Science.gov

Sample records for multimillion atom quantum

  1. Multi-million atom electronic structure calculations for quantum dots

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad

    Quantum dots grown by self-assembly process are typically constructed by 50,000 to 5,000,000 structural atoms which confine a small, countable number of extra electrons or holes in a space that is comparable in size to the electron wavelength. Under such conditions quantum dots can be interpreted as artificial atoms with the potential to be custom tailored to new functionality. In the past decade or so, these nanostructures have attracted significant experimental and theoretical attention in the field of nanoscience. The new and tunable optical and electrical properties of these artificial atoms have been proposed in a variety of different fields, for example in communication and computing systems, medical and quantum computing applications. Predictive and quantitative modeling and simulation of these structures can help to narrow down the vast design space to a range that is experimentally affordable and move this part of nanoscience to nano-Technology. Modeling of such quantum dots pose a formidable challenge to theoretical physicists because: (1) Strain originating from the lattice mismatch of the materials penetrates deep inside the buffer surrounding the quantum dots and require large scale (multi-million atom) simulations to correctly capture its effect on the electronic structure, (2) The interface roughness, the alloy randomness, and the atomistic granularity require the calculation of electronic structure at the atomistic scale. Most of the current or past theoretical calculations are based on continuum approach such as effective mass approximation or k.p modeling capturing either no or one of the above mentioned effects, thus missing some of the essential physics. The Objectives of this thesis are: (1) to model and simulate the experimental quantum dot topologies at the atomistic scale; (2) to theoretically explore the essential physics i.e. long range strain, linear and quadratic piezoelectricity, interband optical transition strengths, quantum confined

  2. Study of alloy disorder in quantum dots through multi-million atom simulations

    NASA Technical Reports Server (NTRS)

    Kilmeck, Gerhard; Oyafuso, Fabiano; Boykin, T. B.; Bowen, R. C.; von Allmen, Paul A.

    2003-01-01

    A tight binding model which includes s, p, d, s orbitals is used to examine the electronic structures of an ensemble of dome-shaped In0.6 Ga0.4 As quantum dots. Given ensembles of identically sized quantum dots, variations in composition and configuration yield a linewidth broadening of less than 0.35 meV, much smaller than the total broadening determined from photoluminescence experiments. It is also found that the computed disorder-induced broadening is very sensitive to the applied boundary conditions, so that care must be taken to ensure proper convergence of the numerical results. Examination of local eigenenergies as functions of position shows similar convergence problems and indicates that an inaccurate resolution of the equilibrium atomic positions due to truncation of the simulation domain may be the source of the slow ground state convergence.

  3. Scaling of Multimillion-Atom Biological Molecular Dynamics Simulation on a Petascale Supercomputer

    SciTech Connect

    Schulz, Roland; Lindner, Benjamin; Petridis, Loukas; Smith, Jeremy C

    2009-01-01

    A strategy is described for a fast all-atom molecular dynamics simulation of multimillion-atom biological systems on massively parallel supercomputers. The strategy is developed using benchmark systems of particular interest to bioenergy research, comprising models of cellulose and lignocellulosic biomass in an aqueous solution. The approach involves using the reaction field (RF) method for the computation of long-range electrostatic interactions, which permits efficient scaling on many thousands of cores. Although the range of applicability of the RF method for biomolecular systems remains to be demonstrated, for the benchmark systems the use of the RF produces molecular dipole moments, Kirkwood G factors, other structural properties, and mean-square fluctuations in excellent agreement with those obtained with the commonly used Particle Mesh Ewald method. With RF, three million- and five million atom biological systems scale well up to 30k cores, producing 30 ns/day. Atomistic simulations of very large systems for time scales approaching the microsecond would, therefore, appear now to be within reach.

  4. Shock-induced poration, cholesterol flip-flop and small interfering RNA transfection in a phospholipid membrane: Multimillion atom, microsecond molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Choubey, Amit

    Biological cell membranes provide mechanical stability to cells and understanding their structure, dynamics and mechanics are important biophysics problems. Experiments coupled with computational methods such as molecular dynamics (MD) have provided insight into the physics of membranes. We use long-time and large-scale MD simulations to study the structure, dynamics and mechanical behavior of membranes. We investigate shock-induced collapse of nanobubbles in water using MD simulations based on a reactive force field. We observe a focused jet at the onset of bubble shrinkage and a secondary shock wave upon bubble collapse. The jet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. Shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of 1 km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results. We also investigate molecular mechanisms of poration in lipid bilayers due to shock-induced collapse of nanobubbles. Our multimillion-atom MD simulations reveal that the jet impact generates shear flow of water on bilayer leaflets and pressure gradients across them. This transiently enhances the bilayer permeability by creating nanopores through which water molecules translocate rapidly across the bilayer. Effects of nanobubble size and temperature on the porosity of lipid bilayers are examined. The second research project focuses on cholesterol (CHOL) dynamics in phospholipid bilayers. Several experimental and computational studies have been performed on lipid bilayers consisting of dipalmitoylphosphatidylcholine (DPPC) and CHOL molecules. CHOL interleaflet transport (flip-flop) plays an important role in interleaflet coupling and determining CHOL flip-flop rate has been elusive. Various studies report that the rate ranges between milliseconds to seconds. We calculate CHOL flip-flop rates by

  5. Teleportation of an atomic ensemble quantum state.

    PubMed

    Dantan, A; Treps, N; Bramati, A; Pinard, M

    2005-02-11

    We propose a protocol to achieve high fidelity quantum state teleportation of a macroscopic atomic ensemble using a pair of quantum-correlated atomic ensembles. We show how to prepare this pair of ensembles using quasiperfect quantum state transfer processes between light and atoms. Our protocol relies on optical joint measurements of the atomic ensemble states and magnetic feedback reconstruction.

  6. Atomic quantum state teleportation and swapping.

    PubMed

    Kuzmich, A; Polzik, E S

    2000-12-25

    A set of protocols for atoms-photons and atoms-atoms quantum state teleportation and swapping utilizing Einstein-Podolsky-Rosen light is proposed. The protocols work for polarization quantum states of multiphoton light pulses and macroscopic samples of atoms, i.e., for continuous quantum variables. A simple free space interaction of polarized light with a spin polarized atomic ensemble is shown to suffice for these protocols. Feasibility of experimental realization using gas samples of atoms is analyzed.

  7. Atom-ion quantum gate

    SciTech Connect

    Doerk, Hauke; Idziaszek, Zbigniew; Calarco, Tommaso

    2010-01-15

    Ultracold collisions of ions with neutral atoms in traps are studied. Recently, ultracold atom-ion systems have become available in experimental setups, where their quantum states can be coherently controlled. This control allows for an implementation of quantum information processing, combining the advantages of charged and neutral particles. The state-dependent dynamics that is a necessary ingredient for quantum computation schemes is provided in this case by the short-range interaction forces that depend on the hyperfine states of both particles. In this work, a theoretical description of spin-state-dependent trapped atom-ion collisions is developed in the framework of a multichannel quantum-defect theory and an effective single-channel model is formulated that reduces the complexity of the problem. Based on this description, a two-qubit phase gate between a {sup 135}Ba{sup +} ion and a {sup 87}Rb atom is simulated using a realistic combination of the singlet and triplet scattering lengths. The gate process is optimized and accelerated with the help of optimal control techniques. The result is a gate fidelity of 1-10{sup -3} within 350 mus.

  8. "Electronium": A Quantum Atomic Teaching Model.

    ERIC Educational Resources Information Center

    Budde, Marion; Niedderer, Hans; Scott, Philip; Leach, John

    2002-01-01

    Outlines an alternative atomic model to the probability model, the descriptive quantum atomic model Electronium. Discusses the way in which it is intended to support students in learning quantum-mechanical concepts. (Author/MM)

  9. Atomic physics: A milestone in quantum computing

    NASA Astrophysics Data System (ADS)

    Bartlett, Stephen D.

    2016-08-01

    Quantum computers require many quantum bits to perform complex calculations, but devices with more than a few bits are difficult to program. A device based on five atomic quantum bits shows a way forward. See Letter p.63

  10. Remote Preparation of an Atomic Quantum Memory

    SciTech Connect

    Rosenfeld, Wenjamin; Berner, Stefan; Volz, Juergen; Weber, Markus; Weinfurter, Harald

    2007-02-02

    Storage and distribution of quantum information are key elements of quantum information processing and future quantum communication networks. Here, using atom-photon entanglement as the main physical resource, we experimentally demonstrate the preparation of a distant atomic quantum memory. Applying a quantum teleportation protocol on a locally prepared state of a photonic qubit, we realized this so-called remote state preparation on a single, optically trapped {sup 87}Rb atom. We evaluated the performance of this scheme by the full tomography of the prepared atomic state, reaching an average fidelity of 82%.

  11. Quantum information processing with atoms and photons.

    PubMed

    Monroe, C

    2002-03-14

    Quantum information processors exploit the quantum features of superposition and entanglement for applications not possible in classical devices, offering the potential for significant improvements in the communication and processing of information. Experimental realization of large-scale quantum information processors remains a long-term vision, as the required nearly pure quantum behaviour is observed only in exotic hardware such as individual laser-cooled atoms and isolated photons. But recent theoretical and experimental advances suggest that cold atoms and individual photons may lead the way towards bigger and better quantum information processors, effectively building mesoscopic versions of 'Schrödinger's cat' from the bottom up.

  12. Quantum teleportation between remote atomic-ensemble quantum memories.

    PubMed

    Bao, Xiao-Hui; Xu, Xiao-Fan; Li, Che-Ming; Yuan, Zhen-Sheng; Lu, Chao-Yang; Pan, Jian-Wei

    2012-12-11

    Quantum teleportation and quantum memory are two crucial elements for large-scale quantum networks. With the help of prior distributed entanglement as a "quantum channel," quantum teleportation provides an intriguing means to faithfully transfer quantum states among distant locations without actual transmission of the physical carriers [Bennett CH, et al. (1993) Phys Rev Lett 70(13):1895-1899]. Quantum memory enables controlled storage and retrieval of fast-flying photonic quantum bits with stationary matter systems, which is essential to achieve the scalability required for large-scale quantum networks. Combining these two capabilities, here we realize quantum teleportation between two remote atomic-ensemble quantum memory nodes, each composed of ∼10(8) rubidium atoms and connected by a 150-m optical fiber. The spin wave state of one atomic ensemble is mapped to a propagating photon and subjected to Bell state measurements with another single photon that is entangled with the spin wave state of the other ensemble. Two-photon detection events herald the success of teleportation with an average fidelity of 88(7)%. Besides its fundamental interest as a teleportation between two remote macroscopic objects, our technique may be useful for quantum information transfer between different nodes in quantum networks and distributed quantum computing. PMID:23144222

  13. Quantum teleportation between remote atomic-ensemble quantum memories.

    PubMed

    Bao, Xiao-Hui; Xu, Xiao-Fan; Li, Che-Ming; Yuan, Zhen-Sheng; Lu, Chao-Yang; Pan, Jian-Wei

    2012-12-11

    Quantum teleportation and quantum memory are two crucial elements for large-scale quantum networks. With the help of prior distributed entanglement as a "quantum channel," quantum teleportation provides an intriguing means to faithfully transfer quantum states among distant locations without actual transmission of the physical carriers [Bennett CH, et al. (1993) Phys Rev Lett 70(13):1895-1899]. Quantum memory enables controlled storage and retrieval of fast-flying photonic quantum bits with stationary matter systems, which is essential to achieve the scalability required for large-scale quantum networks. Combining these two capabilities, here we realize quantum teleportation between two remote atomic-ensemble quantum memory nodes, each composed of ∼10(8) rubidium atoms and connected by a 150-m optical fiber. The spin wave state of one atomic ensemble is mapped to a propagating photon and subjected to Bell state measurements with another single photon that is entangled with the spin wave state of the other ensemble. Two-photon detection events herald the success of teleportation with an average fidelity of 88(7)%. Besides its fundamental interest as a teleportation between two remote macroscopic objects, our technique may be useful for quantum information transfer between different nodes in quantum networks and distributed quantum computing.

  14. Quantum teleportation between remote atomic-ensemble quantum memories

    PubMed Central

    Bao, Xiao-Hui; Xu, Xiao-Fan; Li, Che-Ming; Yuan, Zhen-Sheng; Lu, Chao-Yang; Pan, Jian-Wei

    2012-01-01

    Quantum teleportation and quantum memory are two crucial elements for large-scale quantum networks. With the help of prior distributed entanglement as a “quantum channel,” quantum teleportation provides an intriguing means to faithfully transfer quantum states among distant locations without actual transmission of the physical carriers [Bennett CH, et al. (1993) Phys Rev Lett 70(13):1895–1899]. Quantum memory enables controlled storage and retrieval of fast-flying photonic quantum bits with stationary matter systems, which is essential to achieve the scalability required for large-scale quantum networks. Combining these two capabilities, here we realize quantum teleportation between two remote atomic-ensemble quantum memory nodes, each composed of ∼108 rubidium atoms and connected by a 150-m optical fiber. The spin wave state of one atomic ensemble is mapped to a propagating photon and subjected to Bell state measurements with another single photon that is entangled with the spin wave state of the other ensemble. Two-photon detection events herald the success of teleportation with an average fidelity of 88(7)%. Besides its fundamental interest as a teleportation between two remote macroscopic objects, our technique may be useful for quantum information transfer between different nodes in quantum networks and distributed quantum computing. PMID:23144222

  15. Atoms and cavities: Explorations of quantum entanglement

    SciTech Connect

    Raimond, J. M.; Hagley, E.; Maitre, X.; Nogues, G.; Wunderlich, C.; Brune, M.; Haroche, S.

    1999-06-11

    The interaction of circular Rydberg atoms with a high-quality microwave cavity makes it possible to realize complex quantum state manipulations. The state of an atom can be 'copied' onto the cavity. Reversing this operation at a later time with a second atom, we realize an elementary 'quantum memory' holding an atomic quantum coherence for a while in a cavity mode. We have also generated two-atom entangled states of the Einstein-Podolsky-Rosen type. At variance with previous experiments, this one implies massive particles in a completely controlled process. These entanglement manipulations can be generalized to more complex or to mesoscopic systems and open the way to new tests of fundamental aspects of the quantum world.

  16. Topologically Reconfigurable Atomic Lattice Quantum Metamaterial

    NASA Astrophysics Data System (ADS)

    Jha, Pankaj; Mrejen, Michael; Kim, Jeongmin; Wu, Chihhui; Wang, Yuan; Rostovtsev, Yuri; Zhang, Xiang

    Metamaterials have attracted unprecedented attention owing to their exceptional light-matter interaction properties. However, harnessing metamaterial at single photon or few photon excitations is still a long way to go due to several critical challenges such as optical loss, defects to name a few. Here we introduce and theoretically demonstrate a novel platform toward quantum metamaterial, immune to aforementioned challenges, with ultra-cold neutral atoms trapped in an artificial crystal of light. Such periodic atomic density grating -an atomic lattice- exhibits extreme anisotropic optical response where it behaves like a metal in one direction but dielectric along orthogonal directions. We harness the interacting dark resonance physics to eliminate the absorption loss and demonstrate an all-optical and ultra-fast control over the photonic topological transition from a close to an open topology at the same frequency. Such atomic lattice quantum metamaterial enables dynamic manipulation of the decay rate of a quantum emitter by more than an order of magnitude. Our proposal brings together two important contemporary realm of science - cold atom physics and metamaterial for applications in both fundamental and applied science. Atomic lattice quantum metamaterial may provide new opportunities, at single or few photon level, for quantum sensing, quantum information processing with metamaterials.

  17. Quantum Zeno dynamics in atoms and cavities

    NASA Astrophysics Data System (ADS)

    Gleyzes, Sébastien; Raimond, Jean-Michel

    2016-08-01

    Quantum Zeno Dynamics restricts the evolution of a system in a tailorable subspace of the Hilbert space by repeated measurements of a proper observable. This restricted dynamics can be counterintuitive and lead to the generation of interesting nonclassical states. We describe an experiment implementing the Zeno dynamics in an atomic Rydberg level manifold, and we propose an implementation in the cavity quantum electrodynamics context. Both systems open promising perspectives for quantum-enabled metrology and decoherence studies.

  18. Deterministic quantum teleportation of atomic qubits.

    PubMed

    Barrett, M D; Chiaverini, J; Schaetz, T; Britton, J; Itano, W M; Jost, J D; Knill, E; Langer, C; Leibfried, D; Ozeri, R; Wineland, D J

    2004-06-17

    Quantum teleportation provides a means to transport quantum information efficiently from one location to another, without the physical transfer of the associated quantum-information carrier. This is achieved by using the non-local correlations of previously distributed, entangled quantum bits (qubits). Teleportation is expected to play an integral role in quantum communication and quantum computation. Previous experimental demonstrations have been implemented with optical systems that used both discrete and continuous variables, and with liquid-state nuclear magnetic resonance. Here we report unconditional teleportation of massive particle qubits using atomic (9Be+) ions confined in a segmented ion trap, which aids individual qubit addressing. We achieve an average fidelity of 78 per cent, which exceeds the fidelity of any protocol that does not use entanglement. This demonstration is also important because it incorporates most of the techniques necessary for scalable quantum information processing in an ion-trap system.

  19. Quantum measurements of atoms using cavity QED

    SciTech Connect

    Dada, Adetunmise C.; Andersson, Erika; Jones, Martin L.; Kendon, Vivien M.; Everitt, Mark S.

    2011-04-15

    Generalized quantum measurements are an important extension of projective or von Neumann measurements in that they can be used to describe any measurement that can be implemented on a quantum system. We describe how to realize two nonstandard quantum measurements using cavity QED. The first measurement optimally and unambiguously distinguishes between two nonorthogonal quantum states. The second example is a measurement that demonstrates superadditive quantum coding gain. The experimental tools used are single-atom unitary operations effected by Ramsey pulses and two-atom Tavis-Cummings interactions. We show how the superadditive quantum coding gain is affected by errors in the field-ionization detection of atoms and that even with rather high levels of experimental imperfections, a reasonable amount of superadditivity can still be seen. To date, these types of measurements have been realized only on photons. It would be of great interest to have realizations using other physical systems. This is for fundamental reasons but also since quantum coding gain in general increases with code word length, and a realization using atoms could be more easily scaled than existing realizations using photons.

  20. Quantum Theory of Atom Laser Cooling

    NASA Astrophysics Data System (ADS)

    Wu, Xiang-Yao; Zhang, Bai-Jun; Yang, Jing-Hai; Liu, Xiao-Jing; Wu, Yi-Heng; Wang, Qing-Cai; Wang, Yan; Ba, Nuo; Li, Jing-Wu

    2011-09-01

    In this paper, we study the laser cooling mechanisms with extended Schrodinger quantum wave equation, which can describe a particle in conservative and non-conservative force field. We prove the atom in laser field can be cooled with the theory, and predict that the atom cooling temperature T is directly proportional to the atom vibration frequency ω, which are in accordance with experiment results (A.D. Oconnell, et al. in Nature 464:697, 2010).

  1. Atomic Fock states and quantum computing

    NASA Astrophysics Data System (ADS)

    Wan, Shoupu

    The potential impact of quantum computing has stimulated a world-wide effort to develop the necessary experimental and theoretical resources. In the race for the quantum computer, several candidate systems have emerged, but the ultimate system is still unclear. We study theoretically how to realize atomic Fock states both for fermionic and bosonic atoms, mainly in one-dimensional optical traps. We demonstrate a new approach of quantum computing based on ultracold fermionic atomic Fock states in optical traps. With the Pauli exclusion principle, producing fermionic atomic Fock states in optical traps is straightforward. We find that laser culling of fermionic atoms in optical traps can produce a scalable number of ultra-high fidelity qubits. We show how each qubit can be independently prepared, and how to perform the required entanglement operations and detect the qubit states with spatially resolved, single-atom detection with adiabatic trap-splitting and fluorescence imaging. On the other hand, bosonic atoms have a strong tendency to stay together. One must rely on strong repulsive interactions to produce bosonic atomic Fock states. To simulate the physical conditions of producing Fock states with ultracold bosonic atoms, we study a many-boson system with arbitrary interaction strength using the Bethe ansatz method. This approach provides a general framework, enabling the study of Fock state production over a wide range of realistic experimental parameters.

  2. Applicability of Rydberg atoms to quantum computers

    NASA Astrophysics Data System (ADS)

    Ryabtsev, Igor I.; Tretyakov, Denis B.; Beterov, Ilya I.

    2005-01-01

    The applicability of Rydberg atoms to quantum computers is examined from an experimental point of view. In many recent theoretical proposals, the excitation of atoms into highly excited Rydberg states was considered as a way to achieve quantum entanglement in cold atomic ensembles via dipole-dipole interactions that could be strong for Rydberg atoms. Appropriate conditions to realize a conditional quantum phase gate have been analysed. We also present the results of modelling experiments on microwave spectroscopy of single- and multi-atom excitations at the one-photon 37S1/2 → 37P1/2 and two-photon 37S1/2 → 38S1/2 transitions in an ensemble of a few sodium Rydberg atoms. The microwave spectra were investigated for various final states of the ensemble initially prepared in its ground state. The results may be applied to the studies on collective laser excitation of ground-state atoms aiming to realize quantum gates.

  3. Deterministic quantum teleportation with atoms.

    PubMed

    Riebe, M; Häffner, H; Roos, C F; Hänsel, W; Benhelm, J; Lancaster, G P T; Körber, T W; Becher, C; Schmidt-Kaler, F; James, D F V; Blatt, R

    2004-06-17

    Teleportation of a quantum state encompasses the complete transfer of information from one particle to another. The complete specification of the quantum state of a system generally requires an infinite amount of information, even for simple two-level systems (qubits). Moreover, the principles of quantum mechanics dictate that any measurement on a system immediately alters its state, while yielding at most one bit of information. The transfer of a state from one system to another (by performing measurements on the first and operations on the second) might therefore appear impossible. However, it has been shown that the entangling properties of quantum mechanics, in combination with classical communication, allow quantum-state teleportation to be performed. Teleportation using pairs of entangled photons has been demonstrated, but such techniques are probabilistic, requiring post-selection of measured photons. Here, we report deterministic quantum-state teleportation between a pair of trapped calcium ions. Following closely the original proposal, we create a highly entangled pair of ions and perform a complete Bell-state measurement involving one ion from this pair and a third source ion. State reconstruction conditioned on this measurement is then performed on the other half of the entangled pair. The measured fidelity is 75%, demonstrating unequivocally the quantum nature of the process.

  4. Excess optical quantum noise in atomic sensors

    NASA Astrophysics Data System (ADS)

    Novikova, Irina; Mikhailov, Eugeniy; Xiao, Yanhong

    2015-05-01

    Enhanced nonlinear optical response of a coherent atomic medium is the basis for many atomic sensors, and their performance is ultimately limited by the quantum fluctuations of the optical read-out. Here we demonstrate that off-resonant interactions can significantly modify the quantum noise of the optical field, even when their effect on the mean signal is negligible. We illustrate this concept by using an atomic magnetometer based on the nonlinear Faraday effect: the rotation of the light polarization is mainly determined by the resonant light-induced spin alignment, which alone does not change the photon statistics of the optical probe. Yet, we found that the minimum noise of output polarization rotation measurements is above the expected shot noise limit. This excess quantum noise is due to off-resonant coupling and grows with atomic density. We also show that the detection scheme can be modified to reduce the measured quantum noise (even below the shot-noise limit) but only at the expense of the reduced rotational sensitivity. These results show the existence of previously unnoticed factors in fundamental limitations in atomic magnetometry and could have impacts in many other atom-light based precision measurements. We acknowledge the support from AFOSR (grant FA9550-13-1-0098), NSF (grant PHY-1308281), NBRPC(973 Program Grant 2012CB921604 and 2011CB921604), and NNSFC (Grants No. 11322436).

  5. Quantum teleportation with atoms trapped in cavities

    SciTech Connect

    Cho, Jaeyoon; Lee, Hai-Woong

    2004-09-01

    We propose a scheme to implement the quantum teleportation protocol with single atoms trapped in cavities. The scheme is based on the adiabatic passage and the polarization measurement. We show that it is possible to teleport the internal state of an atom trapped in a cavity to an atom trapped in another cavity with the success probability of 1/2 and the fidelity of 1. The scheme is resistant to a number of considerable imperfections such as the violation of the Lamb-Dicke condition, weak atom-cavity coupling, spontaneous emission, and detection inefficiency.

  6. Resonant quantum transitions in trapped antihydrogen atoms.

    PubMed

    Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Capra, A; Cesar, C L; Charlton, M; Deller, A; Donnan, P H; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Menary, S; Napoli, S C; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Shields, C R; Silveira, D M; Stracka, S; So, C; Thompson, R I; van der Werf, D P; Wurtele, J S

    2012-03-07

    The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom's stature lies in its simplicity and in the accuracy with which its spectrum can be measured and compared to theory. Today its spectrum remains a valuable tool for determining the values of fundamental constants and for challenging the limits of modern physics, including the validity of quantum electrodynamics and--by comparison with measurements on its antimatter counterpart, antihydrogen--the validity of CPT (charge conjugation, parity and time reversal) symmetry. Here we report spectroscopy of a pure antimatter atom, demonstrating resonant quantum transitions in antihydrogen. We have manipulated the internal spin state of antihydrogen atoms so as to induce magnetic resonance transitions between hyperfine levels of the positronic ground state. We used resonant microwave radiation to flip the spin of the positron in antihydrogen atoms that were magnetically trapped in the ALPHA apparatus. The spin flip causes trapped anti-atoms to be ejected from the trap. We look for evidence of resonant interaction by comparing the survival rate of trapped atoms irradiated with microwaves on-resonance to that of atoms subjected to microwaves that are off-resonance. In one variant of the experiment, we detect 23 atoms that survive in 110 trapping attempts with microwaves off-resonance (0.21 per attempt), and only two atoms that survive in 103 attempts with microwaves on-resonance (0.02 per attempt). We also describe the direct detection of the annihilation of antihydrogen atoms ejected by the microwaves.

  7. First principle thousand atom quantum dot calculations

    SciTech Connect

    Wang, Lin-Wang; Li, Jingbo

    2004-03-30

    A charge patching method and an idealized surface passivation are used to calculate the single electronic states of IV-IV, III-V, II-VI semiconductor quantum dots up to a thousand atoms. This approach scales linearly and has a 1000 fold speed-up compared to direct first principle methods with a cost of eigen energy error of about 20 meV. The calculated quantum dot band gaps are parametrized for future references.

  8. Temporally multiplexed quantum repeaters with atomic gases

    SciTech Connect

    Simon, Christoph; Riedmatten, Hugues de; Afzelius, Mikael

    2010-07-15

    We propose a temporally multiplexed version of the Duan-Lukin-Cirac-Zoller (DLCZ) quantum-repeater protocol using controlled inhomogeneous spin broadening in atomic gases. A first analysis suggests that the advantage of multiplexing is negated by noise due to spin-wave excitations corresponding to unobserved directions of Stokes photon emission. However, this problem can be overcome with the help of a moderate-finesse cavity which is in resonance with Stokes photons, but invisible to the anti-Stokes photons. Our proposal promises greatly enhanced quantum repeater performance with atomic gases.

  9. Cold atom quantum sensors for space

    NASA Astrophysics Data System (ADS)

    Singh, Yeshpal

    2016-07-01

    Quantum sensors based on cold atoms offer the opportunity to perform highly accurate measurements of physical phenomena related to time, gravity and rotation. The deployment of such technologies in the microgravity environment of space may enable further enhancement of their performance, whilst permitting the detection of these physical phenomena over much larger scales than is possible with a ground-based instrument. In this talk, I will present an overview of the activities of the UK National Quantum Hub in Sensors and Metrology in developing cold atoms technology for space. Our activities are focused in two main areas: optical clocks and atom interferometers. I will also discuss our contributions to recent initiatives including STE-QUEST and AI-GOAT, the ESA/NASA initiative aiming at an atom interferometer gravitational wave detector in space.

  10. Quantum paddlewheel with ultracold atoms in waveguides

    NASA Astrophysics Data System (ADS)

    Das, Kunal K.; Meehan, Matthew R.; Pyle, Andrew J.

    2014-06-01

    We propose and study a quantum pump which emulates a traditional paddlewheel, that can be implemented with ultracold atoms in waveguides. We use wave-packet propagation to study its single-mode dynamics, which also determines its multimode current for mesoscopic setups. Energy flow with or without particle transport is possible. The spectrum reveals unusual features such as nonuniform Floquet sidebands and counterintuitive scattering. Explanations are found by examining the scattering dynamics comparatively using quantum, classical, and semiclassical pictures, indicating a rich system and experimentally accessible method to explore quantum versus classical dynamics.

  11. Trapped Atomic Ions and Quantum Information Processing

    SciTech Connect

    Wineland, D. J.; Leibfried, D.; Bergquist, J. C.; Blakestad, R. B.; Bollinger, J. J.; Britton, J.; Chiaverini, J.; Epstein, R. J.; Hume, D. B.; Itano, W. M.; Jost, J. D.; Koelemeij, J. C. J.; Langer, C.; Ozeri, R.; Reichle, R.; Rosenband, T.; Schaetz, T.; Schmidt, P. O.; Seidelin, S.; Shiga, N.

    2006-11-07

    The basic requirements for quantum computing and quantum simulation (single- and multi-qubit gates, long memory times, etc.) have been demonstrated in separate experiments on trapped ions. Construction of a large-scale information processor will require synthesis of these elements and implementation of high-fidelity operations on a very large number of qubits. This is still well in the future. NIST and other groups are addressing part of the scaling issue by trying to fabricate multi-zone arrays of traps that would allow highly-parallel and scalable processing. In the near term, some simple quantum processing protocols are being used to aid in quantum metrology, such as in atomic clocks. As the number of qubits increases, Schroedinger's cat paradox and the measurement problem in quantum mechanics become more apparent; with luck, trapped ion systems might be able to shed light on these fundamental issues.

  12. Quantum and Classical Electrostatics Among Atoms

    NASA Astrophysics Data System (ADS)

    Doerr, T. P.; Obolensky, O. I.; Ogurtsov, A. Y.; Yu, Yi-Kuo

    Quantum theory has been unquestionably successful at describing physics at the atomic scale. However, it becomes more difficult to apply as the system size grows. On the other hand, classical physics breaks down at sufficiently short length scales but is clearly correct at larger distances. The purpose of methods such as QM/MM is to gain the advantages of both quantum and classical regimes: quantum theory should provide accuracy at the shortest scales, and classical theory, with its somewhat more tractable computational demands, allows results to be computed for systems that would be inaccessible with a purely quantum approach. This strategy will be most effective when one knows with good accuracy the length scale at which quantum calculations are no longer necessary and classical calculations are sufficient. To this end, we have performed both classical and quantum calculations for systems comprising a small number of atoms for which experimental data is also available. The classical calculations are fully exact; the quantum calculations are at the MP4(SDTQ)/aug-cc-pV5Z and CCSD(T)/aug-cc-pV5Z levels. The precision of both sets of calculations along with the existence of experimental results allows us to draw conclusions about the range of utility of the respective calculations. This research was supported by the Intramural Research Program of the NIH, NLM and utilized the computational resources of the NIH HPC Biowulf cluster.

  13. Optimal control of complex atomic quantum systems

    NASA Astrophysics Data System (ADS)

    van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.

    2016-10-01

    Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.

  14. Optimal control of complex atomic quantum systems

    PubMed Central

    van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.

    2016-01-01

    Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations. PMID:27725688

  15. Quantum-classical electron distributions in atoms and atomic ions

    NASA Technical Reports Server (NTRS)

    Kunc, Joseph A.

    1988-01-01

    A quantum-classical approach is used to obtain the velocity distributions in atoms and positive and negative ions in both ground and excited states. In the analysis, Hartree-Fock electronic wavefunctions are used to determine the radial electron distributions, and the central-field approximation is used to study the the dynamic properties of the localized electrons. The distributions for the outer and inner shells are found to agree well with exact results obtained by numerical calculations.

  16. Nonadiabatic quantum chaos in atom optics

    NASA Astrophysics Data System (ADS)

    Prants, S. V.

    2012-07-01

    Coherent dynamics of atomic matter waves in a standing-wave laser field is studied. In the dressed-state picture, wave packets of ballistic two-level atoms propagate simultaneously in two optical potentials. The probability to make a transition from one potential to another one is maximal when centroids of wave packets cross the field nodes and is given by a simple formula with the single exponent, the Landau-Zener parameter κ. If κ ≫ 1, the motion is essentially adiabatic. If κ ≪ 1, it is (almost) resonant and periodic. If κ ≃ 1, atom makes nonadiabatic transitions with a splitting of its wave packet at each node and strong complexification of the wave function as compared to the two other cases. This effect is referred as nonadiabatic quantum chaos. Proliferation of wave packets at κ ≃ 1 is shown to be connected closely with chaotic center-of-mass motion in the semiclassical theory of point-like atoms with positive values of the maximal Lyapunov exponent. The quantum-classical correspondence established is justified by the fact that the Landau-Zener parameter κ specifies the regime of the semiclassical dynamical chaos in the map simulating chaotic center-of-mass motion. Manifestations of nonadiabatic quantum chaos are found in the behavior of the momentum and position probabilities.

  17. Quantum Zeno effect and quantum Zeno paradox in atomic physics

    NASA Astrophysics Data System (ADS)

    Block, Ellen; Berman, P. R.

    1991-08-01

    Itano and co-workers [Wayne M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, Phys. Rev. A 41, 2295 (1990)] have recently reported the experimental verification of the quantum Zeno effect, which is the inhibition of a quantum transition by frequent measurements. In this article, we offer an alternative interpretation of the quantum Zeno effect. We show that an analysis of the dynamics of the full three-level system gives the same result. There is no need to assume explicitly that the wave function has collapsed, nor even to assume that an ideal measurement has been made. In addition, we differentiate between what has been referred to as the quantum Zeno effect and what has been termed the quantum Zeno paradox. The former is the inhibition of induced transitions, and the latter is the, as yet experimentally unobserved, inhibition of spontaneous decay. Our interpretation, which emphasizes the ``measurement''-induced interruption of atomic-state coherences as the cause of inhibited quantum transitions, suggests a resolution to the quantum Zeno paradox. The theoretical limit of continuous observation is discussed.

  18. Quantum sized gold nanoclusters with atomic precision.

    PubMed

    Qian, Huifeng; Zhu, Manzhou; Wu, Zhikun; Jin, Rongchao

    2012-09-18

    Gold nanoparticles typically have a metallic core, and the electronic conduction band consists of quasicontinuous energy levels (i.e. spacing δ ≪ k(B)T, where k(B)T is the thermal energy at temperature T (typically room temperature) and k(B) is the Boltzmann constant). Electrons in the conduction band roam throughout the metal core, and light can collectively excite these electrons to give rise to plasmonic responses. This plasmon resonance accounts for the beautiful ruby-red color of colloidal gold first observed by Faraday back in 1857. On the other hand, when gold nanoparticles become extremely small (<2 nm in diameter), significant quantization occurs to the conduction band. These quantum-sized nanoparticles constitute a new class of nanomaterial and have received much attention in recent years. To differentiate quantum-sized nanoparticles from conventional plasmonic gold nanoparticles, researchers often refer to the ultrasmall nanoparticles as nanoclusters. In this Account, we chose several typical sizes of gold nanoclusters, including Au(25)(SR)(18), Au(38)(SR)(24), Au(102)(SR)(44), and Au(144)(SR)(60), to illustrate the novel properties of metal nanoclusters imparted by quantum size effects. In the nanocluster size regime, many of the physical and chemical properties of gold nanoparticles are fundamentally altered. Gold nanoclusters have discrete electronic energy levels as opposed to the continuous band in plasmonic nanoparticles. Quantum-sized nanoparticles also show multiple optical absorption peaks in the optical spectrum versus a single surface plasmon resonance (SPR) peak at 520 nm for spherical gold nanocrystals. Although larger nanocrystals show an fcc structure, nanoclusters often have non-fcc atomic packing structures. Nanoclusters also have unique fluorescent, chiral, and magnetic properties. Due to the strong quantum confinement effect, adding or removing one gold atom significantly changes the structure and the electronic and optical

  19. Quantum-Gas Microscope for Fermionic Atoms

    NASA Astrophysics Data System (ADS)

    Cheuk, Lawrence W.; Nichols, Matthew A.; Okan, Melih; Gersdorf, Thomas; Ramasesh, Vinay V.; Bakr, Waseem S.; Lompe, Thomas; Zwierlein, Martin W.

    2015-05-01

    We realize a quantum-gas microscope for fermionic 40K atoms trapped in an optical lattice, which allows one to probe strongly correlated fermions at the single-atom level. We combine 3D Raman sideband cooling with high-resolution optics to simultaneously cool and image individual atoms with single-lattice-site resolution at a detection fidelity above 95%. The imaging process leaves the atoms predominantly in the 3D motional ground state of their respective lattice sites, inviting the implementation of a Maxwell's demon to assemble low-entropy many-body states. Single-site-resolved imaging of fermions enables the direct observation of magnetic order, time-resolved measurements of the spread of particle correlations, and the detection of many-fermion entanglement.

  20. Quantum-gas microscope for fermionic atoms.

    PubMed

    Cheuk, Lawrence W; Nichols, Matthew A; Okan, Melih; Gersdorf, Thomas; Ramasesh, Vinay V; Bakr, Waseem S; Lompe, Thomas; Zwierlein, Martin W

    2015-05-15

    We realize a quantum-gas microscope for fermionic ^{40}K atoms trapped in an optical lattice, which allows one to probe strongly correlated fermions at the single-atom level. We combine 3D Raman sideband cooling with high-resolution optics to simultaneously cool and image individual atoms with single-lattice-site resolution at a detection fidelity above 95%. The imaging process leaves the atoms predominantly in the 3D motional ground state of their respective lattice sites, inviting the implementation of a Maxwell's demon to assemble low-entropy many-body states. Single-site-resolved imaging of fermions enables the direct observation of magnetic order, time-resolved measurements of the spread of particle correlations, and the detection of many-fermion entanglement. PMID:26024169

  1. Entanglement and quantum teleportation with multi-atom ensembles.

    PubMed

    Polzik, E S; Julsgaard, B; Sherson, J; Sørensen, J L

    2003-07-15

    Atomic ensembles containing a large number of atoms have been proved to be an effective medium for quantum-state (quantum information) engineering and processing via their coupling with multi-photon light pulses. The general mechanism of this coupling, which involves continuous quantum variables for light and atoms, is described. The efficient quantum interface between light and atoms has led to the recent demonstration of an entangled state of two macroscopic atomic objects, more precisely two caesium gas samples. Based on this result, a proposal for teleportation of an entangled state of two atomic samples (entanglement swapping) is presented.

  2. An elementary quantum network of single atoms in optical cavities.

    PubMed

    Ritter, Stephan; Nölleke, Christian; Hahn, Carolin; Reiserer, Andreas; Neuzner, Andreas; Uphoff, Manuel; Mücke, Martin; Figueroa, Eden; Bochmann, Joerg; Rempe, Gerhard

    2012-04-11

    Quantum networks are distributed quantum many-body systems with tailored topology and controlled information exchange. They are the backbone of distributed quantum computing architectures and quantum communication. Here we present a prototype of such a quantum network based on single atoms embedded in optical cavities. We show that atom-cavity systems form universal nodes capable of sending, receiving, storing and releasing photonic quantum information. Quantum connectivity between nodes is achieved in the conceptually most fundamental way-by the coherent exchange of a single photon. We demonstrate the faithful transfer of an atomic quantum state and the creation of entanglement between two identical nodes in separate laboratories. The non-local state that is created is manipulated by local quantum bit (qubit) rotation. This efficient cavity-based approach to quantum networking is particularly promising because it offers a clear perspective for scalability, thus paving the way towards large-scale quantum networks and their applications.

  3. Enhanced atom interferometry through quantum information science

    NASA Astrophysics Data System (ADS)

    Edwards, Mark; Benton, Brandon; Krygier, Michael; Clark, Charles W.

    2011-03-01

    New designs for atom interferometers can be inspired by quantum information science (QIS). QIS--inspired atom interferometer (AI) designs have the potential for producing AIs with enhanced sensitivity and robustness. We compare the sensitivity of a standard Mach--Zehnder (M--Z) Bragg AI with an AI whose design is based on the idea of decoherence--free subspaces (DFS). We studied the performance of both atom interferometers using an enhanced version of a previously developed Bragg interferometer prototyping model. This model approximates the effect on the condensate of multiple Bragg pulses separated by time delays using two elements: the effect of a single pulse and condensate evolution between pulses. The overall effect is rapidly approximated by following the steps of the interferometric process. We describe this model and then present the comparison of the performance of the M--Z interferometer with that of the DFS--inspired interferometer. Support provided by NSF grant number PHY-0758111.

  4. Enhanced atom interferometry through quantum information science

    NASA Astrophysics Data System (ADS)

    Edwards, Mark; Benton, Brandon; Krygier, Michael; Clark, Charles

    2011-05-01

    New designs for atom interferometers can be inspired by quantum information science (QIS). QIS-inspired atom interferometer (AI) designs have the potential for producing AIs with enhanced sensitivity and robustness. We compare the sensitivity of a standard Mach-Zehnder (M-Z) Bragg AI with an AI whose design is based on the idea of decoherence-free subspaces (DFS). We studied the performance of both atom interferometers using an enhanced version of a previously developed Bragg interferometer prototyping model. This model approximates the effect on the condensate of multiple Bragg pulses separated by time delays using two elements: the effect of a single pulse and condensate evolution between pulses. The overall effect is rapidly approximated by following the steps of the interferometric process. We describe this model and then present the comparison of the performance of the M-Z interferometer with that of the DFS-inspired interferometer. Support provided by NSF grant number PHY-0758111.

  5. Quantum State Tomography of Cold Atom Qudits

    NASA Astrophysics Data System (ADS)

    Sosa Martinez, Hector; Lysne, Nathan; Jessen, Poul; Baldwin, Charles; Kalev, Amir; Deutsch, Ivan

    2015-05-01

    Accurate and robust control over quantum systems plays a key role in quantum information science. The use of systems with large state spaces (qudits) may prove a useful resource for quantum information tasks if good laboratory tools for qudit manipulation and measurement can be developed. Over the past few years we have developed and experimentally implemented a protocol to perform high-fidelity unitary transformations in the 16 dimensional hyperfine ground manifold of Cesium-133 atoms, driving the system with phase modulated radio-frequency and microwave magnetic fields and using the tools of optimal control to find appropriate control waveforms. We have recently extended our protocol to investigate quantum state tomography based on a combination of unitary transformations and Stern-Gerlach analysis. Experimental results shown that optimal tomography based on mutually-unbiased-bases (MUBs) can be implemented, with reconstruction fidelities on the order of 99% for arbitrarily chosen test states in a 16-dimensional Hilbert space. We are also interested in the characterization of our measurement detector for which we plan to perform POVM tomography. Ultimately, successful implementation of this kind of state tomography may prove very valuable, greatly reducing the required data for more complex procedures such as quantum process tomography.

  6. Quantum Gas Microscope for Fermionic Atoms

    NASA Astrophysics Data System (ADS)

    Okan, Melih; Cheuk, Lawrence; Nichols, Matthew; Lawrence, Katherine; Zhang, Hao; Zwierlein, Martin

    2016-05-01

    Strongly interacting fermions define the properties of complex matter throughout nature, from atomic nuclei and modern solid state materials to neutron stars. Ultracold atomic Fermi gases have emerged as a pristine platform for the study of many-fermion systems. In this poster we demonstrate the realization of a quantum gas microscope for fermionic 40 K atoms trapped in an optical lattice and the recent experiments which allows one to probe strongly correlated fermions at the single atom level. We combine 3D Raman sideband cooling with high- resolution optics to simultaneously cool and image individual atoms with single lattice site resolution at a detection fidelity above 95%. The imaging process leaves the atoms predominantly in the 3D motional ground state of their respective lattice sites, inviting the implementation of a Maxwell's demon to assemble low-entropy many-body states. Single-site resolved imaging of fermions enables the direct observation of magnetic order, time resolved measurements of the spread of particle correlations, and the detection of many-fermion entanglement. NSF, AFOSR-PECASE, AFOSR-MURI on Exotic Phases of Matter, ARO-MURI on Atomtronics, ONR, a Grant from the Army Research Office with funding from the DARPA OLE program, and the David and Lucile Packard Foundation.

  7. Quantum entanglement in multiparticle systems of two-level atoms

    SciTech Connect

    Deb, Ram Narayan

    2011-09-15

    We propose the necessary and sufficient condition for the presence of quantum entanglement in arbitrary symmetric pure states of two-level atomic systems. We introduce a parameter to quantify quantum entanglement in such systems. We express the inherent quantum fluctuations of a composite system of two-level atoms as a sum of the quantum fluctuations of the individual constituent atoms and their correlation terms. This helps to separate out and study solely the quantum correlations among the atoms and obtain the criterion for the presence of entanglement in such multiatomic systems.

  8. Quantum Trapping of Atoms in Optical Molasses.

    NASA Astrophysics Data System (ADS)

    Takusagawa, Kimie

    1992-10-01

    The force acting on a two-level atom in a low -intensity standing laser wave is calculated. On account of this force, atoms can be trapped at the loops (antinodes) of the field. By quantizing the atomic motion near the bottom of the sinusoidal potential, we have studied the atomic behavior when they are trapped in bound states as well as when they are in the free state. Laser cooling of neutral atoms was first suggested by T. Hansh and A. Schawlow in 1975. The principle involves the Doppler effect in a detuned laser beam. The absorption rate of a photon depends on the apparent frequency of the photon that is shifted omega v/c from omega, where omega is the frequency of the laser, v is the velocity of the atom, and c is the velocity of light. For a single laser beam detuned slightly below an atomic resonance frequency, the apparent frequency for atoms moving toward the laser is closer to resonance, which causes a higher absorption rate. And these atoms lose momentum when they absorb a photon from the beam. The velocity of atoms can be decreased from 10^5 cm/sec, the velocity they have when they escape from an oven, to 10^2 cm/sec (about 1mK) by a laser beam. For further cooling, counterpropagating beams are necessary. In this study we propose a new mechanism for supercooling, that is, cooling well below the Doppler cooling limit. Within a standing laser wave there exists a force called a "dipole force", which has a sinusoidal spatial dependence. Once atoms are trapped by the potential, their motion around the minimum of the potential well is that of a simple harmonic oscillator. Restricting our attention to the two lowest quantized states, we calculate transition rates between free states and bound states, from which the average residence times in the bound states can be obtained. This first quantum treatment of an atom trapped in the sinusoidal potential is restricted to the one-dimensional case. Generalization to higher dimensions is left for future research.

  9. Cold atom quantum emulation of ultrafast processes

    NASA Astrophysics Data System (ADS)

    Rajagopal, Shankari; Geiger, Zachary; Fujiwara, Kurt; Singh, Kevin; Senaratne, Ruwan; Weld, David

    2016-05-01

    Pulsed lasers are an invaluable probe of fast electron dynamics in condensed matter systems. However, despite tremendous progress, physical limitations on lasers and a lack of exact theoretical models still limit the exploration of ultrafast processes in solids. We discuss a possible complementary approach, in which lattice-trapped cold neutral atoms driven far from equilibrium are used as a quantum emulator of ultrafast physics at sub-cycle timescales. The cold atom context is in many ways a natural choice for such experiments: equilibration timescales are more than ten orders of magnitude slower than those in solids, and strong driving forces are easily produced and manipulated. Our experimental approach uses ultracold strontium in optical traps. Multiple stable isotopes and a long-lived metastable state provide control over interaction strengths, while a narrow-linewidth transition expands the typical cold-atom toolbox of readout techniques. We discuss initial efforts in quantum emulation of tunnel ionization and development of a platform for more complicated endeavors, including the study of multiple-pulse sequences and recollision processes. We acknowledge support from the NSF GRFP, the AFOSR, the ARO and DURIP program, the Alfred P. Sloan Foundation, and the University of California Office of the President.

  10. Bohr's Creation of his Quantum Atom

    NASA Astrophysics Data System (ADS)

    Heilbron, John

    2013-04-01

    Fresh letters throw new light on the content and state of Bohr's mind before and during his creation of the quantum atom. His mental furniture then included the atomic models of the English school, the quantum puzzles of Continental theorists, and the results of his own studies of the electron theory of metals. It also included the poetry of Goethe, plays of Ibsen and Shakespeare, novels of Dickens, and rhapsodies of Kierkegaard and Carlyle. The mind that held these diverse ingredients together oscillated between enthusiasm and dejection during the year in which Bohr took up the problem of atomic structure. He spent most of that year in England, which separated him for extended periods from his close-knit family and friends. Correspondence with his fianc'ee, Margrethe Nørlund, soon to be published, reports his ups and downs as he adjusted to J.J. Thomson, Ernest Rutherford, the English language, and the uneven course of his work. In helping to smooth out his moods, Margrethe played an important and perhaps an enabling role in his creative process.

  11. Atomic physics and quantum optics using superconducting circuits.

    PubMed

    You, J Q; Nori, Franco

    2011-06-29

    Superconducting circuits based on Josephson junctions exhibit macroscopic quantum coherence and can behave like artificial atoms. Recent technological advances have made it possible to implement atomic-physics and quantum-optics experiments on a chip using these artificial atoms. This Review presents a brief overview of the progress achieved so far in this rapidly advancing field. We not only discuss phenomena analogous to those in atomic physics and quantum optics with natural atoms, but also highlight those not occurring in natural atoms. In addition, we summarize several prospective directions in this emerging interdisciplinary field.

  12. Quantum sticking of atoms on membranes

    NASA Astrophysics Data System (ADS)

    Clougherty, Dennis P.

    2014-12-01

    A continuum model for low-energy physisorption on a membrane under tension is proposed and studied with variational mean-field theory. A discontinuous change in the energy-dependent sticking coefficient is predicted under certain conditions. This singularity is a result of the bosonic orthogonality catastrophe of the vibrational states of the membrane. The energy-dependent sticking coefficient is predicted to have exponential scaling in 1 /E at energies above the singularity. The application of this model to the quantum sticking of cold hydrogen to suspended graphene is discussed. The model predicts that a beam of atomic hydrogen can be completely reflected by suspended graphene at ultralow energies.

  13. Quantum Sticking of Atoms on Membranes

    NASA Astrophysics Data System (ADS)

    Clougherty, Dennis

    2014-05-01

    A continuum model for low-energy physisorption on a membrane under tension is proposed and studied with variational mean-field theory. A discontinuous change in the energy-dependent sticking coefficient is predicted under certain conditions. This singularity is a result of the bosonic orthogonality catastrophe of the vibrational states of the membrane. The energy-dependent sticking coefficient is predicted to have exponential scaling in 1/E above the singularity. The application of this model to the quantum sticking of cold hydrogen to suspended graphene is discussed. The model predicts that a beam of atomic hydrogen can be completely reflected by suspended graphene at ultralow energies.

  14. Atomically thin quantum light-emitting diodes

    PubMed Central

    Palacios-Berraquero, Carmen; Barbone, Matteo; Kara, Dhiren M.; Chen, Xiaolong; Goykhman, Ilya; Yoon, Duhee; Ott, Anna K.; Beitner, Jan; Watanabe, Kenji; Taniguchi, Takashi; Ferrari, Andrea C.; Atatüre, Mete

    2016-01-01

    Transition metal dichalcogenides are optically active, layered materials promising for fast optoelectronics and on-chip photonics. We demonstrate electrically driven single-photon emission from localized sites in tungsten diselenide and tungsten disulphide. To achieve this, we fabricate a light-emitting diode structure comprising single-layer graphene, thin hexagonal boron nitride and transition metal dichalcogenide mono- and bi-layers. Photon correlation measurements are used to confirm the single-photon nature of the spectrally sharp emission. These results present the transition metal dichalcogenide family as a platform for hybrid, broadband, atomically precise quantum photonics devices. PMID:27667022

  15. A Green's function quantum average atom model

    SciTech Connect

    Starrett, Charles Edward

    2015-05-21

    A quantum average atom model is reformulated using Green's functions. This allows integrals along the real energy axis to be deformed into the complex plane. The advantage being that sharp features such as resonances and bound states are broadened by a Lorentzian with a half-width chosen for numerical convenience. An implementation of this method therefore avoids numerically challenging resonance tracking and the search for weakly bound states, without changing the physical content or results of the model. A straightforward implementation results in up to a factor of 5 speed-up relative to an optimized orbital based code.

  16. Atom-chip-based generation of entanglement for quantum metrology.

    PubMed

    Riedel, Max F; Böhi, Pascal; Li, Yun; Hänsch, Theodor W; Sinatra, Alice; Treutlein, Philipp

    2010-04-22

    Atom chips provide a versatile quantum laboratory for experiments with ultracold atomic gases. They have been used in diverse experiments involving low-dimensional quantum gases, cavity quantum electrodynamics, atom-surface interactions, and chip-based atomic clocks and interferometers. However, a severe limitation of atom chips is that techniques to control atomic interactions and to generate entanglement have not been experimentally available so far. Such techniques enable chip-based studies of entangled many-body systems and are a key prerequisite for atom chip applications in quantum simulations, quantum information processing and quantum metrology. Here we report the experimental generation of multi-particle entanglement on an atom chip by controlling elastic collisional interactions with a state-dependent potential. We use this technique to generate spin-squeezed states of a two-component Bose-Einstein condensate; such states are a useful resource for quantum metrology. The observed reduction in spin noise of -3.7 +/- 0.4 dB, combined with the spin coherence, implies four-partite entanglement between the condensate atoms; this could be used to improve an interferometric measurement by -2.5 +/- 0.6 dB over the standard quantum limit. Our data show good agreement with a dynamical multi-mode simulation and allow us to reconstruct the Wigner function of the spin-squeezed condensate. The techniques reported here could be directly applied to chip-based atomic clocks, currently under development.

  17. Apparatus for fermion atomic clock, atom interferometry and quantum pumping experiments

    NASA Astrophysics Data System (ADS)

    Ivory, M. K.; Ziltz, A.; Field, J.; Aubin, S.

    2010-03-01

    We present the current state of an apparatus designed to create and manipulate ultracold bosonic and fermionic Rb and K isotopes for a fermion atomic clock, atom interferometry, microwave trapping, and quantum pumping experiments. Quantum pumping is a phenomenon which can precisely control bias-less flow of single electrons in a circuit. Using ultracold atoms on atom chips, we can test theoretical predictions which have not yet been verified due to experimental difficulties in solid state systems. The apparatus design consists of a magneto-optical trap, magnetic transport system, atom chip, and optical dipole trap. We have demonstrated basic laser cooling and trapping and are working towards transport of the collected atoms to the atom chip for cooling to quantum degeneracy. Once quantum degeneracy is achieved at the chip, micro-magnetic reservoirs of ultracold atoms connected by a 1D ``wire'' create a circuit for various quantum pumping schemes. These schemes are also more broadly applicable to atomtronics experiments.

  18. Layered quantum Hall insulators with ultracold atoms

    SciTech Connect

    Zamora, A.; Szirmai, G.; Lewenstein, M.

    2011-11-15

    We consider a generalization of the two-dimensional (2D) quantum Hall insulator to a noncompact, non-Abelian gauge group, the Heisenberg-Weyl group. We show that this kind of insulator is actually a layered three-dimensional (3D) insulator with nontrivial topology. We further show that nontrivial combinations of quantized transverse conductivities can be engineered with the help of a staggered potential. We investigate the robustness and topological nature of this conductivity and connect it to the surface modes of the system. We also propose a simple experimental realization with ultracold atoms in 3D confined to a 2D square lattice with the third dimension being mapped to a gauge coordinate.

  19. Quantum information science with neutral atoms

    NASA Astrophysics Data System (ADS)

    Rakreungdet, Worawarong

    We study a system of neutral atoms trapped in a three-dimensional optical lattice suitable for the encoding, initialization and manipulation of atomic qubits. The qubits are manipulated by applied electromagnetic fields interacting with dipole moments of the atoms via light shifts, Raman transitions, Zeeman shifts, and microwave transitions. Our lattice is formed by three orthogonal one-dimensional lattices, which have different frequencies so that interference terms average to zero. This geometry allows considerable freedom in designing the component one-dimensional lattices, so that they provide not only confinement but also independent control in each dimension. Our atomic qubits are initialized from a laser-cooled atomic sample by Raman sideband cooling in individual lattice potential wells. We have demonstrated accurate and robust one-qubit manipulation using resonant microwave fields. In practice such control operations are always subject to errors, in our case spatial inhomogeneities in the microwave Rabi frequency and the light shifted qubit transition frequency. Observation of qubit dynamics in near real time allows us to minimize these inhomogeneities, and therefore optimize qubit logic gates. For qubits in the lattice, we infer a fidelity of 0.990(3) for a single pi-pulse. We have also explored the use of NMR-type pulse techniques in order to further reduce the effect of errors and thus improve gate robustness in the atom/lattice system. Our schemes for two-qubit quantum logic operations are based on controlled collisional interactions. We have experimented with two schemes in order to probe these collisions. The first involves manipulation of the center-of-mass wavepackets of two qubits in a geometry corresponding to two partially overlapping Mach-Zender interferometers. Unfortunately, this scheme has proven extremely sensitive to phase errors, as the wavepackets are moved by the optical lattice. The other scheme starts with two qubits in spatially

  20. Coherent quantum depletion of an interacting atom condensate.

    PubMed

    Kira, M

    2015-03-13

    Sufficiently strong interactions promote coherent quantum transitions in spite of thermalization and losses, which are the adversaries of delicate effects such as reversibility and correlations. In atomic Bose-Einstein condensates (BECs), strong atom-atom interactions can eject atoms from the BEC to the normal component, yielding quantum depletion instead of temperature depletion. A recent experiment has already been verified to overcome losses. Here I show that it also achieves coherent quantum-depletion dynamics in a BEC swept fast enough from weak to strong atom-atom interactions. The elementary coherent process first excites the normal component into a liquid state that evolves into a spherical shell state, where the atom occupation peaks at a finite momentum to shield 50% of the BEC atoms from annihilation. The identified coherent processes resemble ultrafast semiconductor excitations expanding the scope of BEC explorations to many-body non-equilibrium studies.

  1. Quantum optics and cavity QED Quantum network with individual atoms and photons

    NASA Astrophysics Data System (ADS)

    Rempe, G.

    2013-08-01

    Quantum physics allows a new approach to information processing. A grand challenge is the realization of a quantum network for long-distance quantum communication and large-scale quantum simulation. This paper highlights a first implementation of an elementary quantum network with two fibre-linked high-finesse optical resonators, each containing a single quasi-permanently trapped atom as a stationary quantum node. Reversible quantum state transfer between the two atoms and entanglement of the two atoms are achieved by the controlled exchange of a time-symmetric single photon. This approach to quantum networking is efficient and offers a clear perspective for scalability. It allows for arbitrary topologies and features controlled connectivity as well as, in principle, infinite-range interactions. Our system constitutes the largest man-made material quantum system to date and is an ideal test bed for fundamental investigations, e.g. quantum non-locality.

  2. Geometric quantum discord of a Jaynes-Cummings atom and an isolated atom

    NASA Astrophysics Data System (ADS)

    Qiang, Wen-Chao; Zhang, Lei; Zhang, Hua-Ping

    2015-12-01

    We studied the geometric quantum discord of a quantum system consisting of a Jaynes-Cummings (JC) atom, a cavity and an isolated atom. The analytical expressions of the geometric quantum discord for two atoms, every atom with a cavity and the total system were obtained. We showed that the geometric quantum discord is not always zero when the entanglement falls to zero for a two-atom subsystem; the geometric measurement of the quantum discord of the total system developed periodically with a single frequency if the initial two-atom state was not entangled, otherwise, it oscillated with two or four frequencies according to whether the cavity was initially empty or not, respectively.

  3. Quantum Theory of Atomic and Molecular Structures and Interactions

    NASA Astrophysics Data System (ADS)

    Makrides, Constantinos

    This dissertation consists of topics in two related areas of research that together provide quantum mechanical descriptions of atomic and molecular interactions and reactions. The first is the ab initio electronic structure calculation that provides the atomic and molecular interaction potential, including the long-range potential. The second is the quantum theory of interactions that uses such potentials to understand scattering, long-range molecules, and reactions. In ab initio electronic structure calculations, we present results of dynamic polarizabilities for a variety of atoms and molecules, and the long-range dispersion coefficients for a number of atom-atom and atom-molecule cases. We also present results of a potential energy surface for the triatomic lithium-ytterbium-lithium system, aimed at understanding the related chemical reactions. In the quantum theory of interactions, we present a multichannel quantum-defect theory (MQDT) for atomic interactions in a magnetic field. This subject, which is complex especially for atoms with hyperfine structure, is essential for the understanding and the realization of control and tuning of atomic interactions by a magnetic field: a key feature that has popularized cold atom physics in its investigations of few-body and many-body quantum systems. Through the example of LiK, we show how MQDT provides a systematic and an efficient understanding of atomic interaction in a magnetic field, especially magnetic Feshbach resonances in nonzero partial waves.

  4. Quantum Teleportation of High-dimensional Atomic Momenta State

    NASA Astrophysics Data System (ADS)

    Qurban, Misbah; Abbas, Tasawar; Rameez-ul-Islam; Ikram, Manzoor

    2016-06-01

    Atomic momenta states of the neutral atoms are known to be decoherence resistant and therefore present a viable solution for most of the quantum information tasks including the quantum teleportation. We present a systematic protocol for the teleportation of high-dimensional quantized momenta atomic states to the field state inside the cavities by applying standard cavity QED techniques. The proposal can be executed under prevailing experimental scenario.

  5. Engineering the quantum transport of atomic wavefunctions over macroscopic distances

    NASA Astrophysics Data System (ADS)

    Alberti, A.; Ivanov, V. V.; Tino, G. M.; Ferrari, G.

    2009-08-01

    The manipulation of matter waves had an important role in the history of quantum mechanics. The first experimental validation of matter-wave behaviour was the observation of diffraction of matter by crystals, followed by interference experiments with electrons, neutrons, atoms and molecules using gratings and Young's double slit. More recently, matter-wave manipulation has become a building block for quantum devices such as quantum sensors and it has an essential role in a number of proposals for implementing quantum computers. Here, we demonstrate the coherent control of the spatial extent of an atomic wavefunction by reversibly stretching and shrinking the wavefunction over a distance of more than one millimetre. The quantum-coherent process is fully deterministic, reversible and in quantitative agreement with an analytical model. The simplicity of its experimental implementation could ease applications in the field of quantum transport and quantum processing.

