efficacy and team trust) level variables and prosocial behavior towards team members. The participants were 123 students nested in 45 small teams. A series of multilevel random models was estimated using hierarchical linear and nonlinear modeling. Individuals were more likely to behave prosocially towards in-group members when they were feeling good. Furthermore, the relationship between positive affective balance and prosocial behavior was stronger in teams with higher team prosocial efficacy levels as well as in teams with higher team trust levels. Finally, the relevance of team trust had a stronger influence on behavior than team prosocial efficacy. PMID:26317608
Observation and quantification of the quantum dynamics of a strong-field excited multi-level system.
Liu, Zuoye; Wang, Quanjun; Ding, Jingjie; Cavaletto, Stefano M; Pfeifer, Thomas; Hu, Bitao
2017-01-04
The quantum dynamics of a V-type three-level system, whose two resonances are first excited by a weak probe pulse and subsequently modified by another strong one, is studied. The quantum dynamics of the multi-level system is closely related to the absorption spectrum of the transmitted probe pulse and its modification manifests itself as a modulation of the absorption line shape. Applying the dipole-control model, the modulation induced by the second strong pulse to the system's dynamics is quantified by eight intensity-dependent parameters, describing the self and inter-state contributions. The present study opens the route to control the quantum dynamics of multi-level systems and to quantify the quantum-control process.
The effects of autonomy and empowerment on employee turnover: test of a multilevel model in teams.
Liu, Dong; Zhang, Shu; Wang, Lei; Lee, Thomas W
2011-11-01
Extending research on voluntary turnover in the team setting, this study adopts a multilevel self-determination theoretical approach to examine the unique roles of individual and social-contextual motivational precursors, autonomy orientation and autonomy support, in reducing team member voluntary turnover. Analysis of multilevel time-lagged data collected from 817 employees on 115 teams indicates that psychological empowerment mediates the main effect of autonomy orientation and the interactive effect of autonomy support and its differentiation on a team member's voluntary turnover. The findings have meaningful implications for the turnover and self-determination literatures as well as for managers who endeavor to prevent voluntary turnover in teams. (c) 2011 APA, all rights reserved.
Birth order has no effect on intelligence: a reply and extension of previous findings.
Wichman, Aaron L; Rodgers, Joseph Lee; Maccallum, Robert C
2007-09-01
We address points raised by Zajonc and Sulloway, who reject findings showing that birth order has no effect on intelligence. Many objections to findings of null birth-order results seem to stem from a misunderstanding of the difference between study designs where birth order is confounded with true causal influences on intelligence across families and designs that control for some of these influences. We discuss some of the consequences of not appreciating the nature of this difference. When between-family confounds are controlled using appropriate study designs and techniques such as multilevel modeling, birth order is shown not to influence intelligence. We conclude with an empirical investigation of the replicability and generalizability of this approach.
ERIC Educational Resources Information Center
McDonald, Roderick P.
2011-01-01
A distinction is proposed between measures and predictors of latent variables. The discussion addresses the consequences of the distinction for the true-score model, the linear factor model, Structural Equation Models, longitudinal and multilevel models, and item-response models. A distribution-free treatment of calibration and…
Data Assimilation and Propagation of Uncertainty in Multiscale Cardiovascular Simulation
NASA Astrophysics Data System (ADS)
Schiavazzi, Daniele; Marsden, Alison
2015-11-01
Cardiovascular modeling is the application of computational tools to predict hemodynamics. State-of-the-art techniques couple a 3D incompressible Navier-Stokes solver with a boundary circulation model and can predict local and peripheral hemodynamics, analyze the post-operative performance of surgical designs and complement clinical data collection minimizing invasive and risky measurement practices. The ability of these tools to make useful predictions is directly related to their accuracy in representing measured physiologies. Tuning of model parameters is therefore a topic of paramount importance and should include clinical data uncertainty, revealing how this uncertainty will affect the predictions. We propose a fully Bayesian, multi-level approach to data assimilation of uncertain clinical data in multiscale circulation models. To reduce the computational cost, we use a stable, condensed approximation of the 3D model build by linear sparse regression of the pressure/flow rate relationship at the outlets. Finally, we consider the problem of non-invasively propagating the uncertainty in model parameters to the resulting hemodynamics and compare Monte Carlo simulation with Stochastic Collocation approaches based on Polynomial or Multi-resolution Chaos expansions.
Ardila, Carlos M; Agudelo-Suárez, Andrés A
2016-01-01
To estimate the effect of social context on dental pain in adults of Colombian ethnic minority groups (CEGs). Information from 34,843 participants was used. A multilevel model was constructed that had ethnic groups (ie, CEGs and non-CEGs) at level 1 and Colombian states at level 2. Contextual variables included gross domestic product (GDP), Human Development Index (HDI), and Unmet Basic Needs Index (UBNI). Dental pain was observed in 12.3% of 6,440 CEGs. In an unadjusted logistic regression model, dental pain was associated with being a CEG (odds ratio [95% confidence interval], 1.34 [1.22-1.46]; P = .0001). This association remained significant after adjusting for possible confounding variables. An unconditional multilevel analysis showed that the variance in dental pain was statistically significant at the ethnic group level (β = 0.047 ± 0.015; P = .0009) and at the state level (β = 0.038 ± 0.019; P = .02) and that the variation between ethnic groups was higher than the variation between states (55% vs 45%, respectively). In a multivariate model, the variance in dental pain was also statistically significant at the ethnic group level (β = 0.029 ± 0.012; P = .007) and the state level (β = 0.042 ± .019; P = .01), but the variation between states was higher (40% vs 60%). The results of multilevel multivariate analyses showed that dental pain was associated with increasing age (β = 0.009 ± 0.001; P = .0001), lower education level (β = 0.302 ± 0.103; P = .0001), female sex (β = 0.031 ± 0.069; P = .003), GDP (β = 5.136 ± 2.009; P = .002) and HDI (β = 6.862 ± 5.550; P = .004); however, UBNI was not associated with dental pain. The variance in dental pain was higher between states than between ethnic groups in the multivariate multilevel model. Dental pain in CEGs was associated with contextual and individual factors. Considering contextual factors, GDP and HDI may play a major role in dental pain prevalence.
