Science.gov

Sample records for multimodality imaging findings

  1. Tailgut Cyst and Perineal Hydatid Cyst: A Case Report with Multimodality Imaging Findings

    PubMed Central

    Alghofaily, Khalefa Ali

    2016-01-01

    A tailgut cyst is a rare developmental lesion and usually is located in the retrorectal or presacral space. Extrahepatic hydatid disease has been reported in several locations including the pelvis and it often poses a diagnostic challenge. There are very few reported cases of primary perineal hydatid cysts. We present the multimodality imaging findings of a tailgut cyst and concurrent perineal hydatid disease in a 32-year-old male patient. PMID:27630782

  2. Tailgut Cyst and Perineal Hydatid Cyst: A Case Report with Multimodality Imaging Findings

    PubMed Central

    Alghofaily, Khalefa Ali

    2016-01-01

    A tailgut cyst is a rare developmental lesion and usually is located in the retrorectal or presacral space. Extrahepatic hydatid disease has been reported in several locations including the pelvis and it often poses a diagnostic challenge. There are very few reported cases of primary perineal hydatid cysts. We present the multimodality imaging findings of a tailgut cyst and concurrent perineal hydatid disease in a 32-year-old male patient.

  3. Tailgut Cyst and Perineal Hydatid Cyst: A Case Report with Multimodality Imaging Findings.

    PubMed

    Aljohani, Ibtisam Musallam; Alghofaily, Khalefa Ali; McWilliams, Sebastian R; Bin Saeedan, Mnahi

    2016-01-01

    A tailgut cyst is a rare developmental lesion and usually is located in the retrorectal or presacral space. Extrahepatic hydatid disease has been reported in several locations including the pelvis and it often poses a diagnostic challenge. There are very few reported cases of primary perineal hydatid cysts. We present the multimodality imaging findings of a tailgut cyst and concurrent perineal hydatid disease in a 32-year-old male patient. PMID:27630782

  4. An Unusual Case of Laryngeal Paraganglioma in a Patient with Carotid Body Paraganglioma: Multimodality Imaging Findings

    PubMed Central

    Dogan, Serap; Senol, Serkan; Imamoglu, Hakan; Abdulrezzak, Ummuhan; Ekinci, Afra; Yuce, Imdat; Ozturk, Mustafa

    2015-01-01

    Multiple paragangliomas of the head and neck are rare conditions. Carotid paragangliomas are most common multiple paragangliomas. Laryngeal paragangliomas are very rare neuroendocrine tumors and usually are seen as symptomatic solitary lesions. We present multimodality imaging findings of incidentally detected laryngeal paraganglioma in a woman with synchronous carotid body paraganglioma and positive family history. To the best of our knowledge, this is the first case of laryngeal and carotid body paragangliomas in a patient with positive family history. Radiologists should keep in mind that paragangliomas may occur in various locations as multiple tumors. PMID:26649218

  5. Multimodal imaging findings of SAPHO syndrome with no skin lesions: A report of three cases and review of the literature

    PubMed Central

    Duan, Na; Chen, Xiao; Liu, Yongkang; Wang, Jianhua; Wang, Zhongqiu

    2016-01-01

    Synovitis, acne, palmoplantar pustulosis, hyperostosis and osteitis syndrome (SAPHO) is a rare syndrome that affects the skin, bones and joints. Diagnosis of SAPHO syndrome is established on clinical appearance and imaging features. The present case report described the imaging features of three cases of SAPHO with sternoclavicular joint arthritis but without skin manifestations using multiple imaging modalities, including computed tomography (CT), magnetic resonance imaging (MRI) and bone scintigraphy. The first case was a 52-year-old male who suffered from progressive sternoclavicular arthritis for 2 years. The second case was a 62-year-old female with arthritis in the larger joints for 5 years, particularly on the right thoracic area. The third case was a 44-year-old male who exhibited a slight bulge accompanied by pain in the upper anterior chest wall for 4 years. All of them lacked cutaneous lesions. CT demonstrated sclerosis and hyperostosis with subchondral erosions in the sternocostoclavicular joints. MRI revealed bone marrow edema that was slightly hypointense on T1-weighted imaging, and hyperintense on T2-weighted imaging. Typical ‘bull head’ signs were observed in bone scintigraphy images. The present case study demonstrated that SAPHO syndrome should be suspected in patients with multifocal osteitis or arthritis affecting the chest wall that lack skin manifestations. Multimodal imaging modalities in combination are helpful for SAPHO diagnosis.

  6. Multimodal imaging findings of SAPHO syndrome with no skin lesions: A report of three cases and review of the literature

    PubMed Central

    Duan, Na; Chen, Xiao; Liu, Yongkang; Wang, Jianhua; Wang, Zhongqiu

    2016-01-01

    Synovitis, acne, palmoplantar pustulosis, hyperostosis and osteitis syndrome (SAPHO) is a rare syndrome that affects the skin, bones and joints. Diagnosis of SAPHO syndrome is established on clinical appearance and imaging features. The present case report described the imaging features of three cases of SAPHO with sternoclavicular joint arthritis but without skin manifestations using multiple imaging modalities, including computed tomography (CT), magnetic resonance imaging (MRI) and bone scintigraphy. The first case was a 52-year-old male who suffered from progressive sternoclavicular arthritis for 2 years. The second case was a 62-year-old female with arthritis in the larger joints for 5 years, particularly on the right thoracic area. The third case was a 44-year-old male who exhibited a slight bulge accompanied by pain in the upper anterior chest wall for 4 years. All of them lacked cutaneous lesions. CT demonstrated sclerosis and hyperostosis with subchondral erosions in the sternocostoclavicular joints. MRI revealed bone marrow edema that was slightly hypointense on T1-weighted imaging, and hyperintense on T2-weighted imaging. Typical ‘bull head’ signs were observed in bone scintigraphy images. The present case study demonstrated that SAPHO syndrome should be suspected in patients with multifocal osteitis or arthritis affecting the chest wall that lack skin manifestations. Multimodal imaging modalities in combination are helpful for SAPHO diagnosis. PMID:27698770

  7. Multimodality imaging in cranial blastomycosis, a great mimicker: Case-based illustration with review of clinical and imaging findings

    PubMed Central

    Kochar, Puneet S; Lath, Chinar O; Klein, Andrew P; Ulmer, John L

    2016-01-01

    We describe the clinical, laboratory, and imaging data of three patients who are proven cases of blastomycosis with cranial involvement. In this review, we discuss the imaging features of cranial blastomycosis with relevant clinical case examples including computed tomography (CT), magnetic resonance imaging (MRI), and advanced MR imaging techniques like magnetic resonance spectroscopy (MRS) and MR perfusion. Literature is reviewed for modern-day diagnosis and treatment of this fatal intracranial infection, if not diagnosed promptly and managed effectively. PMID:27081235

  8. Multimodal imaging of ischemic wounds

    NASA Astrophysics Data System (ADS)

    Zhang, Shiwu; Gnyawali, Surya; Huang, Jiwei; Liu, Peng; Gordillo, Gayle; Sen, Chandan K.; Xu, Ronald

    2012-12-01

    The wound healing process involves the reparative phases of inflammation, proliferation, and remodeling. Interrupting any of these phases may result in chronically unhealed wounds, amputation, or even patient death. Quantitative assessment of wound tissue ischemia, perfusion, and inflammation provides critical information for appropriate detection, staging, and treatment of chronic wounds. However, no method is available for noninvasive, simultaneous, and quantitative imaging of these tissue parameters. We integrated hyperspectral, laser speckle, and thermographic imaging modalities into a single setup for multimodal assessment of tissue oxygenation, perfusion, and inflammation characteristics. Advanced algorithms were developed for accurate reconstruction of wound oxygenation and appropriate co-registration between different imaging modalities. The multimodal wound imaging system was validated by an ongoing clinical trials approved by OSU IRB. In the clinical trial, a wound of 3mm in diameter was introduced on a healthy subject's lower extremity and the healing process was serially monitored by the multimodal imaging setup. Our experiments demonstrated the clinical usability of multimodal wound imaging.

  9. Radioactive Nanomaterials for Multimodality Imaging

    PubMed Central

    Chen, Daiqin; Dougherty, Casey A.; Yang, Dongzhi; Wu, Hongwei; Hong, Hao

    2016-01-01

    Nuclear imaging techniques, including primarily positron emission tomography (PET) and single-photon emission computed tomography (SPECT), can provide quantitative information for a biological event in vivo with ultra-high sensitivity, however, the comparatively low spatial resolution is their major limitation in clinical application. By convergence of nuclear imaging with other imaging modalities like computed tomography (CT), magnetic resonance imaging (MRI) and optical imaging, the hybrid imaging platforms can overcome the limitations from each individual imaging technique. Possessing versatile chemical linking ability and good cargo-loading capacity, radioactive nanomaterials can serve as ideal imaging contrast agents. In this review, we provide a brief overview about current state-of-the-art applications of radioactive nanomaterials in the circumstances of multimodality imaging. We present strategies for incorporation of radioisotope(s) into nanomaterials along with applications of radioactive nanomaterials in multimodal imaging. Advantages and limitations of radioactive nanomaterials for multimodal imaging applications are discussed. Finally, a future perspective of possible radioactive nanomaterial utilization is presented for improving diagnosis and patient management in a variety of diseases. PMID:27227167

  10. Advances in multimodality molecular imaging

    PubMed Central

    Zaidi, Habib; Prasad, Rameshwar

    2009-01-01

    Multimodality molecular imaging using high resolution positron emission tomography (PET) combined with other modalities is now playing a pivotal role in basic and clinical research. The introduction of combined PET/CT systems in clinical setting has revolutionized the practice of diagnostic imaging. The complementarity between the intrinsically aligned anatomic (CT) and functional or metabolic (PET) information provided in a “one-stop shop” and the possibility to use CT images for attenuation correction of the PET data has been the driving force behind the success of this technology. On the other hand, combining PET with Magnetic Resonance Imaging (MRI) in a single gantry is technically more challenging owing to the strong magnetic fields. Nevertheless, significant progress has been made resulting in the design of few preclinical PET systems and one human prototype dedicated for simultaneous PET/MR brain imaging. This paper discusses recent advances in PET instrumentation and the advantages and challenges of multimodality imaging systems. Future opportunities and the challenges facing the adoption of multimodality imaging instrumentation will also be addressed. PMID:20098557

  11. Inorganic Nanoparticles for Multimodal Molecular Imaging

    PubMed Central

    Swierczewska, Magdalena; Lee, Seulki; Chen, Xiaoyuan

    2013-01-01

    Multimodal molecular imaging can offer a synergistic improvement of diagnostic ability over a single imaging modality. Recent development of hybrid imaging systems has profoundly impacted the pool of available multimodal imaging probes. In particular, much interest has been focused on biocompatible, inorganic nanoparticle–based multimodal probes. Inorganic nanoparticles offer exceptional advantages to the field of multimodal imaging owing to their unique characteristics, such as nanometer dimensions, tunable imaging properties, and multifunctionality. Nanoparticles mainly based on iron oxide, quantum dots, gold, and silica have been applied to various imaging modalities to characterize and image specific biologic processes on a molecular level. A combination of nanoparticles and other materials such as biomolecules, polymers, and radiometals continue to increase functionality for in vivo multimodal imaging and therapeutic agents. In this review, we discuss the unique concepts, characteristics, and applications of the various multimodal imaging probes based on inorganic nanoparticles. PMID:21303611

  12. Multimodal optical imaging.

    PubMed

    Lawler, Cindy; Suk, William A; Pitt, Bruce R; Croix, Claudette M St; Watkins, Simon C

    2003-08-01

    The recent resurgence of interest in the use of intravital microscopy in lung research is a manifestation of extraordinary progress in visual imaging and optical microscopy. This review evaluates the tools and instrumentation available for a number of imaging modalities, with particular attention to recent technological advances, and addresses recent progress in use of optical imaging techniques in basic pulmonary research.1 Limitations of existing methods and anticipated future developments are also identified. Although there have also been major advances made in the use of magnetic resonance imaging, positron emission tomography, and X-ray and computed tomography to image intact lungs and while these technologies have been instrumental in advancing the diagnosis and treatment of patients, the purpose of this review is to outline developing optical methods that can be evaluated for use in basic research in pulmonary biology.

  13. Multimode imaging device

    DOEpatents

    Mihailescu, Lucian; Vetter, Kai M

    2013-08-27

    Apparatus for detecting and locating a source of gamma rays of energies ranging from 10-20 keV to several MeV's includes plural gamma ray detectors arranged in a generally closed extended array so as to provide Compton scattering imaging and coded aperture imaging simultaneously. First detectors are arranged in a spaced manner about a surface defining the closed extended array which may be in the form a circle, a sphere, a square, a pentagon or higher order polygon. Some of the gamma rays are absorbed by the first detectors closest to the gamma source in Compton scattering, while the photons that go unabsorbed by passing through gaps disposed between adjacent first detectors are incident upon second detectors disposed on the side farthest from the gamma ray source, where the first spaced detectors form a coded aperture array for two or three dimensional gamma ray source detection.

  14. Radiolabeled Nanoparticles for Multimodality Tumor Imaging

    PubMed Central

    Xing, Yan; Zhao, Jinhua; Conti, Peter S.; Chen, Kai

    2014-01-01

    Each imaging modality has its own unique strengths. Multimodality imaging, taking advantages of strengths from two or more imaging modalities, can provide overall structural, functional, and molecular information, offering the prospect of improved diagnostic and therapeutic monitoring abilities. The devices of molecular imaging with multimodality and multifunction are of great value for cancer diagnosis and treatment, and greatly accelerate the development of radionuclide-based multimodal molecular imaging. Radiolabeled nanoparticles bearing intrinsic properties have gained great interest in multimodality tumor imaging over the past decade. Significant breakthrough has been made toward the development of various radiolabeled nanoparticles, which can be used as novel cancer diagnostic tools in multimodality imaging systems. It is expected that quantitative multimodality imaging with multifunctional radiolabeled nanoparticles will afford accurate and precise assessment of biological signatures in cancer in a real-time manner and thus, pave the path towards personalized cancer medicine. This review addresses advantages and challenges in developing multimodality imaging probes by using different types of nanoparticles, and summarizes the recent advances in the applications of radiolabeled nanoparticles for multimodal imaging of tumor. The key issues involved in the translation of radiolabeled nanoparticles to the clinic are also discussed. PMID:24505237

  15. Multimodality Imaging of RNA Interference

    PubMed Central

    Nayak, Tapas R.; Krasteva, Lazura K.; Cai, Weibo

    2013-01-01

    The discovery of small interfering RNAs (siRNAs) and their potential to knock down virtually any gene of interest has ushered in a new era of RNA interference (RNAi). Clinical use of RNAi faces severe limitations due to inefficiency delivery of siRNA or short hairpin RNA (shRNA). Many molecular imaging techniques have been adopted in RNAi-related research for evaluation of siRNA/shRNA delivery, biodistribution, pharmacokinetics, and the therapeutic effect. In this review article, we summarize the current status of in vivo imaging of RNAi. The molecular imaging techniques that have been employed include bioluminescence/fluorescence imaging, magnetic resonance imaging/spectroscopy, positron emission tomography, single-photon emission computed tomography, and various combinations of these techniques. Further development of non-invasive imaging strategies for RNAi, not only focusing on the delivery of siRNA/shRNA but also the therapeutic efficacy, is critical for future clinical translation. Rigorous validation will be needed to confirm that biodistribution of the carrier is correlated with that of siRNA/shRNA, since imaging only detects the label (e.g. radioisotopes) but not the gene or carrier themselves. It is also essential to develop multimodality imaging approaches for realizing the full potential of therapeutic RNAi, as no single imaging modality may be sufficient to simultaneously monitor both the gene delivery and silencing effect of RNAi. PMID:23745567

  16. Histology image search using multimodal fusion.

    PubMed

    Caicedo, Juan C; Vanegas, Jorge A; Páez, Fabian; González, Fabio A

    2014-10-01

    This work proposes a histology image indexing strategy based on multimodal representations obtained from the combination of visual features and associated semantic annotations. Both data modalities are complementary information sources for an image retrieval system, since visual features lack explicit semantic information and semantic terms do not usually describe the visual appearance of images. The paper proposes a novel strategy to build a fused image representation using matrix factorization algorithms and data reconstruction principles to generate a set of multimodal features. The methodology can seamlessly recover the multimodal representation of images without semantic annotations, allowing us to index new images using visual features only, and also accepting single example images as queries. Experimental evaluations on three different histology image data sets show that our strategy is a simple, yet effective approach to building multimodal representations for histology image search, and outperforms the response of the popular late fusion approach to combine information. PMID:24820052

  17. Histology image search using multimodal fusion.

    PubMed

    Caicedo, Juan C; Vanegas, Jorge A; Páez, Fabian; González, Fabio A

    2014-10-01

    This work proposes a histology image indexing strategy based on multimodal representations obtained from the combination of visual features and associated semantic annotations. Both data modalities are complementary information sources for an image retrieval system, since visual features lack explicit semantic information and semantic terms do not usually describe the visual appearance of images. The paper proposes a novel strategy to build a fused image representation using matrix factorization algorithms and data reconstruction principles to generate a set of multimodal features. The methodology can seamlessly recover the multimodal representation of images without semantic annotations, allowing us to index new images using visual features only, and also accepting single example images as queries. Experimental evaluations on three different histology image data sets show that our strategy is a simple, yet effective approach to building multimodal representations for histology image search, and outperforms the response of the popular late fusion approach to combine information.

  18. Multimodality Molecular Imaging of the Lung

    PubMed Central

    Chen, Delphine L.; Kinahan, Paul E.

    2010-01-01

    The continued progression of chronic lung disease despite current treatment options has led to the increasing evaluation of molecular imaging tools for diagnosis, treatment planning, drug discovery, and therapy monitoring. Concurrently the development of multimodality PET/CT, SPECT/CT, and MRI/PET scanners has opened up the potential for more sophisticated imaging biomarker probes. Here we review the potential uses of multimodality imaging tools, the established uses of molecular imaging in non-oncologic lung pathophysiology and drug discovery, and some of the technical challenges in multimodality molecular imaging of the lung. PMID:21105145

  19. Multimodal imaging measures predict rearrest.

    PubMed

    Steele, Vaughn R; Claus, Eric D; Aharoni, Eyal; Vincent, Gina M; Calhoun, Vince D; Kiehl, Kent A

    2015-01-01

    Rearrest has been predicted by hemodynamic activity in the anterior cingulate cortex (ACC) during error-processing (Aharoni et al., 2013). Here, we evaluate the predictive power after adding an additional imaging modality in a subsample of 45 incarcerated males from Aharoni et al. (2013). Event-related potentials (ERPs) and hemodynamic activity were collected during a Go/NoGo response inhibition task. Neural measures of error-processing were obtained from the ACC and two ERP components, the error-related negativity (ERN/Ne) and the error positivity (Pe). Measures from the Pe and ACC differentiated individuals who were and were not subsequently rearrested. Cox regression, logistic regression, and support vector machine (SVM) neuroprediction models were calculated. Each of these models proved successful in predicting rearrest and SVM provided the strongest results. Multimodal neuroprediction SVM models with out of sample cross-validating accurately predicted rearrest (83.33%). Offenders with increased Pe amplitude and decreased ACC activation, suggesting abnormal error-processing, were at greatest risk of rearrest. PMID:26283947

  20. Multimodal imaging measures predict rearrest

    PubMed Central

    Steele, Vaughn R.; Claus, Eric D.; Aharoni, Eyal; Vincent, Gina M.; Calhoun, Vince D.; Kiehl, Kent A.

    2015-01-01

    Rearrest has been predicted by hemodynamic activity in the anterior cingulate cortex (ACC) during error-processing (Aharoni et al., 2013). Here, we evaluate the predictive power after adding an additional imaging modality in a subsample of 45 incarcerated males from Aharoni et al. (2013). Event-related potentials (ERPs) and hemodynamic activity were collected during a Go/NoGo response inhibition task. Neural measures of error-processing were obtained from the ACC and two ERP components, the error-related negativity (ERN/Ne) and the error positivity (Pe). Measures from the Pe and ACC differentiated individuals who were and were not subsequently rearrested. Cox regression, logistic regression, and support vector machine (SVM) neuroprediction models were calculated. Each of these models proved successful in predicting rearrest and SVM provided the strongest results. Multimodal neuroprediction SVM models with out of sample cross-validating accurately predicted rearrest (83.33%). Offenders with increased Pe amplitude and decreased ACC activation, suggesting abnormal error-processing, were at greatest risk of rearrest. PMID:26283947

  1. Multimodal imaging of cutaneous wound tissue

    NASA Astrophysics Data System (ADS)

    Zhang, Shiwu; Gnyawali, Surya; Huang, Jiwei; Ren, Wenqi; Gordillo, Gayle; Sen, Chandan K.; Xu, Ronald

    2015-01-01

    Quantitative assessment of wound tissue ischemia, perfusion, and inflammation provides critical information for appropriate detection, staging, and treatment of chronic wounds. However, few methods are available for simultaneous assessment of these tissue parameters in a noninvasive and quantitative fashion. We integrated hyperspectral, laser speckle, and thermographic imaging modalities in a single-experimental setup for multimodal assessment of tissue oxygenation, perfusion, and inflammation characteristics. Algorithms were developed for appropriate coregistration between wound images acquired by different imaging modalities at different times. The multimodal wound imaging system was validated in an occlusion experiment, where oxygenation and perfusion maps of a healthy subject's upper extremity were continuously monitored during a postocclusive reactive hyperemia procedure and compared with standard measurements. The system was also tested in a clinical trial where a wound of three millimeters in diameter was introduced on a healthy subject's lower extremity and the healing process was continuously monitored. Our in vivo experiments demonstrated the clinical feasibility of multimodal cutaneous wound imaging.

  2. Multimodality imaging in nanomedicine and nanotheranostics

    PubMed Central

    Li, Xue; Zhang, Xue-Ning; Li, Xiao-Dong; Chang, Jin

    2016-01-01

    Accurate diagnosis of tumors needs much detailed information. However, available single imaging modality cannot provide complete or comprehensive data. Nanomedicine is the application of nanotechnology to medicine, and multimodality imaging based on nanoparticles has been receiving extensive attention. This new hybrid imaging technology could provide complementary information from different imaging modalities using only a single injection of contrast agent. In this review, we introduce recent developments in multifunctional nanoparticles and their biomedical applications to multimodal imaging and theragnosis as nanomedicine. Most of the reviewed studies are based on the intrinsic properties of nanoparticles and their application in clinical imaging technology. The imaging techniques include positron emission tomography, single-photon emission computed tomography, computerized tomography, magnetic resonance imaging, optical imaging, and ultrasound imaging. PMID:27807501

  3. Quantitative multimodality imaging in cancer research and therapy.

    PubMed

    Yankeelov, Thomas E; Abramson, Richard G; Quarles, C Chad

    2014-11-01

    Advances in hardware and software have enabled the realization of clinically feasible, quantitative multimodality imaging of tissue pathophysiology. Earlier efforts relating to multimodality imaging of cancer have focused on the integration of anatomical and functional characteristics, such as PET-CT and single-photon emission CT (SPECT-CT), whereas more-recent advances and applications have involved the integration of multiple quantitative, functional measurements (for example, multiple PET tracers, varied MRI contrast mechanisms, and PET-MRI), thereby providing a more-comprehensive characterization of the tumour phenotype. The enormous amount of complementary quantitative data generated by such studies is beginning to offer unique insights into opportunities to optimize care for individual patients. Although important technical optimization and improved biological interpretation of multimodality imaging findings are needed, this approach can already be applied informatively in clinical trials of cancer therapeutics using existing tools. These concepts are discussed herein.

  4. Medical Image Retrieval: A Multimodal Approach

    PubMed Central

    Cao, Yu; Steffey, Shawn; He, Jianbiao; Xiao, Degui; Tao, Cui; Chen, Ping; Müller, Henning

    2014-01-01

    Medical imaging is becoming a vital component of war on cancer. Tremendous amounts of medical image data are captured and recorded in a digital format during cancer care and cancer research. Facing such an unprecedented volume of image data with heterogeneous image modalities, it is necessary to develop effective and efficient content-based medical image retrieval systems for cancer clinical practice and research. While substantial progress has been made in different areas of content-based image retrieval (CBIR) research, direct applications of existing CBIR techniques to the medical images produced unsatisfactory results, because of the unique characteristics of medical images. In this paper, we develop a new multimodal medical image retrieval approach based on the recent advances in the statistical graphic model and deep learning. Specifically, we first investigate a new extended probabilistic Latent Semantic Analysis model to integrate the visual and textual information from medical images to bridge the semantic gap. We then develop a new deep Boltzmann machine-based multimodal learning model to learn the joint density model from multimodal information in order to derive the missing modality. Experimental results with large volume of real-world medical images have shown that our new approach is a promising solution for the next-generation medical imaging indexing and retrieval system. PMID:26309389

  5. Medical Image Retrieval: A Multimodal Approach.

    PubMed

    Cao, Yu; Steffey, Shawn; He, Jianbiao; Xiao, Degui; Tao, Cui; Chen, Ping; Müller, Henning

    2014-01-01

    Medical imaging is becoming a vital component of war on cancer. Tremendous amounts of medical image data are captured and recorded in a digital format during cancer care and cancer research. Facing such an unprecedented volume of image data with heterogeneous image modalities, it is necessary to develop effective and efficient content-based medical image retrieval systems for cancer clinical practice and research. While substantial progress has been made in different areas of content-based image retrieval (CBIR) research, direct applications of existing CBIR techniques to the medical images produced unsatisfactory results, because of the unique characteristics of medical images. In this paper, we develop a new multimodal medical image retrieval approach based on the recent advances in the statistical graphic model and deep learning. Specifically, we first investigate a new extended probabilistic Latent Semantic Analysis model to integrate the visual and textual information from medical images to bridge the semantic gap. We then develop a new deep Boltzmann machine-based multimodal learning model to learn the joint density model from multimodal information in order to derive the missing modality. Experimental results with large volume of real-world medical images have shown that our new approach is a promising solution for the next-generation medical imaging indexing and retrieval system.

  6. High Resolution Multimode Fiber Image Recovery

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah

    2000-01-01

    The research emphasis is on developing a cost-effective method of recovering image information from small, closely confined spaces using multimode fibers. The state-of-the-art good quality-viewing fiber, which can currently be used for performing this function, is a 0.5 mm diameter bundle containing 6000 pixels at a cost of $10,000 per fiber bundle. However, these fiber bundles are very fragile and can easily break during surgical use, thereby making instrument reliability and replacement cost,a major impediment to their routine use in many applications. The advantage of working with a single multimode fiber is that it is significantly less expensive and mechanically more robust. In addition, careful choice of numerical aperture allows a higher image resolution (roughly 750,000 pixels) with a 0.5 mm diameter multimode fiber.

  7. Multimodal imaging of cutaneous wound tissue

    PubMed Central

    Zhang, Shiwu; Gnyawali, Surya; Huang, Jiwei; Ren, Wenqi; Gordillo, Gayle; Sen, Chandan K.; Xu, Ronald

    2015-01-01

    Abstract. Quantitative assessment of wound tissue ischemia, perfusion, and inflammation provides critical information for appropriate detection, staging, and treatment of chronic wounds. However, few methods are available for simultaneous assessment of these tissue parameters in a noninvasive and quantitative fashion. We integrated hyperspectral, laser speckle, and thermographic imaging modalities in a single-experimental setup for multimodal assessment of tissue oxygenation, perfusion, and inflammation characteristics. Algorithms were developed for appropriate coregistration between wound images acquired by different imaging modalities at different times. The multimodal wound imaging system was validated in an occlusion experiment, where oxygenation and perfusion maps of a healthy subject’s upper extremity were continuously monitored during a postocclusive reactive hyperemia procedure and compared with standard measurements. The system was also tested in a clinical trial where a wound of three millimeters in diameter was introduced on a healthy subject’s lower extremity and the healing process was continuously monitored. Our in vivo experiments demonstrated the clinical feasibility of multimodal cutaneous wound imaging. PMID:25604545

  8. Multimode-Optical-Fiber Imaging Probe

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah

    1999-01-01

    Currently, endoscopic surgery uses single-mode fiber-bundles to obtain in vivo image information inside the orifices of the body. This limits their use to the larger natural orifices and to surgical procedures where there is plenty of room for manipulation. The knee joint, for example, can be easily viewed with a fiber optic viewer, but joints in the finger cannot. However, there are a host of smaller orifices where fiber endoscopy would play an important role if a cost effective fiber probe were developed with small enough dimensions (less than or equal to 250 microns). Examples of beneficiaries of micro-endoscopes are the treatment of the Eustatian tube of the middle ear, the breast ducts, tear ducts, coronary arteries, fallopian tubes, as well as the treatment of salivary duct parotid disease, and the neuro endoscopy of the ventricles and spinal canal. This work describes an approach for recovering images from tightly confined spaces using multimode. The concept draws upon earlier works that concentrated on image recovery after two-way transmission through a multimode fiber as well as work that demonstrated the recovery of images after one-way transmission through a multimode fiber. Both relied on generating a phase conjugated wavefront, which was predistorted with the characteristics of the fiber. The approach described here also relies on generating a phase conjugated wavefront, but utilizes two fibers to capture the image at some intermediate point (accessible by the fibers, but which is otherwise visually inaccessible).

  9. Semiautomated Multimodal Breast Image Registration

    PubMed Central

    Curtis, Charlotte; Frayne, Richard; Fear, Elise

    2012-01-01

    Consideration of information from multiple modalities has been shown to have increased diagnostic power in breast imaging. As a result, new techniques such as microwave imaging continue to be developed. Interpreting these novel image modalities is a challenge, requiring comparison to established techniques such as the gold standard X-ray mammography. However, due to the highly deformable nature of breast tissues, comparison of 3D and 2D modalities is a challenge. To enable this comparison, a registration technique was developed to map features from 2D mammograms to locations in the 3D image space. This technique was developed and tested using magnetic resonance (MR) images as a reference 3D modality, as MR breast imaging is an established technique in clinical practice. The algorithm was validated using a numerical phantom then successfully tested on twenty-four image pairs. Dice's coefficient was used to measure the external goodness of fit, resulting in an excellent overall average of 0.94. Internal agreement was evaluated by examining internal features in consultation with a radiologist, and subjective assessment concludes that reasonable alignment was achieved. PMID:22481910

  10. Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox

    PubMed Central

    Lacerda, Luis Miguel; Ferreira, Hugo Alexandre

    2015-01-01

    Aim. In recent years, connectivity studies using neuroimaging data have increased the understanding of the organization of large-scale structural and functional brain networks. However, data analysis is time consuming as rigorous procedures must be assured, from structuring data and pre-processing to modality specific data procedures. Until now, no single toolbox was able to perform such investigations on truly multimodal image data from beginning to end, including the combination of different connectivity analyses. Thus, we have developed the Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox with the goal of diminishing time waste in data processing and to allow an innovative and comprehensive approach to brain connectivity. Materials and Methods. The MIBCA toolbox is a fully automated all-in-one connectivity toolbox that offers pre-processing, connectivity and graph theoretical analyses of multimodal image data such as diffusion-weighted imaging, functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). It was developed in MATLAB environment and pipelines well-known neuroimaging softwares such as Freesurfer, SPM, FSL, and Diffusion Toolkit. It further implements routines for the construction of structural, functional and effective or combined connectivity matrices, as well as, routines for the extraction and calculation of imaging and graph-theory metrics, the latter using also functions from the Brain Connectivity Toolbox. Finally, the toolbox performs group statistical analysis and enables data visualization in the form of matrices, 3D brain graphs and connectograms. In this paper the MIBCA toolbox is presented by illustrating its capabilities using multimodal image data from a group of 35 healthy subjects (19–73 years old) with volumetric T1-weighted, diffusion tensor imaging, and resting state fMRI data, and 10 subjets with 18F-Altanserin PET data also. Results. It was observed both a high inter-hemispheric symmetry

  11. Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox.

    PubMed

    Ribeiro, Andre Santos; Lacerda, Luis Miguel; Ferreira, Hugo Alexandre

    2015-01-01

    Aim. In recent years, connectivity studies using neuroimaging data have increased the understanding of the organization of large-scale structural and functional brain networks. However, data analysis is time consuming as rigorous procedures must be assured, from structuring data and pre-processing to modality specific data procedures. Until now, no single toolbox was able to perform such investigations on truly multimodal image data from beginning to end, including the combination of different connectivity analyses. Thus, we have developed the Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox with the goal of diminishing time waste in data processing and to allow an innovative and comprehensive approach to brain connectivity. Materials and Methods. The MIBCA toolbox is a fully automated all-in-one connectivity toolbox that offers pre-processing, connectivity and graph theoretical analyses of multimodal image data such as diffusion-weighted imaging, functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). It was developed in MATLAB environment and pipelines well-known neuroimaging softwares such as Freesurfer, SPM, FSL, and Diffusion Toolkit. It further implements routines for the construction of structural, functional and effective or combined connectivity matrices, as well as, routines for the extraction and calculation of imaging and graph-theory metrics, the latter using also functions from the Brain Connectivity Toolbox. Finally, the toolbox performs group statistical analysis and enables data visualization in the form of matrices, 3D brain graphs and connectograms. In this paper the MIBCA toolbox is presented by illustrating its capabilities using multimodal image data from a group of 35 healthy subjects (19-73 years old) with volumetric T1-weighted, diffusion tensor imaging, and resting state fMRI data, and 10 subjets with 18F-Altanserin PET data also. Results. It was observed both a high inter-hemispheric symmetry and

  12. Multimodality imaging of vascular anomalies.

    PubMed

    Restrepo, Ricardo

    2013-03-01

    Vascular malformations and hemangiomas are common in children but remain a source of confusion during diagnosis, in part because of the lack of a uniform terminology. With the existing treatments for hemangiomas and vascular malformations, it is important to make the correct diagnosis initially to prevent adverse physical and emotional sequelae in not only the child but also the family. The diagnosis of vascular malformations is made primarily by the clinician and based on the physical exam. Imaging is carried out using predominantly ultrasound (US) and magnetic resonance imaging (MRI), which are complementary modalities. In most cases of vascular anomalies, US is the first line of imaging as it is readily available, less expensive, lacks ionizing radiation and does not require sedation. MRI is also of great help for further characterizing the lesions. Conventional arteriography is reserved for cases that require therapeutic intervention, more commonly for arteriovenous malformations. Radiographs usually play no role in diagnosing vascular anomalies in children. In this article, the author describes the terminology and types of hemangiomas and vascular malformations and their clinical, histological features, as well as the imaging approach and appearance.

  13. Hadamard multimode optical imaging transceiver

    DOEpatents

    Cooke, Bradly J; Guenther, David C; Tiee, Joe J; Kellum, Mervyn J; Olivas, Nicholas L; Weisse-Bernstein, Nina R; Judd, Stephen L; Braun, Thomas R

    2012-10-30

    Disclosed is a method and system for simultaneously acquiring and producing results for multiple image modes using a common sensor without optical filtering, scanning, or other moving parts. The system and method utilize the Walsh-Hadamard correlation detection process (e.g., functions/matrix) to provide an all-binary structure that permits seamless bridging between analog and digital domains. An embodiment may capture an incoming optical signal at an optical aperture, convert the optical signal to an electrical signal, pass the electrical signal through a Low-Noise Amplifier (LNA) to create an LNA signal, pass the LNA signal through one or more correlators where each correlator has a corresponding Walsh-Hadamard (WH) binary basis function, calculate a correlation output coefficient for each correlator as a function of the corresponding WH binary basis function in accordance with Walsh-Hadamard mathematical principles, digitize each of the correlation output coefficient by passing each correlation output coefficient through an Analog-to-Digital Converter (ADC), and performing image mode processing on the digitized correlation output coefficients as desired to produce one or more image modes. Some, but not all, potential image modes include: multi-channel access, temporal, range, three-dimensional, and synthetic aperture.

  14. Multimode-Optical-Fiber Imaging Probe

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah

    2000-01-01

    Currently, endoscopic surgery uses single-mode fiber-bundles to obtain in vivo image information inside orifices of the body. This limits their use to the larger natural bodily orifices and to surgical procedures where there is plenty of room for manipulation. The knee joint, for example can be easily viewed with a fiber optic viewer, but joints in the finger cannot. However, there are a host of smaller orifices where fiber endoscopy would play an important role if a cost effective fiber probe were developed with small enough dimensions (< 250 microns). Examples of beneficiaries of micro-endoscopes are the treatment of the Eustatian tube of the middle ear, the breast ducts, tear ducts, coronary arteries, fallopian tubes, as well as the treatment of salivary duct parotid disease, and the neuro endoscopy of the ventricles and spinal canal. To solve this problem, this work describes an approach for recovering images from. tightly confined spaces using multimode fibers and analytically demonstrates that the concept is sound. The proof of concept draws upon earlier works that concentrated on image recovery after two-way transmission through a multimode fiber as well as work that demonstrated the recovery of images after one-way transmission through a multimode fiber. Both relied on generating a phase conjugated wavefront which was predistorted with the characteristics of the fiber. The described approach also relies on generating a phase conjugated wavefront, but utilizes two fibers to capture the image at some intermediate point (accessible by the fibers, but which is otherwise visually unaccessible).

  15. Photoacoustic imaging platforms for multimodal imaging

    PubMed Central

    2015-01-01

    Photoacoustic (PA) imaging is a hybrid biomedical imaging method that exploits both acoustical Epub ahead of print and optical properties and can provide both functional and structural information. Therefore, PA imaging can complement other imaging methods, such as ultrasound imaging, fluorescence imaging, optical coherence tomography, and multi-photon microscopy. This article reviews techniques that integrate PA with the above imaging methods and describes their applications. PMID:25754364

  16. Multimodal optical imaging for detecting breast cancer

    NASA Astrophysics Data System (ADS)

    Patel, Rakesh; Khan, Ashraf; Wirth, Dennis; Kamionek, Michal; Kandil, Dina; Quinlan, Robert; Yaroslavsky, Anna N.

    2012-06-01

    The goal of the study was to evaluate wide-field and high-resolution multimodal optical imaging, including polarization, reflectance, and fluorescence for the intraoperative detection of breast cancer. Lumpectomy specimens were stained with 0.05 mg/ml aqueous solution of methylene blue (MB) and imaged. Wide-field reflectance images were acquired between 390 and 750 nm. Wide-field fluorescence images were excited at 640 nm and registered between 660 and 750 nm. High resolution confocal reflectance and fluorescence images were excited at 642 nm. Confocal fluorescence images were acquired between 670 nm and 710 nm. After imaging, the specimens were processed for hematoxylin and eosin (H&E) histopathology. Histological slides were compared with wide-field and high-resolution optical images to evaluate correlation of tumor boundaries and cellular morphology, respectively. Fluorescence polarization imaging identified the location, size, and shape of the tumor in all the cases investigated. Averaged fluorescence polarization values of tumor were higher as compared to normal tissue. Statistical analysis confirmed the significance of these differences. Fluorescence confocal imaging enabled cellular-level resolution. Evaluation and statistical analysis of MB fluorescence polarization values registered from single tumor and normal cells demonstrated higher fluorescence polarization from cancer. Wide-field high-resolution fluorescence and fluorescence polarization imaging shows promise for intraoperative delineation of breast cancers.

  17. Fluorescence labeled microbubbles for multimodal imaging.

    PubMed

    Barrefelt, Åsa; Zhao, Ying; Larsson, Malin K; Egri, Gabriella; Kuiper, Raoul V; Hamm, Jörg; Saghafian, Maryam; Caidahl, Kenneth; Brismar, Torkel B; Aspelin, Peter; Heuchel, Rainer; Muhammed, Mamoun; Dähne, Lars; Hassan, Moustapha

    2015-08-28

    Air-filled polyvinyl alcohol microbubbles (PVA-MBs) were recently introduced as a contrast agent for ultrasound imaging. In the present study, we explore the possibility of extending their application in multimodal imaging by labeling them with a near infrared (NIR) fluorophore, VivoTag-680. PVA-MBs were injected intravenously into FVB/N female mice and their dynamic biodistribution over 24 h was determined by 3D-fluorescence imaging co-registered with 3D-μCT imaging, to verify the anatomic location. To further confirm the biodistribution results from in vivo imaging, organs were removed and examined histologically using bright field and fluorescence microscopy. Fluorescence imaging detected PVA-MB accumulation in the lungs within the first 30 min post-injection. Redistribution to a low extent was observed in liver and kidneys at 4 h, and to a high extent mainly in the liver and spleen at 24 h. Histology confirmed PVA-MB localization in lung capillaries and macrophages. In the liver, they were associated with Kupffer cells; in the spleen, they were located mostly within the marginal-zone. Occasional MBs were observed in the kidney glomeruli and interstitium. The potential application of PVA-MBs as a contrast agent was also studied using ultrasound (US) imaging in subcutaneous and orthotopic pancreatic cancer mouse models, to visualize blood flow within the tumor mass. In conclusion, this study showed that PVA-MBs are useful as a contrast agent for multimodal imaging. PMID:26187672

  18. Multimodality Imaging of Carotid Stenosis

    PubMed Central

    Adla, Theodor; Adlova, Radka

    2015-01-01

    Four diagnostic modalities are used to image the following internal carotid artery: digital subtraction angiography (DSA), duplex ultrasound (DUS), computed tomography angiography (CTA), and magnetic resonance angiography (MRA). The aim of this article is to describe the potentials of these techniques and to discuss their advantages and disadvantages. Invasive DSA is still considered the gold standard and is an indivisible part of the carotid stenting procedure. DUS is an inexpensive but operator-dependent tool with limited visibility of the carotid artery course. Conversely, CTA and MRA allow assessment of the carotid artery from the aortic arch to intracranial parts. The disadvantages of CTA are radiation and iodine contrast medium administration. MRA is without radiation but contrast-enhanced MRA is more accurate than noncontrast MRA. The choice of methods depends on the clinical indications and the availability of methods in individual centers. However, the general approach to patient with suspected carotid artery stenosis is to first perform DUS and then other noninvasive methods such as CTA, MRA, or transcranial Doppler US. PMID:26417185

  19. Multi-modality molecular imaging for gastric cancer research

    NASA Astrophysics Data System (ADS)

    Liang, Jimin; Chen, Xueli; Liu, Junting; Hu, Hao; Qu, Xiaochao; Wang, Fu; Nie, Yongzhan

    2011-12-01

    Because of the ability of integrating the strengths of different modalities and providing fully integrated information, multi-modality molecular imaging techniques provide an excellent solution to detecting and diagnosing earlier cancer, which remains difficult to achieve by using the existing techniques. In this paper, we present an overview of our research efforts on the development of the optical imaging-centric multi-modality molecular imaging platform, including the development of the imaging system, reconstruction algorithms and preclinical biomedical applications. Primary biomedical results show that the developed optical imaging-centric multi-modality molecular imaging platform may provide great potential in the preclinical biomedical applications and future clinical translation.

  20. PACS and multimodality in medical imaging.

    PubMed

    D'Asseler, Y; Koole, M; Van Laere, K; Vandenberghe, S; Bouwens, L; Van de Walle, R; Van de Wiele, C; Lemahieu, I; Dierckx, R A

    2000-01-01

    A PACS (Picture Archiving and Communication System) is a system that is able to store, exchange, display and manipulate images and associated diagnoses from any modality within a hospital in a timely and cost-effective way. Several developments, such as the DICOM standard, fast and convenient networking, and new storage solutions for large amounts of data, make the setup of such a PACS system possible. As the information acquired with various imaging modalities is then available and often complementary, it is desirable for the clinician to have a point-by-point spatial co-registration of images from different modalities in order to enable a synergistic use of the multimodality imaging of a patient for increased diagnostic accuracy. Various types of algorithms are available for the matching of medical images from the same or from different modalities. Co-registration algorithms based on voxel properties consist of a similarity or dissimilarity measure and an iterative or non-iterative method minimizing the dissimilarity or maximizing the similarity between the two images by a transformation of one image relative to the other. PMID:10942990

  1. Multimodal imaging system for dental caries detection

    NASA Astrophysics Data System (ADS)

    Liang, Rongguang; Wong, Victor; Marcus, Michael; Burns, Peter; McLaughlin, Paul

    2007-02-01

    Dental caries is a disease in which minerals of the tooth are dissolved by surrounding bacterial plaques. A caries process present for some time may result in a caries lesion. However, if it is detected early enough, the dentist and dental professionals can implement measures to reverse and control caries. Several optical, nonionized methods have been investigated and used to detect dental caries in early stages. However, there is not a method that can singly detect the caries process with both high sensitivity and high specificity. In this paper, we present a multimodal imaging system that combines visible reflectance, fluorescence, and Optical Coherence Tomography (OCT) imaging. This imaging system is designed to obtain one or more two-dimensional images of the tooth (reflectance and fluorescence images) and a three-dimensional OCT image providing depth and size information of the caries. The combination of two- and three-dimensional images of the tooth has the potential for highly sensitive and specific detection of dental caries.

  2. Multimodality Imaging of Myocardial Injury and Remodeling

    PubMed Central

    Kramer, Christopher M.; Sinusas, Albert J.; Sosnovik, David E.; French, Brent A.; Bengel, Frank M.

    2011-01-01

    Advances in cardiovascular molecular imaging have come at a rapid pace over the last several years. Multiple approaches have been taken to better understand the structural, molecular, and cellular events that underlie the progression from myocardial injury to myocardial infarction (MI) and, ultimately, to congestive heart failure. Multimodality molecular imaging including SPECT, PET, cardiac MRI, and optical approaches is offering new insights into the pathophysiology of MI and left ventricular remodeling in small-animal models. Targets that are being probed include, among others, angiotensin receptors, matrix metalloproteinases, integrins, apoptosis, macrophages, and sympathetic innervation. It is only a matter of time before these advances are applied in the clinical setting to improve post-MI prognostication and identify appropriate therapies in patients to prevent the onset of congestive heart failure. PMID:20395347

  3. Towards a compact fiber laser for multimodal imaging

    NASA Astrophysics Data System (ADS)

    Nie, Bai; Saytashev, Ilyas; Dantus, Marcos

    2014-03-01

    We report on multimodal depth-resolved imaging of unstained living Drosophila Melanogaster larva using sub-50 fs pulses centered at 1060 nm wavelength. Both second harmonic and third harmonic generation imaging modalities are demonstrated.

  4. Multi-modality imaging of an adult parachute mitral valve.

    PubMed

    Purvis, John A; Smyth, Stephen; Barr, Stephen H

    2011-03-01

    A parachute abnormality of the mitral valve is an extremely rare finding in adults. It is usually seen as part of Shone's complex. The authors present multimodality imaging from a case of adult parachute abnormality of the mitral valve to illustrate and explain features such as the characteristic "pear" shape of the valve and "doming" of the subvalvular apparatus. The solitary papillary muscle that defines the condition may be difficult to identify on transthoracic echocardiography, but redundancy of the chordae is a key echocardiographic feature in the adult form of the condition.

  5. Expanding Perspectives for Comprehending Visual Images in Multimodal Texts

    ERIC Educational Resources Information Center

    Serafini, Frank

    2011-01-01

    The texts that adolescents encounter today are often multimodal, meaning they incorporate a variety of modes, including visual images, hypertext, and graphic design elements along with written text. Expanding the perspectives readers use to make sense of the multimodal texts is an important aspect of comprehension instruction. Moving beyond the…

  6. Multimodality image quantification using the Talairach grid

    NASA Astrophysics Data System (ADS)

    Desco, Manuel; Pascau, Javier; Reig, Santiago; Gispert, Juan D.; Santos, Andres; Benito, Carlos; Molina, Vicente; Garcia-Barreno, Pedro

    2001-07-01

    We present an application of the widely accepted anatomical reference of the Talairach atlas as a system for semiautomatic segmentation and analysis of MRI and PET images. The proposed methodology can be seen as a multimodal application where the anatomical information of the MRI is used to build the Talairach grid and a co-registered PET image is superimposed on the same grid. By doing so, the Talairach-normalized tessellation of the brain is directly extended to PET images, allowing for a convenient regional analysis of volume and activity rates of brain structures, defined in the Talairach Atlas as sets of cells. This procedure requires minimal manipulation of brain geometry, thus fully preserving individual brain morphology. To illustrate the potential of the Talairach method for neurological research, we applied our technique in a comparative study of volume and activity rate patterns in MRI and PET images of a group of 51 schizophrenic patients and 24 healthy volunteers. With regard to previous applications of the Talairach grid as an automatic segmentation system, the procedure presented here features two main improvements: the enhanced possibility of measuring metabolic activity in a variety of brain structures including small ones like the caudate nucleus, hippocampus or thalamus; and its conception as an easy-to-use tool developed to work in standard PC Windows environment.

  7. High resolution multimodal clinical ophthalmic imaging system.

    PubMed

    Mujat, Mircea; Ferguson, R Daniel; Patel, Ankit H; Iftimia, Nicusor; Lue, Niyom; Hammer, Daniel X

    2010-05-24

    We developed a multimodal adaptive optics (AO) retinal imager which is the first to combine high performance AO-corrected scanning laser ophthalmoscopy (SLO) and swept source Fourier domain optical coherence tomography (SSOCT) imaging modes in a single compact clinical prototype platform. Such systems are becoming ever more essential to vision research and are expected to prove their clinical value for diagnosis of retinal diseases, including glaucoma, diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinitis pigmentosa. The SSOCT channel operates at a wavelength of 1 microm for increased penetration and visualization of the choriocapillaris and choroid, sites of major disease activity for DR and wet AMD. This AO system is designed for use in clinical populations; a dual deformable mirror (DM) configuration allows simultaneous low- and high-order aberration correction over a large range of refractions and ocular media quality. The system also includes a wide field (33 deg.) line scanning ophthalmoscope (LSO) for initial screening, target identification, and global orientation, an integrated retinal tracker (RT) to stabilize the SLO, OCT, and LSO imaging fields in the presence of lateral eye motion, and a high-resolution LCD-based fixation target for presentation of visual cues. The system was tested in human subjects without retinal disease for performance optimization and validation. We were able to resolve and quantify cone photoreceptors across the macula to within approximately 0.5 deg (approximately 100-150 microm) of the fovea, image and delineate ten retinal layers, and penetrate to resolve features deep into the choroid. The prototype presented here is the first of a new class of powerful flexible imaging platforms that will provide clinicians and researchers with high-resolution, high performance adaptive optics imaging to help guide therapies, develop new drugs, and improve patient outcomes.

  8. Three-dimensional multimodal image-guidance for neurosurgery

    SciTech Connect

    Peters, T.; Munger, P.; Comeau, R.; Evans, A.; Olivier, A.; Davey, B.

    1996-04-01

    The authors address the use of multimodality imaging as an aid to the planning and guidance of neurosurgical procedures, and discuss the integration of anatomical (CT and MRI), vascular (DSA), and functional (PET) data for presentation to the surgeon during surgery. The workstation is an enhancement of a commercially available system, and in addition to the guidance offered via a hand-held probe, it incorporates the use of multimodality imaging and adds enhanced realism to the surgeon through the use of a stereoscopic three-dimensional (3-D) image display. The probe may be visualized stereoscopically in single or multimodality images. The integration of multimodality data in this manner provides the surgeon with a complete overview of brain structures on which he is performing surgery, or through which he is passing probes or cannulas, enabling him to avoid critical vessels and/or structures of functional significance.

  9. Multimodality Image Fusion-Guided Procedures: Technique, Accuracy, and Applications

    SciTech Connect

    Abi-Jaoudeh, Nadine; Kruecker, Jochen; Kadoury, Samuel; Kobeiter, Hicham; Venkatesan, Aradhana M. Levy, Elliot Wood, Bradford J.

    2012-10-15

    Personalized therapies play an increasingly critical role in cancer care: Image guidance with multimodality image fusion facilitates the targeting of specific tissue for tissue characterization and plays a role in drug discovery and optimization of tailored therapies. Positron-emission tomography (PET), magnetic resonance imaging (MRI), and contrast-enhanced computed tomography (CT) may offer additional information not otherwise available to the operator during minimally invasive image-guided procedures, such as biopsy and ablation. With use of multimodality image fusion for image-guided interventions, navigation with advanced modalities does not require the physical presence of the PET, MRI, or CT imaging system. Several commercially available methods of image-fusion and device navigation are reviewed along with an explanation of common tracking hardware and software. An overview of current clinical applications for multimodality navigation is provided.

  10. Automatic parameter selection for multimodal image registration.

    PubMed

    Hahn, Dieter A; Daum, Volker; Hornegger, Joachim

    2010-05-01

    Over the past ten years similarity measures based on intensity distributions have become state-of-the-art in automatic multimodal image registration. An implementation for clinical usage has to support a plurality of images. However, a generally applicable parameter configuration for the number and sizes of histogram bins, optimal Parzen-window kernel widths or background thresholds cannot be found. This explains why various research groups present partly contradictory empirical proposals for these parameters. This paper proposes a set of data-driven estimation schemes for a parameter-free implementation that eliminates major caveats of heuristic trial and error. We present the following novel approaches: a new coincidence weighting scheme to reduce the influence of background noise on the similarity measure in combination with Max-Lloyd requantization, and a tradeoff for the automatic estimation of the number of histogram bins. These methods have been integrated into a state-of-the-art rigid registration that is based on normalized mutual information and applied to CT-MR, PET-MR, and MR-MR image pairs of the RIRE 2.0 database. We compare combinations of the proposed techniques to a standard implementation using default parameters, which can be found in the literature, and to a manual registration by a medical expert. Additionally, we analyze the effects of various histogram sizes, sampling rates, and error thresholds for the number of histogram bins. The comparison of the parameter selection techniques yields 25 approaches in total, with 114 registrations each. The number of bins has no significant influence on the proposed implementation that performs better than both the manual and the standard method in terms of acceptance rates and target registration error (TRE). The overall mean TRE is 2.34 mm compared to 2.54 mm for the manual registration and 6.48 mm for a standard implementation. Our results show a significant TRE reduction for distortion

  11. Stereoscopic Integrated Imaging Goggles for Multimodal Intraoperative Image Guidance

    PubMed Central

    Mela, Christopher A.; Patterson, Carrie; Thompson, William K.; Papay, Francis; Liu, Yang

    2015-01-01

    We have developed novel stereoscopic wearable multimodal intraoperative imaging and display systems entitled Integrated Imaging Goggles for guiding surgeries. The prototype systems offer real time stereoscopic fluorescence imaging and color reflectance imaging capacity, along with in vivo handheld microscopy and ultrasound imaging. With the Integrated Imaging Goggle, both wide-field fluorescence imaging and in vivo microscopy are provided. The real time ultrasound images can also be presented in the goggle display. Furthermore, real time goggle-to-goggle stereoscopic video sharing is demonstrated, which can greatly facilitate telemedicine. In this paper, the prototype systems are described, characterized and tested in surgeries in biological tissues ex vivo. We have found that the system can detect fluorescent targets with as low as 60 nM indocyanine green and can resolve structures down to 0.25 mm with large FOV stereoscopic imaging. The system has successfully guided simulated cancer surgeries in chicken. The Integrated Imaging Goggle is novel in 4 aspects: it is (a) the first wearable stereoscopic wide-field intraoperative fluorescence imaging and display system, (b) the first wearable system offering both large FOV and microscopic imaging simultaneously, (c) the first wearable system that offers both ultrasound imaging and fluorescence imaging capacities, and (d) the first demonstration of goggle-to-goggle communication to share stereoscopic views for medical guidance. PMID:26529249

  12. Registration, segmentation, and visualization of multimodal brain images.

    PubMed

    Viergever, M A; Maintz, J B; Niessen, W J; Noordmans, H J; Pluim, J P; Stokking, R; Vincken, K L

    2001-01-01

    This paper gives an overview of the studies performed at our institute over the last decade on the processing and visualization of brain images, in the context of international developments in the field. The focus is on multimodal image registration and multimodal visualization, while segmentation is touched upon as a preprocessing step for visualization. The state-of-the-art in these areas is discussed and suggestions for future research are given. PMID:11137791

  13. Multimodal cancer imaging using lanthanide-based upconversion nanoparticles.

    PubMed

    Yang, Dongmei; Li, Chunxia; Lin, Jun

    2015-01-01

    Multimodal nanoprobes that integrate different imaging modalities in one nano-system could offer synergistic effect over any modality alone to satisfy the higher requirements on the efficiency and accuracy for clinical diagnosis and medical research. Upconversion nanoparticles (UCNPs), particularly lanthanide (Ln)-based NPs have been regarded as an ideal building block for constructing multimodal bioprobes due to their fascinating properties. In this review, we first summarize recent advances in the optimizations of existing UCNPs. In particular, we highlight the applications of Ln-based UCNPs for multimodal cancer imaging in vitro and in vivo. The explorations of UCNPs-based multimodal nanoprobes for targeting diagnosis and imaging-guided therapeutics are also presented. Finally, the challenges and perspectives of Ln-based UCNPs in this rapid growing field are discussed. PMID:26293416

  14. Multimodal image fusion with SIMS: Preprocessing with image registration.

    PubMed

    Tarolli, Jay Gage; Bloom, Anna; Winograd, Nicholas

    2016-06-14

    In order to utilize complementary imaging techniques to supply higher resolution data for fusion with secondary ion mass spectrometry (SIMS) chemical images, there are a number of aspects that, if not given proper consideration, could produce results which are easy to misinterpret. One of the most critical aspects is that the two input images must be of the same exact analysis area. With the desire to explore new higher resolution data sources that exists outside of the mass spectrometer, this requirement becomes even more important. To ensure that two input images are of the same region, an implementation of the insight segmentation and registration toolkit (ITK) was developed to act as a preprocessing step before performing image fusion. This implementation of ITK allows for several degrees of movement between two input images to be accounted for, including translation, rotation, and scale transforms. First, the implementation was confirmed to accurately register two multimodal images by supplying a known transform. Once validated, two model systems, a copper mesh grid and a group of RAW 264.7 cells, were used to demonstrate the use of the ITK implementation to register a SIMS image with a microscopy image for the purpose of performing image fusion.

  15. Study on algorithm for night vision panoramic image basing on image segmentation and multimode displaying technology

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenhai; Li, Kejie

    2009-07-01

    Based on single panoramic annular lens optical system and external-low-luminance CCD sensors, 360-degree panoramic night vision image processing hardware platform were established. The night vision panoramic image algorithm was presented, grounding on the image segmentation and multimode displaying technology. The annular image can be unwrapped and corrected to conventional rectangular panorama by the panoramic image unwrapping algorithm. The night vision image enhancement algorithm, based on adaptive piecewise linear gray transformation (APLGT) and Laplacian of Gaussian (LOG) edge detection, were given. APLGT algorithm can be adaptively truncate the image histogram on both ends to obtain a smaller dynamic range so as to enhance the contrast of the night vision image. LOG algorithm can be propitious to find and detect dim small targets in night vision circumstance. After abundant experiment, the algorithm for night vision panoramic image was successfully implemented in TMS320DM642, basing on the image Segmentation and multimode displaying algorithm. And the system can reliably and dynamically detect 360-degree view field of panoramic night vision image.

  16. Mono- and multimodal registration of optical breast images

    NASA Astrophysics Data System (ADS)

    Pearlman, Paul C.; Adams, Arthur; Elias, Sjoerd G.; Mali, Willem P. Th. M.; Viergever, Max A.; Pluim, Josien P. W.

    2012-08-01

    Optical breast imaging offers the possibility of noninvasive, low cost, and high sensitivity imaging of breast cancers. Poor spatial resolution and a lack of anatomical landmarks in optical images of the breast make interpretation difficult and motivate registration and fusion of these data with subsequent optical images and other breast imaging modalities. Methods used for registration and fusion of optical breast images are reviewed. Imaging concerns relevant to the registration problem are first highlighted, followed by a focus on both monomodal and multimodal registration of optical breast imaging. Where relevant, methods pertaining to other imaging modalities or imaged anatomies are presented. The multimodal registration discussion concerns digital x-ray mammography, ultrasound, magnetic resonance imaging, and positron emission tomography.

  17. Recent Advances in Higher-order Multimodal Biomedical Imaging Agents

    PubMed Central

    Rieffel, James; Chitgupi, Upendra

    2015-01-01

    Advances in biomedical imaging have spurred the development of integrated multimodal scanners, usually capable of two simultaneous imaging modes. The long-term vision of higher-order multimodality is to improve diagnostics or guidance through analysis of complementary, data-rich, co-registered images. Synergies achieved through combined modalities could enable researchers to better track diverse physiological and structural events, analyze biodistribution and treatment efficacy, and compare established and emerging modalities. Higher-order multimodal approaches stand to benefit from molecular imaging probes and in recent years, contrast agents that have hypermodal characteristics have increasingly been reported in preclinical studies. Given the chemical requirements for contrast agents representing various modalities to be integrated into a single entity, higher-order multimodal agents reported so far tend to be of nanoparticulate form. To date, the majority of reported nanoparticles have included components that are active for magnetic resonance. Herein, we review recent progress in higher-order multimodal imaging agents, which span a range of material and structural classes, that have demonstrated utility in three (or more) imaging modalities. PMID:26185099

  18. Multimodality imaging of hemangiomas-pictorial essay.

    PubMed

    Dasan, T Arul; N G, Basawaraj; Anvekar, Sunita Madhukar

    2015-03-01

    Both hemangiomas and vascular malformations are endothelial malformations that closely resemble normal vessels and can be found in all organs of the human body. This pictorial essay encompasses a spectrum of imaging appearances of hemangiomas and vascular malformations. Familiarity of the MR and CT findings can help differentiate these lesions, to confirm the suspected diagnosis, classify the anomaly and document the associated abnormalities.

  19. Exploiting Multimodal Context in Image Retrieval.

    ERIC Educational Resources Information Center

    Srihari, Rohini K.; Zhang, Zhongfei

    1999-01-01

    Finding information on the Web without encountering numerous false positives poses a challenge to multimedia information retrieval systems (MMIR). This research focuses on improving precision and recall in an MMIR system by interactively combining text processing with image processing in both the indexing and retrieval phases. A picture search…

  20. Multimodal confocal hyperspectral imaging microscopy with wavelength sweeping source

    NASA Astrophysics Data System (ADS)

    Kim, Young-Duk; Do, Dukho; Yoo, Hongki; Gweon, DaeGab

    2015-02-01

    There exist microscopes that are able to obtain the chemical properties of a sample, because there are some cases in which it is difficult to find out causality of a phenomenon by using only the structural information of a sample. Obtaining the chemical properties of a sample is important in biomedical imaging, because most biological phenomena include changes in the chemical properties of the sample. Hyperspectral imaging (HSI) is one of the popular imaging methods for characterizing materials and biological samples by measuring the reflectance or emission spectrum of the sample. Because all materials have a unique reflectance spectrum, it is possible to analyze material properties and detect changes in the chemical properties of a sample by measuring the spectral changes with respect to the original spectrum. Because of its ability to measure the spectrum of a sample, HSI is widely used in materials identification applications such as aerial reconnaissance and is the subject of various studies in microscopy. Although there are many advantages to using the method, conventional HSI has some limitations because of its complex configuration and slow speed. In this research we propose a new type of multimodal confocal hyperspectral imaging microscopy with fast image acquisition and a simple configuration that is capable of both confocal and HSI microscopies.

  1. A simultaneous multimodal imaging system for tissue functional parameters

    NASA Astrophysics Data System (ADS)

    Ren, Wenqi; Zhang, Zhiwu; Wu, Qiang; Zhang, Shiwu; Xu, Ronald

    2014-02-01

    Simultaneous and quantitative assessment of skin functional characteristics in different modalities will facilitate diagnosis and therapy in many clinical applications such as wound healing. However, many existing clinical practices and multimodal imaging systems are subjective, qualitative, sequential for multimodal data collection, and need co-registration between different modalities. To overcome these limitations, we developed a multimodal imaging system for quantitative, non-invasive, and simultaneous imaging of cutaneous tissue oxygenation and blood perfusion parameters. The imaging system integrated multispectral and laser speckle imaging technologies into one experimental setup. A Labview interface was developed for equipment control, synchronization, and image acquisition. Advanced algorithms based on a wide gap second derivative reflectometry and laser speckle contrast analysis (LASCA) were developed for accurate reconstruction of tissue oxygenation and blood perfusion respectively. Quantitative calibration experiments and a new style of skinsimulating phantom were designed to verify the accuracy and reliability of the imaging system. The experimental results were compared with a Moor tissue oxygenation and perfusion monitor. For In vivo testing, a post-occlusion reactive hyperemia (PORH) procedure in human subject and an ongoing wound healing monitoring experiment using dorsal skinfold chamber models were conducted to validate the usability of our system for dynamic detection of oxygenation and perfusion parameters. In this study, we have not only setup an advanced multimodal imaging system for cutaneous tissue oxygenation and perfusion parameters but also elucidated its potential for wound healing assessment in clinical practice.

  2. Multimodality cardiac imaging in Turner syndrome.

    PubMed

    Mortensen, Kristian H; Gopalan, Deepa; Nørgaard, Bjarne L; Andersen, Niels H; Gravholt, Claus H

    2016-06-01

    Congenital and acquired cardiovascular diseases contribute significantly to the threefold elevated risk of premature death in Turner syndrome. A multitude of cardiovascular anomalies and disorders, many of which deleteriously impact morbidity and mortality, is frequently left undetected and untreated because of poor adherence to screening programmes and complex clinical presentations. Imaging is essential for timely and effective primary and secondary disease prophylaxis that may alleviate the severe impact of cardiovascular disease in Turner syndrome. This review illustrates how cardiovascular disease in Turner syndrome manifests in a complex manner that ranges in severity from incidental findings to potentially fatal anomalies. Recommendations regarding the use of imaging for screening and surveillance of cardiovascular disease in Turner syndrome are made, emphasising the key role of non-invasive and invasive cardiovascular imaging to the management of all patients with Turner syndrome.

  3. Multimodal Imaging of the White Dot Syndromes and Related Diseases

    PubMed Central

    Knickelbein, Jared E; Sen, H Nida

    2016-01-01

    The white dot syndromes encompass a group of rare posterior uveitis conditions that are characterized by outer retinal and/or choroidal hypopigmented lesions that are thought to be inflammatory in nature. The size, shape, and location of lesions in the fundus aid in differentiating these conditions. Multimodal imaging, including modalities such as fundus autofluorescence, optical coherence tomography, fluorescein angiography, and indocyanine green angiography, among others, has become integral in diagnosing and monitoring many of the white dot syndromes. Furthermore, multimodal imaging modalities have provided insights into the pathogenesis and exact sites within the retina and choroid affected by white dot syndromes. PMID:27482471

  4. Discrimination of skin diseases using the multimodal imaging approach

    NASA Astrophysics Data System (ADS)

    Vogler, N.; Heuke, S.; Akimov, D.; Latka, I.; Kluschke, F.; Röwert-Huber, H.-J.; Lademann, J.; Dietzek, B.; Popp, J.

    2012-06-01

    Optical microspectroscopic tools reveal great potential for dermatologic diagnostics in the clinical day-to-day routine. To enhance the diagnostic value of individual nonlinear optical imaging modalities such as coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG) or two-photon excited fluorescence (TPF), the approach of multimodal imaging has recently been developed. Here, we present an application of nonlinear optical multimodal imaging with Raman-scattering microscopy to study sizable human-tissue cross-sections. The samples investigated contain both healthy tissue and various skin tumors. This contribution details the rich information content, which can be obtained from the multimodal approach: While CARS microscopy, which - in contrast to spontaneous Raman-scattering microscopy - is not hampered by single-photon excited fluorescence, is used to monitor the lipid and protein distribution in the samples, SHG imaging selectively highlights the distribution of collagen structures within the tissue. This is due to the fact, that SHG is only generated in structures which lack inversion geometry. Finally, TPF reveals the distribution of autofluorophores in tissue. The combination of these techniques, i.e. multimodal imaging, allows for recording chemical images of large area samples and is - as this contribution will highlight - of high clinically diagnostic value.

  5. Multimodal imaging of lung cancer and its microenvironment (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hariri, Lida P.; Niederst, Matthew J.; Mulvey, Hillary; Adams, David C.; Hu, Haichuan; Chico Calero, Isabel; Szabari, Margit V.; Vakoc, Benjamin J.; Hasan, Tayyaba; Bouma, Brett E.; Engelman, Jeffrey A.; Suter, Melissa J.

    2016-03-01

    Despite significant advances in targeted therapies for lung cancer, nearly all patients develop drug resistance within 6-12 months and prognosis remains poor. Developing drug resistance is a progressive process that involves tumor cells and their microenvironment. We hypothesize that microenvironment factors alter tumor growth and response to targeted therapy. We conducted in vitro studies in human EGFR-mutant lung carcinoma cells, and demonstrated that factors secreted from lung fibroblasts results in increased tumor cell survival during targeted therapy with EGFR inhibitor, gefitinib. We also demonstrated that increased environment stiffness results in increased tumor survival during gefitinib therapy. In order to test our hypothesis in vivo, we developed a multimodal optical imaging protocol for preclinical intravital imaging in mouse models to assess tumor and its microenvironment over time. We have successfully conducted multimodal imaging of dorsal skinfold chamber (DSC) window mice implanted with GFP-labeled human EGFR mutant lung carcinoma cells and visualized changes in tumor development and microenvironment facets over time. Multimodal imaging included structural OCT to assess tumor viability and necrosis, polarization-sensitive OCT to measure tissue birefringence for collagen/fibroblast detection, and Doppler OCT to assess tumor vasculature. Confocal imaging was also performed for high-resolution visualization of EGFR-mutant lung cancer cells labeled with GFP, and was coregistered with OCT. Our results demonstrated that stromal support and vascular growth are essential to tumor progression. Multimodal imaging is a useful tool to assess tumor and its microenvironment over time.

  6. Identifying brain neoplasms using dye-enhanced multimodal confocal imaging

    NASA Astrophysics Data System (ADS)

    Wirth, Dennis; Snuderl, Matija; Sheth, Sameer; Kwon, Churl-Su; Frosch, Matthew P.; Curry, William; Yaroslavsky, Anna N.

    2012-02-01

    Brain tumors cause significant morbidity and mortality even when benign. Completeness of resection of brain tumors improves quality of life and survival; however, that is often difficult to accomplish. The goal of this study was to evaluate the feasibility of using multimodal confocal imaging for intraoperative detection of brain neoplasms. We have imaged different types of benign and malignant, primary and metastatic brain tumors. We correlated optical images with histopathology and evaluated the possibility of interpreting confocal images in a manner similar to pathology. Surgical specimens were briefly stained in 0.05 mg/ml aqueous solution of methylene blue (MB) and imaged using a multimodal confocal microscope. Reflectance and fluorescence signals of MB were excited at 642 nm. Fluorescence emission of MB was registered between 670 and 710 nm. After imaging, tissues were processed for hematoxylin and eosin (H&E) histopathology. The results of comparison demonstrate good correlation between fluorescence images and histopathology. Reflectance images provide information about morphology and vascularity of the specimens, complementary to that provided by fluorescence images. Multimodal confocal imaging has the potential to aid in the intraoperative detection of microscopic deposits of brain neoplasms. The application of this technique may improve completeness of resection and increase patient survival.

  7. Total variation minimization-based multimodality medical image reconstruction

    NASA Astrophysics Data System (ADS)

    Cui, Xuelin; Yu, Hengyong; Wang, Ge; Mili, Lamine

    2014-09-01

    Since its recent inception, simultaneous image reconstruction for multimodality fusion has received a great deal of attention due to its superior imaging performance. On the other hand, the compressed sensing (CS)-based image reconstruction methods have undergone a rapid development because of their ability to significantly reduce the amount of raw data. In this work, we combine computed tomography (CT) and magnetic resonance imaging (MRI) into a single CS-based reconstruction framework. From a theoretical viewpoint, the CS-based reconstruction methods require prior sparsity knowledge to perform reconstruction. In addition to the conventional data fidelity term, the multimodality imaging information is utilized to improve the reconstruction quality. Prior information in this context is that most of the medical images can be approximated as piecewise constant model, and the discrete gradient transform (DGT), whose norm is the total variation (TV), can serve as a sparse representation. More importantly, the multimodality images from the same object must share structural similarity, which can be captured by DGT. The prior information on similar distributions from the sparse DGTs is employed to improve the CT and MRI image quality synergistically for a CT-MRI scanner platform. Numerical simulation with undersampled CT and MRI datasets is conducted to demonstrate the merits of the proposed hybrid image reconstruction approach. Our preliminary results confirm that the proposed method outperforms the conventional CT and MRI reconstructions when they are applied separately.

  8. Multimodal targeted high relaxivity thermosensitive liposome for in vivo imaging

    NASA Astrophysics Data System (ADS)

    Kuijten, Maayke M. P.; Hannah Degeling, M.; Chen, John W.; Wojtkiewicz, Gregory; Waterman, Peter; Weissleder, Ralph; Azzi, Jamil; Nicolay, Klaas; Tannous, Bakhos A.

    2015-11-01

    Liposomes are spherical, self-closed structures formed by lipid bilayers that can encapsulate drugs and/or imaging agents in their hydrophilic core or within their membrane moiety, making them suitable delivery vehicles. We have synthesized a new liposome containing gadolinium-DOTA lipid bilayer, as a targeting multimodal molecular imaging agent for magnetic resonance and optical imaging. We showed that this liposome has a much higher molar relaxivities r1 and r2 compared to a more conventional liposome containing gadolinium-DTPA-BSA lipid. By incorporating both gadolinium and rhodamine in the lipid bilayer as well as biotin on its surface, we used this agent for multimodal imaging and targeting of tumors through the strong biotin-streptavidin interaction. Since this new liposome is thermosensitive, it can be used for ultrasound-mediated drug delivery at specific sites, such as tumors, and can be guided by magnetic resonance imaging.

  9. Multimodal targeted high relaxivity thermosensitive liposome for in vivo imaging

    PubMed Central

    Kuijten, Maayke M. P.; Hannah Degeling, M.; Chen, John W.; Wojtkiewicz, Gregory; Waterman, Peter; Weissleder, Ralph; Azzi, Jamil; Nicolay, Klaas; Tannous, Bakhos A.

    2015-01-01

    Liposomes are spherical, self-closed structures formed by lipid bilayers that can encapsulate drugs and/or imaging agents in their hydrophilic core or within their membrane moiety, making them suitable delivery vehicles. We have synthesized a new liposome containing gadolinium-DOTA lipid bilayer, as a targeting multimodal molecular imaging agent for magnetic resonance and optical imaging. We showed that this liposome has a much higher molar relaxivities r1 and r2 compared to a more conventional liposome containing gadolinium-DTPA-BSA lipid. By incorporating both gadolinium and rhodamine in the lipid bilayer as well as biotin on its surface, we used this agent for multimodal imaging and targeting of tumors through the strong biotin-streptavidin interaction. Since this new liposome is thermosensitive, it can be used for ultrasound-mediated drug delivery at specific sites, such as tumors, and can be guided by magnetic resonance imaging. PMID:26610702

  10. Multimodal digital color imaging system for facial skin lesion analysis

    NASA Astrophysics Data System (ADS)

    Bae, Youngwoo; Lee, Youn-Heum; Jung, Byungjo

    2008-02-01

    In dermatology, various digital imaging modalities have been used as an important tool to quantitatively evaluate the treatment effect of skin lesions. Cross-polarization color image was used to evaluate skin chromophores (melanin and hemoglobin) information and parallel-polarization image to evaluate skin texture information. In addition, UV-A induced fluorescent image has been widely used to evaluate various skin conditions such as sebum, keratosis, sun damages, and vitiligo. In order to maximize the evaluation efficacy of various skin lesions, it is necessary to integrate various imaging modalities into an imaging system. In this study, we propose a multimodal digital color imaging system, which provides four different digital color images of standard color image, parallel and cross-polarization color image, and UV-A induced fluorescent color image. Herein, we describe the imaging system and present the examples of image analysis. By analyzing the color information and morphological features of facial skin lesions, we are able to comparably and simultaneously evaluate various skin lesions. In conclusion, we are sure that the multimodal color imaging system can be utilized as an important assistant tool in dermatology.

  11. Melanoma detection using smartphone and multimode hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    MacKinnon, Nicholas; Vasefi, Fartash; Booth, Nicholas; Farkas, Daniel L.