  6. Quantum Network of Atom Clocks: A Possible Implementation with Neutral Atoms.

    PubMed

    Kómár, P; Topcu, T; Kessler, E M; Derevianko, A; Vuletić, V; Ye, J; Lukin, M D

    2016-08-01

    We propose a protocol for creating a fully entangled Greenberger-Horne-Zeilinger-type state of neutral atoms in spatially separated optical atomic clocks. In our scheme, local operations make use of the strong dipole-dipole interaction between Rydberg excitations, which give rise to fast and reliable quantum operations involving all atoms in the ensemble. The necessary entanglement between distant ensembles is mediated by single-photon quantum channels and collectively enhanced light-matter couplings. These techniques can be used to create the recently proposed quantum clock network based on neutral atom optical clocks. We specifically analyze a possible realization of this scheme using neutral Yb ensembles. PMID:27541452

  7. Quantum Network of Atom Clocks: A Possible Implementation with Neutral Atoms

    NASA Astrophysics Data System (ADS)

    Kómár, P.; Topcu, T.; Kessler, E. M.; Derevianko, A.; Vuletić, V.; Ye, J.; Lukin, M. D.

    2016-08-01

    We propose a protocol for creating a fully entangled Greenberger-Horne-Zeilinger-type state of neutral atoms in spatially separated optical atomic clocks. In our scheme, local operations make use of the strong dipole-dipole interaction between Rydberg excitations, which give rise to fast and reliable quantum operations involving all atoms in the ensemble. The necessary entanglement between distant ensembles is mediated by single-photon quantum channels and collectively enhanced light-matter couplings. These techniques can be used to create the recently proposed quantum clock network based on neutral atom optical clocks. We specifically analyze a possible realization of this scheme using neutral Yb ensembles.

  8. Quantum Network of Atom Clocks: A Possible Implementation with Neutral Atoms.

    PubMed

    Kómár, P; Topcu, T; Kessler, E M; Derevianko, A; Vuletić, V; Ye, J; Lukin, M D

    2016-08-01

    We propose a protocol for creating a fully entangled Greenberger-Horne-Zeilinger-type state of neutral atoms in spatially separated optical atomic clocks. In our scheme, local operations make use of the strong dipole-dipole interaction between Rydberg excitations, which give rise to fast and reliable quantum operations involving all atoms in the ensemble. The necessary entanglement between distant ensembles is mediated by single-photon quantum channels and collectively enhanced light-matter couplings. These techniques can be used to create the recently proposed quantum clock network based on neutral atom optical clocks. We specifically analyze a possible realization of this scheme using neutral Yb ensembles.

  9. Quantum-mechanical transport equation for atomic systems.

    NASA Technical Reports Server (NTRS)

    Berman, P. R.

    1972-01-01

    A quantum-mechanical transport equation (QMTE) is derived which should be applicable to a wide range of problems involving the interaction of radiation with atoms or molecules which are also subject to collisions with perturber atoms. The equation follows the time evolution of the macroscopic atomic density matrix elements of atoms located at classical position R and moving with classical velocity v. It is quantum mechanical in the sense that all collision kernels or rates which appear have been obtained from a quantum-mechanical theory and, as such, properly take into account the energy-level variations and velocity changes of the active (emitting or absorbing) atom produced in collisions with perturber atoms. The present formulation is better suited to problems involving high-intensity external fields, such as those encountered in laser physics.

  10. Coherent quantum depletion of an interacting atom condensate

    PubMed Central

    Kira, M.

    2015-01-01

    Sufficiently strong interactions promote coherent quantum transitions in spite of thermalization and losses, which are the adversaries of delicate effects such as reversibility and correlations. In atomic Bose–Einstein condensates (BECs), strong atom–atom interactions can eject atoms from the BEC to the normal component, yielding quantum depletion instead of temperature depletion. A recent experiment has already been verified to overcome losses. Here I show that it also achieves coherent quantum-depletion dynamics in a BEC swept fast enough from weak to strong atom–atom interactions. The elementary coherent process first excites the normal component into a liquid state that evolves into a spherical shell state, where the atom occupation peaks at a finite momentum to shield 50% of the BEC atoms from annihilation. The identified coherent processes resemble ultrafast semiconductor excitations expanding the scope of BEC explorations to many-body non-equilibrium studies. PMID:25767044

  11. Quantum Sticking of Atomic Hydrogen to Graphene

    NASA Astrophysics Data System (ADS)

    Zhang, Yanting; Doherty, Adam; Geragotelis, Andrew; Clougherty, Dennis

    2013-03-01

    We consider the low-energy behavior of the sticking probability of atomic hydrogen to suspended graphene. For energy transfer through the flexural modes of graphene, we find that the inelastic coupling falls in the subOhmic regime. Thus the effects of low-frequency fluctuations of the graphene sheet are crucially important for quantum sticking. We analytically solve for the low-energy asymptotic behavior of the sticking coefficient using a variational mean-field method [D.P. Clougherty and Y. Zhang, Phys. Rev. Lett. 109, 120401 (2012)]. We find that as a result of strong coupling to the low-frequency flexural modes of graphene, a new scaling law results. For suspended graphene at finite temperature, we find that at a critical incident energy, the sticking probability drops discontinuously; below this critical energy, the sticking probability is suppressed by the orthogonality catastrophe. We compare our nonperturbative variational results to those obtained by using Fermi's golden rule. We gratefully acknowledge support by the National Science Foundation under DMR-1062966.

  12. Quantum Monte Carlo for atoms and molecules

    SciTech Connect

    Barnett, R.N.

    1989-11-01

    The diffusion quantum Monte Carlo with fixed nodes (QMC) approach has been employed in studying energy-eigenstates for 1--4 electron systems. Previous work employing the diffusion QMC technique yielded energies of high quality for H{sub 2}, LiH, Li{sub 2}, and H{sub 2}O. Here, the range of calculations with this new approach has been extended to include additional first-row atoms and molecules. In addition, improvements in the previously computed fixed-node energies of LiH, Li{sub 2}, and H{sub 2}O have been obtained using more accurate trial functions. All computations were performed within, but are not limited to, the Born-Oppenheimer approximation. In our computations, the effects of variation of Monte Carlo parameters on the QMC solution of the Schroedinger equation were studied extensively. These parameters include the time step, renormalization time and nodal structure. These studies have been very useful in determining which choices of such parameters will yield accurate QMC energies most efficiently. Generally, very accurate energies (90--100% of the correlation energy is obtained) have been computed with single-determinant trail functions multiplied by simple correlation functions. Improvements in accuracy should be readily obtained using more complex trial functions.

  13. Quantum jumps and spin dynamics of interacting atoms in a strongly coupled atom-cavity system.

    PubMed

    Khudaverdyan, M; Alt, W; Kampschulte, T; Reick, S; Thobe, A; Widera, A; Meschede, D

    2009-09-18

    We experimentally investigate the spin dynamics of one and two neutral atoms strongly coupled to a high finesse optical cavity. We observe quantum jumps between hyperfine ground states of a single atom. The interaction-induced normal-mode splitting of the atom-cavity system is measured via the atomic excitation. Moreover, we observe the mutual influence of two atoms simultaneously coupled to the cavity mode.

  14. Nanophotonic quantum phase switch with a single atom

    NASA Astrophysics Data System (ADS)

    Tiecke, T. G.; Thompson, J. D.; de Leon, N. P.; Liu, L. R.; Vuletić, V.; Lukin, M. D.

    2014-04-01

    By analogy to transistors in classical electronic circuits, quantum optical switches are important elements of quantum circuits and quantum networks. Operated at the fundamental limit where a single quantum of light or matter controls another field or material system, such a switch may enable applications such as long-distance quantum communication, distributed quantum information processing and metrology, and the exploration of novel quantum states of matter. Here, by strongly coupling a photon to a single atom trapped in the near field of a nanoscale photonic crystal cavity, we realize a system in which a single atom switches the phase of a photon and a single photon modifies the atom's phase. We experimentally demonstrate an atom-induced optical phase shift that is nonlinear at the two-photon level, a photon number router that separates individual photons and photon pairs into different output modes, and a single-photon switch in which a single `gate' photon controls the propagation of a subsequent probe field. These techniques pave the way to integrated quantum nanophotonic networks involving multiple atomic nodes connected by guided light.

  15. A quantum network with atoms and photons (QNET-AP)

    NASA Astrophysics Data System (ADS)

    Meyers, Ronald E.; Lee, Patricia; Deacon, Keith S.; Tunick, Arnold; Quraishi, Qudsia; Stack, Daniel

    2012-10-01

    Enabling secure communication, unparalleled computing capabilities, and fundamental nonlocality physics exploration, the development of quantum repeaters is the key quantum information processing technology advance needed for implementing real world quantum networks beyond the laboratory environment. Currently, components exist for intra-laboratory quantum networks but no system exists for connecting distant ( 1 km ) quantum memories in the real world. We present a physics analysis of quantum repeater network designs for intracity optical fiber connections between nodes based on atomic memories and linear optics. Long distances will necessitate the use of (1) two-photon Hong-Ou-Mandel style interference between atomic ensembles for entanglement swapping, and (2) photonic qubit wavelength conversion between atomic emissions and photons at telecommunication wavelengths in fiber. We report on our experimental progress towards implementing A Quantum Network with Atoms and Photons (QNET-AP), a quantum repeater network test-bed, between the US Army Research Laboratory (ARL) and the Joint Quantum Institute (JQI) of the National Institute of Standards and Technology (NIST) and the University of Maryland (UMD).

  16. Voltage-controlled quantum light from an atomically thin semiconductor

    NASA Astrophysics Data System (ADS)

    Chakraborty, Chitraleema; Kinnischtzke, Laura; Goodfellow, Kenneth M.; Beams, Ryan; Vamivakas, A. Nick

    2015-06-01

    Although semiconductor defects can often be detrimental to device performance, they are also responsible for the breadth of functionality exhibited by modern optoelectronic devices. Artificially engineered defects (so-called quantum dots) or naturally occurring defects in solids are currently being investigated for applications ranging from quantum information science and optoelectronics to high-resolution metrology. In parallel, the quantum confinement exhibited by atomically thin materials (semi-metals, semiconductors and insulators) has ushered in an era of flatland optoelectronics whose full potential is still being articulated. In this Letter we demonstrate the possibility of leveraging the atomically thin semiconductor tungsten diselenide (WSe2) as a host for quantum dot-like defects. We report that this previously unexplored solid-state quantum emitter in WSe2 generates single photons with emission properties that can be controlled via the application of external d.c. electric and magnetic fields. These new optically active quantum dots exhibit excited-state lifetimes on the order of 1 ns and remarkably large excitonic g-factors of 10. It is anticipated that WSe2 quantum dots will provide a novel platform for integrated solid-state quantum photonics and quantum information processing, as well as a rich condensed-matter physics playground with which to explore the coupling of quantum dots and atomically thin semiconductors.

  17. Voltage-controlled quantum light from an atomically thin semiconductor.

    PubMed

    Chakraborty, Chitraleema; Kinnischtzke, Laura; Goodfellow, Kenneth M; Beams, Ryan; Vamivakas, A Nick

    2015-06-01

    Although semiconductor defects can often be detrimental to device performance, they are also responsible for the breadth of functionality exhibited by modern optoelectronic devices. Artificially engineered defects (so-called quantum dots) or naturally occurring defects in solids are currently being investigated for applications ranging from quantum information science and optoelectronics to high-resolution metrology. In parallel, the quantum confinement exhibited by atomically thin materials (semi-metals, semiconductors and insulators) has ushered in an era of flatland optoelectronics whose full potential is still being articulated. In this Letter we demonstrate the possibility of leveraging the atomically thin semiconductor tungsten diselenide (WSe2) as a host for quantum dot-like defects. We report that this previously unexplored solid-state quantum emitter in WSe2 generates single photons with emission properties that can be controlled via the application of external d.c. electric and magnetic fields. These new optically active quantum dots exhibit excited-state lifetimes on the order of 1 ns and remarkably large excitonic g-factors of 10. It is anticipated that WSe2 quantum dots will provide a novel platform for integrated solid-state quantum photonics and quantum information processing, as well as a rich condensed-matter physics playground with which to explore the coupling of quantum dots and atomically thin semiconductors.

  18. The Quantum Atomic Model "Electronium": A Successful Teaching Tool.

    ERIC Educational Resources Information Center

    Budde, Marion; Niedderer, Hans; Scott, Philip; Leach, John

    2002-01-01

    Focuses on the quantum atomic model Electronium. Outlines the Bremen teaching approach in which this model is used, and analyzes the learning of two students as they progress through the teaching unit. (Author/MM)

  19. Quantum Atomic Clock Synchronization: An Entangled Concept of Nonlocal Simultaneity

    NASA Technical Reports Server (NTRS)

    Abrams, D.; Dowling, J.; Williams, C.; Jozsa, R.

    2000-01-01

    We demonstrate that two spatially separated parties (Alice and Bob) can utilize shared prior quantum entanglement, as well as a classical information channel, to establish a synchronized pair of atomic clocks.

  20. Quantum Electrodynamics Effects in Heavy Ions and Atoms

    SciTech Connect

    Shabaev, V. M.; Andreev, O. V.; Bondarev, A. I.; Glazov, D. A.; Kozhedub, Y. S.; Maiorova, A. V.; Tupitsyn, I. I.; Plunien, G.; Volotka, A. V.

    2011-05-11

    Quantum electrodynamics theory of heavy ions and atoms is considered. The current status of calculations of the binding energies, the hyperfine splitting and g factor values in heavy few-electron ions is reviewed. The theoretical predictions are compared with available experimental data. A special attention is focused on tests of quantum electrodynamics in strong electromagnetic fields and on determination of the fundamental constants. Recent progress in calculations of the parity nonconservation effects with heavy atoms and ions is also reported.

  1. Quantum-Classical Connection for Hydrogen Atom-Like Systems

    ERIC Educational Resources Information Center

    Syam, Debapriyo; Roy, Arup

    2011-01-01

    The Bohr-Sommerfeld quantum theory specifies the rules of quantization for circular and elliptical orbits for a one-electron hydrogen atom-like system. This article illustrates how a formula connecting the principal quantum number "n" and the length of the major axis of an elliptical orbit may be arrived at starting from the quantum…

  2. A Quantum Model of Atoms (the Energy Levels of Atoms).

    ERIC Educational Resources Information Center

    Rafie, Francois

    2001-01-01

    Discusses the model for all atoms which was developed on the same basis as Bohr's model for the hydrogen atom. Calculates the radii and the energies of the orbits. Demonstrates how the model obeys the de Broglie's hypothesis that the moving electron exhibits both wave and particle properties. (Author/ASK)

  3. Quantum Control nd Measurement of Spins in Cold Atomic Gases

    NASA Astrophysics Data System (ADS)

    Deutsch, Ivan

    2014-03-01

    Spins are natural carriers of quantum information given their long coherence time and our ability to precisely control and measure them with magneto-optical fields. Spins in cold atomic gases provide a pristine environment for such quantum control and measurement, and thus this system can act as a test-bed for the development of quantum simulators. I will discuss the progress my group has made in collaboration with Prof. Jessen, University of Arizona, to develop the toolbox for this test-bed. Through its interactions with rf and microwave magnetic fields, whose waveforms are designed through optimal control techniques, we can implement arbitrary unitary control on the internal hyperfine spins of cesium atoms, a 16 dimensional Hilbert space (isomorphic to 4 qubits). Control of the collective spin of the ensemble of many atoms is performed via the mutual coupling of the atomic ensemble to a mode of the electromagnetic field that acts as a quantum data bus for entangling atoms with one another. Internal spin control can be used to enhance the entangling power of the atom-photon interface. Finally, both projective and weak-continuous measurements can be performed to tomograhically reconstruct quantum states and processes.

  4. Quantum walks and quantum simulations with Bloch-oscillating spinor atoms

    SciTech Connect

    Witthaut, D.

    2010-09-15

    We propose a scheme for the realization of a quantum walker and a quantum simulator for the Dirac equation with ultracold spinor atoms in driven optical lattices. A precise control of the dynamics of the atomic matter wave can be realized using time-dependent external forces. If the force depends on the spin state of the atoms, the dynamics will entangle the inner and outer degrees of freedom, which offers unique opportunities for quantum information and quantum simulation. Here we introduce a method to realize a quantum walker based on the state-dependent transport of spinor atoms and a coherent driving of the internal state. In the limit of weak driving the dynamics are equivalent to that of a Dirac particle in 1+1 dimensions. Thus it becomes possible to simulate relativistic effects such as Zitterbewegung and Klein tunneling.

  5. Quantum Yield Heterogeneity among Single Nonblinking Quantum Dots Revealed by Atomic Structure-Quantum Optics Correlation.

    PubMed

    Orfield, Noah J; McBride, James R; Wang, Feng; Buck, Matthew R; Keene, Joseph D; Reid, Kemar R; Htoon, Han; Hollingsworth, Jennifer A; Rosenthal, Sandra J

    2016-02-23

    Physical variations in colloidal nanostructures give rise to heterogeneity in expressed optical behavior. This correlation between nanoscale structure and function demands interrogation of both atomic structure and photophysics at the level of single nanostructures to be fully understood. Herein, by conducting detailed analyses of fine atomic structure, chemical composition, and time-resolved single-photon photoluminescence data for the same individual nanocrystals, we reveal inhomogeneity in the quantum yields of single nonblinking "giant" CdSe/CdS core/shell quantum dots (g-QDs). We find that each g-QD possesses distinctive single exciton and biexciton quantum yields that result mainly from variations in the degree of charging, rather than from volume or structure inhomogeneity. We further establish that there is a very limited nonemissive "dark" fraction (<2%) among the studied g-QDs and present direct evidence that the g-QD core must lack inorganic passivation for the g-QD to be "dark". Therefore, in contrast to conventional QDs, ensemble photoluminescence quantum yield is principally defined by charging processes rather than the existence of dark g-QDs.

  6. Scalable quantum information processing with photons and atoms

    NASA Astrophysics Data System (ADS)

    Pan, Jian-Wei

    Over the past three decades, the promises of super-fast quantum computing and secure quantum cryptography have spurred a world-wide interest in quantum information, generating fascinating quantum technologies for coherent manipulation of individual quantum systems. However, the distance of fiber-based quantum communications is limited due to intrinsic fiber loss and decreasing of entanglement quality. Moreover, probabilistic single-photon source and entanglement source demand exponentially increased overheads for scalable quantum information processing. To overcome these problems, we are taking two paths in parallel: quantum repeaters and through satellite. We used the decoy-state QKD protocol to close the loophole of imperfect photon source, and used the measurement-device-independent QKD protocol to close the loophole of imperfect photon detectors--two main loopholes in quantum cryptograph. Based on these techniques, we are now building world's biggest quantum secure communication backbone, from Beijing to Shanghai, with a distance exceeding 2000 km. Meanwhile, we are developing practically useful quantum repeaters that combine entanglement swapping, entanglement purification, and quantum memory for the ultra-long distance quantum communication. The second line is satellite-based global quantum communication, taking advantage of the negligible photon loss and decoherence in the atmosphere. We realized teleportation and entanglement distribution over 100 km, and later on a rapidly moving platform. We are also making efforts toward the generation of multiphoton entanglement and its use in teleportation of multiple properties of a single quantum particle, topological error correction, quantum algorithms for solving systems of linear equations and machine learning. Finally, I will talk about our recent experiments on quantum simulations on ultracold atoms. On the one hand, by applying an optical Raman lattice technique, we realized a two-dimensional spin-obit (SO

  7. Theoretical analysis of a realistic atom-chip quantum gate

    SciTech Connect

    Charron, E.; Cirone, M. A.; Negretti, A.; Schmiedmayer, J.; Calarco, T.

    2006-07-15

    We present a detailed, realistic analysis of the implementation of a proposal for a quantum phase gate based on atomic vibrational states, specializing it to neutral rubidium atoms on atom chips. We show how to create a double-well potential with static currents on the atom chips, using for all relevant parameters values that are achieved with present technology. The potential barrier between the two wells can be modified by varying the currents in order to realize a quantum phase gate for qubit states encoded in the atomic external degree of freedom. The gate performance is analyzed through numerical simulations; the operation time is {approx}10 ms with a performance fidelity above 99.9%. For storage of the state between the operations the qubit state can be transferred efficiently via Raman transitions to two hyperfine states, where its decoherence is strongly inhibited. In addition we discuss the limits imposed by the proximity of the surface to the gate fidelity.

  8. Single-Atom Gating of Quantum State Superpositions

    SciTech Connect

    Moon, Christopher

    2010-04-28

    The ultimate miniaturization of electronic devices will likely require local and coherent control of single electronic wavefunctions. Wavefunctions exist within both physical real space and an abstract state space with a simple geometric interpretation: this state space - or Hilbert space - is spanned by mutually orthogonal state vectors corresponding to the quantized degrees of freedom of the real-space system. Measurement of superpositions is akin to accessing the direction of a vector in Hilbert space, determining an angle of rotation equivalent to quantum phase. Here we show that an individual atom inside a designed quantum corral1 can control this angle, producing arbitrary coherent superpositions of spatial quantum states. Using scanning tunnelling microscopy and nanostructures assembled atom-by-atom we demonstrate how single spins and quantum mirages can be harnessed to image the superposition of two electronic states. We also present a straightforward method to determine the atom path enacting phase rotations between any desired state vectors. A single atom thus becomes a real-space handle for an abstract Hilbert space, providing a simple technique for coherent quantum state manipulation at the spatial limit of condensed matter.

  9. Single-atom quantum control of macroscopic mechanical oscillators

    NASA Astrophysics Data System (ADS)

    Bariani, F.; Otterbach, J.; Tan, Huatang; Meystre, P.

    2014-01-01

    We investigate a hybrid electromechanical system consisting of a pair of charged macroscopic mechanical oscillators coupled to a small ensemble of Rydberg atoms. The resonant dipole-dipole coupling between an internal atomic Rydberg transition and the mechanics allows cooling to its motional ground state with a single atom despite the considerable mass imbalance between the two subsystems. We show that the rich electronic spectrum of Rydberg atoms, combined with their high degree of optical control, paves the way towards implementing various quantum-control protocols for the mechanical oscillators.

  10. Classical and quantum dynamics of the impulsively driven hydrogen atom

    SciTech Connect

    Melles, M.; Reinhold, C.O.; Burgdoerfer, J. |

    1992-12-01

    We investigate the classical and quantum dynamics of the hydrogen atom in a Rydberg state subject to a sequence of periodic and random pulses. One goal of this study is to test the validity of classical electron transport theories. We analyze the critical momentum transfer for which 10% of the Rydberg atoms are ionized after a large number of pulses as a function of the frequency of the perturbation. The quantum mechanical results for a periodic sequence of pulses exhibit clear structures which are not present in a classical simulation. These structures are shown to vanish for the case of stochastic pulses for which agreement is obtained between the classical and quantum mechanical results. The dynamics of the quantum mechanical periodic system is analyzed in terms of quasi-eigenstates of the period-one time evolution operator.

  11. Classical and quantum dynamics of the impulsively driven hydrogen atom

    SciTech Connect

    Melles, M.; Reinhold, C.O.; Burgdoerfer, J. Oak Ridge National Lab., TN )

    1992-01-01

    We investigate the classical and quantum dynamics of the hydrogen atom in a Rydberg state subject to a sequence of periodic and random pulses. One goal of this study is to test the validity of classical electron transport theories. We analyze the critical momentum transfer for which 10% of the Rydberg atoms are ionized after a large number of pulses as a function of the frequency of the perturbation. The quantum mechanical results for a periodic sequence of pulses exhibit clear structures which are not present in a classical simulation. These structures are shown to vanish for the case of stochastic pulses for which agreement is obtained between the classical and quantum mechanical results. The dynamics of the quantum mechanical periodic system is analyzed in terms of quasi-eigenstates of the period-one time evolution operator.

  12. Quantum galvanometer by interfacing a vibrating nanowire and cold atoms.

    PubMed

    Kálmán, O; Kiss, T; Fortágh, J; Domokos, P

    2012-01-11

    We evaluate the coupling of a Bose-Einstein condensate (BEC) of ultracold, paramagnetic atoms to the magnetic field of the current in a mechanically vibrating carbon nanotube within the frame of a full quantum theory. We find that the interaction is strong enough to sense quantum features of the nanowire current noise spectrum by means of hyperfine-state-selective atom counting. Such a nondestructive measurement of the electric current via its magnetic field corresponds to the classical galvanometer scheme, extended to the quantum regime of charge transport. The calculated high sensitivity of the interaction in the nanowire-BEC hybrid systems opens up the possibility of quantum control, which may be further extended to include other relevant degrees of freedom.

  13. Quantum galvanometer by interfacing a vibrating nanowire and cold atoms.

    PubMed

    Kálmán, O; Kiss, T; Fortágh, J; Domokos, P

    2012-01-11

    We evaluate the coupling of a Bose-Einstein condensate (BEC) of ultracold, paramagnetic atoms to the magnetic field of the current in a mechanically vibrating carbon nanotube within the frame of a full quantum theory. We find that the interaction is strong enough to sense quantum features of the nanowire current noise spectrum by means of hyperfine-state-selective atom counting. Such a nondestructive measurement of the electric current via its magnetic field corresponds to the classical galvanometer scheme, extended to the quantum regime of charge transport. The calculated high sensitivity of the interaction in the nanowire-BEC hybrid systems opens up the possibility of quantum control, which may be further extended to include other relevant degrees of freedom. PMID:22112048

  14. Quantum degenerate mixture of ytterbium and lithium atoms

    SciTech Connect

    Hansen, Anders H.; Khramov, Alexander; Dowd, William H.; Jamison, Alan O.; Ivanov, Vladyslav V.; Gupta, Subhadeep

    2011-07-15

    We have produced a quantum degenerate mixture of fermionic alkali-metal {sup 6}Li and bosonic spin-singlet {sup 174}Yb gases. This was achieved using sympathetic cooling of lithium atoms by evaporatively cooled ytterbium atoms in a far-off-resonant optical dipole trap. We observe the coexistence of Bose-condensed (T/T{sub c}{approx_equal}0.8) {sup 174}Yb with 2.3x10{sup 4} atoms and Fermi degenerate (T/T{sub F}{approx_equal}0.3) {sup 6}Li with 1.2x10{sup 4} atoms. Quasipure Bose-Einstein condensates of up to 3x10{sup 4} {sup 174}Yb atoms can be produced in single-species experiments. Our results mark a significant step toward studies of few- and many-body physics with mixtures of alkali-metal and alkaline-earth-metal-like atoms, and for the production of paramagnetic polar molecules in the quantum regime. Our methods also establish a convenient scheme for producing quantum degenerate ytterbium atoms in a 1064 nm optical dipole trap.

  15. Planar quantum squeezing and atom interferometry

    SciTech Connect

    He, Q. Y.; Drummond, P. D.; Reid, M. D.; Peng Shiguo

    2011-08-15

    We obtain a lower bound on the sum of two orthogonal spin component variances in a plane. This gives a planar uncertainty relation which holds even when the Heisenberg relation is not useful. We investigate the asymptotic, large-J limit and derive the properties of the planar quantum squeezed states that saturate this uncertainty relation. These states extend the concept of spin squeezing to any two conjugate spin directions. We show that planar quantum squeezing can be achieved experimentally as the ground state of a Bose-Einstein condensate in two coupled potential wells with a critical attractive interaction. These states reduce interferometric phase noise at all phase angles simultaneously. This is useful for one-shot interferometric phase measurements where the measured phase is completely unknown. Our results can also be used to derive entanglement criteria for multiple spins J at separated sites, with applications in quantum information.

  16. Gravity-sensitive quantum dynamics in cold atoms.

    PubMed

    Ma, Z-Y; d'Arcy, M B; Gardiner, S A

    2004-10-15

    We subject a falling cloud of cold cesium atoms to periodic kicks from a sinusoidal potential created by a vertical standing wave of laser light. By controllably accelerating the potential, we show quantum accelerator mode dynamics to be highly sensitive to the effective gravitational acceleration when close to specific, resonant values. This quantum sensitivity to a control parameter is reminiscent of that associated with classical chaos and promises techniques for precision measurement.

  17. Polarization-dependent atomic dipole traps behind a circular aperture for neutral-atom quantum computing

    SciTech Connect

    Gillen-Christandl, Katharina; Copsey, Bert D.

    2011-02-15

    The neutral-atom quantum computing community has successfully implemented almost all necessary steps for constructing a neutral-atom quantum computer. We present computational results of a study aimed at solving the remaining problem of creating a quantum memory with individually addressable sites for quantum computing. The basis of this quantum memory is the diffraction pattern formed by laser light incident on a circular aperture. Very close to the aperture, the diffraction pattern has localized bright and dark spots that can serve as red-detuned or blue-detuned atomic dipole traps. These traps are suitable for quantum computing even for moderate laser powers. In particular, for moderate laser intensities ({approx}100 W/cm{sup 2}) and comparatively small detunings ({approx}1000-10 000 linewidths), trap depths of {approx}1 mK and trap frequencies of several to tens of kilohertz are achieved. Our results indicate that these dipole traps can be moved by tilting the incident laser beams without significantly changing the trap properties. We also explored the polarization dependence of these dipole traps. We developed a code that calculates the trapping potential energy for any magnetic substate of any hyperfine ground state of any alkali-metal atom for any laser detuning much smaller than the fine-structure splitting for any given electric field distribution. We describe details of our calculations and include a summary of different notations and conventions for the reduced matrix element and how to convert it to SI units. We applied this code to these traps and found a method for bringing two traps together and apart controllably without expelling the atoms from the trap and without significant tunneling probability between the traps. This approach can be scaled up to a two-dimensional array of many pinholes, forming a quantum memory with single-site addressability, in which pairs of atoms can be brought together and apart for two-qubit gates for quantum computing.

  18. Quantum Chemical Topology: Knowledgeable atoms in peptides

    NASA Astrophysics Data System (ADS)

    Popelier, Paul L. A.

    2012-06-01

    The need to improve atomistic biomolecular force fields remains acute. Fortunately, the abundance of contemporary computing power enables an overhaul of the architecture of current force fields, which typically base their electrostatics on fixed atomic partial charges. We discuss the principles behind the electrostatics of a more realistic force field under construction, called QCTFF. At the heart of QCTFF lies the so-called topological atom, which is a malleable box, whose shape and electrostatics changes in response to a changing environment. This response is captured by a machine learning method called Kriging. Kriging directly predicts each multipole moment of a given atom (i.e. the output) from the coordinates of the nuclei surrounding this atom (i.e. the input). This procedure yields accurate interatomic electrostatic energies, which form the basis for future-proof progress in force field design.

  19. Editorial . Quantum fluctuations and coherence in optical and atomic structures

    NASA Astrophysics Data System (ADS)

    Eschner, Jürgen; Gatti, Alessandra; Maître, Agnès; Morigi, Giovanna

    2003-03-01

    From simple interference fringes, over molecular wave packets, to nonlinear optical patterns - the fundamental interaction between light and matter leads to the formation of structures in many areas of atomic and optical physics. Sophisticated technology in experimental quantum optics, as well as modern computational tools available to theorists, have led to spectacular achievements in the investigation of quantum structures. This special issue is dedicated to recent developments in this area. It presents a selection of examples where quantum dynamics, fluctuations, and coherence generate structures in time or in space or where such structures are observed experimentally. The examples range from coherence phenomena in condensed matter, over atoms in optical structures, entanglement in light and matter, to quantum patterns in nonlinear optics and quantum imaging. The combination of such seemingly diverse subjects formed the basis of a successful European TMR network, "Quantum Structures" (visit http://cnqo.phys.strath.ac.uk/~gianluca/QSTRUCT/). This special issue partly re.ects the results and collaborations of the network, going however well beyond its scope by including contributions from a global community and from many related topics which were not addressed directly in the network. The aim of this issue is to present side by side these di.erent topics, all of which are loosely summarized under quantum structures, to highlight their common aspects, their di.erences, and the progress which resulted from the mutual exchange of results, methods, and knowledge. To guide the reader, we have organized the articles into subsections which follow a rough division into structures in material systems and structures in optical .elds. Nevertheless, in the following introduction we point out connections between the contributions which go beyond these usual criteria, thus highlighting the truly interdisciplinary nature of quantum structures. Much of the progress in atom optics

  20. Topological quantum memory interfacing atomic and superconducting qubits

    NASA Astrophysics Data System (ADS)

    Xue, ZhengYuan; Yin, ZhangQi; Chen, Yan; Wang, ZiDan; Zhu, ShiLiang

    2016-06-01

    We propose a scheme to manipulate a topological spin qubit which is realized with cold atoms in a one-dimensional optical lattice. In particular, by introducing a quantum opto-electro-mechanical interface, we are able to first transfer a superconducting qubit state to an atomic qubit state and then to store it into the topological spin qubit. In this way, an efficient topological quantum memory could be constructed for the superconducting qubit. Therefore, we can consolidate the advantages of both the noise resistance of the topological qubits and the scalability of the superconducting qubits in this hybrid architecture.

  1. Quantum Information Science with Single Atoms and Photons

    NASA Astrophysics Data System (ADS)

    Kimble, H. J.

    2003-03-01

    Cavity quantum electrodynamics (QED) offers powerful possibilities for the deterministic control of atom-photon interactions quantum by quantum [1]. Indeed, modern experiments in cavity QED have achieved the exceptional circumstance of strong coupling, for which single quanta can profoundly impact the dynamics of the atom-cavity system. The diverse accomplishments of this field set the stage for advances into yet broader frontiers in quantum information science for which cavity QED offers unique advantages, including the creation of quantum networks [2]. The primary technical challenge on the road toward such scientific goals is the need to trap and localize atoms within a cavity in a setting suitable for strong coupling. Two separate experiments in our group have achieved significant milestones in this quest, namely the real-time trapping and tracking of single atoms in cavity QED [3-5]. In one experiment, an atom is trapped by an auxiliary field that functions as a far-detuned dipole-force trap (FORT) [3,4], with trap lifetime 3s, which should be compared to the nanosecond time scale for internal dynamics of the atom-cavity system. In a second experiment, we rely upon light forces at the single-photon level to trap a single atom within the cavity mode [5]. As illustrated by the movies available at http://www.its.caltech.edu/ qoptics/atomorbits/, these reconstructions reveal single atoms bound in orbit by the mechanical forces associated with single photons, and realize a new form of microscopy. Over the duration of the observation, the sensitivity is near the standard quantum limit for sensing the motion of a Cesium atom. This work is supported by the NSF, by the Caltech MURI for Quantum Networks administered by the ARO, and by the ONR. 1. For a review, see contributions in the Special Issue of Physica Scripta T76 (1998). 2. J. I. Cirac, S. J. van Enk, P. Zoller, H. J. Kimble, and H. Mabuchi, Physica Scripta T76, 223 (1998). 3. J. Ye, D. W. Vernooy, and H. J

  2. Quantum Logic with Cavity Photons From Single Atoms.

    PubMed

    Holleczek, Annemarie; Barter, Oliver; Rubenok, Allison; Dilley, Jerome; Nisbet-Jones, Peter B R; Langfahl-Klabes, Gunnar; Marshall, Graham D; Sparrow, Chris; O'Brien, Jeremy L; Poulios, Konstantinos; Kuhn, Axel; Matthews, Jonathan C F

    2016-07-01

    We demonstrate quantum logic using narrow linewidth photons that are produced with an a priori nonprobabilistic scheme from a single ^{87}Rb atom strongly coupled to a high-finesse cavity. We use a controlled-not gate integrated into a photonic chip to entangle these photons, and we observe nonclassical correlations between photon detection events separated by periods exceeding the travel time across the chip by 3 orders of magnitude. This enables quantum technology that will use the properties of both narrow-band single photon sources and integrated quantum photonics.

  3. Non-Adiabatic Holonomic Quantum Gates in an atomic system

    NASA Astrophysics Data System (ADS)

    Azimi Mousolou, Vahid; Canali, Carlo M.; Sjoqvist, Erik

    2012-02-01

    Quantum computation is essentially the implementation of a universal set of quantum gate operations on a set of qubits, which is reliable in the presence of noise. We propose a scheme to perform robust gates in an atomic four-level system using the idea of non-adiabatic holonomic quantum computation proposed in [1]. The gates are realized by applying sequences of short laser pulses that drive transitions between the four energy levels in such a way that the dynamical phases vanish. [4pt] [1] E. Sjoqvist, D.M. Tong, B. Hessmo, M. Johansson, K. Singh, arXiv:1107.5127v2 [quant-ph

  4. Quantum Logic with Cavity Photons From Single Atoms.

    PubMed

    Holleczek, Annemarie; Barter, Oliver; Rubenok, Allison; Dilley, Jerome; Nisbet-Jones, Peter B R; Langfahl-Klabes, Gunnar; Marshall, Graham D; Sparrow, Chris; O'Brien, Jeremy L; Poulios, Konstantinos; Kuhn, Axel; Matthews, Jonathan C F

    2016-07-01

    We demonstrate quantum logic using narrow linewidth photons that are produced with an a priori nonprobabilistic scheme from a single ^{87}Rb atom strongly coupled to a high-finesse cavity. We use a controlled-not gate integrated into a photonic chip to entangle these photons, and we observe nonclassical correlations between photon detection events separated by periods exceeding the travel time across the chip by 3 orders of magnitude. This enables quantum technology that will use the properties of both narrow-band single photon sources and integrated quantum photonics. PMID:27447506

  5. Quantum Logic with Cavity Photons From Single Atoms

    NASA Astrophysics Data System (ADS)

    Holleczek, Annemarie; Barter, Oliver; Rubenok, Allison; Dilley, Jerome; Nisbet-Jones, Peter B. R.; Langfahl-Klabes, Gunnar; Marshall, Graham D.; Sparrow, Chris; O'Brien, Jeremy L.; Poulios, Konstantinos; Kuhn, Axel; Matthews, Jonathan C. F.

    2016-07-01

    We demonstrate quantum logic using narrow linewidth photons that are produced with an a priori nonprobabilistic scheme from a single 87Rb atom strongly coupled to a high-finesse cavity. We use a controlled-not gate integrated into a photonic chip to entangle these photons, and we observe nonclassical correlations between photon detection events separated by periods exceeding the travel time across the chip by 3 orders of magnitude. This enables quantum technology that will use the properties of both narrow-band single photon sources and integrated quantum photonics.

  6. Engineering quantum correlations to enhance transport in cold atoms

    NASA Astrophysics Data System (ADS)

    Sadgrove, Mark; Schell, Torben; Nakagawa, Ken'ichi; Wimberger, Sandro

    2013-01-01

    We show experimentally that precise phase modulation of an optical potential allows us to control quantum correlations for atomic wave packets in a way that greatly enhances momentum transport. Experimentally, this means that for the same laser power and pulse frequency, atoms are accelerated to much higher energies. We explain our results with a pseudoclassical analysis along with numerical simulations, highlighting the existence of transporting islands in phase space.

  7. One-dimensional quantum pump simulated by cold atoms

    NASA Astrophysics Data System (ADS)

    Xiao, Yun-Chang; Zhu, Ming-Han; Liu, Zheng-Qin

    2015-05-01

    Quantum pump set up in one-dimensional (1D) channel was proposed by the cold atom simulation. The target pumping system is driven by the double time-dependent potentials. We investigated that the system can be achieved via the study of the cold atoms simulation. And by using the Floquet scattering method and the related transport theories in the mesoscopic systems, simulations of the pumping processes were presented in detail.

  8. Quantum theory of the cold-atom micromaser including gravity

    SciTech Connect

    Bastin, Thierry; Martin, John

    2005-11-15

    The quantum theory of the cold-atom micromaser including the effects of gravity is considered. We show that gravity does not break the special properties of the induced emission probability for the micromaser in the cold atom regime and rather new effects are predicted. In particular, we show that the cavity acts in the gravity field as an additional repulsive and attractive potential, resulting in quasibound states of the atomic motion. This feature gives rise to fine resonances in the induced emission probability that are not restricted to any particular cavity mode function, in contrast to the usual cold-atom micromaser. It is also shown that the atom is able to emit a photon inside the cavity, though classically it does not reach the interaction region. Predictions about the photon number statistics when the cavity is pumped by a flux of excited atoms are finally given. Unusual highly nonclassical 'dragon' distributions are still predicted in the vertical geometry.

  9. Light atom quantum oscillations in UC and US

    DOE PAGES

    Yiu, Yuen; Aczel, Adam A.; Granroth, Garrett E.; Abernathy, Douglas L.; Stone, Matthew B.; Buyers, W. J. L.; Lin, J. Y. Y.; Samolyuk, German D.; Stocks, George Malcolm; Nagler, Stephen E.

    2016-01-19

    High energy vibrational scattering in the binary systems UC and US is measured using time-of-flight inelastic neutron scattering. A clear set of well-defined peaks equally separated in energy is observed in UC, corresponding to harmonic oscillations of the light C atoms in a cage of heavy U atoms. The scattering is much weaker in US and only a few oscillator peaks are visible. We show how the difference between the materials can be understood by considering the neutron scattering lengths and masses of the lighter atoms. Monte Carlo ray tracing is used to simulate the scattering, with near quantitative agreementmore » with the data in UC, and some differences with US. The possibility of observing anharmonicity and anisotropy in the potentials of the light atoms is investigated in UC. Lastly, the observed data is well accounted for by considering each light atom as a single atom isotropic quantum harmonic oscillator.« less

  10. Light atom quantum oscillations in UC and US

    SciTech Connect

    Yiu, Yuen; Aczel, Adam A.; Granroth, Garrett E.; Abernathy, Douglas L.; Stone, Matthew B.; Buyers, W. J. L.; Lin, J. Y. Y.; Samolyuk, German D.; Stocks, George Malcolm; Nagler, Stephen E.

    2016-01-01

    High energy vibrational scattering in the binary systems UC and US is measured using time-of-flight inelastic neutron scattering. A clear set of well-defined peaks equally separated in energy is observed in UC, corresponding to harmonic oscillations of the light C atoms in a cage of heavy U atoms. The scattering is much weaker in US and only a few oscillator peaks are visible. We show how the difference between the materials can be understood by considering the neutron scattering lengths and masses of the lighter atoms. Monte Carlo ray tracing is used to simulate the scattering, with near quantitative agreement with the data in UC, and some differences with US. The possibility of observing anharmonicity and anisotropy in the potentials of the light atoms is investigated in UC. Lastly, the observed data is well accounted for by considering each light atom as a single atom isotropic quantum harmonic oscillator.

  11. Differential atom interferometry beyond the standard quantum limit

    SciTech Connect

    Eckert, K.; Hyllus, P.; Bruss, D.; Poulsen, U. V.; Lewenstein, M.; Jentsch, C.; Mueller, T.; Rasel, E. M.; Ertmer, W.

    2006-01-15

    We analyze methods designed to go beyond the standard quantum limit for a class of atomic interferometers, where the quantity of interest is the difference of phase shifts obtained by two independent atomic ensembles. An example is given by an atomic Sagnac interferometer, where for two ensembles propagating in opposite directions in the interferometer this phase difference encodes the angular velocity of the experimental setup. We discuss methods of separately or jointly squeezing observables of the two atomic ensembles, and compare in detail the advantages and drawbacks of such schemes. In particular, we show that the method of joint squeezing may improve the variance by up to a factor of 2. We take into account fluctuations of the number of atoms in both the preparation and the measurement stage, and obtain bounds on the difference between the numbers of atoms in the two ensembles, as well as on the detection efficiency, which have to be fulfilled in order to surpass the standard quantum limit. Under realistic conditions, the performance of both schemes can be improved significantly by reading out the phase difference via a quantum nondemolition measurement. Finally, we discuss a scheme using macroscopically entangled ensembles.

  12. Quantum stability and magic lengths of metal atom wires

    NASA Astrophysics Data System (ADS)

    Cui, Ping; Choi, Jin-Ho; Lan, Haiping; Cho, Jun-Hyung; Niu, Qian; Yang, Jinlong; Zhang, Zhenyu

    2016-06-01

    Metal atom wires represent an important class of nanomaterials in the development of future electronic devices and other functional applications. Using first-principles calculations within density functional theory, we carry out a systematic study of the quantum stability of freestanding atom wires consisting of prototypical metal elements with s -, s p -, and s d -valence electrons. We explore how the quantum mechanically confined motion and local bonding of the valence electrons in these different wire systems can dictate their overall structural stability and find that the formation energy of essentially all the wires oscillates with respect to their length measured by the number n of atoms contained in the wires, establishing the existence of highly preferred (or magic) lengths. Furthermore, different wire classes exhibit distinctively different oscillatory characteristics and quantum stabilities. Alkali metal wires possessing an unpaired s valence electron per atom exhibit simple damped even-odd oscillations. In contrast, Al and Ga wires containing three s2p1 valence electrons per atom generally display much larger and undamped even-odd energy oscillations due to stronger local bonding of the p orbitals. Among the noble metals, the s -dominant Ag wires behave similarly to the linear alkali metal wires, while Au and Pt wires distinctly prefer to be structurally zigzagged due to strong relativistic effects. These findings are discussed in connection with existing experiments and should also be instrumental in future experimental realization of different metal atom wires in freestanding or supported environments with desirable functionalities.

  13. Nonequilibrium forces between neutral atoms mediated by a quantum field

    SciTech Connect

    Behunin, Ryan O.; Hu, Bei-Lok

    2010-08-15

    We study forces between two neutral atoms, modeled as three-dimensional harmonic oscillators, arising from mutual influences mediated by an electromagnetic field but not from their direct interactions. We allow as dynamical variables the center-of-mass motion of the atom, its internal degrees of freedom, and the quantum field treated relativistically. We adopt the method of nonequilibrium quantum field theory which can provide a first-principles, systematic, and unified description including the intrinsic and induced dipole fluctuations. The inclusion of self-consistent back-actions makes possible a fully dynamical description of these forces valid for general atom motion. In thermal equilibrium we recover the known forces--London, van der Waals, and Casimir-Polder--between neutral atoms in the long-time limit. We also reproduce a recently reported force between atoms when the system is out of thermal equilibrium at late times. More noteworthy is the discovery of the existence of a type of (or identification of the source of some known) interatomic force which we call the ''entanglement force,'' originating from the quantum correlations of the internal degrees of freedom of entangled atoms.

  14. Interplay of weak interactions in the atom-by-atom condensation of xenon within quantum boxes.

    PubMed

    Nowakowska, Sylwia; Wäckerlin, Aneliia; Kawai, Shigeki; Ivas, Toni; Nowakowski, Jan; Fatayer, Shadi; Wäckerlin, Christian; Nijs, Thomas; Meyer, Ernst; Björk, Jonas; Stöhr, Meike; Gade, Lutz H; Jung, Thomas A

    2015-01-01

    Condensation processes are of key importance in nature and play a fundamental role in chemistry and physics. Owing to size effects at the nanoscale, it is conceptually desired to experimentally probe the dependence of condensate structure on the number of constituents one by one. Here we present an approach to study a condensation process atom-by-atom with the scanning tunnelling microscope, which provides a direct real-space access with atomic precision to the aggregates formed in atomically defined 'quantum boxes'. Our analysis reveals the subtle interplay of competing directional and nondirectional interactions in the emergence of structure and provides unprecedented input for the structural comparison with quantum mechanical models. This approach focuses on-but is not limited to-the model case of xenon condensation and goes significantly beyond the well-established statistical size analysis of clusters in atomic or molecular beams by mass spectrometry. PMID:25608225

  15. Interplay of weak interactions in the atom-by-atom condensation of xenon within quantum boxes

    PubMed Central

    Nowakowska, Sylwia; Wäckerlin, Aneliia; Kawai, Shigeki; Ivas, Toni; Nowakowski, Jan; Fatayer, Shadi; Wäckerlin, Christian; Nijs, Thomas; Meyer, Ernst; Björk, Jonas; Stöhr, Meike; Gade, Lutz H.; Jung, Thomas A.

    2015-01-01

    Condensation processes are of key importance in nature and play a fundamental role in chemistry and physics. Owing to size effects at the nanoscale, it is conceptually desired to experimentally probe the dependence of condensate structure on the number of constituents one by one. Here we present an approach to study a condensation process atom-by-atom with the scanning tunnelling microscope, which provides a direct real-space access with atomic precision to the aggregates formed in atomically defined ‘quantum boxes’. Our analysis reveals the subtle interplay of competing directional and nondirectional interactions in the emergence of structure and provides unprecedented input for the structural comparison with quantum mechanical models. This approach focuses on—but is not limited to—the model case of xenon condensation and goes significantly beyond the well-established statistical size analysis of clusters in atomic or molecular beams by mass spectrometry. PMID:25608225

  16. Interplay of weak interactions in the atom-by-atom condensation of xenon within quantum boxes

    NASA Astrophysics Data System (ADS)

    Nowakowska, Sylwia; Wäckerlin, Aneliia; Kawai, Shigeki; Ivas, Toni; Nowakowski, Jan; Fatayer, Shadi; Wäckerlin, Christian; Nijs, Thomas; Meyer, Ernst; Björk, Jonas; Stöhr, Meike; Gade, Lutz H.; Jung, Thomas A.

    2015-01-01

    Condensation processes are of key importance in nature and play a fundamental role in chemistry and physics. Owing to size effects at the nanoscale, it is conceptually desired to experimentally probe the dependence of condensate structure on the number of constituents one by one. Here we present an approach to study a condensation process atom-by-atom with the scanning tunnelling microscope, which provides a direct real-space access with atomic precision to the aggregates formed in atomically defined ‘quantum boxes’. Our analysis reveals the subtle interplay of competing directional and nondirectional interactions in the emergence of structure and provides unprecedented input for the structural comparison with quantum mechanical models. This approach focuses on—but is not limited to—the model case of xenon condensation and goes significantly beyond the well-established statistical size analysis of clusters in atomic or molecular beams by mass spectrometry.

  17. Spatial quantum noise interferometry in expanding ultracold atom clouds.

    PubMed

    Fölling, Simon; Gerbier, Fabrice; Widera, Artur; Mandel, Olaf; Gericke, Tatjana; Bloch, Immanuel

    2005-03-24

    In a pioneering experiment, Hanbury Brown and Twiss (HBT) demonstrated that noise correlations could be used to probe the properties of a (bosonic) particle source through quantum statistics; the effect relies on quantum interference between possible detection paths for two indistinguishable particles. HBT correlations--together with their fermionic counterparts--find numerous applications, ranging from quantum optics to nuclear and elementary particle physics. Spatial HBT interferometry has been suggested as a means to probe hidden order in strongly correlated phases of ultracold atoms. Here we report such a measurement on the Mott insulator phase of a rubidium Bose gas as it is released from an optical lattice trap. We show that strong periodic quantum correlations exist between density fluctuations in the expanding atom cloud. These spatial correlations reflect the underlying ordering in the lattice, and find a natural interpretation in terms of a multiple-wave HBT interference effect. The method should provide a useful tool for identifying complex quantum phases of ultracold bosonic and fermionic atoms.

  18. Gradient Echo Quantum Memory in Warm Atomic Vapor

    PubMed Central

    Pinel, Olivier; Hosseini, Mahdi; Sparkes, Ben M.; Everett, Jesse L.; Higginbottom, Daniel; Campbell, Geoff T.; Lam, Ping Koy; Buchler, Ben C.

    2013-01-01

    Gradient echo memory (GEM) is a protocol for storing optical quantum states of light in atomic ensembles. The primary motivation for such a technology is that quantum key distribution (QKD), which uses Heisenberg uncertainty to guarantee security of cryptographic keys, is limited in transmission distance. The development of a quantum repeater is a possible path to extend QKD range, but a repeater will need a quantum memory. In our experiments we use a gas of rubidium 87 vapor that is contained in a warm gas cell. This makes the scheme particularly simple. It is also a highly versatile scheme that enables in-memory refinement of the stored state, such as frequency shifting and bandwidth manipulation. The basis of the GEM protocol is to absorb the light into an ensemble of atoms that has been prepared in a magnetic field gradient. The reversal of this gradient leads to rephasing of the atomic polarization and thus recall of the stored optical state. We will outline how we prepare the atoms and this gradient and also describe some of the pitfalls that need to be avoided, in particular four-wave mixing, which can give rise to optical gain. PMID:24300586

  19. Gradient echo quantum memory in warm atomic vapor.

    PubMed

    Pinel, Olivier; Hosseini, Mahdi; Sparkes, Ben M; Everett, Jesse L; Higginbottom, Daniel; Campbell, Geoff T; Lam, Ping Koy; Buchler, Ben C

    2013-11-11

    Gradient echo memory (GEM) is a protocol for storing optical quantum states of light in atomic ensembles. The primary motivation for such a technology is that quantum key distribution (QKD), which uses Heisenberg uncertainty to guarantee security of cryptographic keys, is limited in transmission distance. The development of a quantum repeater is a possible path to extend QKD range, but a repeater will need a quantum memory. In our experiments we use a gas of rubidium 87 vapor that is contained in a warm gas cell. This makes the scheme particularly simple. It is also a highly versatile scheme that enables in-memory refinement of the stored state, such as frequency shifting and bandwidth manipulation. The basis of the GEM protocol is to absorb the light into an ensemble of atoms that has been prepared in a magnetic field gradient. The reversal of this gradient leads to rephasing of the atomic polarization and thus recall of the stored optical state. We will outline how we prepare the atoms and this gradient and also describe some of the pitfalls that need to be avoided, in particular four-wave mixing, which can give rise to optical gain.

  20. Quantum liquid-crystal order in resonant atomic gases

    NASA Astrophysics Data System (ADS)

    Radzihovsky, Leo

    2012-11-01

    I review recent studies that predict a realization of quantum liquid-crystalline orders in resonant atomic gases. As examples of such putative systems I will discuss an s-wave resonant imbalanced Fermi gas and a p-wave resonant Bose gas. In the former, the liquid-crystalline smectic, nematic and rich variety of other descendant states emerge from strongly quantum- and thermally-fluctuating Fulde-Ferrell and Larkin-Ovchinnikov states, driven by a competition between resonant pairing and Fermi-surface mismatch. In the latter, at intermediate detuning the p-wave resonant interaction generically drives Bose-condensation at a finite momentum, set by a competition between atomic kinetic energy and atom-molecule hybridization. Because of the underlying rotationally-invariant environment of the atomic gas trapped isotropically, the putative striped superfluid is a realization of a quantum superfluid smectic, that can melt into a variety of interesting phases, such as a quantum nematic. I will discuss the corresponding rich phase diagrams and transitions, as well the low-energy properties of the phases and fractional topological defects generic to striped superfluids and their fluctuation-driven descendants.

  1. Early atomic models - from mechanical to quantum (1904-1913)

    NASA Astrophysics Data System (ADS)

    Baily, C.

    2013-01-01

    A complete history of early atomic models would fill volumes, but a reasonably coherent tale of the path from mechanical atoms to the quantum can be told by focusing on the relevant work of three great contributors to atomic physics, in the critically important years between 1904 and 1913: J.J. Thomson, Ernest Rutherford and Niels Bohr. We first examine the origins of Thomson's mechanical atomic models, from his ethereal vortex atoms in the early 1880's, to the myriad "corpuscular" atoms he proposed following the discovery of the electron in 1897. Beyond qualitative predictions for the periodicity of the elements, the application of Thomson's atoms to problems in scattering and absorption led to quantitative predictions that were confirmed by experiments with high-velocity electrons traversing thin sheets of metal. Still, the much more massive and energetic α-particles being studied by Rutherford were better suited for exploring the interior of the atom, and careful measurements on the angular dependence of their scattering eventually allowed him to infer the existence of an atomic nucleus. Niels Bohr was particularly troubled by the radiative instability inherent to any mechanical atom, and succeeded in 1913 where others had failed in the prediction of emission spectra, by making two bold hypotheses that were in contradiction to the laws of classical physics, but necessary in order to account for experimental facts.

  2. Long-distance quantum networks using ultra-cold atoms

    NASA Astrophysics Data System (ADS)

    Solmeyer, Neal; Li, Xiao; Quraishi, Qudsia

    2016-05-01

    The generation of entanglement between distantly located quantum memories via frequency converted single photons could enable many applications in quantum networking, including quantum teleportation, distributed quantum computing and potentially distributed precision timing. A quantum network with three or more nodes has yet to be demonstrated and moreover hybrid networks leverage advantages of different platforms. With an existing memory at the Army Research Laboratory (ARL), based on weak Raman scattering in a Rb magneto-optical trap, we are building a second node at the Joint Quantum Institute (JQI), connected to ARL by a 13 km optical fiber. The second node will be a higher photon-rate node based on Rydberg excitations of a Rb ensemble in an optical dipole trap (N. Solmeyer et al., arXiv:1511.00025) and the first node will be upgraded to a Rydberg system soon. In the near term, we plan to generate entanglement between the second and a third node, based on a similar experimental setup, 100 m away at the JQI. For the ARL-JQI link we are presently working on quantum frequency conversion from IR photons to telecom wavelengths. Separately, we are pursuing frequency conversion from 493 nm photons to 780 nm to be used in a hybrid quantum network between ions and neutral atoms.

  3. Control of quantum magnets by atomic exchange bias.

    PubMed

    Yan, Shichao; Choi, Deung-Jang; Burgess, Jacob A J; Rolf-Pissarczyk, Steffen; Loth, Sebastian

    2015-01-01

    Mixing of discretized states in quantum magnets has a radical impact on their properties. Managing this effect is key for spintronics in the quantum limit. Magnetic fields can modify state mixing and, for example, mitigate destabilizing effects in single-molecule magnets. The exchange bias field has been proposed as a mechanism for localized control of individual nanomagnets. Here, we demonstrate that exchange coupling with the magnetic tip of a scanning tunnelling microscope provides continuous tuning of spin state mixing in an individual nanomagnet. By directly measuring spin relaxation time with electronic pump-probe spectroscopy, we find that the exchange interaction acts analogously to a local magnetic field that can be applied to a specific atom. It can be tuned in strength by up to several tesla and cancel external magnetic fields, thereby demonstrating the feasibility of complete control over individual quantum magnets with atomically localized exchange coupling.

  4. Fidelity for kicked atoms with gravity near a quantum resonance.

    PubMed

    Dubertrand, Rémy; Guarneri, Italo; Wimberger, Sandro

    2012-03-01

    Kicked atoms under a constant Stark or gravity field are investigated for experimental setups with cold and ultracold atoms. The parametric stability of the quantum dynamics is studied using the fidelity. In the case of a quantum resonance, it is shown that the behavior of the fidelity depends on arithmetic properties of the gravity parameter. Close to a quantum resonance, the long-time asymptotics of the fidelity is studied by means of a pseudoclassical approximation introduced by Fishman et al. [J. Stat. Phys. 110, 911 (2003)]. The long-time decay of fidelity arises from the tunneling out of pseudoclassical stable islands, and a simple ansatz is proposed which satisfactorily reproduces the main features observed in numerical simulations.

  5. Editorial . Quantum fluctuations and coherence in optical and atomic structures

    NASA Astrophysics Data System (ADS)

    Eschner, Jürgen; Gatti, Alessandra; Maître, Agnès; Morigi, Giovanna

    2003-03-01

    From simple interference fringes, over molecular wave packets, to nonlinear optical patterns - the fundamental interaction between light and matter leads to the formation of structures in many areas of atomic and optical physics. Sophisticated technology in experimental quantum optics, as well as modern computational tools available to theorists, have led to spectacular achievements in the investigation of quantum structures. This special issue is dedicated to recent developments in this area. It presents a selection of examples where quantum dynamics, fluctuations, and coherence generate structures in time or in space or where such structures are observed experimentally. The examples range from coherence phenomena in condensed matter, over atoms in optical structures, entanglement in light and matter, to quantum patterns in nonlinear optics and quantum imaging. The combination of such seemingly diverse subjects formed the basis of a successful European TMR network, "Quantum Structures" (visit http://cnqo.phys.strath.ac.uk/~gianluca/QSTRUCT/). This special issue partly re.ects the results and collaborations of the network, going however well beyond its scope by including contributions from a global community and from many related topics which were not addressed directly in the network. The aim of this issue is to present side by side these di.erent topics, all of which are loosely summarized under quantum structures, to highlight their common aspects, their di.erences, and the progress which resulted from the mutual exchange of results, methods, and knowledge. To guide the reader, we have organized the articles into subsections which follow a rough division into structures in material systems and structures in optical .elds. Nevertheless, in the following introduction we point out connections between the contributions which go beyond these usual criteria, thus highlighting the truly interdisciplinary nature of quantum structures. Much of the progress in atom optics

  6. The route to atomic and quantum standards.

    PubMed

    Flowers, Jeff

    2004-11-19

    Over the past half-century, there has been a shift away from standards based on particular artifacts toward those based on physical effects, the most stable being based on quantum properties of systems. This change was proposed at the end of the 19th century but is still not complete at the start of the 21st. We discuss how this vision has been implemented through recent advances in science and metrology and how these may soon lead to an SI system finally free from artifact standards, with a consistency based on fundamental constants. PMID:15550660

  7. Single-atom based coherent quantum interference device structure.

    PubMed

    Naydenov, Borislav; Rungger, Ivan; Mantega, Mauro; Sanvito, Stefano; Boland, John J

    2015-05-13

    We describe the fabrication, operation principles, and simulation of a coherent single-atom quantum interference device (QID) structure on Si(100) controlled by the properties of single atoms. The energy and spatial distribution of the wave functions associated with the device are visualized by scanning tunneling spectroscopy and the amplitude and phase of the evanescent wave functions that couple into the quantum well states are directly measured, including the action of an electrostatic gate. Density functional theory simulations were employed to simulate the electronic structure of the device structure, which is in excellent agreement with the measurements. Simulations of device transmission demonstrate that our coherent single-atom QID can have ON-OFF ratios in excess of 10(3) with potentially minimal power dissipation.

  8. Quantum oscillations of nitrogen atoms in uranium nitride

    NASA Astrophysics Data System (ADS)

    Aczel, A. A.; Granroth, G. E.; MacDougall, G. J.; Buyers, W. J. L.; Abernathy, D. L.; Samolyuk, G. D.; Stocks, G. M.; Nagler, S. E.

    2012-10-01

    The vibrational excitations of crystalline solids corresponding to acoustic or optic one-phonon modes appear as sharp features in measurements such as neutron spectroscopy. In contrast, many-phonon excitations generally produce a complicated, weak and featureless response. Here we present time-of-flight neutron scattering measurements for the binary solid uranium nitride, showing well-defined, equally spaced, high-energy vibrational modes in addition to the usual phonons. The spectrum is that of a single atom, isotropic quantum harmonic oscillator and characterizes independent motions of light nitrogen atoms, each found in an octahedral cage of heavy uranium atoms. This is an unexpected and beautiful experimental realization of one of the fundamental, exactly solvable problems in quantum mechanics. There are also practical implications, as the oscillator modes must be accounted for in the design of generation IV nuclear reactors that plan to use uranium nitride as a fuel.

  9. Quantized conductance through the quantum evaporation of bosonic atoms

    NASA Astrophysics Data System (ADS)

    Papoular, D. J.; Pitaevskii, L. P.; Stringari, S.

