Xia, Rong; Durand, Jean-Dominique; Fu, Cuizhang
2016-03-01
The interrelationships among mugilids (Mugiliformes: Mugilidae) remain highly debated. Using a mitochondrial gene-based phylogeny as criterion, a revised classification with 25 genera in the Mugilidae has recently been proposed. However, phylogenetic relationships of major mitochondrial lineages remain unresolved and to gain a general acceptance the classification requires confirmation based on multilocus evidence and diagnostic morphological characters. Here, we construct a species-tree using twelve nuclear and three mitochondrial loci and infer the evolution of 71 morphological characters. Our multilocus phylogeny does not agree with previous morphology-based hypotheses for the relationships within Mugilidae, confirms the revised classification with 25 genera and further resolves their phylogenetic relationships. Using the well-resolved multilocus phylogeny as the criterion, we reclassify Mugilidae genera into three new subfamilies (Myxinae, Rhinomugilinae, and Cheloninae) and one new, recombined, subfamily (Mugilinae). The Rhinomugilinae subfamily is further divided into four tribes. The revised classification of Mugilidae is supported by morpho-anatomical synapomorphies or a combination of characters. These characters are used to erect a key to the subfamilies and genera. Copyright © 2015 Elsevier Inc. All rights reserved.
Major clades of Agaricales: a multilocus phylogenetic overview.
P. Brandon Matheny; Judd M. Curtis; Valerie Hofstetter; M. Catherine Aime; Jean-Marc Moncalvo; Zai-Wei Ge; Zhu-Liang Yang; Joseph F. Ammirati; Timothy J. Baroni; Neale L. Bougher; Karen W. Lodge Hughes; Richard W. Kerrigan; Michelle T. Seidl; Aanen; Matthew Duur K. DeNitis; Graciela M. Daniele; Dennis E. Desjardin; Bradley R. Kropp; Lorelei L. Norvell; Andrew Parker; Else C. Vellinga; Rytas Vilgalys; David S. Hibbett
2006-01-01
An overview of the phylogeny of the Agaricales is presented based on a multilocus analysis of a six-gene region supermatrix. Bayesian analyses of 5611 nucleotide characters of rpb1, rpb1-intron 2, rpb2 and 18S, 25S, and 5.8S ribosomal RNA genes recovered six major clades, which are recognized informally and labeled the Agaricoid, Tricholomatoid, Marasmioid, Pluteoid,...
Naushad, Sohail; Barkema, Herman W.; Luby, Christopher; Condas, Larissa A. Z.; Nobrega, Diego B.; Carson, Domonique A.; De Buck, Jeroen
2016-01-01
Non-aureus staphylococci (NAS), a heterogeneous group of a large number of species and subspecies, are the most frequently isolated pathogens from intramammary infections in dairy cattle. Phylogenetic relationships among bovine NAS species are controversial and have mostly been determined based on single-gene trees. Herein, we analyzed phylogeny of bovine NAS species using whole-genome sequencing (WGS) of 441 distinct isolates. In addition, evolutionary relationships among bovine NAS were estimated from multilocus data of 16S rRNA, hsp60, rpoB, sodA, and tuf genes and sequences from these and numerous other single genes/proteins. All phylogenies were created with FastTree, Maximum-Likelihood, Maximum-Parsimony, and Neighbor-Joining methods. Regardless of methodology, WGS-trees clearly separated bovine NAS species into five monophyletic coherent clades. Furthermore, there were consistent interspecies relationships within clades in all WGS phylogenetic reconstructions. Except for the Maximum-Parsimony tree, multilocus data analysis similarly produced five clades. There were large variations in determining clades and interspecies relationships in single gene/protein trees, under different methods of tree constructions, highlighting limitations of using single genes for determining bovine NAS phylogeny. However, based on WGS data, we established a robust phylogeny of bovine NAS species, unaffected by method or model of evolutionary reconstructions. Therefore, it is now possible to determine associations between phylogeny and many biological traits, such as virulence, antimicrobial resistance, environmental niche, geographical distribution, and host specificity. PMID:28066335
Brassac, Jonathan; Blattner, Frank R
2015-09-01
Polyploidization is an important speciation mechanism in the barley genus Hordeum. To analyze evolutionary changes after allopolyploidization, knowledge of parental relationships is essential. One chloroplast and 12 nuclear single-copy loci were amplified by polymerase chain reaction (PCR) in all Hordeum plus six out-group species. Amplicons from each of 96 individuals were pooled, sheared, labeled with individual-specific barcodes and sequenced in a single run on a 454 platform. Reference sequences were obtained by cloning and Sanger sequencing of all loci for nine supplementary individuals. The 454 reads were assembled into contigs representing the 13 loci and, for polyploids, also homoeologues. Phylogenetic analyses were conducted for all loci separately and for a concatenated data matrix of all loci. For diploid taxa, a Bayesian concordance analysis and a coalescent-based dated species tree was inferred from all gene trees. Chloroplast matK was used to determine the maternal parent in allopolyploid taxa. The relative performance of different multilocus analyses in the presence of incomplete lineage sorting and hybridization was also assessed. The resulting multilocus phylogeny reveals for the first time species phylogeny and progenitor-derivative relationships of all di- and polyploid Hordeum taxa within a single analysis. Our study proves that it is possible to obtain a multilocus species-level phylogeny for di- and polyploid taxa by combining PCR with next-generation sequencing, without cloning and without creating a heavy load of sequence data. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
Aspergillus section Versicolores: nine new species and multilocus DNA sequence based phylogeny
USDA-ARS?s Scientific Manuscript database
ß-tubulin, calmodulin, internal transcribed spacer and partial lsu-rDNA, RNA polymerase, DNA replication licensing factor Mcm7, and pre-rRNA processing protein Tsr1 were amplified and sequenced from 62 A. versicolor clade isolates and analyzed phylogenetically using the concordance model to establis...
Aspergillus section Versicolores, nine new species and multilocus DNA sequence based phylogeny
USDA-ARS?s Scientific Manuscript database
ß-tubulin, calmodulin, internal transcribed spacer and partial lsu-rDNA, RNA polymerase, DNA replication licensing factor Mcm7, and pre-rRNA processing protein Tsr1 were amplified and sequenced from 62 A. versicolor clade isolates and analyzed phylogenetically using the concordance model to establis...
USDA-ARS?s Scientific Manuscript database
A multilocus phylogenetic study was carried out to assess the species distribution in a set of 34 clinical isolates of Aspergillus section Circumdati from the USA and their in vitro antifungal susceptibility were determined against eight antifungal drugs. The genetic markers used were ITS, BenA, CaM...
Boité, Mariana C.; Mauricio, Isabel L.; Miles, Michael A.; Cupolillo, Elisa
2012-01-01
The Leishmania genus comprises up to 35 species, some with status still under discussion. The multilocus sequence typing (MLST)—extensively used for bacteria—has been proposed for pathogenic trypanosomatids. For Leishmania, however, a detailed analysis and revision on the taxonomy is still required. We have partially sequenced four housekeeping genes—glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), mannose phosphate isomerase (MPI) and isocitrate dehydrogenase (ICD)—from 96 Leishmania (Viannia) strains and assessed their discriminatory typing capacity. The fragments had different degrees of diversity, and are thus suitable to be used in combination for intra- and inter-specific inferences. Species-specific single nucleotide polymorphisms were detected, but not for all species; ambiguous sites indicating heterozygosis were observed, as well as the putative homozygous donor. A large number of haplotypes were detected for each marker; for 6PGD a possible ancestral allele for L. (Viannia) was found. Maximum parsimony-based haplotype networks were built. Strains of different species, as identified by multilocus enzyme electrophoresis (MLEE), formed separated clusters in each network, with exceptions. NeighborNet of concatenated sequences confirmed species-specific clusters, suggesting recombination occurring in L. braziliensis and L. guyanensis. Phylogenetic analysis indicates L. lainsoni and L. naiffi as the most divergent species and does not support L. shawi as a distinct species, placing it in the L. guyanensis cluster. BURST analysis resulted in six clonal complexes (CC), corresponding to distinct species. The L. braziliensis strains evaluated correspond to one widely geographically distributed CC and another restricted to one endemic area. This study demonstrates the value of systematic multilocus sequence analysis (MLSA) for determining intra- and inter-species relationships and presents an approach to validate the species status of some entities. Furthermore, it contributes to the phylogeny of L. (Viannia) and might be helpful for epidemiological and population genetics analysis based on haplotype/diplotype determinations and inferences. PMID:23133690
Crottini, Angelica; Dordel, Janina; Köhler, Jörn; Glaw, Frank; Schmitz, Andreas; Vences, Miguel
2009-10-01
A phylogeny for 29 species of scincine lizards from Madagascar, based on 3693 bp of six mitochondrial and five nuclear genes, revealed multiple parallel evolution of adaptations for a burrowing life, and unexpected relationships of the monotypic genera Androngo and Cryptoscincus. Androngo trivittatus was sister to Pygomeles braconnieri, and Cryptoscincus minimus was deeply nested within the genus Paracontias, all of these being fossorial taxa of elongated bodies and partly or fully reduced limbs. To account for these results, we place Cryptoscincus as a junior synonym of Paracontias, and discuss possible taxonomic consequences that may affect the status of Androngo, once additional data become available.
Frequent gene flow blurred taxonomic boundaries of sections in Lilium L. (Liliaceae)
Liu, Shih-Hui; Chiang, Tzen-Yuh
2017-01-01
Gene flow between species may last a long time in plants. Reticulation inevitably causes difficulties in phylogenetic reconstruction. In this study, we looked into the genetic divergence and phylogeny of 20 Lilium species based on multilocus analyses of 8 genes of chloroplast DNA (cpDNA), the internally transcribed nuclear ribosomal DNA (nrITS) spacer and 20 loci extracted from the expressed sequence tag (EST) libraries of L. longiflorum Thunb. and L. formosanum Wallace. The phylogeny based on the combined data of the maternally inherited cpDNA and nrITS was largely consistent with the taxonomy of Lilium sections. This phylogeny was deemed the hypothetical species tree and uncovered three groups, i.e., Cluster A consisting of 4 taxa from the sections Pseudolirium and Liriotypus, Cluster B consisting of the 4 taxa from the sections Leucolirion, Archelirion and Daurolirion, and Cluster C comprising 10 taxa mostly from the sections Martagon and Sinomartagon. In contrast, systematic inconsistency occurred across the EST loci, with up to 19 genes (95%) displaying tree topologies deviating from the hypothetical species tree. The phylogenetic incongruence was likely attributable to the frequent genetic exchanges between species/sections, as indicated by the high levels of genetic recombination and the IMa analyses with the EST loci. Nevertheless, multilocus analysis could provide complementary information among the loci on the species split and the extent of gene flow between the species. In conclusion, this study not only detected frequent gene flow among Lilium sections that resulted in phylogenetic incongruence but also reconstructed a hypothetical species tree that gave insights into the nature of the complex relationships among Lilium species. PMID:28841664
Ota, Yuko; Yamanaka, Takashi; Murata, Hitoshi; Neda, Hitoshi; Ohta, Akira; Kawai, Masataka; Yamada, Akiyoshi; Konno, Miki; Tanaka, Chihiro
2012-01-01
Tricholoma matsutake (S. Ito & S. Imai) Singer and its allied species are referred to as matsutake worldwide and are the most economically important edible mushrooms in Japan. They are widely distributed in the northern hemisphere and established an ectomycorrhizal relationship with conifer and broadleaf trees. To clarify relationships among T. matsutake and its allies, and to delimit phylogenetic species, we analyzed multilocus datasets (ITS, megB1, tef, gpd) with samples that were correctly identified based on morphological characteristics. Phylogenetic analyses clearly identified four major groups: matsutake, T. bakamatsutake, T. fulvocastaneum and T. caligatum; the latter three species were outside the matsutake group. The haplotype analyses and median-joining haplotype network analyses showed that the matsutake group included four closely related but clearly distinct taxa (T. matsutake, T. anatolicum, Tricholoma sp. from Mexico and T. magnivelare) from different geographical regions; these were considered to be distinct phylogenetic species.
Vibrio chromosomes share common history.
Kirkup, Benjamin C; Chang, LeeAnn; Chang, Sarah; Gevers, Dirk; Polz, Martin F
2010-05-10
While most gamma proteobacteria have a single circular chromosome, Vibrionales have two circular chromosomes. Horizontal gene transfer is common among Vibrios, and in light of this genetic mobility, it is an open question to what extent the two chromosomes themselves share a common history since their formation. Single copy genes from each chromosome (142 genes from chromosome I and 42 genes from chromosome II) were identified from 19 sequenced Vibrionales genomes and their phylogenetic comparison suggests consistent phylogenies for each chromosome. Additionally, study of the gene organization and phylogeny of the respective origins of replication confirmed the shared history. Thus, while elements within the chromosomes may have experienced significant genetic mobility, the backbones share a common history. This allows conclusions based on multilocus sequence analysis (MLSA) for one chromosome to be applied equally to both chromosomes.
Salvi, Daniele; Macali, Armando; Mariottini, Paolo
2014-01-01
The bivalve family Ostreidae has a worldwide distribution and includes species of high economic importance. Phylogenetics and systematic of oysters based on morphology have proved difficult because of their high phenotypic plasticity. In this study we explore the phylogenetic information of the DNA sequence and secondary structure of the nuclear, fast-evolving, ITS2 rRNA and the mitochondrial 16S rRNA genes from the Ostreidae and we implemented a multi-locus framework based on four loci for oyster phylogenetics and systematics. Sequence-structure rRNA models aid sequence alignment and improved accuracy and nodal support of phylogenetic trees. In agreement with previous molecular studies, our phylogenetic results indicate that none of the currently recognized subfamilies, Crassostreinae, Ostreinae, and Lophinae, is monophyletic. Single gene trees based on Maximum likelihood (ML) and Bayesian (BA) methods and on sequence-structure ML were congruent with multilocus trees based on a concatenated (ML and BA) and coalescent based (BA) approaches and consistently supported three main clades: (i) Crassostrea, (ii) Saccostrea, and (iii) an Ostreinae-Lophinae lineage. Therefore, the subfamily Crassotreinae (including Crassostrea), Saccostreinae subfam. nov. (including Saccostrea and tentatively Striostrea) and Ostreinae (including Ostreinae and Lophinae taxa) are recognized. Based on phylogenetic and biogeographical evidence the Asian species of Crassostrea from the Pacific Ocean are assigned to Magallana gen. nov., whereas an integrative taxonomic revision is required for the genera Ostrea and Dendostrea. This study pointed out the suitability of the ITS2 marker for DNA barcoding of oyster and the relevance of using sequence-structure rRNA models and features of the ITS2 folding in molecular phylogenetics and taxonomy. The multilocus approach allowed inferring a robust phylogeny of Ostreidae providing a broad molecular perspective on their systematics. PMID:25250663
Salvi, Daniele; Macali, Armando; Mariottini, Paolo
2014-01-01
The bivalve family Ostreidae has a worldwide distribution and includes species of high economic importance. Phylogenetics and systematic of oysters based on morphology have proved difficult because of their high phenotypic plasticity. In this study we explore the phylogenetic information of the DNA sequence and secondary structure of the nuclear, fast-evolving, ITS2 rRNA and the mitochondrial 16S rRNA genes from the Ostreidae and we implemented a multi-locus framework based on four loci for oyster phylogenetics and systematics. Sequence-structure rRNA models aid sequence alignment and improved accuracy and nodal support of phylogenetic trees. In agreement with previous molecular studies, our phylogenetic results indicate that none of the currently recognized subfamilies, Crassostreinae, Ostreinae, and Lophinae, is monophyletic. Single gene trees based on Maximum likelihood (ML) and Bayesian (BA) methods and on sequence-structure ML were congruent with multilocus trees based on a concatenated (ML and BA) and coalescent based (BA) approaches and consistently supported three main clades: (i) Crassostrea, (ii) Saccostrea, and (iii) an Ostreinae-Lophinae lineage. Therefore, the subfamily Crassostreinae (including Crassostrea), Saccostreinae subfam. nov. (including Saccostrea and tentatively Striostrea) and Ostreinae (including Ostreinae and Lophinae taxa) are recognized [corrected]. Based on phylogenetic and biogeographical evidence the Asian species of Crassostrea from the Pacific Ocean are assigned to Magallana gen. nov., whereas an integrative taxonomic revision is required for the genera Ostrea and Dendostrea. This study pointed out the suitability of the ITS2 marker for DNA barcoding of oyster and the relevance of using sequence-structure rRNA models and features of the ITS2 folding in molecular phylogenetics and taxonomy. The multilocus approach allowed inferring a robust phylogeny of Ostreidae providing a broad molecular perspective on their systematics.
Resolving the Mortierellaceae phylogeny through Multi-Locus Sequence Typing (MLST) and phylogenomics
USDA-ARS?s Scientific Manuscript database
The Mortierellaceae (Mortierellomycotina) are a diverse family of fungi that are of evolutionary and ecological relevance. They are the closest lineage to the arbuscular mycorrhizae (Glomeromycotina) and include some of the first species to evolve fruiting body production. The Mortierellaceae are es...
Species limits, phylogeography and reproductive mode in the Metarhizium anisopliae complex
USDA-ARS?s Scientific Manuscript database
An essential first step toward understanding the ecology and life histories of Metarhizium anisopliae-group species as entomopathogens, endophytes and soil-adapted fungi is the ability to accurately define species limits and confidently infer a species tree. Here we present a multilocus phylogeny of...
Reconstructing the backbone of the Saccharomycotina yeast phylogeny using genome-scale data
USDA-ARS?s Scientific Manuscript database
Understanding the phylogenetic relationships among the yeasts of the subphylum Saccharomycotina is a prerequisite for understanding the evolution of their metabolisms and ecological lifestyles. In the last two decades, the use of rDNA and multi-locus data sets has greatly advanced our understanding ...
Reck-Kortmann, Maikel; Silva-Arias, Gustavo Adolfo; Segatto, Ana Lúcia Anversa; Mäder, Geraldo; Bonatto, Sandro Luis; de Freitas, Loreta Brandão
2014-12-01
The phylogeny of Petunia species has been difficult to resolve, primarily due to the recent diversification of the genus. Several studies have included molecular data in phylogenetic reconstructions of this genus, but all of them have failed to include all taxa and/or analyzed few genetic markers. In the present study, we employed the most inclusive genetic and taxonomic datasets for the genus, aiming to reconstruct the evolutionary history of Petunia based on molecular phylogeny, biogeographic distribution, and character evolution. We included all 20 Petunia morphological species or subspecies in these analyses. Based on nine nuclear and five plastid DNA markers, our phylogenetic analysis reinforces the monophyly of the genus Petunia and supports the hypothesis that the basal divergence is more related to the differentiation of corolla tube length, whereas the geographic distribution of species is more related to divergences within these main clades. Ancestral area reconstructions suggest the Pampas region as the area of origin and earliest divergence in Petunia. The state reconstructions suggest that the ancestor of Petunia might have had a short corolla tube and a bee pollination floral syndrome. Copyright © 2014 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Species of Colletotrichum interact with a vast but as yet undetermined number of plant species as pathogens and as asymptomatic endophytes. It is not known, however, whether these contrasting ecological modes are optional strategies exercised by individual species or whether species ecology is more ...
2013-01-01
Background The genus Uropsilus comprises a group of terrestrial, montane mammals endemic to the Hengduan and adjacent mountains. These animals are the most primitive living talpids. The taxonomy has been primarily based on cursory morphological comparisons and the evolutionary affinities are little known. To provide insight into the systematics of this group, we estimated the first multi-locus phylogeny and conducted species delimitation, including taxon sampling throughout their distribution range. Results We obtained two mitochondrial genes (~1, 985 bp) and eight nuclear genes (~4, 345 bp) from 56 specimens. Ten distinct evolutionary lineages were recovered from the three recognized species, eight of which were recognized as species/putative species. Five of these putative species were found to be masquerading as the gracile shrew mole. The divergence time estimation results indicated that climate change since the last Miocene and the uplift of the Himalayas may have resulted in the diversification and speciation of Uropsilus. Conclusions The cryptic diversity found in this study indicated that the number of species is strongly underestimated under the current taxonomy. Two synonyms of gracilis (atronates and nivatus) should be given full species status, and the taxonomic status of another three potential species should be evaluated using extensive taxon sampling, comprehensive morphological, and morphometric approaches. Consequently, the conservation status of Uropsilus spp. should also be re-evaluated, as most of the species/potential species have very limited distribution. PMID:24161152
Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato
Margos, Gabriele; Vollmer, Stephanie A.; Ogden, Nicholas H.; Fish, Durland
2011-01-01
In order to understand the population structure and dynamics of bacterial microorganisms, typing systems that accurately reflect the phylogenetic and evolutionary relationship of the agents are required. Over the past 15 years multilocus sequence typing schemes have replaced single locus approaches, giving novel insights into phylogenetic and evolutionary relationships of many bacterial species and facilitating taxonomy. Since 2004, several schemes using multiple loci have been developed to better understand the taxonomy, phylogeny and evolution of Lyme borreliosis spirochetes and in this paper we have reviewed and summarized the progress that has been made for this important group of vector-borne zoonotic bacteria. PMID:21843658
Facey, Paul D.; Méric, Guillaume; Hitchings, Matthew D.; Pachebat, Justin A.; Hegarty, Matt J.; Chen, Xiaorui; Morgan, Laura V.A.; Hoeppner, James E.; Whitten, Miranda M.A.; Kirk, William D.J.; Dyson, Paul J.; Sheppard, Sam K.; Sol, Ricardo Del
2015-01-01
Obligate bacterial symbionts are widespread in many invertebrates, where they are often confined to specialized host cells and are transmitted directly from mother to progeny. Increasing numbers of these bacteria are being characterized but questions remain about their population structure and evolution. Here we take a comparative genomics approach to investigate two prominent bacterial symbionts (BFo1 and BFo2) isolated from geographically separated populations of western flower thrips, Frankliniella occidentalis. Our multifaceted approach to classifying these symbionts includes concatenated multilocus sequence analysis (MLSA) phylogenies, ribosomal multilocus sequence typing (rMLST), construction of whole-genome phylogenies, and in-depth genomic comparisons. We showed that the BFo1 genome clusters more closely to species in the genus Erwinia, and is a putative close relative to Erwinia aphidicola. BFo1 is also likely to have shared a common ancestor with Erwinia pyrifoliae/Erwinia amylovora and the nonpathogenic Erwinia tasmaniensis and genetic traits similar to Erwinia billingiae. The BFo1 genome contained virulence factors found in the genus Erwinia but represented a divergent lineage. In contrast, we showed that BFo2 belongs within the Enterobacteriales but does not group closely with any currently known bacterial species. Concatenated MLSA phylogenies indicate that it may have shared a common ancestor to the Erwinia and Pantoea genera, and based on the clustering of rMLST genes, it was most closely related to Pantoea ananatis but represented a divergent lineage. We reconstructed a core genome of a putative common ancestor of Erwinia and Pantoea and compared this with the genomes of BFo bacteria. BFo2 possessed none of the virulence determinants that were omnipresent in the Erwinia and Pantoea genera. Taken together, these data are consistent with BFo2 representing a highly novel species that maybe related to known Pantoea. PMID:26185096
Facey, Paul D; Méric, Guillaume; Hitchings, Matthew D; Pachebat, Justin A; Hegarty, Matt J; Chen, Xiaorui; Morgan, Laura V A; Hoeppner, James E; Whitten, Miranda M A; Kirk, William D J; Dyson, Paul J; Sheppard, Sam K; Del Sol, Ricardo
2015-07-15
Obligate bacterial symbionts are widespread in many invertebrates, where they are often confined to specialized host cells and are transmitted directly from mother to progeny. Increasing numbers of these bacteria are being characterized but questions remain about their population structure and evolution. Here we take a comparative genomics approach to investigate two prominent bacterial symbionts (BFo1 and BFo2) isolated from geographically separated populations of western flower thrips, Frankliniella occidentalis. Our multifaceted approach to classifying these symbionts includes concatenated multilocus sequence analysis (MLSA) phylogenies, ribosomal multilocus sequence typing (rMLST), construction of whole-genome phylogenies, and in-depth genomic comparisons. We showed that the BFo1 genome clusters more closely to species in the genus Erwinia, and is a putative close relative to Erwinia aphidicola. BFo1 is also likely to have shared a common ancestor with Erwinia pyrifoliae/Erwinia amylovora and the nonpathogenic Erwinia tasmaniensis and genetic traits similar to Erwinia billingiae. The BFo1 genome contained virulence factors found in the genus Erwinia but represented a divergent lineage. In contrast, we showed that BFo2 belongs within the Enterobacteriales but does not group closely with any currently known bacterial species. Concatenated MLSA phylogenies indicate that it may have shared a common ancestor to the Erwinia and Pantoea genera, and based on the clustering of rMLST genes, it was most closely related to Pantoea ananatis but represented a divergent lineage. We reconstructed a core genome of a putative common ancestor of Erwinia and Pantoea and compared this with the genomes of BFo bacteria. BFo2 possessed none of the virulence determinants that were omnipresent in the Erwinia and Pantoea genera. Taken together, these data are consistent with BFo2 representing a highly novel species that maybe related to known Pantoea. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Singh, Reema; Schilde, Christina; Schaap, Pauline
2016-11-17
Dictyostelia are a well-studied group of organisms with colonial multicellularity, which are members of the mostly unicellular Amoebozoa. A phylogeny based on SSU rDNA data subdivided all Dictyostelia into four major groups, but left the position of the root and of six group-intermediate taxa unresolved. Recent phylogenies inferred from 30 or 213 proteins from sequenced genomes, positioned the root between two branches, each containing two major groups, but lacked data to position the group-intermediate taxa. Since the positions of these early diverging taxa are crucial for understanding the evolution of phenotypic complexity in Dictyostelia, we sequenced six representative genomes of early diverging taxa. We retrieved orthologs of 47 housekeeping proteins with an average size of 890 amino acids from six newly sequenced and eight published genomes of Dictyostelia and unicellular Amoebozoa and inferred phylogenies from single and concatenated protein sequence alignments. Concatenated alignments of all 47 proteins, and four out of five subsets of nine concatenated proteins all produced the same consensus phylogeny with 100% statistical support. Trees inferred from just two out of the 47 proteins, individually reproduced the consensus phylogeny, highlighting that single gene phylogenies will rarely reflect correct species relationships. However, sets of two or three concatenated proteins again reproduced the consensus phylogeny, indicating that a small selection of genes suffices for low cost classification of as yet unincorporated or newly discovered dictyostelid and amoebozoan taxa by gene amplification. The multi-locus consensus phylogeny shows that groups 1 and 2 are sister clades in branch I, with the group-intermediate taxon D. polycarpum positioned as outgroup to group 2. Branch II consists of groups 3 and 4, with the group-intermediate taxon Polysphondylium violaceum positioned as sister to group 4, and the group-intermediate taxon Dictyostelium polycephalum branching at the base of that whole clade. Given the data, the approximately unbiased test rejects all alternative topologies favoured by SSU rDNA and individual proteins with high statistical support. The test also rejects monophyletic origins for the genera Acytostelium, Polysphondylium and Dictyostelium. The current position of Acytostelium ellipticum in the consensus phylogeny indicates that somatic cells were lost twice in Dictyostelia.
N.J. Brazee; D.L. Lindner
2013-01-01
Phellinus sensu lato (s.l.) is a complex of segregate genera that act as aggressive pathogens of woody plants. Nearly all of the genera in this complex have unresolved taxonomies, including Porodaedalea, which is one of the most important trunk rot pathogens of coniferous trees throughout the northern hemisphere. In an attempt...
Eight new Arthrinium species from China
Wang, Mei; Tan, Xiao-Ming; Liu, Fang; Cai, Lei
2018-01-01
Abstract The genus Arthrinium includes important plant pathogens, endophytes and saprobes with a wide host range and geographic distribution. In this paper, 74 Arthrinium strains isolated from various substrates such as bamboo leaves, tea plants, soil and air from karst caves in China were examined using a multi-locus phylogeny based on a combined dataset of ITS rDNA, TEF1 and TUB2, in conjunction with morphological characters, host association and ecological distribution. Eight new species were described based on their distinct phylogenetic relationships and morphological characters. Our results indicated a high species diversity of Arthrinium with wide host ranges, amongst which, Poaceae and Cyperaceae were the major host plant families of Arthrinium species. PMID:29755262
Eight new Arthrinium species from China.
Wang, Mei; Tan, Xiao-Ming; Liu, Fang; Cai, Lei
2018-01-01
The genus Arthrinium includes important plant pathogens, endophytes and saprobes with a wide host range and geographic distribution. In this paper, 74 Arthrinium strains isolated from various substrates such as bamboo leaves, tea plants, soil and air from karst caves in China were examined using a multi-locus phylogeny based on a combined dataset of ITS rDNA, TEF1 and TUB2, in conjunction with morphological characters, host association and ecological distribution. Eight new species were described based on their distinct phylogenetic relationships and morphological characters. Our results indicated a high species diversity of Arthrinium with wide host ranges, amongst which, Poaceae and Cyperaceae were the major host plant families of Arthrinium species.
Diamant, Eran; Palti, Yniv; Gur-Arie, Riva; Cohen, Helit; Hallerman, Eric M; Kashi, Yechezkel
2004-04-01
Multilocus sequencing of housekeeping genes has been used previously for bacterial strain typing and for inferring evolutionary relationships among strains of Escherichia coli. In this study, we used shorter intergenic sequences that contained simple sequence repeats (SSRs) of repeating mononucleotide motifs (mononucleotide repeats [MNRs]) to infer the phylogeny of pathogenic and commensal E. coli strains. Seven noncoding loci (four MNRs and three non-SSRs) were sequenced in 27 strains, including enterohemorrhagic (six isolates of O157:H7), enteropathogenic, enterotoxigenic, B, and K-12 strains. The four MNRs were also sequenced in 20 representative strains of the E. coli reference (ECOR) collection. Sequence polymorphism was significantly higher at the MNR loci, including the flanking sequences, indicating a higher mutation rate in the sequences flanking the MNR tracts. The four MNR loci were amplifiable by PCR in the standard ECOR A, B1, and D groups, but only one (yaiN) in the B2 group was amplified, which is consistent with previous studies that suggested that B2 is the most ancient group. High sequence compatibility was found between the four MNR loci, indicating that they are in the same clonal frame. The phylogenetic trees that were constructed from the sequence data were in good agreement with those of previous studies that used multilocus enzyme electrophoresis. The results demonstrate that MNR loci are useful for inferring phylogenetic relationships and provide much higher sequence variation than housekeeping genes. Therefore, the use of MNR loci for multilocus sequence typing should prove efficient for clinical diagnostics, epidemiology, and evolutionary study of bacteria.
Diamant, Eran; Palti, Yniv; Gur-Arie, Riva; Cohen, Helit; Hallerman, Eric M.; Kashi, Yechezkel
2004-01-01
Multilocus sequencing of housekeeping genes has been used previously for bacterial strain typing and for inferring evolutionary relationships among strains of Escherichia coli. In this study, we used shorter intergenic sequences that contained simple sequence repeats (SSRs) of repeating mononucleotide motifs (mononucleotide repeats [MNRs]) to infer the phylogeny of pathogenic and commensal E. coli strains. Seven noncoding loci (four MNRs and three non-SSRs) were sequenced in 27 strains, including enterohemorrhagic (six isolates of O157:H7), enteropathogenic, enterotoxigenic, B, and K-12 strains. The four MNRs were also sequenced in 20 representative strains of the E. coli reference (ECOR) collection. Sequence polymorphism was significantly higher at the MNR loci, including the flanking sequences, indicating a higher mutation rate in the sequences flanking the MNR tracts. The four MNR loci were amplifiable by PCR in the standard ECOR A, B1, and D groups, but only one (yaiN) in the B2 group was amplified, which is consistent with previous studies that suggested that B2 is the most ancient group. High sequence compatibility was found between the four MNR loci, indicating that they are in the same clonal frame. The phylogenetic trees that were constructed from the sequence data were in good agreement with those of previous studies that used multilocus enzyme electrophoresis. The results demonstrate that MNR loci are useful for inferring phylogenetic relationships and provide much higher sequence variation than housekeeping genes. Therefore, the use of MNR loci for multilocus sequence typing should prove efficient for clinical diagnostics, epidemiology, and evolutionary study of bacteria. PMID:15066845
Saslis-Lagoudakis, C Haris; Klitgaard, Bente B; Forest, Félix; Francis, Louise; Savolainen, Vincent; Williamson, Elizabeth M; Hawkins, Julie A
2011-01-01
The study of traditional knowledge of medicinal plants has led to discoveries that have helped combat diseases and improve healthcare. However, the development of quantitative measures that can assist our quest for new medicinal plants has not greatly advanced in recent years. Phylogenetic tools have entered many scientific fields in the last two decades to provide explanatory power, but have been overlooked in ethnomedicinal studies. Several studies show that medicinal properties are not randomly distributed in plant phylogenies, suggesting that phylogeny shapes ethnobotanical use. Nevertheless, empirical studies that explicitly combine ethnobotanical and phylogenetic information are scarce. In this study, we borrowed tools from community ecology phylogenetics to quantify significance of phylogenetic signal in medicinal properties in plants and identify nodes on phylogenies with high bioscreening potential. To do this, we produced an ethnomedicinal review from extensive literature research and a multi-locus phylogenetic hypothesis for the pantropical genus Pterocarpus (Leguminosae: Papilionoideae). We demonstrate that species used to treat a certain conditions, such as malaria, are significantly phylogenetically clumped and we highlight nodes in the phylogeny that are significantly overabundant in species used to treat certain conditions. These cross-cultural patterns in ethnomedicinal usage in Pterocarpus are interpreted in the light of phylogenetic relationships. This study provides techniques that enable the application of phylogenies in bioscreening, but also sheds light on the processes that shape cross-cultural ethnomedicinal patterns. This community phylogenetic approach demonstrates that similar ethnobotanical uses can arise in parallel in different areas where related plants are available. With a vast amount of ethnomedicinal and phylogenetic information available, we predict that this field, after further refinement of the techniques, will expand into similar research areas, such as pest management or the search for bioactive plant-based compounds.
Liu, Wenjun; Yu, Jie; Sun, Zhihong; Song, Yuqin; Wang, Xueni; Wang, Hongmei; Wuren, Tuoya; Zha, Musu; Menghe, Bilige; Heping, Zhang
2016-01-01
Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) is well known for its worldwide application in yogurt production. Flavor production and acid producing are considered as the most important characteristics for starter culture screening. To our knowledge this is the first study applying functional gene sequence multilocus sequence typing technology to predict the fermentation and flavor-producing characteristics of yogurt-producing bacteria. In the present study, phenotypic characteristics of 35 L. bulgaricus strains were quantified during the fermentation of milk to yogurt and during its subsequent storage; these included fermentation time, acidification rate, pH, titratable acidity, and flavor characteristics (acetaldehyde concentration). Furthermore, multilocus sequence typing analysis of 7 functional genes associated with fermentation time, acid production, and flavor formation was done to elucidate the phylogeny and genetic evolution of the same L. bulgaricus isolates. The results showed that strains significantly differed in fermentation time, acidification rate, and acetaldehyde production. Combining functional gene sequence analysis with phenotypic characteristics demonstrated that groups of strains established using genotype data were consistent with groups identified based on their phenotypic traits. This study has established an efficient and rapid molecular genotyping method to identify strains with good fermentation traits; this has the potential to replace time-consuming conventional methods based on direct measurement of phenotypic traits. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Low Divergence of Clonorchis sinensis in China Based on Multilocus Analysis
Sun, Jiufeng; Huang, Yan; Huang, Huaiqiu; Liang, Pei; Wang, Xiaoyun; Mao, Qiang; Men, Jingtao; Chen, Wenjun; Deng, Chuanhuan; Zhou, Chenhui; Lv, Xiaoli; Zhou, Juanjuan; Zhang, Fan; Li, Ran; Tian, Yanli; Lei, Huali; Liang, Chi; Hu, Xuchu; Xu, Jin; Li, Xuerong; XinbingYu
2013-01-01
Clonorchis sinensis, an ancient parasite that infects a number of piscivorous mammals, attracts significant public health interest due to zoonotic exposure risks in Asia. The available studies are insufficient to reflect the prevalence, geographic distribution, and intraspecific genetic diversity of C. sinensis in endemic areas. Here, a multilocus analysis based on eight genes (ITS1, act, tub, ef-1a, cox1, cox3, nad4 and nad5 [4.986 kb]) was employed to explore the intra-species genetic construction of C. sinensis in China. Two hundred and fifty-six C. sinensis isolates were obtained from environmental reservoirs from 17 provinces of China. A total of 254 recognized Multilocus Types (MSTs) showed high diversity among these isolates using multilocus analysis. The comparison analysis of nuclear and mitochondrial phylogeny supports separate clusters in a nuclear dendrogram. Genetic differentiation analysis of three clusters (A, B, and C) showed low divergence within populations. Most isolates from clusters B and C are geographically limited to central China, while cluster A is extraordinarily genetically diverse. Further genetic analyses between different geographic distributions, water bodies and hosts support the low population divergence. The latter haplotype analyses were consistent with the phylogenetic and genetic differentiation results. A recombination network based on concatenated sequences showed a concentrated linkage recombination population in cox1, cox3, nad4 and nad5, with spatial structuring in ITS1. Coupled with the history record and archaeological evidence of C. sinensis infection in mummified desiccated feces, these data point to an ancient origin of C. sinensis in China. In conclusion, we present a likely phylogenetic structure of the C. sinensis population in mainland China, highlighting its possible tendency for biogeographic expansion. Meanwhile, ITS1 was found to be an effective marker for tracking C. sinensis infection worldwide. Thus, the present study improves our understanding of the global epidemiology and evolution of C. sinensis. PMID:23825605
Optimization of Multilocus Sequence Analysis for Identification of Species in the Genus Vibrio
Gabriel, Michael W.; Matsui, George Y.; Friedman, Robert
2014-01-01
Multilocus sequence analysis (MLSA) is an important method for identification of taxa that are not well differentiated by 16S rRNA gene sequences alone. In this procedure, concatenated sequences of selected genes are constructed and then analyzed. The effects that the number and the order of genes used in MLSA have on reconstruction of phylogenetic relationships were examined. The recA, rpoA, gapA, 16S rRNA gene, gyrB, and ftsZ sequences from 56 species of the genus Vibrio were used to construct molecular phylogenies, and these were evaluated individually and using various gene combinations. Phylogenies from two-gene sequences employing recA and rpoA in both possible gene orders were different. The addition of the gapA gene sequence, producing all six possible concatenated sequences, reduced the differences in phylogenies to degrees of statistical (bootstrap) support for some nodes. The overall statistical support for the phylogenetic tree, assayed on the basis of a reliability score (calculated from the number of nodes having bootstrap values of ≥80 divided by the total number of nodes) increased with increasing numbers of genes used, up to a maximum of four. No further improvement was observed from addition of the fifth gene sequence (ftsZ), and addition of the sixth gene (gyrB) resulted in lower proportions of strongly supported nodes. Reductions in the numbers of strongly supported nodes were also observed when maximum parsimony was employed for tree construction. Use of a small number of gene sequences in MLSA resulted in accurate identification of Vibrio species. PMID:24951781
Alström, Per; Barnes, Keith N; Olsson, Urban; Barker, F Keith; Bloomer, Paulette; Khan, Aleem Ahmed; Qureshi, Masood Ahmed; Guillaumet, Alban; Crochet, Pierre-André; Ryan, Peter G
2013-12-01
The Alaudidae (larks) is a large family of songbirds in the superfamily Sylvioidea. Larks are cosmopolitan, although species-level diversity is by far largest in Africa, followed by Eurasia, whereas Australasia and the New World have only one species each. The present study is the first comprehensive phylogeny of the Alaudidae. It includes 83.5% of all species and representatives from all recognised genera, and was based on two mitochondrial and three nuclear loci (in total 6.4 kbp, although not all loci were available for all species). In addition, a larger sample, comprising several subspecies of some polytypic species was analysed for one of the mitochondrial loci. There was generally good agreement in trees inferred from different loci, although some strongly supported incongruences were noted. The tree based on the concatenated multilocus data was overall well resolved and well supported by the data. We stress the importance of performing single gene as well as combined data analyses, as the latter may obscure significant incongruence behind strong nodal support values. The multilocus tree revealed many unpredicted relationships, including some non-monophyletic genera (Calandrella, Mirafra, Melanocorypha, Spizocorys). The tree based on the extended mitochondrial data set revealed several unexpected deep divergences between taxa presently treated as conspecific (e.g. within Ammomanes cinctura, Ammomanes deserti, Calandrella brachydactyla, Eremophila alpestris), as well as some shallow splits between currently recognised species (e.g. Certhilauda brevirostris-C. semitorquata-C. curvirostris; Calendulauda barlowi-C. erythrochlamys; Mirafra cantillans-M. javanica). Based on our results, we propose a revised generic classification, and comment on some species limits. We also comment on the extraordinary morphological adaptability in larks, which has resulted in numerous examples of parallel evolution (e.g. in Melanocorypha mongolica and Alauda leucoptera [both usually placed in Melanocorypha]; Ammomanopsis grayi and Ammomanes cinctura/deserti [former traditionally placed in Ammomanes]; Chersophilus duponti and Certhilauda spp.; Eremopterix hova [usually placed in Mirafra] and several Mirafra spp.), as well as both highly conserved plumages (e.g. within Mirafra) and strongly divergent lineages (e.g. Eremopterix hova vs. other Eremopterix spp.; Calandrella cinerea complex vs. Eremophila spp.; Eremalauda dunni vs. Chersophilus duponti; Melanocorypha mongolica and male M. yeltoniensis vs. other Melanocorypha spp. and female M. yeltoniensis). Sexual plumage dimorphism has evolved multiple times. Few groups of birds show the same level of disagreement between taxonomy based on morphology and phylogenetic relationships as inferred from DNA sequences. Copyright © 2013 Elsevier Inc. All rights reserved.
STBase: one million species trees for comparative biology.
McMahon, Michelle M; Deepak, Akshay; Fernández-Baca, David; Boss, Darren; Sanderson, Michael J
2015-01-01
Comprehensively sampled phylogenetic trees provide the most compelling foundations for strong inferences in comparative evolutionary biology. Mismatches are common, however, between the taxa for which comparative data are available and the taxa sampled by published phylogenetic analyses. Moreover, many published phylogenies are gene trees, which cannot always be adapted immediately for species level comparisons because of discordance, gene duplication, and other confounding biological processes. A new database, STBase, lets comparative biologists quickly retrieve species level phylogenetic hypotheses in response to a query list of species names. The database consists of 1 million single- and multi-locus data sets, each with a confidence set of 1000 putative species trees, computed from GenBank sequence data for 413,000 eukaryotic taxa. Two bodies of theoretical work are leveraged to aid in the assembly of multi-locus concatenated data sets for species tree construction. First, multiply labeled gene trees are pruned to conflict-free singly-labeled species-level trees that can be combined between loci. Second, impacts of missing data in multi-locus data sets are ameliorated by assembling only decisive data sets. Data sets overlapping with the user's query are ranked using a scheme that depends on user-provided weights for tree quality and for taxonomic overlap of the tree with the query. Retrieval times are independent of the size of the database, typically a few seconds. Tree quality is assessed by a real-time evaluation of bootstrap support on just the overlapping subtree. Associated sequence alignments, tree files and metadata can be downloaded for subsequent analysis. STBase provides a tool for comparative biologists interested in exploiting the most relevant sequence data available for the taxa of interest. It may also serve as a prototype for future species tree oriented databases and as a resource for assembly of larger species phylogenies from precomputed trees.
Nørskov-Lauritsen, Niels; Overballe, Merete D.; Kilian, Mogens
2009-01-01
To obtain more information on the much-debated definition of prokaryotic species, we investigated the borders of Haemophilus influenzae by comparative analysis of H. influenzae reference strains with closely related bacteria including strains assigned to Haemophilus haemolyticus, cryptic genospecies biotype IV, and the never formally validated species “Haemophilus intermedius”. Multilocus sequence phylogeny based on six housekeeping genes separated a cluster encompassing the type and the reference strains of H. influenzae from 31 more distantly related strains. Comparison of 16S rRNA gene sequences supported this delineation but was obscured by a conspicuously high number of polymorphic sites in many of the strains that did not belong to the core group of H. influenzae strains. The division was corroborated by the differential presence of genes encoding H. influenzae adhesion and penetration protein, fuculokinase, and Cu,Zn-superoxide dismutase, whereas immunoglobulin A1 protease activity or the presence of the iga gene was of limited discriminatory value. The existence of porphyrin-synthesizing strains (“H. intermedius”) closely related to H. influenzae was confirmed. Several chromosomally encoded hemin biosynthesis genes were identified, and sequence analysis showed these genes to represent an ancestral genotype rather than recent transfers from, e.g., Haemophilus parainfluenzae. Strains previously assigned to H. haemolyticus formed several separate lineages within a distinct but deeply branching cluster, intermingled with strains of “H. intermedius” and cryptic genospecies biotype IV. Although H. influenzae is phenotypically more homogenous than some other Haemophilus species, the genetic diversity and multicluster structure of strains traditionally associated with H. influenzae make it difficult to define the natural borders of that species. PMID:19060144
Mitogenomics of 'Old World Acraea' butterflies reveals a highly divergent 'Bematistes'.
Timmermans, M J T N; Lees, D C; Thompson, M J; Sáfián, Sz; Brattström, O
2016-04-01
Afrotropical Acraeini butterflies provide a fascinating potential model system to contrast with the Neotropical Heliconiini, yet their phylogeny remains largely unexplored by molecular methods and their generic level nomenclature is still contentious. To test the potential of mitogenomes in a simultaneous analysis of the radiation, we sequenced the full mitochondrial genomes of 19 African species. Analyses show the potential of mitogenomic phylogeny reconstruction in this group. Inferred relationships are largely congruent with a previous multilocus study. We confirm a monophyletic Telchinia to include the Asiatic Pareba with a complicated paraphylum, traditional (sub)genus Acraea, toward the base. The results suggest that several proposed subgenera and some species groups within Telchinia are not monophyletic, while two other (sub)genera could possibly be combined. Telchinia was recovered without strong support as sister to the potentially interesting system of distasteful model butterflies known as Bematistes, a name that is suppressed in some treatments. Surprisingly, we find that this taxon has remarkably divergent mitogenomes and unexpected synapomorphic tRNA rearrangements. These gene order changes, combined with evidence for deviating dN/dS ratios and evidence for episodal diversifying selection, suggest that the ancestral Bematistes mitogenome has had a turbulent past. Our study adds genetic support for treating this clade as a distinct genus, while the alternative option, adopted by some authors, of Acraea being equivalent to Acraeini merely promotes redundancy. We pave the way for more detailed mitogenomic and multi-locus molecular analyses which can determine how many genera are needed (possibly at least six) to divide Acraeini into monophyletic groups that also facilitate communication about their biology. Copyright © 2016 Elsevier Inc. All rights reserved.
Saslis-Lagoudakis, C. Haris; Klitgaard, Bente B.; Forest, Félix; Francis, Louise; Savolainen, Vincent; Williamson, Elizabeth M.; Hawkins, Julie A.
2011-01-01
Background The study of traditional knowledge of medicinal plants has led to discoveries that have helped combat diseases and improve healthcare. However, the development of quantitative measures that can assist our quest for new medicinal plants has not greatly advanced in recent years. Phylogenetic tools have entered many scientific fields in the last two decades to provide explanatory power, but have been overlooked in ethnomedicinal studies. Several studies show that medicinal properties are not randomly distributed in plant phylogenies, suggesting that phylogeny shapes ethnobotanical use. Nevertheless, empirical studies that explicitly combine ethnobotanical and phylogenetic information are scarce. Methodology/Principal Findings In this study, we borrowed tools from community ecology phylogenetics to quantify significance of phylogenetic signal in medicinal properties in plants and identify nodes on phylogenies with high bioscreening potential. To do this, we produced an ethnomedicinal review from extensive literature research and a multi-locus phylogenetic hypothesis for the pantropical genus Pterocarpus (Leguminosae: Papilionoideae). We demonstrate that species used to treat a certain conditions, such as malaria, are significantly phylogenetically clumped and we highlight nodes in the phylogeny that are significantly overabundant in species used to treat certain conditions. These cross-cultural patterns in ethnomedicinal usage in Pterocarpus are interpreted in the light of phylogenetic relationships. Conclusions/Significance This study provides techniques that enable the application of phylogenies in bioscreening, but also sheds light on the processes that shape cross-cultural ethnomedicinal patterns. This community phylogenetic approach demonstrates that similar ethnobotanical uses can arise in parallel in different areas where related plants are available. With a vast amount of ethnomedicinal and phylogenetic information available, we predict that this field, after further refinement of the techniques, will expand into similar research areas, such as pest management or the search for bioactive plant-based compounds. PMID:21789247
Chassain, Benoît; Lemée, Ludovic; Didi, Jennifer; Thiberge, Jean-Michel; Brisse, Sylvain; Pons, Jean-Louis
2012-01-01
Staphylococcus lugdunensis is recognized as one of the major pathogenic species within the genus Staphylococcus, even though it belongs to the coagulase-negative group. A multilocus sequence typing (MLST) scheme was developed to study the genetic relationships and population structure of 87 S. lugdunensis isolates from various clinical and geographic sources by DNA sequence analysis of seven housekeeping genes (aroE, dat, ddl, gmk, ldh, recA, and yqiL). The number of alleles ranged from four (gmk and ldh) to nine (yqiL). Allelic profiles allowed the definition of 20 different sequence types (STs) and five clonal complexes. The 20 STs lacked correlation with geographic source. Isolates recovered from hematogenic infections (blood or osteoarticular isolates) or from skin and soft tissue infections did not cluster in separate lineages. Penicillin-resistant isolates clustered mainly in one clonal complex, unlike glycopeptide-tolerant isolates, which did not constitute a distinct subpopulation within S. lugdunensis. Phylogenies from the sequences of the seven individual housekeeping genes were congruent, indicating a predominantly mutational evolution of these genes. Quantitative analysis of the linkages between alleles from the seven loci revealed a significant linkage disequilibrium, thus confirming a clonal population structure for S. lugdunensis. This first MLST scheme for S. lugdunensis provides a new tool for investigating the macroepidemiology and phylogeny of this unusually virulent coagulase-negative Staphylococcus. PMID:22785196
Zhou, Li-Wei; Cao, Yun; Wu, Sheng-Hua; Vlasák, Josef; Li, De-Wei; Li, Meng-Jie; Dai, Yu-Cheng
2015-06-01
Species of the Ganoderma lucidum complex are used in many types of health products. However, the taxonomy of this complex has long been chaotic, thus limiting its uses. In the present study, 32 collections of the complex from Asia, Europe and North America were analyzed from both morphological and molecular phylogenetic perspectives. The combined dataset, including an outgroup, comprised 33 ITS, 24 tef1α, 24 rpb1 and 21 rpb2 sequences, of which 19 ITS, 20 tef1α, 20 rpb1 and 17 rpb2 sequences were newly generated. A total of 13 species of the complex were recovered in the multilocus phylogeny. These 13 species were not strongly supported as a single monophyletic lineage, and were further grouped into three lineages that cannot be defined by their geographic distributions. Clade A comprised Ganoderma curtisii, Ganoderma flexipes, Ganoderma lingzhi, Ganoderma multipileum, Ganoderma resinaceum, Ganoderma sessile, Ganoderma sichuanense and Ganoderma tropicum, Clade B comprised G. lucidum, Ganoderma oregonense and Ganoderma tsugae, and Clade C comprised Ganoderma boninense and Ganoderma zonatum. A dichotomous key to the 13 species is provided, and their key morphological characters from context, pores, cuticle cells and basidiospores are presented in a table. The taxonomic positions of these species are briefly discussed. Noteworthy, the epitypification of G. sichuanense is rejected. Copyright © 2014 Elsevier Ltd. All rights reserved.
STBase: One Million Species Trees for Comparative Biology
McMahon, Michelle M.; Deepak, Akshay; Fernández-Baca, David; Boss, Darren; Sanderson, Michael J.
2015-01-01
Comprehensively sampled phylogenetic trees provide the most compelling foundations for strong inferences in comparative evolutionary biology. Mismatches are common, however, between the taxa for which comparative data are available and the taxa sampled by published phylogenetic analyses. Moreover, many published phylogenies are gene trees, which cannot always be adapted immediately for species level comparisons because of discordance, gene duplication, and other confounding biological processes. A new database, STBase, lets comparative biologists quickly retrieve species level phylogenetic hypotheses in response to a query list of species names. The database consists of 1 million single- and multi-locus data sets, each with a confidence set of 1000 putative species trees, computed from GenBank sequence data for 413,000 eukaryotic taxa. Two bodies of theoretical work are leveraged to aid in the assembly of multi-locus concatenated data sets for species tree construction. First, multiply labeled gene trees are pruned to conflict-free singly-labeled species-level trees that can be combined between loci. Second, impacts of missing data in multi-locus data sets are ameliorated by assembling only decisive data sets. Data sets overlapping with the user’s query are ranked using a scheme that depends on user-provided weights for tree quality and for taxonomic overlap of the tree with the query. Retrieval times are independent of the size of the database, typically a few seconds. Tree quality is assessed by a real-time evaluation of bootstrap support on just the overlapping subtree. Associated sequence alignments, tree files and metadata can be downloaded for subsequent analysis. STBase provides a tool for comparative biologists interested in exploiting the most relevant sequence data available for the taxa of interest. It may also serve as a prototype for future species tree oriented databases and as a resource for assembly of larger species phylogenies from precomputed trees. PMID:25679219
Genomic insights into the taxonomic status of the Bacillus cereus group
Liu, Yang; Lai, Qiliang; Göker, Markus; Meier-Kolthoff, Jan P.; Wang, Meng; Sun, Yamin; Wang, Lei; Shao, Zongze
2015-01-01
The identification and phylogenetic relationships of bacteria within the Bacillus cereus group are controversial. This study aimed at determining the taxonomic affiliations of these strains using the whole-genome sequence-based Genome BLAST Distance Phylogeny (GBDP) approach. The GBDP analysis clearly separated 224 strains into 30 clusters, representing eleven known, partially merged species and accordingly 19–20 putative novel species. Additionally, 16S rRNA gene analysis, a novel variant of multi-locus sequence analysis (nMLSA) and screening of virulence genes were performed. The 16S rRNA gene sequence was not sufficient to differentiate the bacteria within this group due to its high conservation. The nMLSA results were consistent with GBDP. Moreover, a fast typing method was proposed using the pycA gene, and where necessary, the ccpA gene. The pXO plasmids and cry genes were widely distributed, suggesting little correlation with the phylogenetic positions of the host bacteria. This might explain why classifications based on virulence characteristics proved unsatisfactory in the past. In summary, this is the first large-scale and systematic study of the taxonomic status of the bacteria within the B. cereus group using whole-genome sequences, and is likely to contribute to further insights into their pathogenicity, phylogeny and adaptation to diverse environments. PMID:26373441
Schirtzinger, Erin E.; Matsumoto, Tania; Eberhard, Jessica R.; Graves, Gary R.; Sanchez, Juan J.; Capelli, Sara; Müller, Heinrich; Scharpegge, Julia; Chambers, Geoffrey K.; Fleischer, Robert C.
2008-01-01
The question of when modern birds (Neornithes) first diversified has generated much debate among avian systematists. Fossil evidence generally supports a Tertiary diversification, whereas estimates based on molecular dating favor an earlier diversification in the Cretaceous period. In this study, we used an alternate approach, the inference of historical biogeographic patterns, to test the hypothesis that the initial radiation of the Order Psittaciformes (the parrots and cockatoos) originated on the Gondwana supercontinent during the Cretaceous. We utilized broad taxonomic sampling (representatives of 69 of the 82 extant genera and 8 outgroup taxa) and multilocus molecular character sampling (3,941 bp from mitochondrial DNA (mtDNA) genes cytochrome oxidase I and NADH dehydrogenase 2 and nuclear introns of rhodopsin intron 1, tropomyosin alpha-subunit intron 5, and transforming growth factor ß-2) to generate phylogenetic hypotheses for the Psittaciformes. Analyses of the combined character partitions using maximum parsimony, maximum likelihood, and Bayesian criteria produced well-resolved and topologically similar trees in which the New Zealand taxa Strigops and Nestor (Psittacidae) were sister to all other psittaciforms and the cockatoo clade (Cacatuidae) was sister to a clade containing all remaining parrots (Psittacidae). Within this large clade of Psittacidae, some traditionally recognized tribes and subfamilies were monophyletic (e.g., Arini, Psittacini, and Loriinae), whereas several others were polyphyletic (e.g., Cyclopsittacini, Platycercini, Psittaculini, and Psittacinae). Ancestral area reconstructions using our Bayesian phylogenetic hypothesis and current distributions of genera supported the hypothesis of an Australasian origin for the Psittaciformes. Separate analyses of the timing of parrot diversification constructed with both Bayesian relaxed-clock and penalized likelihood approaches showed better agreement between geologic and diversification events in the chronograms based on a Cretaceous dating of the basal split within parrots than the chronograms based on a Tertiary dating of this split, although these data are more equivocal. Taken together, our results support a Cretaceous origin of Psittaciformes in Gondwana after the separation of Africa and the India/Madagascar block with subsequent diversification through both vicariance and dispersal. These well-resolved molecular phylogenies will be of value for comparative studies of behavior, ecology, and life history in parrots. PMID:18653733
Pestalotiopsis and allied genera from Camellia, with description of 11 new species from China.
Liu, Fang; Hou, Lingwei; Raza, Mubashar; Cai, Lei
2017-04-13
A total of 124 Pestalotiopsis-like isolates associated with symptomatic and asymptomatic tissues of Camellia sinensis and other Camellia spp. from eight provinces in China were investigated. Based on single- and multi-locus (ITS, TEF, TUB2) phylogenies, as well as morphological characters, host associations and geographical distributions, they were classified into at least 19 species in three genera, i.e. Neopestalotiopsis, Pestalotiopsis and Pseudopestalotiopsis. Eight novel species in Pestalotiopsis and three novel species in Pseudopestalotiopsis were described. Our data suggested that the currently widely used loci in Pestalotiopsis-like genera do not consistently provide stable and sufficient resolution tree topologies, especially for Neopestalotiopsis. Moreover, the number, branch pattern and length of the conidial basal appendages were revealed to be phylogenetically informative characters in Pestalotiopsis.
2011-01-01
Background The avian family Cettiidae, including the genera Cettia, Urosphena, Tesia, Abroscopus and Tickellia and Orthotomus cucullatus, has recently been proposed based on analysis of a small number of loci and species. The close relationship of most of these taxa was unexpected, and called for a comprehensive study based on multiple loci and dense taxon sampling. In the present study, we infer the relationships of all except one of the species in this family using one mitochondrial and three nuclear loci. We use traditional gene tree methods (Bayesian inference, maximum likelihood bootstrapping, parsimony bootstrapping), as well as a recently developed Bayesian species tree approach (*BEAST) that accounts for lineage sorting processes that might produce discordance between gene trees. We also analyse mitochondrial DNA for a larger sample, comprising multiple individuals and a large number of subspecies of polytypic species. Results There are many topological incongruences among the single-locus trees, although none of these is strongly supported. The multi-locus tree inferred using concatenated sequences and the species tree agree well with each other, and are overall well resolved and well supported by the data. The main discrepancy between these trees concerns the most basal split. Both methods infer the genus Cettia to be highly non-monophyletic, as it is scattered across the entire family tree. Deep intraspecific divergences are revealed, and one or two species and one subspecies are inferred to be non-monophyletic (differences between methods). Conclusions The molecular phylogeny presented here is strongly inconsistent with the traditional, morphology-based classification. The remarkably high degree of non-monophyly in the genus Cettia is likely to be one of the most extraordinary examples of misconceived relationships in an avian genus. The phylogeny suggests instances of parallel evolution, as well as highly unequal rates of morphological divergence in different lineages. This complex morphological evolution apparently misled earlier taxonomists. These results underscore the well-known but still often neglected problem of basing classifications on overall morphological similarity. Based on the molecular data, a revised taxonomy is proposed. Although the traditional and species tree methods inferred much the same tree in the present study, the assumption by species tree methods that all species are monophyletic is a limitation in these methods, as some currently recognized species might have more complex histories. PMID:22142197
Álvarez, Natalí; Gómez, Giovan F; Naranjo-Díaz, Nelson; Correa, Margarita M
2018-06-18
The Arribalzagia Series of the Anopheles Subgenus comprises morphologically similar species or members of species complexes which makes correct species identification difficult. Therefore, the aim of this work was to discriminate the morphospecies of the Arribalzagia Series present in Colombia using a multilocus approach based on ITS2, COI and CAD sequences. Specimens of the Arribalzagia Series collected at 32 localities in nine departments were allocated to seven species. Individual and concatenated Bayesian analyses showed high support for each of the species and reinforced the previous report of the Apicimacula species Complex with distribution in the Pacific Coast and northwestern Colombia. In addition, a new molecular operational taxonomic unit-MOTU was identified, herein denominated near Anopheles peryassui, providing support for the existence of a Peryassui species Complex. Further, the CAD gene, just recently used for Anopheles taxonomy and phylogeny, demonstrated its power in resolving phylogenetic relationships among species of the Arribalzagia Series. The divergence times for these species correspond to the early Pliocene and the Miocene. Considering the epidemiological importance of some species of the Series and their co-occurrence in malaria endemic regions of Colombia, their discrimination constitutes an important step for vector incrimination and control in the country. Copyright © 2018. Published by Elsevier B.V.
Buján, Noemí; Balboa, Sabela; L Romalde, Jesús; E Toranzo, Alicia; Magariños, Beatriz
2018-05-08
At present, the genus Edwardsiella compiles five species: E. tarda, E. hoshinae, E. ictaluri, E. piscicida and E. anguillarum. Some species of this genus such us E. ictaluri and E. piscicida are important pathogens of numerous fish species. With the description of the two latter species, the phylogeny of Edwardsiella became more complicated. With the aim to clarify the relationships among all species in the genus, a multilocus sequence typing (MLST) approach was developed and applied to characterize 56 isolates and 6 reference strains belonging to the five Edwardsiella species. Moreover, several analyses based on the MLST scheme were performed to investigate the evolution within the genus, as well as the influence of recombination and mutation in the speciation. Edwardsiella isolates presented a high genetic variability reflected in the fourteen sequence types (ST) represented by a single isolates out of eighteen total ST. Mutation events were considerably more frequent than recombination, although both approximately equal influenced the genetic diversification. However, the speciation among species occurred mostly by recombination. Edwardsiella genus displays a non-clonal population structure with some degree of geographical isolation followed by a population expansion of E. piscicida. A database from this study was created and hosted on pubmlst.org (http://pubmlst.org/edwardsiella/). Copyright © 2018 Elsevier Inc. All rights reserved.
Carbone, Ignazio; White, James B; Miadlikowska, Jolanta; Arnold, A Elizabeth; Miller, Mark A; Kauff, Frank; U'Ren, Jana M; May, Georgiana; Lutzoni, François
2017-04-15
High-quality phylogenetic placement of sequence data has the potential to greatly accelerate studies of the diversity, systematics, ecology and functional biology of diverse groups. We developed the Tree-Based Alignment Selector (T-BAS) toolkit to allow evolutionary placement and visualization of diverse DNA sequences representing unknown taxa within a robust phylogenetic context, and to permit the downloading of highly curated, single- and multi-locus alignments for specific clades. In its initial form, T-BAS v1.0 uses a core phylogeny of 979 taxa (including 23 outgroup taxa, as well as 61 orders, 175 families and 496 genera) representing all 13 classes of largest subphylum of Fungi-Pezizomycotina (Ascomycota)-based on sequence alignments for six loci (nr5.8S, nrLSU, nrSSU, mtSSU, RPB1, RPB2 ). T-BAS v1.0 has three main uses: (i) Users may download alignments and voucher tables for members of the Pezizomycotina directly from the reference tree, facilitating systematics studies of focal clades. (ii) Users may upload sequence files with reads representing unknown taxa and place these on the phylogeny using either BLAST or phylogeny-based approaches, and then use the displayed tree to select reference taxa to include when downloading alignments. The placement of unknowns can be performed for large numbers of Sanger sequences obtained from fungal cultures and for alignable, short reads of environmental amplicons. (iii) User-customizable metadata can be visualized on the tree. T-BAS Version 1.0 is available online at http://tbas.hpc.ncsu.edu . Registration is required to access the CIPRES Science Gateway and NSF XSEDE's large computational resources. icarbon@ncsu.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Siqueira, J. P. Z.; Sutton, D. A.; García, D.; Wiederhold, N.; Peterson, S. W.; Guarro, J.
2017-01-01
ABSTRACT A multilocus phylogenetic study was carried out to assess species identity of a set of 34 clinical isolates from Aspergillus section Circumdati from the United States and to determine their in vitro antifungal susceptibility against eight antifungal drugs. The genetic markers used were the internal transcribed spacer (ITS) region, and fragments of the beta-tubulin (BenA), calmodulin (CaM), and RNA polymerase II second largest subunit (RPB2) genes. The drugs tested were amphotericin B, itraconazole, posaconazole, voriconazole, anidulafungin, caspofungin, micafungin, and terbinafine. The most common species sampled was A. westerdijkiae (29.4%), followed by a novel species, which was described here as A. pseudosclerotiorum (23.5%). Other species identified were A. sclerotiorum (17.6%), A. ochraceus (8.8%), A. subramanianii (8.8%), and A. insulicola and A. ochraceopetaliformis, with two isolates (5.9%) of each. The drugs that showed the most potent activity were caspofungin, micafungin, and terbinafine, while amphotericin B showed the least activity. PMID:28053212
Siqueira, J P Z; Sutton, D A; Gené, J; García, D; Wiederhold, N; Peterson, S W; Guarro, J
2017-03-01
A multilocus phylogenetic study was carried out to assess species identity of a set of 34 clinical isolates from Aspergillus section Circumdati from the United States and to determine their in vitro antifungal susceptibility against eight antifungal drugs. The genetic markers used were the internal transcribed spacer (ITS) region, and fragments of the beta-tubulin ( BenA ), calmodulin ( CaM ), and RNA polymerase II second largest subunit ( RPB2 ) genes. The drugs tested were amphotericin B, itraconazole, posaconazole, voriconazole, anidulafungin, caspofungin, micafungin, and terbinafine. The most common species sampled was A. westerdijkiae (29.4%), followed by a novel species, which was described here as A. pseudosclerotiorum (23.5%). Other species identified were A. sclerotiorum (17.6%), A. ochraceus (8.8%), A. subramanianii (8.8%), and A. insulicola and A. ochraceopetaliformis , with two isolates (5.9%) of each. The drugs that showed the most potent activity were caspofungin, micafungin, and terbinafine, while amphotericin B showed the least activity. Copyright © 2017 American Society for Microbiology.
Graham Reynolds, R; Niemiller, Matthew L; Revell, Liam J
2014-02-01
Snakes in the families Boidae and Pythonidae constitute some of the most spectacular reptiles and comprise an enormous diversity of morphology, behavior, and ecology. While many species of boas and pythons are familiar, taxonomy and evolutionary relationships within these families remain contentious and fluid. A major effort in evolutionary and conservation biology is to assemble a comprehensive Tree-of-Life, or a macro-scale phylogenetic hypothesis, for all known life on Earth. No previously published study has produced a species-level molecular phylogeny for more than 61% of boa species or 65% of python species. Using both novel and previously published sequence data, we have produced a species-level phylogeny for 84.5% of boid species and 82.5% of pythonid species, contextualized within a larger phylogeny of henophidian snakes. We obtained new sequence data for three boid, one pythonid, and two tropidophiid taxa which have never previously been included in a molecular study, in addition to generating novel sequences for seven genes across an additional 12 taxa. We compiled an 11-gene dataset for 127 taxa, consisting of the mitochondrial genes CYTB, 12S, and 16S, and the nuclear genes bdnf, bmp2, c-mos, gpr35, rag1, ntf3, odc, and slc30a1, totaling up to 7561 base pairs per taxon. We analyzed this dataset using both maximum likelihood and Bayesian inference and recovered a well-supported phylogeny for these species. We found significant evidence of discordance between taxonomy and evolutionary relationships in the genera Tropidophis, Morelia, Liasis, and Leiopython, and we found support for elevating two previously suggested boid species. We suggest a revised taxonomy for the boas (13 genera, 58 species) and pythons (8 genera, 40 species), review relationships between our study and the many other molecular phylogenetic studies of henophidian snakes, and present a taxonomic database and alignment which may be easily used and built upon by other researchers. Copyright © 2013 Elsevier Inc. All rights reserved.
Medina, Cintia Débora; Avila, Luciano Javier; Sites, Jack Walter; Santos, Juan; Morando, Mariana
2018-03-01
We present different approaches to a multi-locus phylogeny for the Liolaemus elongatus-kriegi group, including almost all species and recognized lineages. We sequenced two mitochondrial and five nuclear gene regions for 123 individuals from 35 taxa, and compared relationships resolved from concatenated and species tree methods. The L. elongatus-kriegi group was inferred as monophyletic in three of the five analyses (concatenated mitochondrial, concatenated mitochondrial + nuclear gene trees, and SVD quartet species tree). The mitochondrial gene tree resolved four haploclades, three corresponding to the previously recognized complexes: L. elongatus, L. kriegi and L. petrophilus complexes, and the L. punmahuida group. The BEAST species tree approach included the L. punmahuida group within the L. kriegi complex, but the SVD quartet method placed it as sister to the L. elongatus-kriegi group. BEAST inferred species of the L. elongatus and L. petrophilus complexes as one clade, while SVDquartet inferred these two complexes as monophyletic (although with no statistical support for the L. petrophilus complex). The species tree approach also included the L. punmahuida group as part of the L. elongatus-kriegi group. Our study provides detailed multilocus phylogenetic hypotheses for the L. elongatus-kriegi group, and we discuss possible reasons for differences in the concatenation and species tree methods. Copyright © 2017 Elsevier Inc. All rights reserved.
Lanier, Hayley C; Knowles, L Lacey
2015-02-01
Coalescent-based methods for species-tree estimation are becoming a dominant approach for reconstructing species histories from multi-locus data, with most of the studies examining these methodologies focused on recently diverged species. However, deeper phylogenies, such as the datasets that comprise many Tree of Life (ToL) studies, also exhibit gene-tree discordance. This discord may also arise from the stochastic sorting of gene lineages during the speciation process (i.e., reflecting the random coalescence of gene lineages in ancestral populations). It remains unknown whether guidelines regarding methodologies and numbers of loci established by simulation studies at shallow tree depths translate into accurate species relationships for deeper phylogenetic histories. We address this knowledge gap and specifically identify the challenges and limitations of species-tree methods that account for coalescent variance for deeper phylogenies. Using simulated data with characteristics informed by empirical studies, we evaluate both the accuracy of estimated species trees and the characteristics associated with recalcitrant nodes, with a specific focus on whether coalescent variance is generally responsible for the lack of resolution. By determining the proportion of coalescent genealogies that support a particular node, we demonstrate that (1) species-tree methods account for coalescent variance at deep nodes and (2) mutational variance - not gene-tree discord arising from the coalescent - posed the primary challenge for accurate reconstruction across the tree. For example, many nodes were accurately resolved despite predicted discord from the random coalescence of gene lineages and nodes with poor support were distributed across a range of depths (i.e., they were not restricted to a particular recent divergences). Given their broad taxonomic scope and large sampling of taxa, deep level phylogenies pose several potential methodological complications including difficulties with MCMC convergence and estimation of requisite population genetic parameters for coalescent-based approaches. Despite these difficulties, the findings generally support the utility of species-tree analyses for the estimation of species relationships throughout the ToL. We discuss strategies for successful application of species-tree approaches to deep phylogenies. Copyright © 2014 Elsevier Inc. All rights reserved.
Adherent and Invasive Escherichia coli Is Associated with Granulomatous Colitis in Boxer Dogs
Simpson, Kenneth W.; Dogan, Belgin; Rishniw, Mark; Goldstein, Richard E.; Klaessig, Suzanne; McDonough, Patrick L.; German, Alex J.; Yates, Robin M.; Russell, David G.; Johnson, Susan E.; Berg, Douglas E.; Harel, Josee; Bruant, Guillaume; McDonough, Sean P.; Schukken, Ynte H.
2006-01-01
The mucosa-associated microflora is increasingly considered to play a pivotal role in the pathogenesis of inflammatory bowel disease. This study explored the possibility that an abnormal mucosal flora is involved in the etiopathogenesis of granulomatous colitis of Boxer dogs (GCB). Colonic biopsy samples from affected dogs (n = 13) and controls (n = 38) were examined by fluorescent in situ hybridization (FISH) with a eubacterial 16S rRNA probe. Culture, 16S ribosomal DNA sequencing, and histochemistry were used to guide subsequent FISH. GCB-associated Escherichia coli isolates were evaluated for their ability to invade and persist in cultured epithelial cells and macrophages as well as for serotype, phylogenetic group, genome size, overall genotype, and presence of virulence genes. Intramucosal gram-negative coccobacilli were present in 100% of GCB samples but not controls. Invasive bacteria hybridized with FISH probes to E. coli. Three of four GCB-associated E. coli isolates adhered to, invaded, and replicated within cultured epithelial cells. Invasion triggered a “splash”-type response, was decreased by cytochalasin D, genistein, colchicine, and wortmannin, and paralleled the behavior of the Crohn's disease-associated strain E. coli LF 82. GCB E. coli and LF 82 were diverse in serotype and overall genotype but similar in phylogeny (B2 and D), in virulence gene profiles (fyuA, irp1, irp2, chuA, fepC, ibeA, kpsMII, iss), in having a larger genome size than commensal E. coli, and in the presence of novel multilocus sequence types. We conclude that GCB is associated with selective intramucosal colonization by E. coli. E. coli strains associated with GCB and Crohn's disease have an adherent and invasive phenotype and novel multilocus sequence types and resemble E. coli associated with extraintestinal disease in phylogeny and virulence gene profile. PMID:16861666
Ali, Habib; Muhammad, Abrar; Hou, Youming
2018-05-28
The intracellular bacterium Wolbachia pipientis is widespread in arthropods. Recently, possibilities of novel Wolbachia -mediated hosts, their distribution, and natural rate have been anticipated, and the coconut leaf beetle Brontispa longissima (Gestro) (Coleoptera: Chrysomelidae), which has garnered attention as a serious pest of palms, was subjected to this interrogation. By adopting Wolbachia surface protein ( wsp ) and multilocus sequence type (MLST) genotypic systems, we determined the Wolbachia infection density within host developmental stages, body parts, and tissues, and the results revealed that all the tested samples of B. longissima were infected with the same Wolbachia strain (wLog), suggesting complete vertical transmission. The MLST profile elucidated two new alleles ( ftsZ -234 and coxA-266) that define a new sequence type (ST-483), which indicates the particular genotypic association of B. longissima and Wolbachia . The quantitative real-time PCR analysis revealed a higher infection density in the eggs and adult stage, followed by the abdomen and reproductive tissues, respectively. However, no significant differences were observed in the infection density between sexes. Moreover, the wsp and concatenated MLST alignment analysis of this study with other known Wolbachia-mediated arthropods revealed similar clustering with distinct monophyletic supergroup B. This is the first comprehensive report on the prevalence, infection dynamics, and phylogeny of the Wolbachia endosymbiont in B. longissima , which demonstrated that Wolbachia is ubiquitous across all developmental stages and distributed in the entire body of B. longissima . Understanding the Wolbachia infection dynamics would provide useful insight to build a framework for future investigations, understand its impacts on host physiology, and exploit it as a potential biocontrol agent.
Shahin, Arwa; Smulders, Marinus J. M.; van Tuyl, Jaap M.; Arens, Paul; Bakker, Freek T.
2014-01-01
Next Generation Sequencing (NGS) may enable estimating relationships among genotypes using allelic variation of multiple nuclear genes simultaneously. We explored the potential and caveats of this strategy in four genetically distant Lilium cultivars to estimate their genetic divergence from transcriptome sequences using three approaches: POFAD (Phylogeny of Organisms from Allelic Data, uses allelic information of sequence data), RAxML (Randomized Accelerated Maximum Likelihood, tree building based on concatenated consensus sequences) and Consensus Network (constructing a network summarizing among gene tree conflicts). Twenty six gene contigs were chosen based on the presence of orthologous sequences in all cultivars, seven of which also had an orthologous sequence in Tulipa, used as out-group. The three approaches generated the same topology. Although the resolution offered by these approaches is high, in this case there was no extra benefit in using allelic information. We conclude that these 26 genes can be widely applied to construct a species tree for the genus Lilium. PMID:25368628
Callahan, Melissa S; McPeek, Mark A
2016-01-01
Reconstructing evolutionary patterns of species and populations provides a framework for asking questions about the impacts of climate change. Here we use a multilocus dataset to estimate gene trees under maximum likelihood and Bayesian models to obtain a robust estimate of relationships for a genus of North American damselflies, Enallagma. Using a relaxed molecular clock, we estimate the divergence times for this group. Furthermore, to account for the fact that gene tree analyses can overestimate ages of population divergences, we use a multi-population coalescent model to gain a more accurate estimate of divergence times. We also infer diversification rates using a method that allows for variation in diversification rate through time and among lineages. Our results reveal a complex evolutionary history of Enallagma, in which divergence events both predate and occur during Pleistocene climate fluctuations. There is also evidence of diversification rate heterogeneity across the tree. These divergence time estimates provide a foundation for addressing the relative significance of historical climatic events in the diversification of this genus. Copyright © 2015 Elsevier Inc. All rights reserved.
Lescat, Mathilde; Hoede, Claire; Clermont, Olivier; Garry, Louis; Darlu, Pierre; Tuffery, Pierre; Denamur, Erick; Picard, Bertrand
2009-12-29
Previous studies have established a correlation between electrophoretic polymorphism of esterase B, and virulence and phylogeny of Escherichia coli. Strains belonging to the phylogenetic group B2 are more frequently implicated in extraintestinal infections and include esterase B2 variants, whereas phylogenetic groups A, B1 and D contain less virulent strains and include esterase B1 variants. We investigated esterase B as a marker of phylogeny and/or virulence, in a thorough analysis of the esterase B-encoding gene. We identified the gene encoding esterase B as the acetyl-esterase gene (aes) using gene disruption. The analysis of aes nucleotide sequences in a panel of 78 reference strains, including the E. coli reference (ECOR) strains, demonstrated that the gene is under purifying selection. The phylogenetic tree reconstructed from aes sequences showed a strong correlation with the species phylogenetic history, based on multi-locus sequence typing using six housekeeping genes. The unambiguous distinction between variants B1 and B2 by electrophoresis was consistent with Aes amino-acid sequence analysis and protein modelling, which showed that substituted amino acids in the two esterase B variants occurred mostly at different sites on the protein surface. Studies in an experimental mouse model of septicaemia using mutant strains did not reveal a direct link between aes and extraintestinal virulence. Moreover, we did not find any genes in the chromosomal region of aes to be associated with virulence. Our findings suggest that aes does not play a direct role in the virulence of E. coli extraintestinal infection. However, this gene acts as a powerful marker of phylogeny, illustrating the extensive divergence of B2 phylogenetic group strains from the rest of the species.
Zhang, Bin; He, Kai; Wan, Tao; Chen, Peng; Sun, Guozheng; Liu, Shaoying; Nguyen, Truong Son; Lin, Liangkong; Jiang, Xuelong
2016-12-01
Niviventer is a genus of white-bellied rats that are among the most common rodents in the Indo-Sundaic region. The taxonomy of the genus has undergone extensive revisions and remains controversial. The current phylogeny is unresolved and was developed primarily on the basis of mitochondrial genes. Identification is extremely difficult, and a large number of GenBank sequences seem to be problematic. We extensively sampled specimens of Niviventer in China and neighboring northern Vietnam, including topotypes of the most reported species (n = 6), subspecies (n = 8), and synonyms (n = 4). We estimated phylogenetic relationships on the basis of one mitochondrial and three nuclear genes, using concatenation and coalescent-based approaches. We also employed molecular species delimitation approaches to test the existence of cryptic and putative new species. Our phylogeny was finely resolved, especially for the N. confucianus-like species. Our data provided the first support for N. brahma and N. eha as sister species, an assignment that is congruent with their morphological similarities. Species delimitation analyses provided new insight into species diversity and systematics. Three geographic populations of N. confucianus and one of N. fulvescens were supported as genetically distinct in our species delimitation analyses, while three recognized species (N. coninga, N. huang, and N. lotipes) were not strongly supported as distinct. Our results suggested that several genetically distinct species may be contained within the species currently known as N. confucianus and N. fulvescens. In addition, the results of Bayesian Phylogenetics and Phylogeography (BPP) for N. coninga, N. huang, and N. lotipes indicated that either inter-specific gene flow had occurred or imperfect taxonomy was present. Morphological examinations and morphometric analyses are warranted to examine the molecular results.
Multi-locus phylogenetic analysis reveals the pattern and tempo of bony fish evolution
Broughton, Richard E.; Betancur-R., Ricardo; Li, Chenhong; Arratia, Gloria; Ortí, Guillermo
2013-01-01
Over half of all vertebrates are “fishes”, which exhibit enormous diversity in morphology, physiology, behavior, reproductive biology, and ecology. Investigation of fundamental areas of vertebrate biology depend critically on a robust phylogeny of fishes, yet evolutionary relationships among the major actinopterygian and sarcopterygian lineages have not been conclusively resolved. Although a consensus phylogeny of teleosts has been emerging recently, it has been based on analyses of various subsets of actinopterygian taxa, but not on a full sample of all bony fishes. Here we conducted a comprehensive phylogenetic study on a broad taxonomic sample of 61 actinopterygian and sarcopterygian lineages (with a chondrichthyan outgroup) using a molecular data set of 21 independent loci. These data yielded a resolved phylogenetic hypothesis for extant Osteichthyes, including 1) reciprocally monophyletic Sarcopterygii and Actinopterygii, as currently understood, with polypteriforms as the first diverging lineage within Actinopterygii; 2) a monophyletic group containing gars and bowfin (= Holostei) as sister group to teleosts; and 3) the earliest diverging lineage among teleosts being Elopomorpha, rather than Osteoglossomorpha. Relaxed-clock dating analysis employing a set of 24 newly applied fossil calibrations reveals divergence times that are more consistent with paleontological estimates than previous studies. Establishing a new phylogenetic pattern with accurate divergence dates for bony fishes illustrates several areas where the fossil record is incomplete and provides critical new insights on diversification of this important vertebrate group. PMID:23788273
Berenger, Byron M; Berry, Chrystal; Peterson, Trevor; Fach, Patrick; Delannoy, Sabine; Li, Vincent; Tschetter, Lorelee; Nadon, Celine; Honish, Lance; Louie, Marie; Chui, Linda
2015-01-01
A standardised method for determining Escherichia coli O157:H7 strain relatedness using whole genome sequencing or virulence gene profiling is not yet established. We sought to assess the capacity of either high-throughput polymerase chain reaction (PCR) of 49 virulence genes, core-genome single nt variants (SNVs) or k-mer clustering to discriminate between outbreak-associated and sporadic E. coli O157:H7 isolates. Three outbreaks and multiple sporadic isolates from the province of Alberta, Canada were included in the study. Two of the outbreaks occurred concurrently in 2014 and one occurred in 2012. Pulsed-field gel electrophoresis (PFGE) and multilocus variable-number tandem repeat analysis (MLVA) were employed as comparator typing methods. The virulence gene profiles of isolates from the 2012 and 2014 Alberta outbreak events and contemporary sporadic isolates were mostly identical; therefore the set of virulence genes chosen in this study were not discriminatory enough to distinguish between outbreak clusters. Concordant with PFGE and MLVA results, core genome SNV and k-mer phylogenies clustered isolates from the 2012 and 2014 outbreaks as distinct events. k-mer phylogenies demonstrated increased discriminatory power compared with core SNV phylogenies. Prior to the widespread implementation of whole genome sequencing for routine public health use, issues surrounding cost, technical expertise, software standardisation, and data sharing/comparisons must be addressed.
Phylogeny, divergence time and historical biogeography of Laetiporus (Basidiomycota, Polyporales).
Song, Jie; Cui, Bao-Kai
2017-04-20
The aim of this study was to characterize the molecular relationship, origin and historical biogeography of the species in important brown rot fungal genus Laetiporus from East Asia, Europe, Pan-America, Hawaii and South Africa. We used six genetic markers to estimate a genus-level phylogeny including (1) the internal transcribed spacer (ITS), (2) nuclear large subunit rDNA (nrLSU), (3) nuclear small subunit rDNA (nrSSU), (4) translation elongation factor 1-α (EF-1α), (5) DNA-directed RNA polymerase II subunit 2 (RPB2), and (6) mitochondrial small subunit rDNA (mtSSU). Results of multi-locus phylogenetic analyses show clade support for at least seventeen species-level lineages including two new Laetiporus in China. Molecular dating using BEAST estimated the present crown group diverged approximately 20.16 million years ago (Mya) in the early Miocene. Biogeographic analyses using RASP indicated that Laetiporus most likely originated in temperate zones with East Asia and North America having the highest probability (48%) of being the ancestral area. Four intercontinental dispersal routes and a possible concealed dispersal route were established for the first time.
A “Shallow Phylogeny” of Shallow Barnacles (Chthamalus)
Wares, John P.; Pankey, M. Sabrina; Pitombo, Fabio; Daglio, Liza Gómez; Achituv, Yair
2009-01-01
Background We present a multi-locus phylogenetic analysis of the shallow water (high intertidal) barnacle genus Chthamalus, focusing on member species in the western hemisphere. Understanding the phylogeny of this group improves interpretation of classical ecological work on competition, distributional changes associated with climate change, and the morphological evolution of complex cirripede phenotypes. Methodology and Findings We use traditional and Bayesian phylogenetic and ‘deep coalescent’ approaches to identify a phylogeny that supports the monophyly of the mostly American ‘fissus group’ of Chthamalus, but that also supports a need for taxonomic revision of Chthamalus and Microeuraphia. Two deep phylogeographic breaks were also found within the range of two tropical American taxa (C. angustitergum and C. southwardorum) as well. Conclusions Our data, which include two novel gene regions for phylogenetic analysis of cirripedes, suggest that much more evaluation of the morphological evolutionary history and taxonomy of Chthamalid barnacles is necessary. These data and associated analyses also indicate that the radiation of species in the late Pliocene and Pleistocene was very rapid, and may provide new insights toward speciation via transient allopatry or ecological barriers. PMID:19440543
Apablaza, P; Løland, A D; Brevik, Ø J; Ilardi, P; Battaglia, J; Nylund, A
2013-04-01
To aim of the study was to describe the genetic relationship between isolates of Flavobacterium psychrophilum with a main emphasis of samples from Chile and Norway. The isolates have been obtained from farmed salmonids in Norway and Chile, and from wild salmonids in Norway, but isolates from North America and European countries are also included in the analysis. The study is based on phylogenetic analysis of 16S rRNA and seven housekeeping genes (HG), gyrB, atpA, dnaK, trpB, fumC, murG and tuf, and the use of a multilocus sequence typing (MLST) system, based on nucleotide polymorphism in the HG, as an alternative to the phylogenies. The variation within the selected genes was limited, and the phylogenetic analysis gave little resolution between the isolates. The MLST gave a much better resolution resulting in 53 sequence types where the same sequences types could be found in Chile, North America and European countries, and in different host species. Multilocus sequence typing give a relatively good separation of different isolates of Fl. psychrophilum and show that there are no distinct geographical or host-specific isolates in the studied material from Chile, North America and Europe. Nor was it possible to separate between isolates from ulcers and systemic infections vs isolates from the surface of healthy salmonids. This study shows a wide geographical distribution of Fl. psychrophilum, indicating that the bacterium has a large potential for transmission over long distances, and between different salmonid hosts species. This knowledge will be important for future management of salmonids diseases connected to Fl. psychrophilum. © 2013 The Society for Applied Microbiology.