    2016-04-01

    This project's goal is to determine how to effectively implement a technology continuum from a low cost, remotely deployable imaging device to a more sophisticated multimode imaging system within a standard clinical practice. In this work a smartphone is used in conjunction with an optical attachment to capture cross-polarized and collinear color images of a nevus that are analyzed to quantify chromophore distribution. The nevus is also imaged by a multimode hyperspectral system, our proprietary SkinSpect™ device. Relative accuracy and biological plausibility of the two systems algorithms are compared to assess aspects of feasibility of in-home or primary care practitioner smartphone screening prior to rigorous clinical analysis via the SkinSpect.

  12. Nanoengineered multimodal contrast agent for medical image guidance

    NASA Astrophysics Data System (ADS)

    Perkins, Gregory J.; Zheng, Jinzi; Brock, Kristy; Allen, Christine; Jaffray, David A.

    2005-04-01

    Multimodality imaging has gained momentum in radiation therapy planning and image-guided treatment delivery. Specifically, computed tomography (CT) and magnetic resonance (MR) imaging are two complementary imaging modalities often utilized in radiation therapy for visualization of anatomical structures for tumour delineation and accurate registration of image data sets for volumetric dose calculation. The development of a multimodal contrast agent for CT and MR with prolonged in vivo residence time would provide long-lasting spatial and temporal correspondence of the anatomical features of interest, and therefore facilitate multimodal image registration, treatment planning and delivery. The multimodal contrast agent investigated consists of nano-sized stealth liposomes encapsulating conventional iodine and gadolinium-based contrast agents. The average loading achieved was 33.5 +/- 7.1 mg/mL of iodine for iohexol and 9.8 +/- 2.0 mg/mL of gadolinium for gadoteridol. The average liposome diameter was 46.2 +/- 13.5 nm. The system was found to be stable in physiological buffer over a 15-day period, releasing 11.9 +/- 1.1% and 11.2 +/- 0.9% of the total amounts of iohexol and gadoteridol loaded, respectively. 200 minutes following in vivo administration, the contrast agent maintained a relative contrast enhancement of 81.4 +/- 13.05 differential Hounsfield units (ΔHU) in CT (40% decrease from the peak signal value achieved 3 minutes post-injection) and 731.9 +/- 144.2 differential signal intensity (ΔSI) in MR (46% decrease from the peak signal value achieved 3 minutes post-injection) in the blood (aorta), a relative contrast enhancement of 38.0 +/- 5.1 ΔHU (42% decrease from the peak signal value achieved 3 minutes post-injection) and 178.6 +/- 41.4 ΔSI (62% decrease from the peak signal value achieved 3 minutes post-injection) in the liver (parenchyma), a relative contrast enhancement of 9.1 +/- 1.7 ΔHU (94% decrease from the peak signal value achieved 3 minutes

  13. A giant subserosal uterine leiomyoma mimicking an abdominal mass: multimodal imaging data.

    PubMed

    Kalayci, Tugce Ozlem; Akatlı, Ayşe Nur; Sönmezgöz, Fitnet; Türkmen Şamdancı, Emine

    2015-01-01

    Giant uterine leiomyomas are extremely rare neoplasms and are challenging both diagnostically and therapeutically. A 49-year-old premenopausal female presented at our Department complaining of abdominal pain and distention for several years. Ultrasound (US), color Doppler US, abdominal computed tomography imaging after administration of contrast material, and abdominal magnetic resonance imaging were performed. Histopathologic examination revealed a pedunculated subserosal uterine leiomyoma. In this case report, we present abdominopelvic multimodal radiologic imaging findings of our patient with a giant subserosal uterine leiomyoma, in conjunction with histopathological findings.

  14. Multimodal light-sheet microscopy for fluorescence live imaging

    NASA Astrophysics Data System (ADS)

    Oshima, Y.; Kajiura-Kobayashi, H.; Nonaka, S.

    2012-03-01

    Light-sheet microscopy, it is known as single plane illumination microscope (SPIM), is a fluorescence imaging technique which can avoid phototoxic effects to living cells and gives high contrast and high spatial resolution by optical sectioning with light-sheet illumination in developmental biology. We have been developed a multifunctional light-sheet fluorescence microscopy system with a near infrared femto-second fiber laser, a high sensitive image sensor and a high throughput spectrometer. We performed that multiphoton fluorescence images of a transgenic fish and a mouse embryo were observed on the light-sheet microscope. As the results, two photon images with high contrast and high spatial resolution were successfully obtained in the microscopy system. The system has multimodality, not only mutiphoton fluorescence imaging, but also hyperspectral imaging, which can be applicable to fluorescence unmixing analysis and Raman imaging. It enables to obtain high specific and high throughput molecular imaging in vivo and in vitro.

  15. Imaging collagen remodeling and sensing transplanted autologous fibroblast metabolism in mouse dermis using multimode nonlinear optical imaging

    NASA Astrophysics Data System (ADS)

    Zhuo, Shuangmu; Chen, Jianxin; Cao, Ning; Jiang, Xingshan; Xie, Shusen; Xiong, Shuyuan

    2008-06-01

    Collagen remodeling and transplanted autologous fibroblast metabolic states in mouse dermis after cellular injection are investigated using multimode nonlinear optical imaging. Our findings show that the technique can image the progress of collagen remodeling in mouse dermis. It can also image transplanted autologous fibroblasts in their collagen matrix environment in the dermis, because of metabolic activity. It was also found that the approach can provide two-photon ratiometric redox fluorometry based on autologous fibroblast fluorescence from reduced nicotinamide adenine dinucleotide coenzyme and oxidized flavoproteins for sensing the autologous fibroblast metabolic state. These results show that the multimode nonlinear optical imaging technique may have potential in a clinical setting as an in vivo diagnostic and monitoring system for cellular therapy in plastic surgery.

  16. Multimodality Molecular Imaging of Stem Cells Therapy for Stroke

    PubMed Central

    Zhang, Hong; Tian, Mei

    2013-01-01

    Stem cells have been proposed as a promising therapy for treating stroke. While several studies have demonstrated the therapeutic benefits of stem cells, the exact mechanism remains elusive. Molecular imaging provides the possibility of the visual representation of biological processes at the cellular and molecular level. In order to facilitate research efforts to understand the stem cells therapeutic mechanisms, we need to further develop means of monitoring these cells noninvasively, longitudinally and repeatedly. Because of tissue depth and the blood-brain barrier (BBB), in vivo imaging of stem cells therapy for stroke has unique challenges. In this review, we describe existing methods of tracking transplanted stem cells in vivo, including magnetic resonance imaging (MRI), nuclear medicine imaging, and optical imaging (OI). Each of the imaging techniques has advantages and drawbacks. Finally, we describe multimodality imaging strategies as a more comprehensive and potential method to monitor transplanted stem cells for stroke. PMID:24222920

  17. Intracellular kinetics of the androgen receptor shown by multimodal Image Correlation Spectroscopy (mICS)

    PubMed Central

    Chiu, Chi-Li; Patsch, Katherin; Cutrale, Francesco; Soundararajan, Anjana; Agus, David B.; Fraser, Scott E.; Ruderman, Daniel

    2016-01-01

    The androgen receptor (AR) pathway plays a central role in prostate cancer (PCa) growth and progression and is a validated therapeutic target. In response to ligand binding AR translocates to the nucleus, though the molecular mechanism is not well understood. We therefore developed multimodal Image Correlation Spectroscopy (mICS) to measure anisotropic molecular motion across a live cell. We applied mICS to AR translocation dynamics to reveal its multimodal motion. By integrating fluorescence imaging methods we observed evidence for diffusion, confined movement, and binding of AR within both the cytoplasm and nucleus of PCa cells. Our findings suggest that in presence of cytoplasmic diffusion, the probability of AR crossing the nuclear membrane is an important factor in determining the AR distribution between cytoplasm and the nucleus, independent of functional microtubule transport. These findings may have implications for the future design of novel therapeutics targeting the AR pathway in PCa. PMID:26936218

  18. Multimodality Plant Imaging of Small Molecules

    SciTech Connect

    DeJesus, Onofre T.

    2015-03-12

    Positron emission tomography (PET) is a non-invasive imaging technique used to diagnose disease and monitor therapy. PET imaging has had tremendous impact in healthcare delivery resulting in improved outcomes and reduced costs. The discovery and development of PET is one of the achievements of the Department of Energy’s (DOE) support of the peaceful uses of the atom. This project is a logical extension of the use of the PET technique to live plant imaging to advance DOE’s biological and environmental initiatives.

  19. Synthesis and radiolabeling of a somatostatin analog for multimodal imaging

    NASA Astrophysics Data System (ADS)

    Edwards, W. Barry; Liang, Kexian; Xu, Baogang; Anderson, Carolyn J.; Achilefu, Samuel

    2006-02-01

    A new multimodal imaging agent for imaging the somatostatin receptor has been synthesized and evaluated in vitro and in vivo. A somatostatin analog, conjugated to both 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaceticacid (DOTA) and cypate (BS-296), was synthesized entirely on the solid phase (Fmoc) and purified by RP-HPLC. DOTA was added as a ligand for radiometals such as 64Cu or 177Lu for either radio-imaging or radiotherapy respectively. Cytate, a cypatesomatostatin analog conjugate, has previously demonstrated the ability to visualize somatostatin receptor rich tumor xenografts and natural organs by optical imaging techniques. BS-296 exhibited low nanomolar inhibitory capacity toward the binding of radiolabeled somatostatin analogs in cell membranes enriched in the somatostatin receptor, demonstrating the high affinity of this multimodal imaging peptide and indicating its potential as a molecular imaging agent. 64Cu, an isotope for diagnostic imaging and radiotherapy, was selected as the isotope for radiolabeling BS-296. BS-296 was radiolabeled with 64Cu in high specific activity (200 μCi/μg) in 90% radiochemical yield. Addition of 2,5-dihydroxybenzoic acid (gentisic acid) prevented radiolysis of the sample, allowing for study of the 64Cu -BS-296 the day following radiolabeling. Furthermore, inclusion of DMSO at a level of 20% was found not to interfere with radiolabeling yields and prevented the adherence of 64Cu -BS-296 to the walls of the reaction vessel.

  20. Multimodality imaging in heart valve disease

    PubMed Central

    Chambers, John B; Myerson, Saul G; Rajani, Ronak; Morgan-Hughes, Gareth J; Dweck, Marc R

    2016-01-01

    In patients with heart valve disease, echocardiography is the mainstay for diagnosis, assessment and serial surveillance. However, other modalities, notably cardiac MRI and CT, are used if echocardiographic imaging is suboptimal but can also give complementary information to improve assessment of the valve lesion and cardiac compensation to aid the timing of surgery and determine risk. This statement discusses the way these imaging techniques are currently integrated to improve care beyond what is possible with echocardiography alone. PMID:26977308

  1. Multimodal Correlative Preclinical Whole Body Imaging and Segmentation

    PubMed Central

    Akselrod-Ballin, Ayelet; Dafni, Hagit; Addadi, Yoseph; Biton, Inbal; Avni, Reut; Brenner, Yafit; Neeman, Michal

    2016-01-01

    Segmentation of anatomical structures and particularly abdominal organs is a fundamental problem for quantitative image analysis in preclinical research. This paper presents a novel approach for whole body segmentation of small animals in a multimodal setting of MR, CT and optical imaging. The algorithm integrates multiple imaging sequences into a machine learning framework, which generates supervoxels by an efficient hierarchical agglomerative strategy and utilizes multiple SVM-kNN classifiers each constrained by a heatmap prior region to compose the segmentation. We demonstrate results showing segmentation of mice images into several structures including the heart, lungs, liver, kidneys, stomach, vena cava, bladder, tumor, and skeleton structures. Experimental validation on a large set of mice and organs, indicated that our system outperforms alternative state of the art approaches. The system proposed can be generalized to various tissues and imaging modalities to produce automatic atlas-free segmentation, thereby enabling a wide range of applications in preclinical studies of small animal imaging. PMID:27325178

  2. Multimodal Correlative Preclinical Whole Body Imaging and Segmentation.

    PubMed

    Akselrod-Ballin, Ayelet; Dafni, Hagit; Addadi, Yoseph; Biton, Inbal; Avni, Reut; Brenner, Yafit; Neeman, Michal

    2016-01-01

    Segmentation of anatomical structures and particularly abdominal organs is a fundamental problem for quantitative image analysis in preclinical research. This paper presents a novel approach for whole body segmentation of small animals in a multimodal setting of MR, CT and optical imaging. The algorithm integrates multiple imaging sequences into a machine learning framework, which generates supervoxels by an efficient hierarchical agglomerative strategy and utilizes multiple SVM-kNN classifiers each constrained by a heatmap prior region to compose the segmentation. We demonstrate results showing segmentation of mice images into several structures including the heart, lungs, liver, kidneys, stomach, vena cava, bladder, tumor, and skeleton structures. Experimental validation on a large set of mice and organs, indicated that our system outperforms alternative state of the art approaches. The system proposed can be generalized to various tissues and imaging modalities to produce automatic atlas-free segmentation, thereby enabling a wide range of applications in preclinical studies of small animal imaging. PMID:27325178

  3. Multimodality Brain Tumor Imaging: MR Imaging, PET, and PET/MR Imaging.

    PubMed

    Fink, James R; Muzi, Mark; Peck, Melinda; Krohn, Kenneth A

    2015-10-01

    Standard MR imaging and CT are routinely used for anatomic diagnosis in brain tumors. Pretherapy planning and posttreatment response assessments rely heavily on gadolinium-enhanced MR imaging. Advanced MR imaging techniques and PET imaging offer physiologic, metabolic, or functional information about tumor biology that goes beyond the diagnostic yield of standard anatomic imaging. With the advent of combined PET/MR imaging scanners, we are entering an era wherein the relationships among different elements of tumor metabolism can be simultaneously explored through multimodality MR imaging and PET imaging. The purpose of this review is to provide a practical and clinically relevant overview of current anatomic and physiologic imaging of brain tumors as a foundation for further investigations, with a primary focus on MR imaging and PET techniques that have demonstrated utility in the current care of brain tumor patients.

  4. Multimodality and nanoparticles in medical imaging

    PubMed Central

    Huang, Wen-Yen; Davis, Jason J.

    2015-01-01

    A number of medical imaging techniques are used heavily in the provision of spatially resolved information on disease and physiological status and accordingly play a critical role in clinical diagnostics and subsequent treatment. Though, for most imaging modes, contrast is potentially enhanced through the use of contrast agents or improved hardware or imaging protocols, no single methodology provides, in isolation, a detailed mapping of anatomy, disease markers or physiological status. In recent years, the concept of complementing the strengths of one imaging modality with those of another has come to the fore and been further bolstered by the development of fused instruments such as PET/CT and PET/MRI stations. Coupled with the continual development in imaging hardware has been a surge in reports of contrast agents bearing multiple functionality, potentially providing not only a powerful and highly sensitised means of co-localising physiological/disease status and anatomy, but also the tracking and delineation of multiple markers and indeed subsequent or simultaneous highly localized therapy (“theragnostics”). PMID:21409202

  5. Multimodal polarization system for imaging skin cancer

    NASA Astrophysics Data System (ADS)

    Salomatina-Motts, E.; Neel, V. A.; Yaroslavskaya, A. N.

    2009-12-01

    An optical system is created that is capable of detecting tumor formations in vivo in real time by means of the spectrally resolved polarization imaging of light elastically scattered by tissue and imaging of fluorescence polarization of exogenous fluorophores. The performance characteristics of the system, such as the resolution, field of view, and power density and stability of the radiation, as well as the calibration G factor, are determined. The functionality of the system is tested under clinical conditions. Spectrally resolved signals of elastic scattering and fluorescence polarization images are detected both from the wound surface in vivo and from the bioptic material. The reliability of the method is proven by comparing the results with the data of histological studies.

  6. Imaging the posterior mediastinum: a multimodality approach.

    PubMed

    Occhipinti, Mariaelena; Heidinger, Benedikt H; Franquet, Elisa; Eisenberg, Ronald L; Bankier, Alexander A

    2015-01-01

    The posterior mediastinum contains several structures that can produce a wide variety of pathologic conditions. Descending thoracic aorta, esophagus, azygos and hemiazygos veins, thoracic duct, lymph nodes, adipose tissue, and nerves are all located in this anatomical region and can produce diverse abnormalities. Although chest radiography may detect many of these pathologic conditions, computed tomography and magnetic resonance are the imaging modalities of choice for further defining the relationship of posterior mediastinal lesions to neighboring structures and showing specific imaging features that narrow the differential diagnosis. This review emphasizes modality-related answers to morphologic questions, which provide precise diagnostic information. PMID:25993732

  7. Superparamagnetic nanoparticles for enhanced magnetic resonance and multimodal imaging

    NASA Astrophysics Data System (ADS)

    Sikma, Elise Ann Schultz

    Magnetic resonance imaging (MRI) is a powerful tool for noninvasive tomographic imaging of biological systems with high spatial and temporal resolution. Superparamagnetic (SPM) nanoparticles have emerged as highly effective MR contrast agents due to their biocompatibility, ease of surface modification and magnetic properties. Conventional nanoparticle contrast agents suffer from difficult synthetic reproducibility, polydisperse sizes and weak magnetism. Numerous synthetic techniques and nanoparticle formulations have been developed to overcome these barriers. However, there are still major limitations in the development of new nanoparticle-based probes for MR and multimodal imaging including low signal amplification and absence of biochemical reporters. To address these issues, a set of multimodal (T2/optical) and dual contrast (T1/T2) nanoparticle probes has been developed. Their unique magnetic properties and imaging capabilities were thoroughly explored. An enzyme-activatable contrast agent is currently being developed as an innovative means for early in vivo detection of cancer at the cellular level. Multimodal probes function by combining the strengths of multiple imaging techniques into a single agent. Co-registration of data obtained by multiple imaging modalities validates the data, enhancing its quality and reliability. A series of T2/optical probes were successfully synthesized by attachment of a fluorescent dye to the surface of different types of nanoparticles. The multimodal nanoparticles generated sufficient MR and fluorescence signal to image transplanted islets in vivo. Dual contrast T1/T2 imaging probes were designed to overcome disadvantages inherent in the individual T1 and T2 components. A class of T1/T2 agents was developed consisting of a gadolinium (III) complex (DTPA chelate or DO3A macrocycle) conjugated to a biocompatible silica-coated metal oxide nanoparticle through a disulfide linker. The disulfide linker has the ability to be reduced

  8. Multimodal Imaging Evaluations of Focal Choroidal Excavations in Eyes with Central Serous Chorioretinopathy

    PubMed Central

    Chen, Zhi-Qing; Wang, Wei

    2016-01-01

    Purpose. To investigate the prevalence and characteristics of focal choroidal excavation (FCE) concurrent with central serous chorioretinopathy (CSC) using multimodal imaging. Methods. This was a retrospective single-institution study. Clinical features and multimodal imaging findings were analyzed in eyes with CSC and FCEs, using imaging methods including optical coherence tomography (OCT), OCT angiography (OCTA), fluorescein angiography (FA), indocyanine green angiography (ICGA), fundus autofluorescence (FAF), and multispectral imaging. Results. Seventeen patients (4.8%) with 21 FCEs (19 eyes) were found among 351 consecutive Chinese patients with CSC. Chronic CSC represented 47.1% of those cases. Window defects in 12 lesions identified through FA and hypoautofluorescence in 13 lesions identified through FAF revealed retinal pigment epithelial attenuation. Choroidal hemodynamic disturbances characterized by localized filling defects at the excavation and circumferential hyperperfusion were validated by both ICGA and OCTA, which were similar to the angiographic features of normal chronic CSC. The hyperreflective tissue beneath FCE, observed on B-scan OCT, presented as intensive choroidal flow signals on OCTA. Conclusions. FCE is not uncommon in patients with CSC. Multimodal imaging suggested that the aberrant choroidal circulation might be a contribution factor for leakage from the dysfunctional retinal pigment epithelium at the area of excavation. PMID:27437148

  9. Peritoneal Inclusion Cysts in Female Children: Pathogenesis, Treatment, and Multimodality Imaging Review

    PubMed Central

    Amodio, John

    2014-01-01

    We report the multimodality imaging findings of peritoneal inclusion cysts in two adolescent females each with a prior history of abdominal surgery. The few reports of peritoneal inclusion cysts in the pediatric population have largely focused on the clinical and pathological features of this entity. We wish to emphasize the imaging findings of peritoneal inclusion cysts on multiple modalities, the advantage of MRI in confirming the diagnosis, and the need to keep considering this diagnosis in patients who present with a pelvic cystic mass, with a history of surgery, even if remote. Additionally, we review the pathology, pathophysiology, differential diagnosis, and treatment options of peritoneal inclusion cysts. PMID:25143853

  10. Multimodal system for in vivo tumor imaging in mice

    NASA Astrophysics Data System (ADS)

    Autiero, Maddalena; Celentano, Luigi; Cozzolino, Rosanna; Laccetti, Paolo; Marotta, Marcello; Mettivier, Giovanni; Montesi, Maria Cristina; Riccio, Patrizia; Roberti, Giuseppe; Russo, Paolo

    2006-04-01

    We devised a multimodal planar imaging system for in vivo mouse imaging, employing four modalities: optical imaging, green and red fluorescence reflectance imaging, radionuclide imaging and X-ray radiography. We are testing separately, and then in a combined way, each detection mode, via in vivo mouse imaging, with the final purpose of identifying small implanted tumor masses, of providing early tumor detection and following metastatic dissemination. We describe the multimodal system and summarize its main performance, as assessed in our research work in the various stages of the development, in fluorescence and radionuclide tests on healthy or tumor bearing mice. For gamma-ray detection we used a semiconductor pixel detector (Medipix1 or Medipix2) that works in single photon counting. Laser-induced fluorescence reflectance imaging was performed in vivo using a pulsed light source to excite the fluorescence emission of injected hematoporphyrin (HP) compound, a CCD camera, a low pass filter and a commercial image analysis system. The bimodal system was used for the acquisition of combined images of the tumor area (fluorescence: animal top view; radionuclide: bottom view). It was shown that the tumor area can be imaged in a few minutes, with a few millimeter resolution (1 mm pinhole diameter), radioactively ( 99mTc radiotracer), and with the fluorescence system and that, in one case, only one of the two modalities is able to recognize the tumor. A phantom study for thyroid imaging with 125I source embedded in a simulated tissue indicated a spatial resolution of 1.25 mm FWHM with a 1 mm pinhole.

  11. Multimodality imaging of hypoxia in preclinical settings

    PubMed Central

    Mason, Ralph P.; Zhao, Dawen; Pacheco-Torres, Jesús; Cui, Weina; Kodibagkar, Vikram D.; Gulaka, Praveen K.; Hao, Guiyang; Thorpe, Philip; Hahn, Eric W.; Peschke, Peter

    2011-01-01

    Hypoxia has long been recognized to influence solid tumor response to therapy. Increasingly, hypoxia has also been implicated in tumor aggressiveness, including growth, development and metastatic potential. Thus, there is a fundamental, as well as a clinical interest, in assessing in situ tumor hypoxia. This review will examine diverse approaches focusing on the pre-clinical setting, particularly, in rodents. The strategies are inevitably a compromise in terms of sensitivity, precision, temporal and spatial resolution, as well as cost, feasibility, ease and robustness of implementation. We will review capabilities of multiple modalities and examine what makes them particularly suitable for investigating specific aspects of tumor pathophysiology. Current approaches range from nuclear imaging to magnetic resonance and optical, with varying degrees of invasiveness and ability to examine spatial heterogeneity, as well as dynamic response to interventions. Ideally, measurements would be non-invasive, exploiting endogenous reporters to reveal quantitatively local oxygen tension dynamics. A primary focus of this review is magnetic resonance imaging (MRI) based techniques, such as 19F MRI oximetry, which reveals not only hypoxia in vivo, but more significantly, spatial distribution of pO2 quantitatively, with a precision relevant to radiobiology. It should be noted that pre-clinical methods may have very different criteria for acceptance, as compared with potential investigations for prognostic radiology or predictive biomarkers suitable for use in patients. PMID:20639813

  12. Noninvasive Multimodality Imaging in ARVD/C

    PubMed Central

    te Riele, Anneline S.J.M; Tandri, Harikrishna; Sanborn, Danita M.; Bluemke, David A.

    2015-01-01

    Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is a familial cardiomyopathy resulting in progressive right ventricular (RV) dysfunction and malignant ventricular arrhythmias. Although ARVD/C is generally considered an inherited cardiomyopathy, the arrhythmogenic nature of the disease is striking. Affected individuals typically present in the second to fourth decade of life with arrhythmias originating from the right ventricle. Over the past decade, pathogenic ARVD/C-causing mutations have been identified in 5 genes encoding the cardiac desmosome. Disruption of the desmosomal connection system between cardiomyocytes may be represented structurally by ventricular enlargement, global or regional contraction abnormalities, RV aneurysms, or fibrofatty replacement. These abnormalities are typically observed in predilection areas, including the subtricuspid region, basal RV free wall, and left ventricular posterolateral wall. As such, structural and functional abnormalities on cardiac imaging constitute an important diagnostic criterion for the disease. This paper discusses the current status and role of echocardiography, cardiac magnetic resonance imaging, and computed tomography for suspected ARVD/C. PMID:25937197

  13. Multimodal optical imaging of mouse Ischemic cortex

    NASA Astrophysics Data System (ADS)

    Jones, Phillip B.; Shin, Hwa Kyuong; Dunn, Andrew K.; Hyman, Bradley T.; Boas, David A.; Moskowitz, Michael A.; Ayata, Cenk

    2005-11-01

    Real time investigation of cerebral blood flow (CBF), and oxy/deoxy hemoglobin volume (HbO,HbR) dynamics has been difficult until recently due to limited spatial and temporal resolution of techniques like laser Doppler flowmetry and MRI. This is especially true for studies of disease models in small animals, owing to the fine structure of the cerebral vasculature. The combination of laser speckle flowmetry (LSF) and multi-spectral reflectance imaging (MSRI) yields high resolution spatio-temporal maps of hemodynamic changes in response to events such as sensory stimuli or arterial occlusion. Ischemia was induced by distal occlusion of the medial cerebral artery (dMCAO). Rapid changes in CBF, HbO, and HbR during the acute phase were captured with high temporal and spatial resolution through the intact skull. Hemodynamic changes that were correlated with vasoconstrictive events, peri-infarct spreading depressions (PISD), were observed. These experiments demonstrate the utility of LSF and Multi-spectral reflectance imaging (MSRI) in mouse disease models.

  14. Dye-Enhanced Multimodal Confocal Imaging of Brain Cancers

    NASA Astrophysics Data System (ADS)

    Wirth, Dennis; Snuderl, Matija; Sheth, Sameer; Curry, William; Yaroslavsky, Anna

    2011-04-01

    Background and Significance: Accurate high resolution intraoperative detection of brain tumors may result in improved patient survival and better quality of life. The goal of this study was to evaluate dye enhanced multimodal confocal imaging for discriminating normal and cancerous brain tissue. Materials and Methods: Fresh thick brain specimens were obtained from the surgeries. Normal and cancer tissues were investigated. Samples were stained in methylene blue and imaged. Reflectance and fluorescence signals were excited at 658nm. Fluorescence emission and polarization were registered from 670 nm to 710 nm. The system provided lateral resolution of 0.6 μm and axial resolution of 7 μm. Normal and cancer specimens exhibited distinctively different characteristics. H&E histopathology was processed from each imaged sample. Results and Conclusions: The analysis of normal and cancerous tissues indicated clear differences in appearance in both the reflectance and fluorescence responses. These results confirm the feasibility of multimodal confocal imaging for intraoperative detection of small cancer nests and cells.

  15. Enhancing image classification models with multi-modal biomarkers

    NASA Astrophysics Data System (ADS)

    Caban, Jesus J.; Liao, David; Yao, Jianhua; Mollura, Daniel J.; Gochuico, Bernadette; Yoo, Terry

    2011-03-01

    Currently, most computer-aided diagnosis (CAD) systems rely on image analysis and statistical models to diagnose, quantify, and monitor the progression of a particular disease. In general, CAD systems have proven to be effective at providing quantitative measurements and assisting physicians during the decision-making process. As the need for more flexible and effective CADs continues to grow, questions about how to enhance their accuracy have surged. In this paper, we show how statistical image models can be augmented with multi-modal physiological values to create more robust, stable, and accurate CAD systems. In particular, this paper demonstrates how highly correlated blood and EKG features can be treated as biomarkers and used to enhance image classification models designed to automatically score subjects with pulmonary fibrosis. In our results, a 3-5% improvement was observed when comparing the accuracy of CADs that use multi-modal biomarkers with those that only used image features. Our results show that lab values such as Erythrocyte Sedimentation Rate and Fibrinogen, as well as EKG measurements such as QRS and I:40, are statistically significant and can provide valuable insights about the severity of the pulmonary fibrosis disease.

  16. Perspectives for multimodal neurochemical and imaging biomarkers in Alzheimer's disease.

    PubMed

    Teipel, Stefan J; Sabri, Osama; Grothe, Michel; Barthel, Henryk; Prvulovic, David; Buerger, Katharina; Bokde, Arun L W; Ewers, Michael; Hoffmann, Wolfgang; Hampel, Harald

    2013-01-01

    The diagnosis of Alzheimer's disease (AD) is presently going through a paradigm shift from disease categories to dimensions and toward the implementation of biomarkers to support identification of predementia and even preclinical asymptomatic stages of the disease. We outline the methodological basis of presently available biomarkers and technological methodologies in AD, including exploratory and hypothesis-based plasma and blood candidates, cerebrospinal fluid markers of amyloid load and axonal destruction, and imaging markers of amyloid deposition, synaptic dysfunction, cortical functional and structural disconnection, and regional atrophy. We integrate biomarker findings into a comprehensive model of AD pathogenesis from healthy aging to cognitive decline, the resilience to cerebral amyloid load (RECAL) matrix. The RECAL framework integrates factors of risk and resilience to cerebral amyloid load for individual risk prediction. We show the clinical consequences when the RECAL matrix is operationalized into a diagnostic algorithm both for individual counseling of subjects and for the identification of at risk samples for primary and secondary preventive trials. We discuss the implication of biomarkers for the identification of prodromal AD for the primary care system that seems presently not even prepared to cope with the increasing number of subjects afflicted with late stage AD dementia, let alone future cohorts of subjects searching counseling or treatment of predementia and asymptomatic stages of AD. The paradigm shift in AD diagnosis and its operationalization into a diagnostic framework will have major implications for our understanding of disease pathogenesis. Now, for the first time, we have access to in vivo markers of key events in AD pathogenesis integrated into a heuristic framework that makes strong predictions on pattern of multimodal biomarkers in different stages of AD. Critical testing of these predictions will help us to modify or even falsify

  17. Multimodal Imaging for Improved Diagnosis and Treatment of Cancers

    PubMed Central

    Tempany, Clare; Jayender, Jagadeesan; Kapur, Tina; Bueno, Raphael; Golby, Alexandra; Agar, Nathalie; Jolesz, Ferenc

    2014-01-01

    This article reviews methods for image-guided diagnosis and therapy that increase precision in detection, characterization, and localization of many forms of cancer to achieve optimal target definition and complete resection or ablation. We present a new model of translational clinical image guided therapy research and describe the Advanced Multimodality Image Guided Operating (AMIGO) suite. AMIGO was conceived and designed to allow for the full integration of imaging in cancer diagnosis and treatment. We draw examples from over 500 cases performed on brain, neck, spine, thorax (breast, lung), and pelvis (prostate and gynecologic areas) and describe how they address some of the many challenges of treating brain, prostate and lung tumors. PMID:25204551

  18. Multimodal imaging for improved diagnosis and treatment of cancers.

    PubMed

    Tempany, Clare M C; Jayender, Jagadeesan; Kapur, Tina; Bueno, Raphael; Golby, Alexandra; Agar, Nathalie; Jolesz, Ferenc A

    2015-03-15

    The authors review methods for image-guided diagnosis and therapy that increase precision in the detection, characterization, and localization of many forms of cancer to achieve optimal target definition and complete resection or ablation. A new model of translational, clinical, image-guided therapy research is presented, and the Advanced Multimodality Image-Guided Operating (AMIGO) suite is described. AMIGO was conceived and designed to allow for the full integration of imaging in cancer diagnosis and treatment. Examples are drawn from over 500 procedures performed on brain, neck, spine, thorax (breast, lung), and pelvis (prostate and gynecologic) areas and are used to describe how they address some of the many challenges of treating brain, prostate, and lung tumors. Cancer 2015;121:817-827. © 2014 American Cancer Society. PMID:25204551

  19. Multimodality Imaging of Vertebrobasilar Dolichoectasia: Clinical Presentations and Imaging Spectrum.

    PubMed

    Samim, Mohammad; Goldstein, Alan; Schindler, Joseph; Johnson, Michele H

    2016-01-01

    Vertebrobasilar dolichoectasia (VBD) is characterized by ectasia, elongation, and tortuosity of the vertebrobasilar arteries, with a high degree of variability in clinical presentation. The disease origin is believed to involve degeneration of the internal elastic lamina, thinning of the media secondary to reticular fiber deficiency, and smooth muscle atrophy. The prevalence of VBD is variable, ranging from 0.05% to 18%. Most patients with VBD are asymptomatic and their VBD is detected incidentally; however, it is important to recognize that the presence of symptoms, which can lead to clinically significant morbidity and sometimes mortality, may influence clinical management. The most important clinical presentations of VBD are vascular events, such as ischemic stroke and catastrophic intracranial hemorrhage, or progressive compressive symptoms related to compression of adjacent structures, including the cranial nerves, brainstem, or third ventricle, causing hydrocephalus. The imaging diagnostic criteria for computed tomography and magnetic resonance (MR) imaging include three quantitative measures of basilar artery morphology: laterality score, height of bifurcation, and basilar artery diameter. The authors review the relevant anatomy and disease origin of VBD; pertinent imaging findings, including intraluminal thrombus and relation to the cranial nerves; and imaging pitfalls, such as the hyperintense vessel sign on MR images and artifacts related to slow flow in the dolichoectatic vessel. In addition, clinical manifestations, the role of radiology in diagnosis and management of this condition, and available management options are reviewed. (©)RSNA, 2016. PMID:27315445

  20. Design and applications of a multimodality image data warehouse framework.

    PubMed

    Wong, Stephen T C; Hoo, Kent Soo; Knowlton, Robert C; Laxer, Kenneth D; Cao, Xinhau; Hawkins, Randall A; Dillon, William P; Arenson, Ronald L

    2002-01-01

    A comprehensive data warehouse framework is needed, which encompasses imaging and non-imaging information in supporting disease management and research. The authors propose such a framework, describe general design principles and system architecture, and illustrate a multimodality neuroimaging data warehouse system implemented for clinical epilepsy research. The data warehouse system is built on top of a picture archiving and communication system (PACS) environment and applies an iterative object-oriented analysis and design (OOAD) approach and recognized data interface and design standards. The implementation is based on a Java CORBA (Common Object Request Broker Architecture) and Web-based architecture that separates the graphical user interface presentation, data warehouse business services, data staging area, and backend source systems into distinct software layers. To illustrate the practicality of the data warehouse system, the authors describe two distinct biomedical applications--namely, clinical diagnostic workup of multimodality neuroimaging cases and research data analysis and decision threshold on seizure foci lateralization. The image data warehouse framework can be modified and generalized for new application domains.

  1. Multimodality medical image fusion: probabilistic quantification, segmentation, and registration

    NASA Astrophysics Data System (ADS)

    Wang, Yue J.; Freedman, Matthew T.; Xuan, Jian Hua; Zheng, Qinfen; Mun, Seong K.

    1998-06-01

    Multimodality medical image fusion is becoming increasingly important in clinical applications, which involves information processing, registration and visualization of interventional and/or diagnostic images obtained from different modalities. This work is to develop a multimodality medical image fusion technique through probabilistic quantification, segmentation, and registration, based on statistical data mapping, multiple feature correlation, and probabilistic mean ergodic theorems. The goal of image fusion is to geometrically align two or more image areas/volumes so that pixels/voxels representing the same underlying anatomical structure can be superimposed meaningfully. Three steps are involved. To accurately extract the regions of interest, we developed the model supported Bayesian relaxation labeling, and edge detection and region growing integrated algorithms to segment the images into objects. After identifying the shift-invariant features (i.e., edge and region information), we provided an accurate and robust registration technique which is based on matching multiple binary feature images through a site model based image re-projection. The image was initially segmented into specified number of regions. A rough contour can be obtained by delineating and merging some of the segmented regions. We applied region growing and morphological filtering to extract the contour and get rid of some disconnected residual pixels after segmentation. The matching algorithm is implemented as follows: (1) the centroids of PET/CT and MR images are computed and then translated to the center of both images. (2) preliminary registration is performed first to determine an initial range of scaling factors and rotations, and the MR image is then resampled according to the specified parameters. (3) the total binary difference of the corresponding binary maps in both images is calculated for the selected registration parameters, and the final registration is achieved when the

  2. Longitudinal, multimodal functional imaging of microvascular response to photothermal therapy

    PubMed Central

    Bui, Albert K.; Teves, Kathleen M.; Indrawan, Elmer; Jia, Wangcun; Choi, Bernard

    2012-01-01

    Although studies have shown that photothermal therapy can coagulate selectively abnormal vasculature, the ability of this method to achieve consistent, complete removal of the vasculature is questionable. We present the use of multimodal, wide-field functional imaging to study, in greater detail, the biological response to selective laser injury. Specifically, a single-platform instrument capable of coregistered fluorescence imaging and laser speckle imaging was utilized to monitor vascular endothelial growth factor gene expression and blood flow, respectively, in a transgenic rodent model. Collectively, the longitudinal, in vivo data collected with our instrument suggest that the biological response to selective laser injury involves early-stage redistribution of blood flow, followed by increased vascular endothelial growth factor promoter activity to stimulate pro-angiogenic events. PMID:20890338

  3. Gold Nanoconstructs for Multimodal Diagnostic Imaging and Photothermal Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Coughlin, Andrew James

    Cancer accounts for nearly 1 out of every 4 deaths in the United States, and because conventional treatments are limited by morbidity and off-target toxicities, improvements in cancer management are needed. This thesis further develops nanoparticle-assisted photothermal therapy (NAPT) as a viable treatment option for cancer patients. NAPT enables localized ablation of disease because heat generation only occurs where tissue permissive near-infrared (NIR) light and absorbing nanoparticles are combined, leaving surrounding normal tissue unharmed. Two principle approaches were investigated to improve the specificity of this technique: multimodal imaging and molecular targeting. Multimodal imaging affords the ability to guide NIR laser application for site-specific NAPT and more holistic characterization of disease by combining the advantages of several diagnostic technologies. Towards the goal of image-guided NAPT, gadolinium-conjugated gold-silica nanoshells were engineered and demonstrated to enhance imaging contrast across a range of diagnostic modes, including T1-weighted magnetic resonance imaging, X-Ray, optical coherence tomography, reflective confocal microscopy, and two-photon luminescence in vitro as well as within an animal tumor model. Additionally, the nanoparticle conjugates were shown to effectively convert NIR light to heat for applications in photothermal therapy. Therefore, the broad utility of gadolinium-nanoshells for anatomic localization of tissue lesions, molecular characterization of malignancy, and mediators of ablation was established. Molecular targeting strategies may also improve NAPT by promoting nanoparticle uptake and retention within tumors and enhancing specificity when malignant and normal tissue interdigitate. Here, ephrinA1 protein ligands were conjugated to nanoshell surfaces for particle homing to overexpressed EphA2 receptors on prostate cancer cells. In vitro, successful targeting and subsequent photothermal ablation of

  4. Multimodal Medical Image Fusion by Adaptive Manifold Filter.

    PubMed

    Geng, Peng; Liu, Shuaiqi; Zhuang, Shanna

    2015-01-01

    Medical image fusion plays an important role in diagnosis and treatment of diseases such as image-guided radiotherapy and surgery. The modified local contrast information is proposed to fuse multimodal medical images. Firstly, the adaptive manifold filter is introduced into filtering source images as the low-frequency part in the modified local contrast. Secondly, the modified spatial frequency of the source images is adopted as the high-frequency part in the modified local contrast. Finally, the pixel with larger modified local contrast is selected into the fused image. The presented scheme outperforms the guided filter method in spatial domain, the dual-tree complex wavelet transform-based method, nonsubsampled contourlet transform-based method, and four classic fusion methods in terms of visual quality. Furthermore, the mutual information values by the presented method are averagely 55%, 41%, and 62% higher than the three methods and those values of edge based similarity measure by the presented method are averagely 13%, 33%, and 14% higher than the three methods for the six pairs of source images. PMID:26664494

  5. Holistic random encoding for imaging through multimode fibers.

    PubMed

    Jang, Hwanchol; Yoon, Changhyeong; Chung, Euiheon; Choi, Wonshik; Lee, Heung-No

    2015-03-01

    The input numerical aperture (NA) of multimode fiber (MMF) can be effectively increased by placing turbid media at the input end of the MMF. This provides the potential for high-resolution imaging through the MMF. While the input NA is increased, the number of propagation modes in the MMF and hence the output NA remains the same. This makes the image reconstruction process underdetermined and may limit the quality of the image reconstruction. In this paper, we aim to improve the signal to noise ratio (SNR) of the image reconstruction in imaging through MMF. We notice that turbid media placed in the input of the MMF transforms the incoming waves into a better format for information transmission and information extraction. We call this transformation as holistic random (HR) encoding of turbid media. By exploiting the HR encoding, we make a considerable improvement on the SNR of the image reconstruction. For efficient utilization of the HR encoding, we employ sparse representation (SR), a relatively new signal reconstruction framework when it is provided with a HR encoded signal. This study shows for the first time to our knowledge the benefit of utilizing the HR encoding of turbid media for recovery in the optically underdetermined systems where the output NA of it is smaller than the input NA for imaging through MMF.

  6. Deformable image registration for multimodal lung-cancer staging

    NASA Astrophysics Data System (ADS)

    Cheirsilp, Ronnarit; Zang, Xiaonan; Bascom, Rebecca; Allen, Thomas W.; Mahraj, Rickhesvar P. M.; Higgins, William E.

    2016-03-01

    Positron emission tomography (PET) and X-ray computed tomography (CT) serve as major diagnostic imaging modalities in the lung-cancer staging process. Modern scanners provide co-registered whole-body PET/CT studies, collected while the patient breathes freely, and high-resolution chest CT scans, collected under a brief patient breath hold. Unfortunately, no method exists for registering a PET/CT study into the space of a high-resolution chest CT scan. If this could be done, vital diagnostic information offered by the PET/CT study could be brought seamlessly into the procedure plan used during live cancer-staging bronchoscopy. We propose a method for the deformable registration of whole-body PET/CT data into the space of a high-resolution chest CT study. We then demonstrate its potential for procedure planning and subsequent use in multimodal image-guided bronchoscopy.

  7. Gadolinium oxide nanoparticles as potential multimodal imaging and therapeutic agents.

    PubMed

    Kim, Tae Jeong; Chae, Kwon Seok; Chang, Yongmin; Lee, Gang Ho

    2013-01-01

    Potentials of hydrophilic and biocompatible ligand coated gadolinium oxide nanoparticles as multimodal imaging agents, drug carriers, and therapeutic agents are reviewed. First of all, they can be used as advanced T1 magnetic resonance imaging (MRI) contrast agents because they have r1 larger than those of Gd(III)-chelates due to a high density of Gd(III) per nanoparticle. They can be further functionalized by conjugating other imaging agents such as fluorescent imaging (FI), X-ray computed tomography (CT), positron emission tomography (PET), and single photon emission tomography (SPECT) agents. They can be also useful for drug carriers through morphology modifications. They themselves are also potential CT and ultrasound imaging (USI) contrast and thermal neutron capture therapeutic (NCT) agents, which are superior to commercial iodine compounds, air-filled albumin microspheres, and boron ((10)B) compounds, respectively. They, when conjugated with targeting agents such as antibodies and peptides, will provide enhanced images and be also very useful for diagnosis and therapy of diseases (so called theragnosis).

  8. A versatile clearing agent for multi-modal brain imaging.

    PubMed

    Costantini, Irene; Ghobril, Jean-Pierre; Di Giovanna, Antonino Paolo; Allegra Mascaro, Anna Letizia; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Onofri, Leonardo; Conti, Valerio; Vanzi, Francesco; Sacconi, Leonardo; Guerrini, Renzo; Markram, Henry; Iannello, Giulio; Pavone, Francesco Saverio

    2015-05-07

    Extensive mapping of neuronal connections in the central nervous system requires high-throughput µm-scale imaging of large volumes. In recent years, different approaches have been developed to overcome the limitations due to tissue light scattering. These methods are generally developed to improve the performance of a specific imaging modality, thus limiting comprehensive neuroanatomical exploration by multi-modal optical techniques. Here, we introduce a versatile brain clearing agent (2,2'-thiodiethanol; TDE) suitable for various applications and imaging techniques. TDE is cost-efficient, water-soluble and low-viscous and, more importantly, it preserves fluorescence, is compatible with immunostaining and does not cause deformations at sub-cellular level. We demonstrate the effectiveness of this method in different applications: in fixed samples by imaging a whole mouse hippocampus with serial two-photon tomography; in combination with CLARITY by reconstructing an entire mouse brain with light sheet microscopy and in translational research by imaging immunostained human dysplastic brain tissue.

  9. Multimodality imaging of Alzheimer disease and other neurodegenerative dementias.

    PubMed

    Nasrallah, Ilya M; Wolk, David A

    2014-12-01

    Neurodegenerative diseases, such as Alzheimer disease, result in cognitive decline and dementia and are a leading cause of mortality in the growing elderly population. These progressive diseases typically have an insidious onset, with overlapping clinical features early in the disease course that make diagnosis challenging. The neurodegenerative diseases are associated with characteristic, although not completely understood, changes in the brain: abnormal protein deposition, synaptic dysfunction, neuronal injury, and neuronal death. Neuroimaging biomarkers-principally regional atrophy on structural MR imaging, patterns of hypometabolism on (18)F-FDG PET, and detection of cerebral amyloid plaque on amyloid PET--are able to evaluate the patterns of these abnormalities in the brain to improve early diagnosis and help predict the disease course. These techniques have unique strengths and synergies in multimodality evaluation of the patient with cognitive decline or dementia. This review discusses the key imaging biomarkers from MR imaging, (18)F-FDG PET, and amyloid PET; the imaging features of the most common neurodegenerative dementias; the role of various neuroimaging studies in differential diagnosis and prognosis; and some promising imaging techniques under development.

  10. A versatile clearing agent for multi-modal brain imaging

    PubMed Central

    Costantini, Irene; Ghobril, Jean-Pierre; Di Giovanna, Antonino Paolo; Mascaro, Anna Letizia Allegra; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Onofri, Leonardo; Conti, Valerio; Vanzi, Francesco; Sacconi, Leonardo; Guerrini, Renzo; Markram, Henry; Iannello, Giulio; Pavone, Francesco Saverio

    2015-01-01

    Extensive mapping of neuronal connections in the central nervous system requires high-throughput µm-scale imaging of large volumes. In recent years, different approaches have been developed to overcome the limitations due to tissue light scattering. These methods are generally developed to improve the performance of a specific imaging modality, thus limiting comprehensive neuroanatomical exploration by multi-modal optical techniques. Here, we introduce a versatile brain clearing agent (2,2′-thiodiethanol; TDE) suitable for various applications and imaging techniques. TDE is cost-efficient, water-soluble and low-viscous and, more importantly, it preserves fluorescence, is compatible with immunostaining and does not cause deformations at sub-cellular level. We demonstrate the effectiveness of this method in different applications: in fixed samples by imaging a whole mouse hippocampus with serial two-photon tomography; in combination with CLARITY by reconstructing an entire mouse brain with light sheet microscopy and in translational research by imaging immunostained human dysplastic brain tissue. PMID:25950610

  11. Incorporating global information in feature-based multimodal image registration

    NASA Astrophysics Data System (ADS)

    Li, Yong; Stevenson, Robert

    2014-03-01

    A multimodal image registration framework based on searching the best matched keypoints and the incorporation of global information is proposed. It comprises two key elements: keypoint detection and an iterative process. Keypoints are detected from both the reference and test images. For each test keypoint, a number of reference keypoints are chosen as mapping candidates. A triplet of keypoint mappings determine an affine transformation that is evaluated using a similarity metric between the reference image and the transformed test image by the determined transformation. An iterative process is conducted on triplets of keypoint mappings, keeping track of the best matched reference keypoint. Random sample consensus and mutual information are applied to eliminate outlier keypoint mappings. The similarity metric is defined to be the number of overlapped edge pixels over the entire images, allowing for global information to be incorporated in the evaluation of triplets of mappings. The performance of the framework is investigated with keypoints extracted by scale invariant feature transform and partial intensity invariant feature descriptor. Experimental results show that the proposed framework can provide more accurate registration than existing methods.

  12. Design, implementation and operation of a multimodality research imaging informatics repository

    PubMed Central

    2015-01-01

    Background Biomedical imaging research increasingly involves acquiring, managing and processing large amounts of distributed imaging data. Integrated systems that combine data, meta-data and workflows are crucial for realising the opportunities presented by advances in imaging facilities. Methods This paper describes the design, implementation and operation of a multi-modality research imaging data management system that manages imaging data obtained from biomedical imaging scanners operated at Monash Biomedical Imaging (MBI), Monash University in Melbourne, Australia. In addition to Digital Imaging and Communications in Medicine (DICOM) images, raw data and non-DICOM biomedical data can be archived and distributed by the system. Imaging data are annotated with meta-data according to a study-centric data model and, therefore, scientific users can find, download and process data easily. Results The research imaging data management system ensures long-term usability, integrity inter-operability and integration of large imaging data. Research users can securely browse and download stored images and data, and upload processed data via subject-oriented informatics frameworks including the Distributed and Reflective Informatics System (DaRIS), and the Extensible Neuroimaging Archive Toolkit (XNAT). PMID:25870760

  13. Exploiting multimode waveguides for pure fibre-based imaging

    PubMed Central

    Čižmár, Tomáš; Dholakia, Kishan

    2012-01-01

    There has been an immense drive in modern microscopy towards miniaturization and fibre-based technology. This has been necessitated by the need to access hostile or difficult environments in situ and in vivo. Strategies to date have included the use of specialist fibres and miniaturized scanning systems accompanied by ingenious microfabricated lenses. Here we present a novel approach for this field by utilizing disordered light within a standard multimode optical fibre for lensless microscopy and optical mode conversion. We demonstrate the modalities of bright- and dark-field imaging and scanning fluorescence microscopy at acquisition rates that allow observation of dynamic processes such as Brownian motion of mesoscopic particles. Furthermore, we show how such control can realize a new form of mode converter and generate various types of advanced light fields such as propagation-invariant beams and optical vortices. These may be useful for future fibre-based implementations of super-resolution or light-sheet microscopy. PMID:22929784

  14. Multimodal imaging in Alzheimer's disease: validity and usefulness for early detection.

    PubMed

    Teipel, Stefan; Drzezga, Alexander; Grothe, Michel J; Barthel, Henryk; Chételat, Gaël; Schuff, Norbert; Skudlarski, Pawel; Cavedo, Enrica; Frisoni, Giovanni B; Hoffmann, Wolfgang; Thyrian, Jochen René; Fox, Chris; Minoshima, Satoshi; Sabri, Osama; Fellgiebel, Andreas

    2015-10-01

    Alzheimer's disease is a progressive neurodegenerative disease that typically manifests clinically as an isolated amnestic deficit that progresses to a characteristic dementia syndrome. Advances in neuroimaging research have enabled mapping of diverse molecular, functional, and structural aspects of Alzheimer's disease pathology in ever increasing temporal and regional detail. Accumulating evidence suggests that distinct types of imaging abnormalities related to Alzheimer's disease follow a consistent trajectory during pathogenesis of the disease, and that the first changes can be detected years before the disease manifests clinically. These findings have fuelled clinical interest in the use of specific imaging markers for Alzheimer's disease to predict future development of dementia in patients who are at risk. The potential clinical usefulness of single or multimodal imaging markers is being investigated in selected patient samples from clinical expert centres, but additional research is needed before these promising imaging markers can be successfully translated from research into clinical practice in routine care. PMID:26318837

  15. Data structures for multimodality imaging: concepts and implementation

    NASA Astrophysics Data System (ADS)

    Mealha, Oscar E. C.; Sousa Pereira, Antonio; Santos, Maria Beatriz S.

    1992-06-01

    The integration of data coming from different imaging modalities is something to take into account, due to the importance it can have in the development of a fast and reliable diagnosis by the health staff. In the medical imaging field, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and single photon emission computed tomography (SPECT) are examples of devices that generate 3-D data. Digital subtraction angiography (DSA) or ultrasound (US) output 2-D data, from which its possible to reconstruct 3-D data. An important fact is that 3-D space is common to all these devices and they are all capable of producing large amounts of data. Prior to display or even data integration, matching the various 3-D spaces has to be achieved with some specific technique, according to the anatomical region under examination. The augmented octree, an extension of the linear octree, is used for data integration; its properties can help to overcome some of the constraints that occur in medical imaging. To be fully accepted by the specialist, the display and manipulation of multimodality data must be interactive and done in real-time, or at least in `nearly' real-time. Parallel architectures seem to be a solution for some computation intensive applications, and so an implementation of the linear octree encoding process was developed on a 16 Transputer machine.

  16. Direct estimation of evoked hemoglobin changes by multimodality fusion imaging

    PubMed Central

    Huppert, Theodore J.; Diamond, Solomon G.; Boas, David A.

    2009-01-01

    In the last two decades, both diffuse optical tomography (DOT) and blood oxygen level dependent (BOLD)-based functional magnetic resonance imaging (fMRI) methods have been developed as noninvasive tools for imaging evoked cerebral hemodynamic changes in studies of brain activity. Although these two technologies measure functional contrast from similar physiological sources, i.e., changes in hemoglobin levels, these two modalities are based on distinct physical and biophysical principles leading to both limitations and strengths to each method. In this work, we describe a unified linear model to combine the complimentary spatial, temporal, and spectroscopic resolutions of concurrently measured optical tomography and fMRI signals. Using numerical simulations, we demonstrate that concurrent optical and BOLD measurements can be used to create cross-calibrated estimates of absolute micromolar deoxyhemoglobin changes. We apply this new analysis tool to experimental data acquired simultaneously with both DOT and BOLD imaging during a motor task, demonstrate the ability to more robustly estimate hemoglobin changes in comparison to DOT alone, and show how this approach can provide cross-calibrated estimates of hemoglobin changes. Using this multimodal method, we estimate the calibration of the 3 tesla BOLD signal to be −0.55% ± 0.40% signal change per micromolar change of deoxyhemoglobin. PMID:19021411

  17. Distance-Dependent Multimodal Image Registration for Agriculture Tasks

    PubMed Central

    Berenstein, Ron; Hočevar, Marko; Godeša, Tone; Edan, Yael; Ben-Shahar, Ohad

    2015-01-01

    Image registration is the process of aligning two or more images of the same scene taken at different times; from different viewpoints; and/or by different sensors. This research focuses on developing a practical method for automatic image registration for agricultural systems that use multimodal sensory systems and operate in natural environments. While not limited to any particular modalities; here we focus on systems with visual and thermal sensory inputs. Our approach is based on pre-calibrating a distance-dependent transformation matrix (DDTM) between the sensors; and representing it in a compact way by regressing the distance-dependent coefficients as distance-dependent functions. The DDTM is measured by calculating a projective transformation matrix for varying distances between the sensors and possible targets. To do so we designed a unique experimental setup including unique Artificial Control Points (ACPs) and their detection algorithms for the two sensors. We demonstrate the utility of our approach using different experiments and evaluation criteria. PMID:26308000

  18. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

    PubMed Central

    Jakab, Andras; Bauer, Stefan; Kalpathy-Cramer, Jayashree; Farahani, Keyvan; Kirby, Justin; Burren, Yuliya; Porz, Nicole; Slotboom, Johannes; Wiest, Roland; Lanczi, Levente; Gerstner, Elizabeth; Weber, Marc-André; Arbel, Tal; Avants, Brian B.; Ayache, Nicholas; Buendia, Patricia; Collins, D. Louis; Cordier, Nicolas; Corso, Jason J.; Criminisi, Antonio; Das, Tilak; Delingette, Hervé; Demiralp, Çağatay; Durst, Christopher R.; Dojat, Michel; Doyle, Senan; Festa, Joana; Forbes, Florence; Geremia, Ezequiel; Glocker, Ben; Golland, Polina; Guo, Xiaotao; Hamamci, Andac; Iftekharuddin, Khan M.; Jena, Raj; John, Nigel M.; Konukoglu, Ender; Lashkari, Danial; Mariz, José António; Meier, Raphael; Pereira, Sérgio; Precup, Doina; Price, Stephen J.; Raviv, Tammy Riklin; Reza, Syed M. S.; Ryan, Michael; Sarikaya, Duygu; Schwartz, Lawrence; Shin, Hoo-Chang; Shotton, Jamie; Silva, Carlos A.; Sousa, Nuno; Subbanna, Nagesh K.; Szekely, Gabor; Taylor, Thomas J.; Thomas, Owen M.; Tustison, Nicholas J.; Unal, Gozde; Vasseur, Flor; Wintermark, Max; Ye, Dong Hye; Zhao, Liang; Zhao, Binsheng; Zikic, Darko; Prastawa, Marcel; Reyes, Mauricio; Van Leemput, Koen

    2016-01-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients—manually annotated by up to four raters—and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%–85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource. PMID:25494501

  19. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).

    PubMed

    Menze, Bjoern H; Jakab, Andras; Bauer, Stefan; Kalpathy-Cramer, Jayashree; Farahani, Keyvan; Kirby, Justin; Burren, Yuliya; Porz, Nicole; Slotboom, Johannes; Wiest, Roland; Lanczi, Levente; Gerstner, Elizabeth; Weber, Marc-André; Arbel, Tal; Avants, Brian B; Ayache, Nicholas; Buendia, Patricia; Collins, D Louis; Cordier, Nicolas; Corso, Jason J; Criminisi, Antonio; Das, Tilak; Delingette, Hervé; Demiralp, Çağatay; Durst, Christopher R; Dojat, Michel; Doyle, Senan; Festa, Joana; Forbes, Florence; Geremia, Ezequiel; Glocker, Ben; Golland, Polina; Guo, Xiaotao; Hamamci, Andac; Iftekharuddin, Khan M; Jena, Raj; John, Nigel M; Konukoglu, Ender; Lashkari, Danial; Mariz, José Antonió; Meier, Raphael; Pereira, Sérgio; Precup, Doina; Price, Stephen J; Raviv, Tammy Riklin; Reza, Syed M S; Ryan, Michael; Sarikaya, Duygu; Schwartz, Lawrence; Shin, Hoo-Chang; Shotton, Jamie; Silva, Carlos A; Sousa, Nuno; Subbanna, Nagesh K; Szekely, Gabor; Taylor, Thomas J; Thomas, Owen M; Tustison, Nicholas J; Unal, Gozde; Vasseur, Flor; Wintermark, Max; Ye, Dong Hye; Zhao, Liang; Zhao, Binsheng; Zikic, Darko; Prastawa, Marcel; Reyes, Mauricio; Van Leemput, Koen

    2015-10-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients-manually annotated by up to four raters-and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.

  20. Convergent Findings of Altered Functional and Structural Brain Connectivity in Individuals with High Functioning Autism: A Multimodal MRI Study.

    PubMed

    Mueller, Sophia; Keeser, Daniel; Samson, Andrea C; Kirsch, Valerie; Blautzik, Janusch; Grothe, Michel; Erat, Okan; Hegenloh, Michael; Coates, Ute; Reiser, Maximilian F; Hennig-Fast, Kristina; Meindl, Thomas

    2013-01-01

    Brain tissue changes in autism spectrum disorders seem to be rather subtle and widespread than anatomically distinct. Therefore a multimodal, whole brain imaging technique appears to be an appropriate approach to investigate whether alterations in white and gray matter integrity relate to consistent changes in functional resting state connectivity in individuals with high functioning autism (HFA). We applied diffusion tensor imaging (DTI), voxel-based morphometry (VBM) and resting state functional connectivity magnetic resonance imaging (fcMRI) to assess differences in brain structure and function between 12 individuals with HFA (mean age 35.5, SD 11.4, 9 male) and 12 healthy controls (mean age 33.3, SD 9.0, 8 male). Psychological measures of empathy and emotionality were obtained and correlated with the most significant DTI, VBM and fcMRI findings. We found three regions of convergent structural and functional differences between HFA participants and controls. The right temporo-parietal junction area and the left frontal lobe showed decreased fractional anisotropy (FA) values along with decreased functional connectivity and a trend towards decreased gray matter volume. The bilateral superior temporal gyrus displayed significantly decreased functional connectivity that was accompanied by the strongest trend of gray matter volume decrease in the temporal lobe of HFA individuals. FA decrease in the right temporo-parietal region was correlated with psychological measurements of decreased emotionality. In conclusion, our results indicate common sites of structural and functional alterations in higher order association cortex areas and may therefore provide multimodal imaging support to the long-standing hypothesis of autism as a disorder of impaired higher-order multisensory integration.

  1. Convergent Findings of Altered Functional and Structural Brain Connectivity in Individuals with High Functioning Autism: A Multimodal MRI Study

    PubMed Central

    Samson, Andrea C.; Kirsch, Valerie; Blautzik, Janusch; Grothe, Michel; Erat, Okan; Hegenloh, Michael; Coates, Ute; Reiser, Maximilian F.; Hennig-Fast, Kristina; Meindl, Thomas

    2013-01-01

    Brain tissue changes in autism spectrum disorders seem to be rather subtle and widespread than anatomically distinct. Therefore a multimodal, whole brain imaging technique appears to be an appropriate approach to investigate whether alterations in white and gray matter integrity relate to consistent changes in functional resting state connectivity in individuals with high functioning autism (HFA). We applied diffusion tensor imaging (DTI), voxel-based morphometry (VBM) and resting state functional connectivity magnetic resonance imaging (fcMRI) to assess differences in brain structure and function between 12 individuals with HFA (mean age 35.5, SD 11.4, 9 male) and 12 healthy controls (mean age 33.3, SD 9.0, 8 male). Psychological measures of empathy and emotionality were obtained and correlated with the most significant DTI, VBM and fcMRI findings. We found three regions of convergent structural and functional differences between HFA participants and controls. The right temporo-parietal junction area and the left frontal lobe showed decreased fractional anisotropy (FA) values along with decreased functional connectivity and a trend towards decreased gray matter volume. The bilateral superior temporal gyrus displayed significantly decreased functional connectivity that was accompanied by the strongest trend of gray matter volume decrease in the temporal lobe of HFA individuals. FA decrease in the right temporo-parietal region was correlated with psychological measurements of decreased emotionality. In conclusion, our results indicate common sites of structural and functional alterations in higher order association cortex areas and may therefore provide multimodal imaging support to the long-standing hypothesis of autism as a disorder of impaired higher-order multisensory integration. PMID:23825652

  2. Multimodal detection of man-made objects in simulated aerial images

    NASA Astrophysics Data System (ADS)

    Baran, Matthew S.; Tutwiler, Richard L.; Natale, Donald J.; Bassett, Michael S.; Harner, Matthew P.

    2013-05-01

    This paper presents an approach to multi-modal detection of man-made objects from aerial imagery. Detections are made in polarization imagery, hyperspectral imagery, and LIDAR point clouds then fused into a single confidence map. The detections are based on reflective, spectral, and geometric features of man-made objects in airborne images. The polarization imagery detector uses the Stokes parameters and the degree of linear polarization to find highly polarizing objects. The hyperspectral detector matches scene spectra to a library of man-made materials using a combination of the spectral gradient angle and the generalized likelihood ratio test. The LIDAR detector clusters 3D points into objects using principle component analysis and prunes the detections by size and shape. Once the three channels are mapped into detection images, the information can be fused without some of the problems of multi-modal fusion, such as edge reversal. The imagery used in this system was simulated with a first-principles ray tracing image generator known as DIRSIG.

  3. Self-imaging of orbital angular momentum (OAM) modes in rectangular multimode interference waveguides.

    PubMed

    Ma, Zelin; Chen, Hui; Wu, Kaiyi; Zhang, Yanfeng; Chen, Yujie; Yu, Siyuan

    2015-02-23

    We study the propagation of orbital angular momentum (OAM) modes in rectangular multimode waveguides. Due to the multimode interference effect, an OAM mode input forms self-images at certain propagation distances. As OAM modes can be decomposed as the superposition of a pair of quarter-wave phase-shifted even and odd modes, their symmetry properties lead to two different self-imaging categories - forming the OAM-maintaining and the field-splitting self-images. We analyze these phenomena using multimode interference theory, and establish the rules governing the OAM-maintaining self-imaging, which allows the multi-mode interference waveguides to be used as OAM mode splitters and couplers.

  4. 4D XCAT phantom for multimodality imaging research

    SciTech Connect

    Segars, W. P.; Sturgeon, G.; Mendonca, S.; Grimes, Jason; Tsui, B. M. W.

    2010-09-15

    Purpose: The authors develop the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. Methods: Highly detailed whole-body anatomies for the adult male and female were defined in the XCAT using nonuniform rational B-spline (NURBS) and subdivision surfaces based on segmentation of the Visible Male and Female anatomical datasets from the National Library of Medicine as well as patient datasets. Using the flexibility of these surfaces, the Visible Human anatomies were transformed to match body measurements and organ volumes for a 50th percentile (height and weight) male and female. The desired body measurements for the models were obtained using the PEOPLESIZE program that contains anthropometric dimensions categorized from 1st to the 99th percentile for US adults. The desired organ volumes were determined from ICRP Publication 89 [ICRP, ''Basic anatomical and physiological data for use in radiological protection: reference values,'' ICRP Publication 89 (International Commission on Radiological Protection, New York, NY, 2002)]. The male and female anatomies serve as standard templates upon which anatomical variations may be modeled in the XCAT through user-defined parameters. Parametrized models for the cardiac and respiratory motions were also incorporated into the XCAT based on high-resolution cardiac- and respiratory-gated multislice CT data. To demonstrate the usefulness of the phantom, the authors show example simulation studies in PET, SPECT, and CT using publicly available simulation packages. Results: As demonstrated in the pilot studies, the 4D XCAT (which includes thousands of anatomical structures) can produce realistic imaging data when combined with accurate models of the imaging process. With the flexibility of the NURBS surface primitives, any number of different anatomies, cardiac or respiratory motions or patterns, and spatial resolutions can be simulated to perform imaging research. Conclusions: With the ability to produce

  5. 4D XCAT phantom for multimodality imaging research

    PubMed Central

    Segars, W. P.; Sturgeon, G.; Mendonca, S.; Grimes, Jason; Tsui, B. M. W.

    2010-01-01

    Purpose: The authors develop the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. Methods: Highly detailed whole-body anatomies for the adult male and female were defined in the XCAT using nonuniform rational B-spline (NURBS) and subdivision surfaces based on segmentation of the Visible Male and Female anatomical datasets from the National Library of Medicine as well as patient datasets. Using the flexibility of these surfaces, the Visible Human anatomies were transformed to match body measurements and organ volumes for a 50th percentile (height and weight) male and female. The desired body measurements for the models were obtained using the PEOPLESIZE program that contains anthropometric dimensions categorized from 1st to the 99th percentile for US adults. The desired organ volumes were determined from ICRP Publication 89 [ICRP, ‘‘Basic anatomical and physiological data for use in radiological protection: reference values,” ICRP Publication 89 (International Commission on Radiological Protection, New York, NY, 2002)]. The male and female anatomies serve as standard templates upon which anatomical variations may be modeled in the XCAT through user-defined parameters. Parametrized models for the cardiac and respiratory motions were also incorporated into the XCAT based on high-resolution cardiac- and respiratory-gated multislice CT data. To demonstrate the usefulness of the phantom, the authors show example simulation studies in PET, SPECT, and CT using publicly available simulation packages. Results: As demonstrated in the pilot studies, the 4D XCAT (which includes thousands of anatomical structures) can produce realistic imaging data when combined with accurate models of the imaging process. With the flexibility of the NURBS surface primitives, any number of different anatomies, cardiac or respiratory motions or patterns, and spatial resolutions can be simulated to perform imaging research. Conclusions: With the ability to produce

  6. Nanodiamond landmarks for subcellular multimodal optical and electron imaging.

    PubMed

    Zurbuchen, Mark A; Lake, Michael P; Kohan, Sirus A; Leung, Belinda; Bouchard, Louis-S

    2013-01-01

    There is a growing need for biolabels that can be used in both optical and electron microscopies, are non-cytotoxic, and do not photobleach. Such biolabels could enable targeted nanoscale imaging of sub-cellular structures, and help to establish correlations between conjugation-delivered biomolecules and function. Here we demonstrate a sub-cellular multi-modal imaging methodology that enables localization of inert particulate probes, consisting of nanodiamonds having fluorescent nitrogen-vacancy centers. These are functionalized to target specific structures, and are observable by both optical and electron microscopies. Nanodiamonds targeted to the nuclear pore complex are rapidly localized in electron-microscopy diffraction mode to enable "zooming-in" to regions of interest for detailed structural investigations. Optical microscopies reveal nanodiamonds for in-vitro tracking or uptake-confirmation. The approach is general, works down to the single nanodiamond level, and can leverage the unique capabilities of nanodiamonds, such as biocompatibility, sensitive magnetometry, and gene and drug delivery. PMID:24036840

  7. Towards analysis of growth trajectory through multimodal longitudinal MR imaging

    NASA Astrophysics Data System (ADS)

    Sadeghi, Neda; Prastawa, Marcel; Gilmore, John H.; Lin, Weili; Gerig, Guido

    2010-03-01

    The human brain undergoes significant changes in the first few years after birth, but knowledge about this critical period of development is quite limited. Previous neuroimaging studies have been mostly focused on morphometric measures such as volume and shape, although tissue property measures related to the degree of myelination and axon density could also add valuable information to our understanding of brain maturation. Our goal is to complement brain growth analysis via morphometry with the study of longitudinal tissue property changes as reflected in patterns observed in multi-modal structural MRI and DTI. Our preliminary study includes eight healthy pediatric subjects with repeated scans at the age of two weeks, one year, and two years with T1, T2, PD, and DT MRI. Analysis is driven by the registration of multiple modalities and time points within and between subjects into a common coordinate frame, followed by image intensity normalization. Quantitative tractography with diffusion and structural image parameters serves for multi-variate tissue analysis. Different patterns of rapid changes were observed in the corpus callosum and the posterior and anterior internal capsule, structures known for distinctly different myelination growth. There are significant differences in central versus peripheral white matter. We demonstrate that the combined longitudinal analysis of structural and diffusion MRI proves superior to individual modalities and might provide a better understanding of the trajectory of early neurodevelopment.

  8. Multimodality medical image database for temporal lobe epilepsy

    NASA Astrophysics Data System (ADS)

    Siadat, Mohammad-Reza; Soltanian-Zadeh, Hamid; Fotouhi, Farshad A.; Elisevich, Kost

    2003-05-01

    This paper presents the development of a human brain multi-modality database for surgical candidacy determination in temporal lobe epilepsy. The focus of the paper is on content-based image management, navigation and retrieval. Several medical image-processing methods including our newly developed segmentation method are utilized for information extraction/correlation and indexing. The input data includes T1-, T2-Weighted and FLAIR MRI and ictal/interictal SPECT modalities with associated clinical data and EEG data analysis. The database can answer queries regarding issues such as the correlation between the attribute X of the entity Y and the outcome of a temporal lobe epilepsy surgery. The entity Y can be a brain anatomical structure such as the hippocampus. The attribute X can be either a functionality feature of the anatomical structure Y, calculated with SPECT modalities, such as signal average, or a volumetric/morphological feature of the entity Y such as volume or average curvature. The outcome of the surgery can be any surgery assessment such as non-verbal Wechsler memory quotient. A determination is made regarding surgical candidacy by analysis of both textual and image data. The current database system suggests a surgical determination for the cases with relatively small hippocampus and high signal intensity average on FLAIR images within the hippocampus. This indication matches the neurosurgeons expectations/observations. Moreover, as the database gets more populated with patient profiles and individual surgical outcomes, using data mining methods one may discover partially invisible correlations between the contents of different modalities of data and the outcome of the surgery.

  9. Integrated scanning laser ophthalmoscopy and optical coherence tomography for quantitative multimodal imaging of retinal degeneration and autofluorescence

    NASA Astrophysics Data System (ADS)

    Issaei, Ali; Szczygiel, Lukasz; Hossein-Javaheri, Nima; Young, Mei; Molday, L. L.; Molday, R. S.; Sarunic, M. V.

    2011-03-01

    Scanning Laser Ophthalmoscopy (SLO) and Coherence Tomography (OCT) are complimentary retinal imaging modalities. Integration of SLO and OCT allows for both fluorescent detection and depth- resolved structural imaging of the retinal cell layers to be performed in-vivo. System customization is required to image rodents used in medical research by vision scientists. We are investigating multimodal SLO/OCT imaging of a rodent model of Stargardt's Macular Dystrophy which is characterized by retinal degeneration and accumulation of toxic autofluorescent lipofuscin deposits. Our new findings demonstrate the ability to track fundus autofluorescence and retinal degeneration concurrently.

  10. Fabrication of a Multimodal Microbubble Platform for Magnetic Resonance, Ultrasound and Fluorescence Imaging Application.

    PubMed

    Miao, Zhaohua; Guo, Caixin; Li, Zhenglin; Ke, Hengte; Dai, Zhifei

    2016-03-01

    Magnetic resonance (MR), ultrasound (US) and fluorescence imaging are the widely used diagnostic modalities for various experimental and clinical applications. A multimodal poly(lactic acid) microbubble (MB) integrated with the three imaging modalities was fabricated by adsorbing CdTe quantum dots (QDs) onto the surface and encapsulating superparamagnetic iron oxide (SPIO) nanoparticles into the core. The strong fluorescence of the multimodal MBs confirmed that QDs were successfully deposited onto the surface. The in vitro MRI contrasting capability of the multimodal MBs at various concentrations was evaluated by T2-weighted imaging. Furthermore, the in vitro and in vivo ultrasonography indicated that CdTe and SPIO-inclusive MBs maintained excellent ultrasound contrast property. These results implied that the nano-in-micro hybrid materials have the potential as a nanomedical platform for multimodal bioimaging.

  11. Multimodal Task-Driven Dictionary Learning for Image Classification.

    PubMed

    Bahrampour, Soheil; Nasrabadi, Nasser M; Ray, Asok; Jenkins, William Kenneth

    2016-01-01

    Dictionary learning algorithms have been successfully used for both reconstructive and discriminative tasks, where an input signal is represented with a sparse linear combination of dictionary atoms. While these methods are mostly developed for single-modality scenarios, recent studies have demonstrated the advantages of feature-level fusion based on the joint sparse representation of the multimodal inputs. In this paper, we propose a multimodal task-driven dictionary learning algorithm under the joint sparsity constraint (prior) to enforce collaborations among multiple homogeneous/heterogeneous sources of information. In this task-driven formulation, the multimodal dictionaries are learned simultaneously with their corresponding classifiers. The resulting multimodal dictionaries can generate discriminative latent features (sparse codes) from the data that are optimized for a given task such as binary or multiclass classification. Moreover, we present an extension of the proposed formulation using a mixed joint and independent sparsity prior, which facilitates more flexible fusion of the modalities at feature level. The efficacy of the proposed algorithms for multimodal classification is illustrated on four different applications--multimodal face recognition, multi-view face recognition, multi-view action recognition, and multimodal biometric recognition. It is also shown that, compared with the counterpart reconstructive-based dictionary learning algorithms, the task-driven formulations are more computationally efficient in the sense that they can be equipped with more compact dictionaries and still achieve superior performance.