    2016-08-01

    We analyze theoretically the quantization of conductance occurring with cold bosonic atoms trapped in two reservoirs connected by a constriction with an attractive gate potential. We focus on temperatures slightly above the condensation threshold in the reservoirs. We show that a conductance step occurs, coinciding with the appearance of a condensate in the constriction. Conductance relies on a collective process involving the quantum condensation of an atom into an elementary excitation and the subsequent quantum evaporation of an atom, in contrast with ballistic fermion transport. The value of the bosonic conductance plateau is strongly enhanced compared to fermions and explicitly depends on temperature. We highlight the role of the repulsive interactions between the bosons in preventing them from collapsing into the constriction. We also point out the differences between the bosonic and fermionic thermoelectric effects in the quantized conductance regime.

  10. Single-atom based coherent quantum interference device structure.

    PubMed

    Naydenov, Borislav; Rungger, Ivan; Mantega, Mauro; Sanvito, Stefano; Boland, John J

    2015-05-13

    We describe the fabrication, operation principles, and simulation of a coherent single-atom quantum interference device (QID) structure on Si(100) controlled by the properties of single atoms. The energy and spatial distribution of the wave functions associated with the device are visualized by scanning tunneling spectroscopy and the amplitude and phase of the evanescent wave functions that couple into the quantum well states are directly measured, including the action of an electrostatic gate. Density functional theory simulations were employed to simulate the electronic structure of the device structure, which is in excellent agreement with the measurements. Simulations of device transmission demonstrate that our coherent single-atom QID can have ON-OFF ratios in excess of 10(3) with potentially minimal power dissipation. PMID:25826690

  11. Quantum computations with atoms in optical lattices: Marker qubits and molecular interactions

    SciTech Connect

    Calarco, T.; Dorner, U.; Zoller, P.; Julienne, P.S.; Williams, C.J.

    2004-07-01

    We develop a scheme for quantum computation with neutral atoms, based on the concept of 'marker' atoms, i.e., auxiliary atoms that can be efficiently transported in state-independent periodic external traps to operate quantum gates between physically distant qubits. This allows for relaxing a number of experimental constraints for quantum computation with neutral atoms in microscopic potential, including single-atom laser addressability. We discuss the advantages of this approach in a concrete physical scenario involving molecular interactions.

  12. A Modular Quantum System of Trapped Atomic Ions

    NASA Astrophysics Data System (ADS)

    Hucul, David Alexander

    Scaling up controlled quantum systems to involve large numbers of qubits remains one of the outstanding challenges of quantum information science. One path toward scalability is the use of a modular architecture where adjacent qubits may be entangled with applied electromagnetic fields, and remote qubits may be entangled using photon interference. Trapped atomic ion qubits are one of the most promising platforms for scaling up quantum systems by combining long coherence times with high fidelity entangling operations between proximate and remote qubits. In this thesis, I present experimental progress on combining entanglement between remote atomic ions separated by 1 meter with near-field entanglement between atomic ions in the same ion trap. I describe the experimental improvements to increase the remote entanglement rate by orders of magnitude to nearly 5 per second. This is the first experimental demonstration where the remote entanglement rate exceeds the decoherence rate of the entangled qubits. The flexibility of creating remote entanglement through photon interference is demonstrated by using the interference of distinguishable photons without sacrificing remote entanglement rate or fidelity. Next I describe the use of master clock in combination with a frequency comb to lock the phases of all laser-induced interactions between remote ion traps while removing optical phase stability requirements. The combination of both types of entanglement gates to create a small quantum network are described. Finally, I present ways to mitigate cross talk between photonic and memory qubits by using different trapped ion species. I show preliminary work on performing state detection of nuclear spin 0 ions by using entanglement between atomic ion spin and photon polarization. These control techniques may be important for building a large-scale modular quantum system.

  13. Hydrogen-like atom with nonnegative quantum distribution function

    SciTech Connect

    Zorin, A. V. Sevastianov, L. A.

    2007-04-15

    Among numerous approaches to probabilistic interpretation of conventional quantum mechanics (CQM), the closest to N. Bohr's idea of the correspondence principle is the Blokhintzev-Terletsky approach of the quantum distribution function (QDF) on the coordinate-momentum (q, p) phase space. The detailed investigation of this approach has led to the correspondence rule of V.V. Kuryshkin parametrically dependent on a set of auxiliary functions. According to investigations of numerous authors, the existence and the explicit form of QDF depends on the correspondence rule between classical functions A(q, p) and quantum operator A. At the same time, the QDF corresponding to all known quantization rules turns out to be alternating in sign or overly complex valued. Finally nonexistence of nonnegative QDF in CQM was proved. On the other hand, from this follows the possibility to construct quantum mechanics where a nonnegative QDF exists. We consider a certain set of auxiliary functions to construct explicit expressions for operators O(H) for the hydrogen atom. Naturally, these operators differ from the related operator H in CQM, so that spherical coordinates are no longer separable for a hydrogen-like atom in quantum mechanics with nonnegative QDF.

  14. Approaching the quantum limit for plasmonics: linear atomic chains

    NASA Astrophysics Data System (ADS)

    Townsend, Emily; Bryant, Garnett

    Linear atomic chains, such as atom chains on surfaces, linear arrays of dopants in semiconductors, or linear molecules, provide ideal testbeds for studying quantum plasmonics in nanosystems. We study the many-body excitations of finite (10-25) linear atomic chains. We use both time-dependent density functional theory (TDDFT) and exact diagonalization to analyze the excitations. TDDFT reveals optically driven excitations that can be single-particle-like, plasmon-like or mixed states. Such states can have very different dependencies on the electron-electron interaction strength, which can be used to help identify the states. TDDFT can identify plasmonic resonances, but it does not reveal how to quantize them. Exact diagonalization is used to get the full quantum description. However, exact diagonalization results can be very different from TDDFT results. Highly correlated, multi-excitonic states, also strongly dependent on the electron-electron interaction strength, appear in the exact response but not in TDDFT excitation spectra. These excitonic many-body states make it hard to identify plasmonic excitations. Exact results are also strongly dependent on the strength of the exchange interaction. We present these results to show how quantum plasmons appear in linear atomic chains.

  15. Conditional measurements, quantum feedback, and cold atoms in cavity QED

    NASA Astrophysics Data System (ADS)

    Reiner, Joseph Earl

    Two-time correlation functions are equivalent to conditional measurements in the sense that given a fluctuation at time t, they give the evolution of the system at time t + tau. The theoretical description of conditional measurements is well described with the formalism of quantum trajectories, which provide a "measurement friendly" means for understanding the evolution of a quantum system. The quantum system studied in this thesis is the strongly-coupled; atom-cavity QED system which consists of N-atoms coupled to a single electro-magnetic field mode of a Fabry-Perot cavity. When the cavity emits a single photon the intra-cavity field undergoes large fluctuations. The coherent evolution of the intra-cavity field; following a photoemission, reduces the cavity field noise below the shot-noise limit. A connection exists between this reduction, known as squeezing, and the conditioned field evolution. The cosine-Fourier transform of the conditioned field evolution and the spectrum of squeezing are proportional. In the first part of my thesis I use this connection, along with quantum trajectory theory, to study the dynamic origins of the spectrum of squeezing. This led to a better understanding of previous experimental results in our cavity QED system. In the second and third parts of my thesis I used quantum trajectories to formulate two different quantum feedback schemes for a strongly-coupled cavity QED system. In both feedback proposals it is the experimenter's knowledge of the system, and the detection of a single photon, that is used to control the evolution of the cavity QED system. We have implemented the first of these feedback proposals which conditions feedback upon single photon detections from our low-intensity cavity QED system. Previous experimental realizations have used a thermal beam to place the atoms inside the cavity. This degrades the effectiveness of the feedback proposals and the detection of quantum fluctuations. The final portion of my thesis

  16. Strong Anderson localization in cold atom quantum quenches.

    PubMed

    Micklitz, T; Müller, C A; Altland, A

    2014-03-21

    Signatures of Anderson localization in the momentum distribution of a cold atom cloud after a quantum quench are studied. We consider a quasi-one-dimensional cloud initially prepared in a well-defined momentum state, and expanding for some time in a disorder speckle potential. Quantum interference generates a peak in the forward scattering amplitude which, unlike the common weak localization backscattering peak, is a signature of strong Anderson localization. We present a nonperturbative, and fully time resolved description of the phenomenon, covering the entire diffusion-to-localization crossover. Our results should be observable by present day experiments.

  17. Construction of a single atom trap for quantum information protocols

    NASA Astrophysics Data System (ADS)

    Shea, Margaret E.; Baker, Paul M.; Gauthier, Daniel J.; Duke Physics Department Team

    2016-05-01

    The field of quantum information science addresses outstanding problems such as achieving fundamentally secure communication and solving computationally hard problems. Great progress has been made in the field, particularly using photons coupled to ions and super conducting qubits. Neutral atoms are also interesting for these applications and though the technology for control of neutrals lags behind that of trapped ions, they offer some key advantages: primarily coupling to optical frequencies closer to the telecom band than trapped ions or superconducting qubits. Here we report progress on constructing a single atom trap for 87 Rb. This system is a promising platform for studying the technical problems facing neutral atom quantum computing. For example, most protocols destroy the trap when reading out the neutral atom's state; we will investigate an alternative non-destructive state detection scheme. We detail the experimental systems involved and the challenges addressed in trapping a single atom. All of our hardware components are off the shelf and relatively inexpensive. Unlike many other systems, we place a high numerical aperture lens inside our vacuum system to increase photon collection efficiency. We gratefully acknowledge the financial support of the ARO through Grant # W911NF1520047.

  18. Topological bound states of a quantum walk with cold atoms

    NASA Astrophysics Data System (ADS)

    Mugel, Samuel; Celi, Alessio; Massignan, Pietro; Asbóth, János K.; Lewenstein, Maciej; Lobo, Carlos

    2016-08-01

    We suggest a method for engineering a quantum walk, with cold atoms as walkers, which presents topologically nontrivial properties. We derive the phase diagram, and show that we are able to produce a boundary between topologically distinct phases using the finite beam width of the applied lasers. A topologically protected bound state can then be observed, which is pinned to the interface and is robust to perturbations. We show that it is possible to identify this bound state by averaging over spin sensitive measures of the atom's position, based on the spin distribution that these states display. Interestingly, there exists a parameter regime in which our system maps on to the Creutz ladder.

  19. Efficient teleportation between remote single-atom quantum memories.

    PubMed

    Nölleke, Christian; Neuzner, Andreas; Reiserer, Andreas; Hahn, Carolin; Rempe, Gerhard; Ritter, Stephan

    2013-04-01

    We demonstrate teleportation of quantum bits between two single atoms in distant laboratories. Using a time-resolved photonic Bell-state measurement, we achieve a teleportation fidelity of (88.0 ± 1.5)%, largely determined by our entanglement fidelity. The low photon collection efficiency in free space is overcome by trapping each atom in an optical cavity. The resulting success probability of 0.1% is almost 5 orders of magnitude larger than in previous experiments with remote material qubits. It is mainly limited by photon propagation and detection losses and can be enhanced with a cavity-based deterministic Bell-state measurement. PMID:25166964

  20. Efficient teleportation between remote single-atom quantum memories.

    PubMed

    Nölleke, Christian; Neuzner, Andreas; Reiserer, Andreas; Hahn, Carolin; Rempe, Gerhard; Ritter, Stephan

    2013-04-01

    We demonstrate teleportation of quantum bits between two single atoms in distant laboratories. Using a time-resolved photonic Bell-state measurement, we achieve a teleportation fidelity of (88.0 ± 1.5)%, largely determined by our entanglement fidelity. The low photon collection efficiency in free space is overcome by trapping each atom in an optical cavity. The resulting success probability of 0.1% is almost 5 orders of magnitude larger than in previous experiments with remote material qubits. It is mainly limited by photon propagation and detection losses and can be enhanced with a cavity-based deterministic Bell-state measurement.

  1. Designing frustrated quantum magnets with laser-dressed Rydberg atoms.

    PubMed

    Glaetzle, Alexander W; Dalmonte, Marcello; Nath, Rejish; Gross, Christian; Bloch, Immanuel; Zoller, Peter

    2015-05-01

    We show how a broad class of lattice spin-1/2 models with angular- and distance-dependent couplings can be realized with cold alkali atoms stored in optical or magnetic trap arrays. The effective spin-1/2 is represented by a pair of atomic ground states, and spin-spin interactions are obtained by admixing van der Waals interactions between fine-structure split Rydberg states with laser light. The strengths of the diagonal spin interactions as well as the "flip-flop," and "flip-flip" and "flop-flop" interactions can be tuned by exploiting quantum interference, thus realizing different spin symmetries. The resulting energy scales of interactions compare well with typical temperatures and decoherence time scales, making the exploration of exotic forms of quantum magnetism, including emergent gauge theories and compass models, accessible within state-of-the-art experiments.

  2. Designing Frustrated Quantum Magnets with Laser-Dressed Rydberg Atoms

    NASA Astrophysics Data System (ADS)

    Glaetzle, Alexander W.; Dalmonte, Marcello; Nath, Rejish; Gross, Christian; Bloch, Immanuel; Zoller, Peter

    2015-05-01

    We show how a broad class of lattice spin-1 /2 models with angular- and distance-dependent couplings can be realized with cold alkali atoms stored in optical or magnetic trap arrays. The effective spin-1 /2 is represented by a pair of atomic ground states, and spin-spin interactions are obtained by admixing van der Waals interactions between fine-structure split Rydberg states with laser light. The strengths of the diagonal spin interactions as well as the "flip-flop," and "flip-flip" and "flop-flop" interactions can be tuned by exploiting quantum interference, thus realizing different spin symmetries. The resulting energy scales of interactions compare well with typical temperatures and decoherence time scales, making the exploration of exotic forms of quantum magnetism, including emergent gauge theories and compass models, accessible within state-of-the-art experiments.

  3. Designing frustrated quantum magnets with laser-dressed Rydberg atoms.

    PubMed

    Glaetzle, Alexander W; Dalmonte, Marcello; Nath, Rejish; Gross, Christian; Bloch, Immanuel; Zoller, Peter

    2015-05-01

    We show how a broad class of lattice spin-1/2 models with angular- and distance-dependent couplings can be realized with cold alkali atoms stored in optical or magnetic trap arrays. The effective spin-1/2 is represented by a pair of atomic ground states, and spin-spin interactions are obtained by admixing van der Waals interactions between fine-structure split Rydberg states with laser light. The strengths of the diagonal spin interactions as well as the "flip-flop," and "flip-flip" and "flop-flop" interactions can be tuned by exploiting quantum interference, thus realizing different spin symmetries. The resulting energy scales of interactions compare well with typical temperatures and decoherence time scales, making the exploration of exotic forms of quantum magnetism, including emergent gauge theories and compass models, accessible within state-of-the-art experiments. PMID:25978228

  4. Atomic electron energies including relativistic effects and quantum electrodynamic corrections

    NASA Technical Reports Server (NTRS)

    Aoyagi, M.; Chen, M. H.; Crasemann, B.; Huang, K. N.; Mark, H.

    1977-01-01

    Atomic electron energies have been calculated relativistically. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all orbitals in all atoms with 2 less than or equal to Z less than or equal to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. These results will serve for detailed comparison of calculations based on other approaches. The magnitude of quantum electrodynamic corrections is exhibited quantitatively for each state.

  5. Quantum entanglement for helium atom in the Debye plasmas

    SciTech Connect

    Lin, Yen-Chang; Fang, Te-Kuei; Ho, Yew Kam

    2015-03-15

    In the present work, we present an investigation on quantum entanglement of the two-electron helium atom immersed in weakly coupled Debye plasmas, modeled by the Debye-Hückel, or screened Coulomb, potential to mimic the interaction between two charged particles inside the plasma. Quantum entanglement is related to correlation effects in a multi-particle system. In a bipartite system, a measurement made on one of the two entangled particles affects the outcome of the other particle, even if such two particles are far apart. Employing wave functions constructed with configuration interaction B-spline basis, we have quantified von Neumann entropy and linear entropy for a series of He {sup 1,3}S{sup e} and {sup 1,3}P{sup o} states in plasma-embedded helium atom.

  6. Experiments with Ultracold Quantum-degenerate Fermionic Lithium Atoms

    NASA Technical Reports Server (NTRS)

    Ketterle, Wolfgang

    2003-01-01

    Experimental methods of laser and evaporative cooling, used in the production of atomic Bose-Einstein condensates have recently been extended to realize quantum degeneracy in trapped Fermi gases. Fermi gases are a new rich system to explore the implications of Pauli exclusion on scattering properties of the system, and ultimately fermionic superfluidity. We have produced a new macroscopic quantum system, in which a degenerate Li-6 Fermi gas coexists with a large and stable Na-23 BEC. This was accomplished using inter-species sympathetic cooling of fermionic 6Li in a thermal bath of bosonic Na-23. We have achieved high numbers of both fermions (less than 10(exp 5) and bosons (less than 10(exp 6), and Li-6 quantum degeneracy corresponding to one half of the Fermi temperature. This is the first time that a Fermi sea was produced with a condensate as a "refrigerator".

  7. Charge transport and localization in atomically coherent quantum dot solids

    NASA Astrophysics Data System (ADS)

    Whitham, Kevin; Yang, Jun; Savitzky, Benjamin H.; Kourkoutis, Lena F.; Wise, Frank; Hanrath, Tobias

    2016-05-01

    Epitaxial attachment of quantum dots into ordered superlattices enables the synthesis of quasi-two-dimensional materials that theoretically exhibit features such as Dirac cones and topological states, and have major potential for unprecedented optoelectronic devices. Initial studies found that disorder in these structures causes localization of electrons within a few lattice constants, and highlight the critical need for precise structural characterization and systematic assessment of the effects of disorder on transport. Here we fabricated superlattices with the quantum dots registered to within a single atomic bond length (limited by the polydispersity of the quantum dot building blocks), but missing a fraction (20%) of the epitaxial connections. Calculations of the electronic structure including the measured disorder account for the electron localization inferred from transport measurements. The calculations also show that improvement of the epitaxial connections will lead to completely delocalized electrons and may enable the observation of the remarkable properties predicted for these materials.

  8. Quantum Information with Rydberg atoms: Role of dissipation and decoherence

    NASA Astrophysics Data System (ADS)

    Dasari, Durga Bhaktavatsala Rao; Molmer, Klaus

    2014-03-01

    Originally inhomegeneities, decoherence and decay of the atomic systems were minimized in quantum computing proposals so that their effects would not disturb the ideal unitary evolution of the system. Recent works, however, suggest a quite opposite strategy, where inhomegeneities are created on purpose and and the system is driven on resonance with short lived states such that it dephases and decays to robust steady states. By suitable use of the interactions, these states can be selected, e.g., as entangled states or states encoding the outcome of a quantum computation. We investigate the coherent effects induced by dissipation and decoherence in neutral atom based quantum computing proposals, for creating robust entangled states and long distance gates. We also show that these incoherent effects can also be helpful for deterministic loading of optical traps with single atoms and to reliably store and emit single photons. This work was supported by the project MALICIA under FET-Open grant number 265522, and the IARPA MQCO program.

  9. Long-distance quantum communication with neutral atoms

    SciTech Connect

    Razavi, Mohsen; Shapiro, Jeffrey H.

    2006-04-15

    The architecture proposed by Duan, Lukin, Cirac, and Zoller (DLCZ) for long-distance quantum communication with atomic ensembles is analyzed. Its fidelity and throughput in entanglement distribution, entanglement swapping, and quantum teleportation is derived within a framework that accounts for multiple excitations in the ensembles as well as loss and asymmetries in the channel. The DLCZ performance metrics that are obtained are compared to the corresponding results for the trapped-atom quantum communication architecture that has been proposed by a team from the Massachusetts Institute of Technology and Northwestern University (MIT and NU). Both systems are found to be capable of high-fidelity entanglement distribution. However, the DLCZ scheme only provides conditional teleportation and repeater operation, whereas the MIT-NU architecture affords full Bell-state measurements on its trapped atoms. Moreover, it is shown that achieving unity conditional fidelity in DLCZ teleportation and repeater operation requires ideal photon-number resolving detectors. The maximum conditional fidelities for DLCZ teleportation and repeater operation that can be realized with nonresolving detectors are 1/2 and 2/3, respectively.

  10. Electronic Structure of Helium Atom in a Quantum Dot

    NASA Astrophysics Data System (ADS)

    Saha, Jayanta K.; Bhattacharyya, S.; Mukherjee, T. K.

    2016-03-01

    Bound and resonance states of helium atom have been investigated inside a quantum dot by using explicitly correlated Hylleraas type basis set within the framework of stabilization method. To be specific, precise energy eigenvalues of bound 1sns (1Se) (n = 1-6) states and the resonance parameters i.e. positions and widths of 1Se states due to 2sns (n = 2-5) and 2pnp (n = 2-5) configurations of confined helium below N = 2 ionization threshold of He+ have been estimated. The two-parameter (Depth and Width) finite oscillator potential is used to represent the confining potential due to the quantum dot. It has been explicitly demonstrated that the electronic structural properties become sensitive functions of the dot size. It is observed from the calculations of ionization potential that the stability of an impurity ion within a quantum dot may be manipulated by varying the confinement parameters. A possibility of controlling the autoionization lifetime of doubly excited states of two-electron ions by tuning the width of the quantum cavity is also discussed here. TKM Gratefully Acknowledges Financial Support under Grant No. 37(3)/14/27/2014-BRNS from the Department of Atomic Energy, BRNS, Government of India. SB Acknowledges Financial Support under Grant No. PSW-160/14-15(ERO) from University Grants Commission, Government of India

  11. Quantum dynamics of hydrogen atoms on graphene. II. Sticking

    SciTech Connect

    Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H.; Burghardt, Irene

    2015-09-28

    Following our recent system-bath modeling of the interaction between a hydrogen atom and a graphene surface [Bonfanti et al., J. Chem. Phys. 143, 124703 (2015)], we present the results of converged quantum scattering calculations on the activated sticking dynamics. The focus of this study is the collinear scattering on a surface at zero temperature, which is treated with high-dimensional wavepacket propagations with the multi-configuration time-dependent Hartree method. At low collision energies, barrier-crossing dominates the sticking and any projectile that overcomes the barrier gets trapped in the chemisorption well. However, at high collision energies, energy transfer to the surface is a limiting factor, and fast H atoms hardly dissipate their excess energy and stick on the surface. As a consequence, the sticking coefficient is maximum (∼0.65) at an energy which is about one and half larger than the barrier height. Comparison of the results with classical and quasi-classical calculations shows that quantum fluctuations of the lattice play a primary role in the dynamics. A simple impulsive model describing the collision of a classical projectile with a quantum surface is developed which reproduces the quantum results remarkably well for all but the lowest energies, thereby capturing the essential physics of the activated sticking dynamics investigated.

  12. Quantum dynamics of hydrogen atoms on graphene. II. Sticking.

    PubMed

    Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H; Burghardt, Irene; Martinazzo, Rocco

    2015-09-28

    Following our recent system-bath modeling of the interaction between a hydrogen atom and a graphene surface [Bonfanti et al., J. Chem. Phys. 143, 124703 (2015)], we present the results of converged quantum scattering calculations on the activated sticking dynamics. The focus of this study is the collinear scattering on a surface at zero temperature, which is treated with high-dimensional wavepacket propagations with the multi-configuration time-dependent Hartree method. At low collision energies, barrier-crossing dominates the sticking and any projectile that overcomes the barrier gets trapped in the chemisorption well. However, at high collision energies, energy transfer to the surface is a limiting factor, and fast H atoms hardly dissipate their excess energy and stick on the surface. As a consequence, the sticking coefficient is maximum (∼0.65) at an energy which is about one and half larger than the barrier height. Comparison of the results with classical and quasi-classical calculations shows that quantum fluctuations of the lattice play a primary role in the dynamics. A simple impulsive model describing the collision of a classical projectile with a quantum surface is developed which reproduces the quantum results remarkably well for all but the lowest energies, thereby capturing the essential physics of the activated sticking dynamics investigated. PMID:26429029

  13. The Quantum World of Ultra-Cold Atoms and Light - Book 1: Foundations of Quantum Optics

    NASA Astrophysics Data System (ADS)

    Gardiner, Crispin; Zoller, Peter

    2014-03-01

    Abstract The Table of Contents is as follows: * I - THE PHYSICAL BACKGROUND * 1. Controlling the Quantum World * 1.1 Quantum Optics * 1.2 Quantum Information * 2. Describing the Quantum World * 2.1 Classical Stochastic Processes * 2.2. Theoretical Quantum Optics * 2.3. Quantum Stochastic Methods * 2.4. Ultra-Cold Atoms * II - CLASSICAL STOCHASTIC METHODS * 3. Physics in a Noisy World * 3.1. Brownian Motion and the Thermal Origin of Noise * 3.2. Brownian Motion, Friction, Noise and Temperature * 3.3. Measurement in a Fluctuating System * 4. Stochastic Differential Equations * 4.1. Ito Stochastic Differential Equation * 4.2. The Fokker-Planck Equation * 4.3. The Stratonovich Stochastic Differential Equation * 4.4. Systems with Many Variables * 4.5. Numerical Simulation of Stochastic Differential Equations * 5. The Fokker-Planck Equation * 5.1. Fokker-Planck Equation in One Dimension * 5.2. Eigenfunctions of the Fokker-Planck Equation * 5.3. Many-Variable Fokker-Planck Equations * 6. Master Equations and Jump Processes * 6.1. The Master Equation * 7. Applications of Random Processes * 7.1. The Ornstein-Uhlenbeck Process * 7.2. Johnson Noise * 7.3. Complex Variable Oscillator Processes * 8. The Markov Limit * 8.1. The White Noise Limit * 8.2. Interpretation and Generalizations of the White Noise Limit * 8.3. Linear Non-Markovian Stochastic Differential Equations * 9. Adiabatic Elimination of Fast Variables * 9.1 Slow and Fast Variables * 9.2. Other Applications of the Adiabatic Elimination Method * III - FIELDS, QUANTA AND ATOMS * 10. Ideal Bose and Fermi Systems * 10.1. The Quantum Gas * 10.2. Thermal States * 10.3. Fluctuations in the Ideal Bose Gas * 10.4. Bosonic Quantum Gaussian Systems * 10.5. Coherent States * 10.6. Fluctuations in Systems of Fermions * 10.7. Two-Level Systems and Pauli Matrices * 11. Quantum Fields * 11.1 Kinds of Quantum Field * 11.2 Coherence and Correlation Functions * 12. Atoms, Light and their Interaction * 12.1. Interaction with the

  14. An architecture for quantum computation with magnetically trapped Holmium atoms

    NASA Astrophysics Data System (ADS)

    Saffman, Mark; Hostetter, James; Booth, Donald; Collett, Jeffrey

    2016-05-01

    Outstanding challenges for scalable neutral atom quantum computation include correction of atom loss due to collisions with untrapped background gas, reduction of crosstalk during state preparation and measurement due to scattering of near resonant light, and the need to improve quantum gate fidelity. We present a scalable architecture based on loading single Holmium atoms into an array of Ioffe-Pritchard traps. The traps are formed by grids of superconducting wires giving a trap array with 40 μm period, suitable for entanglement via long range Rydberg gates. The states | F = 5 , M = 5 > and | F = 7 , M = 7 > provide a magic trapping condition at a low field of 3.5 G for long coherence time qubit encoding. The F = 11 level will be used for state preparation and measurement. The availability of different states for encoding, gate operations, and measurement, spectroscopically isolates the different operations and will prevent crosstalk to neighboring qubits. Operation in a cryogenic environment with ultra low pressure will increase atom lifetime and Rydberg gate fidelity by reduction of blackbody induced Rydberg decay. We will present a complete description of the architecture including estimates of achievable performance metrics. Work supported by NSF award PHY-1404357.

  15. Quantum interference in a driven two-level atom

    NASA Astrophysics Data System (ADS)

    Ficek, Z.; Rudolph, T.

    1999-12-01

    We show that a dynamical suppression of spontaneous emission, predicted for a three-level atom [S.-Y. Zhu and M. O. Scully, Phys. Rev. Lett. 76, 388 (1996)] can occur in a two-level atom driven by a polychromatic field. We find that the quantum interference, responsible for the cancellation of spontaneous emission, appears between different channels of transitions among the dressed states of the driven atom. We discuss the effect for bichromatic and trichromatic (amplitude-modulated) fields and find that these two cases lead to the cancellation of spontaneous emission in different parts of the fluorescence spectrum. Our system has the advantage of being easily accessible by current experiments.

  16. Observing the Quantum Spin Hall Effect with Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Vaishnav, J. Y.; Stanescu, Tudor D.; Clark, Charles W.; Galitski, Victor

    2009-03-01

    The quantum spin Hall (QSH) state is a topologically nontrivial state of matter proposed to exist in certain 2-D systems with spin-orbit coupling. While the electronic states of a QSH insulator are gapped in the bulk, a QSH insulator is characterized by gapless edge states of different spins which counterpropagate at a given edge; the spin is correlated with the direction of propagation. Recent proposals ootnotetextT. D. Stanescu, C. Zhang, V. Galitski, Physical Review Letters 99, 110403 (2007), J. Y. Vaishnav, Charles W. Clark, Physical Review Letters 100, 153002 (2008). suggest that synthetic spin-orbit couplings can be created for cold atoms moving in spatially varying light fields. Here, we identify an optical lattice setup which generates an effective QSH effect for cold, multilevel atoms. We also discuss methods for experimental detection of the atomic QSH effect.

  17. Manipulating quantum fields with a single atom in a cavity

    SciTech Connect

    Haroche, Serge

    1995-04-01

    Circular Rydberg atoms, detected by the very sensitive and state selective field ionization method, can be used to measure and manipulate quantum fields stored in a cavity. The method is based on an interferometric detection of the dispersive energy shifts experienced by these atoms when they interact with a slightly off-resonant field mode sustained by a cavity which the atoms cross one at a time. These shifts give rise to a translation of the Ramsey fringe pattern observed in the field ionization signal of the atoms. The method consitutes a non-destructive way of photon counting. In this experiment, non local correlations between the atom and the cavity field are created, which could be used to perform new types of Einstein-Podolsky-Rosen experiments. Non classical fields could also be generated, which would display some of the properties discussed by Schroedinger in his famous 'cat paradox'. We present the theory of these experiments which until very recently would have been considered as mere 'gedanken' ones and we describe the operation of a Rydberg atom interferometer which has already enabled us to detect subphoton fields and to measure vacuum field effects in a cavity.

  18. Approaching the quantum limit for plasmonics: linear atomic chains

    NASA Astrophysics Data System (ADS)

    Bryant, Garnett W.

    2016-07-01

    Optical excitations in atomic-scale materials can be strongly mixed, with contributions from both single-particle transitions and collective response. This complicates the quantum description of these excitations, because there is no clear way to define their quantization. To develop a quantum theory for these optical excitations, they must first be characterized so that single-particle-like and collective excitations can be identified. Linear atomic chains, such as atom chains on surfaces, linear arrays of dopant atoms in semiconductors, or linear molecules, provide ideal testbeds for studying collective excitations in small atomic-scale systems. We use exact diagonalization to study the many-body excitations of finite (10 to 25) linear atomic chains described by a simplified model Hamiltonian. Exact diagonalization results can be very different from the density functional theory (DFT) results usually obtained. Highly correlated, multiexcitonic states, strongly dependent on the electron-electron interaction strength, dominate the exact spectral and optical response but are not present in DFT excitation spectra. The ubiquitous presence of excitonic many-body states in the spectra makes it hard to identify plasmonic excitations. A combination of criteria involving a many-body state’s transfer dipole moment, balance, transfer charge, dynamical response, and induced-charge distribution do strongly suggest which many-body states should be considered as plasmonic. This analysis can be used to reveal the few plasmonic many-body states hidden in the dense spectrum of low-energy single-particle-like states and many higher-energy excitonic-like states. These excitonic states are the predominant excitation because of the many possible ways to develop local correlations.

  19. An Atomic Abacus: Trapped ion quantum computing experiments at NIST

    NASA Astrophysics Data System (ADS)

    Demarco, Brian

    2003-03-01

    Trapped atomic ions are an ideal system for exploring quantum information science because deterministic state preparation and efficient state detection are possible and coherent manipulation of atomic systems is relatively advanced. In our experiment, a few singly charged Be ions are confined by static and radio-frequency electric fields in a micro-machined linear Paul trap. The internal and motional states of the ions are coherently manipulated using applied laser light. Our current work focuses on demonstrating the necessary ingredients to produce a scalable quantum computing scheme and on simplifying and improving quantum logic gates. I will speak about a new set of experiments that was made possible by recent improvements in trap technology. A novel trap with multiple trapping regions was used to demonstrate the first steps towards a fully scalable quantum computing scheme. Single ions were ``shuttled" between trapping regions without disturbing the ion's motional and internal state, and two ions were separated from a single to two different trapping zones. Improvements in the trap manufacturing process has led to a reduction of nearly two orders of magnitude in the ion's motional heating rate, making possible two new improved logic gates. The first gate utilizes the wave-packet nature of the ions to tune the laser-atom interaction and achieve a controlled-NOT gate between a single ion's spin and motional states. The second, a two-ion phase gate, uses phase-space dynamics to produce a state-sensitive geometric phase. I will end with a quick look at experiments using a Mg ion to sympathetically cool a simultaneously trapped Be ion and a glimpse of the next generation of ions traps currently under construction.

  20. Hybrid atom-nanophotonic lattices for quantum optics and many-body physics

    NASA Astrophysics Data System (ADS)

    Hung, Chen-Lung

    2016-05-01

    Interfacing light with cold atoms localized near photonic crystal cavities and waveguides presents new opportunities for realizing scalable quantum networks and novel quantum phases of light and matter. Such hybrid system could bring together excellent mobility of photons, and quantum non-linearity as well as control toolbox available for cold atoms in a highly engineered setting. In this talk, I will discuss recent experimental progress toward achieving strong atom-atom interactions in a nanophotonic lattice for light, and theory prospects for inducing long-range quantum dynamics for quantum network and many-body physics.

  1. Quantum jumps in a two-level atom: Simple theories versus quantum trajectories

    NASA Astrophysics Data System (ADS)

    Wiseman, H. M.; Toombes, G. E.

    1999-09-01

    A strongly driven (Ω>>γ) two-level atom relaxes towards an equilibrium state ρ which is almost completely mixed. One interpretation of this state is that it represents an ensemble average, and that an individual atom is at any time in one of the eigenstates of ρ. The theory of Teich and Mahler [Phys. Rev. A 45, 3300 (1992)] makes this interpretation concrete, with an individual atom jumping stochastically between the two eigenstates when a photon is emitted. The dressed-atom theory is also supposed to describe the quantum jumps of an individual atom due to photoemissions. But the two pictures are contradictory because the dressed states of the atom are almost orthogonal to the eigenstates of ρ. In this paper we investigate three ways of measuring the field radiated by the atom, which attempt to reproduce the simple quantum jump dynamics of the dressed state or Teich and Mahler models. These are spectral detection (using optical filters), two-state jumps (using adaptive homodyne detection), and orthogonal jumps (another adaptive homodyne scheme). We find that the three schemes closely mimic the jumps of the dressed-state model, with errors of order 34(γ/Ω)2/3, 14(γ/Ω)2, and 34(γ/Ω)2, respectively. The significance of this result to the program of environmentally induced superselection is discussed.

  2. Geometric effects on quantum transport of ultracold atoms in optical lattices: Quantum acceleration and flat band

    NASA Astrophysics Data System (ADS)

    Chien, Chih-Chun; Metcalf, Mekena; di Ventra, Massimiliano; Chern, Gia-Wei

    2015-05-01

    The realizations of interesting optical lattices for ultracold atoms provide opportunities for investigating geometric effects on many-body physics. Thesquare, triangular, honeycomb, kagome lattices, and other geometries have been experimentally demonstrated. When the atoms are driven out of equilibrium by manipulations of the density or trapping potential, their quantum transport can be monitored and fundamental questions regarding transport in isolated systems can be addressed unambiguously. We found that the propagation velocity of the matter wave representing the flowing atoms can be accelerated by tuning the lattice geometry. This acceleration is a pure quantum effect because no shorter path is created as the geometry changes. For lattice geometries supporting a dispersionless flat band, the localized atoms in the flat band do not participate in transport but interfere with the mobile atoms. We found a generic insulating phase exhibiting a density jump in the profile that can be dynamically generated. Interesting spatial patterns may emerge if those flat-band lattices are manipulated, and an analogue of geometric frustration in quantum transport will be presented.

  3. Operating Spin Echo in the Quantum Regime for an Atomic-Ensemble Quantum Memory

    NASA Astrophysics Data System (ADS)

    Rui, Jun; Jiang, Yan; Yang, Sheng-Jun; Zhao, Bo; Bao, Xiao-Hui; Pan, Jian-Wei

    2015-09-01

    Spin echo is a powerful technique to extend atomic or nuclear coherence times by overcoming the dephasing due to inhomogeneous broadenings. However, there are disputes about the feasibility of applying this technique to an ensemble-based quantum memory at the single-quanta level. In this experimental study, we find that noise due to imperfections of the rephasing pulses has both intense superradiant and weak isotropic parts. By properly arranging the beam directions and optimizing the pulse fidelities, we successfully manage to operate the spin echo technique in the quantum regime by observing nonclassical photon-photon correlations as well as the quantum behavior of retrieved photons. Our work for the first time demonstrates the feasibility of harnessing the spin echo method to extend the lifetime of ensemble-based quantum memories at the single-quanta level.

  4. Operating Spin Echo in the Quantum Regime for an Atomic-Ensemble Quantum Memory.

    PubMed

    Rui, Jun; Jiang, Yan; Yang, Sheng-Jun; Zhao, Bo; Bao, Xiao-Hui; Pan, Jian-Wei

    2015-09-25

    Spin echo is a powerful technique to extend atomic or nuclear coherence times by overcoming the dephasing due to inhomogeneous broadenings. However, there are disputes about the feasibility of applying this technique to an ensemble-based quantum memory at the single-quanta level. In this experimental study, we find that noise due to imperfections of the rephasing pulses has both intense superradiant and weak isotropic parts. By properly arranging the beam directions and optimizing the pulse fidelities, we successfully manage to operate the spin echo technique in the quantum regime by observing nonclassical photon-photon correlations as well as the quantum behavior of retrieved photons. Our work for the first time demonstrates the feasibility of harnessing the spin echo method to extend the lifetime of ensemble-based quantum memories at the single-quanta level.

  5. A Rydberg atom-photon-superconductor quantum interface

    NASA Astrophysics Data System (ADS)

    Isaacs, J. A.; Booth, D. W.; Beck, M. A.; Pritchard, J. D.; Xia, T.; McDermott, R.; Saffman, M.; UW Hybrid QC Collaboration

    2016-05-01

    Hybrid quantum computation bridges disparate quantum technologies in order to achieve fast gates with long coherence times. Our implementation combines superconducting circuit-QED with singly trapped Rydberg atoms. Introducing typical AMO techniques into cryogenic environments required the development of several novel approaches that we will discuss in our talk. Our current experiment involves trapping cesium atoms inside a 4 K cryostat, transporting them first horizontally and then vertically up to a superconducting coplanar waveguide resonator. After transport we use a novel two-photon Rydberg excitation via the 6S1 / 2 --> 5D5 / 2 quadrupole transition to enable direct excitation of nP3 / 2 states for strong electric-dipole coupling to the cavity. This excitation scheme significantly reduces the Doppler mismatch compared to previous two-photon excitation schemes to enable high fidelity operations. First optical spectroscopy and Rabi oscillation results will be shown along with microwave cavity coupling data. Experimental and theoretical efforts toward increasing fidelity of our operations by minimizing sensitivity of the Rydberg atoms to stray external electric fields will be discussed. This work is supported by an ARO DURIP award.

  6. Towards experimental quantum-field tomography with ultracold atoms

    PubMed Central

    Steffens, A.; Friesdorf, M.; Langen, T.; Rauer, B.; Schweigler, T.; Hübener, R.; Schmiedmayer, J.; Riofrío, C.A.; Eisert, J.

    2015-01-01

    The experimental realization of large-scale many-body systems in atomic-optical architectures has seen immense progress in recent years, rendering full tomography tools for state identification inefficient, especially for continuous systems. To work with these emerging physical platforms, new technologies for state identification are required. Here we present first steps towards efficient experimental quantum-field tomography. Our procedure is based on the continuous analogues of matrix-product states, ubiquitous in condensed-matter theory. These states naturally incorporate the locality present in realistic physical settings and are thus prime candidates for describing the physics of locally interacting quantum fields. To experimentally demonstrate the power of our procedure, we quench a one-dimensional Bose gas by a transversal split and use our method for a partial quantum-field reconstruction of the far-from-equilibrium states of this system. We expect our technique to play an important role in future studies of continuous quantum many-body systems. PMID:26138511

  7. Towards experimental quantum-field tomography with ultracold atoms.

    PubMed

    Steffens, A; Friesdorf, M; Langen, T; Rauer, B; Schweigler, T; Hübener, R; Schmiedmayer, J; Riofrío, C A; Eisert, J

    2015-07-03

    The experimental realization of large-scale many-body systems in atomic-optical architectures has seen immense progress in recent years, rendering full tomography tools for state identification inefficient, especially for continuous systems. To work with these emerging physical platforms, new technologies for state identification are required. Here we present first steps towards efficient experimental quantum-field tomography. Our procedure is based on the continuous analogues of matrix-product states, ubiquitous in condensed-matter theory. These states naturally incorporate the locality present in realistic physical settings and are thus prime candidates for describing the physics of locally interacting quantum fields. To experimentally demonstrate the power of our procedure, we quench a one-dimensional Bose gas by a transversal split and use our method for a partial quantum-field reconstruction of the far-from-equilibrium states of this system. We expect our technique to play an important role in future studies of continuous quantum many-body systems.

  8. Quantum engineering of atomic phase shifts in optical clocks

    NASA Astrophysics Data System (ADS)

    Zanon-Willette, T.; Almonacil, S.; de Clercq, E.; Ludlow, A. D.; Arimondo, E.

    2014-11-01

    Quantum engineering of time-separated Raman laser pulses in three-level systems is presented to produce an ultranarrow optical transition in bosonic alkali-earth clocks free from light shifts and with a significantly reduced sensitivity to laser parameter fluctuations. Based on a quantum artificial complex wave-function analytical model and supported by a full density-matrix simulation including a possible residual effect of spontaneous emission from the intermediate state, atomic phase shifts associated with Ramsey and hyper-Ramsey two-photon spectroscopy in optical clocks are derived. Various common-mode Raman frequency detunings are found in which the frequency shifts from off-resonant states are canceled, while their uncertainties at the 10-18 level of accuracy are strongly reduced.

  9. Non-Abelian quantum holonomy of hydrogenlike atoms

    SciTech Connect

    Mousolou, Vahid Azimi; Canali, Carlo M.; Sjoeqvist, Erik

    2011-09-15

    We study the Uhlmann holonomy [Rep. Math. Phys. 24, 229 (1986)] of quantum states for hydrogenlike atoms where the intrinsic spin and orbital angular momentum are coupled by the spin-orbit interaction and are subject to a slowly varying magnetic field. We show that the holonomy for the orbital angular momentum and spin subsystems is non-Abelian while the holonomy of the whole system is Abelian. Quantum entanglement in the states of the whole system is crucially related to the non-Abelian gauge structure of the subsystems. We analyze the phase of the Wilson loop variable associated with the Uhlmann holonomy and find a relation between the phase of the whole system and corresponding marginal phases. Based on the results for the model system, we provide evidence that the phase of the Wilson loop variable and the mixed-state geometric phase [E. Sjoeqvist et al., Phys. Rev. Lett. 85, 2845 (2000).] are generally inequivalent.

  10. Generation of multi-million element meshes for solid model-based geometries: The Dicer algorithm

    SciTech Connect

    Melander, D.J.; Benzley, S.E.; Tautges, T.J.

    1997-06-01

    The Dicer algorithm generates a fine mesh by refining each element in a coarse all-hexahedral mesh generated by any existing all-hexahedral mesh generation algorithm. The fine mesh is geometry-conforming. Using existing all-hexahedral meshing algorithms to define the initial coarse mesh simplifies the overall meshing process and allows dicing to take advantage of improvements in other meshing algorithms immediately. The Dicer algorithm will be used to generate large meshes in support of the ASCI program. The authors also plan to use dicing as the basis for parallel mesh generation. Dicing strikes a careful balance between the interactive mesh generation and multi-million element mesh generation processes for complex 3D geometries, providing an efficient means for producing meshes of varying refinement once the coarse mesh is obtained.

  11. Quantum simulation of conductivity plateaux and fractional quantum Hall effect using ultracold atoms

    NASA Astrophysics Data System (ADS)

    Barberán, Nuria; Dagnino, Daniel; García-March, Miguel Angel; Trombettoni, Andrea; Taron, Josep; Lewenstein, Maciej

    2015-12-01

    We analyze the role of impurities in the fractional quantum Hall effect using a highly controllable system of ultracold atoms. We investigate the mechanism responsible for the formation of plateaux in the resistivity/conductivity as a function of the applied magnetic field in the lowest Landau level regime. To this aim, we consider an impurity immersed in a small cloud of an ultracold quantum Bose gas subjected to an artificial magnetic field. We consider scenarios corresponding to experimentally realistic systems with gauge fields induced by rotation of the trapping parabolic potential. Systems of this kind are adequate to simulate quantum Hall effects in ultracold atom setups. We use exact diagonalization for few atoms and to emulate transport equations, we analyze the time evolution of the system under a periodic perturbation. We provide a theoretical proposal to detect the up-to-now elusive presence of strongly correlated states related to fractional filling factors in the context of ultracold atoms. We analyze the conditions under which these strongly correlated states are associated with the presence of the resistivity/conductivity plateaux. Our main result is the presence of a plateau in a region, where the transfer between localized and non-localized particles takes place, as a necessary condition to maintain a constant value of the resistivity/conductivity as the magnetic field increases.

  12. Quantum quench in an atomic one-dimensional Ising chain.

    PubMed

    Meinert, F; Mark, M J; Kirilov, E; Lauber, K; Weinmann, P; Daley, A J; Nägerl, H-C

    2013-08-01

    We study nonequilibrium dynamics for an ensemble of tilted one-dimensional atomic Bose-Hubbard chains after a sudden quench to the vicinity of the transition point of the Ising paramagnetic to antiferromagnetic quantum phase transition. The quench results in coherent oscillations for the orientation of effective Ising spins, detected via oscillations in the number of doubly occupied lattice sites. We characterize the quench by varying the system parameters. We report significant modification of the tunneling rate induced by interactions and show clear evidence for collective effects in the oscillatory response. PMID:23952393

  13. Multichannel quantum-defect theory for slow atomic collisions

    SciTech Connect

    Gao Bo; Tiesinga, Eite; Williams, Carl J.; Julienne, Paul S.

    2005-10-15

    We present a multichannel quantum-defect theory for slow atomic collisions that takes advantages of the analytic solutions for the long-range potential and both the energy and angular momentum insensitivities of the short-range parameters. The theory provides an accurate and complete account of scattering processes, including shape and Feshbach resonances, in terms of a few parameters such as the singlet and triplet scattering lengths. As an example, results for {sup 23}Na-{sup 23}Na scattering are presented and compared to close-coupling calculations.

  14. Positron-atom complexes as quantum halo states.

    PubMed

    Mitroy, J

    2005-01-28

    The wave functions of a number of positron-atom complexes are analyzed and three of the systems, namely, e(+)Be, e(+)Na, and e(+)He((3)S(e)), are seen to exhibit quantum halo structures with 45%-50% of their probability distribution lying in the large r classically forbidden region. The mean square distance between the large r fragments (e(+) + Be, Ps + Na+, Ps + He+) for these systems range from 1.8 to 2.2 times larger than the square of the classical turning point, another indication of their halolike nature.

  15. Quantum computing with alkaline-Earth-metal atoms.

    PubMed

    Daley, Andrew J; Boyd, Martin M; Ye, Jun; Zoller, Peter

    2008-10-24

    We present a complete scheme for quantum information processing using the unique features of alkaline-earth-metal atoms. We show how two completely independent lattices can be formed for the 1S0 and 3P0 states, with one used as a storage lattice for qubits encoded on the nuclear spin, and the other as a transport lattice to move qubits and perform gate operations. We discuss how the 3P2 level can be used for addressing of individual qubits, and how collisional losses from metastable states can be used to perform gates via a lossy blockade mechanism.

  16. Atomic spin chains as testing ground for quantum magnetism

    NASA Astrophysics Data System (ADS)

    Otte, Sander

    2015-03-01

    The field of quantum magnetism aims to capture the rich emergent physics that arises when multiple spins interact, in terms of elementary models such as the spin 1/2 Heisenberg chain. Experimental platforms to verify these models are rare and generally do not provide the possibility to detect spin correlations locally. In my lab we use low-temperature scanning tunneling microscopy to design and build artificial spin lattices with atomic precision. Inelastic electron tunneling spectroscopy enables us to identify the ground state and probe spin excitations as a function of system size, location inside the lattice and coupling parameter values. Two types of collective excitations that play a role in many dynamic magnetic processes are spin waves (magnons) and spinons. Our experiments enable us to study both types of excitations. First, we have been able to map the standing spin wave modes of a ferromagnetic bit of six atoms, and to determine their role in the collective reversal process of the bit (Spinelli et al., Nature Materials 2014). More recently, we have crafted antiferromagnetic spin 1/2 XXZ chains, which allow us to observe spinon excitations, as well as the stepwise transition to a fully aligned phase beyond the critical magnetic field (Toskovic et al., in preparation). These findings create a promising experimental environment for putting quantum magnetic models to the test. Research funded by NWO and FOM.

  17. Positron scattering from hydrogen atom embedded in dense quantum plasma

    SciTech Connect

    Bhattacharya, Arka; Kamali, M. Z. M.; Ghoshal, Arijit; Ratnavelu, K.

    2013-08-15

    Scattering of positrons from the ground state of hydrogen atoms embedded in dense quantum plasma has been investigated by applying a formulation of the three-body collision problem in the form of coupled multi-channel two-body Lippmann-Schwinger equations. The interactions among the charged particles in dense quantum plasma have been represented by exponential cosine-screened Coulomb potentials. Variationally determined hydrogenic wave function has been employed to calculate the partial-wave scattering amplitude. Plasma screening effects on various possible mode of fragmentation of the system e{sup +}+H(1s) during the collision, such as 1s→1s and 2s→2s elastic collisions, 1s→2s excitation, positronium formation, elastic proton-positronium collisions, have been reported in the energy range 13.6-350 eV. Furthermore, a comparison has been made on the plasma screening effect of a dense quantum plasma with that of a weakly coupled plasma for which the plasma screening effect has been represented by the Debye model. Our results for the unscreened case are in fair agreement with some of the most accurate results available in the literature.

  18. Interplay between Switching Driven by the Tunneling Current and Atomic Force of a Bistable Four-Atom Si Quantum Dot.

    PubMed

    Yamazaki, Shiro; Maeda, Keisuke; Sugimoto, Yoshiaki; Abe, Masayuki; Zobač, Vladimír; Pou, Pablo; Rodrigo, Lucia; Mutombo, Pingo; Pérez, Ruben; Jelínek, Pavel; Morita, Seizo

    2015-07-01

    We assemble bistable silicon quantum dots consisting of four buckled atoms (Si4-QD) using atom manipulation. We demonstrate two competing atom switching mechanisms, downward switching induced by tunneling current of scanning tunneling microscopy (STM) and opposite upward switching induced by atomic force of atomic force microscopy (AFM). Simultaneous application of competing current and force allows us to tune switching direction continuously. Assembly of the few-atom Si-QDs and controlling their states using versatile combined AFM/STM will contribute to further miniaturization of nanodevices.

  19. Valence atom with bohmian quantum potential: the golden ratio approach

    PubMed Central

    2012-01-01

    Background The alternative quantum mechanical description of total energy given by Bohmian theory was merged with the concept of the golden ratio and its appearance as the Heisenberg imbalance to provide a new density-based description of the valence atomic state and reactivity charge with the aim of clarifying their features with respect to the so-called DFT ground state and critical charge, respectively. Results The results, based on the so-called double variational algorithm for chemical spaces of reactivity, are fundamental and, among other issues regarding chemical bonding, solve the existing paradox of using a cubic parabola to describe a quadratic charge dependency. Conclusions Overall, the paper provides a qualitative-quantitative explanation of chemical reactivity based on more than half of an electronic pair in bonding, and provide new, more realistic values for the so-called “universal” electronegativity and chemical hardness of atomic systems engaged in reactivity (analogous to the atoms-in-molecules framework). PMID:23146157

  20. Atom Interferometry with Ultracold Quantum Gases in a Microgravity Environment

    NASA Astrophysics Data System (ADS)

    Williams, Jason; D'Incao, Jose; Chiow, Sheng-Wey; Yu, Nan

    2015-05-01

    Precision atom interferometers (AI) in space promise exciting technical capabilities for fundamental physics research, with proposals including unprecedented tests of the weak equivalence principle, precision measurements of the fine structure and gravitational constants, and detection of gravity waves and dark energy. Consequently, multiple AI-based missions have been proposed to NASA, including a dual-atomic-species interferometer that is to be integrated into the Cold Atom Laboratory (CAL) onboard the International Space Station. In this talk, I will discuss our plans and preparation at JPL for the proposed flight experiments to use the CAL facility to study the leading-order systematics expected to corrupt future high-precision measurements of fundamental physics with AIs in microgravity. The project centers on the physics of pairwise interactions and molecular dynamics in these quantum systems as a means to overcome uncontrolled shifts associated with the gravity gradient and few-particle collisions. We will further utilize the CAL AI for proof-of-principle tests of systematic mitigation and phase-readout techniques for use in the next-generation of precision metrology experiments based on AIs in microgravity. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  1. Quantum properties of atomic-sized conductors: Single atoms, chains of atoms, and molecules

    NASA Astrophysics Data System (ADS)

    van Ruitenbeek, Jan

    2005-03-01

    Using remarkably simple experimental techniques it is possible to gently break a metallic contact and thus form a conducting nanowire. Although the atomic structure of contacts can be quite complicated, as soon as the weakest point is reduced to just a single atom the complexity is removed. This has allowed for quantitative comparison of theory and experiment for many properties, and atomic contacts have proven to form a rich test-bed for concepts from mesoscopic physics (N. Agra"it, A. Levy Yeyati and J.M. van Ruitenbeek, Phys. Rep. 377 (2003) 81). More recently, similar techniques are being used to contact and study individual organic molecules. Junctions of single molecules such as H2 and CO bonded between Pt electrodes can be characterized in great detail by vibration spectroscopy and the dependence of the vibration modes on the stretching of the junction (R.H.M. Smit, et al., Nature 419 (2002) 906; D. Djukic, J.M. van Ruitenbeek, K.S. Thygesen and K.W. Jacobsen, cond-mat/0409640).

  2. Quasideterministic generation of maximally entangled states of two mesoscopic atomic ensembles by adiabatic quantum feedback

    SciTech Connect

    Di Lisi, Antonio; De Siena, Silvio; Illuminati, Fabrizio; Vitali, David

    2005-09-15

    We introduce an efficient, quasideterministic scheme to generate maximally entangled states of two atomic ensembles. The scheme is based on quantum nondemolition measurements of total atomic populations and on adiabatic quantum feedback conditioned by the measurements outputs. The high efficiency of the scheme is tested and confirmed numerically for ideal photodetection as well as in the presence of losses.

  3. Cavity-based quantum networks with single atoms and optical photons

    NASA Astrophysics Data System (ADS)

    Reiserer, Andreas; Rempe, Gerhard

    2015-10-01

    Distributed quantum networks will allow users to perform tasks and to interact in ways which are not possible with present-day technology. Their implementation is a key challenge for quantum science and requires the development of stationary quantum nodes that can send and receive as well as store and process quantum information locally. The nodes are connected by quantum channels for flying information carriers, i.e., photons. These channels serve both to directly exchange quantum information between nodes and to distribute entanglement over the whole network. In order to scale such networks to many particles and long distances, an efficient interface between the nodes and the channels is required. This article describes the cavity-based approach to this goal, with an emphasis on experimental systems in which single atoms are trapped in and coupled to optical resonators. Besides being conceptually appealing, this approach is promising for quantum networks on larger scales, as it gives access to long qubit coherence times and high light-matter coupling efficiencies. Thus, it allows one to generate entangled photons on the push of a button, to reversibly map the quantum state of a photon onto an atom, to transfer and teleport quantum states between remote atoms, to entangle distant atoms, to detect optical photons nondestructively, to perform entangling quantum gates between an atom and one or several photons, and even provides a route toward efficient heralded quantum memories for future repeaters. The presented general protocols and the identification of key parameters are applicable to other experimental systems.

  4. Quantum Hall physics with cold atoms in cylindrical optical lattices

    NASA Astrophysics Data System (ADS)

    Łåcki, Mateusz; Pichler, Hannes; Sterdyniak, Antoine; Lyras, Andreas; Lembessis, Vassilis E.; Al-Dossary, Omar; Budich, Jan Carl; Zoller, Peter

    2016-01-01

    We propose and study various realizations of a Hofstadter-Hubbard model on a cylinder geometry with fermionic cold atoms in optical lattices. The cylindrical optical lattice is created by copropagating Laguerre-Gauss beams, i.e., light beams carrying orbital angular momentum. By strong focusing of the light beams we create a real-space optical lattice in the form of rings, which are offset in energy. A second set of Laguerre-Gauss beams then induces a Raman-hopping between these rings, imprinting phases corresponding to a synthetic magnetic field (artificial gauge field). In addition, by rotating the lattice potential, we achieve a slowly varying flux through the hole of the cylinder, which allows us to probe the Hall response of the system as a realization of Laughlin's thought experiment. We study how in the presence of interactions fractional quantum Hall physics could be observed in this setup.

  5. Dynamic sensitivity of photon-dressed atomic ensemble with quantum criticality

    SciTech Connect

    Huang Jinfeng; Kuang Leman; Li Yong; Liao Jieqiao; Sun, C. P.

    2009-12-15

    We study the dynamic sensitivity of an atomic ensemble dressed by a single-mode cavity field (called a photon-dressed atomic ensemble), which is described by the Dicke model near the quantum critical point. It is shown that when an extra atom in a pure initial state passes through the cavity, the photon-dressed atomic ensemble will experience a quantum phase transition showing an explicit sudden change in its dynamics characterized by the Loschmidt echo of this quantum critical system. With such dynamic sensitivity, the Dicke model can resemble the cloud chamber for detecting a flying particle by the enhanced trajectory due to the classical phase transition.

  6. Quantum Correlation of Two Entangled Atoms Interacting with the Binomial Optical Field

    NASA Astrophysics Data System (ADS)

    Liu, Tang-Kun; Tao, Yu; Shan, Chuan-Jia; Liu, Ji-bing

    2016-10-01

    Quantum correlations of two atoms in a system of two entangled atoms interacting with the binomial optical field are investigated. In eight different initial states of the two atoms, the influence of the strength of the dipole-dipole interaction, probabilities of a the Bernoulli trial and particle number of the binomial optical field on the temporal evolution of the geometrical quantum discord between two atoms are discussed. The result shows that two atoms always exist the correlation for different parameters. In addition, when and only when the two atoms are initially in the maximally entangled state, the temporal evolution of geometrical quantum discord is not affected by the parameters, and always keep in the degree of geometrical quantum discord that is a fixed value.

  7. Proposal for a telecom quantum repeater with single atoms in optical cavities

    NASA Astrophysics Data System (ADS)

    Uphoff, Manuel; Brekenfeld, Manuel; Niemietz, Dominik; Ritter, Stephan; Rempe, Gerhard

    2016-05-01

    Quantum repeaters hold the promise to enable long-distance quantum communication via entanglement generation over arbitrary distances. Single atoms in optical cavities have been shown to be ideally suited for the experimental realization of many tasks in quantum communication. To utilize these systems for a quantum repeater, it would be desirable to operate them at telecom wavelengths. We propose to use a cascaded scheme employing transitions at telecom wavelengths between excited states of alkali atoms for entanglement generation between a single photon at telecom wavelength and a single atom at the crossing point of two cavity modes. A cavity-assisted quantum gate can be used for entanglement swapping. We estimate the performance of these systems using numerical simulations based on experimental parameters obtained for CO2 laser-machined fiber cavities in our laboratory. Finally, we show that a quantum repeater employing the aforementioned scheme and current technology could outperform corresponding schemes based on direct transmission.

  8. Quantum Monte Carlo methods and lithium cluster properties. [Atomic clusters

    SciTech Connect

    Owen, R.K.

    1990-12-01

    Properties of small lithium clusters with sizes ranging from n = 1 to 5 atoms were investigated using quantum Monte Carlo (QMC) methods. Cluster geometries were found from complete active space self consistent field (CASSCF) calculations. A detailed development of the QMC method leading to the variational QMC (V-QMC) and diffusion QMC (D-QMC) methods is shown. The many-body aspect of electron correlation is introduced into the QMC importance sampling electron-electron correlation functions by using density dependent parameters, and are shown to increase the amount of correlation energy obtained in V-QMC calculations. A detailed analysis of D-QMC time-step bias is made and is found to be at least linear with respect to the time-step. The D-QMC calculations determined the lithium cluster ionization potentials to be 0.1982(14) (0.1981), 0.1895(9) (0.1874(4)), 0.1530(34) (0.1599(73)), 0.1664(37) (0.1724(110)), 0.1613(43) (0.1675(110)) Hartrees for lithium clusters n = 1 through 5, respectively; in good agreement with experimental results shown in the brackets. Also, the binding energies per atom was computed to be 0.0177(8) (0.0203(12)), 0.0188(10) (0.0220(21)), 0.0247(8) (0.0310(12)), 0.0253(8) (0.0351(8)) Hartrees for lithium clusters n = 2 through 5, respectively. The lithium cluster one-electron density is shown to have charge concentrations corresponding to nonnuclear attractors. The overall shape of the electronic charge density also bears a remarkable similarity with the anisotropic harmonic oscillator model shape for the given number of valence electrons.

  9. Positron impact excitations of hydrogen atom embedded in dense quantum plasmas: Formation of Rydberg atoms

    SciTech Connect

    Rej, Pramit; Ghoshal, Arijit

    2014-11-15

    Formation of Rydberg atoms due to 1 s → nlm excitations of hydrogen by positron impact, for arbitrary n, l, m, in dense quantum plasma has been investigated using a distorted wave theory which includes screened dipole polarization potential. The interactions among the charged particles in the plasma have been represented by exponential cosine-screened Coulomb potentials. Making use of a simple variationally determined hydrogen wave function, it has been possible to obtain the distorted wave scattering amplitude in a closed analytical form. A detailed study has been made to explore the structure of differential and total cross sections in the energy range 20–300 eV of incident positron. For the unscreened case, our results agree nicely with some of the most accurate results available in the literature. To the best of our knowledge, such a study on the differential and total cross sections for 1 s → nlm inelastic positron-hydrogen collisions in dense quantum plasma is the first reported in the literature.