Huang, Chih-Wei; Lee, Yen-Chen; Lin, Si-Min; Wu, Wen-Lung
2014-01-01
Abstract Aegista subchinensis (Möllendorff, 1884) is a widely distributed land snail species with morphological variation and endemic to Taiwan. Three genetic markers (partial sequence of the mitochondrial cytochrome c oxidase subunit I [COI], the 16S rDNA and the nuclear internal transcribed spacer 2 [ITS2]) were analysed to infer phylogenetic relationships and genetic divergence of closely related species of the genus Aegista, Aegista vermis (Reeve, 1852) and Aegista oculus (Pfeiffer, 1850). A new species from Aegista subchinensis has been recognized on the basis of phylogenetic and morphological evidences. The nominal new species, Aegista diversifamilia sp. n. is distinguished from Aegista subchinensis (Möllendorff, 1884) by its larger shell size, aperture and apex angle; wider umbilicus and flatter shell shape. The northernmost distribution of Aegista diversifamilia sp. n. is limited by the Lanyang River, which is presumed to mark the geographic barrier between Aegista diversifamilia sp. n. and Aegista subchinensis. PMID:25349506
Sharma, Prashant P; Santiago, Marc A; Kriebel, Ricardo; Lipps, Savana M; Buenavente, Perry A C; Diesmos, Arvin C; Janda, Milan; Boyer, Sarah L; Clouse, Ronald M; Wheeler, Ward C
2017-01-01
The taxonomy and systematics of the armored harvestmen (suborder Laniatores) are based on various sets of morphological characters pertaining to shape, armature, pedipalpal setation, and the number of articles of the walking leg tarsi. Few studies have tested the validity of these historical character systems in a comprehensive way, with reference to an independent data class, i.e., molecular sequence data. We examined as a test case the systematics of Podoctidae, a family distributed throughout the Indo-Pacific. We tested the validity of the three subfamilies of Podoctidae using a five-locus phylogeny, and examined the evolution of dorsal shape as a proxy for taxonomic utility, using parametric shape analysis. Here we show that two of the three subfamilies, Ibaloniinae and Podoctinae, are non-monophyletic, with the third subfamily, Erecananinae, recovered as non-monophyletic in a subset of analyses. Various genera were also recovered as non-monophyletic. As first steps toward revision of Podoctidae, the subfamilies Erecananinae Roewer, 1912 and Ibaloniinae Roewer, 1912 are synonymized with Podoctinae Roewer, 1912 new synonymies, thereby abolishing unsubstantiated subfamilial divisions within Podoctidae. We once again synonymize the genus Paralomanius Goodnight & Goodnight, 1948 with Lomanius Roewer, 1923 revalidated. We additionally show that eggs carried on the legs of male Podoctidae are not conspecific to the males, falsifying the hypothesis of paternal care in this group. Copyright © 2016 Elsevier Inc. All rights reserved.
Brun, Sophie; Madrid, Hugo; Gerrits Van Den Ende, Bert; Andersen, Birgitte; Marinach-Patrice, Carine; Mazier, Dominique; De Hoog, G Sybren
2013-01-01
The genus Alternaria includes numerous phytopathogenic species, many of which are economically relevant. Traditionally, identification has been based on morphology, but is often hampered by the tendency of some strains to become sterile in culture and by the existence of species-complexes of morphologically similar taxa. This study aimed to assess if strains of four closely-related plant pathogens, i.e., accurately Alternaria dauci (ten strains), Alternaria porri (six), Alternaria solani (ten), and Alternaria tomatophila (ten) could be identified using multilocus phylogenetic analysis and Matrix-Assisted Laser Desorption Ionisation Time of Flight (MALDI-TOF) profiling of proteins. Phylogenetic analyses were performed on three loci, i.e., the internal transcribed spacer (ITS) region of rRNA, and the glyceraldehyde-3-phosphate dehydrogenase (gpd) and Alternaria major antigen (Alt a 1) genes. Phylogenetic trees based on ITS sequences did not differentiate strains of A. solani, A. tomatophila, and A. porri, but these three species formed a clade separate from strains of A. dauci. The resolution improved in trees based on gpd and Alt a 1, which distinguished strains of the four species as separate clades. However, none provided significant bootstrap support for all four species, which could only be achieved when results for the three loci were combined. MALDI-TOF-based dendrograms showed three major clusters. The first comprised all A. dauci strains, the second included five strains of A. porri and one of A. solani, and the third included all strains of A. tomatophila, as well as all but one strain of A. solani, and one strain of A. porri. Thus, this study shows the usefulness of MALDI-TOF mass spectrometry as a promising tool for identification of these four species of Alternaria which are closely-related plant pathogens. Copyright © 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Rojas, Enith I; Rehner, Stephen A; Samuels, Gary J; Van Bael, Sunshine A; Herre, Edward A; Cannon, Paul; Chen, Rui; Pang, Junfeng; Wang, Ruiwu; Zhang, Yaping; Peng, Yan-Qiong; Sha, Tao
2010-01-01
Colletotrichum interacts with numerous plant species overtly as symptomatic pathogens and cryptically as asymptomatic endophytes. It is not known whether these contrasting ecological modes are optional strategies expressed by individual Colletotrichum species or whether a species' ecology is explicitly pathogenic or endophytic. We explored this question by inferring relationships among 77 C. gloeosporioides s.l. strains isolated from asymptomatic leaves and from anthracnose lesions on leaves and fruits of Theobroma cacao (cacao) and other plants from Panamá. ITS and 5'-tef1 were used to assess diversity and to delineate operational taxonomic units for multilocus phylogenetic analysis. The ITS and 5'-tef1 screens concordantly resolved four strongly supported lineages, clades A-D: Clade A includes the ex type of C. gloeosporioides, clade B includes the ex type ITS sequence of C. boninense, and clades C and D are unidentified. The ITS yielded limited resolution and support within all clades, in particular the C. gloeosporioides clade (A), the focal lineage dealt with in this study. In contrast the 5'-tef1 screen differentiated nine distinctive haplotype subgroups within the C. gloeosporioides clade that were concordant with phylogenetic terminals resolved in a five-locus nuclear phylogeny. Among these were two phylogenetic species associated with symptomatic infections specific to either cacao or mango and five phylogenetic species isolated principally as asymptomatic infections from cacao and other plant hosts. We formally describe two new species, C. tropicale and C. ignotum, that are frequent asymptomatic associates of cacao and other Neotropical plant species, and epitypify C. theobromicola, which is associated with foliar and fruit anthracnose lesions of cacao. Asymptomatic Colletotrichum strains isolated from cacao plants grown in China included six distinct C. gloeosporioides clade taxa, only one of which is known to occur in the Neotropics.
Hoffmann, K; Pawłowska, J; Walther, G; Wrzosek, M; de Hoog, G S; Benny, G L; Kirk, P M; Voigt, K
2013-06-01
The Mucorales (Mucoromycotina) are one of the most ancient groups of fungi comprising ubiquitous, mostly saprotrophic organisms. The first comprehensive molecular studies 11 yr ago revealed the traditional classification scheme, mainly based on morphology, as highly artificial. Since then only single clades have been investigated in detail but a robust classification of the higher levels based on DNA data has not been published yet. Therefore we provide a classification based on a phylogenetic analysis of four molecular markers including the large and the small subunit of the ribosomal DNA, the partial actin gene and the partial gene for the translation elongation factor 1-alpha. The dataset comprises 201 isolates in 103 species and represents about one half of the currently accepted species in this order. Previous family concepts are reviewed and the family structure inferred from the multilocus phylogeny is introduced and discussed. Main differences between the current classification and preceding concepts affects the existing families Lichtheimiaceae and Cunninghamellaceae, as well as the genera Backusella and Lentamyces which recently obtained the status of families along with the Rhizopodaceae comprising Rhizopus, Sporodiniella and Syzygites. Compensatory base change analyses in the Lichtheimiaceae confirmed the lower level classification of Lichtheimia and Rhizomucor while genera such as Circinella or Syncephalastrum completely lacked compensatory base changes.
O'Donnell, Kerry; Sutton, Deanna A; Fothergill, Annette; McCarthy, Dora; Rinaldi, Michael G; Brandt, Mary E; Zhang, Ning; Geiser, David M
2008-08-01
Members of the species-rich Fusarium solani species complex (FSSC) are responsible for approximately two-thirds all fusarioses of humans and other animals. In addition, many economically important phytopathogenic species are nested within this complex. Due to their increasing clinical relevance and because most of the human pathogenic and plant pathogenic FSSC lack Latin binomials, we have extended the multilocus haplotype nomenclatural system introduced in a previous study (D. C. Chang, G. B. Grant, K. O'Donnell, K. A. Wannemuehler, J. Noble-Wang, C. Y. Rao, L. M. Jacobson, C. S. Crowell, R. S. Sneed, F. M. T. Lewis, J. K. Schaffzin, M. A. Kainer, C. A. Genese, E. C. Alfonso, D. B. Jones, A. Srinivasan, S. K. Fridkin, and B. J. Park, JAMA 296:953-963, 2006) to all 34 species within the medically important FSSC clade 3 to facilitate global epidemiological studies. The typing scheme is based on polymorphisms in portions of the following three genes: the internal transcribed spacer region and domains D1 plus D2 of the nuclear large-subunit rRNA, the translation elongation factor 1 alpha gene (EF-1alpha), and the second largest subunit of RNA polymerase II gene (RPB2). Of the 251 isolates subjected to multilocus DNA sequence typing, 191 sequence types were differentiated, and these were distributed among three strongly supported clades designated 1, 2, and 3. All of the mycosis-associated isolates were restricted to FSSC clade 3, as previously reported (N. Zhang, K. O'Donnell, D. A. Sutton, F. A Nalim, R. C. Summerbell, A. A. Padhye, and D. M. Geiser, J. Clin. Microbiol. 44:2186-2190, 2006), and these represent at least 20 phylogenetically distinct species. Analyses of the combined DNA sequence data by use of two separate phylogenetic methods yielded the most robust hypothesis of evolutionary relationships and genetic diversity within the FSSC to date. The in vitro activities of 10 antifungals tested against 19 isolates representing 18 species that span the breadth of the FSSC phylogeny show that members of this complex are broadly resistant to these drugs.
Visualizing phylogenetic tree landscapes.
Wilgenbusch, James C; Huang, Wen; Gallivan, Kyle A
2017-02-02
Genomic-scale sequence alignments are increasingly used to infer phylogenies in order to better understand the processes and patterns of evolution. Different partitions within these new alignments (e.g., genes, codon positions, and structural features) often favor hundreds if not thousands of competing phylogenies. Summarizing and comparing phylogenies obtained from multi-source data sets using current consensus tree methods discards valuable information and can disguise potential methodological problems. Discovery of efficient and accurate dimensionality reduction methods used to display at once in 2- or 3- dimensions the relationship among these competing phylogenies will help practitioners diagnose the limits of current evolutionary models and potential problems with phylogenetic reconstruction methods when analyzing large multi-source data sets. We introduce several dimensionality reduction methods to visualize in 2- and 3-dimensions the relationship among competing phylogenies obtained from gene partitions found in three mid- to large-size mitochondrial genome alignments. We test the performance of these dimensionality reduction methods by applying several goodness-of-fit measures. The intrinsic dimensionality of each data set is also estimated to determine whether projections in 2- and 3-dimensions can be expected to reveal meaningful relationships among trees from different data partitions. Several new approaches to aid in the comparison of different phylogenetic landscapes are presented. Curvilinear Components Analysis (CCA) and a stochastic gradient decent (SGD) optimization method give the best representation of the original tree-to-tree distance matrix for each of the three- mitochondrial genome alignments and greatly outperformed the method currently used to visualize tree landscapes. The CCA + SGD method converged at least as fast as previously applied methods for visualizing tree landscapes. We demonstrate for all three mtDNA alignments that 3D projections significantly increase the fit between the tree-to-tree distances and can facilitate the interpretation of the relationship among phylogenetic trees. We demonstrate that the choice of dimensionality reduction method can significantly influence the spatial relationship among a large set of competing phylogenetic trees. We highlight the importance of selecting a dimensionality reduction method to visualize large multi-locus phylogenetic landscapes and demonstrate that 3D projections of mitochondrial tree landscapes better capture the relationship among the trees being compared.
The evolutionary history of cockatoos (Aves: Psittaciformes: Cacatuidae).
White, Nicole E; Phillips, Matthew J; Gilbert, M Thomas P; Alfaro-Núñez, Alonzo; Willerslev, Eske; Mawson, Peter R; Spencer, Peter B S; Bunce, Michael
2011-06-01
Cockatoos are the distinctive family Cacatuidae, a major lineage of the order of parrots (Psittaciformes) and distributed throughout the Australasian region of the world. However, the evolutionary history of cockatoos is not well understood. We investigated the phylogeny of cockatoos based on three mitochondrial and three nuclear DNA genes obtained from 16 of 21 species of Cacatuidae. In addition, five novel mitochondrial genomes were used to estimate time of divergence and our estimates indicate Cacatuidae diverged from Psittacidae approximately 40.7 million years ago (95% CI 51.6-30.3 Ma) during the Eocene. Our data shows Cacatuidae began to diversify approximately 27.9 Ma (95% CI 38.1-18.3 Ma) during the Oligocene. The early to middle Miocene (20-10 Ma) was a significant period in the evolution of modern Australian environments and vegetation, in which a transformation from mainly mesic to xeric habitats (e.g., fire-adapted sclerophyll vegetation and grasslands) occurred. We hypothesize that this environmental transformation was a driving force behind the diversification of cockatoos. A detailed multi-locus molecular phylogeny enabled us to resolve the phylogenetic placements of the Palm Cockatoo (Probosciger aterrimus), Galah (Eolophus roseicapillus), Gang-gang Cockatoo (Callocephalon fimbriatum) and Cockatiel (Nymphicus hollandicus), which have historically been difficult to place within Cacatuidae. When the molecular evidence is analysed in concert with morphology, it is clear that many of the cockatoo species' diagnostic phenotypic traits such as plumage colour, body size, wing shape and bill morphology have evolved in parallel or convergently across lineages. Copyright © 2011 Elsevier Inc. All rights reserved.
Carro, Lorena; Spröer, Cathrin; Alonso, Pilar; Trujillo, Martha E
2012-03-01
It was recently reported that Micromonospora inhabits the intracellular tissues of nitrogen fixing nodules of the wild legume Lupinus angustifolius. To determine if Micromonospora populations are also present in nitrogen fixing nodules of cultivated legumes such as Pisum sativum, we carried out the isolation of this actinobacterium from P. sativum plants collected in two man-managed fields in the region of Castilla and León (Spain). In this work, we describe the isolation of 93 Micromonospora strains recovered from nitrogen fixing nodules and the rhizosphere of P. sativum. The genomic diversity of the strains was analyzed by amplified ribosomal DNA restriction analysis (ARDRA). Forty-six isolates and 34 reference strains were further analyzed using a multilocus sequence analysis scheme developed to address the phylogeny of the genus Micromonospora and to evaluate the species distribution in the two studied habitats. The MLSA results were evaluated by DNA-DNA hybridization to determine their usefulness for the delineation of Micromonospora at the species level. In most cases, DDH values below 70% were obtained with strains that shared a sequence similarity of 98.5% or less. Thus, MLSA studies clearly supported the established taxonomy of the genus Micromonospora and indicated that genomic species could be delineated as groups of strains that share > 98.5% sequence similarity based on the 5 genes selected. The species diversity of the strains isolated from both the rhizosphere and nodules was very high and in many cases the new strains could not be related to any of the currently described species. Copyright © 2011 Elsevier GmbH. All rights reserved.
Lefoulon, Emilie; Bourret, Jérôme; Junker, Kerstin; Guerrero, Ricardo; Cañizales, Israel; Kuzmin, Yuriy; Satoto, Tri Baskoro T.; Cardenas-Callirgos, Jorge Manuel; de Souza Lima, Sueli; Raccurt, Christian; Mutafchiev, Yasen; Gavotte, Laurent; Martin, Coralie
2015-01-01
During the past twenty years, a number of molecular analyses have been performed to determine the evolutionary relationships of Onchocercidae, a family of filarial nematodes encompassing several species of medical or veterinary importance. However, opportunities for broad taxonomic sampling have been scarce, and analyses were based mainly on 12S rDNA and coxI gene sequences. While being suitable for species differentiation, these mitochondrial genes cannot be used to infer phylogenetic hypotheses at higher taxonomic levels. In the present study, 48 species, representing seven of eight subfamilies within the Onchocercidae, were sampled and sequences of seven gene loci (nuclear and mitochondrial) analysed, resulting in the hitherto largest molecular phylogenetic investigation into this family. Although our data support the current hypothesis that the Oswaldofilariinae, Waltonellinae and Icosiellinae subfamilies separated early from the remaining onchocercids, Setariinae was recovered as a well separated clade. Dirofilaria, Loxodontofilaria and Onchocerca constituted a strongly supported clade despite belonging to different subfamilies (Onchocercinae and Dirofilariinae). Finally, the separation between Splendidofilariinae, Dirofilariinae and Onchocercinae will have to be reconsidered. PMID:26588229
Tavera, Jose; Acero P, Arturo; Wainwright, Peter C
2018-04-01
We present a phylogenetic analysis with divergence time estimates, and an ecomorphological assessment of the role of the benthic-to-pelagic axis of diversification in the history of haemulid fishes. Phylogenetic analyses were performed on 97 grunt species based on sequence data collected from seven loci. Divergence time estimation indicates that Haemulidae originated during the mid Eocene (54.7-42.3 Ma) but that the major lineages were formed during the mid-Oligocene 30-25 Ma. We propose a new classification that reflects the phylogenetic history of grunts. Overall the pattern of morphological and functional diversification in grunts appears to be strongly linked with feeding ecology. Feeding traits and the first principal component of body shape strongly separate species that feed in benthic and pelagic habitats. The benthic-to-pelagic axis has been the major axis of ecomorphological diversification in this important group of tropical shoreline fishes, with about 13 transitions between feeding habitats that have had major consequences for head and body morphology. Copyright © 2017 Elsevier Inc. All rights reserved.
Phylogeny and temporal diversification of darters (Percidae: Etheostomatinae).
Near, Thomas J; Bossu, Christen M; Bradburd, Gideon S; Carlson, Rose L; Harrington, Richard C; Hollingsworth, Phillip R; Keck, Benjamin P; Etnier, David A
2011-10-01
Discussions aimed at resolution of the Tree of Life are most often focused on the interrelationships of major organismal lineages. In this study, we focus on the resolution of some of the most apical branches in the Tree of Life through exploration of the phylogenetic relationships of darters, a species-rich clade of North American freshwater fishes. With a near-complete taxon sampling of close to 250 species, we aim to investigate strategies for efficient multilocus data sampling and the estimation of divergence times using relaxed-clock methods when a clade lacks a fossil record. Our phylogenetic data set comprises a single mitochondrial DNA (mtDNA) gene and two nuclear genes sampled from 245 of the 248 darter species. This dense sampling allows us to determine if a modest amount of nuclear DNA sequence data can resolve relationships among closely related animal species. Darters lack a fossil record to provide age calibration priors in relaxed-clock analyses. Therefore, we use a near-complete species-sampled phylogeny of the perciform clade Centrarchidae, which has a rich fossil record, to assess two distinct strategies of external calibration in relaxed-clock divergence time estimates of darters: using ages inferred from the fossil record and molecular evolutionary rate estimates. Comparison of Bayesian phylogenies inferred from mtDNA and nuclear genes reveals that heterospecific mtDNA is present in approximately 12.5% of all darter species. We identify three patterns of mtDNA introgression in darters: proximal mtDNA transfer, which involves the transfer of mtDNA among extant and sympatric darter species, indeterminate introgression, which involves the transfer of mtDNA from a lineage that cannot be confidently identified because the introgressed haplotypes are not clearly referable to mtDNA haplotypes in any recognized species, and deep introgression, which is characterized by species diversification within a recipient clade subsequent to the transfer of heterospecific mtDNA. The results of our analyses indicate that DNA sequences sampled from single-copy nuclear genes can provide appreciable phylogenetic resolution for closely related animal species. A well-resolved near-complete species-sampled phylogeny of darters was estimated with Bayesian methods using a concatenated mtDNA and nuclear gene data set with all identified heterospecific mtDNA haplotypes treated as missing data. The relaxed-clock analyses resulted in very similar posterior age estimates across the three sampled genes and methods of calibration and therefore offer a viable strategy for estimating divergence times for clades that lack a fossil record. In addition, an informative rank-free clade-based classification of darters that preserves the rich history of nomenclature in the group and provides formal taxonomic communication of darter clades was constructed using the mtDNA and nuclear gene phylogeny. On the whole, the appeal of mtDNA for phylogeny inference among closely related animal species is diminished by the observations of extensive mtDNA introgression and by finding appreciable phylogenetic signal in a modest sampling of nuclear genes in our phylogenetic analyses of darters.
Tomasello, Salvatore; Álvarez, Inés; Vargas, Pablo; Oberprieler, Christoph
2015-01-01
The present study provides results of multi-species coalescent species tree analyses of DNA sequences sampled from multiple nuclear and plastid regions to infer the phylogenetic relationships among the members of the subtribe Leucanthemopsidinae (Compositae, Anthemideae), to which besides the annual Castrilanthemum debeauxii (Degen, Hervier & É.Rev.) Vogt & Oberp., one of the rarest flowering plant species of the Iberian Peninsula, two other unispecific genera (Hymenostemma, Prolongoa), and the polyploidy complex of the genus Leucanthemopsis belong. Based on sequence information from two single- to low-copy nuclear regions (C16, D35, characterised by Chapman et al. (2007)), the multi-copy region of the nrDNA internal transcribed spacer regions ITS1 and ITS2, and two intergenic spacer regions of the cpDNA gene trees were reconstructed using Bayesian inference methods. For the reconstruction of a multi-locus species tree we applied three different methods: (a) analysis of concatenated sequences using Bayesian inference (MrBayes), (b) a tree reconciliation approach by minimizing the number of deep coalescences (PhyloNet), and (c) a coalescent-based species-tree method in a Bayesian framework ((∗)BEAST). All three species tree reconstruction methods unequivocally support the close relationship of the subtribe with the hitherto unclassified genus Phalacrocarpum, the sister-group relationship of Castrilanthemum with the three remaining genera of the subtribe, and the further sister-group relationship of the clade of Hymenostemma+Prolongoa with a monophyletic genus Leucanthemopsis. Dating of the (∗)BEAST phylogeny supports the long-lasting (Early Miocene, 15-22Ma) taxonomical independence and the switch from the plesiomorphic perennial to the apomorphic annual life-form assumed for the Castrilanthemum lineage that may have occurred not earlier than in the Pliocene (3Ma) when the establishment of a Mediterranean climate with summer droughts triggered evolution towards annuality. Copyright © 2014 Elsevier Inc. All rights reserved.
Lerner, Heather R L; Meyer, Matthias; James, Helen F; Hofreiter, Michael; Fleischer, Robert C
2011-11-08
Evolutionary theory has gained tremendous insight from studies of adaptive radiations. High rates of speciation, morphological divergence, and hybridization, combined with low sequence variability, however, have prevented phylogenetic reconstruction for many radiations. The Hawaiian honeycreepers are an exceptional adaptive radiation, with high phenotypic diversity and speciation that occurred within the geologically constrained setting of the Hawaiian Islands. Here we analyze a new data set of 13 nuclear loci and pyrosequencing of mitochondrial genomes that resolves the Hawaiian honeycreeper phylogeny. We show that they are a sister taxon to Eurasian rosefinches (Carpodacus) and probably came to Hawaii from Asia. We use island ages to calibrate DNA substitution rates, which vary substantially among gene regions, and calculate divergence times, showing that the radiation began roughly when the oldest of the current large Hawaiian Islands (Kauai and Niihau) formed, ~5.7 million years ago (mya). We show that most of the lineages that gave rise to distinctive morphologies diverged after Oahu emerged (4.0-3.7 mya) but before the formation of Maui and adjacent islands (2.4-1.9 mya). Thus, the formation of Oahu, and subsequent cycles of colonization and speciation between Kauai and Oahu, played key roles in generating the morphological diversity of the extant honeycreepers. Copyright © 2011 Elsevier Ltd. All rights reserved.
McGowen, Michael R
2011-09-01
Oceanic dolphins (Delphinidae) are the product of a rapid radiation that yielded ∼36 extant species of small to medium-sized cetaceans that first emerged in the Late Miocene. Although they are a charismatic group of organisms that have become poster children for marine conservation, many phylogenetic relationships within Delphinidae remain elusive due to the slow molecular evolution of the group and the difficulty of resolving short branches from successive cladogenic events. Here I combine existing and newly generated sequences from four mitochondrial (mt) genes and 20 nuclear (nu) genes to reconstruct a well-supported phylogenetic hypothesis for Delphinidae. This study compares maximum-likelihood and Bayesian inference methods of several data sets including mtDNA, combined nuDNA, gene trees of individual nuDNA loci, and concatenated mtDNA+nuDNA. In addition, I contrast these standard phylogenetic analyses with the species tree reconstruction method of Bayesian concordance analysis (BCA). Despite finding discordance between mtDNA and individual nuDNA loci, the concatenated matrix recovers a completely resolved and robustly supported phylogeny that is also broadly congruent with BCA trees. This study strongly supports groupings such as Delphininae, Lissodelphininae, Globicephalinae, Sotalia+Delphininae, Steno+Orcaella+Globicephalinae, and Leucopleurus acutus, Lagenorhynchus albirostris, and Orcinus orca as basal delphinid taxa. Copyright © 2011 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
A Multilocus Sequence Typing (MLST) method based on allelic variation of 7 chromosomal loci was developed for characterizing genotypes within the genus Bradyrhizobium. With the method 29 distinct multilocus genotypes (GTs) were identified among 191 culture collection soybean strains. The occupancy ...
Kotsakiozi, Panayiota; Jablonski, Daniel; Ilgaz, Çetin; Kumlutaş, Yusuf; Avcı, Aziz; Meiri, Shai; Itescu, Yuval; Kukushkin, Oleg; Gvoždík, Václav; Scillitani, Giovanni; Roussos, Stephanos A; Jandzik, David; Kasapidis, Panagiotis; Lymberakis, Petros; Poulakakis, Nikos
2018-08-01
Kotschy's Gecko, Mediodactylus kotschyi, is a small gecko native to southeastern Europe and the Levant. It displays great morphological variation with a large number of morphologically recognized subspecies. However, it has been suggested that it constitutes a species complex of several yet unrecognized species. In this study, we used multilocus sequence data (three mitochondrial and three nuclear gene fragments) to estimate the phylogenetic relationships of 174 specimens from 129 sampling localities, covering a substantial part of the distribution range of the species. Our results revealed high genetic diversity of M. kotschyi populations and contributed to our knowledge about the phylogenetic relationships and the estimation of the divergence times between them. Diversification within M. kotschyi began approximately 15 million years ago (Mya) in the Middle Miocene, whereas the diversification within most of the major clades have been occurred in the last 5 Mya. Species delimitation analysis suggests there exists five species within the complex, and we propose to tentatively recognize the following taxa as full species: M. kotschyi (mainland Balkans, most of Aegean islands, and Italy), M. orientalis (Levant, Cyprus, southern Anatolia, and south-eastern Aegean islands), M. danilewskii (Black Sea region and south-western Anatolia), M. bartoni (Crete), and M. oertzeni (southern Dodecanese Islands). This newly recognized diversity underlines the complex biogeographical history of the Eastern Mediterranean region. Copyright © 2018 Elsevier Inc. All rights reserved.
Pereira, Anieli G; Sterli, Juliana; Moreira, Filipe R R; Schrago, Carlos G
2017-08-01
Despite their complex evolutionary history and the rich fossil record, the higher level phylogeny and historical biogeography of living turtles have not been investigated in a comprehensive and statistical framework. To tackle these issues, we assembled a large molecular dataset, maximizing both taxonomic and gene sampling. As different models provide alternative biogeographical scenarios, we have explicitly tested such hypotheses in order to reconstruct a robust biogeographical history of Testudines. We scanned publicly available databases for nucleotide sequences and composed a dataset comprising 13 loci for 294 living species of Testudines, which accounts for all living genera and 85% of their extant species diversity. Phylogenetic relationships and species divergence times were estimated using a thorough evaluation of fossil information as calibration priors. We then carried out the analysis of historical biogeography of Testudines in a fully statistical framework. Our study recovered the first large-scale phylogeny of turtles with well-supported relationships following the topology proposed by phylogenomic works. Our dating result consistently indicated that the origin of the main clades, Pleurodira and Cryptodira, occurred in the early Jurassic. The phylogenetic and historical biogeographical inferences permitted us to clarify how geological events affected the evolutionary dynamics of crown turtles. For instance, our analyses support the hypothesis that the breakup of Pangaea would have driven the divergence between the cryptodiran and pleurodiran lineages. The reticulated pattern in the ancestral distribution of the cryptodiran lineage suggests a complex biogeographic history for the clade, which was supposedly related to the complex paleogeographic history of Laurasia. On the other hand, the biogeographical history of Pleurodira indicated a tight correlation with the paleogeography of the Gondwanan landmasses. Copyright © 2017 Elsevier Inc. All rights reserved.
Reconstructing the backbone of the Saccharomycotina yeast phylogeny using genome-scale data
Shen, Xing -Xing; Zhou, Xiaofan; Kominek, Jacek; ...
2016-09-26
Understanding the phylogenetic relationships among the yeasts of the subphylum Saccharomycotina is a prerequisite for understanding the evolution of their metabolisms and ecological lifestyles. In the last two decades, the use of rDNA and multilocus data sets has greatly advanced our understanding of the yeast phylogeny, but many deep relationships remain unsupported. In contrast, phylogenomic analyses have involved relatively few taxa and lineages that were often selected with limited considerations for covering the breadth of yeast biodiversity. Here we used genome sequence data from 86 publicly available yeast genomes representing nine of the 11 known major lineages and 10 nonyeastmore » fungal outgroups to generate a 1233-gene, 96-taxon data matrix. Species phylogenies reconstructed using two different methods (concatenation and coalescence) and two data matrices (amino acids or the first two codon positions) yielded identical and highly supported relationships between the nine major lineages. Aside from the lineage comprised by the family Pichiaceae, all other lineages were monophyletic. Most interrelationships among yeast species were robust across the two methods and data matrices. Furthermore, eight of the 93 internodes conflicted between analyses or data sets, including the placements of: the clade defined by species that have reassigned the CUG codon to encode serine, instead of leucine; the clade defined by a whole genome duplication; and the species Ascoidea rubescens. These phylogenomic analyses provide a robust roadmap for future comparative work across the yeast subphylum in the disciplines of taxonomy, molecular genetics, evolutionary biology, ecology, and biotechnology. To further this end, we have also provided a BLAST server to query the 86 Saccharomycotina genomes, which can be found at http://y1000plus.org/blast.« less
Reconstructing the Backbone of the Saccharomycotina Yeast Phylogeny Using Genome-Scale Data
Shen, Xing-Xing; Zhou, Xiaofan; Kominek, Jacek; Kurtzman, Cletus P.; Hittinger, Chris Todd; Rokas, Antonis
2016-01-01
Understanding the phylogenetic relationships among the yeasts of the subphylum Saccharomycotina is a prerequisite for understanding the evolution of their metabolisms and ecological lifestyles. In the last two decades, the use of rDNA and multilocus data sets has greatly advanced our understanding of the yeast phylogeny, but many deep relationships remain unsupported. In contrast, phylogenomic analyses have involved relatively few taxa and lineages that were often selected with limited considerations for covering the breadth of yeast biodiversity. Here we used genome sequence data from 86 publicly available yeast genomes representing nine of the 11 known major lineages and 10 nonyeast fungal outgroups to generate a 1233-gene, 96-taxon data matrix. Species phylogenies reconstructed using two different methods (concatenation and coalescence) and two data matrices (amino acids or the first two codon positions) yielded identical and highly supported relationships between the nine major lineages. Aside from the lineage comprised by the family Pichiaceae, all other lineages were monophyletic. Most interrelationships among yeast species were robust across the two methods and data matrices. However, eight of the 93 internodes conflicted between analyses or data sets, including the placements of: the clade defined by species that have reassigned the CUG codon to encode serine, instead of leucine; the clade defined by a whole genome duplication; and the species Ascoidea rubescens. These phylogenomic analyses provide a robust roadmap for future comparative work across the yeast subphylum in the disciplines of taxonomy, molecular genetics, evolutionary biology, ecology, and biotechnology. To further this end, we have also provided a BLAST server to query the 86 Saccharomycotina genomes, which can be found at http://y1000plus.org/blast. PMID:27672114
Reconstructing the backbone of the Saccharomycotina yeast phylogeny using genome-scale data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Xing -Xing; Zhou, Xiaofan; Kominek, Jacek
Understanding the phylogenetic relationships among the yeasts of the subphylum Saccharomycotina is a prerequisite for understanding the evolution of their metabolisms and ecological lifestyles. In the last two decades, the use of rDNA and multilocus data sets has greatly advanced our understanding of the yeast phylogeny, but many deep relationships remain unsupported. In contrast, phylogenomic analyses have involved relatively few taxa and lineages that were often selected with limited considerations for covering the breadth of yeast biodiversity. Here we used genome sequence data from 86 publicly available yeast genomes representing nine of the 11 known major lineages and 10 nonyeastmore » fungal outgroups to generate a 1233-gene, 96-taxon data matrix. Species phylogenies reconstructed using two different methods (concatenation and coalescence) and two data matrices (amino acids or the first two codon positions) yielded identical and highly supported relationships between the nine major lineages. Aside from the lineage comprised by the family Pichiaceae, all other lineages were monophyletic. Most interrelationships among yeast species were robust across the two methods and data matrices. Furthermore, eight of the 93 internodes conflicted between analyses or data sets, including the placements of: the clade defined by species that have reassigned the CUG codon to encode serine, instead of leucine; the clade defined by a whole genome duplication; and the species Ascoidea rubescens. These phylogenomic analyses provide a robust roadmap for future comparative work across the yeast subphylum in the disciplines of taxonomy, molecular genetics, evolutionary biology, ecology, and biotechnology. To further this end, we have also provided a BLAST server to query the 86 Saccharomycotina genomes, which can be found at http://y1000plus.org/blast.« less
Phylogenetic Analysis of Enterohemorrhagic Escherichia coli O157, Germany, 1987–2008
Jenke, Christian; Harmsen, Dag; Weniger, Thomas; Rothgänger, Jörg; Hyytiä-Trees, Eija; Bielaszewska, Martina; Karch, Helge
2010-01-01
Multilocus variable number tandem repeat analysis (MLVA) is a subtyping technique for characterizing human pathogenic bacteria such as enterohemorrhagic Escherichia coli (EHEC) O157. We determined the phylogeny of 202 epidemiologically unrelated EHEC O157:H7/H– clinical isolates through 8 MLVA loci obtained in Germany during 1987–2008. Biodiversity in the loci ranged from 0.66 to 0.90. Four of 8 loci showed null alleles and a frequency <44.1%. These loci were distributed among 48.5% of all strains. Overall, 141 MLVA profiles were identified. Phylogenetic analysis assigned 67.3% of the strains to 19 MLVA clusters. Specific MLVA profiles with an evolutionary persistence were identified, particularly within sorbitol-fermenting EHEC O157:H–.These pathogens belonged to the same MLVA cluster. Our findings indicate successful persistence of this clone. PMID:20350374
Phylogenetic analysis of enterohemorrhagic Escherichia coli O157, Germany, 1987-2008.
Jenke, Christian; Harmsen, Dag; Weniger, Thomas; Rothganger, Jorg; Hyytia-Trees, Eija; Bielaszewska, Martina; Karch, Helge; Mellmann, Alexander
2010-04-01
Multilocus variable number tandem repeat analysis (MLVA) is a subtyping technique for characterizing human pathogenic bacteria such as enterohemorrhagic Escherichia coli (EHEC) O157. We determined the phylogeny of 202 epidemiologically unrelated EHEC O157:H7/H- clinical isolates through 8 MLVA loci obtained in Germany during 1987-2008. Biodiversity in the loci ranged from 0.66 to 0.90. Four of 8 loci showed null alleles and a frequency < or =44.1%. These loci were distributed among 48.5% of all strains. Overall, 141 MLVA profiles were identified. Phylogenetic analysis assigned 67.3% of the strains to 19 MLVA clusters. Specific MLVA profiles with an evolutionary persistence were identified, particularly within sorbitol-fermenting EHEC O157:H-.These pathogens belonged to the same MLVA cluster. Our findings indicate successful persistence of this clone.
Schneider, Kevin; Koblmüller, Stephan; Sefc, Kristina M
2015-11-11
The homoplasy excess test (HET) is a tree-based screen for hybrid taxa in multilocus nuclear phylogenies. Homoplasy between a hybrid taxon and the clades containing the parental taxa reduces bootstrap support in the tree. The HET is based on the expectation that excluding the hybrid taxon from the data set increases the bootstrap support for the parental clades, whereas excluding non-hybrid taxa has little effect on statistical node support. To carry out a HET, bootstrap trees are calculated with taxon-jackknife data sets, that is excluding one taxon (species, population) at a time. Excess increase in bootstrap support for certain nodes upon exclusion of a particular taxon indicates the hybrid (the excluded taxon) and its parents (the clades with increased support).We introduce a new software program, hext, which generates the taxon-jackknife data sets, runs the bootstrap tree calculations, and identifies excess bootstrap increases as outlier values in boxplot graphs. hext is written in r language and accepts binary data (0/1; e.g. AFLP) as well as co-dominant SNP and genotype data.We demonstrate the usefulness of hext in large SNP data sets containing putative hybrids and their parents. For instance, using published data of the genus Vitis (~6,000 SNP loci), hext output supports V. × champinii as a hybrid between V. rupestris and V. mustangensis .With simulated SNP and AFLP data sets, excess increases in bootstrap support were not always connected with the hybrid taxon (false positives), whereas the expected bootstrap signal failed to appear on several occasions (false negatives). Potential causes for both types of spurious results are discussed.With both empirical and simulated data sets, the taxon-jackknife output generated by hext provided additional signatures of hybrid taxa, including changes in tree topology across trees, consistent effects of exclusions of the hybrid and the parent taxa, and moderate (rather than excessive) increases in bootstrap support. hext significantly facilitates the taxon-jackknife approach to hybrid taxon detection, even though the simple test for excess bootstrap increase may not reliably identify hybrid taxa in all applications.
Welker, Cassiano A D; Souza-Chies, Tatiana T; Longhi-Wagner, Hilda M; Peichoto, Myriam Carolina; McKain, Michael R; Kellogg, Elizabeth A
2016-06-01
Species delimitation is a vital issue concerning evolutionary biology and conservation of biodiversity. However, it is a challenging task for several reasons, including the low interspecies variability of markers currently used in phylogenetic reconstructions and the occurrence of reticulate evolution and polyploidy in many lineages of flowering plants. The first phylogeny of the grass genus Eriochrysis is presented here, focusing on the New World species, in order to examine its relationships to other genera of the subtribe Saccharinae/tribe Andropogoneae and to define the circumscriptions of its taxonomically complicated species. Molecular cloning and sequencing of five regions of four low-copy nuclear genes (apo1, d8, ep2-ex7 and ep2-ex8, kn1) were performed, as well as complete plastome sequencing. Trees were reconstructed using maximum parsimony, maximum likelihood, and Bayesian inference analyses. The present phylogenetic analyses indicate that Eriochrysis is monophyletic and the Old World E. pallida is sister to the New World species. Subtribe Saccharinae is polyphyletic, as is the genus Eulalia. Based on nuclear and plastome sequences plus morphology, we define the circumscriptions of the New World species of Eriochrysis: E. laxa is distinct from E. warmingiana, and E. villosa is distinct from E. cayennensis. Natural hybrids occur between E. laxa and E. villosa. The hybrids are probably tetraploids, based on the number of paralogues in the nuclear gene trees. This is the first record of a polyploid taxon in the genus Eriochrysis. Some incongruities between nuclear genes and plastome analyses were detected and are potentially caused by incomplete lineage sorting and/or ancient hybridization. The set of low-copy nuclear genes used in this study seems to be sufficient to resolve phylogenetic relationships and define the circumscriptions of other species complexes in the grass family and relatives, even in the presence of polyploidy and reticulate evolution. Complete plastome sequencing is also a promising tool for phylogenetic inference. Copyright © 2016 Elsevier Inc. All rights reserved.
Villarreal A, Juan Carlos; Crandall-Stotler, Barbara J; Hart, Michelle L; Long, David G; Forrest, Laura L
2016-03-01
We present a complete generic-level phylogeny of the complex thalloid liverworts, a lineage that includes the model system Marchantia polymorpha. The complex thalloids are remarkable for their slow rate of molecular evolution and for being the only extant plant lineage to differentiate gas exchange tissues in the gametophyte generation. We estimated the divergence times and analyzed the evolutionary trends of morphological traits, including air chambers, rhizoids and specialized reproductive structures. A multilocus dataset was analyzed using maximum likelihood and Bayesian approaches. Relative rates were estimated using local clocks. Our phylogeny cements the early branching in complex thalloids. Marchantia is supported in one of the earliest divergent lineages. The rate of evolution in organellar loci is slower than for other liverwort lineages, except for two annual lineages. Most genera diverged in the Cretaceous. Marchantia polymorpha diversified in the Late Miocene, giving a minimum age estimate for the evolution of its sex chromosomes. The complex thalloid ancestor, excluding Blasiales, is reconstructed as a plant with a carpocephalum, with filament-less air chambers opening via compound pores, and without pegged rhizoids. Our comprehensive study of the group provides a temporal framework for the analysis of the evolution of critical traits essential for plants during land colonization. © 2015 Royal Botanic Garden Edinburgh. New Phytologist © 2015 New Phytologist Trust.
Kundu, S; Jones, C G; Prys-Jones, R P; Groombridge, J J
2012-01-01
Parrots are among the most recognisable and widely distributed of all bird groups occupying major parts of the tropics. The evolution of the genera that are found in and around the Indian Ocean region is particularly interesting as they show a high degree of heterogeneity in distribution and levels of speciation. Here we present a molecular phylogenetic analysis of Indian Ocean parrots, identifying the possible geological and geographical factors that influenced their evolution. We hypothesise that the Indian Ocean islands acted as stepping stones in the radiation of the Old-World parrots, and that sea-level changes may have been an important determinant of current distributions and differences in speciation. A multi-locus phylogeny showing the evolutionary relationships among genera highlights the interesting position of the monotypic Psittrichas, which shares a common ancestor with the geographically distant Coracopsis. An extensive species-level molecular phylogeny indicates a complex pattern of radiation including evidence for colonisation of Africa, Asia and the Indian Ocean islands from Australasia via multiple routes, and of island populations 'seeding' continents. Moreover, comparison of estimated divergence dates and sea-level changes points to the latter as a factor in parrot speciation. This is the first study to include the extinct parrot taxa, Mascarinus mascarinus and Psittacula wardi which, respectively, appear closely related to Coracopsis nigra and Psittacula eupatria. Copyright © 2011 Elsevier Inc. All rights reserved.
Ibarra-Cerdeña, Carlos N; Zaldívar-Riverón, Alejandro; Peterson, A Townsend; Sánchez-Cordero, Víctor; Ramsey, Janine M
2014-10-01
The niche conservatism hypothesis states that related species diverge in niche characteristics at lower rates than expected, given their lineage divergence. Here we analyze whether niche conservatism is a common pattern among vector species (Hemiptera: Reduviidae: Triatominae) of Trypanosoma cruzi that inhabit North and Central America, a highly heterogeneous landmass in terms of environmental gradients. Mitochondrial and nuclear loci were used in a multi-locus phylogenetic framework to reconstruct phylogenetic relationships among species and estimate time of divergence of selected clades to draw biogeographic inferences. Then, we estimated similarity between the ecological niche of sister species and tested the niche conservatism hypothesis using our best estimate of phylogeny. Triatoma is not monophyletic. A primary clade with all North and Central American (NCA) triatomine species from the genera Triatoma, Dipetalogaster, and Panstrongylus, was consistently recovered. Nearctic species within the NCA clade (T. p. protracta, T. r. rubida) diverged during the Pliocene, whereas the Neotropical species (T. phyllosoma, T. longipennis, T. dimidiata complex) are estimated to have diverged more recently, during the Pleistocene. The hypothesis of niche conservatism could not be rejected for any of six sister species pairs. Niche similarity between sister species best fits a retention model. While this framework is used here to infer niche evolution, it has a direct impact on spatial vector dynamics driven by human population movements, expansion of transportation networks and climate change scenarios.
Molecular phylogeny and historical biogeography of West Indian boid snakes (Chilabothrus).
Reynolds, R Graham; Niemiller, Matthew L; Hedges, S Blair; Dornburg, Alex; Puente-Rolón, Alberto R; Revell, Liam J
2013-09-01
The evolutionary and biogeographic history of West Indian boid snakes (Epicrates), a group of nine species and 14 subspecies, was once thought to be well understood; however, new research has indicated that we are missing a clear understanding of the evolutionary relationships of this group. Here, we present the first multilocus, species-tree based analyses of the evolutionary relationships, divergence times, and historical biogeography of this clade with data from 10 genes and 6256 bp. We find evidence for a single colonization of the Caribbean from mainland South America in the Oligocene or early Miocene, followed by a radiation throughout the Greater Antilles and Bahamas. These findings support the previous suggestion that Epicrates sensu lato Wagler is paraphyletic with respect to the anacondas (Eunectes Wagler), and hence we restrict Epicrates to the mainland clade and use the available name Chilabothrus Duméril and Bibron for the West Indian clade. Our results suggest some diversification occurred within island banks, though most species divergence events seem to have occurred in allopatry. We also find evidence for a remarkable diversification within the Bahamian archipelago suggesting that the recognition of another Bahamian endemic species C. strigilatus is warranted. Copyright © 2013 Elsevier Inc. All rights reserved.
Multi-locus phylogeny of Pleosporales: a taxonomic, ecological and evolutionary re-evaluation
Zhang, Y.; Schoch, C.L.; Fournier, J.; Crous, P.W.; de Gruyter, J.; Woudenberg, J.H.C.; Hirayama, K.; Tanaka, K.; Pointing, S.B.; Spatafora, J.W.; Hyde, K.D.
2009-01-01
Five loci, nucSSU, nucLSU rDNA, TEF1, RPB1 and RPB2, are used for analysing 129 pleosporalean taxa representing 59 genera and 15 families in the current classification of Pleosporales. The suborder Pleosporineae is emended to include four families, viz. Didymellaceae, Leptosphaeriaceae, Phaeosphaeriaceae and Pleosporaceae. In addition, two new families are introduced, i.e. Amniculicolaceae and Lentitheciaceae. Pleomassariaceae is treated as a synonym of Melanommataceae, and new circumscriptions of Lophiostomataceae s. str., Massarinaceae and Lophiotrema are proposed. Familial positions of Entodesmium and Setomelanomma in Phaeosphaeriaceae, Neophaeosphaeria in Leptosphaeriaceae, Leptosphaerulina, Macroventuria and Platychora in Didymellaceae, Pleomassaria in Melanommataceae and Bimuria, Didymocrea, Karstenula and Paraphaeosphaeria in Montagnulaceae are clarified. Both ecological and morphological characters show varying degrees of phylogenetic significance. Pleosporales is most likely derived from a saprobic ancestor with fissitunicate asci containing conspicuous ocular chambers and apical rings. Nutritional shifts in Pleosporales likely occured from saprotrophic to hemibiotrophic or biotrophic. PMID:20169024
Molecular phylogeny and a new Iranian species of Caudospora (Sydowiellaceae, Diaporthales).
Voglmayr, Hermann; Mehrabi, Mehdi
2018-05-02
For the first time, molecular phylogenetic data on the peculiar diaporthalean genus Caudospora are available. Macro- and microscopic morphology and phylogenetic multilocus analyses of partial nuc SSU-ITS-LSU rDNA, cal , ms204 , rpb1 , rpb2 , tef1 and tub2 sequences revealed two distinct species of Caudospora , which are described and illustrated by light and scanning electron microscopy. Caudospora iranica is described as a new species from corticated dead twigs of Quercus sp. collected in Iran. It differs from the generic type, C. taleola , mainly by coarsely verrucose ascospores. The asexual morph of C. taleola on natural substrate is described and illustrated. Caudospora taleola is neotypified, and it is recorded from Iran for the first time. Phylogenetic analyses of a multigene matrix containing a representative selection of Diaporthales from four loci (ITS, LSU rDNA, rpb2 and tef1 ) revealed a placement of Caudospora within Sydowiellaceae.
Bryson, Robert W; Jaeger, Jef R; Lemos-Espinal, Julio A; Lazcano, David
2012-09-01
Interpretations of phylogeographic patterns can change when analyses shift from single gene-tree to multilocus coalescent analyses. Using multilocus coalescent approaches, a species tree and divergence times can be estimated from a set of gene trees while accounting for gene-tree stochasticity. We utilized the conceptual strengths of a multilocus coalescent approach coupled with complete range-wide sampling to examine the speciation history of a broadly distributed, North American warm-desert toad, Anaxyrus punctatus. Phylogenetic analyses provided strong support for three major lineages within A. punctatus. Each lineage broadly corresponded to one of three desert regions. Early speciation in A. punctatus appeared linked to late Miocene-Pliocene development of the Baja California peninsula. This event was likely followed by a Pleistocene divergence associated with the separation of the Chihuahuan and Sonoran Deserts. Our multilocus coalescent-based reconstruction provides an informative contrast to previous single gene-tree estimates of the evolutionary history of A. punctatus. Copyright © 2012 Elsevier Inc. All rights reserved.
Mendes, Joana; Harris, D James; Carranza, Salvador; Salvi, Daniele
2016-07-01
Estimating the phylogeny of lacertid lizards, and particularly the tribe Lacertini has been challenging, possibly due to the fast radiation of this group resulting in a hard polytomy. However this is still an open question, as concatenated data primarily from mitochondrial markers have been used so far whereas in a recent phylogeny based on a compilation of these data within a squamate supermatrix the basal polytomy seems to be resolved. In this study, we estimate phylogenetic relationships between all Lacertini genera using for the first time DNA sequences from five fast evolving nuclear genes (acm4, mc1r, pdc, βfib and reln) and two mitochondrial genes (nd4 and 12S). We generated a total of 529 sequences from 88 species and used Maximum Likelihood and Bayesian Inference methods based on concatenated multilocus dataset as well as a coalescent-based species tree approach with the aim of (i) shedding light on the basal relationships of Lacertini (ii) assessing the monophyly of genera which were previously questioned, and (iii) discussing differences between estimates from this and previous studies based on different markers, and phylogenetic methods. Results uncovered (i) a new phylogenetic clade formed by the monotypic genera Archaeolacerta, Zootoca, Teira and Scelarcis; and (ii) support for the monophyly of the Algyroides clade, with two sister species pairs represented by western (A. marchi and A. fitzingeri) and eastern (A. nigropunctatus and A. moreoticus) lineages. In both cases the members of these groups show peculiar morphology and very different geographical distributions, suggesting that they are relictual groups that were once diverse and widespread. They probably originated about 11-13 million years ago during early events of speciation in the tribe, and the split between their members is estimated to be only slightly older. This scenario may explain why mitochondrial markers (possibly saturated at higher divergence levels) or slower nuclear markers used in previous studies (likely lacking enough phylogenetic signal) failed to recover these relationships. Finally, the phylogenetic position of most remaining genera was unresolved, corroborating the hypothesis of a hard polytomy in the Lacertini phylogeny due to a fast radiation. This is in agreement with all previous studies but in sharp contrast with a recent squamate megaphylogeny. We show that the supermatrix approach may provide high support for incorrect nodes that are not supported either by original sequence data or by new data from this study. This finding suggests caution when using megaphylogenies to integrate inter-generic relationships in comparative ecological and evolutionary studies. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhang, J; Feng, J-Y; Ni, Y-L; Wen, Y-J; Niu, Y; Tamba, C L; Yue, C; Song, Q; Zhang, Y-M
2017-06-01
Multilocus genome-wide association studies (GWAS) have become the state-of-the-art procedure to identify quantitative trait nucleotides (QTNs) associated with complex traits. However, implementation of multilocus model in GWAS is still difficult. In this study, we integrated least angle regression with empirical Bayes to perform multilocus GWAS under polygenic background control. We used an algorithm of model transformation that whitened the covariance matrix of the polygenic matrix K and environmental noise. Markers on one chromosome were included simultaneously in a multilocus model and least angle regression was used to select the most potentially associated single-nucleotide polymorphisms (SNPs), whereas the markers on the other chromosomes were used to calculate kinship matrix as polygenic background control. The selected SNPs in multilocus model were further detected for their association with the trait by empirical Bayes and likelihood ratio test. We herein refer to this method as the pLARmEB (polygenic-background-control-based least angle regression plus empirical Bayes). Results from simulation studies showed that pLARmEB was more powerful in QTN detection and more accurate in QTN effect estimation, had less false positive rate and required less computing time than Bayesian hierarchical generalized linear model, efficient mixed model association (EMMA) and least angle regression plus empirical Bayes. pLARmEB, multilocus random-SNP-effect mixed linear model and fast multilocus random-SNP-effect EMMA methods had almost equal power of QTN detection in simulation experiments. However, only pLARmEB identified 48 previously reported genes for 7 flowering time-related traits in Arabidopsis thaliana.
Escudero, Marcial
2015-07-01
• Fahrenholz's rule states that common ancestors of extant parasites were parasites of the common ancestors of extant hosts. Consequently, parasite phylogeny should mirror host phylogeny. The smut fungi genus Anthracoidea (Anthracoideaceae) is mainly hosted by species of the genus Carex (Cyperaceae). Whether smut fungi phylogeny mirrors sedge phylogeny is still under debate.• The nuclear large subunit DNA region (LSU; 57 accessions) from 31 Anthracoidea species and the ITS, ETS, and trnL-F spacer-trnL intron complex from 41 Carex species were used to infer the phylogenetic history of parasites and their hosts using a maximum likelihood approach. Event-based and distance-based cophylogenetic methods were used to test the hypothesis of whether the phylogeny of smut fungi from the genus Anthracoidea matches the phylogeny of the sedge Carex species they host.• Cophylogenetic reconstructions taking into account phylogenetic uncertainties based on event-based analyses demonstrated that the Anthracoidea phylogeny has significant topological congruence with the phylogeny of their Carex hosts. A distance-based test was also significant; therefore, the phylogenies of Anthracoide and Carex are partially congruent.• The phylogenetic congruence of Anthracoidea and Carex is partially based on smut fungi species being preferentially hosted by closely related sedges (host conservatism). In addition, many different events rather than only codivergence events are inferred. All of this evidence suggests that host-shift speciation rather than cospeciation seems to explain the cophylogenetic patterns of Anthracoidea and Carex. © 2015 Botanical Society of America, Inc.
Tamar, Karin; Carranza, Salvador; Sindaco, Roberto; Moravec, Jiří; Trape, Jean-François; Meiri, Shai
2016-10-01
Acanthodactylus lizards are among the most diverse and widespread diurnal reptiles in the arid regions spanning from North Africa across to western India. Acanthodactylus constitutes the most species-rich genus in the family Lacertidae, with over 40 recognized species inhabiting a wide variety of dry habitats. The genus has seldom undergone taxonomic revisions, and although there are a number of described species and species-groups, their boundaries, as well as their interspecific relationships, remain largely unresolved. We constructed a multilocus phylogeny, combining data from two mitochondrial (12S, cytb) and three nuclear (MC1R, ACM4, c-mos) markers for 302 individuals belonging to 36 known species, providing the first large-scale time-calibrated molecular phylogeny of the genus. We evaluated phylogenetic relationships between and within species-groups, and assessed Acanthodactylus biogeography across its known range. Acanthodactylus cladogenesis is estimated to have originated in Africa due to vicariance and dispersal events from the Oligocene onwards. Radiation started with the separation into three clades: the Western and scutellatus clades largely distributed in North Africa, and the Eastern clade occurring mostly in south-west Asia. Most Acanthodactylus species diverged during the Miocene, possibly as a result of regional geological instability and climatic changes. We support most of the current taxonomic classifications and phylogenetic relationships, and provide genetic validity for most species. We reveal a new distinct blanfordii species-group, suggest new phylogenetic positions (A. hardyi, A. masirae), and synonymize several species and subspecies (A. lineomaculatus, A. boskianus khattensis and A. b. nigeriensis) with their phylogenetically closely-related species. We recommend a thorough systematic revision of taxa, such as A. guineensis, A. grandis, A. dumerilii, A. senegalensis and the pardalis and erythrurus species-groups, which exhibit high levels of intraspecific variability, and clear evidence of phylogenetic complexity. Copyright © 2016 Elsevier Inc. All rights reserved.
Schirtzinger, Erin E.; Tavares, Erika S.; Gonzales, Lauren A.; Eberhard, Jessica R.; Miyaki, Cristina Y.; Sanchez, Juan J.; Hernandez, Alexis; Müeller, Heinrich; Graves, Gary R.; Fleischer, Robert C.; Wright, Timothy F.
2012-01-01
Mitochondrial genomes are generally thought to be under selection for compactness, due to their small size, consistent gene content, and a lack of introns or intergenic spacers. As more animal mitochondrial genomes are fully sequenced, rearrangements and partial duplications are being identified with increasing frequency, particularly in birds (Class Aves). In this study, we investigate the evolutionary history of mitochondrial control region states within the avian order Psittaciformes (parrots and cockatoos). To this aim, we reconstructed a comprehensive multi-locus phylogeny of parrots, used PCR of three diagnostic fragments to classify the mitochondrial control region state as single or duplicated, and mapped these states onto the phylogeny. We further sequenced 44 selected species to validate these inferences of control region state. Ancestral state reconstruction using a range of weighting schemes identified six independent origins of mitochondrial control region duplications within Psittaciformes. Analysis of sequence data showed that varying levels of mitochondrial gene and tRNA homology and degradation were present within a given clade exhibiting duplications. Levels of divergence between control regions within an individual varied from 0–10.9% with the differences occurring mainly between 51 and 225 nucleotides 3′ of the goose hairpin in domain I. Further investigations into the fates of duplicated mitochondrial genes, the potential costs and benefits of having a second control region, and the complex relationship between evolutionary rates, selection, and time since duplication are needed to fully explain these patterns in the mitochondrial genome. PMID:22543055
Bybee, Seth M; Bracken-Grissom, Heather; Haynes, Benjamin D; Hermansen, Russell A; Byers, Robert L; Clement, Mark J; Udall, Joshua A; Wilcox, Edward R; Crandall, Keith A
2011-01-01
Next-gen sequencing technologies have revolutionized data collection in genetic studies and advanced genome biology to novel frontiers. However, to date, next-gen technologies have been used principally for whole genome sequencing and transcriptome sequencing. Yet many questions in population genetics and systematics rely on sequencing specific genes of known function or diversity levels. Here, we describe a targeted amplicon sequencing (TAS) approach capitalizing on next-gen capacity to sequence large numbers of targeted gene regions from a large number of samples. Our TAS approach is easily scalable, simple in execution, neither time-nor labor-intensive, relatively inexpensive, and can be applied to a broad diversity of organisms and/or genes. Our TAS approach includes a bioinformatic application, BarcodeCrucher, to take raw next-gen sequence reads and perform quality control checks and convert the data into FASTA format organized by gene and sample, ready for phylogenetic analyses. We demonstrate our approach by sequencing targeted genes of known phylogenetic utility to estimate a phylogeny for the Pancrustacea. We generated data from 44 taxa using 68 different 10-bp multiplexing identifiers. The overall quality of data produced was robust and was informative for phylogeny estimation. The potential for this method to produce copious amounts of data from a single 454 plate (e.g., 325 taxa for 24 loci) significantly reduces sequencing expenses incurred from traditional Sanger sequencing. We further discuss the advantages and disadvantages of this method, while offering suggestions to enhance the approach.
Ibarra-Cerdeña, Carlos N.; Zaldívar-Riverón, Alejandro; Peterson, A. Townsend; Sánchez-Cordero, Víctor; Ramsey, Janine M.
2014-01-01
The niche conservatism hypothesis states that related species diverge in niche characteristics at lower rates than expected, given their lineage divergence. Here we analyze whether niche conservatism is a common pattern among vector species (Hemiptera: Reduviidae: Triatominae) of Trypanosoma cruzi that inhabit North and Central America, a highly heterogeneous landmass in terms of environmental gradients. Mitochondrial and nuclear loci were used in a multi-locus phylogenetic framework to reconstruct phylogenetic relationships among species and estimate time of divergence of selected clades to draw biogeographic inferences. Then, we estimated similarity between the ecological niche of sister species and tested the niche conservatism hypothesis using our best estimate of phylogeny. Triatoma is not monophyletic. A primary clade with all North and Central American (NCA) triatomine species from the genera Triatoma, Dipetalogaster, and Panstrongylus, was consistently recovered. Nearctic species within the NCA clade (T. p. protracta, T. r. rubida) diverged during the Pliocene, whereas the Neotropical species (T. phyllosoma, T. longipennis, T. dimidiata complex) are estimated to have diverged more recently, during the Pleistocene. The hypothesis of niche conservatism could not be rejected for any of six sister species pairs. Niche similarity between sister species best fits a retention model. While this framework is used here to infer niche evolution, it has a direct impact on spatial vector dynamics driven by human population movements, expansion of transportation networks and climate change scenarios. PMID:25356550
Bybee, Seth M.; Bracken-Grissom, Heather; Haynes, Benjamin D.; Hermansen, Russell A.; Byers, Robert L.; Clement, Mark J.; Udall, Joshua A.; Wilcox, Edward R.; Crandall, Keith A.
2011-01-01
Next-gen sequencing technologies have revolutionized data collection in genetic studies and advanced genome biology to novel frontiers. However, to date, next-gen technologies have been used principally for whole genome sequencing and transcriptome sequencing. Yet many questions in population genetics and systematics rely on sequencing specific genes of known function or diversity levels. Here, we describe a targeted amplicon sequencing (TAS) approach capitalizing on next-gen capacity to sequence large numbers of targeted gene regions from a large number of samples. Our TAS approach is easily scalable, simple in execution, neither time-nor labor-intensive, relatively inexpensive, and can be applied to a broad diversity of organisms and/or genes. Our TAS approach includes a bioinformatic application, BarcodeCrucher, to take raw next-gen sequence reads and perform quality control checks and convert the data into FASTA format organized by gene and sample, ready for phylogenetic analyses. We demonstrate our approach by sequencing targeted genes of known phylogenetic utility to estimate a phylogeny for the Pancrustacea. We generated data from 44 taxa using 68 different 10-bp multiplexing identifiers. The overall quality of data produced was robust and was informative for phylogeny estimation. The potential for this method to produce copious amounts of data from a single 454 plate (e.g., 325 taxa for 24 loci) significantly reduces sequencing expenses incurred from traditional Sanger sequencing. We further discuss the advantages and disadvantages of this method, while offering suggestions to enhance the approach. PMID:22002916
Lovette, I.J.; Perez-Eman, J. L.; Sullivan, J.P.; Banks, R.C.; Fiorentino, I.; Cordoba-Cordoba, S.; Echeverry-Galvis, M.; Barker, F.K.; Burns, K.J.; Klicka, J.; Lanyon, Scott M.; Bermingham, E.
2010-01-01
The birds in the family Parulidae-commonly termed the New World warblers or wood-warblers-are a classic model radiation for studies of ecological and behavioral differentiation. Although the monophyly of a 'core' wood-warbler clade is well established, no phylogenetic hypothesis for this group has included a full sampling of wood-warbler species diversity. We used parsimony, maximum likelihood, and Bayesian methods to reconstruct relationships among all genera and nearly all wood-warbler species, based on a matrix of mitochondrial DNA (5840 nucleotides) and nuclear DNA (6 loci, 4602 nucleotides) characters. The resulting phylogenetic hypotheses provide a highly congruent picture of wood-warbler relationships, and indicate that the traditional generic classification of these birds recognizes many non-monophyletic groups. We recommend a revised taxonomy in which each of 14 genera (Seiurus, Helmitheros, Mniotilta, Limnothlypis, Protonotaria, Parkesia, Vermivora, Oreothlypis, Geothlypis, Setophaga, Myioborus, Cardellina, Basileuterus, Myiothlypis) corresponds to a well-supported clade; these nomenclatural changes also involve subsuming a number of well-known, traditional wood-warbler genera (Catharopeza, Dendroica, Ergaticus, Euthlypis, Leucopeza, Oporornis, Parula, Phaeothlypis, Wilsonia). We provide a summary phylogenetic hypothesis that will be broadly applicable to investigations of the historical biogeography, processes of diversification, and evolution of trait variation in this well studied avian group. ?? 2010 Elsevier Inc.
Song, Bao-Hua; Windsor, Aaron J.; Schmid, Karl J.; Ramos-Onsins, Sebastian; Schranz, M. Eric; Heidel, Andrew J.; Mitchell-Olds, Thomas
2009-01-01
Information about polymorphism, population structure, and linkage disequilibrium (LD) is crucial for association studies of complex trait variation. However, most genomewide studies have focused on model systems, with very few analyses of undisturbed natural populations. Here, we sequenced 86 mapped nuclear loci for a sample of 46 genotypes of Boechera stricta and two individuals of B. holboellii, both wild relatives of Arabidopsis. Isolation by distance was significant across the species range of B. stricta, and three geographic groups were identified by structure analysis, principal coordinates analysis, and distance-based phylogeny analyses. The allele frequency spectrum indicated a genomewide deviation from an equilibrium neutral model, with silent nucleotide diversity averaging 0.004. LD decayed rapidly, declining to background levels in ∼10 kb or less. For tightly linked SNPs separated by <1 kb, LD was dependent on the reference population. LD was lower in the specieswide sample than within populations, suggesting that low levels of LD found in inbreeding species such as B. stricta, Arabidopsis thaliana, and barley may result from broad geographic sampling that spans heterogeneous genetic groups. Finally, analyses also showed that inbreeding B. stricta and A. thaliana have ∼45% higher recombination per kilobase than outcrossing A. lyrata. PMID:19104077
Kimura, L; Angeli, C B; Auricchio, M T B M; Fernandes, G R; Pereira, A C; Vicente, J P; Pereira, T V; Mingroni-Netto, R C
2012-01-01
Background. It has been widely suggested that analyses considering multilocus effects would be crucial to characterize the relationship between gene variability and essential hypertension (EH). Objective. To test for the presence of multilocus effects between/among seven polymorphisms (six genes) on blood pressure-related traits in African-derived semi-isolated Brazilian populations (quilombos). Methods. Analyses were carried out using a family-based design in a sample of 652 participants (97 families). Seven variants were investigated: ACE (rs1799752), AGT (rs669), ADD2 (rs3755351), NOS3 (rs1799983), GNB3 (rs5441 and rs5443), and GRK4 (rs1801058). Sensitivity analyses were further performed under a case-control design with unrelated participants only. Results. None of the investigated variants were associated individually with both systolic and diastolic BP levels (SBP and DBP, respectively) or EH (as a binary outcome). Multifactor dimensionality reduction-based techniques revealed a marginal association of the combined effect of both GNB3 variants on DBP levels in a family-based design (P = 0.040), whereas a putative NOS3-GRK4 interaction also in relation to DBP levels was observed in the case-control design only (P = 0.004). Conclusion. Our results provide limited support for the hypothesis of multilocus effects between/among the studied variants on blood pressure in quilombos. Further larger studies are needed to validate our findings.
Listeria monocytogenes sequence type 1 is predominant in ruminant rhombencephalitis
Dreyer, Margaux; Aguilar-Bultet, Lisandra; Rupp, Sebastian; Guldimann, Claudia; Stephan, Roger; Schock, Alexandra; Otter, Arthur; Schüpbach, Gertraud; Brisse, Sylvain; Lecuit, Marc; Frey, Joachim; Oevermann, Anna
2016-01-01
Listeria (L.) monocytogenes is an opportunistic pathogen causing life-threatening infections in diverse mammalian species including humans and ruminants. As little is known on the link between strains and clinicopathological phenotypes, we studied potential strain-associated virulence and organ tropism in L. monocytogenes isolates from well-defined ruminant cases of clinical infections and the farm environment. The phylogeny of isolates and their virulence-associated genes were analyzed by multilocus sequence typing (MLST) and sequence analysis of virulence-associated genes. Additionally, a panel of representative isolates was subjected to in vitro infection assays. Our data suggest the environmental exposure of ruminants to a broad range of strains and yet the strong association of sequence type (ST) 1 from clonal complex (CC) 1 with rhombencephalitis, suggesting increased neurotropism of ST1 in ruminants, which is possibly related to its hypervirulence. This study emphasizes the importance of considering clonal background of L. monocytogenes isolates in surveillance, epidemiological investigation and disease control. PMID:27848981
Sandoval-Denis, Marcelo; Sutton, Deanna A.; Cano-Lira, José F.; Fothergill, Annette W.; Wiederhold, Nathan P.; Guarro, Josep
2014-01-01
A set of 73 isolates of the emerging fungus Trichoderma isolated from human and animal clinical specimens were characterized morphologically and molecularly using a multilocus sequence analysis that included the internal transcribed spacer (ITS) regions of the nuclear ribosomal DNA and fragments of the translation elongation factor 1 alpha (Tef1), endochitinase CHI18-5 (Chi18-5), and actin 1 (Act1) genes. The most frequent species was Trichoderma longibrachiatum (26%), followed by Trichoderma citrinoviride (18%), the Hypocrea lixii/Trichoderma harzianum species complex (15%), the newly described species Trichoderma bissettii (12%), and Trichoderma orientale (11%). The most common anatomical sites of isolation in human clinical specimens were the respiratory tract (40%), followed by deep tissue (30%) and superficial tissues (26%), while all the animal-associated isolates were obtained from superficial tissue samples. Susceptibilities of the isolates to eight antifungal drugs in vitro showed mostly high MICs, except for voriconazole and the echinocandins. PMID:24719448
Rix, Michael G.; Harvey, Mark S.
2012-01-01
Abstract The Assassin Spiders of the family Archaeidae from southern Australia are revised, with a new genus (Zephyrarchaea gen. n.) and nine new species described from temperate, mesic habitats in southern Victoria, South Australia and south-western Western Australia: Zephyrarchaea austini sp. n., Zephyrarchaea barrettae sp. n., Zephyrarchaea grayi sp. n., Zephyrarchaea janineae sp. n., Zephyrarchaea marae sp. n., Zephyrarchaea marki sp. n., Zephyrarchaea melindae sp. n., Zephyrarchaea porchi sp. n. and Zephyrarchaea vichickmani sp. n. Specimens of the type species, Zephyrarchaea mainae (Platnick, 1991), comb. n., are redescribed from the Albany region of Western Australia, along with the holotype female of Zephyrarchaea robinsi (Harvey, 2002) comb. n. from the Stirling Range National Park. The previously described species Archaea hickmani Butler, 1929 from Victoria is here recognised as a nomen dubium. A key to species and multi-locus molecular phylogeny complement the species-level taxonomy, with maps, habitat photos, natural history information and conservation assessments provided for all species. PMID:22639534
Tong, Steven Y.C.; Holden, Matthew T.G.; Nickerson, Emma K.; Cooper, Ben S.; Köser, Claudio U.; Cori, Anne; Jombart, Thibaut; Cauchemez, Simon; Fraser, Christophe; Wuthiekanun, Vanaporn; Thaipadungpanit, Janjira; Hongsuwan, Maliwan; Day, Nicholas P.; Limmathurotsakul, Direk; Parkhill, Julian; Peacock, Sharon J.
2015-01-01
Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of nosocomial infection. Whole-genome sequencing of MRSA has been used to define phylogeny and transmission in well-resourced healthcare settings, yet the greatest burden of nosocomial infection occurs in resource-restricted settings where barriers to transmission are lower. Here, we study the flux and genetic diversity of MRSA on ward and individual patient levels in a hospital where transmission was common. We repeatedly screened all patients on two intensive care units for MRSA carriage over a 3-mo period. All MRSA belonged to multilocus sequence type 239 (ST 239). We defined the population structure and charted the spread of MRSA by sequencing 79 isolates from 46 patients and five members of staff, including the first MRSA-positive screen isolates and up to two repeat isolates where available. Phylogenetic analysis identified a flux of distinct ST 239 clades over time in each intensive care unit. In total, five main clades were identified, which varied in the carriage of plasmids encoding antiseptic and antimicrobial resistance determinants. Sequence data confirmed intra- and interwards transmission events and identified individual patients who were colonized by more than one clade. One patient on each unit was the source of numerous transmission events, and deep sampling of one of these cases demonstrated colonization with a “cloud” of related MRSA variants. The application of whole-genome sequencing and analysis provides novel insights into the transmission of MRSA in under-resourced healthcare settings and has relevance to wider global health. PMID:25491771
Estimation of relative effectiveness of phylogenetic programs by machine learning.
Krivozubov, Mikhail; Goebels, Florian; Spirin, Sergei
2014-04-01
Reconstruction of phylogeny of a protein family from a sequence alignment can produce results of different quality. Our goal is to predict the quality of phylogeny reconstruction basing on features that can be extracted from the input alignment. We used Fitch-Margoliash (FM) method of phylogeny reconstruction and random forest as a predictor. For training and testing the predictor, alignments of orthologous series (OS) were used, for which the result of phylogeny reconstruction can be evaluated by comparison with trees of corresponding organisms. Our results show that the quality of phylogeny reconstruction can be predicted with more than 80% precision. Also, we tried to predict which phylogeny reconstruction method, FM or UPGMA, is better for a particular alignment. With the used set of features, among alignments for which the obtained predictor predicts a better performance of UPGMA, 56% really give a better result with UPGMA. Taking into account that in our testing set only for 34% alignments UPGMA performs better, this result shows a principal possibility to predict the better phylogeny reconstruction method basing on features of a sequence alignment.
Glynou, Kyriaki; Ali, Tahir; Kia, Sevda Haghi; Thines, Marco; Maciá-Vicente, Jose G
2017-09-01
Studying community structure and dynamics of plant-associated fungi is the basis for unravelling their interactions with hosts and ecosystem functions. A recent sampling revealed that only a few fungal groups, as defined by internal transcribed spacer region (ITS) sequence similarity, dominate culturable root endophytic communities of nonmycorrhizal Microthlaspi spp. plants across Europe. Strains of these fungi display a broad phenotypic and functional diversity, which suggests a genetic variability masked by ITS clustering into operational taxonomic units (OTUs). The aims of this study were to identify how genetic similarity patterns of these fungi change across environments and to evaluate their ability to disperse and adapt to ecological conditions. A first ITS-based haplotype analysis of ten widespread OTUs mostly showed a low to moderate genotypic differentiation, with the exception of a group identified as Cadophora sp. that was highly diverse. A multilocus phylogeny based on additional genetic loci (partial translation elongation factor 1α, beta-tubulin and actin) and amplified fragment length polymorphism profiling of 185 strains representative of the five dominant OTUs revealed a weak association of genetic differences with geography and environmental conditions, including bioclimatic and soil factors. Our findings suggest that dominant culturable root endophytic fungi have efficient dispersal capabilities, and that their distribution is little affected by environmental filtering. Other processes, such as inter- and intraspecific biotic interactions, may be more important for the local assembly of their communities. © 2017 John Wiley & Sons Ltd.
A Well-Resolved Phylogeny of the Trees of Puerto Rico Based on DNA Barcode Sequence Data
Muscarella, Robert; Uriarte, María; Erickson, David L.; Swenson, Nathan G.; Zimmerman, Jess K.; Kress, W. John
2014-01-01
Background The use of phylogenetic information in community ecology and conservation has grown in recent years. Two key issues for community phylogenetics studies, however, are (i) low terminal phylogenetic resolution and (ii) arbitrarily defined species pools. Methodology/principal findings We used three DNA barcodes (plastid DNA regions rbcL, matK, and trnH-psbA) to infer a phylogeny for 527 native and naturalized trees of Puerto Rico, representing the vast majority of the entire tree flora of the island (89%). We used a maximum likelihood (ML) approach with and without a constraint tree that enforced monophyly of recognized plant orders. Based on 50% consensus trees, the ML analyses improved phylogenetic resolution relative to a comparable phylogeny generated with Phylomatic (proportion of internal nodes resolved: constrained ML = 74%, unconstrained ML = 68%, Phylomatic = 52%). We quantified the phylogenetic composition of 15 protected forests in Puerto Rico using the constrained ML and Phylomatic phylogenies. We found some evidence that tree communities in areas of high water stress were relatively phylogenetically clustered. Reducing the scale at which the species pool was defined (from island to soil types) changed some of our results depending on which phylogeny (ML vs. Phylomatic) was used. Overall, the increased terminal resolution provided by the ML phylogeny revealed additional patterns that were not observed with a less-resolved phylogeny. Conclusions/significance With the DNA barcode phylogeny presented here (based on an island-wide species pool), we show that a more fully resolved phylogeny increases power to detect nonrandom patterns of community composition in several Puerto Rican tree communities. Especially if combined with additional information on species functional traits and geographic distributions, this phylogeny will (i) facilitate stronger inferences about the role of historical processes in governing the assembly and composition of Puerto Rican forests, (ii) provide insight into Caribbean biogeography, and (iii) aid in incorporating evolutionary history into conservation planning. PMID:25386879
A well-resolved phylogeny of the trees of Puerto Rico based on DNA barcode sequence data.
Muscarella, Robert; Uriarte, María; Erickson, David L; Swenson, Nathan G; Zimmerman, Jess K; Kress, W John
2014-01-01
The use of phylogenetic information in community ecology and conservation has grown in recent years. Two key issues for community phylogenetics studies, however, are (i) low terminal phylogenetic resolution and (ii) arbitrarily defined species pools. We used three DNA barcodes (plastid DNA regions rbcL, matK, and trnH-psbA) to infer a phylogeny for 527 native and naturalized trees of Puerto Rico, representing the vast majority of the entire tree flora of the island (89%). We used a maximum likelihood (ML) approach with and without a constraint tree that enforced monophyly of recognized plant orders. Based on 50% consensus trees, the ML analyses improved phylogenetic resolution relative to a comparable phylogeny generated with Phylomatic (proportion of internal nodes resolved: constrained ML = 74%, unconstrained ML = 68%, Phylomatic = 52%). We quantified the phylogenetic composition of 15 protected forests in Puerto Rico using the constrained ML and Phylomatic phylogenies. We found some evidence that tree communities in areas of high water stress were relatively phylogenetically clustered. Reducing the scale at which the species pool was defined (from island to soil types) changed some of our results depending on which phylogeny (ML vs. Phylomatic) was used. Overall, the increased terminal resolution provided by the ML phylogeny revealed additional patterns that were not observed with a less-resolved phylogeny. With the DNA barcode phylogeny presented here (based on an island-wide species pool), we show that a more fully resolved phylogeny increases power to detect nonrandom patterns of community composition in several Puerto Rican tree communities. Especially if combined with additional information on species functional traits and geographic distributions, this phylogeny will (i) facilitate stronger inferences about the role of historical processes in governing the assembly and composition of Puerto Rican forests, (ii) provide insight into Caribbean biogeography, and (iii) aid in incorporating evolutionary history into conservation planning.
Unravelling the Genetic Diversity among Cassava Bemisia tabaci Whiteflies Using NextRAD Sequencing.
Wosula, Everlyne N; Chen, Wenbo; Fei, Zhangjun; Legg, James P
2017-11-01
Bemisia tabaci threatens production of cassava in Africa through vectoring viruses that cause cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). B. tabaci sampled from cassava in eight countries in Africa were genotyped using NextRAD sequencing, and their phylogeny and population genetics were investigated using the resultant single nucleotide polymorphism (SNP) markers. SNP marker data and short sequences of mitochondrial DNA cytochrome oxidase I (mtCOI) obtained from the same insect were compared. Eight genetically distinct groups were identified based on mtCOI, whereas phylogenetic analysis using SNPs identified six major groups, which were further confirmed by PCA and multidimensional analyses. STRUCTURE analysis identified four ancestral B. tabaci populations that have contributed alleles to the six SNP-based groups. Significant gene flows were detected between several of the six SNP-based groups. Evidence of gene flow was strongest for SNP-based groups occurring in central Africa. Comparison of the mtCOI and SNP identities of sampled insects provided a strong indication that hybrid populations are emerging in parts of Africa recently affected by the severe CMD pandemic. This study reveals that mtCOI is not an effective marker at distinguishing cassava-colonizing B. tabaci haplogroups, and that more robust SNP-based multilocus markers should be developed. Significant gene flows between populations could lead to the emergence of haplogroups that might alter the dynamics of cassava virus spread and disease severity in Africa. Continuous monitoring of genetic compositions of whitefly populations should be an essential component in efforts to combat cassava viruses in Africa. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Hinsinger, Damien Daniel; Basak, Jolly; Gaudeul, Myriam; Cruaud, Corinne; Bertolino, Paola; Frascaria-Lacoste, Nathalie; Bousquet, Jean
2013-01-01
The cosmopolitan genus Fraxinus, which comprises about 40 species of temperate trees and shrubs occupying various habitats in the Northern Hemisphere, represents a useful model to study speciation in long-lived angiosperms. We used nuclear external transcribed spacers (nETS), phantastica gene sequences, and two chloroplast loci (trnH-psbA and rpl32-trnL) in combination with previously published and newly obtained nITS sequences to produce a time-calibrated multi-locus phylogeny of the genus. We then inferred the biogeographic history and evolution of floral morphology. An early dispersal event could be inferred from North America to Asia during the Oligocene, leading to the diversification of the section Melioides sensus lato. Another intercontinental dispersal originating from the Eurasian section of Fraxinus could be dated from the Miocene and resulted in the speciation of F. nigra in North America. In addition, vicariance was inferred to account for the distribution of the other Old World species (sections Sciadanthus, Fraxinus and Ornus). Geographic speciation likely involving dispersal and vicariance could also be inferred from the phylogenetic grouping of geographically close taxa. Molecular dating suggested that the initial divergence of the taxonomical sections occurred during the middle and late Eocene and Oligocene periods, whereas diversification within sections occurred mostly during the late Oligocene and Miocene, which is consistent with the climate warming and accompanying large distributional changes observed during these periods. These various results underline the importance of dispersal and vicariance in promoting geographic speciation and diversification in Fraxinus. Similarities in life history, reproductive and demographic attributes as well as geographical distribution patterns suggest that many other temperate trees should exhibit similar speciation patterns. On the other hand, the observed parallel evolution and reversions in floral morphology would imply a major influence of environmental pressure. The phylogeny obtained and its biogeographical implications should facilitate future studies on the evolution of complex adaptive characters, such as habitat preference, and their possible roles in promoting divergent evolution in trees. PMID:24278282
Hinsinger, Damien Daniel; Basak, Jolly; Gaudeul, Myriam; Cruaud, Corinne; Bertolino, Paola; Frascaria-Lacoste, Nathalie; Bousquet, Jean
2013-01-01
The cosmopolitan genus Fraxinus, which comprises about 40 species of temperate trees and shrubs occupying various habitats in the Northern Hemisphere, represents a useful model to study speciation in long-lived angiosperms. We used nuclear external transcribed spacers (nETS), phantastica gene sequences, and two chloroplast loci (trnH-psbA and rpl32-trnL) in combination with previously published and newly obtained nITS sequences to produce a time-calibrated multi-locus phylogeny of the genus. We then inferred the biogeographic history and evolution of floral morphology. An early dispersal event could be inferred from North America to Asia during the Oligocene, leading to the diversification of the section Melioides sensus lato. Another intercontinental dispersal originating from the Eurasian section of Fraxinus could be dated from the Miocene and resulted in the speciation of F. nigra in North America. In addition, vicariance was inferred to account for the distribution of the other Old World species (sections Sciadanthus, Fraxinus and Ornus). Geographic speciation likely involving dispersal and vicariance could also be inferred from the phylogenetic grouping of geographically close taxa. Molecular dating suggested that the initial divergence of the taxonomical sections occurred during the middle and late Eocene and Oligocene periods, whereas diversification within sections occurred mostly during the late Oligocene and Miocene, which is consistent with the climate warming and accompanying large distributional changes observed during these periods. These various results underline the importance of dispersal and vicariance in promoting geographic speciation and diversification in Fraxinus. Similarities in life history, reproductive and demographic attributes as well as geographical distribution patterns suggest that many other temperate trees should exhibit similar speciation patterns. On the other hand, the observed parallel evolution and reversions in floral morphology would imply a major influence of environmental pressure. The phylogeny obtained and its biogeographical implications should facilitate future studies on the evolution of complex adaptive characters, such as habitat preference, and their possible roles in promoting divergent evolution in trees.
West, Claire; James, Stephen A; Davey, Robert P; Dicks, Jo; Roberts, Ian N
2014-07-01
The ribosomal RNA encapsulates a wealth of evolutionary information, including genetic variation that can be used to discriminate between organisms at a wide range of taxonomic levels. For example, the prokaryotic 16S rDNA sequence is very widely used both in phylogenetic studies and as a marker in metagenomic surveys and the internal transcribed spacer region, frequently used in plant phylogenetics, is now recognized as a fungal DNA barcode. However, this widespread use does not escape criticism, principally due to issues such as difficulties in classification of paralogous versus orthologous rDNA units and intragenomic variation, both of which may be significant barriers to accurate phylogenetic inference. We recently analyzed data sets from the Saccharomyces Genome Resequencing Project, characterizing rDNA sequence variation within multiple strains of the baker's yeast Saccharomyces cerevisiae and its nearest wild relative Saccharomyces paradoxus in unprecedented detail. Notably, both species possess single locus rDNA systems. Here, we use these new variation datasets to assess whether a more detailed characterization of the rDNA locus can alleviate the second of these phylogenetic issues, sequence heterogeneity, while controlling for the first. We demonstrate that a strong phylogenetic signal exists within both datasets and illustrate how they can be used, with existing methodology, to estimate intraspecies phylogenies of yeast strains consistent with those derived from whole-genome approaches. We also describe the use of partial Single Nucleotide Polymorphisms, a type of sequence variation found only in repetitive genomic regions, in identifying key evolutionary features such as genome hybridization events and show their consistency with whole-genome Structure analyses. We conclude that our approach can transform rDNA sequence heterogeneity from a problem to a useful source of evolutionary information, enabling the estimation of highly accurate phylogenies of closely related organisms, and discuss how it could be extended to future studies of multilocus rDNA systems. [concerted evolution; genome hydridisation; phylogenetic analysis; ribosomal DNA; whole genome sequencing; yeast]. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
NASA Astrophysics Data System (ADS)
Xu, Kuipeng; Tang, Xianghai; Wang, Lu; Yu, Xinzi; Sun, Peipei; Mao, Yunxiang
2017-08-01
Bangiales is the only order of the Bangiophyceae and has been suggested to be monophyletic. This order contains approximately 190 species and is distributed worldwide. Previous molecular studies have produced robust phylogenies among the red algae, but the divergence times, historical biogeography and evolutionary rates of Bangiales have rarely been studied. Phylogenetic relationships within the Bangiales were examined using the concatenated gene sets from all available organellar genomes. This analysis has revealed the topology ((( Bangia, Porphyra ) Pyropia ) Wildemania ). Molecular dating indicates that Bangiales diversified approximately 246.40 million years ago (95% highest posterior density (HPD)= 194.78u2013318.24 Ma, posterior probability (PP)=0.99) in the Late Permian and Early Triassic, and that the ancestral species most likely originated from eastern Gondwanaland (currently New Zealand and Australia) and subsequently began to spread and evolve worldwide. Based on pairwise comparisons, we found a slower rate of nucleotide substitutions and lower rates of diversification in Bangiales relative to Florideophyceae. Compared with Viridiplantae (green algae and land plants), the evolutionary rates of Bangiales and other Rhodophyte groups were found to be dramatically faster, by more than 3-fold for plastid genome (ptDNA) and 15-fold for mitochondrial genome (mtDNA). In addition, an average 2.5-fold lower dN/dS was found for the algae than for the land plants, which indicates purifying selection of the algae.