  12. Entropy and Laplacian images: structural representations for multi-modal registration.

    PubMed

    Wachinger, Christian; Navab, Nassir

    2012-01-01

    The standard approach to multi-modal registration is to apply sophisticated similarity metrics such as mutual information. The disadvantage of these metrics, in comparison to measuring the intensity difference with, e.g. L1 or L2 distance, is the increase in computational complexity and consequently the increase in runtime of the registration. An alternative approach, which has not yet gained much attention in the literature, is to find image representations, so called structural representations, that allow for the application of the L1 and L2 distance for multi-modal images. This has not only the advantage of a faster similarity calculation but enables also the application of more sophisticated optimization strategies. In this article, we theoretically analyze the requirements for structural representations. Further, we introduce two approaches to create such representations, which are based on the calculation of patch entropy and manifold learning, respectively. While the application of entropy has practical advantages in terms of computational complexity, the usage of manifold learning has theoretical advantages, by presenting an optimal approximation to one of the theoretical requirements. We perform experiments on multiple datasets for rigid, deformable, and groupwise registration with good results with respect to both, runtime and quality of alignment. PMID:21632274

  13. Multimodal Nonlinear Optical Microscopy and Applications to Central Nervous System Imaging.

    PubMed

    Huff, Terry B; Shi, Yunzhou; Fu, Yan; Wang, Haifeng; Cheng, Ji-Xin

    2008-01-01

    Multimodal nonlinear optical (NLO) imaging is poised to become a powerful tool in bioimaging given its ability to capitalize on the unique advantages possessed by different NLO imaging modalities. The integration of different imaging modalities such as two-photon-excited fluorescence, sum frequency generation, and coherent anti-Stokes Raman scattering on the same platform can facilitate simultaneous imaging of different biological structures. Parameters to be considered in constructing a multimodal NLO microscope are discussed with emphasis on achieving a compromise in these parameters for efficient signal generation with each imaging modality. As an example of biomedical applications, multimodal NLO imaging is utilized to investigate the central nervous system in healthy and diseased states.

  14. Multimodal Nonlinear Optical Microscopy and Applications to Central Nervous System Imaging

    PubMed Central

    Huff, Terry B.; Shi, Yunzhou; Fu, Yan; Wang, Haifeng; Cheng, Ji-Xin

    2009-01-01

    Multimodal nonlinear optical (NLO) imaging is poised to become a powerful tool in bioimaging given its ability to capitalize on the unique advantages possessed by different NLO imaging modalities. The integration of different imaging modalities such as two-photon-excited fluorescence, sum frequency generation, and coherent anti-Stokes Raman scattering on the same platform can facilitate simultaneous imaging of different biological structures. Parameters to be considered in constructing a multimodal NLO microscope are discussed with emphasis on achieving a compromise in these parameters for efficient signal generation with each imaging modality. As an example of biomedical applications, multimodal NLO imaging is utilized to investigate the central nervous system in healthy and diseased states. PMID:19829746

  15. Exogenous Molecular Probes for Targeted Imaging in Cancer: Focus on Multi-modal Imaging

    PubMed Central

    Joshi, Bishnu P.; Wang, Thomas D.

    2010-01-01

    Cancer is one of the major causes of mortality and morbidity in our healthcare system. Molecular imaging is an emerging methodology for the early detection of cancer, guidance of therapy, and monitoring of response. The development of new instruments and exogenous molecular probes that can be labeled for multi-modality imaging is critical to this process. Today, molecular imaging is at a crossroad, and new targeted imaging agents are expected to broadly expand our ability to detect and manage cancer. This integrated imaging strategy will permit clinicians to not only localize lesions within the body but also to manage their therapy by visualizing the expression and activity of specific molecules. This information is expected to have a major impact on drug development and understanding of basic cancer biology. At this time, a number of molecular probes have been developed by conjugating various labels to affinity ligands for targeting in different imaging modalities. This review will describe the current status of exogenous molecular probes for optical, scintigraphic, MRI and ultrasound imaging platforms. Furthermore, we will also shed light on how these techniques can be used synergistically in multi-modal platforms and how these techniques are being employed in current research. PMID:22180839

  16. Feasibility and Initial Performance of Simultaneous SPECT-CT Imaging Using a Commercial Multi-Modality Preclinical Imaging System

    PubMed Central

    Osborne, Dustin R.; Austin, Derek W.

    2015-01-01

    Multi-modality imaging provides coregistered PET-CT and SPECT-CT images; however such multi-modality workflows usually consist of sequential scans from the individual imaging components for each modality. This typical workflow may result in long scan times limiting throughput of the imaging system. Conversely, acquiring multi-modality data simultaneously may improve correlation and registration of images, improve temporal alignment of the acquired data, increase imaging throughput, and benefit the scanned subject by minimizing time under anesthetic. In this work, we demonstrate the feasibility and procedure for modifying a commercially available preclinical SPECT-CT platform to enable simultaneous SPECT-CT acquisition. We also evaluate the performance of simultaneous SPECT-CT tomographic imaging with this modified system. Performance was accessed using a 57Co source and image quality was evaluated with 99mTc phantoms in a series of simultaneous SPECT-CT scans. PMID:26146568

  17. Evaluation of a sequential multi-modality imaging algorithm for the diagnosis of acute appendicitis in the pregnant female.

    PubMed

    Ramalingam, Vijay; LeBedis, Christina; Kelly, Jacqueline R; Uyeda, Jennifer; Soto, Jorge A; Anderson, Stephan W

    2015-04-01

    The purpose of this study is to evaluate the performance of a sequential multi-modality imaging algorithm for diagnosing acute appendicitis in pregnancy. This IRB-approved, HIPAA compliant study included 127 consecutive pregnant patients imaged for suspected appendicitis between October 2007 and May 2012; all patients initially underwent ultrasound (US) examination, followed by magnetic resonance imaging (MRI) if results of US were negative or equivocal. Computerized tomography (CT) was reserved for cases with inconclusive US and MRI results. The EMR was reviewed, recording results of imaging examinations and clinical outcomes. The diagnostic performance of this sequential multi-modality imaging algorithm was calculated with pathology correlation. Two (1.9 %) of the 127 US examinations reported suspected appendicitis; 125 (98.4 %) were inconclusive. Of the 125 patients with inconclusive US examinations, 103 underwent MRI, of which eight (6.2 %) demonstrated findings of acute appendicitis. Of the 103 patients that received MRI, nine (8.7 %) underwent CT. One patient had a CT performed directly after an inconclusive US exam. No additional cases of appendicitis were detected with CT. The sensitivity and specificity of US alone was 12.5 and 99.2 %, respectively; MRI was 100 and 93.6 %; the sequential multi-modality modality algorithm including US, CT, and MRI was 100 and 98.3 %. The diagnostic performance of this sequential multi-modality imaging algorithm for diagnosing acute appendicitis in pregnancy is high. Given the low yield of US, MRI should be considered the first-line imaging test. Although CT was employed in a small fraction of inconclusive MRI examinations, it still has a role in the diagnostic work-up of the pregnant patient with suspected appendicitis.

  18. TU-C-BRD-01: Image Guided SBRT I: Multi-Modality 4D Imaging

    SciTech Connect

    Cai, J; Mageras, G; Pan, T

    2014-06-15

    Motion management is one of the critical technical challenges for radiation therapy. 4D imaging has been rapidly adopted as essential tool to assess organ motion associated with respiratory breathing. A variety of 4D imaging techniques have been developed and are currently under development based on different imaging modalities such as CT, MRI, PET, and CBCT. Each modality provides specific and complementary information about organ and tumor respiratory motion. Effective use of each different technique or combined use of different techniques can introduce a comprehensive management of tumor motion. Specifically, these techniques have afforded tremendous opportunities to better define and delineate tumor volumes, more accurately perform patient positioning, and effectively apply highly conformal therapy techniques such as IMRT and SBRT. Successful implementation requires good understanding of not only each technique, including unique features, limitations, artifacts, imaging acquisition and process, but also how to systematically apply the information obtained from different imaging modalities using proper tools such as deformable image registration. Furthermore, it is important to understand the differences in the effects of breathing variation between different imaging modalities. A comprehensive motion management strategy using multi-modality 4D imaging has shown promise in improving patient care, but at the same time faces significant challenges. This session will focuses on the current status and advances in imaging respiration-induced organ motion with different imaging modalities: 4D-CT, 4D-MRI, 4D-PET, and 4D-CBCT/DTS. Learning Objectives: Understand the need and role of multimodality 4D imaging in radiation therapy. Understand the underlying physics behind each 4D imaging technique. Recognize the advantages and limitations of each 4D imaging technique.

  19. Cardiopulmonary and Gastrointestinal Manifestations of Eosinophil- associated Diseases and Idiopathic Hypereosinophilic Syndromes: Multimodality Imaging Approach.

    PubMed

    Katre, Rashmi S; Sunnapwar, Abhijit; Restrepo, Carlos S; Katabathina, Venkata S; Mumbower, Amy; Baxi, Ameya; Sonavane, Sushilkumar

    2016-01-01

    Eosinophil-associated diseases (EADs) are a diverse group of disorders characterized by an increase in circulating or tissue eosinophils. Cardiopulmonary and gastrointestinal system involvement can be due to primary EAD with no known cause or can be secondary to known systemic disease. The cardiopulmonary spectrum of EADs comprises simple pulmonary eosinophilia, acute eosinophilic pneumonia, chronic eosinophilic pneumonia, Churg-Strauss syndrome, allergic bronchopulmonary aspergillosis, bronchocentric granulomatosis, parasitic infections, and idiopathic hypereosinophilic syndrome. Eosinophilic gastrointestinal disorders include eosinophilic esophagitis, eosinophilic gastroenteritis, and eosinophilic colitis. Diagnosis is often challenging and requires a combination of clinical and imaging features along with laboratory findings. The absolute eosinophil count in peripheral blood and the percentage of eosinophils in bronchoalveolar lavage fluid are crucial in evaluation of various eosinophilic lung diseases. Although chest radiography is the initial imaging modality used in suspected cases of pulmonary EAD, multidetector computed tomography may demonstrate more characteristic pulmonary patterns, nodules, and subtle parenchymal abnormalities. Barium esophagography is used to assess mucosal abnormalities and the length and diameter of esophageal strictures. Magnetic resonance imaging is superior in providing valuable information in select patients, especially in evaluation of cardiac and gastrointestinal system involvement. Many patients require a multimodality imaging approach to enable diagnosis, guide treatment, and assess treatment response. Knowledge of the clinical features and imaging findings of the spectrum of EADs involving the lungs, heart, and gastrointestinal tract permits optimal patient care. PMID:26963455

  20. Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning

    SciTech Connect

    El Naqa, Issam; Yang Deshan; Apte, Aditya; Khullar, Divya; Mutic, Sasa; Zheng Jie; Bradley, Jeffrey D.; Grigsby, Perry; Deasy, Joseph O.

    2007-12-15

    Multimodality imaging information is regularly used now in radiotherapy treatment planning for cancer patients. The authors are investigating methods to take advantage of all the imaging information available for joint target registration and segmentation, including multimodality images or multiple image sets from the same modality. In particular, the authors have developed variational methods based on multivalued level set deformable models for simultaneous 2D or 3D segmentation of multimodality images consisting of combinations of coregistered PET, CT, or MR data sets. The combined information is integrated to define the overall biophysical structure volume. The authors demonstrate the methods on three patient data sets, including a nonsmall cell lung cancer case with PET/CT, a cervix cancer case with PET/CT, and a prostate patient case with CT and MRI. CT, PET, and MR phantom data were also used for quantitative validation of the proposed multimodality segmentation approach. The corresponding Dice similarity coefficient (DSC) was 0.90{+-}0.02 (p<0.0001) with an estimated target volume error of 1.28{+-}1.23% volume. Preliminary results indicate that concurrent multimodality segmentation methods can provide a feasible and accurate framework for combining imaging data from different modalities and are potentially useful tools for the delineation of biophysical structure volumes in radiotherapy treatment planning.

  1. Multimode optical imaging for translational chemotherapy: in vivo tumor detection and delineation by targeted gallium corroles

    NASA Astrophysics Data System (ADS)

    Hwang, Jae Youn; Gross, Zeev; Gray, Harry B.; Medina-Kauwe, Lali K.; Farkas, Daniel L.

    2011-02-01

    We report the feasibility of tumor detection and delineation in vivo using multimode optical imaging of targeted gallium corrole (HerGa). HerGa is highly effective for targeted HER2+ tumor elimination in vivo, and it emits intense fluorescence. These unique characteristics of HerGa prompted us to investigate the potential of HerGa for tumor detection and delineation, by performing multimode optical imaging ex vivo and in vivo; the imaging modes included fluorescence intensity, spectral (including ratiometric), lifetime, and two-photon excited fluorescence, using our custombuilt imaging system. While fluorescence intensity imaging provided information about tumor targeting capacity and tumor retention of HerGa, ratiometric spectral imaging offered more quantitative and specific information about HerGa location and accumulation. Most importantly, the fluorescence lifetime imaging of HerGa allowed us to discriminate between tumor and non-tumor regions by fluorescence lifetime differences. Finally, two-photon excited fluorescence images provided highly resolved and thus topologically detailed information around the tumor regions where HerGa accumulates. Taken together, the results shown in this report suggest the feasibility of tumor detection and delineation by multimode optical imaging of HerGa, and fluorescent chemotherapy agents in general. Specifically, the multimode optical imaging can offer complementary and even synergetic information simultaneously in the tumor detection and delineation by HerGa, thus enhancing contrast.

  2. Carbon tube electrodes for electrocardiography-gated cardiac multimodality imaging in mice.

    PubMed

    Choquet, Philippe; Goetz, Christian; Aubertin, Gaelle; Hubele, Fabrice; Sannié, Sébastien; Constantinesco, André

    2011-01-01

    This report describes a simple design of noninvasive carbon tube electrodes that facilitates electrocardiography (ECG) in mice during cardiac multimodality preclinical imaging. Both forepaws and the left hindpaw, covered by conductive gel, of mice were placed into the openings of small carbon tubes. Cardiac ECG-gated single-photon emission CT, X-ray CT, and MRI were tested (n = 60) in 20 mice. For all applications, electrodes were used in a warmed multimodality imaging cell. A heart rate of 563 ± 48 bpm was recorded from anesthetized mice regardless of the imaging technique used, with acquisition times ranging from 1 to 2 h.

  3. A self-assembled multimodal complex for combined pre- and intraoperative imaging of the sentinel lymph node

    NASA Astrophysics Data System (ADS)

    Buckle, Tessa; van Leeuwen, Anne C.; Chin, Patrick T. K.; Janssen, Hans; Muller, Sara H.; Jonkers, Jos; van Leeuwen, Fijs W. B.

    2010-09-01

    Specific removal of the sentinel lymph node (SLN) during breast cancer surgery presents physicians with the opportunity to detect early metastatic disease. To increase the accuracy of intraoperative SLN detection, new methods with higher sensitivity and specificity are required. We have quantitatively compared conventional preoperative lymphoscintigraphy with albumin radiocolloids (99mTc-NanoColl) with optical intraoperative guidance using the near infrared dye indocyanine green (ICG) in an orthotopic mouse model for metastatic breast cancer. Furthermore, we have applied a self-assembled multimodal complex, in which ICG is non-covalently bound to the albumin radiocolloid, to attain identical dynamics of the radioactive and optical components. The SLN specificity of the multimodal complex is similar to conventional lymphoscintigraphy, while the fluorescent signal-to-noise ratio is improved by 86% compared to ICG alone. In addition, the multimodal complex permits scintigraphic validation of the fluorescent findings. The multimodal ICG-99mTc-NanoColl complex can be used both for lymphoscintigraphy by preoperative single photon emission computed tomography/computed tomography and for surgical navigation by intraoperative fluorescence imaging.

  4. Ultrasmall Biocompatible WO3- x Nanodots for Multi-Modality Imaging and Combined Therapy of Cancers.

    PubMed

    Wen, Ling; Chen, Ling; Zheng, Shimin; Zeng, Jianfeng; Duan, Guangxin; Wang, Yong; Wang, Guanglin; Chai, Zhifang; Li, Zhen; Gao, Mingyuan

    2016-07-01

    Ultrasmall biocompatible WO3 - x nanodots with an outstanding X-ray radiation sensitization effect are prepared, and demonstrated to be applicable for multi-modality tumor imaging through computed tomography and photoacoustic imaging (PAI), and effective cancer treatment combining both photothermal therapy and radiation therapy.

  5. Multimodality Raman and photoacoustic imaging of surface-enhanced-Raman-scattering-targeted tumor cells

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Paproski, Robert J.; Shao, Peng; Forbrich, Alexander; Lewis, John D.; Zemp, Roger J.

    2016-02-01

    A multimodality Raman and photoacoustic imaging system is presented. This system has ultralow background and can detect tumor cells labeled with modified surface-enhanced-Raman-scattering (SERS) nanoparticles in vivo. Photoacoustic imaging provides microvascular context and can potentially be used to guide magnetic trapping of circulating tumor cells for SERS detection in animal models.

  6. Pentalogy of Cantrell: A View From Fetus to Operation With Multimodality Imaging.

    PubMed

    Steele, Jeremy; Stewart, Robert D; Pettersson, Gosta; Attia, Tamer; Komarlu, Rukmini; Edwards, Thomas

    2016-07-01

    Pentalogy of Cantrell and its surgical management have been previously described in the literature. To our knowledge, our case report is the first that is able to demonstrate the full use of multimodality imaging to describe it. Viewing this rare defect chronologically from fetal echocardiography, postnatal ultrasonography, and magnetic resonance imaging, as well as intraoperatively aided in the management of this patient. PMID:27358306

  7. Multimodal Imaging Assisting the Early Diagnosis of Cat-Scratch Neuroretinitis.

    PubMed

    Freitas-Neto, Clovis Arcoverde; Oréfice, Fernando; Costa, Rogerio A; Oréfice, Juliana L; Dhanireddy, Swetha; Maghsoudlou, Armin; Foster, C Stephen

    2016-01-01

    To describe how a multifocal fundus imaging system assisted the early diagnosis of cat scratch neuroretinitis in a case of a 27-year-old male with unilateral visual loss, neuroretinitis, and a peripapillary angiomatous lesion. Multimodal fundus imaging analysis was an essential contributor to the clinical diagnosis of cat scratch neuroretinitis during the early stage of the disease.

  8. Multi-modal CT in Stroke Imaging: New Concepts

    PubMed Central

    Ledezma, Carlos J.; Wintermark, Max

    2009-01-01

    A multimodal CT protocol provides a comprehensive non-invasive survey of acute stroke patients with accurate demonstration of the site of arterial occlusion and its hemodynamic tissue status. It combines widespread availability with the ability to provide functional characterization of cerebral ischemia, and could potentially allow more accurate selection of candidates for acute stroke reperfusion therapy. PMID:19195537

  9. Magnetic Iron Oxide Nanoparticles for Multimodal Imaging and Therapy of Cancer

    PubMed Central

    Thomas, Reju; Park, In-Kyu; Jeong, Yong Yeon

    2013-01-01

    Superparamagnetic iron oxide nanoparticles (SPION) have emerged as an MRI contrast agent for tumor imaging due to their efficacy and safety. Their utility has been proven in clinical applications with a series of marketed SPION-based contrast agents. Extensive research has been performed to study various strategies that could improve SPION by tailoring the surface chemistry and by applying additional therapeutic functionality. Research into the dual-modal contrast uses of SPION has developed because these applications can save time and effort by reducing the number of imaging sessions. In addition to multimodal strategies, efforts have been made to develop multifunctional nanoparticles that carry both diagnostic and therapeutic cargos specifically for cancer. This review provides an overview of recent advances in multimodality imaging agents and focuses on iron oxide based nanoparticles and their theranostic applications for cancer. Furthermore, we discuss the physiochemical properties and compare different synthesis methods of SPION for the development of multimodal contrast agents. PMID:23912234

  10. Imaging findings in pulmonary vasculitis.

    PubMed

    Castañer, Eva; Alguersuari, Anna; Andreu, Marta; Gallardo, Xavier; Spinu, Cristina; Mata, Josep M

    2012-12-01

    Vasculitis is a destructive inflammatory process affecting blood vessels. Pulmonary vasculitis may develop secondary to other conditions or constitute a primary idiopathic disorder. Thoracic involvement is most common in primary idiopathic large-vessel vasculitides (Takayasu arteritis, giant cell arteritis, Behçet disease) and primary antineutrophil cytoplasmic autoantibody-associated small-vessel vasculitides (Wegener granulomatosis, microscopic polyangiitis, Churg-Strauss syndrome). Primary pulmonary vasculitides are rare, and their signs and symptoms are nonspecific, overlapping with those of infections, connective tissue diseases, and malignancies. The radiologic findings in primary pulmonary vasculitis vary widely and can include vessel wall thickening, nodular or cavitary lesions, ground-glass opacities, and consolidations, among others. Diffuse alveolar hemorrhage usually results from primary small-vessel vasculitis in the lungs. To diagnose vasculitis, medical teams must recognize characteristic combinations of clinical, radiologic, laboratory, and histopathologic features. PMID:23168065

  11. Bayesian analysis of multimodal data and brain imaging

    NASA Astrophysics Data System (ADS)

    Assadi, Amir H.; Eghbalnia, Hamid; Backonja, Miroslav; Wakai, Ronald T.; Rutecki, Paul; Haughton, Victor

    2000-06-01

    It is often the case that information about a process can be obtained using a variety of methods. Each method is employed because of specific advantages over the competing alternatives. An example in medical neuro-imaging is the choice between fMRI and MEG modes where fMRI can provide high spatial resolution in comparison to the superior temporal resolution of MEG. The combination of data from varying modes provides the opportunity to infer results that may not be possible by means of any one mode alone. We discuss a Bayesian and learning theoretic framework for enhanced feature extraction that is particularly suited to multi-modal investigations of massive data sets from multiple experiments. In the following Bayesian approach, acquired knowledge (information) regarding various aspects of the process are all directly incorporated into the formulation. This information can come from a variety of sources. In our case, it represents statistical information obtained from other modes of data collection. The information is used to train a learning machine to estimate a probability distribution, which is used in turn by a second machine as a prior, in order to produce a more refined estimation of the distribution of events. The computational demand of the algorithm is handled by proposing a distributed parallel implementation on a cluster of workstations that can be scaled to address real-time needs if required. We provide a simulation of these methods on a set of synthetically generated MEG and EEG data. We show how spatial and temporal resolutions improve by using prior distributions. The method on fMRI signals permits one to construct the probability distribution of the non-linear hemodynamics of the human brain (real data). These computational results are in agreement with biologically based measurements of other labs, as reported to us by researchers from UK. We also provide preliminary analysis involving multi-electrode cortical recording that accompanies

  12. Multimodality image guidance system integrating X-ray fluoroscopy and ultrasound image streams with electromagnetic tracking

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Luis F.; Shechter, Guy; Stanton, Douglas; Dalal, Sandeep; Elgort, Daniel; Manzke, Robert; Chan, Raymond C.; Zagorchev, Lyubomir

    2007-03-01

    This work presents an integrated system for multimodality image guidance of minimally invasive medical procedures. This software and hardware system offers real-time integration and registration of multiple image streams with localization data from navigation systems. All system components communicate over a local area Ethernet network, enabling rapid and flexible deployment configurations. As a representative configuration, we use X-ray fluoroscopy (XF) and ultrasound (US) imaging. The XF imaging system serves as the world coordinate system, with gantry geometry derived from the imaging system, and patient table position tracked with a custom-built measurement device using linear encoders. An electromagnetic (EM) tracking system is registered to the XF space using a custom imaging phantom that is also tracked by the EM system. The RMS fiducial registration error for the EM to X-ray registration was 2.19 mm, and the RMS target registration error measured with an EM-tracked catheter was 8.81 mm. The US image stream is subsequently registered to the XF coordinate system using EM tracking of the probe, following a calibration of the US image within the EM coordinate system. We present qualitative results of the system in operation, demonstrating the integration of live ultrasound imaging spatially registered to X-ray fluoroscopy with catheter localization using electromagnetic tracking.

  13. Intraoperative Imaging-Guided Cancer Surgery: From Current Fluorescence Molecular Imaging Methods to Future Multi-Modality Imaging Technology

    PubMed Central

    Chi, Chongwei; Du, Yang; Ye, Jinzuo; Kou, Deqiang; Qiu, Jingdan; Wang, Jiandong; Tian, Jie; Chen, Xiaoyuan

    2014-01-01

    Cancer is a major threat to human health. Diagnosis and treatment using precision medicine is expected to be an effective method for preventing the initiation and progression of cancer. Although anatomical and functional imaging techniques such as radiography, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role for accurate preoperative diagnostics, for the most part these techniques cannot be applied intraoperatively. Optical molecular imaging is a promising technique that provides a high degree of sensitivity and specificity in tumor margin detection. Furthermore, existing clinical applications have proven that optical molecular imaging is a powerful intraoperative tool for guiding surgeons performing precision procedures, thus enabling radical resection and improved survival rates. However, detection depth limitation exists in optical molecular imaging methods and further breakthroughs from optical to multi-modality intraoperative imaging methods are needed to develop more extensive and comprehensive intraoperative applications. Here, we review the current intraoperative optical molecular imaging technologies, focusing on contrast agents and surgical navigation systems, and then discuss the future prospects of multi-modality imaging technology for intraoperative imaging-guided cancer surgery. PMID:25250092

  14. EVolution: an edge-based variational method for non-rigid multi-modal image registration

    NASA Astrophysics Data System (ADS)

    de Senneville, B. Denis; Zachiu, C.; Ries, M.; Moonen, C.

    2016-10-01

    Image registration is part of a large variety of medical applications including diagnosis, monitoring disease progression and/or treatment effectiveness and, more recently, therapy guidance. Such applications usually involve several imaging modalities such as ultrasound, computed tomography, positron emission tomography, x-ray or magnetic resonance imaging, either separately or combined. In the current work, we propose a non-rigid multi-modal registration method (namely EVolution: an edge-based variational method for non-rigid multi-modal image registration) that aims at maximizing edge alignment between the images being registered. The proposed algorithm requires only contrasts between physiological tissues, preferably present in both image modalities, and assumes deformable/elastic tissues. Given both is shown to be well suitable for non-rigid co-registration across different image types/contrasts (T1/T2) as well as different modalities (CT/MRI). This is achieved using a variational scheme that provides a fast algorithm with a low number of control parameters. Results obtained on an annotated CT data set were comparable to the ones provided by state-of-the-art multi-modal image registration algorithms, for all tested experimental conditions (image pre-filtering, image intensity variation, noise perturbation). Moreover, we demonstrate that, compared to existing approaches, our method possesses increased robustness to transient structures (i.e. that are only present in some of the images).

  15. Multimodal non-contact photoacoustic and OCT imaging with galvanometer scanning

    NASA Astrophysics Data System (ADS)

    Berer, Thomas; Hochreiner, Armin; Leiss-Holzinger, Elisabeth; Bauer-Marschallinger, Johannes; Buchsbaum, Andreas

    2015-03-01

    In this paper we present multimodal non-contact photoacoustic and optical coherence tomography (OCT) imaging using a galvanometer scanner. Photoacoustic signals are acquired without contact on the surface of a specimen using an interferometric technique. The interferometer is realized in a fiber-optic network using a fiber laser at 1550 nm as source. In the same fiber-optic network a spectral-domain OCT system is realized, using a broadband light source at 1300 nm. Light from the fiber laser and the OCT source are multiplexed into the same fiber and the same objective is used for both imaging modalities. Fast non-contact photoacoustic and OCT imaging is demonstrated by scanning the detection spot utilizing a galvanometer scanner. Multimodal photoacoustic and OCT imaging is shown on agarose phantoms. As the same fiber network and optical components are used for non-contact photoacoustic and OCT imaging the obtained images are co-registered intrinsically.

  16. Integrated multimodal optical microscopy for structural and functional imaging of engineered and natural skin

    PubMed Central

    Zhao, Youbo; Graf, Benedikt W.; Chaney, Eric J.; Mahmassani, Ziad; Antoniadou, Eleni; DeVolder, Ross; Kong, Hyunjoon; Boppart, Marni D.; Boppart, Stephen A.

    2015-01-01

    An integrated multimodal optical microscope is demonstrated for high-resolution, structural and functional imaging of engineered and natural skin. This microscope incorporates multiple imaging modalities including optical coherence (OCM), multi-photon (MPM), and fluorescence lifetime imaging microscopy (FLIM), enabling simultaneous visualization of multiple contrast sources and mechanisms from cells and tissues. Spatially co-registered OCM/MPM/FLIM images of multi-layered skin tissues are obtained, which are formed based on complementary information provided by different modalities, i.e., scattering information from OCM, molecular information from MPM, and functional cellular metabolism states from FLIM. Cellular structures in both the dermis and epidermis, especially different morphological and physiological states of keratinocytes from different epidermal layers, are revealed by mutually-validating images. In vivo imaging of human skin is also investigated, which demonstrates the potential of multimodal microscopy for in vivo investigation during engineered skin engraftment. This integrated imaging technique and microscope show the potential for investigating cellular dynamics in developing engineered skin and following in vivo grafting, which will help refine the control and culturing conditions necessary to obtain more robust and physiologically-relevant engineered skin substitutes. Multimodal microscopy images of a microporous 3D hydrogel scaffold seeded with 3T3 fibroblasts. Representative spatially co-registered images were generated based on different methodologies including optical coherence (OCM), multiphoton (MPM), and fluorescence lifetime imaging (FLIM) microscopy. PMID:22371330

  17. RECOVERY ACT: MULTIMODAL IMAGING FOR SOLAR CELL MICROCRACK DETECTION

    SciTech Connect

    Janice Hudgings; Lawrence Domash

    2012-02-08

    Undetected microcracks in solar cells are a principal cause of failure in service due to subsequent weather exposure, mechanical flexing or diurnal temperature cycles. Existing methods have not been able to detect cracks early enough in the production cycle to prevent inadvertent shipment to customers. This program, sponsored under the DOE Photovoltaic Supply Chain and Cross-Cutting Technologies program, studied the feasibility of quantifying surface micro-discontinuities by use of a novel technique, thermoreflectance imaging, to detect surface temperature gradients with very high spatial resolution, in combination with a suite of conventional imaging methods such as electroluminescence. The project carried out laboratory tests together with computational image analyses using sample solar cells with known defects supplied by industry sources or DOE National Labs. Quantitative comparisons between the effectiveness of the new technique and conventional methods were determined in terms of the smallest detectable crack. Also the robustness of the new technique for reliable microcrack detection was determined at various stages of processing such as before and after antireflectance treatments. An overall assessment is that the new technique compares favorably with existing methods such as lock-in thermography or ultrasonics. The project was 100% completed in Sept, 2010. A detailed report of key findings from this program was published as: Q.Zhou, X.Hu, K.Al-Hemyari, K.McCarthy, L.Domash and J.Hudgings, High spatial resolution characterization of silicon solar cells using thermoreflectance imaging, J. Appl. Phys, 110, 053108 (2011).

  18. Parallel Information Processing (Image Transmission Via Fiber Bundle and Multimode Fiber

    NASA Technical Reports Server (NTRS)

    Kukhtarev, Nicholai

    2003-01-01

    Growing demand for visual, user-friendly representation of information inspires search for the new methods of image transmission. Currently used in-series (sequential) methods of information processing are inherently slow and are designed mainly for transmission of one or two dimensional arrays of data. Conventional transmission of data by fibers requires many fibers with array of laser diodes and photodetectors. In practice, fiber bundles are also used for transmission of images. Image is formed on the fiber-optic bundle entrance surface and each fiber transmits the incident image to the exit surface. Since the fibers do not preserve phase, only 2D intensity distribution can be transmitted in this way. Each single mode fiber transmit only one pixel of an image. Multimode fibers may be also used, so that each mode represent different pixel element. Direct transmission of image through multimode fiber is hindered by the mode scrambling and phase randomization. To overcome these obstacles wavelength and time-division multiplexing have been used, with each pixel transmitted on a separate wavelength or time interval. Phase-conjugate techniques also was tested in, but only in the unpractical scheme when reconstructed image return back to the fiber input end. Another method of three-dimensional imaging over single mode fibers was demonstrated in, using laser light of reduced spatial coherence. Coherence encoding, needed for a transmission of images by this methods, was realized with grating interferometer or with the help of an acousto-optic deflector. We suggest simple practical holographic method of image transmission over single multimode fiber or over fiber bundle with coherent light using filtering by holographic optical elements. Originally this method was successfully tested for the single multimode fiber. In this research we have modified holographic method for transmission of laser illuminated images over commercially available fiber bundle (fiber endoscope, or

  19. Multimodal In Vivo Skin Imaging with Integrated Optical Coherence and Multiphoton Microscopy

    PubMed Central

    Graf, Benedikt W.; Boppart, Stephen A.

    2014-01-01

    In this paper, we demonstrate high-resolution, multimodal in vivo imaging of human skin using optical coherence (OCM) and multiphoton microscopy (MPM). These two modalities are integrated into a single instrument to enable simultaneous acquisition and coregistration. The system design and the OCM image processing architecture enable sufficient performance of both modalities for in vivo imaging of human skin. Examples of multimodal in vivo imaging are presented as well as time lapse imaging of blood flow in single capillary loops. By making use of multiple intrinsic contrast mechanisms this integrated technique improves the ability to noninvasively visualize living tissue. Integrated OCM and MPM has potential applications for in vivo diagnosis of various pathological skin conditions, such as skin cancer, as well as potential pharmaceutical and cosmetic research applications. PMID:25673966

  20. The Role of Multimodality Imaging in a Case of Traumatic Cardiac Pseudoaneurysm.

    PubMed

    Mcunu, Brittany N C; Trilesskaya, Marina; Frohlich, Thomas

    2016-08-01

    After a 40-foot fall from a balcony, a healthy 21-year-old sustained multiple injuries, including left ventricular pseudoaneurysm. This case demonstrates the critical necessity of the combination of a high index of suspicion and multimodality imaging for diagnosis and prompt intervention. PMID:27466278

  1. The renal sinus: pathologic spectrum and multimodality imaging approach.

    PubMed

    Rha, Sung Eun; Byun, Jae Young; Jung, Seung Eun; Oh, Soon Nam; Choi, Yeong-Jin; Lee, Ahwon; Lee, Jae Mun

    2004-10-01

    Various pathologic conditions can occur in the renal sinus, primarily originating in the constituents of the renal sinus, and the renal sinus can be secondarily involved by surrounding renal parenchymal and adjacent retroperitoneal lesions. Lipomatosis and cysts are common renal sinus lesions with little clinical significance, but differentiation from other pathologic conditions is important. Renal vascular lesions such as renal artery aneurysm or arteriovenous fistula can mimic other parapelvic or peripelvic lesions at excretory urography, but their vascular nature is evident at color Doppler ultrasonography, contrast material-enhanced computed tomography (CT), and magnetic resonance (MR) imaging. Although most tumors originating in the renal pelvis are transitional cell carcinoma or squamous cell carcinoma, renal parenchymal tumors such as renal cell carcinoma or benign multilocular cystic nephroma have a tendency to grow into the renal sinus. Rare tumors of mesenchymal origin can develop in the renal sinus, but their imaging findings are nonspecific. The observation of renal sinus fat is important for detecting a small tumor located in that area and determining the exact tumor stage. Multiplanar CT or MR images can allow exact evaluation of the extent of complex renal sinus disease.

  2. Log-Gabor Energy Based Multimodal Medical Image Fusion in NSCT Domain

    PubMed Central

    Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan

    2014-01-01

    Multimodal medical image fusion is a powerful tool in clinical applications such as noninvasive diagnosis, image-guided radiotherapy, and treatment planning. In this paper, a novel nonsubsampled Contourlet transform (NSCT) based method for multimodal medical image fusion is presented, which is approximately shift invariant and can effectively suppress the pseudo-Gibbs phenomena. The source medical images are initially transformed by NSCT followed by fusing low- and high-frequency components. The phase congruency that can provide a contrast and brightness-invariant representation is applied to fuse low-frequency coefficients, whereas the Log-Gabor energy that can efficiently determine the frequency coefficients from the clear and detail parts is employed to fuse the high-frequency coefficients. The proposed fusion method has been compared with the discrete wavelet transform (DWT), the fast discrete curvelet transform (FDCT), and the dual tree complex wavelet transform (DTCWT) based image fusion methods and other NSCT-based methods. Visually and quantitatively experimental results indicate that the proposed fusion method can obtain more effective and accurate fusion results of multimodal medical images than other algorithms. Further, the applicability of the proposed method has been testified by carrying out a clinical example on a woman affected with recurrent tumor images. PMID:25214889

  3. Log-Gabor energy based multimodal medical image fusion in NSCT domain.

    PubMed

    Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan

    2014-01-01

    Multimodal medical image fusion is a powerful tool in clinical applications such as noninvasive diagnosis, image-guided radiotherapy, and treatment planning. In this paper, a novel nonsubsampled Contourlet transform (NSCT) based method for multimodal medical image fusion is presented, which is approximately shift invariant and can effectively suppress the pseudo-Gibbs phenomena. The source medical images are initially transformed by NSCT followed by fusing low- and high-frequency components. The phase congruency that can provide a contrast and brightness-invariant representation is applied to fuse low-frequency coefficients, whereas the Log-Gabor energy that can efficiently determine the frequency coefficients from the clear and detail parts is employed to fuse the high-frequency coefficients. The proposed fusion method has been compared with the discrete wavelet transform (DWT), the fast discrete curvelet transform (FDCT), and the dual tree complex wavelet transform (DTCWT) based image fusion methods and other NSCT-based methods. Visually and quantitatively experimental results indicate that the proposed fusion method can obtain more effective and accurate fusion results of multimodal medical images than other algorithms. Further, the applicability of the proposed method has been testified by carrying out a clinical example on a woman affected with recurrent tumor images. PMID:25214889

  4. Image revivals in multi-mode optical fibers with periodic multiple sub-apertures

    NASA Astrophysics Data System (ADS)

    Wang, Long; Powers, Peter E.; Sarangan, Andrew; Haus, Joseph W.

    2014-09-01

    We report experiments on a multi-mode fiber-based device that reimages the input pattern after specific propagation distances. The reimaging has two propagation length scales related to the Talbot self-imaging in a periodic grating and image revival effects. We use a beam propagation method to simulate diffraction and refraction of light in the optical fiber. The details of the fiber preparation and optical experiments are described. We study the optical imaging properties using a close-packed array of sub-apertures placed at regular positions on a triangular lattice. We numerically analyze the propagation, diffraction and coupling characteristics of the beam oscillating inside the fiber. Our simulations identify the optimal reimaging length of the multi-mode (MM) fiber to get high fidelity image revival. Experiments are performed to validate the simulation results.

  5. Detailed investigation of self-imaging in large-core multimode optical fibers for application in fiber lasers and amplifiers.

    PubMed

    Zhu, X; Schülzgen, A; Li, H; Li, L; Han, L; Moloney, J V; Peyghambarian, N

    2008-10-13

    Properties of the self-imaging effect based on multimode interference (MMI) in large-core passive optical fibers are investigated and analyzed in detail, with the purpose of using multimode active fibers for high power single-transverse-mode emission. Although perfect self-imaging of the input field from a standard single-mode fiber (SMF-28) in a multimode fiber becomes practically impossible as its core diameter is larger than 50 microm, a quasi-reproduction of the input field occurs when the phase difference between the excited modes and the peak mode inside the multimode fiber is very small. Our simulation and experimental results indicate that, if the length of the multimode fiber segment can be controlled accurately, reproduction of the input field with a self-imaging quality factor larger than 0.9 can be obtained. In this case, a low-loss hybrid fiber cavity composed of a SMF-28 segment and a very-large-core active multimode fiber segment can be built. It is also found that for the hybrid fiber cavity, increasing the mode-field diameter of the single-mode fiber improves both the self-imaging quality and the tolerance on the required length accuracy of the multimode fiber segment. Moreover, in this paper key parameters for the design of MMI-based fiber devices are defined and their corresponding values are provided for multimode fibers with core diameters of 50 microm and 105 microm.

  6. Multi-modal label-free imaging based on a femtosecond fiber laser

    PubMed Central

    Xie, Ruxin; Su, Jue; Rentchler, Eric C.; Zhang, Ziyan; Johnson, Carey K.; Shi, Honglian; Hui, Rongqing

    2014-01-01

    We demonstrate multi-mode microscopy based on a single femtosecond fiber laser. Coherent anti-Stokes Raman scattering (CARS), stimulated Raman scattering (SRS) and photothermal images can be obtained simultaneously with this simplified setup. Distributions of lipid and hemoglobin in sliced mouse brain samples and blood cells are imaged. The dependency of signal amplitude on the pump power and pump modulation frequency is characterized, which allows to isolate the impact from different contributions. PMID:25071972

  7. Targeted Multifunctional Multimodal Protein-Shell Microspheres as Cancer Imaging Contrast Agents

    PubMed Central

    John, Renu; Nguyen, Freddy T.; Kolbeck, Kenneth J.; Chaney, Eric J.; Marjanovic, Marina; Suslick, Kenneth S.; Boppart, Stephen A.

    2012-01-01

    Purpose In this study, protein-shell microspheres filled with a suspension of iron oxide nanoparticles in oil are demonstrated as multimodal contrast agents in magnetic resonance imaging (MRI), magnetomotive optical coherence tomography (MM-OCT), and ultrasound imaging. The development, characterization, and use of multifunctional multimodal microspheres are described for targeted contrast and therapeutic applications. Procedures A preclinical rat model was used to demonstrate the feasibility of the multimodal multifunctional microspheres as contrast agents in ultrasound, MM-OCT and MRI. Microspheres were functionalized with the RGD peptide ligand, which is targeted to αvβ3 integrin receptors that are over-expressed in tumors and atherosclerotic lesions. Results These microspheres, which contain iron oxide nanoparticles in their cores, can be modulated externally using a magnetic field to create dynamic contrast in MM-OCT. With the presence of iron oxide nanoparticles, these agents also show significant negative T2 contrast in MRI. Using ultrasound B-mode imaging at a frequency of 30 MHz, a marked enhancement of scatter intensity from in vivo rat mammary tumor tissue was observed for these targeted protein microspheres. Conclusions Preliminary results demonstrate multimodal contrast-enhanced imaging of these functionalized microsphere agents with MRI, MM-OCT, ultrasound imaging, and fluorescence microscopy, including in vivo tracking of the dynamics of these microspheres in real-time using a high-frequency ultrasound imaging system. These targeted oil-filled protein microspheres with the capacity for high drug-delivery loads offer the potential for local delivery of lipophilic drugs under image guidance. PMID:21298354

  8. Label-free Imaging of Arterial Cells and Extracellular Matrix Using a Multimodal CARS Microscope.

    PubMed

    Wang, Han-Wei; Le, Thuc T; Cheng, Ji-Xin

    2008-04-01

    A multimodal nonlinear optical imaging system that integrates coherent anti-Stokes Raman scattering (CARS), sum-frequency generation (SFG), and two-photon excitation fluorescence (TPEF) on the same platform was developed and applied to visualize single cells and extracellular matrix in fresh carotid arteries. CARS signals arising from CH(2)-rich membranes allowed visualization of endothelial cells and smooth muscle cells of the arterial wall. Additionally, CARS microscopy allowed vibrational imaging of elastin and collagen fibrils which are also rich in CH(2) bonds. The extracellular matrix organization were further confirmed by TPEF signals arising from elastin's autofluorescence and SFG signals arising from collagen fibrils' non-centrosymmetric structure. Label-free imaging of significant components of arterial tissues suggests the potential application of multimodal nonlinear optical microscopy to monitor onset and progression of arterial diseases.

  9. Label-free Imaging of Arterial Cells and Extracellular Matrix Using a Multimodal CARS Microscope

    PubMed Central

    Wang, Han-Wei; Le, Thuc T.; Cheng, Ji-Xin

    2008-01-01

    A multimodal nonlinear optical imaging system that integrates coherent anti-Stokes Raman scattering (CARS), sum-frequency generation (SFG), and two-photon excitation fluorescence (TPEF) on the same platform was developed and applied to visualize single cells and extracellular matrix in fresh carotid arteries. CARS signals arising from CH2-rich membranes allowed visualization of endothelial cells and smooth muscle cells of the arterial wall. Additionally, CARS microscopy allowed vibrational imaging of elastin and collagen fibrils which are also rich in CH2 bonds. The extracellular matrix organization were further confirmed by TPEF signals arising from elastin’s autofluorescence and SFG signals arising from collagen fibrils’ non-centrosymmetric structure. Label-free imaging of significant components of arterial tissues suggests the potential application of multimodal nonlinear optical microscopy to monitor onset and progression of arterial diseases. PMID:19343073

  10. Primary intracranial choriocarcinoma: MR imaging findings.

    PubMed

    Lv, X-F; Qiu, Y-W; Zhang, X-L; Han, L-J; Qiu, S-J; Xiong, W; Wen, G; Zhang, Y-Z; Zhang, J

    2010-11-01

    PICCC is the rarest, most malignant primary intracranial GCT. The purpose of this study was to describe and characterize the MR imaging findings in a series of 7 patients (6 males and 1 female; mean age, 11.9 years) with pathologically proved PICCC in our institution from 2004 to 2009. All tumors were located within the pineal (n = 6) or suprasellar (n = 1) regions. On T2-weighted MR imaging, the lesions appeared markedly heterogeneous with areas of both hypointensity and hyperintensity reflecting the histologic heterogeneity, including hemorrhage, fibrosis, cysts, or necrosis. Heterogeneous (n = 7), ringlike (n = 4), and/or intratumoral nodular (n = 3) enhancement was noted on T1-weighted images with gadolinium. These MR imaging findings, combined with patient age and serum β-HCG levels, may prove helpful in distinguishing PICCC from the more common primary brain tumors, thereby avoiding biopsy of this highly vascular tumor. PMID:20616180

  11. Multimodal optical imaging system for in vivo investigation of cerebral oxygen delivery and energy metabolism.

    PubMed

    Yaseen, Mohammad A; Srinivasan, Vivek J; Gorczynska, Iwona; Fujimoto, James G; Boas, David A; Sakadžić, Sava

    2015-12-01

    Improving our understanding of brain function requires novel tools to observe multiple physiological parameters with high resolution in vivo. We have developed a multimodal imaging system for investigating multiple facets of cerebral blood flow and metabolism in small animals. The system was custom designed and features multiple optical imaging capabilities, including 2-photon and confocal lifetime microscopy, optical coherence tomography, laser speckle imaging, and optical intrinsic signal imaging. Here, we provide details of the system's design and present in vivo observations of multiple metrics of cerebral oxygen delivery and energy metabolism, including oxygen partial pressure, microvascular blood flow, and NADH autofluorescence.

  12. Multimodal optical imaging system for in vivo investigation of cerebral oxygen delivery and energy metabolism

    PubMed Central

    Yaseen, Mohammad A.; Srinivasan, Vivek J.; Gorczynska, Iwona; Fujimoto, James G.; Boas, David A.; Sakadžić, Sava

    2015-01-01

    Improving our understanding of brain function requires novel tools to observe multiple physiological parameters with high resolution in vivo. We have developed a multimodal imaging system for investigating multiple facets of cerebral blood flow and metabolism in small animals. The system was custom designed and features multiple optical imaging capabilities, including 2-photon and confocal lifetime microscopy, optical coherence tomography, laser speckle imaging, and optical intrinsic signal imaging. Here, we provide details of the system’s design and present in vivo observations of multiple metrics of cerebral oxygen delivery and energy metabolism, including oxygen partial pressure, microvascular blood flow, and NADH autofluorescence. PMID:26713212

  13. Multimodality Rodent Imaging Chambers for Use Under Barrier Conditions With Gas Anesthesia

    PubMed Central

    Suckow, Chris; Kuntner, Claudia; Chow, Patrick; Silverman, Robert; Chatziioannou, Arion; Stout, David

    2009-01-01

    Purpose The ability to reproducibly and repeatedly image rodents in non-invasive imaging systems, such as small animal PET and CT, requires a reliable method for anesthetizing, positioning, and heating animals in a simple reproducible manner. In this paper we demonstrate that mice and rats can be reproducibly and repeatedly imaged using an imaging chamber designed to be rigidly mounted on multiple imaging systems. Procedures Mouse and rat imaging chambers were made of acrylic plastic and aluminum. MicroCT scans were used to evaluate the positioning reproducibility of the chambers in multi-modality and longitudinal imaging studies. The ability of the chambers to maintain mouse and rat body temperatures while anesthetized with gas anesthesia was also evaluated. Results Both the mouse and rat imaging chambers were able to reproducibly position the animals in the imaging systems with a small degree of error. Placement of the mouse in the mouse imaging chamber resulted in a mean distance of 0.23 mm per reference point in multimodality studies, whereas for longitudinal studies the mean difference was 1.11 mm. The rat chamber resulted in a mean difference of 0.46 mm in multimodality studies, and a mean difference of 4.31 mm in longitudinal studies per reference point. The chambers maintained rodent body temperatures at the set point temperature of 38°C. Conclusions The rodent imaging chambers were able to reproducibly position rodents in tomographs with a small degree of variability, and were compatible with routine use. The embedded anesthetic line and heating system was capable of maintaining the rodent’s temperature and anesthetic state, thereby enhancing rodent health and improving data collection reliability. PMID:18679755

  14. Multimodality Imaging for Guiding EP Ablation Procedures.

    PubMed

    Njeim, Mario; Desjardins, Benoit; Bogun, Frank

    2016-07-01

    Recent advances in 3-dimensional electroanatomical mapping have been met by continuous improvements in the field of cardiac imaging and image integration during ablation procedures. Echocardiography, computed tomography, cardiac magnetic resonance, and nuclear imaging provide information about cardiac anatomy and ultrastructure of the heart that may be crucial for a successful ablation procedure. Techniques and value of pre-procedural, intraprocedural, and post-procedural imaging and image integration are discussed in this review article. Pre-procedural imaging provides key anatomic information that can be complemented by intraprocedural imaging to minimize procedural complications. Furthermore, the presence and extent of structural heart disease can be assessed pre-procedurally and can be displayed intraprocedurally to limit and focus the mapping and ablation procedure to the area of interest. Pre-procedural imaging combined with imaging obtained during the ablation procedure further enhances procedural safety, reduces exposure to ionizing radiation from fluoroscopy, reduces procedure time, and may improve outcomes. PMID:27388666

  15. Ultrasound-Triggered Phase Transition Sensitive Magnetic Fluorescent Nanodroplets as a Multimodal Imaging Contrast Agent in Rat and Mouse Model

    PubMed Central

    Chen, Yunchao; Luo, Binhua; Liu, Xuhan; Liu, Wei; Xu, Haibo; Yang, Xiangliang

    2013-01-01

    Ultrasound-triggered phase transition sensitive nanodroplets with multimodal imaging functionality were prepared via premix Shirasu porous glass (SPG) membrane emulsification method. The nanodroplets with fluorescence dye DiR and SPIO nanoparticles (DiR-SPIO-NDs) had a polymer shell and a liquid perfluoropentane (PFP) core. The as-formed DiR-SPIO-NDs have a uniform size of 385±5.0 nm with PDI of 0.169±0.011. The TEM and microscopy imaging showed that the DiR-SPIO-NDs existed as core-shell spheres, and DiR and SPIO nanoparticles dispersed in the shell or core. The MTT and hemolysis studies demonstrated that the nanodroplets were biocompatible and safe. Moreover, the proposed nanodroplets exhibited significant ultrasound-triggered phase transition property under clinical diagnostic ultrasound irradiation due to the vaporization of PFP inside. Meanwhile, the high stability and R2 relaxivity of the DiR-SPIO-NDs suggested its applicability in MRI. The in vivo T2-weighted images of MRI and fluorescence images both showed that the image contrast in liver and spleen of rats and mice model were enhanced after the intravenous injection of DiR-SPIO-NDs. Furthermore, the ultrasound imaging (US) in mice tumor as well as MRI and fluorescence imaging in liver of rats and mice showed that the DiR-SPIO-NDs had long-lasting contrast ability in vivo. These in vitro and in vivo findings suggested that DiR-SPIO-NDs could potentially be a great MRI/US/fluorescence multimodal imaging contrast agent in the diagnosis of liver tissue diseases. PMID:24391983

  16. Eliminating the scattering ambiguity in multifocal, multimodal multiphoton imaging systems

    PubMed Central

    Hoover, Erich E.; Field, Jeffrey J.; Winters, David G.; Young, Michael D.; Chandler, Eric V.; Speirs, John C.; Kim, Susy M.; Ding, Shi-you; Bartels, Randy A.; Wang, Jing W.; Squier, Jeff A.

    2013-01-01

    Four images of Drosophila Melanogaster antennal lobe structure labeled with red fluorescent protein. The images are separated axially by 7 μm in depth, and were all acquired simultaneously from a single-element detector. PMID:22461190

  17. Multimodality 3-Dimensional Image Integration for Congenital Cardiac Catheterization

    PubMed Central

    2014-01-01

    Cardiac catheterization procedures for patients with congenital and structural heart disease are becoming more complex. New imaging strategies involving integration of 3-dimensional images from rotational angiography, magnetic resonance imaging (MRI), computerized tomography (CT), and transesophageal echocardiography (TEE) are employed to facilitate these procedures. We discuss the current use of these new 3D imaging technologies and their advantages and challenges when used to guide complex diagnostic and interventional catheterization procedures in patients with congenital heart disease. PMID:25114757

  18. Multi-modal imaging and cancer therapy using lanthanide oxide nanoparticles: current status and perspectives.

    PubMed

    Park, J Y; Chang, Y; Lee, G H

    2015-01-01

    Biomedical imaging is an essential tool for diagnosis and therapy of diseases such as cancers. It is likely true that medicine has developed with biomedical imaging methods. Sensitivity and resolution of biomedical imaging methods can be improved with imaging agents. Furthermore, it will be ideal if imaging agents could be also used as therapeutic agents. Therefore, one dose can be used for both diagnosis and therapy of diseases (i.e., theragnosis). This will simplify medical treatment of diseases, and will be also a benefit to patients. Mixed (Ln(1x)Ln(2y)O3, x + y = 2) or unmixed (Ln2O3) lanthanide (Ln) oxide nanoparticles (Ln = Eu, Gd, Dy, Tb, Ho, Er) are potential multi-modal imaging and cancer therapeutic agents. The lanthanides have a variety of magnetic and optical properties, useful for magnetic resonance imaging (MRI) and fluorescent imaging (FI), respectively. They also highly attenuate X-ray beam, useful for X-ray computed tomography (CT). In addition gadolinium-157 ((157)Gd) has the highest thermal neutron capture cross section among stable radionuclides, useful for gadolinium neutron capture therapy (GdNCT). Therefore, mixed or unmixed lanthanide oxide nanoparticles can be used for multi-modal imaging methods (i.e., MRI-FI, MRI-CT, CT-FI, and MRICT- FI) and cancer therapy (i.e., GdNCT). Since mixed or unmixed lanthanide oxide nanoparticles are single-phase and solid-state, they can be easily synthesized, and are compact and robust, which will be beneficial to biomedical applications. In this review physical properties of the lanthanides, synthesis, characterizations, multi-modal imagings, and cancer therapy of mixed and unmixed lanthanide oxide nanoparticles are discussed.

  19. Multimodal noninvasive and invasive imaging of extracranial venous abnormalities indicative of CCSVI: Results of the PREMiSe pilot study

    PubMed Central

    2013-01-01

    Background There is no established noninvasive or invasive diagnostic imaging modality at present that can serve as a ‘gold standard’ or “benchmark” for the detection of the venous anomalies, indicative of chronic cerebrospinal venous insufficiency (CCSVI). We investigated the sensitivity and specificity of 2 invasive vs. 2 noninvasive imaging techniques for the detection of extracranial venous anomalies in the internal jugular veins (IJVs) and azygos vein/vertebral veins (VVs) in patients with multiple sclerosis (MS). Methods The data for this multimodal imaging comparison pilot study was collected in phase 2 of the “Prospective Randomized Endovascular therapy in Multiple Sclerosis” (PREMiSe) study using standardized imaging techniques. Thirty MS subjects were screened initially with Doppler sonography (DS), out of which 10 did not fulfill noninvasive screening procedure requirements on DS that consisted of ≥2 venous hemodynamic extracranial criteria. Accordingly, 20 MS patients with relapsing MS were enrolled into the multimodal diagnostic imaging study. For magnetic resonance venography (MRV), IJVs abnormal findings were considered absent or pinpoint flow, whereas abnormal VVs flow was classified as absent. Abnormalities of the VVs were determined only using non-invasive testing. Catheter venography (CV) was considered abnormal when ≥50% lumen restriction was detected, while intravascular ultrasound (IVUS) was considered abnormal when ≥50% restriction of the lumen or intra-luminal defects or reduced pulsatility was found. Non-invasive and invasive imaging modality comparisons between left, right and total IJVs and between the VVs and azygos vein were performed. Because there is no reliable way of non-invasively assessing the azygos vein, the VVs abnormalities detected by the non-invasive testing were compared to the azygos abnormalities detected by the invasive testing. All image modalities were analyzed in a blinded manner by more than one

  20. Nanoparticles for multimodal in vivo imaging in nanomedicine

    PubMed Central

    Key, Jaehong; Leary, James F

    2014-01-01

    While nanoparticles are usually designed for targeted drug delivery, they can also simultaneously provide diagnostic information by a variety of in vivo imaging methods. These diagnostic capabilities make use of specific properties of nanoparticle core materials. Near-infrared fluorescent probes provide optical detection of cells targeted by real-time nanoparticle-distribution studies within the organ compartments of live, anesthetized animals. By combining different imaging modalities, we can start with deep-body imaging by magnetic resonance imaging or computed tomography, and by using optical imaging, get down to the resolution required for real-time fluorescence-guided surgery. PMID:24511229

  1. Local rigid registration for multimodal texture feature extraction from medical images

    NASA Astrophysics Data System (ADS)

    Steger, Sebastian

    2011-03-01

    The joint extraction of texture features from medical images of different modalities requires an accurate image registration at the target structures. In many cases rigid registration of the entire images does not achieve the desired accuracy whereas deformable registration is too complex and may result in undesired deformations. This paper presents a novel region of interest alignment approach based on local rigid registration enabling image fusion for multimodal texture feature extraction. First rigid registration on the entire images is performed to obtain an initial guess. Then small cubic regions around the target structure are clipped from all images and individually rigidly registered. The approach was applied to extract texture features in clinically acquired CT and MR images from lymph nodes in the oropharynx for an oral cancer reoccurrence prediction framework. Visual inspection showed that in all of the 30 cases at least a subtle misalignment was perceivable for the globally rigidly aligned images. After applying the presented approach the alignment of the target structure significantly improved in 19 cases. In 12 cases no alignment mismatch whatsoever was perceptible without requiring the complexity of deformable registration and without deforming the target structure. Further investigation showed that if the resolutions of the individual modalities differ significantly, partial volume effects occur, diminishing the significance of the multimodal features even for perfectly aligned images.

  2. A Partial Intensity Invariant Feature Descriptor for Multimodal Retinal Image Registration

    PubMed Central

    Chen, Jian; Tian, Jie; Lee, Noah; Zheng, Jian; Smith, R. Theodore; Laine, Andrew F.

    2011-01-01

    Detection of vascular bifurcations is a challenging task in multimodal retinal image registration. Existing algorithms based on bifurcations usually fail in correctly aligning poor quality retinal image pairs. To solve this problem, we propose a novel highly distinctive local feature descriptor named partial intensity invariant feature descriptor (PIIFD) and describe a robust automatic retinal image registration framework named Harris-PIIFD. PIIFD is invariant to image rotation, partially invariant to image intensity, affine transformation, and viewpoint/perspective change. Our Harris-PIIFD framework consists of four steps. First, corner points are used as control point candidates instead of bifurcations since corner points are sufficient and uniformly distributed across the image domain. Second, PIIFDs are extracted for all corner points, and a bilateral matching technique is applied to identify corresponding PIIFDs matches between image pairs. Third, incorrect matches are removed and inaccurate matches are refined. Finally, an adaptive transformation is used to register the image pairs. PIIFD is so distinctive that it can be correctly identified even in nonvascular areas. When tested on 168 pairs of multimodal retinal images, the Harris-PIIFD far outperforms existing algorithms in terms of robustness, accuracy, and computational efficiency. PMID:20176538

  3. A partial intensity invariant feature descriptor for multimodal retinal image registration.

    PubMed

    Chen, Jian; Tian, Jie; Lee, Noah; Zheng, Jian; Smith, R Theodore; Laine, Andrew F

    2010-07-01

    Detection of vascular bifurcations is a challenging task in multimodal retinal image registration. Existing algorithms based on bifurcations usually fail in correctly aligning poor quality retinal image pairs. To solve this problem, we propose a novel highly distinctive local feature descriptor named partial intensity invariant feature descriptor (PIIFD) and describe a robust automatic retinal image registration framework named Harris-PIIFD. PIIFD is invariant to image rotation, partially invariant to image intensity, affine transformation, and viewpoint/perspective change. Our Harris-PIIFD framework consists of four steps. First, corner points are used as control point candidates instead of bifurcations since corner points are sufficient and uniformly distributed across the image domain. Second, PIIFDs are extracted for all corner points, and a bilateral matching technique is applied to identify corresponding PIIFDs matches between image pairs. Third, incorrect matches are removed and inaccurate matches are refined. Finally, an adaptive transformation is used to register the image pairs. PIIFD is so distinctive that it can be correctly identified even in nonvascular areas. When tested on 168 pairs of multimodal retinal images, the Harris-PIIFD far outperforms existing algorithms in terms of robustness, accuracy, and computational efficiency.

  4. Multimodality imaging probe for positron emission tomography and fluorescence imaging studies.

    PubMed

    Pandey, Suresh K; Kaur, Jasmeet; Easwaramoorthy, Balu; Shah, Ankur; Coleman, Robert; Mukherjee, Jogeshwar

    2014-01-01

    Our goal is to develop multimodality imaging agents for use in cell tracking studies by positron emission tomography (PET) and optical imaging (OI). For this purpose, bovine serum albumin (BSA) was complexed with biotin (histologic studies), 5(6)-carboxyfluorescein, succinimidyl ester (FAM SE) (OI studies), and diethylenetriamine pentaacetic acid (DTPA) for chelating gallium 68 (PET studies). For synthesis of BSA-biotin-FAM-DTPA, BSA was coupled to (+)-biotin N-hydroxysuccinimide ester (biotin-NHSI). BSA-biotin was treated with DTPA-anhydride and biotin-BSA-DTPA was reacted with FAM. The biotin-BSA-DTPA-FAM was reacted with gallium chloride 3 to 5 mCi eluted from the generator using 0.1 N HCl and was passed through basic resin (AG 11 A8) and 150 μCi (100 μL, pH 7-8) was incubated with 0.1 mg of FAM conjugate (100 μL) at room temperature for 15 minutes to give 68Ga-BSA-biotin-DTPA-FAM. A shaved C57 black mouse was injected with FAM conjugate (50 μL) at one flank and FAM-68Ga (50 μL, 30 μCi) at the other. Immediately after injection, the mouse was placed in a fluorescence imaging system (Kodak In-Vivo F, Bruker Biospin Co., Woodbridge, CT) and imaged (λex: 465 nm, λem: 535 nm, time: 8 seconds, Xenon Light Source, Kodak). The same mouse was then placed under an Inveon microPET scanner (Siemens Medical Solutions, Knoxville, TN) injected (intravenously) with 25 μCi of 18F and after a half-hour (to allow sufficient bone uptake) was imaged for 30 minutes. Molecular weight determined using matrix-associated laser desorption ionization (MALDI) for the BSA sample was 66,485 Da and for biotin-BSA was 67,116 Da, indicating two biotin moieties per BSA molecule; for biotin-BSA-DTPA was 81,584 Da, indicating an average of 30 DTPA moieties per BSA molecule; and for FAM conjugate was 82,383 Da, indicating an average of 1.7 fluorescent moieties per BSA molecule. Fluorescence imaging clearly showed localization of FAM conjugate and FAM-68Ga at respective flanks of the mouse

  5. Universal Molecular Scaffold for Facile Construction of Multivalent and Multimodal Imaging Probes.

    PubMed

    Gai, Yongkang; Xiang, Guangya; Ma, Xiang; Hui, Wenqi; Ouyang, Qin; Sun, Lingyi; Ding, Jiule; Sheng, Jing; Zeng, Dexing

    2016-03-16

    Multivalent and multimodal imaging probes are rapidly emerging as powerful chemical tools for visualizing various biochemical processes. Herein, we described a bifunctional chelator (BFC)-based scaffold that can be used to construct such promising probes concisely. Compared to other reported similar scaffolds, this new BFC scaffold demonstrated two major advantages: (1) significantly simplified synthesis due to the use of this new BFC that can serve as chelator and linker simultaneously; (2) highly efficient synthesis rendered by using either click chemistry and/or total solid-phase synthesis. In addition, the versatile utility of this molecular scaffold has been demonstrated by constructing several multivalent/multimodal imaging probes labeled with various radioisotopes, and the resulting radiotracers demonstrated substantially improved in vivo performance compared to the two individual monomeric counterparts.

  6. Multimodal imaging of vascular network and blood microcirculation by optical diagnostic techniques

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Yu L.; Kalchenko, V. V.; Meglinski, I. V.

    2011-04-01

    We present a multimodal optical diagnostic approach for simultaneous non-invasive in vivo imaging of blood and lymphatic microvessels, utilising a combined use of fluorescence intravital microscopy and a method of dynamic light scattering. This approach makes it possible to renounce the use of fluorescent markers for visualisation of blood vessels and, therefore, significantly (tenfold) reduce the toxicity of the technique and minimise side effects caused by the use of contrast fluorescent markers. We demonstrate that along with the ability to obtain images of lymph and blood microvessels with a high spatial resolution, current multimodal approach allows one to observe in real time permeability of blood vessels. This technique appears to be promising in physiology studies of blood vessels, and especially in the study of peripheral cardiovascular system in vivo.

  7. Multimodal imaging of vascular network and blood microcirculation by optical diagnostic techniques

    SciTech Connect

    Kuznetsov, Yu L; Kalchenko, V V; Meglinski, I V

    2011-04-30

    We present a multimodal optical diagnostic approach for simultaneous non-invasive in vivo imaging of blood and lymphatic microvessels, utilising a combined use of fluorescence intravital microscopy and a method of dynamic light scattering. This approach makes it possible to renounce the use of fluorescent markers for visualisation of blood vessels and, therefore, significantly (tenfold) reduce the toxicity of the technique and minimise side effects caused by the use of contrast fluorescent markers. We demonstrate that along with the ability to obtain images of lymph and blood microvessels with a high spatial resolution, current multimodal approach allows one to observe in real time permeability of blood vessels. This technique appears to be promising in physiology studies of blood vessels, and especially in the study of peripheral cardiovascular system in vivo. (optical technologies in biophysics and medicine)

  8. Multi-modal Ultrasound Imaging for Breast Cancer Detection

    NASA Astrophysics Data System (ADS)

    Medina-Valdés, L.; Pérez-Liva, M.; Camacho, J.; Udías, J. M.; Herraiz, J. L.; González-Salido, N.

    This work describes preliminary results of a two-modality imaging system aimed at the early detection of breast cancer. The first technique is based on compounding conventional echographic images taken at regular angular intervals around the imaged breast. The other modality obtains tomographic images of propagation velocity using the same circular geometry. For this study, a low-cost prototype has been built. It is based on a pair of opposed 128-element, 3.2 MHz array transducers that are mechanically moved around tissue mimicking phantoms. Compounded images around 360° provide improved resolution, clutter reduction, artifact suppression and reinforce the visualization of internal structures. However, refraction at the skin interface must be corrected for an accurate image compounding process. This is achieved by estimation of the interface geometry followed by computing the internal ray paths. On the other hand, sound velocity tomographic images from time of flight projections have been also obtained. Two reconstruction methods, Filtered Back Projection (FBP) and 2D Ordered Subset Expectation Maximization (2D OSEM), were used as a first attempt towards tomographic reconstruction. These methods yield useable images in short computational times that can be considered as initial estimates in subsequent more complex methods of ultrasound image reconstruction. These images may be effective to differentiate malignant and benign masses and are very promising for breast cancer screening.

  9. Multimodal imaging of the self-regulating developing brain.

    PubMed

    Fjell, Anders M; Walhovd, Kristine Beate; Brown, Timothy T; Kuperman, Joshua M; Chung, Yoonho; Hagler, Donald J; Venkatraman, Vijay; Roddey, J Cooper; Erhart, Matthew; McCabe, Connor; Akshoomoff, Natacha; Amaral, David G; Bloss, Cinnamon S; Libiger, Ondrej; Darst, Burcu F; Schork, Nicholas J; Casey, B J; Chang, Linda; Ernst, Thomas M; Gruen, Jeffrey R; Kaufmann, Walter E; Kenet, Tal; Frazier, Jean; Murray, Sarah S; Sowell, Elizabeth R; van Zijl, Peter; Mostofsky, Stewart; Jernigan, Terry L; Dale, Anders M

    2012-11-27

    Self-regulation refers to the ability to control behavior, cognition, and emotions, and self-regulation failure is related to a range of neuropsychiatric problems. It is poorly understood how structural maturation of the brain brings about the gradual improvement in self-regulation during childhood. In a large-scale multicenter effort, 735 children (4-21 y) underwent structural MRI for quantification of cortical thickness and surface area and diffusion tensor imaging for quantification of the quality of major fiber connections. Brain development was related to a standardized measure of cognitive control (the flanker task from the National Institutes of Health Toolbox), a critical component of self-regulation. Ability to inhibit responses and impose cognitive control increased rapidly during preteen years. Surface area of the anterior cingulate cortex accounted for a significant proportion of the variance in cognitive performance. This finding is intriguing, because characteristics of the anterior cingulum are shown to be related to impulse, attention, and executive problems in neurodevelopmental disorders, indicating a neural foundation for self-regulation abilities along a continuum from normality to pathology. The relationship was strongest in the younger children. Properties of large-fiber connections added to the picture by explaining additional variance in cognitive control. Although cognitive control was related to surface area of the anterior cingulate independently of basic processes of mental speed, the relationship between white matter quality and cognitive control could be fully accounted for by speed. The results underscore the need for integration of different aspects of brain maturation to understand the foundations of cognitive development. PMID:23150548

  10. Multimodal imaging of the self-regulating developing brain

    PubMed Central

    Fjell, Anders M.; Walhovd, Kristine Beate; Brown, Timothy T.; Kuperman, Joshua M.; Chung, Yoonho; Hagler, Donald J.; Venkatraman, Vijay; Roddey, J. Cooper; Erhart, Matthew; McCabe, Connor; Akshoomoff, Natacha; Amaral, David G.; Bloss, Cinnamon S.; Libiger, Ondrej; Darst, Burcu F.; Schork, Nicholas J.; Casey, B. J.; Chang, Linda; Ernst, Thomas M.; Gruen, Jeffrey R.; Kaufmann, Walter E.; Kenet, Tal; Frazier, Jean; Murray, Sarah S.; Sowell, Elizabeth R.; van Zijl, Peter; Mostofsky, Stewart; Jernigan, Terry L.; Dale, Anders M.; Jernigan, Terry L.; McCabe, Connor; Chang, Linda; Akshoomoff, Natacha; Newman, Erik; Dale, Anders M.; Ernst, Thomas; Dale, Anders M.; Van Zijl, Peter; Kuperman, Joshua; Murray, Sarah; Bloss, Cinnamon; Schork, Nicholas J.; Appelbaum, Mark; Gamst, Anthony; Thompson, Wesley; Bartsch, Hauke; Jernigan, Terry L.; Dale, Anders M.; Akshoomoff, Natacha; Chang, Linda; Ernst, Thomas; Keating, Brian; Amaral, David; Sowell, Elizabeth; Kaufmann, Walter; Van Zijl, Peter; Mostofsky, Stewart; Casey, B.J.; Ruberry, Erika J.; Powers, Alisa; Rosen, Bruce; Kenet, Tal; Frazier, Jean; Kennedy, David; Gruen, Jeffrey

    2012-01-01

    Self-regulation refers to the ability to control behavior, cognition, and emotions, and self-regulation failure is related to a range of neuropsychiatric problems. It is poorly understood how structural maturation of the brain brings about the gradual improvement in self-regulation during childhood. In a large-scale multicenter effort, 735 children (4–21 y) underwent structural MRI for quantification of cortical thickness and surface area and diffusion tensor imaging for quantification of the quality of major fiber connections. Brain development was related to a standardized measure of cognitive control (the flanker task from the National Institutes of Health Toolbox), a critical component of self-regulation. Ability to inhibit responses and impose cognitive control increased rapidly during preteen years. Surface area of the anterior cingulate cortex accounted for a significant proportion of the variance in cognitive performance. This finding is intriguing, because characteristics of the anterior cingulum are shown to be related to impulse, attention, and executive problems in neurodevelopmental disorders, indicating a neural foundation for self-regulation abilities along a continuum from normality to pathology. The relationship was strongest in the younger children. Properties of large-fiber connections added to the picture by explaining additional variance in cognitive control. Although cognitive control was related to surface area of the anterior cingulate independently of basic processes of mental speed, the relationship between white matter quality and cognitive control could be fully accounted for by speed. The results underscore the need for integration of different aspects of brain maturation to understand the foundations of cognitive development. PMID:23150548

  11. Safe storage and multi-modal search for medical images.

    PubMed

    Kommeri, Jukka; Niinimäki, Marko; Müller, Henning

    2011-01-01

    Modern hospitals produce enormous amounts of data in all departments, from images, to lab results, medication use, and release letters. Since several years these data are most often produced in digital form, making them accessible for researchers to optimize the outcome of care process and analyze all available data across patients. The Geneva University Hospitals (HUG) are no exception with its daily radiology department's output of over 140'000 images in 2010, with a majority of them being tomographic slices. In this paper we introduce tools for uploading and accessing DICOM images and associated metadata in a secure Grid storage. These data are made available for authorized persons using a Grid security framework, as security is a main problem in secondary use of image data, where images are to be stored outside of the clinical image archive. Our tool combines the security and metadata access of a Grid middleware with the visual search that uses GIFT. PMID:21893790

  12. Simultaneous in vivo imaging of melanin and lipofuscin in the retina with multimodal photoacoustic ophthalmoscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyang; Zhang, Hao F.; Zhou, Lixiang; Jiao, Shuliang

    2012-02-01

    We combined photoacoustic ophthalmoscopy (PAOM) with autofluorescence imaging for simultaneous in vivo imaging of dual molecular contrasts in the retina using a single light source. The dual molecular contrasts come from melanin and lipofuscin in the retinal pigment epithelium (RPE). Melanin and lipofuscin are two types of pigments and are believed to play opposite roles (protective vs. exacerbate) in the RPE in the aging process. We successfully imaged the retina of pigmented and albino rats at different ages. The experimental results showed that multimodal PAOM system can be a potentially powerful tool in the study of age-related degenerative retinal diseases.

  13. Multimodality imaging of the thyroid and parathyroid glands

    SciTech Connect

    Sandler, M.P.; Patton, J.A.

    1987-01-01

    Nuclear imaging of the thyroid and parathyroid glands has evolved from early radionuclide rectilinear thyroid scanning to the recently developed dual isotope subtraction technique for detecting parathyroid lesions. At the same time, x-ray fluorescent scanning, ultrasound, x-ray computed tomography, and magnetic resonance imaging have improved identification of these endocrine organs. The appropriate use and relative role of these imaging modalities in the investigation of patients with thyroid and parathyroid diseases is discussed.

  14. Spiking Cortical Model Based Multimodal Medical Image Fusion by Combining Entropy Information with Weber Local Descriptor

    PubMed Central

    Zhang, Xuming; Ren, Jinxia; Huang, Zhiwen; Zhu, Fei

    2016-01-01

    Multimodal medical image fusion (MIF) plays an important role in clinical diagnosis and therapy. Existing MIF methods tend to introduce artifacts, lead to loss of image details or produce low-contrast fused images. To address these problems, a novel spiking cortical model (SCM) based MIF method has been proposed in this paper. The proposed method can generate high-quality fused images using the weighting fusion strategy based on the firing times of the SCM. In the weighting fusion scheme, the weight is determined by combining the entropy information of pulse outputs of the SCM with the Weber local descriptor operating on the firing mapping images produced from the pulse outputs. The extensive experiments on multimodal medical images show that compared with the numerous state-of-the-art MIF methods, the proposed method can preserve image details very well and avoid the introduction of artifacts effectively, and thus it significantly improves the quality of fused images in terms of human vision and objective evaluation criteria such as mutual information, edge preservation index, structural similarity based metric, fusion quality index, fusion similarity metric and standard deviation. PMID:27649190

  15. Spiking Cortical Model Based Multimodal Medical Image Fusion by Combining Entropy Information with Weber Local Descriptor.