  10. Gaussification of quantum states of traveling light beams in atomic memory

    SciTech Connect

    Fiurasek, Jaromir

    2010-08-15

    We propose and investigate a protocol for Gaussification of quantum states of traveling light beams in an atomic quantum memory that couples to light via quantum nondemolition (QND) interaction. The protocol relies on a periodic switching between two different QND couplings and the total coupling strength scales only logarithmically with number of Gaussified light modes. The present scheme can be used to prepare entangled states of two distant atomic ensembles and to purify and Gaussify noisy non-Gaussian entangled states of light while simultaneously storing the purified state in atomic memories.

  11. Heralded Storage of a Photonic Quantum Bit in a Single Atom.

    PubMed

    Kalb, Norbert; Reiserer, Andreas; Ritter, Stephan; Rempe, Gerhard

    2015-06-01

    Combining techniques of cavity quantum electrodynamics, quantum measurement, and quantum feedback, we have realized the heralded transfer of a polarization qubit from a photon onto a single atom with 39% efficiency and 86% fidelity. The reverse process, namely, qubit transfer from the atom onto a given photon, is demonstrated with 88% fidelity and an estimated efficiency of up to 69%. In contrast to previous work based on two-photon interference, our scheme is robust against photon arrival-time jitter and achieves much higher efficiencies. Thus, it constitutes a key step toward the implementation of a long-distance quantum network. PMID:26196608

  12. Heralded Storage of a Photonic Quantum Bit in a Single Atom.

    PubMed

    Kalb, Norbert; Reiserer, Andreas; Ritter, Stephan; Rempe, Gerhard

    2015-06-01

    Combining techniques of cavity quantum electrodynamics, quantum measurement, and quantum feedback, we have realized the heralded transfer of a polarization qubit from a photon onto a single atom with 39% efficiency and 86% fidelity. The reverse process, namely, qubit transfer from the atom onto a given photon, is demonstrated with 88% fidelity and an estimated efficiency of up to 69%. In contrast to previous work based on two-photon interference, our scheme is robust against photon arrival-time jitter and achieves much higher efficiencies. Thus, it constitutes a key step toward the implementation of a long-distance quantum network.

  13. Quantum atomic lithography via cross-cavity optical Stern-Gerlach setup

    NASA Astrophysics Data System (ADS)

    Máximo, C. E.; Batalhão, T. B.; Bachelard, R.; de Moraes Neto, G. D.; de Ponte, M. A.; Moussa, M. H. Y.

    2014-10-01

    We present a fully quantum scheme to perform 2D atomic lithography based on a cross-cavity optical Stern-Gerlach setup: an array of two mutually orthogonal cavities crossed by an atomic beam perpendicular to their optical axes, which is made to interact with two identical modes. After deriving an analytical solution for the atomic momentum distribution, we introduce a protocol allowing us to control the atomic deflection by manipulating the amplitudes and phases of the cavity field states.

  14. Entanglement Preparation and Quantum Information Processing with Atoms Trapped in Separated Cavities Through a Single Resonant Atom-Field Interaction

    NASA Astrophysics Data System (ADS)

    Lin, Li-Hua

    2014-01-01

    In this paper, a scheme is presented for generation of W-type entangled states for n atoms trapped in separated cavities connected by optical fibers. The scheme only requires a single atom-cavity-fiber interaction and no classical field is needed. Due to these features, the scheme is simpler and more robust against decoherence than the previous ones. The scheme can also be used to realize quantum state transfer and controlled phase gates between qubits located at distant nodes of a quantum network.

  15. Quantum random walks in a coherent atomic system via electromagnetically induced transparency

    SciTech Connect

    Li Yun; Hang Chao; Ma Lei; Zhang Weiping; Huang Guoxiang

    2008-12-15

    We propose a scheme to realize the quantum random walk in a coherent five-level atomic system via electromagnetically induced transparency (EIT). From optical Bloch equations describing the dynamics of the electromagnetic field and atomic population and coherence, we show that two circular-polarized components of a probe field display different dispersion properties and hence acquire different phase-shift modifications when passing through atomic cells. We demonstrate that the quantum coherence and interference owing to the EIT effect result in a low absorption of the probe field and hence provide a possibility of realizing a many-step phase-shift quantum random walk. The scheme may be used to experimentally highlight the characteristics of quantum random walk and lead to a promising application for quantum computation.

  16. The Correspondence Principle and the Founding of the Atomic Quantum Theory.

    ERIC Educational Resources Information Center

    Liu, Hua-Xiang

    1995-01-01

    Presents a brief historical review and a discussion of the Bohr theory aimed at helping readers understand more completely the development of atomic quantum physics and comprehend more precisely and profoundly the essence of the correspondence principle. (JRH)

  17. Quantum chemical calculation of the equilibrium structures of small metal atom clusters

    NASA Technical Reports Server (NTRS)

    Kahn, L. R.

    1982-01-01

    Metal atom clusters are studied based on the application of ab initio quantum mechanical approaches. Because these large 'molecular' systems pose special practical computational problems in the application of the quantum mechanical methods, there is a special need to find simplifying techniques that do not compromise the reliability of the calculations. Research is therefore directed towards various aspects of the implementation of the effective core potential technique for the removal of the metal atom core electrons from the calculations.

  18. Quantum beats in hydrogen and antihydrogen atoms in an external electric field.

    PubMed

    Labzowsky, L; Sharipov, V

    2004-04-01

    An effect of quantum beats that arises due to the coherent excitation of 2s and 2p states of hydrogen and antihydrogen atoms in an external electric field is described. It is shown that the quantum beat signal contains terms linear in electric field, i.e., is of opposite sign for the hydrogen and antihydrogen atoms. The conditions for the observation of this effect are discussed.

  19. Engineering steady three-atom singlet states via quantum-jump-based feedback

    NASA Astrophysics Data System (ADS)

    Shao, Xiao-Qiang; Zheng, Tai-Yu; Zhang, Shou

    2012-04-01

    A scheme is presented for generating steady three-atom singlet states via three V-type atoms interacting with a strongly dissipative two-mode cavity. The local quantum feedback control is applied based on quantum-jump detection to make the target state fidelity as high as possible. This scheme is insensitive to detection inefficiencies since it only delays the time at which stationarity is achieved. Nevertheless, the spontaneous emission plays a negative role in the current system.

  20. Teleportation of atomic states via cavity quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Guerra, E. S.

    2004-12-01

    In this paper, we discuss a scheme of teleportation of atomic states. The experimental realization proposed makes use of cavity quatum electrodynamics involving the interaction of Rydberg atoms with a micromaser cavity prepared in a coherent state. We start presenting a scheme to prepare atomic Bell states via the interaction of atoms with a cavity. In our scheme the cavity and some atoms play the role of auxiliary systems used to achieve the teleportation.

  1. Quantum Correlations of Two Two-level Atoms Interacting with a Single Mode Vacuum Field

    NASA Astrophysics Data System (ADS)

    Zeng, Ke; Fang, Mao-Fa

    2015-04-01

    The quantum correlations (QC) of two two-level atoms interacting with a single mode vacuum field are investigated. The relationship between the quantum discord (QD) and the entanglement of formation (EOF), the influence of the atomic dipole-dipole interaction along with two-atom initial states on QC of two atoms are discussed. The results indicate that when two-atom is initially in an entangled state, QD is consistent with EOF. Compared with the quantumness of correlations, the latter is always larger than the former, and the larger the initial QE, the larger the QD. Meanwhile, there is no occurrence of sudden death phenomenon of QC throughout the temporal evolution. Moreover, QD is more robust than QE under strong dipole-dipole interaction, and then the relative stable QC resources can be achieved.

  2. Transfer of quantum correlations from light to atoms in the case of irreversible evolution

    SciTech Connect

    Gorbachev, V. N.; Trubilko, A. I.

    2010-10-15

    We consider the irreversible dynamics of two two-level atoms that interact with a bipartite broad-band electromagnetic field in an entangled state that forms a heat bath with a quantum correlation. Using Ito's stochastic integration technique, we have derived a kinetic equation for atoms and found their steady state, which turns out to be inseparable and leads to a violation of Bell's inequalities. The application of the atomic state found as a quantum channel for teleportation is considered. We have calculated the channel quality or fidelity that determines the possibilities for using the channel, in particular, characterizes its security. The process of teleportation by means of a quantum channel formed by an entangled heat bath is considered. Comparison of two (atomic and light) channels has shown that they have different properties with regard to separability and identical properties with regard to nonlocality. This means that nonlocality can be completely transferred from light to atoms.

  3. Configuring Electronic States in an Atomically Precise Array of Quantum Boxes.

    PubMed

    Nowakowska, Sylwia; Wäckerlin, Aneliia; Piquero-Zulaica, Ignacio; Nowakowski, Jan; Kawai, Shigeki; Wäckerlin, Christian; Matena, Manfred; Nijs, Thomas; Fatayer, Shadi; Popova, Olha; Ahsan, Aisha; Mousavi, S Fatemeh; Ivas, Toni; Meyer, Ernst; Stöhr, Meike; Ortega, J Enrique; Björk, Jonas; Gade, Lutz H; Lobo-Checa, Jorge; Jung, Thomas A

    2016-07-01

    A 2D array of electronically coupled quantum boxes is fabricated by means of on-surface self-assembly assuring ultimate precision of each box. The quantum states embedded in the boxes are configured by adsorbates, whose occupancy is controlled with atomic precision. The electronic interbox coupling can be maintained or significantly reduced by proper arrangement of empty and filled boxes.

  4. Storage and conversion of quantum-statistical properties of light in resonant quantum memory on a tripod atomic configuration

    NASA Astrophysics Data System (ADS)

    Losev, A. S.; Tikhonov, K. S.; Golubeva, T. Yu; Golubev, Yu M.

    2016-10-01

    We have considered theoretically the feasibility of broadband quantum memory based on the resonant tripod-type atomic configuration. In this case, the writing of a signal field is carried out simultaneously into two channels, and characterized by an excitation of two spin waves of the atomic ensemble. With simultaneous read out from both channels, quantum properties of the original signal are mapped onto the retrieval pulse no worse than in the case of memory based on a Λ-type atomic configuration. At the same time new possibilities are opened up for the manipulation of quantum states associated with sequential reading out (and/or sequential writing) of signal pulses. For example, a pulse in the squeezed state is converted into two partially entangled pulses with partially squeezed quadratures. Alternatively, two independent signal pulses with orthogonally squeezed quadratures can be converted into two entangled pulses.

  5. Non-local correlation and quantum discord in two atoms in the non-degenerate model

    SciTech Connect

    Mohamed, A.-B.A.

    2012-12-15

    By using geometric quantum discord (GQD) and measurement-induced nonlocality (MIN), quantum correlation is investigated for two atoms in the non-degenerate two-photon Tavis-Cummings model. It is shown that there is no asymptotic decay for MIN while asymptotic decay exists for GQD. Quantum correlations can be strengthened by introducing the dipole-dipole interaction. The evolvement period of quantum correlation gets shorter with the increase in the dipole-dipole parameter. It is found that there exists not only quantum nonlocality without entanglement but also quantum nonlocality without quantum discord. Also, the MIN and GQD are raised rather than entanglement, and also with weak initial entanglement, there are MIN and entanglement in a interval of death quantum discord. - Highlights: Black-Right-Pointing-Pointer Geometric quantum discord (GQD) and measurement induced nonlocality (MIN) are used to investigate the correlations of two two-level atoms. Black-Right-Pointing-Pointer There is no asymptotic decay for MIN while asymptotic decay exists for GQD. Black-Right-Pointing-Pointer Quantum correlations can be strengthened by introducing the dipole-dipole interaction. Black-Right-Pointing-Pointer There exists not only quantum nonlocality without entanglement but also without discord. Black-Right-Pointing-Pointer Weak initial entanglement leads to MIN and entanglement in intervals of death discord.

  6. Controlling Atomic, Solid-State and Hybrid Systems for Quantum Information Processing

    NASA Astrophysics Data System (ADS)

    Gullans, Michael John

    Quantum information science involves the use of precise control over quantum systems to explore new technologies. However, as quantum systems are scaled up they require an ever deeper understanding of many-body physics to achieve the required degree of control. Current experiments are entering a regime which requires active control of a mesoscopic number of coupled quantum systems or quantum bits (qubits). This thesis describes several approaches to this goal and shows how mesoscopic quantum systems can be controlled and utilized for quantum information tasks. The first system we consider is the nuclear spin environment of GaAs double quantum dots containing two electrons. We show that the through appropriate control of dynamic nuclear polarization one can prepare the nuclear spin environment in three distinct collective quantum states which are useful for quantum information processing with electron spin qubits. We then investigate a hybrid system in which an optical lattice is formed in the near field scattering off an array of metallic nanoparticles by utilizing the plasmonic resonance of the nanoparticles. We show that such a system would realize new regimes of dense, ultra-cold quantum matter and can be used to create a quantum network of atoms and plasmons. Finally we investigate quantum nonlinear optical systems. We show that the intrinsic nonlinearity for plasmons in graphene can be large enough to make a quantum gate for single photons. We also consider two nonlinear optical systems based on ultracold gases of atoms. In one case, we demonstrate an all-optical single photon switch using cavity quantum electrodynamics (QED) and slow light. In the second case, we study few photon physics in strongly interacting Rydberg polariton systems, where we demonstrate the existence of two and three photon bound states and study their properties.

  7. Electronic and Quantum Transport Properties of Atomically Identified Si Point Defects in Graphene.

    PubMed

    Lopez-Bezanilla, Alejandro; Zhou, Wu; Idrobo, Juan-Carlos

    2014-05-15

    We report high-resolution scanning transmission electron microscopy images displaying a range of inclusions of isolated silicon atoms at the edges and inner zones of graphene layers. Whereas the incorporation of Si atoms to a graphene armchair edge involves no reconstruction of the neighboring carbon atoms, the inclusion of a Si atom to a zigzag graphene edge entails the formation of five-membered carbon rings. In all the observed atomic edge terminations, a Si atom is found bridging two C atoms in a 2-fold coordinated configuration. The atomic-scale observations are underpinned by first-principles calculations of the electronic and quantum transport properties of the structural anomalies. Experimental estimations of Si-doped graphene band gaps realized by means of transport measurements may be affected by a low doping rate of 2-fold coordinated Si atoms at the graphene edges, and 4-fold coordinated at inner zones due to the apparition of mobility gaps. PMID:26270371

  8. Progress toward observation of quantum interference of currents in an Atom SQUID

    NASA Astrophysics Data System (ADS)

    Ryu, Changhyun; Samson, E. Carlo; Boshier, Malcolm

    2016-05-01

    Quantum interference of currents was first observed in a superconducting loop with two Josephson junctions, leading to the name ``SQUID'' for this device. This interference effect has been used to develop extremely sensitive magnetometers. The Atom SQUID, an analogous device based on ultracold atoms, has been developed recently to study SQUID physics in a device offering a better understanding of the underlying microscopic dynamics. Although many exciting experiments have been done with Atom SQUIDs, the quantum interference of currents has not yet been observed. In analogy with the SQUID magnetometer, it should be possible to use the quantum interference effect in an Atom SQUID to measure rotation, which may lead to the development of a sensitive gyroscope. In a previous experiment, we showed Josephson effects with an atom SQUID by observing the change from the dc Josephson regime to the ac Josephson regime by measurement of the critical atom number for this transition. Quantum interference should cause this critical atom number to vary with rotation rate. We have simulated this system with the Gross-Pitaevski Equation and found the expected oscillatory change of the critical atom number. We will present this simulation result and report the current status of our experiment to

  9. Quantum defects in Rydberg nD states of optically cooled 7Li atoms

    NASA Astrophysics Data System (ADS)

    Sautenkov, V. A.; Saakyan, S. A.; Vilshanskaya, E. V.; Murashkin, D. A.; Zelener, B. B.; Zelener, B. V.

    2016-11-01

    To observe Rydberg transitions we applied a spectroscopic technique based on the observation of the resonance fluorescence of cold atoms in a magneto-optical trap. By using this approach, we estimated the quantum defect in Rydberg nD states of 7Li atoms. The obtained results are in a good agreement with previously published data.

  10. Quantum discord of the two-atom system in non-Markovian environments

    NASA Astrophysics Data System (ADS)

    Zou, Hong-Mei; Fang, Mao-Fa; Guo, You-Neng; Yang, Bai-Yuan

    2015-03-01

    The quantum discord of the two-atom system, which is in two independent Lorentzian reservoirs and in two independent Ohmic reservoirs with the Lorentz-Drude cutoff function, respectively, and the reservoirs are at zero temperature, is studied by applying the time-convolutionless master-equation method. We find that the quantum discord of the two-atom system is dependent on the characteristics of non-Markovian environments. The results show that the quantum discord can be effectively protected not only in Lorentzian reservoirs, but also in ohmic reservoirs with the Lorentz-Drude cutoff function. Finally, the physical interpretations for these results are given via the correlation function.

  11. Demonstration of a small programmable quantum computer with atomic qubits

    NASA Astrophysics Data System (ADS)

    Debnath, S.; Linke, N. M.; Figgatt, C.; Landsman, K. A.; Wright, K.; Monroe, C.

    2016-08-01

    Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch–Jozsa and Bernstein–Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.

  12. Demonstration of a small programmable quantum computer with atomic qubits.

    PubMed

    Debnath, S; Linke, N M; Figgatt, C; Landsman, K A; Wright, K; Monroe, C

    2016-08-01

    Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels. PMID:27488798

  13. Demonstration of a small programmable quantum computer with atomic qubits.

    PubMed

    Debnath, S; Linke, N M; Figgatt, C; Landsman, K A; Wright, K; Monroe, C

    2016-08-03

    Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.

  14. Demonstration of a small programmable quantum computer with atomic qubits

    NASA Astrophysics Data System (ADS)

    Debnath, S.; Linke, N. M.; Figgatt, C.; Landsman, K. A.; Wright, K.; Monroe, C.

    2016-08-01

    Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.

  15. Progress toward a spin squeezed optical atomic clock beyond the standard quantum limit

    NASA Astrophysics Data System (ADS)

    Braverman, Boris; Kawasaki, Akio; Vuletic, Vladan

    2014-05-01

    State of the art optical lattice atomic clocks have reached a relative inaccuracy level of 10-18, already making them the most stable time references in existence. One restriction on the precision of these clocks is the projection noise caused by the measurement of the atomic state. This limit, known as the standard quantum limit (SQL), can be overcome by entangling the atoms. By performing spin squeezing, we can robustly generate such entanglement and surpass the SQL of precision in optical atomic clocks. I will report on recent experimental progress toward realizing spin squeezing in an 171Yb optical lattice clock. A high-finesse micromirror-based optical cavity mediates the atom-atom interaction necessary for generating the entanglement. By exceeding the SQL in this state of the art system, we are aiming to advance precision time metrology, as well as expanding the boundaries of quantum control and measurement. Supported by DARPA QUASAR and NSERC.

  16. Progress toward a spin squeezed optical atomic clock beyond the standard quantum limit

    NASA Astrophysics Data System (ADS)

    Braverman, Boris; Kawasaki, Akio; Vuletic, Vladan

    2015-05-01

    State of the art optical lattice atomic clocks have reached a relative inaccuracy level of 10-18, already making them the most stable time references in existence. One restriction on the precision of these clocks is the projection noise caused by the measurement of the atomic state. This limit, known as the standard quantum limit (SQL), can be overcome by entangling the atoms. By performing spin squeezing, it is possible to robustly generate such entanglement and therefore surpass the SQL of precision in optical atomic clocks. I will report on recent experimental progress toward realizing spin squeezing in an 171Yb optical lattice clock. A high-finesse micromirror-based optical cavity mediates the atom-atom interaction necessary for generating the entanglement. By exceeding the SQL in this state of the art system, we are aiming to advance precision time metrology, as well as expanding the boundaries of quantum control and measurement.

  17. Quantum transport of bosonic cold atoms in double-well optical lattices

    SciTech Connect

    Qian Yinyin; Gong Ming; Zhang Chuanwei

    2011-07-15

    We numerically investigate, using the time evolving block decimation algorithm, the quantum transport of ultracold bosonic atoms in a double-well optical lattice through slow and periodic modulation of the lattice parameters (intra- and inter-well tunneling, chemical potential, etc.). The transport of atoms does not depend on the rate of change of the parameters (as along as the change is slow) and can distribute atoms in optical lattices at the quantized level without involving external forces. The transport of atoms depends on the atom filling in each double well and the interaction between atoms. In the strongly interacting region, the bosonic atoms share the same transport properties as noninteracting fermions with quantized transport at the half filling and no atom transport at the integer filling. In the weakly interacting region, the number of the transported atoms is proportional to the atom filling. We show the signature of the quantum transport from the momentum distribution of atoms that can be measured in the time-of-flight image. A semiclassical transport model is developed to explain the numerically observed transport of bosonic atoms in the noninteracting and strongly interacting limits. The scheme may serve as an quantized battery for atomtronics applications.

  18. An integrated quantum repeater at telecom wavelength with single atoms in optical fiber cavities

    NASA Astrophysics Data System (ADS)

    Uphoff, Manuel; Brekenfeld, Manuel; Rempe, Gerhard; Ritter, Stephan

    2016-03-01

    Quantum repeaters promise to enable quantum networks over global distances by circumventing the exponential decrease in success probability inherent in direct photon transmission. We propose a realistic, functionally integrated quantum-repeater implementation based on single atoms in optical cavities. Entanglement is directly generated between the single-atom quantum memory and a photon at telecom wavelength. The latter is collected with high efficiency and adjustable temporal and spectral properties into a spatially well-defined cavity mode. It is heralded by a near-infrared photon emitted from a second, orthogonal cavity. Entanglement between two remote quantum memories can be generated via an optical Bell-state measurement, while we propose entanglement swapping based on a highly efficient, cavity-assisted atom-atom gate. Our quantum-repeater scheme eliminates any requirement for wavelength conversion such that only a single system is needed at each node. We investigate a particular implementation with rubidium and realistic parameters for Fabry-Perot cavities based on hbox {CO}_2 laser-machined optical fibers. We show that the scheme enables the implementation of a rather simple quantum repeater that outperforms direct entanglement generation over large distances and does not require any improvements in technology beyond the state of the art.

  19. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit.

    PubMed

    Appel, J; Windpassinger, P J; Oblak, D; Hoff, U B; Kjaergaard, N; Polzik, E S

    2009-07-01

    Squeezing of quantum fluctuations by means of entanglement is a well-recognized goal in the field of quantum information science and precision measurements. In particular, squeezing the fluctuations via entanglement between 2-level atoms can improve the precision of sensing, clocks, metrology, and spectroscopy. Here, we demonstrate 3.4 dB of metrologically relevant squeezing and entanglement for greater, similar 10(5) cold caesium atoms via a quantum nondemolition (QND) measurement on the atom clock levels. We show that there is an optimal degree of decoherence induced by the quantum measurement which maximizes the generated entanglement. A 2-color QND scheme used in this paper is shown to have a number of advantages for entanglement generation as compared with a single-color QND measurement.

  20. Interference control of nonlinear excitation in a multi-atom cavity quantum electrodynamics system.

    PubMed

    Yang, Guoqing; Tan, Zheng; Zou, Bichen; Zhu, Yifu

    2014-12-01

    We show that by manipulating quantum interference in a multi-atom cavity quantum electrodynamics (CQED) system, the nonlinear excitation of the cavity-atom polariton can be resonantly enhanced while the linear excitation is suppressed. Under the appropriate conditions, it is possible to selectively enhance or suppress the polariton excitation with two free-pace laser fields. We report on an experiment with cold Rb atoms in an optical cavity and present experimental results that demonstrate such interference control of the CQED excitation and its direct application to studies of all-optical switching and cross-phase modulation of the cavity-transmitted light.

  1. Exploring Quantum Degenerate Bose-Fermi Mixtures Toward Cooper Pairing of Fermionic Atoms

    SciTech Connect

    Deborah Jin

    2011-04-20

    We have been exploring interaction dynamics in an ultracold, trapped gas of bosonic and fermionic atoms. Investigation of this new class of quantum degenerate gases concentrates on interaction dominated phenomena such as sympathetic cooling, phase separation, excitations, Feshbach resonances, and the effects of quantum degeneracy. In addition to exploring these new phenomena, we seek to understand and ultimately control the interactions in the gas. In particular, effective interactions between the fermionic atoms will be explored in the context of the longer term goal of realizing Cooper pairing of atoms.

  2. Some reflections on the role of semi-classical atomic models in the teaching and learning of introductory quantum mechanics

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Colm

    2016-03-01

    The role of "semi-classical" (Bohr-Sommerfeld) and "semi-quantum-mechanical" (atomic orbital) models in the context of the teaching of atomic theory is considered. It is suggested that an appropriate treatment of such models can serve as a useful adjunct to quantum mechanical study of atomic systems.

  3. Bragg scattering as a probe of atomic wave functions and quantum phase transitions in optical lattices.

    PubMed

    Miyake, Hirokazu; Siviloglou, Georgios A; Puentes, Graciana; Pritchard, David E; Ketterle, Wolfgang; Weld, David M

    2011-10-21

    We have observed Bragg scattering of photons from quantum degenerate ^{87}Rb atoms in a three-dimensional optical lattice. Bragg scattered light directly probes the microscopic crystal structure and atomic wave function whose position and momentum width is Heisenberg limited. The spatial coherence of the wave function leads to revivals in the Bragg scattered light due to the atomic Talbot effect. The decay of revivals across the superfluid to Mott insulator transition indicates the loss of superfluid coherence.

  4. Bragg scattering as a probe of atomic wave functions and quantum phase transitions in optical lattices.

    PubMed

    Miyake, Hirokazu; Siviloglou, Georgios A; Puentes, Graciana; Pritchard, David E; Ketterle, Wolfgang; Weld, David M

    2011-10-21

    We have observed Bragg scattering of photons from quantum degenerate ^{87}Rb atoms in a three-dimensional optical lattice. Bragg scattered light directly probes the microscopic crystal structure and atomic wave function whose position and momentum width is Heisenberg limited. The spatial coherence of the wave function leads to revivals in the Bragg scattered light due to the atomic Talbot effect. The decay of revivals across the superfluid to Mott insulator transition indicates the loss of superfluid coherence. PMID:22107532

  5. Entanglement distillation for quantum communication network with atomic-ensemble memories.

    PubMed

    Li, Tao; Yang, Guo-Jian; Deng, Fu-Guo

    2014-10-01

    Atomic ensembles are effective memory nodes for quantum communication network due to the long coherence time and the collective enhancement effect for the nonlinear interaction between an ensemble and a photon. Here we investigate the possibility of achieving the entanglement distillation for nonlocal atomic ensembles by the input-output process of a single photon as a result of cavity quantum electrodynamics. We give an optimal entanglement concentration protocol (ECP) for two-atomic-ensemble systems in a partially entangled pure state with known parameters and an efficient ECP for the systems in an unknown partially entangled pure state with a nondestructive parity-check detector (PCD). For the systems in a mixed entangled state, we introduce an entanglement purification protocol with PCDs. These entanglement distillation protocols have high fidelity and efficiency with current experimental techniques, and they are useful for quantum communication network with atomic-ensemble memories.

  6. Quantum treatment of two-stage sub-Doppler laser cooling of magnesium atoms

    NASA Astrophysics Data System (ADS)

    Prudnikov, O. N.; Brazhnikov, D. V.; Taichenachev, A. V.; Yudin, V. I.; Bonert, A. E.; Il'enkov, R. Ya.; Goncharov, A. N.

    2015-12-01

    Deep laser cooling of 24Mg atoms has been theoretically studied. We propose a two-stage sub-Doppler cooling strategy using electrodipole transition 3 3P2→3 3D3 (λ =383.8 nm). The first stage implies exploiting magneto-optical trap with σ+ and σ- light beams, while at the second stage lin ⊥ lin molasses is used. We focus on achieving a large number of ultracold atoms (Teff<10 μ K ) in a cold-atomic cloud. The calculations have been based on quantum treatment, taking into full account the recoil effect and beyond many widely used approximations. Steady-state values of average kinetic energy and linear momentum distributions of cold atoms have been analyzed for various light-field intensities and frequency detunings. The results of conducted quantum analysis have been significantly different from the results achieved under a semiclassical approximation based on the Fokker-Planck equation. The second cooling stage allows achieving sufficiently lower kinetic energies of the atomic cloud as well as increased fraction of ultracold atoms at certain conditions compared to the first one. We hope that the obtained results can help in overcoming current experimental problems in deep cooling of 24Mg atoms by means of laser field. Cold magnesium atoms cooled in a large amount to several μ K are of huge interest to, for example, quantum metrology and to other many-body cold-atoms physics.

  7. Quantum computing with atomic qubits and Rydberg interactions: progress and challenges

    NASA Astrophysics Data System (ADS)

    Saffman, M.

    2016-10-01

    We present a review of quantum computation with neutral atom qubits. After an overview of architectural options and approaches to preparing large qubit arrays we examine Rydberg mediated gate protocols and fidelity for two- and multi-qubit interactions. Quantum simulation and Rydberg dressing are alternatives to circuit based quantum computing for exploring many body quantum dynamics. We review the properties of the dressing interaction and provide a quantitative figure of merit for the complexity of the coherent dynamics that can be accessed with dressing. We conclude with a summary of the current status and an outlook for future progress.

  8. Quantum spintronics: engineering and manipulating atom-like spins in semiconductors.

    PubMed

    Awschalom, David D; Bassett, Lee C; Dzurak, Andrew S; Hu, Evelyn L; Petta, Jason R

    2013-03-01

    The past decade has seen remarkable progress in isolating and controlling quantum coherence using charges and spins in semiconductors. Quantum control has been established at room temperature, and electron spin coherence times now exceed several seconds, a nine-order-of-magnitude increase in coherence compared with the first semiconductor qubits. These coherence times rival those traditionally found only in atomic systems, ushering in a new era of ultracoherent spintronics. We review recent advances in quantum measurements, coherent control, and the generation of entangled states and describe some of the challenges that remain for processing quantum information with spins in semiconductors.

  9. Ultracold atoms coupled to micro- and nanomechanical oscillators: towards hybrid quantum systems

    NASA Astrophysics Data System (ADS)

    Treutlein, Philipp

    2009-05-01

    Micro- and nanomechanical oscillators are presently approaching the quantum regime, driven by the continuous improvement of techniques to read out and cool mechanical motion. For trapped ultracold atoms, a rich toolbox of quantum control techniques already exists. By coupling mechanical oscillators to ultracold atoms, hybrid quantum systems could be formed, in which the atoms are used to cool, read out, and coherently manipulate the oscillators' state. In our work, we investigate different coupling mechanisms between ultracold atoms and mechanical oscillators. In a first experiment, we use atom-surface forces to couple the vibrations of a mechanical cantilever to the motion of a Bose-Einstein condensate in a magnetic microtrap on a chip. The atoms are trapped at sub-micrometer distance from the cantilever surface. We make use of the coupling to read out the cantilever vibrations with the atoms. Coupling via surface forces could be employed to couple atoms to molecular-scale oscillators such as carbon nanotubes. In a second experiment, we investigate coupling via a 1D optical lattice that is formed by a laser beam retroreflected from the cantilever tip. The optical lattice serves as a transfer rod which couples vibrations of the cantilever to the atoms and vice versa. Finally, we investigate magnetic coupling between the spin of ultracold atoms and the vibrations of a nanoscale cantilever with a magnetic tip. Theoretical investigations show that at low temperatures, the backaction of the atoms onto the cantilever is significant and the system represents a mechanical analog of cavity quantum electrodynamics in the strong coupling regime.

  10. Light absorption during alkali atom-noble gas atom interactions at thermal energies: a quantum dynamics treatment.

    PubMed

    Pacheco, Alexander B; Reyes, Andrés; Micha, David A

    2006-10-21

    The absorption of light during atomic collisions is treated by coupling electronic excitations, treated quantum mechanically, to the motion of the nuclei described within a short de Broglie wavelength approximation, using a density matrix approach. The time-dependent electric dipole of the system provides the intensity of light absorption in a treatment valid for transient phenomena, and the Fourier transform of time-dependent intensities gives absorption spectra that are very sensitive to details of the interaction potentials of excited diatomic states. We consider several sets of atomic expansion functions and atomic pseudopotentials, and introduce new parametrizations to provide light absorption spectra in good agreement with experimentally measured and ab initio calculated spectra. To this end, we describe the electronic excitation of the valence electron of excited alkali atoms in collisions with noble gas atoms with a procedure that combines l-dependent atomic pseudopotentials, including two- and three-body polarization terms, and a treatment of the dynamics based on the eikonal approximation of atomic motions and time-dependent molecular orbitals. We present results for the collision induced absorption spectra in the Li-He system at 720 K, which display both atomic and molecular transition intensities.

  11. Quantum modes of atomic waveguides by series techniques

    NASA Astrophysics Data System (ADS)

    Golding, William M.

    2016-08-01

    Atom waveguides are used to manipulate cold atoms in atom interferometers. The creation of atom interferometers using cold atoms in miniature magnetic waveguides is one of many goals of current atom chip research. To achieve a complete understanding of atom propagation in a complicated device such as a guided atom interferometer, a detailed understanding of the ground state and other nearby states is needed. The Frobenius series solutions for the bounded transverse modes of an atomic waveguide are presented here and arbitrary precision arithmetic is used to evaluate the series solutions without roundoff errors. The waveguide potential considered is an infinitely long quadrupole magnetic potential as used in various atom chip waveguides. The simplest case of a guided spin-1/2 particle is presented here. However, the basic series techniques can be extended to both higher order multipole potentials and higher spin particles, including atoms with hyperfine splitting. The low-field and the high-field seeking states together form the spectrum of the waveguide Hamiltonian. In the limit where the transverse dimension of the guide tends to infinity, the spectrum of the guide changes from a discrete set of low- and high-field seeking states to a continuum of high-field seeking states embedded with a discrete set of low-field seeking states. Although the low-field seeking states are not truly bound, the system is an approximate example of bound states in a continuum first discussed by von Neumann and Wigner. Depending on boundary conditions, the solutions form either a discrete set or a continuum of orthogonal waveguide modes. These are useful for further analysis of ideal waveguide behavior as well as the detailed perturbation studies necessary for analysis of atomic waveguide interferometers.

  12. Transport of atoms in a quantum conveyor belt

    SciTech Connect

    Browaeys, A.; Haeffner, H.; McKenzie, C.; Rolston, S. L.; Helmerson, K.; Phillips, W. D.

    2005-11-15

    We have performed experiments using a three-dimensional Bose-Einstein condensate of sodium atoms in a one-dimensional optical lattice to explore some unusual properties of band structure. In particular, we investigate the loading of a condensate into a moving lattice and find nonintuitive behavior. We also revisit the behavior of atoms, prepared in a single quasimomentum state, in an accelerating lattice. We generalize this study to a cloud whose atoms have a large quasimomentum spread, and show that the cloud behaves differently from atoms in a single Bloch state. Finally, we compare our findings with recent experiments performed with fermions in an optical lattice.

  13. Cavity quantum electrodynamics with a Rydberg-blocked atomic ensemble

    SciTech Connect

    Guerlin, Christine; Brion, Etienne; Esslinger, Tilman; Moelmer, Klaus

    2010-11-15

    The realization of a Jaynes-Cummings model in the optical domain is proposed for an atomic ensemble. The scheme exploits the collective coupling of the atoms to a quantized cavity mode and the nonlinearity introduced by coupling to high-lying Rydberg states. A two-photon transition resonantly couples the single-atom ground state |g> to a Rydberg state |e> via a nonresonant intermediate state |i>, but due to the interaction between Rydberg atoms only a single atom can be resonantly excited in the ensemble. This restricts the state space of the ensemble to the collective ground state |G> and the collectively excited state |E> with a single Rydberg excitation distributed evenly on all atoms. The collectively enhanced coupling of all atoms to the cavity field with coherent coupling strengths which are much larger than the decay rates in the system leads to the strong coupling regime of the resulting effective Jaynes-Cummings model. We use numerical simulations to show that the cavity transmission can be used to reveal detailed properties of the Jaynes-Cummings ladder of excited states and that the atomic nonlinearity gives rise to highly nontrivial photon emission from the cavity. Finally, we suggest that the absence of interactions between remote Rydberg atoms may, due to a combinatorial effect, induce a cavity-assisted excitation blockade whose range is larger than the typical Rydberg dipole-dipole interaction length.

  14. Multilevel Holstein-Primakoff approximation and its application to atomic spin squeezing and ensemble quantum memories

    SciTech Connect

    Kurucz, Z.; Moelmer, K.

    2010-03-15

    We show that an ensemble of identical d-level atoms can be efficiently described by d-1 collective oscillator degrees of freedom in the vicinity of a product state with all atoms in the same, but otherwise arbitrary single-particle state. We apply our description to two different kinds of spin squeezing: (i) when each spin-F atom is individually squeezed without creating interatomic entanglement and (ii) when a particular collective atomic oscillator mode is squeezed via quantum nondemolition (QND) measurement and feedback. When combined in sequence, the order of the two methods is relevant in the final degree of squeezing. We also discuss the role of the two kinds of squeezing when multisublevel atoms are used as quantum memories for light.

  15. Universal quantum gates for photon-atom hybrid systems assisted by bad cavities

    NASA Astrophysics Data System (ADS)

    Wang, Guan-Yu; Liu, Qian; Wei, Hai-Rui; Li, Tao; Ai, Qing; Deng, Fu-Guo

    2016-04-01

    We present two deterministic schemes for constructing a CNOT gate and a Toffoli gate on photon-atom and photon-atom-atom hybrid quantum systems assisted by bad cavities, respectively. They are achieved by cavity-assisted photon scattering and work in the intermediate coupling region with bad cavities, which relaxes the difficulty of their implementation in experiment. Also, bad cavities are feasible for fast quantum operations and reading out information. Compared with previous works, our schemes do not need any auxiliary qubits and measurements. Moreover, the schematic setups for these gates are simple, especially that for our Toffoli gate as only a quarter wave packet is used to interact the photon with each of the atoms every time. These atom-cavity systems can be used as the quantum nodes in long-distance quantum communication as their relatively long coherence time is suitable for multi-time operations between the photon and the system. Our calculations show that the average fidelities and efficiencies of our two universal hybrid quantum gates are high with current experimental technology.

  16. Universal quantum gates for photon-atom hybrid systems assisted by bad cavities.

    PubMed

    Wang, Guan-Yu; Liu, Qian; Wei, Hai-Rui; Li, Tao; Ai, Qing; Deng, Fu-Guo

    2016-01-01

    We present two deterministic schemes for constructing a CNOT gate and a Toffoli gate on photon-atom and photon-atom-atom hybrid quantum systems assisted by bad cavities, respectively. They are achieved by cavity-assisted photon scattering and work in the intermediate coupling region with bad cavities, which relaxes the difficulty of their implementation in experiment. Also, bad cavities are feasible for fast quantum operations and reading out information. Compared with previous works, our schemes do not need any auxiliary qubits and measurements. Moreover, the schematic setups for these gates are simple, especially that for our Toffoli gate as only a quarter wave packet is used to interact the photon with each of the atoms every time. These atom-cavity systems can be used as the quantum nodes in long-distance quantum communication as their relatively long coherence time is suitable for multi-time operations between the photon and the system. Our calculations show that the average fidelities and efficiencies of our two universal hybrid quantum gates are high with current experimental technology. PMID:27067992

  17. Universal quantum gates for photon-atom hybrid systems assisted by bad cavities.

    PubMed

    Wang, Guan-Yu; Liu, Qian; Wei, Hai-Rui; Li, Tao; Ai, Qing; Deng, Fu-Guo

    2016-04-12

    We present two deterministic schemes for constructing a CNOT gate and a Toffoli gate on photon-atom and photon-atom-atom hybrid quantum systems assisted by bad cavities, respectively. They are achieved by cavity-assisted photon scattering and work in the intermediate coupling region with bad cavities, which relaxes the difficulty of their implementation in experiment. Also, bad cavities are feasible for fast quantum operations and reading out information. Compared with previous works, our schemes do not need any auxiliary qubits and measurements. Moreover, the schematic setups for these gates are simple, especially that for our Toffoli gate as only a quarter wave packet is used to interact the photon with each of the atoms every time. These atom-cavity systems can be used as the quantum nodes in long-distance quantum communication as their relatively long coherence time is suitable for multi-time operations between the photon and the system. Our calculations show that the average fidelities and efficiencies of our two universal hybrid quantum gates are high with current experimental technology.

  18. Universal quantum gates for photon-atom hybrid systems assisted by bad cavities

    PubMed Central

    Wang, Guan-Yu; Liu, Qian; Wei, Hai-Rui; Li, Tao; Ai, Qing; Deng, Fu-Guo

    2016-01-01

    We present two deterministic schemes for constructing a CNOT gate and a Toffoli gate on photon-atom and photon-atom-atom hybrid quantum systems assisted by bad cavities, respectively. They are achieved by cavity-assisted photon scattering and work in the intermediate coupling region with bad cavities, which relaxes the difficulty of their implementation in experiment. Also, bad cavities are feasible for fast quantum operations and reading out information. Compared with previous works, our schemes do not need any auxiliary qubits and measurements. Moreover, the schematic setups for these gates are simple, especially that for our Toffoli gate as only a quarter wave packet is used to interact the photon with each of the atoms every time. These atom-cavity systems can be used as the quantum nodes in long-distance quantum communication as their relatively long coherence time is suitable for multi-time operations between the photon and the system. Our calculations show that the average fidelities and efficiencies of our two universal hybrid quantum gates are high with current experimental technology. PMID:27067992

  19. A two-dimensional algebraic quantum liquid produced by an atomic simulator of the quantum Lifshitz model

    PubMed Central

    Po, Hoi Chun; Zhou, Qi

    2015-01-01

    Bosons have a natural instinct to condense at zero temperature. It is a long-standing challenge to create a high-dimensional quantum liquid that does not exhibit long-range order at the ground state, as either extreme experimental parameters or sophisticated designs of microscopic Hamiltonians are required for suppressing the condensation. Here we show that synthetic gauge fields for ultracold atoms, using either the Raman scheme or shaken lattices, provide physicists a simple and practical scheme to produce a two-dimensional algebraic quantum liquid at the ground state. This quantum liquid arises at a critical Lifshitz point, where a two-dimensional quartic dispersion emerges in the momentum space, and many fundamental properties of two-dimensional bosons are changed in its proximity. Such an ideal simulator of the quantum Lifshitz model allows experimentalists to directly visualize and explore the deconfinement transition of topological excitations, an intriguing phenomenon that is difficult to access in other systems. PMID:26268154

  20. A two-dimensional algebraic quantum liquid produced by an atomic simulator of the quantum Lifshitz model.

    PubMed

    Po, Hoi Chun; Zhou, Qi

    2015-08-13

    Bosons have a natural instinct to condense at zero temperature. It is a long-standing challenge to create a high-dimensional quantum liquid that does not exhibit long-range order at the ground state, as either extreme experimental parameters or sophisticated designs of microscopic Hamiltonians are required for suppressing the condensation. Here we show that synthetic gauge fields for ultracold atoms, using either the Raman scheme or shaken lattices, provide physicists a simple and practical scheme to produce a two-dimensional algebraic quantum liquid at the ground state. This quantum liquid arises at a critical Lifshitz point, where a two-dimensional quartic dispersion emerges in the momentum space, and many fundamental properties of two-dimensional bosons are changed in its proximity. Such an ideal simulator of the quantum Lifshitz model allows experimentalists to directly visualize and explore the deconfinement transition of topological excitations, an intriguing phenomenon that is difficult to access in other systems.

  1. A two-dimensional algebraic quantum liquid produced by an atomic simulator of the quantum Lifshitz model

    NASA Astrophysics Data System (ADS)

    Po, Hoi Chun; Zhou, Qi

    2015-08-01

    Bosons have a natural instinct to condense at zero temperature. It is a long-standing challenge to create a high-dimensional quantum liquid that does not exhibit long-range order at the ground state, as either extreme experimental parameters or sophisticated designs of microscopic Hamiltonians are required for suppressing the condensation. Here we show that synthetic gauge fields for ultracold atoms, using either the Raman scheme or shaken lattices, provide physicists a simple and practical scheme to produce a two-dimensional algebraic quantum liquid at the ground state. This quantum liquid arises at a critical Lifshitz point, where a two-dimensional quartic dispersion emerges in the momentum space, and many fundamental properties of two-dimensional bosons are changed in its proximity. Such an ideal simulator of the quantum Lifshitz model allows experimentalists to directly visualize and explore the deconfinement transition of topological excitations, an intriguing phenomenon that is difficult to access in other systems.

  2. Quantum coherence and entanglement control for atom-cavity systems

    NASA Astrophysics Data System (ADS)

    Shu, Wenchong

    Coherence and entanglement play a significant role in the quantum theory. Ideal quantum systems, "closed" to the outside world, remain quantum forever and thus manage to retain coherence and entanglement. Real quantum systems, however, are open to the environment and are therefore susceptible to the phenomenon of decoherence and disentanglement which are major hindrances to the effectiveness of quantum information processing tasks. In this thesis we have theoretically studied the evolution of coherence and entanglement in quantum systems coupled to various environments. We have also studied ways and means of controlling the decay of coherence and entanglement. We have studied the exact qubit entanglement dynamics of some interesting initial states coupled to a high-Q cavity containing zero photon, one photon, two photons and many photons respectively. We have found that an initially correlated environmental state can serve as an enhancer for entanglement decay or generation processes. More precisely, we have demonstrated that the degree of entanglement, including its collapse as well as its revival times, can be significantly modified by the correlated structure of the environmental modes. We have also studied dynamical decoupling (DD) technique --- a prominent strategy of controlling decoherence and preserving entanglement in open quantum systems. We have analyzed several DD control methods applied to qubit systems that can eliminate the system-environment coupling and prolong the quantum coherence time. Particularly, we have proposed a new DD sequence consisting a set of designed control operators that can universally protected an unknown qutrit state against colored phase and amplitude environment noises. In addition, in a non-Markovian regime, we have reformulated the quantum state diffusion (QSD) equation to incorporate the effect of the external control fields. Without any assumptions on the system-environment coupling and the size of environment, we have

  3. Quantum Cloning of an Unknown 2-Atom State via Entangled Cluster States

    NASA Astrophysics Data System (ADS)

    Yu, L.-z.; Zhong, F.

    2016-06-01

    This paper presented a scheme for cloning a 2-atom state in the QED cavity with the help of Victor who is the state's preparer. The cloning scheme has two steps. In the first step, the scheme requires probabilistic teleportation of a 2-atom state that is unknown in advance, and uses a 4-atom cluster state as quantum channel. In the second step, perfect copies of the 2-atom entangled state may be realized with the assistance of Victor. The finding is that our scheme has two outstanding advantages: it is not sensitive to the cavity decay, and Bell state is easy to identify.

  4. Entanglement and quantum state transfer between two atoms trapped in two indirectly coupled cavities

    NASA Astrophysics Data System (ADS)

    Zheng, Bin; Shen, Li-Tuo; Chen, Ming-Feng

    2016-05-01

    We propose a one-step scheme for implementing entanglement generation and the quantum state transfer between two atomic qubits trapped in two different cavities that are not directly coupled to each other. The process is realized through engineering an effective asymmetric X-Y interaction for the two atoms involved in the gate operation and an auxiliary atom trapped in an intermediate cavity, induced by virtually manipulating the atomic excited states and photons. We study the validity of the scheme as well as the influences of the dissipation by numerical simulation and demonstrate that it is robust against decoherence.

  5. Quantum trajectory analysis of the two-mode three-level atom microlaser

    SciTech Connect

    Elsayed, Tarek A.; Aljalal, Abdulaziz

    2011-06-15

    We consider a single-atom laser (microlaser) operating on three-level atoms interacting with a two-mode cavity. The quantum statistical properties of the cavity field at steady state are investigated by the quantum trajectory method which is a Monte Carlo simulation applied to open quantum systems. It is found that a steady-state solution exists even when the detailed balance condition may not be guaranteed. The differences between a single-mode microlaser and a two-mode microlaser are highlighted. The second-order correlation function g{sup (2)}({tau}) of a single mode is studied and special attention is paid to the one-photon trapping state, for which a simple formula is derived for its correlation function. We show the effects of the velocity spread of the atoms used to pump the microlaser cavity on the second-order correlation function, trapping states, and phase transitions of the cavity field.

  6. Quantum gas microscopy with spin, atom-number, and multilayer readout

    NASA Astrophysics Data System (ADS)

    Preiss, Philipp M.; Ma, Ruichao; Tai, M. Eric; Simon, Jonathan; Greiner, Markus

    2015-04-01

    Atom- and site-resolved experiments with ultracold atoms in optical lattices provide a powerful platform for the simulation of strongly correlated materials. In this Rapid Communication, we present a toolbox for the preparation, control, and site-resolved detection of a tunnel-coupled bilayer degenerate quantum gas. Using a collisional blockade, we engineer occupation-dependent interplane transport which enables us to circumvent light-assisted pair loss during imaging and count n =0 to n =3 atoms per site. We obtain the first number- and site-resolved images of the Mott insulator "wedding cake" structure and observe the emergence of antiferromagnetic ordering across a magnetic quantum phase transition. We are further able to employ the bilayer system for spin-resolved readout of a mixture of two hyperfine states. This work opens the door to direct detection of entanglement and Kosterlitz-Thouless-type phase dynamics, as well as studies of coupled planar quantum materials.

  7. Spin dynamics of an individual Cr atom in a semiconductor quantum dot under optical excitation

    NASA Astrophysics Data System (ADS)

    Lafuente-Sampietro, A.; Utsumi, H.; Boukari, H.; Kuroda, S.; Besombes, L.

    2016-08-01

    We studied the spin dynamics of a Cr atom incorporated in a II-VI semiconductor quantum dot using photon correlation techniques. We used recently developed singly Cr-doped CdTe/ZnTe quantum dots to access the spin of an individual magnetic atom. Auto-correlation of the photons emitted by the quantum dot under continuous wave optical excitation reveals fluctuations of the localized spin with a timescale in the 10 ns range. Cross-correlation gives quantitative transfer time between Cr spin states. A calculation of the time dependence of the spin levels population in Cr-doped quantum dots shows that the observed spin dynamics is dominated by the exciton-Cr interaction. These measurements also provide a lower bound in the 20 ns range for the intrinsic Cr spin relaxation time.

  8. Quantum demolition measurement of photon statistics by atomic beam deflection

    NASA Astrophysics Data System (ADS)

    Herkommer, A. M.; Akulin, V. M.; Schleich, W. P.

    1992-12-01

    We consider the deflection of a resonant two-level atom by a quantized electromagnetic field using the Jaynes-Cummings Hamiltonian. We show that a joint measurement of the atomic momentum and an appropriate field variable allows us to reconstruct the original photon statistics even for this demolition Hamiltonian. We demonstrate that the momentum distribution of atoms scattered at the nodes of the standing wave also follows the original photon statistics of the field. In this sense a recent experiment on the optical Stern-Gerlach effect [T. Sleator et al., Phys. Rev. Lett. 68, 1996 (1992)] measures the intensity fluctuations of the standing wave.

  9. Demonstration of a Neutral Atom Controlled-NOT Quantum Gate

    SciTech Connect

    Isenhower, L.; Urban, E.; Zhang, X. L.; Gill, A. T.; Henage, T.; Johnson, T. A.; Walker, T. G.; Saffman, M.

    2010-01-08

    We present the first demonstration of a CNOT gate between two individually addressed neutral atoms. Our implementation of the CNOT uses Rydberg blockade interactions between neutral atoms held in optical traps separated by >8 {mu}m. Using two different gate protocols we measure CNOT fidelities of F=0.73 and 0.72 based on truth table probabilities. The gate was used to generate Bell states with fidelity F=0.48+-0.06. After correcting for atom loss we obtain an a posteriori entanglement fidelity of F=0.58.

  10. The Scales of Time, Length, Mass, Energy, and Other Fundamental Physical Quantities in the Atomic World and the Use of Atomic Units in Quantum Mechanical Calculations

    ERIC Educational Resources Information Center

    Teo, Boon K.; Li, Wai-Kee

    2011-01-01

    This article is divided into two parts. In the first part, the atomic unit (au) system is introduced and the scales of time, space (length), and speed, as well as those of mass and energy, in the atomic world are discussed. In the second part, the utility of atomic units in quantum mechanical and spectroscopic calculations is illustrated with…

  11. Coherent manipulation of quantum states in a coupled cavity-atom system

    NASA Astrophysics Data System (ADS)

    Wang, Yanhua; Wan, Jinyin; Zou, Bichen; Zhang, Jiepeng; Zhu, Yifu

    2013-02-01

    We study atomic coherence and interference in four-level atoms confined in an optical cavity and explores the interplay between cavity QED and electromagnetically induced transparency (EIT). The destructive interference can be induced in the coupled cavity-atom system with a free-space control laser tuned to the normal mode resonance and leads to suppression of the normal mode excitation. Then by adding a pump laser coupled to the four-level atoms from free space, the control-laser induced destructive interference can be reversed and the normal mode excitation is restored. When the free-space control laser is tuned to the atomic resonance and forms a Λ-type EIT configuration with the cavity-atom system, EIT is manifested as a narrow transmission peak of a weak probe laser coupled into the cavity mode. With the free-space pump laser driving the cavity-confined atoms in a four-level configuration, the narrow transmission peak of the cavity EIT can be split into two peaks and the dressed intra-cavity dark states are created analogous to the dressed states in free space. We report experimental studies of such coherently coupled cavity-atom system realized with cold Rb atoms confined in an optical cavity and discuss possible applications in quantum nonlinear optics and quantum information science.

  12. Quantum phase transitions in an interacting atom-molecule boson model

    SciTech Connect

    Santos, G.; Foerster, A.; Mattei, E.; Dahmen, S. R.; Links, J.

    2010-06-15

    We study the quantum phase transitions of a model that describes the interconversion of interacting bosonic atoms and molecules. Using a classical analysis, we identify a threshold coupling line separating a molecular phase and a mixed phase. Through studies of the energy gap, von Neumann entanglement entropy, and fidelity, we give evidence that this line is associated with a boundary line in the ground-state phase diagram of the quantum system.

  13. Robust quantum logic in neutral atoms via adiabatic Rydberg dressing

    NASA Astrophysics Data System (ADS)

    Keating, Tyler; Cook, Robert L.; Hankin, Aaron M.; Jau, Yuan-Yu; Biedermann, Grant W.; Deutsch, Ivan H.

    2015-01-01

    We study a scheme for implementing a controlled-Z (cz) gate between two neutral-atom qubits based on the Rydberg blockade mechanism in a manner that is robust to errors caused by atomic motion. By employing adiabatic dressing of the ground electronic state, we can protect the gate from decoherence due to random phase errors that typically arise because of atomic thermal motion. In addition, the adiabatic protocol allows for a Doppler-free configuration that involves counterpropagating lasers in a σ+/σ- orthogonal polarization geometry that further reduces motional errors due to Doppler shifts. The residual motional error is dominated by dipole-dipole forces acting on doubly excited Rydberg atoms when the blockade is imperfect. For reasonable parameters, with qubits encoded into the clock states of 133Cs, we predict that our protocol could produce a cz gate in <10 μ s with error probability on the order of 10-3.

  14. Quantum fuel with multilevel atomic coherence for ultrahigh specific work in a photonic Carnot engine

    NASA Astrophysics Data System (ADS)

    Türkpençe, Deniz; Müstecaplıoǧlu, Özgür E.

    2016-01-01

    We investigate scaling of work and efficiency of a photonic Carnot engine with a number of quantum coherent resources. Specifically, we consider a generalization of the "phaseonium fuel" for the photonic Carnot engine, which was first introduced as a three-level atom with two lower states in a quantum coherent superposition by M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther [Science 299, 862 (2003), 10.1126/science.1078955], to the case of N +1 level atoms with N coherent lower levels. We take into account atomic relaxation and dephasing as well as the cavity loss and derive a coarse-grained master equation to evaluate the work and efficiency analytically. Analytical results are verified by microscopic numerical examination of the thermalization dynamics. We find that efficiency and work scale quadratically with the number of quantum coherent levels. Quantum coherence boost to the specific energy (work output per unit mass of the resource) is a profound fundamental difference of quantum fuel from classical resources. We consider typical modern resonator set ups and conclude that multilevel phaseonium fuel can be utilized to overcome the decoherence in available systems. Preparation of the atomic coherences and the associated cost of coherence are analyzed and the engine operation within the bounds of the second law is verified. Our results bring the photonic Carnot engines much closer to the capabilities of current resonator technologies.

  15. Accessing the quantum Hall regime in cold atom traps using circularly polarized light

    NASA Astrophysics Data System (ADS)

    Wooten, Rachel; Yan, Bin; Greene, Chris H.

    2016-05-01

    There has been considerable interest in designing cold atom experiments to explore the quantum Hall effect with the extreme control allowed in such trapped atom systems. Many theoretical proposals and experimental attempts have been made in the effort to construct a cold atom fractional quantum Hall experiment, but so far, the fractional quantum Hall regime has proven difficult to achieve in experimental setups. One method for reaching the quantum Hall effect consists of rapidly rotating a cold atom system in a harmonic trap to near the centrifugal limit, where the system's Hamiltonian matches the two-dimensional magnetic field Hamiltonian. This condition could be reached in a few-body system through a scheme which increases the angular momentum of the particles in the trap through precision photon excitations. According to the hyperspherical framework from few-body theory, when particle interactions break the harmonic energy spectrum degeneracy, it becomes possible for circularly polarized light to excite the system selectively into the high angular momentum states required for the quantum Hall effect. We will discuss possible experimental systems where this technique could be applicable and challenges that these systems may face.

  16. Geometry-Induced Memory Effects in Isolated Quantum Systems: Cold-Atom Applications

    NASA Astrophysics Data System (ADS)

    Lai, Chen-Yen; Chien, Chih-Chun

    2016-03-01

    Memory effects result from the history-dependent behavior of a system, are abundant in our daily life, and have broad applications. Here, we explore the possibilities of generating memory effects in simple isolated quantum systems. By utilizing geometrical effects from a class of lattices supporting flatbands consisting of localized states, memory effects could be observed in ultracold atoms in optical lattices. As the optical lattice continuously transforms from a triangular lattice into a kagome lattice with a flatband, history-dependent density distributions manifest quantum memory effects even in noninteracting systems, including fermionic as well as bosonic systems, in the proper ranges of temperatures. Rapid growth of ultracold technology predicts a bright future for quantum memory-effect systems, and here two prototypical applications of geometry-induced quantum memory effects are proposed: A cold-atom-based accelerometer using an atomic differentiator to record the mechanical change rate of a coupled probe, and an atomic quantum memory cell for storing information with write-in and readout schemes.

  17. Quantum fuel with multilevel atomic coherence for ultrahigh specific work in a photonic Carnot engine.

    PubMed

    Türkpençe, Deniz; Müstecaplıoğlu, Özgür E

    2016-01-01

    We investigate scaling of work and efficiency of a photonic Carnot engine with a number of quantum coherent resources. Specifically, we consider a generalization of the "phaseonium fuel" for the photonic Carnot engine, which was first introduced as a three-level atom with two lower states in a quantum coherent superposition by M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther [Science 299, 862 (2003)SCIEAS0036-807510.1126/science.1078955], to the case of N+1 level atoms with N coherent lower levels. We take into account atomic relaxation and dephasing as well as the cavity loss and derive a coarse-grained master equation to evaluate the work and efficiency analytically. Analytical results are verified by microscopic numerical examination of the thermalization dynamics. We find that efficiency and work scale quadratically with the number of quantum coherent levels. Quantum coherence boost to the specific energy (work output per unit mass of the resource) is a profound fundamental difference of quantum fuel from classical resources. We consider typical modern resonator set ups and conclude that multilevel phaseonium fuel can be utilized to overcome the decoherence in available systems. Preparation of the atomic coherences and the associated cost of coherence are analyzed and the engine operation within the bounds of the second law is verified. Our results bring the photonic Carnot engines much closer to the capabilities of current resonator technologies.

  18. Spin-orbit coupling and quantum spin Hall effect for neutral atoms without spin flips.

    PubMed

    Kennedy, Colin J; Siviloglou, Georgios A; Miyake, Hirokazu; Burton, William Cody; Ketterle, Wolfgang

    2013-11-27

    We propose a scheme which realizes spin-orbit coupling and the quantum spin Hall effect for neutral atoms in optical lattices without relying on near resonant laser light to couple different spin states. The spin-orbit coupling is created by modifying the motion of atoms in a spin-dependent way by laser recoil. The spin selectivity is provided by Zeeman shifts created with a magnetic field gradient. Alternatively, a quantum spin Hall Hamiltonian can be created by all-optical means using a period-tripling, spin-dependent superlattice. PMID:24329453

  19. Reply to 'Comment on 'Quantum time-of-flight distribution for cold trapped atoms''

    SciTech Connect

    Ali, Md. Manirul; Home, Dipankar; Pan, Alok K.; Majumdar, A. S.

    2008-02-15

    In their comment Gomes et al. [Phys. Rev. A 77, 026101 (2008)] have questioned the possibility of empirically testable differences existing between the semiclassical time of flight distribution for cold trapped atoms and a quantum distribution discussed by us recently [Ali et al., Phys. Rev. A 75, 042110 (2007).]. We argue that their criticism is based on a semiclassical treatment having restricted applicability for a particular trapping potential. Their claim does not preclude, in general, the possibility of differences between the semiclassical calculations and fully quantum results for the arrival time distribution of freely falling atoms.

  20. Fast generation of three-atom singlet state by transitionless quantum driving

    PubMed Central

    Chen, Zhen; Chen, Ye-Hong; Xia, Yan; Song, Jie; Huang, Bi-Hua

    2016-01-01

    Motivated by “transitionless quantum driving”, we construct shortcuts to adiabatic passage in a three-atom system to create a singlet state with the help of quantum zeno dynamics and non-resonant lasers. The influence of various decoherence processes is discussed by numerical simulation and the results reveal that the scheme is fast and robust against decoherence and operational imperfection. We also investigate how to select the experimental parameters to control the cavity dissipation and atomic spontaneous emission which will have an application value in experiment. PMID:26931812

  1. Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission

    PubMed Central

    Li, Tao; Deng, Fu-Guo

    2015-01-01

    Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication. PMID:26502993

  2. Controlled rephasing of single spin-waves in a quantum memory based on cold atoms

    NASA Astrophysics Data System (ADS)

    Farrera, Pau; Albrecht, Boris; Heinze, Georg; Cristiani, Matteo; de Riedmatten, Hugues; Quantum Photonics With Solids; Atoms Team

    2015-05-01

    Quantum memories for light allow a reversible transfer of quantum information between photons and long lived matter quantum bits. In atomic ensembles, this information is commonly stored in the form of single collective spin excitations (spin-waves). In this work we demonstrate that we can actively control the dephasing of the spin-waves created in a quantum memory based on a cold Rb87 atomic ensemble. The control is provided by an external magnetic field gradient, which induces an inhomogeneous broadening of the atomic hyperfine levels. We show that acting on this gradient allows to control the dephasing of individual spin-waves and to induce later a rephasing. The spin-waves are then mapped into single photons, and we demonstrate experimentally that the active rephasing preserves the sub-Poissonian statistics of the retrieved photons. Finally we show that this rephasing control enables the creation and storage of multiple spin-waves in different temporal modes, which can be selectively readout. This is an important step towards the implementation of a functional temporally multiplexed quantum memory for quantum repeaters. We acknowledge support from the ERC starting grant, the Spanish Ministry of Economy and Competitiveness, the Fondo Europeo de Desarrollo Regional, and the International PhD- fellowship program ``la Caixa''-Severo Ochoa @ICFO.