Stephan, Roger; Grim, Christopher J; Gopinath, Gopal R; Mammel, Mark K; Sathyamoorthy, Venugopal; Trach, Larisa H; Chase, Hannah R; Fanning, Séamus; Tall, Ben D
2014-10-01
Recently, a taxonomical re-evaluation of the genus Enterobacter, based on multi-locus sequence typing (MLST) analysis, has led to the proposal that the species Enterobacter pulveris, Enterobacter helveticus and Enterobacter turicensis should be reclassified as novel species of the genus Cronobacter. In the present work, new genome-scale analyses, including average nucleotide identity, genome-scale phylogeny and k-mer analysis, coupled with previously reported DNA-DNA hybridization values and biochemical characterization strongly indicate that these three species of the genus Enterobacter are not members of the genus Cronobacter, nor do they belong to the re-evaluated genus Enterobacter. Furthermore, data from this polyphasic study indicated that all three species constitute two new genera. We propose reclassifying Enterobacter pulveris and Enterobacter helveticus in the genus Franconibacter gen. nov. as Franconibacter pulveris comb. nov. (type strain 601/05(T) = LMG 24057(T) = DSM 19144(T)) and Franconibacter helveticus comb. nov. (type strain 513/05(T) = LMG 23732(T) = DSM 18396(T)), respectively, and Enterobacter turicensis in the genus Siccibacter gen. nov. as Siccibacter turicensis comb. nov. (type strain 508/05(T) = LMG 23730(T) = DSM 18397(T)).
To Be or Not to Be a Flatworm: The Acoel Controversy
Arendt, Detlev; Borgonie, Gaëtan; Funayama, Noriko; Gschwentner, Robert; Hartenstein, Volker; Hobmayer, Bert; Hooge, Matthew; Hrouda, Martina; Ishida, Sachiko; Kobayashi, Chiyoko; Kuales, Georg; Nishimura, Osamu; Pfister, Daniela; Rieger, Reinhard; Salvenmoser, Willi; Smith, Julian; Technau, Ulrich; Tyler, Seth; Agata, Kiyokazu; Salzburger, Walter; Ladurner, Peter
2009-01-01
Since first described, acoels were considered members of the flatworms (Platyhelminthes). However, no clear synapomorphies among the three large flatworm taxa - the Catenulida, the Acoelomorpha and the Rhabditophora - have been characterized to date. Molecular phylogenies, on the other hand, commonly positioned acoels separate from other flatworms. Accordingly, our own multi-locus phylogenetic analysis using 43 genes and 23 animal species places the acoel flatworm Isodiametra pulchra at the base of all Bilateria, distant from other flatworms. By contrast, novel data on the distribution and proliferation of stem cells and the specific mode of epidermal replacement constitute a strong synapomorphy for the Acoela plus the major group of flatworms, the Rhabditophora. The expression of a piwi-like gene not only in gonadal, but also in adult somatic stem cells is another unique feature among bilaterians. These two independent stem-cell-related characters put the Acoela into the Platyhelminthes-Lophotrochozoa clade and account for the most parsimonious evolutionary explanation of epidermal cell renewal in the Bilateria. Most available multigene analyses produce conflicting results regarding the position of the acoels in the tree of life. Given these phylogenomic conflicts and the contradiction of developmental and morphological data with phylogenomic results, the monophyly of the phylum Platyhelminthes and the position of the Acoela remain unresolved. By these data, both the inclusion of Acoela within Platyhelminthes, and their separation from flatworms as basal bilaterians are well-supported alternatives. PMID:19430533
Grim, Christopher J.; Gopinath, Gopal R.; Mammel, Mark K.; Sathyamoorthy, Venugopal; Trach, Larisa H.; Chase, Hannah R.; Fanning, Séamus; Tall, Ben D.
2014-01-01
Recently, a taxonomical re-evaluation of the genus Enterobacter, based on multi-locus sequence typing (MLST) analysis, has led to the proposal that the species Enterobacter pulveris, Enterobacter helveticus and Enterobacter turicensis should be reclassified as novel species of the genus Cronobacter. In the present work, new genome-scale analyses, including average nucleotide identity, genome-scale phylogeny and k-mer analysis, coupled with previously reported DNA–DNA hybridization values and biochemical characterization strongly indicate that these three species of the genus Enterobacter are not members of the genus Cronobacter, nor do they belong to the re-evaluated genus Enterobacter. Furthermore, data from this polyphasic study indicated that all three species constitute two new genera. We propose reclassifying Enterobacter pulveris and Enterobacter helveticus in the genus Franconibacter gen. nov. as Franconibacter pulveris comb. nov. (type strain 601/05T = LMG 24057T = DSM 19144T) and Franconibacter helveticus comb. nov. (type strain 513/05T = LMG 23732T = DSM 18396T), respectively, and Enterobacter turicensis in the genus Siccibacter gen. nov. as Siccibacter turicensis comb. nov. (type strain 508/05T = LMG 23730T = DSM 18397T). PMID:25028159
Bourret, Vincent; Dionne, Mélanie; Bernatchez, Louis
2014-09-01
Wild populations of Atlantic salmon have declined worldwide. While the causes for this decline may be complex and numerous, increased mortality at sea is predicted to be one of the major contributing factors. Examining the potential changes occurring in the genome-wide composition of populations during this migration has the potential to tease apart some of the factors influencing marine mortality. Here, we genotyped 5568 SNPs in Atlantic salmon populations representing two distinct regional genetic groups and across two cohorts to test for differential allelic and genotypic frequencies between juveniles (smolts) migrating to sea and adults (grilses) returning to freshwater after 1 year at sea. Given the complexity of the traits potentially associated with sea mortality, we contrasted the outcomes of a single-locus F(ST) based genome scan method with a new multilocus framework to test for genetically based differential mortality at sea. While numerous outliers were identified by the single-locus analysis, no evidence for parallel, temporally repeated selection was found. In contrast, the multilocus approach detected repeated patterns of selection for a multilocus group of 34 covarying SNPs in one of the two populations. No significant pattern of selective mortality was detected in the other population, suggesting different causes of mortality among populations. These results first support the hypothesis that selection mainly causes small changes in allele frequencies among many covarying loci rather than a small number of changes in loci with large effects. They also point out that moving away from the a strict 'selective sweep paradigm' towards a multilocus genetics framework may be a more useful approach for studying the genomic signatures of natural selection on complex traits in wild populations. © 2014 John Wiley & Sons Ltd.
Gottscho, Andrew D.; Wood, Dustin A.; Vandergast, Amy; Lemos Espinal, Julio A.; Gatesy, John; Reeder, Tod
2017-01-01
Multi-locus nuclear DNA data were used to delimit species of fringe-toed lizards of theUma notata complex, which are specialized for living in wind-blown sand habitats in the deserts of southwestern North America, and to infer whether Quaternary glacial cycles or Tertiary geological events were important in shaping the historical biogeography of this group. We analyzed ten nuclear loci collected using Sanger sequencing and genome-wide sequence and single-nucleotide polymorphism (SNP) data collected using restriction-associated DNA (RAD) sequencing. A combination of species discovery methods (concatenated phylogenies, parametric and non-parametric clustering algorithms) and species validation approaches (coalescent-based species tree/isolation-with-migration models) were used to delimit species, infer phylogenetic relationships, and to estimate effective population sizes, migration rates, and speciation times. Uma notata, U. inornata, U. cowlesi, and an undescribed species from Mohawk Dunes, Arizona (U. sp.) were supported as distinct in the concatenated analyses and by clustering algorithms, and all operational taxonomic units were decisively supported as distinct species by ranking hierarchical nested speciation models with Bayes factors based on coalescent-based species tree methods. However, significant unidirectional gene flow (2NM >1) from U. cowlesi and U. notata into U. rufopunctata was detected under the isolation-with-migration model. Therefore, we conservatively delimit four species-level lineages within this complex (U. inornata, U. notata, U. cowlesi, and U. sp.), treating U. rufopunctata as a hybrid population (U. notata x cowlesi). Both concatenated and coalescent-based estimates of speciation times support the hypotheses that speciation within the complex occurred during the late Pleistocene, and that the geological evolution of the Colorado River delta during this period was an important process shaping the observed phylogeographic patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Anne-Catherine; Meier-Kolthoff, Jan P.; Overmars, Lex
Thioalkalivibrio is a genus of obligate chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacteria. Their habitat are soda lakes which are dual extreme environments with a pH range from 9.5 to 11 and salt concentrations up to saturation. More than 100 strains of this genus have been isolated from various soda lakes all over the world, but only ten species have been effectively described yet. Therefore, the assignment of the remaining strains to either existing or novel species is important and will further elucidate their genomic diversity as well as give a better general understanding of this genus. Recently, the genomes of 76 Thioalkalivibriomore » strains were sequenced. On these, we applied different methods including (i) 16S rRNA gene sequence analysis, (ii) Multilocus Sequence Analysis (MLSA) based on eight housekeeping genes, (iii) Average Nucleotide Identity based on BLAST (ANI b) and MUMmer (ANI m ), (iv) Tetranucleotide frequency correlation coefficients (TETRA), (v) digital DNA:DNA hybridization (dDDH) as well as (vi) nucleotide- and amino acid-based Genome BLAST Distance Phylogeny (GBDP) analyses. We detected a high genomic diversity by revealing 15 new "genomic" species and 16 new "genomic" subspecies in addition to the ten already described species. Phylogenetic and phylogenomic analyses showed that the genus is not monophyletic, because four strains were clearly separated from the other Thioalkalivibrio by type strains from other genera. Therefore, it is recommended to classify the latter group as a novel genus. The biogeographic distribution of Thioalkalivibrio suggested that the different "genomic" species can be classified as candidate disjunct or candidate endemic species. This study is a detailed genome-based classification and identification of members within the genus Thioalkalivibrio. However, future phenotypical and chemotaxonomical studies will be needed for a full species description of this genus.« less
Genomic diversity within the haloalkaliphilic genus Thioalkalivibrio
Ahn, Anne-Catherine; Meier-Kolthoff, Jan P.; Overmars, Lex; ...
2017-03-10
Thioalkalivibrio is a genus of obligate chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacteria. Their habitat are soda lakes which are dual extreme environments with a pH range from 9.5 to 11 and salt concentrations up to saturation. More than 100 strains of this genus have been isolated from various soda lakes all over the world, but only ten species have been effectively described yet. Therefore, the assignment of the remaining strains to either existing or novel species is important and will further elucidate their genomic diversity as well as give a better general understanding of this genus. Recently, the genomes of 76 Thioalkalivibriomore » strains were sequenced. On these, we applied different methods including (i) 16S rRNA gene sequence analysis, (ii) Multilocus Sequence Analysis (MLSA) based on eight housekeeping genes, (iii) Average Nucleotide Identity based on BLAST (ANI b) and MUMmer (ANI m ), (iv) Tetranucleotide frequency correlation coefficients (TETRA), (v) digital DNA:DNA hybridization (dDDH) as well as (vi) nucleotide- and amino acid-based Genome BLAST Distance Phylogeny (GBDP) analyses. We detected a high genomic diversity by revealing 15 new "genomic" species and 16 new "genomic" subspecies in addition to the ten already described species. Phylogenetic and phylogenomic analyses showed that the genus is not monophyletic, because four strains were clearly separated from the other Thioalkalivibrio by type strains from other genera. Therefore, it is recommended to classify the latter group as a novel genus. The biogeographic distribution of Thioalkalivibrio suggested that the different "genomic" species can be classified as candidate disjunct or candidate endemic species. This study is a detailed genome-based classification and identification of members within the genus Thioalkalivibrio. However, future phenotypical and chemotaxonomical studies will be needed for a full species description of this genus.« less
Timing and Order of Transmission Events Is Not Directly Reflected in a Pathogen Phylogeny
Romero-Severson, Ethan; Skar, Helena; Bulla, Ingo; Albert, Jan; Leitner, Thomas
2014-01-01
Pathogen phylogenies are often used to infer spread among hosts. There is, however, not an exact match between the pathogen phylogeny and the host transmission history. Here, we examine in detail the limitations of this relationship. First, all splits in a pathogen phylogeny of more than 1 host occur within hosts, not at the moment of transmission, predating the transmission events as described by the pretransmission interval. Second, the order in which nodes in a phylogeny occur may be reflective of the within-host dynamics rather than epidemiologic relationships. To investigate these phenomena, motivated by within-host diversity patterns, we developed a two-phase coalescent model that includes a transmission bottleneck followed by linear outgrowth to a maximum population size followed by either stabilization or decline of the population. The model predicts that the pretransmission interval shrinks compared with predictions based on constant population size or a simple transmission bottleneck. Because lineages coalesce faster in a small population, the probability of a pathogen phylogeny to resemble the transmission history depends on when after infection a donor transmits to a new host. We also show that the probability of inferring the incorrect order of multiple transmissions from the same host is high. Finally, we compare time of HIV-1 infection informed by genetic distances in phylogenies to independent biomarker data, and show that, indeed, the pretransmission interval biases phylogeny-based estimates of when transmissions occurred. We describe situations where caution is needed not to misinterpret which parts of a phylogeny that may indicate outbreaks and tight transmission clusters. PMID:24874208
Zinck, John W. R.
2016-01-01
Natural plant populations are often adapted to their local climate and environmental conditions, and populations of forest trees offer some of the best examples of this pattern. However, little empirical work has focused on the relative contribution of single-locus versus multilocus effects to the genetic architecture of local adaptation in plants/forest trees. Here, we employ eastern white pine (Pinus strobus) to test the hypothesis that it is the inter-genic effects that primarily drive climate-induced local adaptation. The genetic structure of 29 range-wide natural populations of eastern white pine was determined in relation to local climatic factors using both a reference set of SSR markers, and SNPs located in candidate genes putatively involved in adaptive response to climate. Comparisons were made between marker sets using standard single-locus outlier analysis, single-locus and multilocus environment association analyses and a novel implementation of Population Graphs. Magnitudes of population structure were similar between the two marker sets. Outlier loci consistent with diversifying selection were rare for both SNPs and SSRs. However, genetic distances based on the multilocus among population covariances (cGD) were significantly more correlated to climate, even after correcting for spatial effects, for SNPs as compared to SSRs. Coalescent simulations confirmed that the differences in mutation rates between SSRs and SNPs did not affect the topologies of the Population Graphs, and hence values of cGD and their correlations with associated climate variables. We conclude that the multilocus covariances among populations primarily reflect adaptation to local climate and environment in eastern white pine. This result highlights the complexity of the genetic architecture of adaptive traits, as well as the need to consider multilocus effects in studies of local adaptation. PMID:27387485
Multilocus Species Trees Show the Recent Adaptive Radiation of the Mimetic Heliconius Butterflies
Kozak, Krzysztof M.; Wahlberg, Niklas; Neild, Andrew F. E.; Dasmahapatra, Kanchon K.; Mallet, James; Jiggins, Chris D.
2015-01-01
Müllerian mimicry among Neotropical Heliconiini butterflies is an excellent example of natural selection, associated with the diversification of a large continental-scale radiation. Some of the processes driving the evolution of mimicry rings are likely to generate incongruent phylogenetic signals across the assemblage, and thus pose a challenge for systematics. We use a data set of 22 mitochondrial and nuclear markers from 92% of species in the tribe, obtained by Sanger sequencing and de novo assembly of short read data, to re-examine the phylogeny of Heliconiini with both supermatrix and multispecies coalescent approaches, characterize the patterns of conflicting signal, and compare the performance of various methodological approaches to reflect the heterogeneity across the data. Despite the large extent of reticulate signal and strong conflict between markers, nearly identical topologies are consistently recovered by most of the analyses, although the supermatrix approach failed to reflect the underlying variation in the history of individual loci. However, the supermatrix represents a useful approximation where multiple rare species represented by short sequences can be incorporated easily. The first comprehensive, time-calibrated phylogeny of this group is used to test the hypotheses of a diversification rate increase driven by the dramatic environmental changes in the Neotropics over the past 23 myr, or changes caused by diversity-dependent effects on the rate of diversification. We find that the rate of diversification has increased on the branch leading to the presently most species-rich genus Heliconius, but the change occurred gradually and cannot be unequivocally attributed to a specific environmental driver. Our study provides comprehensive comparison of philosophically distinct species tree reconstruction methods and provides insights into the diversification of an important insect radiation in the most biodiverse region of the planet. PMID:25634098
Chavda, Kalyan D.; Chen, Liang; Fouts, Derrick E.; Sutton, Granger; Brinkac, Lauren; Jenkins, Stephen G.; Bonomo, Robert A.
2016-01-01
ABSTRACT Knowledge regarding the genomic structure of Enterobacter spp., the second most prevalent carbapenemase-producing Enterobacteriaceae, remains limited. Here we sequenced 97 clinical Enterobacter species isolates that were both carbapenem susceptible and resistant from various geographic regions to decipher the molecular origins of carbapenem resistance and to understand the changing phylogeny of these emerging and drug-resistant pathogens. Of the carbapenem-resistant isolates, 30 possessed blaKPC-2, 40 had blaKPC-3, 2 had blaKPC-4, and 2 had blaNDM-1. Twenty-three isolates were carbapenem susceptible. Six genomes were sequenced to completion, and their sizes ranged from 4.6 to 5.1 Mbp. Phylogenomic analysis placed 96 of these genomes, 351 additional Enterobacter genomes downloaded from NCBI GenBank, and six newly sequenced type strains into 19 phylogenomic groups—18 groups (A to R) in the Enterobacter cloacae complex and Enterobacter aerogenes. Diverse mechanisms underlying the molecular evolutionary trajectory of these drug-resistant Enterobacter spp. were revealed, including the acquisition of an antibiotic resistance plasmid, followed by clonal spread, horizontal transfer of blaKPC-harboring plasmids between different phylogenomic groups, and repeated transposition of the blaKPC gene among different plasmid backbones. Group A, which comprises multilocus sequence type 171 (ST171), was the most commonly identified (23% of isolates). Genomic analysis showed that ST171 isolates evolved from a common ancestor and formed two different major clusters; each acquiring unique blaKPC-harboring plasmids, followed by clonal expansion. The data presented here represent the first comprehensive study of phylogenomic interrogation and the relationship between antibiotic resistance and plasmid discrimination among carbapenem-resistant Enterobacter spp., demonstrating the genetic diversity and complexity of the molecular mechanisms driving antibiotic resistance in this genus. PMID:27965456
Merkel, Viktor; Ohder, Barbara; Bielaszewska, Martina; Zhang, Wenlan; Fruth, Angelika; Menge, Christian; Borrmann, Erika; Middendorf, Barbara; Müthing, Johannes; Karch, Helge; Mellmann, Alexander
2010-01-01
eibG in Shiga toxin-producing Escherichia coli (STEC) O91 encodes a protein (EibG) which binds human immunoglobulins G and A and contributes to bacterial chain-like adherence to human epithelial cells. We investigated the prevalence of eibG among STEC, the phylogeny of eibG, and eibG allelic variations and their impact on the adherence phenotype. eibG was found in 15.0% of 240 eae-negative STEC strains but in none of 157 eae-positive STEC strains. The 36 eibG-positive STEC strains belonged to 14 serotypes and to eight multilocus sequence types (STs), with serotype O91:H14/H− and ST33 being the most common. Sequences of the complete eibG gene (1,527 bp in size) from eibG-positive STEC resulted in 21 different alleles with 88.11% to 100% identity to the previously reported eibG sequence; they clustered into three eibG subtypes (eibG-α, eibG-β, and eibG-γ). Strains expressing EibG-α and EibG-β displayed a mostly typical chain-like adherence pattern (CLAP), with formation of long chains on both human and bovine intestinal epithelial cells, whereas strains with EibG-γ adhered in short chains, a pattern we termed atypical CLAP. The same adherence phenotypes were displayed by E. coli BL21(DE3) clones containing the respective eibG-α, eibG-β, and eibG-γ subtypes. We propose two possible evolutionary scenarios for eibG in STEC: a clonal development of eibG in strains with the same phylogenetic background or horizontal transfer of eibG between phylogenetically unrelated STEC strains. PMID:20547747
Biogeography and body size shuffling of aquatic salamander communities on a shifting refuge
Bonett, Ronald M.; Trujano-Alvarez, Ana Lilia; Williams, Michael J.; Timpe, Elizabeth K.
2013-01-01
Freshwater habitats of coastal plains are refugia for many divergent vertebrate lineages, yet these environments are highly vulnerable to sea-level fluctuations, which suggest that resident communities have endured dynamic histories. Using the fossil record and a multi-locus nuclear phylogeny, we examine divergence times, biogeography, body size evolution and patterns of community assembly of aquatic salamanders from North American coastal plains since the Late Cretaceous. At least five salamander families occurred on the extensive Western Interior Coastal Plain (WICP), which existed from the Late Cretaceous through the Eocene. Four of these families subsequently colonized the emergent Southeastern Coastal Plain (SECP) by the Early Oligocene to Late Miocene. Three families ultimately survived and underwent extensive body size evolution in situ on the SECP. This included at least two major size reversals in recent taxa that are convergent with confamilial WICP ancestors. Dynamics of the coastal plain, major lineage extinctions and frequent extreme changes in body size have resulted in significant shuffling of the size structure of aquatic salamander communities on this shifting refuge since the Cretaceous. PMID:23466988
Inquiry-Based Learning of Molecular Phylogenetics
ERIC Educational Resources Information Center
Campo, Daniel; Garcia-Vazquez, Eva
2008-01-01
Reconstructing phylogenies from nucleotide sequences is a challenge for students because it strongly depends on evolutionary models and computer tools that are frequently updated. We present here an inquiry-based course aimed at learning how to trace a phylogeny based on sequences existing in public databases. Computer tools are freely available…
Thuillard, Marc; Fraix-Burnet, Didier
2015-01-01
This article presents an innovative approach to phylogenies based on the reduction of multistate characters to binary-state characters. We show that the reduction to binary characters' approach can be applied to both character- and distance-based phylogenies and provides a unifying framework to explain simply and intuitively the similarities and differences between distance- and character-based phylogenies. Building on these results, this article gives a possible explanation on why phylogenetic trees obtained from a distance matrix or a set of characters are often quite reasonable despite lateral transfers of genetic material between taxa. In the presence of lateral transfers, outer planar networks furnish a better description of evolution than phylogenetic trees. We present a polynomial-time reconstruction algorithm for perfect outer planar networks with a fixed number of states, characters, and lateral transfers.
Lujan, Nathan K; Armbruster, Jonathan W; Lovejoy, Nathan R; López-Fernández, Hernán
2015-01-01
The Neotropical catfish family Loricariidae is the fifth most species-rich vertebrate family on Earth, with over 800 valid species. The Hypostominae is its most species-rich, geographically widespread, and ecomorphologically diverse subfamily. Here, we provide a comprehensive molecular phylogenetic reappraisal of genus-level relationships in the Hypostominae based on our sequencing and analysis of two mitochondrial and three nuclear loci (4293bp total). Our most striking large-scale systematic discovery was that the tribe Hypostomini, which has traditionally been recognized as sister to tribe Ancistrini based on morphological data, was nested within Ancistrini. This required recognition of seven additional tribe-level clades: the Chaetostoma Clade, the Pseudancistrus Clade, the Lithoxus Clade, the 'Pseudancistrus' Clade, the Acanthicus Clade, the Hemiancistrus Clade, and the Peckoltia Clade. Results of our analysis, which included type- and non-type species for every valid genus in Hypostominae, support the reevaluation and restriction of several historically problematic genera, including Baryancistrus, Cordylancistrus, Hemiancistrus, and Peckoltia. Much of the deep lineage diversity in Hypostominae is restricted to Guiana Shield and northern Andean drainages, with three tribe-level clades still largely restricted to the Guiana Shield. Of the six geographically widespread clades, a paraphyletic assemblage of three contain lineages restricted to drainages west of the Andes Mountains, suggesting that early diversification of the Hypostominae predated the late Miocene surge in Andean uplift. Our results also highlight examples of trophic ecological diversification and convergence in the Loricariidae, including support for three independent origins of highly similar and globally unique morphological specializations for eating wood. Copyright © 2014 Elsevier Inc. All rights reserved.
Msaddak, Abdelhakim; Rejili, Mokhtar; Durán, David; Rey, Luis; Imperial, Juan; Palacios, Jose Manuel; Ruiz-Argüeso, Tomas; Mars, Mohamed
2017-06-01
The genetic diversity of bacterial populations nodulating Lupinus luteus (yellow lupine) in Northern Tunisia was examined. Phylogenetic analyses of 43 isolates based on recA and gyrB partial sequences grouped them in three clusters, two of which belong to genus Bradyrhizobium (41 isolates) and one, remarkably, to Microvirga (2 isolates), a genus never previously described as microsymbiont of this lupine species. Representatives of the three clusters were analysed in-depth by multilocus sequence analysis of five housekeeping genes (rrs, recA, glnII, gyrB and dnaK). Surprisingly, the Bradyrhizobium cluster with the two isolates LluI4 and LluTb2 may constitute a new species defined by a separate position between Bradyrhizobium manausense and B. denitrificans. A nodC-based phylogeny identified only two groups: one formed by Bradyrhizobium strains included in the symbiovar genistearum and the other by the Microvirga strains. Symbiotic behaviour of representative isolates was tested, and among the seven legumes inoculated only a difference was observed i.e. the Bradyrhizobium strains nodulated Ornithopus compressus unlike the two strains of Microvirga. On the basis of these data, we conclude that L. luteus root nodule symbionts in Northern Tunisia are mostly strains within the B. canariense/B. lupini lineages, and the remaining strains belong to two groups not previously identified as L. luteus endosymbionts: one corresponding to a new clade of Bradyrhizobium and the other to the genus Microvirga. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Measuring and partitioning the high-order linkage disequilibrium by multiple order Markov chains.
Kim, Yunjung; Feng, Sheng; Zeng, Zhao-Bang
2008-05-01
A map of the background levels of disequilibrium between nearby markers can be useful for association mapping studies. In order to assess the background levels of linkage disequilibrium (LD), multilocus LD measures are more advantageous than pairwise LD measures because the combined analysis of pairwise LD measures is not adequate to detect simultaneous allele associations among multiple markers. Various multilocus LD measures based on haplotypes have been proposed. However, most of these measures provide a single index of association among multiple markers and does not reveal the complex patterns and different levels of LD structure. In this paper, we employ non-homogeneous, multiple order Markov Chain models as a statistical framework to measure and partition the LD among multiple markers into components due to different orders of marker associations. Using a sliding window of multiple markers on phased haplotype data, we compute corresponding likelihoods for different Markov Chain (MC) orders in each window. The log-likelihood difference between the lowest MC order model (MC0) and the highest MC order model in each window is used as a measure of the total LD or the overall deviation from the gametic equilibrium for the window. Then, we partition the total LD into lower order disequilibria and estimate the effects from two-, three-, and higher order disequilibria. The relationship between different orders of LD and the log-likelihood difference involving two different orders of MC models are explored. By applying our method to the phased haplotype data in the ENCODE regions of the HapMap project, we are able to identify high/low multilocus LD regions. Our results reveal that the most LD in the HapMap data is attributed to the LD between adjacent pairs of markers across the whole region. LD between adjacent pairs of markers appears to be more significant in high multilocus LD regions than in low multilocus LD regions. We also find that as the multilocus total LD increases, the effects of high-order LD tends to get weaker due to the lack of observed multilocus haplotypes. The overall estimates of first, second, third, and fourth order LD across the ENCODE regions are 64, 23, 9, and 3%.
Xiao, P; Niu, L L; Zhao, Q J; Chen, X Y; Wang, L J; Li, L; Zhang, H P; Guo, J Z; Xu, H Y; Zhong, T
2017-11-16
The origins and phylogeny of different sheep breeds has been widely studied using polymorphisms within the mitochondrial hypervariable region. However, little is known about the mitochondrial DNA (mtDNA) content and phylogeny based on mtDNA protein-coding genes. In this study, we assessed the phylogeny and copy number of the mtDNA in eight indigenous (population size, n=184) and three introduced (n=66) sheep breeds in China based on five mitochondrial coding genes (COX1, COX2, ATP8, ATP6 and COX3). The mean haplotype and nucleotide diversities were 0.944 and 0.00322, respectively. We identified a correlation between the lineages distribution and the genetic distance, whereby Valley-type Tibetan sheep had a closer genetic relationship with introduced breeds (Dorper, Poll Dorset and Suffolk) than with other indigenous breeds. Similarly, the Median-joining profile of haplotypes revealed the distribution of clusters according to genetic differences. Moreover, copy number analysis based on the five mitochondrial coding genes was affected by the genetic distance combining with genetic phylogeny; we also identified obvious non-synonymous mutations in ATP6 between the different levels of copy number expressions. These results imply that differences in mitogenomic compositions resulting from geographical separation lead to differences in mitochondrial function.
Erickson, David L.; Jones, Frank A.; Swenson, Nathan G.; Pei, Nancai; Bourg, Norman A.; Chen, Wenna; Davies, Stuart J.; Ge, Xue-jun; Hao, Zhanqing; Howe, Robert W.; Huang, Chun-Lin; Larson, Andrew J.; Lum, Shawn K. Y.; Lutz, James A.; Ma, Keping; Meegaskumbura, Madhava; Mi, Xiangcheng; Parker, John D.; Fang-Sun, I.; Wright, S. Joseph; Wolf, Amy T.; Ye, W.; Xing, Dingliang; Zimmerman, Jess K.; Kress, W. John
2014-01-01
Forest dynamics plots, which now span longitudes, latitudes, and habitat types across the globe, offer unparalleled insights into the ecological and evolutionary processes that determine how species are assembled into communities. Understanding phylogenetic relationships among species in a community has become an important component of assessing assembly processes. However, the application of evolutionary information to questions in community ecology has been limited in large part by the lack of accurate estimates of phylogenetic relationships among individual species found within communities, and is particularly limiting in comparisons between communities. Therefore, streamlining and maximizing the information content of these community phylogenies is a priority. To test the viability and advantage of a multi-community phylogeny, we constructed a multi-plot mega-phylogeny of 1347 species of trees across 15 forest dynamics plots in the ForestGEO network using DNA barcode sequence data (rbcL, matK, and psbA-trnH) and compared community phylogenies for each individual plot with respect to support for topology and branch lengths, which affect evolutionary inference of community processes. The levels of taxonomic differentiation across the phylogeny were examined by quantifying the frequency of resolved nodes throughout. In addition, three phylogenetic distance (PD) metrics that are commonly used to infer assembly processes were estimated for each plot [PD, Mean Phylogenetic Distance (MPD), and Mean Nearest Taxon Distance (MNTD)]. Lastly, we examine the partitioning of phylogenetic diversity among community plots through quantification of inter-community MPD and MNTD. Overall, evolutionary relationships were highly resolved across the DNA barcode-based mega-phylogeny, and phylogenetic resolution for each community plot was improved when estimated within the context of the mega-phylogeny. Likewise, when compared with phylogenies for individual plots, estimates of phylogenetic diversity in the mega-phylogeny were more consistent, thereby removing a potential source of bias at the plot-level, and demonstrating the value of assessing phylogenetic relationships simultaneously within a mega-phylogeny. An unexpected result of the comparisons among plots based on the mega-phylogeny was that the communities in the ForestGEO plots in general appear to be assemblages of more closely related species than expected by chance, and that differentiation among communities is very low, suggesting deep floristic connections among communities and new avenues for future analyses in community ecology. PMID:25414723
The long-term evolution of multilocus traits under frequency-dependent disruptive selection.
van Doorn, G Sander; Dieckmann, Ulf
2006-11-01
Frequency-dependent disruptive selection is widely recognized as an important source of genetic variation. Its evolutionary consequences have been extensively studied using phenotypic evolutionary models, based on quantitative genetics, game theory, or adaptive dynamics. However, the genetic assumptions underlying these approaches are highly idealized and, even worse, predict different consequences of frequency-dependent disruptive selection. Population genetic models, by contrast, enable genotypic evolutionary models, but traditionally assume constant fitness values. Only a minority of these models thus addresses frequency-dependent selection, and only a few of these do so in a multilocus context. An inherent limitation of these remaining studies is that they only investigate the short-term maintenance of genetic variation. Consequently, the long-term evolution of multilocus characters under frequency-dependent disruptive selection remains poorly understood. We aim to bridge this gap between phenotypic and genotypic models by studying a multilocus version of Levene's soft-selection model. Individual-based simulations and deterministic approximations based on adaptive dynamics theory provide insights into the underlying evolutionary dynamics. Our analysis uncovers a general pattern of polymorphism formation and collapse, likely to apply to a wide variety of genetic systems: after convergence to a fitness minimum and the subsequent establishment of genetic polymorphism at multiple loci, genetic variation becomes increasingly concentrated on a few loci, until eventually only a single polymorphic locus remains. This evolutionary process combines features observed in quantitative genetics and adaptive dynamics models, and it can be explained as a consequence of changes in the selection regime that are inherent to frequency-dependent disruptive selection. Our findings demonstrate that the potential of frequency-dependent disruptive selection to maintain polygenic variation is considerably smaller than previously expected.
Phylogeny of the Paracalanidae Giesbrecht, 1888 (Crustacea: Copepoda: Calanoida).
Cornils, Astrid; Blanco-Bercial, Leocadio
2013-12-01
The Paracalanidae are ecologically-important marine planktonic copepods that occur in the epipelagic zone in temperate and tropical waters. They are often the dominant taxon - in terms of biomass and abundance - in continental shelf regions. As primary consumers, they form a vital link in the pelagic food web between primary producers and higher trophic levels. Despite the ecological importance of the taxon, evolutionary and systematic relationships within the family remain largely unknown. A multigene phylogeny including 24 species, including representatives for all seven genera, was determined based on two nuclear genes, small-subunit (18S) ribosomal RNA and Histone 3 (H3) and one mitochondrial gene, cytochrome c oxidase subunit I (COI). The molecular phylogeny was well supported by Maximum likelihood and Bayesian inference analysis; all genera were found to be monophyletic, except for Paracalanus, which was separated into two distinct clades: the Paracalanus aculeatus group and Paracalanus parvus group. The molecular phylogeny also confirmed previous findings that Mecynocera and Calocalanus are genera of the family Paracalanidae. For comparison, a morphological phylogeny was created for 35 paracalanid species based on 54 morphological characters derived from published descriptions. The morphological phylogeny did not resolve all genera as monophyletic and bootstrap support was not strong. Molecular and morphological phylogenies were not congruent in the positioning of Bestiolina and the Paracalanus species groups, possibly due to the lack of sufficient phylogenetically-informative morphological characters. Copyright © 2013 Elsevier Inc. All rights reserved.
Molecular epidemiology, phylogeny and evolution of Candida albicans.
McManus, Brenda A; Coleman, David C
2014-01-01
A small number of Candida species form part of the normal microbial flora of mucosal surfaces in humans and may give rise to opportunistic infections when host defences are impaired. Candida albicans is by far the most prevalent commensal and pathogenic Candida species. Several different molecular typing approaches including multilocus sequence typing, multilocus microsatellite typing and DNA fingerprinting using C. albicans-specific repetitive sequence-containing DNA probes have yielded a wealth of information regarding the epidemiology and population structure of this species. Such studies revealed that the C. albicans population structure consists of multiple major and minor clades, some of which exhibit geographical or phenotypic enrichment and that C. albicans reproduction is predominantly clonal. Despite this, losses of heterozygosity by recombination, the existence of a parasexual cycle, toleration of a wide range of aneuploidies and the recent description of viable haploid strains have all demonstrated the extensive plasticity of the C. albicans genome. Recombination and gross chromosomal rearrangements are more common under stressful environmental conditions, and have played a significant role in the evolution of this opportunistic pathogen. Surprisingly, Candida dubliniensis, the closest relative of C. albicans exhibits more karyotype variability than C. albicans, but is significantly less adaptable to unfavourable environments. This disparity most likely reflects the evolutionary processes that occurred during or soon after the divergence of both species from their common ancestor. Whilst C. dubliniensis underwent significant gene loss and pseudogenisation, C. albicans expanded gene families considered to be important in virulence. It is likely that technological developments in whole genome sequencing and data analysis in coming years will facilitate its routine use for population structure, epidemiological investigations, and phylogenetic analyses of Candida species. These are likely to reveal more minor C. albicans clades and to enhance our understanding of the population biology of this versatile organism. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Stocco, Gabriele; Franca, Raffaella; Verzegnassi, Federico; Londero, Margherita; Rabusin, Marco; Decorti, Giuliana
2013-01-01
Multilocus genotypes have been shown to be of relevance for using pharmacogenomic principles to individualize drug therapy. As it relates to thiopurine therapy, genetic polymorphisms of TPMT are strongly associated with the pharmacokinetics and clinical effects of thiopurines (mercaptopurine and azathioprine), influencing their toxicity and efficacy. We have recently demonstrated that TPMT and ITPA genotypes constitute a multilocus genotype of pharmacogenetic relevance for children with acute lymphoblastic leukemia (ALL) receiving thiopurine therapy. The use of high-throughput genomic analysis allows identification of additional candidate genetic factors associated with pharmacogenetic phenotypes, such as TPMT enzymatic activity: PACSIN2 polymorphisms have been identified by a genome-wide analysis, combining evaluation of polymorphisms and gene expression, as a significant determinant of TPMT activity in the HapMap CEU cell lines and the effects of PACSIN2 on TPMT activity and mercaptopurine induced adverse effects were confirmed in children with ALL. Combination of genetic factors of relevance for thiopurine metabolizing enzyme activity, based on the growing understanding of their association with drug metabolism and efficacy, is particularly promising for patients with pediatric ALL. The knowledge basis and clinical applications for multilocus genotypes of importance for therapy with mercaptopurine in pediatric ALL is discussed in the present review. PMID:23335936
Huang, Jie; Chen, Zigui; Song, Weibo; Berger, Helmut
2014-01-01
Classifications of the Urostyloidea were mainly based on morphology and morphogenesis. Since molecular phylogeny largely focused on limited sampling using mostly the one-gene information, the incongruence between morphological data and gene sequences have risen. In this work, the three-gene data (SSU-rDNA, ITS1-5.8S-ITS2 and LSU-rDNA) comprising 12 genera in the “core urostyloids” are sequenced, and the phylogenies based on these different markers are compared using maximum-likelihood and Bayesian algorithms and tested by unconstrained and constrained analyses. The molecular phylogeny supports the following conclusions: (1) the monophyly of the core group of Urostyloidea is well supported while the whole Urostyloidea is not monophyletic; (2) Thigmokeronopsis and Apokeronopsis are clearly separated from the pseudokeronopsids in analyses of all three gene markers, supporting their exclusion from the Pseudokeronopsidae and the inclusion in the Urostylidae; (3) Diaxonella and Apobakuella should be assigned to the Urostylidae; (4) Bergeriella, Monocoronella and Neourostylopsis flavicana share a most recent common ancestor; (5) all molecular trees support the transfer of Metaurostylopsis flavicana to the recently proposed genus Neourostylopsis; (6) all molecular phylogenies fail to separate the morphologically well-defined genera Uroleptopsis and Pseudokeronopsis; and (7) Arcuseries gen. nov. containing three distinctly deviating Anteholosticha species is established. PMID:24140978
Yang, Qi; Franco, Christopher M M; Sorokin, Shirley J; Zhang, Wei
2017-02-02
For sponges (phylum Porifera), there is no reliable molecular protocol available for species identification. To address this gap, we developed a multilocus-based Sponge Identification Protocol (SIP) validated by a sample of 37 sponge species belonging to 10 orders from South Australia. The universal barcode COI mtDNA, 28S rRNA gene (D3-D5), and the nuclear ITS1-5.8S-ITS2 region were evaluated for their suitability and capacity for sponge identification. The highest Bit Score was applied to infer the identity. The reliability of SIP was validated by phylogenetic analysis. The 28S rRNA gene and COI mtDNA performed better than the ITS region in classifying sponges at various taxonomic levels. A major limitation is that the databases are not well populated and possess low diversity, making it difficult to conduct the molecular identification protocol. The identification is also impacted by the accuracy of the morphological classification of the sponges whose sequences have been submitted to the database. Re-examination of the morphological identification further demonstrated and improved the reliability of sponge identification by SIP. Integrated with morphological identification, the multilocus-based SIP offers an improved protocol for more reliable and effective sponge identification, by coupling the accuracy of different DNA markers.
Yang, Qi; Franco, Christopher M. M.; Sorokin, Shirley J.; Zhang, Wei
2017-01-01
For sponges (phylum Porifera), there is no reliable molecular protocol available for species identification. To address this gap, we developed a multilocus-based Sponge Identification Protocol (SIP) validated by a sample of 37 sponge species belonging to 10 orders from South Australia. The universal barcode COI mtDNA, 28S rRNA gene (D3–D5), and the nuclear ITS1-5.8S-ITS2 region were evaluated for their suitability and capacity for sponge identification. The highest Bit Score was applied to infer the identity. The reliability of SIP was validated by phylogenetic analysis. The 28S rRNA gene and COI mtDNA performed better than the ITS region in classifying sponges at various taxonomic levels. A major limitation is that the databases are not well populated and possess low diversity, making it difficult to conduct the molecular identification protocol. The identification is also impacted by the accuracy of the morphological classification of the sponges whose sequences have been submitted to the database. Re-examination of the morphological identification further demonstrated and improved the reliability of sponge identification by SIP. Integrated with morphological identification, the multilocus-based SIP offers an improved protocol for more reliable and effective sponge identification, by coupling the accuracy of different DNA markers. PMID:28150727
USDA-ARS?s Scientific Manuscript database
Multi-locus genome-wide association studies has become the state-of-the-art procedure to identify quantitative trait loci (QTL) associated with traits simultaneously. However, implementation of multi-locus model is still difficult. In this study, we integrated least angle regression with empirical B...
USDA-ARS?s Scientific Manuscript database
Reconstructing the phylogeny of Pyrus has been difficult due to the wide distribution of the genus and lack of informative data. In this study, we collected 110 accessions representing 25 Pyrus species and constructed both phylogenetic trees and phylogenetic networks based on multiple DNA sequence d...
A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis
Fitzpatrick, David A; Logue, Mary E; Stajich, Jason E; Butler, Geraldine
2006-01-01
Background To date, most fungal phylogenies have been derived from single gene comparisons, or from concatenated alignments of a small number of genes. The increase in fungal genome sequencing presents an opportunity to reconstruct evolutionary events using entire genomes. As a tool for future comparative, phylogenomic and phylogenetic studies, we used both supertrees and concatenated alignments to infer relationships between 42 species of fungi for which complete genome sequences are available. Results A dataset of 345,829 genes was extracted from 42 publicly available fungal genomes. Supertree methods were employed to derive phylogenies from 4,805 single gene families. We found that the average consensus supertree method may suffer from long-branch attraction artifacts, while matrix representation with parsimony (MRP) appears to be immune from these. A genome phylogeny was also reconstructed from a concatenated alignment of 153 universally distributed orthologs. Our MRP supertree and concatenated phylogeny are highly congruent. Within the Ascomycota, the sub-phyla Pezizomycotina and Saccharomycotina were resolved. Both phylogenies infer that the Leotiomycetes are the closest sister group to the Sordariomycetes. There is some ambiguity regarding the placement of Stagonospora nodurum, the sole member of the class Dothideomycetes present in the dataset. Within the Saccharomycotina, a monophyletic clade containing organisms that translate CTG as serine instead of leucine is evident. There is also strong support for two groups within the CTG clade, one containing the fully sexual species Candida lusitaniae, Candida guilliermondii and Debaryomyces hansenii, and the second group containing Candida albicans, Candida dubliniensis, Candida tropicalis, Candida parapsilosis and Lodderomyces elongisporus. The second major clade within the Saccharomycotina contains species whose genomes have undergone a whole genome duplication (WGD), and their close relatives. We could not confidently resolve whether Candida glabrata or Saccharomyces castellii lies at the base of the WGD clade. Conclusion We have constructed robust phylogenies for fungi based on whole genome analysis. Overall, our phylogenies provide strong support for the classification of phyla, sub-phyla, classes and orders. We have resolved the relationship of the classes Leotiomyctes and Sordariomycetes, and have identified two classes within the CTG clade of the Saccharomycotina that may correlate with sexual status. PMID:17121679
Rapid diversification and dispersal during periods of global warming by plethodontid salamanders
Vieites, David R.; Min, Mi-Sook; Wake, David B.
2007-01-01
A phylogeny and timescale derived from analyses of multilocus nuclear DNA sequences for Holarctic genera of plethodontid salamanders reveal them to be an old radiation whose common ancestor diverged from sister taxa in the late Jurassic and underwent rapid diversification during the late Cretaceous. A North American origin of plethodontids was followed by a continental-wide diversification, not necessarily centered only in the Appalachian region. The colonization of Eurasia by plethodontids most likely occurred once, by dispersal during the late Cretaceous. Subsequent diversification in Asia led to the origin of Hydromantes and Karsenia, with the former then dispersing both to Europe and back to North America. Salamanders underwent rapid episodes of diversification and dispersal that coincided with major global warming events during the late Cretaceous and again during the Paleocene–Eocene thermal optimum. The major clades of plethodontids were established during these episodes, contemporaneously with similar phenomena in angiosperms, arthropods, birds, and mammals. Periods of global warming may have promoted diversification and both inter- and transcontinental dispersal in northern hemisphere salamanders by making available terrain that shortened dispersal routes and offered new opportunities for adaptive and vicariant evolution. PMID:18077422
Piscivory limits diversification of feeding morphology in centrarchid fishes.
Collar, David C; O'Meara, Brian C; Wainwright, Peter C; Near, Thomas J
2009-06-01
Proximity to an adaptive peak influences a lineage's potential to diversify. We tested whether piscivory, a high quality but functionally demanding trophic strategy, represents an adaptive peak that limits morphological diversification in the teleost fish clade, Centrarchidae. We synthesized published diet data and applied a well-resolved, multilocus and time-calibrated phylogeny to reconstruct ancestral piscivory. We measured functional features of the skull and performed principal components analysis on species' values for these variables. To assess the role of piscivory on morphological diversification, we compared the fit of several models of evolution for each principal component (PC), where model parameters were allowed to vary between lineages that differed in degree of piscivory. According to the best-fitting model, two adaptive peaks influenced PC 1 evolution, one peak shared between highly and moderately piscivorous lineages and another for nonpiscivores. Brownian motion better fit PCs 2, 3, and 4, but the best Brownian models infer a slow rate of PC 2 evolution shared among all piscivores and a uniquely slow rate of PC 4 evolution in highly piscivorous lineages. These results suggest that piscivory limits feeding morphology diversification, but this effect is most severe in lineages that exhibit an extreme form of this diet.
Population Structure in Nontypeable Haemophilus influenzae
LaCross, Nathan C.; Marrs, Carl F.; Gilsdorf, Janet R.
2013-01-01
Nontypeable Haemophilus influenzae (NTHi) frequently colonize the human pharynx asymptomatically, and are an important cause of otitis media in children. Past studies have identified typeable H. influenzae as being clonal, but the population structure of NTHi has not been extensively characterized. The research presented here investigated the diversity and population structure in a well-characterized collection of NTHi isolated from the middle ears of children with otitis media or the pharynges of healthy children in three disparate geographic regions. Multilocus sequence typing identified 109 unique sequence types among 170 commensal and otitis media-associated NTHi isolates from Finland, Israel, and the US. The largest clonal complex contained only five sequence types, indicating a high level of genetic diversity. The eBURST v3, ClonalFrame 1.1, and structure 2.3.3 programs were used to further characterize diversity and population structure from the sequence typing data. Little clustering was apparent by either disease state (otitis media or commensalism) or geography in the ClonalFrame phylogeny. Population structure was clearly evident, with support for eight populations when all 170 isolates were analyzed. Interestingly, one population contained only commensal isolates, while two others consisted solely of otitis media isolates, suggesting associations between population structure and disease. PMID:23266487
Adaptive evolution of Mediterranean pines.
Grivet, Delphine; Climent, José; Zabal-Aguirre, Mario; Neale, David B; Vendramin, Giovanni G; González-Martínez, Santiago C
2013-09-01
Mediterranean pines represent an extremely heterogeneous assembly. Although they have evolved under similar environmental conditions, they diversified long ago, ca. 10 Mya, and present distinct biogeographic and demographic histories. Therefore, it is of special interest to understand whether and to what extent they have developed specific strategies of adaptive evolution through time and space. To explore evolutionary patterns, the Mediterranean pines' phylogeny was first reconstructed analyzing a new set of 21 low-copy nuclear genes with multilocus Bayesian tree reconstruction methods. Secondly, a phylogenetic approach was used to search for footprints of natural selection and to examine the evolution of multiple phenotypic traits. We identified two genes (involved in pines' defense and stress responses) that have likely played a role in the adaptation of Mediterranean pines to their environment. Moreover, few life-history traits showed historical or evolutionary adaptive convergence in Mediterranean lineages, while patterns of character evolution revealed various evolutionary trade-offs linking growth-development, reproduction and fire-related traits. Assessing the evolutionary path of important life-history traits, as well as the genomic basis of adaptive variation is central to understanding the past evolutionary success of Mediterranean pines and their future response to environmental changes. Copyright © 2013 Elsevier Inc. All rights reserved.
Radiation of the Drosophila nannoptera species group in Mexico.
Lang, M; Polihronakis Richmond, M; Acurio, A E; Markow, T A; Orgogozo, V
2014-03-01
The Drosophila nannoptera species group, a taxon of Mexican cactophilic flies, is an excellent model system to study the influence of abiotic and biotic factors on speciation, the genetic causes of ecological specialization and the evolution of unusual reproductive characters. However, the phylogenetic relationships in the nannoptera species group and its position within the virilis-repleta phylogeny have not been thoroughly investigated. Using a multilocus data set of gene coding regions of eight nuclear and three mitochondrial genes, we found that the four described nannoptera group species diverged rapidly, with very short internodes between divergence events. Phylogenetic analysis of repleta group lineages revealed that D. inca and D. canalinea are sister to all other repleta group species, whereas the annulimana species D. aracataca and D. pseudotalamancana are sister to the nannoptera and bromeliae species groups. Our divergence time estimates suggest that the nannoptera species group radiated following important geological events in Central America. Our results indicate that a single evolutionary transition to asymmetric genitalia and to unusual sperm storage may have occurred during evolution of the nannoptera group. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Zhang, Liang; Zhang, Li-Bing
2018-01-01
The brake fern genus Pteris belongs to Pteridaceae subfamily Pteridoideae. It is one of the largest fern genera and has been estimated to contain 200-250 species distributed on all continents except Antarctica. Previous studies were either based on plastid data only or based on both plastid and nuclear data but the sampling was small. In addition, an infrageneric classification of Pteris based on morphological and molecular evidence has not been available yet. In the present study, based on molecular data of eight plastid markers and one nuclear marker (gapCp) of 256 accessions representing ca. 178 species of Pteris, we reconstruct a global phylogeny of Pteris. The 15 major clades identified earlier are recovered here and we further identified a new major clade. Our nuclear phylogeny recovered 11 of these 16 major clades, seven of which are strongly supported. The inclusion of Schizostege in Pteris is confirmed for the first time. Based on the newly reconstructed phylogeny and evidence from morphology, distribution and/or ecology, we classify Pteris into three subgenera: P. subg. Pteris, P. subg. Campteria, and P. subg. Platyzoma. The former two are further divided into three and 12 sections, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.
Santini, Francesco; Kong, Xianghui; Sorenson, Laurie; Carnevale, Giorgio; Mehta, Rita S; Alfaro, Michael E
2013-12-01
Anguilliformes are an ecologically diverse group of predominantly marine fishes whose members are easily recognized by their extremely elongate bodies, and universal lack of pelvic fins. Recent studies based on mitochondrial loci, including full mitogenomes, have called into question the monophyly of both the Anguilliformes, which appear to be paraphyletic without the inclusion of the Saccopharyngiformes (gulper eels and allies), as well as other more commonly known eel families (e.g., Congridae, Serrivomeridae). However, no study to date has investigated anguilliform interrelationships using nuclear loci. Here we present a new phylogenetic hypothesis for the Anguilliformes based on five markers (the nuclear loci Early Growth Hormone 3, Myosin Heavy Polypeptide 6 and Recombinase Activating Gene 1, as well as the mitochondrial genes Cytochrome b and Cytochrome Oxidase I). Our sampling spans 148 species and includes 19 of the 20 extant families of anguilliforms and saccopharyngiforms. Maximum likelihood analysis reveals that saccopharyngiform eels are deeply nested within the anguilliforms, and supports the non-monophyly of Congridae and Nettastomatidae, as well as that of Derichthyidae and Chlopsidae. Our analyses suggest that Protanguilla may be the sister group of the Synaphobranchidae, though the recent hypothesis that this species is the sister group to all other anguilliforms cannot be rejected. The molecular phylogeny, time-calibrated using a Bayesian relaxed clock approach and seven fossil calibration points, reveals a Late Cretaceous origin of this expanded anguilliform clade (stem age ~116 Ma, crown age ~99 Ma). Most major (family level) lineages originated between the end of the Cretaceous and Early Eocene, suggesting that anguilliform radiation may have been facilitated by the recovery of marine ecosystems following the KP extinction. Copyright © 2013 Elsevier Inc. All rights reserved.
Tampakaki, Anastasia P; Fotiadis, Christos T; Ntatsi, Georgia; Savvas, Dimitrios
2017-04-01
Cowpea (Vigna unguiculata) is a promiscuous grain legume, capable of establishing efficient symbiosis with diverse symbiotic bacteria, mainly slow-growing rhizobial species belonging to the genus Bradyrhizobium. Although much research has been done on cowpea-nodulating bacteria in various countries around the world, little is known about the genetic and symbiotic diversity of indigenous cowpea rhizobia in European soils. In the present study, the genetic and symbiotic diversity of indigenous rhizobia isolated from field-grown cowpea nodules in three geographically different Greek regions were studied. Forty-five authenticated strains were subjected to a polyphasic approach. ERIC-PCR based fingerprinting analysis grouped the isolates into seven groups and representative strains of each group were further analyzed. The analysis of the rrs gene showed that the strains belong to different species of the genus Bradyrhizobium. The analysis of the 16S-23S IGS region showed that the strains from each geographic region were characterized by distinct IGS types which may represent novel phylogenetic lineages, closely related to the type species of Bradyrhizobium pachyrhizi, Bradyrhizobium ferriligni and Bradyrhizobium liaoningense. MLSA analysis of three housekeeping genes (recA, glnII, and gyrB) showed the close relatedness of our strains with B. pachyrhizi PAC48 T and B. liaoningense USDA 3622 T and confirmed that the B. liaoningense-related isolate VUEP21 may constitute a novel species within Bradyrhizobium. Moreover, symbiotic gene phylogenies, based on nodC and nifH genes, showed that the B. pachyrhizi-related isolates belonged to symbiovar vignae, whereas the B. liaoningense-related isolates may represent a novel symbiovar. Copyright © 2017 Elsevier GmbH. All rights reserved.
Carvalho-Sobrinho, Jefferson G; Alverson, William S; Alcantara, Suzana; Queiroz, Luciano P; Mota, Aline C; Baum, David A
2016-08-01
Bombacoideae (Malvaceae) is a clade of deciduous trees with a marked dominance in many forests, especially in the Neotropics. The historical lack of a well-resolved phylogenetic framework for Bombacoideae hinders studies in this ecologically important group. We reexamined phylogenetic relationships in this clade based on a matrix of 6465 nuclear (ETS, ITS) and plastid (matK, trnL-trnF, trnS-trnG) DNA characters. We used maximum parsimony, maximum likelihood, and Bayesian inference to infer relationships among 108 species (∼70% of the total number of known species). We analyzed the evolution of selected morphological traits: trunk or branch prickles, calyx shape, endocarp type, seed shape, and seed number per fruit, using ML reconstructions of their ancestral states to identify possible synapomorphies for major clades. Novel phylogenetic relationships emerged from our analyses, including three major lineages marked by fruit or seed traits: the winged-seed clade (Bernoullia, Gyranthera, and Huberodendron), the spongy endocarp clade (Adansonia, Aguiaria, Catostemma, Cavanillesia, and Scleronema), and the Kapok clade (Bombax, Ceiba, Eriotheca, Neobuchia, Pachira, Pseudobombax, Rhodognaphalon, and Spirotheca). The Kapok clade, the most diverse lineage of the subfamily, includes sister relationships (i) between Pseudobombax and "Pochota fendleri" a historically incertae sedis taxon, and (ii) between the Paleotropical genera Bombax and Rhodognaphalon, implying just two bombacoid dispersals to the Old World, the other one involving Adansonia. This new phylogenetic framework offers new insights and a promising avenue for further evolutionary studies. In view of this information, we present a new tribal classification of the subfamily, accompanied by an identification key. Copyright © 2016 Elsevier Inc. All rights reserved.
Rutschmann, Sereina; Detering, Harald; Simon, Sabrina; Funk, David H; Gattolliat, Jean-Luc; Hughes, Samantha J; Raposeiro, Pedro M; DeSalle, Rob; Sartori, Michel; Monaghan, Michael T
2017-02-01
The study of processes driving diversification requires a fully sampled and well resolved phylogeny, although a lack of phylogenetic markers remains a limitation for many non-model groups. Multilocus approaches to the study of recent diversification provide a powerful means to study the evolutionary process, but their application remains restricted because multiple unlinked loci with suitable variation for phylogenetic or coalescent analysis are not available for most non-model taxa. Here we identify novel, putative single-copy nuclear DNA (nDNA) phylogenetic markers to study the colonization and diversification of an aquatic insect species complex, Cloeon dipterum L. 1761 (Ephemeroptera: Baetidae), in Macaronesia. Whole-genome sequencing data from one member of the species complex were used to identify 59 nDNA loci (32,213 base pairs), followed by Sanger sequencing of 29 individuals sampled from 13 islands of three Macaronesian archipelagos. Multispecies coalescent analyses established six putative species. Three island species formed a monophyletic clade, with one species occurring on the Azores, Europe and North America. Ancestral state reconstruction indicated at least two colonization events from the mainland (to the Canaries, respectively Azores) and one within the archipelago (between Madeira and the Canaries). Random subsets of the 59 loci showed a positive linear relationship between number of loci and node support. In contrast, node support in the multispecies coalescent tree was negatively correlated with mean number of phylogenetically informative sites per locus, suggesting a complex relationship between tree resolution and marker variability. Our approach highlights the value of combining genomics, coalescent-based phylogeography, species delimitation, and phylogenetic reconstruction to resolve recent diversification events in an archipelago species complex. Copyright © 2016 Elsevier Inc. All rights reserved.
Multiplex Touchdown PCR for Rapid Typing of the Opportunistic Pathogen Propionibacterium acnes
Barnard, Emma; Nagy, István; Hunyadkürti, Judit; Patrick, Sheila
2015-01-01
The opportunistic human pathogen Propionibacterium acnes is composed of a number of distinct phylogroups, designated types IA1, IA2, IB, IC, II, and III, which vary in their production of putative virulence factors, their inflammatory potential, and their biochemical, aggregative, and morphological characteristics. Although multilocus sequence typing (MLST) currently represents the gold standard for unambiguous phylogroup classification and individual strain identification, it is a labor-intensive and time-consuming technique. As a consequence, we developed a multiplex touchdown PCR assay that in a single reaction can confirm the species identity and phylogeny of an isolate based on its pattern of reaction with six primer sets that target the 16S rRNA gene (all isolates), ATPase (types IA1, IA2, and IC), sodA (types IA2 and IB), atpD (type II), and recA (type III) housekeeping genes, as well as a Fic family toxin gene (type IC). When applied to 312 P. acnes isolates previously characterized by MLST and representing types IA1 (n = 145), IA2 (n = 20), IB (n = 65), IC (n = 7), II (n = 45), and III (n = 30), the multiplex displayed 100% sensitivity and 100% specificity for detecting isolates within each targeted phylogroup. No cross-reactivity with isolates from other bacterial species was observed. This multiplex assay will provide researchers with a rapid, high-throughput, and technically undemanding typing method for epidemiological and phylogenetic investigations. It will facilitate studies investigating the association of lineages with various infections and clinical conditions, and it will serve as a prescreening tool to maximize the number of genetically diverse isolates selected for downstream higher-resolution sequence-based analyses. PMID:25631794
Licona-Vera, Yuyini; Ornelas, Juan Francisco
2017-06-05
Geographical and temporal patterns of diversification in bee hummingbirds (Mellisugini) were assessed with respect to the evolution of migration, critical for colonization of North America. We generated a dated multilocus phylogeny of the Mellisugini based on a dense sampling using Bayesian inference, maximum-likelihood and maximum parsimony methods, and reconstructed the ancestral states of distributional areas in a Bayesian framework and migratory behavior using maximum parsimony, maximum-likelihood and re-rooting methods. All phylogenetic analyses confirmed monophyly of the Mellisugini and the inclusion of Atthis, Calothorax, Doricha, Eulidia, Mellisuga, Microstilbon, Myrmia, Tilmatura, and Thaumastura. Mellisugini consists of two clades: (1) South American species (including Tilmatura dupontii), and (2) species distributed in North and Central America and the Caribbean islands. The second clade consists of four subclades: Mexican (Calothorax, Doricha) and Caribbean (Archilochus, Calliphlox, Mellisuga) sheartails, Calypte, and Selasphorus (incl. Atthis). Coalescent-based dating places the origin of the Mellisugini in the mid-to-late Miocene, with crown ages of most subclades in the early Pliocene, and subsequent species splits in the Pleistocene. Bee hummingbirds reached western North America by the end of the Miocene and the ancestral mellisuginid (bee hummingbirds) was reconstructed as sedentary, with four independent gains of migratory behavior during the evolution of the Mellisugini. Early colonization of North America and subsequent evolution of migration best explained biogeographic and diversification patterns within the Mellisugini. The repeated evolution of long-distance migration by different lineages was critical for the colonization of North America, contributing to the radiation of bee hummingbirds. Comparative phylogeography is needed to test whether the repeated evolution of migration resulted from northward expansion of southern sedentary populations.
Prebus, Matthew
2017-12-13
Temnothorax (Formicidae: Myrmicinae) is a diverse genus of ants found in a broad spectrum of ecosystems across the northern hemisphere. These diminutive ants have long served as models for social insect behavior, leading to discoveries about social learning and inspiring hypotheses about the process of speciation and the evolution of social parasitism. This genus is highly morphologically and behaviorally diverse, and this has caused a great deal of taxonomic confusion in recent years. Past efforts to estimate the phylogeny of this genus have been limited in taxonomic scope, leaving the broader evolutionary patterns in Temnothorax unclear. To establish the monophyly of Temnothorax, resolve the evolutionary relationships, reconstruct the historical biogeography and investigate trends in the evolution of key traits, I generated, assembled, and analyzed two molecular datasets: a traditional multi-locus Sanger sequencing dataset, and an ultra-conserved element (UCE) dataset. Using maximum likelihood, Bayesian, and summary-coalescent based approaches, I analyzed 22 data subsets consisting of 103 ingroup taxa and a maximum of 1.8 million base pairs in 2485 loci. The results of this study suggest an origin of Temnothorax at the Eocene-Oligocene transition, concerted transitions to arboreal nesting habits in several clades during the Oligocene, coinciding with ancient global cooling, and several convergent origins of social parasitism in the Miocene and Pliocene. As with other Holarctic taxa, Temnothorax has a history of migration across Beringia during the Miocene. Temnothorax is corroborated as a natural group, and the notion that many of the historical subgeneric and species group concepts are artificial is reinforced. The strict form of Emery's Rule, in which a socially parasitic species is sister to its host species, is not well supported in Temnothorax.
Záveská, Eliška; Fér, Tomáš; Šída, Otakar; Marhold, Karol; Leong-Škorničková, Jana
2016-07-01
Discerning relationships among species evolved by reticulate and/or polyploid evolution is not an easy task, although it is widely discussed. The economically important genus Curcuma (ca. 120 spp.; Zingiberaceae), broadly distributed in tropical SE Asia, is a particularly interesting example of a group of palaeopolyploid origin whose evolution is driven mainly by hybridization and polyploidization. Although a phylogeny and a new infrageneric classification of Curcuma, based on commonly used molecular markers (ITS and cpDNA), have recently been proposed, significant evolutionary questions remain unresolved. We applied a multilocus approach and a combination of modern analytical methods to this genus to distinguish causes of gene tree incongruence and to identify hybrids and their parental species. Five independent regions of nuclear DNA (DCS, GAPDH, GLOBOSA3, LEAFY, ITS) and four non-coding cpDNA regions (trnL-trnF, trnT-trnL, psbA-trnH and matK), analysed as a single locus, were employed to construct a species tree and hybrid species trees using (*)BEAST and STEM-hy. Detection of hybridogenous species in the dataset was also conducted using the posterior predictive checking approach as implemented in JML. The resulting species tree outlines the relationships among major evolutionary lineages within Curcuma, which were previously unresolved or which conflicted depending upon whether they were based on ITS or cpDNA markers. Moreover, by using the additional markers in tests of plausible topologies of hybrid species trees for C. vamana, C. candida, C. roscoeana and C. myanmarensis suggested by previous molecular and morphological evidence, we found strong evidence that all the species except C. candida are of subgeneric hybrid origin. Copyright © 2016 Elsevier Inc. All rights reserved.
Using MOEA with Redistribution and Consensus Branches to Infer Phylogenies.
Min, Xiaoping; Zhang, Mouzhao; Yuan, Sisi; Ge, Shengxiang; Liu, Xiangrong; Zeng, Xiangxiang; Xia, Ningshao
2017-12-26
In recent years, to infer phylogenies, which are NP-hard problems, more and more research has focused on using metaheuristics. Maximum Parsimony and Maximum Likelihood are two effective ways to conduct inference. Based on these methods, which can also be considered as the optimal criteria for phylogenies, various kinds of multi-objective metaheuristics have been used to reconstruct phylogenies. However, combining these two time-consuming methods results in those multi-objective metaheuristics being slower than a single objective. Therefore, we propose a novel, multi-objective optimization algorithm, MOEA-RC, to accelerate the processes of rebuilding phylogenies using structural information of elites in current populations. We compare MOEA-RC with two representative multi-objective algorithms, MOEA/D and NAGA-II, and a non-consensus version of MOEA-RC on three real-world datasets. The result is, within a given number of iterations, MOEA-RC achieves better solutions than the other algorithms.
H. Thorsten Lumbsch; Ekaphan Kraichak; Sittiporn Parnmen; Eimy Rivas Plata; Andre Aptroot; Marcela E.S. Caceres; Damien Ertz; Shirley Cunha Feuerstein; Joel A. Mercado-Diaz; Bettina Staiger; Dries Van den Broeck; Robert Lücking
2014-01-01
We provide an updated skeleton phylogeny of the lichenized family Graphidaceae (excluding subfamily Gomphilloideae), based on three loci (mtSSU, nuLSU, RPB2), to elucidate the position of four new genera, Aggregatorygma, Borinquenotrema, Corticorygma, and Paratopeliopsis, as well as the placement of the enigmatic species Diorygma erythrellum, Fissurina monilifera, and...
Testing the new animal phylogeny: a phylum level molecular analysis of the animal kingdom.
Bourlat, Sarah J; Nielsen, Claus; Economou, Andrew D; Telford, Maximilian J
2008-10-01
The new animal phylogeny inferred from ribosomal genes some years ago has prompted a number of radical rearrangements of the traditional, morphology based metazoan tree. The two main bilaterian clades, Deuterostomia and Protostomia, find strong support, but the protostomes consist of two sister groups, Ecdysozoa and Lophotrochozoa, not seen in morphology based trees. Although widely accepted, not all recent molecular phylogenetic analyses have supported the tripartite structure of the new animal phylogeny. Furthermore, even if the small ribosomal subunit (SSU) based phylogeny is correct, there is a frustrating lack of resolution of relationships between the phyla that make up the three clades of this tree. To address this issue, we have assembled a dataset including a large number of aligned sequence positions as well as a broad sampling of metazoan phyla. Our dataset consists of sequence data from ribosomal and mitochondrial genes combined with new data from protein coding genes (5139 amino acid and 3524 nucleotide positions in total) from 37 representative taxa sampled across the Metazoa. Our data show strong support for the basic structure of the new animal phylogeny as well as for the Mandibulata including Myriapoda. We also provide some resolution within the Lophotrochozoa, where we confirm support for a monophyletic clade of Echiura, Sipuncula and Annelida and surprising evidence of a close relationship between Brachiopoda and Nemertea.
Huang, Jie; Chen, Zigui; Song, Weibo; Berger, Helmut
2014-01-01
Classifications of the Urostyloidea were mainly based on morphology and morphogenesis. Since molecular phylogeny largely focused on limited sampling using mostly the one-gene information, the incongruence between morphological data and gene sequences have risen. In this work, the three-gene data (SSU-rDNA, ITS1-5.8S-ITS2 and LSU-rDNA) comprising 12 genera in the "core urostyloids" are sequenced, and the phylogenies based on these different markers are compared using maximum-likelihood and Bayesian algorithms and tested by unconstrained and constrained analyses. The molecular phylogeny supports the following conclusions: (1) the monophyly of the core group of Urostyloidea is well supported while the whole Urostyloidea is not monophyletic; (2) Thigmokeronopsis and Apokeronopsis are clearly separated from the pseudokeronopsids in analyses of all three gene markers, supporting their exclusion from the Pseudokeronopsidae and the inclusion in the Urostylidae; (3) Diaxonella and Apobakuella should be assigned to the Urostylidae; (4) Bergeriella, Monocoronella and Neourostylopsis flavicana share a most recent common ancestor; (5) all molecular trees support the transfer of Metaurostylopsis flavicana to the recently proposed genus Neourostylopsis; (6) all molecular phylogenies fail to separate the morphologically well-defined genera Uroleptopsis and Pseudokeronopsis; and (7) Arcuseries gen. nov. containing three distinctly deviating Anteholosticha species is established. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Arnold, E N
1990-05-22
Phylogenies based on morphology vary considerably in their quality: some are robust and explicit with little conflict in the data set, whereas others are far more tenuous, with much conflict and many possible alternatives. The main primary reasons for untrue or inexplicit morphological phylogenies are: not enough characters developed between branching points, uncertain character polarity, poorly differentiated character states, homoplasy caused by parallelism or reversal, and extinction, which may remove species entirely from consideration and can make originally conflicting data sets misleadingly compatible, increasing congruence at the expense of truth. Extinction differs from other confounding factors in not being apparent either in the data set or in subsequent analysis. One possibility is that variation in the quality of morphological phylogenies has resulted from exposure to different ecological situations. To investigate this, it is necessary to compare the histories of the clades concerned. In the case of explicit morphological phylogenies, ecological and behavioural data can be integrated with them and it may then be possible to decide whether morphological characters are likely to have been elicited by the environments through which the clade has passed. The credibility of such results depends not only on the phylogeny being robust but also on its detailed topology: a pectinate phylogeny will often allow more certain and more explicit statements to be made about historical events. In the case of poor phylogenies, it is not possible to produce detailed histories, but they can be compared with robust phylogenies in the range of ecological situations occupied, and whether they occupy novel situations in comparison with their outgroups. LeQuesne testing can give information about niche homoplasy, and it may also be possible to see if morphological features are functionally associated with ecological parameters, even if the direction of change is unknown. Examination of the robust and explicit phylogeny of the semaphore geckoes (Pristurus) suggests that its quality does stem from a variety of environmental factors. The group has progressed along an ecological continuum, passing through a series of increasingly severe niches that appear to have elicited many morphological changes. The fact that niches are progressively filled reduces the likelihood of species reinvading a previous one with related character reversal. Because the niches of advanced Pristurus are virtually unique within the Gekkonidae the morphological changes produced are also very rare and therefore easy to polarize. Ecological changes on the main stem of the phylogeny are abrupt and associated character states consequently well differentiated.(ABSTRACT TRUNCATED AT 400 WORDS)
Vitis Phylogenomics: Hybridization Intensities from a SNP Array Outperform Genotype Calls
Miller, Allison J.; Matasci, Naim; Schwaninger, Heidi; Aradhya, Mallikarjuna K.; Prins, Bernard; Zhong, Gan-Yuan; Simon, Charles; Buckler, Edward S.; Myles, Sean
2013-01-01
Understanding relationships among species is a fundamental goal of evolutionary biology. Single nucleotide polymorphisms (SNPs) identified through next generation sequencing and related technologies enable phylogeny reconstruction by providing unprecedented numbers of characters for analysis. One approach to SNP-based phylogeny reconstruction is to identify SNPs in a subset of individuals, and then to compile SNPs on an array that can be used to genotype additional samples at hundreds or thousands of sites simultaneously. Although powerful and efficient, this method is subject to ascertainment bias because applying variation discovered in a representative subset to a larger sample favors identification of SNPs with high minor allele frequencies and introduces bias against rare alleles. Here, we demonstrate that the use of hybridization intensity data, rather than genotype calls, reduces the effects of ascertainment bias. Whereas traditional SNP calls assess known variants based on diversity housed in the discovery panel, hybridization intensity data survey variation in the broader sample pool, regardless of whether those variants are present in the initial SNP discovery process. We apply SNP genotype and hybridization intensity data derived from the Vitis9kSNP array developed for grape to show the effects of ascertainment bias and to reconstruct evolutionary relationships among Vitis species. We demonstrate that phylogenies constructed using hybridization intensities suffer less from the distorting effects of ascertainment bias, and are thus more accurate than phylogenies based on genotype calls. Moreover, we reconstruct the phylogeny of the genus Vitis using hybridization data, show that North American subgenus Vitis species are monophyletic, and resolve several previously poorly known relationships among North American species. This study builds on earlier work that applied the Vitis9kSNP array to evolutionary questions within Vitis vinifera and has general implications for addressing ascertainment bias in array-enabled phylogeny reconstruction. PMID:24236035
Ritz, C M; Reiker, J; Charles, G; Hoxey, P; Hunt, D; Lowry, M; Stuppy, W; Taylor, N
2012-11-01
The cacti of tribe Tephrocacteae (Cactaceae-Opuntioideae) are adapted to diverse climatic conditions over a wide area of the southern Andes and adjacent lowlands. They exhibit a range of life forms from geophytes and cushion-plants to dwarf shrubs, shrubs or small trees. To confirm or challenge previous morphology-based classifications and molecular phylogenies, we sampled DNA sequences from the chloroplast trnK/matK region and the nuclear low copy gene phyC and compared the resulting phylogenies with previous data gathered from nuclear ribosomal DNA sequences. The here presented chloroplast and nuclear low copy gene phylogenies were mutually congruent and broadly coincident with the classification based on gross morphology and seed micro-morphology and anatomy. Reconstruction of hypothetical ancestral character states suggested that geophytes and cushion-forming species probably evolved several times from dwarf shrubby precursors. We also traced an increase of embryo size at the expense of the nucellus-derived storage tissue during the evolution of the Tephrocacteae, which is thought to be an evolutionary advantage because nutrients are then more rapidly accessible for the germinating embryo. In contrast to these highly concordant phylogenies, nuclear ribosomal DNA data sampled by a previous study yielded conflicting phylogenetic signals. Secondary structure predictions of ribosomal transcribed spacers suggested that this phylogeny is strongly influenced by the inclusion of paralogous sequence probably arisen by genome duplication during the evolution of this plant group. Copyright © 2012 Elsevier Inc. All rights reserved.
2010-01-01
Background The vast sequence divergence among different virus groups has presented a great challenge to alignment-based analysis of virus phylogeny. Due to the problems caused by the uncertainty in alignment, existing tools for phylogenetic analysis based on multiple alignment could not be directly applied to the whole-genome comparison and phylogenomic studies of viruses. There has been a growing interest in alignment-free methods for phylogenetic analysis using complete genome data. Among the alignment-free methods, a dynamical language (DL) method proposed by our group has successfully been applied to the phylogenetic analysis of bacteria and chloroplast genomes. Results In this paper, the DL method is used to analyze the whole-proteome phylogeny of 124 large dsDNA viruses and 30 parvoviruses, two data sets with large difference in genome size. The trees from our analyses are in good agreement to the latest classification of large dsDNA viruses and parvoviruses by the International Committee on Taxonomy of Viruses (ICTV). Conclusions The present method provides a new way for recovering the phylogeny of large dsDNA viruses and parvoviruses, and also some insights on the affiliation of a number of unclassified viruses. In comparison, some alignment-free methods such as the CV Tree method can be used for recovering the phylogeny of large dsDNA viruses, but they are not suitable for resolving the phylogeny of parvoviruses with a much smaller genome size. PMID:20565983
ERIC Educational Resources Information Center
Flinn, Kathryn M.
2015-01-01
In this classroom activity, students build a phylogeny for woody plant species based on the morphology of their twigs. Using any available twigs, students can practice the process of cladistics to test evolutionary hypotheses for real organisms. They identify homologous characters, determine polarity through outgroup comparison, and construct a…
de la Estrella, Manuel; Forest, Félix; Klitgård, Bente; Lewis, Gwilym P; Mackinder, Barbara A; de Queiroz, Luciano P; Wieringa, Jan J; Bruneau, Anne
2018-05-02
Detarioideae (81 genera, c. 760 species) is one of the six Leguminosae subfamilies recently reinstated by the Legume Phylogeny Working Group. This subfamily displays high morphological variability and is one of the early branching clades in the evolution of legumes. Using previously published and newly generated sequences from four loci (matK-trnK, rpL16, trnG-trnG2G and ITS), we develop a new densely sampled phylogeny to assess generic relationships and tribal delimitations within Detarioideae. The ITS phylogenetic trees are poorly resolved, but the plastid data recover several strongly supported clades, which also are supported in a concatenated plastid + ITS sequence analysis. We propose a new phylogeny-based tribal classification for Detarioideae that includes six tribes: re-circumscribed Detarieae and Amherstieae, and the four new tribes Afzelieae, Barnebydendreae, Saraceae and Schotieae. An identification key and descriptions for each of the tribes are also provided.
Kang, Hahk-Soo
2017-02-01
Genomics-based methods are now commonplace in natural products research. A phylogeny-guided mining approach provides a means to quickly screen a large number of microbial genomes or metagenomes in search of new biosynthetic gene clusters of interest. In this approach, biosynthetic genes serve as molecular markers, and phylogenetic trees built with known and unknown marker gene sequences are used to quickly prioritize biosynthetic gene clusters for their metabolites characterization. An increase in the use of this approach has been observed for the last couple of years along with the emergence of low cost sequencing technologies. The aim of this review is to discuss the basic concept of a phylogeny-guided mining approach, and also to provide examples in which this approach was successfully applied to discover new natural products from microbial genomes and metagenomes. I believe that the phylogeny-guided mining approach will continue to play an important role in genomics-based natural products research.
Aveskamp, M.M.; de Gruyter, J.; Woudenberg, J.H.C.; Verkley, G.J.M.; Crous, P.W.
2010-01-01
Fungal taxonomists routinely encounter problems when dealing with asexual fungal species due to poly- and paraphyletic generic phylogenies, and unclear species boundaries. These problems are aptly illustrated in the genus Phoma. This phytopathologically significant fungal genus is currently subdivided into nine sections which are mainly based on a single or just a few morphological characters. However, this subdivision is ambiguous as several of the section-specific characters can occur within a single species. In addition, many teleomorph genera have been linked to Phoma, three of which are recognised here. In this study it is attempted to delineate generic boundaries, and to come to a generic circumscription which is more correct from an evolutionary point of view by means of multilocus sequence typing. Therefore, multiple analyses were conducted utilising sequences obtained from 28S nrDNA (Large Subunit - LSU), 18S nrDNA (Small Subunit - SSU), the Internal Transcribed Spacer regions 1 & 2 and 5.8S nrDNA (ITS), and part of the β-tubulin (TUB) gene region. A total of 324 strains were included in the analyses of which most belonged to Phoma taxa, whilst 54 to related pleosporalean fungi. In total, 206 taxa were investigated, of which 159 are known to have affinities to Phoma. The phylogenetic analysis revealed that the current Boeremaean subdivision is incorrect from an evolutionary point of view, revealing the genus to be highly polyphyletic. Phoma species are retrieved in six distinct clades within the Pleosporales, and appear to reside in different families. The majority of the species, however, including the generic type, clustered in a recently established family, Didymellaceae. In the second part of this study, the phylogenetic variation of the species and varieties in this clade was further assessed. Next to the genus Didymella, which is considered to be the sole teleomorph of Phoma s. str., we also retrieved taxa belonging to the teleomorph genera Leptosphaerulina and Macroventuria in this clade. Based on the sequence data obtained, the Didymellaceae segregate into at least 18 distinct clusters, of which many can be associated with several specific taxonomic characters. Four of these clusters were defined well enough by means of phylogeny and morphology, so that the associated taxa could be transferred to separate genera. Aditionally, this study addresses the taxonomic description of eight species and two varieties that are novel to science, and the recombination of 61 additional taxa. PMID:20502538
Tanabe, Akifumi S
2011-09-01
Proportional and separate models able to apply different combination of substitution rate matrix (SRM) and among-site rate variation model (ASRVM) to each locus are frequently used in phylogenetic studies of multilocus data. A proportional model assumes that branch lengths are proportional among partitions and a separate model assumes that each partition has an independent set of branch lengths. However, the selection from among nonpartitioned (i.e., a common combination of models is applied to all-loci concatenated sequences), proportional and separate models is usually based on the researcher's preference rather than on any information criteria. This study describes two programs, 'Kakusan4' (for DNA sequences) and 'Aminosan' (for amino-acid sequences), which allow the selection of evolutionary models based on several types of information criteria. The programs can handle both multilocus and single-locus data, in addition to providing an easy-to-use wizard interface and a noninteractive command line interface. In the case of multilocus data, SRMs and ASRVMs are compared at each locus and at all-loci concatenated sequences, after which nonpartitioned, proportional and separate models are compared based on information criteria. The programs also provide model configuration files for mrbayes, paup*, phyml, raxml and Treefinder to support further phylogenetic analysis using a selected model. When likelihoods are optimized by Treefinder, the best-fit models were found to differ depending on the data set. Furthermore, differences in the information criteria among nonpartitioned, proportional and separate models were much larger than those among the nonpartitioned models. These findings suggest that selecting from nonpartitioned, proportional and separate models results in a better phylogenetic tree. Kakusan4 and Aminosan are available at http://www.fifthdimension.jp/. They are licensed under gnugpl Ver.2, and are able to run on Windows, MacOS X and Linux. © 2011 Blackwell Publishing Ltd.
Karim, Md Robiul; Wang, Rongjun; Yu, Fuchang; Li, Tongyi; Dong, Haiju; Li, Dezhong; Zhang, Longxian; Li, Junqiang; Jian, Fuchun; Zhang, Sumei; Rume, Farzana Islam; Ning, Changshen; Xiao, Lihua
2015-03-01
Only a few studies based on single locus characterization have been conducted on the molecular epidemiology of Giardia duodenalis in nonhuman primates (NHPs). The present study was conducted to examine the occurrence and genotype identity of G. duodenalis in NHPs based on multi-locus analysis of the small-subunit ribosomal RNA (SSU rRNA), triose phosphate isomerase (tpi), glutamate dehydrogenase (gdh), and beta-giardin (bg) genes. Fecal specimens were collected from 496 animals of 36 NHP species kept in seven zoos in China and screened for G. duodenalis by tpi-based PCR. G. duodenalis was detected in 92 (18.6%) specimens from 18 NHP species, belonging to assemblage A (n=4) and B (n=88). In positive NHP species, the infection rates ranged from 4.8% to 100%. In tpi sequence analysis, the assemblage A included subtypes A1, A2 and one novel subtype. Multi-locus analysis of the tpi, gdh, and bg genes detected 11 (8 known and 3 new), 6 (3 known and 3 new) and 9 (2 known and 7 new) subtypes in 88, 47 and 35 isolates in assemblage B, respectively. Thirty-two assemblage B isolates with data at all three loci yielded 15 multi-locus genotypes (MLGs), including 2 known and 13 new MLGs. Phylogenetic analysis of concatenated sequences of assemblage B showed that MLGs found here were genetically different from those of humans, NHPs, rabbit and guinea pig in Italy and Sweden. It further indicated that assemblage B isolates in ring-tailed lemurs and squirrel monkeys might be genetically different from those in other NHPs. These data suggest that NHPs are mainly infected with G. duodenalis assemblage B and there might be geographical segregation and host-adaptation in assemblage B in NHPs. Copyright © 2014 Elsevier B.V. All rights reserved.
Sun, Mingjun; Jing, Zhigang; Di, Dongdong; Yan, Hao; Zhang, Zhicheng; Xu, Quangang; Zhang, Xiyue; Wang, Xun; Ni, Bo; Sun, Xiangxiang; Yan, Chengxu; Yang, Zhen; Tian, Lili; Li, Jinping; Fan, Weixing
2017-01-01
Brucellosis is a worldwide zoonotic disease caused by Brucella spp. In China, brucellosis is recognized as a reemerging disease mainly caused by Brucella melitensis specie. To better understand the currently endemic B. melitensis strains in China, three Brucella genotyping methods were applied to 110 B. melitensis strains obtained in past several years. By MLVA genotyping, five MLVA-8 genotypes were identified, among which genotypes 42 (1-5-3-13-2-2-3-2) was recognized as the predominant genotype, while genotype 63 (1-5-3-13-2-3-3-2) and a novel genotype of 1-5-3-13-2-4-3-2 were second frequently observed. MLVA-16 discerned a total of 57 MLVA-16 genotypes among these Brucella strains, with 41 genotypes being firstly detected and the other 16 genotypes being previously reported. By BruMLSA21 typing, six sequence types (STs) were identified, among them ST8 is the most frequently seen in China while the other five STs were firstly detected and designated as ST137, ST138, ST139, ST140, and ST141 by international multilocus sequence typing database. Whole-genome sequence (WGS)-single-nucleotide polymorphism (SNP)-based typing and phylogenetic analysis resolved Chinese B. melitensis strains into five clusters, reflecting the existence of multiple lineages among these Chinese B. melitensis strains. In phylogeny, Chinese lineages are more closely related to strains collected from East Mediterranean and Middle East countries, such as Turkey, Kuwait, and Iraq. In the next few years, MLVA typing will certainly remain an important epidemiological tool for Brucella infection analysis, as it displays a high discriminatory ability and achieves result largely in agreement with WGS-SNP-based typing. However, WGS-SNP-based typing is found to be the most powerful and reliable method in discerning Brucella strains and will be popular used in the future.