    PubMed

    Zhang, Xuming; Ren, Jinxia; Huang, Zhiwen; Zhu, Fei

    2016-01-01

    Multimodal medical image fusion (MIF) plays an important role in clinical diagnosis and therapy. Existing MIF methods tend to introduce artifacts, lead to loss of image details or produce low-contrast fused images. To address these problems, a novel spiking cortical model (SCM) based MIF method has been proposed in this paper. The proposed method can generate high-quality fused images using the weighting fusion strategy based on the firing times of the SCM. In the weighting fusion scheme, the weight is determined by combining the entropy information of pulse outputs of the SCM with the Weber local descriptor operating on the firing mapping images produced from the pulse outputs. The extensive experiments on multimodal medical images show that compared with the numerous state-of-the-art MIF methods, the proposed method can preserve image details very well and avoid the introduction of artifacts effectively, and thus it significantly improves the quality of fused images in terms of human vision and objective evaluation criteria such as mutual information, edge preservation index, structural similarity based metric, fusion quality index, fusion similarity metric and standard deviation. PMID:27649190

  16. Nanoparticulate assemblies of amphiphiles and diagnostically active materials for multimodality imaging.

    PubMed

    Mulder, Willem J M; Strijkers, Gustav J; van Tilborg, Geralda A F; Cormode, David P; Fayad, Zahi A; Nicolay, Klaas

    2009-07-21

    Modern medicine has greatly benefited from recent dramatic improvements in imaging techniques. The observation of physiological events through interactions manipulated at the molecular level offers unique insight into the function (and dysfunction) of the living organism. The tremendous advances in the development of nanoparticulate molecular imaging agents over the past decade have made it possible to noninvasively image the specificity, pharmacokinetic profiles, biodistribution, and therapeutic efficacy of many novel compounds. Several types of nanoparticles have demonstrated utility for biomedical purposes, including inorganic nanocrystals, such as iron oxide, gold, and quantum dots. Moreover, natural nanoparticles, such as viruses, lipoproteins, or apoferritin, as well as hybrid nanostructures composed of inorganic and natural nanoparticles, have been applied broadly. However, among the most investigated nanoparticle platforms for biomedical purposes are lipidic aggregates, such as liposomal nanoparticles, micelles, and microemulsions. Their relative ease of preparation and functionalization, as well as the ready synthetic ability to combine multiple amphiphilic moieties, are the most important reasons for their popularity. Lipid-based nanoparticle platforms allow the inclusion of a variety of imaging agents, ranging from fluorescent molecules to chelated metals and nanocrystals. In recent years, we have created a variety of multifunctional lipid-based nanoparticles for molecular imaging; many are capable of being used with more than one imaging technique (that is, with multimodal imaging ability). These nanoparticles differ in size, morphology, and specificity for biological markers. In this Account, we discuss the development and characterization of five different particles: liposomes, micelles, nanocrystal micelles, lipid-coated silica, and nanocrystal high-density lipoprotein (HDL). We also demonstrate their application for multimodal molecular imaging

  17. Programmable aperture microscopy: A computational method for multi-modal phase contrast and light field imaging

    NASA Astrophysics Data System (ADS)

    Zuo, Chao; Sun, Jiasong; Feng, Shijie; Zhang, Minliang; Chen, Qian

    2016-05-01

    We demonstrate a simple and cost-effective programmable aperture microscope to realize multi-modal computational imaging by integrating a programmable liquid crystal display (LCD) into a conventional wide-field microscope. The LCD selectively modulates the light distribution at the rear aperture of the microscope objective, allowing numerous imaging modalities, such as bright field, dark field, differential phase contrast, quantitative phase imaging, multi-perspective imaging, and full resolution light field imaging to be achieved and switched rapidly in the same setup, without requiring specialized hardwares and any moving parts. We experimentally demonstrate the success of our method by imaging unstained cheek cells, profiling microlens array, and changing perspective views of thick biological specimens. The post-exposure refocusing of a butterfly mouthpart and RFP-labeled dicot stem cross-section is also presented to demonstrate the full resolution light field imaging capability of our system for both translucent and fluorescent specimens.

  18. Pneumoconiosis: comparison of imaging and pathologic findings

    SciTech Connect

    Semin Chong; Kyung Soo Lee; Myung Jin Chung; Joungho Han; O. Jung Kwon; d Tae Sung Kim

    2006-01-15

    Pneumoconiosis may be classified as either fibrotic or nonfibrotic, according to the presence or absence of fibrosis. Silicosis, coal worker pneumoconiosis, asbestosis, berylliosis, and talcosis are examples of fibrotic pneumoconiosis. Siderosis, stannosis, and baritosis are nonfibrotic forms of pneumoconiosis that result from inhalation of iron oxide, tin oxide, and barium sulfate particles, respectively. In an individual who has a history of exposure to silica or coal dust, a finding of nodular or reticulonodular lesions at chest radiography or small nodules with a perilymphatic distribution at thin-section computed tomography (CT), with or without eggshell calcifications, is suggestive of silicosis or coal worker pneumoconiosis. Magnetic resonance imaging is helpful for distinguishing between progressive massive fibrosis and lung cancer. CT and histopathologic findings in asbestosis are similar to those in idiopathic pulmonary fibrosis, but the presence of asbestos bodies in histopathologic specimens is specific for the diagnosis of asbestosis. Giant cell interstitial pneumonia due to exposure to hard metals is classified as a fibrotic form of pneumoconiosis and appears on CT images as mixed ground-glass opacities and reticulation. Berylliosis simulates pulmonary sarcoidosis on CT images. CT findings in talcosis include small centrilobular and subpleural nodules or heterogeneous conglomerate masses that contain foci of high attenuation indicating talc deposition. Siderosis is nonfibrotic and is indicated by a CT finding of poorly defined centrilobular nodules or ground-glass opacities.

  19. Pneumoconiosis: Comparison of imaging and pathologic findings

    SciTech Connect

    Chong, S.; Lee, K.S.; Chung, M.J.; Han, J.H.; Kwon, O.J.; Kim, T.S.

    2006-01-15

    Pneumoconiosis may be classified as either fibrotic or nonfibrotic, according to the presence or absence of fibrosis. Silicosis, coal worker pneumoconiosis, asbestosis, berylliosis, and talcosis are examples of fibrotic pneumoconiosis. Siderosis, stannosis, and baritosis are nonfibrotic forms of pneumoconiosis that result from inhalation of iron oxide, tin oxide, and barium sulfate particles, respectively. In an individual who has a history of exposure to silica or coal dust, a finding of nodular or reticulonodular lesions at chest radiography or small nodules with a perilymphatic distribution at thin-section computed tomography (CT), with or without eggshell calcifications, is suggestive of silicosis or coal worker pneumoconiosis. Magnetic resonance imaging is helpful for distinguishing between progressive massive fibrosis and lung cancer. CT and histopathologic findings in asbestosis are similar to those in idiopathic pulmonary fibrosis, but the presence of asbestos bodies in histopathologic specimens is specific for the diagnosis of asbestosis. Giant cell interstitial pneumonia due to exposure to hard metals is classified as a fibrotic form of pneumoconiosis and appears on CT images as mixed ground-glass opacities and reticulation. Berylliosis simulates pulmonary sarcoidosis on CT images. CT findings in talcosis include small centrilobular and subpleural nodules or heterogeneous conglomerate masses that contain foci of high attenuation indicating talc deposition. Siderosis is nonfibrotic and is indicated by a CT finding of poorly defined centrilobular nodules or ground-glass opacities.

  20. ICG-loaded microbubbles for multimodal billiary imaging in cholecystectomy

    NASA Astrophysics Data System (ADS)

    Qin, Ruogu; Melvin, Scott; Xu, Ronald X.

    2012-12-01

    A dual-mode imaging technique has been developed for intraoperative imaging of bile ducts and real-time identification of iatrogenic injuries in cholecystectomy. The technique is based on ultrasound (US) and fluorescence (FL) imaging of a dual-mode microbubble (MB) agent comprising a poly (lactic-co-glycolic acid) (PLGA) shell and a core of Indocyanine Green. During cholecystectomy, a clinical US probe is used to localize the bile duct structure after bolus injection of dual-mode MBs. As the surrounding adipose tissue is removed and the Calot's triangle is exposed, FL imaging is used to identify the MB distribution and to determine the potential bile duct injury. The contrast-enhanced bile duct imaging technique has been demonstrated in both a surgical simulation model and an ex vivo porcine tissue model under two surgical scenarios. The first scenario simulates the correct procedure where the cystic duct is clipped. The second scenario simulates the incorrect procedure where the common bile duct is clipped, leading to consequent bile duct injury. Benchtop experiments in both the phantom and the ex vivo models show that the dual-mode imaging technique is able to identify the potential bile duct injury during cholecystectomy. A phantom system has also been established for future device calibration and surgical training in image-guided cholecystectomy. Further in vivo animal validation tests are necessary before the technique can be implemented in a clinical setting.

  1. A multimodality vascular imaging phantom of an abdominal aortic aneurysm with a visible thrombus

    SciTech Connect

    Allard, Louise; Chayer, Boris; Qin Zhao; Soulez, Gilles; Roy, David; Cloutier, Guy

    2013-06-15

    Purpose: With the continuous development of new stent grafts and implantation techniques, it has now become technically feasible to treat abdominal aortic aneurysms (AAA) with challenging anatomy using endovascular repair with standard, fenestrated, or branched stent-grafts. In vitro experimentations are very useful to improve stent-graft design and conformability or imaging guidance for stent-graft delivery or follow-up. Vascular replicas also help to better understand the limitation of endovascular approaches in challenging anatomy and possibly improve surgical planning or training by practicing high risk clinical procedures in the laboratory to improve outcomes in the operating room. Most AAA phantoms available have a very basic anatomy, which is not representative of the clinical reality. This paper presents a method of fabrication of a realistic AAA phantom with a visible thrombus, as well as some mechanical properties characterizing such phantom. Methods: A realistic AAA geometry replica of a real patient anatomy taken from a multidetector computed tomography (CT) scan was manufactured. To demonstrate the multimodality imaging capability of this new phantom with a thrombus visible in magnetic resonance (MR) angiography, CT angiography (CTA), digital subtraction angiography (DSA), and ultrasound, image acquisitions with all these modalities were performed by using standard clinical protocols. Potential use of this phantom for stent deployment was also tested. A rheometer allowed defining hyperelastic and viscoelastic properties of phantom materials. Results: MR imaging measurements of SNR and CNR values on T1 and T2-weighted sequences and MR angiography indicated reasonable agreement with published values of AAA thrombus and abdominal components in vivo. X-ray absorption also lay within normal ranges of AAA patients and was representative of findings observed on CTA, fluoroscopy, and DSA. Ultrasound propagation speeds for developed materials were also in

  2. FULLY CONVOLUTIONAL NETWORKS FOR MULTI-MODALITY ISOINTENSE INFANT BRAIN IMAGE SEGMENTATION

    PubMed Central

    Nie, Dong; Wang, Li; Gao, Yaozong; Shen, Dinggang

    2016-01-01

    The segmentation of infant brain tissue images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) plays an important role in studying early brain development. In the isointense phase (approximately 6–8 months of age), WM and GM exhibit similar levels of intensity in both T1 and T2 MR images, resulting in extremely low tissue contrast and thus making the tissue segmentation very challenging. The existing methods for tissue segmentation in this isointense phase usually employ patch-based sparse labeling on single T1, T2 or fractional anisotropy (FA) modality or their simply-stacked combinations without fully exploring the multi-modality information. To address the challenge, in this paper, we propose to use fully convolutional networks (FCNs) for the segmentation of isointense phase brain MR images. Instead of simply stacking the three modalities, we train one network for each modality image, and then fuse their high-layer features together for final segmentation. Specifically, we conduct a convolution-pooling stream for multimodality information from T1, T2, and FA images separately, and then combine them in high-layer for finally generating the segmentation maps as the outputs. We compared the performance of our approach with that of the commonly used segmentation methods on a set of manually segmented isointense phase brain images. Results showed that our proposed model significantly outperformed previous methods in terms of accuracy. In addition, our results also indicated a better way of integrating multi-modality images, which leads to performance improvement.

  3. SPECT-OPT multimodal imaging enables accurate evaluation of radiotracers for β-cell mass assessments

    PubMed Central

    Eter, Wael A.; Parween, Saba; Joosten, Lieke; Frielink, Cathelijne; Eriksson, Maria; Brom, Maarten; Ahlgren, Ulf; Gotthardt, Martin

    2016-01-01

    Single Photon Emission Computed Tomography (SPECT) has become a promising experimental approach to monitor changes in β-cell mass (BCM) during diabetes progression. SPECT imaging of pancreatic islets is most commonly cross-validated by stereological analysis of histological pancreatic sections after insulin staining. Typically, stereological methods do not accurately determine the total β-cell volume, which is inconvenient when correlating total pancreatic tracer uptake with BCM. Alternative methods are therefore warranted to cross-validate β-cell imaging using radiotracers. In this study, we introduce multimodal SPECT - optical projection tomography (OPT) imaging as an accurate approach to cross-validate radionuclide-based imaging of β-cells. Uptake of a promising radiotracer for β-cell imaging by SPECT, 111In-exendin-3, was measured by ex vivo-SPECT and cross evaluated by 3D quantitative OPT imaging as well as with histology within healthy and alloxan-treated Brown Norway rat pancreata. SPECT signal was in excellent linear correlation with OPT data as compared to histology. While histological determination of islet spatial distribution was challenging, SPECT and OPT revealed similar distribution patterns of 111In-exendin-3 and insulin positive β-cell volumes between different pancreatic lobes, both visually and quantitatively. We propose ex vivo SPECT-OPT multimodal imaging as a highly accurate strategy for validating the performance of β-cell radiotracers. PMID:27080529

  4. Multimodality imaging in the assessment of myocardial viability

    PubMed Central

    Partington, Sara L.; Kwong, Raymond Y.

    2014-01-01

    The prevalence of heart failure due to coronary artery disease continues to increase, and it portends a worse prognosis than non-ischemic cardiomyopathy. Revascularization improves prognosis in these high-risk patients who have evidence of viability; therefore, optimal assessment of myocardial viability remains essential. Multiple imaging modalities exist for differentiating viable myocardium from scar in territories with contractile dysfunction. Given the multiple modalities available, choosing the best modality for a specific patient can be a daunting task. In this review, the physiology of myocardial hibernation and stunning will be reviewed. All the current methods available for assessing viability including echocardiography, cardiac magnetic resonance imaging, nuclear imaging with single photon emission tomography and positron emission tomography imaging and cardiac computed tomography will be reviewed. The effectiveness of the various techniques will be compared, and the limitations of the current literature will be discussed. PMID:21069458

  5. Multimodality imaging of penile cancer: what radiologists need to know.

    PubMed

    Suh, Chong Hyun; Baheti, Akshay D; Tirumani, Sree Harsha; Rosenthal, Michael H; Kim, Kyung Won; Ramaiya, Nikhil H; Shinagare, Atul B

    2015-02-01

    The purpose of this article is to provide a comprehensive update on the role of imaging in the diagnosis and management of penile cancer. Imaging plays a major role in the initial assessment, treatment planning, and follow-up of patients with penile carcinoma. MRI helps in assessing the T staging of the primary and in detecting local recurrence. PET/CT and CT are useful for detecting regional nodal and distant metastases.

  6. FIND: Fluorescence Imaging in the Nuclear Domain

    SciTech Connect

    Barty, C J

    2005-02-14

    This document examines the potential use of Thomson-Radiated Extreme X-ray (T-REX) sources for Fluorescence Imaging in the Nuclear Domain (FIND) of special nuclear materials. A back-of-the-envelope, relative comparison of T-REX sources vs. Bremsstrahlung sources for this application is presented. It is estimated that use of T-REX for FIND could be as much as 5 x 10{sup 12} more effective than the use of anode based sources. Furthermore it is estimated that illumination of samples of dimension 1 cm on a side could produce up to {approx}10{sup 9} detectable photons per second.

  7. Abdominal vascular syndromes: characteristic imaging findings*

    PubMed Central

    Cardarelli-Leite, Leandro; Velloni, Fernanda Garozzo; Salvadori, Priscila Silveira; Lemos, Marcelo Delboni; D'Ippolito, Giuseppe

    2016-01-01

    Abdominal vascular syndromes are rare diseases. Although such syndromes vary widely in terms of symptoms and etiologies, certain imaging findings are characteristic. Depending on their etiology, they can be categorized as congenital-including blue rubber bleb nevus syndrome, Klippel-Trenaunay syndrome, and hereditary hemorrhagic telangiectasia (Rendu-Osler-Weber syndrome)-or compressive-including "nutcracker" syndrome, median arcuate ligament syndrome, Cockett syndrome (also known as May-Thurner syndrome), and superior mesenteric artery syndrome. In this article, we aimed to illustrate imaging findings that are characteristic of these syndromes, through studies conducted at our institution, as well as to perform a brief review of the literature on this topic. PMID:27777480

  8. Imaging findings of Gorlin-Goltz syndrome

    PubMed Central

    Hajalioghli, Parisa; Ghadirpour, Ali; Ataie-Oskuie, Reza; Kontzialis, Marinos

    2015-01-01

    A 15-year-old girl was referred to a dentist complaining of parageusia, bad taste in the mouth, which started 9 months ago. Panoramic X-ray and non-enhanced computed tomography scan revealed multiple bilateral unilocular cysts in the mandible and maxilla, along with calcification of anterior part of the falx cerebri. She was eventually diagnosed with Gorlin-Goltz syndrome based on imaging and histopathologic finding of keratocystic odontogenic tumor. PMID:25610614

  9. Protein nanospheres: synergistic nanoplatform-based probes for multimodality imaging

    NASA Astrophysics Data System (ADS)

    McDonald, Michael A.; Wang, Paul C.; Siegel, Eliot L.

    2011-03-01

    No single clinical imaging modality has the ability to provide both high resolution and high sensitivity at the anatomical, functional and molecular level. Synergistically integrated detection techniques overcome these barriers by combining the advantages of different imaging modalities while reducing their disadvantages. We report the development of protein nanospheres optimized for enhancing MRI, CT and US contrast while also providing high sensitivity optical detection. Transferrin protein nanospheres (TfpNS), silicon coated, doped rare earth oxide and rhodamine B isothiocyanate nanoparticles, Si⊂Gd2O3:Eu,RBITC, (NP) and transferrin protein nanospheres encapsulating Si⊂Gd2O3:Eu,RBITC nanoparticles (TfpNS-NP) were prepared in tissue-mimicking phantoms and imaged utilizing multiple cross-sectional imaging modalities. Preliminary results indicate a 1:1 NP to TfpNS ratio in TfpNS-NP and improved sensitivity of detection for MRI, CT, US and fluorescence imaging relative to its component parts and/or many commercially available contrast agents.

  10. Evaluation of registration strategies for multi-modality images of rat brain slices

    NASA Astrophysics Data System (ADS)

    Palm, Christoph; Vieten, Andrea; Salber, Dagmar; Pietrzyk, Uwe

    2009-05-01

    In neuroscience, small-animal studies frequently involve dealing with series of images from multiple modalities such as histology and autoradiography. The consistent and bias-free restacking of multi-modality image series is obligatory as a starting point for subsequent non-rigid registration procedures and for quantitative comparisons with positron emission tomography (PET) and other in vivo data. Up to now, consistency between 2D slices without cross validation using an inherent 3D modality is frequently presumed to be close to the true morphology due to the smooth appearance of the contours of anatomical structures. However, in multi-modality stacks consistency is difficult to assess. In this work, consistency is defined in terms of smoothness of neighboring slices within a single modality and between different modalities. Registration bias denotes the distortion of the registered stack in comparison to the true 3D morphology and shape. Based on these metrics, different restacking strategies of multi-modality rat brain slices are experimentally evaluated. Experiments based on MRI-simulated and real dual-tracer autoradiograms reveal a clear bias of the restacked volume despite quantitatively high consistency and qualitatively smooth brain structures. However, different registration strategies yield different inter-consistency metrics. If no genuine 3D modality is available, the use of the so-called SOP (slice-order preferred) or MOSOP (modality-and-slice-order preferred) strategy is recommended.

  11. Biocompatible Optically Transparent MEMS for Micromechanical Stimulation and Multimodal Imaging of Living Cells.

    PubMed

    Fior, Raffaella; Kwok, Jeanie; Malfatti, Francesca; Sbaizero, Orfeo; Lal, Ratnesh

    2015-08-01

    Cells and tissues in our body are continuously subjected to mechanical stress. Mechanical stimuli, such as tensile and contractile forces, and shear stress, elicit cellular responses, including gene and protein alterations that determine key behaviors, including proliferation, differentiation, migration, and adhesion. Several tools and techniques have been developed to study these mechanobiological phenomena, including micro-electro-mechanical systems (MEMS). MEMS provide a platform for nano-to-microscale mechanical stimulation of biological samples and quantitative analysis of their biomechanical responses. However, current devices are limited in their capability to perform single cell micromechanical stimulations as well as correlating their structural phenotype by imaging techniques simultaneously. In this study, a biocompatible and optically transparent MEMS for single cell mechanobiological studies is reported. A silicon nitride microfabricated device is designed to perform uniaxial tensile deformation of single cells and tissue. Optical transparency and open architecture of the device allows coupling of the MEMS to structural and biophysical assays, including optical microscopy techniques and atomic force microscopy (AFM). We demonstrate the design, fabrication, testing, biocompatibility and multimodal imaging with optical and AFM techniques, providing a proof-of-concept for a multimodal MEMS. The integrated multimodal system would allow simultaneous controlled mechanical stimulation of single cells and correlate cellular response.

  12. Multimodal segmentation of optic disc and cup from stereo fundus and SD-OCT images

    NASA Astrophysics Data System (ADS)

    Miri, Mohammad Saleh; Lee, Kyungmoo; Niemeijer, Meindert; Abràmoff, Michael D.; Kwon, Young H.; Garvin, Mona K.

    2013-03-01

    Glaucoma is one of the major causes of blindness worldwide. One important structural parameter for the diagnosis and management of glaucoma is the cup-to-disc ratio (CDR), which tends to become larger as glaucoma progresses. While approaches exist for segmenting the optic disc and cup within fundus photographs, and more recently, within spectral-domain optical coherence tomography (SD-OCT) volumes, no approaches have been reported for the simultaneous segmentation of these structures within both modalities combined. In this work, a multimodal pixel-classification approach for the segmentation of the optic disc and cup within fundus photographs and SD-OCT volumes is presented. In particular, after segmentation of other important structures (such as the retinal layers and retinal blood vessels) and fundus-to-SD-OCT image registration, features are extracted from both modalities and a k-nearest-neighbor classification approach is used to classify each pixel as cup, rim, or background. The approach is evaluated on 70 multimodal image pairs from 35 subjects in a leave-10%-out fashion (by subject). A significant improvement in classification accuracy is obtained using the multimodal approach over that obtained from the corresponding unimodal approach (97.8% versus 95.2%; p < 0:05; paired t-test).

  13. Application of a multicompartment dynamical model to multimodal optical imaging for investigating individual cerebrovascular properties

    NASA Astrophysics Data System (ADS)

    Desjardins, Michèle; Gagnon, Louis; Gauthier, Claudine; Hoge, Rick D.; Dehaes, Mathieu; Desjardins-Crépeau, Laurence; Bherer, Louis; Lesage, Frédéric

    2009-02-01

    Biophysical models of hemodynamics provide a tool for quantitative multimodal brain imaging by allowing a deeper understanding of the interplay between neural activity and blood oxygenation, volume and flow responses to stimuli. Multicompartment dynamical models that describe the dynamics and interactions of the vascular and metabolic components of evoked hemodynamic responses have been developed in the literature. In this work, multimodal data using near-infrared spectroscopy (NIRS) and diffuse correlation flowmetry (DCF) is used to estimate total baseline hemoglobin concentration (HBT0) in 7 adult subjects. A validation of the model estimate and investigation of the partial volume effect is done by comparing with time-resolved spectroscopy (TRS) measures of absolute HBT0. Simultaneous NIRS and DCF measurements during hypercapnia are then performed, but are found to be hardly reproducible. The results raise questions about the feasibility of an all-optical model-based estimation of individual vascular properties.

  14. Multimodality Imaging in Coronary Artery Disease: Focus on Computed Tomography

    PubMed Central

    Lee, Ji Hyun; Han, Donghee; Danad, Ibrahim; Hartaigh, Bríain ó; Lin, Fay Y.

    2016-01-01

    Coronary artery disease (CAD) is the leading cause of mortality worldwide, and various cardiovascular imaging modalities have been introduced for the purpose of diagnosing and determining the severity of CAD. More recently, advances in computed tomography (CT) technology have contributed to the widespread clinical application of cardiac CT for accurate and noninvasive evaluation of CAD. In this review, we focus on imaging assessment of CAD based upon CT, which includes coronary artery calcium screening, coronary CT angiography, myocardial CT perfusion, and fractional flow reserve CT. Further, we provide a discussion regarding the potential implications, benefits and limitations, as well as the possible future directions according to each modality. PMID:27081438

  15. High resolution in vitro bioluminescence imaging using a multimodal optical system

    NASA Astrophysics Data System (ADS)

    Altabella, L.; Gigliotti, C. R.; Perani, L.; Crippa, M. P.; Boschi, F.; Spinelli, A. E.

    2016-01-01

    Bioluminescence in vitro studies are usually performed with dedicated microscopes. In this work, we developed a novel image recovery algorithm and a multimodal system prototype to perform bioluminescence microscopy. We performed a feasibility study using GEANT4 Monte Carlo (MC) simulation of bioluminescent cells acquired at low SNR frames and processed using a Super Resolution Regularization Algorithm (SRRA). The method was also tested using in vitro cell acquisition. The results obtained with MC simulations showed an improvement in the spatial resolution from 90 μ m to 10 μ m and from 110 μ m to 13 μ m for in vitro imaging of mesothelioma cells.

  16. Multimodality imaging of hepato-biliary disorders in pregnancy: a pictorial essay.

    PubMed

    Ong, Eugene M W; Drukteinis, Jennifer S; Peters, Hope E; Mortelé, Koenraad J

    2009-09-01

    Hepato-biliary disorders are rare complications of pregnancy, but they may be severe, with high fetal and maternal morbidity and mortality. Imaging is, therefore, essential in the rapid diagnosis of some of these conditions so that appropriate, life-saving treatment can be administered. This pictorial essay illustrates the multimodality imaging features of pregnancy-induced hepato-biliary disorders, such as acute fatty liver of pregnancy, preeclamsia and eclampsia, and HELLP syndrome, as well as those conditions which occur in pregnancy but are not unique to it, such as viral hepatitis, Budd-Chiari syndrome, focal hepatic lesions, biliary sludge, cholecystolithiasis, and choledocholithiasis. PMID:19225816

  17. Multimodal in vivo imaging of oral cancer using fluorescence lifetime, photoacoustic and ultrasound techniques

    PubMed Central

    Fatakdawala, Hussain; Poti, Shannon; Zhou, Feifei; Sun, Yang; Bec, Julien; Liu, Jing; Yankelevich, Diego R.; Tinling, Steven P.; Gandour-Edwards, Regina F.; Farwell, D. Gregory; Marcu, Laura

    2013-01-01

    This work reports a multimodal system for label-free tissue diagnosis combining fluorescence lifetime imaging (FLIm), ultrasound backscatter microscopy (UBM), and photoacoustic imaging (PAI). This system provides complementary biochemical, structural and functional features allowing for enhanced in vivo detection of oral carcinoma. Results from a hamster oral carcinoma model (normal, precancer and carcinoma) are presented demonstrating the ability of FLIm to delineate biochemical composition at the tissue surface, UBM and related radiofrequency parameters to identify disruptions in the tissue microarchitecture and PAI to map optical absorption associated with specific tissue morphology and physiology. PMID:24049693

  18. IMAGING WITH MULTIMODAL ADAPTIVE-OPTICS OPTICAL COHERENCE TOMOGRAPHY IN MULTIPLE EVANESCENT WHITE DOT SYNDROME: THE STRUCTURE AND FUNCTIONAL RELATIONSHIP

    PubMed Central

    Legarreta, Andrew D.; Legarreta, John E.; Nadler, Zach; Gallagher, Denise; Hammer, Daniel X.; Ferguson, R. Daniel; Iftimia, Nicusor; Wollstein, Gadi; Schuman, Joel S.

    2016-01-01

    Purpose: To elucidate the location of pathological changes in multiple evanescent white dot syndrome (MEWDS) with the use of multimodal adaptive optics (AO) imaging. Methods: A 5-year observational case study of a 24-year-old female with recurrent MEWDS. Full examination included history, Snellen chart visual acuity, pupil assessment, intraocular pressures, slit lamp evaluation, dilated fundoscopic exam, imaging with Fourier-domain optical coherence tomography (FD-OCT), blue-light fundus autofluorescence (FAF), fundus photography, fluorescein angiography, and adaptive-optics optical coherence tomography. Results: Three distinct acute episodes of MEWDS occurred during the period of follow-up. Fourier-domain optical coherence tomography and adaptive-optics imaging showed disturbance in the photoreceptor outer segments (PR OS) in the posterior pole with each flare. The degree of disturbance at the photoreceptor level corresponded to size and extent of the visual field changes. All findings were transient with delineation of the photoreceptor recovery from the outer edges of the lesion inward. Hyperautofluorescence was seen during acute flares. Increase in choroidal thickness did occur with each active flare but resolved. Conclusion: Although changes in the choroid and RPE can be observed in MEWDS, Fourier-domain optical coherence tomography, and multimodal adaptive optics imaging localized the visually significant changes seen in this disease at the level of the photoreceptors. These transient retinal changes specifically occur at the level of the inner segment ellipsoid and OS/RPE line. En face optical coherence tomography imaging provides a detailed, yet noninvasive method for following the convalescence of MEWDS and provides insight into the structural and functional relationship of this transient inflammatory retinal disease. PMID:26735319

  19. Multimodality Imaging in Cardiac Sarcoidosis: Is There a Winner?

    PubMed

    Perez, Irving E; Garcia, Mario J; Taub, Cynthia C

    2016-01-01

    Sarcoidosis is a multisystem granulomatous disease of unknown cause that can affect the heart. Cardiac sarcoidosis may be present in as many as 25% of patients with systemic sarcoidosis, and it is frequently underdiagnosed. The early and accurate diagnosis of myocardial involvement is challenging. Advanced imaging techniques play important roles in the diagnosis and management of patients with cardiac sarcoidosis.

  20. Semi-Supervised Multimodal Relevance Vector Regression Improves Cognitive Performance Estimation from Imaging and Biological Biomarkers

    PubMed Central

    Cheng, Bo; Chen, Songcan; Kaufer, Daniel I.

    2013-01-01

    Accurate estimation of cognitive scores for patients can help track the progress of neurological diseases. In this paper, we present a novel semi-supervised multimodal relevance vector regression (SM-RVR) method for predicting clinical scores of neurological diseases from multimodal imaging and biological biomarker, to help evaluate pathological stage and predict progression of diseases, e.g., Alzheimer’s diseases (AD). Unlike most existing methods, we predict clinical scores from multimodal (imaging and biological) biomarkers, including MRI, FDG-PET, and CSF. Considering that the clinical scores of mild cognitive impairment (MCI) subjects are often less stable compared to those of AD and normal control (NC) subjects due to the heterogeneity of MCI, we use only the multimodal data of MCI subjects, but no corresponding clinical scores, to train a semi-supervised model for enhancing the estimation of clinical scores for AD and NC subjects. We also develop a new strategy for selecting the most informative MCI subjects. We evaluate the performance of our approach on 202 subjects with all three modalities of data (MRI, FDG-PET and CSF) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The experimental results show that our SM-RVR method achieves a root-mean-square error (RMSE) of 1.91 and a correlation coefficient (CORR) of 0.80 for estimating the MMSE scores, and also a RMSE of 4.45 and a CORR of 0.78 for estimating the ADAS-Cog scores, demonstrating very promising performances in AD studies. PMID:23504659

  1. Multimodality image integration for radiotherapy treatment: an easy approach

    NASA Astrophysics Data System (ADS)

    Santos, Andres; Pascau, Javier; Desco, Manuel; Santos, Juan A.; Calvo, Felipe A.; Benito, Carlos; Garcia-Barreno, Rafael

    2001-05-01

    The interest of using combined MR and CT information for radiotherapy planning is well documented. However, many planning workstations do not allow to use MR images, nor import predefined contours. This paper presents a new simple approach for transferring segmentation results from MRI to a CT image that will be used for radiotherapy planning, using the same original CT format. CT and MRI images of the same anatomical area are registered using mutual information (MI) algorithm. Targets and organs at risk are segmented by the physician on the MR image, where their contours are easy to track. A locally developed software running on PC is used for this step, with several facilities for the segmentation process. The result is transferred onto the CT by slightly modifying up and down the original Hounsfield values of some points of the contour. This is enough to visualize the contour on the CT, but does not affect dose calculations. The CT is then stored using the original file format of the radiotherapy planning workstation, where the technician uses the segmented contour to design the correct beam positioning. The described method has been tested in five patients. Simulations and patient results show that the dose distribution is not affected by the small modification of pixels of the CT image, while the segmented structures can be tracked in the radiotherapy planning workstation-using adequate window/level settings. The presence of the physician is not requires at the planning workstation, and he/she can perform the segmentation process using his/her own PC. This new approach makes it possible to take advantage from the anatomical information present on the MRI and to transfer the segmentation to the CT used for planning, even when the planning workstation does not allow to import external contours. The physician can draw the limits of the target and areas at risk off-line, thus separating in time the segmentation and planning tasks and increasing the efficiency.

  2. Achromatic approach to phase-based multi-modal imaging with conventional X-ray sources.

    PubMed

    Endrizzi, Marco; Vittoria, Fabio A; Kallon, Gibril; Basta, Dario; Diemoz, Paul C; Vincenzi, Alessandro; Delogu, Pasquale; Bellazzini, Ronaldo; Olivo, Alessandro

    2015-06-15

    Compatibility with polychromatic radiation is an important requirement for an imaging system using conventional rotating anode X-ray sources. With a commercially available energy-resolving single-photon-counting detector we investigated how broadband radiation affects the performance of a multi-modal edge-illumination phase-contrast imaging system. The effect of X-ray energy on phase retrieval is presented, and the achromaticity of the method is experimentally demonstrated. Comparison with simulated measurements integrating over the energy spectrum shows that there is no significant loss of image quality due to the use of polychromatic radiation. This means that, to a good approximation, the imaging system exploits radiation in the same way at all energies typically used in hard-X-ray imaging. PMID:26193618

  3. Multi-Modality fiducial marker for validation of registration of medical images with histology

    NASA Astrophysics Data System (ADS)

    Shojaii, Rushin; Martel, Anne L.

    2010-03-01

    A multi-modality fiducial marker is presented in this work, which can be used for validating the correlation of histology images with medical images. This marker can also be used for landmark-based image registration. Seven different fiducial markers including a catheter, spaghetti, black spaghetti, cuttlefish ink, and liquid iron are implanted in a mouse specimen and then investigated based on visibility, localization, size, and stability. The black spaghetti and the mixture of cuttlefish ink and flour are shown to be the most suitable markers. Based on the size of the markers, black spaghetti is more suitable for big specimens and the mixture of the cuttlefish ink, flour, and water injected in a catheter is more suitable for small specimens such as mouse tumours. These markers are visible on medical images and also detectable on histology and optical images of the tissue blocks. The main component in these agents which enhances the contrast is iron.

  4. Multi-modal molecular diffuse optical tomography system for small animal imaging

    PubMed Central

    Guggenheim, James A.; Basevi, Hector R. A.; Frampton, Jon; Styles, Iain B.; Dehghani, Hamid

    2013-01-01

    A multi-modal optical imaging system for quantitative 3D bioluminescence and functional diffuse imaging is presented, which has no moving parts and uses mirrors to provide multi-view tomographic data for image reconstruction. It is demonstrated that through the use of trans-illuminated spectral near infrared measurements and spectrally constrained tomographic reconstruction, recovered concentrations of absorbing agents can be used as prior knowledge for bioluminescence imaging within the visible spectrum. Additionally, the first use of a recently developed multi-view optical surface capture technique is shown and its application to model-based image reconstruction and free-space light modelling is demonstrated. The benefits of model-based tomographic image recovery as compared to 2D planar imaging are highlighted in a number of scenarios where the internal luminescence source is not visible or is confounding in 2D images. The results presented show that the luminescence tomographic imaging method produces 3D reconstructions of individual light sources within a mouse-sized solid phantom that are accurately localised to within 1.5mm for a range of target locations and depths indicating sensitivity and accurate imaging throughout the phantom volume. Additionally the total reconstructed luminescence source intensity is consistent to within 15% which is a dramatic improvement upon standard bioluminescence imaging. Finally, results from a heterogeneous phantom with an absorbing anomaly are presented demonstrating the use and benefits of a multi-view, spectrally constrained coupled imaging system that provides accurate 3D luminescence images. PMID:24954977

  5. Multimodal imaging of a humanized orthotopic model of hepatocellular carcinoma in immunodeficient mice

    PubMed Central

    Wu, Tao; Heuillard, Emilie; Lindner, Véronique; Bou About, Ghina; Ignat, Mihaela; Dillenseger, Jean-Philippe; Anton, Nicolas; Dalimier, Eugénie; Gossé, Francine; Fouré, Gael; Blindauer, Franck; Giraudeau, Céline; El-Saghire, Hussein; Bouhadjar, Mourad; Calligaro, Cynthia; Sorg, Tania; Choquet, Philippe; Vandamme, Thierry; Ferrand, Christophe; Marescaux, Jacques; Baumert, Thomas F.; Diana, Michele; Pessaux, Patrick; Robinet, Eric

    2016-01-01

    The development of multimodal strategies for the treatment of hepatocellular carcinoma requires tractable animal models allowing for advanced in vivo imaging. Here, we characterize an orthotopic hepatocellular carcinoma model based on the injection of luciferase-expressing human hepatoma Huh-7 (Huh-7-Luc) cells in immunodeficient mice. Luciferase allows for an easy repeated monitoring of tumor growth by in vivo bioluminescence. The intrahepatic injection was more efficient than intrasplenic or intraportal injection in terms of survival, rate of orthotopic engraftment, and easiness. A positive correlation between luciferase activity and tumor size, evaluated by Magnetic Resonance Imaging, allowed to define the endpoint value for animal experimentation with this model. Response to standard of care, sorafenib or doxorubicin, were similar to those previously reported in the literature, with however a strong toxicity of doxorubicin. Tumor vascularization was visible by histology seven days after Huh-7-Luc transplantation and robustly developed at day 14 and day 21. The model was used to explore different imaging modalities, including microtomography, probe-based confocal laser endomicroscopy, full-field optical coherence tomography, and ultrasound imaging. Tumor engraftment was similar after echo-guided intrahepatic injection as after laparotomy. Collectively, this orthotopic hepatocellular carcinoma model enables the in vivo evaluation of chemotherapeutic and surgical approaches using multimodal imaging. PMID:27739457

  6. A Pipeline for 3D Multimodality Image Integration and Computer-assisted Planning in Epilepsy Surgery.

    PubMed

    Nowell, Mark; Rodionov, Roman; Zombori, Gergely; Sparks, Rachel; Rizzi, Michele; Ourselin, Sebastien; Miserocchi, Anna; McEvoy, Andrew; Duncan, John

    2016-01-01

    Epilepsy surgery is challenging and the use of 3D multimodality image integration (3DMMI) to aid presurgical planning is well-established. Multimodality image integration can be technically demanding, and is underutilised in clinical practice. We have developed a single software platform for image integration, 3D visualization and surgical planning. Here, our pipeline is described in step-by-step fashion, starting with image acquisition, proceeding through image co-registration, manual segmentation, brain and vessel extraction, 3D visualization and manual planning of stereoEEG (SEEG) implantations. With dissemination of the software this pipeline can be reproduced in other centres, allowing other groups to benefit from 3DMMI. We also describe the use of an automated, multi-trajectory planner to generate stereoEEG implantation plans. Preliminary studies suggest this is a rapid, safe and efficacious adjunct for planning SEEG implantations. Finally, a simple solution for the export of plans and models to commercial neuronavigation systems for implementation of plans in the operating theater is described. This software is a valuable tool that can support clinical decision making throughout the epilepsy surgery pathway.

  7. A Multimodal Imaging Approach for Longitudinal Evaluation of Bladder Tumor Development in an Orthotopic Murine Model.

    PubMed

    Scheepbouwer, Chantal; Meyer, Sandra; Burggraaf, Maroeska J; Jose, Jithin; Molthoff, Carla F M

    2016-01-01

    Bladder cancer is the fourth most common malignancy amongst men in Western industrialized countries with an initial response rate of 70% for the non-muscle invasive type, and improving therapy efficacy is highly needed. For this, an appropriate, reliable animal model is essential to gain insight into mechanisms of tumor growth for use in response monitoring of (new) agents. Several animal models have been described in previous studies, but so far success has been hampered due to the absence of imaging methods to follow tumor growth non-invasively over time. Recent developments of multimodal imaging methods for use in animal research have substantially strengthened these options of in vivo visualization of tumor growth. In the present study, a multimodal imaging approach was addressed to investigate bladder tumor proliferation longitudinally. The complementary abilities of Bioluminescence, High Resolution Ultrasound and Photo-acoustic Imaging permit a better understanding of bladder tumor development. Hybrid imaging modalities allow the integration of individual strengths to enable sensitive and improved quantification and understanding of tumor biology, and ultimately, can aid in the discovery and development of new therapeutics. PMID:27533303

  8. A Pipeline for 3D Multimodality Image Integration and Computer-assisted Planning in Epilepsy Surgery.

    PubMed

    Nowell, Mark; Rodionov, Roman; Zombori, Gergely; Sparks, Rachel; Rizzi, Michele; Ourselin, Sebastien; Miserocchi, Anna; McEvoy, Andrew; Duncan, John

    2016-01-01

    Epilepsy surgery is challenging and the use of 3D multimodality image integration (3DMMI) to aid presurgical planning is well-established. Multimodality image integration can be technically demanding, and is underutilised in clinical practice. We have developed a single software platform for image integration, 3D visualization and surgical planning. Here, our pipeline is described in step-by-step fashion, starting with image acquisition, proceeding through image co-registration, manual segmentation, brain and vessel extraction, 3D visualization and manual planning of stereoEEG (SEEG) implantations. With dissemination of the software this pipeline can be reproduced in other centres, allowing other groups to benefit from 3DMMI. We also describe the use of an automated, multi-trajectory planner to generate stereoEEG implantation plans. Preliminary studies suggest this is a rapid, safe and efficacious adjunct for planning SEEG implantations. Finally, a simple solution for the export of plans and models to commercial neuronavigation systems for implementation of plans in the operating theater is described. This software is a valuable tool that can support clinical decision making throughout the epilepsy surgery pathway. PMID:27286266

  9. A Multimodal Imaging Approach for Longitudinal Evaluation of Bladder Tumor Development in an Orthotopic Murine Model

    PubMed Central

    Meyer, Sandra; Burggraaf, Maroeska J.; Jose, Jithin; Molthoff, Carla F. M.

    2016-01-01

    Bladder cancer is the fourth most common malignancy amongst men in Western industrialized countries with an initial response rate of 70% for the non-muscle invasive type, and improving therapy efficacy is highly needed. For this, an appropriate, reliable animal model is essential to gain insight into mechanisms of tumor growth for use in response monitoring of (new) agents. Several animal models have been described in previous studies, but so far success has been hampered due to the absence of imaging methods to follow tumor growth non-invasively over time. Recent developments of multimodal imaging methods for use in animal research have substantially strengthened these options of in vivo visualization of tumor growth. In the present study, a multimodal imaging approach was addressed to investigate bladder tumor proliferation longitudinally. The complementary abilities of Bioluminescence, High Resolution Ultrasound and Photo-acoustic Imaging permit a better understanding of bladder tumor development. Hybrid imaging modalities allow the integration of individual strengths to enable sensitive and improved quantification and understanding of tumor biology, and ultimately, can aid in the discovery and development of new therapeutics. PMID:27533303

  10. Multimodality Imaging of the Effects of a Novel Dentifrice on Oral Biofilm

    PubMed Central

    Ajdaharian, Janet; Dadkhah, Mohammad; Sabokpey, Sara; Biren-Fetz, John; Chung, Na Eun; Wink, Cherie; Wilder-Smith, Petra

    2014-01-01

    Objective Oral biofilm formation and progression on the surface of the tooth can lead to advanced oral disease such as gingivitis. The purpose of this randomized, controlled, double-blinded study was to evaluate the effects of a novel dental gel on oral plaque biofilm using multimodal imaging techniques. Materials and Methods Twenty-five subjects with moderate gingival inflammation (Löe and Silness Gingival Index ≥ 2) and pocket depths <4 were randomly assigned to brush twice daily for 21 days with the test or the control dental gel. In vivo multimodality in situ imaging was performed over a 3-week period using in vivo Optical Coherence Tomography (OCT) and Non-Linear Optical microscopy (NLOM). Plaque levels, gingival inflammation and gingival bleeding were also charted on days 0, 7, 14, and 21 using standard clinical indices. Results After 3 weeks, OCT and NLOM images showed a macroscopic break-up of the plaque layer and smaller, fragmented residual deposits in the test group with no apparent changes in the pellicle. Biofilm was also reduced in the control group, but to a lesser degree with regard to thickness, continuity and surface area. Paralleling these imaging results, clinical indices were significantly improved in both groups (P <0.05) and significantly lower in the test group (P <0.05). Conclusion Both dental gels reduced oral biofilm with the test gel showing greater efficacy (P <0.05) as determined by clinical and imaging parameters. PMID:24916419

  11. A Pipeline for 3D Multimodality Image Integration and Computer-assisted Planning in Epilepsy Surgery

    PubMed Central

    Nowell, Mark; Rodionov, Roman; Zombori, Gergely; Sparks, Rachel; Rizzi, Michele; Ourselin, Sebastien; Miserocchi, Anna; McEvoy, Andrew; Duncan, John

    2016-01-01

    Epilepsy surgery is challenging and the use of 3D multimodality image integration (3DMMI) to aid presurgical planning is well-established. Multimodality image integration can be technically demanding, and is underutilised in clinical practice. We have developed a single software platform for image integration, 3D visualization and surgical planning. Here, our pipeline is described in step-by-step fashion, starting with image acquisition, proceeding through image co-registration, manual segmentation, brain and vessel extraction, 3D visualization and manual planning of stereoEEG (SEEG) implantations. With dissemination of the software this pipeline can be reproduced in other centres, allowing other groups to benefit from 3DMMI. We also describe the use of an automated, multi-trajectory planner to generate stereoEEG implantation plans. Preliminary studies suggest this is a rapid, safe and efficacious adjunct for planning SEEG implantations. Finally, a simple solution for the export of plans and models to commercial neuronavigation systems for implementation of plans in the operating theater is described. This software is a valuable tool that can support clinical decision making throughout the epilepsy surgery pathway. PMID:27286266

  12. Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery.

    PubMed

    Xu, Huan; Cheng, Liang; Wang, Chao; Ma, Xinxing; Li, Yonggang; Liu, Zhuang

    2011-12-01

    Multimodal imaging and imaging-guided therapies have become a new trend in the current development of cancer theranostics. In this work, we encapsulate hydrophobic upconversion nanoparticles (UCNPs) together with iron oxide nanoparticles (IONPs) by using an amphiphilic block copolymer, poly (styrene-block-allyl alcohol) (PS(16)-b-PAA(10)), via a microemulsion method, obtaining an UC-IO@Polymer multi-functional nanocomposite system. Fluorescent dye and anti-cancer drug molecules can be further loaded inside the UC-IO@Polymer nanocomposite for additional functionalities. Utilizing the Squaraine (SQ) dye loaded nanocomposite (UC-IO@Polymer-SQ), triple-modal upconversion luminescence (UCL)/down-conversion fluorescence (FL)/magnetic resonance (MR) imaging is demonstrated in vitro and in vivo, and also applied for in vivo cancer cell tracking in mice. On the other hand, a chemotherapy drug, doxorubicin, is also loaded into the nanocomposite, forming an UC-IO@Polymer-DOX complex, which enables novel imaging-guided and magnetic targeted drug delivery. Our work provides a method to fabricate a nanocomposite system with highly integrated functionalities for multimodal biomedical imaging and cancer therapy.

  13. Quasi-simultaneous multimodal imaging of cutaneous tissue oxygenation and perfusion

    NASA Astrophysics Data System (ADS)

    Ren, Wenqi; Gan, Qi; Wu, Qiang; Zhang, Shiwu; Xu, Ronald

    2015-12-01

    Simultaneous and quantitative assessment of multiple tissue parameters may facilitate more effective diagnosis and therapy in many clinical applications, such as wound healing. However, existing wound assessment methods are typically subjective and qualitative, with the need for sequential data acquisition and coregistration between modalities, and lack of reliable standards for performance evaluation or calibration. To overcome these limitations, we developed a multimodal imaging system for quasi-simultaneous assessment of cutaneous tissue oxygenation and perfusion in a quantitative and noninvasive fashion. The system integrated multispectral and laser speckle imaging technologies into one experimental setup. Tissue oxygenation and perfusion were reconstructed by advanced algorithms. The accuracy and reliability of the imaging system were quantitatively validated in calibration experiments and a tissue-simulating phantom test. The experimental results were compared with a commercial oxygenation and perfusion monitor. Dynamic detection of cutaneous tissue oxygenation and perfusion was also demonstrated in vivo by a postocclusion reactive hyperemia procedure in a human subject and a wound healing process in a wounded mouse model. Our in vivo experiments not only validated the performance of the multimodal imaging system for cutaneous tissue oxygenation and perfusion imaging but also demonstrated its technical potential for wound healing assessment in clinical practice.

  14. Associations between white matter microstructure and amyloid burden in preclinical Alzheimer's disease: A multimodal imaging investigation

    PubMed Central

    Racine, Annie M.; Adluru, Nagesh; Alexander, Andrew L.; Christian, Bradley T.; Okonkwo, Ozioma C.; Oh, Jennifer; Cleary, Caitlin A.; Birdsill, Alex; Hillmer, Ansel T.; Murali, Dhanabalan; Barnhart, Todd E.; Gallagher, Catherine L.; Carlsson, Cynthia M.; Rowley, Howard A.; Dowling, N. Maritza; Asthana, Sanjay; Sager, Mark A.; Bendlin, Barbara B.; Johnson, Sterling C.

    2014-01-01

    Some cognitively healthy individuals develop brain amyloid accumulation, suggestive of incipient Alzheimer's disease (AD), but the effect of amyloid on other potentially informative imaging modalities, such as Diffusion Tensor Imaging (DTI), in characterizing brain changes in preclinical AD requires further exploration. In this study, a sample (N = 139, mean age 60.6, range 46 to 71) from the Wisconsin Registry for Alzheimer's Prevention (WRAP), a cohort enriched for AD risk factors, was recruited for a multimodal imaging investigation that included DTI and [C-11]Pittsburgh Compound B (PiB) positron emission tomography (PET). Participants were grouped as amyloid positive (Aβ+), amyloid indeterminate (Aβi), or amyloid negative (Aβ−) based on the amount and pattern of amyloid deposition. Regional voxel-wise analyses of four DTI metrics, fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (Da), and radial diffusivity (Dr), were performed based on amyloid grouping. Three regions of interest (ROIs), the cingulum adjacent to the corpus callosum, hippocampal cingulum, and lateral fornix, were selected based on their involvement in the early stages of AD. Voxel-wise analysis revealed higher FA among Aβ+ compared to Aβ− in all three ROIs and in Aβi compared to Aβ− in the cingulum adjacent to the corpus callosum. Follow-up exploratory whole-brain analyses were consistent with the ROI findings, revealing multiple regions where higher FA was associated with greater amyloid. Lower fronto-lateral gray matter MD was associated with higher amyloid burden. Further investigation showed a negative correlation between MD and PiB signal, suggesting that Aβ accumulation impairs diffusion. Interestingly, these findings in a largely presymptomatic sample are in contradistinction to relationships reported in the literature in symptomatic disease stages of Mild Cognitive Impairment and AD, which usually show higher MD and lower FA. Together with analyses

  15. Gold–silica quantum rattles for multimodal imaging and therapy

    PubMed Central

    Hembury, Mathew; Chiappini, Ciro; Bertazzo, Sergio; Kalber, Tammy L.; Drisko, Glenna L.; Ogunlade, Olumide; Walker-Samuel, Simon; Krishna, Katla Sai; Jumeaux, Coline; Beard, Paul; Kumar, Challa S. S. R.; Porter, Alexandra E.; Lythgoe, Mark F.; Boissière, Cédric; Sanchez, Clément; Stevens, Molly M.

    2015-01-01

    Gold quantum dots exhibit distinctive optical and magnetic behaviors compared with larger gold nanoparticles. However, their unfavorable interaction with living systems and lack of stability in aqueous solvents has so far prevented their adoption in biology and medicine. Here, a simple synthetic pathway integrates gold quantum dots within a mesoporous silica shell, alongside larger gold nanoparticles within the shell’s central cavity. This “quantum rattle” structure is stable in aqueous solutions, does not elicit cell toxicity, preserves the attractive near-infrared photonics and paramagnetism of gold quantum dots, and enhances the drug-carrier performance of the silica shell. In vivo, the quantum rattles reduced tumor burden in a single course of photothermal therapy while coupling three complementary imaging modalities: near-infrared fluorescence, photoacoustic, and magnetic resonance imaging. The incorporation of gold within the quantum rattles significantly enhanced the drug-carrier performance of the silica shell. This innovative material design based on the mutually beneficial interaction of gold and silica introduces the use of gold quantum dots for imaging and therapeutic applications. PMID:25653336

  16. Gold-silica quantum rattles for multimodal imaging and therapy.

    PubMed

    Hembury, Mathew; Chiappini, Ciro; Bertazzo, Sergio; Kalber, Tammy L; Drisko, Glenna L; Ogunlade, Olumide; Walker-Samuel, Simon; Krishna, Katla Sai; Jumeaux, Coline; Beard, Paul; Kumar, Challa S S R; Porter, Alexandra E; Lythgoe, Mark F; Boissière, Cédric; Sanchez, Clément; Stevens, Molly M

    2015-02-17

    Gold quantum dots exhibit distinctive optical and magnetic behaviors compared with larger gold nanoparticles. However, their unfavorable interaction with living systems and lack of stability in aqueous solvents has so far prevented their adoption in biology and medicine. Here, a simple synthetic pathway integrates gold quantum dots within a mesoporous silica shell, alongside larger gold nanoparticles within the shell's central cavity. This "quantum rattle" structure is stable in aqueous solutions, does not elicit cell toxicity, preserves the attractive near-infrared photonics and paramagnetism of gold quantum dots, and enhances the drug-carrier performance of the silica shell. In vivo, the quantum rattles reduced tumor burden in a single course of photothermal therapy while coupling three complementary imaging modalities: near-infrared fluorescence, photoacoustic, and magnetic resonance imaging. The incorporation of gold within the quantum rattles significantly enhanced the drug-carrier performance of the silica shell. This innovative material design based on the mutually beneficial interaction of gold and silica introduces the use of gold quantum dots for imaging and therapeutic applications.

  17. Imaging findings in fetal diaphragmatic abnormalities.

    PubMed

    Alamo, Leonor; Gudinchet, François; Meuli, Reto

    2015-12-01

    Imaging plays a key role in the detection of a diaphragmatic pathology in utero. US is the screening method, but MRI is increasingly performed. Congenital diaphragmatic hernia is by far the most often diagnosed diaphragmatic pathology, but unilateral or bilateral eventration or paralysis can also be identified. Extralobar pulmonary sequestration can be located in the diaphragm and, exceptionally, diaphragmatic tumors or secondary infiltration of the diaphragm from tumors originating from an adjacent organ have been observed in utero. Congenital abnormalities of the diaphragm impair normal lung development. Prenatal imaging provides a detailed anatomical evaluation of the fetus and allows volumetric lung measurements. The comparison of these data with those from normal fetuses at the same gestational age provides information about the severity of pulmonary hypoplasia and improves predictions about the fetus's outcome. This information can help doctors and families to make decisions about management during pregnancy and after birth. We describe a wide spectrum of congenital pathologies of the diaphragm and analyze their embryological basis. Moreover, we describe their prenatal imaging findings with emphasis on MR studies, discuss their differential diagnosis and evaluate the limits of imaging methods in predicting postnatal outcome. PMID:26255159

  18. Visible-light optical coherence tomography-based multimodal retinal imaging for improvement of fluorescent intensity quantification

    PubMed Central

    Nafar, Zahra; Jiang, Minshan; Wen, Rong; Jiao, Shuliang

    2016-01-01

    We developed a spectral-domain visible-light optical coherence tomography (VIS-OCT) based multimodal imaging technique which can accomplish simultaneous OCT and fluorescence imaging with a single broadband light source. Phantom experiments showed that by using the simultaneously acquired OCT images as a reference, the effect of light attenuation on the intensity of the fluorescent images by materials in front of the fluorescent target can be compensated. This capability of the multimodal imaging technique is of high importance for achieving quantification of the true intensities of autofluorescence (AF) imaging of the retina. We applied the technique in retinal imaging including AF imaging of the retinal pigment epithelium and fluorescein angiography (FA). We successfully demonstrated the effect of compensation on AF and FA images with the simultaneously acquired VIS-OCT images. PMID:27699094

  19. Visible-light optical coherence tomography-based multimodal retinal imaging for improvement of fluorescent intensity quantification

    PubMed Central

    Nafar, Zahra; Jiang, Minshan; Wen, Rong; Jiao, Shuliang

    2016-01-01

    We developed a spectral-domain visible-light optical coherence tomography (VIS-OCT) based multimodal imaging technique which can accomplish simultaneous OCT and fluorescence imaging with a single broadband light source. Phantom experiments showed that by using the simultaneously acquired OCT images as a reference, the effect of light attenuation on the intensity of the fluorescent images by materials in front of the fluorescent target can be compensated. This capability of the multimodal imaging technique is of high importance for achieving quantification of the true intensities of autofluorescence (AF) imaging of the retina. We applied the technique in retinal imaging including AF imaging of the retinal pigment epithelium and fluorescein angiography (FA). We successfully demonstrated the effect of compensation on AF and FA images with the simultaneously acquired VIS-OCT images.

  20. Imaging horse tendons using multimodal 2-photon microscopy.

    PubMed

    Sivaguru, Mayandi; Eichorst, John Paul; Durgam, Sushmitha; Fried, Glenn A; Stewart, Allison A; Stewart, Matthew C

    2014-03-15

    Injuries and damage to tendons plague both human and equine athletes. At the site of injuries, various cells congregate to repair and re-structure the collagen. Treatments for collagen injury range from simple procedures such as icing and pharmaceutical treatments to more complex surgeries and the implantation of stem cells. Regardless of the treatment, the level of mechanical stimulation incurred by the recovering tendon is crucial. However, for a given tendon injury, it is not known precisely how much of a load should be applied for an effective recovery. Both too much and too little loading of the tendon could be detrimental during recovery. A mapping of the complex local environment imparted to any cell present at the site of a tendon injury may however, convey fundamental insights related to their decision making as a function of applied load. Therefore, fundamentally knowing how cells translate mechanical cues from their external environment into signals regulating their functions during repair is crucial to more effectively treat these types of injuries. In this paper, we studied systems of tendons with a variety of 2-photon-based imaging techniques to examine the local mechanical environment of cells in both normal and injured tendons. These tendons were chemically treated to instigate various extents of injury and in some cases, were injected with stem cells. The results related by each imaging technique distinguish with high contrast and resolution multiple morphologies of the cells' nuclei and the alignment of the collagen during injury. The incorporation of 2-photon FLIM into this study probed new features in the local environment of the nuclei that were not apparent with steady-state imaging. Overall, this paper focuses on horse tendon injury pattern and analysis with different 2-photon confocal modalities useful for wide variety of application in damaged tissues.

  1. Evaluation of 3D multimodality image registration using receiver operating characteristic (ROC) analysis

    NASA Astrophysics Data System (ADS)

    Holton Tainter, Kerrie S.; Robb, Richard A.; Taneja, Udita; Gray, Joel E.

    1995-04-01

    Receiver operating characteristic analysis has evolved as a useful method for evaluating the discriminatory capability and efficacy of visualization. The ability of such analysis to account for the variance in decision criteria of multiple observers, multiple reading, and a wide range of difficulty in detection among case studies makes ROC especially useful for interpreting the results of a viewing experiment. We are currently using ROC analysis to evaluate the effectiveness of using fused multispectral, or complementary multimodality imaging data in the diagnostic process. The use of multispectral image recordings, gathered from multiple imaging modalities, to provide advanced image visualization and quantization capabilities in evaluating medical images is an important challenge facing medical imaging scientists. Such capabilities would potentially significantly enhance the ability of clinicians to extract scientific and diagnostic information from images. a first step in the effective use of multispectral information is the spatial registration of complementary image datasets so that a point-to-point correspondence exists between them. We are developing a paradigm of measuring the accuracy of existing image registration techniques which includes the ability to relate quantitative measurements, taken from the images themselves, to the decisions made by observers about the state of registration (SOR) of the 3D images. We have used ROC analysis to evaluate the ability of observers to discriminate between correctly registered and incorrectly registered multimodality fused images. We believe this experience is original and represents the first time that ROC analysis has been used to evaluate registered/fused images. We have simulated low-resolution and high-resolution images from real patient MR images of the brain, and fused them with the original MR to produce colorwash superposition images whose exact SOR is known. We have also attempted to extend this analysis to

  2. Multi-modal image registration: matching MRI with histology

    NASA Astrophysics Data System (ADS)

    Alic, Lejla; Haeck, Joost C.; Klein, Stefan; Bol, Karin; van Tiel, Sandra T.; Wielopolski, Piotr A.; Bijster, Magda; Niessen, Wiro J.; Bernsen, Monique; Veenland, Jifke F.; de Jong, Marion

    2010-03-01

    Spatial correspondence between histology and multi sequence MRI can provide information about the capabilities of non-invasive imaging to characterize cancerous tissue. However, shrinkage and deformation occurring during the excision of the tumor and the histological processing complicate the co registration of MR images with histological sections. This work proposes a methodology to establish a detailed 3D relation between histology sections and in vivo MRI tumor data. The key features of the methodology are a very dense histological sampling (up to 100 histology slices per tumor), mutual information based non-rigid B-spline registration, the utilization of the whole 3D data sets, and the exploitation of an intermediate ex vivo MRI. In this proof of concept paper, the methodology was applied to one tumor. We found that, after registration, the visual alignment of tumor borders and internal structures was fairly accurate. Utilizing the intermediate ex vivo MRI, it was possible to account for changes caused by the excision of the tumor: we observed a tumor expansion of 20%. Also the effects of fixation, dehydration and histological sectioning could be determined: 26% shrinkage of the tumor was found. The annotation of viable tissue, performed in histology and transformed to the in vivo MRI, matched clearly with high intensity regions in MRI. With this methodology, histological annotation can be directly related to the corresponding in vivo MRI. This is a vital step for the evaluation of the feasibility of multi-spectral MRI to depict histological groundtruth.

  3. Polarization sensitive spectroscopic optical coherence tomography for multimodal imaging

    NASA Astrophysics Data System (ADS)

    Strąkowski, Marcin R.; Kraszewski, Maciej; Strąkowska, Paulina; Trojanowski, Michał

    2015-03-01

    Optical coherence tomography (OCT) is a non-invasive method for 3D and cross-sectional imaging of biological and non-biological objects. The OCT measurements are provided in non-contact and absolutely safe way for the tested sample. Nowadays, the OCT is widely applied in medical diagnosis especially in ophthalmology, as well as dermatology, oncology and many more. Despite of great progress in OCT measurements there are still a vast number of issues like tissue recognition or imaging contrast enhancement that have not been solved yet. Here we are going to present the polarization sensitive spectroscopic OCT system (PS-SOCT). The PS-SOCT combines the polarization sensitive analysis with time-frequency analysis. Unlike standard polarization sensitive OCT the PS-SOCT delivers spectral information about measured quantities e.g. tested object birefringence changes over the light spectra. This solution overcomes the limits of polarization sensitive analysis applied in standard PS-OCT. Based on spectral data obtained from PS-SOCT the exact value of birefringence can be calculated even for the objects that provide higher order of retardation. In this contribution the benefits of using the combination of time-frequency and polarization sensitive analysis are being expressed. Moreover, the PS-SOCT system features, as well as OCT measurement examples are presented.

  4. Observation of Geometric Parametric Instability Induced by the Periodic Spatial Self-Imaging of Multimode Waves

    NASA Astrophysics Data System (ADS)

    Krupa, Katarzyna; Tonello, Alessandro; Barthélémy, Alain; Couderc, Vincent; Shalaby, Badr Mohamed; Bendahmane, Abdelkrim; Millot, Guy; Wabnitz, Stefan

    2016-05-01

    Spatiotemporal mode coupling in highly multimode physical systems permits new routes for exploring complex instabilities and forming coherent wave structures. We present here the first experimental demonstration of multiple geometric parametric instability sidebands, generated in the frequency domain through resonant space-time coupling, owing to the natural periodic spatial self-imaging of a multimode quasi-continuous-wave beam in a standard graded-index multimode fiber. The input beam was launched in the fiber by means of an amplified microchip laser emitting sub-ns pulses at 1064 nm. The experimentally observed frequency spacing among sidebands agrees well with analytical predictions and numerical simulations. The first-order peaks are located at the considerably large detuning of 123.5 THz from the pump. These results open the remarkable possibility to convert a near-infrared laser directly into a broad spectral range spanning visible and infrared wavelengths, by means of a single resonant parametric nonlinear effect occurring in the normal dispersion regime. As further evidence of our strong space-time coupling regime, we observed the striking effect that all of the different sideband peaks were carried by a well-defined and stable bell-shaped spatial profile.

  5. Observation of Geometric Parametric Instability Induced by the Periodic Spatial Self-Imaging of Multimode Waves.

    PubMed

    Krupa, Katarzyna; Tonello, Alessandro; Barthélémy, Alain; Couderc, Vincent; Shalaby, Badr Mohamed; Bendahmane, Abdelkrim; Millot, Guy; Wabnitz, Stefan

    2016-05-01

    Spatiotemporal mode coupling in highly multimode physical systems permits new routes for exploring complex instabilities and forming coherent wave structures. We present here the first experimental demonstration of multiple geometric parametric instability sidebands, generated in the frequency domain through resonant space-time coupling, owing to the natural periodic spatial self-imaging of a multimode quasi-continuous-wave beam in a standard graded-index multimode fiber. The input beam was launched in the fiber by means of an amplified microchip laser emitting sub-ns pulses at 1064 nm. The experimentally observed frequency spacing among sidebands agrees well with analytical predictions and numerical simulations. The first-order peaks are located at the considerably large detuning of 123.5 THz from the pump. These results open the remarkable possibility to convert a near-infrared laser directly into a broad spectral range spanning visible and infrared wavelengths, by means of a single resonant parametric nonlinear effect occurring in the normal dispersion regime. As further evidence of our strong space-time coupling regime, we observed the striking effect that all of the different sideband peaks were carried by a well-defined and stable bell-shaped spatial profile. PMID:27203323

  6. Investigating the photosensitizer-potential of targeted gallium corrole using multimode optical imaging

    NASA Astrophysics Data System (ADS)

    Hwang, Jae Youn; Lubow, Jay; Chu, David; Gross, Zeev; Gray, Harry B.; Farkas, Daniel L.; Medina-Kauwe, Lali K.

    2011-02-01

    We recently developed a novel therapeutic particle, HerGa, for breast cancer treatment and detection. HerGa consists of a tumor-targeted cell penetration protein noncovalently assembled with a gallium-metallated corrole. The corrole is structurally similar to porphyrin, emits intense fluorescence, and has proven highly effective for breast tumor treatment preclinically, without light exposure. Here, we tested HerGa as a photosensitizer for photodynamic therapy and investigated its mechanism of action using multimode optical imaging. Using confocal fluorescence imaging, we observed that HerGa disrupts the mitochondrial membrane potential in situ, and this disruption is substantially augmented by light exposure. In addition, spectral and fluorescence lifetime imaging were utilized to both validate the mitochondrial membrane potential disruption and investigate HerGa internalization, allowing us to optimize the timing for light dosimetry. We observed, using advanced multimode optical imaging, that light at a specific wavelength promotes HerGa cytotoxicity, which is likely to cause disruption of mitochondrial function. Thus, we can identify for the first time the capacity of HerGa as a photosensitizer for photodynamic therapy and reveal its mechanism of action, opening possibilities for therapeutic intervention in human breast cancer management.

  7. Shape-Controlled Synthesis of Isotopic Yttrium-90-Labeled Rare Earth Fluoride Nanocrystals for Multimodal Imaging.

    PubMed

    Paik, Taejong; Chacko, Ann-Marie; Mikitsh, John L; Friedberg, Joseph S; Pryma, Daniel A; Murray, Christopher B

    2015-09-22

    Isotopically labeled nanomaterials have recently attracted much attention in biomedical research, environmental health studies, and clinical medicine because radioactive probes allow the elucidation of in vitro and in vivo cellular transport mechanisms, as well as the unambiguous distribution and localization of nanomaterials in vivo. In addition, nanocrystal-based inorganic materials have a unique capability of customizing size, shape, and composition; with the potential to be designed as multimodal imaging probes. Size and shape of nanocrystals can directly influence interactions with biological systems, hence it is important to develop synthetic methods to design radiolabeled nanocrystals with precise control of size and shape. Here, we report size- and shape-controlled synthesis of rare earth fluoride nanocrystals doped with the β-emitting radioisotope yttrium-90 ((90)Y). Size and shape of nanocrystals are tailored via tight control of reaction parameters and the type of rare earth hosts (e.g., Gd or Y) employed. Radiolabeled nanocrystals are synthesized in high radiochemical yield and purity as well as excellent radiolabel stability in the face of surface modification with different polymeric ligands. We demonstrate the Cerenkov radioluminescence imaging and magnetic resonance imaging capabilities of (90)Y-doped GdF3 nanoplates, which offer unique opportunities as a promising platform for multimodal imaging and targeted therapy.

  8. Transferring biomarker into molecular probe: melanin nanoparticle as a naturally active platform for multimodality imaging.

    PubMed

    Fan, Quli; Cheng, Kai; Hu, Xiang; Ma, Xiaowei; Zhang, Ruiping; Yang, Min; Lu, Xiaomei; Xing, Lei; Huang, Wei; Gambhir, Sanjiv Sam; Cheng, Zhen

    2014-10-29

    Developing multifunctional and easily prepared nanoplatforms with integrated different modalities is highly challenging for molecular imaging. Here, we report the successful transfer of an important molecular target, melanin, into a novel multimodality imaging nanoplatform. Melanin is abundantly expressed in melanotic melanomas and thus has been actively studied as a target for melanoma imaging. In our work, the multifunctional biopolymer nanoplatform based on ultrasmall (<10 nm) water-soluble melanin nanoparticle (MNP) was developed and showed unique photoacoustic property and natural binding ability with metal ions (for example, (64)Cu(2+), Fe(3+)). Therefore, MNP can serve not only as a photoacoustic contrast agent, but also as a nanoplatform for positron emission tomography (PET) and magnetic resonance imaging (MRI). Traditional passive nanoplatforms require complicated and time-consuming processes for prebuilding reporting moieties or chemical modifications using active groups to integrate different contrast properties into one entity. In comparison, utilizing functional biomarker melanin can greatly simplify the building process. We further conjugated αvβ3 integrins, cyclic c(RGDfC) peptide, to MNPs to allow for U87MG tumor accumulation due to its targeting property combined with the enhanced permeability and retention (EPR) effect. The multimodal properties of MNPs demonstrate the high potential of endogenous materials with multifunctions as nanoplatforms for molecular theranostics and clinical translation.

  9. An arbitrary boundary triangle mesh generation method for multi-modality imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Xuanxuan; Deng, Yong; Gong, Hui; Meng, Yuanzheng; Yang, Xiaoquan; Luo, Qingming

    2011-11-01

    Low-resolution and ill-posedness are the major challenges in diffuse optical tomography(DOT)/fluorescence molecular tomography(FMT). Recently, the multi-modality imaging technology that combines micro-computed tomography (micro-CT) with DOT/FMT is developed to improve resolution and ill-posedness. To take advantage of the fine priori anatomical maps obtained from micro-CT, we present an arbitrary boundary triangle mesh generation method for FMT/DOT/micro-CT multi-modality imaging. A planar straight line graph (PSLG) based on the image of micro-CT is obtained by an adaptive boundary sampling algorithm. The subregions of mesh are accurately matched with anatomical structures by a two-step solution, firstly, the triangles and nodes during mesh refinement are labeled respectively, and then a revising algorithm is used to modifying meshes of each subregion. The triangle meshes based on a regular model and a micro-CT image are generated respectively. The results show that the subregions of triangle meshes can match with anatomical structures accurately and triangle meshes have good quality. This provides an arbitrary boundaries triangle mesh generation method with the ability to incorporate the fine priori anatomical information into DOT/FMT reconstructions.

  10. An arbitrary boundary triangle mesh generation method for multi-modality imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Xuanxuan; Deng, Yong; Gong, Hui; Meng, Yuanzheng; Yang, Xiaoquan; Luo, Qingming

    2012-03-01

    Low-resolution and ill-posedness are the major challenges in diffuse optical tomography(DOT)/fluorescence molecular tomography(FMT). Recently, the multi-modality imaging technology that combines micro-computed tomography (micro-CT) with DOT/FMT is developed to improve resolution and ill-posedness. To take advantage of the fine priori anatomical maps obtained from micro-CT, we present an arbitrary boundary triangle mesh generation method for FMT/DOT/micro-CT multi-modality imaging. A planar straight line graph (PSLG) based on the image of micro-CT is obtained by an adaptive boundary sampling algorithm. The subregions of mesh are accurately matched with anatomical structures by a two-step solution, firstly, the triangles and nodes during mesh refinement are labeled respectively, and then a revising algorithm is used to modifying meshes of each subregion. The triangle meshes based on a regular model and a micro-CT image are generated respectively. The results show that the subregions of triangle meshes can match with anatomical structures accurately and triangle meshes have good quality. This provides an arbitrary boundaries triangle mesh generation method with the ability to incorporate the fine priori anatomical information into DOT/FMT reconstructions.

  11. Model-based fusion of multi-modal volumetric images: application to transcatheter valve procedures.

    PubMed

    Grbić, Sasa; Ionasec, Razvan; Wang, Yang; Mansi, Tommaso; Georgescu, Bogdan; John, Matthias; Boese, Jan; Zheng, Yefeng; Navab, Nassir; Comaniciu, Dorin

    2011-01-01

    Minimal invasive procedures such as transcatheter valve interventions are substituting conventional surgical techniques. Thus, novel operating rooms have been designed to augment traditional surgical equipment with advanced imaging systems to guide the procedures. We propose a novel method to fuse pre-operative and intra-operative information by jointly estimating anatomical models from multiple image modalities. Thereby high-quality patient-specific models are integrated into the imaging environment of operating rooms to guide cardiac interventions. Robust and fast machine learning techniques are utilized to guide the estimation process. Our method integrates both the redundant and complementary multimodal information to achieve a comprehensive modeling and simultaneously reduce the estimation uncertainty. Experiments performed on 28 patients with pairs of multimodal volumetric data are used to demonstrate high quality intra-operative patient-specific modeling of the aortic valve with a precision of 1.09mm in TEE and 1.73mm in 3D C-arm CT. Within a processing time of 10 seconds we additionally obtain model sensitive mapping between the pre- and intraoperative images.

  12. Multimodal Quantitative Phase Imaging with Digital Holographic Microscopy Accurately Assesses Intestinal Inflammation and Epithelial Wound Healing.