  3. Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission.

    PubMed

    Li, Tao; Deng, Fu-Guo

    2015-01-01

    Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication. PMID:26502993

  4. Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission.

    PubMed

    Li, Tao; Deng, Fu-Guo

    2015-10-27

    Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication.

  5. Atomic spin-chain realization of a model for quantum criticality

    NASA Astrophysics Data System (ADS)

    Toskovic, R.; van den Berg, R.; Spinelli, A.; Eliens, I. S.; van den Toorn, B.; Bryant, B.; Caux, J.-S.; Otte, A. F.

    2016-07-01

    The ability to manipulate single atoms has opened up the door to constructing interesting and useful quantum structures from the ground up. On the one hand, nanoscale arrangements of magnetic atoms are at the heart of future quantum computing and spintronic devices; on the other hand, they can be used as fundamental building blocks for the realization of textbook many-body quantum models, illustrating key concepts such as quantum phase transitions, topological order or frustration as a function of system size. Here, we use low-temperature scanning tunnelling microscopy to construct arrays of magnetic atoms on a surface, designed to behave like spin-1/2 XXZ Heisenberg chains in a transverse field, for which a quantum phase transition from an antiferromagnetic to a paramagnetic phase is predicted in the thermodynamic limit. Site-resolved measurements on these finite-size realizations reveal a number of sudden ground state changes when the field approaches the critical value, each corresponding to a new domain wall entering the chains. We observe that these state crossings become closer for longer chains, suggesting the onset of critical behaviour. Our results present opportunities for further studies on quantum behaviour of many-body systems, as a function of their size and structural complexity.

  6. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Zohar, Erez; Cirac, J. Ignacio; Reznik, Benni

    2016-01-01

    Can high-energy physics be simulated by low-energy, non-relativistic, many-body systems such as ultracold atoms? Such ultracold atomic systems lack the type of symmetries and dynamical properties of high energy physics models: in particular, they manifest neither local gauge invariance nor Lorentz invariance, which are crucial properties of the quantum field theories which are the building blocks of the standard model of elementary particles. However, it turns out, surprisingly, that there are ways to configure an atomic system to manifest both local gauge invariance and Lorentz invariance. In particular, local gauge invariance can arise either as an effective low-energy symmetry, or as an exact symmetry, following from the conservation laws in atomic interactions. Hence, one could hope that such quantum simulators may lead to a new type of (table-top) experiments which will be used to study various QCD (quantum chromodynamics) phenomena, such as the confinement of dynamical quarks, phase transitions and other effects, which are inaccessible using the currently known computational methods. In this report, we review the Hamiltonian formulation of lattice gauge theories, and then describe our recent progress in constructing the quantum simulation of Abelian and non-Abelian lattice gauge theories in 1  +  1 and 2  +  1 dimensions using ultracold atoms in optical lattices.

  7. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices.

    PubMed

    Zohar, Erez; Cirac, J Ignacio; Reznik, Benni

    2016-01-01

    Can high-energy physics be simulated by low-energy, non-relativistic, many-body systems such as ultracold atoms? Such ultracold atomic systems lack the type of symmetries and dynamical properties of high energy physics models: in particular, they manifest neither local gauge invariance nor Lorentz invariance, which are crucial properties of the quantum field theories which are the building blocks of the standard model of elementary particles. However, it turns out, surprisingly, that there are ways to configure an atomic system to manifest both local gauge invariance and Lorentz invariance. In particular, local gauge invariance can arise either as an effective low-energy symmetry, or as an exact symmetry, following from the conservation laws in atomic interactions. Hence, one could hope that such quantum simulators may lead to a new type of (table-top) experiments which will be used to study various QCD (quantum chromodynamics) phenomena, such as the confinement of dynamical quarks, phase transitions and other effects, which are inaccessible using the currently known computational methods. In this report, we review the Hamiltonian formulation of lattice gauge theories, and then describe our recent progress in constructing the quantum simulation of Abelian and non-Abelian lattice gauge theories in 1  +  1 and 2  +  1 dimensions using ultracold atoms in optical lattices. PMID:26684222

  8. Cavity quantum optomechanics of ultracold atoms in an optical lattice: Normal-mode splitting

    SciTech Connect

    Bhattacherjee, Aranya B.

    2009-10-15

    We consider the dynamics of a movable mirror (cantilever) of a cavity coupled through radiation pressure to the light scattered from ultracold atoms in an optical lattice. Scattering from different atomic quantum states creates different quantum states of the scattered light, which can be distinguished by measurements of the displacement spectrum of the cantilever. We show that for large pump intensities the steady-state displacement of the cantilever shows bistable behavior. Due to atomic back action, the displacement spectrum of the cantilever is modified and depends on the position of the condensate in the Brillouin zone. We further analyze the occurrence of splitting of the normal mode into three modes due to mixing of the mechanical motion with the fluctuations of the cavity field and the fluctuations of the condensate with finite atomic two-body interaction.

  9. Atomic thermal motion effect on efficiency of a high-speed quantum memory

    NASA Astrophysics Data System (ADS)

    Tikhonov, Kirill; Golubeva, Tania; Golubev, Yuri

    2015-11-01

    We discuss the influence of atomic thermal motion on the efficiency of multimode quantum memory in two configurations: over the free expand of atoms cooled beforehand in a magneto-optical trap, and over complete mixing of atoms in a closed cell at room temperature. We consider the high-speed quantum memory, and assume that writing and retrieval are short enough, and the displacements of atoms during these stages are negligibly small. At the same time we take in account thermal motion during the storage time, which, as well known, must be much longer than durations of all the other memory processes for successful application of memory cell in communication and computation. We will analyze this influence in terms of eigenmodes of the full memory cycle and show that distortion of the eigenmodes, caused by thermal motion, leads to the efficiency reduction. We will demonstrate, that in the multimode memory this interconnection has complicated character.

  10. Long distance coupling of a quantum mechanical oscillator to the internal states of an atomic ensemble

    NASA Astrophysics Data System (ADS)

    Vogell, B.; Kampschulte, T.; Rakher, M. T.; Faber, A.; Treutlein, P.; Hammerer, K.; Zoller, P.

    2015-04-01

    We propose and investigate a hybrid optomechanical system consisting of a micro-mechanical oscillator coupled to the internal states of a distant ensemble of atoms. The interaction between the systems is mediated by a light field which allows the coupling of the two systems in a modular way over long distances. Coupling to internal degrees of freedom of atoms opens up the possibility to employ high-frequency mechanical resonators in the MHz to GHz regime, such as optomechanical crystal structures, and to benefit from the rich toolbox of quantum control over internal atomic states. Previous schemes involving atomic motional states are rather limited in both of these aspects. We derive a full quantum model for the effective coupling including the main sources of decoherence. As an application we show that sympathetic ground-state cooling and strong coupling between the two systems is possible.

  11. Interaction between two SU(1 , 1) quantum systems and a two-level atom

    NASA Astrophysics Data System (ADS)

    Abdalla, M. Sebawe; Khalil, E. M.; Obada, A. S.-F.

    2016-07-01

    We consider a two-level atom interacting with two coupled quantum systems that can be represented in terms of su(1 , 1) Lie algebra. The wave function that is obtained using the evolution operator for the atom is initially in a superposition state and the coupled su(1 , 1) systems in a pair coherent Barut-Girardello coherent state. We then discuss atomic inversion, where more periods of revivals are observed and compared with a single su(1 , 1) quantum system. For entanglement and squeezing phenomena, the atomic angles coherence and phase as well as the detuning are effective parameters. The second-order correlation function displays Bunching and anti-Bunching behavior.

  12. Bringing Home the Atomic World: Quantum Mysteries for Anybody.

    ERIC Educational Resources Information Center

    Mermin, N. D.

    1981-01-01

    Addressed to readers who know nothing of quantum theory, a hypothetical device containing some black boxes is described and relevant features of the device's behavior are presented. The conundrum posed by the existence of such a device is pointed out. An appendix explains what is in the black boxes. (SK)

  13. Interacting single atoms with nanophotonics for chip-integrated quantum networks

    NASA Astrophysics Data System (ADS)

    Alton, Daniel James

    Underlying matter and light are their building blocks of tiny atoms and photons. The ability to control and utilize matter-light interactions down to the elementary single atom and photon level at the nano-scale opens up exciting studies at the frontiers of science with applications in medicine, energy, and information technology. Of these, an intriguing front is the development of quantum networks where N ≫ 1 single-atom nodes are coherently linked by single photons, forming a collective quantum entity potentially capable of performing quantum computations and simulations. Here, a promising approach is to use optical cavities within the setting of cavity quantum electrodynamics (QED). However, since its first realization in 1992 by Kimble et al., current proof-of-principle experiments have involved just one or two conventional cavities. To move beyond to N ≫ 1 nodes, in this thesis we investigate a platform born from the marriage of cavity QED and nanophotonics, where single atoms at ˜100 nm near the surfaces of lithographically fabricated dielectric photonic devices can strongly interact with single photons, on a chip. Particularly, we experimentally investigate three main types of devices: microtoroidal optical cavities, optical nanofibers, and nanophotonic crystal based structures. With a microtoroidal cavity, we realized a robust and efficient photon router where single photons are extracted from an incident coherent state of light and redirected to a separate output with high efficiency. We achieved strong single atom-photon coupling with atoms located ~100 nm near the surface of a microtoroid, which revealed important aspects in the atom dynamics and QED of these systems including atom-surface interaction effects. We present a method to achieve state-insensitive atom trapping near optical nanofibers, critical in nanophotonic systems where electromagnetic fields are tightly confined. We developed a system that fabricates high quality nanofibers with high

  14. Cooperative ring exchange and quantum melting of vortex lattices in atomic Bose-Einstein condensates

    SciTech Connect

    Ghosh, Tarun Kanti; Baskaran, G.

    2004-02-01

    Cooperative ring exchange is suggested as a mechanism of quantum melting of vortex lattices in a rapidly rotating quasi-two-dimensional atomic Bose-Einstein condensate (BEC). Using an approach pioneered by Kivelson et al. [Phys. Rev. Lett. 56, 873 (1986)] for the fractional quantized Hall effect, we calculate the condition for quantum melting instability by considering large-correlated ring exchanges in a two-dimensional Wigner crystal of vortices in a strong 'pseudomagnetic field' generated by the background superfluid Bose particles. BEC may be profitably used to address issues of quantum melting of a pristine Wigner solid devoid of complications of real solids.

  15. Single-photon-level quantum image memory based on cold atomic ensembles

    PubMed Central

    Ding, Dong-Sheng; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can

    2013-01-01

    A quantum memory is a key component for quantum networks, which will enable the distribution of quantum information. Its successful development requires storage of single-photon light. Encoding photons with spatial shape through higher-dimensional states significantly increases their information-carrying capability and network capacity. However, constructing such quantum memories is challenging. Here we report the first experimental realization of a true single-photon-carrying orbital angular momentum stored via electromagnetically induced transparency in a cold atomic ensemble. Our experiments show that the non-classical pair correlation between trigger photon and retrieved photon is retained, and the spatial structure of input and retrieved photons exhibits strong similarity. More importantly, we demonstrate that single-photon coherence is preserved during storage. The ability to store spatial structure at the single-photon level opens the possibility for high-dimensional quantum memories. PMID:24084711

  16. Emergence of correlated optics in one-dimensional waveguides for classical and quantum atomic gases

    NASA Astrophysics Data System (ADS)

    Ruostekoski, Janne; Javanainen, Juha

    2016-09-01

    We analyze the emergence of correlated optical phenomena in the transmission of light through a waveguide that confines classical or ultracold quantum degenerate atomic ensembles. The conditions of the correlated collective response are identified in terms of atom density, thermal broadening, and photon losses by using stochastic Monte Carlo simulations and transfer matrix methods of transport theory. We also calculate the "cooperative Lamb shift" for the waveguide transmission resonance, and discuss line shifts that are specific to effectively one-dimensional waveguide systems.

  17. Nonequilibrium forces between atoms and dielectrics mediated by a quantum field

    SciTech Connect

    Behunin, Ryan O.; Hu, Bei-Lok

    2011-07-15

    In this paper we give a first principles microphysics derivation of the nonequilibrium forces between an atom, treated as a three-dimensional harmonic oscillator, and a bulk dielectric medium modeled as a continuous lattice of oscillators coupled to a reservoir. We assume no direct interaction between the atom and the medium but there exist mutual influences transmitted via a common electromagnetic field. By employing concepts and techniques of open quantum systems we introduce coarse-graining to the physical variables--the medium, the quantum field, and the atom's internal degrees of freedom, in that order--to extract their averaged effects from the lowest tier progressively to the top tier. The first tier of coarse-graining provides the averaged effect of the medium upon the field, quantified by a complex permittivity (in the frequency domain) describing the response of the dielectric to the field in addition to its back action on the field through a stochastic forcing term. The last tier of coarse-graining over the atom's internal degrees of freedom results in an equation of motion for the atom's center of mass from which we can derive the force on the atom. Our nonequilibrium formulation provides a fully dynamical description of the atom's motion including back-action effects from all other relevant variables concerned. In the long-time limit we recover the known results for the atom-dielectric force when the combined system is in equilibrium or in a nonequilibrium stationary state.

  18. Quantum scattering of fast atoms and molecules on surfaces.

    PubMed

    Rousseau, P; Khemliche, H; Borisov, A G; Roncin, P

    2007-01-01

    We present evidence for the diffraction of light keV atoms and molecules grazingly scattered on LiF(001) and NaCl(001) surfaces. At such energies, the de Broglie wavelength is 2 orders of magnitude smaller that the mean thermal atomic displacement in the crystal. Thus, no coherent scattering was expected and interaction of keV atoms with surfaces is routinely treated with classical mechanics. We show here that well-defined diffraction patterns can be observed indicating that, for grazing scattering, the pertinent wavelength is that associated with the slow motion perpendicular to the surface. The experimental data are well reproduced by an ab initio calculation. PMID:17358491

  19. Entropic corrected Newton's law of gravitation and the loop quantum black hole gravitational atom

    NASA Astrophysics Data System (ADS)

    Aragão, R. G. L.; Silva, C. A. S.

    2016-07-01

    One proposal by Verlinde is that gravity is not a fundamental, but an entropic force (Verlinde in JHEP 1104:029, 2011. arXiv:hep-th/1001.0785). Based on this new interpretation of the gravity, Verlinde has provide us with a way to derive the Newton's law of gravitation from the Bekenstein-Hawking entropy-area formula. On the other hand, since it has been demonstrated that this formula is susceptible to quantum gravity corrections, one may hope that such corrections could be inherited by Newton's law. In this sense, the entropic interpretation of Newton's law could be a prolific way in order to get verifiable or falsifiable quantum corrections to ordinary gravity in an observationally accessible regimes. On the other hand, loop quantum gravity is a theory that provide a scheme to approach the quantum properties of spacetime. From this theory, emerges a quantum corrected semiclassical black hole solution called loop quantum black hole or self-dual black hole. Among the interesting features of loop quantum black holes, is the fact that they give rise to a modified entropy-area relation where quantum gravity corrections are present. In this work, we obtain a quantum corrected Newton's law from the entropy-area relation given by loop quantum black holes by using the nonrelativistic Verlinde's approach. Moreover, in order to relate our results with the recent experimental activity, we consider the quantum mechanical properties of a huge gravitational atom consisting in a light neutral elementary particle in the presence of a loop quantum black hole.

  20. Probing mechanical quantum coherence with an ultracold-atom meter

    SciTech Connect

    Lo Gullo, N.; Busch, Th.; Palma, G. M.; Paternostro, M.

    2011-12-15

    We propose a scheme to probe quantum coherence in the state of a nanocantilever based on its magnetic coupling (mediated by a magnetic tip) with a spinor Bose Einstein condensate (BEC). By mapping the BEC into a rotor, its coupling with the cantilever results in a gyroscopic motion whose properties depend on the state of the cantilever: the dynamics of one of the components of the rotor angular momentum turns out to be strictly related to the presence of quantum coherence in the state of the cantilever. We also suggest a detection scheme relying on Faraday rotation, which produces only a very small back-action on the BEC and is thus suitable for a continuous detection of the cantilever's dynamics.

  1. Quantum turbulence in trapped atomic Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Tsatsos, Marios C.; Tavares, Pedro E. S.; Cidrim, André; Fritsch, Amilson R.; Caracanhas, Mônica A.; dos Santos, F. Ednilson A.; Barenghi, Carlo F.; Bagnato, Vanderlei S.

    2016-03-01

    Turbulence, the complicated fluid behavior of nonlinear and statistical nature, arises in many physical systems across various disciplines, from tiny laboratory scales to geophysical and astrophysical ones. The notion of turbulence in the quantum world was conceived long ago by Onsager and Feynman, but the occurrence of turbulence in ultracold gases has been studied in the laboratory only very recently. Albeit new as a field, it already offers new paths and perspectives on the problem of turbulence. Herein we review the general properties of quantum gases at ultralow temperatures paying particular attention to vortices, their dynamics and turbulent behavior. We review the recent advances both from theory and experiment. We highlight, moreover, the difficulties of identifying and characterizing turbulence in gaseous Bose-Einstein condensates compared to ordinary turbulence and turbulence in superfluid liquid helium and spotlight future possible directions.

  2. Robust quantum logic in neutral atoms via adiabatic Rydberg dressing

    DOE PAGES

    Keating, Tyler; Cook, Robert L.; Hankin, Aaron M.; Jau, Yuan -Yu; Biedermann, Grant W.; Deutsch, Ivan H.

    2015-01-28

    We study a scheme for implementing a controlled-Z (CZ) gate between two neutral-atom qubits based on the Rydberg blockade mechanism in a manner that is robust to errors caused by atomic motion. By employing adiabatic dressing of the ground electronic state, we can protect the gate from decoherence due to random phase errors that typically arise because of atomic thermal motion. In addition, the adiabatic protocol allows for a Doppler-free configuration that involves counterpropagating lasers in a σ+/σ- orthogonal polarization geometry that further reduces motional errors due to Doppler shifts. The residual motional error is dominated by dipole-dipole forces actingmore » on doubly-excited Rydberg atoms when the blockade is imperfect. As a result, for reasonable parameters, with qubits encoded into the clock states of 133Cs, we predict that our protocol could produce a CZ gate in < 10 μs with error probability on the order of 10-3.« less

  3. Robust quantum logic in neutral atoms via adiabatic Rydberg dressing

    SciTech Connect

    Keating, Tyler; Cook, Robert L.; Hankin, Aaron M.; Jau, Yuan -Yu; Biedermann, Grant W.; Deutsch, Ivan H.

    2015-01-28

    We study a scheme for implementing a controlled-Z (CZ) gate between two neutral-atom qubits based on the Rydberg blockade mechanism in a manner that is robust to errors caused by atomic motion. By employing adiabatic dressing of the ground electronic state, we can protect the gate from decoherence due to random phase errors that typically arise because of atomic thermal motion. In addition, the adiabatic protocol allows for a Doppler-free configuration that involves counterpropagating lasers in a σ+- orthogonal polarization geometry that further reduces motional errors due to Doppler shifts. The residual motional error is dominated by dipole-dipole forces acting on doubly-excited Rydberg atoms when the blockade is imperfect. As a result, for reasonable parameters, with qubits encoded into the clock states of 133Cs, we predict that our protocol could produce a CZ gate in < 10 μs with error probability on the order of 10-3.

  4. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms.

    PubMed

    Hosten, Onur; Engelsen, Nils J; Krishnakumar, Rajiv; Kasevich, Mark A

    2016-01-28

    Quantum metrology uses quantum entanglement--correlations in the properties of microscopic systems--to improve the statistical precision of physical measurements. When measuring a signal, such as the phase shift of a light beam or an atomic state, a prominent limitation to achievable precision arises from the noise associated with the counting of uncorrelated probe particles. This noise, commonly referred to as shot noise or projection noise, gives rise to the standard quantum limit (SQL) to phase resolution. However, it can be mitigated down to the fundamental Heisenberg limit by entangling the probe particles. Despite considerable experimental progress in a variety of physical systems, a question that persists is whether these methods can achieve performance levels that compare favourably with optimized conventional (non-entangled) systems. Here we demonstrate an approach that achieves unprecedented levels of metrological improvement using half a million (87)Rb atoms in their 'clock' states. The ensemble is 20.1 ± 0.3 decibels (100-fold) spin-squeezed via an optical-cavity-based measurement. We directly resolve small microwave-induced rotations 18.5 ± 0.3 decibels (70-fold) beyond the SQL. The single-shot phase resolution of 147 microradians achieved by the apparatus is better than that achieved by the best engineered cold atom sensors despite lower atom numbers. We infer entanglement of more than 680 ± 35 particles in the atomic ensemble. Applications include atomic clocks, inertial sensors, and fundamental physics experiments such as tests of general relativity or searches for electron electric dipole moment. To this end, we demonstrate an atomic clock measurement with a quantum enhancement of 10.5 ± 0.3 decibels (11-fold), limited by the phase noise of our microwave source.

  5. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms.

    PubMed

    Hosten, Onur; Engelsen, Nils J; Krishnakumar, Rajiv; Kasevich, Mark A

    2016-01-28

    Quantum metrology uses quantum entanglement--correlations in the properties of microscopic systems--to improve the statistical precision of physical measurements. When measuring a signal, such as the phase shift of a light beam or an atomic state, a prominent limitation to achievable precision arises from the noise associated with the counting of uncorrelated probe particles. This noise, commonly referred to as shot noise or projection noise, gives rise to the standard quantum limit (SQL) to phase resolution. However, it can be mitigated down to the fundamental Heisenberg limit by entangling the probe particles. Despite considerable experimental progress in a variety of physical systems, a question that persists is whether these methods can achieve performance levels that compare favourably with optimized conventional (non-entangled) systems. Here we demonstrate an approach that achieves unprecedented levels of metrological improvement using half a million (87)Rb atoms in their 'clock' states. The ensemble is 20.1 ± 0.3 decibels (100-fold) spin-squeezed via an optical-cavity-based measurement. We directly resolve small microwave-induced rotations 18.5 ± 0.3 decibels (70-fold) beyond the SQL. The single-shot phase resolution of 147 microradians achieved by the apparatus is better than that achieved by the best engineered cold atom sensors despite lower atom numbers. We infer entanglement of more than 680 ± 35 particles in the atomic ensemble. Applications include atomic clocks, inertial sensors, and fundamental physics experiments such as tests of general relativity or searches for electron electric dipole moment. To this end, we demonstrate an atomic clock measurement with a quantum enhancement of 10.5 ± 0.3 decibels (11-fold), limited by the phase noise of our microwave source. PMID:26751056

  6. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms

    NASA Astrophysics Data System (ADS)

    Hosten, Onur; Engelsen, Nils J.; Krishnakumar, Rajiv; Kasevich, Mark A.

    2016-01-01

    Quantum metrology uses quantum entanglement—correlations in the properties of microscopic systems—to improve the statistical precision of physical measurements. When measuring a signal, such as the phase shift of a light beam or an atomic state, a prominent limitation to achievable precision arises from the noise associated with the counting of uncorrelated probe particles. This noise, commonly referred to as shot noise or projection noise, gives rise to the standard quantum limit (SQL) to phase resolution. However, it can be mitigated down to the fundamental Heisenberg limit by entangling the probe particles. Despite considerable experimental progress in a variety of physical systems, a question that persists is whether these methods can achieve performance levels that compare favourably with optimized conventional (non-entangled) systems. Here we demonstrate an approach that achieves unprecedented levels of metrological improvement using half a million 87Rb atoms in their ‘clock’ states. The ensemble is 20.1 ± 0.3 decibels (100-fold) spin-squeezed via an optical-cavity-based measurement. We directly resolve small microwave-induced rotations 18.5 ± 0.3 decibels (70-fold) beyond the SQL. The single-shot phase resolution of 147 microradians achieved by the apparatus is better than that achieved by the best engineered cold atom sensors despite lower atom numbers. We infer entanglement of more than 680 ± 35 particles in the atomic ensemble. Applications include atomic clocks, inertial sensors, and fundamental physics experiments such as tests of general relativity or searches for electron electric dipole moment. To this end, we demonstrate an atomic clock measurement with a quantum enhancement of 10.5 ± 0.3 decibels (11-fold), limited by the phase noise of our microwave source.

  7. Quantum electrodynamics processes in the interaction of high-energy particles with atoms

    NASA Astrophysics Data System (ADS)

    Krachkov, P. A.; Lee, R. N.; Mil'shtein, A. I.

    2016-07-01

    The recently developed method of quasiclassical Green's functions of the Dirac equation in the variously configured external fields has provided breakthrough insight into fundamental quantum electrodynamics processes whereby high-energy particles interact with atoms. This paper reviews latest calculated results, exact in the atomic field parameters, on the cross sections for electron-positron high-energy photoproduction, the single bremsstrahlung cross section for relativistic electrons and muons in an atomic field, double bremsstrahlung cross sections, etc. In many cases, the calculations are performed in the quasiclassical approximation with the inclusion of the first-order quasiclassical correction.

  8. Classical stochastic measurement trajectories: Bosonic atomic gases in an optical cavity and quantum measurement backaction

    NASA Astrophysics Data System (ADS)

    Lee, Mark D.; Ruostekoski, Janne

    2014-08-01

    We formulate computationally efficient classical stochastic measurement trajectories for a multimode quantum system under continuous observation. Specifically, we consider the nonlinear dynamics of an atomic Bose-Einstein condensate contained within an optical cavity subject to continuous monitoring of the light leaking out of the cavity. The classical trajectories encode within a classical phase-space representation a continuous quantum measurement process conditioned on a given detection record. We derive a Fokker-Planck equation for the quasiprobability distribution of the combined condensate-cavity system. We unravel the dynamics into stochastic classical trajectories that are conditioned on the quantum measurement process of the continuously monitored system. Since the dynamics of a continuously measured observable in a many-atom system can be closely approximated by classical dynamics, the method provides a numerically efficient and accurate approach to calculate the measurement record of a large multimode quantum system. Numerical simulations of the continuously monitored dynamics of a large atom cloud reveal considerably fluctuating phase profiles between different measurement trajectories, while ensemble averages exhibit local spatially varying phase decoherence. Individual measurement trajectories lead to spatial pattern formation and optomechanical motion that solely result from the measurement backaction. The backaction of the continuous quantum measurement process, conditioned on the detection record of the photons, spontaneously breaks the symmetry of the spatial profile of the condensate and can be tailored to selectively excite collective modes.

  9. Quantum fluctuations of the optical forces on atoms in a squeezed vacuum

    NASA Astrophysics Data System (ADS)

    Shevy, Y.; Crosignani, B.; Yariv, A.

    1992-08-01

    Squeezing the vacuum fluctuations of the electromagnetic field modifies the quantum fluctuations of the optical forces exerted on laser-cooled two-level atoms. Under certain conditions, this modification when combined with the enhanced average forces can lead to equilibrium temperatures below those attained under normal-vacuum fluctuations.

  10. Rydberg Excitation of Single Atoms for Applications in Quantum Information and Metrology

    SciTech Connect

    Hankin, Aaron Michael

    2014-08-01

    With the advent of laser cooling and trapping, neutral atoms have become a foundational source of accuracy for applications in metrology and are showing great potential for their use as qubits in quantum information. In metrology, neutral atoms provide the most accurate references for the measurement of time and acceleration. The unsurpassed stability provided by these systems make neutral atoms an attractive avenue to explore applications in quantum information and computing. However, to fully investigate the eld of quantum information, we require a method to generate entangling interactions between neutral-atom qubits. Recent progress in the use of highly-excited Rydberg states for strong dipolar interactions has shown great promise for controlled entanglement using the Rydberg blockade phenomenon. I report the use of singly-trapped 133Cs atoms as qubits for applications in metrology and quantum information. Each atom provides a physical basis for a single qubit by encoding the required information into the ground-state hyper ne structure of 133Cs. Through the manipulation of these qubits with microwave and optical frequency sources, we demonstrate the capacity for arbitrary single-qubit control by driving qubit rotations in three orthogonal directions on the Bloch sphere. With this control, we develop an atom interferometer that far surpasses the force sensitivity of other approaches by applying the well-established technique of lightpulsed atom-matterwave interferometry to single atoms. Following this, we focus on two-qubit interactions using highly-excited Rydberg states. Through the development of a unique single-photon approach to Rydberg excitation using an ultraviolet laser at 319 nm, we observe the Rydberg blockade interaction between atoms separated by 6.6(3) m. Motivated by the observation of Rydberg blockade, we study the application of Rydberg-dressed states for a quantum controlled-phase gate. Using a realistic simulation of the

  11. Multimode Raman light-atom interface in warm atomic ensemble as multiple three-mode quantum operations

    NASA Astrophysics Data System (ADS)

    Parniak, Michał; Pęcak, Daniel; Wasilewski, Wojciech

    2016-11-01

    We analyse the properties of a Raman quantum light-atom interface in long atomic ensemble and its applications as a quantum memory or two-mode squeezed state generator. We consider the weak-coupling regime and include both Stokes and anti-Stokes scattering and the effects of Doppler broadening in buffer gas assuming frequent velocity-averaging collisions. We find the Green functions describing multimode transformation from input to output fields of photons and atomic excitations. Proper mode basis is found via singular value decomposition for short interaction times. It reveals that triples of modes are coupled by a transformation equivalent to a combination of two beamsplitters and a two-mode squeezing operation. We analyse the possible transformations on an example of warm rubidium-87 vapour. The model we present bridges the gap between the Stokes only and anti-Stokes only interactions providing simple, universal description in a temporally and longitudinally multimode situation. Our results also provide an easy way to find an evolution of the states in a Schrödinger picture thus facilitating understanding and design.

  12. An OpenMP/MPI approach to the parallelization of iterative four-atom quantum mechanics

    NASA Astrophysics Data System (ADS)

    Medvedev, Dmitry M.; Goldfield, Evelyn M.; Gray, Stephen K.

    2005-03-01

    We present an approach to parallel iterative four-atom quantum mechanics calculations in a computing environment of distributed memory nodes, each node consisting of a group of processors with a shared memory. We parallelize the action of the Hamiltonian matrix on a vector, which is the main computational bottleneck in both iterative calculations of eigenvalues and eigenvectors and the iterative determination of quantum dynamics information via, e.g., wavepacket methods. OpenMP is used to facilitate the parallel work within each node, and MPI is used to communicate information between nodes. For a realistic problem the approach is shown to scale very well up to 512 processors at the NERSC computing facility, working at up to 20% of the theoretical peak performance rate. The highest total floating point rate we achieve is 0.16 Tflops, using 768 processors. Our approach should also be applicable to quantum dynamics problems with more than four atoms.

  13. Quantum dissipative dynamics of two-level atoms in hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Cortes, Cristian; Jacob, Zubin

    2015-04-01

    Hyperbolic metamaterials (HMMs) represent a class of artificial nanostructured media that have garnered a lot of attention over the past few years due their broadband singularity in the photonic density of states. This unique property has led to many research directions ranging from subwavelength light manipulation to the control of radiative decay rates of quantum emitters in HMMs. Here, we apply a second quantization approach, first developed by Dekker (1975), to study the quantum dissipative dynamics of a two-level atom coupled to a hyperbolic medium. The Dekker quantization approach provides a framework that allows for non-Hermitian Hamiltonians whose imaginary part represents the dissipation of the quantum system. We calculate the resonance fluorescence spectrum and steady-state dynamics of a two-level atom in an HMM. Our results take into account non-idealities of the medium such as loss and finite unit-cell size and should be experimentally observable using current nanofabrication technology.

  14. Quantum dissipative dynamics of two-level atoms in hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Cortes, Cristian; Jacob, Zubin

    2015-05-01

    Hyperbolic metamaterials (HMMs) represent a class of artificial nanostructured media that have garnered a lot of attention over the past few years due their broadband singularity in the photonic density of states. This unique property has led to many research directions ranging from subwavelength light manipulation to the control of radiative decay rates of quantum emitters in HMMs. Here, we apply a second quantization approach first developed by H. Dekker (1975), to study the quantum dissipative dynamics of a two-level atom coupled to a hyperbolic medium. The Dekker quantization approach provides a framework that allows for non-Hermitian Hamiltonians whose imaginary part represents the dissipation of the quantum system. We calculate the resonance fluorescence spectrum and steady-state dynamics of a two-level atom in an HMM. Our results take into account non-idealities of the medium such as loss and finite unit-cell size and should be experimentally observable using current nanofabrication technology.

  15. Dynamics and quantum entanglement of two-level atoms in de Sitter spacetime

    SciTech Connect

    Tian, Zehua; Jing, Jiliang

    2014-11-15

    In the framework of open quantum systems, we study the internal dynamics of both freely falling and static two-level atoms interacting with quantized conformally coupled massless scalar field in de Sitter spacetime. We find that the atomic transition rates depend on both the nature of de Sitter spacetime and the motion of atoms, interestingly the steady states for both cases are always driven to being purely thermal, regardless of the atomic initial states. This thermalization phenomenon is structurally similar to what happens to an elementary quantum system immersed in a thermal field, and thus reveals the thermal nature of de Sitter spacetime. Besides, we find that the thermal baths will drive the entanglement shared by the freely falling atom (the static atom) and its auxiliary partner, a same two-level atom which is isolated from external fields, to being sudden death, and the proper time for the entanglement to be extinguished is computed. We also analyze that such thermalization and disentanglement phenomena, in principle, could be understood from the perspective of table-top simulation experiment.

  16. Electron quantum dynamics in atom-ion interaction.

    PubMed

    Sabzyan, H; Jenabi, M J

    2016-04-01

    Electron transfer (ET) process and its dependence on the system parameters are investigated by solving two-dimensional time-dependent Schrödinger equation numerically using split operator technique. Evolution of the electron wavepacket occurs from the one-electron species hydrogen atom to another bare nucleus of charge Z > 1. This evolution is quantified by partitioning the simulation box and defining regional densities belonging to the two nuclei of the system. It is found that the functional form of the time-variations of these regional densities and the extent of ET process depend strongly on the inter-nuclear distance and relative values of the nuclear charges, which define the potential energy surface governing the electron wavepacket evolution. Also, the initial electronic state of the single-electron atom has critical effect on this evolution and its consequent (partial) electron transfer depending on its spreading extent and orientation with respect to the inter-nuclear axis. PMID:27059569

  17. Quantum teleportation of an arbitrary superposition of atomic states

    NASA Astrophysics Data System (ADS)

    Chen, Qiong; Fang, Xi-Ming

    2008-05-01

    This paper proposes a scheme to teleport an arbitrary multi-particle two-level atomic state between two parties or an arbitrary zero- and one-photon entangled state of multi-mode between two high-Q cavities in cavity QED. This scheme is based on the resonant interaction between atom and cavity and does not involve Bell-state measurement. It investigates the fidelity of this scheme and find out the case of this unity fidelity of this teleportation. Considering the practical case of the cavity decay, this paper finds that the condition of the unity fidelity is also valid and obtains the effect of the decay of the cavity on the successful probability of the teleportation.

  18. Electron quantum dynamics in atom-ion interaction.

    PubMed

    Sabzyan, H; Jenabi, M J

    2016-04-01

    Electron transfer (ET) process and its dependence on the system parameters are investigated by solving two-dimensional time-dependent Schrödinger equation numerically using split operator technique. Evolution of the electron wavepacket occurs from the one-electron species hydrogen atom to another bare nucleus of charge Z > 1. This evolution is quantified by partitioning the simulation box and defining regional densities belonging to the two nuclei of the system. It is found that the functional form of the time-variations of these regional densities and the extent of ET process depend strongly on the inter-nuclear distance and relative values of the nuclear charges, which define the potential energy surface governing the electron wavepacket evolution. Also, the initial electronic state of the single-electron atom has critical effect on this evolution and its consequent (partial) electron transfer depending on its spreading extent and orientation with respect to the inter-nuclear axis.

  19. Electron quantum dynamics in atom-ion interaction

    NASA Astrophysics Data System (ADS)

    Sabzyan, H.; Jenabi, M. J.

    2016-04-01

    Electron transfer (ET) process and its dependence on the system parameters are investigated by solving two-dimensional time-dependent Schrödinger equation numerically using split operator technique. Evolution of the electron wavepacket occurs from the one-electron species hydrogen atom to another bare nucleus of charge Z > 1. This evolution is quantified by partitioning the simulation box and defining regional densities belonging to the two nuclei of the system. It is found that the functional form of the time-variations of these regional densities and the extent of ET process depend strongly on the inter-nuclear distance and relative values of the nuclear charges, which define the potential energy surface governing the electron wavepacket evolution. Also, the initial electronic state of the single-electron atom has critical effect on this evolution and its consequent (partial) electron transfer depending on its spreading extent and orientation with respect to the inter-nuclear axis.

  20. High-efficiency atomic entanglement concentration for quantum communication network assisted by cavity QED

    NASA Astrophysics Data System (ADS)

    Wang, Guan-Yu; Li, Tao; Deng, Fu-Guo

    2015-04-01

    Quantum entanglement is the key resource in quantum information processing, especially in quantum communication network. However, affected by the environment noise, the maximally entangled states usually collapse into nonmaximally entangled ones or even mixed states. Here we present two high-efficiency schemes to complete the entanglement concentration of nonlocal two-atom systems. Our first scheme is used to concentrate the nonlocal atomic systems in the partially entangled states with known parameters, and it has the optimal success probability. The second scheme is used to concentrate the entanglement of the nonlocal two-atom systems in the partially entangled states with unknown parameters. Compared with the other schemes for the entanglement concentration of atomic systems, our two protocols are more efficient and practical. They require only an ancillary single photon to judge whether they succeed or not, and they work in a heralded way with detection inefficiency and absence of sophisticated single-photon detectors in practical applications. Moreover, they are insensitive to both the cavity decay and atomic spontaneous emission.

  1. Quantum coherent tractor beam effect for atoms trapped near a nanowaveguide.

    PubMed

    Sadgrove, Mark; Wimberger, Sandro; Nic Chormaic, Síle

    2016-01-01

    We propose several schemes to realize a tractor beam effect for ultracold atoms in the vicinity of a few-mode nanowaveguide. Atoms trapped near the waveguide are transported in a direction opposite to the guided mode propagation direction. We analyse three specific examples for ultracold (23)Na atoms trapped near a specific nanowaveguide (i.e. an optical nanofibre): (i) a conveyor belt-type tractor beam effect, (ii) an accelerator tractor beam effect, and (iii) a quantum coherent tractor beam effect, all of which can effectively pull atoms along the nanofibre toward the light source. This technique provides a new tool for controlling the motion of particles near nanowaveguides with potential applications in the study of particle transport and binding as well as atom interferometry. PMID:27440516

  2. Quantum coherent tractor beam effect for atoms trapped near a nanowaveguide

    PubMed Central

    Sadgrove, Mark; Wimberger, Sandro; Nic Chormaic, Síle

    2016-01-01

    We propose several schemes to realize a tractor beam effect for ultracold atoms in the vicinity of a few-mode nanowaveguide. Atoms trapped near the waveguide are transported in a direction opposite to the guided mode propagation direction. We analyse three specific examples for ultracold 23Na atoms trapped near a specific nanowaveguide (i.e. an optical nanofibre): (i) a conveyor belt-type tractor beam effect, (ii) an accelerator tractor beam effect, and (iii) a quantum coherent tractor beam effect, all of which can effectively pull atoms along the nanofibre toward the light source. This technique provides a new tool for controlling the motion of particles near nanowaveguides with potential applications in the study of particle transport and binding as well as atom interferometry. PMID:27440516

  3. Quantum coherent tractor beam effect for atoms trapped near a nanowaveguide.

    PubMed

    Sadgrove, Mark; Wimberger, Sandro; Nic Chormaic, Síle

    2016-07-21

    We propose several schemes to realize a tractor beam effect for ultracold atoms in the vicinity of a few-mode nanowaveguide. Atoms trapped near the waveguide are transported in a direction opposite to the guided mode propagation direction. We analyse three specific examples for ultracold (23)Na atoms trapped near a specific nanowaveguide (i.e. an optical nanofibre): (i) a conveyor belt-type tractor beam effect, (ii) an accelerator tractor beam effect, and (iii) a quantum coherent tractor beam effect, all of which can effectively pull atoms along the nanofibre toward the light source. This technique provides a new tool for controlling the motion of particles near nanowaveguides with potential applications in the study of particle transport and binding as well as atom interferometry.

  4. Fault-tolerant dissipative preparation of atomic quantum registers with fermions

    NASA Astrophysics Data System (ADS)

    Griessner, A.; Daley, A. J.; Jaksch, D.; Zoller, P.

    2005-09-01

    We propose a fault-tolerant loading scheme to produce an array of fermions in an optical lattice of the high fidelity required for applications in quantum-information processing and the modeling of strongly correlated systems. A cold reservoir of fermions plays a dual role as a source of atoms to be loaded into the lattice via a Raman process and as a heat bath for sympathetic cooling of lattice atoms. Atoms are initially transferred into an excited motional state in each lattice site and then decay to the motional ground state, creating particle-hole pairs in the reservoir. Atoms transferred into the ground motional level are no longer coupled back to the reservoir, and doubly occupied sites in the motional ground state are prevented by Pauli blocking. This scheme has strong conceptual connections with optical pumping and can be extended to load high-fidelity patterns of atoms.

  5. Quantum coherent tractor beam effect for atoms trapped near a nanowaveguide

    NASA Astrophysics Data System (ADS)

    Sadgrove, Mark; Wimberger, Sandro; Nic Chormaic, Síle

    2016-07-01

    We propose several schemes to realize a tractor beam effect for ultracold atoms in the vicinity of a few-mode nanowaveguide. Atoms trapped near the waveguide are transported in a direction opposite to the guided mode propagation direction. We analyse three specific examples for ultracold 23Na atoms trapped near a specific nanowaveguide (i.e. an optical nanofibre): (i) a conveyor belt-type tractor beam effect, (ii) an accelerator tractor beam effect, and (iii) a quantum coherent tractor beam effect, all of which can effectively pull atoms along the nanofibre toward the light source. This technique provides a new tool for controlling the motion of particles near nanowaveguides with potential applications in the study of particle transport and binding as well as atom interferometry.

  6. Optical readout of the quantum collective motion of an array of atomic ensembles.

    PubMed

    Botter, Thierry; Brooks, Daniel W C; Schreppler, Sydney; Brahms, Nathan; Stamper-Kurn, Dan M

    2013-04-12

    We create an ultracold-atom-based cavity optomechanical system in which the center-of-mass modes of motion of as many as six distinguishable atomic ensembles are prepared and optically detected near their ground states. We demonstrate that the collective motional state of one atomic ensemble can be selectively addressed while preserving neighboring ensembles near their ground states to better than 95% per excitation quantum. We also show that our system offers nanometer-scale spatial resolution of each atomic ensemble via optomechanical imaging. This technique enables the in situ parallel sensing of potential landscapes, a capability relevant to active research areas of atomic physics and force-field detection in optomechanics.

  7. Prospects of charged-oscillator quantum-state generation with Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Stevenson, Robin; Minář, Jiří; Hofferberth, Sebastian; Lesanovsky, Igor

    2016-10-01

    We explore the possibility of engineering quantum states of a charged mechanical oscillator by coupling it to a stream of atoms in superpositions of high-lying Rydberg states. Our scheme relies on the driving of a two-phonon resonance within the oscillator by coupling it to an atomic two-photon transition. This approach effectuates a controllable open system dynamics on the oscillator that in principle permits versatile dissipative creation of squeezed and other nonclassical states which are central to sensing applications or for studies of fundamental questions concerning the boundary between classical and quantum-mechanical descriptions of macroscopic objects. We show that these features survive thermal coupling of the oscillator with the environment. We perform a detailed feasibility study finding that current state-of-the-art parameters result in atom-oscillator couplings which are too weak to efficiently implement the proposed oscillator state preparation protocol. Finally, we comment on ways to circumvent the present limitations.

  8. Fractional Quantum Hall Effects in a Two-Dimensional Atomic Gas

    NASA Astrophysics Data System (ADS)

    Zhao, Jianshi; Jacome, Louis; Gemelke, Nathan

    2014-03-01

    Fractional Hall effects in two-dimensional electron gases have dramatically altered the way we look at ordering in quantum many body systems. Despite heroic advances since their discovery, many predictions regarding unique behavior have yet to be observed. We describe new efforts to produce similar effects in cold atomic Bose gases. Previous experiments have observed strong correlation in large ensembles of rapidly rotating few body samples consistent with a description using bosonic analogues of fractional hall states. We describe extensions of these experiments to observe individual systems in a quantum gas micropscope, introduce strong interactions through Feshbach resonance, and extend effects to larger numbers of atoms. The use of impurity atoms to probe fractional hall droplets will also be discussed, as will the extension of these effects to higher spin samples by using multiple internal states of Rubidium-87.

  9. Two-channel emission model for collective quantum jumps in Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Cayayan, Lyndon; Clemens, James

    2016-05-01

    We consider a system of driven, damped Rydberg atoms with dipole-dipole energy shifts which can give rise to a Rydberg blockade when the atoms are driven on resonance and collective quantum jumps when the atoms are driven off resonance. For the damping we consider a two-channel emission model with competition between fully independent and fully collective spontaneous emission. For independent emission a quasiclassical model predicts a bistable steady state and quantum fluctuations drive collective jumps between the two bistable branches. We show that the collective emission is enhanced, relative to the independent emission, which shifts the total effective spontaneous emission rate and impacts the presence or absence of bistability predicted by the quasiclassical model.

  10. Sensing of mechanical motion at the quantum level via a hybrid atom-optomechanical setup

    NASA Astrophysics Data System (ADS)

    Seok, Hyojun; Bariani, Francesco; Singh, Swati; Vengalattore, Mukund; Meystre, Pierre

    2015-05-01

    We consider a hybrid quantum system in which an optomechanical cavity is coupled to a Fabry-Pérot cavity containing a trapped cold atomic ensemble. We show that it is possible to cool the mechanics to the ground state from room temperature outside the resolved-sideband regime by optically coupling it to the internal levels of the atoms. We also find that while in the familiar homodyne detection of small displacements this system exhibits the same standard quantum limit as traditional cavity optomechanics, it is possible to engineer the optical response of the atoms so as to realize a back-action evading measurement scheme. We acknowledge financial support from NSF, ARO and the DARPA QuaSAR and ORCHID programs.

  11. Controlled Rephasing of Single Collective Spin Excitations in a Cold Atomic Quantum Memory.

    PubMed

    Albrecht, Boris; Farrera, Pau; Heinze, Georg; Cristiani, Matteo; de Riedmatten, Hugues

    2015-10-16

    We demonstrate active control of inhomogeneous dephasing and rephasing for single collective atomic spin excitations (spin waves) created by spontaneous Raman scattering in a quantum memory based on cold 87Rb atoms. The control is provided by a reversible external magnetic field gradient inducing an inhomogeneous broadening of the atomic hyperfine levels. We demonstrate experimentally that active rephasing preserves the single photon nature of the retrieved photons. Finally, we show that the control of the inhomogeneous dephasing enables the creation of time-separated spin waves in a single ensemble followed by a selective read-out in time. This is an important step towards the implementation of a functional temporally multiplexed quantum repeater node.

  12. Creating fractional quantum Hall states with atomic clusters using light-assisted insertion of angular momentum

    NASA Astrophysics Data System (ADS)

    Zhang, Junyi; Beugnon, Jérôme; Nascimbene, Sylvain

    2016-10-01

    We describe a protocol to prepare clusters of ultracold bosonic atoms in strongly interacting states reminiscent of fractional quantum Hall states. Our scheme consists in injecting a controlled amount of angular momentum to an atomic gas using Raman transitions carrying orbital angular momentum. By injecting one unit of angular momentum per atom, one realizes a single-vortex state, which is well described by mean-field theory for large enough particle numbers. We also present schemes to realize fractional quantum Hall states, namely, the bosonic Laughlin and Moore-Read states. We investigate the requirements for adiabatic nucleation of such topological states, in particular comparing linear Landau-Zener ramps and arbitrary ramps obtained from optimized control methods. We also show that this protocol requires excellent control over the isotropic character of the trapping potential.

  13. Hybrid quantum logic and a test of Bell’s inequality using two different atomic isotopes

    NASA Astrophysics Data System (ADS)

    Ballance, C. J.; Schäfer, V. M.; Home, J. P.; Szwer, D. J.; Webster, S. C.; Allcock, D. T. C.; Linke, N. M.; Harty, T. P.; Aude Craik, D. P. L.; Stacey, D. N.; Steane, A. M.; Lucas, D. M.

    2015-12-01

    Entanglement is one of the most fundamental properties of quantum mechanics, and is the key resource for quantum information processing (QIP). Bipartite entangled states of identical particles have been generated and studied in several experiments, and post-selected or heralded entangled states involving pairs of photons, single photons and single atoms, or different nuclei in the solid state, have also been produced. Here we use a deterministic quantum logic gate to generate a ‘hybrid’ entangled state of two trapped-ion qubits held in different isotopes of calcium, perform full tomography of the state produced, and make a test of Bell’s inequality with non-identical atoms. We use a laser-driven two-qubit gate, whose mechanism is insensitive to the qubits’ energy splittings, to produce a maximally entangled state of one 40Ca+ qubit and one 43Ca+ qubit, held 3.5 micrometres apart in the same ion trap, with 99.8 ± 0.6 per cent fidelity. We test the CHSH (Clauser-Horne-Shimony-Holt) version of Bell’s inequality for this novel entangled state and find that it is violated by 15 standard deviations; in this test, we close the detection loophole but not the locality loophole. Mixed-species quantum logic is a powerful technique for the construction of a quantum computer based on trapped ions, as it allows protection of memory qubits while other qubits undergo logic operations or are used as photonic interfaces to other processing units. The entangling gate mechanism used here can also be applied to qubits stored in different atomic elements; this would allow both memory and logic gate errors caused by photon scattering to be reduced below the levels required for fault-tolerant quantum error correction, which is an essential prerequisite for general-purpose quantum computing.

  14. Hybrid quantum logic and a test of Bell's inequality using two different atomic isotopes.

    PubMed

    Ballance, C J; Schäfer, V M; Home, J P; Szwer, D J; Webster, S C; Allcock, D T C; Linke, N M; Harty, T P; Aude Craik, D P L; Stacey, D N; Steane, A M; Lucas, D M

    2015-12-17

    Entanglement is one of the most fundamental properties of quantum mechanics, and is the key resource for quantum information processing (QIP). Bipartite entangled states of identical particles have been generated and studied in several experiments, and post-selected or heralded entangled states involving pairs of photons, single photons and single atoms, or different nuclei in the solid state, have also been produced. Here we use a deterministic quantum logic gate to generate a 'hybrid' entangled state of two trapped-ion qubits held in different isotopes of calcium, perform full tomography of the state produced, and make a test of Bell's inequality with non-identical atoms. We use a laser-driven two-qubit gate, whose mechanism is insensitive to the qubits' energy splittings, to produce a maximally entangled state of one (40)Ca(+) qubit and one (43)Ca(+) qubit, held 3.5 micrometres apart in the same ion trap, with 99.8 ± 0.6 per cent fidelity. We test the CHSH (Clauser-Horne-Shimony-Holt) version of Bell's inequality for this novel entangled state and find that it is violated by 15 standard deviations; in this test, we close the detection loophole but not the locality loophole. Mixed-species quantum logic is a powerful technique for the construction of a quantum computer based on trapped ions, as it allows protection of memory qubits while other qubits undergo logic operations or are used as photonic interfaces to other processing units. The entangling gate mechanism used here can also be applied to qubits stored in different atomic elements; this would allow both memory and logic gate errors caused by photon scattering to be reduced below the levels required for fault-tolerant quantum error correction, which is an essential prerequisite for general-purpose quantum computing. PMID:26672554

  15. Quantum discord and entanglement of two atoms in a micromaser-type system

    NASA Astrophysics Data System (ADS)

    Yan, Xue-Qun; Wang, Fu-Zhong

    2016-06-01

    The correlations dynamics of two atoms in the case of a micromaser-type system is investigated. We show that the entangled state can be created by initially maximally mixed state and there exist collapse and revival phenomena for the time evolutions of both entanglement and quantum discord under the system considered as the field is initially in the Fock state. Our results confirm that entanglement and quantum discord have similar behaviors in certain time ranges, such as their oscillations during the time evolution being almost in phase, but they also present significant differences, such as quantum discord being maintained even after the complete loss of entanglement. Furthermore, we exhibit clearly that the dynamics of quantum discord under the action of environment are intimately related to the generation and evolution of entanglement.

  16. Scanning tunneling spectroscopy of lead sulfide quantum wells fabricated by atomic layer deposition.

    PubMed

    Lee, Wonyoung; Dasgupta, Neil P; Jung, Hee Joon; Lee, Jung-Rok; Sinclair, Robert; Prinz, Fritz B

    2010-12-01

    We report the use of scanning tunneling spectroscopy (STS) to investigate one-dimensional quantum confinement effects in lead sulfide (PbS) thin films. Specifically, quantum confinement effects on the band gap of PbS quantum wells were explored by controlling the PbS film thickness and potential barrier height. PbS quantum well structures with a thickness range of 1-20 nm were fabricated by atomic layer deposition (ALD). Two barrier materials were selected based on barrier height: aluminum oxide as a high barrier material and zinc oxide as a low barrier material. Band gap measurements were carried out by STS, and an effective mass theory was developed to compare the experimental results. Our results show that the band gap of PbS thin films increased as the film thickness decreased, and the barrier height increased from 0.45 to 2.19 eV.

  17. Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities

    NASA Astrophysics Data System (ADS)

    Li, Tao; Long, Gui-Lu

    2016-08-01

    We propose an effective, scalable, hyperparallel photonic quantum computation scheme in which photonic qubits are hyperencoded both in the spatial degrees of freedom (DOF) and the polarization DOF of each photon. The deterministic hyper-controlled-not (hyper-cnot) gate on a two-photon system is attainable with our interesting interface between the polarized photon and the collective spin wave (magnon) of an atomic ensemble embedded in a double-sided optical cavity, and it doubles the operations in the conventional quantum cnot gate. Moreover, we present a compact hyper-cnotN gate on N +1 hyperencoded photons with only two auxiliary cavity-magnon systems, not more, and it can be faithfully constituted with current experimental techniques. Our proposal enables various applications with the hyperencoded photons in quantum computing and quantum networks.

  18. Isotope Dependence and Quantum Effects on Atomic Hydrogen Diffusion in Liquid Water.

    PubMed

    Walker, J A; Mezyk, S P; Roduner, E; Bartels, D M

    2016-03-01

    Relative diffusion coefficients were determined in water for the D, H, and Mu isotopes of atomic hydrogen by measuring their diffusion-limited spin-exchange rate constants with Ni(2+) as a function of temperature. H and D atoms were generated by pulse radiolysis of water and measured by time-resolved pulsed EPR. Mu atoms are detected by muonium spin resonance. To isolate the atomic mass effect from solvent isotope effect, we measured all three spin-exchange rates in 90% D2O. The diffusion depends on the atomic mass, demonstrating breakdown of Stokes-Einstein behavior. The diffusion can be understood using a combination of water "cavity diffusion" and "hopping" mechanisms, as has been proposed in the literature. The H/D isotope effect agrees with previous modeling using ring polymer molecular dynamics. The "quantum swelling" effect on muonium due to its larger de Broglie wavelength does not seem to slow its "hopping" diffusion as much as predicted in previous work. Quantum effects of both the atom mass and the water librations have been modeled using RPMD and a qTIP4P/f quantized flexible water model. These results suggest that the muonium diffusion is very sensitive to the Mu versus water potential used.

  19. A photon-photon quantum gate based on a single atom in an optical resonator.

    PubMed

    Hacker, Bastian; Welte, Stephan; Rempe, Gerhard; Ritter, Stephan

    2016-08-11

    That two photons pass each other undisturbed in free space is ideal for the faithful transmission of information, but prohibits an interaction between the photons. Such an interaction is, however, required for a plethora of applications in optical quantum information processing. The long-standing challenge here is to realize a deterministic photon-photon gate, that is, a mutually controlled logic operation on the quantum states of the photons. This requires an interaction so strong that each of the two photons can shift the other's phase by π radians. For polarization qubits, this amounts to the conditional flipping of one photon's polarization to an orthogonal state. So far, only probabilistic gates based on linear optics and photon detectors have been realized, because "no known or foreseen material has an optical nonlinearity strong enough to implement this conditional phase shift''. Meanwhile, tremendous progress in the development of quantum-nonlinear systems has opened up new possibilities for single-photon experiments. Platforms range from Rydberg blockade in atomic ensembles to single-atom cavity quantum electrodynamics. Applications such as single-photon switches and transistors, two-photon gateways, nondestructive photon detectors, photon routers and nonlinear phase shifters have been demonstrated, but none of them with the ideal information carriers: optical qubits in discriminable modes. Here we use the strong light-matter coupling provided by a single atom in a high-finesse optical resonator to realize the Duan-Kimble protocol of a universal controlled phase flip (π phase shift) photon-photon quantum gate. We achieve an average gate fidelity of (76.2 ± 3.6) per cent and specifically demonstrate the capability of conditional polarization flipping as well as entanglement generation between independent input photons. This photon-photon quantum gate is a universal quantum logic element, and therefore could perform most existing two-photon operations

  20. A photon-photon quantum gate based on a single atom in an optical resonator

    NASA Astrophysics Data System (ADS)

    Hacker, Bastian; Welte, Stephan; Rempe, Gerhard; Ritter, Stephan

    2016-08-01

    That two photons pass each other undisturbed in free space is ideal for the faithful transmission of information, but prohibits an interaction between the photons. Such an interaction is, however, required for a plethora of applications in optical quantum information processing. The long-standing challenge here is to realize a deterministic photon-photon gate, that is, a mutually controlled logic operation on the quantum states of the photons. This requires an interaction so strong that each of the two photons can shift the other’s phase by π radians. For polarization qubits, this amounts to the conditional flipping of one photon’s polarization to an orthogonal state. So far, only probabilistic gates based on linear optics and photon detectors have been realized, because “no known or foreseen material has an optical nonlinearity strong enough to implement this conditional phase shift”. Meanwhile, tremendous progress in the development of quantum-nonlinear systems has opened up new possibilities for single-photon experiments. Platforms range from Rydberg blockade in atomic ensembles to single-atom cavity quantum electrodynamics. Applications such as single-photon switches and transistors, two-photon gateways, nondestructive photon detectors, photon routers and nonlinear phase shifters have been demonstrated, but none of them with the ideal information carriers: optical qubits in discriminable modes. Here we use the strong light-matter coupling provided by a single atom in a high-finesse optical resonator to realize the Duan-Kimble protocol of a universal controlled phase flip (π phase shift) photon-photon quantum gate. We achieve an average gate fidelity of (76.2 ± 3.6) per cent and specifically demonstrate the capability of conditional polarization flipping as well as entanglement generation between independent input photons. This photon-photon quantum gate is a universal quantum logic element, and therefore could perform most existing two

  1. A photon-photon quantum gate based on a single atom in an optical resonator.

    PubMed

    Hacker, Bastian; Welte, Stephan; Rempe, Gerhard; Ritter, Stephan

    2016-08-11

    That two photons pass each other undisturbed in free space is ideal for the faithful transmission of information, but prohibits an interaction between the photons. Such an interaction is, however, required for a plethora of applications in optical quantum information processing. The long-standing challenge here is to realize a deterministic photon-photon gate, that is, a mutually controlled logic operation on the quantum states of the photons. This requires an interaction so strong that each of the two photons can shift the other's phase by π radians. For polarization qubits, this amounts to the conditional flipping of one photon's polarization to an orthogonal state. So far, only probabilistic gates based on linear optics and photon detectors have been realized, because "no known or foreseen material has an optical nonlinearity strong enough to implement this conditional phase shift''. Meanwhile, tremendous progress in the development of quantum-nonlinear systems has opened up new possibilities for single-photon experiments. Platforms range from Rydberg blockade in atomic ensembles to single-atom cavity quantum electrodynamics. Applications such as single-photon switches and transistors, two-photon gateways, nondestructive photon detectors, photon routers and nonlinear phase shifters have been demonstrated, but none of them with the ideal information carriers: optical qubits in discriminable modes. Here we use the strong light-matter coupling provided by a single atom in a high-finesse optical resonator to realize the Duan-Kimble protocol of a universal controlled phase flip (π phase shift) photon-photon quantum gate. We achieve an average gate fidelity of (76.2 ± 3.6) per cent and specifically demonstrate the capability of conditional polarization flipping as well as entanglement generation between independent input photons. This photon-photon quantum gate is a universal quantum logic element, and therefore could perform most existing two-photon operations

  2. Correlating Electronic Transport to Atomic Structures in Self-Assembled Quantum Wires

    SciTech Connect

    Li, An-Ping; Qin, Shengyong; Kim, Tae Hwan; Ouyang, Wenjie; Zhang, Yanning; Weitering, Harm H; Shih, Chih-Kang; Baddorf, Arthur P; Wu, Ruiqian

    2012-01-01

    Quantum wires, as a smallest electronic conductor, are expected to be a fundamental component in all quantum architectures. The electronic conductance in quantum wires, however, is often dictated by structural instabilities and electron localization at the atomic scale. Here we report on the evolutions of electronic transport as a function of temperature and interwire coupling as the quantum wires of GdSi{sub 2} are self-assembled on Si(100) wire-by-wire. The correlation between structure, electronic properties, and electronic transport are examined by combining nanotransport measurements, scanning tunneling microscopy, and density functional theory calculations. A metal-insulator transition is revealed in isolated nanowires, while a robust metallic state is obtained in wire bundles at low temperature. The atomic defects lead to electron localizations in isolated nanowire, and interwire coupling stabilizes the structure and promotes the metallic states in wire bundles. This illustrates how the conductance nature of a one-dimensional system can be dramatically modified by the environmental change on the atomic scale.

  3. Spin-Orbit Interactions and Quantum Spin Dynamics in Cold Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Tscherbul, Timur V.; Brumer, Paul; Buchachenko, Alexei A.