Pérez-Escobar, Oscar Alejandro; Balbuena, Juan Antonio; Gottschling, Marc
2016-01-01
Phylogenetic relationships inferred from multilocus organellar and nuclear DNA data are often difficult to resolve because of evolutionary conflicts among gene trees. However, conflicting or "outlier" associations (i.e., linked pairs of "operational terminal units" in two phylogenies) among these data sets often provide valuable information on evolutionary processes such as chloroplast capture following hybridization, incomplete lineage sorting, and horizontal gene transfer. Statistical tools that to date have been used in cophylogenetic studies only also have the potential to test for the degree of topological congruence between organellar and nuclear data sets and reliably detect outlier associations. Two distance-based methods, namely ParaFit and Procrustean Approach to Cophylogeny (PACo), were used in conjunction to detect those outliers contributing to conflicting phylogenies independently derived from chloroplast and nuclear sequence data. We explored their efficiency of retrieving outlier associations, and the impact of input data (unit branch length and additive trees) between data sets, by using several simulation approaches. To test their performance using real data sets, we additionally inferred the phylogenetic relationships within Neotropical Catasetinae (Epidendroideae, Orchidaceae), which is a suitable group to investigate phylogenetic incongruence because of hybridization processes between some of its constituent species. A comparison between trees derived from chloroplast and nuclear sequence data reflected strong, well-supported incongruence within Catasetum, Cycnoches, and Mormodes. As a result, outliers among chloroplast and nuclear data sets, and in experimental simulations, were successfully detected by PACo when using patristic distance matrices obtained from phylograms, but not from unit branch length trees. The performance of ParaFit was overall inferior compared to PACo, using either phylograms or unit branch lengths as input data. Because workflows for applying cophylogenetic analyses are not standardized yet, we provide a pipeline for executing PACo and ParaFit as well as displaying outlier associations in plots and trees by using the software R. The pipeline renders a method to identify outliers with high reliability and to assess the combinability of the independently derived data sets by means of statistical analyses. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Peeters, Charlotte; Meier-Kolthoff, Jan P.; Verheyde, Bart; De Brandt, Evie; Cooper, Vaughn S.; Vandamme, Peter
2016-01-01
Partial gyrB gene sequence analysis of 17 isolates from human and environmental sources revealed 13 clusters of strains and identified them as Burkholderia glathei clade (BGC) bacteria. The taxonomic status of these clusters was examined by whole-genome sequence analysis, determination of the G+C content, whole-cell fatty acid analysis and biochemical characterization. The whole-genome sequence-based phylogeny was assessed using the Genome Blast Distance Phylogeny (GBDP) method and an extended multilocus sequence analysis (MLSA) approach. The results demonstrated that these 17 BGC isolates represented 13 novel Burkholderia species that could be distinguished by both genotypic and phenotypic characteristics. BGC strains exhibited a broad metabolic versatility and developed beneficial, symbiotic, and pathogenic interactions with different hosts. Our data also confirmed that there is no phylogenetic subdivision in the genus Burkholderia that distinguishes beneficial from pathogenic strains. We therefore propose to formally classify the 13 novel BGC Burkholderia species as Burkholderia arvi sp. nov. (type strain LMG 29317T = CCUG 68412T), Burkholderia hypogeia sp. nov. (type strain LMG 29322T = CCUG 68407T), Burkholderia ptereochthonis sp. nov. (type strain LMG 29326T = CCUG 68403T), Burkholderia glebae sp. nov. (type strain LMG 29325T = CCUG 68404T), Burkholderia pedi sp. nov. (type strain LMG 29323T = CCUG 68406T), Burkholderia arationis sp. nov. (type strain LMG 29324T = CCUG 68405T), Burkholderia fortuita sp. nov. (type strain LMG 29320T = CCUG 68409T), Burkholderia temeraria sp. nov. (type strain LMG 29319T = CCUG 68410T), Burkholderia calidae sp. nov. (type strain LMG 29321T = CCUG 68408T), Burkholderia concitans sp. nov. (type strain LMG 29315T = CCUG 68414T), Burkholderia turbans sp. nov. (type strain LMG 29316T = CCUG 68413T), Burkholderia catudaia sp. nov. (type strain LMG 29318T = CCUG 68411T) and Burkholderia peredens sp. nov. (type strain LMG 29314T = CCUG 68415T). Furthermore, we present emended descriptions of the species Burkholderia sordidicola, Burkholderia zhejiangensis and Burkholderia grimmiae. The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA and gyrB gene sequences determined in this study are LT158612-LT158624 and LT158625-LT158641, respectively. PMID:27375597
KGCAK: a K-mer based database for genome-wide phylogeny and complexity evaluation.
Wang, Dapeng; Xu, Jiayue; Yu, Jun
2015-09-16
The K-mer approach, treating genomic sequences as simple characters and counting the relative abundance of each string upon a fixed K, has been extensively applied to phylogeny inference for genome assembly, annotation, and comparison. To meet increasing demands for comparing large genome sequences and to promote the use of the K-mer approach, we develop a versatile database, KGCAK ( http://kgcak.big.ac.cn/KGCAK/ ), containing ~8,000 genomes that include genome sequences of diverse life forms (viruses, prokaryotes, protists, animals, and plants) and cellular organelles of eukaryotic lineages. It builds phylogeny based on genomic elements in an alignment-free fashion and provides in-depth data processing enabling users to compare the complexity of genome sequences based on K-mer distribution. We hope that KGCAK becomes a powerful tool for exploring relationship within and among groups of species in a tree of life based on genomic data.
2010-01-01
Background A robust phylogenetic hypothesis of euthyneuran gastropods, as a basis to reconstructing their evolutionary history, is still hindered by several groups of aberrant, more or less worm-like slugs with unclear phylogenetic relationships. As a traditional "order" in the Opisthobranchia, the Acochlidia have a long history of controversial placements, among others influenced by convergent adaptation to the mainly meiofaunal habitats. The present study includes six out of seven acochlidian families in a comprehensive euthyneuran taxon sampling with special focus on minute, aberrant slugs. Since there is no fossil record of tiny, shell-less gastropods, a molecular clock was used to estimate divergence times within Euthyneura. Results Our multi-locus molecular study confirms Acochlidia in a pulmonate relationship, as sister to Eupulmonata. Previous hypotheses of opisthobranch relations, or of a common origin with other meiofaunal Euthyneura, are clearly rejected. The enigmatic amphibious and insectivorous Aitengidae incerta sedis clusters within Acochlidia, as sister to meiofaunal and brackish Pseudunelidae and limnic Acochlidiidae. Euthyneura, Opisthobranchia and Pulmonata as traditionally defined are non-monophyletic. A relaxed molecular clock approach indicates a late Palaeozoic diversification of Euthyneura and a Mesozoic origin of the major euthyneuran diversity, including Acochlidia. Conclusions The present study shows that the inclusion of small, enigmatic groups is necessary to solve deep-level phylogenetic relationships, and underlines that "pulmonate" and "opisthobranch" phylogeny, respectively, cannot be solved independently from each other. Our phylogenetic hypothesis requires reinvestigation of the traditional classification of Euthyneura: morphological synapomorphies of the traditionally defined Pulmonata and Opisthobranchia are evaluated in light of the presented phylogeny, and a redefinition of major groups is proposed. It is demonstrated that the invasion of the meiofaunal habitat has occurred several times independently in various euthyneuran taxa, leading to convergent adaptations previously misinterpreted as synapomorphies. The inclusion of Acochlidia extends the structural and biological diversity in pulmonates, presenting a remarkable flexibility concerning habitat choice. PMID:20973994
Jörger, Katharina M; Stöger, Isabella; Kano, Yasunori; Fukuda, Hiroshi; Knebelsberger, Thomas; Schrödl, Michael
2010-10-25
A robust phylogenetic hypothesis of euthyneuran gastropods, as a basis to reconstructing their evolutionary history, is still hindered by several groups of aberrant, more or less worm-like slugs with unclear phylogenetic relationships. As a traditional "order" in the Opisthobranchia, the Acochlidia have a long history of controversial placements, among others influenced by convergent adaptation to the mainly meiofaunal habitats. The present study includes six out of seven acochlidian families in a comprehensive euthyneuran taxon sampling with special focus on minute, aberrant slugs. Since there is no fossil record of tiny, shell-less gastropods, a molecular clock was used to estimate divergence times within Euthyneura. Our multi-locus molecular study confirms Acochlidia in a pulmonate relationship, as sister to Eupulmonata. Previous hypotheses of opisthobranch relations, or of a common origin with other meiofaunal Euthyneura, are clearly rejected. The enigmatic amphibious and insectivorous Aitengidae incerta sedis clusters within Acochlidia, as sister to meiofaunal and brackish Pseudunelidae and limnic Acochlidiidae. Euthyneura, Opisthobranchia and Pulmonata as traditionally defined are non-monophyletic. A relaxed molecular clock approach indicates a late Palaeozoic diversification of Euthyneura and a Mesozoic origin of the major euthyneuran diversity, including Acochlidia. The present study shows that the inclusion of small, enigmatic groups is necessary to solve deep-level phylogenetic relationships, and underlines that "pulmonate" and "opisthobranch" phylogeny, respectively, cannot be solved independently from each other. Our phylogenetic hypothesis requires reinvestigation of the traditional classification of Euthyneura: morphological synapomorphies of the traditionally defined Pulmonata and Opisthobranchia are evaluated in light of the presented phylogeny, and a redefinition of major groups is proposed. It is demonstrated that the invasion of the meiofaunal habitat has occurred several times independently in various euthyneuran taxa, leading to convergent adaptations previously misinterpreted as synapomorphies. The inclusion of Acochlidia extends the structural and biological diversity in pulmonates, presenting a remarkable flexibility concerning habitat choice.
Multilocus Association Mapping Using Variable-Length Markov Chains
Browning, Sharon R.
2006-01-01
I propose a new method for association-based gene mapping that makes powerful use of multilocus data, is computationally efficient, and is straightforward to apply over large genomic regions. The approach is based on the fitting of variable-length Markov chain models, which automatically adapt to the degree of linkage disequilibrium (LD) between markers to create a parsimonious model for the LD structure. Edges of the fitted graph are tested for association with trait status. This approach can be thought of as haplotype testing with sophisticated windowing that accounts for extent of LD to reduce degrees of freedom and number of tests while maximizing information. I present analyses of two published data sets that show that this approach can have better power than single-marker tests or sliding-window haplotypic tests. PMID:16685642
Multilocus association mapping using variable-length Markov chains.
Browning, Sharon R
2006-06-01
I propose a new method for association-based gene mapping that makes powerful use of multilocus data, is computationally efficient, and is straightforward to apply over large genomic regions. The approach is based on the fitting of variable-length Markov chain models, which automatically adapt to the degree of linkage disequilibrium (LD) between markers to create a parsimonious model for the LD structure. Edges of the fitted graph are tested for association with trait status. This approach can be thought of as haplotype testing with sophisticated windowing that accounts for extent of LD to reduce degrees of freedom and number of tests while maximizing information. I present analyses of two published data sets that show that this approach can have better power than single-marker tests or sliding-window haplotypic tests.
Kress, W John; Erickson, David L; Swenson, Nathan G; Thompson, Jill; Uriarte, Maria; Zimmerman, Jess K
2010-11-09
Species number, functional traits, and phylogenetic history all contribute to characterizing the biological diversity in plant communities. The phylogenetic component of diversity has been particularly difficult to quantify in species-rich tropical tree assemblages. The compilation of previously published (and often incomplete) data on evolutionary relationships of species into a composite phylogeny of the taxa in a forest, through such programs as Phylomatic, has proven useful in building community phylogenies although often of limited resolution. Recently, DNA barcodes have been used to construct a robust community phylogeny for nearly 300 tree species in a forest dynamics plot in Panama using a supermatrix method. In that study sequence data from three barcode loci were used to generate a well-resolved species-level phylogeny. Here we expand upon this earlier investigation and present results on the use of a phylogenetic constraint tree to generate a community phylogeny for a diverse, tropical forest dynamics plot in Puerto Rico. This enhanced method of phylogenetic reconstruction insures the congruence of the barcode phylogeny with broadly accepted hypotheses on the phylogeny of flowering plants (i.e., APG III) regardless of the number and taxonomic breadth of the taxa sampled. We also compare maximum parsimony versus maximum likelihood estimates of community phylogenetic relationships as well as evaluate the effectiveness of one- versus two- versus three-gene barcodes in resolving community evolutionary history. As first demonstrated in the Panamanian forest dynamics plot, the results for the Puerto Rican plot illustrate that highly resolved phylogenies derived from DNA barcode sequence data combined with a constraint tree based on APG III are particularly useful in comparative analysis of phylogenetic diversity and will enhance research on the interface between community ecology and evolution.
`Inter-Arrival Time' Inspired Algorithm and its Application in Clustering and Molecular Phylogeny
NASA Astrophysics Data System (ADS)
Kolekar, Pandurang S.; Kale, Mohan M.; Kulkarni-Kale, Urmila
2010-10-01
Bioinformatics, being multidisciplinary field, involves applications of various methods from allied areas of Science for data mining using computational approaches. Clustering and molecular phylogeny is one of the key areas in Bioinformatics, which help in study of classification and evolution of organisms. Molecular phylogeny algorithms can be divided into distance based and character based methods. But most of these methods are dependent on pre-alignment of sequences and become computationally intensive with increase in size of data and hence demand alternative efficient approaches. `Inter arrival time distribution' (IATD) is a popular concept in the theory of stochastic system modeling but its potential in molecular data analysis has not been fully explored. The present study reports application of IATD in Bioinformatics for clustering and molecular phylogeny. The proposed method provides IATDs of nucleotides in genomic sequences. The distance function based on statistical parameters of IATDs is proposed and distance matrix thus obtained is used for the purpose of clustering and molecular phylogeny. The method is applied on a dataset of 3' non-coding region sequences (NCR) of Dengue virus type 3 (DENV-3), subtype III, reported in 2008. The phylogram thus obtained revealed the geographical distribution of DENV-3 isolates. Sri Lankan DENV-3 isolates were further observed to be clustered in two sub-clades corresponding to pre and post Dengue hemorrhagic fever emergence groups. These results are consistent with those reported earlier, which are obtained using pre-aligned sequence data as an input. These findings encourage applications of the IATD based method in molecular phylogenetic analysis in particular and data mining in general.
A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes
2013-01-01
Background The extant squamates (>9400 known species of lizards and snakes) are one of the most diverse and conspicuous radiations of terrestrial vertebrates, but no studies have attempted to reconstruct a phylogeny for the group with large-scale taxon sampling. Such an estimate is invaluable for comparative evolutionary studies, and to address their classification. Here, we present the first large-scale phylogenetic estimate for Squamata. Results The estimated phylogeny contains 4161 species, representing all currently recognized families and subfamilies. The analysis is based on up to 12896 base pairs of sequence data per species (average = 2497 bp) from 12 genes, including seven nuclear loci (BDNF, c-mos, NT3, PDC, R35, RAG-1, and RAG-2), and five mitochondrial genes (12S, 16S, cytochrome b, ND2, and ND4). The tree provides important confirmation for recent estimates of higher-level squamate phylogeny based on molecular data (but with more limited taxon sampling), estimates that are very different from previous morphology-based hypotheses. The tree also includes many relationships that differ from previous molecular estimates and many that differ from traditional taxonomy. Conclusions We present a new large-scale phylogeny of squamate reptiles that should be a valuable resource for future comparative studies. We also present a revised classification of squamates at the family and subfamily level to bring the taxonomy more in line with the new phylogenetic hypothesis. This classification includes new, resurrected, and modified subfamilies within gymnophthalmid and scincid lizards, and boid, colubrid, and lamprophiid snakes. PMID:23627680
Inferring epidemiological parameters from phylogenies using regression-ABC: A comparative study
Gascuel, Olivier
2017-01-01
Inferring epidemiological parameters such as the R0 from time-scaled phylogenies is a timely challenge. Most current approaches rely on likelihood functions, which raise specific issues that range from computing these functions to finding their maxima numerically. Here, we present a new regression-based Approximate Bayesian Computation (ABC) approach, which we base on a large variety of summary statistics intended to capture the information contained in the phylogeny and its corresponding lineage-through-time plot. The regression step involves the Least Absolute Shrinkage and Selection Operator (LASSO) method, which is a robust machine learning technique. It allows us to readily deal with the large number of summary statistics, while avoiding resorting to Markov Chain Monte Carlo (MCMC) techniques. To compare our approach to existing ones, we simulated target trees under a variety of epidemiological models and settings, and inferred parameters of interest using the same priors. We found that, for large phylogenies, the accuracy of our regression-ABC is comparable to that of likelihood-based approaches involving birth-death processes implemented in BEAST2. Our approach even outperformed these when inferring the host population size with a Susceptible-Infected-Removed epidemiological model. It also clearly outperformed a recent kernel-ABC approach when assuming a Susceptible-Infected epidemiological model with two host types. Lastly, by re-analyzing data from the early stages of the recent Ebola epidemic in Sierra Leone, we showed that regression-ABC provides more realistic estimates for the duration parameters (latency and infectiousness) than the likelihood-based method. Overall, ABC based on a large variety of summary statistics and a regression method able to perform variable selection and avoid overfitting is a promising approach to analyze large phylogenies. PMID:28263987
Hall, Matthew; Woolhouse, Mark; Rambaut, Andrew
2015-01-01
The use of genetic data to reconstruct the transmission tree of infectious disease epidemics and outbreaks has been the subject of an increasing number of studies, but previous approaches have usually either made assumptions that are not fully compatible with phylogenetic inference, or, where they have based inference on a phylogeny, have employed a procedure that requires this tree to be fixed. At the same time, the coalescent-based models of the pathogen population that are employed in the methods usually used for time-resolved phylogeny reconstruction are a considerable simplification of epidemic process, as they assume that pathogen lineages mix freely. Here, we contribute a new method that is simultaneously a phylogeny reconstruction method for isolates taken from an epidemic, and a procedure for transmission tree reconstruction. We observe that, if one or more samples is taken from each host in an epidemic or outbreak and these are used to build a phylogeny, a transmission tree is equivalent to a partition of the set of nodes of this phylogeny, such that each partition element is a set of nodes that is connected in the full tree and contains all the tips corresponding to samples taken from one and only one host. We then implement a Monte Carlo Markov Chain (MCMC) procedure for simultaneous sampling from the spaces of both trees, utilising a newly-designed set of phylogenetic tree proposals that also respect node partitions. We calculate the posterior probability of these partitioned trees based on a model that acknowledges the population structure of an epidemic by employing an individual-based disease transmission model and a coalescent process taking place within each host. We demonstrate our method, first using simulated data, and then with sequences taken from the H7N7 avian influenza outbreak that occurred in the Netherlands in 2003. We show that it is superior to established coalescent methods for reconstructing the topology and node heights of the phylogeny and performs well for transmission tree reconstruction when the phylogeny is well-resolved by the genetic data, but caution that this will often not be the case in practice and that existing genetic and epidemiological data should be used to configure such analyses whenever possible. This method is available for use by the research community as part of BEAST, one of the most widely-used packages for reconstruction of dated phylogenies. PMID:26717515
Ahrenfeldt, Johanne; Skaarup, Carina; Hasman, Henrik; Pedersen, Anders Gorm; Aarestrup, Frank Møller; Lund, Ole
2017-01-05
Whole genome sequencing (WGS) is increasingly used in diagnostics and surveillance of infectious diseases. A major application for WGS is to use the data for identifying outbreak clusters, and there is therefore a need for methods that can accurately and efficiently infer phylogenies from sequencing reads. In the present study we describe a new dataset that we have created for the purpose of benchmarking such WGS-based methods for epidemiological data, and also present an analysis where we use the data to compare the performance of some current methods. Our aim was to create a benchmark data set that mimics sequencing data of the sort that might be collected during an outbreak of an infectious disease. This was achieved by letting an E. coli hypermutator strain grow in the lab for 8 consecutive days, each day splitting the culture in two while also collecting samples for sequencing. The result is a data set consisting of 101 whole genome sequences with known phylogenetic relationship. Among the sequenced samples 51 correspond to internal nodes in the phylogeny because they are ancestral, while the remaining 50 correspond to leaves. We also used the newly created data set to compare three different online available methods that infer phylogenies from whole-genome sequencing reads: NDtree, CSI Phylogeny and REALPHY. One complication when comparing the output of these methods with the known phylogeny is that phylogenetic methods typically build trees where all observed sequences are placed as leafs, even though some of them are in fact ancestral. We therefore devised a method for post processing the inferred trees by collapsing short branches (thus relocating some leafs to internal nodes), and also present two new measures of tree similarity that takes into account the identity of both internal and leaf nodes. Based on this analysis we find that, among the investigated methods, CSI Phylogeny had the best performance, correctly identifying 73% of all branches in the tree and 71% of all clades. We have made all data from this experiment (raw sequencing reads, consensus whole-genome sequences, as well as descriptions of the known phylogeny in a variety of formats) publicly available, with the hope that other groups may find this data useful for benchmarking and exploring the performance of epidemiological methods. All data is freely available at: https://cge.cbs.dtu.dk/services/evolution_data.php .
Thirugnanasambantham, Krishnaraj; Saravanan, Subramanian; Karikalan, Kulandaivelu; Bharanidharan, Rajaraman; Lalitha, Perumal; Ilango, S; HairulIslam, Villianur Ibrahim
2015-10-01
Momordica charantia (bitter gourd, bitter melon) is a monoecious Cucurbitaceae with anti-oxidant, anti-microbial, anti-viral and anti-diabetic potential. Molecular studies on this economically valuable plant are very essential to understand its phylogeny and evolution. MicroRNAs (miRNAs) are conserved, small, non-coding RNA with ability to regulate gene expression by bind the 3' UTR region of target mRNA and are evolved at different rates in different plant species. In this study we have utilized homology based computational approach and identified 27 mature miRNAs for the first time from this bio-medically important plant. The phylogenetic tree developed from binary data derived from the data on presence/absence of the identified miRNAs were noticed to be uncertain and biased. Most of the identified miRNAs were highly conserved among the plant species and sequence based phylogeny analysis of miRNAs resolved the above difficulties in phylogeny approach using miRNA. Predicted gene targets of the identified miRNAs revealed their importance in regulation of plant developmental process. Reported miRNAs held sequence conservation in mature miRNAs and the detailed phylogeny analysis of pre-miRNA sequences revealed genus specific segregation of clusters. Copyright © 2015 Elsevier Ltd. All rights reserved.
Development of Mycoplasma synoviae (MS) core genome multilocus sequence typing (cgMLST) scheme.
Ghanem, Mostafa; El-Gazzar, Mohamed
2018-05-01
Mycoplasma synoviae (MS) is a poultry pathogen with reported increased prevalence and virulence in recent years. MS strain identification is essential for prevention, control efforts and epidemiological outbreak investigations. Multiple multilocus based sequence typing schemes have been developed for MS, yet the resolution of these schemes could be limited for outbreak investigation. The cost of whole genome sequencing became close to that of sequencing the seven MLST targets; however, there is no standardized method for typing MS strains based on whole genome sequences. In this paper, we propose a core genome multilocus sequence typing (cgMLST) scheme as a standardized and reproducible method for typing MS based whole genome sequences. A diverse set of 25 MS whole genome sequences were used to identify 302 core genome genes as cgMLST targets (35.5% of MS genome) and 44 whole genome sequences of MS isolates from six countries in four continents were used for typing applying this scheme. cgMLST based phylogenetic trees displayed a high degree of agreement with core genome SNP based analysis and available epidemiological information. cgMLST allowed evaluation of two conventional MLST schemes of MS. The high discriminatory power of cgMLST allowed differentiation between samples of the same conventional MLST type. cgMLST represents a standardized, accurate, highly discriminatory, and reproducible method for differentiation between MS isolates. Like conventional MLST, it provides stable and expandable nomenclature, allowing for comparing and sharing the typing results between different laboratories worldwide. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Phylogenetic relationships of Malassezia species based on multilocus sequence analysis.
Castellá, Gemma; Coutinho, Selene Dall' Acqua; Cabañes, F Javier
2014-01-01
Members of the genus Malassezia are lipophilic basidiomycetous yeasts, which are part of the normal cutaneous microbiota of humans and other warm-blooded animals. Currently, this genus consists of 14 species that have been characterized by phenetic and molecular methods. Although several molecular methods have been used to identify and/or differentiate Malassezia species, the sequencing of the rRNA genes and the chitin synthase-2 gene (CHS2) are the most widely employed. There is little information about the β-tubulin gene in the genus Malassezia, a gene has been used for the analysis of complex species groups. The aim of the present study was to sequence a fragment of the β-tubulin gene of Malassezia species and analyze their phylogenetic relationship using a multilocus sequence approach based on two rRNA genes (ITS including 5.8S rRNA and D1/D2 region of 26S rRNA) together with two protein encoding genes (CHS2 and β-tubulin). The phylogenetic study of the partial β-tubulin gene sequences indicated that this molecular marker can be used to assess diversity and identify new species. The multilocus sequence analysis of the four loci provides robust support to delineate species at the terminal nodes and could help to estimate divergence times for the origin and diversification of Malassezia species.
Pinus ponderosa: A checkered past obscured four species.
Willyard, Ann; Gernandt, David S; Potter, Kevin; Hipkins, Valerie; Marquardt, Paula; Mahalovich, Mary Frances; Langer, Stephen K; Telewski, Frank W; Cooper, Blake; Douglas, Connor; Finch, Kristen; Karemera, Hassani H; Lefler, Julia; Lea, Payton; Wofford, Austin
2017-01-01
Molecular genetic evidence can help delineate taxa in species complexes that lack diagnostic morphological characters. Pinus ponderosa (Pinaceae; subsection Ponderosae) is recognized as a problematic taxon: plastid phylogenies of exemplars were paraphyletic, and mitochondrial phylogeography suggested at least four subdivisions of P. ponderosa. These patterns have not been examined in the context of other Ponderosae species. We hypothesized that putative intraspecific subdivisions might each represent a separate taxon. We genotyped six highly variable plastid simple sequence repeats in 1903 individuals from 88 populations of P. ponderosa and related Ponderosae (P. arizonica, P. engelmannii, and P. jeffreyi). We used multilocus haplotype networks and discriminant analysis of principal components to test clustering of individuals into genetically and geographically meaningful taxonomic units. There are at least four distinct plastid clusters within P. ponderosa that roughly correspond to the geographic distribution of mitochondrial haplotypes. Some geographic regions have intermixed plastid lineages, and some mitochondrial and plastid boundaries do not coincide. Based on relative distances to other species of Ponderosae, these clusters diagnose four distinct taxa. Newly revealed geographic boundaries of four distinct taxa (P. benthamiana, P. brachyptera, P. scopulorum, and a narrowed concept of P. ponderosa) do not correspond completely with taxonomies. Further research is needed to understand their morphological and nuclear genetic makeup, but we suggest that resurrecting originally published species names would more appropriately reflect the taxonomy of this checkered classification than their current treatment as varieties of P. ponderosa. © 2017 Willyard et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons public domain license (CC0 1.0).
Sahl, Jason W; Johnson, J Kristie; Harris, Anthony D; Phillippy, Adam M; Hsiao, William W; Thom, Kerri A; Rasko, David A
2011-06-04
Acinetobacter baumannii has recently emerged as a significant global pathogen, with a surprisingly rapid acquisition of antibiotic resistance and spread within hospitals and health care institutions. This study examines the genomic content of three A. baumannii strains isolated from distinct body sites. Isolates from blood, peri-anal, and wound sources were examined in an attempt to identify genetic features that could be correlated to each isolation source. Pulsed-field gel electrophoresis, multi-locus sequence typing and antibiotic resistance profiles demonstrated genotypic and phenotypic variation. Each isolate was sequenced to high-quality draft status, which allowed for comparative genomic analyses with existing A. baumannii genomes. A high resolution, whole genome alignment method detailed the phylogenetic relationships of sequenced A. baumannii and found no correlation between phylogeny and body site of isolation. This method identified genomic regions unique to both those isolates found on the surface of the skin or in wounds, termed colonization isolates, and those identified from body fluids, termed invasive isolates; these regions may play a role in the pathogenesis and spread of this important pathogen. A PCR-based screen of 74 A. baumanii isolates demonstrated that these unique genes are not exclusive to either phenotype or isolation source; however, a conserved genomic region exclusive to all sequenced A. baumannii was identified and verified. The results of the comparative genome analysis and PCR assay show that A. baumannii is a diverse and genomically variable pathogen that appears to have the potential to cause a range of human disease regardless of the isolation source.
Bock, Dan G.; MacIsaac, Hugh J.; Cristescu, Melania E.
2012-01-01
Elucidating the factors that shape species distributions has long been a fundamental goal in ecology and evolutionary biology. In spite of significant theoretical advancements, empirical studies of range limits have lagged behind. Specifically, little is known about how the attributes that allow species to expand their ranges and become widespread vary across phylogenies. Here, we studied the ascidian Botryllus schlosseri, a worldwide invasive species that is also characterized by marked genetic subdivision. Our study includes phylogenetic and population genetic data based on mitochondrial and nuclear genes, as well as polymorphic microsatellites for B. schlosseri colonies sampled from the southern and northern coasts of Europe and the eastern and western coasts of North America. We demonstrate that this well-known model organism comprises three highly divergent and probably reproductively isolated cryptic species (A, D and E), with two more (B and C) being suggested by data retrieved from GenBank. Among these, species A, recovered in all of the surveyed regions, is by far the most common and widespread. By contrast, species B–E, occurring mostly in sites from northern Europe, are considerably more geographically restricted. These findings, along with inferences made on transport opportunity, suggest that divergent evolutionary histories promoted differences in invasive potential between B. schlosseri sibling species, indicating that attributes that facilitate dramatic shifts in range limits can evolve more easily and frequently than previously thought. We propose environmental disturbance as a selective force that could have shaped the evolution of invasiveness in the B. schlosseri complex. PMID:22319123
Shi, Qing-Hui; Sun, Xiao-Yan; Wang, Yun-Liang; Hao, Jia-Sheng; Yang, Qun
2015-01-01
Nymphalidae is the largest family of butterflies with their phylogenetic relationships not adequately approached to date. The mitochondrial genomes (mitogenomes) of 11 new nymphalid species were reported and a comparative mitogenomic analysis was conducted together with other 22 available nymphalid mitogenomes. A phylogenetic analysis of the 33 species from all 13 currently recognized nymphalid subfamilies was done based on the mitogenomic data set with three Lycaenidae species as the outgroups. The mitogenome comparison showed that the eleven new mitogenomes were similar with those of other butterflies in gene content and order. The reconstructed phylogenetic trees reveal that the nymphalids are made up of five major clades (the nymphaline, heliconiine, satyrine, danaine and libytheine clades), with sister relationship between subfamilies Cyrestinae and Biblidinae, and most likely between subfamilies Morphinae and Satyrinae. This whole mitogenome-based phylogeny is generally congruent with those of former studies based on nuclear-gene and mitogenomic analyses, but differs considerably from the result of morphological cladistic analysis, such as the basal position of Libytheinae in morpho-phylogeny is not confirmed in molecular studies. However, we found that the mitogenomic phylogeny established herein is compatible with selected morphological characters (including developmental and adult morpho-characters).
Baculovirus phylogeny and evolution.
Herniou, Elisabeth A; Jehle, Johannes A
2007-10-01
The family Baculoviridae represents one of the largest and most diverse groups of viruses and a unique model for studying the forces driving the evolution and biodiversity of double-stranded DNA viruses with large genomes. With the advent of comparative genomics, the phylogenetic relationships of baculoviruses have been put on solid bases. This, as well as improved bioinformatic approaches, has provided a detailed picture of baculovirus phylogeny and evolution. According to the present knowledge, baculoviruses can be classified into at least four evolutionary lineages: the most ancestral dipteran nucleopolyhedroviruses, the hymenopteran nucleopolyhedroviruses and the lepidopteran nucleopolyhedroviruses and granuloviruses. Despite the growing understanding of baculovirus phylogeny and macro-evolution, our knowledge of the micro-evolutionary processes within baculovirus species and virus populations is still limited. Here we present the state of the art on baculovirus phylogeny and evolution.
Ideal discrimination of discrete clinical endpoints using multilocus genotypes.
Hahn, Lance W; Moore, Jason H
2004-01-01
Multifactor Dimensionality Reduction (MDR) is a method for the classification and prediction of discrete clinical endpoints using attributes constructed from multilocus genotype data. Empirical studies with both real and simulated data suggest that MDR has good power for detecting gene-gene interactions in the absence of independent main effects. The purpose of this study is to develop an objective, theory-driven approach to evaluate the strengths and limitations of MDR. To accomplish this goal, we borrow concepts from ideal observer analysis used in visual perception to evaluate the theoretical limits of classifying and predicting discrete clinical endpoints using multilocus genotype data. We conclude that MDR ideally discriminates between low risk and high risk subjects using attributes constructed from multilocus genotype data. We also how that the classification approach used once a multilocus attribute is constructed is similar to that of a naive Bayes classifier. This study provides a theoretical foundation for the continued development, evaluation, and application of the MDR as a data mining tool in the domain of statistical genetics and genetic epidemiology.
Multilocus inference of species trees and DNA barcoding.
Mallo, Diego; Posada, David
2016-09-05
The unprecedented amount of data resulting from next-generation sequencing has opened a new era in phylogenetic estimation. Although large datasets should, in theory, increase phylogenetic resolution, massive, multilocus datasets have uncovered a great deal of phylogenetic incongruence among different genomic regions, due both to stochastic error and to the action of different evolutionary process such as incomplete lineage sorting, gene duplication and loss and horizontal gene transfer. This incongruence violates one of the fundamental assumptions of the DNA barcoding approach, which assumes that gene history and species history are identical. In this review, we explain some of the most important challenges we will have to face to reconstruct the history of species, and the advantages and disadvantages of different strategies for the phylogenetic analysis of multilocus data. In particular, we describe the evolutionary events that can generate species tree-gene tree discordance, compare the most popular methods for species tree reconstruction, highlight the challenges we need to face when using them and discuss their potential utility in barcoding. Current barcoding methods sacrifice a great amount of statistical power by only considering one locus, and a transition to multilocus barcodes would not only improve current barcoding methods, but also facilitate an eventual transition to species-tree-based barcoding strategies, which could better accommodate scenarios where the barcode gap is too small or inexistent.This article is part of the themed issue 'From DNA barcodes to biomes'. © 2016 The Authors.
Molecular Epidemiology of Human Oral Chagas Disease Outbreaks in Colombia
Ramírez, Juan David; Montilla, Marleny; Cucunubá, Zulma M.; Floréz, Astrid Carolina; Zambrano, Pilar; Guhl, Felipe
2013-01-01
Background Trypanosoma cruzi, the causative agent of Chagas disease, displays significant genetic variability revealed by six Discrete Typing Units (TcI-TcVI). In this pathology, oral transmission represents an emerging epidemiological scenario where different outbreaks associated to food/beverages consumption have been reported in Argentina, Bolivia, Brazil, Ecuador and Venezuela. In Colombia, six human oral outbreaks have been reported corroborating the importance of this transmission route. Molecular epidemiology of oral outbreaks is barely known observing the incrimination of TcI, TcII, TcIV and TcV genotypes. Methodology and Principal Findings High-throughput molecular characterization was conducted performing MLMT (Multilocus Microsatellite Typing) and mtMLST (mitochondrial Multilocus Sequence Typing) strategies on 50 clones from ten isolates. Results allowed observing the occurrence of TcI, TcIV and mixed infection of distinct TcI genotypes. Thus, a majority of specific mitochondrial haplotypes and allelic multilocus genotypes associated to the sylvatic cycle of transmission were detected in the dataset with the foreseen presence of mitochondrial haplotypes and allelic multilocus genotypes associated to the domestic cycle of transmission. Conclusions These findings suggest the incrimination of sylvatic genotypes in the oral outbreaks occurred in Colombia. We observed patterns of super-infection and/or co-infection with a tailored association with the severe forms of myocarditis in the acute phase of the disease. The transmission dynamics of this infection route based on molecular epidemiology evidence was unraveled and the clinical and biological implications are discussed. PMID:23437405
USDA-ARS?s Scientific Manuscript database
Premise of the study: Prunus L. phylogeny has extensively studied using cpDNA sequences. CpDNA has a slow rate of evolution which is beneficial to determine species relationships at a deeper level. However, a limitation of the chloroplast based phylogenies is its transfer by interspecific hybridizat...
Molecular phylogeny, morphology, pigment chemistry and ecology in Hygrophoraceae (Agaricales)
D. Jean Lodge; Mahajabeen Padamsee; P. Brandon Matheny; M. Catherine Aime; Sharon A. Cantrell; David Boertmann; Alexander Kovalenko; Alfredo Vizzini; Bryn T.M. Dentinger; Paul M. Kirk; A. Martin Ainsworth; Jean-Marc Moncalvo; Rytas Vilgalys; Ellen Larsson; Robert Lucking; Gareth W. Griffith; Matthew E. Smith; Lorilei L. Norvell; Dennis E. Desjardin; Scott A. Redhead; Clark L. Ovrebo; Edgar B. Lickey; Enrico Ercole; Karen W. Hughes; Regis Courtecuisse; Anthony Young; Manfred Binder; Andrew M. Minnis; Daniel L. Lindner; Beatriz Ortiz-Santana; John Haight; Thomas Laessoe; Timothy J. Baroni; Jozsef Geml; Tsutomu Hattori
2013-01-01
Molecular phylogenies using 1â4 gene regions and information on ecology, morphology and pigment chemistry were used in a partial revision of the agaric family Hygrophoraceae. The phylogenetically supported genera we recognize here in the Hygrophoraceae based on these and previous analyses are: Acantholichen, Ampulloclitocybe, Arrhenia, Cantharellula, Cantharocybe,...
Smith, Adam R.; Proffitt, Melissa R.; Ho, Winnie W.; Mullaney, Claire B.; Maldonado-Ocampo, Javier A.; Lovejoy, Nathan R.; Alves-Gomes, José A.; Smith, G. Troy
2018-01-01
The electric communication signals of weakly electric ghost knifefishes (Gymnotiformes: Apteronotidae) provide a valuable model system for understanding the evolution and physiology of behavior. Apteronotids produce continuous wave-type electric organ discharges (EODs) that are used for electrolocation and communication. The frequency and waveform of EODs, as well as the structure of transient EOD modulations (chirps), vary substantially across species. Understanding how these signals have evolved, however, has been hampered by the lack of a well-supported phylogeny for this family. We constructed a molecular phylogeny for the Apteronotidae by using sequence data from three genes (cytochrome c oxidase subunit 1, recombination activating gene 2, and cytochrome oxidase B) in 32 species representing 13 apteronotid genera. This phylogeny and an extensive database of apteronotid signals allowed us to examine signal evolution by using ancestral state reconstruction (ASR) and phylogenetic generalized least squares (PGLS) models. Our molecular phylogeny largely agrees with another recent sequence-based phylogeny and identified five robust apteronotid clades: (i) Sternarchorhamphus + Orthosternarchus, (ii) Adontosternarchus, (iii) Apteronotus + Parapteronotus, (iv) Sternarchorhynchus, and (v) a large clade including Porotergus, ‘Apteronotus’, Compsaraia, Sternarchogiton, Sternarchella, and Magosternarchus. We analyzed novel chirp recordings from two apteronotid species (Orthosternarchus tamandua and Sternarchorhynchus mormyrus), and combined data from these species with that from previously recorded species in our phylogenetic analyses. Some signal parameters in O. tamandua were plesiomorphic (e.g., low frequency EODs and chirps with little frequency modulation that nevertheless interrupt the EOD), suggesting that ultra-high frequency EODs and ‘‘big” chirps evolved after apteronotids diverged from other gymnotiforms. In contrast to previous studies, our PGLS analyses using the new phylogeny indicated the presence of phylogenetic signals in the relationships between some EOD and chirp parameters. The ASR demonstrated that most EOD and chirp parameters are evolutionarily labile and have often diversified even among closely related species. PMID:27769924
Smith, Adam R; Proffitt, Melissa R; Ho, Winnie W; Mullaney, Claire B; Maldonado-Ocampo, Javier A; Lovejoy, Nathan R; Alves-Gomes, José A; Smith, G Troy
2016-10-01
The electric communication signals of weakly electric ghost knifefishes (Gymnotiformes: Apteronotidae) provide a valuable model system for understanding the evolution and physiology of behavior. Apteronotids produce continuous wave-type electric organ discharges (EODs) that are used for electrolocation and communication. The frequency and waveform of EODs, as well as the structure of transient EOD modulations (chirps), vary substantially across species. Understanding how these signals have evolved, however, has been hampered by the lack of a well-supported phylogeny for this family. We constructed a molecular phylogeny for the Apteronotidae by using sequence data from three genes (cytochrome c oxidase subunit 1, recombination activating gene 2, and cytochrome oxidase B) in 32 species representing 13 apteronotid genera. This phylogeny and an extensive database of apteronotid signals allowed us to examine signal evolution by using ancestral state reconstruction (ASR) and phylogenetic generalized least squares (PGLS) models. Our molecular phylogeny largely agrees with another recent sequence-based phylogeny and identified five robust apteronotid clades: (i) Sternarchorhamphus+Orthosternarchus, (ii) Adontosternarchus, (iii) Apteronotus+Parapteronotus, (iv) Sternarchorhynchus, and (v) a large clade including Porotergus, 'Apteronotus', Compsaraia, Sternarchogiton, Sternarchella, and Magosternarchus. We analyzed novel chirp recordings from two apteronotid species (Orthosternarchus tamandua and Sternarchorhynchus mormyrus), and combined data from these species with that from previously recorded species in our phylogenetic analyses. Some signal parameters in O. tamandua were plesiomorphic (e.g., low frequency EODs and chirps with little frequency modulation that nevertheless interrupt the EOD), suggesting that ultra-high frequency EODs and "big" chirps evolved after apteronotids diverged from other gymnotiforms. In contrast to previous studies, our PGLS analyses using the new phylogeny indicated the presence of phylogenetic signals in the relationships between some EOD and chirp parameters. The ASR demonstrated that most EOD and chirp parameters are evolutionarily labile and have often diversified even among closely related species. Published by Elsevier Ltd.
Feng, Jing; Jiang, Yujun; Li, Mingyu; Zhao, Siyu; Zhang, Yanming; Li, Xuesong; Wang, Hui; Lin, Guangen; Wang, Hao; Li, Tiejing; Man, Chaoxin
2018-05-25
Bacteria in Lactobacillus casei group, including Lactobacillus casei (L. casei), Lactobacillus paracasei (L. paracasei), and Lactobacillus rhamnosus (L. rhamnosus) are important lactic acid bacteria in the production of fermented dairy products and are faced with the controversial nomenclatural status due to their close phylogenetic similarity. To probe the evolution and phylogeny of L. casei group, 100 isolates of lactic acid bacteria originated from naturally fermented dairy products in Tibet of China were subjected to multilocus sequence typing (MLST). The MLST scheme, based on analysis of the housekeeping genes fusA, ileS, lepA, leuS, pyrG, recA and recG, revealed that all the isolates belonged to a group containing the L. paracasei reference strains and were clearly different from the strains of L. casei and L. rhamnosus. Although nucleotide diversity (π) was low for the seven genes (ranging from 0.00341 for fusA to 0.01307 for recG), high genetic diversity represented by 83 sequence types (STs) with a discriminatory index of 0.98 was detected. A network-like structure based on split decomposition analysis, and the high values of the relative effect of recombination and mutation in the diversification of the lineages (r/m = 4.76) and the relative frequency of occurrence of recombination and mutation (ρ/θ = 2.62) indicated that intra-species recombination occurred frequently and homologous recombination played a key role in generating genotypic diversity amongst L. paracasei strains in Tibet. The discovery of 51 new STs and the results of STRUCTURE analysis suggested that the L. casei group in Tibet had an individual and particular population structure in comparison to European isolates. Overall, this research might be the first report about genetic diversity and population structure of Lactobacillus populations isolated from naturally fermented dairy products in Tibet based on MLST scheme.
Simultaneous phylogeny reconstruction and multiple sequence alignment
Yue, Feng; Shi, Jian; Tang, Jijun
2009-01-01
Background A phylogeny is the evolutionary history of a group of organisms. To date, sequence data is still the most used data type for phylogenetic reconstruction. Before any sequences can be used for phylogeny reconstruction, they must be aligned, and the quality of the multiple sequence alignment has been shown to affect the quality of the inferred phylogeny. At the same time, all the current multiple sequence alignment programs use a guide tree to produce the alignment and experiments showed that good guide trees can significantly improve the multiple alignment quality. Results We devise a new algorithm to simultaneously align multiple sequences and search for the phylogenetic tree that leads to the best alignment. We also implemented the algorithm as a C program package, which can handle both DNA and protein data and can take simple cost model as well as complex substitution matrices, such as PAM250 or BLOSUM62. The performance of the new method are compared with those from other popular multiple sequence alignment tools, including the widely used programs such as ClustalW and T-Coffee. Experimental results suggest that this method has good performance in terms of both phylogeny accuracy and alignment quality. Conclusion We present an algorithm to align multiple sequences and reconstruct the phylogenies that minimize the alignment score, which is based on an efficient algorithm to solve the median problems for three sequences. Our extensive experiments suggest that this method is very promising and can produce high quality phylogenies and alignments. PMID:19208110
Distance-Based Phylogenetic Methods Around a Polytomy.
Davidson, Ruth; Sullivant, Seth
2014-01-01
Distance-based phylogenetic algorithms attempt to solve the NP-hard least-squares phylogeny problem by mapping an arbitrary dissimilarity map representing biological data to a tree metric. The set of all dissimilarity maps is a Euclidean space properly containing the space of all tree metrics as a polyhedral fan. Outputs of distance-based tree reconstruction algorithms such as UPGMA and neighbor-joining are points in the maximal cones in the fan. Tree metrics with polytomies lie at the intersections of maximal cones. A phylogenetic algorithm divides the space of all dissimilarity maps into regions based upon which combinatorial tree is reconstructed by the algorithm. Comparison of phylogenetic methods can be done by comparing the geometry of these regions. We use polyhedral geometry to compare the local nature of the subdivisions induced by least-squares phylogeny, UPGMA, and neighbor-joining when the true tree has a single polytomy with exactly four neighbors. Our results suggest that in some circumstances, UPGMA and neighbor-joining poorly match least-squares phylogeny.
Lima, Luciana; Espinosa-Álvarez, Oneida; Ortiz, Paola A; Trejo-Varón, Javier A; Carranza, Julio C; Pinto, C Miguel; Serrano, Myrna G; Buck, Gregory A; Camargo, Erney P; Teixeira, Marta M G
2015-11-01
Trypanosoma cruzi is a complex of phenotypically and genetically diverse isolates distributed in six discrete typing units (DTUs) designated as TcI-TcVI. Five years ago, T. cruzi isolates from Brazilian bats showing unique patterns of traditional ribosomal and spliced leader PCRs not clustering into any of the six DTUs were designated as the Tcbat genotype. In the present study, phylogenies inferred using SSU rRNA (small subunit of ribosomal rRNA), gGAPDH (glycosomal glyceraldehyde 3-phosphate dehydrogenase) and Cytb (cytochrome b) genes strongly supported Tcbat as a monophyletic lineage prevalent in Brazil, Panama and Colombia. Providing strong support for Tcbat, sequences from 37 of 47 nuclear and 12 mitochondrial genes (retrieved from a draft genome of Tcbat) and reference strains of all DTUs available in databanks corroborated Tcbat as an independent DTU. Consistent with previous studies, multilocus analysis of most nuclear genes corroborated the evolution of T. cruzi from bat trypanosomes its divergence into two main phylogenetic lineages: the basal TcII; and the lineage clustering TcIV, the clade comprising TcIII and the sister groups TcI-Tcbat. Most likely, the common ancestor of Tcbat and TcI was a bat trypanosome. However, the results of the present analysis did not support Tcbat as the ancestor of all DTUs. Despite the insights provided by reports of TcIII, TcIV and TcII in bats, including Amazonian bats harbouring TcII, further studies are necessary to understand the roles played by bats in the diversification of all DTUs. We also demonstrated that in addition to value as molecular markers for DTU assignment, Cytb, ITS rDNA and the spliced leader (SL) polymorphic sequences suggest spatially structured populations of Tcbat. Phylogenetic and phylogeographical analyses, multiple molecular markers specific to Tcbat, and the degrees of sequence divergence between Tcbat and the accepted DTUs strongly support the definitive classification of Tcbat as a new DTU. Copyright © 2015 Elsevier B.V. All rights reserved.
Holmes, Anne; Allison, Lesley; Ward, Melissa; Dallman, Timothy J; Clark, Richard; Fawkes, Angie; Murphy, Lee; Hanson, Mary
2015-11-01
Detailed laboratory characterization of Escherichia coli O157 is essential to inform epidemiological investigations. This study assessed the utility of whole-genome sequencing (WGS) for outbreak detection and epidemiological surveillance of E. coli O157, and the data were used to identify discernible associations between genotypes and clinical outcomes. One hundred five E. coli O157 strains isolated over a 5-year period from human fecal samples in Lothian, Scotland, were sequenced with the Ion Torrent Personal Genome Machine. A total of 8,721 variable sites in the core genome were identified among the 105 isolates; 47% of the single nucleotide polymorphisms (SNPs) were attributable to six "atypical" E. coli O157 strains and included recombinant regions. Phylogenetic analyses showed that WGS correlated well with the epidemiological data. Epidemiological links existed between cases whose isolates differed by three or fewer SNPs. WGS also correlated well with multilocus variable-number tandem repeat analysis (MLVA) typing data, with only three discordant results observed, all among isolates from cases not known to be epidemiologically related. WGS produced a better-supported, higher-resolution phylogeny than MLVA, confirming that the method is more suitable for epidemiological surveillance of E. coli O157. A combination of in silico analyses (VirulenceFinder, ResFinder, and local BLAST searches) were used to determine stx subtypes, multilocus sequence types (15 loci), and the presence of virulence and acquired antimicrobial resistance genes. There was a high level of correlation between the WGS data and our routine typing methods, although some discordant results were observed, mostly related to the limitation of short sequence read assembly. The data were used to identify sublineages and clades of E. coli O157, and when they were correlated with the clinical outcome data, they showed that one clade, Ic3, was significantly associated with severe disease. Together, the results show that WGS data can provide higher resolution of the relationships between E. coli O157 isolates than that provided by MLVA. The method has the potential to streamline the laboratory workflow and provide detailed information for the clinical management of patients and public health interventions. Copyright © 2015, Holmes et al.
Allison, Lesley; Ward, Melissa; Dallman, Timothy J.; Clark, Richard; Fawkes, Angie; Murphy, Lee; Hanson, Mary
2015-01-01
Detailed laboratory characterization of Escherichia coli O157 is essential to inform epidemiological investigations. This study assessed the utility of whole-genome sequencing (WGS) for outbreak detection and epidemiological surveillance of E. coli O157, and the data were used to identify discernible associations between genotypes and clinical outcomes. One hundred five E. coli O157 strains isolated over a 5-year period from human fecal samples in Lothian, Scotland, were sequenced with the Ion Torrent Personal Genome Machine. A total of 8,721 variable sites in the core genome were identified among the 105 isolates; 47% of the single nucleotide polymorphisms (SNPs) were attributable to six “atypical” E. coli O157 strains and included recombinant regions. Phylogenetic analyses showed that WGS correlated well with the epidemiological data. Epidemiological links existed between cases whose isolates differed by three or fewer SNPs. WGS also correlated well with multilocus variable-number tandem repeat analysis (MLVA) typing data, with only three discordant results observed, all among isolates from cases not known to be epidemiologically related. WGS produced a better-supported, higher-resolution phylogeny than MLVA, confirming that the method is more suitable for epidemiological surveillance of E. coli O157. A combination of in silico analyses (VirulenceFinder, ResFinder, and local BLAST searches) were used to determine stx subtypes, multilocus sequence types (15 loci), and the presence of virulence and acquired antimicrobial resistance genes. There was a high level of correlation between the WGS data and our routine typing methods, although some discordant results were observed, mostly related to the limitation of short sequence read assembly. The data were used to identify sublineages and clades of E. coli O157, and when they were correlated with the clinical outcome data, they showed that one clade, Ic3, was significantly associated with severe disease. Together, the results show that WGS data can provide higher resolution of the relationships between E. coli O157 isolates than that provided by MLVA. The method has the potential to streamline the laboratory workflow and provide detailed information for the clinical management of patients and public health interventions. PMID:26354815
van Tuinen, Marcel; Torres, Christopher R.
2015-01-01
Uncertainty in divergence time estimation is frequently studied from many angles but rarely from the perspective of phylogenetic node age. If appropriate molecular models and fossil priors are used, a multi-locus, partitioned analysis is expected to equally minimize error in accuracy and precision across all nodes of a given phylogeny. In contrast, if available models fail to completely account for rate heterogeneity, substitution saturation and incompleteness of the fossil record, uncertainty in divergence time estimation may increase with node age. While many studies have stressed this concern with regard to deep nodes in the Tree of Life, the inference that molecular divergence time estimation of shallow nodes is less sensitive to erroneous model choice has not been tested explicitly in a Bayesian framework. Because of available divergence time estimation methods that permit fossil priors across any phylogenetic node and the present increase in efficient, cheap collection of species-level genomic data, insight is needed into the performance of divergence time estimation of shallow (<10 MY) nodes. Here, we performed multiple sensitivity analyses in a multi-locus data set of aquatic birds with six fossil constraints. Comparison across divergence time analyses that varied taxon and locus sampling, number and position of fossil constraint and shape of prior distribution showed various insights. Deviation from node ages obtained from a reference analysis was generally highest for the shallowest nodes but determined more by temporal placement than number of fossil constraints. Calibration with only the shallowest nodes significantly underestimated the aquatic bird fossil record, indicating the presence of saturation. Although joint calibration with all six priors yielded ages most consistent with the fossil record, ages of shallow nodes were overestimated. This bias was found in both mtDNA and nDNA regions. Thus, divergence time estimation of shallow nodes may suffer from bias and low precision, even when appropriate fossil priors and best available substitution models are chosen. Much care must be taken to address the possible ramifications of substitution saturation across the entire Tree of Life. PMID:26106406
Ron, Santiago R; Santos, Juan C; Cannatella, David C
2006-05-01
We present a phylogeny of the Neotropical genus Engystomops (= Physalaemus pustulosus species group) based on sequences of approximately 2.4 kb of mtDNA, (12S rRNA, valine-tRNA, and 16S rRNA) and propose a phylogenetic nomenclature. The phylogeny includes all described taxa and two unnamed species. All analyses indicate that Engystomops is monophyletic and contains two basal allopatric clades. Clade I (Edentulus) includes E. pustulosus and the Amazonian E. petersi + E. cf. freibergi. Clade II (Duovox) includes all species distributed in W Ecuador and NW Peru. Brevivox, a clade of small-sized species is strongly supported within Duovox. Populations of Engystomops pustulosus fall into two well-supported clades, each of which occupies two disjunct portions of the species range. Overall, our phylogeny is congruent with most previous hypotheses. This study is among the few published species-level phylogenies of Neotropical amphibians derived from molecular datasets. A review of the proportion of new species detected by similar studies suggests that the increasing use of molecular techniques will lead to the discovery of a vast number of species of Neotropical amphibians.
Zhi-Bin Wen; Ming-Li Zhang; Ge-Lin Zhu; Stewart C. Sanderson
2010-01-01
To reconstruct phylogeny and verify the monophyly of major subgroups, a total of 52 species representing almost all species of Salsoleae s.l. in China were sampled, with analysis based on three molecular markers (nrDNA ITS, cpDNA psbB-psbH and rbcL), using maximum parsimony, maximum likelihood, and Bayesian inference methods. Our molecular evidence provides strong...
Kawasaki, Yuuki; Schuler, Hannes; Stauffer, Christian; Lakatos, Ferenc; Kajimura, Hisashi
2016-05-19
Haplodiploidy is a sex determination system in which fertilized diploid eggs develop into females and unfertilized haploid eggs develop into males. The evolutionary explanations for this phenomenon include the possibility that haplodiploidy can be reinforced by infection with endosymbiotic bacteria, such as Wolbachia. The subfamily Scolytinae contains species with haplodiploid and diploid sex determination systems. Thus, we studied the association with Wolbachia in 12 diploid and 11 haplodiploid scolytine beetles by analyzing wsp and multilocus sequence typing (MLST) of five loci in this endosymbiont. Wolbachia genotypes were compared with mitochondrial (COI) and nuclear (EF) genotypes in the scolytines. Eight of the 23 scolytine species were infected with Wolbachia, with haplodiploids at significantly higher rates than diploid species. Cloning and sequencing detected multiple infections with up to six Wolbachia strains in individual species. Phylogenetic analyses of wsp and five MLST genes revealed different Wolbachia strains in scolytines. Comparisons between the beetle and Wolbachia phylogenies revealed that closely related beetles were infected with genetically different Wolbachia strains. These results suggest the horizontal transmission of multiple Wolbachia strains between scolytines. We discuss these results in terms of the evolution of different sex determination systems in scolytine beetles. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Ben Said, Mourad; Ben Asker, Alaa; Belkahia, Hanène; Ghribi, Raoua; Selmi, Rachid; Messadi, Lilia
2018-05-12
Anaplasma marginale, which is responsible for bovine anaplasmosis in tropical and subtropical regions, is a tick-borne obligatory intraerythrocytic bacterium of cattle and wild ruminants. In Tunisia, information about the genetic diversity and the phylogeny of A. marginale strains are limited to the msp4 gene analysis. The purpose of this study is to investigate A. marginale isolates infecting 16 cattle located in different bioclimatic areas of northern Tunisia with single gene analysis and multilocus sequence typing methods on the basis of seven partial genes (dnaA, ftsZ, groEL, lipA, secY, recA and sucB). The single gene analysis confirmed the presence of different and novel heterogenic A. marginale strains infecting cattle from the north of Tunisia. The concatenated sequence analysis showed a phylogeographical resolution at the global level and that most of the Tunisian sequence types (STs) formed a separate cluster from a South African isolate and from all New World isolates and strains. By combining the characteristics of each single locus with those of the multi-loci scheme, these results provide a more detailed understanding on the diversity and the evolution of Tunisian A. marginale strains. Copyright © 2018 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Fine, P.; Zapata, F.; Daly, D.
2014-12-01
Andean uplift and the collision of North and South America are thought to have major implications for the diversification of the Neotropical biota. However, few studies have investigated how these geological events may have influenced diversification. We present a multilocus phylogeny of 102 Protieae taxa (73% of published species), sampled pantropically, to test hypotheses about the relative importance of dispersal, vicariance, habitat specialization, and biotic factors in the diversification of this ecologically dominant tribe of Neotropical trees. Bayesian fossil-calibrated analyses date the Protieae stem at 55 Mya. Biogeographic analyses reconstruct an initial late Oligocene/early Miocene radiation in Amazonia for Neotropical Protieae, with several subsequent late Miocene dispersal events to Central America, the Caribbean, Brazil's Atlantic Forest, and the Chocó. Regional phylogenetic structure results indicate frequent dispersal among regions throughout the Miocene and many instances of more recent regional in situ speciation. Habitat specialization to white sand or flooded soils was common, especially in Amazonia. There was one significant increase in diversification rate coincident with colonization of the Neotropics, followed by a gradual decrease consistent with models of diversity-dependent cladogenesis. Dispersal, biotic interactions, and habitat specialization are thus hypothesized to be the most important processes underlying the diversification of the Protieae.
Stöger, I.; Sigwart, J. D.; Kano, Y.; Knebelsberger, T.; Marshall, B. A.; Schwabe, E.; Schrödl, M.
2013-01-01
Molluscs are a diverse animal phylum with a formidable fossil record. Although there is little doubt about the monophyly of the eight extant classes, relationships between these groups are controversial. We analysed a comprehensive multilocus molecular data set for molluscs, the first to include multiple species from all classes, including five monoplacophorans in both extant families. Our analyses of five markers resolve two major clades: the first includes gastropods and bivalves sister to Serialia (monoplacophorans and chitons), and the second comprises scaphopods sister to aplacophorans and cephalopods. Traditional groupings such as Testaria, Aculifera, and Conchifera are rejected by our data with significant Approximately Unbiased (AU) test values. A new molecular clock indicates that molluscs had a terminal Precambrian origin with rapid divergence of all eight extant classes in the Cambrian. The recovery of Serialia as a derived, Late Cambrian clade is potentially in line with the stratigraphic chronology of morphologically heterogeneous early mollusc fossils. Serialia is in conflict with traditional molluscan classifications and recent phylogenomic data. Yet our hypothesis, as others from molecular data, implies frequent molluscan shell and body transformations by heterochronic shifts in development and multiple convergent adaptations, leading to the variable shells and body plans in extant lineages. PMID:24350268
Szabóová, Dana; Bielik, Peter; Poláková, Silvia; Šoltys, Katarína; Jatzová, Katarína; Szemes, Tomáš
2017-01-01
Abstract The yeast Saccharomyces are widely used to test ecological and evolutionary hypotheses. A large number of nuclear genomic DNA sequences are available, but mitochondrial genomic data are insufficient. We completed mitochondrial DNA (mtDNA) sequencing from Illumina MiSeq reads for all Saccharomyces species. All are circularly mapped molecules decreasing in size with phylogenetic distance from Saccharomyces cerevisiae but with similar gene content including regulatory and selfish elements like origins of replication, introns, free-standing open reading frames or GC clusters. Their most profound feature is species-specific alteration in gene order. The genetic code slightly differs from well-established yeast mitochondrial code as GUG is used rarely as the translation start and CGA and CGC code for arginine. The multilocus phylogeny, inferred from mtDNA, does not correlate with the trees derived from nuclear genes. mtDNA data demonstrate that Saccharomyces cariocanus should be assigned as a separate species and Saccharomyces bayanus CBS 380T should not be considered as a distinct species due to mtDNA nearly identical to Saccharomyces uvarum mtDNA. Apparently, comparison of mtDNAs should not be neglected in genomic studies as it is an important tool to understand the origin and evolutionary history of some yeast species. PMID:28992063
New Vibrio species associated to molluscan microbiota: a review
Romalde, Jesús L.; Dieguez, Ana L.; Lasa, Aide; Balboa, Sabela
2014-01-01
The genus Vibrio consists of more than 100 species grouped in 14 clades that are widely distributed in aquatic environments such as estuarine, coastal waters, and sediments. A large number of species of this genus are associated with marine organisms like fish, molluscs and crustaceans, in commensal or pathogenic relations. In the last decade, more than 50 new species have been described in the genus Vibrio, due to the introduction of new molecular techniques in bacterial taxonomy, such as multilocus sequence analysis or fluorescent amplified fragment length polymorphism. On the other hand, the increasing number of environmental studies has contributed to improve the knowledge about the family Vibrionaceae and its phylogeny. Vibrio crassostreae, V. breoganii, V. celticus are some of the new Vibrio species described as forming part of the molluscan microbiota. Some of them have been associated with mortalities of different molluscan species, seriously affecting their culture and causing high losses in hatcheries as well as in natural beds. For other species, ecological importance has been demonstrated being highly abundant in different marine habitats and geographical regions. The present work provides an updated overview of the recently characterized Vibrio species isolated from molluscs. In addition, their pathogenic potential and/or environmental importance is discussed. PMID:24427157
Xu, Jinshi; Chen, Yu; Zhang, Lixia; Chai, Yongfu; Wang, Mao; Guo, Yaoxin; Li, Ting; Yue, Ming
2017-07-01
Community assembly processes is the primary focus of community ecology. Using phylogenetic-based and functional trait-based methods jointly to explore these processes along environmental gradients are useful ways to explain the change of assembly mechanisms under changing world. Our study combined these methods to test assembly processes in wide range gradients of elevation and other habitat environmental factors. We collected our data at 40 plots in Taibai Mountain, China, with more than 2,300 m altitude difference in study area and then measured traits and environmental factors. Variance partitioning was used to distinguish the main environment factors leading to phylogeny and traits change among 40 plots. Principal component analysis (PCA) was applied to colligate other environment factors. Community assembly patterns along environmental gradients based on phylogenetic and functional methods were studied for exploring assembly mechanisms. Phylogenetic signal was calculated for each community along environmental gradients in order to detect the variation of trait performance on phylogeny. Elevation showed a better explanatory power than other environment factors for phylogenetic and most traits' variance. Phylogenetic and several functional structure clustered at high elevation while some conserved traits overdispersed. Convergent tendency which might be caused by filtering or competition along elevation was detected based on functional traits. Leaf dry matter content (LDMC) and leaf nitrogen content along PCA 1 axis showed conflicting patterns comparing to patterns showed on elevation. LDMC exhibited the strongest phylogenetic signal. Only the phylogenetic signal of maximum plant height showed explicable change along environmental gradients. Synthesis . Elevation is the best environment factors for predicting phylogeny and traits change. Plant's phylogenetic and some functional structures show environmental filtering in alpine region while it shows different assembly processes in middle- and low-altitude region by different trait/phylogeny. The results highlight deterministic processes dominate community assembly in large-scale environmental gradients. Performance of phylogeny and traits along gradients may be independent with each other. The novel method for calculating functional structure which we used in this study and the focus of phylogenetic signal change along gradients may provide more useful ways to detect community assembly mechanisms.
Pneumocystis jirovecii multilocus gene sequencing: findings and implications.
Matos, Olga; Esteves, Francisco
2010-08-01
Pneumocystis jirovecii pneumonia (PcP) remains a major cause of respiratory illness among immunocompromised patients, especially patients infected with HIV, but it has also been isolated from immunocompetent persons. This article discusses the application of multilocus genotyping analysis to the study of the genetic diversity of P. jirovecii and its epidemiological and clinical parameters, and the important concepts achieved to date with these approaches. The multilocus typing studies performed until now have shown that there is an important genetic diversity of stable and ubiquitous P. jirovecii genotypes; infection with P. jirovecii is not necessarily clonal, recombination between some P. jirovecii multilocus genotypes has been suggested. P. jirovecii-specific multilocus genotypes can be associated with severity of PcP. Patients infected with P. jirovecii, regardless of the form of infection they present with, are part of a common human reservoir for future infections. The CYB, DHFR, DHPS, mtLSU rRNA, SOD and the ITS loci are suitable genetic targets to be used in further epidemiological studies focused on the identification and characterization of P. jirovecii haplotypes correlated with drug resistance and PcP outcome.
Gilbert, Maarten J; Duim, Birgitta; Timmerman, Arjen J; Zomer, Aldert L; Wagenaar, Jaap A
2017-08-21
Reptiles have been shown to host a significant Helicobacter diversity. In order to survive, reptile-associated Helicobacter lineages need to be adapted to the thermally dynamic environment encountered in a poikilothermic host. The whole genomes of reptile-associated Helicobacter lineages can provide insights in Helicobacter host adaptation and coevolution. These aspects were explored by comparing the genomes of reptile-, bird-, and mammal-associated Helicobacter lineages. Based on average nucleotide identity, all reptile-associated Helicobacter lineages in this study could be considered distinct species. A whole genome-based phylogeny showed two distinct clades, one associated with chelonians and one associated with lizards. The phylogeny indicates initial adaptation to an anatomical niche, which is followed by an ancient host jump and subsequent diversification. Furthermore, the ability to grow at low temperatures, which might reflect thermal adaptation to a reptilian host, originated at least twice in Helicobacter evolution. A putative tricarballylate catabolism locus was specifically present in Campylobacter and Helicobacter isolates from reptiles. The phylogeny of reptile-associated Helicobacter parallels host association, indicating a high level of host specificity. The high diversity and deep branching within these clades supports long-term coevolution with, and extensive radiation within the respective reptilian host type.
USDA-ARS?s Scientific Manuscript database
Despite a recent new classification, a stable tree of life for the cycads has been elusive, particularly regarding resolution of Bowenia, Stangeria and Dioon. In this study we apply five single copy nuclear genes (SCNGs) to the phylogeny of the order Cycadales. We specifically aim to evaluate seve...
Bastien, Olivier; Ortet, Philippe; Roy, Sylvaine; Maréchal, Eric
2005-03-10
Popular methods to reconstruct molecular phylogenies are based on multiple sequence alignments, in which addition or removal of data may change the resulting tree topology. We have sought a representation of homologous proteins that would conserve the information of pair-wise sequence alignments, respect probabilistic properties of Z-scores (Monte Carlo methods applied to pair-wise comparisons) and be the basis for a novel method of consistent and stable phylogenetic reconstruction. We have built up a spatial representation of protein sequences using concepts from particle physics (configuration space) and respecting a frame of constraints deduced from pair-wise alignment score properties in information theory. The obtained configuration space of homologous proteins (CSHP) allows the representation of real and shuffled sequences, and thereupon an expression of the TULIP theorem for Z-score probabilities. Based on the CSHP, we propose a phylogeny reconstruction using Z-scores. Deduced trees, called TULIP trees, are consistent with multiple-alignment based trees. Furthermore, the TULIP tree reconstruction method provides a solution for some previously reported incongruent results, such as the apicomplexan enolase phylogeny. The CSHP is a unified model that conserves mutual information between proteins in the way physical models conserve energy. Applications include the reconstruction of evolutionary consistent and robust trees, the topology of which is based on a spatial representation that is not reordered after addition or removal of sequences. The CSHP and its assigned phylogenetic topology, provide a powerful and easily updated representation for massive pair-wise genome comparisons based on Z-score computations.
Szöllősi, Gergely J.; Boussau, Bastien; Abby, Sophie S.; Tannier, Eric; Daubin, Vincent
2012-01-01
The timing of the evolution of microbial life has largely remained elusive due to the scarcity of prokaryotic fossil record and the confounding effects of the exchange of genes among possibly distant species. The history of gene transfer events, however, is not a series of individual oddities; it records which lineages were concurrent and thus provides information on the timing of species diversification. Here, we use a probabilistic model of genome evolution that accounts for differences between gene phylogenies and the species tree as series of duplication, transfer, and loss events to reconstruct chronologically ordered species phylogenies. Using simulations we show that we can robustly recover accurate chronologically ordered species phylogenies in the presence of gene tree reconstruction errors and realistic rates of duplication, transfer, and loss. Using genomic data we demonstrate that we can infer rooted species phylogenies using homologous gene families from complete genomes of 10 bacterial and archaeal groups. Focusing on cyanobacteria, distinguished among prokaryotes by a relative abundance of fossils, we infer the maximum likelihood chronologically ordered species phylogeny based on 36 genomes with 8,332 homologous gene families. We find the order of speciation events to be in full agreement with the fossil record and the inferred phylogeny of cyanobacteria to be consistent with the phylogeny recovered from established phylogenomics methods. Our results demonstrate that lateral gene transfers, detected by probabilistic models of genome evolution, can be used as a source of information on the timing of evolution, providing a valuable complement to the limited prokaryotic fossil record. PMID:23043116
spads 1.0: a toolbox to perform spatial analyses on DNA sequence data sets.
Dellicour, Simon; Mardulyn, Patrick
2014-05-01
SPADS 1.0 (for 'Spatial and Population Analysis of DNA Sequences') is a population genetic toolbox for characterizing genetic variability within and among populations from DNA sequences. In view of the drastic increase in genetic information available through sequencing methods, spads was specifically designed to deal with multilocus data sets of DNA sequences. It computes several summary statistics from populations or groups of populations, performs input file conversions for other population genetic programs and implements locus-by-locus and multilocus versions of two clustering algorithms to study the genetic structure of populations. The toolbox also includes two MATLAB and r functions, GDISPAL and GDIVPAL, to display differentiation and diversity patterns across landscapes. These functions aim to generate interpolating surfaces based on multilocus distance and diversity indices. In the case of multiple loci, such surfaces can represent a useful alternative to multiple pie charts maps traditionally used in phylogeography to represent the spatial distribution of genetic diversity. These coloured surfaces can also be used to compare different data sets or different diversity and/or distance measures estimated on the same data set. © 2013 John Wiley & Sons Ltd.
Sharma, Anshul; Kaur, Jasmine; Lee, Sulhee; Park, Young-Seo
2018-06-01
In the present study, 35 Leuconostoc mesenteroides strains isolated from vegetables and food products from South Korea were studied by multilocus sequence typing (MLST) of seven housekeeping genes (atpA, groEL, gyrB, pheS, pyrG, rpoA, and uvrC). The fragment sizes of the seven amplified housekeeping genes ranged in length from 366 to 1414 bp. Sequence analysis indicated 27 different sequence types (STs) with 25 of them being represented by a single strain indicating high genetic diversity, whereas the remaining 2 were characterized by five strains each. In total, 220 polymorphic nucleotide sites were detected among seven housekeeping genes. The phylogenetic analysis based on the STs of the seven loci indicated that the 35 strains belonged to two major groups, A (28 strains) and B (7 strains). Split decomposition analysis showed that intraspecies recombination played a role in generating diversity among strains. The minimum spanning tree showed that the evolution of the STs was not correlated with food source. This study signifies that the multilocus sequence typing is a valuable tool to access the genetic diversity among L. mesenteroides strains from South Korea and can be used further to monitor the evolutionary changes.
Rodriguez, E; De Meeüs, T; Mallie, M; Renaud, F; Symoens, F; Mondon, P; Piens, M A; Lebeau, B; Viviani, M A; Grillot, R; Nolard, N; Chapuis, F; Tortorano, A M; Bastide, J M
1996-01-01
The genotypes of 63 isolates of Aspergillus fumigatus obtained from three hospitals in different geographical areas and of eight culture collection strains were determined by multilocus enzyme electrophoresis. Twelve of the 17 enzymatic loci studied were polymorphic, giving rise to 48 different electrophoretic types. The existence of fixed multilocus genotypes, significant heterozygote deficits and excesses at the different loci, and linkage disequilibria within subpopulations strongly suggests a clonal reproduction mode for A. fumigatus. Numerical analysis of the comparison and disposition of the different electrophoretic types demonstrates a significant genetic differentiation between the three sampling sites. However, no correlation could be found between geographical distances and genetic differentiation. On account of the multiple discriminatory markers, multilocus enzyme electrophoresis typing seems to be a very powerful tool for epidemiological and reproductive mode studies of A. fumigatus. PMID:8880520
Larmuseau, Maarten H D; Van Geystelen, Anneleen; Kayser, Manfred; van Oven, Mannis; Decorte, Ronny
2015-03-01
Currently, several different Y-chromosomal phylogenies and haplogroup nomenclatures are presented in scientific literature and at conferences demonstrating the present diversity in Y-chromosomal phylogenetic trees and Y-SNP sets used within forensic and anthropological research. This situation can be ascribed to the exponential growth of the number of Y-SNPs discovered due to mostly next-generation sequencing (NGS) studies. As Y-SNPs and their respective phylogenetic positions are important in forensics, such as for male lineage characterization and paternal bio-geographic ancestry inference, there is a need for forensic geneticists to know how to deal with these newly identified Y-SNPs and phylogenies, especially since these phylogenies are often created with other aims than to carry out forensic genetic research. Therefore, we give here an overview of four categories of currently used Y-chromosomal phylogenies and the associated Y-SNP sets in scientific research in the current NGS era. We compare these categories based on the construction method, their advantages and disadvantages, the disciplines wherein the phylogenetic tree can be used, and their specific relevance for forensic geneticists. Based on this overview, it is clear that an up-to-date reduced tree with a consensus Y-SNP set and a stable nomenclature will be the most appropriate reference resource for forensic research. Initiatives to reach such an international consensus are therefore highly recommended. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Large-scale phylogenomic analysis resolves a backbone phylogeny in ferns.
Shen, Hui; Jin, Dongmei; Shu, Jiang-Ping; Zhou, Xi-Le; Lei, Ming; Wei, Ran; Shang, Hui; Wei, Hong-Jin; Zhang, Rui; Liu, Li; Gu, Yu-Feng; Zhang, Xian-Chun; Yan, Yue-Hong
2018-02-01
Ferns, originated about 360 million years ago, are the sister group of seed plants. Despite the remarkable progress in our understanding of fern phylogeny, with conflicting molecular evidence and different morphological interpretations, relationships among major fern lineages remain controversial. With the aim to obtain a robust fern phylogeny, we carried out a large-scale phylogenomic analysis using high-quality transcriptome sequencing data, which covered 69 fern species from 38 families and 11 orders. Both coalescent-based and concatenation-based methods were applied to both nucleotide and amino acid sequences in species tree estimation. The resulting topologies are largely congruent with each other, except for the placement of Angiopteris fokiensis, Cheiropleuria bicuspis, Diplaziopsis brunoniana, Matteuccia struthiopteris, Elaphoglossum mcclurei, and Tectaria subpedata. Our result confirmed that Equisetales is sister to the rest of ferns, and Dennstaedtiaceae is sister to eupolypods. Moreover, our result strongly supported some relationships different from the current view of fern phylogeny, including that Marattiaceae may be sister to the monophyletic clade of Psilotaceae and Ophioglossaceae; that Gleicheniaceae and Hymenophyllaceae form a monophyletic clade sister to Dipteridaceae; and that Aspleniaceae is sister to the rest of the groups in eupolypods II. These results were interpreted with morphological traits, especially sporangia characters, and a new evolutionary route of sporangial annulus in ferns was suggested. This backbone phylogeny in ferns sets a foundation for further studies in biology and evolution in ferns, and therefore in plants. © The Authors 2017. Published by Oxford University Press.
Large-scale phylogenomic analysis resolves a backbone phylogeny in ferns
Shen, Hui; Jin, Dongmei; Shu, Jiang-Ping; Zhou, Xi-Le; Lei, Ming; Wei, Ran; Shang, Hui; Wei, Hong-Jin; Zhang, Rui; Liu, Li; Gu, Yu-Feng; Zhang, Xian-Chun; Yan, Yue-Hong
2018-01-01
Abstract Background Ferns, originated about 360 million years ago, are the sister group of seed plants. Despite the remarkable progress in our understanding of fern phylogeny, with conflicting molecular evidence and different morphological interpretations, relationships among major fern lineages remain controversial. Results With the aim to obtain a robust fern phylogeny, we carried out a large-scale phylogenomic analysis using high-quality transcriptome sequencing data, which covered 69 fern species from 38 families and 11 orders. Both coalescent-based and concatenation-based methods were applied to both nucleotide and amino acid sequences in species tree estimation. The resulting topologies are largely congruent with each other, except for the placement of Angiopteris fokiensis, Cheiropleuria bicuspis, Diplaziopsis brunoniana, Matteuccia struthiopteris, Elaphoglossum mcclurei, and Tectaria subpedata. Conclusions Our result confirmed that Equisetales is sister to the rest of ferns, and Dennstaedtiaceae is sister to eupolypods. Moreover, our result strongly supported some relationships different from the current view of fern phylogeny, including that Marattiaceae may be sister to the monophyletic clade of Psilotaceae and Ophioglossaceae; that Gleicheniaceae and Hymenophyllaceae form a monophyletic clade sister to Dipteridaceae; and that Aspleniaceae is sister to the rest of the groups in eupolypods II. These results were interpreted with morphological traits, especially sporangia characters, and a new evolutionary route of sporangial annulus in ferns was suggested. This backbone phylogeny in ferns sets a foundation for further studies in biology and evolution in ferns, and therefore in plants. PMID:29186447
Smith, William Leo; Wheeler, Ward C
2006-01-01
Knowledge of evolutionary relationships or phylogeny allows for effective predictions about the unstudied characteristics of species. These include the presence and biological activity of an organism's venoms. To date, most venom bioprospecting has focused on snakes, resulting in six stroke and cancer treatment drugs that are nearing U.S. Food and Drug Administration review. Fishes, however, with thousands of venoms, represent an untapped resource of natural products. The first step involved in the efficient bioprospecting of these compounds is a phylogeny of venomous fishes. Here, we show the results of such an analysis and provide the first explicit suborder-level phylogeny for spiny-rayed fishes. The results, based on approximately 1.1 million aligned base pairs, suggest that, in contrast to previous estimates of 200 venomous fishes, >1,200 fishes in 12 clades should be presumed venomous. This assertion was corroborated by a detailed anatomical study examining potentially venomous structures in >100 species. The results of these studies not only alter our view of the diversity of venomous fishes, now representing >50% of venomous vertebrates, but also provide the predictive phylogeny or "road map" for the efficient search for potential pharmacological agents or physiological tools from the unexplored fish venoms.
Cultural Phylogenetics of the Tupi Language Family in Lowland South America
Walker, Robert S.; Wichmann, Søren; Mailund, Thomas; Atkisson, Curtis J.
2012-01-01
Background Recent advances in automated assessment of basic vocabulary lists allow the construction of linguistic phylogenies useful for tracing dynamics of human population expansions, reconstructing ancestral cultures, and modeling transition rates of cultural traits over time. Methods Here we investigate the Tupi expansion, a widely-dispersed language family in lowland South America, with a distance-based phylogeny based on 40-word vocabulary lists from 48 languages. We coded 11 cultural traits across the diverse Tupi family including traditional warfare patterns, post-marital residence, corporate structure, community size, paternity beliefs, sibling terminology, presence of canoes, tattooing, shamanism, men's houses, and lip plugs. Results/Discussion The linguistic phylogeny supports a Tupi homeland in west-central Brazil with subsequent major expansions across much of lowland South America. Consistently, ancestral reconstructions of cultural traits over the linguistic phylogeny suggest that social complexity has tended to decline through time, most notably in the independent emergence of several nomadic hunter-gatherer societies. Estimated rates of cultural change across the Tupi expansion are on the order of only a few changes per 10,000 years, in accord with previous cultural phylogenetic results in other language families around the world, and indicate a conservative nature to much of human culture. PMID:22506065
Molecular phylogeny and morphological evolution of the Acantharia (Radiolaria).
Decelle, Johan; Suzuki, Noritoshi; Mahé, Fredéric; de Vargas, Colomban; Not, Fabrice
2012-05-01
Acantharia are ubiquitous and abundant rhizarian protists in the world ocean. The skeleton made of strontium sulphate and the fact that certain harbour microalgal endosymbionts make them key planktonic players for the ecology of marine ecosystems. Based on morphological criteria, the current taxonomy of Acantharia was established by W.T. Schewiakoff in 1926, since when no major revision has been undertaken. Here, we established the first comprehensive molecular phylogeny from single morphologically-identified acantharian cells, isolated from various oceans. Our phylogenetic analyses based on 78 18S rDNA and 107 partial 28S rDNA revealed the existence of 6 main clades, sub-divided into 13 sub-clades. The polyphyletic nature of acantharian families and genera demonstrates the need for revision of the current taxonomy. This molecular phylogeny, which highlights the taxonomic relevance of specific morphological criteria, such as the presence of a shell and the organisation of the central junction, provides a robust phylogenetic framework for future taxonomic emendation. Finally, mapping all the existing environmental sequences available to date from different marine ecosystems onto our reference phylogeny unveiled another 3 clades and improved the understanding of the biogeography and ecology of Acantharia. Copyright © 2011 Elsevier GmbH. All rights reserved.
Bergin, Sarah M; Periaswamy, Balamurugan; Barkham, Timothy; Chua, Hong Choon; Mok, Yee Ming; Fung, Daniel Shuen Sheng; Su, Alex Hsin Chuan; Lee, Yen Ling; Chua, Ming Lai Ivan; Ng, Poh Yong; Soon, Wei Jia Wendy; Chu, Collins Wenhan; Tan, Siyun Lucinda; Meehan, Mary; Ang, Brenda Sze Peng; Leo, Yee Sin; Holden, Matthew T G; De, Partha; Hsu, Li Yang; Chen, Swaine L; de Sessions, Paola Florez; Marimuthu, Kalisvar
2018-05-09
OBJECTIVEWe report the utility of whole-genome sequencing (WGS) conducted in a clinically relevant time frame (ie, sufficient for guiding management decision), in managing a Streptococcus pyogenes outbreak, and present a comparison of its performance with emm typing.SETTINGA 2,000-bed tertiary-care psychiatric hospital.METHODSActive surveillance was conducted to identify new cases of S. pyogenes. WGS guided targeted epidemiological investigations, and infection control measures were implemented. Single-nucleotide polymorphism (SNP)-based genome phylogeny, emm typing, and multilocus sequence typing (MLST) were performed. We compared the ability of WGS and emm typing to correctly identify person-to-person transmission and to guide the management of the outbreak.RESULTSThe study included 204 patients and 152 staff. We identified 35 patients and 2 staff members with S. pyogenes. WGS revealed polyclonal S. pyogenes infections with 3 genetically distinct phylogenetic clusters (C1-C3). Cluster C1 isolates were all emm type 4, sequence type 915 and had pairwise SNP differences of 0-5, which suggested recent person-to-person transmissions. Epidemiological investigation revealed that cluster C1 was mediated by dermal colonization and transmission of S. pyogenes in a male residential ward. Clusters C2 and C3 were genomically diverse, with pairwise SNP differences of 21-45 and 26-58, and emm 11 and mostly emm120, respectively. Clusters C2 and C3, which may have been considered person-to-person transmissions by emm typing, were shown by WGS to be unlikely by integrating pairwise SNP differences with epidemiology.CONCLUSIONSWGS had higher resolution than emm typing in identifying clusters with recent and ongoing person-to-person transmissions, which allowed implementation of targeted intervention to control the outbreak.Infect Control Hosp Epidemiol 2018;1-9.
Chen, Jin-Min; Zhou, Wei-Wei; Poyarkov, Nikolay A; Stuart, Bryan L; Brown, Rafe M; Lathrop, Amy; Wang, Ying-Yong; Yuan, Zhi-Yong; Jiang, Ke; Hou, Mian; Chen, Hong-Man; Suwannapoom, Chatmongkon; Nguyen, Sang Ngoc; Duong, Tang Van; Papenfuss, Theodore J; Murphy, Robert W; Zhang, Ya-Ping; Che, Jing
2017-01-01
The horned toad assemblage, genus Megophrys sensu lato, currently includes three groups previously recognized as the genera Atympanophrys, Xenophrys and Megophrys sensu stricto. The taxonomic status and species composition of the three groups remain controversial due to conflicting phenotypic analyses and insufficient phylogenetic reconstruction; likewise, the position of the monotypic Borneophrys remains uncertain with respect to the horned toads. Further, the diversity of the horned toads remains poorly understood, especially for widespread species. Herein, we evaluate species-level diversity based on 45 of the 57 described species from throughout southern China, Southeast Asia and the Himalayas using Bayesian inference trees and the Generalized Mixed Yule Coalescent (GMYC) approach. We estimate the phylogeny using both mitochondrial and nuclear DNA data. Analyses reveal statistically significant mito-nuclear discordance. All analyses resolve paraphyly for horned toads involving multiple strongly supported clades. These clades correspond with geography. We resurrect the genera Atympanophrys and Xenophrys from the synonymy of Megophrys to eliminate paraphyly of Megophrys s.l. and to account for the morphological, molecular and biogeographic differences among these groups, but we also provide an alternative option. Our study suggests that Borneophrys is junior synonym of Megophrys sensu stricto. We provide an estimation of timeframe for the horned toads. The mitochondrial and nuclear trees indicate the presence of many putative undescribed species. Widespread species, such as Xenophrys major and X. minor, likely have dramatically underestimated diversity. The integration of morphological and molecular evidence can validate this discovery. Montane forest dynamics appear to play a significant role in driving diversification of horned toads. Copyright © 2016 Elsevier Inc. All rights reserved.
Yap, Kien-Pong; Ho, Wing S; Gan, Han M; Chai, Lay C; Thong, Kwai L
2016-01-01
Typhoid fever, caused by Salmonella enterica serovar Typhi, remains an important public health burden in Southeast Asia and other endemic countries. Various genotyping methods have been applied to study the genetic variations of this human-restricted pathogen. Multilocus sequence typing (MLST) is one of the widely accepted methods, and recently, there is a growing interest in the re-application of MLST in the post-genomic era. In this study, we provide the global MLST distribution of S. Typhi utilizing both publicly available 1,826 S. Typhi genome sequences in addition to performing conventional MLST on S. Typhi strains isolated from various endemic regions spanning over a century. Our global MLST analysis confirms the predominance of two sequence types (ST1 and ST2) co-existing in the endemic regions. Interestingly, S. Typhi strains with ST8 are currently confined within the African continent. Comparative genomic analyses of ST8 and other rare STs with genomes of ST1/ST2 revealed unique mutations in important virulence genes such as flhB, sipC, and tviD that may explain the variations that differentiate between seemingly successful (widespread) and unsuccessful (poor dissemination) S. Typhi populations. Large scale whole-genome phylogeny demonstrated evidence of phylogeographical structuring and showed that ST8 may have diverged from the earlier ancestral population of ST1 and ST2, which later lost some of its fitness advantages, leading to poor worldwide dissemination. In response to the unprecedented increase in genomic data, this study demonstrates and highlights the utility of large-scale genome-based MLST as a quick and effective approach to narrow the scope of in-depth comparative genomic analysis and consequently provide new insights into the fine scale of pathogen evolution and population structure.