    PubMed

    Lenz, Philipp; Brückner, Markus; Ketelhut, Steffi; Heidemann, Jan; Kemper, Björn; Bettenworth, Dominik

    2016-01-01

    The incidence of inflammatory bowel disease, i.e., Crohn's disease and Ulcerative colitis, has significantly increased over the last decade. The etiology of IBD remains unknown and current therapeutic strategies are based on the unspecific suppression of the immune system. The development of treatments that specifically target intestinal inflammation and epithelial wound healing could significantly improve management of IBD, however this requires accurate detection of inflammatory changes. Currently, potential drug candidates are usually evaluated using animal models in vivo or with cell culture based techniques in vitro. Histological examination usually requires the cells or tissues of interest to be stained, which may alter the sample characteristics and furthermore, the interpretation of findings can vary by investigator expertise. Digital holographic microscopy (DHM), based on the detection of optical path length delay, allows stain-free quantitative phase contrast imaging. This allows the results to be directly correlated with absolute biophysical parameters. We demonstrate how measurement of changes in tissue density with DHM, based on refractive index measurement, can quantify inflammatory alterations, without staining, in different layers of colonic tissue specimens from mice and humans with colitis. Additionally, we demonstrate continuous multimodal label-free monitoring of epithelial wound healing in vitro, possible using DHM through the simple automated determination of the wounded area and simultaneous determination of morphological parameters such as dry mass and layer thickness of migrating cells. In conclusion, DHM represents a valuable, novel and quantitative tool for the assessment of intestinal inflammation with absolute values for parameters possible, simplified quantification of epithelial wound healing in vitro and therefore has high potential for translational diagnostic use. PMID:27685659

  13. Autoimmune pancreatitis: Multimodality non-invasive imaging diagnosis

    PubMed Central

    Crosara, Stefano; D'Onofrio, Mirko; De Robertis, Riccardo; Demozzi, Emanuele; Canestrini, Stefano; Zamboni, Giulia; Pozzi Mucelli, Roberto

    2014-01-01

    Autoimmune pancreatitis (AIP) is characterized by obstructive jaundice, a dramatic clinical response to steroids and pathologically by a lymphoplasmacytic infiltrate, with or without a pancreatic mass. Type 1 AIP is the pancreatic manifestation of an IgG4-related systemic disease and is characterized by elevated IgG4 serum levels, infiltration of IgG4-positive plasma cells and extrapancreatic lesions. Type 2 AIP usually has none or very few IgG4-positive plasma cells, no serum IgG4 elevation and appears to be a pancreas-specific disorder without extrapancreatic involvement. AIP is diagnosed in approximately 2%-6% of patients that undergo pancreatic resection for suspected pancreatic cancer. There are three patterns of autoimmune pancreatitis: diffuse disease is the most common type, with a diffuse, “sausage-like” pancreatic enlargement with sharp margins and loss of the lobular contours; focal disease is less common and manifests as a focal mass, often within the pancreatic head, mimicking a pancreatic malignancy. Multifocal involvement can also occur. In this paper we describe the features of AIP at ultrasonography, computed tomography, magnetic resonance and positron emission tomography/computed tomography imaging, focusing on diagnosis and differential diagnosis with pancreatic ductal adenocarcinoma. It is of utmost importance to make an early correct differential diagnosis between these two diseases in order to identify the optimal therapeutic strategy and to avoid unnecessary laparotomy or pancreatic resection in AIP patients. Non-invasive imaging plays also an important role in therapy monitoring, in follow-up and in early identification of disease recurrence. PMID:25493001

  14. Investigating photoexcitation-induced mitochondrial damage by chemotherapeutic corroles using multimode optical imaging

    NASA Astrophysics Data System (ADS)

    Hwang, Jae Youn; Lubow, David J.; Sims, Jessica D.; Gray, Harry B.; Mahammed, Atif; Gross, Zeev; Medina-Kauwe, Lali K.; Farkas, Daniel L.

    2012-01-01

    We recently reported that a targeted, brightly fluorescent gallium corrole (HerGa) is highly effective for breast tumor detection and treatment. Unlike structurally similar porphryins, HerGa exhibits tumor-targeted toxicity without the need for photoexcitation. We have now examined whether photoexcitation further modulates HerGa toxicity, using multimode optical imaging of live cells, including two-photon excited fluorescence, differential interference contrast (DIC), spectral, and lifetime imaging. Using two-photon excited fluorescence imaging, we observed that light at specific wavelengths augments the HerGa-mediated mitochondrial membrane potential disruption of breast cancer cells in situ. In addition, DIC, spectral, and fluorescence lifetime imaging enabled us to both validate cell damage by HerGa photoexcitation and investigate HerGa internalization, thus allowing optimization of light dose and timing. Our demonstration of HerGa phototoxicity opens the way for development of new methods of cancer intervention using tumor-targeted corroles.

  15. Multi-modality Optical Imaging of Rat Kidney Dysfunction: In Vivo Response to Various Ischemia Times.

    PubMed

    Ding, Zhenyang; Jin, Lily; Wang, Hsing-Wen; Tang, Qinggong; Guo, Hengchang; Chen, Yu

    2016-01-01

    We observed in vivo kidney dysfunction with various ischemia times at 30, 75, 90, and 120 min using multi-modality optical imaging: optical coherence tomography (OCT), Doppler OCT (DOCT), and two-photon microscopy (TPM). We imaged the renal tubule lumens and glomerulus at several areas of each kidney before, during, and after ischemia of 5-month-old female Munich-Wistar rats. For animals with 30 and 75 min ischemia times, we observed that all areas were recovered after ischemia, that tubule lumens were re-opened and the blood flow of the glomerulus was re-established. For animals with 90 and 120 min ischemia times, we observed unrecovered areas, and that tubule lumens remained close after ischemia. TPM imaging verified the results of OCT and provided higher resolution images than OCT to visualize renal tubule lumens and glomerulus blood flow at the cellular level. PMID:27526162

  16. Long circulating reduced graphene oxide-iron oxide nanoparticles for efficient tumor targeting and multimodality imaging

    NASA Astrophysics Data System (ADS)

    Xu, Cheng; Shi, Sixiang; Feng, Liangzhu; Chen, Feng; Graves, Stephen A.; Ehlerding, Emily B.; Goel, Shreya; Sun, Haiyan; England, Christopher G.; Nickles, Robert J.; Liu, Zhuang; Wang, Taihong; Cai, Weibo

    2016-06-01

    Polyethylene glycol (PEG) surface modification is one of the most widely used approaches to improve the solubility of inorganic nanoparticles, prevent their aggregation and prolong their in vivo blood circulation half-life. Herein, we developed double-PEGylated biocompatible reduced graphene oxide nanosheets anchored with iron oxide nanoparticles (RGO-IONP-1stPEG-2ndPEG). The nanoconjugates exhibited a prolonged blood circulation half-life (~27.7 h) and remarkable tumor accumulation (>11 %ID g-1) via an enhanced permeability and retention (EPR) effect. Due to the strong near-infrared absorbance and superparamagnetism of RGO-IONP-1stPEG-2ndPEG, multimodality imaging combining positron emission tomography (PET) imaging with magnetic resonance imaging (MRI) and photoacoustic (PA) imaging was successfully achieved. The promising results suggest the great potential of these nanoconjugates for multi-dimensional and more accurate tumor diagnosis and therapy in the future.

  17. Multi-modality Optical Imaging of Rat Kidney Dysfunction: In Vivo Response to Various Ischemia Times.

    PubMed

    Ding, Zhenyang; Jin, Lily; Wang, Hsing-Wen; Tang, Qinggong; Guo, Hengchang; Chen, Yu

    2016-01-01

    We observed in vivo kidney dysfunction with various ischemia times at 30, 75, 90, and 120 min using multi-modality optical imaging: optical coherence tomography (OCT), Doppler OCT (DOCT), and two-photon microscopy (TPM). We imaged the renal tubule lumens and glomerulus at several areas of each kidney before, during, and after ischemia of 5-month-old female Munich-Wistar rats. For animals with 30 and 75 min ischemia times, we observed that all areas were recovered after ischemia, that tubule lumens were re-opened and the blood flow of the glomerulus was re-established. For animals with 90 and 120 min ischemia times, we observed unrecovered areas, and that tubule lumens remained close after ischemia. TPM imaging verified the results of OCT and provided higher resolution images than OCT to visualize renal tubule lumens and glomerulus blood flow at the cellular level.

  18. Population of 100 realistic, patient-based computerized breast phantoms for multi-modality imaging research

    NASA Astrophysics Data System (ADS)

    Segars, W. Paul; Veress, Alexander I.; Wells, Jered R.; Sturgeon, Gregory M.; Kiarashi, Nooshin; Lo, Joseph Y.; Samei, Ehsan; Dobbins, James T.

    2014-03-01

    Breast imaging is an important area of research with many new techniques being investigated to further reduce the morbidity and mortality of breast cancer through early detection. Computerized phantoms can provide an essential tool to quantitatively compare new imaging systems and techniques. Current phantoms, however, lack sufficient realism in depicting the complex 3D anatomy of the breast. In this work, we created one-hundred realistic and detailed 3D computational breast phantoms based on high-resolution CT datasets from normal patients. We also developed a finiteelement application to simulate different compression states of the breast, making the phantoms applicable to multimodality imaging research. The breast phantoms and tools developed in this work were packaged into user-friendly software applications to distribute for breast imaging research.

  19. Multimodal in vivo MRI and NIRF imaging of bladder tumor using peptide conjugated glycol chitosan nanoparticles

    NASA Astrophysics Data System (ADS)

    Key, Jaehong; Dhawan, Deepika; Knapp, Deborah W.; Kim, Kwangmeyung; Kwon, Ick Chan; Choi, Kuiwon; Leary, James F.

    2012-03-01

    Exact detection and complete removal of cancer is a key point to minimize cancer recurrence. However, it is currently very difficult to detect small tumors inside human body and continuously monitor tumors using a non-invasive imaging modality. Presently, positron emission tomography (PET) can provide the most sensitive cancer images in the human body. However, PET imaging has very limited imaging time because they typically use isotopes with short halflives. PET imaging cannot also visualize anatomical information. Magnetic resonance imaging (MRI) can provide highresolution images inside the body but it has a low sensitivity, so MRI contrast agents are necessary to enhance the contrast of tumor. Near infrared fluorescent (NIRF) imaging has a good sensitivity to visualize tumor using optical probes, but it has a very limited tissue penetration depth. Therefore, we developed multi-modality nanoparticles for MRI based diagnosis and NIRF imaging based surgery of cancer. We utilized glycol chitosan of 350 nm as a vehicle for MRI contrast agents and NIRF probes. The glycol chitosan nanoparticles were conjugated with NIRF dye, Cy5.5 and bladder cancer targeting peptides to increase the internalization of cancer. For MR contrast effects, iron oxide based 22 nm nanocubes were physically loaded into the glycol chitosan nanoparticles. The nanoparticles were characterized and evaluated in bladder tumor bearing mice. Our study suggests the potential of our nanoparticles by both MRI and NIRF imaging for tumor diagnosis and real-time NIRF image-guided tumor surgery.

  20. PLANTAR THROMBOPHLEBITIS: MAGNETIC RESONANCE IMAGING FINDINGS

    PubMed Central

    Miranda, Frederico Celestino; Carneiro, Renato Duarte; Longo, Carlos Henrique; Fernandes, Túlio Diniz; Rosemberg, Laércio Alberto; de Gusmão Funari, Marcelo Buarque

    2015-01-01

    Objective: Demonstrate the magnetic resonance imaging (MRI) findings in plantar thrombophlebitis. Methods: Retrospective review of twenty patients with pain in the plantar region of the foot, in which the MRI findings indicated plantar thrombophlebitis. Results: A total of fourteen men and six women, mean age 46.7 years were evaluated. Eight of these patients also underwent Doppler ultrasonography, which confirmed the thrombophlebitis. The magnetic resonance images were evaluated in consensus by two radiologists with experience in musculoskeletal radiology (more than 10 years each), showing perivascular edema in all twenty patients (100%) and muscle edema in nineteen of the twenty patients (95%). All twenty patients had intraluminal intermediate signal intensity on T2-weighted (100%) and venous ectasia was present in seventeen of the twenty cases (85%). Collateral veins were visualized in one of the twenty patients (5%). All fourteen cases (100%), in which intravenous contrast was administered, showed perivenular tissues enhancement and intraluminal filling defect. Venous ectasia, loss of compressibility and no flow on Doppler ultrasound were also observed in all eight cases examined by the method. Conclusion: MRI is a sensitive in the evaluation of plant thrombophlebitis in patients with plantar foot pain. PMID:27047898

  1. Multimodal imaging of ocular surface of dry eye subjects

    NASA Astrophysics Data System (ADS)

    Zhang, Aizhong; Salahura, Gheorghe; Kottaiyan, Ranjini; Yoon, Geunyoung; Aquavella, James V.; Zavislan, James M.

    2016-03-01

    To study the relationship between the corneal lipid layer and the ocular surface temperature (OST), we conducted a clinical trial for 20 subjects. Subjects were clinically screened prior to the trial. Of the 20 subjects, 15 have Meibomian gland dysfunction (MGD), and 5 have aqueous-deficient dry eye (ADDE). A custom, circularly polarized illumination video tearscope measured the lipid layer thickness of the ocular tear film. A long-wave infrared video camera recorded the dynamic thermal properties of the ocular team film. The results of these two methods were analyzed and compared. Using principal component analysis (PCA) of the lipid layer distribution, we find that the 20 subjects could be categorized into five statistically significant groups, independent of their original clinical classification: thin (6 subjects), medium (5 subjects), medium and homogenous (3 subjects), thick (4 subjects), and very thick (2 subjects) lipids, respectively. We also conducted PCA of the OST data, and recategorized the subjects into two thermal groups by k-means clustering: one includes all ADDE subjects and some MGD subjects; the other includes the remaining MGD subjects. By comparing these two methods, we find that dry eye subjects with thin (<= 40 nm) lipids have significantly lower OST, and a larger OST drop range, potentially due to more evaporation. However, as long as the lipid layer is not thin (> 40 nm), there is no strong correlation between the lipid layer thickness and heterogeneity and the OST patterns.

  2. Multimodality Imaging with Silica-Based Targeted Nanoparticle Platforms

    SciTech Connect

    Jason S. Lewis

    2012-04-09

    Objectives: To synthesize and characterize a C-Dot silica-based nanoparticle containing 'clickable' groups for the subsequent attachment of targeting moieties (e.g., peptides) and multiple contrast agents (e.g., radionuclides with high specific activity) [1,2]. These new constructs will be tested in suitable tumor models in vitro and in vivo to ensure maintenance of target-specificity and high specific activity. Methods: Cy5 dye molecules are cross-linked to a silica precursor which is reacted to form a dye-rich core particle. This core is then encapsulated in a layer of pure silica to create the core-shell C-Dot (Figure 1) [2]. A 'click' chemistry approach has been used to functionalize the silica shell with radionuclides conferring high contrast and specific activity (e.g. 64Cu and 89Zr) and peptides for tumor targeting (e.g. cRGD and octreotate) [3]. Based on the selective Diels-Alder reaction between tetrazine and norbornene, the reaction is bioorthogonal, highyielding, rapid, and water-compatible. This radiolabeling approach has already been employed successfully with both short peptides (e.g. octreotate) and antibodies (e.g. trastuzumab) as model systems for the ultimate labeling of the nanoparticles [1]. Results: PEGylated C-Dots with a Cy5 core and labeled with tetrazine have been synthesized (d = 55 nm, zeta potential = -3 mV) reliably and reproducibly and have been shown to be stable under physiological conditions for up to 1 month. Characterization of the nanoparticles revealed that the immobilized Cy5 dye within the C-Dots exhibited fluorescence intensities over twice that of the fluorophore alone. The nanoparticles were successfully radiolabeled with Cu-64. Efforts toward the conjugation of targeting peptides (e.g. cRGD) are underway. In vitro stability, specificity, and uptake studies as well as in vivo imaging and biodistribution investigations will be presented. Conclusions: C-Dot silica-based nanoparticles offer a robust, versatile, and multi

  3. Immobilization Using Dental Material Casts Facilitates Accurate Serial and Multimodality Small Animal Imaging

    PubMed Central

    Haney, Chad R.; Fan, Xiaobing; Parasca, Adrian D.; Karczmar, Gregory S.; Halpern, Howard J.; Pelizzari, Charles A.

    2010-01-01

    Custom disposable patient immobilization systems that conform to the patient’s body contours are commonly used to facilitate accurate repeated patient setup for imaging and treatment in radiation therapy. However, in small-animal imaging, immobilization is often overlooked or done in a way that is not conducive to reproducible positioning. This has a negative impact on the potential for accurate analysis of serial or multimodality imaging. We present the use of vinyl polysiloxane dental impression material for immobilization of mice for imaging. Four different materials were examined to identify any potential artifacts using magnetic resonance techniques. A water phantom placed inside the cast was used at 4.7 T with magnetic resonance imaging and showed no effect at the center of the image when compared with images without the cast. A negligible effect was seen near the ends of the coil. Each material had no detectable signal using electron paramagnetic resonance imaging at 9 mT. The use of dental material also greatly enhances the use of fiducial markers that can be embedded in the mold. Therefore, image registration is simplified as the immobilization of the animal and fiducials together helps in translating from one image coordinate system to another. PMID:20827425

  4. Multi-Modal Imaging with a Toolbox of Influenza A Reporter Viruses

    PubMed Central

    Tran, Vy; Poole, Daniel S.; Jeffery, Justin J.; Sheahan, Timothy P.; Creech, Donald; Yevtodiyenko, Aleksey; Peat, Andrew J.; Francis, Kevin P.; You, Shihyun; Mehle, Andrew

    2015-01-01

    Reporter viruses are useful probes for studying multiple stages of the viral life cycle. Here we describe an expanded toolbox of fluorescent and bioluminescent influenza A reporter viruses. The enhanced utility of these tools enabled kinetic studies of viral attachment, infection, and co-infection. Multi-modal bioluminescence and positron emission tomography–computed tomography (PET/CT) imaging of infected animals revealed that antiviral treatment reduced viral load, dissemination, and inflammation. These new technologies and applications will dramatically accelerate in vitro and in vivo influenza virus studies. PMID:26473913

  5. VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis.

    PubMed

    Mathotaarachchi, Sulantha; Wang, Seqian; Shin, Monica; Pascoal, Tharick A; Benedet, Andrea L; Kang, Min Su; Beaudry, Thomas; Fonov, Vladimir S; Gauthier, Serge; Labbe, Aurélie; Rosa-Neto, Pedro

    2016-01-01

    In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein aggregates across brain regions. However, modeling the effects of multiple regional abnormalities as determinants of cognitive decline at the voxel level remains largely unexplored by multimodal imaging research, given the high computational cost of estimating regression models for every single voxel from various imaging modalities. VoxelStats is a voxel-wise computational framework to overcome these computational limitations and to perform statistical operations on multiple scalar variables and imaging modalities at the voxel level. VoxelStats package has been developed in Matlab(®) and supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in VoxelStats enable the user to perform voxel-wise general and generalized linear models and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can recognize scalar values or image volumes as response variables and can accommodate volumetric statistical covariates as well as their interaction effects with other variables. Furthermore, this package includes built-in functionality to perform voxel-wise receiver operating characteristic analysis and paired and unpaired group contrast analysis. Validation of VoxelStats was conducted by comparing the linear regression functionality with existing toolboxes such as glim_image and RMINC. The validation results were identical to existing methods and the additional functionality was demonstrated by generating feature case assessments (t-statistics, odds ratio, and true positive rate maps). In summary, VoxelStats expands the current methods for multimodal imaging analysis by allowing the

  6. VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis

    PubMed Central

    Mathotaarachchi, Sulantha; Wang, Seqian; Shin, Monica; Pascoal, Tharick A.; Benedet, Andrea L.; Kang, Min Su; Beaudry, Thomas; Fonov, Vladimir S.; Gauthier, Serge; Labbe, Aurélie; Rosa-Neto, Pedro

    2016-01-01

    In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein aggregates across brain regions. However, modeling the effects of multiple regional abnormalities as determinants of cognitive decline at the voxel level remains largely unexplored by multimodal imaging research, given the high computational cost of estimating regression models for every single voxel from various imaging modalities. VoxelStats is a voxel-wise computational framework to overcome these computational limitations and to perform statistical operations on multiple scalar variables and imaging modalities at the voxel level. VoxelStats package has been developed in Matlab® and supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in VoxelStats enable the user to perform voxel-wise general and generalized linear models and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can recognize scalar values or image volumes as response variables and can accommodate volumetric statistical covariates as well as their interaction effects with other variables. Furthermore, this package includes built-in functionality to perform voxel-wise receiver operating characteristic analysis and paired and unpaired group contrast analysis. Validation of VoxelStats was conducted by comparing the linear regression functionality with existing toolboxes such as glim_image and RMINC. The validation results were identical to existing methods and the additional functionality was demonstrated by generating feature case assessments (t-statistics, odds ratio, and true positive rate maps). In summary, VoxelStats expands the current methods for multimodal imaging analysis by allowing the

  7. VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis.

    PubMed

    Mathotaarachchi, Sulantha; Wang, Seqian; Shin, Monica; Pascoal, Tharick A; Benedet, Andrea L; Kang, Min Su; Beaudry, Thomas; Fonov, Vladimir S; Gauthier, Serge; Labbe, Aurélie; Rosa-Neto, Pedro

    2016-01-01

    In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein aggregates across brain regions. However, modeling the effects of multiple regional abnormalities as determinants of cognitive decline at the voxel level remains largely unexplored by multimodal imaging research, given the high computational cost of estimating regression models for every single voxel from various imaging modalities. VoxelStats is a voxel-wise computational framework to overcome these computational limitations and to perform statistical operations on multiple scalar variables and imaging modalities at the voxel level. VoxelStats package has been developed in Matlab(®) and supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in VoxelStats enable the user to perform voxel-wise general and generalized linear models and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can recognize scalar values or image volumes as response variables and can accommodate volumetric statistical covariates as well as their interaction effects with other variables. Furthermore, this package includes built-in functionality to perform voxel-wise receiver operating characteristic analysis and paired and unpaired group contrast analysis. Validation of VoxelStats was conducted by comparing the linear regression functionality with existing toolboxes such as glim_image and RMINC. The validation results were identical to existing methods and the additional functionality was demonstrated by generating feature case assessments (t-statistics, odds ratio, and true positive rate maps). In summary, VoxelStats expands the current methods for multimodal imaging analysis by allowing the

  8. Multimodal imaging reveals temporal and spatial microglia and matrix metalloproteinase activity after experimental stroke

    PubMed Central

    Zinnhardt, Bastian; Viel, Thomas; Wachsmuth, Lydia; Vrachimis, Alexis; Wagner, Stefan; Breyholz, Hans-Jörg; Faust, Andreas; Hermann, Sven; Kopka, Klaus; Faber, Cornelius; Dollé, Frédéric; Pappata, Sabina; Planas, Anna M; Tavitian, Bertrand; Schäfers, Michael; Sorokin, Lydia M; Kuhlmann, Michael T; Jacobs, Andreas H

    2015-01-01

    Stroke is the most common cause of death and disability from neurologic disease in humans. Activation of microglia and matrix metalloproteinases (MMPs) is involved in positively and negatively affecting stroke outcome. Novel, noninvasive, multimodal imaging methods visualizing microglial and MMP alterations were employed. The spatio-temporal dynamics of these parameters were studied in relation to blood flow changes. Micro positron emission tomography (μPET) using [18F]BR-351 showed MMP activity within the first days after transient middle cerebral artery occlusion (tMCAo), followed by increased [18F]DPA-714 uptake as a marker for microglia activation with a maximum at 14 days after tMCAo. The inflammatory response was spatially located in the infarct core and in adjacent (penumbral) tissue. For the first time, multimodal imaging based on PET, single photon emission computed tomography, and magnetic resonance imaging revealed insight into the spatio-temporal distribution of critical parameters of poststroke inflammation. This allows further evaluation of novel treatment paradigms targeting the postischemic inflammation. PMID:26126867

  9. A practical guide to multimodality imaging of transcatheter aortic valve replacement.

    PubMed

    Bloomfield, Gerald S; Gillam, Linda D; Hahn, Rebecca T; Kapadia, Samir; Leipsic, Jonathon; Lerakis, Stamatios; Tuzcu, Murat; Douglas, Pamela S

    2012-04-01

    The advent of transcatheter aortic valve replacement (TAVR) is one of the most widely anticipated advances in the care of patients with severe aortic stenosis. This procedure is unique in many ways, one of which is the need for a multimodality imaging team-based approach throughout the continuum of the care of TAVR patients. Pre-procedural planning, intra-procedural implantation optimization, and long-term follow-up of patients undergoing TAVR require the expert use of various imaging modalities, each of which has its own strengths and limitations. Divided into 3 sections (pre-procedural, intraprocedural, and long-term follow-up), this review offers a single source for expert opinion and evidence-based guidance on how to incorporate the various modalities at each step in the care of a TAVR patient. Although much has been learned in the short span of time since TAVR was introduced, recommendations are offered for clinically relevant research that will lead to refinement of best practice strategies for incorporating multimodality imaging into TAVR patient care.

  10. Laser Microdissection and Atmospheric Pressure Chemical Ionization Mass Spectrometry Coupled for Multimodal Imaging

    SciTech Connect

    Lorenz, Matthias; Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J

    2013-01-01

    This paper describes the coupling of ambient laser ablation surface sampling, accomplished using a laser capture microdissection system, with atmospheric pressure chemical ionization mass spectrometry for high spatial resolution multimodal imaging. A commercial laser capture microdissection system was placed in close proximity to a modified ion source of a mass spectrometer designed to allow for sampling of laser ablated material via a transfer tube directly into the ionization region. Rhodamine 6G dye of red sharpie ink in a laser etched pattern as well as cholesterol and phosphatidylcholine in a cerebellum mouse brain thin tissue section were identified and imaged from full scan mass spectra. A minimal spot diameter of 8 m was achieved using the 10X microscope cutting objective with a lateral oversampling pixel resolution of about 3.7 m. Distinguishing between features approximately 13 m apart in a cerebellum mouse brain thin tissue section was demonstrated in a multimodal fashion including co-registered optical and mass spectral chemical images.

  11. Multimodality imaging of bilateral pheochromocytoma. A case report.

    PubMed

    Paladino, Nunzia Cinzia; Lowery, Aoife; Guérin, Carole; Taïeb, David; Sebag, Frédéric

    2015-06-22

    . La TEP alla 18 FDG, grazie all’uso della metodica qualitativa e quantitativa nell’analisi della lesione, è stata molto utile nello svelarne la natura. Veniva pertanto eseguita una surrenalectomia sinistra per via laparoscopica. L’esame istologico per entrambe le lesioni era in favore di feocromocitoma, Pass score 0. Nella fase post-operatoria la paziente veniva trattata con idrocortisone a dosi decrescenti fino ad un dosaggio giornaliero di 30 mg in associazione a 50 mg di fludrocortisone. Questo caso clinico dimostra ancora una volta la possibilità di falsi negativi da parte di tecniche di imaging funzionale specifiche. In questa esperienza, la TEP alla 18 FDG è stata molto utile. La RMN ha senza dubbio mostrato un valore incontestabile. In questa paziente non è stata trovata nessuna mutazione germinale a carico dei geni RET, VHL, SDHx.

  12. Multicomponent, peptide-targeted glycol chitosan nanoparticles containing ferrimagnetic iron oxide nanocubes for bladder cancer multimodal imaging.

    PubMed

    Key, Jaehong; Dhawan, Deepika; Cooper, Christy L; Knapp, Deborah W; Kim, Kwangmeyung; Kwon, Ick Chan; Choi, Kuiwon; Park, Kinam; Decuzzi, Paolo; Leary, James F

    2016-01-01

    While current imaging modalities, such as magnetic resonance imaging (MRI), computed tomography, and positron emission tomography, play an important role in detecting tumors in the body, no single-modality imaging possesses all the functions needed for a complete diagnostic imaging, such as spatial resolution, signal sensitivity, and tissue penetration depth. For this reason, multimodal imaging strategies have become promising tools for advanced biomedical research and cancer diagnostics and therapeutics. In designing multimodal nanoparticles, the physicochemical properties of the nanoparticles should be engineered so that they successfully accumulate at the tumor site and minimize nonspecific uptake by other organs. Finely altering the nano-scale properties can dramatically change the biodistribution and tumor accumulation of nanoparticles in the body. In this study, we engineered multimodal nanoparticles for both MRI, by using ferrimagnetic nanocubes (NCs), and near infrared fluorescence imaging, by using cyanine 5.5 fluorescence molecules. We changed the physicochemical properties of glycol chitosan nanoparticles by conjugating bladder cancer-targeting peptides and loading many ferrimagnetic iron oxide NCs per glycol chitosan nanoparticle to improve MRI contrast. The 22 nm ferrimagnetic NCs were stabilized in physiological conditions by encapsulating them within modified chitosan nanoparticles. The multimodal nanoparticles were compared with in vivo MRI and near infrared fluorescent systems. We demonstrated significant and important changes in the biodistribution and tumor accumulation of nanoparticles with different physicochemical properties. Finally, we demonstrated that multimodal nanoparticles specifically visualize small tumors and show minimal accumulation in other organs. This work reveals the importance of finely modulating physicochemical properties in designing multimodal nanoparticles for bladder cancer imaging. PMID:27621615

  13. Multicomponent, peptide-targeted glycol chitosan nanoparticles containing ferrimagnetic iron oxide nanocubes for bladder cancer multimodal imaging

    PubMed Central

    Key, Jaehong; Dhawan, Deepika; Cooper, Christy L; Knapp, Deborah W; Kim, Kwangmeyung; Kwon, Ick Chan; Choi, Kuiwon; Park, Kinam; Decuzzi, Paolo; Leary, James F

    2016-01-01

    While current imaging modalities, such as magnetic resonance imaging (MRI), computed tomography, and positron emission tomography, play an important role in detecting tumors in the body, no single-modality imaging possesses all the functions needed for a complete diagnostic imaging, such as spatial resolution, signal sensitivity, and tissue penetration depth. For this reason, multimodal imaging strategies have become promising tools for advanced biomedical research and cancer diagnostics and therapeutics. In designing multimodal nanoparticles, the physicochemical properties of the nanoparticles should be engineered so that they successfully accumulate at the tumor site and minimize nonspecific uptake by other organs. Finely altering the nano-scale properties can dramatically change the biodistribution and tumor accumulation of nanoparticles in the body. In this study, we engineered multimodal nanoparticles for both MRI, by using ferrimagnetic nanocubes (NCs), and near infrared fluorescence imaging, by using cyanine 5.5 fluorescence molecules. We changed the physicochemical properties of glycol chitosan nanoparticles by conjugating bladder cancer-targeting peptides and loading many ferrimagnetic iron oxide NCs per glycol chitosan nanoparticle to improve MRI contrast. The 22 nm ferrimagnetic NCs were stabilized in physiological conditions by encapsulating them within modified chitosan nanoparticles. The multimodal nanoparticles were compared with in vivo MRI and near infrared fluorescent systems. We demonstrated significant and important changes in the biodistribution and tumor accumulation of nanoparticles with different physicochemical properties. Finally, we demonstrated that multimodal nanoparticles specifically visualize small tumors and show minimal accumulation in other organs. This work reveals the importance of finely modulating physicochemical properties in designing multimodal nanoparticles for bladder cancer imaging.

  14. Multicomponent, peptide-targeted glycol chitosan nanoparticles containing ferrimagnetic iron oxide nanocubes for bladder cancer multimodal imaging

    PubMed Central

    Key, Jaehong; Dhawan, Deepika; Cooper, Christy L; Knapp, Deborah W; Kim, Kwangmeyung; Kwon, Ick Chan; Choi, Kuiwon; Park, Kinam; Decuzzi, Paolo; Leary, James F

    2016-01-01

    While current imaging modalities, such as magnetic resonance imaging (MRI), computed tomography, and positron emission tomography, play an important role in detecting tumors in the body, no single-modality imaging possesses all the functions needed for a complete diagnostic imaging, such as spatial resolution, signal sensitivity, and tissue penetration depth. For this reason, multimodal imaging strategies have become promising tools for advanced biomedical research and cancer diagnostics and therapeutics. In designing multimodal nanoparticles, the physicochemical properties of the nanoparticles should be engineered so that they successfully accumulate at the tumor site and minimize nonspecific uptake by other organs. Finely altering the nano-scale properties can dramatically change the biodistribution and tumor accumulation of nanoparticles in the body. In this study, we engineered multimodal nanoparticles for both MRI, by using ferrimagnetic nanocubes (NCs), and near infrared fluorescence imaging, by using cyanine 5.5 fluorescence molecules. We changed the physicochemical properties of glycol chitosan nanoparticles by conjugating bladder cancer-targeting peptides and loading many ferrimagnetic iron oxide NCs per glycol chitosan nanoparticle to improve MRI contrast. The 22 nm ferrimagnetic NCs were stabilized in physiological conditions by encapsulating them within modified chitosan nanoparticles. The multimodal nanoparticles were compared with in vivo MRI and near infrared fluorescent systems. We demonstrated significant and important changes in the biodistribution and tumor accumulation of nanoparticles with different physicochemical properties. Finally, we demonstrated that multimodal nanoparticles specifically visualize small tumors and show minimal accumulation in other organs. This work reveals the importance of finely modulating physicochemical properties in designing multimodal nanoparticles for bladder cancer imaging. PMID:27621615

  15. Optimization of Multimodal Imaging of Mesenchymal Stem Cells Using the Human Sodium Iodide Symporter for PET and Cerenkov Luminescence Imaging

    PubMed Central

    Wolfs, Esther; Holvoet, Bryan; Gijsbers, Rik; Casteels, Cindy; Roberts, Scott J.; Struys, Tom; Maris, Michael; Ibrahimi, Abdelilah; Debyser, Zeger; Van Laere, Koen; Verfaillie, Catherine M.; Deroose, Christophe M.

    2014-01-01

    Purpose The use of stably integrated reporter gene imaging provides a manner to monitor the in vivo fate of engrafted cells over time in a non-invasive manner. Here, we optimized multimodal imaging (small-animal PET, Cerenkov luminescence imaging (CLI) and bioluminescence imaging (BLI)) of mesenchymal stem cells (MSCs), by means of the human sodium iodide symporter (hNIS) and firefly luciferase (Fluc) as reporters. Methods First, two multicistronic lentiviral vectors (LV) were generated for multimodal imaging: BLI, 124I PET/SPECT and CLI. Expression of the imaging reporter genes was validated in vitro using 99mTcO4− radioligand uptake experiments and BLI. Uptake kinetics, specificity and tracer elution were determined as well as the effect of the transduction process on the cell's differentiation capacity. MSCs expressing the LV were injected intravenously or subcutaneously and imaged using small-animal PET, CLI and BLI. Results The expression of both imaging reporter genes was functional and specific. An elution of 99mTcO4− from the cells was observed, with 31% retention after 3 h. After labeling cells with 124I in vitro, a significantly higher CLI signal was noted in hNIS expressing murine MSCs. Furthermore, it was possible to visualize cells injected intravenously using BLI or subcutaneously in mice, using 124I small-animal PET, CLI and BLI. Conclusions This study identifies hNIS as a suitable reporter gene for molecular imaging with PET and CLI, as confirmed with BLI through the expression of Fluc. It supports the potential for a wider application of hNIS reporter gene imaging and future clinical applications. PMID:24747914

  16. Use of anomolous thermal imaging effects for multi-mode systems control during crystal growth

    NASA Technical Reports Server (NTRS)

    Wargo, Michael J.

    1989-01-01

    Real time image processing techniques, combined with multitasking computational capabilities are used to establish thermal imaging as a multimode sensor for systems control during crystal growth. Whereas certain regions of the high temperature scene are presently unusable for quantitative determination of temperature, the anomalous information thus obtained is found to serve as a potentially low noise source of other important systems control output. Using this approach, the light emission/reflection characteristics of the crystal, meniscus and melt system are used to infer the crystal diameter and a linear regression algorithm is employed to determine the local diameter trend. This data is utilized as input for closed loop control of crystal shape. No performance penalty in thermal imaging speed is paid for this added functionality. Approach to secondary (diameter) sensor design and systems control structure is discussed. Preliminary experimental results are presented.

  17. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    DOE PAGES

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.; Huang, Xiaojing; Wagner, Ulrich; Rau, Christoph; Yusuf, Mohammed; Robinson, Ian K.; Kalbfleisch, Sebastian; Li, Li; et al

    2016-02-05

    Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioningmore » it.« less

  18. Multimodal two-photon imaging using a second harmonic generation-specific dye

    PubMed Central

    Nuriya, Mutsuo; Fukushima, Shun; Momotake, Atsuya; Shinotsuka, Takanori; Yasui, Masato; Arai, Tatsuo

    2016-01-01

    Second harmonic generation (SHG) imaging can be used to visualize unique biological phenomena, but currently available dyes limit its application owing to the strong fluorescent signals that they generate together with SHG. Here we report the first non-fluorescent and membrane potential-sensitive SHG-active organic dye Ap3. Ap3 is photostable and generates SH signals at the plasma membrane with virtually no fluorescent signals, in sharp contrast to the previously used fluorescent dye FM4-64. When tested in neurons, Ap3-SHG shows linear membrane potential sensitivity and fast responses to action potentials, and also shows significantly reduced photodamage compared with FM4-64. The SHG-specific nature of Ap3 allows simultaneous and completely independent imaging of SHG signals and fluorescent signals from various reporter molecules, including markers of cellular organelles and intracellular calcium. Therefore, this SHG-specific dye enables true multimodal two-photon imaging in biological samples. PMID:27156702

  19. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    NASA Astrophysics Data System (ADS)

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth; Huang, Xiaojing; Wagner, Ulrich; Rau, Christoph; Yusuf, Mohammed; Robinson, Ian; Kalbfleisch, Sebastian; Li, Li; Bouet, Nathalie; Zhou, Juan; Conley, Ray; Chu, Yong S.

    2016-02-01

    We developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray’s superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioning it.

  20. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    PubMed Central

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth; Huang, Xiaojing; Wagner, Ulrich; Rau, Christoph; Yusuf, Mohammed; Robinson, Ian; Kalbfleisch, Sebastian; Li, Li; Bouet, Nathalie; Zhou, Juan; Conley, Ray; Chu, Yong S.

    2016-01-01

    We developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray’s superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioning it. PMID:26846188

  1. Abdominal sarcoidosis: cross-sectional imaging findings

    PubMed Central

    Gezer, Naciye Sinem; Başara, Işıl; Altay, Canan; Harman, Mustafa; Rocher, Laurence; Karabulut, Nevzat; Seçil, Mustafa

    2015-01-01

    Sarcoidosis is a multisystem inflammatory disease of unknown etiology. The lungs and the lymphoid system are the most commonly involved organs. Extrapulmonary involvement is reported in 30% of patients, and the abdomen is the most common extrapulmonary site with a frequency of 50%–70%. Although intra-abdominal sarcoidosis is usually asymptomatic, its presence may affect the prognosis and treatment options. The lesions are less characteristic and may mimick neoplastic or infectious diseases such as lymphoma, diffuse metastasis, and granulomatous inflammation. The liver and spleen are the most common abdominal sites of involvement. Sarcoidosis of the gastrointestinal system, pancreas, and kidneys are extremely rare. Adenopathy which is most commonly found in the porta hepatis, exudative ascites, and multiple granulomatous nodules studding the peritoneum are the reported manifestations of abdominal sarcoidosis. Since abdominal sarcoidosis is less common and long-standing, unrecognized disease can result in significant morbidity and mortality. Imaging contributes to diagnosis and management of intra-abdominal sarcoidosis. In this report we reviewed the cross-sectional imaging findings of hepatobiliary, gastrointestinal, and genitourinary sarcoidosis. PMID:25512071

  2. Hopc: a Novel Similarity Metric Based on Geometric Structural Properties for Multi-Modal Remote Sensing Image Matching

    NASA Astrophysics Data System (ADS)

    Ye, Yuanxin; Shen, Li

    2016-06-01

    Automatic matching of multi-modal remote sensing images (e.g., optical, LiDAR, SAR and maps) remains a challenging task in remote sensing image analysis due to significant non-linear radiometric differences between these images. This paper addresses this problem and proposes a novel similarity metric for multi-modal matching using geometric structural properties of images. We first extend the phase congruency model with illumination and contrast invariance, and then use the extended model to build a dense descriptor called the Histogram of Orientated Phase Congruency (HOPC) that captures geometric structure or shape features of images. Finally, HOPC is integrated as the similarity metric to detect tie-points between images by designing a fast template matching scheme. This novel metric aims to represent geometric structural similarities between multi-modal remote sensing datasets and is robust against significant non-linear radiometric changes. HOPC has been evaluated with a variety of multi-modal images including optical, LiDAR, SAR and map data. Experimental results show its superiority to the recent state-of-the-art similarity metrics (e.g., NCC, MI, etc.), and demonstrate its improved matching performance.

  3. Comparative imaging study in ultrasound, MRI, CT, and DSA using a multimodality renal artery phantom

    SciTech Connect

    King, Deirdre M.; Fagan, Andrew J.; Moran, Carmel M.; Browne, Jacinta E.

    2011-02-15

    Purpose: A range of anatomically realistic multimodality renal artery phantoms consisting of vessels with varying degrees of stenosis was developed and evaluated using four imaging techniques currently used to detect renal artery stenosis (RAS). The spatial resolution required to visualize vascular geometry and the velocity detection performance required to adequately characterize blood flow in patients suffering from RAS are currently ill-defined, with the result that no one imaging modality has emerged as a gold standard technique for screening for this disease. Methods: The phantoms, which contained a range of stenosis values (0%, 30%, 50%, 70%, and 85%), were designed for use with ultrasound, magnetic resonance imaging, x-ray computed tomography, and x-ray digital subtraction angiography. The construction materials used were optimized with respect to their ultrasonic speed of sound and attenuation coefficient, MR relaxometry (T{sub 1},T{sub 2}) properties, and Hounsfield number/x-ray attenuation coefficient, with a design capable of tolerating high-pressure pulsatile flow. Fiducial targets, incorporated into the phantoms to allow for registration of images among modalities, were chosen to minimize geometric distortions. Results: High quality distortion-free images of the phantoms with good contrast between vessel lumen, fiducial markers, and background tissue to visualize all stenoses were obtained with each modality. Quantitative assessments of the grade of stenosis revealed significant discrepancies between modalities, with each underestimating the stenosis severity for the higher-stenosed phantoms (70% and 85%) by up to 14%, with the greatest discrepancy attributable to DSA. Conclusions: The design and construction of a range of anatomically realistic renal artery phantoms containing varying degrees of stenosis is described. Images obtained using the main four diagnostic techniques used to detect RAS were free from artifacts and exhibited adequate contrast

  4. In vivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents.

    PubMed

    Arami, Hamed; Khandhar, Amit P; Tomitaka, Asahi; Yu, Elaine; Goodwill, Patrick W; Conolly, Steven M; Krishnan, Kannan M

    2015-06-01

    Magnetic Particle Imaging (MPI) is a novel non-invasive biomedical imaging modality that uses safe magnetite nanoparticles as tracers. Controlled synthesis of iron oxide nanoparticles (NPs) with tuned size-dependent magnetic relaxation properties is critical for the development of MPI. Additional functionalization of these NPs for other imaging modalities (e.g. MRI and fluorescent imaging) would accelerate screening of the MPI tracers based on their in vitro and in vivo performance in pre-clinical trials. Here, we conjugated two different types of poly-ethylene-glycols (NH2-PEG-NH2 and NH2-PEG-FMOC) to monodisperse carboxylated 19.7 nm NPs by amide bonding. Further, we labeled these NPs with Cy5.5 near infra-red fluorescent (NIRF) molecules. Bi-functional PEG (NH2-PEG-NH2) resulted in larger hydrodynamic size (∼98 nm vs. ∼43 nm) of the tracers, due to inter-particle crosslinking. Formation of such clusters impacted the multimodal imaging performance and pharmacokinetics of these tracers. We found that MPI signal intensity of the tracers in blood depends on their plasmatic clearance pharmacokinetics. Whole body mice MPI/MRI/NIRF, used to study the biodistribution of the injected NPs, showed primary distribution in liver and spleen. Biodistribution of tracers and their clearance pathway was further confirmed by MPI and NIRF signals from the excised organs where the Cy5.5 labeling enabled detailed anatomical mapping of the tracers.in tissue sections. These multimodal MPI tracers, combining the strengths of each imaging modality (e.g. resolution, tracer sensitivity and clinical use feasibility) pave the way for various in vitro and in vivo MPI applications.

  5. In vivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents

    PubMed Central

    Arami, Hamed; Khandhar, Amit; Tomitaka, Asahi; Yu, Elaine; Goodwill, Patrick; Conolly, Steven; Krishnan, Kannan M.

    2015-01-01

    Magnetic Particle Imaging (MPI) is a novel non-invasive biomedical imaging modality that uses safe magnetite nanoparticles as tracers. Controlled synthesis of iron oxide nanoparticles (NPs) with tuned size-dependent magnetic relaxation properties is critical for the development of MPI. Additional functionalization of these NPs for other imaging modalities (e.g. MRI and fluorescent imaging) would accelerate screening of the MPI tracers based on their in vitro and in vivo performance in pre-clinical trials. Here, we conjugated two different types of poly-ethylene-glycols (NH2-PEG-NH2 and NH2-PEG FMOC) to monodisperse carboxylated 19.7nm NPs by amide bonding. Further, we labeled these NPs with Cy5.5 near infra-red fluorescent (NIRF) molecules. Bi-functional PEG (NH2-PEG-NH2) resulted in larger hydrodynamic size (~98nm vs. ~43nm) of the tracers, due to interparticle crosslinking. Formation of such clusters impacted the multimodal imaging performance and pharmacokinetics of these tracers. We found that MPI signal intensity of the tracers in blood depends on their plasmatic clearance pharmacokinetics. Whole body mice MPI/MRI/NIRF, used to study the biodistribution of the injected NPs, showed primary distribution in liver and spleen. Biodistribution of tracers and their clearance pathway was further confirmed by MPI and NIRF signals from the excised organs where the Cy5.5 labeling enabled detailed anatomical mapping of the tracers.in tissue sections. These multimodal MPI tracers, combining the strengths of each imaging modality (e.g. resolution, tracer sensitivity and clinical use feasibility) pave the way for various in vitro and in vivo MPI applications. PMID:25818431

  6. Optical Range-Finding from Image Focus

    NASA Astrophysics Data System (ADS)

    Weckler, Paul Reese

    Scope of the study. Much of the labor-intensive work in agriculture consists of reaching out, grasping an object, and then placing the object in a desired position. This repetitious work exploits the unsurpassed hand-eye coordination in human beings. Substitution of machines for manual labor will require simulation of human hand-eye coordination. Most robots in agricultural applications will need the ability to recognize and manipulate three-dimensional objects. With present technology, this requirement makes agricultural robotic systems uneconomical, except for special applications. A method for gauging the distance from a video camera to an object of interest was investigated. By using a calibrated camera-lens system, range was related to focus. Optimum focus of the image was determined by maximizing the high -frequency content of the Fourier transform of the object image. The Walsh-Hadamard transform was investigated as an alternative focusing function. Software was developed to determine optimum image focus and control a motorized camera lens. Findings and conclusions. Range values from the video camera to target objects were calculated by the system. Calculated values were compared with measured distances. Differences between calculated and actual distance averaged less than 0.5%. The Walsh-Hadamard transform provided focus information comparable to the Fourier transform. Using double precision floating-point arithmetic, the Walsh-Hadamard transform executed more than three times faster than the Fourier transform. Distance values calculated using the Walsh -Hadamard transform differed from values calculated with the Fourier transform by less than 1%. This system used a passive, non-triangulation technique to obtain the distance from the machine vision camera to the object of interest. A passive non-triangulation system was the simplest image acquisition requirements, since it does not require a second camera, structured lighting, camera movement, or time

  7. Design and characterization of a handheld multimodal imaging device for the assessment of oral epithelial lesions

    PubMed Central

    Higgins, Laura M.; Pierce, Mark C.

    2014-01-01

    Abstract. A compact handpiece combining high resolution fluorescence (HRF) imaging with optical coherence tomography (OCT) was developed to provide real-time assessment of oral lesions. This multimodal imaging device simultaneously captures coregistered en face images with subcellular detail alongside cross-sectional images of tissue microstructure. The HRF imaging acquires a 712×594  μm2 field-of-view at the sample with a spatial resolution of 3.5  μm. The OCT images were acquired to a depth of 1.5 mm with axial and lateral resolutions of 9.3 and 8.0  μm, respectively. HRF and OCT images are simultaneously displayed at 25 fps. The handheld device was used to image a healthy volunteer, demonstrating the potential for in vivo assessment of the epithelial surface for dysplastic and neoplastic changes at the cellular level, while simultaneously evaluating submucosal involvement. We anticipate potential applications in real-time assessment of oral lesions for improved surveillance and surgical guidance. PMID:25104410

  8. Design and characterization of a handheld multimodal imaging device for the assessment of oral epithelial lesions

    NASA Astrophysics Data System (ADS)

    Higgins, Laura M.; Pierce, Mark C.

    2014-08-01

    A compact handpiece combining high resolution fluorescence (HRF) imaging with optical coherence tomography (OCT) was developed to provide real-time assessment of oral lesions. This multimodal imaging device simultaneously captures coregistered en face images with subcellular detail alongside cross-sectional images of tissue microstructure. The HRF imaging acquires a 712×594 μm2 field-of-view at the sample with a spatial resolution of 3.5 μm. The OCT images were acquired to a depth of 1.5 mm with axial and lateral resolutions of 9.3 and 8.0 μm, respectively. HRF and OCT images are simultaneously displayed at 25 fps. The handheld device was used to image a healthy volunteer, demonstrating the potential for in vivo assessment of the epithelial surface for dysplastic and neoplastic changes at the cellular level, while simultaneously evaluating submucosal involvement. We anticipate potential applications in real-time assessment of oral lesions for improved surveillance and surgical guidance.

  9. Study on self-imaging properties for line-tapered multimode interference couplers

    NASA Astrophysics Data System (ADS)

    Le, ZiChun; Huang, SunGang; Fu, MingLei; Dong, Wen; Zhang, Jie; Zhang, Ming

    2011-10-01

    The line-tapered multimode interference (MMI) couplers have advantage of compact dimension compared with conventional straight MMI couplers and then are more suitable for integrated optical components. In this paper, the self-imaging properties including general self-image and overlapping-image properties for the line-tapered MMI couplers are discussed thoroughly. Based on the width equation we defined, compact equations for the positions, amplitudes, phases of general images and overlapping images are deduced. Three disciplines for general self-imaging and four disciplines for overlapping-imaging are summarized and discussed. In addition, the overlapping-image properties are further studied by matrix analytic method and an inductive reasoning method of constructing phase and intensity matrix is developed based on it. Finally, all the theoretical results are compared with simulations results obtained by the finite-difference beam propagation method (FD-BPM). Both theoretical and simulation results are shown in this paper and demonstrated to be coincided with each other to a great extent.

  10. Multi-modal hard x-ray imaging with a laboratory source using selective reflection from a mirror.

    PubMed

    Pelliccia, Daniele; Paganin, David M

    2014-04-01

    Multi-modal hard x-ray imaging sensitive to absorption, refraction, phase and scattering contrast is demonstrated using a simple setup implemented with a laboratory source. The method is based on selective reflection at the edge of a mirror, aligned to partially reflect a pencil x-ray beam after its interaction with a sample. Quantitative scattering contrast from a test sample is experimentally demonstrated using this method. Multi-modal imaging of a house fly (Musca domestica) is shown as proof of principle of the technique for biological samples.

  11. Multi-modality computer-aided diagnosis system for axillary lymph node (ALN) staging: segmentation of ALN on ultrasound images

    NASA Astrophysics Data System (ADS)

    Arbash Meinel, Lina; Bergtholdt, Martin; Abe, Hiroyuki; Huo, D.; Buelow, Thomas; Carlsen, Ingwer; Newstead, Gillian

    2009-02-01

    Our goal was to develop and evaluate a reliable segmentation method to delineate axillary lymph node (ALN) from surrounding tissues on US images as the first step of building a multi-modality CADx system for staging ALN. Ultrasound images of 24 ALN from 18 breast cancer patients were used. An elliptical model algorithm was used to fit ALNs boundaries using the following steps: reduce image noise, extract image edges using the Canny edge detector, select edge pixels and fit an ellipse by minimizing the quadratic error, Find the best fitting ellipse based on RANSAC. The segmentation was qualitatively evaluated by 3 expert readers using 4 aspects: Orientation of long axis (OLA): within +- 45 degrees, or off by +-45 degrees, overlap (OV): the fitted ellipse completely included ALN, partially included ALN, or missed the ALN, size (SZ): too small, good within 20% error margin, or too large, and aspect ratio (AR): correct or wrong. Nightly six % of ALNs were correctly evaluated by all readers in terms of OLA and AR, 90.2% in terms of OV and 86.11 in terms of SZ. Readers agreed that the segmentation was correct in 70% of the cases in all aspects. Due to small sample size and small variation among readers, we don't have power to show the accuracy of them is different.

  12. Multimodal Imaging of Nanocomposite Microspheres for Transcatheter Intra-Arterial Drug Delivery to Liver Tumors

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Hyun; Li, Weiguo; Chen, Jeane; Zhang, Zhuoli; Green, Richard M.; Huang, Sui; Larson, Andrew C.

    2016-07-01

    A modern multi-functional drug carrier is critically needed to improve the efficacy of image-guided catheter-directed approaches for the treatment of hepatic malignancies. For this purpose, a nanocomposite microsphere platform was developed for selective intra-arterial transcatheter drug delivery to liver tumors. In our study, continuous microfluidic methods were used to fabricate drug-loaded multimodal MRI/CT visible microspheres that included both gold nanorods and magnetic clusters. The resulting hydrophilic, deformable, and non-aggregated microspheres were mono-disperse and roughly 25 um in size. Sustained drug release and strong MRI T2 and CT contrast effects were achieved with the embedded magnetic nano-clusters and radiopaque gold nanorods. The microspheres were successfully infused through catheters selectively placed within the hepatic artery in rodent models and subsequent distribution in the targeted liver tissues and hepatic tumors confirmed with MRI and CT imaging. These multimodal nanocomposite drug carriers should be ideal for selective intra-arterial catheter-directed administration to liver tumors while permitting MRI/CT visualization for patient-specific confirmation of tumor-targeted delivery.

  13. Multimodal Imaging of Nanocomposite Microspheres for Transcatheter Intra-Arterial Drug Delivery to Liver Tumors

    PubMed Central

    Kim, Dong-Hyun; Li, Weiguo; Chen, Jeane; Zhang, Zhuoli; Green, Richard M.; Huang, Sui; Larson, Andrew C.

    2016-01-01

    A modern multi-functional drug carrier is critically needed to improve the efficacy of image-guided catheter-directed approaches for the treatment of hepatic malignancies. For this purpose, a nanocomposite microsphere platform was developed for selective intra-arterial transcatheter drug delivery to liver tumors. In our study, continuous microfluidic methods were used to fabricate drug-loaded multimodal MRI/CT visible microspheres that included both gold nanorods and magnetic clusters. The resulting hydrophilic, deformable, and non-aggregated microspheres were mono-disperse and roughly 25 um in size. Sustained drug release and strong MRI T2 and CT contrast effects were achieved with the embedded magnetic nano-clusters and radiopaque gold nanorods. The microspheres were successfully infused through catheters selectively placed within the hepatic artery in rodent models and subsequent distribution in the targeted liver tissues and hepatic tumors confirmed with MRI and CT imaging. These multimodal nanocomposite drug carriers should be ideal for selective intra-arterial catheter-directed administration to liver tumors while permitting MRI/CT visualization for patient-specific confirmation of tumor-targeted delivery. PMID:27405824

  14. Learning based non-rigid multi-modal image registration using Kullback-Leibler divergence.

    PubMed

    Guetter, Christoph; Xu, Chenyang; Sauer, Frank; Hornegger, Joachim

    2005-01-01

    The need for non-rigid multi-modal registration is becoming increasingly common for many clinical applications. To date, however, existing proposed techniques remain as largely academic research effort with very few methods being validated for clinical product use. It has been suggested by Crum et al. that the context-free nature of these methods is one of the main limitations and that moving towards context-specific methods by incorporating prior knowledge of the underlying registration problem is necessary to achieve registration results that are accurate and robust enough for clinical applications. In this paper, we propose a novel non-rigid multi-modal registration method using a variational formulation that incorporates a prior learned joint intensity distribution. The registration is achieved by simultaneously minimizing the Kullback-Leibler divergence between an observed and a learned joint intensity distribution and maximizing the mutual information between reference and alignment images. We have applied our proposed method on both synthetic and real images with encouraging results.

  15. Vogt-Koyanagi-Harada syndrome: Perspectives for immunogenetics, multimodal imaging, and therapeutic options.

    PubMed

    Silpa-Archa, Sukhum; Silpa-Archa, Narumol; Preble, Janine M; Foster, C Stephen

    2016-08-01

    Vogt-Koyanagi-Harada syndrome (VKH) is a bilateral, diffuse granulomatous uveitis associated with neurological, audiovestibular, and dermatological systems. The primary pathogenesis is T-cell-mediated autoimmune response directed towards melanocyte or melanocyte-associated antigens causing inflammation of the choroidal layer. This phenomenon usually leads to diffuse inflammatory conditions throughout most parts of eye before ocular complications ensue. The diagnosis is achieved mainly by clinical features according to the revised diagnostic criteria of VKH published in 2001, without confirmatory serologic tests as a requirement. However, ancillary tests, especially multimodal imaging, can reliably provide supportive evidence for the diagnosis of early cases, atypical presentations, and evaluation of management. Prompt treatment with systemic corticosteroids and early non-steroidal immunosuppressive drug therapy can lessen visually threatening ocular complications and bring about good visual recovery. Close monitoring warrants visual stabilization from disease recurrence and ocular complications. This article review aims not only to update comprehensive knowledge regarding VKH but also to emphasize three major perspectives of VKH: immunogenetics as the major pathogenesis of the disease, multimodal imaging, and therapeutic options. The role of anti-vascular endothelial growth factor therapy and drug-induced VKH is also provided.

  16. Multi-modal molecular diffuse optical tomography system for small animal imaging

    NASA Astrophysics Data System (ADS)

    Guggenheim, James A.; Basevi, Hector R. A.; Frampton, Jon; Styles, Iain B.; Dehghani, Hamid

    2013-10-01

    A multi-modal optical imaging system for quantitative 3D bioluminescence and functional diffuse imaging is presented, which has no moving parts and uses mirrors to provide multi-view tomographic data for image reconstruction. It is demonstrated that through the use of trans-illuminated spectral near-infrared measurements and spectrally constrained tomographic reconstruction, recovered concentrations of absorbing agents can be used as prior knowledge for bioluminescence imaging within the visible spectrum. Additionally, the first use of a recently developed multi-view optical surface capture technique is shown and its application to model-based image reconstruction and free-space light modelling is demonstrated. The benefits of model-based tomographic image recovery as compared to two-dimensional (2D) planar imaging are highlighted in a number of scenarios where the internal luminescence source is not visible or is confounding in 2D images. The results presented show that the luminescence tomographic imaging method produces 3D reconstructions of individual light sources within a mouse-sized solid phantom that are accurately localized to within 1.5 mm for a range of target locations and depths, indicating sensitivity and accurate imaging throughout the phantom volume. Additionally the total reconstructed luminescence source intensity is consistent to within 15%, which is a dramatic improvement upon standard bioluminescence imaging. Finally, results from a heterogeneous phantom with an absorbing anomaly are presented, demonstrating the use and benefits of a multi-view, spectrally constrained coupled imaging system that provides accurate 3D luminescence images.

  17. Biomedical article retrieval using multimodal features and image annotations in region-based CBIR

    NASA Astrophysics Data System (ADS)

    You, Daekeun; Antani, Sameer; Demner-Fushman, Dina; Rahman, Md Mahmudur; Govindaraju, Venu; Thoma, George R.

    2010-01-01

    Biomedical images are invaluable in establishing diagnosis, acquiring technical skills, and implementing best practices in many areas of medicine. At present, images needed for instructional purposes or in support of clinical decisions appear in specialized databases and in biomedical articles, and are often not easily accessible to retrieval tools. Our goal is to automatically annotate images extracted from scientific publications with respect to their usefulness for clinical decision support and instructional purposes, and project the annotations onto images stored in databases by linking images through content-based image similarity. Authors often use text labels and pointers overlaid on figures and illustrations in the articles to highlight regions of interest (ROI). These annotations are then referenced in the caption text or figure citations in the article text. In previous research we have developed two methods (a heuristic and dynamic time warping-based methods) for localizing and recognizing such pointers on biomedical images. In this work, we add robustness to our previous efforts by using a machine learning based approach to localizing and recognizing the pointers. Identifying these can assist in extracting relevant image content at regions within the image that are likely to be highly relevant to the discussion in the article text. Image regions can then be annotated using biomedical concepts from extracted snippets of text pertaining to images in scientific biomedical articles that are identified using National Library of Medicine's Unified Medical Language System® (UMLS) Metathesaurus. The resulting regional annotation and extracted image content are then used as indices for biomedical article retrieval using the multimodal features and region-based content-based image retrieval (CBIR) techniques. The hypothesis that such an approach would improve biomedical document retrieval is validated through experiments on an expert-marked biomedical article

  18. Analyzing multimodality tomographic images and associated regions of interest with MIDAS

    NASA Astrophysics Data System (ADS)

    Tsui, Wai-Hon; Rusinek, Henry; Van Gelder, Peter; Lebedev, Sergey

    2001-07-01

    This paper outlines the design and features incorporated in a software package for analyzing multi-modality tomographic images. The package MIDAS has been evolving for the past 15 years and is in wide use by researchers at New York University School of Medicine and a number of collaborating research sites. It was written in the C language and runs on Sun workstations and Intel PCs under the Solaris operating system. A unique strength of the MIDAS package lies in its ability to generate, manipulate and analyze a practically unlimited number of regions of interest (ROIs). These regions are automatically saved in an efficient data structure and linked to associated images. A wide selection of set theoretical (e.g. union, xor, difference), geometrical (e.g. move, rotate) and morphological (grow, peel) operators can be applied to an arbitrary selection of ROIs. ROIs are constructed as a result of image segmentation algorithms incorporated in MIDAS; they also can be drawn interactively. These ROI editing operations can be applied in either 2D or 3D mode. ROI statistics generated by MIDAS include means, standard deviations, centroids and histograms. Other image manipulation tools incorporated in MIDAS are multimodality and within modality coregistration methods (including landmark matching, surface fitting and Woods' correlation methods) and image reformatting methods (using nearest-neighbor, tri-linear or sinc interpolation). Applications of MIDAS include: (1) neuroanatomy research: marking anatomical structures in one orientation, reformatting marks to another orientation; (2) tissue volume measurements: brain structures (PET, MRI, CT), lung nodules (low dose CT), breast density (MRI); (3) analysis of functional (SPECT, PET) experiments by overlaying corresponding structural scans; (4) longitudinal studies: regional measurement of atrophy.

  19. Spinal focal lesion detection in multiple myeloma using multimodal image features

    NASA Astrophysics Data System (ADS)

    Fränzle, Andrea; Hillengass, Jens; Bendl, Rolf

    2015-03-01

    Multiple myeloma is a tumor disease in the bone marrow that affects the skeleton systemically, i.e. multiple lesions can occur in different sites in the skeleton. To quantify overall tumor mass for determining degree of disease and for analysis of therapy response, volumetry of all lesions is needed. Since the large amount of lesions in one patient impedes manual segmentation of all lesions, quantification of overall tumor volume is not possible until now. Therefore development of automatic lesion detection and segmentation methods is necessary. Since focal tumors in multiple myeloma show different characteristics in different modalities (changes in bone structure in CT images, hypointensity in T1 weighted MR images and hyperintensity in T2 weighted MR images), multimodal image analysis is necessary for the detection of focal tumors. In this paper a pattern recognition approach is presented that identifies focal lesions in lumbar vertebrae based on features from T1 and T2 weighted MR images. Image voxels within bone are classified using random forests based on plain intensities and intensity value derived features (maximum, minimum, mean, median) in a 5 x 5 neighborhood around a voxel from both T1 and T2 weighted MR images. A test data sample of lesions in 8 lumbar vertebrae from 4 multiple myeloma patients can be classified at an accuracy of 95% (using a leave-one-patient-out test). The approach provides a reasonable delineation of the example lesions. This is an important step towards automatic tumor volume quantification in multiple myeloma.

  20. Use of multidimensional, multimodal imaging and PACS to support neurological diagnoses

    SciTech Connect

    Wong, S.T.C.; Knowlton, R.; Hoo, K.S.; Huang, H.K.

    1995-12-31

    Technological advances in brain imaging have revolutionized diagnosis in neurology and neurological surgery. Major imaging techniques include magnetic resonance imaging (MRI) to visualize structural anatomy, positron emission tomography (PET) to image metabolic function and cerebral blood flow, magnetoencephalography (MEG) to visualize the location of physiologic current sources, and magnetic resonance spectroscopy (MRS) to measure specific biochemicals. Each of these techniques studies different biomedical aspects of the grain, but there lacks an effective means to quantify and correlate the disparate imaging datasets in order to improve clinical decision making processes. This paper describes several techniques developed in a UNIX-based neurodiagnostic workstation to aid the non-invasive presurgical evaluation of epilepsy patients. These techniques include on-line access to the picture archiving and communication systems (PACS) multimedia archive, coregistration of multimodality image datasets, and correlation and quantitative of structural and functional information contained in the registered images. For illustration, the authors describe the use of these techniques in a patient case of non-lesional neocortical epilepsy. They also present the future work based on preliminary studies.

  1. Use of multidimensional, multimodal imaging and PACS to support neurological diagnoses

    NASA Astrophysics Data System (ADS)

    Wong, Stephen T. C.; Knowlton, Robert C.; Hoo, Kent S.; Huang, H. K.

    1995-05-01

    Technological advances in brain imaging have revolutionized diagnosis in neurology and neurological surgery. Major imaging techniques include magnetic resonance imaging (MRI) to visualize structural anatomy, positron emission tomography (PET) to image metabolic function and cerebral blood flow, magnetoencephalography (MEG) to visualize the location of physiologic current sources, and magnetic resonance spectroscopy (MRS) to measure specific biochemicals. Each of these techniques studies different biomedical aspects of the brain, but there lacks an effective means to quantify and correlate the disparate imaging datasets in order to improve clinical decision making processes. This paper describes several techniques developed in a UNIX-based neurodiagnostic workstation to aid the noninvasive presurgical evaluation of epilepsy patients. These techniques include online access to the picture archiving and communication systems (PACS) multimedia archive, coregistration of multimodality image datasets, and correlation and quantitation of structural and functional information contained in the registered images. For illustration, we describe the use of these techniques in a patient case of nonlesional neocortical epilepsy. We also present out future work based on preliminary studies.

  2. Emerging Roles for Multimodal Optical Imaging in Early Cancer Detection: A Global Challenge

    PubMed Central

    Bedard, Noah; Pierce, Mark; El-Naggar, Adel; Anandasabapathy, Sharmila; Gillenwater, Ann; Richards-Kortum, Rebecca

    2010-01-01

    Medical imaging technologies have become increasingly important in the clinical management of cancer, and now play key roles in cancer screening, diagnosis, staging, and monitoring response to treatment. Standard imaging modalities such as MRI, PET, and CT require significant financial resources and infrastructure, which limits access to these modalities to those patients in high-resource settings. In contrast, optical imaging strategies, with the potential for reduced cost and enhanced portability, are emerging as additional tools to facilitate the early detection and diagnosis of cancer. This article presents a vision for an expanding role for optical imaging in global cancer management, including screening, early detection at the point-of-care, biopsy guidance, and real-time histology. Multi-modal optical imaging – the combination of widefield and high resolution imaging - has the potential to aid in the detection and management of precancer and early cancer for traditionally underserved populations. Several recent widefield and high-resolution optical imaging technologies are described, along with requirements for implementing such devices into lower-resource settings. PMID:20218743

  3. Multi-modality imaging of tumor phenotype and response to therapy

    NASA Astrophysics Data System (ADS)

    Nyflot, Matthew J.

    2011-12-01

    Imaging and radiation oncology have historically been closely linked. However, the vast majority of techniques used in the clinic involve anatomical imaging. Biological imaging offers the potential for innovation in the areas of cancer diagnosis and staging, radiotherapy target definition, and treatment response assessment. Some relevant imaging techniques are FDG PET (for imaging cellular metabolism), FLT PET (proliferation), CuATSM PET (hypoxia), and contrast-enhanced CT (vasculature and perfusion). Here, a technique for quantitative spatial correlation of tumor phenotype is presented for FDG PET, FLT PET, and CuATSM PET images. Additionally, multimodality imaging of treatment response with FLT PET, CuATSM, and dynamic contrast-enhanced CT is presented, in a trial of patients receiving an antiangiogenic agent (Avastin) combined with cisplatin and radiotherapy. Results are also presented for translational applications in animal models, including quantitative assessment of proliferative response to cetuximab with FLT PET and quantification of vascular volume with a blood-pool contrast agent (Fenestra). These techniques have clear applications to radiobiological research and optimized treatment strategies, and may eventually be used for personalized therapy for patients.

  4. Rapid registration of multimodal images using a reduced number of voxels

    NASA Astrophysics Data System (ADS)

    Huang, Xishi; Hill, Nicholas A.; Ren, Jing; Peters, Terry M.

    2006-03-01

    Rapid registration of multimodal cardiac images can improve image-guided cardiac surgeries and cardiac disease diagnosis. While mutual information (MI) is arguably the most suitable registration technique, this method is too slow to converge for real time cardiac image registration; moreover, correct registration may not coincide with a global or even local maximum of MI. These limitations become quite evident when registering three-dimensional (3D) ultrasound (US) images and dynamic 3D magnetic resonance (MR) images of the beating heart. To overcome these issues, we present a registration method that uses a reduced number of voxels, while retaining adequate registration accuracy. Prior to registration we preprocess the images such that only the most representative anatomical features are depicted. By selecting samples from preprocessed images, our method dramatically speeds up the registration process, as well as ensuring correct registration. We validated this registration method for registering dynamic US and MR images of the beating heart of a volunteer. Experimental results on in vivo cardiac images demonstrate significant improvements in registration speed without compromising registration accuracy. A second validation study was performed registering US and computed tomography (CT) images of a rib cage phantom. Two similarity metrics, MI and normalized crosscorrelation (NCC) were used to register the image sets. Experimental results on the rib cage phantom indicate that our method can achieve adequate registration accuracy within 10% of the computation time of conventional registration methods. We believe this method has the potential to facilitate intra-operative image fusion for minimally invasive cardio-thoracic surgical navigation.

  5. Polarization-Sensitive Hyperspectral Imaging in vivo: A Multimode Dermoscope for Skin Analysis

    NASA Astrophysics Data System (ADS)

    Vasefi, Fartash; MacKinnon, Nicholas; Saager, Rolf B.; Durkin, Anthony J.; Chave, Robert; Lindsley, Erik H.; Farkas, Daniel L.

    2014-05-01

    Attempts to understand the changes in the structure and physiology of human skin abnormalities by non-invasive optical imaging are aided by spectroscopic methods that quantify, at the molecular level, variations in tissue oxygenation and melanin distribution. However, current commercial and research systems to map hemoglobin and melanin do not correlate well with pathology for pigmented lesions or darker skin. We developed a multimode dermoscope that combines polarization and hyperspectral imaging with an efficient analytical model to map the distribution of specific skin bio-molecules. This corrects for the melanin-hemoglobin misestimation common to other systems, without resorting to complex and computationally intensive tissue optical models. For this system's proof of concept, human skin measurements on melanocytic nevus, vitiligo, and venous occlusion conditions were performed in volunteers. The resulting molecular distribution maps matched physiological and anatomical expectations, confirming a technologic approach that can be applied to next generation dermoscopes and having biological plausibility that is likely to appeal to dermatologists.

  6. Tumor lysing genetically engineered T cells loaded with multi-modal imaging agents.

    PubMed

    Bhatnagar, Parijat; Alauddin, Mian; Bankson, James A; Kirui, Dickson; Seifi, Payam; Huls, Helen; Lee, Dean A; Babakhani, Aydin; Ferrari, Mauro; Li, King C; Cooper, Laurence J N

    2014-03-28

    Genetically-modified T cells expressing chimeric antigen receptors (CAR) exert anti-tumor effect by identifying tumor-associated antigen (TAA), independent of major histocompatibility complex. For maximal efficacy and safety of adoptively transferred cells, imaging their biodistribution is critical. This will determine if cells home to the tumor and assist in moderating cell dose. Here, T cells are modified to express CAR. An efficient, non-toxic process with potential for cGMP compliance is developed for loading high cell number with multi-modal (PET-MRI) contrast agents (Super Paramagnetic Iron Oxide Nanoparticles - Copper-64; SPION-(64)Cu). This can now be potentially used for (64)Cu-based whole-body PET to detect T cell accumulation region with high-sensitivity, followed by SPION-based MRI of these regions for high-resolution anatomically correlated images of T cells. CD19-specific-CAR(+)SPION(pos) T cells effectively target in vitro CD19(+) lymphoma.

  7. Tumor Lysing Genetically Engineered T Cells Loaded with Multi-Modal Imaging Agents

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Parijat; Alauddin, Mian; Bankson, James A.; Kirui, Dickson; Seifi, Payam; Huls, Helen; Lee, Dean A.; Babakhani, Aydin; Ferrari, Mauro; Li, King C.; Cooper, Laurence J. N.

    2014-03-01

    Genetically-modified T cells expressing chimeric antigen receptors (CAR) exert anti-tumor effect by identifying tumor-associated antigen (TAA), independent of major histocompatibility complex. For maximal efficacy and safety of adoptively transferred cells, imaging their biodistribution is critical. This will determine if cells home to the tumor and assist in moderating cell dose. Here, T cells are modified to express CAR. An efficient, non-toxic process with potential for cGMP compliance is developed for loading high cell number with multi-modal (PET-MRI) contrast agents (Super Paramagnetic Iron Oxide Nanoparticles - Copper-64; SPION-64Cu). This can now be potentially used for 64Cu-based whole-body PET to detect T cell accumulation region with high-sensitivity, followed by SPION-based MRI of these regions for high-resolution anatomically correlated images of T cells. CD19-specific-CAR+SPIONpos T cells effectively target in vitro CD19+ lymphoma.

  8. Atherosclerotic Plaque Targeting Mechanism of Long-Circulating Nanoparticles Established by Multimodal Imaging

    PubMed Central

    Lobatto, Mark E.; Calcagno, Claudia; Millon, Antoine; Senders, Max L.; Fay, Francois; Robson, Philip M.; Ramachandran, Sarayu; Binderup, Tina; Paridaans, Maarten P.M.; Sensarn, Steven; Rogalla, Stephan; Gordon, Ronald E.; Cardoso, Luis; Storm, Gert; Metselaar, Josbert M.; Contag, Christopher H.; Stroes, Erik S. G.; Fayad, Zahi A.; Mulder, Willem J.M.

    2015-01-01

    Atherosclerosis is a major cause of global morbidity and mortality that could benefit from novel targeted therapeutics. Recent studies have shown efficient and local drug delivery with nanoparticles, although the nanoparticle targeting mechanism for atherosclerosis has not yet been fully elucidated. Here we used in vivo and ex vivo multimodal imaging to examine permeability of the vessel wall and atherosclerotic plaque accumulation of fluorescently labeled liposomal nanoparticles in a rabbit model. We found a strong correlation between permeability as established by in vivo dynamic contrast enhanced magnetic resonance imaging and nanoparticle plaque accumulation with subsequent nanoparticle distribution throughout the vessel wall. These key observations will enable the development of nanotherapeutic strategies for atherosclerosis. PMID:25619964

  9. Multi-modal digital holographic microscopy for wide-field fluorescence and 3D phase imaging

    NASA Astrophysics Data System (ADS)

    Quan, Xiangyu; Xia, Peng; Matoba, Osamu; Nitta, Koichi; Awatsuji, Yasuhiro

    2016-03-01

    Multi-modal digital holographic microscopy is a combination of epifluorescence microscopy and digital holographic microscopy, the main function of which is to obtain images from fluorescence intensity and quantified phase contrasts, simultaneously. The proposed system is mostly beneficial to biological studies, with the reason that often the studies are depending on fluorescent labeling techniques to detect certain intracellular molecules, while phase information reflecting properties of unstained transparent elements. This paper is presenting our latest researches on applications such as randomly moving micro-fluorescent beads and living cells of Physcomitrella patens. The experiments are succeeded on obtaining a succession of wide-field fluorescent images and holograms from micro-beads, and different depths focusing is realized via numerical reconstruction. Living cells of Physcomitrella patens are recorded in the static manner, the reconstruction distance indicates thickness of cellular structure. These results are implementing practical applications toward many biomedical science researches.