Three essays on multi-level optimization models and applications
NASA Astrophysics Data System (ADS)
Rahdar, Mohammad
The general form of a multi-level mathematical programming problem is a set of nested optimization problems, in which each level controls a series of decision variables independently. However, the value of decision variables may also impact the objective function of other levels. A two-level model is called a bilevel model and can be considered as a Stackelberg game with a leader and a follower. The leader anticipates the response of the follower and optimizes its objective function, and then the follower reacts to the leader's action. The multi-level decision-making model has many real-world applications such as government decisions, energy policies, market economy, network design, etc. However, there is a lack of capable algorithms to solve medium and large scale these types of problems. The dissertation is devoted to both theoretical research and applications of multi-level mathematical programming models, which consists of three parts, each in a paper format. The first part studies the renewable energy portfolio under two major renewable energy policies. The potential competition for biomass for the growth of the renewable energy portfolio in the United States and other interactions between two policies over the next twenty years are investigated. This problem mainly has two levels of decision makers: the government/policy makers and biofuel producers/electricity generators/farmers. We focus on the lower-level problem to predict the amount of capacity expansions, fuel production, and power generation. In the second part, we address uncertainty over demand and lead time in a multi-stage mathematical programming problem. We propose a two-stage tri-level optimization model in the concept of rolling horizon approach to reducing the dimensionality of the multi-stage problem. In the third part of the dissertation, we introduce a new branch and bound algorithm to solve bilevel linear programming problems. The total time is reduced by solving a smaller relaxation problem in each node and decreasing the number of iterations. Computational experiments show that the proposed algorithm is faster than the existing ones.
Multi-Level Anomaly Detection on Time-Varying Graph Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bridges, Robert A; Collins, John P; Ferragut, Erik M
This work presents a novel modeling and analysis framework for graph sequences which addresses the challenge of detecting and contextualizing anomalies in labelled, streaming graph data. We introduce a generalization of the BTER model of Seshadhri et al. by adding flexibility to community structure, and use this model to perform multi-scale graph anomaly detection. Specifically, probability models describing coarse subgraphs are built by aggregating probabilities at finer levels, and these closely related hierarchical models simultaneously detect deviations from expectation. This technique provides insight into a graph's structure and internal context that may shed light on a detected event. Additionally, thismore » multi-scale analysis facilitates intuitive visualizations by allowing users to narrow focus from an anomalous graph to particular subgraphs or nodes causing the anomaly. For evaluation, two hierarchical anomaly detectors are tested against a baseline Gaussian method on a series of sampled graphs. We demonstrate that our graph statistics-based approach outperforms both a distribution-based detector and the baseline in a labeled setting with community structure, and it accurately detects anomalies in synthetic and real-world datasets at the node, subgraph, and graph levels. To illustrate the accessibility of information made possible via this technique, the anomaly detector and an associated interactive visualization tool are tested on NCAA football data, where teams and conferences that moved within the league are identified with perfect recall, and precision greater than 0.786.« less
A Comparison of Password Techniques for Multilevel Authentication Mechanisms
1990-06-01
an individual user’s perceptions, personal interests and personal history . This information is unique to the individual and is neither commonly...a user may associative passwords profile around the Beatles . In this case, cues may include "abbey", "john", "yellow" and "george" and have responses
The Naturalization Process in New Mexico. A Guide for ESL Teachers and Advocates.
ERIC Educational Resources Information Center
Irvine, Patricia, Ed.; And Others
This guide provides an overview of the naturalization process and what it means to Hispanic immigrants, describes techniques for integrating English-as-a-Second-Language (ESL) and civics/history content in multilevel classes, offers directions for filling out the naturalization forms and completing the legal steps to naturalization, and provides…
It is essential that the sampling techniques utilized in groundwater monitoring provide data that accurately depicts the water quality of the sampled aquifer in the vicinity of the well. Due to the large amount of monitoring activity currently underway in the U.S.A. it is also im...
NASA Technical Reports Server (NTRS)
Aldrich, R. C.; Dana, R. W.; Roberts, E. H. (Principal Investigator)
1977-01-01
The author has identified the following significant results. A stratified random sample using LANDSAT band 5 and 7 panchromatic prints resulted in estimates of water in counties with sampling errors less than + or - 9% (67% probability level). A forest inventory using a four band LANDSAT color composite resulted in estimates of forest area by counties that were within + or - 6.7% and + or - 3.7% respectively (67% probability level). Estimates of forest area for counties by computer assisted techniques were within + or - 21% of operational forest survey figures and for all counties the difference was only one percent. Correlations of airborne terrain reflectance measurements with LANDSAT radiance verified a linear atmospheric model with an additive (path radiance) term and multiplicative (transmittance) term. Coefficients of determination for 28 of the 32 modeling attempts, not adverseley affected by rain shower occurring between the times of LANDSAT passage and aircraft overflights, exceeded 0.83.