Kim, Sangil; de Medeiros, Bruno A S; Byun, Bong-Kyu; Lee, Seunghwan; Kang, Jung-Hoon; Lee, Bongwoo; Farrell, Brian D
2018-08-01
The longhorn beetle genus Callipogon Audinet-Serville represents a small group of large wood-boring beetles whose distribution pattern exhibits a unique trans-Pacific disjunction between the East Asian temperate rainforest and the tropical rainforest of the Neotropics. To understand the biogeographic history underlying this circum-Pacific disjunct distribution, we reconstructed a molecular phylogeny of the subfamily Prioninae with extensive sampling of Callipogon using multilocus sequence data of 99 prionine and four parandrine samples (ingroups), together with two distant outgroup species. Our sampling of Callipogon includes 18 of the 24 currently accepted species, with complete representation of all species in our focal subgenera. Our phylogenetic analyses confirmed the purported affinity between the Palearctic Callipogon relictus and its Neotropical congeners. Furthermore, based on molecular dating under the fossilized birth-death (FBD) model with comprehensive fossil records and probabilistic ancestral range reconstructions, we estimated the crown group Callipogon to have originated in the Paleocene circa 60 million years ago (Ma) across the Neotropics and Eastern Palearctics. The divergence between the Palearctic C. relictus and its Neotropical congeners is explained as the result of a vicariance event following the demise of boreotropical forest across Beringia at the Eocene-Oligocene boundary. As C. relictus represents the unique relictual species that evidentiates the lineage's expansive ancient distribution, we evaluated its conservation importance through species distribution modelling. Though we estimated a range expansion for C. relictus by 2050, we emphasize a careful implementation of conservation programs towards the protection of primary forest across its current habitats, as the species remains highly vulnerable to habitat disturbance. Copyright © 2018 Elsevier Inc. All rights reserved.
Phylogeny predicts future habitat shifts due to climate change.
Kuntner, Matjaž; Năpăruş, Magdalena; Li, Daiqin; Coddington, Jonathan A
2014-01-01
Taxa may respond differently to climatic changes, depending on phylogenetic or ecological effects, but studies that discern among these alternatives are scarce. Here, we use two species pairs from globally distributed spider clades, each pair representing two lifestyles (generalist, specialist) to test the relative importance of phylogeny versus ecology in predicted responses to climate change. We used a recent phylogenetic hypothesis for nephilid spiders to select four species from two genera (Nephilingis and Nephilengys) that match the above criteria, are fully allopatric but combined occupy all subtropical-tropical regions. Based on their records, we modeled each species niche spaces and predicted their ecological shifts 20, 40, 60, and 80 years into the future using customized GIS tools and projected climatic changes. Phylogeny better predicts the species current ecological preferences than do lifestyles. By 2080 all species face dramatic reductions in suitable habitat (54.8-77.1%) and adapt by moving towards higher altitudes and latitudes, although at different tempos. Phylogeny and life style explain simulated habitat shifts in altitude, but phylogeny is the sole best predictor of latitudinal shifts. Models incorporating phylogenetic relatedness are an important additional tool to predict accurately biotic responses to global change.
A six-gene phylogeny provides new insights into choanoflagellate evolution.
Carr, Martin; Richter, Daniel J; Fozouni, Parinaz; Smith, Timothy J; Jeuck, Alexandra; Leadbeater, Barry S C; Nitsche, Frank
2017-02-01
Recent studies have shown that molecular phylogenies of the choanoflagellates (Class Choanoflagellatea) are in disagreement with their traditional taxonomy, based on morphology, and that Choanoflagellatea requires considerable taxonomic revision. Furthermore, phylogenies suggest that the morphological and ecological evolution of the group is more complex than has previously been recognized. Here we address the taxonomy of the major choanoflagellate order Craspedida, by erecting four new genera. The new genera are shown to be morphologically, ecologically and phylogenetically distinct from other choanoflagellate taxa. Furthermore, we name five novel craspedid species, as well as formally describe ten species that have been shown to be either misidentified or require taxonomic revision. Our revised phylogeny, including 18 new species and sequence data for two additional genes, provides insights into the morphological and ecological evolution of the choanoflagellates. We examine the distribution within choanoflagellates of these two additional genes, EF-1A and EFL, closely related translation GTPases which are required for protein synthesis. Mapping the presence and absence of these genes onto the phylogeny highlights multiple events of gene loss within the choanoflagellates. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Gardner, Shea N; Wagner, Mark C
2005-01-01
Background Microbial forensics is important in tracking the source of a pathogen, whether the disease is a naturally occurring outbreak or part of a criminal investigation. Results A method and SPR Opt (SNP and PCR-RFLP Optimization) software to perform a comprehensive, whole-genome analysis to forensically discriminate multiple sequences is presented. Tools for the optimization of forensic typing using Single Nucleotide Polymorphism (SNP) and PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) analyses across multiple isolate sequences of a species are described. The PCR-RFLP analysis includes prediction and selection of optimal primers and restriction enzymes to enable maximum isolate discrimination based on sequence information. SPR Opt calculates all SNP or PCR-RFLP variations present in the sequences, groups them into haplotypes according to their co-segregation across those sequences, and performs combinatoric analyses to determine which sets of haplotypes provide maximal discrimination among all the input sequences. Those set combinations requiring that membership in the fewest haplotypes be queried (i.e. the fewest assays be performed) are found. These analyses highlight variable regions based on existing sequence data. These markers may be heterogeneous among unsequenced isolates as well, and thus may be useful for characterizing the relationships among unsequenced as well as sequenced isolates. The predictions are multi-locus. Analyses of mumps and SARS viruses are summarized. Phylogenetic trees created based on SNPs, PCR-RFLPs, and full genomes are compared for SARS virus, illustrating that purported phylogenies based only on SNP or PCR-RFLP variations do not match those based on multiple sequence alignment of the full genomes. Conclusion This is the first software to optimize the selection of forensic markers to maximize information gained from the fewest assays, accepting whole or partial genome sequence data as input. As more sequence data becomes available for multiple strains and isolates of a species, automated, computational approaches such as those described here will be essential to make sense of large amounts of information, and to guide and optimize efforts in the laboratory. The software and source code for SPR Opt is publicly available and free for non-profit use at . PMID:15904493
2016-01-01
Angraecum is the largest genus of subtribe Angraecinae (Orchidaceae) with about 221 species. Madagascar is the center of the diversity for the genus with ca. 142 species, of which 90% are endemic. The great morphological diversity associated with species diversification in the genus on the island of Madagascar offers valuable insights for macroevolutionary studies. Phylogenies of the Angraecinae have been published but a lack of taxon and character sampling and their limited taxonomic resolution limit their uses for macroevolutionary studies. We present a new phylogeny of Angraecum based on chloroplast sequence data (matk, rps16, trnL), nuclear ribosomal (ITS2) and 39 morphological characters from 194 Angraecinae species of which 69 were newly sampled. Using this phylogeny, we evaluated the monophyly of the sections of Angraecum as defined by Garay and investigated the patterns of species diversification within the genus. We used maximum parsimony and bayesian analyses to generate phylogenetic trees and dated divergence times of the phylogeny. We analyzed diversification patterns within Angraecinae and Angraecum with an emphasis on four floral characters (flower color, flower size, labellum position, spur length) using macroevolutionary models to evaluate which characters or character states are associated with speciation rates, and inferred ancestral states of these characters. The phylogenetic analysis showed the polyphyly of Angraecum sensu lato and of all Angraecum sections except sect. Hadrangis, and that morphology can be consistent with the phylogeny. It appeared that the characters (flower color, flower size, spur length) formerly used by many authors to delineate Angraecum groups were insufficient to do so. However, the newly described character, position of the labellum (uppermost and lowermost), was the main character delimiting clades within a monophyletic Angraecum sensu stricto. This character also appeared to be associated with speciation rates in Angraecum. The macroevolutionary model-based phylogeny failed to detect shifts in diversification that could be associated directly with morphological diversification. Diversification in Angraecum resulted from gradual species accumulation through time rather than from rapid radiation, a diversification pattern often encountered in tropical rain forests. PMID:27669569
Andriananjamanantsoa, Herinandrianina N; Engberg, Shannon; Louis, Edward E; Brouillet, Luc
Angraecum is the largest genus of subtribe Angraecinae (Orchidaceae) with about 221 species. Madagascar is the center of the diversity for the genus with ca. 142 species, of which 90% are endemic. The great morphological diversity associated with species diversification in the genus on the island of Madagascar offers valuable insights for macroevolutionary studies. Phylogenies of the Angraecinae have been published but a lack of taxon and character sampling and their limited taxonomic resolution limit their uses for macroevolutionary studies. We present a new phylogeny of Angraecum based on chloroplast sequence data (matk, rps16, trnL), nuclear ribosomal (ITS2) and 39 morphological characters from 194 Angraecinae species of which 69 were newly sampled. Using this phylogeny, we evaluated the monophyly of the sections of Angraecum as defined by Garay and investigated the patterns of species diversification within the genus. We used maximum parsimony and bayesian analyses to generate phylogenetic trees and dated divergence times of the phylogeny. We analyzed diversification patterns within Angraecinae and Angraecum with an emphasis on four floral characters (flower color, flower size, labellum position, spur length) using macroevolutionary models to evaluate which characters or character states are associated with speciation rates, and inferred ancestral states of these characters. The phylogenetic analysis showed the polyphyly of Angraecum sensu lato and of all Angraecum sections except sect. Hadrangis, and that morphology can be consistent with the phylogeny. It appeared that the characters (flower color, flower size, spur length) formerly used by many authors to delineate Angraecum groups were insufficient to do so. However, the newly described character, position of the labellum (uppermost and lowermost), was the main character delimiting clades within a monophyletic Angraecum sensu stricto. This character also appeared to be associated with speciation rates in Angraecum. The macroevolutionary model-based phylogeny failed to detect shifts in diversification that could be associated directly with morphological diversification. Diversification in Angraecum resulted from gradual species accumulation through time rather than from rapid radiation, a diversification pattern often encountered in tropical rain forests.
Carvalho, Tiago P; Arce H, Mariangeles; Reis, Roberto E; Sabaj, Mark H
2018-04-30
The family Aspredinidae is a moderately diverse and broadly distributed group of freshwater fishes endemic to South America. Commonly known as Banjo Catfishes, Aspredinidae currently includes 44 valid species divided among 13 genera. The first species-comprehensive hypothesis on phylogenetic relationships among aspredinids is presented. The phylogeny is based on DNA sequence data for five gene fragments (mitochondrial 16S and COI; nuclear RAG1, MYH6 and SH3PX3) from 114 individuals representing 31 species in 12 aspredinid genera. Analyses of molecular data support the monophyly of most genera (Bunocephalus excepted) and several higher-level relationships previously proposed by morphological studies. Based on the molecular phylogeny, a new suprageneric classification for Aspredinidae is proposed with the new monotypic subfamily Pseudobunocephalinae as the sister taxon to all other aspredinids. Copyright © 2018 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The ARS Microbial Genome Sequence Database (http://199.133.98.43), a web-based database server, was established utilizing the BIGSdb (Bacterial Isolate Genomics Sequence Database) software package, developed at Oxford University, as a tool to manage multi-locus sequence data for the family Streptomy...
A molecular phylogeny of anseriformes based on mitochondrial DNA analysis.
Donne-Goussé, Carole; Laudet, Vincent; Hänni, Catherine
2002-06-01
To study the phylogenetic relationships among Anseriformes, sequences for the complete mitochondrial control region (CR) were determined from 45 waterfowl representing 24 genera, i.e., half of the existing genera. To confirm the results based on CR analysis we also analyzed representative species based on two mitochondrial protein-coding genes, cytochrome b (cytb) and NADH dehydrogenase subunit 2 (ND2). These data allowed us to construct a robust phylogeny of the Anseriformes and to compare it with existing phylogenies based on morphological or molecular data. Chauna and Dendrocygna were identified as early offshoots of the Anseriformes. All the remaining taxa fell into two clades that correspond to the two subfamilies Anatinae and Anserinae. Within Anserinae Branta and Anser cluster together, whereas Coscoroba, Cygnus, and Cereopsis form a relatively weak clade with Cygnus diverging first. Five clades are clearly recognizable among Anatinae: (i) the Anatini with Anas and Lophonetta; (ii) the Aythyini with Aythya and Netta; (iii) the Cairinini with Cairina and Aix; (iv) the Mergini with Mergus, Bucephala, Melanitta, Callonetta, Somateria, and Clangula, and (v) the Tadornini with Tadorna, Chloephaga, and Alopochen. The Tadornini diverged early on from the Anatinae; then the Mergini and a large group that comprises the Anatini, Aythyini, Cairinini, and two isolated genera, Chenonetta and Marmaronetta, diverged. The phylogeny obtained with the control region appears more robust than the one obtained with mitochondrial protein-coding genes such as ND2 and cytb. This suggests that the CR is a powerful tool for bird phylogeny, not only at a small scale (i.e., relationships between species) but also at the family level. Whereas morphological analysis effectively resolved the split between Anatinae and Anserinae and the existence of some of the clades, the precise composition of the clades are different when morphological and molecular data are compared. (c) 2002 Elsevier Science (USA).
Zi-xiang Yang; Xiao-ming Chen; Nathan P. Havill; Ying Feng; Hang Chen
2010-01-01
Rhus gall aphids (Fordinae : Melaphidini) have a disjunct distribution in East Asia and North America and have specific host plant relationships. Some of them are of economic importance and all species form sealed galls which show great variation in shape, size, structure, and galling-site. We present a phylogeny incorporating ten species and four...
Yu, Li; Li, Yi-Wei; Ryder, Oliver A; Zhang, Ya-Ping
2007-10-24
Despite the small number of ursid species, bear phylogeny has long been a focus of study due to their conservation value, as all bear genera have been classified as endangered at either the species or subspecies level. The Ursidae family represents a typical example of rapid evolutionary radiation. Previous analyses with a single mitochondrial (mt) gene or a small number of mt genes either provide weak support or a large unresolved polytomy for ursids. We revisit the contentious relationships within Ursidae by analyzing complete mt genome sequences and evaluating the performance of both entire mt genomes and constituent mtDNA genes in recovering a phylogeny of extremely recent speciation events. This mitochondrial genome-based phylogeny provides strong evidence that the spectacled bear diverged first, while within the genus Ursus, the sloth bear is the sister taxon of all the other five ursines. The latter group is divided into the brown bear/polar bear and the two black bears/sun bear assemblages. These findings resolve the previous conflicts between trees using partial mt genes. The ability of different categories of mt protein coding genes to recover the correct phylogeny is concordant with previous analyses for taxa with deep divergence times. This study provides a robust Ursidae phylogenetic framework for future validation by additional independent evidence, and also has significant implications for assisting in the resolution of other similarly difficult phylogenetic investigations. Identification of base composition bias and utilization of the combined data of whole mitochondrial genome sequences has allowed recovery of a strongly supported phylogeny that is upheld when using multiple alternative outgroups for the Ursidae, a mammalian family that underwent a rapid radiation since the mid- to late Pliocene. It remains to be seen if the reliability of mt genome analysis will hold up in studies of other difficult phylogenetic issues. Although the whole mitochondrial DNA sequence based phylogeny is robust, it remains in conflict with phylogenetic relationships suggested by analysis of limited nuclear-encoded data, a situation that will require gathering more nuclear DNA sequence information.
Yu, Li; Li, Yi-Wei; Ryder, Oliver A; Zhang, Ya-Ping
2007-01-01
Background Despite the small number of ursid species, bear phylogeny has long been a focus of study due to their conservation value, as all bear genera have been classified as endangered at either the species or subspecies level. The Ursidae family represents a typical example of rapid evolutionary radiation. Previous analyses with a single mitochondrial (mt) gene or a small number of mt genes either provide weak support or a large unresolved polytomy for ursids. We revisit the contentious relationships within Ursidae by analyzing complete mt genome sequences and evaluating the performance of both entire mt genomes and constituent mtDNA genes in recovering a phylogeny of extremely recent speciation events. Results This mitochondrial genome-based phylogeny provides strong evidence that the spectacled bear diverged first, while within the genus Ursus, the sloth bear is the sister taxon of all the other five ursines. The latter group is divided into the brown bear/polar bear and the two black bears/sun bear assemblages. These findings resolve the previous conflicts between trees using partial mt genes. The ability of different categories of mt protein coding genes to recover the correct phylogeny is concordant with previous analyses for taxa with deep divergence times. This study provides a robust Ursidae phylogenetic framework for future validation by additional independent evidence, and also has significant implications for assisting in the resolution of other similarly difficult phylogenetic investigations. Conclusion Identification of base composition bias and utilization of the combined data of whole mitochondrial genome sequences has allowed recovery of a strongly supported phylogeny that is upheld when using multiple alternative outgroups for the Ursidae, a mammalian family that underwent a rapid radiation since the mid- to late Pliocene. It remains to be seen if the reliability of mt genome analysis will hold up in studies of other difficult phylogenetic issues. Although the whole mitochondrial DNA sequence based phylogeny is robust, it remains in conflict with phylogenetic relationships suggested by analysis of limited nuclear-encoded data, a situation that will require gathering more nuclear DNA sequence information. PMID:17956639
Zhou, Xin-Mao; Zhang, Liang; Chen, Cheng-Wei; Li, Chun-Xiang; Huang, Yao-Moan; Chen, De-Kui; Lu, Ngan Thi; Cicuzza, Daniele; Knapp, Ralf; Luong, Thien Tam; Nitta, Joel H; Gao, Xin-Fen; Zhang, Li-Bing
2017-09-01
The Old World fern genus Pyrrosia (Polypodiaceae) offers a rare system in ferns to study morphological evolution because almost all species of this genus are well studied for their morphology, anatomy, and spore features, and various hypotheses have been proposed in terms of the phylogeny and evolution in this genus. However, the molecular phylogeny of the genus lags behind. The monophyly of the genus has been uncertain and a modern phylogenetic study of the genus based on molecular data has been lacking. In the present study, DNA sequences of five plastid markers of 220 accessions of Polypodiaceae representing two species of Drymoglossum, 14 species of Platycerium, 50 species of Pyrrosia, and the only species of Saxiglossum (subfamily Platycerioideae), and 12 species of other Polypodiaceae representing the remaining four subfamilies are used to infer a phylogeny of the genus. Major results and conclusions of this study include: (1) Pyrrosia as currently circumscribed is paraphyletic in relation to Platycerium and can be divided into two genera: Pyrrosia s.s. and Hovenkampia (gen. nov.), with Hovenkampia and Platycerium forming a strongly supported clade sister to Pyrrosia s.s.; (2) Subfamily Platycerioideae should contain three genera only, Hovenkampia, Platycerium, and Pyrrosia s.s.; (3) Based on the molecular phylogeny, macromorphology, anatomical features, and spore morphology, four major clades in the genus are identified and three of the four are further resolved into four, four, and six subclades, respectively; (4) Three species, P. angustissima, P. foveolata, and P. mannii, not assigned to any groups by Hovenkamp (1986) because of their unusual morphology, each form monospecific clades; (5) Drymoglossum is not monophyletic and those species previously assigned to this genus are resolved in two different subclades; (6) Saxiglossum is resolved as the first lineage in the Niphopsis clade; and (7) The evolution of ten major morphological characters in the subfamily is inferred based on the phylogeny and various morphological synapomorphies for various clades and subclades are identified. Copyright © 2017 Elsevier Inc. All rights reserved.
Genetic Predisposition to Ischemic Stroke
Kamatani, Yoichiro; Takahashi, Atsushi; Hata, Jun; Furukawa, Ryohei; Shiwa, Yuh; Yamaji, Taiki; Hara, Megumi; Tanno, Kozo; Ohmomo, Hideki; Ono, Kanako; Takashima, Naoyuki; Matsuda, Koichi; Wakai, Kenji; Sawada, Norie; Iwasaki, Motoki; Yamagishi, Kazumasa; Ago, Tetsuro; Ninomiya, Toshiharu; Fukushima, Akimune; Hozawa, Atsushi; Minegishi, Naoko; Satoh, Mamoru; Endo, Ryujin; Sasaki, Makoto; Sakata, Kiyomi; Kobayashi, Seiichiro; Ogasawara, Kuniaki; Nakamura, Motoyuki; Hitomi, Jiro; Kita, Yoshikuni; Tanaka, Keitaro; Iso, Hiroyasu; Kitazono, Takanari; Kubo, Michiaki; Tanaka, Hideo; Tsugane, Shoichiro; Kiyohara, Yutaka; Yamamoto, Masayuki; Sobue, Kenji; Shimizu, Atsushi
2017-01-01
Background and Purpose— The prediction of genetic predispositions to ischemic stroke (IS) may allow the identification of individuals at elevated risk and thereby prevent IS in clinical practice. Previously developed weighted multilocus genetic risk scores showed limited predictive ability for IS. Here, we investigated the predictive ability of a newer method, polygenic risk score (polyGRS), based on the idea that a few strong signals, as well as several weaker signals, can be collectively informative to determine IS risk. Methods— We genotyped 13 214 Japanese individuals with IS and 26 470 controls (derivation samples) and generated both multilocus genetic risk scores and polyGRS, using the same derivation data set. The predictive abilities of each scoring system were then assessed using 2 independent sets of Japanese samples (KyushuU and JPJM data sets). Results— In both validation data sets, polyGRS was shown to be significantly associated with IS, but weighted multilocus genetic risk scores was not. Comparing the highest with the lowest polyGRS quintile, the odds ratios for IS were 1.75 (95% confidence interval, 1.33–2.31) and 1.99 (95% confidence interval, 1.19–3.33) in the KyushuU and JPJM samples, respectively. Using the KyushuU samples, the addition of polyGRS to a nongenetic risk model resulted in a significant improvement of the predictive ability (net reclassification improvement=0.151; P<0.001). Conclusions— The polyGRS was shown to be superior to weighted multilocus genetic risk scores as an IS prediction model. Thus, together with the nongenetic risk factors, polyGRS will provide valuable information for individual risk assessment and management of modifiable risk factors. PMID:28034966
[Standard algorithm of molecular typing of Yersinia pestis strains].
Eroshenko, G A; Odinokov, G N; Kukleva, L M; Pavlova, A I; Krasnov, Ia M; Shavina, N Iu; Guseva, N P; Vinogradova, N A; Kutyrev, V V
2012-01-01
Development of the standard algorithm of molecular typing of Yersinia pestis that ensures establishing of subspecies, biovar and focus membership of the studied isolate. Determination of the characteristic strain genotypes of plague infectious agent of main and nonmain subspecies from various natural foci of plague of the Russian Federation and the near abroad. Genotyping of 192 natural Y. pestis strains of main and nonmain subspecies was performed by using PCR methods, multilocus sequencing and multilocus analysis of variable tandem repeat number. A standard algorithm of molecular typing of plague infectious agent including several stages of Yersinia pestis differentiation by membership: in main and nonmain subspecies, various biovars of the main subspecies, specific subspecies; natural foci and geographic territories was developed. The algorithm is based on 3 typing methods--PCR, multilocus sequence typing and multilocus analysis of variable tandem repeat number using standard DNA targets--life support genes (terC, ilvN, inv, glpD, napA, rhaS and araC) and 7 loci of variable tandem repeats (ms01, ms04, ms06, ms07, ms46, ms62, ms70). The effectiveness of the developed algorithm is shown on the large number of natural Y. pestis strains. Characteristic sequence types of Y. pestis strains of various subspecies and biovars as well as MLVA7 genotypes of strains from natural foci of plague of the Russian Federation and the near abroad were established. The application of the developed algorithm will increase the effectiveness of epidemiologic monitoring of plague infectious agent, and analysis of epidemics and outbreaks of plague with establishing the source of origin of the strain and routes of introduction of the infection.
Pervasiveness of UVC254-resistant Geobacillus strains in extreme environments.
Carlson, Courtney; Singh, Nitin K; Bibra, Mohit; Sani, Rajesh K; Venkateswaran, Kasthuri
2018-02-01
We have characterized a broad collection of extremophilic bacterial isolates from a deep subsurface mine, compost dumping sites, and several hot spring ecosystems. Spore-forming strains isolated from these environments comprised both obligate thermophiles/thermotolerant species (growing at > 55 °C; 240 strains) and mesophiles (growing at 15 to 40 °C; 12 strains). An overwhelming abundance of Geobacillus (81.3%) and Bacillus (18.3%) species was observed among the tested isolates. 16S rRNA sequence analysis documented the presence of 24 species among these isolates, but the 16S rRNA gene was shown to possess insufficient resolution to reliably discern Geobacillus phylogeny. gyrB-based phylogenetic analyses of nine strains revealed the presence of six known Geobacillus and one novel species. Multilocus sequence typing analyses based on seven different housekeeping genes deduced from whole genome sequencing of nine strains revealed the presence of three novel Geobacillus species. The vegetative cells of 41 Geobacillus strains were exposed to UVC 254 , and most (34 strains) survived 120 J/m 2 , while seven strains survived 300 J/m 2 , and cells of only one Geobacillus strain isolated from a compost facility survived 600 J/m 2 . Additionally, the UVC 254 inactivation kinetics of spores from four Geobacillus strains isolated from three distinct geographical regions were evaluated and compared to that of a spacecraft assembly facility (SAF) clean room Geobacillus strain. The purified spores of the thermophilic SAF strain exhibited resistance to 2000 J/m 2 , whereas spores of two environmental Geobacillus strains showed resistance to 1000 J/m 2 . This study is the first to investigate UV resistance of environmental, obligately thermophilic Geobacillus strains, and also lays the foundation for advanced understanding of necessary sterilization protocols practiced in food, medical, pharmaceutical, and aerospace industries.
Voelker, Gary; Peñalba, Joshua V; Huntley, Jerry W; Bowie, Rauri C K
2014-04-01
Erythropygia scrub-robins and their allies are distributed throughout Africa, Europe, Southeast Asia, India, Madagascar and the Seychelles. This broad distribution, as well as the distribution of Erythropygia taxa across Africa, presents an interesting opportunity to explore the mechanisms by which this biogeographic distribution was achieved. Multilocus sequence data (3310 base pairs from two mitochondrial and two nuclear genes) were generated for all species of Erythropygia and Cercotrichas scrub-robins, as well as from genera previously shown to render Erythropygia paraphyletic. Using model-based phylogenetic methods and molecular clock dating, we constructed a time-calibrated molecular phylogenetic hypothesis for the lineage. Ancestral area reconstructions were performed on the phylogeny using probabilistic approaches implemented in LaGrange and BioGeoBEARS. Our results confirm that Erythropygia is not monophyletic, and that one of the two Erythropygia clades is more closely related to a clade of Asian and Indian Ocean islands distributed species. Overall, the Erythropygia and allies clade originated in Africa in the late Miocene c. 6.9 Ma. Subsequently, a number of overwater dispersals occurred to include an initial colonization of Southeast Asia, and an ensuing progression of colonizations from Southeast Asia to the Seychelles, from there to Madagascar, and from these Indian Ocean islands back to Southeast Asia. Within the two clades of Erythropygia, ancestral area reconstructions within Africa indicate a Southern Africa origin, with subsequent lineage divergence in each clade indicating northward colonization. Overall, this clade of non-migratory songbirds shows a remarkable number of trans-oceanic colonization events, that were possibly facilitated by wind-driven dispersal; repeated Africa to Asia colonizations, two of which occur in this clade, are exceptionally rare in birds. Also rare is our finding that colonization patterns in Africa indicate a southern to northern progression. Copyright © 2014 Elsevier Inc. All rights reserved.
Probing genomic diversity and evolution of Escherichia coli O157 by single nucleotide polymorphisms.
Zhang, Wei; Qi, Weihong; Albert, Thomas J; Motiwala, Alifiya S; Alland, David; Hyytia-Trees, Eija K; Ribot, Efrain M; Fields, Patricia I; Whittam, Thomas S; Swaminathan, Bala
2006-06-01
Infections by Shiga toxin-producing Escherichia coli O157:H7 (STEC O157) are the predominant cause of bloody diarrhea and hemolytic uremic syndrome in the United States. In silico comparison of the two complete STEC O157 genomes (Sakai and EDL933) revealed a strikingly high level of sequence identity in orthologous protein-coding genes, limiting the use of nucleotide sequences to study the evolution and epidemiology of this bacterial pathogen. To systematically examine single nucleotide polymorphisms (SNPs) at a genome scale, we designed comparative genome sequencing microarrays and analyzed 1199 chromosomal genes (a total of 1,167,948 bp) and 92,721 bp of the large virulence plasmid (pO157) of eleven outbreak-associated STEC O157 strains. We discovered 906 SNPs in 523 chromosomal genes and observed a high level of DNA polymorphisms among the pO157 plasmids. Based on a uniform rate of synonymous substitution for Escherichia coli and Salmonella enterica (4.7x10(-9) per site per year), we estimate that the most recent common ancestor of the contemporary beta-glucuronidase-negative, non-sorbitolfermenting STEC O157 strains existed ca. 40 thousand years ago. The phylogeny of the STEC O157 strains based on the informative synonymous SNPs was compared to the maximum parsimony trees inferred from pulsed-field gel electrophoresis and multilocus variable numbers of tandem repeats analysis. The topological discrepancies indicate that, in contrast to the synonymous mutations, parts of STEC O157 genomes have evolved through different mechanisms with highly variable divergence rates. The SNP loci reported here will provide useful genetic markers for developing high-throughput methods for fine-resolution genotyping of STEC O157. Functional characterization of nucleotide polymorphisms should shed new insights on the evolution, epidemiology, and pathogenesis of STEC O157 and related pathogens.
Probing genomic diversity and evolution of Escherichia coli O157 by single nucleotide polymorphisms
Zhang, Wei; Qi, Weihong; Albert, Thomas J.; Motiwala, Alifiya S.; Alland, David; Hyytia-Trees, Eija K.; Ribot, Efrain M.; Fields, Patricia I.; Whittam, Thomas S.; Swaminathan, Bala
2006-01-01
Infections by Shiga toxin-producing Escherichia coli O157:H7 (STEC O157) are the predominant cause of bloody diarrhea and hemolytic uremic syndrome in the United States. In silico comparison of the two complete STEC O157 genomes (Sakai and EDL933) revealed a strikingly high level of sequence identity in orthologous protein-coding genes, limiting the use of nucleotide sequences to study the evolution and epidemiology of this bacterial pathogen. To systematically examine single nucleotide polymorphisms (SNPs) at a genome scale, we designed comparative genome sequencing microarrays and analyzed 1199 chromosomal genes (a total of 1,167,948 bp) and 92,721 bp of the large virulence plasmid (pO157) of eleven outbreak-associated STEC O157 strains. We discovered 906 SNPs in 523 chromosomal genes and observed a high level of DNA polymorphisms among the pO157 plasmids. Based on a uniform rate of synonymous substitution for Escherichia coli and Salmonella enterica (4.7 × 10−9 per site per year), we estimate that the most recent common ancestor of the contemporary β-glucuronidase-negative, non-sorbitolfermenting STEC O157 strains existed ca. 40 thousand years ago. The phylogeny of the STEC O157 strains based on the informative synonymous SNPs was compared to the maximum parsimony trees inferred from pulsed-field gel electrophoresis and multilocus variable numbers of tandem repeats analysis. The topological discrepancies indicate that, in contrast to the synonymous mutations, parts of STEC O157 genomes have evolved through different mechanisms with highly variable divergence rates. The SNP loci reported here will provide useful genetic markers for developing high-throughput methods for fine-resolution genotyping of STEC O157. Functional characterization of nucleotide polymorphisms should shed new insights on the evolution, epidemiology, and pathogenesis of STEC O157 and related pathogens. PMID:16606700
Taxonomic and phytogeographic implications from ITS phylogeny in Berberis (Berberidaceae).
Kim, Young-Dong; Kim, Sung-Hee; Landrum, Leslie R
2004-06-01
A phylogeny based on the internal transcribed spacer (ITS) sequences from 79 taxa representing much of the diversity of Berberis L. (four major groups and 22 sections) was constructed for the first time. The phylogeny was basically congruent with the previous classification schemes at higher taxonomic levels, such as groups and subgroups. A notable exception is the non-monophyly of the group Occidentales of compound-leaved Berberis (previously separated as Mahonia). At lower levels, however, most of previous sections and subsections were not evident especially in simple-leaved Berberis. Possible relationship between section Horridae (group Occidentales) and the simple-leaved Berberis clade implies paraphyly of the compound-leaved Berberis. A well-known South America-Old World (mainly Asia) disjunctive distribution pattern of the simple-leaved Berberis is explained by a vicariance event occurring in the Cretaceous period. The ITS phylogeny also suggests that a possible connection between the Asian and South American groups through the North American species ( Berberis canadensis or B. fendleri) is highly unlikely.
Liu, Jian; Zhang, Shouzhou; Nagalingum, Nathalie S; Chiang, Yu-Chung; Lindstrom, Anders J; Gong, Xun
2018-05-18
The gymnosperm genus Cycas is the sole member of Cycadaceae, and is the largest genus of extant cycads. There are about 115 accepted Cycas species mainly distributed in the paleotropics. Based on morphology, the genus has been divided into six sections and eight subsections, but this taxonomy has not yet been tested in a molecular phylogenetic framework. Although the monophyly of Cycas is broadly accepted, the intrageneric relationships inferred from previous molecular phylogenetic analyses are unclear due to insufficient sampling or uninformative DNA sequence data. In this study, we reconstructed a phylogeny of Cycas using four chloroplast intergenic spacers and seven low-copy nuclear genes and sampling 90% of extant Cycas species. The maximum likelihood and Bayesian inference phylogenies suggest: (1) matrices of either concatenated cpDNA markers or of concatenated nDNA lack sufficient informative sites to resolve the phylogeny alone, however, the phylogeny from the combined cpDNA-nDNA dataset suggests the genus can be roughly divided into 13 clades and six sections that are in agreement with the current classification of the genus; (2) although with partial support, a clade combining sections Panzhihuaenses + Asiorientales is resolved as the earliest diverging branch; (3) section Stangerioides is not monophyletic because the species resolve as a grade; (4) section Indosinenses is not monophyletic as it includes Cycas macrocarpa and C. pranburiensis from section Cycas; (5) section Cycas is the most derived group and its subgroups correspond with geography. Copyright © 2018 Elsevier Inc. All rights reserved.
Coevolutionary arms race versus host defense chase in a tropical herbivore-plant system.
Endara, María-José; Coley, Phyllis D; Ghabash, Gabrielle; Nicholls, James A; Dexter, Kyle G; Donoso, David A; Stone, Graham N; Pennington, R Toby; Kursar, Thomas A
2017-09-05
Coevolutionary models suggest that herbivores drive diversification and community composition in plants. For herbivores, many questions remain regarding how plant defenses shape host choice and community structure. We addressed these questions using the tree genus Inga and its lepidopteran herbivores in the Amazon. We constructed phylogenies for both plants and insects and quantified host associations and plant defenses. We found that similarity in herbivore assemblages between Inga species was correlated with similarity in defenses. There was no correlation with phylogeny, a result consistent with our observations that the expression of defenses in Inga is independent of phylogeny. Furthermore, host defensive traits explained 40% of herbivore community similarity. Analyses at finer taxonomic scales showed that different lepidopteran clades select hosts based on different defenses, suggesting taxon-specific histories of herbivore-host plant interactions. Finally, we compared the phylogeny and defenses of Inga to phylogenies for the major lepidopteran clades. We found that closely related herbivores fed on Inga with similar defenses rather than on closely related plants. Together, these results suggest that plant defenses might be more evolutionarily labile than the herbivore traits related to host association. Hence, there is an apparent asymmetry in the evolutionary interactions between Inga and its herbivores. Although plants may evolve under selection by herbivores, we hypothesize that herbivores may not show coevolutionary adaptations, but instead "chase" hosts based on the herbivore's own traits at the time that they encounter a new host, a pattern more consistent with resource tracking than with the arms race model of coevolution.
Coevolutionary arms race versus host defense chase in a tropical herbivore–plant system
Coley, Phyllis D.; Ghabash, Gabrielle; Nicholls, James A.; Donoso, David A.; Stone, Graham N.; Pennington, R. Toby; Kursar, Thomas A.
2017-01-01
Coevolutionary models suggest that herbivores drive diversification and community composition in plants. For herbivores, many questions remain regarding how plant defenses shape host choice and community structure. We addressed these questions using the tree genus Inga and its lepidopteran herbivores in the Amazon. We constructed phylogenies for both plants and insects and quantified host associations and plant defenses. We found that similarity in herbivore assemblages between Inga species was correlated with similarity in defenses. There was no correlation with phylogeny, a result consistent with our observations that the expression of defenses in Inga is independent of phylogeny. Furthermore, host defensive traits explained 40% of herbivore community similarity. Analyses at finer taxonomic scales showed that different lepidopteran clades select hosts based on different defenses, suggesting taxon-specific histories of herbivore–host plant interactions. Finally, we compared the phylogeny and defenses of Inga to phylogenies for the major lepidopteran clades. We found that closely related herbivores fed on Inga with similar defenses rather than on closely related plants. Together, these results suggest that plant defenses might be more evolutionarily labile than the herbivore traits related to host association. Hence, there is an apparent asymmetry in the evolutionary interactions between Inga and its herbivores. Although plants may evolve under selection by herbivores, we hypothesize that herbivores may not show coevolutionary adaptations, but instead “chase” hosts based on the herbivore’s own traits at the time that they encounter a new host, a pattern more consistent with resource tracking than with the arms race model of coevolution. PMID:28827317
Entomopathogen ID: A multi-locus sequence alignment resource for entomopathogenic fungi
USDA-ARS?s Scientific Manuscript database
The ability to correctly identify entomopathogenic fungi is an important step in developing biopesticides and effectively communicating research results. Over the years, identifying entomopathogenic fungi has evolved from a system based on diagnostic morphological and physiological characters to mol...
A multilocus database for the identification of Aspergillus and Penicillium species
USDA-ARS?s Scientific Manuscript database
Identification of Aspergillus and Penicillium isolates using phenotypic methods is increasingly complex and difficult but genetic tools allow recognition and description of species formerly unrecognized or cryptic. We constructed a web-based taxonomic database using BIGSdb for the identification of ...
Sun, Zhihong; Liu, Wenjun; Song, Yuqin; Xu, Haiyan; Yu, Jie; Bilige, Menghe; Zhang, Heping; Chen, Yongfu
2015-05-01
Lactobacillus helveticus is an economically important lactic acid bacterium used in industrial dairy fermentation. In the present study, the population structure of 245 isolates of L. helveticus from different naturally fermented dairy products in China and Mongolia were investigated using an multilocus sequence typing scheme with 11 housekeeping genes. A total of 108 sequence types were detected, which formed 8 clonal complexes and 27 singletons. Results from Structure, SplitsTree, and ClonalFrame software analyses demonstrated the presence of 3 subpopulations in the L. helveticus isolates used in our study, namely koumiss, kurut-tarag, and panmictic lineages. Most L. helveticus isolates from particular ecological origins had specific population structures. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Phylogenetic congruence between subtropical trees and their associated fungi.
Liu, Xubing; Liang, Minxia; Etienne, Rampal S; Gilbert, Gregory S; Yu, Shixiao
2016-12-01
Recent studies have detected phylogenetic signals in pathogen-host networks for both soil-borne and leaf-infecting fungi, suggesting that pathogenic fungi may track or coevolve with their preferred hosts. However, a phylogenetically concordant relationship between multiple hosts and multiple fungi in has rarely been investigated. Using next-generation high-throughput DNA sequencing techniques, we analyzed fungal taxa associated with diseased leaves, rotten seeds, and infected seedlings of subtropical trees. We compared the topologies of the phylogenetic trees of the soil and foliar fungi based on the internal transcribed spacer (ITS) region with the phylogeny of host tree species based on matK , rbcL , atpB, and 5.8S genes. We identified 37 foliar and 103 soil pathogenic fungi belonging to the Ascomycota and Basidiomycota phyla and detected significantly nonrandom host-fungus combinations, which clustered on both the fungus phylogeny and the host phylogeny. The explicit evidence of congruent phylogenies between tree hosts and their potential fungal pathogens suggests either diffuse coevolution among the plant-fungal interaction networks or that the distribution of fungal species tracked spatially associated hosts with phylogenetically conserved traits and habitat preferences. Phylogenetic conservatism in plant-fungal interactions within a local community promotes host and parasite specificity, which is integral to the important role of fungi in promoting species coexistence and maintaining biodiversity of forest communities.
Shajitha, P P; Dhanesh, N R; Ebin, P J; Laly, Joseph; Aneesha, Devassy; Reshma, John; Augustine, Jomy; Linu, Mathew
2016-12-01
Only a few Impatiens spp. from South India (one of the five centers of diversity for Impatiens species) were included in the published datum of molecular phylogeny of the family Balsaminaceae. The present investigation is a novel attempt to reveal the phylogenetic association of Impatiens species of South India, by placing them in the global phylogeny of Impatiens based on a combined analysis of two chloroplast genes. Thirty species of genus Impatiens were collected from different locations of South India. Total genomic DNA was extracted from fresh plant leaf, and polymerase chain reaction was carried out using atpB-rbcL and trnL-F intergenic spacer-specific forward and reverse primers. Thirteen sequences of Impatiens species from three centers of diversity were obtained from GenBank for reconstructing the evolutionary relationships within the genus Impatiens. Bayesian inference analysis was carried out in MrBayes v.3.2.2. This analysis supported Southeast Asia as the ancestral place of origin of extant Impatiens species. Molecular phylogeny of South Indian Impatiens spp. based on combined chloroplast sequences showed the same association as that of morphological taxonomy. Sections Scapigerae, Tomentosae, Sub-Umbellatae, and Racemosae showed Southeast Asian relationship, while sections Annuae and Microsepalae showed African affinity.
Bagley, Justin C.; Alda, Fernando; Breitman, M. Florencia; Bermingham, Eldredge; van den Berghe, Eric P.; Johnson, Jerald B.
2015-01-01
Accurately delimiting species is fundamentally important for understanding species diversity and distributions and devising effective strategies to conserve biodiversity. However, species delimitation is problematic in many taxa, including ‘non-adaptive radiations’ containing morphologically cryptic lineages. Fortunately, coalescent-based species delimitation methods hold promise for objectively estimating species limits in such radiations, using multilocus genetic data. Using coalescent-based approaches, we delimit species and infer evolutionary relationships in a morphologically conserved group of Central American freshwater fishes, the Poecilia sphenops species complex. Phylogenetic analyses of multiple genetic markers (sequences of two mitochondrial DNA genes and five nuclear loci) from 10/15 species and genetic lineages recognized in the group support the P. sphenops species complex as monophyletic with respect to outgroups, with eight mitochondrial ‘major-lineages’ diverged by ≥2% pairwise genetic distances. From general mixed Yule-coalescent models, we discovered (conservatively) 10 species within our concatenated mitochondrial DNA dataset, 9 of which were strongly supported by subsequent multilocus Bayesian species delimitation and species tree analyses. Results suggested species-level diversity is underestimated or overestimated by at least ~15% in different lineages in the complex. Nonparametric statistics and coalescent simulations indicate genealogical discordance among our gene tree results has mainly derived from interspecific hybridization in the nuclear genome. However, mitochondrial DNA show little evidence for introgression, and our species delimitation results appear robust to effects of this process. Overall, our findings support the utility of combining multiple lines of genetic evidence and broad phylogeographical sampling to discover and validate species using coalescent-based methods. Our study also highlights the importance of testing for hybridization versus incomplete lineage sorting, which aids inference of not only species limits but also evolutionary processes influencing genetic diversity. PMID:25849959
Bagley, Justin C; Alda, Fernando; Breitman, M Florencia; Bermingham, Eldredge; van den Berghe, Eric P; Johnson, Jerald B
2015-01-01
Accurately delimiting species is fundamentally important for understanding species diversity and distributions and devising effective strategies to conserve biodiversity. However, species delimitation is problematic in many taxa, including 'non-adaptive radiations' containing morphologically cryptic lineages. Fortunately, coalescent-based species delimitation methods hold promise for objectively estimating species limits in such radiations, using multilocus genetic data. Using coalescent-based approaches, we delimit species and infer evolutionary relationships in a morphologically conserved group of Central American freshwater fishes, the Poecilia sphenops species complex. Phylogenetic analyses of multiple genetic markers (sequences of two mitochondrial DNA genes and five nuclear loci) from 10/15 species and genetic lineages recognized in the group support the P. sphenops species complex as monophyletic with respect to outgroups, with eight mitochondrial 'major-lineages' diverged by ≥2% pairwise genetic distances. From general mixed Yule-coalescent models, we discovered (conservatively) 10 species within our concatenated mitochondrial DNA dataset, 9 of which were strongly supported by subsequent multilocus Bayesian species delimitation and species tree analyses. Results suggested species-level diversity is underestimated or overestimated by at least ~15% in different lineages in the complex. Nonparametric statistics and coalescent simulations indicate genealogical discordance among our gene tree results has mainly derived from interspecific hybridization in the nuclear genome. However, mitochondrial DNA show little evidence for introgression, and our species delimitation results appear robust to effects of this process. Overall, our findings support the utility of combining multiple lines of genetic evidence and broad phylogeographical sampling to discover and validate species using coalescent-based methods. Our study also highlights the importance of testing for hybridization versus incomplete lineage sorting, which aids inference of not only species limits but also evolutionary processes influencing genetic diversity.
Critical analysis of eukaryotic phylogeny: a case study based on the HSP70 family.
Germot, A; Philippe, H
1999-01-01
Trichomonads, together with diplomonads and microsporidia, emerge at the base of the eukaryotic tree, on the basis of the small subunit rRNA phylogeny. However, phylogenies based on protein sequences such as tubulin are markedly different with these protists emerging much later. We have investigated 70 kDa heat-shock protein (HSP70), which could be a reliable phylogenetic marker. In eukaryotes, HSP70s are found in cytosol, endoplasmic reticulum, and organelles (mitochondria and chloroplasts). In Trichomonas vaginalis we identified nine different HSP70-encoding genes and sequenced three nearly complete cDNAs corresponding to cytosolic, endoplasmic reticulum, and mitochondrial-type HSP70. Phylogenies of eukaryotes were reconstructed using the classical methods while varying the number of species and characters considered. Almost all the undoubtedly monophyletic groups, defined by ultrastructural characters, were recovered. However, due to the long branch attraction phenomenon, the evolutionary rates were the main factor determining the position of species, even with the use of a close outgroup, which is an important advantage of HSP70 with respect to many other markers. Numerous variable sites are peculiar to Trichomonas and probably generated the artefactual placement of this species at the base of the eukaryotes or as the sister group of fast-evolving species. The inter-phyla relationships were not well supported and were sensitive to the reconstruction method, the number of species; and the quantity of information used. This lack of resolution could be explained by the very rapid diversification of eukaryotes, likely after the mitochondrial endosymbiosis.
Primate diversification inferred from phylogenies and fossils.
Herrera, James P
2017-12-01
Biodiversity arises from the balance between speciation and extinction. Fossils record the origins and disappearance of organisms, and the branching patterns of molecular phylogenies allow estimation of speciation and extinction rates, but the patterns of diversification are frequently incongruent between these two data sources. I tested two hypotheses about the diversification of primates based on ∼600 fossil species and 90% complete phylogenies of living species: (1) diversification rates increased through time; (2) a significant extinction event occurred in the Oligocene. Consistent with the first hypothesis, analyses of phylogenies supported increasing speciation rates and negligible extinction rates. In contrast, fossils showed that while speciation rates increased, speciation and extinction rates tended to be nearly equal, resulting in zero net diversification. Partially supporting the second hypothesis, the fossil data recorded a clear pattern of diversity decline in the Oligocene, although diversification rates were near zero. The phylogeny supported increased extinction ∼34 Ma, but also elevated extinction ∼10 Ma, coinciding with diversity declines in some fossil clades. The results demonstrated that estimates of speciation and extinction ignoring fossils are insufficient to infer diversification and information on extinct lineages should be incorporated into phylogenetic analyses. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
A supermatrix phylogeny of corvoid passerine birds (Aves: Corvides).
Jønsson, Knud Andreas; Fabre, Pierre-Henri; Kennedy, Jonathan D; Holt, Ben G; Borregaard, Michael K; Rahbek, Carsten; Fjeldså, Jon
2016-01-01
The Corvides (previously referred to as the core Corvoidea) are a morphologically diverse clade of passerine birds comprising nearly 800 species. The group originated some 30 million years ago in the proto-Papuan archipelago, to the north of Australia, from where lineages have dispersed and colonized all of the world's major continental and insular landmasses (except Antarctica). During the last decade multiple species-level phylogenies have been generated for individual corvoid families and more recently the inter-familial relationships have been resolved, based on phylogenetic analyses using multiple nuclear loci. In the current study we analyse eight nuclear and four mitochondrial loci to generate a dated phylogeny for the majority of corvoid species. This phylogeny includes 667 out of 780 species (85.5%), 141 out of 143 genera (98.6%) and all 31 currently recognized families, thus providing a baseline for comprehensive macroecological, macroevolutionary and biogeographical analyses. Using this phylogeny we assess the temporal consistency of the current taxonomic classification of families and genera. By adopting an approach that enforces temporal consistency by causing the fewest possible taxonomic changes to currently recognized families and genera, we find the current familial classification to be largely temporally consistent, whereas that of genera is not. Copyright © 2015 Elsevier Inc. All rights reserved.
de Gier, Camilla; Kirkham, Lea-Ann S.
2015-01-01
Nonhemolytic variants of Haemophilus haemolyticus are difficult to differentiate from Haemophilus influenzae despite a wide difference in pathogenic potential. A previous investigation characterized a challenging set of 60 clinical strains using multiple PCRs for marker genes and described strains that could not be unequivocally identified as either species. We have analyzed the same set of strains by multilocus sequence analysis (MLSA) and near-full-length 16S rRNA gene sequencing. MLSA unambiguously allocated all study strains to either of the two species, while identification by 16S rRNA sequence was inconclusive for three strains. Notably, the two methods yielded conflicting identifications for two strains. Most of the “fuzzy species” strains were identified as H. influenzae that had undergone complete deletion of the fucose operon. Such strains, which are untypeable by the H. influenzae multilocus sequence type (MLST) scheme, have sporadically been reported and predominantly belong to a single branch of H. influenzae MLSA phylogenetic group II. We also found evidence of interspecies recombination between H. influenzae and H. haemolyticus within the 16S rRNA genes. Establishing an accurate method for rapid and inexpensive identification of H. influenzae is important for disease surveillance and treatment. PMID:26378279
Azzi, Salah; Rossignol, Sylvie; Steunou, Virginie; Sas, Theo; Thibaud, Nathalie; Danton, Fabienne; Le Jule, Maryline; Heinrichs, Claudine; Cabrol, Sylvie; Gicquel, Christine; Le Bouc, Yves; Netchine, Irene
2009-12-15
Genomic imprinting plays an important role in mammalian development. Loss of imprinting (LOI) through loss (LOM) or gain (GOM) of methylation is involved in many human disorders and cancers. The imprinted 11p15 region is crucial for the control of foetal growth and LOI at this locus is implicated in two clinically opposite disorders: Beckwith Wiedemann syndrome (BWS) with foetal overgrowth associated with an enhanced tumour risk and Russell-Silver syndrome (RSS) with intrauterine and postnatal growth restriction. So far, only a few studies have assessed multilocus LOM in human imprinting diseases. To investigate multilocus LOI syndrome, we studied the methylation status of five maternally and two paternally methylated loci in a large series (n = 167) of patients with 11p15-related foetal growth disorders. We found that 9.5% of RSS and 24% of BWS patients showed multilocus LOM at regions other than ICR1 and ICR2 11p15, respectively. Moreover, over two third of multilocus LOM RSS patients also had LOM at a second paternally methylated locus, DLK1/GTL2 IG-DMR. No additional clinical features due to LOM of other loci were found suggesting an (epi)dominant effect of the 11p15 LOM on the clinical phenotype for this series of patients. Surprisingly, four patients displayed LOM at both ICR1 and ICR2 11p15. Three of them had a RSS and one a BWS phenotype. Our results show for the first time that multilocus LOM can also concern RSS patients. Moreover, LOM can involve both paternally and maternally methylated loci in the same patient.
USDA-ARS?s Scientific Manuscript database
Phylogenetic analyses of species of Streptomyces based on 16S rRNA gene sequences resulted in a statistically well-supported clade (100% bootstrap value) containing 8 species having very similar gross morphology. These species, including Streptomyces bambergiensis, Streptomyces chlorus, Streptomyces...
Multilocus sequence analysis of phytopathogenic species of the genus Streptomyces
USDA-ARS?s Scientific Manuscript database
The identification and classification of species within the genus Streptomyces is difficult because there are presently 576 validly described species and this number increases every year. The value of the application of multilocus sequence analysis scheme to the systematics of Streptomyces species h...
Dall'Agnol, Rebeca Fuzinatto; Bournaud, Caroline; de Faria, Sérgio Miana; Béna, Gilles; Moulin, Lionel; Hungria, Mariangela
2017-04-01
Some species of the genus Paraburkholderia that are able to nodulate and fix nitrogen in symbiosis with legumes are called β-rhizobia and represent a group of ecological and biotechnological importance. We used Mimosa pudica and Phaseolus vulgaris to trap 427 rhizobial isolates from rhizospheric soil of Mimoseae trees in the Brazilian Atlantic Forest. Eighty-four representative strains were selected according to the 16S rRNA haplotypes and taxonomically characterized using a concatenated 16S rRNA-recA phylogeny. Most strains were assembled in the genus Paraburkholderia, including Paraburkholderia sabiae and Pa. nodosa. Mesorhizobium (α-rhizobia) and Cupriavidus (β-rhizobia) were also isolated, but in smaller proportions. Multilocus sequence analysis and BOX-PCR analyses indicated that six clusters of Paraburkholderia represent potential new species. In the phylogenetic analysis of the nodC gene, the majority of the strains were positioned in the same groups as in the 16S rRNA-recA tree, indicative of stability and vertical inheritance, but we also identified horizontal transfer of nodC in Pa. sabiae. All α- and β-rhizobial species were trapped by both legumes, although preferences of the host plants for specific rhizobial species have been observed. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Avise, John C
2008-08-12
The field of molecular genetics has many roles in biodiversity assessment and conservation. I summarize three of those standard roles and propose logical extensions of each. First, many biologists suppose that a comprehensive picture of the Tree of Life will soon emerge from multilocus DNA sequence data interpreted in concert with fossils and other evidence. If nonreticulate trees are indeed valid metaphors for life's history, then a well dated global phylogeny will offer an opportunity to erect a universally standardized scheme of biological classification. If life's history proves to be somewhat reticulate, a web-like phylogenetic pattern should become evident and will offer opportunities to reevaluate the fundamental nature of evolutionary processes. Second, extensive networks of wildlife sanctuaries offer some hope for shepherding appreciable biodiversity through the ongoing extinction crisis, and molecular genetics can assist in park design by helping to identify key species, historically important biotic areas, and biodiversity hotspots. An opportunity centers on the concept of Pleistocene Parks that could protect "legacy biotas" in much the same way that traditional national parks preserve special geological features and historical landmarks honor legacy events in human affairs. Third, genetic perspectives have become an integral part of many focused conservation efforts by unveiling ecological, behavioral, or evolutionary phenomena relevant to population management. They also can open opportunities to educate the public about the many intellectual gifts and aesthetic marvels of the natural world.
Three ambitious (and rather unorthodox) assignments for the field of biodiversity genetics
Avise, John C.
2008-01-01
The field of molecular genetics has many roles in biodiversity assessment and conservation. I summarize three of those standard roles and propose logical extensions of each. First, many biologists suppose that a comprehensive picture of the Tree of Life will soon emerge from multilocus DNA sequence data interpreted in concert with fossils and other evidence. If nonreticulate trees are indeed valid metaphors for life's history, then a well dated global phylogeny will offer an opportunity to erect a universally standardized scheme of biological classification. If life's history proves to be somewhat reticulate, a web-like phylogenetic pattern should become evident and will offer opportunities to reevaluate the fundamental nature of evolutionary processes. Second, extensive networks of wildlife sanctuaries offer some hope for shepherding appreciable biodiversity through the ongoing extinction crisis, and molecular genetics can assist in park design by helping to identify key species, historically important biotic areas, and biodiversity hotspots. An opportunity centers on the concept of Pleistocene Parks that could protect “legacy biotas” in much the same way that traditional national parks preserve special geological features and historical landmarks honor legacy events in human affairs. Third, genetic perspectives have become an integral part of many focused conservation efforts by unveiling ecological, behavioral, or evolutionary phenomena relevant to population management. They also can open opportunities to educate the public about the many intellectual gifts and aesthetic marvels of the natural world. PMID:18695224
Tóth, Annamária; Hausknecht, Anton; Krisai-Greilhuber, Irmgard; Papp, Tamás; Vágvölgyi, Csaba; Nagy, László G.
2013-01-01
Reconciling traditional classifications, morphology, and the phylogenetic relationships of brown-spored agaric mushrooms has proven difficult in many groups, due to extensive convergence in morphological features. Here, we address the monophyly of the Bolbitiaceae, a family with over 700 described species and examine the higher-level relationships within the family using a newly constructed multilocus dataset (ITS, nrLSU rDNA and EF1-alpha). We tested whether the fast-evolving Internal Transcribed Spacer (ITS) sequences can be accurately aligned across the family, by comparing the outcome of two iterative alignment refining approaches (an automated and a manual) and various indel-treatment strategies. We used PRANK to align sequences in both cases. Our results suggest that – although PRANK successfully evades overmatching of gapped sites, referred previously to as alignment overmatching – it infers an unrealistically high number of indel events with natively generated guide-trees. This 'alignment undermatching' could be avoided by using more rigorous (e.g. ML) guide trees. The trees inferred in this study support the monophyly of the core Bolbitiaceae, with the exclusion of Panaeolus, Agrocybe, and some of the genera formerly placed in the family. Bolbitius and Conocybe were found monophyletic, however, Pholiotina and Galerella require redefinition. The phylogeny revealed that stipe coverage type is a poor predictor of phylogenetic relationships, indicating the need for a revision of the intrageneric relationships within Conocybe. PMID:23418526
Bats (Chiroptera: Noctilionoidea) Challenge a Recent Origin of Extant Neotropical Diversity.
Rojas, Danny; Warsi, Omar M; Dávalos, Liliana M
2016-05-01
The mechanisms underlying the high extant biodiversity in the Neotropics have been controversial since the 19th century. Support for the influence of period-specific changes on diversification often rests on detecting more speciation events during a particular period. The timing of speciation events may reflect the influence of incomplete taxon sampling, protracted speciation, and null processes of lineage accumulation. Here we assess the influence of these factors on the timing of speciation with new multilocus data for New World noctilionoid bats (Chiroptera: Noctilionoidea). Biogeographic analyses revealed the importance of the Neotropics in noctilionoid diversification, and the critical role of dispersal. We detected no shift in speciation rate associated with the Quaternary or pre-Quaternary periods, and instead found an increase in speciation linked to the evolution of the subfamily Stenodermatinae (∼18 Ma). Simulations modeling constant speciation and extinction rates for the phylogeny systematically showed more speciation events in the Quaternary. Since recording more divergence events in the Quaternary can result from lineage accumulation, the age of extant sister species cannot be interpreted as supporting higher speciation rates during this period. Instead, analyzing the factors that influence speciation requires modeling lineage-specific traits and environmental, spatial, and ecological drivers of speciation. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wendel, Andreas F; Meyer, Sebastian; Deenen, René; Köhrer, Karl; Kolbe-Busch, Susanne; Pfeffer, Klaus; Willmann, Matthias; Kaasch, Achim J; MacKenzie, Colin R
2018-05-11
Enterobacter cloacae complex is a common cause of hospital outbreaks. A retrospective and prospective molecular analysis of carbapenem-resistant clinical isolates in a tertiary care center demonstrated an outbreak of a German-imipenemase-1 (GIM-1) metallo-beta-lactamase-producing Enterobacter hormaechei ssp. steigerwaltii affecting 23 patients between 2009 and 2016. Thirty-three isolates were sequence type 89 by conventional multilocus sequence typing (MLST) and displayed a maximum difference of 49 out of 3,643 targets in the ad-hoc core-genome MLST (cgMLST) scheme (SeqSphere+ software; Ridom, Münster, Germany). The relatedness of all isolates was confirmed by further maximum-likelihood phylogeny. One clonal complex of highly related isolates (≤15 allele difference in cgMLST) contained 17 patients, but epidemiological data only suggested five transmission events. The bla GIM-1 -gene was embedded in a class-1-integron (In770) and the Tn21-subgroup transposon Tn6216 (KC511628) on a 25-kb plasmid. Environmental screening detected one colonized sink trap in a service room. The outbreak was self-limited as no further bla GIM-1 -positive E. hormaechei has been isolated since 2016. Routine molecular screening of carbapenem-nonsusceptible gram-negative isolates detected a long-term, low-frequency outbreak of a GIM-1-producing E. hormaechei ssp. steigerwaltii clone. This highlights the necessity of molecular surveillance.
Rapid diversification and not clade age explains high diversity in neotropical Adelpha butterflies
Mullen, Sean P.; Savage, Wesley K.; Wahlberg, Niklas; Willmott, Keith R.
2011-01-01
Latitudinal gradients in species richness are among the most well-known biogeographic patterns in nature, and yet there remains much debate and little consensus over the ecological and evolutionary causes of these gradients. Here, we evaluated whether two prominent alternative hypotheses (namely differences in diversification rate or clade age) could account for the latitudinal diversity gradient in one of the most speciose neotropical butterfly genera (Adelpha) and its close relatives. We generated a multilocus phylogeny of a diverse group of butterflies in the containing tribe Limenitidini, which has both temperate and tropical representatives. Our results suggest there is no relationship between clade age and species richness that could account for the diversity gradient, but that instead it could be explained by a significantly higher diversification rate within the predominantly tropical genus Adelpha. An apparent early larval host-plant shift to Rubiaceae and other plant families suggests that the availability of new potential host plants probably contributed to an increase in diversification of Adelpha in the lowland Neotropics. Collectively, our results support the hypothesis that the equatorial peak in species richness observed within Adelpha is the result of increased diversification rate in the last 10–15 Myr rather than a function of clade age, perhaps reflecting adaptive divergence in response to the dramatic host-plant diversity found within neotropical ecosystems. PMID:21106589
Fine, Paul V A; Zapata, Felipe; Daly, Douglas C
2014-07-01
Andean uplift and the collision of North and South America are thought to have major implications for the diversification of the Neotropical biota. However, few studies have investigated how these geological events may have influenced diversification. We present a multilocus phylogeny of 102 Protieae taxa (73% of published species), sampled pantropically, to test hypotheses about the relative importance of dispersal, vicariance, habitat specialization, and biotic factors in the diversification of this ecologically dominant tribe of Neotropical trees. Bayesian fossil-calibrated analyses date the Protieae stem at 55 Mya. Biogeographic analyses reconstruct an initial late Oligocene/early Miocene radiation in Amazonia for Neotropical Protieae, with several subsequent late Miocene dispersal events to Central America, the Caribbean, Brazil's Atlantic Forest, and the Chocó. Regional phylogenetic structure results indicate frequent dispersal among regions throughout the Miocene and many instances of more recent regional in situ speciation. Habitat specialization to white sand or flooded soils was common, especially in Amazonia. There was one significant increase in diversification rate coincident with colonization of the Neotropics, followed by a gradual decrease consistent with models of diversity-dependent cladogenesis. Dispersal, biotic interactions, and habitat specialization are thus hypothesized to be the most important processes underlying the diversification of the Protieae. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Ye, Wenwu; Wang, Yang; Shen, Danyu; Li, Delong; Pu, Tianhuizi; Jiang, Zide; Zhang, Zhengguang; Zheng, Xiaobo; Tyler, Brett M; Wang, Yuanchao
2016-07-01
On the basis of its downy mildew-like morphology, the litchi downy blight pathogen was previously named Peronophythora litchii. Recently, however, it was proposed to transfer this pathogen to Phytophthora clade 4. To better characterize this unusual oomycete species and important fruit pathogen, we obtained the genome sequence of Phytophthora litchii and compared it to those from other oomycete species. P. litchii has a small genome with tightly spaced genes. On the basis of a multilocus phylogenetic analysis, the placement of P. litchii in the genus Phytophthora is strongly supported. Effector proteins predicted included 245 RxLR, 30 necrosis-and-ethylene-inducing protein-like, and 14 crinkler proteins. The typical motifs, phylogenies, and activities of these effectors were typical for a Phytophthora species. However, like the genome features of the analyzed downy mildews, P. litchii exhibited a streamlined genome with a relatively small number of genes in both core and species-specific protein families. The low GC content and slight codon preferences of P. litchii sequences were similar to those of the analyzed downy mildews and a subset of Phytophthora species. Taken together, these observations suggest that P. litchii is a Phytophthora pathogen that is in the process of acquiring downy mildew-like genomic and morphological features. Thus P. litchii may provide a novel model for investigating morphological development and genomic adaptation in oomycete pathogens.
Estimating hybridization in the presence of coalescence using phylogenetic intraspecific sampling.
Gerard, David; Gibbs, H Lisle; Kubatko, Laura
2011-10-06
A well-known characteristic of multi-locus data is that each locus has its own phylogenetic history which may differ substantially from the overall phylogenetic history of the species. Although the possibility that this arises through incomplete lineage sorting is often incorporated in models for the species-level phylogeny, it is much less common for hybridization to also be formally included in such models. We have modified the evolutionary model of Meng and Kubatko (2009) to incorporate intraspecific sampling of multiple individuals for estimation of speciation times and times of hybridization events for testing for hybridization in the presence of incomplete lineage sorting. We have also utilized a more efficient algorithm for obtaining our estimates. Using simulations, we demonstrate that our approach performs well under conditions motivated by an empirical data set for Sistrurus rattlesnakes where putative hybridization has occurred. We further demonstrate that the method is able to accurately detect the signature of hybridization in the data, while this signal may be obscured when other species-tree inference methods that ignore hybridization are used. Our approach is shown to be powerful in detecting hybridization when it is present. When applied to the Sistrurus data, we find no evidence of hybridization; instead, it appears that putative hybrid snakes in Missouri are most likely pure S. catenatus tergeminus in origin, which has significant conservation implications.
Delorme, Christine; Legravet, Nicolas; Jamet, Emmanuel; Hoarau, Caroline; Alexandre, Bolotin; El-Sharoud, Walid M; Darwish, Mohamed S; Renault, Pierre
2017-02-02
We analyzed 178 Streptococcus thermophilus strains isolated from diverse products, from around the world, over a 60-year period with a new multilocus sequence typing (MLST) scheme. This collection included isolates from two traditional cheese-making sites with different starter-use practices, in sampling campaigns carried out over a three years period. The nucleotide diversity of the S. thermophilus population was limited, but 116 sequence types (ST) were identified. Phylogenetic analysis of the concatenated sequences of the six housekeeping genes revealed the existence of groups confirmed by eBURST analysis. Deeper analyses performed on 25 strains by CRISPR and whole-genome analysis showed that phylogenies obtained by MLST and whole-genome analysis were in agreement but differed from that inferred by CRISPR analysis. Strains isolated from traditional products could cluster in specific groups indicating their origin, but also be mixed in groups containing industrial starter strains. In the traditional cheese-making sites, we found that S. thermophilus persisted on dairy equipment, but that occasionally added starter strains may become dominant. It underlined the impact of starter use that may reshape S. thermophilus populations including in traditional products. This new MLST scheme thus provides a framework for analyses of S. thermophilus populations and the management of its biodiversity. Copyright © 2016 Elsevier B.V. All rights reserved.
Tarasov, Sergei; Génier, François
2015-01-01
Scarabaeine dung beetles are the dominant dung feeding group of insects and are widely used as model organisms in conservation, ecology and developmental biology. Due to the conflicts among 13 recently published phylogenies dealing with the higher-level relationships of dung beetles, the phylogeny of this lineage remains largely unresolved. In this study, we conduct rigorous phylogenetic analyses of dung beetles, based on an unprecedented taxon sample (110 taxa) and detailed investigation of morphology (205 characters). We provide the description of morphology and thoroughly illustrate the used characters. Along with parsimony, traditionally used in the analysis of morphological data, we also apply the Bayesian method with a novel approach that uses anatomy ontology for matrix partitioning. This approach allows for heterogeneity in evolutionary rates among characters from different anatomical regions. Anatomy ontology generates a number of parameter-partition schemes which we compare using Bayes factor. We also test the effect of inclusion of autapomorphies in the morphological analysis, which hitherto has not been examined. Generally, schemes with more parameters were favored in the Bayesian comparison suggesting that characters located on different body regions evolve at different rates and that partitioning of the data matrix using anatomy ontology is reasonable; however, trees from the parsimony and all the Bayesian analyses were quite consistent. The hypothesized phylogeny reveals many novel clades and provides additional support for some clades recovered in previous analyses. Our results provide a solid basis for a new classification of dung beetles, in which the taxonomic limits of the tribes Dichotomiini, Deltochilini and Coprini are restricted and many new tribes must be described. Based on the consistency of the phylogeny with biogeography, we speculate that dung beetles may have originated in the Mesozoic contrary to the traditional view pointing to a Cenozoic origin. PMID:25781019
Debastiani, Vanderlei J; Pillar, Valério D
2012-08-01
SYNCSA is an R package for the analysis of metacommunities based on functional traits and phylogeny of the community components. It offers tools to calculate several matrix correlations that express trait-convergence assembly patterns, trait-divergence assembly patterns and phylogenetic signal in functional traits at the species pool level and at the metacommunity level. SYNCSA is a package for the R environment, under a GPL-2 open-source license and freely available on CRAN official web server for R (http://cran.r-project.org). vanderleidebastiani@yahoo.com.br.
Phylogenetic relationships of Hemiptera inferred from mitochondrial and nuclear genes.
Song, Nan; Li, Hu; Cai, Wanzhi; Yan, Fengming; Wang, Jianyun; Song, Fan
2016-11-01
Here, we reconstructed the Hemiptera phylogeny based on the expanded mitochondrial protein-coding genes and the nuclear 18S rRNA gene, separately. The differential rates of change across lineages may associate with long-branch attraction (LBA) effect and result in conflicting estimates of phylogeny from different types of data. To reduce the potential effects of systematic biases on inferences of topology, various data coding schemes, site removal method, and different algorithms were utilized in phylogenetic reconstruction. We show that the outgroups Phthiraptera, Thysanoptera, and the ingroup Sternorrhyncha share similar base composition, and exhibit "long branches" relative to other hemipterans. Thus, the long-branch attraction between these groups is suspected to cause the failure of recovering Hemiptera under the homogeneous model. In contrast, a monophyletic Hemiptera is supported when heterogeneous model is utilized in the analysis. Although higher level phylogenetic relationships within Hemiptera remain to be answered, consensus between analyses is beginning to converge on a stable phylogeny.
Phylogenetic estimates of diversification rate are affected by molecular rate variation.
Duchêne, D A; Hua, X; Bromham, L
2017-10-01
Molecular phylogenies are increasingly being used to investigate the patterns and mechanisms of macroevolution. In particular, node heights in a phylogeny can be used to detect changes in rates of diversification over time. Such analyses rest on the assumption that node heights in a phylogeny represent the timing of diversification events, which in turn rests on the assumption that evolutionary time can be accurately predicted from DNA sequence divergence. But there are many influences on the rate of molecular evolution, which might also influence node heights in molecular phylogenies, and thus affect estimates of diversification rate. In particular, a growing number of studies have revealed an association between the net diversification rate estimated from phylogenies and the rate of molecular evolution. Such an association might, by influencing the relative position of node heights, systematically bias estimates of diversification time. We simulated the evolution of DNA sequences under several scenarios where rates of diversification and molecular evolution vary through time, including models where diversification and molecular evolutionary rates are linked. We show that commonly used methods, including metric-based, likelihood and Bayesian approaches, can have a low power to identify changes in diversification rate when molecular substitution rates vary. Furthermore, the association between the rates of speciation and molecular evolution rate can cause the signature of a slowdown or speedup in speciation rates to be lost or misidentified. These results suggest that the multiple sources of variation in molecular evolutionary rates need to be considered when inferring macroevolutionary processes from phylogenies. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Kreipe, Victoria; Corral-Hernández, Elena; Scheu, Stefan; Schaefer, Ina; Maraun, Mark
2015-06-01
Species of the genus Steganacarus are soil-living oribatid mites (Acari, Phthiracaridae) with a ptychoid body. The phylogeny and species status of the species of Steganacarus are not resolved, some authors group all ten German species of Steganacarus within the genus Steganacarus whereas others split them into three subgenera, Steganacarus, Tropacarus and Atropacarus. Additionally, two species, S. magnus and T. carinatus, comprise morphotypes of questionable species status. We investigated the phylogeny and species status of ten European Steganacarus species, i.e. S. applicatus, S. herculeanus, S. magnus forma magna, S. magnus forma anomala, S. spinosus, Tropacarus brevipilus, T. carinatus forma carinata, T. carinatus forma pulcherrima, Atropacarus striculus and Rhacaplacarus ortizi. We used two molecular markers, a 251 bp fragment of the nuclear gene 28S rDNA (D3) and a 477 bp fragment of the mitochondrial COI region. The phylogeny based on a combined analysis of D3 and COI separated four subgenera (Steganacarus, Tropacarus and Atropacarus, Rhacaplacarus) indicating that they form monophyletic groups. The COI region separated all ten species of the genus Steganacarus and showed variation within some species often correlating with the geographic origin of the species. Resolution of the more conserved D3 region was limited, indicating that radiation events are rather recent. Overall, our results indicate that both genes alone cannot be used for phylogeny and barcoding since variation is too low in D3 and too high in COI. However, when used in combination these genes provide reliable insight into the phylogeny, radiation and species status of taxa of the genus Steganacarus.
USDA-ARS?s Scientific Manuscript database
This study was conducted to assess evolutionary relationships, species diversity, and trichothecene toxin potential of five Fusarium graminearum complex (FGSC) isolates identified as genetically novel during prior Fusarium head blight (FHB) surveys in Nepal and Louisiana. Results of a multilocus gen...
Schrago, Carlos G; Menezes, Albert N; Furtado, Carolina; Bonvicino, Cibele R; Seuanez, Hector N
2014-11-05
Neotropical primates (NP) are presently distributed in the New World from Mexico to northern Argentina, comprising three large families, Cebidae, Atelidae, and Pitheciidae, consequently to their diversification following their separation from Old World anthropoids near the Eocene/Oligocene boundary, some 40 Ma. The evolution of NP has been intensively investigated in the last decade by studies focusing on their phylogeny and timescale. However, despite major efforts, the phylogenetic relationship between these three major clades and the age of their last common ancestor are still controversial because these inferences were based on limited numbers of loci and dating analyses that did not consider the evolutionary variation associated with the distribution of gene trees within the proposed phylogenies. We show, by multispecies coalescent analyses of selected genome segments, spanning along 92,496,904 bp that the early diversification of extant NP was marked by a 2-fold increase of their effective population size and that Atelids and Cebids are more closely related respective to Pitheciids. The molecular phylogeny of NP has been difficult to solve because of population-level phenomena at the early evolution of the lineage. The association of evolutionary variation with the distribution of gene trees within proposed phylogenies is crucial for distinguishing the mean genetic divergence between species (the mean coalescent time between loci) from speciation time. This approach, based on extensive genomic data provided by new generation DNA sequencing, provides more accurate reconstructions of phylogenies and timescales for all organisms. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Viale, E; Martinez-Sañudo, I; Brown, J M; Simonato, M; Girolami, V; Squartini, A; Bressan, A; Faccoli, M; Mazzon, L
2015-09-01
Several insect lineages have evolved mutualistic association with symbiotic bacteria. This is the case of some species of mealybugs, whiteflies, weevils, tsetse flies, cockroaches, termites, carpenter ants, aphids and fruit flies. Some species of Tephritinae, the most specialized subfamily of fruit flies (Diptera: Tephritidae), harbour co-evolved vertically transmitted, bacterial symbionts in their midgut, known as "Candidatus Stammerula spp.". The 25 described endemic species of Hawaiian tephritids, plus at least three undescribed species, are taxonomically distributed among three genera: the cosmopolitan genus Trupanea (21 described spp.), the endemic genus Phaeogramma (2 spp.) and the Nearctic genus Neotephritis (2 spp.). We examined the presence of symbiotic bacteria in the endemic tephritids of the Hawaiian Islands, which represent a spectacular example of adaptive radiation, and tested the concordant evolution between host and symbiont phylogenies. We detected through PCR assays the presence of specific symbiotic bacteria, designated as "Candidatus Stammerula trupaneae", from 35 individuals of 15 species. The phylogeny of the insect host was reconstructed based on two regions of the mitochondrial DNA (16S rDNA and COI-tRNALeu-COII), while the bacterial 16S rRNA was used for the symbiont analysis. Host and symbiont phylogenies were then compared and evaluated for patterns of cophylogeny and strict cospeciation. Topological congruence between Hawaiian Tephritinae and their symbiotic bacteria phylogenies suggests a limited, but significant degree of host-symbiont cospeciation. We also explored the character reconstruction of three host traits, as island location, host lineage, and host tissue attacked, based on the symbiont phylogenies under the hypothesis of cospeciation. Copyright © 2015 Elsevier Inc. All rights reserved.
Chen, Meng-Yun; Liang, Dan; Zhang, Peng
2015-11-01
Incongruence between different phylogenomic analyses is the main challenge faced by phylogeneticists in the genomic era. To reduce incongruence, phylogenomic studies normally adopt some data filtering approaches, such as reducing missing data or using slowly evolving genes, to improve the signal quality of data. Here, we assembled a phylogenomic data set of 58 jawed vertebrate taxa and 4682 genes to investigate the backbone phylogeny of jawed vertebrates under both concatenation and coalescent-based frameworks. To evaluate the efficiency of extracting phylogenetic signals among different data filtering methods, we chose six highly intractable internodes within the backbone phylogeny of jawed vertebrates as our test questions. We found that our phylogenomic data set exhibits substantial conflicting signal among genes for these questions. Our analyses showed that non-specific data sets that are generated without bias toward specific questions are not sufficient to produce consistent results when there are several difficult nodes within a phylogeny. Moreover, phylogenetic accuracy based on non-specific data is considerably influenced by the size of data and the choice of tree inference methods. To address such incongruences, we selected genes that resolve a given internode but not the entire phylogeny. Notably, not only can this strategy yield correct relationships for the question, but it also reduces inconsistency associated with data sizes and inference methods. Our study highlights the importance of gene selection in phylogenomic analyses, suggesting that simply using a large amount of data cannot guarantee correct results. Constructing question-specific data sets may be more powerful for resolving problematic nodes. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
USDA-ARS?s Scientific Manuscript database
Flavobacterium psychrophilum is an important pathogen of salmonids worldwide. Multilocus sequence typing (MLST) has identified a recombinogenic population structure from which emerged a few epidemic clonal complexes particularly threatening for salmonid aquaculture. To date, MLST genotypes for this ...
Genome-Scale Phylogeny of the Alphavirus Genus Suggests a Marine Origin
Palacios, G.; Tesh, R. B.; Savji, N.; Guzman, H.; Sherman, M.; Weaver, S. C.; Lipkin, W. I.
2012-01-01
The genus Alphavirus comprises a diverse group of viruses, including some that cause severe disease. Using full-length sequences of all known alphaviruses, we produced a robust and comprehensive phylogeny of the Alphavirus genus, presenting a more complete evolutionary history of these viruses compared to previous studies based on partial sequences. Our phylogeny suggests the origin of the alphaviruses occurred in the southern oceans and spread equally through the Old and New World. Since lice appear to be involved in aquatic alphavirus transmission, it is possible that we are missing a louse-borne branch of the alphaviruses. Complete genome sequencing of all members of the genus also revealed conserved residues forming the structural basis of the E1 and E2 protein dimers. PMID:22190718
2002-01-01
numerous animal clades, including arthropods (Giribet & Ribera , 1998, 2000). The mitochondrial cytochrome oxidase subunits I and II have proven useful as...16S and 28S, D2 rRNA. Insect Molecular Biology, 6, 273-284. Giribet, G. & Ribera , C. (1998) The position of arthropods in animal kingdom: a search...for a reliable outgroup for internal arthropod phylogeny. Molecular Phylogenetics and Evolution, 9, 481-488. Giribet, G. & Ribera , C. (2000) A review
Dumack, Kenneth; Mylnikov, Alexander P; Bonkowski, Michael
2017-07-01
The genus Kraken represents a distinct lineage of filose amoebae within the Cercozoa. Currently a single species, Kraken carinae, has been described. SSU rDNA phylogeny showed an affiliation to the Cercomonadida, branching with weak support at its base, close to Paracercomonas, Metabolomonas, and Brevimastigomonas. Light microscopical analyses showed several unique features of the genus Kraken, but ultrastructure data were lacking. In this study, K. carinae has been studied by electron microscopy, these data conjoined with a two-gene phylogeny were used to give more insight into the evolutionary relationship of the genus Kraken within Cercozoa. The data confirmed the absence of flagella, but also showed novel characteristics, such as the presence of extrusomes, osmiophilic bodies, and mitochondria with flat cristae. Surprising was the presence of single-tier scales which are carried by cell outgrowths, much of what is expected of the last common ancestor of the class Imbricatea. The phylogenetic analyses however confirmed previous results, indicating Kraken as a sister group to Paracercomonas in Sarcomonadea with an increased but still low support of 0.98 PP/63 BP. Based on the unique features of Kraken we establish the Krakenidae fam. nov. that we, due to contradictory results in morphology and phylogeny, assign incertae sedis, Monadofilosa. Copyright © 2017 Elsevier GmbH. All rights reserved.
First report of the post-fire morel, Morchella exuberans, in eastern North America
USDA-ARS?s Scientific Manuscript database
Reports of true morels (Morchella) fruiting on conifer burn sites are common in western North America where five different fire-adapted species of black morels (Elata Clade) have been documented based on multilocus phylogenetic analyses. Fruiting of post-fire morels in eastern North America, by comp...
USDA-ARS?s Scientific Manuscript database
Strains from a collection of 3,639 diverse Bacillus thuringiensis isolates were classified based on phenotypic profiles resulting from six biochemical tests, including production of amylase (T), lecithinase (L), urease (U), acid from sucrose (S) and salicin (A), and the hydrolysis of esculin (E). St...
Caufield, Page W; Saxena, Deepak; Fitch, David; Li, Yihong
2007-02-01
There are suggestions that the phylogeny of Streptococcus mutans, a member of the human indigenous biota that is transmitted mostly mother to child, might parallel the evolutionary history of its human host. The relatedness and phylogeny of plasmid-containing strains of S. mutans were examined based on chromosomal DNA fingerprints (CDF), a hypervariable region (HVR) of a 5.6-kb plasmid, the rRNA gene intergenic spacer region (IGSR), serotypes, and the genotypes of mutacin I and II. Plasmid-containing strains were studied because their genetic diversity was twice as great as that of plasmid-free strains. The CDF of S. mutans from unrelated human hosts were unique, except those from Caucasians, which were essentially identical. The evolutionary history of the IGSR, with or without the serotype and mutacin characters, clearly delineated an Asian clade. Also, a continuous association with mutacin II could be reconstructed through an evolutionary lineage with the IGSR, but not for serotype e. DNA sequences from the HVR of the plasmid produced a well-resolved phylogeny that differed from the chromosomal phylogeny, indicating that the horizontal transfer of the plasmid may have occurred multiple times. The plasmid phylogeny was more congruent with serotype e than with mutacin II evolution, suggesting a possible functional correlation. Thus, the history of this three-tiered relationship between human, bacterium, and plasmid supported both coevolution and independent evolution.
Plastome phylogeny and early diversification of Brassicaceae.
Guo, Xinyi; Liu, Jianquan; Hao, Guoqian; Zhang, Lei; Mao, Kangshan; Wang, Xiaojuan; Zhang, Dan; Ma, Tao; Hu, Quanjun; Al-Shehbaz, Ihsan A; Koch, Marcus A
2017-02-16
The family Brassicaceae encompasses diverse species, many of which have high scientific and economic importance. Early diversifications and phylogenetic relationships between major lineages or clades remain unclear. Here we re-investigate Brassicaceae phylogeny with complete plastomes from 51 species representing all four lineages or 5 of 6 major clades (A, B, C, E and F) as identified in earlier studies. Bayesian and maximum likelihood phylogenetic analyses using a partitioned supermatrix of 77 protein coding genes resulted in nearly identical tree topologies exemplified by highly supported relationships between clades. All four lineages were well identified and interrelationships between them were resolved. The previously defined Clade C was found to be paraphyletic (the genus Megadenia formed a separate lineage), while the remaining clades were monophyletic. Clade E (lineage III) was sister to clades B + C rather than to all core Brassicaceae (clades A + B + C or lineages I + II), as suggested by a previous transcriptome study. Molecular dating based on plastome phylogeny supported the origin of major lineages or clades between late Oligocene and early Miocene, and the following radiative diversification across the family took place within a short timescale. In addition, gene losses in the plastomes occurred multiple times during the evolutionary diversification of the family. Plastome phylogeny illustrates the early diversification of cruciferous species. This phylogeny will facilitate our further understanding of evolution and adaptation of numerous species in the model family Brassicaceae.
Faurby, Søren; Svenning, Jens-Christian
2015-03-01
Across large clades, two problems are generally encountered in the estimation of species-level phylogenies: (a) the number of taxa involved is generally so high that computation-intensive approaches cannot readily be utilized and (b) even for clades that have received intense study (e.g., mammals), attention has been centered on relatively few selected species, and most taxa must therefore be positioned on the basis of very limited genetic data. Here, we describe a new heuristic-hierarchical Bayesian approach and use it to construct a species-level phylogeny for all extant and late Quaternary extinct mammals. In this approach, species with large quantities of genetic data are placed nearly freely in the mammalian phylogeny according to these data, whereas the placement of species with lower quantities of data is performed with steadily stricter restrictions for decreasing data quantities. The advantages of the proposed method include (a) an improved ability to incorporate phylogenetic uncertainty in downstream analyses based on the resulting phylogeny, (b) a reduced potential for long-branch attraction or other types of errors that place low-data taxa far from their true position, while maintaining minimal restrictions for better-studied taxa, and (c) likely improved placement of low-data taxa due to the use of closer outgroups. Copyright © 2014 Elsevier Inc. All rights reserved.
Viscogliosi, E; Edgcomb, V P; Gerbod, D; Noël, C; Delgado-Viscogliosi, P
1999-12-01
The Parabasala are a primitive group of protists divided into two classes: the trichomonads and the hypermastigids. Until recently, phylogeny and taxonomy of parabasalids were mainly based on the comparative analysis of morphological characters primarily linked to the development of their cytoskeleton. Recent use of molecular markers, such as small subunit (SSU) rRNA has led to now insights into the systematics of the Parabasala and other groups of prolists. An updated phylogeny based on SSU rRNA is provided and compared to that inferred from ultrastructural data. The SSU rRNA phylogeny contradicts the dogma equating simple characters with pumitive characters. Hypermastigids, possessing a hyperdeveloped cytoskeleton, exhibit the most basal emergence in the parabasalid lineage. Other observations emerge from the SSU rRNA analysis, such as the secondary loss of some cytoskeleton structures in all representatives of the Monocercomonadidae, the existence of secondarily free living taxa (reversibility of parasitism) and the evidence against the co-evolution of the endobiotic parabasalids and their animal hosts. According to phylogenies based on SSU rRNA, all the trichomonad families are not monophyletic groups, putting into question the validity of current taxonomic assignments. The precise branching order of some taxa remains unclear, but this issue can possibly be addressed by the molecular analysis of additional parabasalids. The goal of such additional analyses would be to propose, in a near future, a revision of the taxonomy of this group of protists that takes into account both molecular and morphological data.