    2016-09-01

    We present accurate ab initio and quantum scattering calculations on a prototypical hybrid ion-atom system Yb+ -Rb, recently suggested as a promising candidate for the experimental study of open quantum systems, quantum information processing, and quantum simulation. We identify the second-order spin-orbit (SO) interaction as the dominant source of hyperfine relaxation in cold Yb+ -Rb collisions. Our results are in good agreement with recent experimental observations [L. Ratschbacher et al., Phys. Rev. Lett. 110, 160402 (2013)] of hyperfine relaxation rates of trapped Yb+ immersed in an ultracold Rb gas. The calculated rates are 4 times smaller than is predicted by the Langevin capture theory and display a weak T-0.3 temperature dependence, indicating significant deviations from statistical behavior. Our analysis underscores the deleterious nature of the SO interaction and implies that light ion-atom combinations such as Yb+ -Li should be used to minimize hyperfine relaxation and decoherence of trapped ions in ultracold atomic gases.

  4. Magnetic-film atom chip with 10 μm period lattices of microtraps for quantum information science with Rydberg atoms.

    PubMed

    Leung, V Y F; Pijn, D R M; Schlatter, H; Torralbo-Campo, L; La Rooij, A L; Mulder, G B; Naber, J; Soudijn, M L; Tauschinsky, A; Abarbanel, C; Hadad, B; Golan, E; Folman, R; Spreeuw, R J C

    2014-05-01

    We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chips enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 μm, suitable for experiments in quantum information science employing the interaction between atoms in highly excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined at an interface. A structure of macroscopic wires, cutout of a silver foil, was mounted under the atom chip in order to load ultracold (87)Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.

  5. Magnetic-film atom chip with 10 μm period lattices of microtraps for quantum information science with Rydberg atoms

    SciTech Connect

    Leung, V. Y. F.; Pijn, D. R. M.; Schlatter, H.; Torralbo-Campo, L.; La Rooij, A. L.; Mulder, G. B.; Naber, J.; Soudijn, M. L.; Tauschinsky, A.; Spreeuw, R. J. C.; Abarbanel, C.; Hadad, B.; Golan, E.; Folman, R.

    2014-05-15

    We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chips enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 μm, suitable for experiments in quantum information science employing the interaction between atoms in highly excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined at an interface. A structure of macroscopic wires, cutout of a silver foil, was mounted under the atom chip in order to load ultracold {sup 87}Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.

  6. Magnetic-film atom chip with 10 μm period lattices of microtraps for quantum information science with Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Leung, V. Y. F.; Pijn, D. R. M.; Schlatter, H.; Torralbo-Campo, L.; La Rooij, A. L.; Mulder, G. B.; Naber, J.; Soudijn, M. L.; Tauschinsky, A.; Abarbanel, C.; Hadad, B.; Golan, E.; Folman, R.; Spreeuw, R. J. C.

    2014-05-01

    We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chips enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 μm, suitable for experiments in quantum information science employing the interaction between atoms in highly excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined at an interface. A structure of macroscopic wires, cutout of a silver foil, was mounted under the atom chip in order to load ultracold 87Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.

  7. Realising a quantum absorption refrigerator with an atom-cavity system

    NASA Astrophysics Data System (ADS)

    Mitchison, Mark T.; Huber, Marcus; Prior, Javier; Woods, Mischa P.; Plenio, Martin B.

    2016-03-01

    An autonomous quantum thermal machine comprising a trapped atom or ion placed inside an optical cavity is proposed and analysed. Such a machine can operate as a heat engine whose working medium is the quantised atomic motion or as an absorption refrigerator that cools without any work input. Focusing on the refrigerator mode, we predict that it is possible with state-of-the-art technology to cool a trapped ion almost to its motional ground state using a thermal light source such as sunlight. We nonetheless find that a laser or a similar reference system is necessary to stabilise the cavity frequencies. Furthermore, we establish a direct and heretofore unacknowledged connection between the abstract theory of quantum absorption refrigerators and practical sideband cooling techniques. We also highlight and clarify some assumptions underlying several recent theoretical studies on self-contained quantum engines and refrigerators. Our work indicates that cavity quantum electrodynamics is a promising and versatile experimental platform for the study of autonomous thermal machines in the quantum domain.

  8. Quantum control of multilevel atoms with rotational degeneracy using short laser pulses

    SciTech Connect

    Demeter, G.

    2010-10-15

    We study the quantum control of multilevel atoms with rotationally degenerate levels using short laser pulses. Various control schemes are considered, ones using {pi} pulses, frequency-chirped pulses, two consecutive pulses, or two pulses that overlap each other partially. We study the possibilities of controlling the quantum state of an ensemble of atoms distributed randomly over one or more rotationally degenerate levels initially. For the sake of concreteness we use the hyperfine level scheme of the {sup 85}Rb D line, but the results can easily be generalized for any of the alkali-metal atoms used in cooling and trapping experiments. We find that even though a number of difficulties arise, such as unequal coupling constants between rotational sublevels or dephasing between different hyperfine levels during the interaction, control schemes using simple or multiphoton adiabatic passage can be used to control the internal states of the atoms effectively as well as the center-of-mass motion. Furthermore, it is shown that in some cases it is possible to exploit the inequality of the coupling constants to entangle the rotational substates with specific distinct translational quantum states and hence separate these substates in momentum space.

  9. Three-dimensional theory of quantum memories based on {Lambda}-type atomic ensembles

    SciTech Connect

    Zeuthen, Emil; Grodecka-Grad, Anna; Soerensen, Anders S.

    2011-10-15

    We develop a three-dimensional theory for quantum memories based on light storage in ensembles of {Lambda}-type atoms, where two long-lived atomic ground states are employed. We consider light storage in an ensemble of finite spatial extent and we show that within the paraxial approximation the Fresnel number of the atomic ensemble and the optical depth are the only important physical parameters determining the quality of the quantum memory. We analyze the influence of these parameters on the storage of light followed by either forward or backward read-out from the quantum memory. We show that for small Fresnel numbers the forward memory provides higher efficiencies, whereas for large Fresnel numbers the backward memory is advantageous. The optimal light modes to store in the memory are presented together with the corresponding spin waves and outcoming light modes. We show that for high optical depths such {Lambda}-type atomic ensembles allow for highly efficient backward and forward memories even for small Fresnel numbers F(greater-or-similar sign)0.1.

  10. Quantum memory effects in noninteracting cold-atom systems: Hysteresis loop and lattice transformation

    NASA Astrophysics Data System (ADS)

    Chien, Chihchun; Metcalf, Mekena; Lai, Chenyen

    2016-05-01

    Memory effects are observable in magnetization, rechargeable batteries, and many systems exhibiting history-dependent states. Quantum memory effects are observable, for instance, in atomic superfluids. A counter-intuitive question is whether quantum memory effects can exist in noninteracting systems. Here we present two examples of cold-atom systems demonstrating memory effects in noninteracting systems. The first example is a ring-shaped potential loaded with noninteracting fermions. An artificial vector potential drives a current and with a tunable dissipative background, the current lags behind the driving and exhibits hysteresis loops. The dissipative energy can be controlled by the coupling between the fermions and the background. In the second example, cold atoms loaded in a tunable optical lattice transformed from the triangular to the kagome geometry. The kagome lattice supports a flat-band consisting of degenerate localized states. Quantum memory effects are observable after a lattice transformation as the steady-state density depends on the rate of the transformation. The versatility of memory effects in cold-atom systems promises novel applications in atomtronics.

  11. Quantum aspects of cavity optomechanics with atomic ensembles and ensemble arrays

    NASA Astrophysics Data System (ADS)

    Stamper-Kurn, Dan

    2012-06-01

    While the motion of a many-atom ensemble of atoms interacting strongly with a single mode of an optical resonator can be devilishly complicated, under favorable conditions, the cavity can be made to interact with and to sense just one, or just a few, normal modes of the gaseous system. This leads to an atoms-based realization of cavity optomechanics, directly analogous to experiments in which one seeks to observe the motion of suspended mirrors, cantilevers, and membranes at the quantum limits of precision. I will discuss our progress toward demonstrating and understanding the distinctively quantum mechanical aspects of both the ``opto'' and ``mechanical'' portions of cavity optomechanical systems. Specifically, I will report on the observation of the ponderomotive squeezing of light by a mechanical oscillator, and of strong motional sideband asymmetry that demonstrates the quantization of collective atomic motion and quantifies the energy flux into the mechanical system due to quantum measurement backaction. I will conclude by describing our approach to realizing strong cavity coupling to a multi-mode mechanical system, specifically to an array of distinguishable mechanical oscillators. [4pt] The work reported in this talk was performed in collaboration with members of my research group, including Thierry Botter, Nathaniel Brahms, Daniel Brooks, Thomas Purdy and Sydney Schreppler, and was supported by the AFOSR and NSF.

  12. Interplay of classical and quantum dynamics in a thermal ensemble of atoms

    NASA Astrophysics Data System (ADS)

    Warsi Laskar, Arif; Singh, Niharika; Mukherjee, Arunabh; Ghosh, Saikat

    2016-05-01

    In a thermal ensemble of atoms driven by coherent fields, how does evolution of quantum superposition compete with classical dynamics of optical pumping and atomic diffusion? Is it optical pumping that first prepares a thermal ensemble, with coherent superposition developing subsequently or is it the other way round: coherently superposed atoms driven to steady state via optical pumping? Using a stroboscopic probing technique, here we experimentally explore these questions. A 100 ns pulse is used to probe an experimentally simulated, closed three-level, Λ-like configuration in rubidium atoms, driven by strong coherent (control) and incoherent fields. Temporal evolution of probe transmission shows an initial overshoot with turn-on of control, resulting in a scenario akin to lasing without inversion. The corresponding rise time is dictated by coherent dynamics, with a distinct experimental signature of half-cycle Rabi flop in a thermal ensemble of atoms. Our results indicate that, in fact, optical pumping drives the atoms to a steady state in a significantly longer time-scale that sustains superposed dark states. Eventual control turn-off leads to a sudden fall in transmission with an ubiquitous signature for identifying closed and open systems. Numerical simulations and toy-model predictions confirm our claims. These studies reveal new insights into a rich and complex dynamics associated with atoms in thermal ensemble, which are otherwise absent in state-prepared, cold atomic ensembles.

  13. Ultracold atomic collisions in tight harmonic traps: Quantum-defect model and application to metastable helium atoms

    SciTech Connect

    Peach, Gillian; Whittingham, Ian B.; Beams, Timothy J.

    2004-09-01

    We analyze a system of two colliding ultracold atoms under strong harmonic confinement from the viewpoint of quantum defect theory and formulate a generalized self-consistent method for determining the allowed energies. We also present two highly efficient computational methods for determining the bound state energies and eigenfunctions of such systems. The perturbed harmonic oscillator problem is characterized by a long asymptotic region beyond the effective range of the interatomic potential. The first method, which is based on quantum defect theory and is an adaptation of a technique developed by one of the authors (G.P.) for highly excited states in a modified Coulomb potential, is very efficient for integrating through this outer region. The second method is a direct numerical solution of the radial Schroedinger equation using a discrete variable representation of the kinetic energy operator and a scaled radial coordinate grid. The methods are applied to the case of trapped spin-polarized metastable helium atoms. The calculated eigenvalues agree very closely for the two methods, and with the eigenvalues computed using the generalized self-consistent method.

  14. Quantum chaos of a mixed open system of kicked cold atoms

    SciTech Connect

    Krivolapov, Yevgeny; Fishman, Shmuel; Ott, Edward; Antonsen, Thomas M.

    2011-01-15

    The quantum and classical dynamics of particles kicked by a Gaussian attractive potential are studied. Classically, it is an open mixed system (the motion in some parts of the phase space is chaotic, and in some parts it is regular). The fidelity (Loschmidt echo) is found to exhibit oscillations that can be determined from classical considerations but are sensitive to phase space structures that are smaller than Planck's constant. Families of quasienergies are determined from classical phase space structures. Substantial differences between the classical and quantum dynamics are found for time-dependent scattering. It is argued that the system can be experimentally realized by cold atoms kicked by a Gaussian light beam.

  15. Quantum dots protected from oxidative attack using alumina shells synthesized by atomic layer deposition.

    PubMed

    Yin, B; Sadtler, B; Berezin, M Y; Thimsen, E

    2016-09-25

    Applications of luminescent quantum dots require the materials to be stable under a wide range of temperatures, photon fluxes and chemical environments. In this work, we demonstrate that Al2O3 shells synthesized by atomic layer deposition on films of CdTe quantum dots are effective to prevent chemical degradation for up to 17 hours under continuous illumination at 90 °C in ambient air. Control samples with no Al2O3 coating experienced extensive oxidation and severe quenching of the photoluminescence intensity under these conditions. PMID:27550790

  16. Quantum dots protected from oxidative attack using alumina shells synthesized by atomic layer deposition.

    PubMed

    Yin, B; Sadtler, B; Berezin, M Y; Thimsen, E

    2016-09-25

    Applications of luminescent quantum dots require the materials to be stable under a wide range of temperatures, photon fluxes and chemical environments. In this work, we demonstrate that Al2O3 shells synthesized by atomic layer deposition on films of CdTe quantum dots are effective to prevent chemical degradation for up to 17 hours under continuous illumination at 90 °C in ambient air. Control samples with no Al2O3 coating experienced extensive oxidation and severe quenching of the photoluminescence intensity under these conditions.

  17. I.I. Rabi Prize in Atomic, Molecular and Optical Physics Talk: Novel Quantum Physics in Few- and Many-body Atomic Systems

    NASA Astrophysics Data System (ADS)

    Chin, Cheng

    2011-05-01

    Recent cold atom researches are reaching out far beyond the realm that was conventionally viewed as atomic physics. Many long standing issues in other physics disciplines or in Gedanken-experiments are nowadays common targets of cold atom physicists. Two prominent examples will be discussed in this talk: BEC-BCS crossover and Efimov physics. Here, cold atoms are employed to emulate electrons in superconductors, and nucleons in nuclear reactions, respectively. The ability to emulate exotic or thought systems using cold atoms stems from the precisely determined, simple, and tunable interaction properties of cold atoms. New experimental tools have also been devised toward an ultimate goal: a complete control and a complete characterization of a few- or many-body quantum system. We are tantalizingly close to this major milestone, and will soon open new venues to explore new quantum phenomena that may (or may not!) exist in scientists' dreams.

  18. Partially ferromagnetic electromagnet for trapping and cooling neutral atoms to quantum degeneracy

    SciTech Connect

    Fauquembergue, M.; Riou, J-F.; Guerin, W.; Rangwala, S.; Moron, F.; Villing, A.; Le Coq, Y.; Bouyer, P.; Aspect, A.; Lecrivain, M.

    2005-10-15

    We have developed a compact partially ferromagnetic electromagnet to produce an Ioffe-Pritchard trap for neutral atoms. Our structure permits strong magnetic confinement with low power consumption. Compared to the previous iron-core electromagnet [B. Desruelle, V. Boyer, P. Bouyer, G. Birkl, M. Lecrivain, F. Alves, C. Westbrook, and A. Aspect, Eur. Phys. J. D 1, 255 (1998)], it allows for easy compensation of remnant fields and very high stability, along with cost-effective realization and compactness. We describe and characterize our apparatus and demonstrate trapping and cooling of {sup 87}Rb atoms to quantum degeneracy. Pure Bose-Einstein condensates containing 10{sup 6} atoms are routinely realized on a half-minute cycle. In addition we test the stability of the magnetic trap by producing atom lasers.

  19. Reconfigurable site-selective manipulation of atomic quantum systems in two-dimensional arrays of dipole traps

    SciTech Connect

    Kruse, J.; Gierl, C.; Schlosser, M.; Birkl, G.

    2010-06-15

    We trap atoms in versatile two-dimensional (2D) arrays of optical potentials, prepare flexible 2D spin configurations, perform site-selective coherent manipulation, and demonstrate the implementation of simultaneous measurements of different system properties, such as dephasing and decoherence. This approach for the flexible manipulation of atomic quantum systems is based on the combination of 2D arrays of microlenses and 2D arrays of liquid crystal light modulators. This offers extended types of control for the investigation of quantum degenerate gases, quantum information processing, and quantum simulations.

  20. The splitting of atomic orbitals with a common principal quantum number revisited: np vs. ns.

    PubMed

    Katriel, Jacob

    2012-04-14

    Atomic orbitals with a common principal quantum number are degenerate, as in the hydrogen atom, in the absence of interelectronic repulsion. Due to the virial theorem, electrons in such orbitals experience equal nuclear attractions. Comparing states of several-electron atoms that differ by the occupation of orbitals with a common principal quantum number, such as 1s(2) 2s vs. 1s(2) 2p, we find that although the difference in energies, ΔE, is due to the interelectronic repulsion term in the Hamiltonian, the difference between the interelectronic repulsions, ΔC, makes a smaller contribution to ΔE than the corresponding difference between the nuclear attractions, ΔL. Analysis of spectroscopic data for atomic isoelectronic sequences allows an extensive investigation of these issues. In the low nuclear charge range of pertinent isoelectronic sequences, i.e., for neutral atoms and mildly positively charged ions, it is found that ΔC actually reverses its sign. About 96% of the nuclear attraction difference between the 6p (2)P and the 6s (2)S states of the Cs atom is cancelled by the corresponding interelectronic repulsion difference. From the monotonic increase of ΔE with Z it follows (via the Hellmann-Feynman theorem) that ΔL > 0. Upon increasing the nuclear charge along an atomic isoelectronic sequence with a single electron outside a closed shell from Z(c), the critical charge below which the outmost electron is not bound, to infinity, the ratio ΔC/ΔL increases monotonically from lim(Z→Z(c)(+))ΔC/ΔL=-1 to lim(Z→∞)ΔC/ΔL=1. These results should allow for a more nuanced discussion than is usually encountered of the crude electronic structure of many-electron atoms and the structure of the periodic table.

  1. The splitting of atomic orbitals with a common principal quantum number revisited: np vs. ns.

    PubMed

    Katriel, Jacob

    2012-04-14

    Atomic orbitals with a common principal quantum number are degenerate, as in the hydrogen atom, in the absence of interelectronic repulsion. Due to the virial theorem, electrons in such orbitals experience equal nuclear attractions. Comparing states of several-electron atoms that differ by the occupation of orbitals with a common principal quantum number, such as 1s(2) 2s vs. 1s(2) 2p, we find that although the difference in energies, ΔE, is due to the interelectronic repulsion term in the Hamiltonian, the difference between the interelectronic repulsions, ΔC, makes a smaller contribution to ΔE than the corresponding difference between the nuclear attractions, ΔL. Analysis of spectroscopic data for atomic isoelectronic sequences allows an extensive investigation of these issues. In the low nuclear charge range of pertinent isoelectronic sequences, i.e., for neutral atoms and mildly positively charged ions, it is found that ΔC actually reverses its sign. About 96% of the nuclear attraction difference between the 6p (2)P and the 6s (2)S states of the Cs atom is cancelled by the corresponding interelectronic repulsion difference. From the monotonic increase of ΔE with Z it follows (via the Hellmann-Feynman theorem) that ΔL > 0. Upon increasing the nuclear charge along an atomic isoelectronic sequence with a single electron outside a closed shell from Z(c), the critical charge below which the outmost electron is not bound, to infinity, the ratio ΔC/ΔL increases monotonically from lim(Z→Z(c)(+))ΔC/ΔL=-1 to lim(Z→∞)ΔC/ΔL=1. These results should allow for a more nuanced discussion than is usually encountered of the crude electronic structure of many-electron atoms and the structure of the periodic table. PMID:22502506

  2. Cold-atom quantum simulation of U(1) lattice gauge-Higgs model

    NASA Astrophysics Data System (ADS)

    Kasamatsu, Kenichi; Kuno, Yoshihito; Takahashi, Yoshiro; Ichinose, Ikuo; Matsui, Tetsuo

    2015-03-01

    We discuss the possible methods to construct a quantum simulator of the U(1) lattice gauge-Higgs model using cold atoms in an optical lattice. These methods require no severe fine tunings of parameters of atomic-interactions in contrast with the other previous literature. We propose some realistic experimental setups to realize the atomic quantum simulator of the U(1) lattice gauge-Higgs model in a two-dimensional optical lattice. Our target gauge-Higgs model has a nontrivial phase structure, i.e., existence of the phase boundary between confinement and Higgs phases, and this phase boundary is to be observed by cold-atom experiments. As a reference to such experiments, we make numerical simulations of the time-dependent Gross-Pitaevskii equation and observe the real-time dynamics of the atomic simulators. Clarification of the dynamics of this gauge-Higgs model sheds some lights upon various unsolved problems including the inflation process of the early universe.

  3. Entanglement and quantum discord dynamics of two atoms under practical feedback control

    SciTech Connect

    Li Yang; Luo Bin; Guo Hong

    2011-07-15

    We study the dynamics of two identical atoms resonantly coupled to a single-mode cavity under practical feedback control, and focus on the detection inefficiency. The entanglement is induced to vanish in finite time by the inefficiency of detection. Counterintuitively, the asymptotic entanglement and quantum discord can be increased by the inefficiency of detection. The noise of detection triggers the control field to create entanglement and discord when no photons are emitted from the atoms. Furthermore, sudden change happens to the dynamics of entanglement.

  4. Dicke-like quantum phase transition and vacuum entanglement with two coupled atomic ensembles

    SciTech Connect

    Zheng Shibiao

    2011-09-15

    We study the coherent cooperative phenomena of the system composed of two interacting atomic ensembles in the thermodynamic limit. Remarkably, the system exhibits the Dicke-like quantum phase transition and entanglement behavior although the governing Hamiltonian is fundamentally different from the spin-boson Dicke Hamiltonian, offering the opportunity for investigating collective matter-light dynamics with pure matter waves. The model can be realized with two Bose-Einstein condensates or atomic ensembles trapped in two optical cavities coupled to each other. The interaction between the two separate samples is induced by virtual photon exchange.

  5. Quantum theory of recent observations on Rydberg atoms in low-Q cavities

    NASA Astrophysics Data System (ADS)

    Hildred, G. P.; Bullough, R. K.; Puri, R. R.; Hassan, S. S.

    1984-08-01

    The theoretical model of Dicke (1954) as modified by Hassan et al. (1982) to include a broad-band chaotic (black-body) driving field is applied to the case of high-Rydberg atoms in low-Q cavities. It is found that the driven quantum model accurately predicts the cooperative behavior of atoms observed in Na-beam experiments by Raimond et al. (1982), Goy et al. (1983), and Haroche et al. (1982). The applicability of the model to high-Q and coherent fields is predicted.

  6. Zoo of Quantum Phases and Excitations of Cold Bosonic Atoms in Optical Lattices

    SciTech Connect

    Alon, Ofir E.; Streltsov, Alexej I.; Cederbaum, Lorenz S.

    2005-07-15

    Quantum phases and phase transitions of weakly to strongly interacting bosonic atoms in deep to shallow optical lattices are described by a single multiorbital mean-field approach in real space. For weakly interacting bosons in one dimension, the critical value of the superfluid to Mott insulator (MI) transition found is in excellent agreement with many-body treatments of the Bose-Hubbard model. For strongly interacting bosons (i) additional MI phases appear, for which two (or more) atoms residing in each site undergo a Tonks-Girardeau-like transition and localize, and (ii) on-site excitation becomes the excitation lowest in energy. Experimental implications are discussed.

  7. Microwave potentials and optimal control for robust quantum gates on an atom chip

    SciTech Connect

    Treutlein, Philipp; Haensch, Theodor W.; Reichel, Jakob; Negretti, Antonio; Cirone, Markus A.; Calarco, Tommaso

    2006-08-15

    We propose a two-qubit collisional phase gate that can be implemented with available atom chip technology and present a detailed theoretical analysis of its performance. The gate is based on earlier phase gate schemes, but uses a qubit state pair with an experimentally demonstrated, very long coherence lifetime. Microwave near fields play a key role in our implementation as a means to realize the state-dependent potentials required for conditional dynamics. Quantum control algorithms are used to optimize gate performance. We employ circuit configurations that can be built with current fabrication processes and extensively discuss the impact of technical noise and imperfections that characterize an actual atom chip. We find an overall infidelity compatible with requirements for fault-tolerant quantum computation.

  8. Microwave potentials and optimal control for robust quantum gates on an atom chip

    NASA Astrophysics Data System (ADS)

    Treutlein, Philipp; Hänsch, Theodor W.; Reichel, Jakob; Negretti, Antonio; Cirone, Markus A.; Calarco, Tommaso

    2006-08-01

    We propose a two-qubit collisional phase gate that can be implemented with available atom chip technology and present a detailed theoretical analysis of its performance. The gate is based on earlier phase gate schemes, but uses a qubit state pair with an experimentally demonstrated, very long coherence lifetime. Microwave near fields play a key role in our implementation as a means to realize the state-dependent potentials required for conditional dynamics. Quantum control algorithms are used to optimize gate performance. We employ circuit configurations that can be built with current fabrication processes and extensively discuss the impact of technical noise and imperfections that characterize an actual atom chip. We find an overall infidelity compatible with requirements for fault-tolerant quantum computation.

  9. Robustness of topologically protected edge states in quantum walk experiments with neutral atoms

    NASA Astrophysics Data System (ADS)

    Groh, Thorsten; Brakhane, Stefan; Alt, Wolfgang; Meschede, Dieter; Asbóth, Janos K.; Alberti, Andrea

    2016-07-01

    Discrete-time quantum walks allow Floquet topological insulator materials to be explored using controllable systems such as ultracold atoms in optical lattices. By numerical simulations, we study the robustness of topologically protected edge states in the presence of decoherence in one- and two-dimensional discrete-time quantum walks. We also develop a simple analytical model quantifying the robustness of these edge states against either spin or spatial dephasing, predicting an exponential decay of the population of topologically protected edge states. Moreover, we present an experimental proposal based on neutral atoms in spin-dependent optical lattices to realize spatial boundaries between distinct topological phases. Our proposal includes also a scheme to implement spin-dependent discrete shift operations in a two-dimensional optical lattice. We analyze under realistic decoherence conditions the experimental feasibility of observing unidirectional, dissipationless transport of matter waves along boundaries separating distinct topological domains.

  10. Terahertz meta-atoms coupled to a quantum well intersubband transition.

    PubMed

    Dietze, D; Benz, A; Strasser, G; Unterrainer, K; Darmo, J

    2011-07-01

    We present a method of coupling free-space terahertz radiation to intersubband transitions in semiconductor quantum wells using an array of meta-atoms. Owing to the resonant nature of the interaction between metamaterial and incident light and the field enhancement in the vicinity of the metal structure, the coupling efficiency of this method is very high and the energy conversion ratio from in-plane to z field reaches values on the order of 50%. To identify the role of different aspects of this coupling, we have used a custom-made finite-difference time-domain code. The simulation results are supplemented by transmission measurements on modulation-doped GaAs/AlGaAs parabolic quantum wells which demonstrate efficient strong light-matter coupling between meta-atoms and intersubband transitions for normal incident electromagnetic waves.

  11. Chaotic quantum ratchets and filters with cold atoms in optical lattices: Analysis using Floquet states

    SciTech Connect

    Hur, G.; Creffield, C.E.; Jones, P.H.; Monteiro, T.S.

    2005-07-15

    Recently, cesium atoms in optical lattices subjected to cycles of unequally spaced pulses have been found to show interesting behavior: they represent an experimental demonstration of a Hamiltonian ratchet mechanism, and they show strong variability of the dynamical localization lengths as a function of initial momentum. The behavior differs qualitatively from corresponding atomic systems pulsed with equal periods, which are a textbook implementation of a well-studied quantum chaos paradigm, the quantum {delta}-kicked rotor ({delta}-QKR). We investigate here the properties of the corresponding eigenstates (Floquet states) in the parameter regime of the recent experiments and compare them with those of the eigenstates of the {delta}-QKR at similar kicking strengths. We show that by studying the properties of the Floquet states we can shed light on the form of the observed ratchet current, as well as variations in the dynamical localization length.

  12. Highly charged ions for atomic clocks, quantum information, and search for α variation.

    PubMed

    Safronova, M S; Dzuba, V A; Flambaum, V V; Safronova, U I; Porsev, S G; Kozlov, M G

    2014-07-18

    We propose 10 highly charged ions as candidates for the development of next generation atomic clocks, quantum information, and search for α variation. They have long-lived metastable states with transition wavelengths to the ground state between 170-3000 nm, relatively simple electronic structure, stable isotopes, and high sensitivity to α variation (e.g., Sm(14+), Pr(10+), Sm(13+), Nd(10+)). We predict their properties crucial for the experimental exploration and highlight particularly attractive systems for these applications.

  13. Classical and quantum dynamics of a model for atomic-molecular Bose-Einstein condensates

    SciTech Connect

    Santos, G.; Tonel, A.; Foerster, A.; Links, J.

    2006-02-15

    We study a model for a two-mode atomic-molecular Bose-Einstein condensate. Starting with a classical analysis we determine the phase space fixed points of the system. It is found that bifurcations of the fixed points naturally separate the coupling parameter space into four regions. The different regions give rise to qualitatively different dynamics. We then show that this classification holds true for the quantum dynamics.

  14. Requirements for fault-tolerant factoring on an atom-optics quantum computer

    NASA Astrophysics Data System (ADS)

    Devitt, Simon J.; Stephens, Ashley M.; Munro, William J.; Nemoto, Kae

    2013-10-01

    Quantum information processing and its associated technologies have reached a pivotal stage in their development, with many experiments having established the basic building blocks. Moving forward, the challenge is to scale up to larger machines capable of performing computational tasks not possible today. This raises questions that need to be urgently addressed, such as what resources these machines will consume and how large will they be. Here we estimate the resources required to execute Shor’s factoring algorithm on an atom-optics quantum computer architecture. We determine the runtime and size of the computer as a function of the problem size and physical error rate. Our results suggest that once the physical error rate is low enough to allow quantum error correction, optimization to reduce resources and increase performance will come mostly from integrating algorithms and circuits within the error correction environment, rather than from improving the physical hardware.

  15. Atomic physics and quantum optics using superconducting circuits: from the Dynamical Casimir effect to Majorana fermions

    NASA Astrophysics Data System (ADS)

    Nori, Franco

    2012-02-01

    This talk will present an overview of some of our recent results on atomic physics and quantum optics using superconducting circuits. Particular emphasis will be given to photons interacting with qubits, interferometry, the Dynamical Casimir effect, and also studying Majorana fermions using superconducting circuits.[4pt] References available online at our web site:[0pt] J.Q. You, Z.D. Wang, W. Zhang, F. Nori, Manipulating and probing Majorana fermions using superconducting circuits, (2011). Arxiv. J.R. Johansson, G. Johansson, C.M. Wilson, F. Nori, Dynamical Casimir effect in a superconducting coplanar waveguide, Phys. Rev. Lett. 103, 147003 (2009). [0pt] J.R. Johansson, G. Johansson, C.M. Wilson, F. Nori, Dynamical Casimir effect in superconducting microwave circuits, Phys. Rev. A 82, 052509 (2010). [0pt] C.M. Wilson, G. Johansson, A. Pourkabirian, J.R. Johansson, T. Duty, F. Nori, P. Delsing, Observation of the Dynamical Casimir Effect in a superconducting circuit. Nature, in press (Nov. 2011). P.D. Nation, J.R. Johansson, M.P. Blencowe, F. Nori, Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits, Rev. Mod. Phys., in press (2011). [0pt] J.Q. You, F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474, 589 (2011). [0pt] S.N. Shevchenko, S. Ashhab, F. Nori, Landau-Zener-Stuckelberg interferometry, Phys. Reports 492, 1 (2010). [0pt] I. Buluta, S. Ashhab, F. Nori. Natural and artificial atoms for quantum computation, Reports on Progress in Physics 74, 104401 (2011). [0pt] I.Buluta, F. Nori, Quantum Simulators, Science 326, 108 (2009). [0pt] L.F. Wei, K. Maruyama, X.B. Wang, J.Q. You, F. Nori, Testing quantum contextuality with macroscopic superconducting circuits, Phys. Rev. B 81, 174513 (2010). [0pt] J.Q. You, X.-F. Shi, X. Hu, F. Nori, Quantum emulation of a spin system with topologically protected ground states using superconducting quantum circuit, Phys. Rev. A 81, 063823 (2010).

  16. Quantum simulation of the Hubbard model with dopant atoms in silicon

    PubMed Central

    Salfi, J.; Mol, J. A.; Rahman, R.; Klimeck, G.; Simmons, M. Y.; Hollenberg, L. C. L.; Rogge, S.

    2016-01-01

    In quantum simulation, many-body phenomena are probed in controllable quantum systems. Recently, simulation of Bose–Hubbard Hamiltonians using cold atoms revealed previously hidden local correlations. However, fermionic many-body Hubbard phenomena such as unconventional superconductivity and spin liquids are more difficult to simulate using cold atoms. To date the required single-site measurements and cooling remain problematic, while only ensemble measurements have been achieved. Here we simulate a two-site Hubbard Hamiltonian at low effective temperatures with single-site resolution using subsurface dopants in silicon. We measure quasi-particle tunnelling maps of spin-resolved states with atomic resolution, finding interference processes from which the entanglement entropy and Hubbard interactions are quantified. Entanglement, determined by spin and orbital degrees of freedom, increases with increasing valence bond length. We find separation-tunable Hubbard interaction strengths that are suitable for simulating strongly correlated phenomena in larger arrays of dopants, establishing dopants as a platform for quantum simulation of the Hubbard model. PMID:27094205

  17. CP(N - 1) quantum field theories with alkaline-earth atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Laflamme, C.; Evans, W.; Dalmonte, M.; Gerber, U.; Mejía-Díaz, H.; Bietenholz, W.; Wiese, U.-J.; Zoller, P.

    2016-07-01

    We propose a cold atom implementation to attain the continuum limit of (1 + 1) -d CP(N - 1) quantum field theories. These theories share important features with (3 + 1) -d QCD, such as asymptotic freedom and θ-vacua. Moreover, their continuum limit can be accessed via the mechanism of dimensional reduction. In our scheme, the CP(N - 1) degrees of freedom emerge at low energies from a ladder system of SU(N) quantum spins, where the N spin states are embodied by the nuclear Zeeman states of alkaline-earth atoms, trapped in an optical lattice. Based on Monte Carlo results, we establish that the continuum limit can be demonstrated by an atomic quantum simulation by employing the feature of asymptotic freedom. We discuss a protocol for the adiabatic preparation of the ground state of the system, the real-time evolution of a false θ-vacuum state after a quench, and we propose experiments to unravel the phase diagram at non-zero density.

  18. Quantum theory for generation of nonclassical photon pairs by a medium with collective atomic memory

    SciTech Connect

    Sisakyan, Narek; Malakyan, Yuri

    2005-10-15

    We present the quantum theory for creation of collective atomic memory and generation of nonclassically correlated photon pairs from an ensemble via the protocol of Duan et al. [Nature (London) 414, 413 (2001)]. The temporal evolution of photon numbers, photon statistics, and cross-correlation between the Stokes and anti-Stokes fields is found by solving the equation of motion for atomic spin-wave excitations. We consider a low-finesse cavity model with collectively enhanced signal-to-noise ratio, which remains still considerably large in the free-space limit. Our results describe analytically the dependence of quantum correlations on spin decoherence time and time delay between the write and read lasers and reproduce the observed data very well including the generated pulse shapes, strong violation of Cauchy-Schwarz inequality and conditional generation of anti-Stokes single-photon pulse. The approach we developed may be used also for quantum description of storage and retrieval of quantum information, especially when the statistical properties of nonclassical pulses are studied.

  19. Atomic quantum simulation of dynamical gauge fields coupled to fermionic matter: from string breaking to evolution after a quench.

    PubMed

    Banerjee, D; Dalmonte, M; Müller, M; Rico, E; Stebler, P; Wiese, U-J; Zoller, P

    2012-10-26

    Using a Fermi-Bose mixture of ultracold atoms in an optical lattice, we construct a quantum simulator for a U(1) gauge theory coupled to fermionic matter. The construction is based on quantum links which realize continuous gauge symmetry with discrete quantum variables. At low energies, quantum link models with staggered fermions emerge from a Hubbard-type model which can be quantum simulated. This allows us to investigate string breaking as well as the real-time evolution after a quench in gauge theories, which are inaccessible to classical simulation methods.

  20. Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models.

    PubMed

    Labuhn, Henning; Barredo, Daniel; Ravets, Sylvain; de Léséleuc, Sylvain; Macrì, Tommaso; Lahaye, Thierry; Browaeys, Antoine

    2016-06-30

    Spin models are the prime example of simplified many-body Hamiltonians used to model complex, strongly correlated real-world materials. However, despite the simplified character of such models, their dynamics often cannot be simulated exactly on classical computers when the number of particles exceeds a few tens. For this reason, quantum simulation of spin Hamiltonians using the tools of atomic and molecular physics has become a very active field over the past years, using ultracold atoms or molecules in optical lattices, or trapped ions. All of these approaches have their own strengths and limitations. Here we report an alternative platform for the study of spin systems, using individual atoms trapped in tunable two-dimensional arrays of optical microtraps with arbitrary geometries, where filling fractions range from 60 to 100 per cent. When excited to high-energy Rydberg D states, the atoms undergo strong interactions whose anisotropic character opens the way to simulating exotic matter. We illustrate the versatility of our system by studying the dynamics of a quantum Ising-like spin-1/2 system in a transverse field with up to 30 spins, for a variety of geometries in one and two dimensions, and for a wide range of interaction strengths. For geometries where the anisotropy is expected to have small effects on the dynamics, we find excellent agreement with ab initio simulations of the spin-1/2 system, while for strongly anisotropic situations the multilevel structure of the D states has a measurable influence. Our findings establish arrays of single Rydberg atoms as a versatile platform for the study of quantum magnetism.

  1. Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models

    NASA Astrophysics Data System (ADS)

    Labuhn, Henning; Barredo, Daniel; Ravets, Sylvain; de Léséleuc, Sylvain; Macrì, Tommaso; Lahaye, Thierry; Browaeys, Antoine

    2016-06-01

    Spin models are the prime example of simplified many-body Hamiltonians used to model complex, strongly correlated real-world materials. However, despite the simplified character of such models, their dynamics often cannot be simulated exactly on classical computers when the number of particles exceeds a few tens. For this reason, quantum simulation of spin Hamiltonians using the tools of atomic and molecular physics has become a very active field over the past years, using ultracold atoms or molecules in optical lattices, or trapped ions. All of these approaches have their own strengths and limitations. Here we report an alternative platform for the study of spin systems, using individual atoms trapped in tunable two-dimensional arrays of optical microtraps with arbitrary geometries, where filling fractions range from 60 to 100 per cent. When excited to high-energy Rydberg D states, the atoms undergo strong interactions whose anisotropic character opens the way to simulating exotic matter. We illustrate the versatility of our system by studying the dynamics of a quantum Ising-like spin-1/2 system in a transverse field with up to 30 spins, for a variety of geometries in one and two dimensions, and for a wide range of interaction strengths. For geometries where the anisotropy is expected to have small effects on the dynamics, we find excellent agreement with ab initio simulations of the spin-1/2 system, while for strongly anisotropic situations the multilevel structure of the D states has a measurable influence. Our findings establish arrays of single Rydberg atoms as a versatile platform for the study of quantum magnetism.

  2. Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models.

    PubMed

    Labuhn, Henning; Barredo, Daniel; Ravets, Sylvain; de Léséleuc, Sylvain; Macrì, Tommaso; Lahaye, Thierry; Browaeys, Antoine

    2016-06-30

    Spin models are the prime example of simplified many-body Hamiltonians used to model complex, strongly correlated real-world materials. However, despite the simplified character of such models, their dynamics often cannot be simulated exactly on classical computers when the number of particles exceeds a few tens. For this reason, quantum simulation of spin Hamiltonians using the tools of atomic and molecular physics has become a very active field over the past years, using ultracold atoms or molecules in optical lattices, or trapped ions. All of these approaches have their own strengths and limitations. Here we report an alternative platform for the study of spin systems, using individual atoms trapped in tunable two-dimensional arrays of optical microtraps with arbitrary geometries, where filling fractions range from 60 to 100 per cent. When excited to high-energy Rydberg D states, the atoms undergo strong interactions whose anisotropic character opens the way to simulating exotic matter. We illustrate the versatility of our system by studying the dynamics of a quantum Ising-like spin-1/2 system in a transverse field with up to 30 spins, for a variety of geometries in one and two dimensions, and for a wide range of interaction strengths. For geometries where the anisotropy is expected to have small effects on the dynamics, we find excellent agreement with ab initio simulations of the spin-1/2 system, while for strongly anisotropic situations the multilevel structure of the D states has a measurable influence. Our findings establish arrays of single Rydberg atoms as a versatile platform for the study of quantum magnetism. PMID:27281203

  3. Conductive atomic force microscopy studies on the transformation of GeSi quantum dots to quantum rings.

    PubMed

    Zhang, S L; Xue, F; Wu, R; Cui, J; Jiang, Z M; Yang, X J

    2009-04-01

    Conductive atomic force microscopy has been employed to study the topography and conductance distribution of individual GeSi quantum dots (QDs) and quantum rings (QRs) during the transformation from QDs to QRs by depositing an Si capping layer on QDs. The current distribution changes significantly with the topographic transformation during the Si capping process. Without the capping layer, the QDs are dome-shaped and the conductance is higher at the ring region between the center and boundary than that at the center. After capping with 0.32 nm Si, the shape of the QDs changes to pyramidal and the current is higher at both the center and the arris. When the Si capping layer increases to 2 nm, QRs are formed and the current of individual QRs is higher at the rim than that at the central hole. By comparing the composition distributions obtained by scanning Auger microscopy and atomic force microscopy combined with selective chemical etching, the origin of the current distribution change is discussed.

  4. Hydrogen-hydrogen interaction in planar biphenyl: a theoretical study based on the interacting quantum atoms and Hirshfeld atomic energy partitioning methods.

    PubMed

    Eskandari, Kiamars; Van Alsenoy, Christian

    2014-10-01

    The nature of H-H interaction between ortho-hydrogen atoms in planar biphenyl is investigated by two different atomic energy partitioning methods, namely fractional occupation iterative Hirshfeld (FOHI) and interacting quantum atoms (IQA), and compared with the traditional virial-based approach of quantum theory of atoms in molecules (QTAIM). In agreement with Bader's hypothesis of H-H bonding, partitioning the atomic energy into intra-atomic and interatomic terms reveals that there is a net attractive interaction between the ortho-hydrogens in the planar biphenyl. This falsifies the classical view of steric repulsion between the hydrogens. In addition, in contrast to the traditional QTAIM energy analysis, both FOHI and IQA show that the total atomic energy of the ortho-hydrogens remains almost constant when they participate in the H-H interaction. Although, the interatomic part of atomic energy of the hydrogens plays a stabilizing role during the formation of the H-H bond, it is almost compensated by the destabilizing effects of the intra-atomic parts and consequently, the total energy of the hydrogens remains constant. The trends in the changes of intra-atomic and interatomic energy terms of ortho-hydrogens during H-H bond formation are very similar to those observed for the H2 molecule.

  5. Atomic filtering for hybrid continuous-variable/discrete-variable quantum optics.

    PubMed

    Zielińska, Joanna A; Beduini, Federica A; Lucivero, Vito Giovanni; Mitchell, Morgan W

    2014-10-20

    We demonstrate atomic filtering of frequency-degenerate photon pairs from a sub-threshold optical parametric oscillator (OPO). The filter, a modified Faraday anomalous dispersion optical filter (FADOF), achieves 70% peak transmission simultaneous with 57 dB out-of-band rejection and a 445 MHz transmission bandwidth. When applied to the OPO output, only the degenerate mode, containing one-mode squeezed vacuum, falls in the filter pass-band; all other modes are strongly suppressed. The high transmission preserves non-classical continuous-variable features, e.g. squeezing or non-gaussianity, while the high spectral purity allows reliable discrete-variable detection and heralding. Correlation and atomic absorption measurements indicate a spectral purity of 96% for the individual photons, and 98% for the photon pairs. These capabilities will enable generation of atom-resonant hybrid states, e.g. "Schrödinger kittens" obtained by photon subtraction from squeezed vacuum, making these exotic states available for quantum networking and atomic quantum metrology applications.

  6. Quantum phase transitions for two coupled cavities with dipole-interaction atoms

    SciTech Connect

    Tan Lei; Zhang Yuqing; Liu Wuming

    2011-12-15

    We investigate the quantum phase transitions for two weakly coupled atom-cavity sites. The interatomic dipole-dipole interaction is considered. Our numerical results show that the dipole-dipole interaction is a crucial parameter for the quantum phase transition. For small atom-cavity detuning, the ''superfluid'' becomes more and more obvious with the increase of the dipole-dipole interaction. In addition, the strong dipole-dipole interaction can lead the atomic excitation to be suppressed completely, and only the photonic excitation exists for the ground states. When the atom-cavity detuning is comparable with the dipole-dipole interaction, the dipole-dipole interaction enlarges the positive detunings, which is in favor of exhibiting superfluid photonic states. While for the negative detuning, the dipole-dipole interaction will reduce it, and contribute to the formation of the polaritonic insulator states. The cases for extended models have also been briefly analyzed. We also discuss how to find these novel phenomena in future experiments.

  7. Quantum dynamics of hydrogen atoms on graphene. I. System-bath modeling

    SciTech Connect

    Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H.; Burghardt, Irene

    2015-09-28

    An accurate system-bath model to investigate the quantum dynamics of hydrogen atoms chemisorbed on graphene is presented. The system comprises a hydrogen atom and the carbon atom from graphene that forms the covalent bond, and it is described by a previously developed 4D potential energy surface based on density functional theory ab initio data. The bath describes the rest of the carbon lattice and is obtained from an empirical force field through inversion of a classical equilibrium correlation function describing the hydrogen motion. By construction, model building easily accommodates improvements coming from the use of higher level electronic structure theory for the system. Further, it is well suited to a determination of the system-environment coupling by means of ab initio molecular dynamics. This paper details the system-bath modeling and shows its application to the quantum dynamics of vibrational relaxation of a chemisorbed hydrogen atom, which is here investigated at T = 0 K with the help of the multi-configuration time-dependent Hartree method. Paper II deals with the sticking dynamics.

  8. Investigating the laser angle dependence of movable pinhole traps for neutral atom quantum computing

    NASA Astrophysics Data System (ADS)

    Frazer, Travis; Roberts, David; Schray, Jason; Gillen, Glen; Gillen-Christandl, Katharina

    2013-05-01

    Neutral atom approaches meet all DiVincenzo quantum computing criteria but scalability. Our proposed solution is a two-dimensional array of dipole traps formed in the diffraction pattern immediately behind an array of pinholes. For two-qubit gates, trapped atoms can be brought together and apart by changing the trap laser angle and exploiting the polarization dependence of the trapping potential. We are investigating the diffraction pattern for a large range of angles of incidence through direct measurement and computations. We will present these results and our experimental progress with our in-house system for transferring atoms from our MOT to the pinhole traps. Work supported by the National Science Foundation Grant No. PHY-0855524.

  9. Exploring Few- and Many-Body Dipolar Quantum Phenomena with Ultracold Erbium Atoms

    NASA Astrophysics Data System (ADS)

    Ferlaino, Francesca

    2016-05-01

    Given their strong magnetic moment and exotic electronic configuration, rare-earth atoms disclose a plethora of intriguing phenomena in ultracold quantum physics with dipole-dipole interaction. Here, we report on the first degenerate Fermi gas of erbium atoms, based on direct cooling of identical fermions via dipolar collisions. We reveal universal scattering laws between identical dipolar fermions close to zero temperature, and we demonstrate the long-standing prediction of a deformed Fermi surface in dipolar gas. Finally, we present the first experimental study of an extended Bose-Hubbard model using bosonic Er atoms in a three-dimensional optical lattice and we report on the first observation of nearest-neighbor interactions.

  10. New approaches in deep laser cooling of magnesium atoms for quantum metrology

    NASA Astrophysics Data System (ADS)

    Prudnikov, O. N.; Brazhnikov, D. V.; Taichenachev, A. V.; Yudin, V. I.; Bonert, A. E.; Tropnikov, M. A.; Goncharov, A. N.

    2016-09-01

    Two approaches for solving the long-standing problem of deep laser cooling of neutral magnesium atoms are proposed. The first one uses optical molasses with orthogonal linear polarizations of light waves. The second approach involves a ‘nonstandard’ magneto-optical trap (NMOT) composed of light waves with elliptical polarizations (in general). Both the widely used semiclassical approach based on the Fokker–Planck equation and quantum treatment fully taking into account the recoil effect are employed for theoretical analysis. The results show the possibility of obtaining temperatures lower than 100 µK simultaneously with a large number of cold atoms ~106 ÷ 107. A new velocity-selective cooling technique allowing one to reach the microkelvin temperature range is also proposed. This technique may have some advantages over, for instance, the shallow-dipole-trap technique utilized by other authors. In the case of magnesium atoms this new technique may be used for obtaining a large number of ultracold atoms (T ~ 1 µK, N  >  105). Such a large number of ultracold atoms is crucial issue for metrological and many other applications of cold atoms.

  11. New approaches in deep laser cooling of magnesium atoms for quantum metrology

    NASA Astrophysics Data System (ADS)

    Prudnikov, O. N.; Brazhnikov, D. V.; Taichenachev, A. V.; Yudin, V. I.; Bonert, A. E.; Tropnikov, M. A.; Goncharov, A. N.

    2016-09-01

    Two approaches for solving the long-standing problem of deep laser cooling of neutral magnesium atoms are proposed. The first one uses optical molasses with orthogonal linear polarizations of light waves. The second approach involves a ‘nonstandard’ magneto-optical trap (NMOT) composed of light waves with elliptical polarizations (in general). Both the widely used semiclassical approach based on the Fokker-Planck equation and quantum treatment fully taking into account the recoil effect are employed for theoretical analysis. The results show the possibility of obtaining temperatures lower than 100 µK simultaneously with a large number of cold atoms ~106 ÷ 107. A new velocity-selective cooling technique allowing one to reach the microkelvin temperature range is also proposed. This technique may have some advantages over, for instance, the shallow-dipole-trap technique utilized by other authors. In the case of magnesium atoms this new technique may be used for obtaining a large number of ultracold atoms (T ~ 1 µK, N  >  105). Such a large number of ultracold atoms is crucial issue for metrological and many other applications of cold atoms.

  12. Atomic Structure Study of the Quantum Spin-ice Pyrochlore Yb2Ti2O7

    NASA Astrophysics Data System (ADS)

    Mostaed, Ali; Balakrishnan, Geetha; Lees, Martin; Beanland, Richard; Microscopy Team; Superconductivity; Magnetism Team

    The quantum spin-ice candidate Yb2Ti2O7 (YTO) lies on the boundary between a number of competing magnetic ground states. Features in the low-temperature specific heat capacity are found to vary in sharpness and temperature depending on materials processing. It has been suggested that these changes in the magnetic ground state could be influenced by several factors, including the degree of cation stuffing, changes in oxygen occupancy and/or vacancies. In the present work, the structures of three different YTO samples, grown by the optical floating zone technique and that exhibit quite different heat capacity behaviour, have been studied by annular dark field scanning transmission microscopy (ADF-STEM). We show that the detailed intensity distribution around the visible atomic columns is sensitive to the presence of nearby atoms of low atomic number (in this case oxygen), even though they are not directly visible in the images. To the best of our knowledge, this is the first time that oxygen columns with a distance of ~30 pm have been distinguished in ADF-STEM images. Furthermore, by comparing atomic columns with different configurations of nearby oxygen atoms, we are able to distinguish between the different YTO samples Finally, the ADF data for the crystal that exhibits no specific heat anomaly shows signs of the substitution of Yb atoms on Ti sites, supporting the view that the magnetic ground state of YTO is extremely sensitive to disorder.

  13. Effects of detuning and atomic motion parameter on the dynamical behavior of the entanglement between two-level atom and SU(1,1) quantum system

    NASA Astrophysics Data System (ADS)

    Abdel-Khalek, S.; Quthami, M.; Ahmed, M. M. A.

    2015-02-01

    In this paper, we study the dynamics of the atomic inversion and von Neumann entropy for a moving and non-moving two-level atom interacting with multi SU(1,1) quantum system. The wave function and system density matrix using specific initial conditions are obtained. The effects of initial atomic state position and detuning parameters are examined in the absence and presence of the atomic motion effect. Important phenomena such as entanglement sudden death, sudden birth and long-living entanglement are explored during time evolution. The results show that the detuning parameter and excitation number is very useful in generating a high amount of entanglement.

  14. Metastable Phases and Dynamics of Low-Dimensional Strongly-Correlated Atomic Quantum Gases

    NASA Astrophysics Data System (ADS)

    Pielawa, Susanne

    In this thesis we theoretically study low-dimensional, strongly correlated systems of cold atoms, which are not in an equilibrium situation. This is motivated by recent experimental progress, which has made it possible to study quantum many-body physics in a controllable and clean setting; and parameters can be changed during the experiment. In Chapter 2 and 3 we study phases and quantum phase transitions of 'tilted' Mott insulator of bosons. We analyze a variety of lattices and tilt directions in two dimensions: square, decorated square, triangular, and kagome. We show that there are rich possibilities for correlated phases with non-trivial entanglement of pseudospin degrees of freedom encoded in the boson density. For certain configurations three-body interactions are necessary to ensure that the energy of the effective resonant subspace is bounded from below. We find quantum phases with Ising density wave order, with superfluidity transverse to the tilt direction, a quantum liquid state with no broken symmetry. We also find cases for which the resonant subspace is described by effective quantum dimer models. In Chapter 4 we study spin 1/2 chains with a Heisenberg interaction which are coupled in a way that would arise if they are taken off graphene at a zig-zag edge. In Chapter 5 we theoretically analyze interference patterns of parametrically driven one-dimensional cold atomic systems. The parametric driving leads to spatial oscillations in the interference patter, which can be analyzed to obtain the sound velocity of the 1d system, and to probe spin-charge separation.

  15. Chaotic quantum ratchets and filters with cold atoms in optical lattices: Properties of Floquet states

    NASA Astrophysics Data System (ADS)

    Hur, Gwang-Ok

    The -kicked rotor is a paradigm of quantum chaos. Its realisation with clouds of cold atoms in pulsed optical lattices demonstrated the well-known quantum chaos phenomenon of 'dynamical localisation'. In those experi ments by several groups world-wide, the £-kicks were applied at equal time intervals. However, recent theoretical and experimental work by the cold atom group at UCL Monteiro et al 2002, Jonckheere et al 2003, Jones et al 2004 showed that novel quantum and classical dynamics arises if the atomic cloud is pulsed with repeating sequences of unequally spaced kicks. In Mon teiro et al 2002 it was found that the energy absorption rates depend on the momentum of the atoms relative to the optical lattice hence a type of chaotic ratchet was proposed. In Jonckheere et al and Jones et al, a possible mechanism for selecting atoms according to their momenta (velocity filter) was investigated. The aim of this thesis was to study the properties of the underlying eigen values and eigenstates. Despite the unequally-spaced kicks, these systems are still time-periodic, so we in fact investigated the Floquet states, which are eigenstates of U(T), the one-period time evolution operator. The Floquet states and corresponding eigenvalues were obtained by diagonalising a ma trix representation of the operator U(T). It was found that the form of the eigenstates enables us to analyse qual itatively the atomic momentum probability distributions, N(p) measured experimentally. In particular, the momentum width of the individual eigen states varies strongly with < p > as expected from the theoretical and ex- perimental results obtained previously. In addition, at specific < p > close to values which in the experiment yield directed motion (ratchet transport), the probability distribution of the individual Floquet states is asymmetric, mirroring the asymmetric N(p) measured in clouds of cesium atoms. In the penultimate chapter, the spectral fluctuations (eigenvalue statis tics) are

  16. Quantum chaos in ultracold collisions of gas-phase erbium atoms.

    PubMed

    Frisch, Albert; Mark, Michael; Aikawa, Kiyotaka; Ferlaino, Francesca; Bohn, John L; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana

    2014-03-27

    Atomic and molecular samples reduced to temperatures below one microkelvin, yet still in the gas phase, afford unprecedented energy resolution in probing and manipulating the interactions between their constituent particles. As a result of this resolution, atoms can be made to scatter resonantly on demand, through the precise control of a magnetic field. For simple atoms, such as alkalis, scattering resonances are extremely well characterized. However, ultracold physics is now poised to enter a new regime, where much more complex species can be cooled and studied, including magnetic lanthanide atoms and even molecules. For molecules, it has been speculated that a dense set of resonances in ultracold collision cross-sections will probably exhibit essentially random fluctuations, much as the observed energy spectra of nuclear scattering do. According to the Bohigas-Giannoni-Schmit conjecture, such fluctuations would imply chaotic dynamics of the underlying classical motion driving the collision. This would necessitate new ways of looking at the fundamental interactions in ultracold atomic and molecular systems, as well as perhaps new chaos-driven states of ultracold matter. Here we describe the experimental demonstration that random spectra are indeed found at ultralow temperatures. In the experiment, an ultracold gas of erbium atoms is shown to exhibit many Fano-Feshbach resonances, of the order of three per gauss for bosons. Analysis of their statistics verifies that their distribution of nearest-neighbour spacings is what one would expect from random matrix theory. The density and statistics of these resonances are explained by fully quantum mechanical scattering calculations that locate their origin in the anisotropy of the atoms' potential energy surface. Our results therefore reveal chaotic behaviour in the native interaction between ultracold atoms.

  17. Quantum chaos in ultracold collisions of gas-phase erbium atoms

    NASA Astrophysics Data System (ADS)

    Frisch, Albert; Mark, Michael; Aikawa, Kiyotaka; Ferlaino, Francesca; Bohn, John L.; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana

    2014-03-01

    Atomic and molecular samples reduced to temperatures below one microkelvin, yet still in the gas phase, afford unprecedented energy resolution in probing and manipulating the interactions between their constituent particles. As a result of this resolution, atoms can be made to scatter resonantly on demand, through the precise control of a magnetic field. For simple atoms, such as alkalis, scattering resonances are extremely well characterized. However, ultracold physics is now poised to enter a new regime, where much more complex species can be cooled and studied, including magnetic lanthanide atoms and even molecules. For molecules, it has been speculated that a dense set of resonances in ultracold collision cross-sections will probably exhibit essentially random fluctuations, much as the observed energy spectra of nuclear scattering do. According to the Bohigas-Giannoni-Schmit conjecture, such fluctuations would imply chaotic dynamics of the underlying classical motion driving the collision. This would necessitate new ways of looking at the fundamental interactions in ultracold atomic and molecular systems, as well as perhaps new chaos-driven states of ultracold matter. Here we describe the experimental demonstration that random spectra are indeed found at ultralow temperatures. In the experiment, an ultracold gas of erbium atoms is shown to exhibit many Fano-Feshbach resonances, of the order of three per gauss for bosons. Analysis of their statistics verifies that their distribution of nearest-neighbour spacings is what one would expect from random matrix theory. The density and statistics of these resonances are explained by fully quantum mechanical scattering calculations that locate their origin in the anisotropy of the atoms' potential energy surface. Our results therefore reveal chaotic behaviour in the native interaction between ultracold atoms.

  18. Temporal Purity and Quantum Interference of Single Photons from Two Independent Cold Atomic Ensembles.

    PubMed

    Qian, Peng; Gu, Zhenjie; Cao, Rong; Wen, Rong; Ou, Z Y; Chen, J F; Zhang, Weiping

    2016-07-01

    The temporal purity of single photons is crucial to the indistinguishability of independent photon sources for the fundamental study of the quantum nature of light and the development of photonic technologies. Currently, the technique for single photons heralded from time-frequency entangled biphotons created in nonlinear crystals does not guarantee the temporal-quantum purity, except using spectral filtering. Nevertheless, an entirely different situation is anticipated for narrow-band biphotons with a coherence time far longer than the time resolution of a single-photon detector. Here we demonstrate temporally pure single photons with a coherence time of 100 ns, directly heralded from the time-frequency entangled biphotons generated by spontaneous four-wave mixing in cold atomic ensembles, without any supplemented filters or cavities. A near-perfect purity and indistinguishability are both verified through Hong-Ou-Mandel quantum interference using single photons from two independent cold atomic ensembles. The time-frequency entanglement provides a route to manipulate the pure temporal state of the single-photon source. PMID:27419568

  19. Slow light enhanced atomic frequency comb quantum memories in photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Yuan, Chenzhi; Zhang, Wei; Huang, Yidong; Peng, Jiangde

    2016-09-01

    In this paper, we propose a slow light-enhanced quantum memory with high efficiency based on atomic frequency comb (AFC) in ion-doped photonic crystal waveguide (PCW). The performance of the quantum memory is investigated theoretically, considering the impact of the signal bandwidth. Both the forward and backward retrieval schemes are analyzed. In the forward retrieval scheme, the analysis shows that a moderate slow light effect can improve the retrieval efficiency to above 50% with very high fidelity, even when the intrinsic optical depth is very low and the signal bandwidth is comparable with the AFC bandwidth. In the backward retrieval scheme, retrieval efficiency larger than 90% can be obtained and fidelity can remain above 90% for signal with bandwidth much narrower than AFC bandwidth, when moderate slow light is introduced into waveguide with low intrinsic optical depth. Although the phase mismatching effect limits the slow light enhancement on retrieval efficiency and decreases the fidelity for signal with bandwidth approaching AFC bandwidth, we design a modified atomic frequency comb structure (MAFC) based on which a moderate slow light can make the retrieval efficiency larger than 85% and keep the fidelity above 80%. Our calculations show that the proposed scheme provides a promising way to realize high efficiency on-chip quantum memory. Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-60662-3

  20. Slow light enhanced atomic frequency comb quantum memories in photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Yuan, Chenzhi; Zhang, Wei; Huang, Yidong; Peng, Jiangde

    2016-09-01

    In this paper, we propose a slow light-enhanced quantum memory with high efficiency based on atomic frequency comb (AFC) in ion-doped photonic crystal waveguide (PCW). The performance of the quantum memory is investigated theoretically, considering the impact of the signal bandwidth. Both the forward and backward retrieval schemes are analyzed. In the forward retrieval scheme, the analysis shows that a moderate slow light effect can improve the retrieval efficiency to above 50% with very high fidelity, even when the intrinsic optical depth is very low and the signal bandwidth is comparable with the AFC bandwidth. In the backward retrieval scheme, retrieval efficiency larger than 90% can be obtained and fidelity can remain above 90% for signal with bandwidth much narrower than AFC bandwidth, when moderate slow light is introduced into waveguide with low intrinsic optical depth. Although the phase mismatching effect limits the slow light enhancement on retrieval efficiency and decreases the fidelity for signal with bandwidth approaching AFC bandwidth, we design a modified atomic frequency comb structure (MAFC) based on which a moderate slow light can make the retrieval efficiency larger than 85% and keep the fidelity above 80%. Our calculations show that the proposed scheme provides a promising way to realize high efficiency on-chip quantum memory.