  10. Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy.

    PubMed

    Cheng, Liang; Yang, Kai; Li, Yonggang; Zeng, Xiao; Shao, Mingwang; Lee, Shuit-Tong; Liu, Zhuang

    2012-03-01

    Theranostics, the combination of diagnostics and therapies, has become a new concept in the battles with various major diseases such as cancer. Herein, we develop multifunctional nanoparticles (MFNPs) with highly integrated functionalities including upconversion luminescence, superparamagnetism, and strong optical absorption in the near-infrared (NIR) region with high photostability. In vivo dual modal optical/magnetic resonance imaging of mice uncovers that by placing a magnet nearby the tumor, MFNPs tend to migrate toward the tumor after intravenous injection and show high tumor accumulation, which is ~8 folds higher than that without magnetic targeting. NIR laser irradiation is then applied to the tumors grown on MFNP-injected mice under magnetic tumor-targeting, obtaining an outstanding photothermal therapeutic efficacy with 100% of tumor elimination in a murine breast cancer model. We present here a strategy for multimodal imaging-guided, magnetically targeted physical cancer therapy and highlight the promise of using multifunctional nanostructures for cancer theranostics.

  11. Mn-doped near-infrared quantum dots as multimodal targeted probes for pancreatic cancer imaging.

    PubMed

    Yong, Ken-Tye

    2009-01-01

    This work presents a novel approach to producing manganese (Mn)-doped quantum dots (Mnd-QDs) emitting in the near-infrared (NIR). Surface functionalization of Mnd-QDs with lysine makes them stably disperse in aqueous media and able to conjugate with targeting molecules. The nanoparticles were structurally and compositionally characterized and maintained a high photoluminescence quantum yield and displayed paramagnetism in water. The receptor-mediated delivery of bioconjugated Mnd-QDs into pancreatic cancer cells was demonstrated using the confocal microscopy technique. Cytotoxicity of Mnd-QDs on live cells has been evaluated. The NIR-emitting characteristic of the QDs has been exploited to acquire whole animal body imaging with high contrast signals. In addition, histological and blood analysis of mice have revealed that no long-term toxic effects arise from MnD-QDs. These studies suggest multimodal Mnd-QDs have the potentials as probes for early pancreatic cancer imaging and detection.

  12. Multimodal optical coherence tomography and fluorescence lifetime imaging with interleaved excitation sources for simultaneous endogenous and exogenous fluorescence

    PubMed Central

    Shrestha, Sebina; Serafino, Michael J.; Rico-Jimenez, Jesus; Park, Jesung; Chen, Xi; Zhaorigetu, Siqin; Walton, Brian L.; Jo, Javier A.; Applegate, Brian E.

    2016-01-01

    Multimodal imaging probes a variety of tissue properties in a single image acquisition by merging complimentary imaging technologies. Exploiting synergies amongst the data, algorithms can be developed that lead to better tissue characterization than could be accomplished by the constituent imaging modalities taken alone. The combination of optical coherence tomography (OCT) with fluorescence lifetime imaging microscopy (FLIM) provides access to detailed tissue morphology and local biochemistry. The optical system described here merges 1310 nm swept-source OCT with time-domain FLIM having excitation at 355 and 532 nm. The pulses from 355 and 532 nm lasers have been interleaved to enable simultaneous acquisition of endogenous and exogenous fluorescence signals, respectively. The multimodal imaging system was validated using tissue phantoms. Nonspecific tagging with Alexa Flour 532 in a Watanbe rabbit aorta and active tagging of the LOX-1 receptor in human coronary artery, demonstrate the capacity of the system for simultaneous acquisition of OCT, endogenous FLIM, and exogenous FLIM in tissues.

  13. MIDA: A Multimodal Imaging-Based Detailed Anatomical Model of the Human Head and Neck.

    PubMed

    Iacono, Maria Ida; Neufeld, Esra; Akinnagbe, Esther; Bower, Kelsey; Wolf, Johanna; Vogiatzis Oikonomidis, Ioannis; Sharma, Deepika; Lloyd, Bryn; Wilm, Bertram J; Wyss, Michael; Pruessmann, Klaas P; Jakab, Andras; Makris, Nikos; Cohen, Ethan D; Kuster, Niels; Kainz, Wolfgang; Angelone, Leonardo M

    2015-01-01

    Computational modeling and simulations are increasingly being used to complement experimental testing for analysis of safety and efficacy of medical devices. Multiple voxel- and surface-based whole- and partial-body models have been proposed in the literature, typically with spatial resolution in the range of 1-2 mm and with 10-50 different tissue types resolved. We have developed a multimodal imaging-based detailed anatomical model of the human head and neck, named "MIDA". The model was obtained by integrating three different magnetic resonance imaging (MRI) modalities, the parameters of which were tailored to enhance the signals of specific tissues: i) structural T1- and T2-weighted MRIs; a specific heavily T2-weighted MRI slab with high nerve contrast optimized to enhance the structures of the ear and eye; ii) magnetic resonance angiography (MRA) data to image the vasculature, and iii) diffusion tensor imaging (DTI) to obtain information on anisotropy and fiber orientation. The unique multimodal high-resolution approach allowed resolving 153 structures, including several distinct muscles, bones and skull layers, arteries and veins, nerves, as well as salivary glands. The model offers also a detailed characterization of eyes, ears, and deep brain structures. A special automatic atlas-based segmentation procedure was adopted to include a detailed map of the nuclei of the thalamus and midbrain into the head model. The suitability of the model to simulations involving different numerical methods, discretization approaches, as well as DTI-based tensorial electrical conductivity, was examined in a case-study, in which the electric field was generated by transcranial alternating current stimulation. The voxel- and the surface-based versions of the models are freely available to the scientific community. PMID:25901747

  14. Single fraction multimodal image guided focal salvage high-dose-rate brachytherapy for recurrent prostate cancer

    PubMed Central

    Rischke, Hans-Christian; Meyer, Philipp Tobias; Knobe, Sven; Volgeova-Neher, Natalja; Kollefrath, Michael; Jilg, Cordula Annette; Grosu, Anca Ligia; Baltas, Dimos; Kroenig, Malte

    2016-01-01

    Purpose We present a novel method for treatment of locally recurrent prostate cancer (PCa) following radiation therapy: focal, multimodal image guided high-dose-rate (HDR) brachytherapy. Material and methods We treated two patients with recurrent PCa after primary (#1) or adjuvant (#2) external beam radiation therapy. Multiparametric magnetic resonance imaging (mpMRI), choline, positron emission tomography combined with computed tomography (PET/CT), or prostate-specific membrane antigen (PSMA)-PET combined with CT identified a single intraprostatic lesion. Positron emission tomography or magnetic resonance imaging – transrectal ultrasound (MRI-TRUS) fusion guided transperineal biopsy confirmed PCa within each target lesion. We defined a PET and mpMRI based gross tumor volume (GTV). A 5 mm isotropic margin was applied additionally to each lesion to generate a planning target volume (PTV), which accounts for technical fusion inaccuracies. A D90 of 18 Gy was intended in one fraction to each PTV using ultrasound guided HDR brachytherapy. Results Six month follow-up showed adequate prostate specific antygen (PSA) decline in both patients (ΔPSA 83% in patient 1 and ΔPSA 59.3% in patient 2). Follow-up 3-tesla MRI revealed regressive disease in both patients and PSMA-PET/CT showed no evidence of active disease in patient #1. No acute or late toxicities occurred. Conclusions Single fraction, focal, multimodal image guided salvage HDR brachytherapy for recurrent prostate cancer is a feasible therapy for selected patients with single lesions. This approach has to be evaluated in larger clinical trials. PMID:27504134

  15. MIDA: A Multimodal Imaging-Based Detailed Anatomical Model of the Human Head and Neck

    PubMed Central

    Iacono, Maria Ida; Neufeld, Esra; Akinnagbe, Esther; Bower, Kelsey; Wolf, Johanna; Vogiatzis Oikonomidis, Ioannis; Sharma, Deepika; Lloyd, Bryn; Wilm, Bertram J.; Wyss, Michael; Pruessmann, Klaas P.; Jakab, Andras; Makris, Nikos; Cohen, Ethan D.; Kuster, Niels; Kainz, Wolfgang; Angelone, Leonardo M.

    2015-01-01

    Computational modeling and simulations are increasingly being used to complement experimental testing for analysis of safety and efficacy of medical devices. Multiple voxel- and surface-based whole- and partial-body models have been proposed in the literature, typically with spatial resolution in the range of 1–2 mm and with 10–50 different tissue types resolved. We have developed a multimodal imaging-based detailed anatomical model of the human head and neck, named “MIDA”. The model was obtained by integrating three different magnetic resonance imaging (MRI) modalities, the parameters of which were tailored to enhance the signals of specific tissues: i) structural T1- and T2-weighted MRIs; a specific heavily T2-weighted MRI slab with high nerve contrast optimized to enhance the structures of the ear and eye; ii) magnetic resonance angiography (MRA) data to image the vasculature, and iii) diffusion tensor imaging (DTI) to obtain information on anisotropy and fiber orientation. The unique multimodal high-resolution approach allowed resolving 153 structures, including several distinct muscles, bones and skull layers, arteries and veins, nerves, as well as salivary glands. The model offers also a detailed characterization of eyes, ears, and deep brain structures. A special automatic atlas-based segmentation procedure was adopted to include a detailed map of the nuclei of the thalamus and midbrain into the head model. The suitability of the model to simulations involving different numerical methods, discretization approaches, as well as DTI-based tensorial electrical conductivity, was examined in a case-study, in which the electric field was generated by transcranial alternating current stimulation. The voxel- and the surface-based versions of the models are freely available to the scientific community. PMID:25901747

  16. Efficient multi-modal dense field non-rigid registration: alignment of histological and section images.

    PubMed

    du Bois d'Aische, Aloys; Craene, Mathieu De; Geets, Xavier; Gregoire, Vincent; Macq, Benoit; Warfield, Simon K

    2005-12-01

    We describe a new algorithm for non-rigid registration capable of estimating a constrained dense displacement field from multi-modal image data. We applied this algorithm to capture non-rigid deformation between digital images of histological slides and digital flat-bed scanned images of cryotomed sections of the larynx, and carried out validation experiments to measure the effectiveness of the algorithm. The implementation was carried out by extending the open-source Insight ToolKit software. In diagnostic imaging of cancer of the larynx, imaging modalities sensitive to both anatomy (such as MRI and CT) and function (PET) are valuable. However, these modalities differ in their capability to discriminate the margins of tumor. Gold standard tumor margins can be obtained from histological images from cryotomed sections of the larynx. Unfortunately, the process of freezing, fixation, cryotoming and staining the tissue to create histological images introduces non-rigid deformations and significant contrast changes. We demonstrate that the non-rigid registration algorithm we present is able to capture these deformations and the algorithm allows us to align histological images with scanned images of the larynx. Our non-rigid registration algorithm constructs a deformation field to warp one image onto another. The algorithm measures image similarity using a mutual information similarity criterion, and avoids spurious deformations due to noise by constraining the estimated deformation field with a linear elastic regularization term. The finite element method is used to represent the deformation field, and our implementation enables us to assign inhomogeneous material characteristics so that hard regions resist internal deformation whereas soft regions are more pliant. A gradient descent optimization strategy is used and this has enabled rapid and accurate convergence to the desired estimate of the deformation field. A further acceleration in speed without cost of accuracy

  17. Semiautomatic tumor segmentation with multimodal images in a conditional random field framework.

    PubMed

    Hu, Yu-Chi; Grossberg, Michael; Mageras, Gikas

    2016-04-01

    Volumetric medical images of a single subject can be acquired using different imaging modalities, such as computed tomography, magnetic resonance imaging (MRI), and positron emission tomography. In this work, we present a semiautomatic segmentation algorithm that can leverage the synergies between different image modalities while integrating interactive human guidance. The algorithm provides a statistical segmentation framework partly automating the segmentation task while still maintaining critical human oversight. The statistical models presented are trained interactively using simple brush strokes to indicate tumor and nontumor tissues and using intermediate results within a patient's image study. To accomplish the segmentation, we construct the energy function in the conditional random field (CRF) framework. For each slice, the energy function is set using the estimated probabilities from both user brush stroke data and prior approved segmented slices within a patient study. The progressive segmentation is obtained using a graph-cut-based minimization. Although no similar semiautomated algorithm is currently available, we evaluated our method with an MRI data set from Medical Image Computing and Computer Assisted Intervention Society multimodal brain segmentation challenge (BRATS 2012 and 2013) against a similar fully automatic method based on CRF and a semiautomatic method based on grow-cut, and our method shows superior performance. PMID:27413768

  18. Comparative evaluation of multiresolution optimization strategies for multimodality image registration by maximization of mutual information.

    PubMed

    Maes, F; Vandermeulen, D; Suetens, P

    1999-12-01

    Maximization of mutual information of voxel intensities has been demonstrated to be a very powerful criterion for three-dimensional medical image registration, allowing robust and accurate fully automated affine registration of multimodal images in a variety of applications, without the need for segmentation or other preprocessing of the images. In this paper, we investigate the performance of various optimization methods and multiresolution strategies for maximization of mutual information, aiming at increasing registration speed when matching large high-resolution images. We show that mutual information is a continuous function of the affine registration parameters when appropriate interpolation is used and we derive analytic expressions of its derivatives that allow numerically exact evaluation of its gradient. Various multiresolution gradient- and non-gradient-based optimization strategies, such as Powell, simplex, steepest-descent, conjugate-gradient, quasi-Newton and Levenberg-Marquardt methods, are evaluated for registration of computed tomography (CT) and magnetic resonance images of the brain. Speed-ups of a factor of 3 on average compared to Powell's method at full resolution are achieved with similar precision and without a loss of robustness with the simplex, conjugate-gradient and Levenberg-Marquardt method using a two-level multiresolution scheme. Large data sets such as 256(2) x 128 MR and 512(2) x 48 CT images can be registered with subvoxel precision in <5 min CPU time on current workstations. PMID:10709702

  19. High-Performance Upconversion Nanoprobes for Multimodal MR Imaging of Acute Ischemic Stroke.

    PubMed

    Wang, Jing; Zhang, Hua; Ni, Dalong; Fan, Wenpei; Qu, Jianxun; Liu, Yanyan; Jin, Yingying; Cui, Zhaowen; Xu, Tianyong; Wu, Yue; Bu, Wenbo; Yao, Zhenwei

    2016-07-01

    Multimodal magnetic resonance (MR) imaging, including MR angiography (MRA) and MR perfusion (MRP), plays a critical role in the diagnosis and surveillance of acute ischemic stroke. However, these techniques are hindered by the low T1 relaxivity, short circulation time, and high leakage rate from vessels of clinical Magnevist. To address these problems, nontoxic polyethylene glycol (PEG)ylated upconversion nanoprobes (PEG-UCNPs) are synthesized and first adopted for excellent MRA and MRP imaging, featuring high diagnostic sensitivity toward acute ischemic stroke in high-resolution imaging. The investigations show that the agent possesses superior advantages over clinical Magnevist, such as much higher relaxivity, longer circulation time, and lower leakage rate, which guarantee much better imaging efficiency. Remarkably, an extremely small dosage (5 mg Gd kg(-1) ) of PEG-UCNPs provides high-resolution MRA imaging with the vascular system delineated much clearer than the Magnevist with clinical dosage as high as 108 mg Gd kg(-1) . On the other hand, the long circulation time of PEG-UCNPs enables the surveillance of the progression of ischemic stroke using MRA or MRP. Once translated, these PEG-UCNPs are expected to be a promising candidate for substituting the clinical Magnevist in MRA and MRP, which will significantly lengthen the imaging time window and improve the overall diagnostic efficiency. PMID:27219071

  20. Imaging results of multi-modal ultrasound computerized tomography system designed for breast diagnosis.

    PubMed

    Opieliński, Krzysztof J; Pruchnicki, Piotr; Gudra, Tadeusz; Podgórski, Przemysław; Kurcz, Jacek; Kraśnicki, Tomasz; Sąsiadek, Marek; Majewski, Jarosław

    2015-12-01

    Nowadays, in the era of common computerization, transmission and reflection methods are intensively developed in addition to improving classical ultrasound methods (US) for imaging of tissue structure, in particular ultrasound transmission tomography UTT (analogous to computed tomography CT which uses X-rays) and reflection tomography URT (based on the synthetic aperture method used in radar imaging techniques). This paper presents and analyses the results of ultrasound transmission tomography imaging of the internal structure of the female breast biopsy phantom CIRS Model 052A and the results of the ultrasound reflection tomography imaging of a wire sample. Imaging was performed using a multi-modal ultrasound computerized tomography system developed with the participation of a private investor. The results were compared with the results of imaging obtained using dual energy CT, MR mammography and conventional US method. The obtained results indicate that the developed UTT and URT methods, after the acceleration of the scanning process, thus enabling in vivo examination, may be successfully used for detection and detailed characterization of breast lesions in women. PMID:25759234

  1. Multimodal noncontact photoacoustic and optical coherence tomography imaging using wavelength-division multiplexing

    NASA Astrophysics Data System (ADS)

    Berer, Thomas; Leiss-Holzinger, Elisabeth; Hochreiner, Armin; Bauer-Marschallinger, Johannes; Buchsbaum, Andreas

    2015-04-01

    We present multimodal noncontact photoacoustic (PA) and optical coherence tomography (OCT) imaging. PA signals are acquired remotely on the surface of a specimen with a Mach-Zehnder interferometer. The interferometer is realized in a fiber-optic network using a fiber laser at 1550 nm as the source. In the same fiber-optic network, a spectral-domain OCT system is implemented. The OCT system utilizes a supercontinuum light source at 1310 nm and a spectrometer with an InGaAs line array detector. Light from the fiber laser and the OCT source is multiplexed into one fiber using a wavelength-division multiplexer; the same objective is used for both imaging modalities. Reflected light is spectrally demultiplexed and guided to the respective imaging systems. We demonstrate two-dimensional and three-dimensional imaging on a tissue-mimicking sample and a chicken skin phantom. The same fiber network and same optical components are used for PA and OCT imaging, and the obtained images are intrinsically coregistered.

  2. Variability of Target and Normal Structure Delineation Using Multimodality Imaging for Radiation Therapy of Pancreatic Cancer

    SciTech Connect

    Dalah, Entesar; Moraru, Ion; Paulson, Eric; Erickson, Beth; Li, X. Allen

    2014-07-01

    Purpose: To explore the potential of multimodality imaging (dynamic contrast–enhanced magnetic resonance imaging [DCE-MRI], apparent diffusion-coefficient diffusion-weighted imaging [ADC-DWI], fluorodeoxyglucose positron emission tomography [FDG-PET], and computed tomography) to define the gross tumor volume (GTV) and organs at risk in radiation therapy planning for pancreatic cancer. Delineated volumetric changes of DCE-MRI, ADC-DWI, and FDG-PET were assessed in comparison with the finding on 3-dimensional/4-dimensional CT with and without intravenous contrast, and with pathology specimens for resectable and borderline resectable cases of pancreatic cancer. Methods and Materials: We studied a total of 19 representative patients, whose DCE-MRI, ADC-DWI, and FDG-PET data were reviewed. Gross tumor volume and tumor burden/active region inside pancreatic head/neck or body were delineated on MRI (denoted GTV{sub DCE}, and GTV{sub ADC}), a standardized uptake value (SUV) of 2.5, 40%SUVmax, and 50%SUVmax on FDG-PET (GTV2.5, GTV{sub 40%}, and GTV{sub 50%}). Volumes of the pancreas, duodenum, stomach, liver, and kidneys were contoured according to CT (V{sub CT}), T1-weighted MRI (V{sub T1}), and T2-weighted MRI (V{sub T2}) for 7 patients. Results: Significant statistical differences were found between the GTVs from DCE-MRI, ADC-DW, and FDG-PET, with a mean and range of 4.73 (1.00-9.79), 14.52 (3.21-25.49), 22.04 (1.00-45.69), 19.10 (4.84-45.59), and 9.80 (0.32-35.21) cm{sup 3} for GTV{sub DCE}, GTV{sub ADC}, GTV2.5, GTV{sub 40%}, and GTV{sub 50%}, respectively. The mean difference and range in the measurements of maximum dimension of tumor on DCE-MRI, ADC-DW, SUV2.5, 40%SUVmax, and 50%SUVmax compared with pathologic specimens were −0.84 (−2.24 to 0.9), 0.41 (−0.15 to 2.3), 0.58 (−1.41 to 3.69), 0.66 (−0.67 to 1.32), and 0.15 (−1.53 to 2.38) cm, respectively. The T1- and T2-based volumes for pancreas, duodenum, stomach, and liver were generally smaller

  3. Noninvasive multimodal evaluation of bioengineered cartilage constructs combining time-resolved fluorescence and ultrasound imaging.

    PubMed

    Fite, Brett Z; Decaris, Martin; Sun, Yinghua; Sun, Yang; Lam, Adrian; Ho, Clark K L; Leach, J Kent; Marcu, Laura

    2011-04-01

    A multimodal diagnostic system that integrates time-resolved fluorescence spectroscopy, fluorescence lifetime imaging microscopy, and ultrasound backscatter microscopy is evaluated here as a potential tool for assessing changes in engineered tissue composition and microstructure nondestructively and noninvasively. The development of techniques capable of monitoring the quality of engineered tissue, determined by extracellular matrix (ECM) content, before implantation would alleviate the need for destructive assays over multiple time points and advance the widespread development and clinical application of engineered tissues. Using a prototype system combining time-resolved fluorescence spectroscopy, FLIM, and UBM, we measured changes in ECM content occurring during chondrogenic differentiation of equine adipose stem cells on 3D biodegradable matrices. The optical and ultrasound results were validated against those acquired via conventional techniques, including collagen II immunohistochemistry, picrosirius red staining, and measurement of construct stiffness. Current results confirm the ability of this multimodal approach to follow the progression of tissue maturation along the chondrogenic lineage by monitoring ECM production (namely, collagen type II) and by detecting resulting changes in mechanical properties of tissue constructs. Although this study was directed toward monitoring chondrogenic tissue maturation, these data demonstrate the feasibility of this approach for multiple applications toward engineering other tissues, including bone and vascular grafts. PMID:21303258

  4. Multimodal optical imaging and spectroscopy for the intraoperative mapping of nonmelanoma skin cancer

    NASA Astrophysics Data System (ADS)

    Salomatina, Elena; Muzikansky, Alona; Neel, Victor; Yaroslavsky, Anna N.

    2009-05-01

    Basal cell carcinoma (BCC) is the most common human malignancy, and its incidence increases yearly. In this contribution we investigate the feasibility of combining multimodal reflectance and fluorescence polarization imaging (RFPI) with spectroscopic analysis of the reflectance images for facilitating intraoperative delineation of BCCs. Twenty fresh thick BCC specimens were obtained within 1 h after Mohs micrographic surgeries. The samples were soaked for up to 2 min in an aqueous 0.2 mg/ml solution of methylene blue, briefly rinsed in saline solution, and imaged. Reflectance images were acquired in the range from 395 to 735 nm, with steps of 10 nm. Fluorescence polarization images were excited at 630 nm and registered in the range between 660 and 750 nm. The results yielded by RFPI were qualitatively compared to each other and to histopathology. From the copolarized reflectance images the spectral responses including the optical densities and their wavelength derivatives were calculated. The differences in the spectral responses of the benign and malignant stained skin structures were assessed. Statistical analysis, i.e., Student's t-test, was employed to verify the significance of the discovered differences. Both reflectance and fluorescence polarization images correlated well with histopathology in all the cases. Reflectance polarization images provided more detailed information on skin morphology, with the appearance of skin structures resembling that of histopathology. Fluorescence polarization images exhibited higher contrast of cancerous tissue as compared to reflectance imaging. The analysis of the optical densities and their wavelength derivatives for tumor and normal tissues has confirmed statistical significance of the differences that can be used for intraoperative cancer delineation. The results of the study indicate that spectral analysis is a useful adjunct to RFPI for facilitating skin cancer delineation.

  5. Imaging findings in craniofacial childhood rhabdomyosarcoma

    PubMed Central

    Merks, Johannes H. M.; Saeed, Peerooz; Balm, Alfons J. M.; Bras, Johannes; Pieters, Bradley R.; Adam, Judit A.; van Rijn, Rick R.

    2010-01-01

    Rhabdomyosarcoma (RMS) is the commonest paediatric soft-tissue sarcoma constituting 3–5% of all malignancies in childhood. RMS has a predilection for the head and neck area and tumours in this location account for 40% of all childhood RMS cases. In this review we address the clinical and imaging presentations of craniofacial RMS, discuss the most appropriate imaging techniques, present characteristic imaging features and offer an overview of differential diagnostic considerations. Post-treatment changes will be briefly addressed. PMID:20725831

  6. Computer Vision Tools for Finding Images and Video Sequences.

    ERIC Educational Resources Information Center

    Forsyth, D. A.

    1999-01-01

    Computer vision offers a variety of techniques for searching for pictures in large collections of images. Appearance methods compare images based on the overall content of the image using certain criteria. Finding methods concentrate on matching subparts of images, defined in a variety of ways, in hope of finding particular objects. These ideas…

  7. Convex hull matching and hierarchical decomposition for multimodality medical image registration.

    PubMed

    Yang, Jian; Fan, Jingfan; Fu, Tianyu; Ai, Danni; Zhu, Jianjun; Li, Qin; Wang, Yongtian

    2015-01-01

    This study proposes a novel hierarchical pyramid strategy for 3D registration of multimodality medical images. The surfaces of the source and target volume data are first extracted, and the surface point clouds are then aligned roughly using convex hull matching. The convex hull matching registration procedure could align images with large-scale transformations. The original images are divided into blocks and the corresponding blocks in the two images are registered by affine and non-rigid registration procedures. The sub-blocks are iteratively smoothed by the Gaussian kernel with different sizes during the registration procedure. The registration result of the large kernel is taken as the input of the small kernel registration. The fine registration of the two volume data sets is achieved by iteratively increasing the number of blocks, in which increase in similarity measure is taken as a criterion for acceptation of each iteration level. Results demonstrate the effectiveness and robustness of the proposed method in registering the multiple modalities of medical images.

  8. Multimodal Therapy.

    ERIC Educational Resources Information Center

    Lazarus, Arnold A.

    The multimodal therapy (MMT) approach provides a framework that facilitates systematic treatment selection in a broad-based, comprehensive and yet highly focused manner. It respects science, and data driven findings, and endeavors to use empirically supported methods when possible. Nevertheless, it recognizes that many issues still fall into the…

  9. Applications of "Hot" and "Cold" Bis(thiosemicarbazonato) Metal Complexes in Multimodal Imaging.

    PubMed

    Cortezon-Tamarit, Fernando; Sarpaki, Sophia; Calatayud, David G; Mirabello, Vincenzo; Pascu, Sofia I

    2016-06-01

    The applications of coordination chemistry to molecular imaging has become a matter of intense research over the past 10 years. In particular, the applications of bis(thiosemicarbazonato) metal complexes in molecular imaging have mainly been focused on compounds with aliphatic backbones due to the in vivo imaging success of hypoxic tumors with PET (positron emission tomography) using (64) CuATSM [copper (diacetyl-bis(N4-methylthiosemicarbazone))]. This compound entered clinical trials in the US and the UK during the first decade of the 21(st) century for imaging hypoxia in head and neck tumors. The replacement of the ligand backbone to aromatic groups, coupled with the exocyclic N's functionalization during the synthesis of bis(thiosemicarbazones) opens the possibility to use the corresponding metal complexes as multimodal imaging agents of use, both in vitro for optical detection, and in vivo when radiolabeled with several different metallic species. The greater kinetic stability of acenaphthenequinone bis(thiosemicarbazonato) metal complexes, with respect to that of the corresponding aliphatic ATSM complexes, allows the stabilization of a number of imaging probes, with special interest in "cold" and "hot" Cu(II) and Ga(III) derivatives for PET applications and (111) In(III) derivatives for SPECT (single-photon emission computed tomography) applications, whilst Zn(II) derivatives display optical imaging properties in cells, with enhanced fluorescence emission and lifetime with respect to the free ligands. Preliminary studies have shown that gallium-based acenaphthenequinone bis(thiosemicarbazonato) complexes are also hypoxia selective in vitro, thus increasing the interest in them as new generation imaging agents for in vitro and in vivo applications. PMID:27149900

  10. Document imaging finding niche in petroleum industry

    SciTech Connect

    Cisco, S.L.

    1992-11-09

    Optical disk-based document imaging systems can reduce operating costs, save office space, and improve access to necessary information for petroleum companies that have extensive records in various formats. These imaging systems help solve document management problems to improve technical and administrative operations. Enron Gas Pipeline Group has installed a document imaging system for engineering applications to integrate records stored on paper, microfilm, or computer-aided drafting (CAD) systems. BP Exploration Inc. recently implemented a document imaging system for administrative applications. The company is evaluating an expansion of the system to include engineering and technical applications. The petroleum industry creates, acquires, distributes, and retrieves enormous amounts of data and information, which are stored on multiple media, including paper, microfilm, and electronic formats. There are two main factors responsible for the immense information storage requirements in the petroleum industry.

  11. NASA Technology Finds Uses in Medical Imaging

    NASA Video Gallery

    NASA software has been incorporated into a new medical imaging device that could one day aid in the interpretation of mammograms, ultrasounds, and other medical imagery. The new MED-SEG system, dev...

  12. Polypyrrole-encapsulated iron tungstate nanocomposites: a versatile platform for multimodal tumor imaging and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyin; Peng, Chen; Jiang, Xiaohong; Peng, Yuxuan; Huang, Xiaojuan; Guan, Guoqiang; Zhang, Wenlong; Liu, Xiaoming; Qin, Zongyi; Hu, Junqing

    2016-06-01

    A versatile nanoplatform of FeWO4@Polypyrrole (PPy) core/shell nanocomposites, which was facilely fabricated by first hydrothermal synthesis of FeWO4 nanoparticles and subsequent surface-coating of polypyrrole shell, was developed as an effective nanotheranostic agent of cancer. The as-prepared nanocomposites demonstrated excellent dispersion in saline, long-term colloidal storage, outstanding photo-stability and high photothermal efficiency in solution. In particular, FeWO4@PPy exhibited efficient performance for hyperthermia-killing of cancer cells under the irradiation of an 808 nm laser, accompanied with multimodal contrast capabilities for magnetic resonance imaging, X-ray computed tomography and infrared thermal imaging in vitro and in vivo. Furthermore, the nanocomposites presented impactful tumor growth inhibition and good biocompability in animal experiments. Blood circulation and biodistribution of the nanocomposites were also investigated to understand their in vivo behaviours. Our results verified the platform of FeWO4@PPy nanocomposites as a promising photothermal agent for imaging-guided cancer theranostics.A versatile nanoplatform of FeWO4@Polypyrrole (PPy) core/shell nanocomposites, which was facilely fabricated by first hydrothermal synthesis of FeWO4 nanoparticles and subsequent surface-coating of polypyrrole shell, was developed as an effective nanotheranostic agent of cancer. The as-prepared nanocomposites demonstrated excellent dispersion in saline, long-term colloidal storage, outstanding photo-stability and high photothermal efficiency in solution. In particular, FeWO4@PPy exhibited efficient performance for hyperthermia-killing of cancer cells under the irradiation of an 808 nm laser, accompanied with multimodal contrast capabilities for magnetic resonance imaging, X-ray computed tomography and infrared thermal imaging in vitro and in vivo. Furthermore, the nanocomposites presented impactful tumor growth inhibition and good biocompability in

  13. Beyond endoscopic assessment in inflammatory bowel disease: real-time histology of disease activity by non-linear multimodal imaging

    PubMed Central

    Chernavskaia, Olga; Heuke, Sandro; Vieth, Michael; Friedrich, Oliver; Schürmann, Sebastian; Atreya, Raja; Stallmach, Andreas; Neurath, Markus F.; Waldner, Maximilian; Petersen, Iver; Schmitt, Michael; Bocklitz, Thomas; Popp, Jürgen

    2016-01-01

    Assessing disease activity is a prerequisite for an adequate treatment of inflammatory bowel diseases (IBD) such as Crohn’s disease and ulcerative colitis. In addition to endoscopic mucosal healing, histologic remission poses a promising end-point of IBD therapy. However, evaluating histological remission harbors the risk for complications due to the acquisition of biopsies and results in a delay of diagnosis because of tissue processing procedures. In this regard, non-linear multimodal imaging techniques might serve as an unparalleled technique that allows the real-time evaluation of microscopic IBD activity in the endoscopy unit. In this study, tissue sections were investigated using the non-linear multimodal microscopy combination of coherent anti-Stokes Raman scattering (CARS), two-photon excited auto fluorescence (TPEF) and second-harmonic generation (SHG). After the measurement a gold-standard assessment of histological indexes was carried out based on a conventional H&E stain. Subsequently, various geometry and intensity related features were extracted from the multimodal images. An optimized feature set was utilized to predict histological index levels based on a linear classifier. Based on the automated prediction, the diagnosis time interval is decreased. Therefore, non-linear multimodal imaging may provide a real-time diagnosis of IBD activity suited to assist clinical decision making within the endoscopy unit. PMID:27406831

  14. Multi-Mode Electromagnetic Ultrasonic Lamb Wave Tomography Imaging for Variable-Depth Defects in Metal Plates.

    PubMed

    Huang, Songling; Zhang, Yu; Wang, Shen; Zhao, Wei

    2016-05-02

    This paper proposes a new cross-hole tomography imaging (CTI) method for variable-depth defects in metal plates based on multi-mode electromagnetic ultrasonic Lamb waves (LWs). The dispersion characteristics determine that different modes of LWs are sensitive to different thicknesses of metal plates. In this work, the sensitivities to thickness variation of A0- and S0-mode LWs are theoretically studied. The principles and procedures for the cooperation of A0- and S0-mode LW CTI are proposed. Moreover, the experimental LW imaging system on an aluminum plate with a variable-depth defect is set up, based on A0- and S0-mode EMAT (electromagnetic acoustic transducer) arrays. For comparison, the traditional single-mode LW CTI method is used in the same experimental platform. The imaging results show that the computed thickness distribution by the proposed multi-mode method more accurately reflects the actual thickness variation of the defect, while neither the S0 nor the A0 single-mode method was able to distinguish thickness variation in the defect region. Moreover, the quantification of the defect's thickness variation is more accurate with the multi-mode method. Therefore, theoretical and practical results prove that the variable-depth defect in metal plates can be successfully quantified and visualized by the proposed multi-mode electromagnetic ultrasonic LW CTI method.

  15. Multi-Mode Electromagnetic Ultrasonic Lamb Wave Tomography Imaging for Variable-Depth Defects in Metal Plates.

    PubMed

    Huang, Songling; Zhang, Yu; Wang, Shen; Zhao, Wei

    2016-01-01

    This paper proposes a new cross-hole tomography imaging (CTI) method for variable-depth defects in metal plates based on multi-mode electromagnetic ultrasonic Lamb waves (LWs). The dispersion characteristics determine that different modes of LWs are sensitive to different thicknesses of metal plates. In this work, the sensitivities to thickness variation of A0- and S0-mode LWs are theoretically studied. The principles and procedures for the cooperation of A0- and S0-mode LW CTI are proposed. Moreover, the experimental LW imaging system on an aluminum plate with a variable-depth defect is set up, based on A0- and S0-mode EMAT (electromagnetic acoustic transducer) arrays. For comparison, the traditional single-mode LW CTI method is used in the same experimental platform. The imaging results show that the computed thickness distribution by the proposed multi-mode method more accurately reflects the actual thickness variation of the defect, while neither the S0 nor the A0 single-mode method was able to distinguish thickness variation in the defect region. Moreover, the quantification of the defect's thickness variation is more accurate with the multi-mode method. Therefore, theoretical and practical results prove that the variable-depth defect in metal plates can be successfully quantified and visualized by the proposed multi-mode electromagnetic ultrasonic LW CTI method. PMID:27144571

  16. Beyond endoscopic assessment in inflammatory bowel disease: real-time histology of disease activity by non-linear multimodal imaging

    NASA Astrophysics Data System (ADS)

    Chernavskaia, Olga; Heuke, Sandro; Vieth, Michael; Friedrich, Oliver; Schürmann, Sebastian; Atreya, Raja; Stallmach, Andreas; Neurath, Markus F.; Waldner, Maximilian; Petersen, Iver; Schmitt, Michael; Bocklitz, Thomas; Popp, Jürgen

    2016-07-01

    Assessing disease activity is a prerequisite for an adequate treatment of inflammatory bowel diseases (IBD) such as Crohn’s disease and ulcerative colitis. In addition to endoscopic mucosal healing, histologic remission poses a promising end-point of IBD therapy. However, evaluating histological remission harbors the risk for complications due to the acquisition of biopsies and results in a delay of diagnosis because of tissue processing procedures. In this regard, non-linear multimodal imaging techniques might serve as an unparalleled technique that allows the real-time evaluation of microscopic IBD activity in the endoscopy unit. In this study, tissue sections were investigated using the non-linear multimodal microscopy combination of coherent anti-Stokes Raman scattering (CARS), two-photon excited auto fluorescence (TPEF) and second-harmonic generation (SHG). After the measurement a gold-standard assessment of histological indexes was carried out based on a conventional H&E stain. Subsequently, various geometry and intensity related features were extracted from the multimodal images. An optimized feature set was utilized to predict histological index levels based on a linear classifier. Based on the automated prediction, the diagnosis time interval is decreased. Therefore, non-linear multimodal imaging may provide a real-time diagnosis of IBD activity suited to assist clinical decision making within the endoscopy unit.

  17. Beyond endoscopic assessment in inflammatory bowel disease: real-time histology of disease activity by non-linear multimodal imaging.

    PubMed

    Chernavskaia, Olga; Heuke, Sandro; Vieth, Michael; Friedrich, Oliver; Schürmann, Sebastian; Atreya, Raja; Stallmach, Andreas; Neurath, Markus F; Waldner, Maximilian; Petersen, Iver; Schmitt, Michael; Bocklitz, Thomas; Popp, Jürgen

    2016-01-01

    Assessing disease activity is a prerequisite for an adequate treatment of inflammatory bowel diseases (IBD) such as Crohn's disease and ulcerative colitis. In addition to endoscopic mucosal healing, histologic remission poses a promising end-point of IBD therapy. However, evaluating histological remission harbors the risk for complications due to the acquisition of biopsies and results in a delay of diagnosis because of tissue processing procedures. In this regard, non-linear multimodal imaging techniques might serve as an unparalleled technique that allows the real-time evaluation of microscopic IBD activity in the endoscopy unit. In this study, tissue sections were investigated using the non-linear multimodal microscopy combination of coherent anti-Stokes Raman scattering (CARS), two-photon excited auto fluorescence (TPEF) and second-harmonic generation (SHG). After the measurement a gold-standard assessment of histological indexes was carried out based on a conventional H&E stain. Subsequently, various geometry and intensity related features were extracted from the multimodal images. An optimized feature set was utilized to predict histological index levels based on a linear classifier. Based on the automated prediction, the diagnosis time interval is decreased. Therefore, non-linear multimodal imaging may provide a real-time diagnosis of IBD activity suited to assist clinical decision making within the endoscopy unit. PMID:27406831

  18. Multi-Mode Electromagnetic Ultrasonic Lamb Wave Tomography Imaging for Variable-Depth Defects in Metal Plates

    PubMed Central

    Huang, Songling; Zhang, Yu; Wang, Shen; Zhao, Wei

    2016-01-01

    This paper proposes a new cross-hole tomography imaging (CTI) method for variable-depth defects in metal plates based on multi-mode electromagnetic ultrasonic Lamb waves (LWs). The dispersion characteristics determine that different modes of LWs are sensitive to different thicknesses of metal plates. In this work, the sensitivities to thickness variation of A0- and S0-mode LWs are theoretically studied. The principles and procedures for the cooperation of A0- and S0-mode LW CTI are proposed. Moreover, the experimental LW imaging system on an aluminum plate with a variable-depth defect is set up, based on A0- and S0-mode EMAT (electromagnetic acoustic transducer) arrays. For comparison, the traditional single-mode LW CTI method is used in the same experimental platform. The imaging results show that the computed thickness distribution by the proposed multi-mode method more accurately reflects the actual thickness variation of the defect, while neither the S0 nor the A0 single-mode method was able to distinguish thickness variation in the defect region. Moreover, the quantification of the defect’s thickness variation is more accurate with the multi-mode method. Therefore, theoretical and practical results prove that the variable-depth defect in metal plates can be successfully quantified and visualized by the proposed multi-mode electromagnetic ultrasonic LW CTI method. PMID:27144571

  19. Vision 20/20: Simultaneous CT-MRI — Next chapter of multimodality imaging

    SciTech Connect

    Wang, Ge Xi, Yan; Gjesteby, Lars; Getzin, Matthew; Yang, Qingsong; Cong, Wenxiang; Vannier, Michael

    2015-10-15

    Multimodality imaging systems such as positron emission tomography-computed tomography (PET-CT) and MRI-PET are widely available, but a simultaneous CT-MRI instrument has not been developed. Synergies between independent modalities, e.g., CT, MRI, and PET/SPECT can be realized with image registration, but such postprocessing suffers from registration errors that can be avoided with synchronized data acquisition. The clinical potential of simultaneous CT-MRI is significant, especially in cardiovascular and oncologic applications where studies of the vulnerable plaque, response to cancer therapy, and kinetic and dynamic mechanisms of targeted agents are limited by current imaging technologies. The rationale, feasibility, and realization of simultaneous CT-MRI are described in this perspective paper. The enabling technologies include interior tomography, unique gantry designs, open magnet and RF sequences, and source and detector adaptation. Based on the experience with PET-CT, PET-MRI, and MRI-LINAC instrumentation where hardware innovation and performance optimization were instrumental to construct commercial systems, the authors provide top-level concepts for simultaneous CT-MRI to meet clinical requirements and new challenges. Simultaneous CT-MRI fills a major gap of modality coupling and represents a key step toward the so-called “omnitomography” defined as the integration of all relevant imaging modalities for systems biology and precision medicine.

  20. A small animal holding fixture system with positional reproducibility for longitudinal multimodal imaging

    NASA Astrophysics Data System (ADS)

    Kokuryo, Daisuke; Kimura, Yuichi; Obata, Takayuki; Yamaya, Taiga; Kawamura, Kazunori; Zhang, Ming-Rong; Kanno, Iwao; Aoki, Ichio

    2010-07-01

    This study presents a combined small animal holding fixture system, termed a 'bridge capsule', which provides for small animal re-fixation with positional reproducibility. This system comprises separate holding fixtures for the head and lower body and a connecting part to a gas anesthesia system. A mouse is fixed in place by the combination of a head fixture with a movable part made from polyacetal resin, a lower body fixture made from vinyl-silicone and a holder for the legs and tail. For re-fixation, a similar posture could be maintained by the same holding fixtures and a constant distance between the head and lower body fixtures is maintained. Artifacts caused by the bridge capsule system were not observed on magnetic resonance (MRI) and positron emission tomography (PET) images. The average position differences of the spinal column and the iliac body before and after re-fixation for the same modality were approximately 1.1 mm. The difference between the MRI and PET images was approximately 1.8 mm for the lower body fixture after image registration using fiducial markers. This system would be useful for longitudinal, repeated and multimodal imaging experiments requiring similar animal postures.

  1. PET/MRI: THE NEXT GENERATION OF MULTI-MODALITY IMAGING?

    PubMed Central

    Pichler, Bernd; Wehrl, Hans F; Kolb, Armin; Judenhofer, Martin S

    2009-01-01

    Multi-modal imaging is now well-established in routine clinical practice. Especially in the field of Nuclear Medicine, new PET installations are comprised almost exclusively of combined PET/CT scanners rather than PET-only systems. However, PET/CT has certain notable shortcomings, including the inability to perform simultaneous data acquisition and the significant radiation dose to the patient contributed by CT. MRI offers, compared to CT, better contrast among soft tissues as well as functional-imaging capabilities. Therefore, the combination of PET with MRI provides many advantages which go far beyond simply combining functional PET information with structural MRI information. Many technical challenges, including possible interference between these modalities, have to be solved when combining PET and MRI and various approaches have been adapted to resolving these issues. Here we present an overview of current working prototypes of combined PET/MRI scanners from different groups. In addition, besides PET/MR images of mice, the first such images of a rat PET/MR, acquired with the first commercial clinical PET/MRI scanner, are presented. The combination of PET and MR is a promising tool in pre-clinical research and will certainly progress to clinical application. PMID:18396179

  2. Nanoparticles speckled by ready-to-conjugate lanthanide complexes for multimodal imaging

    NASA Astrophysics Data System (ADS)

    Biju, Vasudevanpillai; Hamada, Morihiko; Ono, Kenji; Sugino, Sakiko; Ohnishi, Takashi; Shibu, Edakkattuparambil Sidharth; Yamamura, Shohei; Sawada, Makoto; Nakanishi, Shunsuke; Shigeri, Yasushi; Wakida, Shin-Ichi

    2015-09-01

    Multimodal and multifunctional contrast agents receive enormous attention in the biomedical imaging field. Such contrast agents are routinely prepared by the incorporation of organic molecules and inorganic nanoparticles (NPs) into host materials such as gold NPs, silica NPs, polymer NPs, and liposomes. Despite their non-cytotoxic nature, the large size of these NPs limits the in vivo distribution and clearance and inflames complex pharmacokinetics, which hinder the regulatory approval for clinical applications. Herein, we report a unique method that combines magnetic resonance imaging (MRI) and fluorescence imaging modalities together in nanoscale entities by the simple, direct and stable conjugation of novel biotinylated coordination complexes of gadolinium(iii) to CdSe/ZnS quantum dots (QD) and terbium(iii) to super paramagnetic iron oxide NPs (SPION) but without any host material. Subsequently, we evaluate the potentials of such lanthanide-speckled fluorescent-magnetic NPs for bioimaging at single-molecule, cell and in vivo levels. The simple preparation and small size make such fluorescent-magnetic NPs promising contrast agents for biomedical imaging.

  3. Curvelet-based sampling for accurate and efficient multimodal image registration

    NASA Astrophysics Data System (ADS)

    Safran, M. N.; Freiman, M.; Werman, M.; Joskowicz, L.

    2009-02-01

    We present a new non-uniform adaptive sampling method for the estimation of mutual information in multi-modal image registration. The method uses the Fast Discrete Curvelet Transform to identify regions along anatomical curves on which the mutual information is computed. Its main advantages of over other non-uniform sampling schemes are that it captures the most informative regions, that it is invariant to feature shapes, orientations, and sizes, that it is efficient, and that it yields accurate results. Extensive evaluation on 20 validated clinical brain CT images to Proton Density (PD) and T1 and T2-weighted MRI images from the public RIRE database show the effectiveness of our method. Rigid registration accuracy measured at 10 clinical targets and compared to ground truth measurements yield a mean target registration error of 0.68mm(std=0.4mm) for CT-PD and 0.82mm(std=0.43mm) for CT-T2. This is 0.3mm (1mm) more accurate in the average (worst) case than five existing sampling methods. Our method has the lowest registration errors recorded to date for the registration of CT-PD and CT-T2 images in the RIRE website when compared to methods that were tested on at least three patient datasets.

  4. Nano-sensitizers for multi-modality optical diagnostic imaging and therapy of cancer

    NASA Astrophysics Data System (ADS)

    Olivo, Malini; Lucky, Sasidharan S.; Bhuvaneswari, Ramaswamy; Dendukuri, Nagamani

    2011-07-01

    We report novel bioconjugated nanosensitizers as optical and therapeutic probes for the detection, monitoring and treatment of cancer. These nanosensitisers, consisting of hypericin loaded bioconjugated gold nanoparticles, can act as tumor cell specific therapeutic photosensitizers for photodynamic therapy coupled with additional photothermal effects rendered by plasmonic heating effects of gold nanoparticles. In addition to the therapeutic effects, the nanosensitizer can be developed as optical probes for state-of-the-art multi-modality in-vivo optical imaging technology such as in-vivo 3D confocal fluorescence endomicroscopic imaging, optical coherence tomography (OCT) with improved optical contrast using nano-gold and Surface Enhanced Raman Scattering (SERS) based imaging and bio-sensing. These techniques can be used in tandem or independently as in-vivo optical biopsy techniques to specifically detect and monitor specific cancer cells in-vivo. Such novel nanosensitizer based optical biopsy imaging technique has the potential to provide an alternative to tissue biopsy and will enable clinicians to make real-time diagnosis, determine surgical margins during operative procedures and perform targeted treatment of cancers.

  5. Multimodal non-linear optical imaging for the investigation of drug nano-/microcrystal-cell interactions.

    PubMed

    Darville, Nicolas; Saarinen, Jukka; Isomäki, Antti; Khriachtchev, Leonid; Cleeren, Dirk; Sterkens, Patrick; van Heerden, Marjolein; Annaert, Pieter; Peltonen, Leena; Santos, Hélder A; Strachan, Clare J; Van den Mooter, Guy

    2015-10-01

    Drug nano-/microcrystals are being used for sustained parenteral drug release, but safety and efficacy concerns persist as the knowledge of the in vivo fate of long-living particulates is limited. There is a need for techniques enabling the visualization of drug nano-/microcrystals in biological matrices. The aim of this work was to explore the potential of coherent anti-Stokes Raman scattering (CARS) microscopy, supported by other non-linear optical methods, as an emerging tool for the investigation of cellular and tissue interactions of unlabeled and non-fluorescent nano-/microcrystals. Raman and CARS spectra of the prodrug paliperidone palmitate (PP), paliperidone (PAL) and several suspension stabilizers were recorded. PP nano-/microcrystals were incubated with RAW 264.7 macrophages in vitro and their cellular disposition was investigated using a fully-integrated multimodal non-linear optical imaging platform. Suitable anti-Stokes shifts (CH stretching) were identified for selective CARS imaging. CARS microscopy was successfully applied for the selective three-dimensional, non-perturbative and real-time imaging of unlabeled PP nano-/microcrystals having dimensions larger than the optical lateral resolution of approximately 400nm, in relation to the cellular framework in cell cultures and ex vivo in histological sections. In conclusion, CARS microscopy enables the non-invasive and label-free imaging of (sub)micron-sized (pro-)drug crystals in complex biological matrices and could provide vital information on poorly understood nano-/microcrystal-cell interactions in future.

  6. Multimodal imaging with hybrid semiconductor detectors Timepix for an experimental MRI-SPECT system

    NASA Astrophysics Data System (ADS)

    Zajicek, J.; Jakubek, J.; Burian, M.; Vobecky, M.; Fauler, A.; Fiederle, M.; Zwerger, A.

    2013-01-01

    An increasing number of clinical applications are being based on multimodal imaging systems (MIS), including anatomical (CT, MRI) and functional (PET, SPECT) techniques to provide complex information in a single image. CT with one of the scintigraphic methods (PET or SPECT) is nowadays a combination of choice for clinical practice and it is mostly used in cardiography and tumour diagnostics. Combination with MRI is also being implemented as no radiation dose is imparted to the patient and it is possible to gain higher structural resolution of soft tissues (brain imaging). A major disadvantage of such systems is inability to operate scintillators with photomultipliers (used for detection of γ rays) in presence of high magnetic fields. In this work we present the application of the semiconductor pixel detector for SPECT method in combination with MR imaging. We propose a novel approach based on MRI compatible setup with CdTe pixel sensor Timepix and non-conductive collimator. Measurements were performed on high proton-density (PD) phantom (1H) with an embedded radioisotopic source inside the shielded RF coil by MRI animal scanner (4.7 T). Our results pave the way for a combined MRI-SPECT system. The project was performed in the framework of the Medipix Collaboration.

  7. Multi-modal pharmacokinetic modelling for DCE-MRI: using diffusion weighted imaging to constrain the local arterial input function

    NASA Astrophysics Data System (ADS)

    Hamy, Valentin; Modat, Marc; Shipley, Rebecca; Dikaios, Nikos; Cleary, Jon; Punwani, Shonit; Ourselin, Sebastien; Atkinson, David; Melbourne, Andrew

    2014-03-01

    The routine acquisition of multi-modal magnetic resonance imaging data in oncology yields the possibility of combined model fitting of traditionally separate models of tissue structure and function. In this work we hypothesise that diffusion weighted imaging data may help constrain the fitting of pharmacokinetic models to dynamic contrast enhanced (DCE) MRI data. Parameters related to tissue perfusion in the intra-voxel incoherent motion (IVIM) modelling of diffusion weighted MRI provide local information on how tissue is likely to perfuse that can be utilised to guide DCE modelling via local modification of the arterial input function (AIF). In this study we investigate, based on multi-parametric head and neck MRI of 8 subjects (4 with head and neck tumours), the benefit of incorporating parameters derived from the IVIM model within the DCE modelling procedure. Although we find the benefit of this procedure to be marginal on the data used in this work, it is conceivable that a technique of this type will be of greater use in a different application.

  8. Multimodality pH imaging in a mouse dorsal skin fold window chamber model

    NASA Astrophysics Data System (ADS)

    Leung, Hui Min; Schafer, Rachel; Pagel, Mark M.; Robey, Ian F.; Gmitro, Arthur F.

    2013-03-01

    Upregulate levels of expression and activity of membrane H+ ion pumps in cancer cells drives the extracellular pH (pHe,) to values lower than normal. Furthermore, disregulated pH is indicative of the changes in glycolytic metabolism in tumor cells and has been shown to facilitate extracellular tissue remodeling during metastasis Therefore, measurement of pHe could be a useful cancer biomarker for diagnostic and therapy monitoring evaluation. Multimodality in-vivo imaging of pHe in tumorous tissue in a mouse dorsal skin fold window chamber (DSFWC) model is described. A custom-made plastic window chamber structure was developed that is compatible with both imaging optical and MR imaging modalities and provides a model system for continuous study of the same tissue microenvironment on multiple imaging platforms over a 3-week period. For optical imaging of pHe, SNARF-1 carboxylic acid is injected intravenously into a SCID mouse with an implanted tumor. A ratiometric measurement of the fluorescence signal captured on a confocal microscope reveals the pHe of the tissue visible within the window chamber. This imaging method was used in a preliminary study to evaluate sodium bicarbonate as a potential drug treatment to reverse tissue acidosis. For MR imaging of pHe the chemical exchange saturation transfer (CEST) was used as an alternative way of measuring pHe in a DSFWC model. ULTRAVIST®, a FDA approved x-ray/CT contrast agent has been shown to have a CEST effect that is pH dependent. A ratiometric analysis of water saturation at 5.6 and 4.2 ppm chemical shift provides a means to estimate the local pHe.

  9. Multimodality pH imaging in a mouse dorsal skin fold window chamber model

    PubMed Central

    Leung, Hui Min; Schafer, Rachel; Pagel, Mark M.; Robey, Ian F.; Gmitro, Arthur F.

    2016-01-01

    Upregulate levels of expression and activity of membrane H+ ion pumps in cancer cells drives the extracellular pH (pHe,) to values lower than normal. Furthermore, disregulated pH is indicative of the changes in glycolytic metabolism in tumor cells and has been shown to facilitate extracellular tissue remodeling during metastasis Therefore, measurement of pHe could be a useful cancer biomarker for diagnostic and therapy monitoring evaluation. Multimodality in-vivo imaging of pHe in tumorous tissue in a mouse dorsal skin fold window chamber (DSFWC) model is described. A custom-made plastic window chamber structure was developed that is compatible with both imaging optical and MR imaging modalities and provides a model system for continuous study of the same tissue microenvironment on multiple imaging platforms over a 3-week period. For optical imaging of pHe, SNARF-1 carboxylic acid is injected intravenously into a SCID mouse with an implanted tumor. A ratiometric measurement of the fluorescence signal captured on a confocal microscope reveals the pHe of the tissue visible within the window chamber. This imaging method was used in a preliminary study to evaluate sodium bicarbonate as a potential drug treatment to reverse tissue acidosis. For MR imaging of pHe the chemical exchange saturation transfer (CEST) was used as an alternative way of measuring pHe in a DSFWC model. ULTRAVIST®, a FDA approved x-ray/CT contrast agent has been shown to have a CEST effect that is pH dependent. A ratiometric analysis of water saturation at 5.6 and 4.2 ppm chemical shift provides a means to estimate the local pHe.

  10. Multimodal adaptive optics for depth-enhanced high-resolution ophthalmic imaging

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Mujat, Mircea; Iftimia, Nicusor V.; Lue, Niyom; Ferguson, R. Daniel

    2010-02-01

    We developed a multimodal adaptive optics (AO) retinal imager for diagnosis of retinal diseases, including glaucoma, diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinitis pigmentosa (RP). The development represents the first ever high performance AO system constructed that combines AO-corrected scanning laser ophthalmoscopy (SLO) and swept source Fourier domain optical coherence tomography (SSOCT) imaging modes in a single compact clinical prototype platform. The SSOCT channel operates at a wavelength of 1 μm for increased penetration and visualization of the choriocapillaris and choroid, sites of major disease activity for DR and wet AMD. The system is designed to operate on a broad clinical population with a dual deformable mirror (DM) configuration that allows simultaneous low- and high-order aberration correction. The system also includes a wide field line scanning ophthalmoscope (LSO) for initial screening, target identification, and global orientation; an integrated retinal tracker (RT) to stabilize the SLO, OCT, and LSO imaging fields in the presence of rotational eye motion; and a high-resolution LCD-based fixation target for presentation to the subject of stimuli and other visual cues. The system was tested in a limited number of human subjects without retinal disease for performance optimization and validation. The system was able to resolve and quantify cone photoreceptors across the macula to within ~0.5 deg (~100-150 μm) of the fovea, image and delineate ten retinal layers, and penetrate to resolve targets deep into the choroid. In addition to instrument hardware development, analysis algorithms were developed for efficient information extraction from clinical imaging sessions, with functionality including automated image registration, photoreceptor counting, strip and montage stitching, and segmentation. The system provides clinicians and researchers with high-resolution, high performance adaptive optics imaging to help

  11. Imaging of rat brain using short graded-index multimode fiber

    NASA Astrophysics Data System (ADS)

    Sato, Manabu; Kanno, Takahiro; Ishihara, Syoutarou; Suto, Hiroshi; Takahashi, Toshihiro; Kurotani, Reiko; Abe, Hiroyuki; Nishidate, Izumi

    2014-03-01

    Clinically it is important to image structures of brain at deeper areas with low invasions, for example, the pathological information is not obtained enough from the white matter. Preliminarily we have measured transmission images of rat brain using the short graded-index multimode fiber (SMMF) with the diameter of 140μm and length of 5mm. SMMF (core diameter, 100μm) was cut using a fiber cleaver and was fixed in a jig. Fiber lengths inside and outside jig were 3mm and 2mm, respectively. The jig was attached at the 20x objective lens. The conventional optical microscope was used to measure images. In basic characteristics, it was confirmed that the imaging conditions almost corresponded to calculations with the ray-transfer matrix and the spatial resolution was evaluated at about 4.4μm by measuring the test pattern. After euthanasia the rat parietal brain was excised with thickness around 1.5mm and was set on the slide glass. The tissue was illuminated through the slide glass by the bundle fiber with Halogen lamp. The tip of SMMF was inserted into the tissue by lifting the sample stage. The transmission image at each depth from 0.1mm to 1.53mm was measured. Around the depth of 1.45mm, granular structures with sizes of 4-5μm were recognized and corresponded to images by HE stained tissue. Total measurement time was within 2 hours. The feasibilities to image the depth of 5 mm with SMMF have been shown.

  12. Post-transplant hepatic complications: Imaging findings

    PubMed Central

    Drudi, F.M.; Pagliara, E.; Cantisani, V.; Arduini, F.; D'Ambrosio, U.; Alfano, G.

    2007-01-01

    Transplantation is considered definitive therapy for acute or chronic irreversible pathologies of the liver, and the increased survival rates are mainly due to improved immunosuppressive therapies and surgical techniques. However, early diagnosis of possible graft dysfunction is crucial to liver graft survival. Diagnostic imaging plays an important role in the evaluation of the liver before and after transplant and in the detection of complications such as vascular and biliary diseases, acute and chronic rejection and neoplastic recurrence. Integrated imaging using color-Doppler, CT, MRI and traditional x-ray reach a high level of sensitivity and specificity in the management of transplanted patients. PMID:23395917

  13. Dragon fruit-like biocage as an iron trapping nanoplatform for high efficiency targeted cancer multimodality imaging.

    PubMed

    Yang, Min; Fan, Quli; Zhang, Ruiping; Cheng, Kai; Yan, Junjie; Pan, Donghui; Ma, Xiaowei; Lu, Alex; Cheng, Zhen

    2015-11-01

    Natural biopolymer based multifunctional nanomaterials are perfect candidates for multimodality imaging and therapeutic applications. Conventional methods of building multimodal imaging probe require either cross-linking manners to increase its in vivo stability or attach a target module to realize targeted imaging. In this study, the intrinsic photoacoustic signals and the native strong chelating properties with metal ions of melanin nanoparticle (MNP), and transferrin receptor 1 (TfR1) targeting ability of apoferritin (APF) was employed to construct an efficient nanoplatform (AMF) without tedious assembling process. Smart APF shell significantly increased metal ions loading (molar ratio of 1:800, APF/Fe(3+)) and therefore improved magnetic resonance imaging (MRI) sensitivity. Moreover, synergistic use of Fe(3+) and APF contributed to high photoacounstic imaging (PAI) sensitivity. AMF showed excellent bio-stability and presented good in vivo multimodality imaging (PET/MRI/PAI) properties (good tumor uptake, high specificity and high tumor contrast) in HT29 tumor because of its targeting property combined with the enhanced permeability and retention (EPR) effect, making it promising in theranostics and translational nanomedicine.

  14. Find Your Image between the Extremes

    ERIC Educational Resources Information Center

    Gordon, Rachel Singer

    2004-01-01

    Librarians' unfortunate fixation on image as a defining generational characteristic also makes them just as guilty of promoting misconceptions as nonlibrarians. Can the profession stand another article in the general press that trumpets the amazing new discovery that librarians can be young, trendy, stylish? The level of our colleagues'…

  15. An activatable multimodal/multifunctional nanoprobe for direct imaging of intracellular drug delivery

    PubMed Central

    Mitra, Rajendra N.; Doshi, Mona; Zhang, Xiaolei; Tyus, Jessica C.; Bengtsson, Niclas; Fletcher, Steven; Page, Brent D. G.; Turkson, James; Gesquiere, Andre J.; Gunning, Patrick T.; Walter, Glenn A.; Santra, Swadeshmukul

    2011-01-01

    Multifunctional nanoparticles integrated with imaging modalities (such as magnetic resonance and optical) and therapeutic drugs are promising candidates for future cancer diagnostics and therapy. While targeted drug delivery and imaging of tumor cells have been the major focus in engineering nanoparticle probes, no extensive efforts have been made towards developing sensing probes that can confirm and monitor intra-cellular drug release events. Here, we present quantum dot (Qdot)-iron oxide (IO) based multimodal/multifunctional nanocomposite probe that is optically and magnetically imageable, targetable and capable of reporting on intra-cellular drug release events. Specifically, the probe consists of a superparamagnetic iron oxide nanoparticle core (IONP) decorated with satellite CdS:Mn/ZnS Qdots where the Qdots themselves are further functionalized with STAT3 inhibitor (an anti-cancer agent), vitamin folate (as targeting motif) and m-polyethylene glycol (m-PEG, a hydrophilic dispersing agent). The Qdot luminescence is quenched in this nanocomposite probe (“OFF” state) due to combined electron/energy transfer mediated quenching processes involving IONP, folate and STAT3 agents. Upon intracellular uptake, the probe is exposed to the cytosolic glutathione (GSH) containing environment resulting in restoration of the Qdot luminescence (“ON” state), which reports on uptake and drug release. Probe functionality was validated using fluorescence and MR measurements as well as in vitro studies using cancer cells that overexpress folate receptors. PMID:22078810

  16. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release.

    PubMed

    Hosoya, Hitomi; Dobroff, Andrey S; Driessen, Wouter H P; Cristini, Vittorio; Brinker, Lina M; Staquicini, Fernanda I; Cardó-Vila, Marina; D'Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R; Dogra, Prashant; Melancon, Marites P; Stafford, R Jason; Miyazono, Kohei; Gelovani, Juri G; Kataoka, Kazunori; Brinker, C Jeffrey; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2016-02-16

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications. PMID:26839407

  17. Strategy for analysis of flow diverting devices based on multi-modality image-based modeling

    PubMed Central

    Cebral, Juan R.; Mut, Fernando; Raschi, Marcelo; Ding, Yong-Hong; Kadirvel, Ramanathan; Kallmes, David

    2014-01-01

    Quantification and characterization of the hemodynamic environment created after flow diversion treatment of cerebral aneurysms is important to understand the effects of flow diverters and their interactions with the biology of the aneurysm wall and the thrombosis process that takes place subsequently. This paper describes the construction of multi-modality image-based subject-specific CFD models of experimentally created aneurysms in rabbits and subsequently treated with flow diverters. Briefly, anatomical models were constructed from 3D rotational angiography images, flow conditions were derived from Doppler ultrasound measurements, stent models were created and virtually deployed, and the results were compared to in vivo digital subtraction angiography and Doppler ultrasound images. The models were capable of reproducing in vivo observations, including velocity waveforms measured in the parent artery, peak velocity values measured in the aneurysm, and flow structures observed with digital subtraction angiography before and after deployment of flow diverters. The results indicate that regions of aneurysm occlusion after flow diversion coincide with slow and smooth flow patterns, while regions still permeable at the time of animal sacrifice were observed in parts of the aneurysm exposed to larger flow activity, i.e. higher velocities, more swirling and more complex flow structures. PMID:24719392

  18. Multimodal image data fusion for Alzheimer's Disease diagnosis by sparse representation.

    PubMed

    Ortiz, Andrés; Fajardo, Daniel; Górriz, Juan M; Ramírez, Javier; Martínez-Murcia, Francisco J

    2014-01-01

    Alzheimer's Diasese (AD) diagnosis can be carried out by analysing functional or structural changes in the brain. Functional changes associated to neurological disorders can be figured out by positron emission tomography (PET) as it allows to study the activation of certain areas of the brain during specific task development. On the other hand, neurological disorders can also be discovered by analysing structural changes in the brain which are usually assessed by Magnetic Resonance Imaging (MRI). In fact, computer-aided diagnosis tools (CAD) that have been recently devised for the diagnosis of neurological disorders use functional or structural data. However, functional and structural data can be fused out in order to improve the accuracy and to diminish the false positive rate in CAD tools. In this paper we present a method for the diagnosis of AD which fuses multimodal image (PET and MRI) data by combining Sparse Representation Classifiers (SRC). The method presented in this work shows accuracy values up to 95% and clearly outperforms the classification outcomes obtained using single-modality images.

  19. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release.

    PubMed

    Hosoya, Hitomi; Dobroff, Andrey S; Driessen, Wouter H P; Cristini, Vittorio; Brinker, Lina M; Staquicini, Fernanda I; Cardó-Vila, Marina; D'Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R; Dogra, Prashant; Melancon, Marites P; Stafford, R Jason; Miyazono, Kohei; Gelovani, Juri G; Kataoka, Kazunori; Brinker, C Jeffrey; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2016-02-16

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.

  20. Multimodal imaging of the human temporal bone: A comparison of CT and optical scanning techniques

    NASA Astrophysics Data System (ADS)

    Voie, Arne H.; Whiting, Bruce; Skinner, Margaret; Neely, J. Gail; Lee, Kenneth; Holden, Tim; Brunsden, Barry

    2003-10-01

    A collaborative effort between Washington University in St. Louis and Spencer Technologies in Seattle, WA has been undertaken to create a multimodal 3D reconstruction of the human cochlea and vestibular system. The goal of this project is to improve the accuracy of in vivo CT reconstructions of implanted cochleae, and to expand the knowledge of high-resolution anatomical detail provided by orthogonal-plane optical sectioning (OPFOS). At WUSL, computed tomography (CT) images of the cochlea are used to determine the position of cochlear implant electrodes relative to target auditory neurons. The cochlear implant position is determined using pre- and post-operative CT scans. The CT volumes are cross-registered to align the semicircular canals and internal auditory canal, which have a unique configuration in 3-D space. The head of a human body donor was scanned with a clinical CT device, after which the temporal bones were removed, fixed in formalin and trimmed prior to scanning with a laboratory Micro CT scanner. Following CT, the temporal bones were sent to the OPFOS Imaging Lab at Spencer Technologies for a further analysis. 3-D reconstructions of CT and OPFOS imaging modalities were compared, and results are presented. [Work supported by NIDCD Grants R44-03623-5 and R01-00581-13.

  1. MINC 2.0: A Flexible Format for Multi-Modal Images

    PubMed Central

    Vincent, Robert D.; Neelin, Peter; Khalili-Mahani, Najmeh; Janke, Andrew L.; Fonov, Vladimir S.; Robbins, Steven M.; Baghdadi, Leila; Lerch, Jason; Sled, John G.; Adalat, Reza; MacDonald, David; Zijdenbos, Alex P.; Collins, D. Louis; Evans, Alan C.

    2016-01-01

    It is often useful that an imaging data format can afford rich metadata, be flexible, scale to very large file sizes, support multi-modal data, and have strong inbuilt mechanisms for data provenance. Beginning in 1992, MINC was developed as a system for flexible, self-documenting representation of neuroscientific imaging data with arbitrary orientation and dimensionality. The MINC system incorporates three broad components: a file format specification, a programming library, and a growing set of tools. In the early 2000's the MINC developers created MINC 2.0, which added support for 64-bit file sizes, internal compression, and a number of other modern features. Because of its extensible design, it has been easy to incorporate details of provenance in the header metadata, including an explicit processing history, unique identifiers, and vendor-specific scanner settings. This makes MINC ideal for use in large scale imaging studies and databases. It also makes it easy to adapt to new scanning sequences and modalities. PMID:27563289

  2. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release

    PubMed Central

    Hosoya, Hitomi; Dobroff, Andrey S.; Driessen, Wouter H. P.; Cristini, Vittorio; Brinker, Lina M.; Staquicini, Fernanda I.; Cardó-Vila, Marina; D’Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R.; Dogra, Prashant; Melancon, Marites P.; Stafford, R. Jason; Miyazono, Kohei; Gelovani, Juri G.; Kataoka, Kazunori; Brinker, C. Jeffrey; Sidman, Richard L.; Arap, Wadih; Pasqualini, Renata

    2016-01-01

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications. PMID:26839407

  3. Strategy for analysis of flow diverting devices based on multi-modality image-based modeling.

    PubMed

    Cebral, Juan R; Mut, Fernando; Raschi, Marcelo; Ding, Yong-Hong; Kadirvel, Ramanathan; Kallmes, David

    2014-10-01

    Quantification and characterization of the hemodynamic environment created after flow diversion treatment of cerebral aneurysms is important to understand the effects of flow diverters and their interactions with the biology of the aneurysm wall and the thrombosis process that takes place subsequently. This paper describes the construction of multi-modality image-based subject-specific CFD models of experimentally created aneurysms in rabbits and subsequently treated with flow diverters. Briefly, anatomical models were constructed from 3D rotational angiography images, flow conditions were derived from Doppler ultrasound measurements, stent models were created and virtually deployed, and the results were compared with in vivo digital subtraction angiography and Doppler ultrasound images. The models were capable of reproducing in vivo observations, including velocity waveforms measured in the parent artery, peak velocity values measured in the aneurysm, and flow structures observed with digital subtraction angiography before and after deployment of flow diverters. The results indicate that regions of aneurysm occlusion after flow diversion coincide with slow and smooth flow patterns, whereas regions still permeable at the time of animal sacrifice were observed in parts of the aneurysm exposed to larger flow activity, that is, higher velocities, more swirling, and more complex flow structures. PMID:24719392

  4. MINC 2.0: A Flexible Format for Multi-Modal Images.

    PubMed

    Vincent, Robert D; Neelin, Peter; Khalili-Mahani, Najmeh; Janke, Andrew L; Fonov, Vladimir S; Robbins, Steven M; Baghdadi, Leila; Lerch, Jason; Sled, John G; Adalat, Reza; MacDonald, David; Zijdenbos, Alex P; Collins, D Louis; Evans, Alan C

    2016-01-01

    It is often useful that an imaging data format can afford rich metadata, be flexible, scale to very large file sizes, support multi-modal data, and have strong inbuilt mechanisms for data provenance. Beginning in 1992, MINC was developed as a system for flexible, self-documenting representation of neuroscientific imaging data with arbitrary orientation and dimensionality. The MINC system incorporates three broad components: a file format specification, a programming library, and a growing set of tools. In the early 2000's the MINC developers created MINC 2.0, which added support for 64-bit file sizes, internal compression, and a number of other modern features. Because of its extensible design, it has been easy to incorporate details of provenance in the header metadata, including an explicit processing history, unique identifiers, and vendor-specific scanner settings. This makes MINC ideal for use in large scale imaging studies and databases. It also makes it easy to adapt to new scanning sequences and modalities. PMID:27563289

  5. Cell Studies of BiFeO3 nanoparticles for multimodal imaging

    NASA Astrophysics Data System (ADS)

    Laha, Suvra; Palihawadana Arachchige, Maheshika; Flack, Amanda; Paudel, Sagar; Singh, Jaipal; Rajagopal, Amulya; Kulkarni, Sanjana; Synder, Michael; Rakowski, Joe; Chen, Xuequn; Jena, Bhanu; Lawes, Gavin

    2014-03-01

    There is considerable interest in using nanoparticles as contrast agents to improve diagnostic imaging. BiFeO3 nanoparticles may be particularly interesting as multimodal contrast agents for both magnetic resonance imaging and x-ray imaging because these combine a large magnetic susceptibility with high atomic mass constituents. We synthesized BiFeO3 nanoparticles using a chemical co-precipitation technique. We measured the structural and morphological characteristics of these nanoparticles using x-ray diffraction, electron microscopy, dynamic light scattering, and zeta potential, and probed the magnetic properties through both ac and dc magnetization studies. In order to investigate the cytotoxicity and intracellular distribution of these BiFeO3 nanoparticles, we cultured them with mouse insulinoma MIN 6 cells and used optical microscopy to investigate the distribution and cell growth. We discuss the cytotoxicity of these nanoparticles, which will be crucial factor for determining possible biomedical applications together with a discussion of the cellular distribution of these nanoparticles.

  6. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release

    DOE PAGES

    Hosoya, Hitomi; Dobroff, Andrey S.; Driessen, Wouter H. P.; Cristini, Vittorio; Brinker, Lina M.; Staquicini, Fernanda I.; Cardó-Vila, Marina; D’Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; et al

    2016-02-02

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared,more » thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. We conclude that these results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.« less

  7. Polypyrrole-encapsulated iron tungstate nanocomposites: a versatile platform for multimodal tumor imaging and photothermal therapy.

    PubMed

    Xiao, Zhiyin; Peng, Chen; Jiang, Xiaohong; Peng, Yuxuan; Huang, Xiaojuan; Guan, Guoqiang; Zhang, Wenlong; Liu, Xiaoming; Qin, Zongyi; Hu, Junqing

    2016-07-14

    A versatile nanoplatform of FeWO4@Polypyrrole (PPy) core/shell nanocomposites, which was facilely fabricated by first hydrothermal synthesis of FeWO4 nanoparticles and subsequent surface-coating of polypyrrole shell, was developed as an effective nanotheranostic agent of cancer. The as-prepared nanocomposites demonstrated excellent dispersion in saline, long-term colloidal storage, outstanding photo-stability and high photothermal efficiency in solution. In particular, FeWO4@PPy exhibited efficient performance for hyperthermia-killing of cancer cells under the irradiation of an 808 nm laser, accompanied with multimodal contrast capabilities for magnetic resonance imaging, X-ray computed tomography and infrared thermal imaging in vitro and in vivo. Furthermore, the nanocomposites presented impactful tumor growth inhibition and good biocompability in animal experiments. Blood circulation and biodistribution of the nanocomposites were also investigated to understand their in vivo behaviours. Our results verified the platform of FeWO4@PPy nanocomposites as a promising photothermal agent for imaging-guided cancer theranostics. PMID:27303912

  8. Automated multimodality concurrent classification for segmenting vessels in 3D spectral OCT and color fundus images

    NASA Astrophysics Data System (ADS)

    Hu, Zhihong; Abràmoff, Michael D.; Niemeijer, Meindert; Garvin, Mona K.