Phylogeny and Divergence Times of Gymnosperms Inferred from Single-Copy Nuclear Genes
Guo, Dong-Mei; Yang, Zu-Yu; Wang, Xiao-Quan
2014-01-01
Phylogenetic reconstruction is fundamental to study evolutionary biology and historical biogeography. However, there was not a molecular phylogeny of gymnosperms represented by extensive sampling at the genus level, and most published phylogenies of this group were constructed based on cytoplasmic DNA markers and/or the multi-copy nuclear ribosomal DNA. In this study, we use LFY and NLY, two single-copy nuclear genes that originated from an ancient gene duplication in the ancestor of seed plants, to reconstruct the phylogeny and estimate divergence times of gymnosperms based on a complete sampling of extant genera. The results indicate that the combined LFY and NLY coding sequences can resolve interfamilial relationships of gymnosperms and intergeneric relationships of most families. Moreover, the addition of intron sequences can improve the resolution in Podocarpaceae but not in cycads, although divergence times of the cycad genera are similar to or longer than those of the Podocarpaceae genera. Our study strongly supports cycads as the basal-most lineage of gymnosperms rather than sister to Ginkgoaceae, and a sister relationship between Podocarpaceae and Araucariaceae and between Cephalotaxaceae-Taxaceae and Cupressaceae. In addition, intergeneric relationships of some families that were controversial, and the relationships between Taxaceae and Cephalotaxaceae and between conifers and Gnetales are discussed based on the nuclear gene evidence. The molecular dating analysis suggests that drastic extinctions occurred in the early evolution of gymnosperms, and extant coniferous genera in the Northern Hemisphere are older than those in the Southern Hemisphere on average. This study provides an evolutionary framework for future studies on gymnosperms. PMID:25222863
NASA Technical Reports Server (NTRS)
Viscogliosi, E.; Edgcomb, V. P.; Gerbod, D.; Noel, C.; Delgado-Viscogliosi, P.; Sogin, M. L. (Principal Investigator)
1999-01-01
The Parabasala are a primitive group of protists divided into two classes: the trichomonads and the hypermastigids. Until recently, phylogeny and taxonomy of parabasalids were mainly based on the comparative analysis of morphological characters primarily linked to the development of their cytoskeleton. Recent use of molecular markers, such as small subunit (SSU) rRNA has led to now insights into the systematics of the Parabasala and other groups of prolists. An updated phylogeny based on SSU rRNA is provided and compared to that inferred from ultrastructural data. The SSU rRNA phylogeny contradicts the dogma equating simple characters with pumitive characters. Hypermastigids, possessing a hyperdeveloped cytoskeleton, exhibit the most basal emergence in the parabasalid lineage. Other observations emerge from the SSU rRNA analysis, such as the secondary loss of some cytoskeleton structures in all representatives of the Monocercomonadidae, the existence of secondarily free living taxa (reversibility of parasitism) and the evidence against the co-evolution of the endobiotic parabasalids and their animal hosts. According to phylogenies based on SSU rRNA, all the trichomonad families are not monophyletic groups, putting into question the validity of current taxonomic assignments. The precise branching order of some taxa remains unclear, but this issue can possibly be addressed by the molecular analysis of additional parabasalids. The goal of such additional analyses would be to propose, in a near future, a revision of the taxonomy of this group of protists that takes into account both molecular and morphological data.
Molecular phylogeny and systematics of the Echinostomatoidea Looss, 1899 (Platyhelminthes: Digenea).
Tkach, Vasyl V; Kudlai, Olena; Kostadinova, Aneta
2016-03-01
The Echinostomatoidea is a large, cosmopolitan group of digeneans currently including nine families and 105 genera, the vast majority parasitic, as adults, in birds with relatively few taxa parasitising mammals, reptiles and, exceptionally, fish. Despite the complex structure, diverse content and substantial species richness of the group, almost no attempt has been made to elucidate its phylogenetic relationships at the suprageneric level based on molecules due to the lack of data. Herein, we evaluate the consistency of the present morphology-based classification system of the Echinostomatoidea with the phylogenetic relationships of its members based on partial sequences of the nuclear lsrRNA gene for a broad diversity of taxa (80 species, representing eight families and 40 genera), including representatives of five subfamilies of the Echinostomatidae, which currently exhibits the most complex taxonomic structure within the superfamily. This first comprehensive phylogeny for the Echinostomatoidea challenged the current systematic framework based on comparative morphology. A morphology-based evaluation of this new molecular framework resulted in a number of systematic and nomenclatural changes consistent with the phylogenetic estimates of the generic and suprageneric boundaries and a new phylogeny-based classification of the Echinostomatoidea. In the current systematic treatment: (i) the rank of two family level lineages, the former Himasthlinae and Echinochasminae, is elevated to full family status; (ii) Caballerotrema is distinguished at the family level; (iii) the content and diagnosis of the Echinostomatidae (sensu stricto) (s. str.) are revised to reflect its phylogeny, resulting in the abolition of the Nephrostominae and Chaunocephalinae as synonyms of the Echinostomatidae (s. str.); (iv) Artyfechinostomum, Cathaemasia, Rhopalias and Ribeiroia are re-allocated within the Echinostomatidae (s. str.), resulting in the abolition of the Cathaemasiidae, Rhopaliidae and Ribeiroiinae, which become synonyms of the Echinostomatidae (s. str.); and (v) refinements of the generic boundaries within the Echinostomatidae (s. str.), Psilostomidae and Fasciolidae are made. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Smith, Nathan D.
2010-01-01
Background Debate regarding the monophyly and relationships of the avian order Pelecaniformes represents a classic example of discord between morphological and molecular estimates of phylogeny. This lack of consensus hampers interpretation of the group's fossil record, which has major implications for understanding patterns of character evolution (e.g., the evolution of wing-propelled diving) and temporal diversification (e.g., the origins of modern families). Relationships of the Pelecaniformes were inferred through parsimony analyses of an osteological dataset encompassing 59 taxa and 464 characters. The relationships of the Plotopteridae, an extinct family of wing-propelled divers, and several other fossil pelecaniforms (Limnofregata, Prophaethon, Lithoptila, ?Borvocarbo stoeffelensis) were also assessed. The antiquity of these taxa and their purported status as stem members of extant families makes them valuable for studies of higher-level avian diversification. Methodology/Principal Findings Pelecaniform monophyly is not recovered, with Phaethontidae recovered as distantly related to all other pelecaniforms, which are supported as a monophyletic Steganopodes. Some anatomical partitions of the dataset possess different phylogenetic signals, and partitioned analyses reveal that these discrepancies are localized outside of Steganopodes, and primarily due to a few labile taxa. The Plotopteridae are recovered as the sister taxon to Phalacrocoracoidea, and the relationships of other fossil pelecaniforms representing key calibration points are well supported, including Limnofregata (sister taxon to Fregatidae), Prophaethon and Lithoptila (successive sister taxa to Phaethontidae), and ?Borvocarbo stoeffelensis (sister taxon to Phalacrocoracidae). These relationships are invariant when ‘backbone’ constraints based on recent avian phylogenies are imposed. Conclusions/Significance Relationships of extant pelecaniforms inferred from morphology are more congruent with molecular phylogenies than previously assumed, though notable conflicts remain. The phylogenetic position of the Plotopteridae implies that wing-propelled diving evolved independently in plotopterids and penguins, representing a remarkable case of convergent evolution. Despite robust support for the placement of fossil taxa representing key calibration points, the successive outgroup relationships of several “stem fossil + crown family” clades are variable and poorly supported across recent studies of avian phylogeny. Thus, the impact these fossils have on inferred patterns of temporal diversification depends heavily on the resolution of deep nodes in avian phylogeny. PMID:20976229
USDA-ARS?s Scientific Manuscript database
A survey of Fusarium head blight (FHB)-contaminated wheat in Ethiopia recovered 31 isolates resembling members of the Fusarium graminearum species complex. Results of a multilocus genotyping (MLGT) assay for FHB species and trichothecene chemotype determination suggested that 22 of these isolates m...
USDA-ARS?s Scientific Manuscript database
Multi-locus sequence analysis has been demonstrated to be a useful tool for identification of Streptomyces species and was previously applied to phylogenetically differentiate the type strains of species pathogenic on potatoes (Solanum tuberosum L.). The ARS Culture Collection (NRRL) contains 43 str...
Kenah, Eben; Britton, Tom; Halloran, M. Elizabeth; Longini, Ira M.
2016-01-01
Recent work has attempted to use whole-genome sequence data from pathogens to reconstruct the transmission trees linking infectors and infectees in outbreaks. However, transmission trees from one outbreak do not generalize to future outbreaks. Reconstruction of transmission trees is most useful to public health if it leads to generalizable scientific insights about disease transmission. In a survival analysis framework, estimation of transmission parameters is based on sums or averages over the possible transmission trees. A phylogeny can increase the precision of these estimates by providing partial information about who infected whom. The leaves of the phylogeny represent sampled pathogens, which have known hosts. The interior nodes represent common ancestors of sampled pathogens, which have unknown hosts. Starting from assumptions about disease biology and epidemiologic study design, we prove that there is a one-to-one correspondence between the possible assignments of interior node hosts and the transmission trees simultaneously consistent with the phylogeny and the epidemiologic data on person, place, and time. We develop algorithms to enumerate these transmission trees and show these can be used to calculate likelihoods that incorporate both epidemiologic data and a phylogeny. A simulation study confirms that this leads to more efficient estimates of hazard ratios for infectiousness and baseline hazards of infectious contact, and we use these methods to analyze data from a foot-and-mouth disease virus outbreak in the United Kingdom in 2001. These results demonstrate the importance of data on individuals who escape infection, which is often overlooked. The combination of survival analysis and algorithms linking phylogenies to transmission trees is a rigorous but flexible statistical foundation for molecular infectious disease epidemiology. PMID:27070316
Phylogeny-Based Systematization of Arabidopsis Proteins with Histone H1 Globular Domain1[OPEN
Knizewski, Lukasz; Schmidt, Anja; Ginalski, Krzysztof
2017-01-01
H1 (or linker) histones are basic nuclear proteins that possess an evolutionarily conserved nucleosome-binding globular domain, GH1. They perform critical functions in determining the accessibility of chromatin DNA to trans-acting factors. In most metazoan species studied so far, linker histones are highly heterogenous, with numerous nonallelic variants cooccurring in the same cells. The phylogenetic relationships among these variants as well as their structural and functional properties have been relatively well established. This contrasts markedly with the rather limited knowledge concerning the phylogeny and structural and functional roles of an unusually diverse group of GH1-containing proteins in plants. The dearth of information and the lack of a coherent phylogeny-based nomenclature of these proteins can lead to misunderstandings regarding their identity and possible relationships, thereby hampering plant chromatin research. Based on published data and our in silico and high-throughput analyses, we propose a systematization and coherent nomenclature of GH1-containing proteins of Arabidopsis (Arabidopsis thaliana [L.] Heynh) that will be useful for both the identification and structural and functional characterization of homologous proteins from other plant species. PMID:28298478
Phylogeny-Based Systematization of Arabidopsis Proteins with Histone H1 Globular Domain.
Kotliński, Maciej; Knizewski, Lukasz; Muszewska, Anna; Rutowicz, Kinga; Lirski, Maciej; Schmidt, Anja; Baroux, Célia; Ginalski, Krzysztof; Jerzmanowski, Andrzej
2017-05-01
H1 (or linker) histones are basic nuclear proteins that possess an evolutionarily conserved nucleosome-binding globular domain, GH1. They perform critical functions in determining the accessibility of chromatin DNA to trans-acting factors. In most metazoan species studied so far, linker histones are highly heterogenous, with numerous nonallelic variants cooccurring in the same cells. The phylogenetic relationships among these variants as well as their structural and functional properties have been relatively well established. This contrasts markedly with the rather limited knowledge concerning the phylogeny and structural and functional roles of an unusually diverse group of GH1-containing proteins in plants. The dearth of information and the lack of a coherent phylogeny-based nomenclature of these proteins can lead to misunderstandings regarding their identity and possible relationships, thereby hampering plant chromatin research. Based on published data and our in silico and high-throughput analyses, we propose a systematization and coherent nomenclature of GH1-containing proteins of Arabidopsis ( Arabidopsis thaliana [L.] Heynh) that will be useful for both the identification and structural and functional characterization of homologous proteins from other plant species. © 2017 American Society of Plant Biologists. All Rights Reserved.
Blair, Christopher; Méndez de la Cruz, Fausto R; Law, Christopher; Murphy, Robert W
2015-03-01
Methods and approaches for accurate species delimitation continue to be a highly controversial subject in the systematics community. Inaccurate assessment of species' limits precludes accurate inference of historical evolutionary processes. Recent evidence suggests that multilocus coalescent methods show promise in delimiting species in cryptic clades. We combine multilocus sequence data with coalescence-based phylogenetics in a hypothesis-testing framework to assess species limits and elucidate the timing of diversification in leaf-toed geckos (Phyllodactylus) of Mexico's dry forests. Tropical deciduous forests (TDF) of the Neotropics are among the planet's most diverse ecosystems. However, in comparison to moist tropical forests, little is known about the mode and tempo of biotic evolution throughout this threatened biome. We find increased speciation and substantial, cryptic molecular diversity originating following the formation of Mexican TDF 30-20million years ago due to orogenesis of the Sierra Madre Occidental and Mexican Volcanic Belt. Phylogenetic results suggest that the Mexican Volcanic Belt, the Rio Fuerte, and Isthmus of Tehuantepec may be important biogeographic barriers. Single- and multilocus coalescent analyses suggest that nearly every sampling locality may be a distinct species. These results suggest unprecedented levels of diversity, a complex evolutionary history, and that the formation and expansion of TDF vegetation in the Miocene may have influenced subsequent cladogenesis of leaf-toed geckos throughout western Mexico. Copyright © 2015 Elsevier Inc. All rights reserved.
Durigan, Mauricio; Abreu, Aluana Gonçalves; Zucchi, Maria Imaculada; Franco, Regina Maura Bueno; de Souza, Anete Pereira
2014-01-01
Background Giardia duodenalis is a flagellate protozoan that parasitizes humans and several other mammals. Protozoan contamination has been regularly documented at important environmental sites, although most of these studies were performed at the species level. There is a lack of studies that correlate environmental contamination and clinical infections in the same region. The aim of this study is to evaluate the genetic diversity of a set of clinical and environmental samples and to use the obtained data to characterize the genetic profile of the distribution of G. duodenalis and the potential for zoonotic transmission in a metropolitan region of Brazil. Methodology/Principal Findings The genetic assemblages and subtypes of G. duodenalis isolates obtained from hospitals, a veterinary clinic, a day-care center and important environmental sites were determined via multilocus sequence-based genotyping using three unlinked gene loci. Cysts of Giardia were detected at all of the environmental sites. Mixed assemblages were detected in 25% of the total samples, and an elevated number of haplotypes was identified. The main haplotypes were shared among the groups, and new subtypes were identified at all loci. Ten multilocus genotypes were identified: 7 for assemblage A and 3 for assemblage B. Conclusions/Significance There is persistent G. duodenalis contamination at important environmental sites in the city. The identified mixed assemblages likely represent mixed infections, suggesting high endemicity of Giardia in these hosts. Most Giardia isolates obtained in this study displayed zoonotic potential. The high degree of genetic diversity in the isolates obtained from both clinical and environmental samples suggests that multiple sources of infection are likely responsible for the detected contamination events. The finding that many multilocus genotypes (MLGs) and haplotypes are shared by different groups suggests that these sources of infection may be related and indicates that there is a notable risk of human infection caused by Giardia in this region. PMID:25536055
Wang, Tao; Li, Hua; Wang, Hua; Su, Jing
2015-04-16
The present study established a typing method with NotI-based pulsed-field gel electrophoresis (PFGE) and stress response gene schemed multilocus sequence typing (MLST) for 55 Oenococcus oeni strains isolated from six individual regions in China and two model strains PSU-1 (CP000411) and ATCC BAA-1163 (AAUV00000000). Seven stress response genes, cfa, clpL, clpP, ctsR, mleA, mleP and omrA, were selected for MLST testing, and positive selective pressure was detected for these genes. Furthermore, both methods separated the strains into two clusters. The PFGE clusters are correlated with the region, whereas the sequence types (STs) formed by the MLST confirm the two clusters identified by PFGE. In addition, the population structure was a mixture of evolutionary pathways, and the strains exhibited both clonal and panmictic characteristics. Copyright © 2015 Elsevier B.V. All rights reserved.
Li, Xiang; Tambong, James; Yuan, Kat Xiaoli; Chen, Wen; Xu, Huimin; Lévesque, C André; De Boer, Solke H
2018-01-01
Although the genus Clavibacter was originally proposed to accommodate all phytopathogenic coryneform bacteria containing B2γ diaminobutyrate in the peptidoglycan, reclassification of all but one species into other genera has resulted in the current monospecific status of the genus. The single species in the genus, Clavibacter michiganensis, has multiple subspecies, which are all highly host-specific plant pathogens. Whole genome analysis based on average nucleotide identity and digital DNA-DNA hybridization as well as multi-locus sequence analysis (MLSA) of seven housekeeping genes support raising each of the C. michiganensis subspecies to species status. On the basis of whole genome and MLSA data, we propose the establishment of two new species and three new combinations: Clavibacter capsici sp. nov., comb. nov. and Clavibacter tessellarius sp. nov., comb. nov., and Clavibacter insidiosus comb. nov., Clavibacter nebraskensis comb. nov. and Clavibacter sepedonicus comb. nov.
Li, Xiang; Tambong, James; Yuan, Kat (Xiaoli); Chen, Wen; Xu, Huimin; Lévesque, C. André; De Boer, Solke H.
2018-01-01
Although the genus Clavibacter was originally proposed to accommodate all phytopathogenic coryneform bacteria containing B2γ diaminobutyrate in the peptidoglycan, reclassification of all but one species into other genera has resulted in the current monospecific status of the genus. The single species in the genus, Clavibacter michiganensis, has multiple subspecies, which are all highly host-specific plant pathogens. Whole genome analysis based on average nucleotide identity and digital DNA–DNA hybridization as well as multi-locus sequence analysis (MLSA) of seven housekeeping genes support raising each of the C. michiganensis subspecies to species status. On the basis of whole genome and MLSA data, we propose the establishment of two new species and three new combinations: Clavibacter capsici sp. nov., comb. nov. and Clavibacter tessellarius sp. nov., comb. nov., and Clavibacter insidiosus comb. nov., Clavibacter nebraskensis comb. nov. and Clavibacter sepedonicus comb. nov. PMID:29160202
Qian, Weifeng; Wang, Tianqi; Yan, Wenchao; Zhang, Min; Han, Lifang; Xue, Rui; Song, Shaofu; Lv, Chaochao
2017-09-15
Neospora caninum is one of the important causes of abortion in cattle worldwide, and losses due to neosporosis to the cattle industry are considerable. However, the knowledge of genetic characterization of this parasite is limited. The aim of the present study is to determine the prevalence and genetic characterization of N. caninum from dairy cows in Henan Province, central China. A total of 510 blood samples and 7 aborted fetuses were collected from 8 dairy farms in Henan Province. Serum antibodies to N. caninum were examined by ELISA using a recombinant tNcSRS2 protein as the coating antigen. The overall seroprevalence of N. caninum in dairy cows was 41.2% (210/510). The seropositivity rate of N. caninum in aborting cows (49.3%) was statistically significant higher than that (29.3%) in non-aborting cows (p<0.05) with an odds ratio of 2.44 (95% CI, 1.61-3.41). Statistical association was also found between farm type and the seropositivity rate of N. caninum infection in cows (p<0.01).N. caninum DNA was detected from 6 of 396 blood samples (1.5%) and 4 of 7 aborted fetuses by nested PCR based on NC5 gene, and the 10N. caninum positive DNA samples were further analyzed by multilocus microsatellite (MS) genotyping for MS4, MS5, MS6A, MS7, MS8, MS10, and MS12. Only 2 samples were successfully genotyped at all genetic loci, and two unique profiles including two novel allelic patterns were identified. To our knowledge, this study is the first report of genetic characterization of N. caninum isolates from naturally infected dairy cows based on multilocus microsatellites (more than 2 loci) in China. Copyright © 2017 Elsevier B.V. All rights reserved.
Mishra, Priyanka; Kumar, Amit; Nagireddy, Akshitha; Shukla, Ashutosh K.
2017-01-01
DNA barcoding is used as a universal tool for delimiting species boundaries in taxonomically challenging groups, with different plastid and nuclear regions (rbcL, matK, ITS and psbA-trnH) being recommended as primary DNA barcodes for plants. We evaluated the feasibility of using these regions in the species-rich genus Terminalia, which exhibits various overlapping morphotypes with pantropical distribution, owing to its complex taxonomy. Terminalia bellerica and T. chebula are ingredients of the famous Ayurvedic Rasayana formulation Triphala, used for detoxification and rejuvenation. High demand for extracted phytochemicals as well as the high trade value of several species renders mandatory the need for the correct identification of traded plant material. Three different analytical methods with single and multilocus barcoding regions were tested to develop a DNA barcode reference library from 222 individuals representing 41 Terminalia species. All the single barcodes tested had a lower discriminatory power than the multilocus regions, and the combination of matK+ITS had the highest resolution rate (94.44%). The average intra-specific variations (0.0188±0.0019) were less than the distance to the nearest neighbour (0.106±0.009) with matK and ITS. Distance-based Neighbour Joining analysis outperformed the character-based Maximum Parsimony method in the identification of traded species such as T. arjuna, T. chebula and T. tomentosa, which are prone to adulteration. rbcL was shown to be a highly conservative region with only 3.45% variability between all of the sequences. The recommended barcode combination, rbcL+matK, failed to perform in the genus Terminalia. Considering the complexity of resolution observed with single regions, the present study proposes the combination of matK+ITS as the most successful barcode in Terminalia. PMID:28829803
Rickettsia asembonensis Characterization by Multilocus Sequence Typing of Complete Genes, Peru.
Loyola, Steev; Flores-Mendoza, Carmen; Torre, Armando; Kocher, Claudine; Melendrez, Melanie; Luce-Fedrow, Alison; Maina, Alice N; Richards, Allen L; Leguia, Mariana
2018-05-01
While studying rickettsial infections in Peru, we detected Rickettsia asembonensis in fleas from domestic animals. We characterized 5 complete genomic regions (17kDa, gltA, ompA, ompB, and sca4) and conducted multilocus sequence typing and phylogenetic analyses. The molecular isolate from Peru is distinct from the original R. asembonensis strain from Kenya.
Boo, Ga Hun; Le Gall, Line; Miller, Kathy Ann; Freshwater, D Wilson; Wernberg, Thomas; Terada, Ryuta; Yoon, Kyung Ju; Boo, Sung Min
2016-08-01
Although the Gelidiales are economically important marine red algae producing agar and agarose, the phylogeny of this order remains poorly resolved. The present study provides a molecular phylogeny based on a novel marker, nuclear-encoded CesA, plus plastid-encoded psaA, psbA, rbcL, and mitochondria-encoded cox1 from subsets of 107 species from all ten genera within the Gelidiales. Analyses of individual and combined datasets support the monophyly of three currently recognized families, and reveal a new clade. On the basis of these results, the new family Orthogonacladiaceae is described to accommodate Aphanta and a new genus Orthogonacladia that includes species previously classified as Gelidium madagascariense and Pterocladia rectangularis. Acanthopeltis is merged with Gelidium, which has nomenclatural priority. Nuclear-encoded CesA was found to be useful for improving the resolution of phylogenetic relationships within the Gelidiales and is likely to be valuable for the inference of phylogenetic relationship among other red algal taxa. Copyright © 2016 Elsevier Inc. All rights reserved.
Phylogeny and systematics of deep-sea precious corals (Anthozoa: Octocorallia: Coralliidae).
Tu, Tzu-Hsuan; Dai, Chang-Feng; Jeng, Ming-Shiou
2015-03-01
The phylogeny of Coralliidae is being increasingly studied to elucidate their evolutionary history and species delimitation due to global concerns about their conservation. Previous studies on phylogenetic relationships within Coralliidae have pointed out that the two currently recognized genera are not monophyletic and the Coralliidae should be divided into three genera. In order to provide a comprehensive revision of the taxonomy of Coralliidae, we documented 110 specimens using eight mitochondrial and one nuclear loci to reconstruct their phylogeny. The morphological features of 27 type specimens were also examined. Phylogenetic relationships based on both mitochondrial and nuclear markers revealed two reciprocally monophyletic clades of Coralliidae. One of the clades was further split into two subclades with respect to sequence variation and observable morphological features. Based on the results of genealogical analyses and distinctive morphological features, the three genera classification of Coralliidae proposed by Gray (1867) was redefined. In this revised taxonomic system, Corallium, Hemicorallium, and Pleurocorallium consist of 7, 16 and 14 species, respectively. Our results also showed that the cosmopolitan Hemicorallium laauense is a species complex containing a cryptic species. Copyright © 2015 Elsevier Inc. All rights reserved.
Liu, Jun; Li, Qi; Kong, Lingfeng; Yu, Hong; Zheng, Xiaodong
2011-09-01
Oysters (family Ostreidae), with high levels of phenotypic plasticity and wide geographic distribution, are a challenging group for taxonomists and phylogenetics. As a useful tool for molecular species identification, DNA barcoding might offer significant potential for oyster identification and taxonomy. This study used two mitochondrial fragments, cytochrome c oxidase I (COI) and the large ribosomal subunit (16S rDNA), to assess whether oyster species could be identified by phylogeny and distance-based DNA barcoding techniques. Relationships among species were estimated by the phylogenetic analyses of both genes, and then pairwise inter- and intraspecific genetic divergences were assessed. Species forming well-differentiated clades in the molecular phylogenies were identical for both genes even when the closely related species were included. Intraspecific variability of 16S rDNA overlapped with interspecific divergence. However, average intra- and interspecific genetic divergences for COI were 0-1.4% (maximum 2.2%) and 2.6-32.2% (minimum 2.2%), respectively, indicating the existence of a barcoding gap. These results confirm the efficacy of species identification in oysters via DNA barcodes and phylogenetic analysis. © 2011 Blackwell Publishing Ltd.
Phylogeny and Systematics of Leptomyxid Amoebae (Amoebozoa, Tubulinea, Leptomyxida).
Smirnov, Alexey; Nassonova, Elena; Geisen, Stefan; Bonkowski, Michael; Kudryavtsev, Alexander; Berney, Cedric; Glotova, Anna; Bondarenko, Natalya; Dyková, Iva; Mrva, Martin; Fahrni, Jose; Pawlowski, Jan
2017-04-01
We describe four new species of Flabellula, Leptomyxa and Rhizamoeba and publish new SSU rRNA gene and actin gene sequences of leptomyxids. Using these data we provide the most comprehensive SSU phylogeny of leptomyxids to date. Based on the analyses of morphological data and results of the SSU rRNA gene phylogeny we suggest changes in the systematics of the order Leptomyxida (Amoebozoa: Lobosa: Tubulinea). We propose to merge the genera Flabellula and Paraflabellula (the genus Flabellula remains valid by priority rule). The genus Rhizamoeba is evidently polyphyletic in all phylogenetic trees; we suggest retaining the generic name Rhizamoeba for the group unifying R. saxonica, R.matisi n. sp. and R. polyura, the latter remains the type species of the genus Rhizamoeba. Based on molecular and morphological evidence we move all remaining Rhizamoeba species to the genus Leptomyxa. New family Rhizamoebidae is established here in order to avoid paraphyly of the family Leptomyxidae. With the suggested changes both molecular and morphological systems of the order Leptomyxida are now fully congruent to each other. Copyright © 2016 Elsevier GmbH. All rights reserved.
Wood, Hannah Marie; Matzke, Nicholas J; Gillespie, Rosemary G; Griswold, Charles E
2013-03-01
Incorporation of fossils into biogeographic studies can have a profound effect on the conclusions that result, particularly when fossil ranges are nonoverlapping with extant ranges. This is the case in archaeid spiders, where there are known fossils from the Northern Hemisphere, yet all living members are restricted to the Southern Hemisphere. To better understand the biogeographic patterns of archaeid spiders and their palpimanoid relatives, we estimate a dated phylogeny using a relaxed clock on a combined molecular and morphological data set. Dating information is compared with treating the archaeid fossil taxa as both node calibrations and as noncontemporaneous terminal tips, both with and without additional calibration points. Estimation of ancestral biogeographic ranges is then performed, using likelihood and Bayesian methods to take into account uncertainty in phylogeny and in dating. We find that treating the fossils as terminal tips within a Bayesian framework, as opposed to dating the phylogeny based only on molecular data with the dates coming from node calibrations, removes the subjectivity involved in assigning priors, which has not been possible with previous methods. Our analyses suggest that the diversification of the northern and southern archaeid lineages was congruent with the breakup of Pangaea into Laurasia and Gondwanaland. This analysis provides a rare example, and perhaps the most strongly supported, where a dated phylogeny confirms a biogeographical hypothesis based on vicariance due to the breakup of the ancient continental plates.
Phylogenomic Insights into Animal Evolution.
Telford, Maximilian J; Budd, Graham E; Philippe, Hervé
2015-10-05
Animals make up only a small fraction of the eukaryotic tree of life, yet, from our vantage point as members of the animal kingdom, the evolution of the bewildering diversity of animal forms is endlessly fascinating. In the century following the publication of Darwin's Origin of Species, hypotheses regarding the evolution of the major branches of the animal kingdom - their relationships to each other and the evolution of their body plans - was based on a consideration of the morphological and developmental characteristics of the different animal groups. This morphology-based approach had many successes but important aspects of the evolutionary tree remained disputed. In the past three decades, molecular data, most obviously primary sequences of DNA and proteins, have provided an estimate of animal phylogeny largely independent of the morphological evolution we would ultimately like to understand. The molecular tree that has evolved over the past three decades has drastically altered our view of animal phylogeny and many aspects of the tree are no longer contentious. The focus of molecular studies on relationships between animal groups means, however, that the discipline has become somewhat divorced from the underlying biology and from the morphological characteristics whose evolution we aim to understand. Here, we consider what we currently know of animal phylogeny; what aspects we are still uncertain about and what our improved understanding of animal phylogeny can tell us about the evolution of the great diversity of animal life. Copyright © 2015 Elsevier Ltd. All rights reserved.
Heavy metal resistant strains are widespread along Streptomyces phylogeny.
Alvarez, Analía; Catalano, Santiago A; Amoroso, María Julia
2013-03-01
The genus Streptomyces comprises a group of bacteria species with high economic importance. Several of these species are employed at industrial scale for the production of useful compounds. Other characteristic found in different strains within this genus is their capability to tolerate high level of substances toxic for humans, heavy metals among them. Although several studies have been conducted in different species of the genus in order to disentangle the mechanisms associated to heavy metal resistance, little is known about how they have evolved along Streptomyces phylogeny. In this study we built the largest Streptomyces phylogeny generated up to date comprising six genes, 113 species of Streptomyces and 27 outgroups. The parsimony-based phylogenetic analysis indicated that (i) Streptomyces is monophyletic and (ii) it appears as sister clade of a group formed by Kitasatospora and Streptacidiphilus species, both genera also monophyletic. Streptomyces strains resistant to heavy metals are not confined to a single lineage but widespread along Streptomyces phylogeny. Our result in combination with genomic, physiological and biochemical data suggest that the resistance to heavy metals originated several times and by different mechanisms in Streptomyces history. Copyright © 2012 Elsevier Inc. All rights reserved.
Higher-level phylogeny of paraneopteran insects inferred from mitochondrial genome sequences
Li, Hu; Shao, Renfu; Song, Nan; Song, Fan; Jiang, Pei; Li, Zhihong; Cai, Wanzhi
2015-01-01
Mitochondrial (mt) genome data have been proven to be informative for animal phylogenetic studies but may also suffer from systematic errors, due to the effects of accelerated substitution rate and compositional heterogeneity. We analyzed the mt genomes of 25 insect species from the four paraneopteran orders, aiming to better understand how accelerated substitution rate and compositional heterogeneity affect the inferences of the higher-level phylogeny of this diverse group of hemimetabolous insects. We found substantial heterogeneity in base composition and contrasting rates in nucleotide substitution among these paraneopteran insects, which complicate the inference of higher-level phylogeny. The phylogenies inferred with concatenated sequences of mt genes using maximum likelihood and Bayesian methods and homogeneous models failed to recover Psocodea and Hemiptera as monophyletic groups but grouped, instead, the taxa that had accelerated substitution rates together, including Sternorrhyncha (a suborder of Hemiptera), Thysanoptera, Phthiraptera and Liposcelididae (a family of Psocoptera). Bayesian inference with nucleotide sequences and heterogeneous models (CAT and CAT + GTR), however, recovered Psocodea, Thysanoptera and Hemiptera each as a monophyletic group. Within Psocodea, Liposcelididae is more closely related to Phthiraptera than to other species of Psocoptera. Furthermore, Thysanoptera was recovered as the sister group to Hemiptera. PMID:25704094
Rindi, Fabio; Guiry, Michael D; López-Bautista, Juan M
2008-12-01
Klebsormidium is a cosmopolitan genus of green algae, widespread in terrestrial and freshwater habitats. The classification of Klebsormidium is entirely based on morphological characters, and very little is understood about its phylogeny at the species level. We investigated the diversity and phylogenetic relationships of Klebsormidium in urban habitats in Europe by a combination of approaches including examination of field-collected material, culture experiments conducted in many different combinations of factors, and phylogenetic analyses of the rbcL gene. Klebsormidium in European cities mainly occurs at the base of old walls, where it may produce green belts up to several meters in extent. Specimens from different cities showed a great morphological uniformity, consisting of long filaments 6-9 μm in width, with thin-walled cylindrical cells and smooth wall, devoid of false branches, H-shaped pieces, and biseriate parts. Conversely, the rbcL phylogeny showed a higher genetic diversity than expected from morphology. The strains were separated in four different clades supported by high bootstrap values and posterior probabilities. In culture, these clades differed in several characters, such as production of a superficial hydro-repellent layer, tendency to break into short fragments, and inducibility of zoosporulation. On the basis of the taxonomic information available in the literature, most strains could not be identified unambiguously at the species level. The rbcL phylogeny showed no correspondence with classification based on morphology and suggested that the identity of many species, in particular the type species K. flaccidum (kütz.) P.C. Silva, Mattox et W. H. Blackw., needs critical reassessment. © 2008 Phycological Society of America.
GASP: Gapped Ancestral Sequence Prediction for proteins
Edwards, Richard J; Shields, Denis C
2004-01-01
Background The prediction of ancestral protein sequences from multiple sequence alignments is useful for many bioinformatics analyses. Predicting ancestral sequences is not a simple procedure and relies on accurate alignments and phylogenies. Several algorithms exist based on Maximum Parsimony or Maximum Likelihood methods but many current implementations are unable to process residues with gaps, which may represent insertion/deletion (indel) events or sequence fragments. Results Here we present a new algorithm, GASP (Gapped Ancestral Sequence Prediction), for predicting ancestral sequences from phylogenetic trees and the corresponding multiple sequence alignments. Alignments may be of any size and contain gaps. GASP first assigns the positions of gaps in the phylogeny before using a likelihood-based approach centred on amino acid substitution matrices to assign ancestral amino acids. Important outgroup information is used by first working down from the tips of the tree to the root, using descendant data only to assign probabilities, and then working back up from the root to the tips using descendant and outgroup data to make predictions. GASP was tested on a number of simulated datasets based on real phylogenies. Prediction accuracy for ungapped data was similar to three alternative algorithms tested, with GASP performing better in some cases and worse in others. Adding simple insertions and deletions to the simulated data did not have a detrimental effect on GASP accuracy. Conclusions GASP (Gapped Ancestral Sequence Prediction) will predict ancestral sequences from multiple protein alignments of any size. Although not as accurate in all cases as some of the more sophisticated maximum likelihood approaches, it can process a wide range of input phylogenies and will predict ancestral sequences for gapped and ungapped residues alike. PMID:15350199
Recapitulating phylogenies using k-mers: from trees to networks.
Bernard, Guillaume; Ragan, Mark A; Chan, Cheong Xin
2016-01-01
Ernst Haeckel based his landmark Tree of Life on the supposed ontogenic recapitulation of phylogeny, i.e. that successive embryonic stages during the development of an organism re-trace the morphological forms of its ancestors over the course of evolution. Much of this idea has since been discredited. Today, phylogenies are often based on families of molecular sequences. The standard approach starts with a multiple sequence alignment, in which the sequences are arranged relative to each other in a way that maximises a measure of similarity position-by-position along their entire length. A tree (or sometimes a network) is then inferred. Rigorous multiple sequence alignment is computationally demanding, and evolutionary processes that shape the genomes of many microbes (bacteria, archaea and some morphologically simple eukaryotes) can add further complications. In particular, recombination, genome rearrangement and lateral genetic transfer undermine the assumptions that underlie multiple sequence alignment, and imply that a tree-like structure may be too simplistic. Here, using genome sequences of 143 bacterial and archaeal genomes, we construct a network of phylogenetic relatedness based on the number of shared k -mers (subsequences at fixed length k ). Our findings suggest that the network captures not only key aspects of microbial genome evolution as inferred from a tree, but also features that are not treelike. The method is highly scalable, allowing for investigation of genome evolution across a large number of genomes. Instead of using specific regions or sequences from genome sequences, or indeed Haeckel's idea of ontogeny, we argue that genome phylogenies can be inferred using k -mers from whole-genome sequences. Representing these networks dynamically allows biological questions of interest to be formulated and addressed quickly and in a visually intuitive manner.
Tekle, Yonas I; Anderson, O Roger; Katz, Laura A; Maurer-Alcalá, Xyrus X; Romero, Mario Alberto Cerón; Molestina, Robert
2016-06-01
The majority of amoeboid lineages with flattened body forms are placed under a taxonomic hypothetical class 'Discosea' sensu Smirnov et al. (2011), which encompasses some of the most diverse morphs within Amoebozoa. However, its taxonomy and phylogeny is poorly understood. This is partly due to lack of support in studies that are based on limited gene sampling. In this study we use a phylogenomic approach including newly-generated RNA-Seq data and comprehensive taxon sampling to resolve the phylogeny of 'Discosea'. Our analysis included representatives from all orders of 'Discosea' and up to 550 genes, the largest gene sampling in Amoebozoa to date. We conducted extensive analyses to assess the robustness of our resulting phylogenies to effects of missing data and outgroup choice using probabilistic methods. All of our analyses, which explore the impact of varying amounts of missing data, consistently recover well-resolved and supported groups of Amoebozoa. Our results neither support the monophyly nor dichotomy of 'Discosea' as defined by Smirnov et al. (2011). Rather, we recover a robust well-resolved clade referred to as Eudiscosea encompassing the majority of discosean orders (seven of the nine studied here), while the Dactylopodida, Thecamoebida and Himatismenida, previously included in 'Discosea,' are non-monophyletic. We also recover novel relationships within the Eudiscosea that are largely congruent with morphology. Our analyses enabled us to place some incertae sedis lineages and previously unstable lineages such as Vermistella, Mayorella, Gocevia, and Stereomyxa. We recommend some phylogeny-based taxonomic amendments highlighting the new findings of this study and discuss the evolution of the group based on our current understanding. Copyright © 2016 Elsevier Inc. All rights reserved.
Inference of Transmission Network Structure from HIV Phylogenetic Trees
Giardina, Federica; Romero-Severson, Ethan Obie; Albert, Jan; ...
2017-01-13
Phylogenetic inference is an attractive means to reconstruct transmission histories and epidemics. However, there is not a perfect correspondence between transmission history and virus phylogeny. Both node height and topological differences may occur, depending on the interaction between within-host evolutionary dynamics and between-host transmission patterns. To investigate these interactions, we added a within-host evolutionary model in epidemiological simulations and examined if the resulting phylogeny could recover different types of contact networks. To further improve realism, we also introduced patient-specific differences in infectivity across disease stages, and on the epidemic level we considered incomplete sampling and the age of the epidemic.more » Second, we implemented an inference method based on approximate Bayesian computation (ABC) to discriminate among three well-studied network models and jointly estimate both network parameters and key epidemiological quantities such as the infection rate. Our ABC framework used both topological and distance-based tree statistics for comparison between simulated and observed trees. Overall, our simulations showed that a virus time-scaled phylogeny (genealogy) may be substantially different from the between-host transmission tree. This has important implications for the interpretation of what a phylogeny reveals about the underlying epidemic contact network. In particular, we found that while the within-host evolutionary process obscures the transmission tree, the diversification process and infectivity dynamics also add discriminatory power to differentiate between different types of contact networks. We also found that the possibility to differentiate contact networks depends on how far an epidemic has progressed, where distance-based tree statistics have more power early in an epidemic. Finally, we applied our ABC inference on two different outbreaks from the Swedish HIV-1 epidemic.« less
Layton, Kara K S; Gosliner, Terrence M; Wilson, Nerida G
2018-07-01
Chromodoris is a genus of colourful nudibranchs that feed on sponges and is found across the Indo-Pacific. While this was once the most diverse chromodorid genus, recent work has shown that the genus should be restricted to a monophyletic lineage that contains only 22 species, all of which exhibit black pigmentation and planar spawning behaviour. Earlier phylogenies of this group are poorly resolved and thus additional work is needed to clarify species boundaries within Chromodoris. This study presents a maximum-likelihood phylogeny based on mitochondrial loci (COI, 16S) for 345 Chromodoris specimens, including data from 323 new specimens and 22 from GenBank, from across the Indo-Pacific. Species hypotheses and phylogenetic analysis uncovered 39 taxa in total containing 18 undescribed species, with only five of 39 taxa showing stable colour patterns and distinct morphotypes. This study also presents the first evidence for regional mimicry in this genus, with C. colemani and C. joshi displaying geographically-based variation in colour patterns which appear to match locally abundant congenerics, highlighting the flexibility of these colour patterns in Chromodoris nudibranchs. The current phylogeny contains short branch lengths, polytomies and poor support at interior nodes, which is indicative of a recent radiation. As such, future work will employ a transcriptome-based exon capture approach for resolving the phylogeny of this group. In all, this study included 21 of the 22 described species in the Chromodoris sensu stricto group with broad sampling coverage from across the Indo-Pacific, constituting the most comprehensive sampling of this group to date. This work highlights several cases of undocumented diversity, ultimately expanding our knowledge of species boundaries in this group, while also demonstrating the limitations of colour patterns for species identification in this genus. Copyright © 2018 Elsevier Inc. All rights reserved.
Inference of Transmission Network Structure from HIV Phylogenetic Trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giardina, Federica; Romero-Severson, Ethan Obie; Albert, Jan
Phylogenetic inference is an attractive means to reconstruct transmission histories and epidemics. However, there is not a perfect correspondence between transmission history and virus phylogeny. Both node height and topological differences may occur, depending on the interaction between within-host evolutionary dynamics and between-host transmission patterns. To investigate these interactions, we added a within-host evolutionary model in epidemiological simulations and examined if the resulting phylogeny could recover different types of contact networks. To further improve realism, we also introduced patient-specific differences in infectivity across disease stages, and on the epidemic level we considered incomplete sampling and the age of the epidemic.more » Second, we implemented an inference method based on approximate Bayesian computation (ABC) to discriminate among three well-studied network models and jointly estimate both network parameters and key epidemiological quantities such as the infection rate. Our ABC framework used both topological and distance-based tree statistics for comparison between simulated and observed trees. Overall, our simulations showed that a virus time-scaled phylogeny (genealogy) may be substantially different from the between-host transmission tree. This has important implications for the interpretation of what a phylogeny reveals about the underlying epidemic contact network. In particular, we found that while the within-host evolutionary process obscures the transmission tree, the diversification process and infectivity dynamics also add discriminatory power to differentiate between different types of contact networks. We also found that the possibility to differentiate contact networks depends on how far an epidemic has progressed, where distance-based tree statistics have more power early in an epidemic. Finally, we applied our ABC inference on two different outbreaks from the Swedish HIV-1 epidemic.« less
Payo, Dioli Ann; Leliaert, Frederik; Verbruggen, Heroen; D'hondt, Sofie; Calumpong, Hilconida P.; De Clerck, Olivier
2013-01-01
We investigated species diversity and distribution patterns of the marine red alga Portieria in the Philippine archipelago. Species boundaries were tested based on mitochondrial, plastid and nuclear encoded loci, using a general mixed Yule-coalescent (GMYC) model-based approach and a Bayesian multilocus species delimitation method. The outcome of the GMYC analysis of the mitochondrial encoded cox2-3 dataset was highly congruent with the multilocus analysis. In stark contrast with the current morphology-based assumption that the genus includes a single, widely distributed species in the Indo-West Pacific (Portieria hornemannii), DNA-based species delimitation resulted in the recognition of 21 species within the Philippines. Species distributions were found to be highly structured with most species restricted to island groups within the archipelago. These extremely narrow species ranges and high levels of intra-archipelagic endemism contrast with the wide-held belief that marine organisms generally have large geographical ranges and that endemism is at most restricted to the archipelagic level. Our results indicate that speciation in the marine environment may occur at spatial scales smaller than 100 km, comparable with some terrestrial systems. Our finding of fine-scale endemism has important consequences for marine conservation and management. PMID:23269854
Sanz, Yolanda
2017-01-01
Abstract The miniaturized and portable DNA sequencer MinION™ has demonstrated great potential in different analyses such as genome-wide sequencing, pathogen outbreak detection and surveillance, human genome variability, and microbial diversity. In this study, we tested the ability of the MinION™ platform to perform long amplicon sequencing in order to design new approaches to study microbial diversity using a multi-locus approach. After compiling a robust database by parsing and extracting the rrn bacterial region from more than 67000 complete or draft bacterial genomes, we demonstrated that the data obtained during sequencing of the long amplicon in the MinION™ device using R9 and R9.4 chemistries were sufficient to study 2 mock microbial communities in a multiplex manner and to almost completely reconstruct the microbial diversity contained in the HM782D and D6305 mock communities. Although nanopore-based sequencing produces reads with lower per-base accuracy compared with other platforms, we presented a novel approach consisting of multi-locus and long amplicon sequencing using the MinION™ MkIb DNA sequencer and R9 and R9.4 chemistries that help to overcome the main disadvantage of this portable sequencing platform. Furthermore, the nanopore sequencing library, constructed with the last releases of pore chemistry (R9.4) and sequencing kit (SQK-LSK108), permitted the retrieval of the higher level of 1D read accuracy sufficient to characterize the microbial species present in each mock community analysed. Improvements in nanopore chemistry, such as minimizing base-calling errors and new library protocols able to produce rapid 1D libraries, will provide more reliable information in the near future. Such data will be useful for more comprehensive and faster specific detection of microbial species and strains in complex ecosystems. PMID:28605506
Amro, Ahmad; Mentis, Andreas; Pratlong, Francine; Dedet, Jean-Pierre; Votypka, Jan; Volf, Petr; Ozensoy Toz, Seray; Kuhls, Katrin; Schönian, Gabriele; Soteriadou, Ketty
2012-01-01
Background New foci of human CL caused by strains of the Leishmania donovani (L. donovani) complex have been recently described in Cyprus and the Çukurova region in Turkey (L. infantum) situated 150 km north of Cyprus. Cypriot strains were typed by Multilocus Enzyme Electrophoresis (MLEE) using the Montpellier (MON) system as L. donovani zymodeme MON-37. However, multilocus microsatellite typing (MLMT) has shown that this zymodeme is paraphyletic; composed of distantly related genetic subgroups of different geographical origin. Consequently the origin of the Cypriot strains remained enigmatic. Methodology/Principal Findings The Cypriot strains were compared with a set of Turkish isolates obtained from a CL patient and sand fly vectors in south-east Turkey (Çukurova region; CUK strains) and from a VL patient in the south-west (Kuşadasi; EP59 strain). These Turkish strains were initially analyzed using the K26-PCR assay that discriminates MON-1 strains by their amplicon size. In line with previous DNA-based data, the strains were inferred to the L. donovani complex and characterized as non MON-1. For these strains MLEE typing revealed two novel zymodemes; L. donovani MON-309 (CUK strains) and MON-308 (EP59). A population genetic analysis of the Turkish isolates was performed using 14 hyper-variable microsatellite loci. The genotypic profiles of 68 previously analyzed L. donovani complex strains from major endemic regions were included for comparison. Population structures were inferred by combination of Bayesian model-based and distance-based approaches. MLMT placed the Turkish and Cypriot strains in a subclade of a newly discovered, genetically distinct L. infantum monophyletic group, suggesting that the Cypriot strains may originate from Turkey. Conclusion The discovery of a genetically distinct L. infantum monophyletic group in the south-eastern Mediterranean stresses the importance of species genetic characterization towards better understanding, monitoring and controlling the spread of leishmaniasis in this region. PMID:22348162
A Framework Phylogeny of the American Oak Clade Based on Sequenced RAD Data
Hipp, Andrew L.; Eaton, Deren A. R.; Cavender-Bares, Jeannine; Fitzek, Elisabeth; Nipper, Rick; Manos, Paul S.
2014-01-01
Previous phylogenetic studies in oaks (Quercus, Fagaceae) have failed to resolve the backbone topology of the genus with strong support. Here, we utilize next-generation sequencing of restriction-site associated DNA (RAD-Seq) to resolve a framework phylogeny of a predominantly American clade of oaks whose crown age is estimated at 23–33 million years old. Using a recently developed analytical pipeline for RAD-Seq phylogenetics, we created a concatenated matrix of 1.40 E06 aligned nucleotides, constituting 27,727 sequence clusters. RAD-Seq data were readily combined across runs, with no difference in phylogenetic placement between technical replicates, which overlapped by only 43–64% in locus coverage. 17% (4,715) of the loci we analyzed could be mapped with high confidence to one or more expressed sequence tags in NCBI Genbank. A concatenated matrix of the loci that BLAST to at least one EST sequence provides approximately half as many variable or parsimony-informative characters as equal-sized datasets from the non-EST loci. The EST-associated matrix is more complete (fewer missing loci) and has slightly lower homoplasy than non-EST subsampled matrices of the same size, but there is no difference in phylogenetic support or relative attribution of base substitutions to internal versus terminal branches of the phylogeny. We introduce a partitioned RAD visualization method (implemented in the R package RADami; http://cran.r-project.org/web/packages/RADami) to investigate the possibility that suboptimal topologies supported by large numbers of loci—due, for example, to reticulate evolution or lineage sorting—are masked by the globally optimal tree. We find no evidence for strongly-supported alternative topologies in our study, suggesting that the phylogeny we recover is a robust estimate of large-scale phylogenetic patterns in the American oak clade. Our study is one of the first to demonstrate the utility of RAD-Seq data for inferring phylogeny in a 23–33 million year-old clade. PMID:24705617
Deep phylogeny and evolution of sponges (phylum Porifera).
Wörheide, G; Dohrmann, M; Erpenbeck, D; Larroux, C; Maldonado, M; Voigt, O; Borchiellini, C; Lavrov, D V
2012-01-01
Sponges (phylum Porifera) are a diverse taxon of benthic aquatic animals of great ecological, commercial, and biopharmaceutical importance. They are arguably the earliest-branching metazoan taxon, and therefore, they have great significance in the reconstruction of early metazoan evolution. Yet, the phylogeny and systematics of sponges are to some extent still unresolved, and there is an on-going debate about the exact branching pattern of their main clades and their relationships to the other non-bilaterian animals. Here, we review the current state of the deep phylogeny of sponges. Several studies have suggested that sponges are paraphyletic. However, based on recent phylogenomic analyses, we suggest that the phylum Porifera could well be monophyletic, in accordance with cladistic analyses based on morphology. This finding has many implications for the evolutionary interpretation of early animal traits and sponge development. We further review the contribution that mitochondrial genes and genomes have made to sponge phylogenetics and explore the current state of the molecular phylogenies of the four main sponge lineages (Classes), that is, Demospongiae, Hexactinellida, Calcarea, and Homoscleromorpha, in detail. While classical systematic systems are largely congruent with molecular phylogenies in the class Hexactinellida and in certain parts of Demospongiae and Homoscleromorpha, the high degree of incongruence in the class Calcarea still represents a challenge. We highlight future areas of research to fill existing gaps in our knowledge. By reviewing sponge development in an evolutionary and phylogenetic context, we support previous suggestions that sponge larvae share traits and complexity with eumetazoans and that the simple sedentary adult lifestyle of sponges probably reflects some degree of secondary simplification. In summary, while deep sponge phylogenetics has made many advances in the past years, considerable efforts are still required to achieve a comprehensive understanding of the relationships among and within the main sponge lineages to fully appreciate the evolution of this extraordinary metazoan phylum. Copyright © 2012 Elsevier Ltd. All rights reserved.
Explaining evolution via constrained persistent perfect phylogeny
2014-01-01
Background The perfect phylogeny is an often used model in phylogenetics since it provides an efficient basic procedure for representing the evolution of genomic binary characters in several frameworks, such as for example in haplotype inference. The model, which is conceptually the simplest, is based on the infinite sites assumption, that is no character can mutate more than once in the whole tree. A main open problem regarding the model is finding generalizations that retain the computational tractability of the original model but are more flexible in modeling biological data when the infinite site assumption is violated because of e.g. back mutations. A special case of back mutations that has been considered in the study of the evolution of protein domains (where a domain is acquired and then lost) is persistency, that is the fact that a character is allowed to return back to the ancestral state. In this model characters can be gained and lost at most once. In this paper we consider the computational problem of explaining binary data by the Persistent Perfect Phylogeny model (referred as PPP) and for this purpose we investigate the problem of reconstructing an evolution where some constraints are imposed on the paths of the tree. Results We define a natural generalization of the PPP problem obtained by requiring that for some pairs (character, species), neither the species nor any of its ancestors can have the character. In other words, some characters cannot be persistent for some species. This new problem is called Constrained PPP (CPPP). Based on a graph formulation of the CPPP problem, we are able to provide a polynomial time solution for the CPPP problem for matrices whose conflict graph has no edges. Using this result, we develop a parameterized algorithm for solving the CPPP problem where the parameter is the number of characters. Conclusions A preliminary experimental analysis shows that the constrained persistent perfect phylogeny model allows to explain efficiently data that do not conform with the classical perfect phylogeny model. PMID:25572381
Jones, Christopher M; Stres, Blaz; Rosenquist, Magnus; Hallin, Sara
2008-09-01
Denitrification is a facultative respiratory pathway in which nitrite (NO2(-)), nitric oxide (NO), and nitrous oxide (N2O) are successively reduced to nitrogen gas (N(2)), effectively closing the nitrogen cycle. The ability to denitrify is widely dispersed among prokaryotes, and this polyphyletic distribution has raised the possibility of horizontal gene transfer (HGT) having a substantial role in the evolution of denitrification. Comparisons of 16S rRNA and denitrification gene phylogenies in recent studies support this possibility; however, these results remain speculative as they are based on visual comparisons of phylogenies from partial sequences. We reanalyzed publicly available nirS, nirK, norB, and nosZ partial sequences using Bayesian and maximum likelihood phylogenetic inference. Concomitant analysis of denitrification genes with 16S rRNA sequences from the same organisms showed substantial differences between the trees, which were supported by examining the posterior probability of monophyletic constraints at different taxonomic levels. Although these differences suggest HGT of denitrification genes, the presence of structural variants for nirK, norB, and nosZ makes it difficult to determine HGT from other evolutionary events. Additional analysis using phylogenetic networks and likelihood ratio tests of phylogenies based on full-length sequences retrieved from genomes also revealed significant differences in tree topologies among denitrification and 16S rRNA gene phylogenies, with the exception of the nosZ gene phylogeny within the data set of the nirK-harboring genomes. However, inspection of codon usage and G + C content plots from complete genomes gave no evidence for recent HGT. Instead, the close proximity of denitrification gene copies in the genomes of several denitrifying bacteria suggests duplication. Although HGT cannot be ruled out as a factor in the evolution of denitrification genes, our analysis suggests that other phenomena, such gene duplication/divergence and lineage sorting, may have differently influenced the evolution of each denitrification gene.
Michael DeGiorgio; John Syring; Andrew J. Eckert; Aaron Liston; Richard Cronn; David B. Neale; Noah A. Rosenberg
2014-01-01
Background: As it becomes increasingly possible to obtain DNA sequences of orthologous genes from diverse sets of taxa, species trees are frequently being inferred from multilocus data. However, the behavior of many methods for performing this inference has remained largely unexplored. Some methods have been proven to be consistent given certain evolutionary models,...
Li, Jinlu; Yu, Jing; Wang, Ling; Yang, Xueying
2018-01-01
Maleae consists of economically and ecologically important plants. However, there are considerable disputes on generic circumscription due to the lack of a reliable phylogeny at generic level. In this study, molecular phylogeny of 35 generally accepted genera in Maleae is established using 15 chloroplast regions. Gillenia is the most basal clade of Maleae, followed by Kageneckia + Lindleya, Vauquelinia, and a typical radiation clade, the core Maleae, suggesting that the proposal of four subtribes is reasonable. In the core Maleae including 31 genera, chloroplast gene data support that the four Malus-related genera should better be merged into one genus and the six Sorbus-related genera would be classified into two genera, whereas all Photinia-related genera should be accepted as distinct genera. Although the phylogenetic relationships among the genera in Maleae are much clearer than before, it is still premature to make a formal taxonomic treatment for these genera. PMID:29750171
Phylogeny of the owlet-nightjars (Aves: Aegothelidae) based on mitochondrial DNA sequence
Dumbacher, J.P.; Pratt, T.K.; Fleischer, R.C.
2003-01-01
The avian family Aegothelidae (Owlet-nightjars) comprises nine extant species and one extinct species, all of which are currently classified in a single genus, Aegotheles. Owlet-nightjars are secretive nocturnal birds of the South Pacific. They are relatively poorly studied and some species are known from only a few specimens. Furthermore, their confusing morphological variation has made it difficult to cluster existing specimens unambiguously into hierarchical taxonomic units. Here we sample all extant owlet-nightjar species and all but three currently recognized subspecies. We use DNA extracted primarily from museum specimens to obtain mitochondrial gene sequences and construct a molecular phylogeny. Our phylogeny suggests that most species are reciprocally monophyletic, however A. albertisi appears paraphyletic. Our data also suggest splitting A. bennettii into two species and splitting A. insignis and A. tatei as suggested in another recent paper. ?? 2003 Elsevier Science (USA). All rights reserved.
Analysis of multilocus zygotic associations.
Yang, Rong-Cai
2002-05-01
While nonrandom associations between zygotes at different loci (zygotic associations) frequently occur in Hardy-Weinberg disequilibrium populations, statistical analysis of such associations has received little attention. In this article, we describe the joint distributions of zygotes at multiple loci, which are completely characterized by heterozygosities at individual loci and various multilocus zygotic associations. These zygotic associations are defined in the same fashion as the usual multilocus linkage (gametic) disequilibria on the basis of gametic and allelic frequencies. The estimation and test procedures are described with details being given for three loci. The sampling properties of the estimates are examined through Monte Carlo simulation. The estimates of three-locus associations are not free of bias due to the presence of two-locus associations and vice versa. The power of detecting the zygotic associations is small unless different loci are strongly associated and/or sample sizes are large (>100). The analysis of zygotic associations not only offers an effective means of packaging numerous genic disequilibria required for a complete characterization of multilocus structure, but also provides opportunities for making inference about evolutionary and demographic processes through a comparative assessment of zygotic association vs. gametic disequilibrium for the same set of loci in nonequilibrium populations.
Chavda, Kalyan D; Chen, Liang; Fouts, Derrick E; Sutton, Granger; Brinkac, Lauren; Jenkins, Stephen G; Bonomo, Robert A; Adams, Mark D; Kreiswirth, Barry N
2016-12-13
Knowledge regarding the genomic structure of Enterobacter spp., the second most prevalent carbapenemase-producing Enterobacteriaceae, remains limited. Here we sequenced 97 clinical Enterobacter species isolates that were both carbapenem susceptible and resistant from various geographic regions to decipher the molecular origins of carbapenem resistance and to understand the changing phylogeny of these emerging and drug-resistant pathogens. Of the carbapenem-resistant isolates, 30 possessed bla KPC-2 , 40 had bla KPC-3 , 2 had bla KPC-4 , and 2 had bla NDM-1 Twenty-three isolates were carbapenem susceptible. Six genomes were sequenced to completion, and their sizes ranged from 4.6 to 5.1 Mbp. Phylogenomic analysis placed 96 of these genomes, 351 additional Enterobacter genomes downloaded from NCBI GenBank, and six newly sequenced type strains into 19 phylogenomic groups-18 groups (A to R) in the Enterobacter cloacae complex and Enterobacter aerogenes Diverse mechanisms underlying the molecular evolutionary trajectory of these drug-resistant Enterobacter spp. were revealed, including the acquisition of an antibiotic resistance plasmid, followed by clonal spread, horizontal transfer of bla KPC -harboring plasmids between different phylogenomic groups, and repeated transposition of the bla KPC gene among different plasmid backbones. Group A, which comprises multilocus sequence type 171 (ST171), was the most commonly identified (23% of isolates). Genomic analysis showed that ST171 isolates evolved from a common ancestor and formed two different major clusters; each acquiring unique bla KPC -harboring plasmids, followed by clonal expansion. The data presented here represent the first comprehensive study of phylogenomic interrogation and the relationship between antibiotic resistance and plasmid discrimination among carbapenem-resistant Enterobacter spp., demonstrating the genetic diversity and complexity of the molecular mechanisms driving antibiotic resistance in this genus. Enterobacter spp., especially carbapenemase-producing Enterobacter spp., have emerged as a clinically significant cause of nosocomial infections. However, only limited information is available on the distribution of carbapenem resistance across this genus. Augmenting this problem is an erroneous identification of Enterobacter strains because of ambiguous typing methods and imprecise taxonomy. In this study, we used a whole-genome-based comparative phylogenetic approach to (i) revisit and redefine the genus Enterobacter and (ii) unravel the emergence and evolution of the Klebsiella pneumoniae carbapenemase-harboring Enterobacter spp. Using genomic analysis of 447 sequenced strains, we developed an improved understanding of the species designations within this complex genus and identified the diverse mechanisms driving the molecular evolution of carbapenem resistance. The findings in this study provide a solid genomic framework that will serve as an important resource in the future development of molecular diagnostics and in supporting drug discovery programs. Copyright © 2016 Chavda et al.
Nandi, Tannistha; Holden, Matthew T.G.; Didelot, Xavier; Mehershahi, Kurosh; Boddey, Justin A.; Beacham, Ifor; Peak, Ian; Harting, John; Baybayan, Primo; Guo, Yan; Wang, Susana; How, Lee Chee; Sim, Bernice; Essex-Lopresti, Angela; Sarkar-Tyson, Mitali; Nelson, Michelle; Smither, Sophie; Ong, Catherine; Aw, Lay Tin; Hoon, Chua Hui; Michell, Stephen; Studholme, David J.; Titball, Richard; Chen, Swaine L.; Parkhill, Julian
2015-01-01
Burkholderia pseudomallei (Bp) is the causative agent of the infectious disease melioidosis. To investigate population diversity, recombination, and horizontal gene transfer in closely related Bp isolates, we performed whole-genome sequencing (WGS) on 106 clinical, animal, and environmental strains from a restricted Asian locale. Whole-genome phylogenies resolved multiple genomic clades of Bp, largely congruent with multilocus sequence typing (MLST). We discovered widespread recombination in the Bp core genome, involving hundreds of regions associated with multiple haplotypes. Highly recombinant regions exhibited functional enrichments that may contribute to virulence. We observed clade-specific patterns of recombination and accessory gene exchange, and provide evidence that this is likely due to ongoing recombination between clade members. Reciprocally, interclade exchanges were rarely observed, suggesting mechanisms restricting gene flow between clades. Interrogation of accessory elements revealed that each clade harbored a distinct complement of restriction-modification (RM) systems, predicted to cause clade-specific patterns of DNA methylation. Using methylome sequencing, we confirmed that representative strains from separate clades indeed exhibit distinct methylation profiles. Finally, using an E. coli system, we demonstrate that Bp RM systems can inhibit uptake of non-self DNA. Our data suggest that RM systems borne on mobile elements, besides preventing foreign DNA invasion, may also contribute to limiting exchanges of genetic material between individuals of the same species. Genomic clades may thus represent functional units of genetic isolation in Bp, modulating intraspecies genetic diversity. PMID:25236617
Knowles, Lacey L; Klimov, Pavel B
2011-11-01
With the increased availability of multilocus sequence data, the lack of concordance of gene trees estimated for independent loci has focused attention on both the biological processes producing the discord and the methodologies used to estimate phylogenetic relationships. What has emerged is a suite of new analytical tools for phylogenetic inference--species tree approaches. In contrast to traditional phylogenetic methods that are stymied by the idiosyncrasies of gene trees, approaches for estimating species trees explicitly take into account the cause of discord among loci and, in the process, provides a direct estimate of phylogenetic history (i.e. the history of species divergence, not divergence of specific loci). We illustrate the utility of species tree estimates with an analysis of a diverse group of feather mites, the pinnatus species group (genus Proctophyllodes). Discord among four sequenced nuclear loci is consistent with theoretical expectations, given the short time separating speciation events (as evident by short internodes relative to terminal branch lengths in the trees). Nevertheless, many of the relationships are well resolved in a Bayesian estimate of the species tree; the analysis also highlights ambiguous aspects of the phylogeny that require additional loci. The broad utility of species tree approaches is discussed, and specifically, their application to groups with high speciation rates--a history of diversification with particular prevalence in host/parasite systems where species interactions can drive rapid diversification.
Mongiardino Koch, N; Ceccarelli, F S; Ojanguren-Affilastro, A A; Ramírez, M J
2017-04-01
Many palaeontological studies have investigated the evolution of entire body plans, generally relying on discrete character-taxon matrices. In contrast, macroevolutionary studies performed by neontologists have mostly focused on morphometric traits. Although these data types are very different, some studies have suggested that they capture common patterns. Nonetheless, the tests employed to support this claim have not explicitly incorporated a phylogenetic framework and may therefore be susceptible to confounding effects due to the presence of common phylogenetic structure. We address this question using the scorpion genus Brachistosternus Pocock 1893 as case study. We make use of a time-calibrated multilocus molecular phylogeny, and compile discrete and traditional morphometric data sets, both capturing the overall morphology of the organisms. We find that morphospaces derived from these matrices are significantly different, and that the degree of discordance cannot be replicated by simulations of random character evolution. Moreover, we find strong support for contrasting modes of evolution, with discrete characters being congruent with an 'early burst' scenario whereas morphometric traits suggest species-specific adaptations to have driven morphological evolution. The inferred macroevolutionary dynamics are therefore contingent on the choice of character type. Finally, we confirm that metrics of correlation fail to detect these profound differences given common phylogenetic structure in both data sets, and that methods incorporating a phylogenetic framework and accounting for expected covariance should be favoured. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Charleston, M A
1995-01-01
This article introduces a coherent language base for describing and working with characteristics of combinatorial optimization problems, which is at once general enough to be used in all such problems and precise enough to allow subtle concepts in this field to be discussed unambiguously. An example is provided of how this nomenclature is applied to an instance of the phylogeny problem. Also noted is the beneficial effect, on the landscape of the solution space, of transforming the observed data to account for multiple changes of character state.
Huttunen, Sanna; Olsson, Sanna; Buchbender, Volker; Enroth, Johannes; Hedenäs, Lars; Quandt, Dietmar
2012-01-01
Adaptive evolution has often been proposed to explain correlations between habitats and certain phenotypes. In mosses, a high frequency of species with specialized sporophytic traits in exposed or epiphytic habitats was, already 100 years ago, suggested as due to adaptation. We tested this hypothesis by contrasting phylogenetic and morphological data from two moss families, Neckeraceae and Lembophyllaceae, both of which show parallel shifts to a specialized morphology and to exposed epiphytic or epilithic habitats. Phylogeny-based tests for correlated evolution revealed that evolution of four sporophytic traits is correlated with a habitat shift. For three of them, evolutionary rates of dual character-state changes suggest that habitat shifts appear prior to changes in morphology. This suggests that they could have evolved as adaptations to new habitats. Regarding the fourth correlated trait the specialized morphology had already evolved before the habitat shift. In addition, several other specialized "epiphytic" traits show no correlation with a habitat shift. Besides adaptive diversification, other processes thus also affect the match between phenotype and environment. Several potential factors such as complex genetic and developmental pathways yielding the same phenotypes, differences in strength of selection, or constraints in phenotypic evolution may lead to an inability of phylogeny-based comparative methods to detect potential adaptations.
Computational analysis of molt-inhibiting hormone from selected crustaceans.
C, Kumaraswamy Naidu; Y, Suneetha; P, Sreenivasula Reddy
2013-12-01
Molt-inhibiting hormone (MIH) is a principal endocrine hormone regulating the growth in crustaceans. In total, nine MIH peptide sequences representing members of the family Penaeidae (Penaeus monodon, Litopenaeus vannamei, Marsupenaeus japonicus), Portunidae (Portunus trituberculatus, Charybdis japonica, Charybdis feriata), Cambaridae (Procambarus bouvieri), Parastacidae (Cherax quadricarinatus) and Varunidae (Eriocheir sinensis) were selected for our study. In order to develop a structure based phylogeny, predict functionally important regions and to define stability changes upon single site mutations, the 3D structure of MIH for the crustaceans were built by using homology modeling based on the known structure of MIH from M. japonicus (1J0T). Structure based phylogeny showed a close relationship between P. bouvieri and C. japonica. ConSurf server analysis showed that the residues Cys(8), Arg(15), Cys(25), Asp(27), Cys(28), Asn(30), Arg(33), Cys(41), Cys(45), Phe(51), and Cys(54) may be functionally significant among the MIH of crustaceans. Single amino acid substitutions 'Y' and 'G' at the positions 71 and 72 of the MIH C-terminal region showed an alteration in the stability indicating that a change in this region may alter the function of MIH. In conclusion, we proposed a computational approach to analyze the structure, phylogeny and stability of MIH from crustaceans. © 2013.
Ghosh, Jayadri Sekhar; Bhattacharya, Samik; Pal, Amita
2017-06-01
The unavailability of the reproductive structure and unpredictability of vegetative characters for the identification and phylogenetic study of bamboo prompted the application of molecular techniques for greater resolution and consensus. We first employed internal transcribed spacer (ITS1, 5.8S rRNA and ITS2) sequences to construct the phylogenetic tree of 21 tropical bamboo species. While the sequence alone could grossly reconstruct the traditional phylogeny amongst the 21-tropical species studied, some anomalies were encountered that prompted a further refinement of the phylogenetic analyses. Therefore, we integrated the secondary structure of the ITS sequences to derive individual sequence-structure matrix to gain more resolution on the phylogenetic reconstruction. The results showed that ITS sequence-structure is the reliable alternative to the conventional phenotypic method for the identification of bamboo species. The best-fit topology obtained by the sequence-structure based phylogeny over the sole sequence based one underscores closer clustering of all the studied Bambusa species (Sub-tribe Bambusinae), while Melocanna baccifera, which belongs to Sub-Tribe Melocanneae, disjointedly clustered as an out-group within the consensus phylogenetic tree. In this study, we demonstrated the dependability of the combined (ITS sequence+structure-based) approach over the only sequence-based analysis for phylogenetic relationship assessment of bamboo.
ERIC Educational Resources Information Center
Bilardello, Nicholas; Valdes, Linda
1998-01-01
Introduces a method for constructing phylogenies using molecular traits and elementary graph theory. Discusses analyzing molecular data and using weighted graphs, minimum-weight spanning trees, and rooted cube phylogenies to display the data. (DDR)
Ghost-tree: creating hybrid-gene phylogenetic trees for diversity analyses.
Fouquier, Jennifer; Rideout, Jai Ram; Bolyen, Evan; Chase, John; Shiffer, Arron; McDonald, Daniel; Knight, Rob; Caporaso, J Gregory; Kelley, Scott T
2016-02-24
Fungi play critical roles in many ecosystems, cause serious diseases in plants and animals, and pose significant threats to human health and structural integrity problems in built environments. While most fungal diversity remains unknown, the development of PCR primers for the internal transcribed spacer (ITS) combined with next-generation sequencing has substantially improved our ability to profile fungal microbial diversity. Although the high sequence variability in the ITS region facilitates more accurate species identification, it also makes multiple sequence alignment and phylogenetic analysis unreliable across evolutionarily distant fungi because the sequences are hard to align accurately. To address this issue, we created ghost-tree, a bioinformatics tool that integrates sequence data from two genetic markers into a single phylogenetic tree that can be used for diversity analyses. Our approach starts with a "foundation" phylogeny based on one genetic marker whose sequences can be aligned across organisms spanning divergent taxonomic groups (e.g., fungal families). Then, "extension" phylogenies are built for more closely related organisms (e.g., fungal species or strains) using a second more rapidly evolving genetic marker. These smaller phylogenies are then grafted onto the foundation tree by mapping taxonomic names such that each corresponding foundation-tree tip would branch into its new "extension tree" child. We applied ghost-tree to graft fungal extension phylogenies derived from ITS sequences onto a foundation phylogeny derived from fungal 18S sequences. Our analysis of simulated and real fungal ITS data sets found that phylogenetic distances between fungal communities computed using ghost-tree phylogenies explained significantly more variance than non-phylogenetic distances. The phylogenetic metrics also improved our ability to distinguish small differences (effect sizes) between microbial communities, though results were similar to non-phylogenetic methods for larger effect sizes. The Silva/UNITE-based ghost tree presented here can be easily integrated into existing fungal analysis pipelines to enhance the resolution of fungal community differences and improve understanding of these communities in built environments. The ghost-tree software package can also be used to develop phylogenetic trees for other marker gene sets that afford different taxonomic resolution, or for bridging genome trees with amplicon trees. ghost-tree is pip-installable. All source code, documentation, and test code are available under the BSD license at https://github.com/JTFouquier/ghost-tree .
USDA-ARS?s Scientific Manuscript database
Sclerotinia trifoliorum is recently reported as a new pathogen of chickpea in North America. The diversity and genetic structure of this heterothallic fungus is poorly understood. This study was designed to investigate the genetic structure and diversity of the pathogen. A collection of 133 isolates...
Use of population genetic measures for assessing the structure of natural populations and the condition of biological resources has increased steadily since the 1970's. Traditionally, genetic diversity within and among geographic areas is assessed based on a one-time sampling of...
Genotypic diversity of european Phytophthora ramorum isolates based on SSR analysis
Kris Van Poucke; Annelies Vercauteren; Martine Maes; Sabine Werres; Kurt Heungens
2013-01-01
in Scotland were genotyped using seven microsatellite markers as described by Vercauteren et al. (2010). Thirty multilocus genotypes were identified within the Scottish population, with 51 percent of the isolates belonging to the main European genotype EU1MG1 and 13 unique detected genotypes. Ten of those genotypes were site specific, often represented by...
USDA-ARS?s Scientific Manuscript database
Previous phylogenetic analyses of species of Streptomyces based on 16S rRNA gene sequences resulted in a statistically well-supported clade (100% bootstrap value) containing 8 species that exhibited very similar gross morphology in producing open looped (Retinaculum-Apertum) to spiral (Spira) chains...
Vitecek, Simon; Kučinić, Mladen; Previšić, Ana; Živić, Ivana; Stojanović, Katarina; Keresztes, Lujza; Bálint, Miklós; Hoppeler, Felicitas; Waringer, Johann; Graf, Wolfram; Pauls, Steffen U
2017-06-06
Taxonomy offers precise species identification and delimitation and thus provides basic information for biological research, e.g. through assessment of species richness. The importance of molecular taxonomy, i.e., the identification and delimitation of taxa based on molecular markers, has increased in the past decade. Recently developed exploratory tools now allow estimating species-level diversity in multi-locus molecular datasets. Here we use molecular species delimitation tools that either quantify differences in intra- and interspecific variability of loci, or divergence times within and between species, or perform coalescent species tree inference to estimate species-level entities in molecular genetic datasets. We benchmark results from these methods against 14 morphologically readily differentiable species of a well-defined subgroup of the diverse Drusinae subfamily (Trichoptera, Limnephilidae). Using a 3798 bp (6 loci) molecular data set we aim to corroborate a geographically isolated new species by integrating comparative morphological studies and molecular taxonomy. Our results indicate that only multi-locus species delimitation provides taxonomically relevant information. The data further corroborate the new species Drusus zivici sp. nov. We provide differential diagnostic characters and describe the male, female and larva of this new species and discuss diversity patterns of Drusinae in the Balkans. We further discuss potential and significance of molecular species delimitation. Finally we argue that enhancing collaborative integrative taxonomy will accelerate assessment of global diversity and completion of reference libraries for applied fields, e.g., conservation and biomonitoring.
Manges, Amee R; Tellis, Patricia A; Vincent, Caroline; Lifeso, Kimberley; Geneau, Geneviève; Reid-Smith, Richard J; Boerlin, Patrick
2009-11-01
Discriminatory genotyping methods for the analysis of Escherichia coli other than O157:H7 are necessary for public health-related activities. A new multi-locus variable number tandem repeat analysis protocol is presented; this method achieves an index of discrimination of 99.5% and is reproducible and valid when tested on a collection of 836 diverse E. coli.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Yuan; Pan, Xueyu; Kubicek, Christian
Similar to mycorrhizal mutualists, the rhizospheric and endophytic fungi are also considered to act as active regulators of host fitness (e.g., nutrition and stress tolerance). Despite considerable work in selected model systems, it is generally poorly understood how plant-associated fungi are structured in habitats with extreme conditions and to what extent they contribute to improved plant performance. Here, we investigate the community composition of root and seed-associated fungi from six halophytes growing in saline areas of China, and found that the pleosporalean taxa (Ascomycota) were most frequently isolated across samples. A total of twenty-seven representative isolates were selected for constructionmore » of the phylogeny based on the multi-locus data (partial 18S rDNA, 28S rDNA, and transcription elongation factor 1-a), which classified them into seven families, one clade potentially representing a novel lineage. Fungal isolates were subjected to growth response assays by imposing temperature, pH, ionic and osmotic conditions. The fungi had a wide pH tolerance, while most isolates showed a variable degree of sensitivity to increasing concentration of either salt or sorbitol. Subsequent plant fungal co-culture assays indicated that most isolates had only neutral or even adverse effects on plant growth in the presence of inorganic nitrogen. Interestingly, when provided with organic nitrogen sources the majority of the isolates enhanced plant growth especially above ground biomass. Most of the fungi preferred organic nitrogen over its inorganic counterpart, suggesting that these fungi can readily mineralize organic nitrogen into inorganic nitrogen. Microscopy revealed that several isolates can successfully colonize roots and form melanized hyphae and/or microsclerotia-like structures within cortical cells suggesting a phylogenetic assignment as dark septate endophytes. Furthermore, this work provides a better understanding of the symbiotic relationship between plants and pleosporalean fungi, and initial evidence for the use of this fungal group in benefiting plant production.« less
Qin, Yuan; Pan, Xueyu; Kubicek, Christian; ...
2017-02-06
Similar to mycorrhizal mutualists, the rhizospheric and endophytic fungi are also considered to act as active regulators of host fitness (e.g., nutrition and stress tolerance). Despite considerable work in selected model systems, it is generally poorly understood how plant-associated fungi are structured in habitats with extreme conditions and to what extent they contribute to improved plant performance. Here, we investigate the community composition of root and seed-associated fungi from six halophytes growing in saline areas of China, and found that the pleosporalean taxa (Ascomycota) were most frequently isolated across samples. A total of twenty-seven representative isolates were selected for constructionmore » of the phylogeny based on the multi-locus data (partial 18S rDNA, 28S rDNA, and transcription elongation factor 1-a), which classified them into seven families, one clade potentially representing a novel lineage. Fungal isolates were subjected to growth response assays by imposing temperature, pH, ionic and osmotic conditions. The fungi had a wide pH tolerance, while most isolates showed a variable degree of sensitivity to increasing concentration of either salt or sorbitol. Subsequent plant fungal co-culture assays indicated that most isolates had only neutral or even adverse effects on plant growth in the presence of inorganic nitrogen. Interestingly, when provided with organic nitrogen sources the majority of the isolates enhanced plant growth especially above ground biomass. Most of the fungi preferred organic nitrogen over its inorganic counterpart, suggesting that these fungi can readily mineralize organic nitrogen into inorganic nitrogen. Microscopy revealed that several isolates can successfully colonize roots and form melanized hyphae and/or microsclerotia-like structures within cortical cells suggesting a phylogenetic assignment as dark septate endophytes. Furthermore, this work provides a better understanding of the symbiotic relationship between plants and pleosporalean fungi, and initial evidence for the use of this fungal group in benefiting plant production.« less
Daniels, Savel R; Phiri, Ethel E; Klaus, Sebastian; Albrecht, Christian; Cumberlidge, Neil
2015-07-01
Phylogenetic reconstruction, divergence time estimations and ancestral range estimation were undertaken for 66% of the Afrotropical freshwater crab fauna (Potamonautidae) based on four partial DNA loci (12S rRNA, 16S rRNA, cytochrome oxidase one [COI], and histone 3). The present study represents the most comprehensive taxonomic sampling of any freshwater crab family globally, and explores the impact of paleodrainage interconnectivity on cladogenesis among freshwater crabs. Phylogenetic analyses of the total evidence data using maximum-likelihood (ML), maximum parsimony (MP), and Bayesian inference (BI) produced a robust statistically well-supported tree topology that reaffirmed the monophyly of the Afrotropical freshwater crab fauna. The estimated divergence times suggest that the Afrotropical Potamonautidae diverged during the Eocene. Cladogenesis within and among several genera occurred predominantly during the Miocene, which was associated with major tectonic and climatic ameliorations throughout the region. Paleodrainage connectivity was observed with specimens from the Nilo-Sudan and East African coast proving to be sister to specimens from the Upper Guinea Forests in West Africa. In addition, we observed strong sister taxon affinity between specimens from East Africa and the Congo basin, including specimens from Lake Tanganyika, while the southern African fauna was retrieved as sister to the Angolan taxa. Within the East African clade we observed two independent transoceanic dispersal events, one to the Seychelles Archipelago and a second to Madagascar, while we observe a single transoceanic dispersal event from West Africa to São Tomé. The ancestral area estimation suggested a West African/East African ancestral range for the family with multiple dispersal events between southern Africa and East Africa, and between East Africa and Central Africa The taxonomic implications of our results are discussed in light of the widespread paraphyly evident among a number of genera. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Delamuta, Jakeline Renata Marçon; Ribeiro, Renan Augusto; Ormeño-Orrillo, Ernesto; Parma, Marcia Maria; Melo, Itamar Soares; Martínez-Romero, Esperanza; Hungria, Mariangela
2015-12-01
Biological nitrogen fixation is a key process for agricultural production and environmental sustainability, but there are comparatively few studies of symbionts of tropical pasture legumes, as well as few described species of the genus Bradyrhizobium, although it is the predominant rhizobial genus in the tropics. A detailed polyphasic study was conducted with two strains of the genus Bradyrhizobium used in commercial inoculants for tropical pastures in Brazil, CNPSo 1112T, isolated from perennial soybean (Neonotonia wightii), and CNPSo 2833T, from desmodium (Desmodium heterocarpon). Based on 16S-rRNA gene phylogeny, both strains were grouped in the Bradyrhizobium elkanii superclade, but were not clearly clustered with any known species. Multilocus sequence analysis of three (glnII, gyrB and recA) and five (plus atpD and dnaK) housekeeping genes confirmed that the strains are positioned in two distinct clades. Comparison with intergenic transcribed spacer sequences of type strains of described species of the genus Bradyrhizobium showed similarity lower than 93.1 %, and differences were confirmed by BOX-PCR analysis. Nucleotide identity of three housekeeping genes with type strains of described species ranged from 88.1 to 96.2 %. Average nucleotide identity of genome sequences showed values below the threshold for distinct species of the genus Bradyrhizobium ( < 90.6 %), and the value between the two strains was also below this threshold (91.2 %). Analysis of nifH and nodC gene sequences positioned the two strains in a clade distinct from other species of the genus Bradyrhizobium. Morphophysiological, genotypic and genomic data supported the description of two novel species in the genus Bradyrhizobium, Bradyrhizobium tropiciagri sp. nov. (type strain CNPSo 1112T = SMS 303T = BR 1009T = SEMIA 6148T = LMG 28867T) and Bradyrhizobium embrapense sp. nov. (type strain CNPSo 2833T = CIAT 2372T = BR 2212T = SEMIA 6208T = U674T = LMG 2987).
Korshunova, Tatiana; Martynov, Alexander; Bakken, Torkild; Evertsen, Jussi; Fletcher, Karin; Mudianta, I Wayan; Saito, Hiroshi; Lundin, Kennet; Michael Schrödl; Picton, Bernard
2017-01-01
Abstract The Flabellinidae, a heterogeneous assembly of supposedly plesiomorphic to very derived sea slug groups, have not yet been addressed by integrative studies. Here novel material of rarely seen Arctic taxa as well as North Atlantic, North and South Pacific, and tropical Indo-West Pacific flabellinid species is investigated morpho-anatomically and with multi-locus markers (partial COI, 16S rDNA, 28S rDNA and H3) which were generated and analysed in a comprehensive aeolid taxon sampling. It was found that the current family Flabellinidae is polyphyletic and its phylogeny and taxonomic patterns cannot be understood without considering members from all the Aeolidacean families and, based on a robust phylogenetic hypothesis, morpho-anatomical evolution of aeolids is more complex than suspected in earlier works and requires reclassification of the taxon. Morphological diversity of Flabellinidae is corroborated by molecular divergence rates and supports establishing three new families (Apataidae fam. n., Flabellinopsidae fam. n., Samlidae fam. n.), 16 new genera, 13 new species, and two new subspecies among the former Flabellinidae. Two families, namely Coryphellidae and Paracoryphellidae, are restored and traditional Flabellinidae is considerably restricted. The distinctness of the recently described family Unidentiidae is confirmed by both morphological and molecular data. Several species complexes among all ex-“Flabellinidae” lineages are recognised using both morphological and molecular data. The present study shows that Facelinidae and Aeolidiidae, together with traditional “Tergipedidae”, deeply divide traditional “Flabellinidae.” Diagnoses for all aeolidacean families are therefore provided and additionally two new non-flabellinid families (Abronicidae fam. n. and Murmaniidae fam. n.) within traditional tergipedids are established to accommodate molecular and morphological disparity. To address relationships and disparity, we propose a new family system for aeolids. Here the aeolidacean species are classified into at least 102 genera and 24 families. Operational rules for integration of morphological and molecular data for taxonomy are suggested. PMID:29391848
Cangi, Nídia; Gordon, Jonathan L; Bournez, Laure; Pinarello, Valérie; Aprelon, Rosalie; Huber, Karine; Lefrançois, Thierry; Neves, Luís; Meyer, Damien F; Vachiéry, Nathalie
2016-01-01
The disease, Heartwater, caused by the Anaplasmataceae E. ruminantium , represents a major problem for tropical livestock and wild ruminants. Up to now, no effective vaccine has been available due to a limited cross protection of vaccinal strains on field strains and a high genetic diversity of Ehrlichia ruminantium within geographical locations. To address this issue, we inferred the genetic diversity and population structure of 194 E. ruminantium isolates circulating worldwide using Multilocus Sequence Typing based on lipA, lipB, secY, sodB , and sucA genes . Phylogenetic trees and networks were generated using BEAST and SplitsTree, respectively, and recombination between the different genetic groups was tested using the PHI test for recombination. Our study reveals the repeated occurrence of recombination between E. ruminantium strains, suggesting that it may occur frequently in the genome and has likely played an important role in the maintenance of genetic diversity and the evolution of E. ruminantium . Despite the unclear phylogeny and phylogeography, E. ruminantium isolates are clustered into two main groups: Group 1 (West Africa) and a Group 2 (worldwide) which is represented by West, East, and Southern Africa, Indian Ocean, and Caribbean strains. Some sequence types are common between West Africa and Caribbean and between Southern Africa and Indian Ocean strains. These common sequence types highlight two main introduction events due to the movement of cattle: from West Africa to Caribbean and from Southern Africa to the Indian Ocean islands. Due to the long branch lengths between Group 1 and Group 2, and the propensity for recombination between these groups, it seems that the West African clusters of Subgroup 2 arrived there more recently than the original divergence of the two groups, possibly with the original waves of domesticated ruminants that spread across the African continent several thousand years ago.