  1. Temporal Purity and Quantum Interference of Single Photons from Two Independent Cold Atomic Ensembles

    NASA Astrophysics Data System (ADS)

    Qian, Peng; Gu, Zhenjie; Cao, Rong; Wen, Rong; Ou, Z. Y.; Chen, J. F.; Zhang, Weiping

    2016-07-01

    The temporal purity of single photons is crucial to the indistinguishability of independent photon sources for the fundamental study of the quantum nature of light and the development of photonic technologies. Currently, the technique for single photons heralded from time-frequency entangled biphotons created in nonlinear crystals does not guarantee the temporal-quantum purity, except using spectral filtering. Nevertheless, an entirely different situation is anticipated for narrow-band biphotons with a coherence time far longer than the time resolution of a single-photon detector. Here we demonstrate temporally pure single photons with a coherence time of 100 ns, directly heralded from the time-frequency entangled biphotons generated by spontaneous four-wave mixing in cold atomic ensembles, without any supplemented filters or cavities. A near-perfect purity and indistinguishability are both verified through Hong-Ou-Mandel quantum interference using single photons from two independent cold atomic ensembles. The time-frequency entanglement provides a route to manipulate the pure temporal state of the single-photon source.

  2. Temporal Purity and Quantum Interference of Single Photons from Two Independent Cold Atomic Ensembles.

    PubMed

    Qian, Peng; Gu, Zhenjie; Cao, Rong; Wen, Rong; Ou, Z Y; Chen, J F; Zhang, Weiping

    2016-07-01

    The temporal purity of single photons is crucial to the indistinguishability of independent photon sources for the fundamental study of the quantum nature of light and the development of photonic technologies. Currently, the technique for single photons heralded from time-frequency entangled biphotons created in nonlinear crystals does not guarantee the temporal-quantum purity, except using spectral filtering. Nevertheless, an entirely different situation is anticipated for narrow-band biphotons with a coherence time far longer than the time resolution of a single-photon detector. Here we demonstrate temporally pure single photons with a coherence time of 100 ns, directly heralded from the time-frequency entangled biphotons generated by spontaneous four-wave mixing in cold atomic ensembles, without any supplemented filters or cavities. A near-perfect purity and indistinguishability are both verified through Hong-Ou-Mandel quantum interference using single photons from two independent cold atomic ensembles. The time-frequency entanglement provides a route to manipulate the pure temporal state of the single-photon source.

  3. Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction

    PubMed Central

    Müller, Knut; Krause, Florian F.; Béché, Armand; Schowalter, Marco; Galioit, Vincent; Löffler, Stefan; Verbeeck, Johan; Zweck, Josef; Schattschneider, Peter; Rosenauer, Andreas

    2014-01-01

    By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms. PMID:25501385

  4. Quantum effects of hydrogen atoms on the dynamical rearrangement of hydrogen-bond networks in liquid water.

    PubMed

    Hyeon-Deuk, Kim; Ando, Koji

    2010-04-28

    Quantum effects such as zero-point energy and delocalization of wave packets (WPs) representing water hydrogen atoms are essential to understand anomalous energetics and dynamics in water. Since quantum calculations of many-body dynamics are highly complicated, no one has yet directly viewed the quantum WP dynamics of hydrogen atoms in liquid water. Our semiquantum molecular dynamics simulation made it possible to observe the hydrogen WP dynamics in liquid water. We demonstrate that the microscopic WP dynamics are closely correlated with and actually play key roles in the dynamical rearrangement in the hydrogen-bond network (HBN) of bulk water. We found the quantum effects of hydrogen atoms on liquid water dynamics such as the rearrangement of HBN and the concomitant fluctuation and relaxation. Our results provide new physical insights on HBN dynamics in water whose significance is not limited to pure liquid dynamics but also a greater understanding of chemical and biological reactions in liquid water.

  5. Performance of the density matrix functional theory in the quantum theory of atoms in molecules.

    PubMed

    García-Revilla, Marco; Francisco, E; Costales, A; Martín Pendás, A

    2012-02-01

    The generalization to arbitrary molecular geometries of the energetic partitioning provided by the atomic virial theorem of the quantum theory of atoms in molecules (QTAIM) leads to an exact and chemically intuitive energy partitioning scheme, the interacting quantum atoms (IQA) approach, that depends on the availability of second-order reduced density matrices (2-RDMs). This work explores the performance of this approach in particular and of the QTAIM in general with approximate 2-RDMs obtained from the density matrix functional theory (DMFT), which rests on the natural expansion (natural orbitals and their corresponding occupation numbers) of the first-order reduced density matrix (1-RDM). A number of these functionals have been implemented in the promolden code and used to perform QTAIM and IQA analyses on several representative molecules and model chemical reactions. Total energies, covalent intra- and interbasin exchange-correlation interactions, as well as localization and delocalization indices have been determined with these functionals from 1-RDMs obtained at different levels of theory. Results are compared to the values computed from the exact 2-RDMs, whenever possible.

  6. Performance of the density matrix functional theory in the quantum theory of atoms in molecules.

    PubMed

    García-Revilla, Marco; Francisco, E; Costales, A; Martín Pendás, A

    2012-02-01

    The generalization to arbitrary molecular geometries of the energetic partitioning provided by the atomic virial theorem of the quantum theory of atoms in molecules (QTAIM) leads to an exact and chemically intuitive energy partitioning scheme, the interacting quantum atoms (IQA) approach, that depends on the availability of second-order reduced density matrices (2-RDMs). This work explores the performance of this approach in particular and of the QTAIM in general with approximate 2-RDMs obtained from the density matrix functional theory (DMFT), which rests on the natural expansion (natural orbitals and their corresponding occupation numbers) of the first-order reduced density matrix (1-RDM). A number of these functionals have been implemented in the promolden code and used to perform QTAIM and IQA analyses on several representative molecules and model chemical reactions. Total energies, covalent intra- and interbasin exchange-correlation interactions, as well as localization and delocalization indices have been determined with these functionals from 1-RDMs obtained at different levels of theory. Results are compared to the values computed from the exact 2-RDMs, whenever possible. PMID:21943031

  7. Atomic-Scale Nuclear Spin Imaging Using Quantum-Assisted Sensors in Diamond

    NASA Astrophysics Data System (ADS)

    Ajoy, A.; Bissbort, U.; Lukin, M. D.; Walsworth, R. L.; Cappellaro, P.

    2015-01-01

    Nuclear spin imaging at the atomic level is essential for the understanding of fundamental biological phenomena and for applications such as drug discovery. The advent of novel nanoscale sensors promises to achieve the long-standing goal of single-protein, high spatial-resolution structure determination under ambient conditions. In particular, quantum sensors based on the spin-dependent photoluminescence of nitrogen-vacancy (NV) centers in diamond have recently been used to detect nanoscale ensembles of external nuclear spins. While NV sensitivity is approaching single-spin levels, extracting relevant information from a very complex structure is a further challenge since it requires not only the ability to sense the magnetic field of an isolated nuclear spin but also to achieve atomic-scale spatial resolution. Here, we propose a method that, by exploiting the coupling of the NV center to an intrinsic quantum memory associated with the nitrogen nuclear spin, can reach a tenfold improvement in spatial resolution, down to atomic scales. The spatial resolution enhancement is achieved through coherent control of the sensor spin, which creates a dynamic frequency filter selecting only a few nuclear spins at a time. We propose and analyze a protocol that would allow not only sensing individual spins in a complex biomolecule, but also unraveling couplings among them, thus elucidating local characteristics of the molecule structure.

  8. Ultralow-Noise Atomic-Scale Structures for Quantum Circuitry in Silicon.

    PubMed

    Shamim, Saquib; Weber, Bent; Thompson, Daniel W; Simmons, Michelle Y; Ghosh, Arindam

    2016-09-14

    The atomically precise doping of silicon with phosphorus (Si:P) using scanning tunneling microscopy (STM) promises ultimate miniaturization of field effect transistors. The one-dimensional (1D) Si:P nanowires are of particular interest, retaining exceptional conductivity down to the atomic scale, and are predicted as interconnects for a scalable silicon-based quantum computer. Here, we show that ultrathin Si:P nanowires form one of the most-stable electrical conductors, with the phenomenological Hooge parameter of low-frequency noise being as low as ≈10(-8) at 4.2 K, nearly 3 orders of magnitude lower than even carbon-nanotube-based 1D conductors. A in-built isolation from the surface charge fluctuations due to encapsulation of the wires within the epitaxial Si matrix is the dominant cause for the observed suppression of noise. Apart from quantum information technology, our results confirm the promising prospects for precision-doped Si:P structures in atomic-scale circuitry for the 11 nm technology node and beyond. PMID:27525390

  9. Universal diffraction of atoms and molecules from a quantum reflection grating

    PubMed Central

    Zhao, Bum Suk; Zhang, Weiqing; Schöllkopf, Wieland

    2016-01-01

    Since de Broglie’s work on the wave nature of particles, various optical phenomena have been observed with matter waves of atoms and molecules. However, the analogy between classical and atom/molecule optics is not exact because of different dispersion relations. In addition, according to de Broglie’s formula, different combinations of particle mass and velocity can give the same de Broglie wavelength. As a result, even for identical wavelengths, different molecular properties such as electric polarizabilities, Casimir-Polder forces, and dissociation energies modify (and potentially suppress) the resulting matter-wave optical phenomena such as diffraction intensities or interference effects. We report on the universal behavior observed in matter-wave diffraction of He atoms and He2 and D2 molecules from a ruled grating. Clear evidence for emerging beam resonances is observed in the diffraction patterns, which are quantitatively the same for all three particles and only depend on the de Broglie wavelength. A model, combining secondary scattering and quantum reflection, permits us to trace the observed universal behavior back to the peculiar principles of quantum reflection. PMID:27034979

  10. Quantum states of hydrogen atom on Pd(1 1 0) surface

    NASA Astrophysics Data System (ADS)

    Padama, Allan Abraham B.; Nakanishi, Hiroshi; Kasai, Hideaki

    2015-12-01

    The quantum states of adsorbed hydrogen atom on Pd(1 1 0) surface are investigated in this work. From the calculated potential energy surface (PES) of hydrogen atom on Pd(1 1 0), the wave functions and eigenenergies in the ground and few excited states of protium (H) and deuterium (D) are calculated. Localized wave functions of hydrogen atom exist on pseudo-threefold and long bridge sites of Pd(1 1 0). The short bridge site is a local minimum from the result of PES, however, quantum behavior of hydrogen revealed that its vibration would allow it to hop to other pseudo-threefold site (that crosses the short bridge site) than to stay on the short bridge site. Exchange of ordering of the wave functions between H and D is attributed to the difference in their masses. The calculated eigenenergies are found to be in fair agreement with experimental data based from the identified vibrations of hydrogen with component perpendicular to the surface. The activation barriers measured from the eigenenergies are in better agreement with experimental findings in comparison to the data gathered from PES.

  11. Dynamics of the fully stripped ion-hydrogen atom charge exchange process in dense quantum plasmas

    SciTech Connect

    Zhang, Ling-yu; Wan, Jiang-feng; Zhao, Xiao-ying; Xiao, Guo-qing; Duan, Wen-shan; Qi, Xin; Yang, Lei

    2014-09-15

    The plasma screening effects of dense quantum plasmas on charge exchange processes of a fully stripped ion colliding with a hydrogen atom are studied by the classical trajectory Monte Carlo method. The inter-particle interactions are described by the exponential cosine-screened Coulomb potentials. It is found that in weak screening conditions, cross sections increase with the increase of the ionic charge Z. However, in strong screening conditions, the dependence of cross sections on the ionic charge is related to the incident particle energy. At high energies, cross sections show a linear increase with the increase of Z, whereas at low energies, cross sections for Z≥4 become approximately the same. The He{sup 2+} and C{sup 6+} impacting charge exchange cross sections in dense quantum plasmas are also compared with those in weakly coupled plasmas. The interactions are described by the static screened Coulomb potential. It is found that for both He{sup 2+} and C{sup 6+}, the oscillatory screening effects of dense quantum plasmas are almost negligible in weak screening conditions. However, in strong screening conditions, the oscillatory screening effects enhance the screening effects of dense quantum plasmas, and the enhancement becomes more and more significant with the increase of the screening parameter and the ionic charge.

  12. Interaction-free measurements by quantum Zeno stabilization of ultracold atoms.

    PubMed

    Peise, J; Lücke, B; Pezzé, L; Deuretzbacher, F; Ertmer, W; Arlt, J; Smerzi, A; Santos, L; Klempt, C

    2015-04-14

    Quantum mechanics predicts that our physical reality is influenced by events that can potentially happen but factually do not occur. Interaction-free measurements (IFMs) exploit this counterintuitive influence to detect the presence of an object without requiring any interaction with it. Here we propose and realize an IFM concept based on an unstable many-particle system. In our experiments, we employ an ultracold gas in an unstable spin configuration, which can undergo a rapid decay. The object-realized by a laser beam-prevents this decay because of the indirect quantum Zeno effect and thus, its presence can be detected without interacting with a single atom. Contrary to existing proposals, our IFM does not require single-particle sources and is only weakly affected by losses and decoherence. We demonstrate confidence levels of 90%, well beyond previous optical experiments.

  13. Interaction-free measurements by quantum Zeno stabilization of ultracold atoms

    PubMed Central

    Peise, J.; Lücke, B.; Pezzé, L.; Deuretzbacher, F.; Ertmer, W.; Arlt, J.; Smerzi, A.; Santos, L.; Klempt, C.

    2015-01-01

    Quantum mechanics predicts that our physical reality is influenced by events that can potentially happen but factually do not occur. Interaction-free measurements (IFMs) exploit this counterintuitive influence to detect the presence of an object without requiring any interaction with it. Here we propose and realize an IFM concept based on an unstable many-particle system. In our experiments, we employ an ultracold gas in an unstable spin configuration, which can undergo a rapid decay. The object—realized by a laser beam—prevents this decay because of the indirect quantum Zeno effect and thus, its presence can be detected without interacting with a single atom. Contrary to existing proposals, our IFM does not require single-particle sources and is only weakly affected by losses and decoherence. We demonstrate confidence levels of 90%, well beyond previous optical experiments. PMID:25869121

  14. An ultra-high optical depth cold atomic ensemble for quantum memories

    NASA Astrophysics Data System (ADS)

    Sparkes, B. M.; Bernu, J.; Hosseini, M.; Geng, J.; Glorieux, Q.; Altin, P. A.; Lam, P. K.; Robins, N. P.; Buchler, B. C.

    2013-12-01

    Quantum memories for light lie at the heart of long-distance provably-secure communication. Demand for a functioning quantum memory, with high efficiency and coherence times approaching a millisecond, is therefore at a premium. Here we report on work towards this goal, with the development of a 87Rb magneto-optical trap with a peak optical depth of 1000 for the D2 F = 2 → F' = 3 transition using spatial and temporal dark spots. With this purpose-built cold atomic ensemble we implemented the gradient echo memory (GEM) scheme on the D1 line. Our data shows a memory efficiency of 80 ± 2% and coherence times up to 195 μs.

  15. Quantum Storage of Orbital Angular Momentum Entanglement in an Atomic Ensemble

    NASA Astrophysics Data System (ADS)

    Ding, Dong-Sheng; Zhang, Wei; Zhou, Zhi-Yuan; Shi, Shuai; Xiang, Guo-Yong; Wang, Xi-Shi; Jiang, Yun-Kun; Shi, Bao-Sen; Guo, Guang-Can

    2015-02-01

    Constructing a quantum memory for a photonic entanglement is vital for realizing quantum communication and network. Because of the inherent infinite dimension of orbital angular momentum (OAM), the photon's OAM has the potential for encoding a photon in a high-dimensional space, enabling the realization of high channel capacity communication. Photons entangled in orthogonal polarizations or optical paths had been stored in a different system, but there have been no reports on the storage of a photon pair entangled in OAM space. Here, we report the first experimental realization of storing an entangled OAM state through the Raman protocol in a cold atomic ensemble. We reconstruct the density matrix of an OAM entangled state with a fidelity of 90.3 % ±0.8 % and obtain the Clauser-Horne-Shimony-Holt inequality parameter S of 2.41 ±0.06 after a programed storage time. All results clearly show the preservation of entanglement during the storage.

  16. Application of Advanced Atomic Force Microscopy Techniques to Study Quantum Dots and Bio-materials

    NASA Astrophysics Data System (ADS)

    Guz, Nataliia

    In recent years, there has been an increase in research towards micro- and nanoscale devices as they have proliferated into diverse areas of scientific exploration. Many of the general fields of study that have greatly affected the advancement of these devices includes the investigation of their properties. The sensitivity of Atomic Force Microscopy (AFM) allows detecting charges up to the single electron value in quantum dots in ambient conditions, the measurement of steric forces on the surface of the human cell brush, determination of cell mechanics, magnetic forces, and other important properties. Utilizing AFM methods, the fast screening of quantum dot efficiency and the differences between cancer, normal (healthy) and precancer (immortalized) human cells has been investigated. The current research using AFM techniques can help to identify biophysical differences of cancer cells to advance our understanding of the resistance of the cells against the existing medicine.

  17. Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts.

    PubMed

    Knizia, Gerald

    2013-11-12

    Modern quantum chemistry can make quantitative predictions on an immense array of chemical systems. However, the interpretation of those predictions is often complicated by the complex wave function expansions used. Here we show that an exceptionally simple algebraic construction allows for defining atomic core and valence orbitals, polarized by the molecular environment, which can exactly represent self-consistent field wave functions. This construction provides an unbiased and direct connection between quantum chemistry and empirical chemical concepts, and can be used, for example, to calculate the nature of bonding in molecules, in chemical terms, from first principles. In particular, we find consistency with electronegativities (χ), C 1s core-level shifts, resonance substituent parameters (σR), Lewis structures, and oxidation states of transition-metal complexes.

  18. Applications of Quantum Theory of Atomic and Molecular Scattering to Problems in Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Malik, F. Bary

    1995-01-01

    The general status of a grant to investigate the applications of quantum theory in atomic and molecular scattering problems in hypersonic flow is summarized. Abstracts of five articles and eleven full-length articles published or submitted for publication are included as attachments. The following topics are addressed in these articles: fragmentation of heavy ions (HZE particles); parameterization of absorption cross sections; light ion transport; emission of light fragments as an indicator of equilibrated populations; quantum mechanical, optical model methods for calculating cross sections for particle fragmentation by hydrogen; evaluation of NUCFRG2, the semi-empirical nuclear fragmentation database; investigation of the single- and double-ionization of He by proton and anti-proton collisions; Bose-Einstein condensation of nuclei; and a liquid drop model in HZE particle fragmentation by hydrogen.

  19. Simulating compact quantum electrodynamics with ultracold atoms: probing confinement and nonperturbative effects.

    PubMed

    Zohar, Erez; Cirac, J Ignacio; Reznik, Benni

    2012-09-21

    Recently, there has been much interest in simulating quantum field theory effects of matter and gauge fields. In a recent work, a method for simulating compact quantum electrodynamics (CQED) using Bose-Einstein condensates has been suggested. We suggest an alternative approach, which relies on single atoms in an optical lattice, carrying 2l + 1 internal levels, which converges rapidly to CQED as l increases. That enables the simulation of CQED in 2 + 1 dimensions in both the weak and the strong coupling regimes, hence, allowing us to probe confinement as well as other nonperturbative effects of the theory. We provide an explicit construction for the case l = 1 which is sufficient for simulating the effect of confinement between two external static charges.

  20. Quantum Degenerate Mixtures of Alkali and Alkaline-Earth-Like Atoms

    SciTech Connect

    Hara, Hideaki; Takasu, Yosuke; Yamaoka, Yoshifumi; Doyle, John M.; Takahashi, Yoshiro

    2011-05-20

    We realize simultaneous quantum degeneracy in mixtures consisting of the alkali and alkaline-earth-like atoms Li and Yb. This is accomplished within an optical trap by sympathetic cooling of the fermionic isotope {sup 6}Li with evaporatively cooled bosonic {sup 174}Yb and, separately, fermionic {sup 173}Yb. Using cross-thermalization studies, we also measure the elastic s-wave scattering lengths of both Li-Yb combinations, |a{sub {sup 6}Li-{sup 174}Yb}|=1.0{+-}0.2 nm and |a{sub {sup 6}Li-{sup 173}Yb}|=0.9{+-}0.2 nm. The equality of these lengths is found to be consistent with mass-scaling analysis. The quantum degenerate mixtures of Li and Yb, as realized here, can be the basis for creation of ultracold molecules with electron spin degrees of freedom, studies of novel Efimov trimers, and impurity probes of superfluid systems.

  1. Quantum size effects in TiO2 thin films grown by atomic layer deposition.

    PubMed

    Tallarida, Massimo; Das, Chittaranjan; Schmeisser, Dieter

    2014-01-01

    We study the atomic layer deposition of TiO2 by means of X-ray absorption spectroscopy. The Ti precursor, titanium isopropoxide, was used in combination with H2O on Si/SiO2 substrates that were heated at 200 °C. The low growth rate (0.15 Å/cycle) and the in situ characterization permitted to follow changes in the electronic structure of TiO2 in the sub-nanometer range, which are influenced by quantum size effects. The modified electronic properties may play an important role in charge carrier transport and separation, and increase the efficiency of energy conversion systems.

  2. Classical-quantum correspondence for ionization in fast ion-atom collisions

    SciTech Connect

    Burgdoerfer, J. |; Reinhold, C.O.

    1994-10-01

    We analyze the interplay between classical and quantum dynamics in ionization of atoms by fast charged particles The convergence to the classical limit is studied as a function of the momentum transferred to the electron during the collision, the impact parameter. the energy and angle of the emitted electron, and the initial state of the target. One goal is to assess the validity of exact classical (CTMC) methods and approximate classical models such as the Thomson model. Applications to data for electron ejection at large angles are presented. The connection between collisional ionization by charged particles and ionization by half-cycle pulses is discussed.

  3. Highly charged ions for atomic clocks, quantum information, and search for α variation.

    PubMed

    Safronova, M S; Dzuba, V A; Flambaum, V V; Safronova, U I; Porsev, S G; Kozlov, M G

    2014-07-18

    We propose 10 highly charged ions as candidates for the development of next generation atomic clocks, quantum information, and search for α variation. They have long-lived metastable states with transition wavelengths to the ground state between 170-3000 nm, relatively simple electronic structure, stable isotopes, and high sensitivity to α variation (e.g., Sm(14+), Pr(10+), Sm(13+), Nd(10+)). We predict their properties crucial for the experimental exploration and highlight particularly attractive systems for these applications. PMID:25083627

  4. Spontaneous quantum Hall effect in an atomic spinor Bose-Fermi mixture.

    PubMed

    Xu, Zhi-Fang; Li, Xiaopeng; Zoller, Peter; Liu, W Vincent

    2015-03-27

    We study a mixture of spin-1 bosonic and spin-1/2 fermionic cold atoms, e.g., ^{87}Rb and ^{6}Li, confined in a triangular optical lattice. With fermions at 3/4 filling, Fermi surface nesting leads to spontaneous formation of various spin textures of bosons in the ground state, such as collinear, coplanar, and even noncoplanar spin orders. The phase diagram is mapped out with varying boson tunneling and Bose-Fermi interactions. Most significantly, in one noncoplanar state the mixture is found to exhibit a spontaneous quantum Hall effect in fermions and crystalline superfluidity in bosons, both driven by interaction.

  5. A relaxationless demonstration of the Quantum Zeno paradox on an individual atom

    NASA Astrophysics Data System (ADS)

    Balzer, Chr.; Hannemann, Th.; Reiß, D.; Wunderlich, Chr.; Neuhauser, W.; Toschek, P. E.

    2002-10-01

    The driven evolution of the spin of an individual atomic ion on the ground-state hyperfine resonance is impeded by the observation of the ion in one of the pertaining eigenstates. Detection of resonantly scattered light identifies the ion in its upper "bright" state. The lower "dark" ion state is free of relaxation and correlated with the detector by a null signal. Null events represent the straightforward demonstration of the quantum Zeno paradox. Also, high probability of survival was demonstrated when the ion, driven by a fractionated π pulse, was probed and monitored during the intermissions of the drive, such that the ion's evolution is completely documented.

  6. Visualization and dimensional scaling for some three-body problems in atomic and molecular quantum mechanics

    SciTech Connect

    Chen Goong; Ding Zhonghai; Perronnet, Alain; Zhang Zhigang

    2008-06-15

    Three-body problems in atomic and molecular quantum mechanics, comprising one electron-two nuclei and two electron-one nucleus, are studied from their Schroedinger-Born-Oppenheimer models. The following are main topics of interest in this paper: (1) review of foundational mathematical properties of the multiparticle Schroedinger operator, (2) visualization of H{sub 2}{sup +} (hydrogen molecular ion)-like and He (helium)-like molecular and atomic states, and (3) spectrum of He obtained by the large-dimension scaling limit. The authors begin with topic (1) for the tutorial purpose and devote topics (2) and (3) to new contributions of the analytical, numerical, and visualization nature. Relevant heuristics, graphics, proofs, and calculations are presented.

  7. Protein-protected luminescent noble metal quantum clusters: an emerging trend in atomic cluster nanoscience

    PubMed Central

    Xavier, Paulrajpillai Lourdu; Chaudhari, Kamalesh; Baksi, Ananya; Pradeep, Thalappil

    2012-01-01

    Noble metal quantum clusters (NMQCs) are the missing link between isolated noble metal atoms and nanoparticles. NMQCs are sub-nanometer core sized clusters composed of a group of atoms, most often luminescent in the visible region, and possess intriguing photo-physical and chemical properties. A trend is observed in the use of ligands, ranging from phosphines to functional proteins, for the synthesis of NMQCs in the liquid phase. In this review, we briefly overview recent advancements in the synthesis of protein protected NMQCs with special emphasis on their structural and photo-physical properties. In view of the protein protection, coupled with direct synthesis and easy functionalization, this hybrid QC-protein system is expected to have numerous optical and bioimaging applications in the future, pointers in this direction are visible in the literature. PMID:22312454

  8. Quantum Phase Transition in a Cold Atomic Spin-Boson Mixture

    NASA Astrophysics Data System (ADS)

    Orth, Peter P.; Stanic, Ivan; Le Hur, Karyn

    2008-03-01

    We theoretically implement a spin array in a tunable bosonic environment using cold bosonic atoms with two (hyperfine) ground states, trapped by different potentials [1]. The first specie lies in a deep optical lattice with tightly confining wells and forms a spin array; spin-up/down corresponds to occupation by one/no atom at each site. The second specie forms a superfluid reservoir. Different species are coupled coherently via laser transitions and collisions. Whereas the laser coupling mimics a transverse field for the spins, the coupling to the reservoir phonons (sound modes) induces a ferromagnetic (Ising) coupling as well as dissipation. This results in a peculiar ferro-paramagnetic quantum phase transition where the effect of dissipation can be studied in a controllable manner. [1] Peter P. Orth, Ivan Stanic, and Karyn Le Hur, arXiv:0711.2309 [cond-mat.other].

  9. Ultrafast quantum nondemolition measurements based on a diamond-shaped artificial atom

    NASA Astrophysics Data System (ADS)

    Diniz, I.; Dumur, E.; Buisson, O.; Auffèves, A.

    2013-03-01

    We propose a quantum nondemolition (QND) readout scheme for a superconducting artificial atom coupled to a resonator in a circuit QED architecture, for which we estimate a very high measurement fidelity without Purcell effect limitations. The device consists of two transmons coupled by a large inductance, giving rise to a diamond-shaped artificial atom with a logical qubit and an ancilla qubit interacting through a cross-Kerr-like term. The ancilla is strongly coupled to a transmission line resonator. Depending on the qubit state, the ancilla is resonantly or dispersively coupled to the resonator, leading to a large contrast in the transmitted microwave signal amplitude. This original method can be implemented with a state-of-the-art Josephson parametric amplifier, leading to QND measurements in a few tens of nanoseconds with fidelity as large as 99.9%.

  10. Quantum chemical calculation of the equilibrium structures of small metal atom clusters

    NASA Technical Reports Server (NTRS)

    Kahn, L. R.

    1981-01-01

    The application of ab initio quantum mechanical approaches in the study of metal atom clusters requires simplifying techniques that do not compromise the reliability of the calculations. Various aspects of the implementation of the effective core potential (ECP) technique for the removal of the metal atom core electrons from the calculation were examined. The ECP molecular integral formulae were modified to bring out the shell characteristics as a first step towards fulfilling the increasing need to speed up the computation of the ECP integrals. Work on the relationships among the derivatives of the molecular integrals that extends some of the techniques pioneered by Komornicki for the calculation of the gradients of the electronic energy was completed and a formulation of the ECP approach that quite naturally unifies the various state-of-the-art "shape- and Hamiltonian-consistent" techniques was discovered.

  11. Virial theorem in the Kohn-Sham density-functional theory formalism: accurate calculation of the atomic quantum theory of atoms in molecules energies.

    PubMed

    Rodríguez, Juan I; Ayers, Paul W; Götz, Andreas W; Castillo-Alvarado, F L

    2009-07-14

    A new approach for computing the atom-in-molecule [quantum theory of atoms in molecule (QTAIM)] energies in Kohn-Sham density-functional theory is presented and tested by computing QTAIM energies for a set of representative molecules. In the new approach, the contribution for the correlation-kinetic energy (T(c)) is computed using the density-functional theory virial relation. Based on our calculations, it is shown that the conventional approach where atomic energies are computed using only the noninteracting part of the kinetic energy might be in error by hundreds of kJ/mol.

  12. Virial theorem in the Kohn-Sham density-functional theory formalism: accurate calculation of the atomic quantum theory of atoms in molecules energies.

    PubMed

    Rodríguez, Juan I; Ayers, Paul W; Götz, Andreas W; Castillo-Alvarado, F L

    2009-07-14

    A new approach for computing the atom-in-molecule [quantum theory of atoms in molecule (QTAIM)] energies in Kohn-Sham density-functional theory is presented and tested by computing QTAIM energies for a set of representative molecules. In the new approach, the contribution for the correlation-kinetic energy (T(c)) is computed using the density-functional theory virial relation. Based on our calculations, it is shown that the conventional approach where atomic energies are computed using only the noninteracting part of the kinetic energy might be in error by hundreds of kJ/mol. PMID:19603962

  13. Economical five-party quantum state sharing of an arbitrary m-atom with five-atom cluster state in cavity QED

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Guang; Xia, Juan; Jia, Xin; Shi, Lei; Zhang, Hua

    2013-03-01

    We present an economical scheme of five-party quantum state sharing (FQSTS) of an arbitrary m-atom with five-atom cluster state in cavity QED. It is found that the five-partite cluster state can be used for FQSTS of an arbitrary m-atom state. The implementation of this scheme does not involve Bell-basis or GHZ-basis measurements, which makes it more convenient in a practical application than some previous schemes. The scheme is also insensitive to the cavity decay and the thermal field.

  14. Effect of atomic-scale defects and dopants on phosphorene electronic structure and quantum transport properties

    NASA Astrophysics Data System (ADS)

    Lopez-Bezanilla, Alejandro

    2016-01-01

    By means of a multiscale first-principles approach, a description of the local electronic structure of two-dimensional and narrow phosphorene sheets with various types of modifications is presented. First, a rational argument based on the geometry of the pristine and modified P network, and supported by the Wannier functions formalism, is introduced to describe a hybridization model of the P atomic orbitals. Ab initio calculations show that nonisoelectronic foreign atoms form quasibound states at varying energy levels and create different polarization states depending on the number of valence electrons between P and the doping atom. The quantum transport properties of modified phosphorene ribbons are further described with great accuracy. The distortions on the electronic bands induced by the external species lead to strong backscattering effects on the propagating charge carriers. Depending on the energy of the charge carrier and the type of doping, the conduction may range from the diffusive to the localized regime. Interstitial defects at vacant sites lead to homogeneous transport fingerprints across different types of doping atoms. We suggest that the relatively low values of charge mobility reported in experimental measurements may have their origin in the presence of defects.

  15. Quantum double-exchange physics with ultracold atoms and synthetic gauge potentials

    NASA Astrophysics Data System (ADS)

    Schachenmayer, Johannes; Isaev, Leonid; Rey, Ana Maria

    We study an interplay between local spin exchange and Néel antiferromagnetism in a two-band optical lattice. The lowest narrow band is half-filled and implements the magnetic background, while a higher band contains mobile atoms. When the local spins are locked in a Néel state, the motion of itinerant atoms is hindered by exchange energy barriers and the system is a flat-band insulator. As we show, this picture breaks down when exchange interaction between local and mobile spins is comparable to an energy scale of the Néel state. In this regime, formation of singlets between local and itinerant spins gives rise to a metallic phase of mobile atoms dressed by the spin fluctuations. This state is characterized by coupled spin-charge excitations whose spin is transverse to the Néel vector. Our predictions can be realized with ultracold alkaline-earth fermionic atoms coupled to a laser-induced staggered magnetic field, which stabilizes the Néel order and controls the amount of quantum fluctuations of local spins. By tuning the strength of this laser coupling relative to the exchange interaction, one can either adiabatically drive the crossover between the flat-band insulator and correlated metal phases, or explore non-equilibrium spin-charge dynamics in quench experiments. This work was supported by the NSF (PIF-1211914 and PFC-1125844), AFOSR, AFOSR-MURI, NIST and ARO individual investigator awards.

  16. QED in a time-dependent double cavity and creation of entanglement between noninteracting atoms via quantum eraser technique

    SciTech Connect

    Cirone, Markus A.; Rzazewski, Kazimierz

    1999-03-11

    We discuss two striking features of quantum mechanics: The concepts of vacuum and of entanglement. We first study the radiation field inside a double cavity (a cavity which contains a reflecting mirror). If the mirror is rapidly removed, peculiar quantum phenomena, such as photon creation from vacuum and squeezing, occur. We discuss then a gedanken experiment which employs the double cavity to create entanglement between two atoms. The atoms cross the double cavity and interact with its two independent radiation fields. After the atoms leave the cavity, the mirror is suddenly removed. Measurement of the radiation field inside the cavity can give rise to entanglement between the atoms. The method can be extended to an arbitrary number of atoms, providing thus an N-particle GHZ state.

  17. Dissipative dynamics and novel quantum phases in strongly correlated cold-atom mixtures

    NASA Astrophysics Data System (ADS)

    Orth, Peter Philipp

    2011-12-01

    We study the static and dynamical properties of a number of strongly correlated quantum many-body systems, that can be experimentally realized using cold-atoms. In the first part of the thesis, we investigate various quantum spin systems that interact with their environment, which we model as a bath of harmonic oscillators. Coupling to the bosonic bath modes induces a phonon-mediated ferromagnetic interaction between the spins. It also introduces decoherence and dissipation as a result of spin-bath entanglement. We extensively study the effect of dissipation on a single spin, two spins and the quantum Ising model, focusing on universal properties. Static properties become universal close to a quantum phase transition, where dissipation profoundly affects the scaling behavior. Universal dynamics occurs in the scaling limit, where the bandwidth of the bath oc becomes large. For a single spin, we study the famous Landau-Zener level crossing problem in the presence of dissipation. Interaction with the bath leads to universal decay from the upper to the lower spin state, even far away from the resonance. The timescale to reach the final Landau-Zener spin transition probability is determined by the large parameter oc. To address this strongly driven non-equilibrium problem, we devise a novel non-perturbative stochastic Schrodinger equation method, based on a real-time functional integral description. This approach is particularly well-suited to study time-dependent bias fields, both at zero and finite temperature. We also investigate a system of two Ising-coupled quantum spins, that are embedded in a common bosonic bath. To study the ground state phases for an Ohmic and a sub-Ohmic bath, we employ a combination of non-perturbative analytical and numerical renormalization group (NRG) methods. We discuss a number of different non-equilibrium situations, mainly using the time-dependent NRG. Most interestingly, spin oscillations may synchronize due to the proximity of a

  18. Atom-chip based quantum gravimetry for the precise determination of absolute local gravity

    NASA Astrophysics Data System (ADS)

    Abend, S.

    2015-12-01

    We present a novel technique for the precise measurement of absolute local gravity based on cold atom interferometry. Atom interferometry utilizes the interference of matter waves interrogated by laser light to read out inertial forces. Today's generation of these devices typically operate with test mass samples, that consists of ensembles of laser cooled atoms. Their performance is limited by the velocity spread and finite-size of the test masses that impose systematic uncertainties at the level of a few μGal. Rather than laser cooled atoms we employ quantum degenerate ensembles, so called Bose-Einstein condensates, as ultra-sensitive probes for gravity. These sources offer unique properties in temperature as well as in ensemble size that will allow to overcome the current limitations with the next generation of sensors. Furthermore, atom-chip technologies offer the possibility to generate Bose-Einstein condensates in a fast and reliable way. We show a lab-based prototype that uses the atom-chip itself to retro-reflect the interrogation laser and thus serving as inertial reference inside the vacuum. With this setup it is possible to demonstrate all necessary steps to measure gravity, including the preparation of the source, spanning an interferometer as well as the detection of the output signal, within an area of 1 cm3 right below the atom-chip and to analyze relevant systematic effects. In the framework of the center of excellence geoQ a next generation device is under construction at the Institut für Quantenoptik, that will allow for in-field measurements. This device will feature a state-of-the-art atom-chip source with a high-flux of ultra-cold atoms at a repetition rate of 1-2 Hz. In cooperation with the Müller group at the Institut für Erdmessung the sensor will be characterized in the laboratory first, to be ultimately employed in campaigns to measure the Fennoscandian uplift at the level of 1 μGal. The presented work is part of the center of

  19. Design-atom approach for the quantum mechanical/molecular mechanical covalent boundary: a design-carbon atom with five valence electrons.

    PubMed

    Xiao, Chuanyun; Zhang, Yingkai

    2007-09-28

    A critical issue underlying the accuracy and applicability of the combined quantum mechanical/molecular mechanical (QM/MM) methods is how to describe the QM/MM boundary across covalent bonds. Inspired by the ab initio pseudopotential theory, here we introduce a novel design atom approach for a more fundamental and transparent treatment of this QM/MM covalent boundary problem. The main idea is to replace the boundary atom of the active part with a design atom, which has a different number of valence electrons but very similar atomic properties. By modifying the Troullier-Martins scheme, which has been widely employed to construct norm-conserving pseudopotentials for density functional calculations, we have successfully developed a design-carbon atom with five valence electrons. Tests on a series of molecules yield very good structural and energetic results and indicate its transferability in describing a variety of chemical bonds, including double and triple bonds.

  20. Partitioning dynamic electron correlation energy: Viewing Møller-Plesset correlation energies through Interacting Quantum Atom (IQA) energy partitioning

    NASA Astrophysics Data System (ADS)

    McDonagh, James L.; Vincent, Mark A.; Popelier, Paul L. A.

    2016-10-01

    Here MP2, MP3 and MP4(SDQ) are energy-partitioned for the first time within the Interacting Quantum Atoms (IQA) context, as proof-of-concept for H2, He2 and HF. Energies are decomposed into four primary energy contributions: (i) atomic self-energies, and atomic interaction energies comprising of (ii) Coulomb, (iii) exchange and (iv) dynamic election correlation terms. We generate and partition one- and two-particle density-matrices to obtain all atomic energy components. This work suggests that, in terms of Van der Waals dispersion, the correlation energies represent an atomic stabilisation, by proximity to other atoms, as opposed to direct interactions with other nearby atoms.

  1. Distinctive features of a crystal, crystal-like properties of a liquid and atomic quantum effects

    NASA Astrophysics Data System (ADS)

    Pavlov, V. V.

    2008-02-01

    It is believed that 'a crystal is similar to the crowd which is tightly compressed within enclosed space' and its structure in the simplest case is similar to the closest ball packing. Based on this assumption the strength of a crystal, long range ordering, the granular structure, capability for polymorphic transformation etc. were deduced. In a liquid such properties are impossible even in feebly marked form. However some of crystal-like features of melts are revealed in experiments and they frequently remain unacknowledged with a theory. From the other hand, computer model of crystal does not give even listed distinctive features of a crystal state. In the classical model the solidification more than to sunflower oil consistence was not obtained. It is possible to reach the real solidification if quantum 'freezing' of a part of atomic degrees of freedom would taken into account and any movement would stopped at zero energy level. There are some reasons to believe that another crystal properties and corresponding crystal-like features of liquids also can be got basing on these atomic quantum effects. In this case the reasons of many discussions on 'heredity', 'memory' of liquid and its microheterogeneity disappear.

  2. Quantum simulation of a topological Mott insulator with Rydberg atoms in a Lieb lattice

    NASA Astrophysics Data System (ADS)

    Dauphin, A.; Müller, M.; Martin-Delgado, M. A.

    2016-04-01

    We propose a realistic scheme to quantum simulate the so-far experimentally unobserved topological Mott insulator phase—an interaction-driven topological insulator—using cold atoms in an optical Lieb lattice. To this end, we study a system of spinless fermions in a Lieb lattice, exhibiting repulsive nearest- and next-to-nearest-neighbor interactions and derive the associated zero-temperature phase diagram within mean-field approximation. In particular, we analyze how the interactions can dynamically generate a charge density wave ordered, a nematic, and a topologically nontrivial quantum anomalous Hall phase. We characterize the topology of the different phases by the Chern number and discuss the possibility of phase coexistence. Based on the identified phases, we propose a realistic implementation of this model using cold Rydberg-dressed atoms in an optical lattice. The scheme, which allows one to access, in particular, the topological Mott insulator phase, robustly and independently of its exact position in parameter space, merely requires global, always-on off-resonant laser coupling to Rydberg states and is feasible with state-of-the-art experimental techniques that have already been demonstrated in the laboratory.

  3. Classical and quantum analysis of quasiresonance in grazing atom-surface collisions

    SciTech Connect

    Ruiz, Antonia; Palao, Jose P.; Heller, Eric J.

    2009-05-15

    Quasiresonance is a general effect that may arise from the coupling between approximately resonant degrees of freedom in a system perturbed by some transient interaction. In a process induced by a slowly switching on and off of the coupling interaction, quasiresonance is characterized by the existence of significant ranges of initial states in the perturbed system over which some very specific and efficient transfer of energy between the approximately resonant degrees of freedom occurs. This work presents a classical and quantum analysis of quasiresonant processes in grazing incident angle atom-surface collisions. The momentum transfer between the normal components to an index direction is investigated. For fast atoms with grazing angle of incidence there is an interval of azimuthal angles around the index directions, the quasiresonance region, in which the energy transfer can be very efficient. This effect is reflected in quantum diffraction patterns with large nonspecular peaks, associated with the parallel to the surface and normal to the index direction momentum component. We demonstrate the essentially classical underlying mechanism for the persistence of a pattern of diffraction peak intensities for incidence close to an index direction. The analysis also shows that the size of the quasiresonance region is approximately equal to the spectral width of the diffraction pattern.

  4. High teleportation rates using cold-atom-ensemble-based quantum repeaters with Rydberg blockade

    NASA Astrophysics Data System (ADS)

    Solmeyer, Neal; Li, Xiao; Quraishi, Qudsia

    2016-04-01

    We present a simplified version of a repeater protocol in a cold neutral-atom ensemble with Rydberg excitations optimized for two-node entanglement generation and describe a protocol for quantum teleportation. Our proposal draws from previous proposals [B. Zhao et al., Phys. Rev. A 81, 052329 (2010), 10.1103/PhysRevA.81.052329; Y. Han et al., Phys. Rev. A 81, 052311 (2010), 10.1103/PhysRevA.81.052311] that described efficient and robust protocols for long-distance entanglement with many nodes. Using realistic experimental values, we predict an entanglement generation rate of ˜25 Hz and a teleportation rate of ˜5 Hz . Our predicted rates match the current state-of-the-art experiments for entanglement generation and teleportation between quantum memories. With improved efficiencies we predict entanglement generation and teleportation rates of ˜7.8 and ˜3.6 kHz, respectively, representing a two-order-of-magnitude improvement over the currently realized values. Cold-atom ensembles with Rydberg excitations are promising candidates for repeater nodes because collective effects in the ensemble can be used to deterministically generate a long-lived ground-state memory which may be efficiently mapped onto a directionally emitted single photon.

  5. Rydberg-Atom Quantum Simulation and Chern Number Characterization of a Topological Mott Insulator

    NASA Astrophysics Data System (ADS)

    Dauphin, Alexandre; Mueller, Markus; Martin-Delgado, Miguel-Angel

    2013-03-01

    In this talk we consider a system of spinless fermions with nearest and next-to-nearest neighbor repulsive Hubbard interactions on a honeycomb lattice within the mean-field treatment, and propose and analyze a realistic scheme for analog quantum simulation of this model with cold atoms in a two-dimensional hexagonal optical lattice. Besides a semi-metallic and a charge-density-wave ordered phase, the system exhibits a quantum anomalous Hall phase, which is generated dynamically, i.e. purely as a result of the repulsive fermionic interactions and in the absence of any external gauge fields. We establish the topological nature of this dynamically created Mott insulating phase by the numerical calculation of a Chern number, and study the possibility of coexistence of this phase with the other phases characterized by local order parameters. Based on the knowledge of the mean-field phase diagram, we then discuss in detail how the interacting Hamiltonian can be engineered effective ly by state-of-the-art experimental techniques for laser-dressing of cold fermionic ground-state atoms with electronically excited Rydberg states that exhibit strong dipolar interactions.

  6. QSATS: MPI-driven quantum simulations of atomic solids at zero temperature

    NASA Astrophysics Data System (ADS)

    Hinde, Robert J.

    2011-11-01

    We describe QSATS, a parallel code for performing variational path integral simulations of the quantum mechanical ground state of monatomic solids. QSATS is designed to treat Boltzmann quantum solids, in which individual atoms are permanently associated with distinguishable crystal lattice sites and undergo large-amplitude zero-point motions around these sites. We demonstrate the capabilities of QSATS by using it to compute the total energy and potential energy of hexagonal close packed solid 4He at the density ρ=4.61421×10a0-3. Program summaryProgram title:QSATS Catalogue identifier: AEJE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 7329 No. of bytes in distributed program, including test data, etc.: 61 685 Distribution format: tar.gz Programming language: Fortran 77. Computer: QSATS should execute on any distributed parallel computing system that has the Message Passing Interface (MPI) [1] libraries installed. Operating system: Unix or Linux. Has the code been vectorized or parallelized?: Yes, parallelized using MPI [1]. RAM: The memory requirements of QSATS depend on both the number of atoms in the crystal and the number of replicas in the variational path integral chain. For parameter sets A and C (described in the long write-up), approximately 4.5 Mbytes and 12 Mbytes, respectively, are required for data storage by QSATS (exclusive of the executable code). Classification: 7.7, 16.13. External routines: Message Passing Interface (MPI) [1] Nature of problem: QSATS simulates the quantum mechanical ground state for a monatomic crystal characterized by large-amplitude zero-point motions of individual (distinguishable) atoms around their nominal lattice sites. Solution method: QSATS employs

  7. Cu2O quantum dots emitting visible light grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Lee, Min Young; Kim, Soo-Hyun; Park, Il-Kyu

    2016-11-01

    This paper reports the fabrication of the Cu2O quantum dots (QDs) emitting a controlled wavelength in the visible spectral range prepared by atomic layer deposition (ALD). Cu2O thin film layers formed on the Al2O3 surface showed large density of islands via Volmer-Weber growth mode, which resulting in QD formation. As the number of ALD cycles was increased from 60 to 480, the spatial density and mean diameter of the Cu2O QDs increased systematically from 4.02 × 1011/cm2 to 2.56×1012/cm2 and from 2.1 to 3.2 nm, respectively. The absorption spectral results indicated that the electron energy transition in the Cu2O QDs was a direct process with the optical band gaps decreasing from 2.71 to 2.15 eV with increasing QD size from 2.1 to 3.2 nm because of the quantum confinement effect. The Cu2O QDs showed broad emission peaks composed of multiple elementary emission spectra corresponding to the Cu2O QD ensembles with a different size distribution. As the size of Cu2O QDs decreased, the shoulder peaks at the higher energy side developed due to the quantum confinement effect.

  8. Quantification of Quantum Entanglement in a Multiparticle System of Two-Level Atoms Interacting with a Squeezed Vacuum State of the Radiation Field

    NASA Astrophysics Data System (ADS)

    Deb, Ram Narayan

    2016-07-01

    We quantify multiparticle quantum entanglement in a system of N two-level atoms interacting with a squeezed vacuum state of the electromagnetic field. We calculate the amount of quantum entanglement present among one hundred such two-level atoms and also show the variation of that entanglement with the radiation field parameter. We show the continuous variation of the amount of quantum entanglement as we continuously increase the number of atoms from N = 2 to N = 100. We also discuss that the multiparticle correlations among the N two-level atoms are made up of all possible bipartite correlations among the N atoms.

  9. Nanofabrication for On-Chip Optical Levitation, Atom-Trapping, and Superconducting Quantum Circuits

    NASA Astrophysics Data System (ADS)

    Norte, Richard Alexander

    a final value of Qm = 5.8(1.1) x 105, representing more than an order of magnitude improvement over the conventional limits of SiO2 for a pendulum geometry. Our technique may enable new opportunities for mechanical sensing and facilitate observations of quantum behavior in this class of mechanical systems. We then give a detailed overview of the techniques used to produce high-aspect-ratio nanostructures with applications in a wide range of quantum optics experiments. The ability to fabricate such nanodevices with high precision opens the door to a vast array of experiments which integrate macroscopic optical setups with lithographically engineered nanodevices. Coupled with atom-trapping experiments in the Kimble Lab, we use these techniques to realize a new waveguide chip designed to address ultra-cold atoms along lithographically patterned nanobeams which have large atom-photon coupling and near 4pi Steradian optical access for cooling and trapping atoms. We describe a fully integrated and scalable design where cold atoms are spatially overlapped with the nanostring cavities in order to observe a resonant optical depth of d0 ≈ 0.15. The nanodevice illuminates new possibilities for integrating atoms into photonic circuits and engineering quantum states of atoms and light on a microscopic scale. We then describe our work with superconducting microwave resonators coupled to a phononic cavity towards the goal of building an integrated device for quantum-limited microwave-to-optical wavelength conversion. We give an overview of our characterizations of several types of substrates for fabricating a low-loss high-frequency electromechanical system. We describe our electromechanical system fabricated on a SiN membrane which consists of a 12 GHz superconducting LC resonator coupled capacitively to the high frequency localized modes of a phononic nanobeam. Using our suspended membrane geometry we isolate our system from substrates with significant loss tangents

  10. Million Atom Pseudopotential Manybody Theory of Electronic Structure and Spectroscopy of Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Zunger, Alex

    2003-03-01

    Semiconductor Quantum Dots that are of sufficient structural quality (good crystallinity, surface passivation, size uniformity) to produce ultra sharp spectroscopic lines worthy of a detailed theoretical effort tend to be rather BIG, containing thousands to million atoms. Yet, in this size regime, the only theoretical methods available are effective-mass based, particle-in-a-box approaches, that neglect multi-band and inter-valley coupling, leading to significant qualitative errors.(A. Zunger,Phys. Stat. Sol. (a) 190), 467 (2002). While LDA-based methods are capable of solving the Single-Particle problem even for ˜1,000 atom dots, the all important many-body problem can be currently addressed only for considerably smaller dots. I will present here a computational alternative which addresses both the single-particle and the Manybody parts of the problem for 10^3 to 10^6 atom dots .The method is applicable both to ``free Standing" (e.g. colloidal) dots of CdSe, InP, InAs and Si, as well as to the strained, ``self-assembled" epitaxial dots of, e.g., InGaAs/GaAs. It is based on a ``Linear Combination of Bulk Bands" (LCBB) approach that expands the dot states in terms of plane wave based (pseudopotential) Bloch states throughout the Brillouin zone. The manybody part is treated via Configuration Interaction. I will illustrate how this method addresses some of the recent striking experimental observations on semiconductor quantum dots:(i) Scaling laws for band gaps and exchange interactions (ii) Rapid Auger transitions in colloidal dots (iii) Coulomb Blocade and Spin Blockade in colloidal dots (iv) Charged Excitons (e.g. Trions) in Self-assembled dots, and (v) excitonic Fine-Structure in self assembled dots.

  11. Davisson-Germer Prize Talk: Atomically Uniform Thin Films as Quantum Wells and Device Components

    NASA Astrophysics Data System (ADS)

    Chiang, Tai C.

    2015-03-01

    Atomically uniform films can be made for various overlayer-substrate combinations (such as Ag, Pb, Sb, ...on Si, Ge, Fe, ...), many of which are not even lattice matched. These films show remarkable property variations as the film thickness is built up in atomic-layer increments. The thermal stability of the film, its work function, electron-phonon coupling, superconducting transition temperature, etc. exhibit damped and modulated oscillations as the film thickness increases toward the bulk limit. The underlying physics can be understood generally in terms of the energetics of a coarsened electronic structure of thin films and more specifically in terms of a ''one-dimensional shell effect'' - the quantized electronic levels in the film are progressively filled at increasing film thicknesses just like the elemental atomic shells in going through the periodic table. The phase and the amplitude of the oscillations can be tailored by surface/interface engineering that leads to changes in the surface potential and the interface Schottky barrier or band mismatch. These quantum size and confinement effects are important and observable at film thicknesses well in the realm of practical device dimensions and at room temperature, suggesting opportunities for applications. When the films are made of topologically nontrivial materials, the electron spin and its transport become relevant parameters. This talk will discuss issues related to uniform film growth, general trends in connection with reduced dimensions, surprising findings including phonon-mediated pseudogaps, and technology potential.

  12. Maximum likelihood versus likelihood-free quantum system identification in the atom maser

    NASA Astrophysics Data System (ADS)

    Catana, Catalin; Kypraios, Theodore; Guţă, Mădălin

    2014-10-01

    We consider the problem of estimating a dynamical parameter of a Markovian quantum open system (the atom maser), by performing continuous time measurements in the system's output (outgoing atoms). Two estimation methods are investigated and compared. Firstly, the maximum likelihood estimator (MLE) takes into account the full measurement data and is asymptotically optimal in terms of its mean square error. Secondly, the ‘likelihood-free’ method of approximate Bayesian computation (ABC) produces an approximation of the posterior distribution for a given set of summary statistics, by sampling trajectories at different parameter values and comparing them with the measurement data via chosen statistics. Building on previous results which showed that atom counts are poor statistics for certain values of the Rabi angle, we apply MLE to the full measurement data and estimate its Fisher information. We then select several correlation statistics such as waiting times, distribution of successive identical detections, and use them as input of the ABC algorithm. The resulting posterior distribution follows closely the data likelihood, showing that the selected statistics capture ‘most’ statistical information about the Rabi angle.

  13. Regular and Chaotic Quantum Dynamics of Two-Level Atoms in a Selfconsistent Radiation Field

    NASA Technical Reports Server (NTRS)

    Konkov, L. E.; Prants, S. V.

    1996-01-01

    Dynamics of two-level atoms interacting with their own radiation field in a single-mode high-quality resonator is considered. The dynamical system consists of two second-order differential equations, one for the atomic SU(2) dynamical-group parameter and another for the field strength. With the help of the maximal Lyapunov exponent for this set, we numerically investigate transitions from regularity to deterministic quantum chaos in such a simple model. Increasing the collective coupling constant b is identical with 8(pi)N(sub 0)(d(exp 2))/hw, we observed for initially unexcited atoms a usual sharp transition to chaos at b(sub c) approx. equal to 1. If we take the dimensionless individual Rabi frequency a = Omega/2w as a control parameter, then a sequence of order-to-chaos transitions has been observed starting with the critical value a(sub c) approx. equal to 0.25 at the same initial conditions.

  14. The Optical Properties of CdSe Quantum Dots by Using Spray-Atomization Method

    NASA Astrophysics Data System (ADS)

    Rosmani, C. H.; Abdullah, S.; Rusop, M.

    2013-06-01

    Cadmium Selenide (CdSe) quantum dots (QDs) is inorganic material by using spray-atomization method which is the novelty to find out the optical properties for the CdSe QDs. The Selenium (Se) precursor and Cadmium (Cd) precursor were prepared first. Se precursor by using sodium sulfite aqueous was mixed with selenium (Se) powder. For Cd precursor was used cadmium chloride (CdCI) as the Cd precursor. From previous research, CdSe QDs was obtained by using capping agent such as tri-n-octylphosphine oxide (TOPO) and trioctylphosphine (TOP). These capping agent are hazardous to environment and human. By using spray-atomization method it is more safe and economically. The photoluminescence (PL) was used to investigate the optical properties and to investigate the energy band gap from PL result. The field emission scanning electron microscopy (FESEM) was used to know the surface morphology of CdSe QDs. By PL result, the energy band gap was calculate and the comparison was investigate between the size of particle and the energy band gap. This important in this paper is to investigate the optical properties of CdSe QDs by using sprays-atomization method and to relate with the particle size.

  15. Non-resonant elastic scattering of low-energy photons by atomic sodium confined in quantum plasmas

    SciTech Connect

    Ghosh, Avijit Ray, Debasis

    2015-03-15

    The non-resonant elastic scattering of low-energy photons by the bound valence electron in the ground state 3s of atomic sodium confined in quantum plasmas is investigated theoretically. The incident photon energy is assumed to be much smaller than the 3s-3p excitation energy. The alkali atom sodium is first formulated as an effective one-electron problem in which the attractive interaction between the valence electron and the atomic ion core is simulated by a spherically symmetric model potential. The Shukla-Eliasson oscillatory exponential cosine screened-Coulomb potential model is then used to mimic the effective two-body (valence-core) interaction within quantum plasmas. Non-relativistic calculations performed within the electric dipole approximation indicate that the non-resonant elastic photon scattering cross-section undergoes a dramatic growth by several orders of magnitude as the quantum wave number increases. A qualitative explanation of this phenomenon is presented. In the absence of the oscillatory cosine screening term, a similar growth is observed at larger values of the quantum wave number. Our computed relevant atomic data are in very good agreement with the experimental as well as the previous theoretical data for the zero-screening (free atom) case, and with the very limited, accurate theoretical results available for the case of exponential screened-Coulomb two-body interaction, without the cosine screening term.

  16. Femtosecond two-photon photoassociation of hot magnesium atoms: A quantum dynamical study using thermal random phase wavefunctions

    SciTech Connect

    Amaran, Saieswari; Kosloff, Ronnie; Tomza, Michał; Skomorowski, Wojciech; Pawłowski, Filip; Moszynski, Robert; Rybak, Leonid; Levin, Liat; Amitay, Zohar; Berglund, J. Martin; Reich, Daniel M.; Koch, Christiane P.

    2013-10-28

    Two-photon photoassociation of hot magnesium atoms by femtosecond laser pulses, creating electronically excited magnesium dimer molecules, is studied from first principles, combining ab initio quantum chemistry and molecular quantum dynamics. This theoretical framework allows for rationalizing the generation of molecular rovibrational coherence from thermally hot atoms [L. Rybak, S. Amaran, L. Levin, M. Tomza, R. Moszynski, R. Kosloff, C. P. Koch, and Z. Amitay, Phys. Rev. Lett. 107, 273001 (2011)]. Random phase thermal wavefunctions are employed to model the thermal ensemble of hot colliding atoms. Comparing two different choices of basis functions, random phase wavefunctions built from eigenstates are found to have the fastest convergence for the photoassociation yield. The interaction of the colliding atoms with a femtosecond laser pulse is modeled non-perturbatively to account for strong-field effects.

  17. Atomic quantum simulation of the lattice gauge-Higgs model: Higgs couplings and emergence of exact local gauge symmetry.

    PubMed

    Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo

    2013-09-13

    Recently, the possibility of quantum simulation of dynamical gauge fields was pointed out by using a system of cold atoms trapped on each link in an optical lattice. However, to implement exact local gauge invariance, fine-tuning the interaction parameters among atoms is necessary. In the present Letter, we study the effect of violation of the U(1) local gauge invariance by relaxing the fine-tuning of the parameters and showing that a wide variety of cold atoms is still a faithful quantum simulator for a U(1) gauge-Higgs model containing a Higgs field sitting on sites. The clarification of the dynamics of this gauge-Higgs model sheds some light upon various unsolved problems, including the inflation process of the early Universe. We study the phase structure of this model by Monte Carlo simulation and also discuss the atomic characteristics of the Higgs phase in each simulator.

  18. Multi-atom entanglement engineering and phase-covariant quantum cloning with a single resonant interaction assisted by external driving

    NASA Astrophysics Data System (ADS)

    Zhang, Xian-Peng; Shen, Li-Tuo; Yang, Zhen-Biao

    2014-12-01

    We propose a scheme to realize multi-atom entanglement and phase-covariant quantum cloning in a short-time manner possessing the advantage of its robustness with respect to parameter fluctuations. The process is achieved by externally driving the atoms to resonantly couple to the cavity mode. Compared to other strategies, such as the adiabatic or virtual-photon techniques, it provides a method which allows the relatively fast coherent manipulation.

  19. Full quantum mechanical analysis of atomic three-grating Mach-Zehnder interferometry

    NASA Astrophysics Data System (ADS)

    Sanz, A. S.; Davidović, M.; Božić, M.

    2015-02-01

    Atomic three-grating Mach-Zehnder interferometry constitutes an important tool to probe fundamental aspects of the quantum theory. There is, however, a remarkable gap in the literature between the oversimplified models and robust numerical simulations considered to describe the corresponding experiments. Consequently, the former usually lead to paradoxical scenarios, such as the wave-particle dual behavior of atoms, while the latter make difficult the data analysis in simple terms. Here these issues are tackled by means of a simple grating working model consisting of evenly-spaced Gaussian slits. As is shown, this model suffices to explore and explain such experiments both analytically and numerically, giving a good account of the full atomic journey inside the interferometer, and hence contributing to make less mystic the physics involved. More specifically, it provides a clear and unambiguous picture of the wavefront splitting that takes place inside the interferometer, illustrating how the momentum along each emerging diffraction order is well defined even though the wave function itself still displays a rather complex shape. To this end, the local transverse momentum is also introduced in this context as a reliable analytical tool. The splitting, apart from being a key issue to understand atomic Mach-Zehnder interferometry, also demonstrates at a fundamental level how wave and particle aspects are always present in the experiment, without incurring in any contradiction or interpretive paradox. On the other hand, at a practical level, the generality and versatility of the model and methodology presented, makes them suitable to attack analogous problems in a simple manner after a convenient tuning.

  20. Quantum Incompressibility of a Falling Rydberg Atom, and a Gravitationally-Induced Charge Separation Effect in Superconducting Systems

    NASA Astrophysics Data System (ADS)

    Chiao, R. Y.; Minter, S. J.; Wegter-McNelly, K.; Martinez, L. A.