    2011-03-01

    Segmenting vessels in spectral-domain optical coherence tomography (SD-OCT) volumes is particularly challenging in the region near and inside the neural canal opening (NCO). Furthermore, accurately segmenting them in color fundus photographs also presents a challenge near the projected NCO. However, both modalities also provide complementary information to help indicate vessels, such as a better NCO contrast from the NCO-aimed OCT projection image and a better vessel contrast inside the NCO from fundus photographs. We thus present a novel multimodal automated classification approach for simultaneously segmenting vessels in SD-OCT volumes and fundus photographs, with a particular focus on better segmenting vessels near and inside the NCO by using a combination of their complementary features. In particular, in each SD-OCT volume, the algorithm pre-segments the NCO using a graph-theoretic approach and then applies oriented Gabor wavelets with oriented NCO-based templates to generate OCT image features. After fundus-to-OCT registration, the fundus image features are computed using Gaussian filter banks and combined with OCT image features. A k-NN classifier is trained on 5 and tested on 10 randomly chosen independent image pairs of SD-OCT volumes and fundus images from 15 subjects with glaucoma. Using ROC analysis, we demonstrate an improvement over two closest previous works performed in single modal SD-OCT volumes with an area under the curve (AUC) of 0.87 (0.81 for our and 0.72 for Niemeijer's single modal approach) in the region around the NCO and 0.90 outside the NCO (0.84 for our and 0.81 for Niemeijer's single modal approach).

  9. Imaging of haemodialysis: renal and extrarenal findings.

    PubMed

    Degrassi, Ferruccio; Quaia, Emilio; Martingano, Paola; Cavallaro, Marco; Cova, Maria Assunta

    2015-06-01

    Electrolyte alterations and extra-renal disorders are quite frequent in patients undergoing haemodialysis or peritoneal dialysis. The native kidneys may be the site of important pathologies in patients undergoing dialysis, especially in the form of acquired renal cystic disease with frequent malignant transformation. Renal neoplasms represents an important complication of haemodialysis-associated acquired cystic kidney disease and imaging surveillance is suggested. Extra-renal complications include renal osteodistrophy, brown tumours, and thoracic and cardiovascular complications. Other important fields in which imaging techniques may provide important informations are arteriovenous fistula and graft complications. Teaching points • Renal neoplasms represent a dreaded complication of haemodialysis.• In renal osteodystrophy bone resorption typically manifests along the middle phalanges.• Brown tumours are well-defined lytic lesions radiographically, possibly causing bone expansion.• Vascular calcifications are very common in patients undergoing haemodialysis.• Principal complications of the AV fistula consist of thrombosis, aneurysms and pseudoaneurysms. PMID:25680325

  10. Ivory vertebra: imaging findings in different diagnoses.

    PubMed

    Braun, Richard Andreas; Milito, Carlos Felipe do Rego Barros; Goldman, Suzan Menasce; Fernandes, Eloy de Ávila

    2016-01-01

    Low back pain is often managed at all levels of healthcare. In general, diagnostic investigation begins with radiography of the lumbar spine. In addition to the most common findings, radiologists can identify increased density of a vertebral body, referred to as ivory vertebra. The objective of this study was to describe the main diseases that can present with this radiologic sign, such as Hodgkin lymphoma, Paget's disease, metastatic prostate cancer, breast cancer, and osteomyelitis. It is extremely important that radiologists be aware of this finding in order to inform the requesting physician of the possible etiologies, given that it can be the initial radiologic presentation for these diseases. PMID:27141135

  11. Ivory vertebra: imaging findings in different diagnoses.

    PubMed

    Braun, Richard Andreas; Milito, Carlos Felipe do Rego Barros; Goldman, Suzan Menasce; Fernandes, Eloy de Ávila

    2016-01-01

    Low back pain is often managed at all levels of healthcare. In general, diagnostic investigation begins with radiography of the lumbar spine. In addition to the most common findings, radiologists can identify increased density of a vertebral body, referred to as ivory vertebra. The objective of this study was to describe the main diseases that can present with this radiologic sign, such as Hodgkin lymphoma, Paget's disease, metastatic prostate cancer, breast cancer, and osteomyelitis. It is extremely important that radiologists be aware of this finding in order to inform the requesting physician of the possible etiologies, given that it can be the initial radiologic presentation for these diseases.

  12. Ivory vertebra: imaging findings in different diagnoses*

    PubMed Central

    Braun, Richard Andreas; Milito, Carlos Felipe do Rego Barros; Goldman, Suzan Menasce; Fernandes, Eloy de Ávila

    2016-01-01

    Low back pain is often managed at all levels of healthcare. In general, diagnostic investigation begins with radiography of the lumbar spine. In addition to the most common findings, radiologists can identify increased density of a vertebral body, referred to as ivory vertebra. The objective of this study was to describe the main diseases that can present with this radiologic sign, such as Hodgkin lymphoma, Paget's disease, metastatic prostate cancer, breast cancer, and osteomyelitis. It is extremely important that radiologists be aware of this finding in order to inform the requesting physician of the possible etiologies, given that it can be the initial radiologic presentation for these diseases. PMID:27141135

  13. SU-E-I-83: Error Analysis of Multi-Modality Image-Based Volumes of Rodent Solid Tumors Using a Preclinical Multi-Modality QA Phantom

    SciTech Connect

    Lee, Y; Fullerton, G; Goins, B

    2015-06-15

    Purpose: In our previous study a preclinical multi-modality quality assurance (QA) phantom that contains five tumor-simulating test objects with 2, 4, 7, 10 and 14 mm diameters was developed for accurate tumor size measurement by researchers during cancer drug development and testing. This study analyzed the errors during tumor volume measurement from preclinical magnetic resonance (MR), micro-computed tomography (micro- CT) and ultrasound (US) images acquired in a rodent tumor model using the preclinical multi-modality QA phantom. Methods: Using preclinical 7-Tesla MR, US and micro-CT scanners, images were acquired of subcutaneous SCC4 tumor xenografts in nude rats (3–4 rats per group; 5 groups) along with the QA phantom using the same imaging protocols. After tumors were excised, in-air micro-CT imaging was performed to determine reference tumor volume. Volumes measured for the rat tumors and phantom test objects were calculated using formula V = (π/6)*a*b*c where a, b and c are the maximum diameters in three perpendicular dimensions determined by the three imaging modalities. Then linear regression analysis was performed to compare image-based tumor volumes with the reference tumor volume and known test object volume for the rats and the phantom respectively. Results: The slopes of regression lines for in-vivo tumor volumes measured by three imaging modalities were 1.021, 1.101 and 0.862 for MRI, micro-CT and US respectively. For phantom, the slopes were 0.9485, 0.9971 and 0.9734 for MRI, micro-CT and US respectively. Conclusion: For both animal and phantom studies, random and systematic errors were observed. Random errors were observer-dependent and systematic errors were mainly due to selected imaging protocols and/or measurement method. In the animal study, there were additional systematic errors attributed to ellipsoidal assumption for tumor shape. The systematic errors measured using the QA phantom need to be taken into account to reduce measurement

  14. MR imaging findings in diabetic muscle infarction.

    PubMed

    Bajaj, Gitanjali; Nicholas, Richard; Pandey, Tarun; Montgomery, Corey; Jambhekar, Kedar; Ram, Roopa

    2014-10-01

    Diabetic muscle infarction is a rare, often unrecognized complication seen in patients with poorly controlled Diabetes Mellitus. The diagnosis is often missed and leads to unnecessary invasive investigations and inappropriate treatment. The patients usually present with unilateral thigh pain and swelling. MRI typically demonstrates diffuse swelling and increased T2 signal intensity within the affected muscles. The condition is self-limiting and is treated conservatively with bed rest and analgesics. Recurrences have been reported in the same or contralateral limb. We report a case of diabetic muscle infarction with spontaneous resolution of symptoms and imaging abnormality with recurrence on the contralateral side.

  15. A novel multi-modal platform to image molecular and elemental alterations in ischemic stroke.

    PubMed

    Caine, Sally; Hackett, Mark J; Hou, Huishu; Kumar, Saroj; Maley, Jason; Ivanishvili, Zurab; Suen, Brandon; Szmigielski, Aleksander; Jiang, Zhongxiang; Sylvain, Nicole J; Nichol, Helen; Kelly, Michael E

    2016-07-01

    Stroke is a major global health problem, with the prevalence and economic burden predicted to increase due to aging populations in western society. Following stroke, numerous biochemical alterations occur and damage can spread to nearby tissue. This zone of "at risk" tissue is termed the peri-infarct zone (PIZ). As the PIZ contains tissue not initially damaged by the stroke, it is considered by many as salvageable tissue. For this reason, much research effort has been undertaken to improve the identification of the PIZ and to elucidate the biochemical mechanisms that drive tissue damage in the PIZ in the hope of identify new therapeutic targets. Despite this effort, few therapies have evolved, attributed in part, to an incomplete understanding of the biochemical mechanisms driving tissue damage in the PIZ. Magnetic resonance imaging (MRI) has long been the gold standard to study alterations in gross brain structure, and is frequently used to study the PIZ following stroke. Unfortunately, MRI does not have sufficient spatial resolution to study individual cells within the brain, and reveals little information on the biochemical mechanisms driving tissue damage. MRI results may be complemented with histology or immuno-histochemistry to provide information at the cellular or sub-cellular level, but are limited to studying biochemical markers that can be successfully "tagged" with a stain or antigen. However, many important biochemical markers cannot be studied with traditional MRI or histology/histochemical methods. Therefore, we have developed and applied a multi-modal imaging platform to reveal elemental and molecular alterations that could not previously be imaged by other traditional methods. Our imaging platform incorporates a suite of spectroscopic imaging techniques; Fourier transform infrared imaging, Raman spectroscopic imaging, Coherent anti-stoke Raman spectroscopic imaging and X-ray fluorescence imaging. This approach does not preclude the use of

  16. Multimodality Imaging of Gene Transfer with a Receptor-Based Reporter Gene

    PubMed Central

    Chen, Ron; Parry, Jesse J.; Akers, Walter J.; Berezin, Mikhail Y.; El Naqa, Issam M.; Achilefu, Samuel; Edwards, W. Barry; Rogers, Buck E.

    2010-01-01

    Gene therapy trials have traditionally used tumor and tissue biopsies for assessing the efficacy of gene transfer. Non-invasive imaging techniques offer a distinct advantage over tissue biopsies in that the magnitude and duration of gene transfer can be monitored repeatedly. Human somatostatin receptor subtype 2 (SSTR2) has been used for the nuclear imaging of gene transfer. To extend this concept, we have developed a somatostatin receptor–enhanced green fluorescent protein fusion construct (SSTR2-EGFP) for nuclear and fluorescent multimodality imaging. Methods An adenovirus containing SSTR2-EGFP (AdSSTR2-EGFP) was constructed and evaluated in vitro and in vivo. SCC-9 human squamous cell carcinoma cells were infected with AdEGFP, AdSSTR2, or AdSSTR2-EGFP for in vitro evaluation by saturation binding, internalization, and fluorescence spectroscopy assays. In vivo biodistribution and nano-SPECT imaging studies were conducted with mice bearing SCC-9 tumor xenografts directly injected with AdSSTR2-EGFP or AdSSTR2 to determine the tumor localization of 111In-diethylenetriaminepentaacetic acid (DTPA)-Tyr3-octreotate. Fluorescence imaging was conducted in vivo with mice receiving intratumoral injections of AdSSTR2, AdSSTR2-EGFP, or AdEGFP as well as ex vivo with tissues extracted from mice. Results The similarity between AdSSTR2-EGFP and wild-type AdSSTR2 was demonstrated in vitro by the saturation binding and internalization assays, and the fluorescence emission spectra of cells infected with AdSSTR2-EGFP was almost identical to the spectra of cells infected with wild-type AdEGFP. Biodistribution studies demonstrated that the tumor uptake of 111In-DTPA-Tyr3-octreotate was not significantly different (P > 0.05) when tumors (n = 5) were injected with AdSSTR2 or AdSSTR2-EGFP but was significantly greater than the uptake in control tumors. Fluorescence was observed in tumors injected with AdSSTR2-EGFP and AdEGFP in vivo and ex vivo but not in tumors injected with AdSSTR2

  17. Multimodal imaging enables early detection and characterization of changes in tumor permeability of brain metastases.

    PubMed

    Thorsen, Frits; Fite, Brett; Mahakian, Lisa M; Seo, Jai W; Qin, Shengping; Harrison, Victoria; Johnson, Sarah; Ingham, Elizabeth; Caskey, Charles; Sundstrøm, Terje; Meade, Thomas J; Harter, Patrick N; Skaftnesmo, Kai Ove; Ferrara, Katherine W

    2013-12-28

    Our goal was to develop strategies to quantify the accumulation of model therapeutics in small brain metastases using multimodal imaging, in order to enhance the potential for successful treatment. Human melanoma cells were injected into the left cardiac ventricle of immunodeficient mice. Bioluminescent, MR and PET imaging were applied to evaluate the limits of detection and potential for contrast agent extravasation in small brain metastases. A pharmacokinetic model was applied to estimate vascular permeability. Bioluminescent imaging after injecting d-luciferin (molecular weight (MW) 320 D) suggested that tumor cell extravasation had already occurred at week 1, which was confirmed by histology. 7T T1w MRI at week 4 was able to detect non-leaky 100 μm sized lesions and leaky tumors with diameters down to 200 μm after contrast injection at week 5. PET imaging showed that (18)F-FLT (MW 244 Da) accumulated in the brain at week 4. Gadolinium-based MRI tracers (MW 559 Da and 2.066 kDa) extravasated after 5 weeks (tumor diameter 600 μm), and the lower MW agent cleared more rapidly from the tumor (mean apparent permeabilities 2.27 × 10(-5)cm/s versus 1.12 × 10(-5)cm/s). PET imaging further demonstrated tumor permeability to (64)Cu-BSA (MW 65.55 kDa) at week 6 (tumor diameter 700 μm). In conclusion, high field T1w MRI without contrast may improve the detection limit of small brain metastases, allowing for earlier diagnosis of patients, although the smallest lesions detected with T1w MRI were permeable only to d-luciferin and the amphipathic small molecule (18)F-FLT. Different-sized MR and PET contrast agents demonstrated the gradual increase in leakiness of the blood tumor barrier during metastatic progression, which could guide clinicians in choosing tailored treatment strategies.

  18. Multi-Modal Homing in Sea Turtles: Modeling Dual Use of Geomagnetic and Chemical Cues in Island-Finding.

    PubMed

    Endres, Courtney S; Putman, Nathan F; Ernst, David A; Kurth, Jessica A; Lohmann, Catherine M F; Lohmann, Kenneth J

    2016-01-01

    Sea turtles are capable of navigating across large expanses of ocean to arrive at remote islands for nesting, but how they do so has remained enigmatic. An interesting example involves green turtles (Chelonia mydas) that nest on Ascension Island, a tiny land mass located approximately 2000 km from the turtles' foraging grounds along the coast of Brazil. Sensory cues that turtles are known to detect, and which might hypothetically be used to help locate Ascension Island, include the geomagnetic field, airborne odorants, and waterborne odorants. One possibility is that turtles use magnetic cues to arrive in the vicinity of the island, then use chemical cues to pinpoint its location. As a first step toward investigating this hypothesis, we used oceanic, atmospheric, and geomagnetic models to assess whether magnetic and chemical cues might plausibly be used by turtles to locate Ascension Island. Results suggest that waterborne and airborne odorants alone are insufficient to guide turtles from Brazil to Ascension, but might permit localization of the island once turtles arrive in its vicinity. By contrast, magnetic cues might lead turtles into the vicinity of the island, but would not typically permit its localization because the field shifts gradually over time. Simulations reveal, however, that the sequential use of magnetic and chemical cues can potentially provide a robust navigational strategy for locating Ascension Island. Specifically, one strategy that appears viable is following a magnetic isoline into the vicinity of Ascension Island until an odor plume emanating from the island is encountered, after which turtles might either: (1) initiate a search strategy; or (2) follow the plume to its island source. These findings are consistent with the hypothesis that sea turtles, and perhaps other marine animals, use a multi-modal navigational strategy for locating remote islands.

  19. Findings from the NIMH Multimodal Treatment Study of ADHD (MTA): implications and applications for primary care providers.

    PubMed

    Jensen, P S; Hinshaw, S P; Swanson, J M; Greenhill, L L; Conners, C K; Arnold, L E; Abikoff, H B; Elliott, G; Hechtman, L; Hoza, B; March, J S; Newcorn, J H; Severe, J B; Vitiello, B; Wells, K; Wigal, T

    2001-02-01

    In 1992, the National Institute of Mental Health and 6 teams of investigators began a multisite clinical trial, the Multimodal Treatment of Attention-Deficit Hyperactivity Disorder (MTA) study. Five hundred seventy-nine children were randomly assigned to either routine community care (CC) or one of three study-delivered treatments, all lasting 14 months. The three MTA treatments-monthly medication management (usually methylphenidate) following weekly titration (MedMgt), intensive behavioral treatment (Beh), and the combination (Comb)-were designed to reflect known best practices within each treatment approach. Children were assessed at four time points in multiple outcome. Results indicated that Comb and MedMgt interventions were substantially superior to Beh and CC interventions for attention-deficit hyperactivity disorder symptoms. For other functioning domains (social skills, academics, parent-child relations, oppositional behavior, anxiety/depression), results suggested slight advantages of Comb over single treatments (MedMgt, Beh) and community care. High quality medication treatment characterized by careful yet adequate dosing, three times daily methylphenidate administration, monthly follow-up visits, and communication with schools conveyed substantial benefits to those children that received it. In contrast to the overall study findings that showed the largest benefits for high quality medication management (regardless of whether given in the MedMgt or Comb group), secondary analyses revealed that Comb had a significant incremental effect over MedMgt (with a small effect size for this comparison) when categorical indicators of excellent response and when composite outcome measures were used. In addition, children with parent-defined comorbid anxiety disorders, particularly those with overlapping disruptive disorder comorbidities, showed preferential benefits to the Beh and Comb interventions. Parental attitudes and disciplinary practices appeared to mediate

  20. Multi-Modal Homing in Sea Turtles: Modeling Dual Use of Geomagnetic and Chemical Cues in Island-Finding.

    PubMed

    Endres, Courtney S; Putman, Nathan F; Ernst, David A; Kurth, Jessica A; Lohmann, Catherine M F; Lohmann, Kenneth J

    2016-01-01

    Sea turtles are capable of navigating across large expanses of ocean to arrive at remote islands for nesting, but how they do so has remained enigmatic. An interesting example involves green turtles (Chelonia mydas) that nest on Ascension Island, a tiny land mass located approximately 2000 km from the turtles' foraging grounds along the coast of Brazil. Sensory cues that turtles are known to detect, and which might hypothetically be used to help locate Ascension Island, include the geomagnetic field, airborne odorants, and waterborne odorants. One possibility is that turtles use magnetic cues to arrive in the vicinity of the island, then use chemical cues to pinpoint its location. As a first step toward investigating this hypothesis, we used oceanic, atmospheric, and geomagnetic models to assess whether magnetic and chemical cues might plausibly be used by turtles to locate Ascension Island. Results suggest that waterborne and airborne odorants alone are insufficient to guide turtles from Brazil to Ascension, but might permit localization of the island once turtles arrive in its vicinity. By contrast, magnetic cues might lead turtles into the vicinity of the island, but would not typically permit its localization because the field shifts gradually over time. Simulations reveal, however, that the sequential use of magnetic and chemical cues can potentially provide a robust navigational strategy for locating Ascension Island. Specifically, one strategy that appears viable is following a magnetic isoline into the vicinity of Ascension Island until an odor plume emanating from the island is encountered, after which turtles might either: (1) initiate a search strategy; or (2) follow the plume to its island source. These findings are consistent with the hypothesis that sea turtles, and perhaps other marine animals, use a multi-modal navigational strategy for locating remote islands. PMID:26941625

  1. Multi-Modal Homing in Sea Turtles: Modeling Dual Use of Geomagnetic and Chemical Cues in Island-Finding

    PubMed Central

    Endres, Courtney S.; Putman, Nathan F.; Ernst, David A.; Kurth, Jessica A.; Lohmann, Catherine M. F.; Lohmann, Kenneth J.

    2016-01-01

    Sea turtles are capable of navigating across large expanses of ocean to arrive at remote islands for nesting, but how they do so has remained enigmatic. An interesting example involves green turtles (Chelonia mydas) that nest on Ascension Island, a tiny land mass located approximately 2000 km from the turtles’ foraging grounds along the coast of Brazil. Sensory cues that turtles are known to detect, and which might hypothetically be used to help locate Ascension Island, include the geomagnetic field, airborne odorants, and waterborne odorants. One possibility is that turtles use magnetic cues to arrive in the vicinity of the island, then use chemical cues to pinpoint its location. As a first step toward investigating this hypothesis, we used oceanic, atmospheric, and geomagnetic models to assess whether magnetic and chemical cues might plausibly be used by turtles to locate Ascension Island. Results suggest that waterborne and airborne odorants alone are insufficient to guide turtles from Brazil to Ascension, but might permit localization of the island once turtles arrive in its vicinity. By contrast, magnetic cues might lead turtles into the vicinity of the island, but would not typically permit its localization because the field shifts gradually over time. Simulations reveal, however, that the sequential use of magnetic and chemical cues can potentially provide a robust navigational strategy for locating Ascension Island. Specifically, one strategy that appears viable is following a magnetic isoline into the vicinity of Ascension Island until an odor plume emanating from the island is encountered, after which turtles might either: (1) initiate a search strategy; or (2) follow the plume to its island source. These findings are consistent with the hypothesis that sea turtles, and perhaps other marine animals, use a multi-modal navigational strategy for locating remote islands. PMID:26941625

  2. Multimodality Imaging in Pediatric Osteosarcoma in the Era of Image Gently and Image Wisely Campaign With a Close Look at the CT Scan Radiation Dose.

    PubMed

    Vijayakumar, Vani; Collier, Anderson B; Ruan, Chun; Zhang, Xu; Lowery, Rachel; Barr, Jennifer; Hicks, Chindo; Megason, Gail; Vijayakumar, Srinivasan

    2016-04-01

    The increasing use of serial multimodality imaging in the management of pediatric osteosarcoma raises concern of over exposure to ionizing radiation in children, especially from repeated computed tomographic (CT) scans. This study reviews the utilization of multimodality imaging in patients with osteosarcoma at our institution and analyzes any potential radiation-related complications. Twenty-eight patients were identified. Three patients developed late complications-acute myeloid leukemia, myelodysplastic syndrome, and early menopause. Using the patient's age and body part imaged, CT dose length product and effective dose was estimated with the use of a conversion factor for 19 patients. The effective doses were higher in the 3 patients with late complications than the other patients in the cohort (P=0.018). These results suggest an increased risk for adverse effects with higher CT exposures and effective doses. On the basis of our data and published data, methods to decrease the doses of radiation from medical imaging need to be explored. The number of CT scans may be limited. Implementing the Image Gently concept to decrease radiation exposure can be beneficial in modification of CT acquisition parameters. PMID:26583624

  3. In vivo skin chromophore mapping using a multimode imaging dermoscope (SkinSpec)

    NASA Astrophysics Data System (ADS)

    MacKinnon, Nicholas; Vasefi, Fartash; Gussakovsky, Eugene; Bearman, Gregory; Chave, Robert; Farkas, Daniel L.

    2013-02-01

    We introduce a multimode dermoscope (SkinSpectTM) we developed for early detection of melanoma by combining fluorescence, polarization and hyperspectral imaging. Acquired reflection image datacubes were input to a wavelength-dependent linear model to extract the relative contributions of skin chromophores at every pixel. The oxy-hemoglobin, deoxy hemoglobin, melanin concentrations, and hemoglobin oxygen saturation by the single step linear least square fitting and Kubelka-Munk tissue model using cross polarization data cubes were presented. The comprehensive data obtained by SkinSpect can be utilized to improve the accuracy of skin chromophore decomposition algorithm with less computation cost. As an example in this work, the deoxy-hemoglobin over-estimation error in highly pigmented lesion due to melanin and deoxy hemoglobin spectral cross talk were analyzed and corrected using two-step linear least square fitting procedure at different wavelength ranges. The proposed method also tested in skin with underlying vein area for validating the proof of concept.

  4. Dynamic Biodistribution of Extracellular Vesicles In Vivo Using a Multimodal Imaging Reporter

    PubMed Central

    Lai, Charles P.; Mardini, Osama; Ericsson, Maria; Prabhakar, Shilpa; Maguire, Casey; Chen, John W.

    2014-01-01

    Extracellular vesicles (EVs) are nano-sized vesicles released by normal and diseased cells as a novel form of intercellular communication, and can serve as an effective therapeutic vehicle for genes and drugs. Yet, much remains unknown about the in vivo properties of EVs such as tissue distribution, and blood levels and urine clearance - important parameters that will define their therapeutic effectiveness and potential toxicity. Here we combined Gaussia luciferase and metabolic biotinylation to create a sensitive EV reporter (EV-GlucB) for multimodal imaging in vivo, as well as monitoring of EV levels in the organs and biofluids ex vivo after administration of EVs. Bioluminescence and fluorescence-mediated tomography imaging on mice displayed a predominant localization of intravenously administered EVs in the spleen followed by the liver. Monitoring EV signal in the organs, blood and urine further revealed that the EVs first undergo a rapid distribution phase followed by a longer elimination phase via hepatic and renal routes within six hours, which are both faster than previously reported using dye-labeled EVs. Moreover, we demonstrate systemically injected EVs can be delivered to tumor sites within an hour following injection. Altogether, we show the EVs are dynamically processed in vivo with accurate spatiotemporal resolution, and target a number of normal organs as well as tumors with implications for disease pathology and therapeutic design. PMID:24383518

  5. Developing Fe3O4 nanoparticles into an efficient multimodality imaging and therapeutic probe

    NASA Astrophysics Data System (ADS)

    Hao, Rui; Yu, Jing; Ge, Zigang; Zhao, Lingyun; Sheng, Fugeng; Xu, Lili; Li, Gongjie; Hou, Yanglong

    2013-11-01

    A rapid ligand-exchange method was developed to transfer high quality hydrophobic magnetite nanocrystals into water-soluble NPs by using protocatechuic acid as a ligand via homogenous reaction. After ligand exchange, the magnetite nanocrystals not only exhibited outstanding stability in water, but also maintained high crystallinity and saturation magnetization. Cell viability experiments demonstrated good biocompatibility of the NPs. For 12 nm magnetite nanoparticles (NPs), the small hydrodynamic size of 14 nm enabled a high T1 relaxivity of 17.8 mM-1 s-1 while high saturation magnetization of 77.8 emu g-1 enabled the NPs to exhibit a high T2 relaxivity of 220 mM-1 s-1 in MRI phantom experiments. In vivo MR imaging experiments further confirmed that the NPs were eminent T1 and T2 contrast agents. Moreover, the high quality NPs can be used as excellent magnetic heating agents under an alternating magnetic field. With all those features, including multimodality imaging and magnetic hyperthermia, the NPs can be used as single compound multifunctional agents for various biomedical applications, especially for cancer diagnosis and therapy.

  6. Tumor lysing genetically engineered T cells loaded with multi-modal imaging agents.

    PubMed

    Bhatnagar, Parijat; Alauddin, Mian; Bankson, James A; Kirui, Dickson; Seifi, Payam; Huls, Helen; Lee, Dean A; Babakhani, Aydin; Ferrari, Mauro; Li, King C; Cooper, Laurence J N

    2014-01-01

    Genetically-modified T cells expressing chimeric antigen receptors (CAR) exert anti-tumor effect by identifying tumor-associated antigen (TAA), independent of major histocompatibility complex. For maximal efficacy and safety of adoptively transferred cells, imaging their biodistribution is critical. This will determine if cells home to the tumor and assist in moderating cell dose. Here, T cells are modified to express CAR. An efficient, non-toxic process with potential for cGMP compliance is developed for loading high cell number with multi-modal (PET-MRI) contrast agents (Super Paramagnetic Iron Oxide Nanoparticles - Copper-64; SPION-(64)Cu). This can now be potentially used for (64)Cu-based whole-body PET to detect T cell accumulation region with high-sensitivity, followed by SPION-based MRI of these regions for high-resolution anatomically correlated images of T cells. CD19-specific-CAR(+)SPION(pos) T cells effectively target in vitro CD19(+) lymphoma. PMID:24675806

  7. Polarization-Sensitive Hyperspectral Imaging in vivo: A Multimode Dermoscope for Skin Analysis

    PubMed Central

    Vasefi, Fartash; MacKinnon, Nicholas; Saager, Rolf B.; Durkin, Anthony J.; Chave, Robert; Lindsley, Erik H.; Farkas, Daniel L.

    2014-01-01

    Attempts to understand the changes in the structure and physiology of human skin abnormalities by non-invasive optical imaging are aided by spectroscopic methods that quantify, at the molecular level, variations in tissue oxygenation and melanin distribution. However, current commercial and research systems to map hemoglobin and melanin do not correlate well with pathology for pigmented lesions or darker skin. We developed a multimode dermoscope that combines polarization and hyperspectral imaging with an efficient analytical model to map the distribution of specific skin bio-molecules. This corrects for the melanin-hemoglobin misestimation common to other systems, without resorting to complex and computationally intensive tissue optical models. For this system's proof of concept, human skin measurements on melanocytic nevus, vitiligo, and venous occlusion conditions were performed in volunteers. The resulting molecular distribution maps matched physiological and anatomical expectations, confirming a technologic approach that can be applied to next generation dermoscopes and having biological plausibility that is likely to appeal to dermatologists. PMID:24815987

  8. Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform

    NASA Astrophysics Data System (ADS)

    Song, Wei; Wei, Qing; Liu, Tan; Kuai, David; Burke, Janice M.; Jiao, Shuliang; Zhang, Hao F.

    2012-06-01

    Photoacoustic ophthalmoscopy (PAOM) is a newly developed retinal imaging technology that holds promise for both fundamental investigation and clinical diagnosis of several blinding diseases. Hence, integrating PAOM with other existing ophthalmic imaging modalities is important to identify and verify the strengths of PAOM compared with the established technologies and to provide the foundation for more comprehensive multimodal imaging. To this end, we developed a retinal imaging platform integrating PAOM with scanning laser ophthalmoscopy (SLO), spectral-domain optical coherence tomography (SD-OCT), and fluorescein angiography (FA). In the system, all the imaging modalities shared the same optical scanning and delivery mechanisms, which enabled registered retinal imaging from all the modalities. High-resolution PAOM, SD-OCT, SLO, and FA images were acquired in both albino and pigmented rat eyes. The reported in vivo results demonstrate the capability of the integrated system to provide comprehensive anatomic imaging based on multiple optical contrasts.

  9. COBRA: A prospective multimodal imaging study of dopamine, brain structure and function, and cognition.

    PubMed

    Nevalainen, N; Riklund, K; Andersson, M; Axelsson, J; Ögren, M; Lövdén, M; Lindenberger, U; Bäckman, L; Nyberg, L

    2015-07-01

    Cognitive decline is a characteristic feature of normal human aging. Previous work has demonstrated marked interindividual variability in onset and rate of decline. Such variability has been linked to factors such as maintenance of functional and structural brain integrity, genetics, and lifestyle. Still, few, if any, studies have combined a longitudinal design with repeated multimodal imaging and a comprehensive assessment of cognition as well as genetic and lifestyle factors. The present paper introduces the Cognition, Brain, and Aging (COBRA) study, in which cognitive performance and brain structure and function are measured in a cohort of 181 older adults aged 64 to 68 years at baseline. Participants will be followed longitudinally over a 10-year period, resulting in a total of three equally spaced measurement occasions. The measurement protocol at each occasion comprises a comprehensive set of behavioral and imaging measures. Cognitive performance is evaluated via computerized testing of working memory, episodic memory, perceptual speed, motor speed, implicit sequence learning, and vocabulary. Brain imaging is performed using positron emission tomography with [(11)C]-raclopride to assess dopamine D2/D3 receptor availability. Structural magnetic resonance imaging (MRI) is used for assessment of white and gray-matter integrity and cerebrovascular perfusion, and functional MRI maps brain activation during rest and active task conditions. Lifestyle descriptives are collected, and blood samples are obtained and stored for future evaluation. Here, we present selected results from the baseline assessment along with a discussion of sample characteristics and methodological considerations that determined the design of the study. This article is part of a Special Issue entitled SI: Memory & Aging. PMID:25239478

  10. COBRA: A prospective multimodal imaging study of dopamine, brain structure and function, and cognition.

    PubMed

    Nevalainen, N; Riklund, K; Andersson, M; Axelsson, J; Ögren, M; Lövdén, M; Lindenberger, U; Bäckman, L; Nyberg, L

    2015-07-01

    Cognitive decline is a characteristic feature of normal human aging. Previous work has demonstrated marked interindividual variability in onset and rate of decline. Such variability has been linked to factors such as maintenance of functional and structural brain integrity, genetics, and lifestyle. Still, few, if any, studies have combined a longitudinal design with repeated multimodal imaging and a comprehensive assessment of cognition as well as genetic and lifestyle factors. The present paper introduces the Cognition, Brain, and Aging (COBRA) study, in which cognitive performance and brain structure and function are measured in a cohort of 181 older adults aged 64 to 68 years at baseline. Participants will be followed longitudinally over a 10-year period, resulting in a total of three equally spaced measurement occasions. The measurement protocol at each occasion comprises a comprehensive set of behavioral and imaging measures. Cognitive performance is evaluated via computerized testing of working memory, episodic memory, perceptual speed, motor speed, implicit sequence learning, and vocabulary. Brain imaging is performed using positron emission tomography with [(11)C]-raclopride to assess dopamine D2/D3 receptor availability. Structural magnetic resonance imaging (MRI) is used for assessment of white and gray-matter integrity and cerebrovascular perfusion, and functional MRI maps brain activation during rest and active task conditions. Lifestyle descriptives are collected, and blood samples are obtained and stored for future evaluation. Here, we present selected results from the baseline assessment along with a discussion of sample characteristics and methodological considerations that determined the design of the study. This article is part of a Special Issue entitled SI: Memory & Aging.

  11. Design of multi-mode compatible image acquisition system for HD area array CCD

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Sui, Xiubao

    2014-11-01

    Combining with the current development trend in video surveillance-digitization and high-definition, a multimode-compatible image acquisition system for HD area array CCD is designed. The hardware and software designs of the color video capture system of HD area array CCD KAI-02150 presented by Truesense Imaging company are analyzed, and the structure parameters of the HD area array CCD and the color video gathering principle of the acquisition system are introduced. Then, the CCD control sequence and the timing logic of the whole capture system are realized. The noises of the video signal (KTC noise and 1/f noise) are filtered by using the Correlated Double Sampling (CDS) technique to enhance the signal-to-noise ratio of the system. The compatible designs in both software and hardware for the two other image sensors of the same series: KAI-04050 and KAI-08050 are put forward; the effective pixels of these two HD image sensors are respectively as many as four million and eight million. A Field Programmable Gate Array (FPGA) is adopted as the key controller of the system to perform the modularization design from top to bottom, which realizes the hardware design by software and improves development efficiency. At last, the required time sequence driving is simulated accurately by the use of development platform of Quartus II 12.1 combining with VHDL. The result of the simulation indicates that the driving circuit is characterized by simple framework, low power consumption, and strong anti-interference ability, which meet the demand of miniaturization and high-definition for the current tendency.

  12. Multimodal non-linear optical imaging for the investigation of drug nano-/microcrystal-cell interactions.

    PubMed

    Darville, Nicolas; Saarinen, Jukka; Isomäki, Antti; Khriachtchev, Leonid; Cleeren, Dirk; Sterkens, Patrick; van Heerden, Marjolein; Annaert, Pieter; Peltonen, Leena; Santos, Hélder A; Strachan, Clare J; Van den Mooter, Guy

    2015-10-01

    Drug nano-/microcrystals are being used for sustained parenteral drug release, but safety and efficacy concerns persist as the knowledge of the in vivo fate of long-living particulates is limited. There is a need for techniques enabling the visualization of drug nano-/microcrystals in biological matrices. The aim of this work was to explore the potential of coherent anti-Stokes Raman scattering (CARS) microscopy, supported by other non-linear optical methods, as an emerging tool for the investigation of cellular and tissue interactions of unlabeled and non-fluorescent nano-/microcrystals. Raman and CARS spectra of the prodrug paliperidone palmitate (PP), paliperidone (PAL) and several suspension stabilizers were recorded. PP nano-/microcrystals were incubated with RAW 264.7 macrophages in vitro and their cellular disposition was investigated using a fully-integrated multimodal non-linear optical imaging platform. Suitable anti-Stokes shifts (CH stretching) were identified for selective CARS imaging. CARS microscopy was successfully applied for the selective three-dimensional, non-perturbative and real-time imaging of unlabeled PP nano-/microcrystals having dimensions larger than the optical lateral resolution of approximately 400nm, in relation to the cellular framework in cell cultures and ex vivo in histological sections. In conclusion, CARS microscopy enables the non-invasive and label-free imaging of (sub)micron-sized (pro-)drug crystals in complex biological matrices and could provide vital information on poorly understood nano-/microcrystal-cell interactions in future. PMID:26347923

  13. Development of a multi-scale and multi-modality imaging system to characterize tumours and their microenvironment in vivo

    NASA Astrophysics Data System (ADS)

    Rouffiac, Valérie; Ser-Leroux, Karine; Dugon, Emilie; Leguerney, Ingrid; Polrot, Mélanie; Robin, Sandra; Salomé-Desnoulez, Sophie; Ginefri, Jean-Christophe; Sebrié, Catherine; Laplace-Builhé, Corinne

    2015-03-01

    In vivo high-resolution imaging of tumor development is possible through dorsal skinfold chamber implantable on mice model. However, current intravital imaging systems are weakly tolerated along time by mice and do not allow multimodality imaging. Our project aims to develop a new chamber for: 1- long-term micro/macroscopic visualization of tumor (vascular and cellular compartments) and tissue microenvironment; and 2- multimodality imaging (photonic, MRI and sonography). Our new experimental device was patented in March 2014 and was primarily assessed on 75 mouse engrafted with 4T1-Luc tumor cell line, and validated in confocal and multiphoton imaging after staining the mice vasculature using Dextran 155KDa-TRITC or Dextran 2000kDa-FITC. Simultaneously, a universal stage was designed for optimal removal of respiratory and cardiac artifacts during microscopy assays. Experimental results from optical, ultrasound (Bmode and pulse subtraction mode) and MRI imaging (anatomic sequences) showed that our patented design, unlike commercial devices, improves longitudinal monitoring over several weeks (35 days on average against 12 for the commercial chamber) and allows for a better characterization of the early and late tissue alterations due to tumour development. We also demonstrated the compatibility for multimodality imaging and the increase of mice survival was by a factor of 2.9, with our new skinfold chamber. Current developments include: 1- defining new procedures for multi-labelling of cells and tissue (screening of fluorescent molecules and imaging protocols); 2- developing ultrasound and MRI imaging procedures with specific probes; 3- correlating optical/ultrasound/MRI data for a complete mapping of tumour development and microenvironment.

  14. Phyllodes tumor: diagnostic imaging and histopathology findings.

    PubMed

    Venter, Alina Cristiana; Roşca, Elena; Daina, Lucia Georgeta; Muţiu, Gabriela; Pirte, Adriana Nicoleta; Rahotă, Daniela

    2015-01-01

    Phyllodes tumors are rare breast tumors, accounting for less than 1% of all primary tumors of the breast. Histologically, phyllodes tumors can be divided into benign (60%), borderline (20%) and malignant (20%). The mammography examination was performed by means of a digital mammography system Giotto 3D Images; the ultrasound examination was performed through a GE Logiq P6 device and histological confirmation was possible after surgery or following the histological biopsy. We grouped the nine patients who presented clinically palpable nodules into two groups, namely: the six patients presenting histological benign results into Group I, and Group II where we included those with borderline and malignant histological results. Mammography performed in 77.7% revealed a well-circumscribed round or oval opacity or with contour lobules. Ultrasound examination was performed in all patients. Mammography and ultrasound have limitation in differentiating between benign lesion and phyllodes tumor. In the nine analyzed cases, mammographic and ultrasound examinations did not allow the differentiation into the three groups of phyllodes tumor. Histopathological examination is considered the golden standard for their diagnosis. Correlations between mammographic and microscopic aspects were inconclusive for determining the degree of differentiation, ultrasound changes could be correlated with the histopathological aspects. PMID:26743286

  15. Atypical pyogenic brain abscess evaluation by diffusion-weighted imaging: diagnosis with multimodality MR imaging.

    PubMed

    Ozbayrak, Mustafa; Ulus, Ozden Sila; Berkman, Mehmet Zafer; Kocagoz, Sesin; Karaarslan, Ercan

    2015-10-01

    Whether a brain abscess is apparent by imaging depends on the stage of the abscess at the time of imaging, as well as the etiology of the infection. Because conventional magnetic resonance imaging (MRI) is limited in its ability to distinguish brain abscesses from necrotic tumors, advanced techniques are required. The management of these two disease entities differs and can potentially affect the clinical outcome. We report a case having atypical imaging features of a pyogenic brain abscess on advanced MRI, in particular, on diffusion-weighted and perfusion imaging, in a patient with osteosarcoma undergoing chemotherapy.

  16. Multimodal imaging of mild traumatic brain injury and persistent postconcussion syndrome

    PubMed Central

    Dean, Philip JA; Sato, Joao R; Vieira, Gilson; McNamara, Adam; Sterr, Annette

    2015-01-01

    Background Persistent postconcussion syndrome (PCS) occurs in around 5–10% of individuals after mild traumatic brain injury (mTBI), but research into the underlying biology of these ongoing symptoms is limited and inconsistent. One reason for this could be the heterogeneity inherent to mTBI, with individualized injury mechanisms and psychological factors. A multimodal imaging study may be able to characterize the injury better. Aim To look at the relationship between functional (fMRI), structural (diffusion tensor imaging), and metabolic (magnetic resonance spectroscopy) data in the same participants in the long term (>1 year) after injury. It was hypothesized that only those mTBI participants with persistent PCS would show functional changes, and that these changes would be related to reduced structural integrity and altered metabolite concentrations. Methods Functional changes associated with persistent PCS after mTBI (>1 year postinjury) were investigated in participants with and without PCS (both n = 8) and non-head injured participants (n = 9) during performance of working memory and attention/processing speed tasks. Correlation analyses were performed to look at the relationship between the functional data and structural and metabolic alterations in the same participants. Results There were no behavioral differences between the groups, but participants with greater PCS symptoms exhibited greater activation in attention-related areas (anterior cingulate), along with reduced activation in temporal, default mode network, and working memory areas (left prefrontal) as cognitive load was increased from the easiest to the most difficult task. Functional changes in these areas correlated with reduced structural integrity in corpus callosum and anterior white matter, and reduced creatine concentration in right dorsolateral prefrontal cortex. Conclusion These data suggest that the top-down attentional regulation and deactivation of task-irrelevant areas may be

  17. Multimodal tissue perfusion imaging using multi-spectral and thermographic imaging systems applied on clinical data

    NASA Astrophysics Data System (ADS)

    Klaessens, John H. G. M.; Nelisse, Martin; Verdaasdonk, Rudolf M.; Noordmans, Herke Jan

    2013-03-01

    Clinical interventions can cause changes in tissue perfusion, oxygenation or temperature. Real-time imaging of these phenomena could be useful for surgical strategy or understanding of physiological regulation mechanisms. Two noncontact imaging techniques were applied for imaging of large tissue areas: LED based multispectral imaging (MSI, 17 different wavelengths 370 nm-880 nm) and thermal imaging (7.5 to 13.5 μm). Oxygenation concentration changes were calculated using different analyzing methods. The advantages of these methods are presented for stationary and dynamic applications. Concentration calculations of chromophores in tissue require right choices of wavelengths The effects of different wavelength choices for hemoglobin concentration calculations were studied in laboratory conditions and consequently applied in clinical studies. Corrections for interferences during the clinical registrations (ambient light fluctuations, tissue movements) were performed. The wavelength dependency of the algorithms were studied and wavelength sets with the best results will be presented. The multispectral and thermal imaging systems were applied during clinical intervention studies: reperfusion of tissue flap transplantation (ENT), effectiveness of local anesthetic block and during open brain surgery in patients with epileptic seizures. The LED multispectral imaging system successfully imaged the perfusion and oxygenation changes during clinical interventions. The thermal images show local heat distributions over tissue areas as a result of changes in tissue perfusion. Multispectral imaging and thermal imaging provide complementary information and are promising techniques for real-time diagnostics of physiological processes in medicine.

  18. Electromagnetic navigation with multimodality image fusion for image-guided percutaneous interventions.

    PubMed

    Ward, Thomas J; Goldman, Roger E; Weintraub, Joshua L

    2013-09-01

    Percutaneous image-guided interventions are performed for a variety of clinical indications: to obtain tissue biopsies, to alleviate pain, and to treat diseases including a variety of malignancies. The efficacy of all of the above is directly related to accurate positioning of the procedural device using imaging guidance. The ability to achieve accurate positioning can be limited by a variety of technical factors including small lesion size, a lesion that is best seen on an imaging modality that is impractical for guiding intervention, and a lesion that is difficult to access or in a tenuous location. Electromagnetic navigation with image fusion has the ability to improve the speed and accuracy of percutaneous image-guided interventions by providing real-time feedback and allowing image overlay of diagnostic-imaging modalities with the guiding modality. The article discusses the technical aspects of electromagnetic navigation including potential clinical applications, procedures that may be facilitated by navigation, and inherent limitations of the technology.

  19. Multimode quantum properties of a self-imaging optical parametric oscillator: Squeezed vacuum and Einstein-Podolsky-Rosen-beams generation

    SciTech Connect

    Lopez, L.; Chalopin, B.; Riviere de la Souchere, A.; Fabre, C.; Treps, N.; Maitre, A.

    2009-10-15

    We investigate the spatial quantum properties of the light emitted by a perfectly spatially degenerate optical parametric oscillator (self-imaging optical parametric oscillator). We show that this device produces local squeezing for areas bigger than a coherence area that depends on the crystal length and pump width. Furthermore, it generates local EPR beams in the far field. We show, calculating the eigenmodes of the system, that it is highly multimode for realistic experimental parameters.

  20. Integration of Sparse Multi-modality Representation and Anatomical Constraint for Isointense Infant Brain MR Image Segmentation

    PubMed Central

    Wang, Li; Shi, Feng; Gao, Yaozong; Li, Gang; Gilmore, John H.; Lin, Weili; Shen, Dinggang

    2014-01-01

    Segmentation of infant brain MR images is challenging due to poor spatial resolution, severe partial volume effect, and the ongoing maturation and myelination process. During the first year of life, the brain image contrast between white and gray matters undergoes dramatic changes. In particular, the image contrast inverses around 6–8 months of age, where the white and gray matter tissues are isointense in T1 and T2 weighted images and hence exhibit the extremely low tissue contrast, posing significant challenges for automated segmentation. In this paper, we propose a general framework that adopts sparse representation to fuse the multi-modality image information and further incorporate the anatomical constraints for brain tissue segmentation. Specifically, we first derive an initial segmentation from a library of aligned images with ground-truth segmentations by using sparse representation in a patch-based fashion for the multi-modality T1, T2 and FA images. The segmentation result is further iteratively refined by integration of the anatomical constraint. The proposed method was evaluated on 22 infant brain MR images acquired at around 6 months of age by using a leave-one-out cross-validation, as well as other 10 unseen testing subjects. Our method achieved a high accuracy for the Dice ratios that measure the volume overlap between automated and manual segmentations, i.e., 0.889±0.008 for white matter and 0.870±0.006 for gray matter. PMID:24291615

  1. Predicting standard-dose PET image from low-dose PET and multimodal MR images using mapping-based sparse representation

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Zhang, Pei; An, Le; Ma, Guangkai; Kang, Jiayin; Shi, Feng; Wu, Xi; Zhou, Jiliu; Lalush, David S.; Lin, Weili; Shen, Dinggang

    2016-01-01

    Positron emission tomography (PET) has been widely used in clinical diagnosis for diseases and disorders. To obtain high-quality PET images requires a standard-dose radionuclide (tracer) injection into the human body, which inevitably increases risk of radiation exposure. One possible solution to this problem is to predict the standard-dose PET image from its low-dose counterpart and its corresponding multimodal magnetic resonance (MR) images. Inspired by the success of patch-based sparse representation (SR) in super-resolution image reconstruction, we propose a mapping-based SR (m-SR) framework for standard-dose PET image prediction. Compared with the conventional patch-based SR, our method uses a mapping strategy to ensure that the sparse coefficients, estimated from the multimodal MR images and low-dose PET image, can be applied directly to the prediction of standard-dose PET image. As the mapping between multimodal MR images (or low-dose PET image) and standard-dose PET images can be particularly complex, one step of mapping is often insufficient. To this end, an incremental refinement framework is therefore proposed. Specifically, the predicted standard-dose PET image is further mapped to the target standard-dose PET image, and then the SR is performed again to predict a new standard-dose PET image. This procedure can be repeated for prediction refinement of the iterations. Also, a patch selection based dictionary construction method is further used to speed up the prediction process. The proposed method is validated on a human brain dataset. The experimental results show that our method can outperform benchmark methods in both qualitative and quantitative measures.

  2. Predicting standard-dose PET image from low-dose PET and multimodal MR images using mapping-based sparse representation.

    PubMed

    Wang, Yan; Zhang, Pei; An, Le; Ma, Guangkai; Kang, Jiayin; Shi, Feng; Wu, Xi; Zhou, Jiliu; Lalush, David S; Lin, Weili; Shen, Dinggang

    2016-01-21

    Positron emission tomography (PET) has been widely used in clinical diagnosis for diseases and disorders. To obtain high-quality PET images requires a standard-dose radionuclide (tracer) injection into the human body, which inevitably increases risk of radiation exposure. One possible solution to this problem is to predict the standard-dose PET image from its low-dose counterpart and its corresponding multimodal magnetic resonance (MR) images. Inspired by the success of patch-based sparse representation (SR) in super-resolution image reconstruction, we propose a mapping-based SR (m-SR) framework for standard-dose PET image prediction. Compared with the conventional patch-based SR, our method uses a mapping strategy to ensure that the sparse coefficients, estimated from the multimodal MR images and low-dose PET image, can be applied directly to the prediction of standard-dose PET image. As the mapping between multimodal MR images (or low-dose PET image) and standard-dose PET images can be particularly complex, one step of mapping is often insufficient. To this end, an incremental refinement framework is therefore proposed. Specifically, the predicted standard-dose PET image is further mapped to the target standard-dose PET image, and then the SR is performed again to predict a new standard-dose PET image. This procedure can be repeated for prediction refinement of the iterations. Also, a patch selection based dictionary construction method is further used to speed up the prediction process. The proposed method is validated on a human brain dataset. The experimental results show that our method can outperform benchmark methods in both qualitative and quantitative measures. PMID:26732849

  3. Integrated Multimodal Imaging of Dynamic Bone-Tumor Alterations Associated with Metastatic Prostate Cancer

    PubMed Central

    Chenevert, Thomas L.; Jacobson, Jon A.; Boes, Jennifer L.; Galbán, Stefanie; Rehemtulla, Alnawaz; Johnson, Timothy D.; Pienta, Kenneth J.; Galbán, Craig J.; Meyer, Charles R.; Schakel, Timothy; Nicolay, Klaas; Alva, Ajjai S.; Hussain, Maha; Ross, Brian D.

    2015-01-01

    Bone metastasis occurs for men with advanced prostate cancer which promotes osseous growth and destruction driven by alterations in osteoblast and osteoclast homeostasis. Patients can experience pain, spontaneous fractures and morbidity eroding overall quality of life. The complex and dynamic cellular interactions within the bone microenvironment limit current treatment options thus prostate to bone metastases remains incurable. This study uses voxel-based analysis of diffusion-weighted MRI and CT scans to simultaneously evaluate temporal changes in normal bone homeostasis along with prostate bone metatastsis to deliver an improved understanding of the spatiotemporal local microenvironment. Dynamic tumor-stromal interactions were assessed during treatment in mouse models along with a pilot prospective clinical trial with metastatic hormone sensitive and castration resistant prostate cancer patients with bone metastases. Longitudinal changes in tumor and bone imaging metrics during delivery of therapy were quantified. Studies revealed that voxel-based parametric response maps (PRM) of DW-MRI and CT scans could be used to quantify and spatially visualize dynamic changes during prostate tumor growth and in response to treatment thereby distinguishing patients with stable disease from those with progressive disease (p<0.05). These studies suggest that PRM imaging biomarkers are useful for detection of the impact of prostate tumor-stromal responses to therapies thus demonstrating the potential of multi-modal PRM image-based biomarkers as a novel means for assessing dynamic alterations associated with metastatic prostate cancer. These results establish an integrated and clinically translatable approach which can be readily implemented for improving the clinical management of patients with metastatic bone disease. Trial Registration ClinicalTrials.gov NCT02064283 PMID:25859981

  4. Incorporation of paramagnetic, fluorescent and PET/SPECT contrast agents into liposomes for multimodal imaging

    PubMed Central

    Mitchell, Nick; Kalber, Tammy L.; Cooper, Margaret S.; Sunassee, Kavitha; Chalker, Samantha L.; Shaw, Karen P.; Ordidge, Katherine L.; Badar, Adam; Janes, Samuel M.; Blower, Philip J.; Lythgoe, Mark F.; Hailes, Helen C.; Tabor, Alethea B.

    2013-01-01

    A series of metal-chelating lipid conjugates has been designed and synthesized. Each member of the series bears a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) macrocycle attached to the lipid head group, using short n-ethylene glycol (n-EG) spacers of varying length. Liposomes incorporating these lipids, chelated to Gd3+, 64Cu2+, or 111In3+, and also incorporating fluorescent lipids, have been prepared, and their application in optical, magnetic resonance (MR) and single-photon emission tomography (SPECT) imaging of cellular uptake and distribution investigated in vitro and in vivo. We have shown that these multimodal liposomes can be used as functional MR contrast agents as well as radionuclide tracers for SPECT, and that they can be optimized for each application. When shielded liposomes were formulated incorporating 50% of a lipid with a short n-EG spacer, to give nanoparticles with a shallow but even coverage of n-EG, they showed good cellular internalization in a range of tumour cells, compared to the limited cellular uptake of conventional shielded liposomes formulated with 7% 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethyleneglycol)2000] (DSPE-PEG2000). Moreover, by matching the depth of n-EG coverage to the length of the n-EG spacers of the DOTA lipids, we have shown that similar distributions and blood half lives to DSPE-PEG2000-stabilized liposomes can be achieved. The ability to tune the imaging properties and distribution of these liposomes allows for the future development of a flexible tri-modal imaging agent. PMID:23131536

  5. Incorporation of paramagnetic, fluorescent and PET/SPECT contrast agents into liposomes for multimodal imaging.

    PubMed

    Mitchell, Nick; Kalber, Tammy L; Cooper, Margaret S; Sunassee, Kavitha; Chalker, Samantha L; Shaw, Karen P; Ordidge, Katherine L; Badar, Adam; Janes, Samuel M; Blower, Philip J; Lythgoe, Mark F; Hailes, Helen C; Tabor, Alethea B

    2013-01-01

    A series of metal-chelating lipid conjugates has been designed and synthesized. Each member of the series bears a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) macrocycle attached to the lipid head group, using short n-ethylene glycol (n-EG) spacers of varying length. Liposomes incorporating these lipids, chelated to Gd(3+), (64)Cu(2+), or (111)In(3+), and also incorporating fluorescent lipids, have been prepared, and their application in optical, magnetic resonance (MR) and single-photon emission tomography (SPECT) imaging of cellular uptake and distribution investigated in vitro and in vivo. We have shown that these multimodal liposomes can be used as functional MR contrast agents as well as radionuclide tracers for SPECT, and that they can be optimized for each application. When shielded liposomes were formulated incorporating 50% of a lipid with a short n-EG spacer, to give nanoparticles with a shallow but even coverage of n-EG, they showed good cellular internalization in a range of tumour cells, compared to the limited cellular uptake of conventional shielded liposomes formulated with 7% 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethyleneglycol)(2000)] (DSPE-PEG2000). Moreover, by matching the depth of n-EG coverage to the length of the n-EG spacers of the DOTA lipids, we have shown that similar distributions and blood half lives to DSPE-PEG2000-stabilized liposomes can be achieved. The ability to tune the imaging properties and distribution of these liposomes allows for the future development of a flexible tri-modal imaging agent.

  6. Case Report of Multimodality Imaging in Omental Cake: Plain Radiograph, Computed Tomography, and Ultrasonography

    PubMed Central

    Juan, Yu-Hsiang; Cheung, Yun-Chung; Ng, Koon-Kwan; Ng, Shu-Hang; Huang, Jen-Seng; Chang, Liang-Che; Lin, Yu-Ching

    2015-01-01

    Abstract The imaging finding of omental cake has been demonstrated in other modalities, such as computed tomography, magnetic resonance imaging, and ultrasonography. However, to the best of our knowledge, the image presentation of omental cake on a routine kidney-ureter-bladder film has not been reported before in the literature. We presented a unique case of a 61-year-old woman, with known advanced cecal colon mucinous adenocarcinoma, presented to our institution with abdominal fullness, poor appetite, and decreased stool passage for 20 days. Physical examination was unremarkable, except distended abdomen. Subsequent study revealed massive post-pigtail catheter drainage ascites with a prominent soft-tissue mass-causing centralization and tethering of focally distended small bowel gas, suggestive of omental cake on plain radiograph. The imaging finding in plain radiograph corresponds to the findings in other imaging modalities, including abdominal sonography and computed tomography. The patient underwent subtotal colectomy and ileostomy during later courses of chemotherapy due to adhesion ileus and possible intraabdominal abscess, and pathologic study confirmed the diagnosis of cecal mucinous adenocarcinoma and peritoneal carcinomatosis. Although the image finding of omental cake on plain radiograph has never been described, this image finding is unique and should be recognized, as it may suggest the presence of omental cake when first identified in the emergency department from patients with abdominal distension and warrant further evaluation to evaluate the underlying cause. PMID:26559303

  7. Holmium-lipiodol-alginate microspheres for fluoroscopy-guided embolotherapy and multimodality imaging.

    PubMed

    Oerlemans, Chris; Seevinck, Peter R; Smits, Maarten L; Hennink, Wim E; Bakker, Chris J G; van den Bosch, Maurice A A J; Nijsen, J Frank W

    2015-03-30

    Embolotherapy is a minimally invasive transcatheter technique aiming at reduction or complete obstruction of the blood flow by infusion of micro-sized particles in order to induce tumor regression. A major drawback of the current commercially available and clinically used microspheres is that they cannot be detected in vivo with medical imaging techniques, impeding intra- and post-procedural feedback. It can be expected that real-time monitoring of microsphere infusion and post-procedural imaging will result in better predictability and higher efficacy of the treatment. In this study, a novel microsphere formulation has been developed that can be visualized with fluoroscopy, X-ray computed tomography (CT) and magnetic resonance imaging (MRI). The microspheres were prepared with the JetCutter technique and consist of alginate (matrix-forming polymer), holmium (cross-linking and MRI contrast agent), lipiodol (radiopaque contrast agent) and Pluronic F-68 (surfactant). The mean size (±SEM) of the hydrated holmium-lipiodol-alginate microspheres (Ho-lip-ams) was 570±12 μm with a holmium content of 0.38±0.01% (w/w). Stability studies showed that the microspheres remained intact during incubation for two weeks in fetal calf serum (FCS) at 37 °C. The inclusion of lipiodol in the microspheres rendered excellent visualization capabilities for fluoroscopy and CT, whereas the holmium ions, which keep the alginate network together, also allow MR imaging. In this study it was shown that single sphere detection was possible by fluoroscopy, CT and MRI. The Ho-lip-ams were visualized in real-time, during infusion in a porcine kidney using fluoroscopy, and post-procedural, the deposition of the microspheres was examined with fluoroscopy, (cone beam rotational) CT and MRI. The different imaging modalities showed similar deposition patterns of the microspheres within the organ. The combination of intra-procedural visualization, multimodality imaging for patient follow-up and the

  8. Ex vivo catheter-based imaging of coronary atherosclerosis using multimodality OCT and NIRAF excited at 633 nm

    PubMed Central

    Wang, Hao; Gardecki, Joseph A.; Ughi, Giovanni J.; Jacques, Paulino Vacas; Hamidi, Ehsan; Tearney, Guillermo J.

    2015-01-01

    While optical coherence tomography (OCT) has been shown to be capable of imaging coronary plaque microstructure, additional chemical/molecular information may be needed in order to determine which lesions are at risk of causing an acute coronary event. In this study, we used a recently developed imaging system and double-clad fiber (DCF) catheter capable of simultaneously acquiring both OCT and red excited near-infrared autofluorescence (NIRAF) images (excitation: 633 nm, emission: 680nm to 900nm). We found that NIRAF is elevated in lesions that contain necrotic core – a feature that is critical for vulnerable plaque diagnosis and that is not readily discriminated by OCT alone. We first utilized a DCF ball lens probe and a bench top setup to acquire en face NIRAF images of aortic plaques ex vivo (n = 20). In addition, we used the OCT-NIRAF system and fully assembled catheters to acquire multimodality images from human coronary arteries (n = 15) prosected from human cadaver hearts (n = 5). Comparison of these images with corresponding histology demonstrated that necrotic core plaques exhibited significantly higher NIRAF intensity than other plaque types. These results suggest that multimodality intracoronary OCT-NIRAF imaging technology may be used in the future to provide improved characterization of coronary artery disease in human patients. PMID:25909020

  9. Single-Step Assembly of Multi-Modal Imaging Nanocarriers: MRI and Long-Wavelength Fluorescence Imaging

    PubMed Central

    Pinkerton, Nathalie M.; Gindy, Marian E.; Calero-DdelC, Victoria L.; Wolfson, Theodore; Pagels, Robert F.; Adler, Derek; Gao, Dayuan; Li, Shike; Wang, Ruobing; Zevon, Margot; Yao, Nan; Pacheco, Carlos; Therien, Michael J.; Rinaldi, Carlos; Sinko, Patrick J.

    2015-01-01

    MRI and NIR-active, multi-modal Composite NanoCarriers (CNCs) are prepared using a simple, one-step process, Flash NanoPrecipitation (FNP). The FNP process allows for the independent control of the hydrodynamic diameter, co-core excipient and NIR dye loading, and iron oxide-based nanocrystal (IONC) content of the CNCs. In the controlled precipitation process, 10 nm IONCs are encapsulated into poly(ethylene glycol) stabilized CNCs to make biocompatible T2 contrast agents. By adjusting the formulation, CNC size is tuned between 80 and 360 nm. Holding the CNC size constant at an intensity weighted average diameter of 99 ± 3 nm (PDI width 28 nm), the particle relaxivity varies linearly with encapsulated IONC content ranging from 66 to 533 mM-1s-1 for CNCs formulated with 4 to 16 wt% IONC. To demonstrate the use of CNCs as in vivo MRI contrast agents, CNCs are surface functionalized with liver targeting hydroxyl groups. The CNCs enable the detection of 0.8 mm3 non-small cell lung cancer metastases in mice livers via MRI. Incorporating the hydrophobic, NIR dye PZn3 into CNCs enables complementary visualization with long-wavelength fluorescence at 800 nm. In vivo imaging demonstrates the ability of CNCs to act both as MRI and fluorescent imaging agents. PMID:25925128

  10. Optical imaging of radioisotopes: a novel multimodal approach to molecular imaging.

    PubMed

    Spinelli, A E; Marengo, M; Calandrino, R; Sbarbati, A; Boschi, F

    2012-06-01

    In this review there will be presented an overview of the literature about the recent developments on radiotracers imaging using optical methods and their applications. We will begin with a short summary regarding the discovery of Cerenkov radiation (CR) and then focus on the early developments and experimental validation of planar Cerenkov luminescence imaging. A significant improvement in Cerenkov luminescence imaging was given by the development of tomographic methods in order to obtain in vivo whole body 3D images of Cerenkov sources. An interesting and original application discussed in this review is the use of CR as the excitation source of quantum dots and fluorophores. We will also present some recent experimental results on in vivo radio luminescence imaging of alpha and gamma emitters. All these results make optical radioisotopes imaging an interesting cost-effective tool for the screening of new probes for both imaging and therapeutic applications. Other interesting aspects are the uses of Cerenkov radiation for radiotherapy and for radiopharmaceuticals synthesis applications. We will conclude by summarising the most important results and the future challenges. PMID:22695338

  11. Microglial activation in regions related to cognitive function predicts disease onset in Huntington's disease: a multimodal imaging study.

    PubMed

    Politis, Marios; Pavese, Nicola; Tai, Yen F; Kiferle, Lorenzo; Mason, Sarah L; Brooks, David J; Tabrizi, Sarah J; Barker, Roger A; Piccini, Paola

    2011-02-01

    Huntington's disease (HD) is an inherited neurodegenerative disorder associated with motor, cognitive and psychiatric deficits. This study, using a multimodal imaging approach, aims to assess in vivo the functional and structural integrity of regions and regional networks linked with motor, cognitive and psychiatric function. Predicting disease onset in at risk individuals is problematic and thus we sought to investigate this by computing the 5-year probability of HD onset (p5 HD) and relating it to imaging parameters. Using MRI, (11)C-PK11195 and (11)C-raclopride PET, we have investigated volumes, levels of microglial activation and D2/D3 receptor binding in CAG repeat-matched groups of premanifest and symptomatic HD gene carriers. Findings were correlated with disease-burden and UHDRS scores. Atrophy was detected in sensorimotor striatum (SMST), substantia nigra, orbitofrontal and anterior prefrontal cortex in the premanifest HD. D2/D3 receptor binding was reduced and microglial activation increased in SMST and associative striatum (AST), bed nucleus of the stria terminalis, the amygdala and the hypothalamus. In symptomatic HD cases this extended to involve atrophy in globus pallidus, limbic striatum, the red nuclei, anterior cingulate cortex, and insula. D2/D3 receptor binding was additionally reduced in substantia nigra, globus pallidus, limbic striatum, anterior cingulate cortex and insula, and microglial activation increased in globus pallidus, limbic striatum and anterior prefrontal cortex. In premanifest HD, increased levels of microglial activation in the AST and in the regional network associated with cognitive function correlated with p5 HD onset. These data suggest that pathologically activated microglia in AST and other areas related to cognitive function, maybe better predictors of clinical onset and stresses the importance of early cognitive assessment in HD.

  12. SLO Fundus Imaging Is the Most Sensitive Modality of Multimodal Imaging for Macular Microembolisms with Subtle Signs.

    PubMed

    Jang, L; Herbort, C P

    2016-04-01

    Background. Microemboli of fat or other material into the terminal macular retinal circulation can be difficult to diagnose. We report 2 cases that showed subtle signs where SLO fundus imaging was most sensitive to precisely outline the limits of the inner retina infarction. Patients and Methods. Multimodal imaging analysis was performed including fundus photography, fluorescein angiography, indocyanine green angiography, Optical Coherence Tomography and SLO fundus imaging of 2 cases with suspected infarction of the inner retina. Cases. A 30-year-old man reported a grey central spot OD a few days after being squeezed between two cars with a sacrum fracture. Vision was 0.2 OD, and 1.0 OS. Examination was unremarkable and fluorescein angiography was normal. Octopus visual field showed a tiny central scotoma OD. Microperimetry showed decreased central sensitivity OD > OS. The only sign was a dark area on the SLO fundus picture indicating a subtle infarction of the inner retina (OD > OS) with nothing visible on the OCT. Resolution of lesions on the SLO picture ODS occurred in parallel with improvement of microperimetry and visual acuity. A 32-year-old woman suspected to take IV drugs had a sudden drop of vision to 0.4 OD and count fingers at 6 feet OS. Signs included macular hemorrhages and non perfusion on FA. The striking sign was a large dark area on the SLO picture precisely delineating the more extensive infarcted area of internal retina corresponding to OCT hyperreflectivity, visible in this case. Conclusions. Macular ischemia due to microemboli can show obvious fundus signs as hemorrhages, cotton wool spots and non perfusion or can present in a subclinical fashion. The SLO picture has a higher image contrast and higher resolution compared to conventional fundus photography and so can precisely delineate ischemic changes of the inner retina causing the unexplained visual loss. PMID:27116502

  13. Mechanisms of murine cerebral malaria: Multimodal imaging of altered cerebral metabolism and protein oxidation at hemorrhage sites

    PubMed Central

    Hackett, Mark J.; Aitken, Jade B.; El-Assaad, Fatima; McQuillan, James A.; Carter, Elizabeth A.; Ball, Helen J.; Tobin, Mark J.; Paterson, David; de Jonge, Martin D.; Siegele, Rainer; Cohen, David D.; Vogt, Stefan; Grau, Georges E.; Hunt, Nicholas H.; Lay, Peter A.

    2015-01-01

    Using a multimodal biospectroscopic approach, we settle several long-standing controversies over the molecular mechanisms that lead to brain damage in cerebral malaria, which is a major health concern in developing countries because of high levels of mortality and permanent brain damage. Our results provide the first conclusive evidence that important components of the pathology of cerebral malaria include peroxidative stress and protein oxidation within cerebellar gray matter, which are colocalized with elevated nonheme iron at the site of microhemorrhage. Such information could not be obtained previously from routine imaging methods, such as electron microscopy, fluorescence, and optical microscopy in combination with immunocytochemistry, or from bulk assays, where the level of spatial information is restricted to the minimum size of tissue that can be dissected. We describe the novel combination of chemical probe–free, multimodal imaging to quantify molecular markers of disturbed energy metabolism and peroxidative stress, which were used to provide new insights into understanding the pathogenesis of cerebral malaria. In addition to these mechanistic insights, the approach described acts as a template for the future use of multimodal biospectroscopy for understanding the molecular processes involved in a range of clinically important acute and chronic (neurodegenerative) brain diseases to improve treatment strategies. PMID:26824064

  14. Cerebellar disorders: clinical/radiologic findings and modern imaging tools.

    PubMed

    Manto, Mario; Habas, Christophe

    2016-01-01

    Cerebellar disorders, also called cerebellar ataxias, comprise a large group of sporadic and genetic diseases. Their core clinical features include impaired control of coordination and gait, as well as cognitive/behavioral deficits usually not detectable by a standard neurologic examination and therefore often overlooked. Two forms of cognitive/behavioral syndromes are now well identified: (1) the cerebellar cognitive affective syndrome, which combines an impairment of executive functions, including planning and working memory, deficits in visuospatial skills, linguistic deficiencies such as agrammatism, and inappropriate behavior; and (2) the posterior fossa syndrome, a very acute form of cerebellar cognitive affective syndrome occurring essentially in children. Sporadic ataxias include stroke, toxic causes, immune ataxias, infectious/parainfectious ataxias, traumatic causes, neoplasias and paraneoplastic syndromes, endocrine disorders affecting the cerebellum, and the so-called "degenerative ataxias" (multiple system atrophy, and sporadic adult-onset ataxias). Genetic ataxias include mainly four groups of disorders: autosomal-recessive cerebellar ataxias, autosomal-dominant ataxias (spinocerebellar ataxias and episodic ataxias), mitochondrial disorders, and X-linked ataxias. In addition to biochemical studies and genetic tests, brain imaging techniques are a cornerstone for the diagnosis, clinicoanatomic correlations, and follow-up of cerebellar ataxias. Modern radiologic tools to assess cerebellar ataxias include: functional imaging studies, magnetic resonance spectroscopy, volumetric studies, and tractography. These complementary methods provide a multimodal appreciation of the whole long-range cerebellar network functioning, and allow the extraction of potential biomarkers for prognosis and rating level of recovery after treatment. PMID:27432679

  15. Multimodal optical coherence tomography and fluorescence lifetime imaging with interleaved excitation sources for simultaneous endogenous and exogenous fluorescence

    PubMed Central

    Shrestha, Sebina; Serafino, Michael J.; Rico-Jimenez, Jesus; Park, Jesung; Chen, Xi; Zhaorigetu, Siqin; Walton, Brian L.; Jo, Javier A.; Applegate, Brian E.

    2016-01-01

    Multimodal imaging probes a variety of tissue properties in a single image acquisition by merging complimentary imaging technologies. Exploiting synergies amongst the data, algorithms can be developed that lead to better tissue characterization than could be accomplished by the constituent imaging modalities taken alone. The combination of optical coherence tomography (OCT) with fluorescence lifetime imaging microscopy (FLIM) provides access to detailed tissue morphology and local biochemistry. The optical system described here merges 1310 nm swept-source OCT with time-domain FLIM having excitation at 355 and 532 nm. The pulses from 355 and 532 nm lasers have been interleaved to enable simultaneous acquisition of endogenous and exogenous fluorescence signals, respectively. The multimodal imaging system was validated using tissue phantoms. Nonspecific tagging with Alexa Flour 532 in a Watanbe rabbit aorta and active tagging of the LOX-1 receptor in human coronary artery, demonstrate the capacity of the system for simultaneous acquisition of OCT, endogenous FLIM, and exogenous FLIM in tissues. PMID:27699091

  16. Precocious puberty in children: A review of imaging findings

    PubMed Central

    Faizah, MZ; Zuhanis, AH; Rahmah, R; Raja, AA; Wu, LL; Dayang, AA; Zulfiqar, MA

    2012-01-01

    Objectives: This review was aimed at determining the imaging findings in patients with precocious puberty. Results: Within a period of 8 years (from 2002 to 2010) there were 53 patients diagnosed with precocious puberty. Out of the 53 patients, 37 had undergone diagnostic imaging to detect the possible organic causes of precocious puberty. Imaging findings were positive in 31 patients and out of that, 3 patients had 2 findings each (34 abnormalities). Of the patients with positive imaging findings, central precocious puberty (gonadotrophin-dependent) was more common (81%; 25/31) and the causes included: tuber cinereum hamartoma (n = 10), glioma (n = 6), pineal gland tumour (n = 4), hydrocephalous (n = 3), arachnoid cyst (n = 2) and others (n = 3). Peripheral precocious puberty (gonadotrophin-independent) causes included: testicular adrenal rest tumour (n = 3), adrenal carcinoma (n = 1), ovarian granulosa thecal cell tumour (n = 1), and tuberous sclerosis (n = 1). Conclusion: Positive imaging findings were observed in 84% (31/37) of the subjects. Hypothalamic hamartoma was the most common imaging finding in central precocious puberty while testicular adrenal rest tumour was the most common imaging finding in peripheral precocious puberty. PMID:22970062

  17. Label free imaging system for measuring blood flow speeds using a single multi-mode optical fiber (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sigal, Iliya; Caravaca Aguirre, Antonio M.; Gad, Raanan; Piestun, Rafael; Levi, Ofer

    2016-03-01

    We demonstrate a single multi-mode fiber-based micro-endoscope for measuring blood flow speeds. We use the transmission-matrix wavefront shaping approach to calibrate the multi-mode fiber and raster-scan a focal spot across the distal fiber facet, imaging the cross-polarized back-reflected light at the proximal facet using a camera. This setup allows assessment of the backscattered photon statistics: by computing the mean speckle contrast values across the proximal fiber facet we show that spatially-resolved flow speed maps can be inferred by selecting an appropriate camera integration time. The proposed system is promising for minimally-invasive studies of neurovascular coupling in deep brain structures.

  18. Toward in vivo diagnosis of skin cancer using multimode imaging dermoscopy: (I) clinical system development and validation

    NASA Astrophysics Data System (ADS)

    MacKinnon, Nicholas; Vasefi, Fartash; Farkas, Daniel L.