The Tree of Life and a New Classification of Bony Fishes
Betancur-R., Ricardo; Broughton, Richard E.; Wiley, Edward O.; Carpenter, Kent; López, J. Andrés; Li, Chenhong; Holcroft, Nancy I.; Arcila, Dahiana; Sanciangco, Millicent; Cureton II, James C; Zhang, Feifei; Buser, Thaddaeus; Campbell, Matthew A.; Ballesteros, Jesus A; Roa-Varon, Adela; Willis, Stuart; Borden, W. Calvin; Rowley, Thaine; Reneau, Paulette C.; Hough, Daniel J.; Lu, Guoqing; Grande, Terry; Arratia, Gloria; Ortí, Guillermo
2013-01-01
The tree of life of fishes is in a state of flux because we still lack a comprehensive phylogeny that includes all major groups. The situation is most critical for a large clade of spiny-finned fishes, traditionally referred to as percomorphs, whose uncertain relationships have plagued ichthyologists for over a century. Most of what we know about the higher-level relationships among fish lineages has been based on morphology, but rapid influx of molecular studies is changing many established systematic concepts. We report a comprehensive molecular phylogeny for bony fishes that includes representatives of all major lineages. DNA sequence data for 21 molecular markers (one mitochondrial and 20 nuclear genes) were collected for 1410 bony fish taxa, plus four tetrapod species and two chondrichthyan outgroups (total 1416 terminals). Bony fish diversity is represented by 1093 genera, 369 families, and all traditionally recognized orders. The maximum likelihood tree provides unprecedented resolution and high bootstrap support for most backbone nodes, defining for the first time a global phylogeny of fishes. The general structure of the tree is in agreement with expectations from previous morphological and molecular studies, but significant new clades arise. Most interestingly, the high degree of uncertainty among percomorphs is now resolved into nine well-supported supraordinal groups. The order Perciformes, considered by many a polyphyletic taxonomic waste basket, is defined for the first time as a monophyletic group in the global phylogeny. A new classification that reflects our phylogenetic hypothesis is proposed to facilitate communication about the newly found structure of the tree of life of fishes. Finally, the molecular phylogeny is calibrated using 60 fossil constraints to produce a comprehensive time tree. The new time-calibrated phylogeny will provide the basis for and stimulate new comparative studies to better understand the evolution of the amazing diversity of fishes. PMID:23653398
Variance to mean ratio, R(t), for poisson processes on phylogenetic trees.
Goldman, N
1994-09-01
The ratio of expected variance to mean, R(t), of numbers of DNA base substitutions for contemporary sequences related by a "star" phylogeny is widely seen as a measure of the adherence of the sequences' evolution to a Poisson process with a molecular clock, as predicted by the "neutral theory" of molecular evolution under certain conditions. A number of estimators of R(t) have been proposed, all predicted to have mean 1 and distributions based on the chi 2. Various genes have previously been analyzed and found to have values of R(t) far in excess of 1, calling into question important aspects of the neutral theory. In this paper, I use Monte Carlo simulation to show that the previously suggested means and distributions of estimators of R(t) are highly inaccurate. The analysis is applied to star phylogenies and to general phylogenetic trees, and well-known gene sequences are reanalyzed. For star phylogenies the results show that Kimura's estimators ("The Neutral Theory of Molecular Evolution," Cambridge Univ. Press, Cambridge, 1983) are unsatisfactory for statistical testing of R(t), but confirm the accuracy of Bulmer's correction factor (Genetics 123: 615-619, 1989). For all three nonstar phylogenies studied, attained values of all three estimators of R(t), although larger than 1, are within their true confidence limits under simple Poisson process models. This shows that lineage effects can be responsible for high estimates of R(t), restoring some limited confidence in the molecular clock and showing that the distinction between lineage and molecular clock effects is vital.(ABSTRACT TRUNCATED AT 250 WORDS)
Three-dimensional reconstruction and the phylogeny of extinct chelicerate orders
Dunlop, Jason
2014-01-01
Arachnids are an important group of arthropods. They are: diverse and abundant; a major constituent of many terrestrial ecosystems; and possess a deep and extensive fossil record. In recent years a number of exceptionally preserved arachnid fossils have been investigated using tomography and associated techniques, providing valuable insights into their morphology. Here we use X-ray microtomography to reconstruct members of two extinct arachnid orders. In the Haptopoda, we demonstrate the presence of ‘clasp-knife’ chelicerae, and our novel redescription of a member of the Phalangiotarbida highlights leg details, but fails to resolve chelicerae in the group due to their small size. As a result of these reconstructions, tomographic studies of three-dimensionally preserved fossils now exist for three of the four extinct orders, and for fossil representatives of several extant ones. Such studies constitute a valuable source of high fidelity data for constructing phylogenies. To illustrate this, here we present a cladistic analysis of the chelicerates to accompany these reconstructions. This is based on a previously published matrix, expanded to include fossil taxa and relevant characters, and allows us to: cladistically place the extinct arachnid orders; explicitly test some earlier hypotheses from the literature; and demonstrate that the addition of fossils to phylogenetic analyses can have broad implications. Phylogenies based on chelicerate morphology—in contrast to molecular studies—have achieved elements of consensus in recent years. Our work suggests that these results are not robust to the addition of novel characters or fossil taxa. Hypotheses surrounding chelicerate phylogeny remain in a state of flux. PMID:25405073
Lopes-Lima, Manuel; Froufe, Elsa; Do, Van Tu; Ghamizi, Mohamed; Mock, Karen E; Kebapçı, Ümit; Klishko, Olga; Kovitvadhi, Satit; Kovitvadhi, Uthaiwan; Paulo, Octávio S; Pfeiffer, John M; Raley, Morgan; Riccardi, Nicoletta; Şereflişan, Hülya; Sousa, Ronaldo; Teixeira, Amílcar; Varandas, Simone; Wu, Xiaoping; Zanatta, David T; Zieritz, Alexandra; Bogan, Arthur E
2017-01-01
Freshwater mussels of the order Unionida are key elements of freshwater habitats and are responsible for important ecological functions and services. Unfortunately, these bivalves are among the most threatened freshwater taxa in the world. However, conservation planning and management are hindered by taxonomic problems and a lack of detailed ecological data. This highlights the urgent need for advances in the areas of systematics and evolutionary relationships within the Unionida. This study presents the most comprehensive phylogeny to date of the larger Unionida family, i.e., the Unionidae. The phylogeny is based on a combined dataset of 1032bp (COI+28S) of 70 species in 46 genera, with 7 of this genera being sequenced for the first time. The resulting phylogeny divided the Unionidae into 6 supported subfamilies and 18 tribes, three of which are here named for the first time (i.e., Chamberlainiini nomen novum, Cristariini nomen novum and Lanceolariini nomen novum). Molecular analyses were complemented by investigations of selected morphological, anatomical and behavioral characters used in traditional phylogenetic studies. No single morphological, anatomical or behavioral character was diagnostic at the subfamily level and few were useful at the tribe level. However, within subfamilies, many tribes can be recognized based on a subset of these characters. The geographical distribution of each of the subfamilies and tribes is also presented. The present study provides important advances in the systematics of these extraordinary taxa with implications for future ecological and conservation studies. Copyright © 2016 Elsevier Inc. All rights reserved.
Pellegrini, Marco O. O.
2017-01-01
Abstract Throughout the years, three infrageneric classifications were proposed for Tradescantia along with several informal groups and species complexes. The current infrageneric classification accepts 12 sections – with T. sect. Tradescantia being further divided into four series – and assimilates many concepts adopted by previous authors. Recent molecular-based phylogenetic studies indicate that the currently accepted sections might not represent monophyletic groups within Tradescantia. Based on newly gathered morphological data on the group, complemented with available micromorphological, cytological and phytochemical data, I present the first morphology-based evolutionary hypothesis for Tradescantia. Furthermore, I reduce subtribe Thyrsantheminae to a synonym of subtribe Tradescantiinae, and propose a new infrageneric classification for Tradescantia, based on the total evidence of the present morphological phylogeny, in accordance to the previously published molecular data. PMID:29118649
Kochzius, Marc; Söller, Rainer; Khalaf, Maroof A; Blohm, Dietmar
2003-09-01
This study investigates the molecular phylogeny of seven lionfishes of the genera Dendrochirus and Pterois. MP, ML, and NJ phylogenetic analysis based on 964 bp of partial mitochondrial DNA sequences (cytochrome b and 16S rDNA) revealed two main clades: (1) "Pterois" clade (Pterois miles and Pterois volitans), and (2) "Pteropterus-Dendrochirus" clade (remainder of the sampled species). The position of Dendrochirus brachypterus either basal to the main clades or in the "Pteropterus-Dendrochirus" clade cannot be resolved. However, the molecular phylogeny did not support the current separation of the genera Pterois and Dendrochirus. The siblings P. miles and P. volitans are clearly separated and our results support the proposed allopatric or parapatric distribution in the Indian and Pacific Ocean. However, the present analysis cannot reveal if P. miles and P. volitans are separate species or two populations of a single species, because the observed separation in different clades can be either explained by speciation or lineage sorting. Molecular clock estimates for the siblings P. miles and P. volitans suggest a divergence time of 2.4-8.3 mya, which coincide with geological events that created vicariance between populations of the Indian and Pacific Ocean.
Fast alignment-free sequence comparison using spaced-word frequencies.
Leimeister, Chris-Andre; Boden, Marcus; Horwege, Sebastian; Lindner, Sebastian; Morgenstern, Burkhard
2014-07-15
Alignment-free methods for sequence comparison are increasingly used for genome analysis and phylogeny reconstruction; they circumvent various difficulties of traditional alignment-based approaches. In particular, alignment-free methods are much faster than pairwise or multiple alignments. They are, however, less accurate than methods based on sequence alignment. Most alignment-free approaches work by comparing the word composition of sequences. A well-known problem with these methods is that neighbouring word matches are far from independent. To reduce the statistical dependency between adjacent word matches, we propose to use 'spaced words', defined by patterns of 'match' and 'don't care' positions, for alignment-free sequence comparison. We describe a fast implementation of this approach using recursive hashing and bit operations, and we show that further improvements can be achieved by using multiple patterns instead of single patterns. To evaluate our approach, we use spaced-word frequencies as a basis for fast phylogeny reconstruction. Using real-world and simulated sequence data, we demonstrate that our multiple-pattern approach produces better phylogenies than approaches relying on contiguous words. Our program is freely available at http://spaced.gobics.de/. © The Author 2014. Published by Oxford University Press.
Lee, I M; Bartoszyk, I M; Gundersen-Rindal, D E; Davis, R E
1997-07-01
A phylogenetic analysis by parsimony of 16S rRNA gene sequences (16S rDNA) revealed that species and subspecies of Clavibacter and Rathayibacter form a discrete monophyletic clade, paraphyletic to Corynebacterium species. Within the Clavibacter-Rathayibacter clade, four major phylogenetic groups (subclades) with a total of 10 distinct taxa were recognized: (I) species C. michiganensis; (II) species C. xyli; (III) species R. iranicus and R. tritici; and (IV) species R. rathayi. The first three groups form a monophyletic cluster, paraphyletic to R. rathayi. On the basis of the phylogeny inferred, reclassification of members of Clavibacter-Rathayibacter group is proposed. A system for classification of taxa in Clavibacter and Rathayibacter was developed based on restriction fragment length polymorphism (RFLP) analysis of the PCR-amplified 16S rDNA sequences. The groups delineated on the basis of RFLP patterns of 16S rDNA coincided well with the subclades delineated on the basis of phylogeny. In contrast to previous classification systems, which are based primarily on phenotypic properties and are laborious, the RFLP analyses allow for rapid differentiation among species and subspecies in the two genera.
Genomics and Evolution in Traditional Medicinal Plants: Road to a Healthier Life
Hao, Da-Cheng; Xiao, Pei-Gen
2015-01-01
Medicinal plants have long been utilized in traditional medicine and ethnomedicine worldwide. This review presents a glimpse of the current status of and future trends in medicinal plant genomics, evolution, and phylogeny. These dynamic fields are at the intersection of phytochemistry and plant biology and are concerned with the evolution mechanisms and systematics of medicinal plant genomes, origin and evolution of the plant genotype and metabolic phenotype, interaction between medicinal plant genomes and their environment, the correlation between genomic diversity and metabolite diversity, and so on. Use of the emerging high-end genomic technologies can be expanded from crop plants to traditional medicinal plants, in order to expedite medicinal plant breeding and transform them into living factories of medicinal compounds. The utility of molecular phylogeny and phylogenomics in predicting chemodiversity and bioprospecting is also highlighted within the context of natural-product-based drug discovery and development. Representative case studies of medicinal plant genome, phylogeny, and evolution are summarized to exemplify the expansion of knowledge pedigree and the paradigm shift to the omics-based approaches, which update our awareness about plant genome evolution and enable the molecular breeding of medicinal plants and the sustainable utilization of plant pharmaceutical resources. PMID:26461812
Genomics and Evolution in Traditional Medicinal Plants: Road to a Healthier Life.
Hao, Da-Cheng; Xiao, Pei-Gen
2015-01-01
Medicinal plants have long been utilized in traditional medicine and ethnomedicine worldwide. This review presents a glimpse of the current status of and future trends in medicinal plant genomics, evolution, and phylogeny. These dynamic fields are at the intersection of phytochemistry and plant biology and are concerned with the evolution mechanisms and systematics of medicinal plant genomes, origin and evolution of the plant genotype and metabolic phenotype, interaction between medicinal plant genomes and their environment, the correlation between genomic diversity and metabolite diversity, and so on. Use of the emerging high-end genomic technologies can be expanded from crop plants to traditional medicinal plants, in order to expedite medicinal plant breeding and transform them into living factories of medicinal compounds. The utility of molecular phylogeny and phylogenomics in predicting chemodiversity and bioprospecting is also highlighted within the context of natural-product-based drug discovery and development. Representative case studies of medicinal plant genome, phylogeny, and evolution are summarized to exemplify the expansion of knowledge pedigree and the paradigm shift to the omics-based approaches, which update our awareness about plant genome evolution and enable the molecular breeding of medicinal plants and the sustainable utilization of plant pharmaceutical resources.
Mitogenomics does not resolve deep molluscan relationships (yet?).
Stöger, I; Schrödl, M
2013-11-01
The origin of molluscs among lophotrochozoan metazoans is unresolved and interclass relationships are contradictory between morphology-based, multi-locus, and recent phylogenomic analyses. Within the "Deep Metazoan Phylogeny" framework, all available molluscan mitochondrial genomes were compiled, covering 6 of 8 classes. Genomes were reannotated, and 13 protein coding genes (PCGs) were analyzed in various taxon settings, under multiple masking and coding regimes. Maximum Likelihood based methods were used for phylogenetic reconstructions. In all cases, molluscs result mixed up with lophotrochozoan outgroups, and most molluscan classes with more than single representatives available are non-monophyletic. We discuss systematic errors such as long branch attraction to cause aberrant, basal positions of fast evolving ingroups such as scaphopods, patellogastropods and, in particular, the gastropod subgroup Heterobranchia. Mitochondrial sequences analyzed either as amino acids or nucleotides may perform well in some (Cephalopoda) but not in other palaeozoic molluscan groups; they are not suitable to reconstruct deep (Cambrian) molluscan evolution. Supposedly "rare" mitochondrial genome level features have long been promoted as phylogenetically informative. In our newly annotated data set, features such as genome size, transcription on one or both strands, and certain coupled pairs of PCGs show a homoplastic, but obviously non-random distribution. Apparently congruent (but not unambiguous) signal for non-trivial subclades, e.g. for a clade composed of pteriomorph and heterodont bivalves, needs confirmation from a more comprehensive bivalve sampling. We found that larger clusters not only of PCGs but also of rRNAs and even tRNAs can bear local phylogenetic signal; adding trnG-trnE to the end of the ancestral cluster trnM-trnC-trnY-trnW-trnQ might be synapomorphic for Mollusca. Mitochondrial gene arrangement and other genome level features explored and reviewed herein thus failed as golden bullets, but are promising as additional characters or evidence supporting deep molluscan clades revealed by other data sets. A representative and dense sampling of molluscan subgroups may contribute to resolve contentious interclass relationships in the future, and is vital for exploring the evolution of especially diverse mitochondrial genomes in molluscs. Copyright © 2012 Elsevier Inc. All rights reserved.
New Insights into the Diversity of the Genus Faecalibacterium.
Benevides, Leandro; Burman, Sriti; Martin, Rebeca; Robert, Véronique; Thomas, Muriel; Miquel, Sylvie; Chain, Florian; Sokol, Harry; Bermudez-Humaran, Luis G; Morrison, Mark; Langella, Philippe; Azevedo, Vasco A; Chatel, Jean-Marc; Soares, Siomar
2017-01-01
Faecalibacterium prausnitzii is a commensal bacterium, ubiquitous in the gastrointestinal tracts of animals and humans. This species is a functionally important member of the microbiota and studies suggest it has an impact on the physiology and health of the host. F. prausnitzii is the only identified species in the genus Faecalibacterium , but a recent study clustered strains of this species in two different phylogroups. Here, we propose the existence of distinct species in this genus through the use of comparative genomics. Briefly, we performed analyses of 16S rRNA gene phylogeny, phylogenomics, whole genome Multi-Locus Sequence Typing (wgMLST), Average Nucleotide Identity (ANI), gene synteny, and pangenome to better elucidate the phylogenetic relationships among strains of Faecalibacterium . For this, we used 12 newly sequenced, assembled, and curated genomes of F. prausnitzii , which were isolated from feces of healthy volunteers from France and Australia, and combined these with published data from 5 strains downloaded from public databases. The phylogenetic analysis of the 16S rRNA sequences, together with the wgMLST profiles and a phylogenomic tree based on comparisons of genome similarity, all supported the clustering of Faecalibacterium strains in different genospecies. Additionally, the global analysis of gene synteny among all strains showed a highly fragmented profile, whereas the intra-cluster analyses revealed larger and more conserved collinear blocks. Finally, ANI analysis substantiated the presence of three distinct clusters-A, B, and C-composed of five, four, and four strains, respectively. The pangenome analysis of each cluster corroborated the classification of these clusters into three distinct species, each containing less variability than that found within the global pangenome of all strains. Here, we propose that comparison of pangenome subsets and their associated α values may be used as an alternative approach, together with ANI, in the in silico classification of new species. Altogether, our results provide evidence not only for the reconsideration of the phylogenetic and genomic relatedness among strains currently assigned to F. prausnitzii , but also the need for lineage (strain-based) differentiation of this taxon to better define how specific members might be associated with positive or negative host interactions.
Generalized Buneman Pruning for Inferring the Most Parsimonious Multi-state Phylogeny
NASA Astrophysics Data System (ADS)
Misra, Navodit; Blelloch, Guy; Ravi, R.; Schwartz, Russell
Accurate reconstruction of phylogenies remains a key challenge in evolutionary biology. Most biologically plausible formulations of the problem are formally NP-hard, with no known efficient solution. The standard in practice are fast heuristic methods that are empirically known to work very well in general, but can yield results arbitrarily far from optimal. Practical exact methods, which yield exponential worst-case running times but generally much better times in practice, provide an important alternative. We report progress in this direction by introducing a provably optimal method for the weighted multi-state maximum parsimony phylogeny problem. The method is based on generalizing the notion of the Buneman graph, a construction key to efficient exact methods for binary sequences, so as to apply to sequences with arbitrary finite numbers of states with arbitrary state transition weights. We implement an integer linear programming (ILP) method for the multi-state problem using this generalized Buneman graph and demonstrate that the resulting method is able to solve data sets that are intractable by prior exact methods in run times comparable with popular heuristics. Our work provides the first method for provably optimal maximum parsimony phylogeny inference that is practical for multi-state data sets of more than a few characters.
Phylogenetic analyses of mode of larval development.
Hart, M
2000-12-01
Phylogenies based on morphological or molecular characters have been used to provide an evolutionary context for analysis of larval evolution. Studies of gastropods, bivalves, tunicates, sea stars, sea urchins, and polychaetes have revealed massive parallel evolution of similar larval forms. Some of these studies were designed to test, and have rejected, the species selection hypothesis for evolutionary trends in the frequency of derived larvae or life history traits. However, the lack of well supported models of larval character evolution leave some doubt about the quality of inferences of larval evolution from phylogenies of living taxa. Better models based on maximum likelihood methods and known prior probabilities of larval character state changes will improve our understanding of the history of larval evolution. Copyright 2000 Academic Press.
Turchetti, Benedetta; Selbmann, Laura; Blanchette, Robert A; Di Mauro, Simone; Marchegiani, Elisabetta; Zucconi, Laura; Arenz, Brett E; Buzzini, Pietro
2015-01-01
Twenty yeast strains, representing a selection from a wider group of more than 60 isolates were isolated from cold environments worldwide (Antarctica, Iceland, Russia, USA, Italian and French Alps, Apennines). The strains were grouped based on their common morphological and physiological characteristics. A phylogeny based on D1/D2 ribosomal DNA sequences placed them in an intermediate position between Cryptococcus saitoi and Cryptococcus friedmannii; the ITS1 and ITS2 rDNA phylogeny demonstrated that these strains belong to two related but hitherto unknown species within the order Filobasidiales, albidus clade. These two novel species are described with the names Cryptococcus vaughanmartiniae (type strain DBVPG 4736(T)) and Cryptococcus onofrii (type strain DBVPG 5303(T)).
Principles of cophylogenetic maps
NASA Astrophysics Data System (ADS)
Charleston, Michael A.
Cophylogeny is the study of the relationships between phylogenies of ecologically related groups (taxa, geographical areas, genes etc.), where one, the "host" phylogeny, is independent and the other, the "associate" phylogeny, is hypothesized to be dependent to some degree on the host. Given two such phylogenies our aim is to estimate the past associations between the host and associate taxa. This chapter describes cophylogeny and discusses some of its basic pri nciples. The necessary properties of any cophylogenetic method are described. Charleston [5] created a graph which contains all the potential solutions to a given cophylogenetic problem. The vertices of this graph are associations, either observed or hypothetical, between "host" and associated taxonomic units, and the arcs correspond to the associate phylogeny. A new and more general method of constructing the Jungle is presented, which will correctly account for reticulate host and/or parasite phylogenies. Keywords: cophylogeny, coevolution, gene tree/species tree, host/parasite coevolution, host switch, horizontal transfer, biogeography.
Colletotrichum – current status and future directions
Cannon, P.F.; Damm, U.; Johnston, P.R.; Weir, B.S.
2012-01-01
A review is provided of the current state of understanding of Colletotrichum systematics, focusing on species-level data and the major clades. The taxonomic placement of the genus is discussed, and the evolution of our approach to species concepts and anamorph-teleomorph relationships is described. The application of multilocus technologies to phylogenetic analysis of Colletotrichum is reviewed, and selection of potential genes/loci for barcoding purposes is discussed. Host specificity and its relation to speciation and taxonomy is briefly addressed. A short review is presented of the current status of classification of the species clusters that are currently without comprehensive multilocus analyses, emphasising the orbiculare and destructivum aggregates. The future for Colletotrichum biology will be reliant on consensus classification and robust identification tools. In support of these goals, a Subcommission on Colletotrichum has been formed under the auspices of the International Commission on Taxonomy of Fungi, which will administer a carefully curated barcode database for sequence-based identification of species within the BioloMICS web environment. PMID:23136460
da Silva Malone, Camila Francieli; Rigonato, Janaína; Laughinghouse, Haywood Dail; Schmidt, Éder Carlos; Bouzon, Zenilda Laurita; Wilmotte, Annick; Fiore, Marli Fátima; Sant'Anna, Célia Leite
2015-09-01
For more than a decade, the taxonomy of the Phormidiaceae has been problematic, since morphologically similar organisms represent phylogenetically distinct entities. Based on 16S rRNA gene sequence analyses, the polyphyletic genus Phormidium and other gas-vacuolated oscillatorioids appear scattered throughout the cyanobacterial tree of life. Recently, several studies have focused on understanding the oscillatorioid taxa at the generic level. At the specific level, few studies have characterized cyanobacterial strains using combined datasets (morphology, ultrastructure and molecular multilocus analyses). Using a multifaceted approach, we propose a new, well-defined genus, Cephalothrix gen. nov., by analysing seven filamentous strains that are morphologically 'intermediate' between gas-vacuolated taxa and Phormidium. Furthermore, we characterize two novel species: Cephalothrix komarekiana sp. nov. (strains CCIBt 3277, CCIBt 3279, CCIBt 3523, CCALA 155, SAG 75.79 and UTEX 1580) and Cephalothrix lacustris sp. nov. (strain CCIBt 3261). The generic name and specific epithets are proposed under the provisions of the International Code of Nomenclature for Algae, Fungi, and Plants.
Genetic epidemiology of the Sudden Oak Death pathogen Phytophthora ramorum in California
S. Mascheretti; P.J.P. Croucher; M. Kozanitas; L. Baker; M. Garbelotto
2009-01-01
A total of 669 isolates of Phytophthora ramorum, the pathogen responsible for Sudden Oak Death, were collected from 34 Californian forests and from the ornamental plant-trade. Seven microsatellite markers revealed 82 multilocus genotypes (MGs) of which only three were abundant (>10%). Iteratively collapsing based upon minimum ΦST, yielded five meta-samples and five...
USDA-ARS?s Scientific Manuscript database
A growing interest in the biological control of locusts and grasshoppers (Acrididae) has led to the development of biopesticides based on naturally occurring pathogens which offers an environmentally safe alternative to chemical pesticides. However, the fungal strains which are being sought for biop...
2007-01-01
TYPE 3. DATES COVERED 00-00-2007 to 00-00-2007 4. TITLE AND SUBTITLE Phylogeny of the Leucosphyrus Group of Anopheles (Cellia) (Diptera...ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/ AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13...by 4. cycles of 45 s at 94°C. 45 s at 50°C and 1 min at 7’r’C, with a final extension of 7 min at 72°C. PeR products were elec- trophoresed in 2
The multilocus sequence typing network: mlst.net.
Aanensen, David M; Spratt, Brian G
2005-07-01
The unambiguous characterization of strains of a pathogen is crucial for addressing questions relating to its epidemiology, population and evolutionary biology. Multilocus sequence typing (MLST), which defines strains from the sequences at seven house-keeping loci, has become the method of choice for molecular typing of many bacterial and fungal pathogens (and non-pathogens), and MLST schemes and strain databases are available for a growing number of prokaryotic and eukaryotic organisms. Sequence data are ideal for strain characterization as they are unambiguous, meaning strains can readily be compared between laboratories via the Internet. Laboratories undertaking MLST can quickly progress from sequencing the seven gene fragments to characterizing their strains and relating them to those submitted by others and to the population as a whole. We provide the gateway to a number of MLST schemes, each of which contain a set of tools for the initial characterization of strains, and methods for relating query strains to other strains of the species, including clustering based on differences in allelic profiles, phylogenetic trees based on concatenated sequences, and a recently developed method (eBURST) for identifying clonal complexes within a species and displaying the overall structure of the population. This network of MLST websites is available at http://www.mlst.net.
2016-01-01
Abstract Background Metabarcoding is becoming a common tool used to assess and compare diversity of organisms in environmental samples. Identification of OTUs is one of the critical steps in the process and several taxonomy assignment methods were proposed to accomplish this task. This publication evaluates the quality of reference datasets, alongside with several alignment and phylogeny inference methods used in one of the taxonomy assignment methods, called tree-based approach. This approach assigns anonymous OTUs to taxonomic categories based on relative placements of OTUs and reference sequences on the cladogram and support that these placements receive. New information In tree-based taxonomy assignment approach, reliable identification of anonymous OTUs is based on their placement in monophyletic and highly supported clades together with identified reference taxa. Therefore, it requires high quality reference dataset to be used. Resolution of phylogenetic trees is strongly affected by the presence of erroneous sequences as well as alignment and phylogeny inference methods used in the process. Two preparation steps are essential for the successful application of tree-based taxonomy assignment approach. Curated collections of genetic information do include erroneous sequences. These sequences have detrimental effect on the resolution of cladograms used in tree-based approach. They must be identified and excluded from the reference dataset beforehand. Various combinations of multiple sequence alignment and phylogeny inference methods provide cladograms with different topology and bootstrap support. These combinations of methods need to be tested in order to determine the one that gives highest resolution for the particular reference dataset. Completing the above mentioned preparation steps is expected to decrease the number of unassigned OTUs and thus improve the results of the tree-based taxonomy assignment approach. PMID:27932919
Holovachov, Oleksandr
2016-01-01
Metabarcoding is becoming a common tool used to assess and compare diversity of organisms in environmental samples. Identification of OTUs is one of the critical steps in the process and several taxonomy assignment methods were proposed to accomplish this task. This publication evaluates the quality of reference datasets, alongside with several alignment and phylogeny inference methods used in one of the taxonomy assignment methods, called tree-based approach. This approach assigns anonymous OTUs to taxonomic categories based on relative placements of OTUs and reference sequences on the cladogram and support that these placements receive. In tree-based taxonomy assignment approach, reliable identification of anonymous OTUs is based on their placement in monophyletic and highly supported clades together with identified reference taxa. Therefore, it requires high quality reference dataset to be used. Resolution of phylogenetic trees is strongly affected by the presence of erroneous sequences as well as alignment and phylogeny inference methods used in the process. Two preparation steps are essential for the successful application of tree-based taxonomy assignment approach. Curated collections of genetic information do include erroneous sequences. These sequences have detrimental effect on the resolution of cladograms used in tree-based approach. They must be identified and excluded from the reference dataset beforehand.Various combinations of multiple sequence alignment and phylogeny inference methods provide cladograms with different topology and bootstrap support. These combinations of methods need to be tested in order to determine the one that gives highest resolution for the particular reference dataset.Completing the above mentioned preparation steps is expected to decrease the number of unassigned OTUs and thus improve the results of the tree-based taxonomy assignment approach.
Gómez, Fernando; Moreira, David; López-García, Purificación
2009-11-01
The dinoflagellates Chytriodinium affine, C. roseum and Dissodinium pseudolunula are ectoparasites of crustacean eggs. Here, we present new observations regarding their life cycle based on coastal plankton samples and incubations and analyze their molecular phylogeny using the small subunit ribosomal RNA gene (SSU rDNA) as a marker. In contrast to the typical stages already documented for its life cycle, we observed that D. pseudolunula dinospores may exceptionally differentiate inside a globular cyst. Despite its parasitic life style, the cysts and dinospores of D. pseudolunula contain chlorophyll a. We obtained the first SSU rDNA sequences for the genera Chytriodinium (the type C. roseum and C. affine) and Dissodinium (D. pseudolunula). Classical taxonomical schemes have ascribed these genera to the order Blastodiniales. However, our SSU rDNA-based phylogenetic analysis shows that these ectoparasites form a clade in the Gymnodinium sensu stricto group, unarmored dinokaryotic dinoflagellates of the order Gymnodiniales. They branch in a subgroup composed of warnowiids, polykrikoids, the type of Gymnodinium, G. fuscum and G. aureolum. Although Chytriodinium and Dissodinium appear to be relatives based on SSU rDNA phylogeny, feeding and host specificity, their life cycles are substantially different. Based on these data we consider that the type of life cycle is a poor criterion for classification at the family level. We suggest that the morphology of the infective cell is probably the most reliable phenotypic characteristic to determine the systematic position of parasitic dinoflagellates.
Teaching the process of molecular phylogeny and systematics: a multi-part inquiry-based exercise.
Lents, Nathan H; Cifuentes, Oscar E; Carpi, Anthony
2010-01-01
Three approaches to molecular phylogenetics are demonstrated to biology students as they explore molecular data from Homo sapiens and four related primates. By analyzing DNA sequences, protein sequences, and chromosomal maps, students are repeatedly challenged to develop hypotheses regarding the ancestry of the five species. Although these exercises were designed to supplement and enhance classroom instruction on phylogeny, cladistics, and systematics in the context of a postsecondary majors-level introductory biology course, the activities themselves require very little prior student exposure to these topics. Thus, they are well suited for students in a wide range of educational levels, including a biology class at the secondary level. In implementing this exercise, we have observed measurable gains, both in student comprehension of molecular phylogeny and in their acceptance of modern evolutionary theory. By engaging students in modern phylogenetic activities, these students better understood how biologists are currently using molecular data to develop a more complete picture of the shared ancestry of all living things.
Phylogeny, host-parasite relationship and zoogeography
1999-01-01
Phylogeny is the evolutionary history of a group or the lineage of organisms and is reconstructed based on morphological, molecular and other characteristics. The genealogical relationship of a group of taxa is often expressed as a phylogenetic tree. The difficulty in categorizing the phylogeny is mainly due to the existence of frequent homoplasies that deceive observers. At the present time, cladistic analysis is believed to be one of the most effective methods of reconstructing a phylogenetic tree. Excellent computer program software for phylogenetic analysis is available. As an example, cladistic analysis was applied for nematode genera of the family Acuariidae, and the phylogenetic tree formed was compared with the system used currently. Nematodes in the genera Nippostrongylus and Heligmonoides were also analyzed, and the validity of the reconstructed phylogenetic trees was observed from a zoogeographical point of view. Some of the theories of parasite evolution were briefly reviewed as well. Coevolution of parasites and humans was discussed with special reference to the evolutionary relationship between Enterobius and primates. PMID:10634036
Phylogenetic constrains on mycorrhizal specificity in eight Dendrobium (Orchidaceae) species.
Xing, Xiaoke; Ma, Xueting; Men, Jinxin; Chen, Yanhong; Guo, Shunxing
2017-05-01
Plant phylogeny constrains orchid mycorrhizal (OrM) fungal community composition in some orchids. Here, we investigated the structures of the OrM fungal communities of eight Dendrobium species in one niche to determine whether similarities in the OrM fungal communities correlated with the phylogeny of the host plants and whether the Dendrobium-OrM fungal interactions are phylogenetically conserved. A phylogeny based on DNA data was constructed for the eight coexisting Dendrobium species, and the OrM fungal communities were characterized by their roots. There were 31 different fungal lineages associated with the eight Dendrobium species. In total, 82.98% of the identified associations belonging to Tulasnellaceae, and a smaller proportion involved members of the unknown Basidiomycota (9.67%). Community analyses revealed that phylogenetically related Dendrobium tended to interact with a similar set of Tulasnellaceae fungi. The interactions between Dendrobium and Tulasnellaceae fungi were significantly influenced by the phylogenetic relationships among the Dendrobium species. Our results provide evidence that the mycorrhizal specificity in the eight coexisting Dendrobium species was phylogenetically conserved.
A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data
USDA-ARS?s Scientific Manuscript database
Zygomycete fungi were classified as a single phylum, Zygomycota, based on sexual reproduction by zygospores, frequent asexual reproduction by sporangia, absence of multicellular sporocarps, and production of coenocytic hyphae, all with some exceptions. Molecular phylogenies based on one or a few gen...
Evolution of behavior and neural control of the fast-start escape response.
Hale, Melina E; Long, John H; McHenry, Matthew J; Westneat, Mark W
2002-05-01
The fast-start startle behavior is the primary mechanism of rapid escape in fishes and is a model system for examining neural circuit design and musculoskeletal function. To develop a dataset for evolutionary analysis of the startle response, the kinematics and muscle activity patterns of the fast-start were analyzed for four fish species at key branches in the phylogeny of vertebrates. Three of these species (Polypterus palmas, Lepisosteus osseus, and Amia calva) represent the base of the actinopterygian radiation. A fourth species (Oncorhynchus mykiss) provided data for a species in the central region of the teleost phylogeny. Using these data, we explored the evolution of this behavior within the phylogeny of vertebrates. To test the hypothesis that startle features are evolutionarily conservative, the variability of motor patterns and kinematics in fast-starts was described. Results show that the evolution of the startle behavior in fishes, and more broadly among vertebrates, is not conservative. The fast-start has undergone substantial change in suites of kinematics and electromyogram features, including the presence of either a one- or a two-stage kinematic response and change in the extent of bilateral muscle activity. Comparative methods were used to test the evolutionary hypothesis that changes in motor control are correlated with key differences in the kinematics and behavior of the fast-start. Significant evolutionary correlations were found between several motor pattern and behavioral characters. These results suggest that the startle neural circuit itself is not conservative. By tracing the evolution of motor pattern and kinematics on a phylogeny, it is shown that major changes in the neural circuit of the startle behavior occur at several levels in the phylogeny of vertebrates.
Stadler, Tanja; Degnan, James H.; Rosenberg, Noah A.
2016-01-01
Classic null models for speciation and extinction give rise to phylogenies that differ in distribution from empirical phylogenies. In particular, empirical phylogenies are less balanced and have branching times closer to the root compared to phylogenies predicted by common null models. This difference might be due to null models of the speciation and extinction process being too simplistic, or due to the empirical datasets not being representative of random phylogenies. A third possibility arises because phylogenetic reconstruction methods often infer gene trees rather than species trees, producing an incongruity between models that predict species tree patterns and empirical analyses that consider gene trees. We investigate the extent to which the difference between gene trees and species trees under a combined birth–death and multispecies coalescent model can explain the difference in empirical trees and birth–death species trees. We simulate gene trees embedded in simulated species trees and investigate their difference with respect to tree balance and branching times. We observe that the gene trees are less balanced and typically have branching times closer to the root than the species trees. Empirical trees from TreeBase are also less balanced than our simulated species trees, and model gene trees can explain an imbalance increase of up to 8% compared to species trees. However, we see a much larger imbalance increase in empirical trees, about 100%, meaning that additional features must also be causing imbalance in empirical trees. This simulation study highlights the necessity of revisiting the assumptions made in phylogenetic analyses, as these assumptions, such as equating the gene tree with the species tree, might lead to a biased conclusion. PMID:26968785
Salas-Leiva, Dayana E; Meerow, Alan W; Calonje, Michael; Griffith, M Patrick; Francisco-Ortega, Javier; Nakamura, Kyoko; Stevenson, Dennis W; Lewis, Carl E; Namoff, Sandra
2013-11-01
Despite a recent new classification, a stable phylogeny for the cycads has been elusive, particularly regarding resolution of Bowenia, Stangeria and Dioon. In this study, five single-copy nuclear genes (SCNGs) are applied to the phylogeny of the order Cycadales. The specific aim is to evaluate several gene tree-species tree reconciliation approaches for developing an accurate phylogeny of the order, to contrast them with concatenated parsimony analysis and to resolve the erstwhile problematic phylogenetic position of these three genera. DNA sequences of five SCNGs were obtained for 20 cycad species representing all ten genera of Cycadales. These were analysed with parsimony, maximum likelihood (ML) and three Bayesian methods of gene tree-species tree reconciliation, using Cycas as the outgroup. A calibrated date estimation was developed with Bayesian methods, and biogeographic analysis was also conducted. Concatenated parsimony, ML and three species tree inference methods resolve exactly the same tree topology with high support at most nodes. Dioon and Bowenia are the first and second branches of Cycadales after Cycas, respectively, followed by an encephalartoid clade (Macrozamia-Lepidozamia-Encephalartos), which is sister to a zamioid clade, of which Ceratozamia is the first branch, and in which Stangeria is sister to Microcycas and Zamia. A single, well-supported phylogenetic hypothesis of the generic relationships of the Cycadales is presented. However, massive extinction events inferred from the fossil record that eliminated broader ancestral distributions within Zamiaceae compromise accurate optimization of ancestral biogeographical areas for that hypothesis. While major lineages of Cycadales are ancient, crown ages of all modern genera are no older than 12 million years, supporting a recent hypothesis of mostly Miocene radiations. This phylogeny can contribute to an accurate infrafamilial classification of Zamiaceae.
2013-01-01
Background Guanine-cytosine (GC) composition is an important feature of genomes. Likewise, amino acid composition is a distinct, but less valued, feature of proteomes. A major concern is that it is not clear what valuable information can be acquired from amino acid composition data. To address this concern, in-depth analyses of the amino acid composition of the complete proteomes from 63 archaea, 270 bacteria, and 128 eukaryotes were performed. Results Principal component analysis of the amino acid matrices showed that the main contributors to proteomic architecture were genomic GC variation, phylogeny, and environmental influences. GC pressure drove positive selection on Ala, Arg, Gly, Pro, Trp, and Val, and adverse selection on Asn, Lys, Ile, Phe, and Tyr. The physico-chemical framework of the complete proteomes withstood GC pressure by frequency complementation of GC-dependent amino acid pairs with similar physico-chemical properties. Gln, His, Ser, and Val were responsible for phylogeny and their constituted components could differentiate archaea, bacteria, and eukaryotes. Environmental niche was also a significant factor in determining proteomic architecture, especially for archaea for which the main amino acids were Cys, Leu, and Thr. In archaea, hyperthermophiles, acidophiles, mesophiles, psychrophiles, and halophiles gathered successively along the environment-based principal component. Concordance between proteomic architecture and the genetic code was also related closely to genomic GC content, phylogeny, and lifestyles. Conclusions Large-scale analyses of the complete proteomes of a wide range of organisms suggested that amino acid composition retained the trace of GC variation, phylogeny, and environmental influences during evolution. The findings from this study will help in the development of a global understanding of proteome evolution, and even biological evolution. PMID:24088322
Arulandhu, Alfred J.; Staats, Martijn; Hagelaar, Rico; Voorhuijzen, Marleen M.; Prins, Theo W.; Scholtens, Ingrid; Costessi, Adalberto; Duijsings, Danny; Rechenmann, François; Gaspar, Frédéric B.; Barreto Crespo, Maria Teresa; Holst-Jensen, Arne; Birck, Matthew; Burns, Malcolm; Haynes, Edward; Hochegger, Rupert; Klingl, Alexander; Lundberg, Lisa; Natale, Chiara; Niekamp, Hauke; Perri, Elena; Barbante, Alessandra; Rosec, Jean-Philippe; Seyfarth, Ralf; Sovová, Tereza; Van Moorleghem, Christoff; van Ruth, Saskia; Peelen, Tamara
2017-01-01
Abstract DNA metabarcoding provides great potential for species identification in complex samples such as food supplements and traditional medicines. Such a method would aid Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) enforcement officers to combat wildlife crime by preventing illegal trade of endangered plant and animal species. The objective of this research was to develop a multi-locus DNA metabarcoding method for forensic wildlife species identification and to evaluate the applicability and reproducibility of this approach across different laboratories. A DNA metabarcoding method was developed that makes use of 12 DNA barcode markers that have demonstrated universal applicability across a wide range of plant and animal taxa and that facilitate the identification of species in samples containing degraded DNA. The DNA metabarcoding method was developed based on Illumina MiSeq amplicon sequencing of well-defined experimental mixtures, for which a bioinformatics pipeline with user-friendly web-interface was developed. The performance of the DNA metabarcoding method was assessed in an international validation trial by 16 laboratories, in which the method was found to be highly reproducible and sensitive enough to identify species present in a mixture at 1% dry weight content. The advanced multi-locus DNA metabarcoding method assessed in this study provides reliable and detailed data on the composition of complex food products, including information on the presence of CITES-listed species. The method can provide improved resolution for species identification, while verifying species with multiple DNA barcodes contributes to an enhanced quality assurance. PMID:29020743
Karami, Nahid; Helldal, Lisa; Welinder-Olsson, Christina; Ahrén, Christina; Moore, Edward R B
2013-01-01
Extended-spectrum β-lactamase producing Escherichia coli (ESBL-E. coli) were isolated from infants hospitalized in a neonatal, post-surgery ward during a four-month-long nosocomial outbreak and six-month follow-up period. A multi-locus variable number tandem repeat analysis (MLVA), using 10 loci (GECM-10), for 'generic' (i.e., non-STEC) E. coli was applied for sub-species-level (i.e., sub-typing) delineation and characterization of the bacterial isolates. Ten distinct GECM-10 types were detected among 50 isolates, correlating with the types defined by pulsed-field gel electrophoresis (PFGE), which is recognized to be the 'gold-standard' method for clinical epidemiological analyses. Multi-locus sequence typing (MLST), multiplex PCR genotyping of bla CTX-M, bla TEM, bla OXA and bla SHV genes and antibiotic resistance profiling, as well as a PCR assay specific for detecting isolates of the pandemic O25b-ST131 strain, further characterized the outbreak isolates. Two clusters of isolates with distinct GECM-10 types (G06-04 and G07-02), corresponding to two major PFGE types and the MLST-based sequence types (STs) 131 and 1444, respectively, were confirmed to be responsible for the outbreak. The application of GECM-10 sub-typing provided reliable, rapid and cost-effective epidemiological characterizations of the ESBL-producing isolates from a nosocomial outbreak that correlated with and may be used to replace the laborious PFGE protocol for analyzing generic E. coli.
Arulandhu, Alfred J; Staats, Martijn; Hagelaar, Rico; Voorhuijzen, Marleen M; Prins, Theo W; Scholtens, Ingrid; Costessi, Adalberto; Duijsings, Danny; Rechenmann, François; Gaspar, Frédéric B; Barreto Crespo, Maria Teresa; Holst-Jensen, Arne; Birck, Matthew; Burns, Malcolm; Haynes, Edward; Hochegger, Rupert; Klingl, Alexander; Lundberg, Lisa; Natale, Chiara; Niekamp, Hauke; Perri, Elena; Barbante, Alessandra; Rosec, Jean-Philippe; Seyfarth, Ralf; Sovová, Tereza; Van Moorleghem, Christoff; van Ruth, Saskia; Peelen, Tamara; Kok, Esther
2017-10-01
DNA metabarcoding provides great potential for species identification in complex samples such as food supplements and traditional medicines. Such a method would aid Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) enforcement officers to combat wildlife crime by preventing illegal trade of endangered plant and animal species. The objective of this research was to develop a multi-locus DNA metabarcoding method for forensic wildlife species identification and to evaluate the applicability and reproducibility of this approach across different laboratories. A DNA metabarcoding method was developed that makes use of 12 DNA barcode markers that have demonstrated universal applicability across a wide range of plant and animal taxa and that facilitate the identification of species in samples containing degraded DNA. The DNA metabarcoding method was developed based on Illumina MiSeq amplicon sequencing of well-defined experimental mixtures, for which a bioinformatics pipeline with user-friendly web-interface was developed. The performance of the DNA metabarcoding method was assessed in an international validation trial by 16 laboratories, in which the method was found to be highly reproducible and sensitive enough to identify species present in a mixture at 1% dry weight content. The advanced multi-locus DNA metabarcoding method assessed in this study provides reliable and detailed data on the composition of complex food products, including information on the presence of CITES-listed species. The method can provide improved resolution for species identification, while verifying species with multiple DNA barcodes contributes to an enhanced quality assurance. © The Authors 2017. Published by Oxford University Press.
Gorgé, Olivier; Lopez, Stéphanie; Hilaire, Valérie; Lisanti, Olivier; Ramisse, Vincent; Vergnaud, Gilles
2008-01-01
The Shigella genus has historically been separated into four species, based on biochemical assays. The classification within each species relies on serotyping. Recently, genome sequencing and DNA assays, in particular the multilocus sequence typing (MLST) approach, greatly improved the current knowledge of the origin and phylogenetic evolution of Shigella spp. The Shigella and Escherichia genera are now considered to belong to a unique genomospecies. Multilocus variable-number tandem-repeat (VNTR) analysis (MLVA) provides valuable polymorphic markers for genotyping and performing phylogenetic analyses of highly homogeneous bacterial pathogens. Here, we assess the capability of MLVA for Shigella typing. Thirty-two potentially polymorphic VNTRs were selected by analyzing in silico five Shigella genomic sequences and subsequently evaluated. Eventually, a panel of 15 VNTRs was selected (i.e., MLVA15 analysis). MLVA15 analysis of 78 strains or genome sequences of Shigella spp. and 11 strains or genome sequences of Escherichia coli distinguished 83 genotypes. Shigella population cluster analysis gave consistent results compared to MLST. MLVA15 analysis showed capabilities for E. coli typing, providing classification among pathogenic and nonpathogenic E. coli strains included in the study. The resulting data can be queried on our genotyping webpage (http://mlva.u-psud.fr). The MLVA15 assay is rapid, highly discriminatory, and reproducible for Shigella and Escherichia strains, suggesting that it could significantly contribute to epidemiological trace-back analysis of Shigella infections and pathogenic Escherichia outbreaks. Typing was performed on strains obtained mostly from collections. Further studies should include strains of much more diverse origins, including all pathogenic E. coli types. PMID:18216214
Urban, Julie M; Cryan, Jason R
2012-06-14
Members of the hemipteran suborder Auchenorrhyncha (commonly known as planthoppers, tree- and leafhoppers, spittlebugs, and cicadas) are unusual among insects known to harbor endosymbiotic bacteria in that they are associated with diverse assemblages of bacterial endosymbionts. Early light microscopic surveys of species representing the two major lineages of Auchenorrhyncha (the planthopper superfamily Fulgoroidea; and Cicadomorpha, comprising Membracoidea [tree- and leafhoppers], Cercopoidea [spittlebugs], and Cicadoidea [cicadas]), found that most examined species harbored at least two morphologically distinct bacterial endosymbionts, and some harbored as many as six. Recent investigations using molecular techniques have identified multiple obligate bacterial endosymbionts in Cicadomorpha; however, much less is known about endosymbionts of Fulgoroidea. In this study, we present the initial findings of an ongoing PCR-based survey (sequencing 16S rDNA) of planthopper-associated bacteria to document endosymbionts with a long-term history of codiversification with their fulgoroid hosts. Results of PCR surveys and phylogenetic analyses of 16S rDNA recovered a monophyletic clade of Betaproteobacteria associated with planthoppers; this clade included Vidania fulgoroideae, a recently described bacterium identified in exemplars of the planthopper family Cixiidae. We surveyed 77 planthopper species representing 18 fulgoroid families, and detected Vidania in 40 species (representing 13 families). Further, we detected the Sulcia endosymbiont (identified as an obligate endosymbiont of Auchenorrhyncha in previous studies) in 30 of the 40 species harboring Vidania. Concordance of the Vidania phylogeny with the phylogeny of the planthopper hosts (reconstructed based on sequence data from five genes generated from the same insect specimens from which the bacterial sequences were obtained) was supported by statistical tests of codiversification. Codiversification tests also supported concordance of the Sulcia phylogeny with the phylogeny of the planthopper hosts, as well as concordance of planthopper-associated Vidania and Sulcia phylogenies. Our results indicate that the Betaproteobacterium Vidania is an ancient endosymbiont that infected the common ancestor of Fulgoroidea at least 130 million years ago. Comparison of our findings with the early light-microscopic surveys conducted by Müller suggests that Vidania is Müller's x-symbiont, which he hypothesized to have codiversified with most lineages of planthoppers and with the Sulcia endosymbiont.
2012-01-01
Background Members of the hemipteran suborder Auchenorrhyncha (commonly known as planthoppers, tree- and leafhoppers, spittlebugs, and cicadas) are unusual among insects known to harbor endosymbiotic bacteria in that they are associated with diverse assemblages of bacterial endosymbionts. Early light microscopic surveys of species representing the two major lineages of Auchenorrhyncha (the planthopper superfamily Fulgoroidea; and Cicadomorpha, comprising Membracoidea [tree- and leafhoppers], Cercopoidea [spittlebugs], and Cicadoidea [cicadas]), found that most examined species harbored at least two morphologically distinct bacterial endosymbionts, and some harbored as many as six. Recent investigations using molecular techniques have identified multiple obligate bacterial endosymbionts in Cicadomorpha; however, much less is known about endosymbionts of Fulgoroidea. In this study, we present the initial findings of an ongoing PCR-based survey (sequencing 16S rDNA) of planthopper-associated bacteria to document endosymbionts with a long-term history of codiversification with their fulgoroid hosts. Results Results of PCR surveys and phylogenetic analyses of 16S rDNA recovered a monophyletic clade of Betaproteobacteria associated with planthoppers; this clade included Vidania fulgoroideae, a recently described bacterium identified in exemplars of the planthopper family Cixiidae. We surveyed 77 planthopper species representing 18 fulgoroid families, and detected Vidania in 40 species (representing 13 families). Further, we detected the Sulcia endosymbiont (identified as an obligate endosymbiont of Auchenorrhyncha in previous studies) in 30 of the 40 species harboring Vidania. Concordance of the Vidania phylogeny with the phylogeny of the planthopper hosts (reconstructed based on sequence data from five genes generated from the same insect specimens from which the bacterial sequences were obtained) was supported by statistical tests of codiversification. Codiversification tests also supported concordance of the Sulcia phylogeny with the phylogeny of the planthopper hosts, as well as concordance of planthopper-associated Vidania and Sulcia phylogenies. Conclusions Our results indicate that the Betaproteobacterium Vidania is an ancient endosymbiont that infected the common ancestor of Fulgoroidea at least 130 million years ago. Comparison of our findings with the early light-microscopic surveys conducted by Müller suggests that Vidania is Müller’s x-symbiont, which he hypothesized to have codiversified with most lineages of planthoppers and with the Sulcia endosymbiont. PMID:22697166
Graupner, Nadine; Bock, Christina; Wodniok, Sabina; Grossmann, Lars; Vos, Matthijs; Sures, Bernd
2017-01-01
Background Chrysophytes are protist model species in ecology and ecophysiology and important grazers of bacteria-sized microorganisms and primary producers. However, they have not yet been investigated in detail at the molecular level, and no genomic and only little transcriptomic information is available. Chrysophytes exhibit different trophic modes: while phototrophic chrysophytes perform only photosynthesis, mixotrophs can gain carbon from bacterial food as well as from photosynthesis, and heterotrophs solely feed on bacteria-sized microorganisms. Recent phylogenies and megasystematics demonstrate an immense complexity of eukaryotic diversity with numerous transitions between phototrophic and heterotrophic organisms. The question we aim to answer is how the diverse nutritional strategies, accompanied or brought about by a reduction of the plasmid and size reduction in heterotrophic strains, affect physiology and molecular processes. Results We sequenced the mRNA of 18 chrysophyte strains on the Illumina HiSeq platform and analysed the transcriptomes to determine relations between the trophic mode (mixotrophic vs. heterotrophic) and gene expression. We observed an enrichment of genes for photosynthesis, porphyrin and chlorophyll metabolism for phototrophic and mixotrophic strains that can perform photosynthesis. Genes involved in nutrient absorption, environmental information processing and various transporters (e.g., monosaccharide, peptide, lipid transporters) were present or highly expressed only in heterotrophic strains that have to sense, digest and absorb bacterial food. We furthermore present a transcriptome-based alignment-free phylogeny construction approach using transcripts assembled from short reads to determine the evolutionary relationships between the strains and the possible influence of nutritional strategies on the reconstructed phylogeny. We discuss the resulting phylogenies in comparison to those from established approaches based on ribosomal RNA and orthologous genes. Finally, we make functionally annotated reference transcriptomes of each strain available to the community, significantly enhancing publicly available data on Chrysophyceae. Conclusions Our study is the first comprehensive transcriptomic characterisation of a diverse set of Chrysophyceaen strains. In addition, we showcase the possibility of inferring phylogenies from assembled transcriptomes using an alignment-free approach. The raw and functionally annotated data we provide will prove beneficial for further examination of the diversity within this taxon. Our molecular characterisation of different trophic modes presents a first such example. PMID:28097055
Ge, Zai-Wei; Yang, Zhu L.; Pfister, Donald H.; Carbone, Matteo; Bau, Tolgor; Smith, Matthew E.
2014-01-01
The family Cudoniaceae (Rhytismatales, Ascomycota) was erected to accommodate the “earth tongue fungi” in the genera Cudonia and Spathularia. There have been no recent taxonomic studies of these genera, and the evolutionary relationships within and among these fungi are largely unknown. Here we explore the molecular phylogenetic relationships within Cudonia and Spathularia using maximum likelihood and Bayesian inference analyses based on 111 collections from across the Northern Hemisphere. Phylogenies based on the combined data from ITS, nrLSU, rpb2 and tef-1α sequences support the monophyly of three main clades, the /flavida, /velutipes, and /cudonia clades. The genus Cudonia and the family Cudoniaceae are supported as monophyletic groups, while the genus Spathularia is not monophyletic. Although Cudoniaceae is monophyletic, our analyses agree with previous studies that this family is nested within the Rhytismataceae. Our phylogenetic analyses circumscribes 32 species-level clades, including the putative recognition of 23 undescribed phylogenetic species. Our molecular phylogeny also revealed an unexpectedly high species diversity of Cudonia and Spathularia in eastern Asia, with 16 (out of 21) species-level clades of Cudonia and 8 (out of 11) species-level clades of Spathularia. We estimate that the divergence time of the Cudoniaceae was in the Paleogene approximately 28 Million years ago (Mya) and that the ancestral area for this group of fungi was in Eastern Asia based on the current data. We hypothesize that the large-scale geological and climatic events in Oligocene (e.g. the global cooling and the uplift of the Tibetan plateau) may have triggered evolutionary radiations in this group of fungi in East Asia. This work provides a foundation for future studies on the phylogeny, diversity, and evolution of Cudonia and Spathularia and highlights the need for more molecular studies on collections from Europe and North America. PMID:25084276
Phylogenetic classification of bony fishes.
Betancur-R, Ricardo; Wiley, Edward O; Arratia, Gloria; Acero, Arturo; Bailly, Nicolas; Miya, Masaki; Lecointre, Guillaume; Ortí, Guillermo
2017-07-06
Fish classifications, as those of most other taxonomic groups, are being transformed drastically as new molecular phylogenies provide support for natural groups that were unanticipated by previous studies. A brief review of the main criteria used by ichthyologists to define their classifications during the last 50 years, however, reveals slow progress towards using an explicit phylogenetic framework. Instead, the trend has been to rely, in varying degrees, on deep-rooted anatomical concepts and authority, often mixing taxa with explicit phylogenetic support with arbitrary groupings. Two leading sources in ichthyology frequently used for fish classifications (JS Nelson's volumes of Fishes of the World and W. Eschmeyer's Catalog of Fishes) fail to adopt a global phylogenetic framework despite much recent progress made towards the resolution of the fish Tree of Life. The first explicit phylogenetic classification of bony fishes was published in 2013, based on a comprehensive molecular phylogeny ( www.deepfin.org ). We here update the first version of that classification by incorporating the most recent phylogenetic results. The updated classification presented here is based on phylogenies inferred using molecular and genomic data for nearly 2000 fishes. A total of 72 orders (and 79 suborders) are recognized in this version, compared with 66 orders in version 1. The phylogeny resolves placement of 410 families, or ~80% of the total of 514 families of bony fishes currently recognized. The ordinal status of 30 percomorph families included in this study, however, remains uncertain (incertae sedis in the series Carangaria, Ovalentaria, or Eupercaria). Comments to support taxonomic decisions and comparisons with conflicting taxonomic groups proposed by others are presented. We also highlight cases were morphological support exist for the groups being classified. This version of the phylogenetic classification of bony fishes is substantially improved, providing resolution for more taxa than previous versions, based on more densely sampled phylogenetic trees. The classification presented in this study represents, unlike any other, the most up-to-date hypothesis of the Tree of Life of fishes.
The Evolution of SINEs and LINEs in the genus Chironomus (Diptera).
Papusheva, Ekaterina; Gruhl, Mary C; Berezikov, Eugene; Groudieva, Tatiana; Scherbik, Svetlana V; Martin, Jon; Blinov, Alexander; Bergtrom, Gerald
2004-03-01
Genomic DNA amplification from 51 species of the family Chironomidae shows that most contain relatives of NLRCth1 LINE and CTRT1 SINE retrotransposons first found in Chironomus thummi. More than 300 cloned PCR products were sequenced. The amplified region of the reverse transcriptase gene in the LINEs is intact and highly conserved, suggesting active elements. The SINEs are less conserved, consistent with minimal/no selection after transposition. A mitochondrial gene phylogeny resolves the Chironomus genus into six lineages (Guryev et al. 2001). LINE and SINE phylogenies resolve five of these lineages, indicating their monophyletic origin and vertical inheritance. However, both the LINE and the SINE tree topologies differ from the species phylogeny, resolving the elements into "clusters I-IV" and "cluster V" families. The data suggest a descent of all LINE and SINE subfamilies from two major families. Based on the species phylogeny, a few LINEs and a larger number of SINEs are cladisitically misplaced. Most misbranch with LINEs or SINEs from species with the same families of elements. From sequence comparisons, cladistically misplaced LINEs and several misplaced SINEs arose by convergent base substitutions. More diverged SINEs result from early transposition and some are derived from multiple source SINEs in the same species. SINEs from two species (C. dorsalis, C. pallidivittatus), expected to belong to the clusters I-IV family, branch instead with cluster V family SINEs; apparently both families predate separation of cluster V from clusters I-IV species. Correlation of the distribution of active SINEs and LINEs, as well as similar 3' sequence motifs in CTRT1 and NLRCth1, suggests coevolving retrotransposon pairs in which CTRT1 transposition depends on enzymes active during NLRCth1 LINE mobility.
Springer, Mark S.; Meredith, Robert W.; Gatesy, John; Emerling, Christopher A.; Park, Jong; Rabosky, Daniel L.; Stadler, Tanja; Steiner, Cynthia; Ryder, Oliver A.; Janečka, Jan E.; Fisher, Colleen A.; Murphy, William J.
2012-01-01
Phylogenetic relationships, divergence times, and patterns of biogeographic descent among primate species are both complex and contentious. Here, we generate a robust molecular phylogeny for 70 primate genera and 367 primate species based on a concatenation of 69 nuclear gene segments and ten mitochondrial gene sequences, most of which were extracted from GenBank. Relaxed clock analyses of divergence times with 14 fossil-calibrated nodes suggest that living Primates last shared a common ancestor 71–63 Ma, and that divergences within both Strepsirrhini and Haplorhini are entirely post-Cretaceous. These results are consistent with the hypothesis that the Cretaceous-Paleogene mass extinction of non-avian dinosaurs played an important role in the diversification of placental mammals. Previous queries into primate historical biogeography have suggested Africa, Asia, Europe, or North America as the ancestral area of crown primates, but were based on methods that were coopted from phylogeny reconstruction. By contrast, we analyzed our molecular phylogeny with two methods that were developed explicitly for ancestral area reconstruction, and find support for the hypothesis that the most recent common ancestor of living Primates resided in Asia. Analyses of primate macroevolutionary dynamics provide support for a diversification rate increase in the late Miocene, possibly in response to elevated global mean temperatures, and are consistent with the fossil record. By contrast, diversification analyses failed to detect evidence for rate-shift changes near the Eocene-Oligocene boundary even though the fossil record provides clear evidence for a major turnover event (“Grande Coupure”) at this time. Our results highlight the power and limitations of inferring diversification dynamics from molecular phylogenies, as well as the sensitivity of diversification analyses to different species concepts. PMID:23166696
Whole-genome phylogeny of Escherichia coli/Shigella group by feature frequency profiles (FFPs)
Sims, Gregory E.; Kim, Sung-Hou
2011-01-01
A whole-genome phylogeny of the Escherichia coli/Shigella group was constructed by using the feature frequency profile (FFP) method. This alignment-free approach uses the frequencies of l-mer features of whole genomes to infer phylogenic distances. We present two phylogenies that accentuate different aspects of E. coli/Shigella genomic evolution: (i) one based on the compositions of all possible features of length l = 24 (∼8.4 million features), which are likely to reveal the phenetic grouping and relationship among the organisms and (ii) the other based on the compositions of core features with low frequency and low variability (∼0.56 million features), which account for ∼69% of all commonly shared features among 38 taxa examined and are likely to have genome-wide lineal evolutionary signal. Shigella appears as a single clade when all possible features are used without filtering of noncore features. However, results using core features show that Shigella consists of at least two distantly related subclades, implying that the subclades evolved into a single clade because of a high degree of convergence influenced by mobile genetic elements and niche adaptation. In both FFP trees, the basal group of the E. coli/Shigella phylogeny is the B2 phylogroup, which contains primarily uropathogenic strains, suggesting that the E. coli/Shigella ancestor was likely a facultative or opportunistic pathogen. The extant commensal strains diverged relatively late and appear to be the result of reductive evolution of genomes. We also identify clade distinguishing features and their associated genomic regions within each phylogroup. Such features may provide useful information for understanding evolution of the groups and for quick diagnostic identification of each phylogroup. PMID:21536867
Rearrangement moves on rooted phylogenetic networks
Gambette, Philippe; van Iersel, Leo; Jones, Mark; Scornavacca, Celine
2017-01-01
Phylogenetic tree reconstruction is usually done by local search heuristics that explore the space of the possible tree topologies via simple rearrangements of their structure. Tree rearrangement heuristics have been used in combination with practically all optimization criteria in use, from maximum likelihood and parsimony to distance-based principles, and in a Bayesian context. Their basic components are rearrangement moves that specify all possible ways of generating alternative phylogenies from a given one, and whose fundamental property is to be able to transform, by repeated application, any phylogeny into any other phylogeny. Despite their long tradition in tree-based phylogenetics, very little research has gone into studying similar rearrangement operations for phylogenetic network—that is, phylogenies explicitly representing scenarios that include reticulate events such as hybridization, horizontal gene transfer, population admixture, and recombination. To fill this gap, we propose “horizontal” moves that ensure that every network of a certain complexity can be reached from any other network of the same complexity, and “vertical” moves that ensure reachability between networks of different complexities. When applied to phylogenetic trees, our horizontal moves—named rNNI and rSPR—reduce to the best-known moves on rooted phylogenetic trees, nearest-neighbor interchange and rooted subtree pruning and regrafting. Besides a number of reachability results—separating the contributions of horizontal and vertical moves—we prove that rNNI moves are local versions of rSPR moves, and provide bounds on the sizes of the rNNI neighborhoods. The paper focuses on the most biologically meaningful versions of phylogenetic networks, where edges are oriented and reticulation events clearly identified. Moreover, our rearrangement moves are robust to the fact that networks with higher complexity usually allow a better fit with the data. Our goal is to provide a solid basis for practical phylogenetic network reconstruction. PMID:28763439
Dorn, Patricia L; de la Rúa, Nicholas M; Axen, Heather; Smith, Nicholas; Richards, Bethany R; Charabati, Jirias; Suarez, Julianne; Woods, Adrienne; Pessoa, Rafaela; Monroy, Carlota; Kilpatrick, C William; Stevens, Lori
2016-10-01
The widespread and diverse Triatoma dimidiata is the kissing bug species most important for Chagas disease transmission in Central America and a secondary vector in Mexico and northern South America. Its diversity may contribute to different Chagas disease prevalence in different localities and has led to conflicting systematic hypotheses describing various populations as subspecies or cryptic species. To resolve these conflicting hypotheses, we sequenced a nuclear (internal transcribed spacer 2, ITS-2) and mitochondrial gene (cytochrome b) from an extensive sampling of T. dimidiata across its geographic range. We evaluated the congruence of ITS-2 and cyt b phylogenies and tested the support for the previously proposed subspecies (inferred from ITS-2) by: (1) overlaying the ITS-2 subspecies assignments on a cyt b tree and, (2) assessing the statistical support for a cyt b topology constrained by the subspecies hypothesis. Unconstrained phylogenies inferred from ITS-2 and cyt b are congruent and reveal three clades including two putative cryptic species in addition to T. dimidiata sensu stricto. Neither the cyt b phylogeny nor hypothesis testing support the proposed subspecies inferred from ITS-2. Additionally, the two cryptic species are supported by phylogenies inferred from mitochondrially-encoded genes cytochrome c oxidase I and NADH dehydrogenase 4. In summary, our results reveal two cryptic species. Phylogenetic relationships indicate T. dimidiata sensu stricto is not subdivided into monophyletic clades consistent with subspecies. Based on increased support by hypothesis testing, we propose an updated systematic hypothesis for T. dimidiata based on extensive taxon sampling and analysis of both mitochondrial and nuclear genes. Copyright © 2016 Elsevier B.V. All rights reserved.
Phylogeny of Selaginellaceae: There is value in morphology after all!
Weststrand, Stina; Korall, Petra
2016-12-01
The cosmopolitan lycophyte family Selaginellaceae, dating back to the Late Devonian-Early Carboniferous, is notorious for its many species with a seemingly undifferentiated gross morphology. This morphological stasis has for a long time hampered our understanding of the evolutionary history of the single genus Selaginella. Here we present a large-scale phylogenetic analysis of Selaginella, and based on the resulting phylogeny, we discuss morphological evolution in the group. We sampled about one-third of the approximately 750 recognized Selaginella species. Evolutionary relationships were inferred from both chloroplast (rbcL) and single-copy nuclear gene data (pgiC and SQD1) using a Bayesian inference approach. The morphology of the group was studied and important features mapped onto the phylogeny. We present an overall well-supported phylogeny of Selaginella, and the phylogenetic positions of some previously problematic taxa (i.e., S. sinensis and allies) are now resolved with strong support. We show that even though the evolution of most morphological characters involves reversals and/or parallelisms, several characters are phylogenetically informative. Seven major clades are identified, which each can be uniquely diagnosed by a suite of morphological features. There is value in morphology after all! Our hypothesis of the evolutionary relationships of Selaginella is well founded based on DNA sequence data, as well as morphology, and is in line with previous findings. It will serve as a firm basis for further studies on Selaginella with respect to, e.g., the poorly known alpha taxonomy, as well as evolutionary questions such as historical biogeographic reconstructions. © 2016 Weststrand and Korall. Published by the Botanical Society of America. This work is licensed under a Creative Commons Attribution License (CC-BY 4.0).
Bhattacharjee, Kaushik; Banerjee, Subhro; Joshi, Santa Ram
2012-01-01
Isolation and characterization of actinomycetes from soil samples from altitudinal gradient of North-East India were investigated for computational RNomics based phylogeny. A total of 52 diverse isolates of Streptomyces from the soil samples were isolated on four different media and from these 6 isolates were selected on the basis of cultural characteristics, microscopic and biochemical studies. Sequencing of 16S rDNA of the selected isolates identified them to belong to six different species of Streptomyces. The molecular morphometric and physico-kinetic analysis of 16S rRNA sequences were performed to predict the diversity of the genus. The computational RNomics study revealed the significance of the structural RNA based phylogenetic analysis in a relatively diverse group of Streptomyces. PMID:22829729
Kang, Ji Hyoun; Schartl, Manfred; Walter, Ronald B; Meyer, Axel
2013-01-29
Males in some species of the genus Xiphophorus, small freshwater fishes from Meso-America, have an extended caudal fin, or sword - hence their common name "swordtails". Longer swords are preferred by females from both sworded and - surprisingly also, non-sworded (platyfish) species that belong to the same genus. Swordtails have been studied widely as models in research on sexual selection. Specifically, the pre-existing bias hypothesis was interpreted to best explain the observed bias of females in presumed ancestral lineages of swordless species that show a preference for assumed derived males with swords over their conspecific swordless males. However, many of the phylogenetic relationships within this genus still remained unresolved. Here we construct a comprehensive molecular phylogeny of all 26 known Xiphophorus species, including the four recently described species (X. kallmani, X. mayae, X. mixei and X. monticolus). We use two mitochondrial and six new nuclear markers in an effort to increase the understanding of the evolutionary relationships among the species in this genus. Based on the phylogeny, the evolutionary history and character state evolution of the sword was reconstructed and found to have originated in the common ancestral lineage of the genus Xiphophorus and that it was lost again secondarily. We estimated the evolutionary relationships among all known species of the genus Xiphophorus based on the largest set of DNA markers so far. The phylogeny indicates that one of the newly described swordtail species, Xiphophorus monticolus, is likely to have arisen through hybridization since it is placed with the southern platyfish in the mitochondrial phylogeny, but with the southern swordtails in the nuclear phylogeny. Such discordance between these two types of markers is a strong indication for a hybrid origin. Additionally, by using a maximum likelihood approach the possession of the sexually selected sword trait is shown to be the most likely ancestral state for the genus Xiphophorus. Further, we provide a well supported estimation of the phylogenetic relationships between the previously unresolved northern swordtail groups. This comprehensive molecular phylogeny of the entire genus Xiphophorus provides evidence that a second swordtail species, X. monticolus, arose through hybridization. Previously, we demonstrated that X. clemenciae, another southern swordtail species, arose via hybridization. These findings highlight the potential key role of hybridization in the evolution of this genus and suggest the need for further investigations into how hybridization contributes to speciation more generally.
Housworth, E A; Martins, E P
2001-01-01
Statistical randomization tests in evolutionary biology often require a set of random, computer-generated trees. For example, earlier studies have shown how large numbers of computer-generated trees can be used to conduct phylogenetic comparative analyses even when the phylogeny is uncertain or unknown. These methods were limited, however, in that (in the absence of molecular sequence or other data) they allowed users to assume that no phylogenetic information was available or that all possible trees were known. Intermediate situations where only a taxonomy or other limited phylogenetic information (e.g., polytomies) are available are technically more difficult. The current study describes a procedure for generating random samples of phylogenies while incorporating limited phylogenetic information (e.g., four taxa belong together in a subclade). The procedure can be used to conduct comparative analyses when the phylogeny is only partially resolved or can be used in other randomization tests in which large numbers of possible phylogenies are needed.
USDA-ARS?s Scientific Manuscript database
The strains TII7 and A5 formed an effective and ineffective symbiosis with Medicago truncatula Jemalong A17, respectively. Both were shown to have identical chromsomes with strains Rm1021 and RCR2011 using a Multilocus Sequence Typing method. The 2260 bp segments of DNA stretching from the 3’ end ...
Latitudinal Clines of the Human Vitamin D Receptor and Skin Color Genes.
Tiosano, Dov; Audi, Laura; Climer, Sharlee; Zhang, Weixiong; Templeton, Alan R; Fernández-Cancio, Monica; Gershoni-Baruch, Ruth; Sánchez-Muro, José Miguel; El Kholy, Mohamed; Hochberg, Zèev
2016-05-03
The well-documented latitudinal clines of genes affecting human skin color presumably arise from the need for protection from intense ultraviolet radiation (UVR) vs. the need to use UVR for vitamin D synthesis. Sampling 751 subjects from a broad range of latitudes and skin colors, we investigated possible multilocus correlated adaptation of skin color genes with the vitamin D receptor gene (VDR), using a vector correlation metric and network method called BlocBuster. We discovered two multilocus networks involving VDR promoter and skin color genes that display strong latitudinal clines as multilocus networks, even though many of their single gene components do not. Considered one by one, the VDR components of these networks show diverse patterns: no cline, a weak declining latitudinal cline outside of Africa, and a strong in- vs. out-of-Africa frequency pattern. We confirmed these results with independent data from HapMap. Standard linkage disequilibrium analyses did not detect these networks. We applied BlocBuster across the entire genome, showing that our networks are significant outliers for interchromosomal disequilibrium that overlap with environmental variation relevant to the genes' functions. These results suggest that these multilocus correlations most likely arose from a combination of parallel selective responses to a common environmental variable and coadaptation, given the known Mendelian epistasis among VDR and the skin color genes. Copyright © 2016 Tiosano et al.
Latitudinal Clines of the Human Vitamin D Receptor and Skin Color Genes
Tiosano, Dov; Audi, Laura; Climer, Sharlee; Zhang, Weixiong; Templeton, Alan R.; Fernández-Cancio, Monica; Gershoni-Baruch, Ruth; Sánchez-Muro, José Miguel; El Kholy, Mohamed; Hochberg, Zèev
2016-01-01
The well-documented latitudinal clines of genes affecting human skin color presumably arise from the need for protection from intense ultraviolet radiation (UVR) vs. the need to use UVR for vitamin D synthesis. Sampling 751 subjects from a broad range of latitudes and skin colors, we investigated possible multilocus correlated adaptation of skin color genes with the vitamin D receptor gene (VDR), using a vector correlation metric and network method called BlocBuster. We discovered two multilocus networks involving VDR promoter and skin color genes that display strong latitudinal clines as multilocus networks, even though many of their single gene components do not. Considered one by one, the VDR components of these networks show diverse patterns: no cline, a weak declining latitudinal cline outside of Africa, and a strong in- vs. out-of-Africa frequency pattern. We confirmed these results with independent data from HapMap. Standard linkage disequilibrium analyses did not detect these networks. We applied BlocBuster across the entire genome, showing that our networks are significant outliers for interchromosomal disequilibrium that overlap with environmental variation relevant to the genes’ functions. These results suggest that these multilocus correlations most likely arose from a combination of parallel selective responses to a common environmental variable and coadaptation, given the known Mendelian epistasis among VDR and the skin color genes. PMID:26921301
Population sub-structuring among Trypanosoma evansi stocks.
Njiru, Z K; Constantine, C C
2007-10-01
To investigate the population genetic structure of Trypanosoma evansi from domesticated animals, we have analysed 112 stocks from camels, buffaloes, cattle and horses using the tandemly repeated coding sequence (MORF2) and minisatellite markers 292 and cysteine-rich acidic integral membrane protein (CRAM). We recorded a total of six alleles at the MORF2 locus, seven at 292 and 12 at the CRAM loci. Nei's genetic distance showed reduced allelic diversity between buffaloes and cattle stocks (1.2) as compared to the diversity between camels and buffaloes (3.75) and camels and cattle stock (1.69). The mean index of association (IA=0.92) significantly deviated from zero, and the average number of multilocus genotypes (G/N ratio) was 0.21. Twenty-four multilocus genotypes were defined from the combination of alleles at the three loci. The Kenyan sub-populations showed Fst=0.28 and analysis of molecular variance showed significant divergence (22.7%) between the Laikipia, Kulal and Galana regions. The regional and host distribution of multi-locus genotypes significant population differentiation and high Nei's genetic distances suggest existence of genetic sub-structuring within T. evansi stocks while the few multi-locus genotypes and deviation of association index from zero indicate the lack of recombination. In conclusion, this study reveals that some genetic sub-structuring does occur within T. evansi, which has a clonal population structure.
Perry, N; Cheasty, T; Dallman, T; Launders, N; Willshaw, G
2013-10-01
Evaluation of multilocus variable number tandem repeat analysis (MLVA) to subtype all isolates of Vero cytotoxin-producing Escherichia coli O157 phage type 8 in England and Wales. Over a 13 month period from December 2010, 483 isolates of VTEC O157 PT8 were tested by MLVA; 39% were received in the first 4 months of 2011, when infections are generally low. One profile, or single locus variants of it, was present in 249 (52%) isolates but was not common previously. These cases represented a national increase in PT8, associated epidemiologically with soil-contaminated vegetables. Most of the 177 other MLVA profiles were unique to a single isolate. Profiles shared by >1 isolate included cases from two small community, food-borne outbreaks and 11 households. Several shared profiles were found among 23 isolates without known links. Apart from one group, isolates linked to travel abroad had very diverse profiles. Multilocus variable number tandem repeat analysis discriminated apparent sporadic isolates of the same PT and assisted in detection of cases in an emerging national outbreak. Multilocus variable number tandem repeat analysis is an epidemiologically valid complement to surveillance and applicable as a rapid, practical test for large numbers of isolates. © 2013 The Society for Applied Microbiology.
An exercise in rational taxonomy.
Ho, M W
1990-11-07
The quest for a rational taxonomy of living forms began in the 17th century. Since the general acceptance of Darwin's theory of descent with modification, however, students of morphology became preoccupied with a systematics based on the genealogy of groups; and the rise of molecular phylogenies in recent years results in a further decline in the science of morphology. Reconstructing phylogenies by itself brings us no closer to the goal of rational taxonomy, which is to uncover the natural order inherent in the forms of living things. It is proposed that the rational taxonomy of forms should be derived from a study of development, much as von Baer had envisaged. To illustrate the method, a set of segmentation abnormalities in Drosophila larvae (previously exposed to either vapour) is considered, which can be individually classified as distinct disturbances in the process responsible for establishing normal segmental pattern. The process consists of a hierarchy of four successive bifurcations dividing the embryo's body first into two parts, then four, eight, and finally 16 subdivisions or segments. This gives rise to a taxonomic map of all possible transformations which contains the "phylogeny" of the actual forms and provides a natural system for classifying them. Attempts to recover the "true" phylogeny by various numerical methods are summarized and their implications for the validity of the basic assumptions of contemporary systematics discussed.
Covain, Raphaël; Fisch-Muller, Sonia; Oliveira, Claudio; Mol, Jan H; Montoya-Burgos, Juan I; Dray, Stéphane
2016-01-01
The Loricariinae belong to the Neotropical mailed catfish family Loricariidae, the most species-rich catfish family. Among loricariids, members of the Loricariinae are united by a long and flattened caudal peduncle and the absence of an adipose fin. Despite numerous studies of the Loricariidae, there is no comprehensive phylogeny of this morphologically highly diversified subfamily. To fill this gap, we present a molecular phylogeny of this group, including 350 representatives, based on the analysis of mitochondrial and nuclear genes (8426 positions). The resulting phylogeny indicates that Loricariinae are distributed into two sister tribes: Harttiini and Loricariini. The Harttiini tribe, as classically defined, constitutes a paraphyletic assemblage and is here restricted to the three genera Harttia, Cteniloricaria, and Harttiella. Two subtribes are distinguished within Loricariini: Farlowellina and Loricariina. Within Farlowellina, the nominal genus formed a paraphyletic group, as did Sturisoma and Sturisomatichthys. Within Loricariina, Loricaria, Crossoloricaria, and Apistoloricaria are also paraphyletic. To solve these issues, and given the lack of clear morphological diagnostic features, we propose here to synonymize several genera (Quiritixys with Harttia; East Andean members of Crossoloricaria, and Apistoloricaria with Rhadinoloricaria; Ixinandria, Hemiloricaria, Fonchiiichthys, and Leliella with Rineloricaria), to restrict others (Crossoloricaria, and Sturisomatichthys to the West Andean members, and Sturisoma to the East Andean species), and to revalidate the genus Proloricaria. Copyright © 2015 Elsevier Inc. All rights reserved.
Salivary proteomics of healthy dogs: An in depth catalog
Furrow, Eva; Souza, Clarissa P.; Granick, Jennifer L.; de Jong, Ebbing P.; Griffin, Timothy J.; Wang, Xiong
2018-01-01
Objective To provide an in-depth catalog of the salivary proteome and endogenous peptidome of healthy dogs, evaluate proteins and peptides with antimicrobial properties, and compare the most common salivary proteins and peptides between different breed phylogeny groups. Methods 36 healthy dogs without evidence of periodontal disease representing four breed phylogeny groups, based upon single nucleotide polymorphism haplotypes (ancient, herding/sighthound, and two miscellaneous groups). Saliva collected from dogs was pooled by phylogeny group and analyzed using nanoscale liquid chromatography-tandem mass spectrometry. Resulting tandem mass spectra were compared to databases for identification of endogenous peptides and inferred proteins. Results 2,491 proteins and endogenous peptides were found in the saliva of healthy dogs with no periodontal disease. All dog phylogeny groups’ saliva was rich in proteins and peptides with antimicrobial functions. The ancient breeds group was distinct in that it contained unique proteins and was missing many proteins and peptides present in the other groups. Conclusions and clinical relevance Using a sophisticated nanoscale liquid chromatography-tandem mass spectrometry, we were able to identify 10-fold more salivary proteins than previously reported in dogs. Seven of the top 10 most abundant proteins or peptides serve immune functions and many more with various antimicrobial mechanisms were found. This is the most comprehensive analysis of healthy canine saliva to date, and will provide the groundwork for future studies analyzing salivary proteins and endogenous peptides in disease states. PMID:29329347
Salivary proteomics of healthy dogs: An in depth catalog.
Torres, Sheila M F; Furrow, Eva; Souza, Clarissa P; Granick, Jennifer L; de Jong, Ebbing P; Griffin, Timothy J; Wang, Xiong
2018-01-01
To provide an in-depth catalog of the salivary proteome and endogenous peptidome of healthy dogs, evaluate proteins and peptides with antimicrobial properties, and compare the most common salivary proteins and peptides between different breed phylogeny groups. 36 healthy dogs without evidence of periodontal disease representing four breed phylogeny groups, based upon single nucleotide polymorphism haplotypes (ancient, herding/sighthound, and two miscellaneous groups). Saliva collected from dogs was pooled by phylogeny group and analyzed using nanoscale liquid chromatography-tandem mass spectrometry. Resulting tandem mass spectra were compared to databases for identification of endogenous peptides and inferred proteins. 2,491 proteins and endogenous peptides were found in the saliva of healthy dogs with no periodontal disease. All dog phylogeny groups' saliva was rich in proteins and peptides with antimicrobial functions. The ancient breeds group was distinct in that it contained unique proteins and was missing many proteins and peptides present in the other groups. Using a sophisticated nanoscale liquid chromatography-tandem mass spectrometry, we were able to identify 10-fold more salivary proteins than previously reported in dogs. Seven of the top 10 most abundant proteins or peptides serve immune functions and many more with various antimicrobial mechanisms were found. This is the most comprehensive analysis of healthy canine saliva to date, and will provide the groundwork for future studies analyzing salivary proteins and endogenous peptides in disease states.
Moon, Seong Mi; Kim, Su-Young; Jhun, Byung Woo; Lee, Hyun; Park, Hye Yun; Jeon, Kyeongman; Huh, Hee Jae; Ki, Chang-Seok; Lee, Nam Yong; Shin, Sung Jae; Koh, Won-Jung
2016-12-01
Mycobacterium chimaera is a recently described species distinct from M. intracellulare. M. chimaera is regarded as less virulent than M. intracellulare. Using multi-locus sequence-based identification, M. chimaera lung disease was diagnosed in 11 patients. Clinical characteristics and outcomes of M. chimaera lung disease were comparable to M. intracellulare lung disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Gemovic, Branislava; Perovic, Vladimir; Glisic, Sanja; Veljkovic, Nevena
2013-01-01
There are more than 500 amino acid substitutions in each human genome, and bioinformatics tools irreplaceably contribute to determination of their functional effects. We have developed feature-based algorithm for the detection of mutations outside conserved functional domains (CFDs) and compared its classification efficacy with the most commonly used phylogeny-based tools, PolyPhen-2 and SIFT. The new algorithm is based on the informational spectrum method (ISM), a feature-based technique, and statistical analysis. Our dataset contained neutral polymorphisms and mutations associated with myeloid malignancies from epigenetic regulators ASXL1, DNMT3A, EZH2, and TET2. PolyPhen-2 and SIFT had significantly lower accuracies in predicting the effects of amino acid substitutions outside CFDs than expected, with especially low sensitivity. On the other hand, only ISM algorithm showed statistically significant classification of these sequences. It outperformed PolyPhen-2 and SIFT by 15% and 13%, respectively. These results suggest that feature-based methods, like ISM, are more suitable for the classification of amino acid substitutions outside CFDs than phylogeny-based tools.
A new theory of phylogeny inference through construction of multidimensional vector space.
Kitazoe, Y; Kurihara, Y; Narita, Y; Okuhara, Y; Tominaga, A; Suzuki, T
2001-05-01
Here, a new theory of molecular phylogeny is developed in a multidimensional vector space (MVS). The molecular evolution is represented as a successive splitting of branch vectors in the MVS. The end points of these vectors are the extant species and indicate the specific directions reflected by their individual histories of evolution in the past. This representation makes it possible to infer the phylogeny (evolutionary histories) from the spatial positions of the end points. Search vectors are introduced to draw out the groups of species distributed around them. These groups are classified according to the nearby order of branches with them. A law of physics is applied to determine the species positions in the MVS. The species are regarded as the particles moving in time according to the equation of motion, finally falling into the lowest-energy state in spite of their randomly distributed initial condition. This falling into the ground state results in the construction of an MVS in which the relative distances between two particles are equal to the substitution distances. The species positions are obtained prior to the phylogeny inference. Therefore, as the number of species increases, the species vectors can be more specific in an MVS of a larger size, such that the vector analysis gives a more stable and reliable topology. The efficacy of the present method was examined by using computer simulations of molecular evolution in which all the branch- and end-point sequences of the trees are known in advance. In the phylogeny inference from the end points with 100 multiple data sets, the present method consistently reconstructed the correct topologies, in contrast to standard methods. In applications to 185 vertebrates in the alpha-hemoglobin, the vector analysis drew out the two lineage groups of birds and mammals. A core member of the mammalian radiation appeared at the base of the mammalian lineage. Squamates were isolated from the bird lineage to compose the outgroup, while the other living reptilians were directly coupled with birds without forming any sister groups. This result is in contrast to the morphological phylogeny and is also different from those of recent molecular analyses.