    2012-01-01

    Freely falling point-like objects converge toward the center of the Earth. Hence the gravitational field of the Earth is inhomogeneous, and possesses a tidal component. The free fall of an extended quantum mechanical object such as a hydrogen atom prepared in a high principal-quantum-number state, i.e. a circular Rydberg atom, is predicted to fall more slowly than a classical point-like object, when both objects are dropped from the same height above the Earth's surface. This indicates that, apart from transitions between quantum states, the atom exhibits a kind of quantum mechanical incompressibility during free fall in inhomogeneous, tidal gravitational fields like those of the Earth. A superconducting ring-like system with a persistent current circulating around it behaves like the circular Rydberg atom during free fall. Like the electronic wavefunction of the freely falling atom, the Cooper-pair wavefunction is quantum mechanically incompressible. The ions in the lattice of the superconductor, however, are not incompressible, since they do not possess a globally coherent quantum phase. The resulting difference during free fall in the response of the nonlocalizable Cooper pairs of electrons and the localizable ions to inhomogeneous gravitational fields is predicted to lead to a charge separation effect, which in turn leads to a large Coulomb force that opposes the convergence caused by the tidal gravitational force on the superconducting system. A "Cavendish-like" experiment is proposed for observing the charge separation effect induced by inhomogeneous gravitational fields in a superconducting circuit. The charge separation effect is determined to be limited by a pair-breaking process that occurs when low frequency gravitational perturbations are present.

  1. Magnetically tuned, robust and efficient filtering system for spatially multimode quantum memory in warm atomic vapors

    PubMed Central

    Dąbrowski, M.; Chrapkiewicz, R.; Wasilewski, W.

    2016-01-01

    Warm atomic vapor quantum memories are simple and robust, yet suffer from a number of parasitic processes which produce excess noise. For operating in a single-photon regime precise filtering of the output light is essential. Here, we report a combination of magnetically tuned absorption and Faraday filters, both light–direction insensitive, which stop the driving lasers and attenuate spurious fluorescence and four-wave mixing while transmitting narrowband Stokes and anti-Stokes photons generated in write-in and readout processes. We characterize both filters with respect to adjustable working parameters. We demonstrate a significant increase in the signal-to-noise ratio upon applying the filters seen qualitatively in measurements of correlation between the Raman scattered photons.

  2. Magnetically tuned, robust and efficient filtering system for spatially multimode quantum memory in warm atomic vapors

    NASA Astrophysics Data System (ADS)

    Dąbrowski, M.; Chrapkiewicz, R.; Wasilewski, W.

    2016-11-01

    Warm atomic vapor quantum memories are simple and robust, yet suffer from a number of parasitic processes which produce excess noise. For operating in a single-photon regime precise filtering of the output light is essential. Here, we report a combination of magnetically tuned absorption and Faraday filters, both light-direction insensitive, which stop the driving lasers and attenuate spurious fluorescence and four-wave mixing while transmitting narrowband Stokes and anti-Stokes photons generated in write-in and readout processes. We characterize both filters with respect to adjustable working parameters. We demonstrate a significant increase in the signal-to-noise ratio upon applying the filters seen qualitatively in measurements of correlation between the Raman scattered photons.

  3. Atomic-Scale Visualization of Quantum Interference on a Weyl Semimetal Surface by Scanning Tunneling Microscopy.

    PubMed

    Zheng, Hao; Xu, Su-Yang; Bian, Guang; Guo, Cheng; Chang, Guoqing; Sanchez, Daniel S; Belopolski, Ilya; Lee, Chi-Cheng; Huang, Shin-Ming; Zhang, Xiao; Sankar, Raman; Alidoust, Nasser; Chang, Tay-Rong; Wu, Fan; Neupert, Titus; Chou, Fangcheng; Jeng, Horng-Tay; Yao, Nan; Bansil, Arun; Jia, Shuang; Lin, Hsin; Hasan, M Zahid

    2016-01-26

    Weyl semimetals may open a new era in condensed matter physics, materials science, and nanotechnology after graphene and topological insulators. We report the first atomic scale view of the surface states of a Weyl semimetal (NbP) using scanning tunneling microscopy/spectroscopy. We observe coherent quantum interference patterns that arise from the scattering of quasiparticles near point defects on the surface. The measurements reveal the surface electronic structure both below and above the chemical potential in both real and reciprocal spaces. Moreover, the interference maps uncover the scattering processes of NbP's exotic surface states. Through comparison between experimental data and theoretical calculations, we further discover that the orbital and/or spin texture of the surface bands may suppress certain scattering channels on NbP. These results provide a comprehensive understanding of electronic properties on Weyl semimetal surfaces. PMID:26743693

  4. Robustness of fractional quantum Hall states with dipolar atoms in artificial gauge fields

    SciTech Connect

    Grass, T.; Baranov, M. A.; Lewenstein, M.

    2011-10-15

    The robustness of fractional quantum Hall states is measured as the energy gap separating the Laughlin ground state from excitations. Using thermodynamic approximations for the correlation functions of the Laughlin state and the quasihole state, we evaluate the gap in a two-dimensional system of dipolar atoms exposed to an artificial gauge field. For Abelian fields, our results agree well with the results of exact diagonalization for small systems but indicate that the large value of the gap predicted [Phys. Rev. Lett. 94, 070404 (2005)] was overestimated. However, we are able to show that the small gap found in the Abelian scenario dramatically increases if we turn to non-Abelian fields squeezing the Landau levels.

  5. Quantum size effects in TiO2 thin films grown by atomic layer deposition

    PubMed Central

    Das, Chittaranjan; Schmeisser, Dieter

    2014-01-01

    Summary We study the atomic layer deposition of TiO2 by means of X-ray absorption spectroscopy. The Ti precursor, titanium isopropoxide, was used in combination with H2O on Si/SiO2 substrates that were heated at 200 °C. The low growth rate (0.15 Å/cycle) and the in situ characterization permitted to follow changes in the electronic structure of TiO2 in the sub-nanometer range, which are influenced by quantum size effects. The modified electronic properties may play an important role in charge carrier transport and separation, and increase the efficiency of energy conversion systems. PMID:24605275

  6. Decoherence and decay of motional quantum states of a trapped atom coupled to engineered reservoirs

    NASA Astrophysics Data System (ADS)

    Turchette, Q. A.; Myatt, C. J.; King, B. E.; Sackett, C. A.; Kielpinski, D.; Itano, W. M.; Monroe, C.; Wineland, D. J.

    2000-11-01

    We present results from an experimental study of the decoherence and decay of quantum states of a trapped atomic ion's harmonic motion interacting with several types of engineered reservoirs. We experimentally simulate three types of reservoirs: a high-temperature amplitude reservoir, a zero-temperature amplitude reservoir, and a high-temperature phase reservoir. Interaction with these environments causes the ion's motional state to decay or heat, and in the case of superposition states, to lose coherence. We report measurements of the decoherence of superpositions of coherent states and two-Fock-state superpositions into these reservoirs, as well as the decay and heating of Fock states. We confirm the theoretically well-known scaling laws that predict that the decoherence rate of superposition states scales with the square of the ``size'' of the state.

  7. Quantum anomalous Hall effect in atomic crystal layers from in-plane magnetization

    NASA Astrophysics Data System (ADS)

    Ren, Yafei; Zeng, Junjie; Deng, Xinzhou; Yang, Fei; Pan, Hui; Qiao, Zhenhua

    2016-08-01

    We theoretically demonstrate that with in-plane magnetization, the quantum anomalous Hall effect (QAHE) can be realized in two-dimensional atomic crystal layers with preserved inversion symmetry but broken out-of-plane mirror reflection symmetry. By taking the honeycomb lattice system as an example, we find that the low-buckled structure satisfying the symmetry criteria is crucial to induce QAHE. The topologically nontrivial bulk gap carrying a Chern number of C =±1 opens in the vicinity of the saddle points M , where the band dispersion exhibits strong anisotropy. We further show that the QAHE with electrically tunable Chern number can be achieved in Bernal-stacked multilayer systems, and the applied interlayer potential differences can dramatically decrease the critical magnetization to make the QAHE experimentally feasible.

  8. Confinement and Lattice Quantum-Electrodynamic Electric Flux Tubes Simulated with Ultracold Atoms

    SciTech Connect

    Zohar, Erez; Reznik, Benni

    2011-12-30

    We propose a method for simulating (2+1)D compact lattice quantum-electrodynamics, using ultracold atoms in optical lattices. In our model local Bose-Einstein condensates' (BECs) phases correspond to the electromagnetic vector potential, and the local number operators represent the conjugate electric field. The well-known gauge-invariant Kogut-Susskind Hamiltonian is obtained as an effective low-energy theory. The field is then coupled to external static charges. We show that in the strong coupling limit this gives rise to ''electric flux tubes'' and to confinement. This can be observed by measuring the local density deviations of the BECs, and is expected to hold even, to some extent, outside the perturbative calculable regime.

  9. Generation of single photons with highly tunable wave shape from a cold atomic quantum memory

    NASA Astrophysics Data System (ADS)

    Heinze, Georg; Farrera, Pau; Albrecht, Boris; de Riedmatten, Hugues; Ho, Melvyn; Chavez, Matias; Teo, Colin; Sangouard, Nicolas

    2016-05-01

    We report on a single photon source with highly tunable photon shape based on a cold ensemble of Rubidium atoms. We follow the DLCZ scheme to implement an emissive quantum memory, which can be operated as a photon pair source with controllable delay. We find that the temporal wave shape of the emitted read photon can be precisely controlled by changing the shape of the driving read pulse. We generate photons with temporal durations varying over three orders of magnitude up to 10 μs without a significant change of the read-out efficiency. We prove the non-classicality of the emitted photons by measuring their antibunching, showing near single photon behavior at low excitation probabilities. We also show that the photons are emitted in a pure state by measuring unconditional autocorrelation functions. Finally, to demonstrate the usability of the source for realistic applications, we create ultra-long single photons with a rising exponential or doubly peaked time-bin wave shape which are important for several quantum information tasks. ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.

  10. Femtosecond quantum fluid dynamics of helium atom under an intense laser field

    SciTech Connect

    Dey, B.K.; Deb, B.M. |

    1998-10-05

    A comprehensive, nonperturbative, time-dependent quantum mechanical (TDQM) approach is proposed for studying the dynamics of a helium atom under an intense, ultrashort (femtoseconds) laser pulse. The method combines quantum fluid dynamics (QFD) and density functional theory. It solves a single generalized nonlinear Schroedinger equation of motion (EOM), involving time and three space variables, which is obtained from two QFD equations, namely, a continuity equation and an Euler-type equation. A highly accurate finite difference scheme along with a stability analysis is presented for numerically solving the EOM. Starting from the ground-state Hartree-Fock density for He at t = 0, the EOM yields the time-dependent (TD) electron density, effective potential surface, difference density, difference effective potential, ground-state probability, {l_angle}r{r_angle}, magnetic susceptibility, polarizability, flux, etc. By a Fourier transformation of the TD dipole moment along the linearly polarized-field direction, the power and rate spectra for photoemission are calculated. eleven mechanistic routes for photoemission are identified, which include high harmonic generation as well as many other spectral transitions involving ionized, singly excited, doubly excited (autoionizing), and continuum He states, based on the evolution of the system up to a particular time. Intimate connections between photoionization and photoemission are clearly observed through computer visualizations. Apart from being consistent with current experimental and theoretical results, the present results offer certain predictions on spectral transitions which are open to experimental verification.

  11. Ultrafast quantum nondemolition measurement based on diamond-shaped artificial atom

    NASA Astrophysics Data System (ADS)

    Küng, Bruno; Dumur, Etienne; Diniz, Igor; Feofanov, Alexey; Weissl, Thomas; Naud, Cécile; Guichard, Wiebke; Auffèves, Alexia; Buisson, Olivier

    2014-03-01

    We present a theoretical study of a quantum nondemolition readout scheme based on a superconducting artificial atom with two internal degrees of freedom. In comparison with the most widely employed readout scheme for superconducting qubits, the dispersive readout in a circuit quantum electrodynamics architecture, our approach promises a significantly stronger measurement signal. This should allow for a high-fidelity readout in a single shot. Our device consists of two transmons (i.e., small capacitively shunted Josephson junctions) coupled via a large inductance. The resulting circuit exhibits a symmetric and an antisymmetric oscillation which we use as a logical and ancilla qubit, respectively. The Josephson non-linearity leads to a cross-Kerr-like coupling of the two oscillations. This allows us to read out the logical qubit state by measuring the ancilla qubit frequency. To measure the ancilla qubit frequency, we couple it to a superconducting microwave resonator, allowing for a large amplitude and a fast response of the transmitted microwave signal. At the same time, the logical qubit remains weakly coupled and far detuned from the resonator, preventing qubit relaxation due to the Purcell effect.

  12. The Journey from Classical to Quantum Thinking: An Analysis of Student Understanding through the Lens of Atomic Spectra

    ERIC Educational Resources Information Center

    Rao, Sandhya Kolla

    2012-01-01

    This dissertation aims to explore how students think about atomic absorption and emission of light in the area of introductory quantum chemistry. In particular, the impact of classical ideas of electron position and energy on student understanding of spectra is studied. The analysis was undertaken to discover how student learning can be…

  13. Identifying Student and Teacher Difficulties in Interpreting Atomic Spectra Using a Quantum Model of Emission and Absorption of Radiation

    ERIC Educational Resources Information Center

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-01-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…

  14. Hydrogen atom in a quantum plasma environment under the influence of Aharonov-Bohm flux and electric and magnetic fields.

    PubMed

    Falaye, Babatunde James; Sun, Guo-Hua; Silva-Ortigoza, Ramón; Dong, Shi-Hai

    2016-05-01

    This study presents the confinement influences of Aharonov-Bohm (AB) flux and electric and magnetic fields directed along the z axis and encircled by quantum plasmas on the hydrogen atom. The all-inclusive effects result in a strongly attractive system while the localizations of quantum levels change and the eigenvalues decrease. We find that the combined effect of the fields is stronger than a solitary effect and consequently there is a substantial shift in the bound state energy of the system. We also find that to perpetuate a low-energy medium for the hydrogen atom in quantum plasmas, a strong electric field and weak magnetic field are required, whereas the AB flux field can be used as a regulator. The application of the perturbation technique utilized in this paper is not restricted to plasma physics; it can also be applied in molecular physics.

  15. Determining the quantum-coherent to semiclassical transition in atomic-scale quasi-one-dimensional metals

    NASA Astrophysics Data System (ADS)

    Weber, Bent; Simmons, Michelle Y.

    2016-08-01

    Atomic-scale silicon wires, patterned by scanning tunneling microscopy (STM) and degenerately doped with phosphorus (P), have attracted significant interest owing to their exceptionally low resistivity and semiclassical Ohmic conduction at temperatures as low as T =4.2 K . Here, we investigate the transition from semiclassical diffusive to quantum-coherent conduction in a 4.6 nm wide wire as we decrease the measurement temperature. By analyzing the temperature dependence of universal conductance fluctuations (UCFs) and one-dimensional (1D) weak localization (WL)—fundamental manifestations of quantum-coherent transport in quasi-1D metals—we show that transport evolves from quantum coherent to semiclassical at T ˜4 K . Remarkably, our study confirms that universal concepts of mesoscopic physics such as UCF and 1D WL retain their validity in quasi-1D metallic conductors down to the atomic scale.

  16. Hydrogen atom in a quantum plasma environment under the influence of Aharonov-Bohm flux and electric and magnetic fields.

    PubMed

    Falaye, Babatunde James; Sun, Guo-Hua; Silva-Ortigoza, Ramón; Dong, Shi-Hai

    2016-05-01

    This study presents the confinement influences of Aharonov-Bohm (AB) flux and electric and magnetic fields directed along the z axis and encircled by quantum plasmas on the hydrogen atom. The all-inclusive effects result in a strongly attractive system while the localizations of quantum levels change and the eigenvalues decrease. We find that the combined effect of the fields is stronger than a solitary effect and consequently there is a substantial shift in the bound state energy of the system. We also find that to perpetuate a low-energy medium for the hydrogen atom in quantum plasmas, a strong electric field and weak magnetic field are required, whereas the AB flux field can be used as a regulator. The application of the perturbation technique utilized in this paper is not restricted to plasma physics; it can also be applied in molecular physics. PMID:27300989

  17. Quantum molecular dynamics study of expanded beryllium: Evolution from warm dense matter to atomic fluid

    PubMed Central

    Li, Dafang; Liu, Haitao; Zeng, Siliang; Wang, Cong; Wu, Zeqing; Zhang, Ping; Yan, Jun

    2014-01-01

    By performing quantum molecular dynamics (QMD) simulations, we investigate the equation of states, electrical and optical properties of the expanded beryllium at densities two to one-hundred lower than the normal solid density, and temperatures ranging from 5000 to 30000 K. With decreasing the density of Be, the optical response evolves from the one characteristic of a simple metal to the one of an atomic fluid. By fitting the optical conductivity spectra with the Drude-Smith model, it is found that the conducting electrons become localized at lower densities. In addition, the negative derivative of the electrical resistivity on temperature at density about eight lower than the normal solid density demonstrates that the metal to nonmetal transition takes place in the expanded Be. To interpret this transition, the electronic density of states is analyzed systematically. Furthermore, a direct comparison of the Rosseland opacity obtained by using QMD and the standard opacity code demonstrates that QMD provides a powerful tool to validate plasma models used in atomic physics approaches in the warm dense matter regime. PMID:25081816

  18. A New One-dimensional Quantum Material - Ta2Pd3Se8 Atomic Chain

    NASA Astrophysics Data System (ADS)

    Liu, Xue; Liu, Jinyu; Hu, Jin; Yue, Chunlei; Mao, Zhiqiang; Wei, Jiang; Antipina, Liubov; Sorokin, Pavel; Sanchez, Ana

    Since the discovery of carbon nanotube, there has been a persistent effort to search for other one dimensional (1D) quantum systems. However, only a few examples have been found. We report a new 1D example - semiconducting Ta2Pd3Se8. We demonstrate that the Ta2Pd3Se8 nanowire as thin as 1.3nm can be easily obtained by applying simple mechanical exfoliation from its bulk counterpart. High resolution TEM shows an intrinsic 1D chain-like crystalline morphology on these nano wires, indicating weak bonding between these atomic chains. Theoretical calculation shows a direct bandgap structure, which evolves from 0.53eV in the bulk to 1.04eV in single atomic chain. The field effect transistor based on Ta2Pd3Se8 nanowire achieved a promising performance with 104On/Off ratio and 80 cm2V-1s-1 mobility. Low temperature transport study reflects two different mechanisms, variable range hopping and thermal activation, which dominate the transport properties at different temperature regimes. Ta2Pd3Se8 nanowire provides an intrinsic 1D material system for the study low dimensional condensed matter physics.

  19. Intense field induced excitation and ionization of an atom confined in a dense quantum plasma

    NASA Astrophysics Data System (ADS)

    Lumb, Shalini; Lumb, Sonia; Munjal, D.; Prasad, V.

    2015-09-01

    Exponential cosine screened Coulomb potential (ECSCP) has been widely used in various branches of physics e.g., solid-state physics, nuclear physics and plasma physics. The atomic photoionization processes under plasma shielding can serve as an efficient tool for study of plasma properties in various environments ranging from nano-scale devices to astrophysical objects. In the present study, ECSCP has been used to characterize a dense quantum plasma and its effect on the spectrum of an atom encaged in a spherical box has been investigated. The work has further been extended to study the response of such a system to a periodic laser field. Photoexcitation and ionization probabilities of the system have been studied as a function of applied laser field parameters using the non-perturbative Floquet technique. As the Floquet method requires exact energy values and oscillator strengths, the spectrum of confined system has been calculated using Bernstein-polynomial method. The variation of energy spectrum and oscillator strengths with screening as well as confinement parameters has also been explored.

  20. Atomic charge transfer-counter polarization effects determine infrared CH intensities of hydrocarbons: a quantum theory of atoms in molecules model.

    PubMed

    Silva, Arnaldo F; Richter, Wagner E; Meneses, Helen G C; Bruns, Roy E

    2014-11-14

    Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.

  1. Interaction-induced quantum phase revivals and evidence for the transition to the quantum chaotic regime in 1D atomic Bloch oscillations.

    PubMed

    Meinert, F; Mark, M J; Kirilov, E; Lauber, K; Weinmann, P; Gröbner, M; Nägerl, H-C

    2014-05-16

    We study atomic Bloch oscillations in an ensemble of one-dimensional tilted superfluids in the Bose-Hubbard regime. For large values of the tilt, we observe interaction-induced coherent decay and matter-wave quantum phase revivals of the Bloch oscillating ensemble. We analyze the revival period dependence on interactions by means of a Feshbach resonance. When reducing the value of the tilt, we observe the disappearance of the quasiperiodic phase revival signature towards an irreversible decay of Bloch oscillations, indicating the transition from regular to quantum chaotic dynamics.

  2. Interaction-induced quantum phase revivals and evidence for the transition to the quantum chaotic regime in 1D atomic Bloch oscillations.

    PubMed

    Meinert, F; Mark, M J; Kirilov, E; Lauber, K; Weinmann, P; Gröbner, M; Nägerl, H-C

    2014-05-16

    We study atomic Bloch oscillations in an ensemble of one-dimensional tilted superfluids in the Bose-Hubbard regime. For large values of the tilt, we observe interaction-induced coherent decay and matter-wave quantum phase revivals of the Bloch oscillating ensemble. We analyze the revival period dependence on interactions by means of a Feshbach resonance. When reducing the value of the tilt, we observe the disappearance of the quasiperiodic phase revival signature towards an irreversible decay of Bloch oscillations, indicating the transition from regular to quantum chaotic dynamics. PMID:24877938

  3. Full quantum mechanical analysis of atomic three-grating Mach–Zehnder interferometry

    SciTech Connect

    Sanz, A.S.; Davidović, M.; Božić, M.

    2015-02-15

    Atomic three-grating Mach–Zehnder interferometry constitutes an important tool to probe fundamental aspects of the quantum theory. There is, however, a remarkable gap in the literature between the oversimplified models and robust numerical simulations considered to describe the corresponding experiments. Consequently, the former usually lead to paradoxical scenarios, such as the wave–particle dual behavior of atoms, while the latter make difficult the data analysis in simple terms. Here these issues are tackled by means of a simple grating working model consisting of evenly-spaced Gaussian slits. As is shown, this model suffices to explore and explain such experiments both analytically and numerically, giving a good account of the full atomic journey inside the interferometer, and hence contributing to make less mystic the physics involved. More specifically, it provides a clear and unambiguous picture of the wavefront splitting that takes place inside the interferometer, illustrating how the momentum along each emerging diffraction order is well defined even though the wave function itself still displays a rather complex shape. To this end, the local transverse momentum is also introduced in this context as a reliable analytical tool. The splitting, apart from being a key issue to understand atomic Mach–Zehnder interferometry, also demonstrates at a fundamental level how wave and particle aspects are always present in the experiment, without incurring in any contradiction or interpretive paradox. On the other hand, at a practical level, the generality and versatility of the model and methodology presented, makes them suitable to attack analogous problems in a simple manner after a convenient tuning. - Highlights: • A simple model is proposed to analyze experiments based on atomic Mach–Zehnder interferometry. • The model can be easily handled both analytically and computationally. • A theoretical analysis based on the combination of the position and

  4. Quantum versus semiclassical treatment of multiphonon effects in He-atom scattering from surfaces

    NASA Astrophysics Data System (ADS)

    Bilić, A.; Gumhalter, B.

    1995-10-01

    We develop a formalism appropriate for studying multiple inelastic scattering of thermal-energy He atoms from surface phonons in the collision regimes in which both the motion of the particle and surface vibrations must be treated quantum mechanically. Having in mind recent experiments on He-atom scattering (HAS) from surfaces, we first point out some difficulties connected with calculating the reflection coefficients under extreme multiphonon conditions by resorting to the standard T-matrix approach. To circumvent these problems we make use of the connection between the reflection coefficients and angular resolved scattering spectra and show how the latter can be conveniently obtained in the form of a cumulant expansion for multiphonon-scattering amplitudes in powers of inelastic atom-surface coupling. This yields the expression for the scattering spectrum whose advantageous characteristics are the unitarity (which manifests itself through a Debye-Waller factor in exponential form with a complete Debye-Waller exponent encompassing contributions from all inelastic scattering channels) and the amenability to perturbational treatment in terms of uncorrelated and correlated atom-phonon interactions. In the scattering regimes in which the contributions of correlated multiphonon excitations become negligible relative to those of uncorrelated ones, the scattering spectrum acquires a particularly simple form of an exponentiated Born approximation (EBA). As various other semiclassical and classical approximations regarding the particle dynamics can be shown to emerge from the EBA, we estimate its validity for treating multiple He-atom scattering by Einstein- and Debye-like phonons in representative collision systems He-->CO(√3 × √3 )R30°/Rh(111) and He-->Cu(001) in which such modes have been experimentally detected. We find that under the conditions of these experiments the EBA can be considered as exact, which enables accurate calculation of the corresponding

  5. Fast generation of N-atom Greenberger-Horne-Zeilinger state in separate coupled cavities via transitionless quantum driving

    NASA Astrophysics Data System (ADS)

    Shan, Wu-Jiang; Xia, Yan; Chen, Ye-Hong; Song, Jie

    2016-06-01

    By jointly using quantum Zeno dynamics and the approach of "transitionless quantum driving (TQD)" proposed by Berry to construct shortcuts to adiabatic passage, we propose an efficient scheme to fast generate multiatom Greenberger-Horne-Zeilinger (GHZ) state in separate cavities connected by optical fibers only by one-step manipulation. We first detail the generation of the three-atom GHZ state via TQD; then, we compare the proposed TQD scheme with the traditional ones with adiabatic passage. At last, the influence of various decoherence factors, such as spontaneous emission, cavity decay and fiber photon leakage, is discussed by numerical simulations. All of the results show that the present TQD scheme is fast and insensitive to atomic spontaneous emission and fiber photon leakage. Furthermore, the scheme can be directly generalized to realize N-atom GHZ state generation by the same principle in theory.

  6. Variational theory of average-atom and superconfigurations in quantum plasmas.

    PubMed

    Blenski, T; Cichocki, B

    2007-05-01

    Models of screened ions in equilibrium plasmas with all quantum electrons are important in opacity and equation of state calculations. Although such models have to be derived from variational principles, up to now existing models have not been fully variational. In this paper a fully variational theory respecting virial theorem is proposed-all variables are variational except the parameters defining the equilibrium, i.e., the temperature T, the ion density ni and the atomic number Z. The theory is applied to the quasiclassical Thomas-Fermi (TF) atom, the quantum average atom (QAA), and the superconfigurations (SC) in plasmas. Both the self-consistent-field (SCF) equations for the electronic structure and the condition for the mean ionization Z* are found from minimization of a thermodynamic potential. This potential is constructed using the cluster expansion of the plasma free energy from which the zero and the first-order terms are retained. In the zero order the free energy per ion is that of the quantum homogeneous plasma of an unknown free-electron density n0 = Z* ni occupying the volume 1/ni. In the first order, ions submerged in this plasma are considered and local neutrality is assumed. These ions are considered in the infinite space without imposing the neutrality of the Wigner-Seitz (WS) cell. As in the Inferno model, a central cavity of a radius R is introduced, however, the value of R is unknown a priori. The charge density due to noncentral ions is zero inside the cavity and equals en0 outside. The first-order contribution to free energy per ion is the difference between the free energy of the system "central ion+infinite plasma" and the free energy of the system "infinite plasma." An important part of the approach is an "ionization model" (IM), which is a relation between the mean ionization charge Z* and the first-order structure variables. Both the IM and the local neutrality are respected in the minimization procedure. The correct IM in the TF case

  7. Variational theory of average-atom and superconfigurations in quantum plasmas.

    PubMed

    Blenski, T; Cichocki, B

    2007-05-01

    Models of screened ions in equilibrium plasmas with all quantum electrons are important in opacity and equation of state calculations. Although such models have to be derived from variational principles, up to now existing models have not been fully variational. In this paper a fully variational theory respecting virial theorem is proposed-all variables are variational except the parameters defining the equilibrium, i.e., the temperature T, the ion density ni and the atomic number Z. The theory is applied to the quasiclassical Thomas-Fermi (TF) atom, the quantum average atom (QAA), and the superconfigurations (SC) in plasmas. Both the self-consistent-field (SCF) equations for the electronic structure and the condition for the mean ionization Z* are found from minimization of a thermodynamic potential. This potential is constructed using the cluster expansion of the plasma free energy from which the zero and the first-order terms are retained. In the zero order the free energy per ion is that of the quantum homogeneous plasma of an unknown free-electron density n0 = Z* ni occupying the volume 1/ni. In the first order, ions submerged in this plasma are considered and local neutrality is assumed. These ions are considered in the infinite space without imposing the neutrality of the Wigner-Seitz (WS) cell. As in the Inferno model, a central cavity of a radius R is introduced, however, the value of R is unknown a priori. The charge density due to noncentral ions is zero inside the cavity and equals en0 outside. The first-order contribution to free energy per ion is the difference between the free energy of the system "central ion+infinite plasma" and the free energy of the system "infinite plasma." An important part of the approach is an "ionization model" (IM), which is a relation between the mean ionization charge Z* and the first-order structure variables. Both the IM and the local neutrality are respected in the minimization procedure. The correct IM in the TF case

  8. Regular and chaotic quantum dynamics in atom-diatom reactive collisions

    SciTech Connect

    Gevorkyan, A. S.; Nyman, G.

    2008-05-15

    A new microirreversible 3D theory of quantum multichannel scattering in the three-body system is developed. The quantum approach is constructed on the generating trajectory tubes which allow taking into account influence of classical nonintegrability of the dynamical quantum system. When the volume of classical chaos in phase space is larger than the quantum cell in the corresponding quantum system, quantum chaos is generated. The probability of quantum transitions is constructed for this case. The collinear collision of the Li + (FH) {sup {yields}}(LiF) + H system is used for numerical illustration of a system generating quantum (wave) chaos.

  9. High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds.

    PubMed

    Evers, Wiel H; Schins, Juleon M; Aerts, Michiel; Kulkarni, Aditya; Capiod, Pierre; Berthe, Maxime; Grandidier, Bruno; Delerue, Christophe; van der Zant, Herre S J; van Overbeek, Carlo; Peters, Joep L; Vanmaekelbergh, Daniel; Siebbeles, Laurens D A

    2015-09-24

    Two-dimensional networks of quantum dots connected by atomic bonds have an electronic structure that is distinct from that of arrays of quantum dots coupled by ligand molecules. We prepared atomically coherent two-dimensional percolative networks of PbSe quantum dots connected via atomic bonds. Here, we show that photoexcitation leads to generation of free charges that eventually decay via trapping. The charge mobility probed with an AC electric field increases with frequency from 150 ± 15 cm(2) V(-1) s(-1) at 0.2 terahertz to 260 ± 15 cm(2) V(-1) s(-1) at 0.6 terahertz. Gated four-probe measurements yield a DC electron mobility of 13 ± 2 cm(2) V(-1) s(-1). The terahertz mobilities are much higher than for arrays of quantum dots coupled via surface ligands and are similar to the highest DC mobilities reported for PbSe nanowires. The terahertz mobility increases only slightly with temperature in the range of 15-290 K. The extent of straight segments in the two-dimensional percolative networks limits the mobility, rather than charge scattering by phonons.

  10. High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds

    PubMed Central

    Evers, Wiel H.; Schins, Juleon M.; Aerts, Michiel; Kulkarni, Aditya; Capiod, Pierre; Berthe, Maxime; Grandidier, Bruno; Delerue, Christophe; van der Zant, Herre S. J.; van Overbeek, Carlo; Peters, Joep L.; Vanmaekelbergh, Daniel; Siebbeles, Laurens D. A.

    2015-01-01

    Two-dimensional networks of quantum dots connected by atomic bonds have an electronic structure that is distinct from that of arrays of quantum dots coupled by ligand molecules. We prepared atomically coherent two-dimensional percolative networks of PbSe quantum dots connected via atomic bonds. Here, we show that photoexcitation leads to generation of free charges that eventually decay via trapping. The charge mobility probed with an AC electric field increases with frequency from 150±15 cm2 V−1 s−1 at 0.2 terahertz to 260±15 cm2 V−1 s−1 at 0.6 terahertz. Gated four-probe measurements yield a DC electron mobility of 13±2 cm2 V−1 s−1. The terahertz mobilities are much higher than for arrays of quantum dots coupled via surface ligands and are similar to the highest DC mobilities reported for PbSe nanowires. The terahertz mobility increases only slightly with temperature in the range of 15–290 K. The extent of straight segments in the two-dimensional percolative networks limits the mobility, rather than charge scattering by phonons. PMID:26400049

  11. Quantum correlations by four-wave mixing in an atomic vapor in a nonamplifying regime: Quantum beam splitter for photons

    SciTech Connect

    Glorieux, Quentin; Guidoni, Luca; Guibal, Samuel; Likforman, Jean-Pierre; Coudreau, Thomas

    2011-11-15

    We study the generation of intensity quantum correlations using four-wave mixing in a rubidium vapor. The absence of cavities in these experiments allows to deal with several spatial modes simultaneously. In the standard amplifying configuration, we measure relative intensity squeezing up to 9.2 dB below the standard quantum limit. We also theoretically identify and experimentally demonstrate an original regime where, despite no overall amplification, quantum correlations are generated. In this regime, a four-wave mixing setup can play the role of a photonic beam splitter with nonclassical properties, that is, a device that splits a coherent state input into two quantum-correlated beams.

  12. A new time-frequency method to reveal quantum dynamics of atomic hydrogen in intense laser pulses: Synchrosqueezing transform

    SciTech Connect

    Sheu, Yae-lin; Hsu, Liang-Yan; Wu, Hau-tieng; Li, Peng-Cheng; Chu, Shih-I

    2014-11-15

    This study introduces a new adaptive time-frequency (TF) analysis technique, the synchrosqueezing transform (SST), to explore the dynamics of a laser-driven hydrogen atom at an ab initio level, upon which we have demonstrated its versatility as a new viable venue for further exploring quantum dynamics. For a signal composed of oscillatory components which can be characterized by instantaneous frequency, the SST enables rendering the decomposed signal based on the phase information inherited in the linear TF representation with mathematical support. Compared with the classical type of TF methods, the SST clearly depicts several intrinsic quantum dynamical processes such as selection rules, AC Stark effects, and high harmonic generation.

  13. Effect of an atom on a quantum guided field in a weakly driven fiber-Bragg-grating cavity

    SciTech Connect

    Le Kien, Fam; Hakuta, K.

    2010-02-15

    We study the interaction of an atom with a quantum guided field in a weakly driven fiber-Bragg-grating (FBG) cavity. We present an effective Hamiltonian and derive the density-matrix equations for the combined atom-cavity system. We calculate the mean photon number, the second-order photon correlation function, and the atomic excited-state population. We show that due to the confinement of the guided cavity field in the fiber cross-section plane and in the space between the FBG mirrors, the presence of the atom in the FBG cavity can significantly affect the mean photon number and the photon statistics even though the cavity finesse is moderate, the cavity is long, and the probe field is weak.

  14. Correlation of atomic structure and photoluminescence of the same quantum dot: pinpointing surface and internal defects that inhibit photoluminescence.

    PubMed

    Orfield, Noah J; McBride, James R; Keene, Joseph D; Davis, Lloyd M; Rosenthal, Sandra J

    2015-01-27

    In a size regime where every atom counts, rational design and synthesis of optimal nanostructures demands direct interrogation of the effects of structural divergence of individuals on the ensemble-averaged property. To this end, we have explored the structure-function relationship of single quantum dots (QDs) via precise observation of the impact of atomic arrangement on QD fluorescence. Utilizing wide-field fluorescence microscopy and atomic number contrast scanning transmission electron microscopy (Z-STEM), we have achieved correlation of photoluminescence (PL) data and atomic-level structural information from individual colloidal QDs. This investigation of CdSe/CdS core/shell QDs has enabled exploration of the fine structural factors necessary to control QD PL. Additionally, we have identified specific morphological and structural anomalies, in the form of internal and surface defects, that consistently vitiate QD PL.

  15. Atomic scale investigations on Cd{sub x}Zn{sub 1−x}Se quantum dots: Correlation between the composition and emission properties

    SciTech Connect

    Benallali, H. Hoummada, K.; Mangelinck, D.; Cremel, T.; André, R.; Tatarenko, S.; Kheng, K.

    2014-08-04

    Atom probe tomography and photoluminescence spectroscopy have been used to study Cd{sub x}Zn{sub 1−x}Se quantum dots embedded in a ZnSe layer grown on a (001) GaAs substrate. Atom probe tomography analyses show significant cadmium incorporation in the center of the dots surrounded by poor cadmium region. These measurements illustrate that the maximum cadmium concentration in the quantum dots is significantly higher than the concentration estimated by transmission electron microscopy. The composition and size of quantum dots obtained by atom probe tomography have been used to calculate the transition energies including excitonic and strain effects.

  16. Bell's Inequality and Universal Quantum Gates in a Cold-Atom Chiral Fermionic p-Wave Superfluid

    SciTech Connect

    Zhang Chuanwei; Tewari, Sumanta; Das Sarma, S.

    2007-11-30

    We propose and analyze a probabilistic scheme to entangle two spatially separated topological qubits in a p{sub x}+ip{sub y} superfluid using controlled collisions between atoms in movable dipole traps and unpaired atoms inside vortex cores in the superfluid. We discuss how to test the violation of Bell's inequality with the generated entanglement. A set of universal quantum gates is shown to be implementable deterministically using the entanglement despite the fact that the entangled states can be created only probabilistically.

  17. Propagation of Structural Disorder in Epitaxially Connected Quantum Dot Solids from Atomic to Micron Scale.

    PubMed

    Savitzky, Benjamin H; Hovden, Robert; Whitham, Kevin; Yang, Jun; Wise, Frank; Hanrath, Tobias; Kourkoutis, Lena F

    2016-09-14

    Epitaxially connected superlattices of self-assembled colloidal quantum dots present a promising route toward exquisite control of electronic structure through precise hierarchical structuring across multiple length scales. Here, we uncover propagation of disorder as an essential feature in these systems, which intimately connects order at the atomic, superlattice, and grain scales. Accessing theoretically predicted exotic electronic states and highly tunable minibands will therefore require detailed understanding of the subtle interplay between local and long-range structure. To that end, we developed analytical methods to quantitatively characterize the propagating disorder in terms of a real paracrystal model and directly observe the dramatic impact of angstrom scale translational disorder on structural correlations at hundreds of nanometers. Using this framework, we discover improved order accompanies increasing sample thickness and identify the substantial effect of small fractions of missing epitaxial bonds on statistical disorder. These results have significant experimental and theoretical implications for the elusive goals of long-range carrier delocalization and true miniband formation. PMID:27540863

  18. Quantum scattering calculations for ro-vibrational de-excitation of CO by hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Song, Lei; Balakrishnan, N.; van der Avoird, Ad; Karman, Tijs; Groenenboom, Gerrit C.

    2015-05-01

    We present quantum-mechanical scattering calculations for ro-vibrational relaxation of carbon monoxide (CO) in collision with hydrogen atoms. Collisional cross sections of CO ro-vibrational transitions from v = 1, j = 0 - 30 to v' = 0, j' are calculated using the close coupling method for collision energies between 0.1 and 15 000 cm-1 based on the three-dimensional potential energy surface of Song et al. [J. Phys. Chem. A 117, 7571 (2013)]. Cross sections of transitions from v = 1, j ≥ 3 to v' = 0, j' are reported for the first time at this level of theory. Also calculations by the more approximate coupled states and infinite order sudden (IOS) methods are performed in order to test the applicability of these methods to H-CO ro-vibrational inelastic scattering. Vibrational de-excitation rate coefficients of CO (v = 1) are presented for the temperature range from 100 K to 3000 K and are compared with the available experimental and theoretical data. All of these results and additional rate coefficients reported in a forthcoming paper are important for including the effects of H-CO collisions in astrophysical models.

  19. Study of Atoms and Molecules with Auxiliary-Field Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Purwanto, Wirawan; Suewattana, Malliga; Krakauer, Henry; Zhang, Shiwei; Walter, Eric J.

    2006-03-01

    We study the ground-state properties of second-row atoms and molecules using the phaseless auxiliary-field quantum Monte Carlo (AF QMC) method. This method projects the many-body ground state from a trial wave function by means of random walks in the Slater-determinant space. We use a single Slater-determinant trial wave function obtained from density-functional theory (DFT) or Hartree-Fock (HF) calculations. The calculations were done with a plane-wave basis and supercells with periodic boundary condition. We investigate the finite-size effects and the accuracy of pseudopotentials within DFT, HF, and AF QMC frameworks. Pseudopotentials generated from both LDA (OPIUM) and HF are employed. We find that the many-body QMC calculations show a greater sensitivity to the accuracy of the pseudopotentials. With reliable pseudopotentials, the ionization potentials and dissociation energies obtained using AF QMC are in excellent agreement with the experimental results. S. Zhang and H. Krakauer, Phys. Rev. Lett. 90, 136401 (2003) http://opium.sourceforge.net I. Ovcharenko, A. Aspuru-Guzik, and W. A. Lester, J. Chem. Phys. 114, 7790 (2001)

  20. The strength of actinide-element bonds from the quantum theory of atoms-in-molecules.

    PubMed

    Huang, Qian-Rui; Kingham, Jennifer R; Kaltsoyannis, Nikolas

    2015-02-14

    [AnX(3)](2)(μ-η(2):η(2)-N(2)) (An = Th-Pu; X = F, Cl, Br, Me, H, OPh) have been studied using relativistic density functional theory. Geometric and vibrational data suggest that metal→N(2) charge transfer maximises at the protactinium systems, which feature the longest N-N bonds and the smallest σ(N-N), as a result of partial population of the N-N π* orbitals. There is very strong correlation of the standard quantum theory of atoms-in-molecules (QTAIM) metrics - bond critical point ρ, ∇(2)ρ and H and delocalisation indices - with An-N and N-N bond lengths and σ(N-N), but the correlation with An-N interaction energies is very poor. A similar situation exists for the other systems studied; neutral and cationic actinide monoxide and dioxides, and AnL(3+) and AnL(3)(3+) (L = pyridine (Py), pyrazine (Pz) and triazine (Tz)) with the exception of some of the ∇(2)ρ data, for which moderate to good correlations with energy data are sometimes seen. By contrast, in almost all cases there is very strong correlation of interaction and bond energies with |ΔQ(QTAIM)(An)|, a simple QTAIM metric which measures the amount of charge transferred to or from the actinide on compound formation.

  1. The strength of actinide-element bonds from the quantum theory of atoms-in-molecules.

    PubMed

    Huang, Qian-Rui; Kingham, Jennifer R; Kaltsoyannis, Nikolas

    2015-02-14

    [AnX(3)](2)(μ-η(2):η(2)-N(2)) (An = Th-Pu; X = F, Cl, Br, Me, H, OPh) have been studied using relativistic density functional theory. Geometric and vibrational data suggest that metal→N(2) charge transfer maximises at the protactinium systems, which feature the longest N-N bonds and the smallest σ(N-N), as a result of partial population of the N-N π* orbitals. There is very strong correlation of the standard quantum theory of atoms-in-molecules (QTAIM) metrics - bond critical point ρ, ∇(2)ρ and H and delocalisation indices - with An-N and N-N bond lengths and σ(N-N), but the correlation with An-N interaction energies is very poor. A similar situation exists for the other systems studied; neutral and cationic actinide monoxide and dioxides, and AnL(3+) and AnL(3)(3+) (L = pyridine (Py), pyrazine (Pz) and triazine (Tz)) with the exception of some of the ∇(2)ρ data, for which moderate to good correlations with energy data are sometimes seen. By contrast, in almost all cases there is very strong correlation of interaction and bond energies with |ΔQ(QTAIM)(An)|, a simple QTAIM metric which measures the amount of charge transferred to or from the actinide on compound formation. PMID:25307773

  2. Controlled polarization of two-dimensional quantum turbulence in atomic Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Cidrim, A.; dos Santos, F. E. A.; Galantucci, L.; Bagnato, V. S.; Barenghi, C. F.

    2016-03-01

    We propose a scheme for generating two-dimensional turbulence in harmonically trapped atomic condensates with the novelty of controlling the polarization (net rotation) of the turbulence. Our scheme is based on an initial giant (multicharged) vortex which induces a large-scale circular flow. Two thin obstacles, created by blue-detuned laser beams, speed up the decay of the giant vortex into many singly quantized vortices of the same circulation; at the same time, vortex-antivortex pairs are created by the decaying circular flow past the obstacles. Rotation of the obstacles against the circular flow controls the relative proportion of positive and negative vortices, from the limit of strongly anisotropic turbulence (almost all vortices having the same sign) to that of isotropic turbulence (equal number of vortices and antivortices). Using this scheme, we numerically study the decay of two-dimensional quantum turbulence as a function of the polarization. Finally, we present a model for the decay rate of the vortex number which fits our numerical experiment curves, with the novelty of taking into account polarization time dependence.

  3. Self-heterodyne detection of the in situ phase of an atomic superconducting quantum interference device

    NASA Astrophysics Data System (ADS)

    Mathew, R.; Kumar, A.; Eckel, S.; Jendrzejewski, F.; Campbell, G. K.; Edwards, Mark; Tiesinga, E.

    2015-09-01

    We present theoretical and experimental analysis of an interferometric measurement of the in situ phase drop across and current flow through a rotating barrier in a toroidal Bose-Einstein condensate (BEC). This experiment is the atomic analog of the rf-superconducting quantum interference device (SQUID). The phase drop is extracted from a spiral-shaped density profile created by the spatial interference of the expanding toroidal BEC and a reference BEC after release from all trapping potentials. We characterize the interferometer when it contains a single particle, which is initially in a coherent superposition of a torus and reference state, as well as when it contains a many-body state in the mean-field approximation. The single-particle picture is sufficient to explain the origin of the spirals, to relate the phase-drop across the barrier to the geometry of a spiral, and to bound the expansion times for which the in situ phase can be accurately determined. Mean-field estimates and numerical simulations show that the interatomic interactions shorten the expansion time scales compared to the single-particle case. Finally, we compare the mean-field simulations with our experimental data and confirm that the interferometer indeed accurately measures the in situ phase drop.

  4. Quantum Monte Carlo Method for Heavy Atomic and Molecular Systems with Spin-Orbit Interactions

    NASA Astrophysics Data System (ADS)

    Melton, Cody; Mitas, Lubos

    We present a new quantum Monte Carlo (QMC) method that can treat spin-orbit and other types of spin-depentent interactions explicitly. It is based on generalization of the fixed-phase and projection of the nonlocal operators with spinor trial wave functions. For testing the method we calculate several atomic and molecular systems such as Bi, W, Pb, PbH and PbO, some of them with both large- and small-core pseudopotentials. We validate the quality of the results against other correlated methods such as configuration interaction in two-component formalism. We find excellent agreement with extrapolated values for the total energies and we are able to reliably reproduce experimental values of excitation energies, electron affinity and molecular binding. We show that in order to obtain the agreement with experimental values the explicit inclusion of the spin-orbit interactions is crucial. U.S. D.O.E. grant de-sc0012314 and NERSC Contract No. DE-AC02-05CH11231.

  5. Quantum scattering calculations for ro-vibrational de-excitation of CO by hydrogen atoms

    SciTech Connect

    Song, Lei; Avoird, Ad van der; Karman, Tijs; Groenenboom, Gerrit C.; Balakrishnan, N.

    2015-05-28

    We present quantum-mechanical scattering calculations for ro-vibrational relaxation of carbon monoxide (CO) in collision with hydrogen atoms. Collisional cross sections of CO ro-vibrational transitions from v = 1, j = 0 − 30 to v′ = 0, j′ are calculated using the close coupling method for collision energies between 0.1 and 15 000 cm{sup −1} based on the three-dimensional potential energy surface of Song et al. [J. Phys. Chem. A 117, 7571 (2013)]. Cross sections of transitions from v = 1, j ≥ 3 to v′ = 0, j′ are reported for the first time at this level of theory. Also calculations by the more approximate coupled states and infinite order sudden (IOS) methods are performed in order to test the applicability of these methods to H–CO ro-vibrational inelastic scattering. Vibrational de-excitation rate coefficients of CO (v = 1) are presented for the temperature range from 100 K to 3000 K and are compared with the available experimental and theoretical data. All of these results and additional rate coefficients reported in a forthcoming paper are important for including the effects of H–CO collisions in astrophysical models.

  6. Identifying student and teacher difficulties in interpreting atomic spectra using a quantum model of emission and absorption of radiation

    NASA Astrophysics Data System (ADS)

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-06-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two questionnaires, one for teachers and the other for students. By analyzing the responses, we conclude that (i) teachers lack a quantum model for the emission and absorption of electromagnetic radiation capable of explaining the spectra, (ii) teachers and students share the same difficulties, and (iii) these difficulties concern the model of the atom, the model of radiation, and the model of the interaction between them.

  7. Interferences of real trajectories and the emergence of quantum features in electron-atom scattering in a strong laser field

    SciTech Connect

    Cerkic, A.; Milosevic, D. B.

    2006-03-15

    Using the example of electron-atom scattering in a strong laser field, it is shown that the oscillatory structure of the scattered electron spectrum can be explained as a consequence of the interference of the real electron trajectories in terms of Feynman's path integral. While in previous work on quantum-orbit theory the complex solutions of the saddle-point equations were considered, we show here that for the electron-atom scattering with much simpler real solutions a satisfactory agreement with the strong-field-approximation results can be achieved. Real solutions are applicable both for the direct (low-energy) and the rescattering (high-energy) plateau in the scattered electron spectrum. In between the plateaus and beyond the rescattering cutoff good results can be obtained using the complex (quantum) solutions and the uniform approximation. The interference of real solutions is related to the recent attosecond double-slit experiment in time.

  8. Numerical methods for atomic quantum gases with applications to Bose-Einstein condensates and to ultracold fermions

    NASA Astrophysics Data System (ADS)

    Minguzzi, A.; Succi, S.; Toschi, F.; Tosi, M. P.; Vignolo, P.

    2004-06-01

    The achievement of Bose-Einstein condensation in ultra-cold vapours of alkali atoms has given enormous impulse to the study of dilute atomic gases in condensed quantum states inside magnetic traps and optical lattices. High-purity and easy optical access make them ideal candidates to investigate fundamental issues on interacting quantum systems. This review presents some theoretical issues which have been addressed in this area and the numerical techniques which have been developed and used to describe them, from mean-field models to classical and quantum simulations for equilibrium and dynamical properties. After an introductory overview on dilute quantum gases, both in the homogeneus state and under harmonic or periodic confinement, the article is organized in three main sections. The first concerns Bose-condensed gases at zero temperature, with main regard to the properties of the ground state in different confinements and to collective excitations and transport in the condensate. Bose-Einstein-condensed gases at finite temperature are addressed in the next section, the main emphasis being on equilibrium properties and phase transitions and on dynamical and transport properties associated with the presence of the thermal cloud. Finally, the last section is focused on theoretical and computational issues that have emerged from the efforts to drive gases of fermionic atoms and boson-fermion mixtures deep into the quantum degeneracy regime, with the aim of realizing novel superfluids from fermion pairing. The attention given in this article to methods beyond standard mean-field approaches should make it a useful reference point for future advances in these areas.

  9. Tunable self-assembled spin chains of strongly interacting cold atoms for demonstration of reliable quantum state transfer

    NASA Astrophysics Data System (ADS)

    Loft, N. J. S.; Marchukov, O. V.; Petrosyan, D.; Zinner, N. T.

    2016-04-01

    We have developed an efficient computational method to treat long, one-dimensional systems of strongly interacting atoms forming self-assembled spin chains. Such systems can be used to realize many spin chain model Hamiltonians tunable by the external confining potential. As a concrete demonstration, we consider quantum state transfer in a Heisenberg spin chain and we show how to determine the confining potential in order to obtain nearly perfect state transfer.

  10. Quantum interference in a four-level system of a {sup 87}Rb atom: Effects of spontaneously generated coherence

    SciTech Connect

    Wang Dongsheng; Zheng Yujun

    2011-01-15

    In this work, the effects of quantum interference and spontaneously generated coherence (SGC) are theoretically analyzed in a four-level system of a {sup 87}Rb atom. For the effects of SGC, we find that a new kind of electromagnetically induced transparency channel can be induced due to destructive interference, and the nonlinear Kerr absorption can be coherently narrowed or eliminated under different strengths of the coupling and switching fields.

  11. The emergence of Quantum Schools: Munich, Göttingen and Copenhagen as new centers of atomic theory

    NASA Astrophysics Data System (ADS)

    Eckert, M.

    2001-01-01

    The institutes of Arnold Sommerfeld in Munich, Niels Bohr in Copenhagen, and Max Born in Göttingen became the leading centers for the study of quantum theory in the first decades of the twentieth century. Although founded for a broader range of theoretical physics, the quantum became the major topic of research in Munich after the Bohr-Sommerfeld-model of the atom (1913-16). The heyday came in the 1920s, when Bohr's and Born's institutes started operation and became further attractive centers for ambitious theorists all over the world. The discovery of quantum mechanics (1925) should be regarded not only as the achievement of a few young geniuses (in particular Werner Heisenberg and Wolfgang Pauli) but also as the result of a collaborative effort emerging in the new social and intellectual environment of their teachers' schools in Munich, Göttingen and Copenhagen.

  12. Quantum optics. All-optical routing of single photons by a one-atom switch controlled by a single photon.

    PubMed

    Shomroni, Itay; Rosenblum, Serge; Lovsky, Yulia; Bechler, Orel; Guendelman, Gabriel; Dayan, Barak

    2014-08-22

    The prospect of quantum networks, in which quantum information is carried by single photons in photonic circuits, has long been the driving force behind the effort to achieve all-optical routing of single photons. We realized a single-photon-activated switch capable of routing a photon from any of its two inputs to any of its two outputs. Our device is based on a single atom coupled to a fiber-coupled, chip-based microresonator. A single reflected control photon toggles the switch from high reflection (R ~ 65%) to high transmission (T ~ 90%), with an average of ~1.5 control photons per switching event (~3, including linear losses). No additional control fields are required. The control and target photons are both in-fiber and practically identical, making this scheme compatible with scalable architectures for quantum information processing.

  13. Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control.

    PubMed

    Sinclair, Neil; Saglamyurek, Erhan; Mallahzadeh, Hassan; Slater, Joshua A; George, Mathew; Ricken, Raimund; Hedges, Morgan P; Oblak, Daniel; Simon, Christoph; Sohler, Wolfgang; Tittel, Wolfgang

    2014-08-01

    Future multiphoton applications of quantum optics and quantum information science require quantum memories that simultaneously store many photon states, each encoded into a different optical mode, and enable one to select the mapping between any input and a specific retrieved mode during storage. Here we show, with the example of a quantum repeater, how to employ spectrally multiplexed states and memories with fixed storage times that allow such mapping between spectral modes. Furthermore, using a Ti:Tm:LiNbO_{3} waveguide cooled to 3 K, a phase modulator, and a spectral filter, we demonstrate storage followed by the required feed-forward-controlled frequency manipulation with time-bin qubits encoded into up to 26 multiplexed spectral modes and 97% fidelity.

  14. a Study of the Quantum Nature of Light: Macroscopic Quantum Jumps from a Two-Atom System, Photon Statistics, and Light Propagation

    NASA Astrophysics Data System (ADS)

    Yamada, Keiichi

    1990-08-01

    In my dissertation, first, I show that when a pair of two-level atoms are confined in a region whose linear dimension is much smaller than the resonant wavelength, the intensity fluorescence exhibits dark and bright periods. The time scale for these "macroscopic quantum jumps" is the order of the lifetime of the metastable state. The creation of this metastable state is a direct consequence of the cooperative interaction between the atoms. My analysis is based on the study of quasi-steady-state populations and frequency resolved delay functions, an extension of a concept introduced by S. Reynaud, J. Dalibard, and C. Cohen-Tannoudji (IEEE J. Quant. Elec. 24, 1395 (1988)). I also show that these concepts simplify both calculations and interpretations in many problems involving macroscopic quantum jumps. Second, I study the quantum statistical properties of the fluorescence from one two-level and two two-level atoms. The generation of sub-Poissonian light, in which the intensity fluctuations are smaller than the classical limit, is investigated. I show that the two systems considered are capable of generating sub-Poissonian light under certain conditions. My analysis is based on the frequency resolved delay functions and branching functions developed in Chapter I. My method is found to be simpler than the conventional approach which is based on second order correlation functions of the field. Third, I study pulse propagation through a nonlinear medium. The field representing the pulse is quantized and the medium is made up of randomly distributed identical two-level atoms. I show that operator versions of the Maxwell-Bloch equations with added Langevin fluctuating terms and a c-number source term correctly describe the propagation of the pulse. I solve these equations in the weak field regime and show that many results predicted by a semiclassical theory of this problem are reproduced, and that no quantum property of the field plays an important role in this regime. I

  15. Phase dependent loading of Bloch bands and quantum simulation of relativistic wave equation predictions with ultracold atoms in variably shaped optical lattice potentials

    NASA Astrophysics Data System (ADS)

    Grossert, Christopher; Leder, Martin; Weitz, Martin

    2016-10-01

    The dispersion relation of ultracold atoms in variably shaped optical lattices can be tuned to resemble that of a relativistic particle, i.e. be linear instead of the usual nonrelativistic quadratic dispersion relation of a free atom. Cold atoms in such a lattice can be used to carry out quantum simulations of relativistic wave equation predictions. We begin this article by describing a Raman technique that allows to selectively load atoms into a desired Bloch band of the lattice near a band crossing. Subsequently, we review two recent experiments with quasirelativistic rubidium atoms in a bichromatic lattice, demonstrating the analogues of Klein tunnelling and Veselago lensing with ultracold atoms, respectively.

  16. Velocity-dependent quantum phase slips in 1D atomic superfluids.

    PubMed

    Tanzi, Luca; Scaffidi Abbate, Simona; Cataldini, Federica; Gori, Lorenzo; Lucioni, Eleonora; Inguscio, Massimo; Modugno, Giovanni; D'Errico, Chiara

    2016-01-01

    Quantum phase slips are the primary excitations in one-dimensional superfluids and superconductors at low temperatures but their existence in ultracold quantum gases has not been demonstrated yet. We now study experimentally the nucleation rate of phase slips in one-dimensional superfluids realized with ultracold quantum gases, flowing along a periodic potential. We observe a crossover between a regime of temperature-dependent dissipation at small velocity and interaction and a second regime of velocity-dependent dissipation at larger velocity and interaction. This behavior is consistent with the predicted crossover from thermally-assisted quantum phase slips to purely quantum phase slips.

  17. Velocity-dependent quantum phase slips in 1D atomic superfluids.

    PubMed

    Tanzi, Luca; Scaffidi Abbate, Simona; Cataldini, Federica; Gori, Lorenzo; Lucioni, Eleonora; Inguscio, Massimo; Modugno, Giovanni; D'Errico, Chiara

    2016-01-01

    Quantum phase slips are the primary excitations in one-dimensional superfluids and superconductors at low temperatures but their existence in ultracold quantum gases has not been demonstrated yet. We now study experimentally the nucleation rate of phase slips in one-dimensional superfluids realized with ultracold quantum gases, flowing along a periodic potential. We observe a crossover between a regime of temperature-dependent dissipation at small velocity and interaction and a second regime of velocity-dependent dissipation at larger velocity and interaction. This behavior is consistent with the predicted crossover from thermally-assisted quantum phase slips to purely quantum phase slips. PMID:27188334

  18. Velocity-dependent quantum phase slips in 1D atomic superfluids

    PubMed Central

    Tanzi, Luca; Scaffidi Abbate, Simona; Cataldini, Federica; Gori, Lorenzo; Lucioni, Eleonora; Inguscio, Massimo; Modugno, Giovanni; D’Errico, Chiara

    2016-01-01

    Quantum phase slips are the primary excitations in one-dimensional superfluids and superconductors at low temperatures but their existence in ultracold quantum gases has not been demonstrated yet. We now study experimentally the nucleation rate of phase slips in one-dimensional superfluids realized with ultracold quantum gases, flowing along a periodic potential. We observe a crossover between a regime of temperature-dependent dissipation at small velocity and interaction and a second regime of velocity-dependent dissipation at larger velocity and interaction. This behavior is consistent with the predicted crossover from thermally-assisted quantum phase slips to purely quantum phase slips. PMID:27188334

  19. Dynamical zeroing of spin-wave momentum to suppress motional dephasing in an atomic-ensemble quantum memory

    NASA Astrophysics Data System (ADS)

    Jiang, Yan; Rui, Jun; Bao, Xiao-Hui; Pan, Jian-Wei

    2016-06-01

    Motion-induced dephasing is a dominant decoherence mechanism for atom-gas quantum memories. In this paper, we experimentally demonstrate a coherent manipulation technique which enables arbitrary engineering of the spin-wave momentum with neglectable noise. By zeroing the spin-wave momentum, motion-induced dephasing can be frozen completely. The experiment is carried out with laser-cooled atoms in a Duan-Lukin-Cirac-Zoller configuration. By applying the freezing pulses, memory lifetime gets extended significantly to the limit of atom cloud expansion and does not depend on the detection angle anymore. The observed high cross correlation above 20 proves that high-fidelity memory operation is well preserved after coherent manipulation.

  20. Bonding in endohedral metallofullerenes as studied by quantum theory of atoms in molecules.

    PubMed

    Popov, Alexey A; Dunsch, Lothar

    2009-09-28

    Metal-cage and intracluster bonding was studied in detail by quantum theory of atoms in molecules (QTAIM) for the four major classes of endohedral metallofullerenes (EMFs), including monometallofullerenes Ca@C(72), La@C(72), M@C(82) (M=Ca, Sc, Y, La), dimetallofullerenes Sc(2)@C(76), Y(2)@C(82), Y(2)@C(79)N, La(2)@C(78), La(2)@C(80), metal nitride clusterfullerenes Sc(3)N@C(2n) (2n=68, 70, 78, 80), Y(3)N@C(2n) (2n=78, 80, 82, 84, 86, 88), La(3)N@C(2n) (2n=88, 92, 96), metal carbide clusterfullerenes Sc(2)C(2)@C(68), Sc(2)C(2)@C(82), Sc(2)C(2)@C(84), Ti(2)C(2)@C(78), Y(2)C(2)@C(82), Sc(3)C(2)@C(80), as well as Sc(3)CH@C(80) and Sc(4)O(x)@C(80) (x=2, 3), that is, 42 EMF molecules and ions in total. Analysis of the delocalization indices and bond critical point (BCP) indicators such as G(bcp)/rho(bcp), H(bcp)/rho(bcp), and |V(bcp)|/G(bcp), revealed that all types of bonding in EMFs exhibit a high degree of covalency, and the ionic model is reasonable only for the Ca-based EMFs. Metal-metal bonds with negative values of the electron-density Laplacian were found in Y(2)@C(82), Y(2)@C(79)N, Sc(4)O(2)@C(80), and anionic forms of La(2)@C(80). A delocalized nature of the metal-cage bonding results in a topological instability of the electron density in EMFs with an unpredictable number of metal-cage bond paths and large elipticity values.