    2014-03-01

    We introduce the new clinical prototype of SkinSpect - a multimode dermoscope combining fluorescence, polarization and hyperspectral imaging. The system determines relative melanin and hemoglobin concentrations as well as oxygen saturation while effectively correcting for the melanin-hemoglobin crosstalk commonly observed in other spectral dermoscopy approaches. Optical specifications and performance of this new clinical and our previous research prototypes are compared. Light source programming and image polarization selection using LCVR are optimized to improve the accuracy of skin chromophore quantitation. Polarized attenuation spectra are computed and applied to a Beer-Lambert linear model to extract the relative contributions of chromophores at every pixel.

  19. Imaging findings of congenital tuberculosis in three infants.

    PubMed

    Neyaz, Z; Gadodia, A; Gamanagatti, S; Sarthi, M

    2008-02-01

    Congenital tuberculosis is a rare entity and diagnosis is usually delayed due to the nonspecific nature of the signs and symptoms. Imaging studies facilitate the early diagnosis of the disease and institution of appropriate therapy. We describe three cases of congenital tuberculosis along with the imaging features. Imaging findings of the chest included multiple pulmonary nodules, consolidation with cavitation, extensive bronchopneumonia and necrotic mediastinal adenopathy. Abdominal imaging findings included hepatomegaly with or without splenomegaly, multiple focal lesions in the spleen and retroperitoneal lymphadenopathy. PMID:18301825

  20. Technical Note: Characterization of custom 3D printed multimodality imaging phantoms

    SciTech Connect

    Bieniosek, Matthew F.; Lee, Brian J.; Levin, Craig S.

    2015-10-15

    Purpose: Imaging phantoms are important tools for researchers and technicians, but they can be costly and difficult to customize. Three dimensional (3D) printing is a widely available rapid prototyping technique that enables the fabrication of objects with 3D computer generated geometries. It is ideal for quickly producing customized, low cost, multimodal, reusable imaging phantoms. This work validates the use of 3D printed phantoms by comparing CT and PET scans of a 3D printed phantom and a commercial “Micro Deluxe” phantom. This report also presents results from a customized 3D printed PET/MRI phantom, and a customized high resolution imaging phantom with sub-mm features. Methods: CT and PET scans of a 3D printed phantom and a commercial Micro Deluxe (Data Spectrum Corporation, USA) phantom with 1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm diameter hot rods were acquired. The measured PET and CT rod sizes, activities, and attenuation coefficients were compared. A PET/MRI scan of a custom 3D printed phantom with hot and cold rods was performed, with photon attenuation and normalization measurements performed with a separate 3D printed normalization phantom. X-ray transmission scans of a customized two level high resolution 3D printed phantom with sub-mm features were also performed. Results: Results show very good agreement between commercial and 3D printed micro deluxe phantoms with less than 3% difference in CT measured rod diameter, less than 5% difference in PET measured rod diameter, and a maximum of 6.2% difference in average rod activity from a 10 min, 333 kBq/ml (9 μCi/ml) Siemens Inveon (Siemens Healthcare, Germany) PET scan. In all cases, these differences were within the measurement uncertainties of our setups. PET/MRI scans successfully identified 3D printed hot and cold rods on PET and MRI modalities. X-ray projection images of a 3D printed high resolution phantom identified features as small as 350 μm wide. Conclusions: This work shows that 3D printed

  1. Technical Note: Characterization of custom 3D printed multimodality imaging phantoms

    PubMed Central

    Bieniosek, Matthew F.; Lee, Brian J.; Levin, Craig S.

    2015-01-01

    Purpose: Imaging phantoms are important tools for researchers and technicians, but they can be costly and difficult to customize. Three dimensional (3D) printing is a widely available rapid prototyping technique that enables the fabrication of objects with 3D computer generated geometries. It is ideal for quickly producing customized, low cost, multimodal, reusable imaging phantoms. This work validates the use of 3D printed phantoms by comparing CT and PET scans of a 3D printed phantom and a commercial “Micro Deluxe” phantom. This report also presents results from a customized 3D printed PET/MRI phantom, and a customized high resolution imaging phantom with sub-mm features. Methods: CT and PET scans of a 3D printed phantom and a commercial Micro Deluxe (Data Spectrum Corporation, USA) phantom with 1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm diameter hot rods were acquired. The measured PET and CT rod sizes, activities, and attenuation coefficients were compared. A PET/MRI scan of a custom 3D printed phantom with hot and cold rods was performed, with photon attenuation and normalization measurements performed with a separate 3D printed normalization phantom. X-ray transmission scans of a customized two level high resolution 3D printed phantom with sub-mm features were also performed. Results: Results show very good agreement between commercial and 3D printed micro deluxe phantoms with less than 3% difference in CT measured rod diameter, less than 5% difference in PET measured rod diameter, and a maximum of 6.2% difference in average rod activity from a 10 min, 333 kBq/ml (9 μCi/ml) Siemens Inveon (Siemens Healthcare, Germany) PET scan. In all cases, these differences were within the measurement uncertainties of our setups. PET/MRI scans successfully identified 3D printed hot and cold rods on PET and MRI modalities. X-ray projection images of a 3D printed high resolution phantom identified features as small as 350 μm wide. Conclusions: This work shows that 3D printed

  2. Findings

    MedlinePlus

    ... Issue All Issues Explore Findings by Topic Cell Biology Cellular Structures, Functions, Processes, Imaging, Stress Response Chemistry ... Glycobiology, Synthesis, Natural Products, Chemical Reactions Computers in Biology Bioinformatics, Modeling, Systems Biology, Data Visualization Diseases Cancer, ...

  3. Image-derived biomarkers and multimodal imaging strategies for lung cancer management.

    PubMed

    Sauter, Alexander W; Schwenzer, Nina; Divine, Mathew R; Pichler, Bernd J; Pfannenberg, Christina

    2015-04-01

    Non-small-cell lung cancer is the most common type of lung cancer and one of the leading causes of cancer-related death worldwide. For this reason, advances in diagnosis and treatment are urgently needed. With the introduction of new, highly innovative hybrid imaging technologies such as PET/CT, staging and therapy response monitoring in lung cancer patients have substantially evolved. In this review, we discuss the role of FDG PET/CT in the management of lung cancer patients and the importance of new emerging imaging technologies and radiotracer developments on the path to personalized medicine.

  4. In vivo near infrared fluorescence (NIRF) intravascular molecular imaging of inflammatory plaque, a multimodal approach to imaging of atherosclerosis.

    PubMed

    Calfon, Marcella A; Rosenthal, Amir; Mallas, Georgios; Mauskapf, Adam; Nudelman, R Nika; Ntziachristos, Vasilis; Jaffer, Farouc A

    2011-08-04

    technologies including angiography and intravascular ultrasound (IVUS), offers a unique and novel integrated multimodal molecular imaging technique that distinguishes inflammatory atheromata, and allows detection of intravascular NIRF signals in human-sized coronary arteries.

  5. Imaging Multimodalities for Dissecting Alzheimer's Disease: Advanced Technologies of Positron Emission Tomography and Fluorescence Imaging

    PubMed Central

    Shimojo, Masafumi; Higuchi, Makoto; Suhara, Tetsuya; Sahara, Naruhiko

    2015-01-01

    The rapid progress in advanced imaging technologies has expanded our toolbox for monitoring a variety of biological aspects in living subjects including human. In vivo radiological imaging using small chemical tracers, such as with positron emission tomography, represents an especially vital breakthrough in the efforts to improve our understanding of the complicated cascade of neurodegenerative disorders including Alzheimer's disease (AD), and it has provided the most reliable visible biomarkers for enabling clinical diagnosis. At the same time, in combination with genetically modified animal model systems, the most recent innovation of fluorescence imaging is helping establish diverse applications in basic neuroscience research, from single-molecule analysis to animal behavior manipulation, suggesting the potential utility of fluorescence technology for dissecting the detailed molecular-based consequence of AD pathophysiology. In this review, our primary focus is on a current update of PET radiotracers and fluorescence indicators beneficial for understanding the AD cascade, and discussion of the utility and pitfalls of those imaging modalities for future translational research applications. We will also highlight current cutting-edge genetic approaches and discuss how to integrate individual technologies for further potential innovations. PMID:26733795

  6. MR imaging findings of uterine pyomyoma: radiologic-pathologic correlation.

    PubMed

    Ono, Hiromi; Kanematsu, Masayuki; Kato, Hiroki; Toyoki, Hiroshi; Hayasaki, Yoh; Furui, Tatsuro; Morishige, Ken-ichirou; Hatano, Yuichiro

    2014-08-01

    A 69-year-old postmenopausal female with a spontaneously occurring uterine pyomyoma was described with emphasis on the MR imaging findings. On unenhanced T1- and T2-weighted MR images, a huge mottled mass suspected to contain blood products, necrotic tissue, or purulent or viscous fluid was demonstrated within anterior myometrial wall of uterine body. The mass was surrounded by a peripheral rim that was hyperintense on T1-weighted images and hypointense on T2-weighted images. On gadolinium-enhanced MR images, most of the mass was unenhanced, but the peripheral rim was equally enhanced with the surrounding myometrium. Pathological examination revealed an intramural uterine pyomyoma surrounded by fibrous capsules with abundant lymphocytes and neutrophils. Our findings indicate that pyomyoma should be considered when MR images demonstrate a myometrial cystic lesion accompanied by a peripheral rim. PMID:24615512

  7. Illustrated Imaging Essay on Congenital Heart Diseases: Multimodality Approach Part I: Clinical Perspective, Anatomy and Imaging Techniques

    PubMed Central

    Belaval, Vinay; Gadabanahalli, Karthik; Raj, Vimal; Shah, Sejal

    2016-01-01

    Rapid evolution in technology in the recent years has lead to availability of multiple options for cardiac imaging. Availability of multiple options of varying capability, poses a challenge for optimal imaging choice. While new imaging choices are added, some of the established methods find their role re-defined. State of the art imaging practices are limited to few specialist cardiac centres, depriving many radiologists and radiologist in-training of optimal exposure to the field. This presentation is aimed at providing a broad idea about complexity of clinical problem, imaging options and a large library of images of congenital heart disease. Some emphasis is made as to the need of proper balance between performing examination with technical excellence in an ideal situation against the need of the majority of patients who are investigated with less optimal resources. Cases of congenital cardiac disease are presented in an illustrative way, showing imaging appearances in multiple modalities, highlighting specific observations in given instance. PMID:27376034

  8. Illustrated Imaging Essay on Congenital Heart Diseases: Multimodality Approach Part I: Clinical Perspective, Anatomy and Imaging Techniques.

    PubMed

    Bhat, Venkatraman; Belaval, Vinay; Gadabanahalli, Karthik; Raj, Vimal; Shah, Sejal

    2016-05-01

    Rapid evolution in technology in the recent years has lead to availability of multiple options for cardiac imaging. Availability of multiple options of varying capability, poses a challenge for optimal imaging choice. While new imaging choices are added, some of the established methods find their role re-defined. State of the art imaging practices are limited to few specialist cardiac centres, depriving many radiologists and radiologist in-training of optimal exposure to the field. This presentation is aimed at providing a broad idea about complexity of clinical problem, imaging options and a large library of images of congenital heart disease. Some emphasis is made as to the need of proper balance between performing examination with technical excellence in an ideal situation against the need of the majority of patients who are investigated with less optimal resources. Cases of congenital cardiac disease are presented in an illustrative way, showing imaging appearances in multiple modalities, highlighting specific observations in given instance. PMID:27376034

  9. Differences in the diagnostic accuracy of acute stroke clinical subtypes defined by multimodal magnetic resonance imaging

    PubMed Central

    Allder, S; Moody, A; Martel, A; Morgan, P; Delay, G; Gladman, J; Lennox, G

    2003-01-01

    Background: Despite its importance for acute stroke management, little is known about the underlying pathophysiology when patients with acute stroke are classified using clinical methods. Objective: To examine the relation between the magnetic resonance defined stroke subtype and clinical stroke classifications using diffusion weighted imaging (DWI), perfusion weighted imaging (PWI), and angiographic magnetic resonance techniques. Methods: Consecutive patients with clinical syndromes consistent with acute anterior circulation stroke were assessed clinically within six hours of onset and scanned as soon as possible using multimodal magnetic resonance imaging (MRI). Patients were classified clinically into total or partial anterior circulation syndromes using the Oxford classification, or according the severity of the National Institutes of Health stroke scale (NIHSS) (severe > 15; mild/moderate ≤ 15). At day seven, patients were classified by combining clinical course and MRI data as misdiagnosed, misclassified, suffering transient ischaemic attack, infarct with recanalisation, or infarction with persisting occlusion. Patients with occlusion were further divided on the basis of a large diffusion–perfusion mismatch. Results: 84 patients with clinical anterior circulation syndromes were studied. Using the NIHSS, 42 were mild to moderate (0–15) and 42 were severe (> 15). There were 42 with partial anterior circulation syndromes (PACS) and 42 with total anterior circulation syndromes (TACS). Patients with TACS or severe stroke were more likely to have actually suffered a stroke (Fischer's exact test, p = 0.01), to have a correctly classified stroke (χ2 28.2, p < 0.01), to have persisting occlusion (χ2 30.6, p < 0.01), and to have a large DWI–PWI mismatch (χ2 17.1, p < 0.01). Conclusions: There is more inaccuracy in patients presenting with acute PACS or clinically mild to moderate anterior circulation stroke than in those with TACS or severe acute stroke

  10. Multimodality Intravascular Imaging Assessment of Plaque Erosion versus Plaque Rupture in Patients with Acute Coronary Syndrome

    PubMed Central

    Kwon, Jee Eun; Mintz, Gary S.; Hong, Young Joon; Lee, Sung Yun; Kim, Ki Seok; Hahn, Joo-Yong; Kumar, Kaup Sharath; Won, Hoyoun; Hyeon, Seong Hyeop; Shin, Seung Yong; Lee, Kwang Je; Kim, Tae Ho; Kim, Chee Jeong; Kim, Sang Wook

    2016-01-01

    Background and Objectives We assessed plaque erosion of culprit lesions in patients with acute coronary syndrome in real world practice. Subjects and Methods Culprit lesion plaque rupture or plaque erosion was diagnosed with optical coherence tomography (OCT). Intravascular ultrasound (IVUS) was used to determine arterial remodeling. Positive remodeling was defined as a remodeling index (lesion/reference EEM [external elastic membrane area) >1.05. Results A total of 90 patients who had plaque rupture showing fibrous-cap discontinuity and ruptured cavity were enrolled. 36 patients showed definite OCT-plaque erosion, while 7 patients had probable OCT-plaque erosion. Overall, 26% (11/43) of definite/probable plaque erosion had non-ST elevation myocardial infarction (NSTEMI) while 35% (15/43) had ST elevation myocardial infarction (STEMI). Conversely, 14.5% (13/90) of plaque rupture had NSTEMI while 71% (64/90) had STEMI (p<0.0001). Among plaque erosion, white thrombus was seen in 55.8% (24/43) of patients and red thrombus in 27.9% (12/43) of patients. Compared to plaque erosion, plaque rupture more often showed positive remodeling (p=0.003) with a larger necrotic core area examined by virtual histology (VH)-IVUS, while negative remodeling was prominent in plaque erosion. Overall, 65% 28/43 of plaque erosions were located in the proximal 30 mm of a culprit vessel-similar to plaque ruptures (72%, 65/90, p=0.29). Conclusion Although most of plaque erosions show nearly normal coronary angiogram, modest plaque burden with negative remodeling and an uncommon fibroatheroma might be the nature of plaque erosion. Multimodality intravascular imaging with OCT and VH-IVUS showed fundamentally different pathoanatomic substrates underlying plaque rupture and erosion. PMID:27482258

  11. A connectivity-based test-retest dataset of multi-modal magnetic resonance imaging in young healthy adults.

    PubMed

    Lin, Qixiang; Dai, Zhengjia; Xia, Mingrui; Han, Zaizhu; Huang, Ruiwang; Gong, Gaolang; Liu, Chao; Bi, Yanchao; He, Yong

    2015-01-01

    Recently, magnetic resonance imaging (MRI) has been widely used to investigate the structures and functions of the human brain in health and disease in vivo. However, there are growing concerns about the test-retest reliability of structural and functional measurements derived from MRI data. Here, we present a test-retest dataset of multi-modal MRI including structural MRI (S-MRI), diffusion MRI (D-MRI) and resting-state functional MRI (R-fMRI). Fifty-seven healthy young adults (age range: 19-30 years) were recruited and completed two multi-modal MRI scan sessions at an interval of approximately 6 weeks. Each scan session included R-fMRI, S-MRI and D-MRI data. Additionally, there were two separated R-fMRI scans at the beginning and at the end of the first session (approximately 20 min apart). This multi-modal MRI dataset not only provides excellent opportunities to investigate the short- and long-term test-retest reliability of the brain's structural and functional measurements at the regional, connectional and network levels, but also allows probing the test-retest reliability of structural-functional couplings in the human brain.

  12. Biodistribution study of nanometric hybrid gadolinium oxide particles as a multimodal SPECT/MR/optical imaging and theragnostic agent.

    PubMed

    Kryza, David; Taleb, Jacqueline; Janier, Marc; Marmuse, Laurence; Miladi, Imen; Bonazza, Pauline; Louis, Cédric; Perriat, Pascal; Roux, Stéphane; Tillement, Olivier; Billotey, Claire

    2011-06-15

    Nanometric hybrid gadolinium oxide particles (Gado-6Si-NP) for diagnostic and therapeutic applications (mean diameter 3-4 nm) were obtained by encapsulating Gd(2)O(3) cores within a polysiloxane shell, which carries organic fluorophore (Cy 5) and is derivatized by a hydrophilic carboxylic layer. As residency time in the living body and methods of waste elimination are crucial to defining a good nanoparticle candidate and moving forward with steps for validation, this study was aimed at evaluating the biodistribution of these multimodal Gado-6Si-NP in rodents. Gado-6Si-NP were imaged following intravenous injection in control Wistar rats and mice using MRI (7 T), optical fluorescent imaging, and SPECT. A clear correlation was observed among MRI, optical imaging, and SPECT regarding the renal elimination. Quantitative biodistribution using gamma-counting of each sampled organ confirmed that these nanoparticles circulated freely in the blood pool and were rapidly cleared by renal excretion without accumulation in liver and RES uptake. These results demonstrate that Gado-6Si-NP display optimal biodistribution properties, enabling them to be developed as multimodal agents for in vivo imaging and theragnostics, especially in oncological applications.

  13. A new approach of building 3D visualization framework for multimodal medical images display and computed assisted diagnosis

    NASA Astrophysics Data System (ADS)

    Li, Zhenwei; Sun, Jianyong; Zhang, Jianguo

    2012-02-01

    As more and more CT/MR studies are scanning with larger volume of data sets, more and more radiologists and clinician would like using PACS WS to display and manipulate these larger data sets of images with 3D rendering features. In this paper, we proposed a design method and implantation strategy to develop 3D image display component not only with normal 3D display functions but also with multi-modal medical image fusion as well as compute-assisted diagnosis of coronary heart diseases. The 3D component has been integrated into the PACS display workstation of Shanghai Huadong Hospital, and the clinical practice showed that it is easy for radiologists and physicians to use these 3D functions such as multi-modalities' (e.g. CT, MRI, PET, SPECT) visualization, registration and fusion, and the lesion quantitative measurements. The users were satisfying with the rendering speeds and quality of 3D reconstruction. The advantages of the component include low requirements for computer hardware, easy integration, reliable performance and comfortable application experience. With this system, the radiologists and the clinicians can manipulate with 3D images easily, and use the advanced visualization tools to facilitate their work with a PACS display workstation at any time.

  14. Gadolinium oxide nanoparticles and aptamer-functionalized silver nanoclusters-based multimodal molecular imaging nanoprobe for optical/magnetic resonance cancer cell imaging.

    PubMed

    Li, Jingjing; You, Jia; Dai, Yue; Shi, Meilin; Han, Cuiping; Xu, Kai

    2014-11-18

    Multimodal molecular imaging has attracted more and more interest from researchers due to its combination of the strengths of each imaging modality. The development of specific and multifunctional molecular imaging probes is the key for this method. In this study, we fabricated an optical/magnetic resonance (MR) dual-modality molecular imaging nanoprobe, polyethylene glycol-coated ultrasmall gadolinium oxide (PEG-Gd2O3)/aptamer-Ag nanoclusters (NCs), for tracking cancer cells. To achieve this aim, PEG-Gd2O3 nanoparticles (NPs) as magnetic resonance imaging (MRI) contrast agent and aptamer functionalized silver nanoclusters (aptamer-Ag NCs) as fluorescence reporter were first synthesized by a one-pot approach, respectively. They were then conjugated by the covalent coupling reaction between the carboxyl group on the surface of PEG-Gd2O3 NPs and amino group modified on the 5'-end of AS1411 aptamer. With a suitable ratio, the fluorescence intensity of aptamer-Ag NCs and MR signal of PEG-Gd2O3 nanoparticles could both be enhanced after the formation of PEG-Gd2O3/aptamer-Ag NCs nanoprobe, which favored their application for multimodal molecular imaging. With this nanoprobe, MCF-7 tumor cells could be specifically tracked by both fluorescence imaging and magnetic resonance imaging in vitro. PMID:25338209

  15. Gadolinium oxide nanoparticles and aptamer-functionalized silver nanoclusters-based multimodal molecular imaging nanoprobe for optical/magnetic resonance cancer cell imaging.

    PubMed

    Li, Jingjing; You, Jia; Dai, Yue; Shi, Meilin; Han, Cuiping; Xu, Kai

    2014-11-18

    Multimodal molecular imaging has attracted more and more interest from researchers due to its combination of the strengths of each imaging modality. The development of specific and multifunctional molecular imaging probes is the key for this method. In this study, we fabricated an optical/magnetic resonance (MR) dual-modality molecular imaging nanoprobe, polyethylene glycol-coated ultrasmall gadolinium oxide (PEG-Gd2O3)/aptamer-Ag nanoclusters (NCs), for tracking cancer cells. To achieve this aim, PEG-Gd2O3 nanoparticles (NPs) as magnetic resonance imaging (MRI) contrast agent and aptamer functionalized silver nanoclusters (aptamer-Ag NCs) as fluorescence reporter were first synthesized by a one-pot approach, respectively. They were then conjugated by the covalent coupling reaction between the carboxyl group on the surface of PEG-Gd2O3 NPs and amino group modified on the 5'-end of AS1411 aptamer. With a suitable ratio, the fluorescence intensity of aptamer-Ag NCs and MR signal of PEG-Gd2O3 nanoparticles could both be enhanced after the formation of PEG-Gd2O3/aptamer-Ag NCs nanoprobe, which favored their application for multimodal molecular imaging. With this nanoprobe, MCF-7 tumor cells could be specifically tracked by both fluorescence imaging and magnetic resonance imaging in vitro.

  16. Complementary Metal Oxide Semiconductor Based Multimodal Sensor for In vivo Brain Function Imaging with a Function for Simultaneous Cell Stimulation

    NASA Astrophysics Data System (ADS)

    Tagawa, Ayato; Mitani, Masahiro; Minami, Hiroki; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2010-04-01

    We have developed a multimodal complementary metal oxide semiconductor (CMOS) sensor device embedded with Au electrodes for fluorescent imaging and cell stimulation in the deep brain of mice. The Au electrodes were placed on the pixel array of the image sensor. Windows over the photodiodes were opened in the electrode area for simultaneous fluorescent imaging and cell stimulation in the same area of the brain tissue. The sensor chip was shaped like a shank and was packaged by two packaging methods for high strength or minimal invasion. The experimental results showed that the 90 ×90 µm2 Au electrodes with windows were capable of injecting theta burst stimulation (TBS)-like current pulses at 0.2-1 mA in a saline solution. We successfully demonstrated that fluorescent imaging and TBS-like current injection can be simultaneously performed in the electrode area of a brain phantom.

  17. Complementary Metal Oxide Semiconductor Based Multimodal Sensor for In vivo Brain Function Imaging with a Function for Simultaneous Cell Stimulation

    NASA Astrophysics Data System (ADS)

    Ayato Tagawa,; Masahiro Mitani,; Hiroki Minami,; Toshihiko Noda,; Kiyotaka Sasagawa,; Takashi Tokuda,; Jun Ohta,

    2010-04-01

    We have developed a multimodal complementary metal oxide semiconductor (CMOS) sensor device embedded with Au electrodes for fluorescent imaging and cell stimulation in the deep brain of mice. The Au electrodes were placed on the pixel array of the image sensor. Windows over the photodiodes were opened in the electrode area for simultaneous fluorescent imaging and cell stimulation in the same area of the brain tissue. The sensor chip was shaped like a shank and was packaged by two packaging methods for high strength or minimal invasion. The experimental results showed that the 90 × 90 μm2 Au electrodes with windows were capable of injecting theta burst stimulation (TBS)-like current pulses at 0.2-1 mA in a saline solution. We successfully demonstrated that fluorescent imaging and TBS-like current injection can be simultaneously performed in the electrode area of a brain phantom.

  18. Pelvic Inflammatory Disease: Multimodality Imaging Approach with Clinical-Pathologic Correlation.

    PubMed

    Revzin, Margarita V; Mathur, Mahan; Dave, Haatal B; Macer, Matthew L; Spektor, Michael

    2016-01-01

    Pelvic inflammatory disease (PID) is a common medical problem, with almost 1 million cases diagnosed annually. Historically, PID has been a clinical diagnosis supplemented with the findings from ultrasonography (US) or magnetic resonance (MR) imaging. However, the diagnosis of PID can be challenging because the clinical manifestations may mimic those of other pelvic and abdominal processes. Given the nonspecific clinical manifestations, computed tomography (CT) is commonly the first imaging examination performed. General CT findings of early- and late-stage PID include thickening of the uterosacral ligaments, pelvic fat stranding with obscuration of fascial planes, reactive lymphadenopathy, and pelvic free fluid. Recognition of these findings, as well as those seen with cervicitis, endometritis, acute salpingitis, oophoritis, pyosalpinx, hydrosalpinx, tubo-ovarian abscess, and pyometra, is crucial in allowing prompt and accurate diagnosis. Late complications of PID include tubal damage resulting in infertility and ectopic pregnancy, peritonitis caused by uterine and/or tubo-ovarian abscess rupture, development of peritoneal adhesions resulting in bowel obstruction and/or hydroureteronephrosis, right upper abdominal inflammation (Fitz-Hugh-Curtis syndrome), and septic thrombophlebitis. Recognition of these late manifestations at CT can also aid in proper patient management. At CT, careful assessment of common PID mimics, such as endometriosis, adnexal torsion, ruptured hemorrhagic ovarian cyst, adnexal neoplasms, appendicitis, and diverticulitis, is important to avoid misinterpretation, delay in management, and unnecessary surgery. Correlation with the findings from complementary imaging examinations, such as US and MR imaging, is useful for establishing a definitive diagnosis. (©)RSNA, 2016. PMID:27618331

  19. Comparative study of multimodal intra-subject image registration methods on a publicly available database

    NASA Astrophysics Data System (ADS)

    Miri, Mohammad Saleh; Ghayoor, Ali; Johnson, Hans J.; Sonka, Milan

    2016-03-01

    This work reports on a comparative study between five manual and automated methods for intra-subject pair-wise registration of images from different modalities. The study includes a variety of inter-modal image registrations (MR-CT, PET-CT, PET-MR) utilizing different methods including two manual point-based techniques using rigid and similarity transformations, one automated point-based approach based on Iterative Closest Point (ICP) algorithm, and two automated intensity-based methods using mutual information (MI) and normalized mutual information (NMI). These techniques were employed for inter-modal registration of brain images of 9 subjects from a publicly available dataset, and the results were evaluated qualitatively via checkerboard images and quantitatively using root mean square error and MI criteria. In addition, for each inter-modal registration, a paired t-test was performed on the quantitative results in order to find any significant difference between the results of the studied registration techniques.

  20. Detecting fluorescence hot-spots using mosaic maps generated from multimodal endoscope imaging

    NASA Astrophysics Data System (ADS)

    Yang, Chenying; Soper, Timothy D.; Seibel, Eric J.

    2013-03-01

    Fluorescence labeled biomarkers can be detected during endoscopy to guide early cancer biopsies, such as high-grade dysplasia in Barrett's Esophagus. To enhance intraoperative visualization of the fluorescence hot-spots, a mosaicking technique was developed to create full anatomical maps of the lower esophagus and associated fluorescent hot-spots. The resultant mosaic map contains overlaid reflectance and fluorescence images. It can be used to assist biopsy and document findings. The mosaicking algorithm uses reflectance images to calculate image registration between successive frames, and apply this registration to simultaneously acquired fluorescence images. During this mosaicking process, the fluorescence signal is enhanced through multi-frame averaging. Preliminary results showed that the technique promises to enhance the detectability of the hot-spots due to enhanced fluorescence signal.

  1. Multimodality Molecular Imaging of Cardiac Cell Transplantation: Part I. Reporter Gene Design, Characterization, and Optical in Vivo Imaging of Bone Marrow Stromal Cells after Myocardial Infarction.

    PubMed

    Parashurama, Natesh; Ahn, Byeong-Cheol; Ziv, Keren; Ito, Ken; Paulmurugan, Ramasamy; Willmann, Jürgen K; Chung, Jaehoon; Ikeno, Fumiaki; Swanson, Julia C; Merk, Denis R; Lyons, Jennifer K; Yerushalmi, David; Teramoto, Tomohiko; Kosuge, Hisanori; Dao, Catherine N; Ray, Pritha; Patel, Manishkumar; Chang, Ya-Fang; Mahmoudi, Morteza; Cohen, Jeff Eric; Goldstone, Andrew Brooks; Habte, Frezghi; Bhaumik, Srabani; Yaghoubi, Shahriar; Robbins, Robert C; Dash, Rajesh; Yang, Phillip C; Brinton, Todd J; Yock, Paul G; McConnell, Michael V; Gambhir, Sanjiv S

    2016-09-01

    Purpose To use multimodality reporter-gene imaging to assess the serial survival of marrow stromal cells (MSC) after therapy for myocardial infarction (MI) and to determine if the requisite preclinical imaging end point was met prior to a follow-up large-animal MSC imaging study. Materials and Methods Animal studies were approved by the Institutional Administrative Panel on Laboratory Animal Care. Mice (n = 19) that had experienced MI were injected with bone marrow-derived MSC that expressed a multimodality triple fusion (TF) reporter gene. The TF reporter gene (fluc2-egfp-sr39ttk) consisted of a human promoter, ubiquitin, driving firefly luciferase 2 (fluc2), enhanced green fluorescent protein (egfp), and the sr39tk positron emission tomography reporter gene. Serial bioluminescence imaging of MSC-TF and ex vivo luciferase assays were performed. Correlations were analyzed with the Pearson product-moment correlation, and serial imaging results were analyzed with a mixed-effects regression model. Results Analysis of the MSC-TF after cardiac cell therapy showed significantly lower signal on days 8 and 14 than on day 2 (P = .011 and P = .001, respectively). MSC-TF with MI demonstrated significantly higher signal than MSC-TF without MI at days 4, 8, and 14 (P = .016). Ex vivo luciferase activity assay confirmed the presence of MSC-TF on days 8 and 14 after MI. Conclusion Multimodality reporter-gene imaging was successfully used to assess serial MSC survival after therapy for MI, and it was determined that the requisite preclinical imaging end point, 14 days of MSC survival, was met prior to a follow-up large-animal MSC study. (©) RSNA, 2016 Online supplemental material is available for this article. PMID:27308957

  2. Development of a temporal multiplexed 3D beam-scanning Lissajous trajectory microscope for rapid multimodal volumetric imaging

    NASA Astrophysics Data System (ADS)

    Newman, Justin A.; Sullivan, Shane Z.; Dinh, Janny; Sarkar, Sreya; Simpson, Garth J.

    2016-03-01

    A beam-scanning microscope is described based on a temporally multiplexed Lissajous trajectory for achieving 1 kHz frame rate 3D imaging. The microscope utilizes two fast-scan resonant mirrors to direct the optical beam on a circuitous, Lissajous trajectory through the field of view. Acquisition of two simultaneous focal planes is achieved by implementation of an optical delay line, producing a second incident beam at a different focal plane relative to the initial incident beam. High frame rates are achieved by separating the full time-domain data into shorter sub-trajectories resulting in undersampling of the field of view. A model-based image reconstruction (MBIR) 3D in-painting algorithm is utilized for interpolating the missing data to recover full images. The MBIR algorithm uses a maximum a posteriori estimation with a generalized Gaussian Markov random field prior model for image interpolation. Because images are acquired using photomultiplier tubes or photodiodes, parallelization for multi-channel imaging is straightforward. Preliminary results obtained using a Lissajous trajectory beam-scanning approach coupled with temporal multiplexing by the implementation of an optical delay line demonstrate the ability to acquire 2 distinct focal planes simultaneously at frame rates >450 Hz for full 512 × 512 images. The use of multi-channel data acquisition cards allows for simultaneous multimodal image acquisition with perfect image registry between all imaging modalities. Also discussed here is the implementation of Lissajous trajectory beam-scanning on commercially available microscope hardware.

  3. Brain CT and MRI: differential diagnosis of imaging findings.

    PubMed

    Masdeu, Joseph C; Gadhia, Rajan; Faridar, Alireza

    2016-01-01

    Following a traditional approach, in Chapters 5 and 14-29 in the previous volume, diverse brain diseases are listed and their imaging findings described in detail. In this chapter the approach is from the imaging finding to the disease: for instance, what list of diseases can give rise to a contrast-enhancing mass in the cerebellopontine angle? Imaging findings that are reviewed in succession include the location of the lesion, its multiplicity and symmetry, its volume, ranging from atrophy to mass effect, its homogeneity, its density, measurable by computed tomography (CT), its appearance on T1, T2, and diffusion magnetic resonance imaging (MRI), and, finally, its characteristics after the infusion of intravenous contrast. A differential diagnosis for each finding is provided. While the approach adopted in this chapter is unconventional, we hope that it will be most helpful to anyone reading images. Furthermore, it could serve as the basis to create or complete image databases to guide in the interpretation of brain CT and MRI. PMID:27430457

  4. Intracranial hydatid cyst: imaging findings of a rare disease.

    PubMed

    Taslakian, Bedros; Darwish, Houssein

    2016-09-12

    Hydatid disease (echinococcosis) is a worldwide zoonosis produced by the larval stage of the Echinococcus tapeworm. The disease is endemic in many parts of the world, particularly in the Middle East, Australia, New Zealand, South America and central and south Europe. Intracranial hydatid disease is considered a rare disease and may be sometimes very difficult to diagnose based on the clinical and laboratory findings. Therefore, it is important to be aware of the condition and the imaging findings even in the non-endemic parts of the world. We report the case of a 12-year-old boy who presented with headache and vomiting for a few months. The mass was totally excised, with no postoperative complications. We present MR spectroscopy (MRS) findings in this operatively proven case of hydatid cyst of the brain. We discuss imaging findings, in particular the findings on MRS, which is rarely reported in the literature.

  5. Intracranial hydatid cyst: imaging findings of a rare disease.

    PubMed

    Taslakian, Bedros; Darwish, Houssein

    2016-01-01

    Hydatid disease (echinococcosis) is a worldwide zoonosis produced by the larval stage of the Echinococcus tapeworm. The disease is endemic in many parts of the world, particularly in the Middle East, Australia, New Zealand, South America and central and south Europe. Intracranial hydatid disease is considered a rare disease and may be sometimes very difficult to diagnose based on the clinical and laboratory findings. Therefore, it is important to be aware of the condition and the imaging findings even in the non-endemic parts of the world. We report the case of a 12-year-old boy who presented with headache and vomiting for a few months. The mass was totally excised, with no postoperative complications. We present MR spectroscopy (MRS) findings in this operatively proven case of hydatid cyst of the brain. We discuss imaging findings, in particular the findings on MRS, which is rarely reported in the literature. PMID:27620198

  6. Multimodality Molecular Imaging of Cardiac Cell Transplantation: Part II. In Vivo Imaging of Bone Marrow Stromal Cells in Swine with PET/CT and MR Imaging.

    PubMed

    Parashurama, Natesh; Ahn, Byeong-Cheol; Ziv, Keren; Ito, Ken; Paulmurugan, Ramasamy; Willmann, Jürgen K; Chung, Jaehoon; Ikeno, Fumiaki; Swanson, Julia C; Merk, Denis R; Lyons, Jennifer K; Yerushalmi, David; Teramoto, Tomohiko; Kosuge, Hisanori; Dao, Catherine N; Ray, Pritha; Patel, Manishkumar; Chang, Ya-Fang; Mahmoudi, Morteza; Cohen, Jeff Eric; Goldstone, Andrew Brooks; Habte, Frezghi; Bhaumik, Srabani; Yaghoubi, Shahriar; Robbins, Robert C; Dash, Rajesh; Yang, Phillip C; Brinton, Todd J; Yock, Paul G; McConnell, Michael V; Gambhir, Sanjiv S

    2016-09-01

    Purpose To quantitatively determine the limit of detection of marrow stromal cells (MSC) after cardiac cell therapy (CCT) in swine by using clinical positron emission tomography (PET) reporter gene imaging and magnetic resonance (MR) imaging with cell prelabeling. Materials and Methods Animal studies were approved by the institutional administrative panel on laboratory animal care. Seven swine received 23 intracardiac cell injections that contained control MSC and cell mixtures of MSC expressing a multimodality triple fusion (TF) reporter gene (MSC-TF) and bearing superparamagnetic iron oxide nanoparticles (NP) (MSC-TF-NP) or NP alone. Clinical MR imaging and PET reporter gene molecular imaging were performed after intravenous injection of the radiotracer fluorine 18-radiolabeled 9-[4-fluoro-3-(hydroxyl methyl) butyl] guanine ((18)F-FHBG). Linear regression analysis of both MR imaging and PET data and nonlinear regression analysis of PET data were performed, accounting for multiple injections per animal. Results MR imaging showed a positive correlation between MSC-TF-NP cell number and dephasing (dark) signal (R(2) = 0.72, P = .0001) and a lower detection limit of at least approximately 1.5 × 10(7) cells. PET reporter gene imaging demonstrated a significant positive correlation between MSC-TF and target-to-background ratio with the linear model (R(2) = 0.88, P = .0001, root mean square error = 0.523) and the nonlinear model (R(2) = 0.99, P = .0001, root mean square error = 0.273) and a lower detection limit of 2.5 × 10(8) cells. Conclusion The authors quantitatively determined the limit of detection of MSC after CCT in swine by using clinical PET reporter gene imaging and clinical MR imaging with cell prelabeling. (©) RSNA, 2016 Online supplemental material is available for this article. PMID:27332865

  7. Toward in vivo diagnosis of skin cancer using multimode imaging dermoscopy: (II) molecular mapping of highly pigmented lesions

    NASA Astrophysics Data System (ADS)

    Vasefi, Fartash; MacKinnon, Nicholas; Farkas, Daniel L.

    2014-03-01

    We have developed a multimode imaging dermoscope that combines polarization and hyperspectral imaging with a computationally rapid analytical model. This approach employs specific spectral ranges of visible and near infrared wavelengths for mapping the distribution of specific skin bio-molecules. This corrects for the melanin-hemoglobin misestimation common to other systems, without resorting to complex and computationally intensive tissue optical models that are prone to inaccuracies due to over-modeling. Various human skin measurements including a melanocytic nevus, and venous occlusion conditions were investigated and compared with other ratiometric spectral imaging approaches. Access to the broad range of hyperspectral data in the visible and near-infrared range allows our algorithm to flexibly use different wavelength ranges for chromophore estimation while minimizing melanin-hemoglobin optical signature cross-talk.

  8. Three dimensional optical manipulation and structural imaging of soft materials by use of laser tweezers and multimodal nonlinear microscopy.

    PubMed

    Trivedi, Rahul P; Lee, Taewoo; Bertness, Kris A; Smalyukh, Ivan I

    2010-12-20

    We develop an integrated system of holographic optical trapping and multimodal nonlinear microscopy and perform simultaneous three-dimensional optical manipulation and non-invasive structural imaging of composite soft-matter systems. We combine different nonlinear microscopy techniques such as coherent anti-Stokes Raman scattering, multi-photon excitation fluorescence and multi-harmonic generation, and use them for visualization of long-range molecular order in soft materials by means of their polarized excitation and detection. The combined system enables us to accomplish manipulation in composite soft materials such as colloidal inclusions in liquid crystals as well as imaging of each separate constituents of the composite material in different nonlinear optical modalities. We also demonstrate optical generation and control of topological defects and simultaneous reconstruction of their three-dimensional long-range molecular orientational patterns from the nonlinear optical images.

  9. Evaluation of texture parameters for the quantitative description of multimodal nonlinear optical images from atherosclerotic rabbit arteries

    NASA Astrophysics Data System (ADS)

    Mostaço-Guidolin, Leila B.; C-T Ko, Alex; Popescu, Dan P.; Smith, Michael S. D.; Kohlenberg, Elicia K.; Shiomi, Masashi; Major, Arkady; Sowa, Michael G.

    2011-08-01

    The composition and structure of atherosclerotic lesions can be directly related to the risk they pose to the patient. Multimodal nonlinear optical (NLO) microscopy provides a powerful means to visualize the major extracellular components of the plaque that critically determine its structure. Textural features extracted from NLO images were investigated for their utility in providing quantitative descriptors of structural and compositional changes associated with plaque development. Ten texture parameters derived from the image histogram and gray level co-occurrence matrix were examined that highlight specific structural and compositional motifs that distinguish early and late stage plaques. Tonal-texture parameters could be linked to key histological features that characterize vulnerable plaque: the thickness and density of the fibrous cap, size of the atheroma, and the level of inflammation indicated through lipid deposition. Tonal and texture parameters from NLO images provide objective metrics that correspond to structural and biochemical changes that occur within the vessel wall in early and late stage atherosclerosis.

  10. Label-free imaging and quantitative chemical analysis of Alzheimer's disease brain samples with multimodal multiphoton nonlinear optical microspectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Jang Hyuk; Kim, Dae Hwan; Song, Woo Keun; Oh, Myoung-Kyu; Ko, Do-Kyeong

    2015-05-01

    We developed multimodal multiphoton microspectroscopy using a small-diameter probe with gradient-index lenses and applied it to unstained Alzheimer's disease (AD) brain samples. Our system maintained the image quality and spatial resolution of images obtained using an objective lens of similar numerical aperture. Multicolor images of AD brain samples were obtained simultaneously by integrating two-photon excited fluorescence and second-harmonic generation on a coherent anti-Stokes Raman scattering (CARS) microendoscope platform. Measurements of two hippocampal regions, the cornus ammonis-1 and dentate gyrus, revealed more lipids, amyloid fibers, and collagen in the AD samples than in the normal samples. Normal and AD brains were clearly distinguished by a large spectral difference and quantitative analysis of the CH mode using CARS microendoscope spectroscopy. We expect this system to be an important diagnosis tool in AD research.

  11. Label-free imaging and quantitative chemical analysis of Alzheimer's disease brain samples with multimodal multiphoton nonlinear optical microspectroscopy.

    PubMed

    Lee, Jang Hyuk; Kim, Dae Hwan; Song, Woo Keun; Oh, Myoung-Kyu; Ko, Do-Kyeong

    2015-05-01

    We developed multimodal multiphoton microspectroscopy using a small-diameter probe with gradient-index lenses and applied it to unstained Alzheimer's disease (AD) brain samples. Our system maintained the image quality and spatial resolution of images obtained using an objective lens of similar numerical aperture. Multicolor images of AD brain samples were obtained simultaneously by integrating two-photon excited fluorescence and second-harmonic generation on a coherent anti-Stokes Raman scattering (CARS) microendoscope platform. Measurements of two hippocampal regions, the cornus ammonis-1 and dentate gyrus, revealed more lipids, amyloid fibers, and collagen in the AD samples than in the normal samples. Normal and AD brains were clearly distinguished by a large spectral difference and quantitative analysis of the CH mode using CARS microendoscope spectroscopy. We expect this system to be an important diagnosis tool in AD research

  12. Multi-modal Imaging of Angiogenesis in a Nude Rat Model of Breast Cancer Bone Metastasis Using Magnetic Resonance Imaging, Volumetric Computed Tomography and Ultrasound

    PubMed Central

    Bäuerle, Tobias; Komljenovic, Dorde; Berger, Martin R.; Semmler, Wolfhard

    2012-01-01

    Angiogenesis is an essential feature of cancer growth and metastasis formation. In bone metastasis, angiogenic factors are pivotal for tumor cell proliferation in the bone marrow cavity as well as for interaction of tumor and bone cells resulting in local bone destruction. Our aim was to develop a model of experimental bone metastasis that allows in vivo assessment of angiogenesis in skeletal lesions using non-invasive imaging techniques. For this purpose, we injected 105 MDA-MB-231 human breast cancer cells into the superficial epigastric artery, which precludes the growth of metastases in body areas other than the respective hind leg1. Following 25-30 days after tumor cell inoculation, site-specific bone metastases develop, restricted to the distal femur, proximal tibia and proximal fibula1. Morphological and functional aspects of angiogenesis can be investigated longitudinally in bone metastases using magnetic resonance imaging (MRI), volumetric computed tomography (VCT) and ultrasound (US). MRI displays morphologic information on the soft tissue part of bone metastases that is initially confined to the bone marrow cavity and subsequently exceeds cortical bone while progressing. Using dynamic contrast-enhanced MRI (DCE-MRI) functional data including regional blood volume, perfusion and vessel permeability can be obtained and quantified2-4. Bone destruction is captured in high resolution using morphological VCT imaging. Complementary to MRI findings, osteolytic lesions can be located adjacent to sites of intramedullary tumor growth. After contrast agent application, VCT angiography reveals the macrovessel architecture in bone metastases in high resolution, and DCE-VCT enables insight in the microcirculation of these lesions5,6. US is applicable to assess morphological and functional features from skeletal lesions due to local osteolysis of cortical bone. Using B-mode and Doppler techniques, structure and perfusion of the soft tissue metastases can be evaluated

  13. Multi-modal imaging of angiogenesis in a nude rat model of breast cancer bone metastasis using magnetic resonance imaging, volumetric computed tomography and ultrasound.

    PubMed

    Bäuerle, Tobias; Komljenovic, Dorde; Berger, Martin R; Semmler, Wolfhard

    2012-01-01

    Angiogenesis is an essential feature of cancer growth and metastasis formation. In bone metastasis, angiogenic factors are pivotal for tumor cell proliferation in the bone marrow cavity as well as for interaction of tumor and bone cells resulting in local bone destruction. Our aim was to develop a model of experimental bone metastasis that allows in vivo assessment of angiogenesis in skeletal lesions using non-invasive imaging techniques. For this purpose, we injected 10(5) MDA-MB-231 human breast cancer cells into the superficial epigastric artery, which precludes the growth of metastases in body areas other than the respective hind leg. Following 25-30 days after tumor cell inoculation, site-specific bone metastases develop, restricted to the distal femur, proximal tibia and proximal fibula. Morphological and functional aspects of angiogenesis can be investigated longitudinally in bone metastases using magnetic resonance imaging (MRI), volumetric computed tomography (VCT) and ultrasound (US). MRI displays morphologic information on the soft tissue part of bone metastases that is initially confined to the bone marrow cavity and subsequently exceeds cortical bone while progressing. Using dynamic contrast-enhanced MRI (DCE-MRI) functional data including regional blood volume, perfusion and vessel permeability can be obtained and quantified. Bone destruction is captured in high resolution using morphological VCT imaging. Complementary to MRI findings, osteolytic lesions can be located adjacent to sites of intramedullary tumor growth. After contrast agent application, VCT angiography reveals the macrovessel architecture in bone metastases in high resolution, and DCE-VCT enables insight in the microcirculation of these lesions. US is applicable to assess morphological and functional features from skeletal lesions due to local osteolysis of cortical bone. Using B-mode and Doppler techniques, structure and perfusion of the soft tissue metastases can be evaluated

  14. SU-E-J-136: Multimodality-Image-Based Target Delineation for Dose Painting of Pancreatic Cancer

    SciTech Connect

    Dalah, E; Paulson, E; Erickson, B; Li, X

    2014-06-01

    Purpose: Dose escalated RT may provide improved disease local-control for selected unresectable pancreatic cancer. Accurate delineation of the gross tumor volume (GTV) inside pancreatic head or body would allow safe dose escalation considering the tolerances of adjacent organs at risk (OAR). Here we explore the potential of multi-modality imaging (DCE-MRI, ADC-MRI, and FDG-PET) to define the GTV for dose painting of pancreatic cancer. Volumetric variations of DCE-MRI, ADC-MRI and FDG-PET defined GTVs were assessed in comparison to the findings on CT, and to pathology specimens for resectable and borderline reseactable cases of pancreatic cancer. Methods: A total of 19 representative patients with DCE-MRI, ADC-MRI and FDG-PET data were analyzed. Of these, 8 patients had pathological specimens. GTV, inside pancreatic head/neck, or body, were delineated on MRI (denoted GTVDCE, and GTVADC), on FDG-PET using SUV of 2.5, 40% SUVmax, and 50% SUVmax (denoted GTV2.5, GTV40%, and GTV50%). A Kruskal-Wallis test was used to determine whether significant differences existed between GTV volumes. Results: Significant statistical differences were found between the GTVs defined by DCE-MRI, ADC-MRI, and FDG-PET, with a mean and range of 4.73 (1.00–9.79), 14.52 (3.21–25.49), 22.04 (1.00–45.69), 19.10 (4.84–45.59), and 9.80 (0.32–35.21) cm3 (p<0.0001) for GTVDCE, GTVADC, GTV2.5, GTV40%, and GTV50%, respectively. The mean difference and range in the measurements of maximum dimension of GTVs based on DCE-MRI, ADC-MRI, SUV2.5, 40% SUVmax, and 50% SUVmax compared with pathologic specimens were −0.84 (−2.24 to 0.9), 0.41 (−0.15 to 2.3), 0.58 (−1.41 to 3.69), 0.66 (−0.67 to 1.32), and 0.15 (−1.53 to 2.38) cm, respectively. Conclusion: Differences exists between DCE, ADC, and PET defined target volumes for RT of pancreatic cancer. Further studies combined with pathological specimens are required to identify the optimal imaging modality and/or acquisition method to

  15. Multimodal system for non-contact photoacoustic imaging, optical coherence tomography, and mid-infrared photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Leiss-Holzinger, E.; Brandstetter, M.; Langer, G.; Buchsbaum, A.; Burgholzer, P.; Lendl, B.; Berer, T.

    2016-03-01

    We present a multimodal optical setup, allowing non-contact photoacoustic imaging, optical coherence tomography (OCT), and non-contact mid-infrared photoacoustic spectroscopy. Photoacoustic signals are generated using a Nd:YAG laser and a tunable quantum cascade laser for photoacoustic imaging and spectroscopy, respectively. Photoacoustic signals are acquired by measuring the surface displacement of a specimen using a fiber-optic Mach-Zehnder interferometer. In the same fiber-optic network a spectral-domain OCT system is realized. Light from the photoacoustic detection laser and the OCT source are multiplexed into one fiber and the same objective is used for both imaging modalities. Light reflected from specimens is demultiplexed and guided to the respective imaging systems. To allow fast non-contact PAI and OCT imaging the detection spot is scanned across the specimens' surface using a galvanometer scanner. As the same fiber-network and optical components are used for photoacoustic and OCT imaging the obtained images are co-registered intrinsically. Imaging is demonstrated on tissue mimicking and biological samples; spectral information is obtained for polystyrene and hemoglobin.

  16. Multimodality imaging for characterization, classification, and staging of malignant pleural mesothelioma.

    PubMed

    Nickell, Larry T; Lichtenberger, John P; Khorashadi, Leila; Abbott, Gerald F; Carter, Brett W

    2014-10-01

    Malignant pleural mesothelioma (MPM) is the most common primary malignancy of the pleura and is associated with asbestos exposure in approximately 80% of patients. The patient prognosis is poor, with a median survival of 9-17 months after diagnosis. However, improved survival and decreased morbidity and mortality have been demonstrated when the diagnosis is made in the early stages of disease and specific treatment strategies are implemented. A staging system that focuses on the extent of primary tumor (T), lymph node involvement (N), and metastatic disease (M) has been devised by the International Mesothelioma Interest Group and emphasizes factors related to overall survival. Radiologists should recognize the manifestations of MPM across multiple imaging modalities, translate these findings into the updated staging system, and understand the effects of appropriate staging on treatment and survival. Computed tomography (CT) remains the primary imaging modality used to evaluate MPM and efficiently demonstrates the extent of primary tumor, intrathoracic lymphadenopathy, and extrathoracic spread. However, additional imaging modalities, such as magnetic resonance (MR) imaging of the thorax and positron emission tomography (PET)/CT with fluorodeoxyglucose, have emerged in recent years and are complementary to CT for disease staging and evaluation of patients with MPM. Thoracic MR imaging is particularly useful for identifying invasion of the chest wall, mediastinum, and diaphragm, and PET/CT can accurately demonstrate intrathoracic and extrathoracic lymphadenopathy and metastatic disease.

  17. Mirror-Image Reversals in Children's Printing: Preliminary Findings.

    ERIC Educational Resources Information Center

    Simner, Marvin L.

    Children from kindergarten through grade 2 were asked to copy, then print from memory, each of the 41 reversible letters and numbers administered individually on slides presented in random order. The main findings of an experiment with 179 children drawn from two elementary schools show that mirror-image reversals and other errors (1) take place…

  18. Clinical and Imaging Findings of True Hemifacial Hyperplasia

    PubMed Central

    Bhuta, Bansari A.; Desai, Rajiv S.; Bansal, Shivani P.; Chemburkar, Vipul V.; Dev, Prashant V.

    2013-01-01

    Congenital hemifacial hyperplasia is a rare developmental disorder of unknown etiology, characterized by a marked unilateral facial asymmetry. It involves the hard (bones and teeth) and soft tissues of the face. We report an interesting case of true hemifacial hyperplasia in a 25-year-old male highlighting the clinical and computed tomography imaging findings. PMID:24349801

  19. MPO4:Nd3+ (M=Ca, Gd), Luminomagnetic Nanophosphors with Optical and Magnetic Features for Multimodal Imaging Applications

    NASA Astrophysics Data System (ADS)

    Rightsell, Chris; Mimun, Lawrence C.; Kumar, Ajith G.; Sardar, Dhiraj K.

    2015-03-01

    Nanomaterials with multiple functionalities play a very important role in several high technology applications. A major area of such applications is the biomedical industry, where contrast agents with multiple imaging modalities can provide better results than conventional materials. Many of the contrast agents available now have drawbacks such as toxicity, photobleaching, low contrast, size restrictions, and overall cost of the imaging system. Rare-earth doped inorganic nanophosphors are alternatives to circumvent several of these issues, together with the added advantage of super high resolution imaging due to the excellent near infrared sensitivity of the phosphors. In addition to optical imaging features, by adding a magnetic ion such as Gd3+ at suitable lattice positions, the phosphor can be made magnetic, yielding dual imaging functionalities. In this research, we are presenting the optical and magnetic imaging features of sub-nanometer size MPO4:Nd3+ (M=Ca, Gd) phosphors for the potential application of these nanophosphors as multimodal contrast agents. Cytotoxicity, in vitro and in vivo imaging, penetration depth etc. are studied for various phosphor compositions, and optimized compositions are explored. This research was funded by the National Science Foundation Partnerships for Research and Education in Materials (NSF-PREM) Grant N0-DMR-0934218.

  20. [Celiac sprue: A pictorial revision of main imaging findings].

    PubMed

    Constanza Damm, Araneda; Matías Molina, Villagra; Giancarlo Schiappacasse, Faúndez; Claudio Cortés, Arriagada

    2014-01-01

    Celiac sprue (CS) is an autoinmune desease caused by gliadin intake. The exposure to this protein produces damage of the intestinal mucosae, primarily of the duodenum and yeyunum, causing different symptoms and diverse imaging findings. The objective of this review is to show a pictorial essay of the main findings of CS and its complications in barited fluroscopy, computed tomography and magnetic resonance. We show different images of patients with certified diagnosis of CS. In summary, these imaging modalities are useful for the diagnosis and follow up of patients with CS, as well as for the detection of complications. We believe that they are useful complementary exams that aid to the existing diagnosis criteria. PMID:26753388

  1. Paramagnetic lipid-coated silica nanoparticles with a fluorescent quantum dot core: a new contrast agent platform for multimodality imaging

    PubMed Central

    Koole, Rolf; van Schooneveld, Matti M.; Hilhorst, Jan; Castermans, Karolien; Cormode, David P.; Strijkers, Gustav J.; de Mello Donegá, Celso; Vanmaekelbergh, Daniel; Griffioen, Arjan W.; Nicolay, Klaas; Fayad, Zahi A.; Meijerink, Andries; Mulder, Willem J. M.

    2012-01-01

    Silica particles as a nanoparticulate carrier material for contrast agents have received considerable attention the past few years, since the material holds great promise for biomedical applications. A key feature for successful application of this material in vivo is biocompatibility, which may be significantly improved by appropriate surface modification. In this study we report a novel strategy to coat silica particles with a dense monolayer of paramagnetic and PEGylated lipids. The silica nanoparticles carry a quantum dot in their centre and are made target-specific by the conjugation of multiple αvβ3-integrin-specifc RGD-peptides. We demonstrate their specific uptake by endothelial cells in vitro using fluorescence microscopy, quantitative fluorescence imaging and magnetic resonance imaging. The lipid coated silica particles introduced here represent a new platform for nanoparticulate multimodality contrast agents. PMID:19035793

  2. Dual CARS and SHG image acquisition scheme that combines single central fiber and multimode fiber bundle to collect and differentiate backward and forward generated photons.

    PubMed

    Weng, Sheng; Chen, Xu; Xu, Xiaoyun; Wong, Kelvin K; Wong, Stephen T C

    2016-06-01

    In coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) imaging, backward and forward generated photons exhibit different image patterns and thus capture salient intrinsic information of tissues from different perspectives. However, they are often mixed in collection using traditional image acquisition methods and thus are hard to interpret. We developed a multimodal scheme using a single central fiber and multimode fiber bundle to simultaneously collect and differentiate images formed by these two types of photons and evaluated the scheme in an endomicroscopy prototype. The ratio of these photons collected was calculated for the characterization of tissue regions with strong or weak epi-photon generation while different image patterns of these photons at different tissue depths were revealed. This scheme provides a new approach to extract and integrate information captured by backward and forward generated photons in dual CARS/SHG imaging synergistically for biomedical applications.

  3. Dual CARS and SHG image acquisition scheme that combines single central fiber and multimode fiber bundle to collect and differentiate backward and forward generated photons

    PubMed Central

    Weng, Sheng; Chen, Xu; Xu, Xiaoyun; Wong, Kelvin K.; Wong, Stephen T. C.

    2016-01-01

    In coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) imaging, backward and forward generated photons exhibit different image patterns and thus capture salient intrinsic information of tissues from different perspectives. However, they are often mixed in collection using traditional image acquisition methods and thus are hard to interpret. We developed a multimodal scheme using a single central fiber and multimode fiber bundle to simultaneously collect and differentiate images formed by these two types of photons and evaluated the scheme in an endomicroscopy prototype. The ratio of these photons collected was calculated for the characterization of tissue regions with strong or weak epi-photon generation while different image patterns of these photons at different tissue depths were revealed. This scheme provides a new approach to extract and integrate information captured by backward and forward generated photons in dual CARS/SHG imaging synergistically for biomedical applications. PMID:27375938

  4. Dual CARS and SHG image acquisition scheme that combines single central fiber and multimode fiber bundle to collect and differentiate backward and forward generated photons.

    PubMed

    Weng, Sheng; Chen, Xu; Xu, Xiaoyun; Wong, Kelvin K; Wong, Stephen T C

    2016-06-01

    In coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) imaging, backward and forward generated photons exhibit different image patterns and thus capture salient intrinsic information of tissues from different perspectives. However, they are often mixed in collection using traditional image acquisition methods and thus are hard to interpret. We developed a multimodal scheme using a single central fiber and multimode fiber bundle to simultaneously collect and differentiate images formed by these two types of photons and evaluated the scheme in an endomicroscopy prototype. The ratio of these photons collected was calculated for the characterization of tissue regions with strong or weak epi-photon generation while different image patterns of these photons at different tissue depths were revealed. This scheme provides a new approach to extract and integrate information captured by backward and forward generated photons in dual CARS/SHG imaging synergistically for biomedical applications. PMID:27375938

  5. Imaging findings of hepatosplenic schistosomiasis: a case report.

    PubMed

    Bilgin, Sabriye Sennur; Toprak, Huseyin; Seker, Mehmet

    2016-09-01

    In our study, in a 52-year-old man, specific and nonspecific findings of Schistosoma infestation were examined using ultrasonography, computed tomography, and magnetic resonance imaging. On computed tomography, capsular and septal calcifications and contrast enhancement of the liver capsule were seen. On T1-weighted magnetic resonance images diffuse hypointensity was seen in periportal spaces; on T2-weighted images in the same spaces, diffuse hyperintensity was seen. On dynamic contrast-enhanced T1-weighted images, in these same spaces marked contrast enhancement was manifested in the late venous phase. These signal changes indicate edema due to periportal fibrotic tissue inflammation and are accepted as pathognomonic for a liver infested by Schistosoma. PMID:27594939

  6. Magnetic resonance imaging findings in horses with septic arthritis.

    PubMed

    Easley, Jeremiah T; Brokken, Matthew T; Zubrod, Chad J; Morton, Alison J; Garrett, Katherine S; Holmes, Shannon P

    2011-01-01

    Fourteen horses with septic arthritis underwent high-field (1.5 T) magnetic resonance imaging (MRI). Septic arthritis was diagnosed based on results from historical and clinical findings, synovial fluid analyses and culture, and radiographic, ultrasonographic, arthroscopic, and histopathologic findings. MR findings included diffuse hyperintensity within bone and extracapsular tissue on fat-suppressed images in 14/14 horses (100%), joint effusion, synovial proliferation, and capsular thickening in 13/14 horses (93%), bone sclerosis in 11/14 horses (79%), and evidence of cartilage and subchondral bone damage in 8/14 horses (57%). Intravenous gadolinium was administered to five of the 14 horses and fibrin deposition was noted in all horses. Other findings after gadolinium administration included synovial enhancement in 4/5 (80%) horses, and bone enhancement in 1/5 (20%) horses. The MR findings of septic arthritis in horses were consistent with those reported in people. MRI may allow earlier and more accurate diagnosis of septic arthritis in horses as compared with other imaging modalities, especially when the clinical diagnosis is challenging. It also provides additional information not afforded by other methods that may influence and enhance treatment.

  7. Extrafetal Findings on Fetal Magnetic Resonance Imaging: A Pictorial Essay.

    PubMed

    Epelman, Monica; Merrow, Arnold C; Guimaraes, Carolina V; Victoria, Teresa; Calvo-Garcia, Maria A; Kline-Fath, Beth M

    2015-12-01

    Although US is the mainstay of fetal imaging, magnetic resonance imaging (MRI) has become an invaluable adjunct in recent years. MRI offers superb soft tissue contrast that allows for detailed evaluation of fetal organs, particularly the brain, which enhances understanding of disease severity. MRI can yield results that are similar to or even better than those of US, particularly in cases of marked oligohydramnios, maternal obesity, or adverse fetal positioning. Incidentally detected extrafetal MRI findings are not uncommon and may affect clinical care. Physicians interpreting fetal MRI studies should be aware of findings occurring outside the fetus, including those structures important for the pregnancy. A systematic approach is necessary in the reading of such studies. This helps to ensure that important findings are not missed, appropriate clinical management is implemented, and unnecessary follow-up examinations are avoided. In this pictorial essay, the most common extrafetal abnormalities are described and illustrated.

  8. Extrafetal Findings on Fetal Magnetic Resonance Imaging: A Pictorial Essay.

    PubMed

    Epelman, Monica; Merrow, Arnold C; Guimaraes, Carolina V; Victoria, Teresa; Calvo-Garcia, Maria A; Kline-Fath, Beth M

    2015-12-01

    Although US is the mainstay of fetal imaging, magnetic resonance imaging (MRI) has become an invaluable adjunct in recent years. MRI offers superb soft tissue contrast that allows for detailed evaluation of fetal organs, particularly the brain, which enhances understanding of disease severity. MRI can yield results that are similar to or even better than those of US, particularly in cases of marked oligohydramnios, maternal obesity, or adverse fetal positioning. Incidentally detected extrafetal MRI findings are not uncommon and may affect clinical care. Physicians interpreting fetal MRI studies should be aware of findings occurring outside the fetus, including those structures important for the pregnancy. A systematic approach is necessary in the reading of such studies. This helps to ensure that important findings are not missed, appropriate clinical management is implemented, and unnecessary follow-up examinations are avoided. In this pictorial essay, the most common extrafetal abnormalities are described and illustrated. PMID:26614136

  9. Dermatofibrosarcoma Protuberans: Computed Tomography and Magnetic Resonance Imaging Findings

    PubMed Central

    Zhang, Liang; Liu, Qing-yu; Cao, Yun; Zhong, Jin-shuang; Zhang, Wei-dong

    2015-01-01

    Abstract The aim of this study was to analyze the computed tomography (CT) and magnetic resonance imaging (MRI) findings of dermatofibrosarcoma protuberans (DFSP), with a view to improving the diagnosis of this kind of tumor. A total of 27 cases of histopathologically confirmed DFSP were analyzed retrospectively. Of these, 18 patients underwent a CT scan and 9 patients underwent an MRI. All patients underwent unenhanced and contrast-enhanced examinations; 1 patient underwent multiphrase CT enhancement examination. Imaging characteristics, including location, shape, size, number, edge, and attenuation or intensity of each lesion, both unenhanced and contrast enhanced, were analyzed. Of the 27 cases, 24 were solitary, 2 had 2 nodules, and 1 had multiple confluent tumors. The lesion with multiple confluent tumors was ill defined and irregular; the other lesions were oval or round, well-defined nodules or masses. The unenhanced CT images showed 19 homogenous isodense lesions. There was no calcification in any of the patients. The contrast-enhanced CT images showed intermediate and marked nonhomogeneous enhancement in 13 lesions, intermediate homogeneous enhancement in 4 lesions, and a mild heterogeneous enhancement in 2 lesions. MR T1-weighted images revealed 1 ill-defined and 9 well-defined homogeneous isointense lesions. T2-weighted images showed homogeneous hyperintensity to the muscles in 6 lesions, 3 mild hyperintense lesions with hypointense lesions, and 1 mixed, mild hyperintense and isointense lesion. Contrast-enhanced T1-weighted images demonstrated intermediate and marked nonhomogeneous enhancement in 9 lesions and intermediate homogeneous enhancement in 1 lesion. DFSP is characterized by a subcutaneous well-defined soft tissue nodule or mass on plain CT/MR scans, and shows intermediate-to-marked enhancement on contrast-enhanced CT/MR scans. The imaging findings for DFSP are nonspecific, but may help to define the diagnosis in an appropriate clinical setting

  10. Multimodal imaging of temporal processing in typical and atypical language development.

    PubMed

    Kovelman, Ioulia; Wagley, Neelima; Hay, Jessica S F; Ugolini, Margaret; Bowyer, Susan M; Lajiness-O'Neill, Renee; Brennan, Jonathan

    2015-03-01

    New approaches to understanding language and reading acquisition propose that the human brain's ability to synchronize its neural firing rate to syllable-length linguistic units may be important to children's ability to acquire human language. Yet, little evidence from brain imaging studies has been available to support this proposal. Here, we summarize three recent brain imaging (functional near-infrared spectroscopy (fNIRS), functional magnetic resonance imaging (fMRI), and magnetoencephalography (MEG)) studies from our laboratories with young English-speaking children (aged 6-12 years). In the first study (fNIRS), we used an auditory beat perception task to show that, in children, the left superior temporal gyrus (STG) responds preferentially to rhythmic beats at 1.5 Hz. In the second study (fMRI), we found correlations between children's amplitude rise-time sensitivity, phonological awareness, and brain activation in the left STG. In the third study (MEG), typically developing children outperformed children with autism spectrum disorder in extracting words from rhythmically rich foreign speech and displayed different brain activation during the learning phase. The overall findings suggest that the efficiency with which left temporal regions process slow temporal (rhythmic) information may be important for gains in language and reading proficiency. These findings carry implications for better understanding of the brain's mechanisms that support language and reading acquisition during both typical and atypical development.

  11. Multimodal imaging of temporal processing in typical and atypical language development.

    PubMed

    Kovelman, Ioulia; Wagley, Neelima; Hay, Jessica S F; Ugolini, Margaret; Bowyer, Susan M; Lajiness-O'Neill, Renee; Brennan, Jonathan

    2015-03-01

    New approaches to understanding language and reading acquisition propose that the human brain's ability to synchronize its neural firing rate to syllable-length linguistic units may be important to children's ability to acquire human language. Yet, little evidence from brain imaging studies has been available to support this proposal. Here, we summarize three recent brain imaging (functional near-infrared spectroscopy (fNIRS), functional magnetic resonance imaging (fMRI), and magnetoencephalography (MEG)) studies from our laboratories with young English-speaking children (aged 6-12 years). In the first study (fNIRS), we used an auditory beat perception task to show that, in children, the left superior temporal gyrus (STG) responds preferentially to rhythmic beats at 1.5 Hz. In the second study (fMRI), we found correlations between children's amplitude rise-time sensitivity, phonological awareness, and brain activation in the left STG. In the third study (MEG), typically developing children outperformed children with autism spectrum disorder in extracting words from rhythmically rich foreign speech and displayed different brain activation during the learning phase. The overall findings suggest that the efficiency with which left temporal regions process slow temporal (rhythmic) information may be important for gains in language and reading proficiency. These findings carry implications for better understanding of the brain's mechanisms that support language and reading acquisition during both typical and atypical development. PMID:25773611

  12. Multimodality Imaging of the Painful Elbow: Current Imaging Concepts and Image-Guided Treatments for the Injured Thrower's Elbow.

    PubMed

    Gustas, Cristy N; Lee, Kenneth S

    2016-09-01

    Elbow pain in overhead sport athletes is not uncommon. Repetitive throwing can lead to chronic overuse and/or acute injury to tendons, ligaments, bones, or nerves about the elbow. A thorough history and physical examination of the thrower's elbow frequently establishes the diagnosis for pain. Imaging can provide additional information when the clinical picture is unclear or further information is necessary for risk stratification and treatment planning. This article focuses on current imaging concepts and image-guided treatments for injuries commonly affecting the adult throwing athlete's elbow. PMID:27545422

  13. Automated segmentation of corticospinal tract in diffusion tensor images via multi-modality multi-atlas fusion

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoying; Mori, Susumu; Miller, Michael I.

    2014-03-01

    In this paper, we propose a method to automatically segment the corticospinal tract (CST) in diffusion tensor images (DTIs) by incorporating the anatomical features from multi-modality images generated in DTI using multiple DTI atlases. The to-be-segmented test subject, and each atlas, is comprised of images with different modalities - the mean diffusivity, the fractional anisotropy, and the images representing the three elements of the primary eigenvector. Each atlas had a paired image containing the manually delineated segmentations of the three regions of interest - the left and right CST and the background surrounding the CST. We solve the problem via maximum a posteriori estimation using generative models. Each modality image is modeled as a conditional Gaussian mixture random field, conditioned on the atlas-label pair and the local change of coordinates for each label. The expectation-maximization algorithm is used to alternatively estimate the local optimal diffeomorphisms for each label and the maximizing segmentations. The algorithm is evaluated on six subjects with a wide range of pathology. We compare the proposed method with two state-of-the-art multi-atlas based label fusion methods, against which the method displayed a high level of accuracy.

  14. A Review of Intravascular Ultrasound–Based Multimodal Intravascular Imaging: The Synergistic Approach to Characterizing Vulnerable Plaques

    PubMed Central

    Ma, Teng; Zhou, Bill; Hsiai, Tzung K.; Shung, K. Kirk

    2015-01-01

    Catheter-based intravascular imaging modalities are being developed to visualize pathologies in coronary arteries, such as high-risk vulnerable atherosclerotic plaques known as thin-cap fibroatheroma, to guide therapeutic strategy at preventing heart attacks. Mounting evidences have shown three distinctive histopathological features—the presence of a thin fibrous cap, a lipid-rich necrotic core, and numerous infiltrating macrophages—are key markers of increased vulnerability in atherosclerotic plaques. To visualize these changes, the majority of catheter-based imaging modalities used intravascular ultrasound (IVUS) as the technical foundation and integrated emerging intravascular imaging techniques to enhance the characterization of vulnerable plaques. However, no current imaging technology is the unequivocal “gold standard” for the diagnosis of vulnerable atherosclerotic plaques. Each intravascular imaging technology possesses its own unique features that yield valuable information although encumbered by inherent limitations not seen in other modalities. In this context, the aim of this review is to discuss current scientific innovations, technical challenges, and prospective strategies in the development of IVUS-based multi-modality intravascular imaging systems aimed at assessing atherosclerotic plaque vulnerability. PMID:26400676

  15. Breast MR Imaging for Equivocal Mammographic Findings: Help or Hindrance?

    PubMed

    Giess, Catherine S; Chikarmane, Sona A; Sippo, Dorothy A; Birdwell, Robyn L

    2016-01-01

    Breast magnetic resonance (MR) imaging, because of its extremely high sensitivity in detecting invasive breast cancers, is sometimes used as a diagnostic tool to evaluate equivocal mammographic findings. However, breast MR imaging should never substitute for a complete diagnostic evaluation or for biopsy of suspected, localizable suspicious mammographic lesions, whenever possible. The modality's high cost, in addition to only moderate specificity, mandate that radiologists use it sparingly and with discrimination for problematic mammographic findings. It is rare that the reality or significance of a noncalcified mammographic finding remains equivocal or problematic at diagnostic mammography evaluation, which usually includes targeted ultrasonography (US). There are several reasons for this infrequent occurrence: (a) an asymmetry may persist on diagnostic views but be visible only on craniocaudal or mediolateral oblique projections, precluding three-dimensional localization for US or biopsy, or a lesion may persist on some diagnostic spot views but dissipate or efface on others; (b) uncertainty may exist as to whether apparent change is clinically important or owing to technical factors such as compression or positioning differences; or (c) a lesion may be suspected but biopsy options are limited owing to lack of a US correlate and lesion inaccessibility for stereotactic biopsy, or biopsy of a vague or questionably real lesion has been attempted unsuccessfully. This article will discuss the indications for problem-solving MR imaging for equivocal mammographic findings, present cases illustrating appropriate and inappropriate uses of problem-solving MR imaging, and present false-positive and false-negative cases affecting the specificity of breast MR imaging. (©)RSNA, 2016. PMID:27284757

  16. Intraoperative magnetic resonance imaging findings during deep brain stimulation surgery

    PubMed Central

    Huston, Olivia O.; Watson, Robert E.; Bernstein, Matt A.; McGee, Kiaran P.; Stead, S. Matt; Gorman, Debb A.; Lee, Kendall H.; Huston, John

    2012-01-01

    Object Deep brain stimulation (DBS) is an established neurosurgical technique used to treat a variety of neurological disorders, including Parkinson disease, essential tremor, dystonia, epilepsy, depression, and obsessive-compulsive disorder. This study reports on the use of intraoperative MR imaging during DBS surgery to evaluate acute hemorrhage, intracranial air, brain shift, and accuracy of lead placement. Methods During a 46-month period, 143 patients underwent 152 DBS surgeries including 289 lead placements utilizing intraoperative 1.5-T MR imaging. Imaging was supervised by an MR imaging physicist to maintain the specific absorption rate below the required level of 0.1 W/kg and always included T1 magnetization-prepared rapid gradient echo and T2* gradient echo sequences with selected use of T2 fluid attenuated inversion recovery (FLAIR) and T2 fast spin echo (FSE). Retrospective review of the intraoperative MR imaging examinations was performed to quantify the amount of hemorrhage and the amount of air introduced during the DBS surgery. Results Intraoperative MR imaging revealed 5 subdural hematomas, 3 subarachnoid hemorrhages, and 1 intra-parenchymal hemorrhage in 9 of the 143 patients. Only 1 patient experiencing a subarachnoid hemorrhage developed clinically apparent symptoms,