Angus, Robert B.; Ribera, Ignacio; Jia, Fenglong
2017-01-01
Abstract Karyotypes are given for Boreonectes emmerichi (Falkenström, 1936) from its type locality at Kangding, China, and for B. alpestris (Dutton & Angus, 2007) from the St Gotthard and San Bernardino passes in the Swiss Alps. A phylogeny based on sequence data from a combination of mitochondrial and nuclear genes recovered western Palaearctic species of Boreonectes as monophyletic with strong support. Boreonectes emmerichi was placed as sister to the north American forms of B. griseostriatus (De Geer, 1774), although with low support. The diversity of Palaearctic species of the B. griseostriatus species group is discussed. PMID:28919958
Angus, Robert B; Ribera, Ignacio; Jia, Fenglong
2017-01-01
Karyotypes are given for Boreonectes emmerichi (Falkenström, 1936) from its type locality at Kangding, China, and for B. alpestris (Dutton & Angus, 2007) from the St Gotthard and San Bernardino passes in the Swiss Alps. A phylogeny based on sequence data from a combination of mitochondrial and nuclear genes recovered western Palaearctic species of Boreonectes as monophyletic with strong support. Boreonectes emmerichi was placed as sister to the north American forms of B. griseostriatus (De Geer, 1774), although with low support. The diversity of Palaearctic species of the B. griseostriatus species group is discussed.
Wilson, Jeremy D; Hughes, Jane M; Raven, Robert J; Rix, Michael G; Schmidt, Daniel J
2018-05-01
Spiders of the infraorder Mygalomorphae are fast becoming model organisms for the study of biogeography and speciation. However, these spiders can be difficult to study in the absence of fundamental life history information. In particular, their cryptic nature hinders comprehensive sampling, and linking males with conspecific females can be challenging. Recently discovered differences in burrow entrance architecture and male morphology indicated that these challenges may have impeded our understanding of the trapdoor spider genus Euoplos in Australia's eastern mesic zone. We investigated the evolutionary significance of these discoveries using a multi-locus phylogenetic approach. Our results revealed the existence of a second, previously undocumented, lineage of Euoplos in the eastern mesic zone. This new lineage occurs in sympatry with a lineage previously known from the region, and the two are consistently divergent in their burrow entrance architecture and male morphology, revealing the suitability of these characters for use in phylogenetic studies. Divergent burrow entrance architecture and observed differences in microhabitat preferences are suggested to facilitate sympatry and syntopy between the lineages. Finally, by investigating male morphology and plotting it onto the phylogeny, we revealed that the majority of Euoplos species remain undescribed, and that males of an unnamed species from the newly discovered lineage had historically been linked, erroneously, to a described species from the opposite lineage. This paper clarifies the evolutionary relationships underlying life history diversity in the Euoplos of eastern Australia, and provides a foundation for urgently needed taxonomic revision of this genus. Copyright © 2018 Elsevier Inc. All rights reserved.
Evidence for common horizontal transmission of Wolbachia among butterflies and moths.
Ahmed, Muhammad Z; Breinholt, Jesse W; Kawahara, Akito Y
2016-05-27
Wolbachia is one of the most widespread bacteria on Earth. Previous research on Wolbachia-host interactions indicates that the bacterium is typically transferred vertically, from mother to offspring, through the egg cytoplasm. Although horizontal transmission of Wolbachia from one species to another is reported to be common in arthropods, limited direct ecological evidence is available. In this study, we examine horizontal transmission of Wolbachia using a multilocus sequence typing (MLST) strains dataset and used Wolbachia and Lepidoptera genomes to search for evidence for lateral gene transfer (LGT) in Lepidoptera, one of the most diverse cosmopolitan insect orders. We constructed a phylogeny of arthropod-associated MLST Wolbachia strains and calibrated the age of Wolbachia strains associated with lepidopteran species. Our results reveal inter-specific, inter-generic, inter-familial, and inter-ordinal horizontal transmission of Wolbachia strains, without discernible geographic patterns. We found at least seven probable cases of horizontal transmission among 31 species within Lepidoptera and between Lepidoptera and other arthropod hosts. The divergence time analysis revealed that Wolbachia is recently (22.6-4.7 mya, 95 % HPD) introduced in Lepidoptera. Analysis of nine Lepidoptera genomes (Bombyx mori, Danaus plexippus, Heliconius melpomene, Manduca sexta, Melitaea cinxia, Papilio glaucus, P. polytes, P. xuthus and Plutella xylostella) yielded one possible instance of Wolbachia LGT. Our results provide evidence of high incidence of identical and multiple strains of Wolbachia among butterflies and moths, adding Lepidoptera to the growing body of evidence for common horizontal transmission of Wolbachia. This study demonstrates interesting dynamics of this remarkable and influential microorganism.
Píchová, Kamila; Pažoutová, Sylvie; Kostovčík, Martin; Chudíčková, Milada; Stodůlková, Eva; Novák, Petr; Flieger, Miroslav; van der Linde, Elna; Kolařík, Miroslav
2018-06-01
The ergot, genus Claviceps, comprises approximately 60 species of specialised ovarial grass parasites famous for the production of food toxins and pharmaceutics. Although the ergot has been known for centuries, its evolution have not been resolved yet. Our approach combining multilocus phylogeny, molecular dating and the study of ecological, morphological and metabolic features shows that Claviceps originated in South America in the Palaeocene on a common ancestor of BEP (subfamilies Bambusoideae, Ehrhartoideae, Pooideae) and PACMAD (subfamilies Panicoideae, Aristidoideae, Chloridoideae, Micrairoideae, Arundinoideae, Danthonioideae) grasses. Four clades described here as sections diverged during the Paleocene and Eocene. Since Claviceps are parasitic fungi with a close relationship with their host plants, their evolution is influenced by interactions with the new hosts, either by the spread to a new continent or the radiation of the host plants. Three of the sections possess very narrow host ranges and biogeographical distributions and have relatively low toxicity. On the contrary, the section Claviceps, comprising the rye ergot, C. purpurea, is unique in all aspects. Fungi in this section of North American origin have spread all over the world and infect grasses in all subfamilies as well as sedges, and it is the only section synthesising toxic ergopeptines and secalonic acids. The evolutionary success of the Claviceps section members can be explained by high toxin presence, serving as feeding deterrents and playing a role in their protective mutualism with host plants. Closely related taxa Neoclaviceps monostipa and Cepsiclava phalaridis were combined into the genus Aciculosporium. Copyright © 2018 Elsevier Inc. All rights reserved.
An illustrated checklist of the genus Elymnias Hübner, 1818 (Nymphalidae, Satyrinae)
Wei, Chia-Hsuan; Lohman, David J.; Peggie, Djunijanti; Yen, Shen-Horn
2017-01-01
Abstract We review the genus Elymnias Hübner, 1818, a morphologically diverse satyrine butterfly clade involved in multifarious Batesian mimicry relationships throughout Asia and Africa. A variety of different model species are mimicked, and many Elymnias species are sexually dimorphic mimics, with males and females resembling different model species. We revise species and subspecies delimitations in light of an integrative taxonomic investigation using external morphology, male and female genital morphology, and a multi-locus molecular phylogeny. There is little interspecific genitalic variation among species in this group, and previous taxonomists therefore relied almost entirely on wing patterns. Our molecular phylogenetic analysis reveals several examples of polymorphism or wing pattern divergence within a single species currently classified as two or more different species. We also found examples of wing pattern convergence among disparate lineages that mimic the same widespread model species. Frequently, two or more phenotypically similar species were classified as a single species. This comprehensive checklist reviews all names associated with Elymnias to align its taxonomy with the evolutionary history of the group. All available information on nomenclature, type localities, repositories of type specimens, and geographical distributions is summarized, and images of adult specimens and genitalia are provided along with distribution maps of all species and selected subspecies. We identify 2 species incertae sedis, establish 15 monophyletic species groups (including 1 species unplaced in any species group), and make 49 taxonomic changes, including 35 new synonyms, 7 new combinations (2 of which have new status), 1 resurrected combination, 1 resurrected subspecies, and 7 status changes. PMID:28769686
Phylogeny mandalas for illustrating the Tree of Life.
Hasegawa, Masami
2017-12-01
A circular phylogeny with photos or drawings of species is named a phylogeny mandala. This is one of the ways for illustrating the Tree of Life, and is suitable to show visually how the biodiversity has developed in the course of evolution as clarified by the molecular phylogenetics. To demonstrate the recent progress of molecular phylogenetics, six phylogeny mandalas for various taxonomic groups of life were presented; i.e., (1) Eukaryota, (2) Metazoa, (3) Hexapoda, (4) Tetrapoda, (5) Eutheria, and (6) Primates. Copyright © 2016 Elsevier Inc. All rights reserved.
Marshall, C R
1992-03-01
Reconciling discordant morphological and molecular phylogenies remains a problem in modern systematics. By examining conflicting DNA-hybridization and morphological phylogenies of sand dollars, I show that morphological criteria may be used to help evaluate the reliability of molecular phylogenies where they differ from morphological trees. All available criteria for assessing the reliability of DNA-hybridization phylogenies suggest that the sand dollar DNA-hybridization phylogeny is robust. Standard homology-recognition criteria are used to assess the a priori reliabilities of the morphological attributes associated with the node drawn into question by the DNA data, and it is shown that these attributes are among the least phylogenetically informative of all the morphological characters. Moreover, the questioned node has the smallest number of supporting characters, and most of these characters are associated with the food grooves, which suggests that they may be functionally correlated. Thus, on the basis of the analysis of the morphological data and given the robustness of the DNA tree, the DNA phylogeny is preferred. Further, paleobiogeographic data support the DNA tree rather than the morphological tree, and a plausible heterochronic mechanism has been proposed that may account for the homoplasious morphological evolution that must have occurred if the DNA tree is correct.
Beati, Lorenza; Cáceres, Abraham G; Lee, Jamie A; Munstermann, Leonard E
2004-02-01
Lutzomyia spp. are New World phlebotomine sand flies, many of which are involved in the transmission of human diseases, such as leishmaniases and bartonellosis. The systematic classification of the approximately 400 species in the genus has been based on morphological characters, but the relationships within the genus are still very much in question. We have inferred phylogenies of 32 species of phlebotomine sand flies belonging to seven sub-genera and two species groups, by using fragments of the mitochondrial small subunit (12SrRNA) and of the nuclear large subunit (28SrRNA) ribosomal gene sequences. The subgenus Helcocyrtomyia and the Verrucarum species group, prominent representatives of the Peruvian sand fly fauna, were represented by 11 and 7 species, respectively. Although based on a limited number of taxa, the resulting phylogenies, based on 837 characters, provide an initial phylogenetic backbone for the progressive reconstruction of infrageneric relationships within Lutzomyia.
Investigation of the Evolutionary Development of the Genus Bifidobacterium by Comparative Genomics
Lugli, Gabriele Andrea; Milani, Christian; Turroni, Francesca; Duranti, Sabrina; Ferrario, Chiara; Viappiani, Alice; Mancabelli, Leonardo; Mangifesta, Marta; Taminiau, Bernard; Delcenserie, Véronique; van Sinderen, Douwe
2014-01-01
The Bifidobacterium genus currently encompasses 48 recognized taxa, which have been isolated from different ecosystems. However, the current phylogeny of bifidobacteria is hampered by the relative paucity of genotypic data. Here, we reassessed the taxonomy of this bacterial genus using genome-based approaches, which demonstrated that the previous taxonomic view of bifidobacteria contained several inconsistencies. In particular, high levels of genetic relatedness were shown to exist between particular Bifidobacterium taxa which would not justify their status as separate species. The results presented are here based on average nucleotide identity analysis involving the genome sequences for each type strain of the 48 bifidobacterial taxa, as well as phylogenetic comparative analysis of the predicted core genome of the Bifidobacterium genus. The results of this study demonstrate that the availability of complete genome sequences allows the reconstruction of a more robust bifidobacterial phylogeny than that obtained from a single gene-based sequence comparison, thus discouraging the assignment of a new or separate bifidobacterial taxon without such a genome-based validation. PMID:25107967
Gherardi, Giovanni; Creti, Roberta; Pompilio, Arianna; Di Bonaventura, Giovanni
2015-03-01
Typing of bacterial isolates has been used for decades to study local outbreaks as well as in national and international surveillances for monitoring newly emerging resistant clones. Despite being recognized as a nosocomial pathogen, the precise modes of transmission of Stenotrophomonas maltophilia in health care settings are unknown. Due to the high genetic diversity observed among S. maltophilia clinical isolates, the typing results might be better interpreted if also environmental strains were included. This could help to identify preventative measures to be designed and implemented for decreasing the possibility of outbreaks and nosocomial infections. In this review, we attempt to provide an overview on the most common typing methods used for clinical epidemiology of S. maltophilia strains, such as PCR-based fingerprinting analyses, pulsed-field gel electrophoresis, multilocus variable number tandem repeat analysis, and multilocus sequence type. Application of the proteomic-based mass spectrometry by matrix-assisted laser desorption ionization-time of flight is also described. Improvements of typing methods already in use have to be achieved to facilitate S. maltophilia infection control at any level. In the near future, when novel Web-based platforms for rapid data processing and analysis will be available, whole genome sequencing technologies will likely become a highly powerful tool for outbreak investigations and surveillance studies in routine clinical practices. Copyright © 2015 Elsevier Inc. All rights reserved.
Germot, A; Philippe, H; Le Guyader, H
1997-08-01
In molecular phylogenies based on ribosomal RNA, three amitochondriate protist lineages, Microsporidia, Metamonada (including diplomonads) and Parabasala (including trichomonads), are the earliest offshoots of the eukaryotic tree. As an explantation for the lack of mitochondria in these organisms, the hypothesis that they have diverged before the mitochondrial endosymbiosis is preferred to the less parsimonious hypothesis of several independent losses of the organelle. Nevertheless, if they had descended from mitochondrion-containing ancestors, it may be possible to find in their nuclear DNA genes that derive from the endosymbiont which gave rise to mitochondria. Based on similar evidence, secondary losses of mitochondria have recently been suggested for Entamoeba histolytica and for Trichomonas vaginalis. In this study, we have isolated a gene encoding a chaperone protein (HSP70, 70 kDa heat shock protein) from the microspordian Nosema locustae. In phylogenetic trees, this HSP70 was located within a group of sequences that in other lineages is targetted to the mitochondrial compartment, itself included in the proteobacterial clade. In addition, the N. locustae protein contained the GDAW(V) motif shared by mitochondrial and proteobacterial sequences, with only one conservative substitution. Moreover, microsporidia, a phylum which was assumed to emerge close to the base of the eukaryotic tree, appears as the sister-group of fungi in the HSP70 phylogeny, in agreement with some ultrastructural characters and phylogenies based on alpha- and beta-tubulins. Loss of mitochondria, now demonstrated for several amitochondriate groups, indicates that the common ancestor of all the extant eukaryotic species could have been a mitochondriate eukaryote.
ITS2 sequence-structure phylogeny reveals diverse endophytic Pseudocercospora fungi on poplars.
Yan, Dong-Hui; Gao, Qian; Sun, Xiaoming; Song, Xiaoyu; Li, Hongchang
2018-04-01
For matching the new fungal nomenclature to abolish pleomorphic names for a fungus, a genus Pseudocercospora s. str. was suggested to host holomorphic Pseudocercosproa fungi. But the Pseudocercosproa fungi need extra phylogenetic loci to clarify their taxonomy and diversity for their existing and coming species. Internal transcribed spacer 2 (ITS2) secondary structures have been promising in charactering species phylogeny in plants, animals and fungi. In present study, a conserved model of ITS2 secondary structures was confirmed on fungi in Pseudocercospora s. str. genus using RNAshape program. The model has a typical eukaryotic four-helix ITS2 secondary structure. But a single U base occurred in conserved motif of U-U mismatch in Helix 2, and a UG emerged in UGGU motif in Helix 3 to Pseudocercospora fungi. The phylogeny analyses based on the ITS2 sequence-secondary structures with compensatory base change characterizations are able to delimit more species for Pseudocercospora s. str. than phylogenic inferences of traditional multi-loci alignments do. The model was employed to explore the diversity of endophytic Pseudocercospora fungi in poplar trees. The analysis results also showed that endophytic Pseudocercospora fungi were diverse in species and evolved a specific lineage in poplar trees. This work suggested that ITS2 sequence-structures could become as additionally significant loci for species phylogenetic and taxonomic studies on Pseudocerospora fungi, and that Pseudocercospora endophytes could be important roles to Pseudocercospora fungi's evolution and function in ecology.
Population genetic analysis of Enterocytozoon bieneusi in humans.
Li, Wei; Cama, Vitaliano; Feng, Yaoyu; Gilman, Robert H; Bern, Caryn; Zhang, Xichen; Xiao, Lihua
2012-01-01
Genotyping based on sequence analysis of the ribosomal internal transcribed spacer has revealed significant genetic diversity in Enterocytozoonbieneusi. Thus far, the population genetics of E. bieneusi and its significance in the epidemiology of microsporidiosis have not been examined. In this study, a multilocus sequence typing of E. bieneusi in AIDS patients in Lima, Peru was conducted, using 72 specimens previously genotyped as A, D, IV, EbpC, WL11, Peru7, Peru8, Peru10 and Peru11 at the internal transcribed spacer locus. Altogether, 39 multilocus genotypes were identified among the 72 specimens. The observation of strong intragenic linkage disequilibria and limited genetic recombination among markers were indicative of an overall clonal population structure of E. bieneusi. Measures of pair-wise intergenic linkage disequilibria and a standardised index of association (IAS) based on allelic profile data further supported this conclusion. Both sequence-based and allelic profile-based phylogenetic analyses showed the presence of two genetically isolated groups in the study population, one (group 1) containing isolates of the anthroponotic internal transcribed spacer genotype A, and the other (group 2) containing isolates of multiple internal transcribed spacer genotypes (mainly genotypes D and IV) with zoonotic potential. The measurement of linkage disequilibria and recombination indicated group 2 had a clonal population structure, whereas group 1 had an epidemic population structure. The formation of the two sub-populations was confirmed by STRUCTURE and Wright's fixation index (FST) analyses. The data highlight the power of MLST in understanding the epidemiology of E. bieneusi. Published by Elsevier Ltd.
Tong, Steven Y C; Xie, Shirley; Richardson, Leisha J; Ballard, Susan A; Dakh, Farshid; Grabsch, Elizabeth A; Grayson, M Lindsay; Howden, Benjamin P; Johnson, Paul D R; Giffard, Philip M
2011-01-01
We have developed a single nucleotide polymorphism (SNP) nucleated high-resolution melting (HRM) technique to genotype Enterococcus faecium. Eight SNPs were derived from the E. faecium multilocus sequence typing (MLST) database and amplified fragments containing these SNPs were interrogated by HRM. We tested the HRM genotyping scheme on 85 E. faecium bloodstream isolates and compared the results with MLST, pulsed-field gel electrophoresis (PFGE) and an allele specific real-time PCR (AS kinetic PCR) SNP typing method. In silico analysis based on predicted HRM curves according to the G+C content of each fragment for all 567 sequence types (STs) in the MLST database together with empiric data from the 85 isolates demonstrated that HRM analysis resolves E. faecium into 231 "melting types" (MelTs) and provides a Simpson's Index of Diversity (D) of 0.991 with respect to MLST. This is a significant improvement on the AS kinetic PCR SNP typing scheme that resolves 61 SNP types with D of 0.95. The MelTs were concordant with the known ST of the isolates. For the 85 isolates, there were 13 PFGE patterns, 17 STs, 14 MelTs and eight SNP types. There was excellent concordance between PFGE, MLST and MelTs with Adjusted Rand Indices of PFGE to MelT 0.936 and ST to MelT 0.973. In conclusion, this HRM based method appears rapid and reproducible. The results are concordant with MLST and the MLST based population structure.
Alternaria section Alternaria: Species, formae speciales or pathotypes?
Woudenberg, J.H.C.; Seidl, M.F.; Groenewald, J.Z.; de Vries, M.; Stielow, J.B.; Thomma, B.P.H.J.; Crous, P.W.
2015-01-01
The cosmopolitan fungal genus Alternaria consists of multiple saprophytic and pathogenic species. Based on phylogenetic and morphological studies, the genus is currently divided into 26 sections. Alternaria sect. Alternaria contains most of the small-spored Alternaria species with concatenated conidia, including important plant, human and postharvest pathogens. Species within sect. Alternaria have been mostly described based on morphology and / or host-specificity, yet molecular variation between them is minimal. To investigate whether the described morphospecies within sect. Alternaria are supported by molecular data, whole-genome sequencing of nine Alternaria morphospecies supplemented with transcriptome sequencing of 12 Alternaria morphospecies as well as multi-gene sequencing of 168 Alternaria isolates was performed. The assembled genomes ranged in size from 33.3–35.2 Mb within sect. Alternaria and from 32.0–39.1 Mb for all Alternaria genomes. The number of repetitive sequences differed significantly between the different Alternaria genomes; ranging from 1.4–16.5 %. The repeat content within sect. Alternaria was relatively low with only 1.4–2.7 % of repeats. Whole-genome alignments revealed 96.7–98.2 % genome identity between sect. Alternaria isolates, compared to 85.1–89.3 % genome identity for isolates from other sections to the A. alternata reference genome. Similarly, 1.4–2.8 % and 0.8–1.8 % single nucleotide polymorphisms (SNPs) were observed in genomic and transcriptomic sequences, respectively, between isolates from sect. Alternaria, while the percentage of SNPs found in isolates from different sections compared to the A. alternata reference genome was considerably higher; 8.0–10.3 % and 6.1–8.5 %. The topology of a phylogenetic tree based on the whole-genome and transcriptome reads was congruent with multi-gene phylogenies based on commonly used gene regions. Based on the genome and transcriptome data, a set of core proteins was extracted, and primers were designed on two gene regions with a relatively low degree of conservation within sect. Alternaria (96.8 and 97.3 % conservation). Their potential discriminatory power within sect. Alternaria was tested next to nine commonly used gene regions in sect. Alternaria, namely the SSU, LSU, ITS, gapdh, rpb2, tef1, Alt a 1, endoPG and OPA10-2 gene regions. The phylogenies from the two gene regions with a relatively low conservation, KOG1058 and KOG1077, could not distinguish the described morphospecies within sect. Alternaria more effectively than the phylogenies based on the commonly used gene regions for Alternaria. Based on genome and transcriptome comparisons and molecular phylogenies, Alternaria sect. Alternaria consists of only 11 phylogenetic species and one species complex. Thirty-five morphospecies, which cannot be distinguished based on the multi-gene phylogeny, are synonymised under A. alternata. By providing guidelines for the naming and identification of phylogenetic species in Alternaria sect. Alternaria, this manuscript provides a clear and stable species classification in this section. PMID:26951037
Localizing multiple X chromosome-linked retinitis pigmentosa loci using multilocus homogeneity tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ott, J.; Terwilliger, J.D.; Bhattacharya, S.
1990-01-01
Multilocus linkage analysis of 62 family pedigrees with X chromosome-linked retinitis pigmentosa (XLRP) was undertaken to determine the presence of possible multiple disease loci and to reliability estimate their map location. Multilocus homogeneity tests furnish convincing evidence for the presence of two XLRP loci, the likelihood ratio being 6.4 {times} 10{sup 9}:1 in a favor of two versus a single XLRP locus and gave accurate estimates for their map location. In 60-75% of the families, location of an XLRP gene was estimated at 1 centimorgan distal to OTC, and in 25-40% of the families, an XLRP locus was located halfwaymore » between DXS14 (p58-1) and DXZ1 (Xcen), with an estimated recombination fraction of 25% between the two XLRP loci. There is also good evidence for third XLRP locus, midway between DXS28 (C7) and DXS164 (pERT87), supported by a likelihood ratio of 293:1 for three versus two XLRP loci.« less
Azzi, Salah; Blaise, Annick; Steunou, Virginie; Harbison, Madeleine D; Salem, Jennifer; Brioude, Frédéric; Rossignol, Sylvie; Habib, Walid Abi; Thibaud, Nathalie; Neves, Cristina Das; Jule, Marilyne Le; Brachet, Cécile; Heinrichs, Claudine; Bouc, Yves Le; Netchine, Irène
2014-10-01
Russell-Silver Syndrome (RSS) is a prenatal and postnatal growth retardation syndrome caused mainly by 11p15 ICR1 hypomethylation. Clinical presentation is heterogeneous in RSS patients with 11p15 ICR1 hypomethylation. We previously identified a subset of RSS patients with 11p15 ICR1 and multilocus hypomethylation. Here, we examine the relationships between IGF2 expression, 11p15 ICR1 methylation, and multilocus imprinting defects in various cell types from 39 RSS patients with 11p15 ICR1 hypomethylation in leukocyte DNA. 11p15 ICR1 hypomethylation was more pronounced in leukocytes than in buccal mucosa cells. Skin fibroblast IGF2 expression was correlated with the degree of ICR1 hypomethylation. Different tissue-specific multilocus methylation defects coexisted in 38% of cases, with some loci hypomethylated and others hypermethylated within the same cell type in some cases. Our new results suggest that tissue-specific epigenotypes may lead to clinical heterogeneity in RSS. © 2014 WILEY PERIODICALS, INC.
Evolution of recombination rates in a multi-locus, haploid-selection, symmetric-viability model.
Chasnov, J R; Ye, Felix Xiaofeng
2013-02-01
A fast algorithm for computing multi-locus recombination is extended to include a recombination-modifier locus. This algorithm and a linear stability analysis is used to investigate the evolution of recombination rates in a multi-locus, haploid-selection, symmetric-viability model for which stable equilibria have recently been determined. When the starting equilibrium is symmetric with two selected loci, we show analytically that modifier alleles that reduce recombination always invade. When the starting equilibrium is monomorphic, and there is a fixed nonzero recombination rate between the modifier locus and the selected loci, we determine analytical conditions for which a modifier allele can invade. In particular, we show that a gap exists between the recombination rates of modifiers that can invade and the recombination rate that specifies the lower stability boundary of the monomorphic equilibrium. A numerical investigation shows that a similar gap exists in a weakened form when the starting equilibrium is fully polymorphic but asymmetric. Copyright © 2012 Elsevier Inc. All rights reserved.
Heuertz, Myriam; De Paoli, Emanuele; Källman, Thomas; Larsson, Hanna; Jurman, Irena; Morgante, Michele; Lascoux, Martin; Gyllenstrand, Niclas
2006-01-01
DNA polymorphism at 22 loci was studied in an average of 47 Norway spruce [Picea abies (L.) Karst.] haplotypes sampled in seven populations representative of the natural range. The overall nucleotide variation was limited, being lower than that observed in most plant species so far studied. Linkage disequilibrium was also restricted and did not extend beyond a few hundred base pairs. All populations, with the exception of the Romanian population, could be divided into two main domains, a Baltico–Nordic and an Alpine one. Mean Tajima's D and Fay and Wu's H across loci were both negative, indicating the presence of an excess of both rare and high-frequency-derived variants compared to the expected frequency spectrum in a standard neutral model. Multilocus neutrality tests based on D and H led to the rejection of the standard neutral model and exponential growth in the whole population as well as in the two main domains. On the other hand, in all three cases the data are compatible with a severe bottleneck occurring some hundreds of thousands of years ago. Hence, demographic departures from equilibrium expectations and population structure will have to be accounted for when detecting selection at candidate genes and in association mapping studies, respectively. PMID:17057229
Zhang, Han; Wheeler, William; Song, Lei; Yu, Kai
2017-07-07
As meta-analysis results published by consortia of genome-wide association studies (GWASs) become increasingly available, many association summary statistics-based multi-locus tests have been developed to jointly evaluate multiple single-nucleotide polymorphisms (SNPs) to reveal novel genetic architectures of various complex traits. The validity of these approaches relies on the accurate estimate of z-score correlations at considered SNPs, which in turn requires knowledge on the set of SNPs assessed by each study participating in the meta-analysis. However, this exact SNP coverage information is usually unavailable from the meta-analysis results published by GWAS consortia. In the absence of the coverage information, researchers typically estimate the z-score correlations by making oversimplified coverage assumptions. We show through real studies that such a practice can generate highly inflated type I errors, and we demonstrate the proper way to incorporate correct coverage information into multi-locus analyses. We advocate that consortia should make SNP coverage information available when posting their meta-analysis results, and that investigators who develop analytic tools for joint analyses based on summary data should pay attention to the variation in SNP coverage and adjust for it appropriately. Published by Oxford University Press 2017. This work is written by US Government employees and is in the public domain in the US.
Is multiple-sequence alignment required for accurate inference of phylogeny?
Höhl, Michael; Ragan, Mark A
2007-04-01
The process of inferring phylogenetic trees from molecular sequences almost always starts with a multiple alignment of these sequences but can also be based on methods that do not involve multiple sequence alignment. Very little is known about the accuracy with which such alignment-free methods recover the correct phylogeny or about the potential for increasing their accuracy. We conducted a large-scale comparison of ten alignment-free methods, among them one new approach that does not calculate distances and a faster variant of our pattern-based approach; all distance-based alignment-free methods are freely available from http://www.bioinformatics.org.au (as Python package decaf+py). We show that most methods exhibit a higher overall reconstruction accuracy in the presence of high among-site rate variation. Under all conditions that we considered, variants of the pattern-based approach were significantly better than the other alignment-free methods. The new pattern-based variant achieved a speed-up of an order of magnitude in the distance calculation step, accompanied by a small loss of tree reconstruction accuracy. A method of Bayesian inference from k-mers did not improve on classical alignment-free (and distance-based) methods but may still offer other advantages due to its Bayesian nature. We found the optimal word length k of word-based methods to be stable across various data sets, and we provide parameter ranges for two different alphabets. The influence of these alphabets was analyzed to reveal a trade-off in reconstruction accuracy between long and short branches. We have mapped the phylogenetic accuracy for many alignment-free methods, among them several recently introduced ones, and increased our understanding of their behavior in response to biologically important parameters. In all experiments, the pattern-based approach emerged as superior, at the expense of higher resource consumption. Nonetheless, no alignment-free method that we examined recovers the correct phylogeny as accurately as does an approach based on maximum-likelihood distance estimates of multiply aligned sequences.
Zhang, Yan-Cong; Lin, Kui
2015-01-01
Overlapping genes (OGs) represent one type of widespread genomic feature in bacterial genomes and have been used as rare genomic markers in phylogeny inference of closely related bacterial species. However, the inference may experience a decrease in performance for phylogenomic analysis of too closely or too distantly related genomes. Another drawback of OGs as phylogenetic markers is that they usually take little account of the effects of genomic rearrangement on the similarity estimation, such as intra-chromosome/genome translocations, horizontal gene transfer, and gene losses. To explore such effects on the accuracy of phylogeny reconstruction, we combine phylogenetic signals of OGs with collinear genomic regions, here called locally collinear blocks (LCBs). By putting these together, we refine our previous metric of pairwise similarity between two closely related bacterial genomes. As a case study, we used this new method to reconstruct the phylogenies of 88 Enterobacteriale genomes of the class Gammaproteobacteria. Our results demonstrated that the topological accuracy of the inferred phylogeny was improved when both OGs and LCBs were simultaneously considered, suggesting that combining these two phylogenetic markers may reduce, to some extent, the influence of gene loss on phylogeny inference. Such phylogenomic studies, we believe, will help us to explore a more effective approach to increasing the robustness of phylogeny reconstruction of closely related bacterial organisms. PMID:26715828
Drovetski, Sergei V.; Raković, Marko; Semenov, Georgy; Fadeev, Igor V.; Red’kin, Yaroslav A.
2014-01-01
Phylogeographic studies of Holarctic birds are challenging because they involve vast geographic scale, complex glacial history, extensive phenotypic variation, and heterogeneous taxonomic treatment across countries, all of which require large sample sizes. Knowledge about the quality of phylogeographic information provided by different loci is crucial for study design. We use sequences of one mtDNA gene, one sex-linked intron, and one autosomal intron to elucidate large scale phylogeographic patterns in the Holarctic lark genus Eremophila. The mtDNA ND2 gene identified six geographically, ecologically, and phenotypically concordant clades in the Palearctic that diverged in the Early - Middle Pleistocene and suggested paraphyly of the horned lark (E. alpestris) with respect to the Temminck's lark (E. bilopha). In the Nearctic, ND2 identified five subclades which diverged in the Late Pleistocene. They overlapped geographically and were not concordant phenotypically or ecologically. Nuclear alleles provided little information on geographic structuring of genetic variation in horned larks beyond supporting the monophyly of Eremophila and paraphyly of the horned lark. Multilocus species trees based on two nuclear or all three loci provided poor support for haplogroups identified by mtDNA. The node ages calculated using mtDNA were consistent with the available paleontological data, whereas individual nuclear loci and multilocus species trees appeared to underestimate node ages. We argue that mtDNA is capable of discovering independent evolutionary units within avian taxa and can provide a reasonable phylogeographic hypothesis when geographic scale, geologic history, and phenotypic variation in the study system are too complex for proposing reasonable a priori hypotheses required for multilocus methods. Finally, we suggest splitting the currently recognized horned lark into five Palearctic and one Nearctic species. PMID:24498139
Roisin, S; Gaudin, C; De Mendonça, R; Bellon, J; Van Vaerenbergh, K; De Bruyne, K; Byl, B; Pouseele, H; Denis, O; Supply, P
2016-06-01
We used a two-step whole genome sequencing analysis for resolving two concurrent outbreaks in two neonatal services in Belgium, caused by exfoliative toxin A-encoding-gene-positive (eta+) methicillin-susceptible Staphylococcus aureus with an otherwise sporadic spa-type t209 (ST-109). Outbreak A involved 19 neonates and one healthcare worker in a Brussels hospital from May 2011 to October 2013. After a first episode interrupted by decolonization procedures applied over 7 months, the outbreak resumed concomitantly with the onset of outbreak B in a hospital in Asse, comprising 11 neonates and one healthcare worker from mid-2012 to January 2013. Pan-genome multilocus sequence typing, defined on the basis of 42 core and accessory reference genomes, and single-nucleotide polymorphisms mapped on an outbreak-specific de novo assembly were used to compare 28 available outbreak isolates and 19 eta+/spa-type t209 isolates identified by routine or nationwide surveillance. Pan-genome multilocus sequence typing showed that the outbreaks were caused by independent clones not closely related to any of the surveillance isolates. Isolates from only ten cases with overlapping stays in outbreak A, including four pairs of twins, showed no or only a single nucleotide polymorphism variation, indicating limited sequential transmission. Detection of larger genomic variation, even from the start of the outbreak, pointed to sporadic seeding from a pre-existing exogenous source, which persisted throughout the whole course of outbreak A. Whole genome sequencing analysis can provide unique fine-tuned insights into transmission pathways of complex outbreaks even at their inception, which, with timely use, could valuably guide efforts for early source identification. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Martin, Gavin J; Branham, Marc A; Whiting, Michael F; Bybee, Seth M
2017-02-01
Fireflies are some of the most captivating organisms on the planet. They have a rich history as subjects of scientific study, especially in relation to their bioluminescent behavior. Yet, the phylogenetic relationships of fireflies are still poorly understood. Here, we present the first total evidence approach to reconstruct lampyrid phylogeny using both a molecular matrix from six loci and an extensive morphological matrix. Using this phylogeny we test the hypothesis that adult bioluminescence evolved after the origin of the firefly clade. The ancestral state of adult bioluminescence is recovered as non-bioluminescent with one to six gains and five to ten subsequent losses. The monophyly of the family, as well as the subfamilies is also tested. Ototretinae, Cyphonocerinae, Luciolinae (incl. Pristolycus), Amydetinae, "cheguevarinae" sensu Jeng 2008, and Photurinae are highly supported as monophyletic. With the exception of four taxa, Lampyrinae is also recovered as monophyletic with high support. Based on phylogenetic and morphological data Lamprohiza, Phausis, and Lamprigera are transferred to Lampyridae incertae sedis. Copyright © 2016 Elsevier Inc. All rights reserved.
Ba, Hengxing; Yang, Fuhe; Xing, Xiumei; Li, Chunyi
2015-06-01
To further refine the classification and phylogeny of sika deer subspecies, the well-annotated sequences of the complete mitochondrial DNA (mtDNA) control region of 13 sika deer subspecies from GenBank were downloaded, aligned and analyzed in this study. By reconstructing the phylogenetic tree with an extended sample set, the results revealed a split between Northern and Southern Mainland Asia/Taiwan lineages, and moreover, two subspecies, C.n.mantchuricus and C.n.hortulorum, were existed in Northern Mainland Asia. Unexpectedly, Dybowskii's sika deer that was thought to originate from Northern Mainland Asia joins the Southern Mainland Asia/Taiwan lineage. The genetic divergences were ranged from 2.1% to 4.7% between Dybowskii's sika deer and all the other established subspecies at the mtDNA sequence level, which suggests that the maternal lineage of uncertain sika subspecies in Europe had been maintained until today. This study also provides a better understanding for the classification, phylogeny and phylogeographic history of sika deer subspecies.
Motor cognition and its role in the phylogeny and ontogeny of action understanding.
Gallese, Vittorio; Rochat, Magali; Cossu, Giuseppe; Sinigaglia, Corrado
2009-01-01
Social life rests in large part on the capacity to understand the intentions behind the behavior of others. What are the origins of this capacity? How is one to construe its development in ontogenesis? By assuming that action understanding can be explained only in terms of the ability to read the minds of others--that is, to represent mental states--the traditional view claims that a sharp discontinuity occurs in both phylogeny and ontogeny. Over the last few years this view has been challenged by a number of ethological and psychological studies, as well as by several neurophysiological findings. In particular, the functional properties of the mirror neuron system and its direct matching mechanism indicate that action understanding may be primarily based on the motor cognition that underpins one's own capacity to act. This article aims to elaborate and motivate the pivotal role of such motor cognition, providing a biologically plausible and theoretically unitary account for the phylogeny and ontogeny of action understanding and also its impairment, as in the case of autistic spectrum disorder.
Vrshek-Schallhorn, Suzanne; Stroud, Catherine B.; Mineka, Susan; Zinbarg, Richard E.; Adam, Emma K.; Redei, Eva E.; Hammen, Constance; Craske, Michelle G.
2016-01-01
Behavioral genetic research supports polygenic models of depression in which many genetic variations each contribute a small amount of risk, and prevailing diathesis-stress models suggest gene-environment interactions (GxE). Multilocus profile scores of additive risk offer an approach that is consistent with polygenic models of depression risk. In a first demonstration of this approach in a GxE predicting depression, we created an additive multilocus profile score from five serotonin system polymorphisms (one each in the genes HTR1A, HTR2A, HTR2C, and two in TPH2). Analyses focused on two forms of interpersonal stress as environmental risk factors. Using five years of longitudinal diagnostic and life stress interviews from 387 emerging young adults in the Youth Emotion Project, survival analyses show that this multilocus profile score interacts with major interpersonal stressful life events to predict major depressive episode onsets (HR = 1.815, p = .007). Simultaneously, there was a significant protective effect of the profile score without a recent event (HR = 0.83, p = .030). The GxE effect with interpersonal chronic stress was not significant (HR = 1.15, p = .165). Finally, effect sizes for genetic factors examined ignoring stress suggested such an approach could lead to overlooking or misinterpreting genetic effects. Both the GxE effect and the protective simple main effect were replicated in a sample of early adolescent girls (N = 105). We discuss potential benefits of the multilocus genetic profile score approach and caveats for future research. PMID:26595467
Diaz, Maureen H; Winchell, Jonas M
2016-01-01
Over the past decade there have been significant advancements in the methods used for detecting and characterizing Mycoplasma pneumoniae, a common cause of respiratory illness and community-acquired pneumonia worldwide. The repertoire of available molecular diagnostics has greatly expanded from nucleic acid amplification techniques (NAATs) that encompass a variety of chemistries used for detection, to more sophisticated characterizing methods such as multi-locus variable-number tandem-repeat analysis (MLVA), Multi-locus sequence typing (MLST), matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS), single nucleotide polymorphism typing, and numerous macrolide susceptibility profiling methods, among others. These many molecular-based approaches have been developed and employed to continually increase the level of discrimination and characterization in order to better understand the epidemiology and biology of M. pneumoniae. This review will summarize recent molecular techniques and procedures and lend perspective to how each has enhanced the current understanding of this organism and will emphasize how Next Generation Sequencing may serve as a resource for researchers to gain a more comprehensive understanding of the genomic complexities of this insidious pathogen.
Marco, Jorge D; Bhutto, Abdul M; Soomro, Farooq R; Baloch, Javed H; Barroso, Paola A; Kato, Hirotomo; Uezato, Hiroshi; Katakura, Ken; Korenaga, Masataka; Nonaka, Shigeo; Hashiguchi, Yoshihisa
2006-08-01
Seventeen Leishmania stocks isolated from cutaneous lesions of Pakistani patients were studied by multilocus enzyme electrophoresis and by polymerase chain reaction amplification and sequencing of the cytochrome b (Cyt b) gene. Eleven stocks that expressed nine zymodemes were assigned to L. (Leishmania) major. All of them were isolated from patients in the lowlands of Larkana district and Sibi city in Sindh and Balochistan provinces, respectively. The remaining six, distributed in two zymodemes (five and one), isolated from the highland of Quetta city, Balochistan, were identified as L. (L.) tropica. The same result at species level was obtained by the Cyt b sequencing for all the stocks examined. No clear-cut association between the clinical features (wet or dry type lesions) and the Leishmania species involved was found. Leishmania (L.) major was highly polymorphic compared with L. (L.) tropica. This difference may be explained by the fact that humans may act as a sole reservoir of L. (L.) tropica in anthroponotic cycles; however, many wild mammals can be reservoirs of L. (L.) major in zoonotic cycles.
Borkent, Art
2018-01-17
The order Diptera is remarkably diverse, not only in species but in morphological variation in every life stage, making them excellent candidates for phylogenetic analysis. Such analysis has been hampered by methods that have severely restricted character state interpretation. Morphological-based phylogenies should be based on a deep understanding of the morphology, development and function of character states, and have extensive outgroup comparisons made to determine their polarity. Character states clearly vary in their value for determining phylogenetic relationships and this needs to be studied and utilized. Characters themselves need more explicit discussion, including how some may be developmentally or functionally related to other characters (and potentially not independent indicators of genealogical relationship). The current practice by many, of filling a matrix with poorly understood character states and highly limited outgroup comparisons, is unacceptable if the results are to be a valid reflection of the actual history of the group.Parsimony analysis is not an objective interpretation of phylogenetic relationships when all characters are treated as equal in value. Exact mathematical values applied to characters are entirely arbitrary and are generally used to produce a phylogeny that the author considers as reasonable. Mathematical appraisal of a given node is similarly inconsequential because characters do not have an intrinsic mathematical value. Bremer support, for example, provides values that have no biological reality but provide the pretence of objectivity. Cladists need to focus their attention on testing the validity of each synapomorphy proposed, as the basis for all further phylogenetic interpretation, rather than the testing of differing phylogenies through various comparative programs.Current phylogenetic analyses have come to increasingly depend on DNA sequence-based characters, in spite of their tumultuous history of inconsistent results. Until such time as sequences can be shown to produce predictive phylogenies (i.e., using Hennigian logic), independent of morphological analysis, they should be viewed with caution and certainly not as a panacea as they are commonly portrayed.The purported comprehensive analyses of phylogenetic relationships between families of Diptera by Wiegmann et al. (2011) and Lambkin et al. (2013) have serious flaws and cannot be considered as the "Periodic Table" of such relationships as originally heralded.Systematists working on Diptera have a plethora of complex and informative morphological synapomorphies in every life stage, either described or awaiting study. Many lineages have the potential of providing a wealth of evolutionary stories to share with other biologists if we produce stable phylogenies based on weighted synapomorphies and interpreted to elucidate the zoogeographic and bionomic divergence of the group. Some lineages are devoid of convincing synapomorphies and, in spite of our desires, should be recognized as being largely uninterpretable.
Darwin and Evolutionary Psychology
ERIC Educational Resources Information Center
Ghiselin, Michael T.
1973-01-01
Darwin's views on various psychological behaviors were significant. Basing his conclusions on empirical research, he wrote extensively on the phylogeny of behavior, emotional expression, sexual selection, instincts, evolution of morals, ontogeny of behavior, and genetics of behavior. (PS)
The evolutionary history of Mimosa (Leguminosae): toward a phylogeny of the sensitive plants.
Simon, Marcelo F; Grether, Rosaura; de Queiroz, Luciano P; Särkinen, Tiina E; Dutra, Valquíria F; Hughes, Colin E
2011-07-01
Large genera provide remarkable opportunities to investigate patterns of morphological evolution and historical biogeography in plants. A molecular phylogeny of the species-rich and morphologically and ecologically diverse genus Mimosa was generated to evaluate its infrageneric classification, reconstruct the evolution of a set of morphological characters, and establish the relationships of Old World species to the rest of the genus. We used trnD-trnT plastid sequences for 259 species of Mimosa (ca. 50% of the total) to reconstruct the phylogeny of the genus. Six morphological characters (petiolar nectary, inflorescence type, number of stamens, number of petals, pollen type, and seismonasty) were optimized onto the molecular tree. Mimosa was recovered as a monophyletic clade nested within the Piptadenia group and includes the former members of Schrankia, corroborating transfer of that genus to Mimosa. Although we found good support for several infrageneric groups, only one section (Mimadenia) was recovered as monophyletic. All but one of the morphological characters analyzed showed high levels of homoplasy. High levels of geographic structure were found, with species from the same area tending to group together in the phylogeny. Old World species of Mimosa form a monophyletic clade deeply nested within New World groups, indicating recent (6-10 Ma) long-distance dispersal. Although based on a single plastid region, our results establish a preliminary phylogenetic framework for Mimosa that can be used to infer patterns of morphological evolution and relationships and which provides pointers toward a revised infrageneric classification.
Molecular phylogeny of Arthrotardigrada (Tardigrada).
Jørgensen, Aslak; Faurby, Søren; Hansen, Jesper G; Møbjerg, Nadja; Kristensen, Reinhardt M
2010-03-01
Tardigrades are microscopic ecdysozoans with a worldwide distribution covering marine, limnic and terrestrial habitats. They are regarded as a neglected phylum with regard to studies of their phylogeny. During the last decade molecular data have been included in the investigation of tardigrades. However, the marine arthrotardigrades are still poorly sampled due to their relative rarity, difficult identification and minute size even for tardigrades. In the present study, we have sampled various arthrotardigrades and sequenced the 18S and partial 28S ribosomal subunits. The phylogenetic analyses based on Bayesian inference and maximum parsimony inferred Heterotardigrada (Arthrotardigrada+Echiniscoidea) and Eutardigrada to be monophyletic. Arthrotardigrada was inferred to be paraphyletic as the monophyletic Echiniscoidea is included within the arthrotardigrades. The phylogenetic positions of Stygarctidae and Batillipedidae are poorly resolved with low branch support. The Halechiniscidae is inferred to be polyphyletic as the currently recognized Styraconyxinae is not part of the family. Archechiniscus is the sister-group to the Halechiniscidae and Orzeliscus is placed as one of the basal halechiniscids. The phylogeny of the included eutardigrade taxa resembles the current molecular phylogenies. The genetic diversity within Arthrotardigrada is much larger (18S 15.1-26.5%, 28S 7.2-20.7%) than within Eutardigrada (18S 1.0-12.6%, 28S 1.3-8.2%). This can be explained by higher substitution rates in the arthrotardigrades or by a much younger evolutionary age of the sampled eutardigrades. Copyright 2009 Elsevier Inc. All rights reserved.
Cheng, Shawn; Kirton, Laurence G.; Panandam, Jothi M.; Siraj, Siti S.; Ng, Kevin Kit-Siong; Tan, Soon-Guan
2011-01-01
Termites of the genus Odontotermes are important decomposers in the Old World tropics and are sometimes important pests of crops, timber and trees. The species within the genus often have overlapping size ranges and are difficult to differentiate based on morphology. As a result, the taxonomy of Odontotermes in Peninsular Malaysia has not been adequately worked out. In this study, we examined the phylogeny of 40 samples of Odontotermes from Peninsular Malaysia using two mitochondrial DNA regions, that is, the 16S ribosomal RNA and cytochrome oxidase subunit I genes, to aid in elucidating the number of species in the peninsula. Phylogenies were reconstructed from the individual gene and combined gene data sets using parsimony and likelihood criteria. The phylogenies supported the presence of up to eleven species in Peninsular Malaysia, which were identified as O. escherichi, O. hainanensis, O. javanicus, O. longignathus, O. malaccensis, O. oblongatus, O. paraoblongatus, O. sarawakensis, and three possibly new species. Additionally, some of our taxa are thought to comprise a complex of two or more species. The number of species found in this study using DNA methods was more than the initial nine species thought to occur in Peninsular Malaysia. The support values for the clades and morphology of the soldiers provided further evidence for the existence of eleven or more species. Higher resolution genetic markers such as microsatellites would be required to confirm the presence of cryptic species in some taxa. PMID:21687629
Phylogeny of anaerobic fungi (phylum Neocallimastigomycota), with contributions from yak in China.
Wang, Xuewei; Liu, Xingzhong; Groenewald, Johannes Z
2017-01-01
The phylum Neocallimastigomycota contains eight genera (about 20 species) of strictly anaerobic fungi. The evolutionary relationships of these genera are uncertain due to insufficient sequence data to infer their phylogenies. Based on morphology and molecular phylogeny, thirteen isolates obtained from yak faeces and rumen digesta in China were assigned to Neocallimastix frontalis (nine isolates), Orpinomyces joyonii (two isolates) and Caecomyces sp. (two isolates), respectively. The phylogenetic relationships of the eight genera were evaluated using complete ITS and partial LSU sequences, compared to the ITS1 region which has been widely used in this phylum in the past. Five monophyletic lineages corresponding to six of the eight genera were statistically supported. Isolates of Caecomyces and Cyllamyces were present in a single lineage and could not be separated properly. Members of Neocallimastigomycota with uniflagellate zoospores represented by Piromyces were polyphyletic. The Piromyces-like genus Oontomyces was consistently closely related to the traditional Anaeromyces, and separated the latter genus into two clades. The phylogenetic position of the Piromyces-like genus Buwchfawromyces remained unresolved. Orpinomyces and Neocallimastix, sharing polyflagellate zoospores, were supported as sister genera in the LSU phylogeny. Apparently ITS, specifically ITS1 alone, is not a good marker to resolve the generic affinities of the studied fungi. The LSU sequences are easier to align and appear to work well to resolve generic relationships. This study provides a comparative phylogenetic revision of Neocallimastigomycota isolates known from culture and sequence data.
2013-01-01
Background Males in some species of the genus Xiphophorus, small freshwater fishes from Meso-America, have an extended caudal fin, or sword – hence their common name “swordtails”. Longer swords are preferred by females from both sworded and – surprisingly also, non-sworded (platyfish) species that belong to the same genus. Swordtails have been studied widely as models in research on sexual selection. Specifically, the pre-existing bias hypothesis was interpreted to best explain the observed bias of females in presumed ancestral lineages of swordless species that show a preference for assumed derived males with swords over their conspecific swordless males. However, many of the phylogenetic relationships within this genus still remained unresolved. Here we construct a comprehensive molecular phylogeny of all 26 known Xiphophorus species, including the four recently described species (X. kallmani, X. mayae, X. mixei and X. monticolus). We use two mitochondrial and six new nuclear markers in an effort to increase the understanding of the evolutionary relationships among the species in this genus. Based on the phylogeny, the evolutionary history and character state evolution of the sword was reconstructed and found to have originated in the common ancestral lineage of the genus Xiphophorus and that it was lost again secondarily. Results We estimated the evolutionary relationships among all known species of the genus Xiphophorus based on the largest set of DNA markers so far. The phylogeny indicates that one of the newly described swordtail species, Xiphophorus monticolus, is likely to have arisen through hybridization since it is placed with the southern platyfish in the mitochondrial phylogeny, but with the southern swordtails in the nuclear phylogeny. Such discordance between these two types of markers is a strong indication for a hybrid origin. Additionally, by using a maximum likelihood approach the possession of the sexually selected sword trait is shown to be the most likely ancestral state for the genus Xiphophorus. Further, we provide a well supported estimation of the phylogenetic relationships between the previously unresolved northern swordtail groups. Conclusions This comprehensive molecular phylogeny of the entire genus Xiphophorus provides evidence that a second swordtail species, X. monticolus, arose through hybridization. Previously, we demonstrated that X. clemenciae, another southern swordtail species, arose via hybridization. These findings highlight the potential key role of hybridization in the evolution of this genus and suggest the need for further investigations into how hybridization contributes to speciation more generally. PMID:23360326
USDA-ARS?s Scientific Manuscript database
The predominantly holarctic bee genus Osmia is species-rich and behaviorally diverse. A robust phylogeny of this genus is important for understanding the evolution of the immense variety of morphological and behavioral traits exhibited by this group. We infer a phylogeny of Osmia using DNA sequenc...
Phylogeny mandalas of birds using the lithographs of John Gould's folio bird books.
Hasegawa, Masami; Kuroda, Sayako
2017-12-01
The phylogeny mandala, which is a circular phylogeny with photos or drawings of species, is a suitable way to show visually how the biodiversity has developed in the course of evolution as clarified by the molecular phylogenetics. In this article, in order to demonstrate the recent progress of avian molecular phylogenetics, six phylogeny mandalas of various taxonomic groups of birds are presented with the lithographs of John Gould's folio bird books; i.e., (1) whole Aves, (2) Passeriformes, (3) Paradisaeidae in Corvoidea (Passeriformes), (4) Meliphagoidea (Passeriformes), (5) Trochili in Apodiformes, and (6) Galliformes. Copyright © 2016 Elsevier Inc. All rights reserved.
Enterohemorrhagic Escherichia coli as Causes of Hemolytic Uremic Syndrome in the Czech Republic
Marejková, Monika; Bláhová, Květa; Janda, Jan; Fruth, Angelika; Petráš, Petr
2013-01-01
Background Enterohemorrhagic Escherichia coli (EHEC) cause diarrhea-associated hemolytic uremic syndrome (D+ HUS) worldwide, but no systematic study of EHEC as the causative agents of HUS was performed in the Czech Republic. We analyzed stools of all patients with D+ HUS in the Czech Republic between 1998 and 2012 for evidence of EHEC infection. We determined virulence profiles, phenotypes, antimicrobial susceptibilities and phylogeny of the EHEC isolates. Methodology/Principal Findings Virulence loci were identified using PCR, phenotypes and antimicrobial susceptibilities were determined using standard procedures, and phylogeny was assessed using multilocus sequence typing. During the 15-year period, EHEC were isolated from stools of 39 (69.4%) of 56 patients. The strains belonged to serotypes [fliC types] O157:H7/NM[fliC H7] (50% of which were sorbitol-fermenting; SF), O26:H11/NM[fliC H11], O55:NM[fliC H7], O111:NM[fliC H8], O145:H28[fliC H28], O172:NM[fliC H25], and Orough:NM[fliC H25]. O26:H11/NM[fliC H11] was the most common serotype associated with HUS (41% isolates). Five stx genotypes were identified, the most frequent being stx 2a (71.1% isolates). Most strains contained EHEC-hlyA encoding EHEC hemolysin, and a subset (all SF O157:NM and one O157:H7) harbored cdt-V encoding cytolethal distending toxin. espPα encoding serine protease EspPα was found in EHEC O157:H7, O26:H11/NM, and O145:H28, whereas O172:NM and Orough:NM strains contained espPγ. All isolates contained eae encoding adhesin intimin, which belonged to subtypes β (O26), γ (O55, O145, O157), γ2/θ (O111), and ε (O172, Orough). Loci encoding other adhesins (efa1, lpfA O26, lpfA O157OI-141, lpfA O157OI-154, iha) were usually associated with particular serotypes. Phylogenetic analysis demonstrated nine sequence types (STs) which correlated with serotypes. Of these, two STs (ST660 and ST1595) were not found in HUS-associated EHEC before. Conclusions/Significance EHEC strains, including O157:H7 and non-O157:H7, are frequent causes of D+ HUS in the Czech Republic. Identification of unusual EHEC serotypes/STs causing HUS calls for establishment of an European collection of HUS-associated EHEC, enabling to study properties and evolution of these important pathogens. PMID:24040117
Calculating Higher-Order Moments of Phylogenetic Stochastic Mapping Summaries in Linear Time.
Dhar, Amrit; Minin, Vladimir N
2017-05-01
Stochastic mapping is a simulation-based method for probabilistically mapping substitution histories onto phylogenies according to continuous-time Markov models of evolution. This technique can be used to infer properties of the evolutionary process on the phylogeny and, unlike parsimony-based mapping, conditions on the observed data to randomly draw substitution mappings that do not necessarily require the minimum number of events on a tree. Most stochastic mapping applications simulate substitution mappings only to estimate the mean and/or variance of two commonly used mapping summaries: the number of particular types of substitutions (labeled substitution counts) and the time spent in a particular group of states (labeled dwelling times) on the tree. Fast, simulation-free algorithms for calculating the mean of stochastic mapping summaries exist. Importantly, these algorithms scale linearly in the number of tips/leaves of the phylogenetic tree. However, to our knowledge, no such algorithm exists for calculating higher-order moments of stochastic mapping summaries. We present one such simulation-free dynamic programming algorithm that calculates prior and posterior mapping variances and scales linearly in the number of phylogeny tips. Our procedure suggests a general framework that can be used to efficiently compute higher-order moments of stochastic mapping summaries without simulations. We demonstrate the usefulness of our algorithm by extending previously developed statistical tests for rate variation across sites and for detecting evolutionarily conserved regions in genomic sequences.
Bond, Jason E; Garrison, Nicole L; Hamilton, Chris A; Godwin, Rebecca L; Hedin, Marshal; Agnarsson, Ingi
2014-08-04
Spiders represent an ancient predatory lineage known for their extraordinary biomaterials, including venoms and silks. These adaptations make spiders key arthropod predators in most terrestrial ecosystems. Despite ecological, biomedical, and biomaterial importance, relationships among major spider lineages remain unresolved or poorly supported. Current working hypotheses for a spider "backbone" phylogeny are largely based on morphological evidence, as most molecular markers currently employed are generally inadequate for resolving deeper-level relationships. We present here a phylogenomic analysis of spiders including taxa representing all major spider lineages. Our robust phylogenetic hypothesis recovers some fundamental and uncontroversial spider clades, but rejects the prevailing paradigm of a monophyletic Orbiculariae, the most diverse lineage, containing orb-weaving spiders. Based on our results, the orb web either evolved much earlier than previously hypothesized and is ancestral for a majority of spiders or else it has multiple independent origins, as hypothesized by precladistic authors. Cribellate deinopoid orb weavers that use mechanically adhesive silk are more closely related to a diverse clade of mostly webless spiders than to the araneoid orb-weaving spiders that use adhesive droplet silks. The fundamental shift in our understanding of spider phylogeny proposed here has broad implications for interpreting the evolution of spiders, their remarkable biomaterials, and a key extended phenotype--the spider web. Copyright © 2014 Elsevier Ltd. All rights reserved.
RNA-dependent RNA polymerase: Addressing Zika outbreak by a phylogeny-based drug target study.
Stephen, Preyesh; Lin, Sheng-Xiang
2018-01-01
Since the first major outbreak of Zika virus (ZIKV) in 2007, ZIKV is spreading explosively through South and Central America, and recent reports in highly populated developing countries alarm the possibility of a more catastrophic outbreak. ZIKV infection in pregnant women leads to embryonic microcephaly and Guillain-Barré syndrome in adults. At present, there is limited understanding of the infectious mechanism, and no approved therapy has been reported. Despite the withdrawal of public health emergency, the WHO still considers the ZIKV as a highly significant and long-term public health challenge that the situation has to be addressed rapidly. Non-structural protein 5 is essential for capping and replication of viral RNA and comprises a methyltransferase and RNA-dependent RNA polymerase (RdRp) domain. We used molecular modeling to obtain the structure of ZIKV RdRp, and by molecular docking and phylogeny analysis, we here demonstrate the potential sites for drug screening. Two metal binding sites and an NS3-interacting region in ZIKV RdRp are demonstrated as potential drug screening sites. The docked structures reveal a remarkable degree of conservation at the substrate binding site and the potential drug screening sites. A phylogeny-based approach is provided for an emergency preparedness, where similar class of ligands could target phylogenetically related proteins. © 2017 John Wiley & Sons A/S.
Hill, Jon; Davis, Katie E
2014-01-01
Building large supertrees involves the collection, storage, and processing of thousands of individual phylogenies to create large phylogenies with thousands to tens of thousands of taxa. Such large phylogenies are useful for macroevolutionary studies, comparative biology and in conservation and biodiversity. No easy to use and fully integrated software package currently exists to carry out this task. Here, we present a new Python-based software package that uses well defined XML schema to manage both data and metadata. It builds on previous versions by 1) including new processing steps, such as Safe Taxonomic Reduction, 2) using a user-friendly GUI that guides the user to complete at least the minimum information required and includes context-sensitive documentation, and 3) a revised storage format that integrates both tree- and meta-data into a single file. These data can then be manipulated according to a well-defined, but flexible, processing pipeline using either the GUI or a command-line based tool. Processing steps include standardising names, deleting or replacing taxa, ensuring adequate taxonomic overlap, ensuring data independence, and safe taxonomic reduction. This software has been successfully used to store and process data consisting of over 1000 trees ready for analyses using standard supertree methods. This software makes large supertree creation a much easier task and provides far greater flexibility for further work.
Calculating Higher-Order Moments of Phylogenetic Stochastic Mapping Summaries in Linear Time
Dhar, Amrit
2017-01-01
Abstract Stochastic mapping is a simulation-based method for probabilistically mapping substitution histories onto phylogenies according to continuous-time Markov models of evolution. This technique can be used to infer properties of the evolutionary process on the phylogeny and, unlike parsimony-based mapping, conditions on the observed data to randomly draw substitution mappings that do not necessarily require the minimum number of events on a tree. Most stochastic mapping applications simulate substitution mappings only to estimate the mean and/or variance of two commonly used mapping summaries: the number of particular types of substitutions (labeled substitution counts) and the time spent in a particular group of states (labeled dwelling times) on the tree. Fast, simulation-free algorithms for calculating the mean of stochastic mapping summaries exist. Importantly, these algorithms scale linearly in the number of tips/leaves of the phylogenetic tree. However, to our knowledge, no such algorithm exists for calculating higher-order moments of stochastic mapping summaries. We present one such simulation-free dynamic programming algorithm that calculates prior and posterior mapping variances and scales linearly in the number of phylogeny tips. Our procedure suggests a general framework that can be used to efficiently compute higher-order moments of stochastic mapping summaries without simulations. We demonstrate the usefulness of our algorithm by extending previously developed statistical tests for rate variation across sites and for detecting evolutionarily conserved regions in genomic sequences. PMID:28177780
Lyu, Ming-Ju Amy; Gowik, Udo; Kelly, Steve; Covshoff, Sarah; Mallmann, Julia; Westhoff, Peter; Hibberd, Julian M; Stata, Matt; Sage, Rowan F; Lu, Haorong; Wei, Xiaofeng; Wong, Gane Ka-Shu; Zhu, Xin-Guang
2015-06-18
The genus Flaveria has been extensively used as a model to study the evolution of C4 photosynthesis as it contains C3 and C4 species as well as a number of species that exhibit intermediate types of photosynthesis. The current phylogenetic tree of the genus Flaveria contains 21 of the 23 known Flaveria species and has been previously constructed using a combination of morphological data and three non-coding DNA sequences (nuclear encoded ETS, ITS and chloroplast encoded trnL-F). Here we developed a new strategy to update the phylogenetic tree of 16 Flaveria species based on RNA-Seq data. The updated phylogeny is largely congruent with the previously published tree but with some modifications. We propose that the data collection method provided in this study can be used as a generic method for phylogenetic tree reconstruction if the target species has no genomic information. We also showed that a "F. pringlei" genotype recently used in a number of labs may be a hybrid between F. pringlei (C3) and F. angustifolia (C3-C4). We propose that the new strategy of obtaining phylogenetic sequences outlined in this study can be used to construct robust trees in a larger number of taxa. The updated Flaveria phylogenetic tree also supports a hypothesis of stepwise and parallel evolution of C4 photosynthesis in the Flavaria clade.
Phylogenetic Analysis of Local-Scale Tree Soil Associations in a Lowland Moist Tropical Forest
Schreeg, Laura A.; Kress, W. John; Erickson, David L.; Swenson, Nathan G.
2010-01-01
Background Local plant-soil associations are commonly studied at the species-level, while associations at the level of nodes within a phylogeny have been less well explored. Understanding associations within a phylogenetic context, however, can improve our ability to make predictions across systems and can advance our understanding of the role of evolutionary history in structuring communities. Methodology/Principal Findings Here we quantified evolutionary signal in plant-soil associations using a DNA sequence-based community phylogeny and several soil variables (e.g., extractable phosphorus, aluminum and manganese, pH, and slope as a proxy for soil water). We used published plant distributional data from the 50-ha plot on Barro Colorado Island (BCI), Republic of Panamá. Our results suggest some groups of closely related species do share similar soil associations. Most notably, the node shared by Myrtaceae and Vochysiaceae was associated with high levels of aluminum, a potentially toxic element. The node shared by Apocynaceae was associated with high extractable phosphorus, a nutrient that could be limiting on a taxon specific level. The node shared by the large group of Laurales and Magnoliales was associated with both low extractable phosphorus and with steeper slope. Despite significant node-specific associations, this study detected little to no phylogeny-wide signal. We consider the majority of the ‘traits’ (i.e., soil variables) evaluated to fall within the category of ecological traits. We suggest that, given this category of traits, phylogeny-wide signal might not be expected while node-specific signals can still indicate phylogenetic structure with respect to the variable of interest. Conclusions Within the BCI forest dynamics plot, distributions of some plant taxa are associated with local-scale differences in soil variables when evaluated at individual nodes within the phylogenetic tree, but they are not detectable by phylogeny-wide signal. Trends highlighted in this analysis suggest how plant-soil associations may drive plant distributions and diversity at the local-scale. PMID:21060686
Villandre, Luc; Günthard, Huldrych F.; Kouyos, Roger; Stadler, Tanja
2016-01-01
Background Transmission patterns of sexually-transmitted infections (STIs) could relate to the structure of the underlying sexual contact network, whose features are therefore of interest to clinicians. Conventionally, we represent sexual contacts in a population with a graph, that can reveal the existence of communities. Phylogenetic methods help infer the history of an epidemic and incidentally, may help detecting communities. In particular, phylogenetic analyses of HIV-1 epidemics among men who have sex with men (MSM) have revealed the existence of large transmission clusters, possibly resulting from within-community transmissions. Past studies have explored the association between contact networks and phylogenies, including transmission clusters, producing conflicting conclusions about whether network features significantly affect observed transmission history. As far as we know however, none of them thoroughly investigated the role of communities, defined with respect to the network graph, in the observation of clusters. Methods The present study investigates, through simulations, community detection from phylogenies. We simulate a large number of epidemics over both unweighted and weighted, undirected random interconnected-islands networks, with islands corresponding to communities. We use weighting to modulate distance between islands. We translate each epidemic into a phylogeny, that lets us partition our samples of infected subjects into transmission clusters, based on several common definitions from the literature. We measure similarity between subjects’ island membership indices and transmission cluster membership indices with the adjusted Rand index. Results and Conclusion Analyses reveal modest mean correspondence between communities in graphs and phylogenetic transmission clusters. We conclude that common methods often have limited success in detecting contact network communities from phylogenies. The rarely-fulfilled requirement that network communities correspond to clades in the phylogeny is their main drawback. Understanding the link between transmission clusters and communities in sexual contact networks could help inform policymaking to curb HIV incidence in MSMs. PMID:26863322
Salas-Leiva, Dayana E.; Meerow, Alan W.; Calonje, Michael; Griffith, M. Patrick; Francisco-Ortega, Javier; Nakamura, Kyoko; Stevenson, Dennis W.; Lewis, Carl E.; Namoff, Sandra
2013-01-01
Background and aims Despite a recent new classification, a stable phylogeny for the cycads has been elusive, particularly regarding resolution of Bowenia, Stangeria and Dioon. In this study, five single-copy nuclear genes (SCNGs) are applied to the phylogeny of the order Cycadales. The specific aim is to evaluate several gene tree–species tree reconciliation approaches for developing an accurate phylogeny of the order, to contrast them with concatenated parsimony analysis and to resolve the erstwhile problematic phylogenetic position of these three genera. Methods DNA sequences of five SCNGs were obtained for 20 cycad species representing all ten genera of Cycadales. These were analysed with parsimony, maximum likelihood (ML) and three Bayesian methods of gene tree–species tree reconciliation, using Cycas as the outgroup. A calibrated date estimation was developed with Bayesian methods, and biogeographic analysis was also conducted. Key Results Concatenated parsimony, ML and three species tree inference methods resolve exactly the same tree topology with high support at most nodes. Dioon and Bowenia are the first and second branches of Cycadales after Cycas, respectively, followed by an encephalartoid clade (Macrozamia–Lepidozamia–Encephalartos), which is sister to a zamioid clade, of which Ceratozamia is the first branch, and in which Stangeria is sister to Microcycas and Zamia. Conclusions A single, well-supported phylogenetic hypothesis of the generic relationships of the Cycadales is presented. However, massive extinction events inferred from the fossil record that eliminated broader ancestral distributions within Zamiaceae compromise accurate optimization of ancestral biogeographical areas for that hypothesis. While major lineages of Cycadales are ancient, crown ages of all modern genera are no older than 12 million years, supporting a recent hypothesis of mostly Miocene radiations. This phylogeny can contribute to an accurate infrafamilial classification of Zamiaceae. PMID:23997230
Revell, Liam J; Mahler, D Luke; Reynolds, R Graham; Slater, Graham J
2015-04-01
In recent years, enormous effort and investment has been put into assembling the tree of life: a phylogenetic history for all species on Earth. Overwhelmingly, this progress toward building an ever increasingly complete phylogeny of living things has been accomplished through sophisticated analysis of molecular data. In the modern genomic age, molecular genetic data have become very easy and inexpensive to obtain for many species. However, some lineages are poorly represented in or absent from tissue collections, or are unavailable for molecular analysis for other reasons such as restrictive biological sample export laws. Other species went extinct recently and are only available in formalin museum preparations or perhaps even as subfossils. In this brief communication we present a new method for placing cryptic, recently extinct, or hypothesized taxa into an ultrametric phylogeny of extant taxa using continuous character data. This method is based on a relatively simple modification of an established maximum likelihood (ML) method for phylogeny inference from continuous traits. We show that the method works well on simulated trees and data. We then apply it to the case of placing the Culebra Island Giant Anole (Anolis roosevelti) into a phylogeny of Caribbean anoles. Anolis roosevelti is a "crown-giant" ecomorph anole hypothesized to have once been found throughout the Spanish, United States, and British Virgin Islands, but that has not been encountered or collected since the 1930s. Although this species is widely thought to be closely related to the Puerto Rican giant anole, A. cuvieri, our ML method actually places A. roosevelti in a different part of the tree and closely related to a clade of morphologically similar species. We are unable, however, to reject a phylogenetic position for A. roosevelti that places it as sister taxon to A. cuvieri; although close relationship with the remainder of Puerto Rican anole species is strongly rejected by our method. © 2015 The Author(s).
Antonov, V A; Altukhova, V V; Savchenko, S S; Zamaraev, V S; Iliukhin, V I; Alekseev, V V
2007-01-01
Burkholderia mallei is highly pathogenic microorganism for both humans and animals. In this work, the possibility of the use of the genotyping method for differentiation between strains of B. mallei was studied. A collection of 14 isolates of B. mallei was characterized using randomly amplified polymorphic DNA (RAPD) and multilocus sequence typing (MLST). RAPD was the best method used for detecting strain differences of B. mallei. It was suggested that this method would be an increasingly useful molecular epidemiological tool.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, Shea N.; McLoughlin, Kevin; Be, Nicholas A.
Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne alphavirus that has caused large outbreaks of severe illness in both horses and humans. New approaches are needed to rapidly infer the origin of a newly discovered VEEV strain, estimate its equine amplification and resultant epidemic potential, and predict human virulence phenotype. We performed whole genome single nucleotide polymorphism (SNP) analysis of all available VEE antigenic complex genomes, verified that a SNP-based phylogeny accurately captured the features of a phylogenetic tree based on multiple sequence alignment, and developed a high resolution genome-wide SNP microarray. We used the microarray to analyze a broadmore » panel of VEEV isolates, found excellent concordance between array- and sequence-based SNP calls, genotyped unsequenced isolates, and placed them on a phylogeny with sequenced genomes. The microarray successfully genotyped VEEV directly from tissue samples of an infected mouse, bypassing the need for viral isolation, culture and genomic sequencing. Lastly, we identified genomic variants associated with serotypes and host species, revealing a complex relationship between genotype and phenotype.« less
Pathgroups, a dynamic data structure for genome reconstruction problems.
Zheng, Chunfang
2010-07-01
Ancestral gene order reconstruction problems, including the median problem, quartet construction, small phylogeny, guided genome halving and genome aliquoting, are NP hard. Available heuristics dedicated to each of these problems are computationally costly for even small instances. We present a data structure enabling rapid heuristic solution to all these ancestral genome reconstruction problems. A generic greedy algorithm with look-ahead based on an automatically generated priority system suffices for all the problems using this data structure. The efficiency of the algorithm is due to fast updating of the structure during run time and to the simplicity of the priority scheme. We illustrate with the first rapid algorithm for quartet construction and apply this to a set of yeast genomes to corroborate a recent gene sequence-based phylogeny. http://albuquerque.bioinformatics.uottawa.ca/pathgroup/Quartet.html chunfang313@gmail.com Supplementary data are available at Bioinformatics online.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medina, Monica; Collins, Timothy M.; Walsh, Patrick J.
2000-08-10
Sea hares within the genus Aplysia are important neurobiological model organisms, and as studies based on different Aplysia species appear in the literature, a phylogenetic framework has become essential. We present a phylogenetic hypothesis for this genus, based on portions of two mitochondrial genes (12S and 16S). In addition, we reconstruct the evolution of several behavioral characters of interest to neurobiologists in order to illustrate the potential benefits of a phylogeny for the genus Aplysia. These benefits include the determination of ancestral traits, the direction and timing of evolution of characters, prediction of the distribution of traits, and identification ofmore » cases of independent acquisition of traits within lineages. This last benefit may prove especially useful in understanding the linkage between behaviors and their underlying neurological basis.« less
NASA Astrophysics Data System (ADS)
Porco, David; Deharveng, Louis
2009-08-01
The phylogeny of Collembola, originally discussed from a morphological point of view, has more recently benefited from novel insights brought by molecular analyses. Both morphological and molecular characters produced a well-resolved phylogenetic hypothesis including all orders, most families, and a large number of genera. However, several conflicting points exist between molecular and morphological data, and new characters are clearly needed to resolve these inconsistencies. In this study the usefulness of a new character type not previously used in the phylogenetic study of Collembola was tested: the epicuticular chemical compounds. Our phylogenetic analysis was based on 380 compounds from 26 Collembola species. The results show good resolution for terminal branches but not for internal nodes. This is probably due to the partial involvement of epicuticular lipids in ecological functions such as water conservation and sexual attraction. Thus, this character type is appropriate for reconstructing phylogenetic relationships among recently diversified groups.
Arcila, Dahiana; Alexander Pyron, R; Tyler, James C; Ortí, Guillermo; Betancur-R, Ricardo
2015-01-01
Time-calibrated phylogenies based on molecular data provide a framework for comparative studies. Calibration methods to combine fossil information with molecular phylogenies are, however, under active development, often generating disagreement about the best way to incorporate paleontological data into these analyses. This study provides an empirical comparison of the most widely used approach based on node-dating priors for relaxed clocks implemented in the programs BEAST and MrBayes, with two recently proposed improvements: one using a new fossilized birth-death process model for node dating (implemented in the program DPPDiv), and the other using a total-evidence or tip-dating method (implemented in MrBayes and BEAST). These methods are applied herein to tetraodontiform fishes, a diverse group of living and extinct taxa that features one of the most extensive fossil records among teleosts. Previous estimates of time-calibrated phylogenies of tetraodontiforms using node-dating methods reported disparate estimates for their age of origin, ranging from the late Jurassic to the early Paleocene (ca. 150-59Ma). We analyzed a comprehensive dataset with 16 loci and 210 morphological characters, including 131 taxa (95 extant and 36 fossil species) representing all families of fossil and extant tetraodontiforms, under different molecular clock calibration approaches. Results from node-dating methods produced consistently younger ages than the tip-dating approaches. The older ages inferred by tip dating imply an unlikely early-late Jurassic (ca. 185-119Ma) origin for this order and the existence of extended ghost lineages in their fossil record. Node-based methods, by contrast, produce time estimates that are more consistent with the stratigraphic record, suggesting a late Cretaceous (ca. 86-96Ma) origin. We show that the precision of clade age estimates using tip dating increases with the number of fossils analyzed and with the proximity of fossil taxa to the node under assessment. This study suggests that current implementations of tip dating may overestimate ages of divergence in calibrated phylogenies. It also provides a comprehensive phylogenetic framework for tetraodontiform systematics and future comparative studies. Copyright © 2014 Elsevier Inc. All rights reserved.
Hailer, Frank; Kutschera, Verena E; Hallström, Björn M; Fain, Steven R; Leonard, Jennifer A; Arnason, Ulfur; Janke, Axel
2013-03-29
Nakagome et al. reanalyzed some of our data and assert that we cannot refute the mitochondrial DNA-based scenario for polar bear evolution. Their single-locus test statistic is strongly affected by introgression and incomplete lineage sorting, whereas our multilocus approaches are better suited to recover the true species relationships. Indeed, our sister-lineage model receives high support in a Bayesian model comparison.
Rapid Detection & Identification of Bacillus Species using MALDI-TOF/TOF and Biomarker Database
2006-06-01
rRNA sequence analysis. Multilocus enzyme electrophoresis ( MEE ) and comparative DNA sequence analysis suggest that they may represent a single species...adaptation of the MEE method [63] but with greater discrimination [64]. All of these new PCR-based subtyping methods are certainly superior and more...Demirev, P.A., Lin, J.S., Pineda , F.J., and Fenselau, C. (2001). Bioinformatics and mass spectrometry for microorganism identification: proteome-wide
2013-01-01
aquatic plants and subsequent ecological consequences. The authors of this technical note have linked avian vacuolar myelinopathy (AVM), a disease...additional cyanobacteria sequences to determine designations for probe development, to advance understanding of the species’ phylogeny , and to lay...groundwork for its formal description. Phylogeny data confirm that the species is in section V, order Stigonematales. Phylogeny also infers that the
A comparative test of phylogenetic diversity indices.
Schweiger, Oliver; Klotz, Stefan; Durka, Walter; Kühn, Ingolf
2008-09-01
Traditional measures of biodiversity, such as species richness, usually treat species as being equal. As this is obviously not the case, measuring diversity in terms of features accumulated over evolutionary history provides additional value to theoretical and applied ecology. Several phylogenetic diversity indices exist, but their behaviour has not yet been tested in a comparative framework. We provide a test of ten commonly used phylogenetic diversity indices based on 40 simulated phylogenies of varying topology. We restrict our analysis to a topological fully resolved tree without information on branch lengths and species lists with presence-absence data. A total of 38,000 artificial communities varying in species richness covering 5-95% of the phylogenies were created by random resampling. The indices were evaluated based on their ability to meet a priori defined requirements. No index meets all requirements, but three indices turned out to be more suitable than others under particular conditions. Average taxonomic distinctness (AvTD) and intensive quadratic entropy (J) are calculated by averaging and are, therefore, unbiased by species richness while reflecting phylogeny per se well. However, averaging leads to the violation of set monotonicity, which requires that species extinction cannot increase the index. Total taxonomic distinctness (TTD) sums up distinctiveness values for particular species across the community. It is therefore strongly linked to species richness and reflects phylogeny per se weakly but satisfies set monotonicity. We suggest that AvTD and J are best applied to studies that compare spatially or temporally rather independent communities that potentially vary strongly in their phylogenetic composition-i.e. where set monotonicity is a more negligible issue, but independence of species richness is desired. In contrast, we suggest that TTD be used in studies that compare rather interdependent communities where changes occur more gradually by species extinction or introduction. Calculating AvTD or TTD, depending on the research question, in addition to species richness is strongly recommended.
Li, Qin-Qin; Zhou, Song-Dong; He, Xing-Jin; Yu, Yan; Zhang, Yu-Cheng; Wei, Xian-Qin
2010-01-01
Background and Aims The genus Allium comprises more than 800 species, placing it among the largest monocotyledonous genera. It is a variable group that is spread widely across the Holarctic region. Previous studies of Allium have been useful in identifying and assessing its evolutionary lineages. However, there are still many gaps in our knowledge of infrageneric taxonomy and evolution of Allium. Further understanding of its phylogeny and biogeography will be achieved only through continued phylogenetic studies, especially of those species endemic to China that have often been excluded from previous analyses. Earlier molecular studies have shown that Chinese Allium is not monophyletic, so the goal of the present study was to infer the phylogeny and biogeography of Allium and to provide a classification of Chinese Allium by placement of Chinese species in the context of the entire phylogeny. Methods Phylogenetic studies were based on sequence data of the nuclear ribosomal internal transcribed spacer (ITS) and chloroplast rps16 intron, analysed using parsimony and Bayesian approaches. Biogeographical patterns were conducted using statistical dispersal–vicariance analysis (S-DIVA). Key Results Phylogenetic analyses indicate that Allium is monophyletic and consists of three major clades. Optimal reconstructions have favoured the ancestors of Amerallium, Anguinum, Vvedenskya, Porphyroprason and Melanocrommyum as originating in eastern Asia. Conclusions Phylogenetic analyses reveal that Allium is monophyletic but that some subgenera are not. The large genetic distances imply that Allium is of ancient origin. Molecular data suggest that its evolution proceeded along three separate evolutionary lines. S-DIVA indicates that the ancestor of Amerallium, Anguinum, Vvedenskya, Porphyroprason and Melanocrommyum originated from eastern Asia and underwent different biogeographical pathways. A taxonomic synopsis of Chinese Allium at sectional level is given, which divides Chinese Allium into 13 subgenera and 34 sections. PMID:20966186
Molecular phylogeny of Anopheles hyrcanus group (Diptera: Culicidae) based on mtDNA COI.
Fang, Yuan; Shi, Wen-Qi; Zhang, Yi
2017-05-08
The Anopheles hyrcanus group, which includes at least 25 species, is widely distributed in the Oriental and Palearctic regions. Some group members have been incriminated as vectors of malaria and other mosquito-borne diseases. It is difficult to identify Hyrcanus Group members by morphological features. Thus, molecular phylogeny has been proposed as an important complementary method to traditional morphological taxonomy. Based on the GenBank database and our original study data, we used 466 mitochondrial DNA COI sequences belonging to 18 species to reconstruct the molecular phylogeny of the Hyrcanus Group across its worldwide geographic range. The results are as follows. 1) The average conspecific K2P divergence was 0.008 (range 0.002-0.017), whereas sequence divergence between congroup species averaged 0.064 (range 0.026-0.108). 2) The topology of COI tree of the Hyrcanus Group was generally consistent with classical morphological taxonomy in terms of species classification, but disagreed in subgroup division. In the COI tree, the group was divided into at least three main clusters. The first cluster contained An. nimpe; the second was composed of the Nigerrimus Subgroup and An. argyropus; and the third cluster was comprised of the Lesteri Subgroup and other unassociated species. 3) Phylogenetic analysis of COI indicated that ancient hybridizations probably occurred among the three closely related species, An. sinensis, An. belenrae, and An. kleini. 4) The results supported An. paraliae as a probable synonym of An. lesteri, and it was possible that An. pseudopictus and An. hyrcanus were the same species, as evident from their extremely low interspecific genetic divergence (0.020 and 0.007, respectively) and their phylogenetic positions. In summary, we reconstructed the molecular phylogeny and analysed genetic divergence of the Hyrcanus Group using mitochondrial COI sequences. Our results suggest that in the future of malaria surveillance, we should not only pay much attention to those known vectors of malaria, but also their closely related species.
Eilertsen, Mari H; Kongsrud, Jon A; Alvestad, Tom; Stiller, Josefin; Rouse, Greg W; Rapp, Hans T
2017-10-31
A range of higher animal taxa are shared across various chemosynthesis-based ecosystems (CBEs), which demonstrates the evolutionary link between these habitats, but on a global scale the number of species inhabiting multiple CBEs is low. The factors shaping the distributions and habitat specificity of animals within CBEs are poorly understood, but geographic proximity of habitats, depth and substratum have been suggested as important. Biogeographic studies have indicated that intermediate habitats such as sedimented vents play an important part in the diversification of taxa within CBEs, but this has not been assessed in a phylogenetic framework. Ampharetid annelids are one of the most commonly encountered animal groups in CBEs, making them a good model taxon to study the evolution of habitat use in heterotrophic animals. Here we present a review of the habitat use of ampharetid species in CBEs, and a multi-gene phylogeny of Ampharetidae, with increased taxon sampling compared to previous studies. The review of microhabitats showed that many ampharetid species have a wide niche in terms of temperature and substratum. Depth may be limiting some species to a certain habitat, and trophic ecology and/or competition are identified as other potentially relevant factors. The phylogeny revealed that ampharetids have adapted into CBEs at least four times independently, with subsequent diversification, and shifts between ecosystems have happened in each of these clades. Evolutionary transitions are found to occur both from seep to vent and vent to seep, and the results indicate a role of sedimented vents in the transition between bare-rock vents and seeps. The high number of ampharetid species recently described from CBEs, and the putative new species included in the present phylogeny, indicates that there is considerable diversity still to be discovered. This study provides a molecular framework for future studies to build upon and identifies some ecological and evolutionary hypotheses to be tested as new data is produced.
Alexandrou, Markos A.; Cardinale, Bradley J.; Hall, John D.; Delwiche, Charles F.; Fritschie, Keith; Narwani, Anita; Venail, Patrick A.; Bentlage, Bastian; Pankey, M. Sabrina; Oakley, Todd H.
2015-01-01
The competition-relatedness hypothesis (CRH) predicts that the strength of competition is the strongest among closely related species and decreases as species become less related. This hypothesis is based on the assumption that common ancestry causes close relatives to share biological traits that lead to greater ecological similarity. Although intuitively appealing, the extent to which phylogeny can predict competition and co-occurrence among species has only recently been rigorously tested, with mixed results. When studies have failed to support the CRH, critics have pointed out at least three limitations: (i) the use of data poor phylogenies that provide inaccurate estimates of species relatedness, (ii) the use of inappropriate statistical models that fail to detect relationships between relatedness and species interactions amidst nonlinearities and heteroskedastic variances, and (iii) overly simplified laboratory conditions that fail to allow eco-evolutionary relationships to emerge. Here, we address these limitations and find they do not explain why evolutionary relatedness fails to predict the strength of species interactions or probabilities of coexistence among freshwater green algae. First, we construct a new data-rich, transcriptome-based phylogeny of common freshwater green algae that are commonly cultured and used for laboratory experiments. Using this new phylogeny, we re-analyse ecological data from three previously published laboratory experiments. After accounting for the possibility of nonlinearities and heterogeneity of variances across levels of relatedness, we find no relationship between phylogenetic distance and ecological traits. In addition, we show that communities of North American green algae are randomly composed with respect to their evolutionary relationships in 99% of 1077 lakes spanning the continental United States. Together, these analyses result in one of the most comprehensive case studies of how evolutionary history influences species interactions and community assembly in both natural and experimental systems. Our results challenge the generality of the CRH and suggest it may be time to re-evaluate the validity and assumptions of this hypothesis. PMID:25473009